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NOx Control

e Nitrogen oxides — NOx — are important air pollutants by themselves; also react in
the atmosphere to form ozone (O3) and acid rain

NOXx is formed during combustion in the peak temperature zones

95% of NOx in the flue gas is initially in the form of NO, rest is NO,

Once in the atmosphere, most NOx is converted into NO, form

Typical SCR systems can achieve NOx removal efficiencies over 90%
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Selective Catalytic Reduction

Selective catalytic reduction (SCR) is a chemical process of using a reductant like ammonia to convert
NOx into diatomic nitrogen (N,) and water (H,0O), with the aid of a catalyst.

4NO + 4NH, + O, — 4N, + 6H,0

2NO, + 4NH; + O, — 3N, + 6H,0 SCR W
NO + NO, + 2NH, — 2N, + 3H,0 GE:>

Ammonia has to react with NOx at the molecular level.
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SCR Performance Goals

Performance goals compete with each other:

Uniform ammonia-to-NOx ratio ==
Uniform velocity at AIG &=
Unform velocity at the catalyst &=
Vertical flow entering catalyst

Uniform temperature at catalyst

Minimize pressure loss

coal & gas
e 6 o6 o o o

Capture LPA with screen/baffles
Minimize catalyst pluggage potential
e Minimize erosion potential

coal
[ )
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Mixing Priorities for SCR Optimization

e Ammonia

o Injection technique plays a key role . .
e NOX
o May not be uniform at coal-fired boiler outlet 5 7
o Generally uniform at gas turbine discharge : & //
e Ammonia-to-NOX ratio E /
o Must be uniform to maximize deNOx - /
performance and minimize ammonia slip : /
e Temperature L
o SCR reactions occur optimally within a specific T e
temperature range NOx Removal Efficiency vs Temperature
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Mixing System Design

e Computational Fluid Dynamics (CFD) modeling
e Physical flow modeling
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Mixing System Design Tools

e Computational Fluid Dynamics (CFD) modeling
e Physical flow modeling
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Influences on Ammonia Mixing

e Ammonia injection technique
o Nozzle design, location, quantity
e Residence time, diffusion
e General turbulence
o Elbows, trusses
e Static mixers
o Induced turbulence
e Negatives to mixing
o Vanes, rectifiers, straighteners,

gas laning
o CO catalysts, tube banks
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e Two basic strategies are used for the ammonia injection grid (AIG)
o Coarse grid of injection points with large mixers
o Dense grid of injection points, optional local mixers
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Ammonia Injection Grid Design

e Two basic strategies are used for the ammonia injection grid (AIG)
o Coarse grid of injection points with large mixers

o Dense grid of injection points, optional local mixers
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Dense Grid Ammonia Injection

e Many injection lances with multiple nozzles per lance
o Depending on SCR size, could have 50-100 lances per reactor
o Numerous nozzles per lance, 10+
o Often has thousands of discrete injection points

e Either no mixer or only a “local” mixer

e Lances grouped into zones for tuning

e Benefits of dense grid injection
o More tunable for maximum NOx reduction
o No negative influence on velocity or

flyash distribution at catalyst

o Lower pressure drop
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Dense Grid AlIG Issues

e Pluggage of nozzles

e Requires very good velocity profile at AlG location

e Tuning not as predictable as sometimes envisioned
o Velocity distribution issues

o Unequal flow per nozzle
o Low resolution of reactor outlet sample grid

e \Valve issues over time
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Coarse Grid Ammonia Injection

e Fewer injection lances compared to dense grid by factor of 5-10
o Depending on SCR size, could have 5, 10, 20 lances per reactor
o Some systems have just 1 injection point per lance
o Others have multiple nozzles per lance (2 to 10)
e Lances located immediately upstream or downstream of a static mixer
e Often multiple stages of static mixers
e Benefits of coarse grid injection
o Fewer nozzles and larger openings less prone to pluggage
o Mixing and high turbulence reduces sensitivity of gradients
m Does not need as much tuning?
m More consistent performance over the load range
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Coarse Grid AIG Issues

e Higher pressure loss

e Duct wall and internal
structure erosion

e Ash accumulation on
mixers

e Tuning not as
straightforward due to
purposeful creation of
turbulence
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Vaporized Ammonia Injection vs Direct Injection

e Vaporized Ammonia Injection

o

o

o

utilizes vaporizer skid to get ammonia into gaseous form prior to injection
need to ensure ammonia properly vaporized and mixed with dilution air
more common but higher capital cost

e Direct Injection

o

@)
@]
@)

inject aqueous ammonia directly in liquid form without dilution air or vaporization
relies on heat from flue gas for vaporization

requires special spray nozzles to insure proper vaporization and mixing

concern about liquid ammonia impingement on walls, mixer
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Coal Fired SCR Performance Goals

Performance goals compete with each other:

Uniform ammonia-to-NOx ratio &=
Uniform velocity at AIG =
Unform velocity at the catalyst <

Vertical flow entering catalyst
Uniform temperature at catalyst
Minimize pressure loss

Capture LPA with screen/baffles
Minimize pluggage potential
Minimize erosion potential
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Ammonia-to-NOx Ratio

Ammonia-to-NOx ratio at the catalyst inlet plane should be “uniform”
Allows optimal NOx reduction with minimum ammonia slip

Typical goal is %RMS < 5% or a deviation within +/-5% of mean
Can be highly influenced by velocity patterns

Better
Distribution

Poor
Distribution
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NOXx Stratification

e NOXx is not necessarily uniform at the boiler exit; it is a function of
Boiler design

Burner air flow balance
Coal pipe balance

o Mills out-of-service

e Solutions

o  Tune the NH; to the NOXx profile

m Consistency over load range important
o Mix the NOx prior to the NH3 injection — “Pre-mixer” Example of NOx Profile at Economizer Outlet
o  Mix the NOx and the NH; — one or more stages of mixing

o O O
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Types of Mixers

e Shear Mixers
e Swirl-Shear Mixers
e \Vortex Mixers
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Shear Mixers
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Swirl-Shear Mixers
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Shear Mixers

Swirl
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Swirl-Shear Mixers
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Vortex Mixers
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Vortex Mixers
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Vortex Mixers

NH; RMS: 2.1%

<1.17 2.58 3.98 5.39 6.80 >8.20
NH., Mole Fraction (ppmV) %107
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Vortex Mixers
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Mixer Issues

J.0 20.0 40.0 60.0 80.0 >100.0 f/s
J.0 6.1 12.2 18.3 244 >305 mis
Total Velocity
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Mixer Issues

Total Pressure Loss | Total Pressure Loss

Lacatian (InH20) (mmH20)
A Ewvaporator Dutlet ] ]
E Upstream AIG -0.03 0.8
Pressure Drop C Downstream AIG 0.75 191
5] Upstream SCP Duct Expansion <0.95 <241
E Downstream SCF Duct Expansion -1.07 -27.1
F Upstream Flow Pectifier -1.23 -31.2
G Upstream (Future) 15t Catalyst Layer -1.26 -
H Upstream 2nd Catalyst Layer -1.29 -32.
1 Upstream 3rd Catabyst Layer -2.30 -G8,
J Downstream 3rd Catalyst Layer -3.29 -83.
K Economizer Inlet -3.31 -84.0
AK Total DF, Evaporator Qutlet to Economizer Inlet 3.31 B4.0
A-K Total DF, Excluding Catalyst Layers 127 323

DP=0.72 IWC

Typical mixer stage
DP=0.3 to 0.8 IWC
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Summary — Coal Fired SCR

e NHj;, NOx, and temperature distributions are key players in SCR
performance

Pre-mixer often used for NOx and temperature at boiler outlet

Dense Grid injection generally no mixer or “local” mixer

Coarse Grid injection will have 1 or more high turbulence mixer layers
Ammonia injection and mixer design involves many competing criteria
which must be understood and optimized
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Gas Turbine SCR

e Gas turbine systems come in many sizes and flavors
Simple cycle

Combined cycle / HRSG
With / without CO catalyst
With / without tempering air
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Gas Turbine SCR Performance Goals

Typical performance goals compete with each other:
i (s Ay I\\s““
Uniform ammonia-to-NOX ratio - filiall ,{fimiil iulll\\\I‘I\ \
| . | w il
Uniform velocity at AIG =
Uniform velocity at CO and SCR catalyst <z (’ ( I Ml‘l{“l!"]ﬂﬂ|H\\“i‘
CO catalyst influence on SCR | ﬂ
Uniform temperature at catalyst h»';ﬁ,l" )
Minimize pressure loss Z
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Flow Distribution in Gas Turbine SCR

e Gas Flow Through System
o Uniform velocity profile (15% RMS or better) at
m  CO/NOx/Dual Action Catalyst
m AIG
m Tube banks

e Not easy given that the inlet condition
resembles a tornado

e Requires intricate design of flow devices
o Baffles
o Straighteners
o Perforated plates

Flow Streamlines in a HRSG CFD model
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Ammonia Injection in Gas Turbine SCR

e Design considerations for ammonia injection
o The key factor in deNOx performance and ammonia slip
o Goal is uniform concentration (ammonia-to-NOx ratio) at SCR catalyst
o General targetis 10% RMS or better
o Optimization requires balance of competing goals
m Velocity profile at AIG & SCR catalyst
m Pressure drop
o AIG design is not straightforward
m Residence time for mixing is limited
m Temperature heat up can affect distribution
m Updated design practices have led to advances
m Older systems likely have room for improvement
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Ammonia Injection Grid

e AIG Design:

o General goal is to inject equal ammonia from
each nozzle to within 2% or better

o  Correct sizing of header ID, lance ID, and nozzle
diameters is important

o Need to consider heat transfer from gas side to
the internal pipe flow; this can influence the
balance between nozzles

o The presence of tuning valves cannot always fix
a poor AlG header/lance design

00 100 200 300 400 >500
Total Velocity (fUs)

————————— :W Flow Modeling of AIG header and lances
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Ammonia Injection Grid
(T

S
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Ammonia Distribution at SCR

e Need to ensure sufficient number of
lances/nozzles to cover the cross section

e Depends on residence time to catalyst and
turbulence intensity

e Additional mixing may be required

depending on geometry details

o  Static mixer after AIG
o Turbulence generators integrated with AIG

e Modeling and testing to guide design
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AIG Optimization Case Study

e HRSG unit struggling with poor
ammonia distribution at the SCR
catalyst and high ammonia slip.

e Plant AIG tuning was not
successful, could not eliminate high
ammonia gradients near walls

e CFD model corroborated field data
showing velocity profile at the AIG
having large areas of low flow or
recirculation.

e NH3 slip results in fouled tubes

0.0 5.0 10.0 15.0 200 25.0
Total Velocity (1Us)
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AlG Optimization Case Study

e CFD model indicates very high ammonia
concentrations near the walls of the unit.
atalyst face.

<050 070 080 110 130 =150
N P =

<050 070 0.90 1.10 130  >150
. e "
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AlG Optimization Case Study

e AIG modifications added to improve local mixing
and ammonia distribution
e Ammonia RMS |mproved to 8% at the catalyst face

NI K]

<050 070 0.90 1.10 130 >150
. in G N

<050 070 080 119 TSU >1.50
Normakzed Ammeania Concentratio
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Summary — Gas Turbine SCR

e There are many parameters that affect gas turbine and SCR performance

e AIG design involves many competing criteria which must be understood
and optimized

e Residence time is usually quite limited in gas turbine SCR; local mixer
may be necessary

e Need optimized design at beginning, and design improvements over time

e Cost-effective enhancements are possible to existing systems
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Questions & Contact Information

Robert Mudry, P.E.

President
734-525-0300 x202

rmudry@airflowsciences.com

www.airflowsciences.com
www.azorecfd.com
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