Ammonia Injection and Mixing Systems

Robert Mudry, P.E. Airflow Sciences Corporation

2019 NOx-Combustion-CCR Round Table February 11, 2019 Salt Lake City, UT

Agenda

- Intro
- Coal Fired SCR
- Gas Turbine SCR

NOx Control

- Nitrogen oxides NOx are important air pollutants by themselves; also react in the atmosphere to form ozone (O₃) and acid rain
- NOx is formed during combustion in the peak temperature zones
- 95% of NOx in the flue gas is initially in the form of NO, rest is NO₂
- Once in the atmosphere, most NOx is converted into NO₂ form
- Typical SCR systems can achieve NOx removal efficiencies over 90%

Selective Catalytic Reduction

Selective catalytic reduction (SCR) is a chemical process of using a reductant like ammonia to convert NOx into diatomic nitrogen (N_2) and water (H_2O), with the aid of a catalyst.

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$

$$2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$$

$$NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O$$

Ammonia has to react with NOx at the molecular level.

SCR Performance Goals

Performance goals compete with each other:

- Uniform ammonia-to-NOx ratio
- Uniform velocity at AIG
- Unform velocity at the catalyst
- Vertical flow entering catalyst
- Uniform temperature at catalyst
- Minimize pressure loss
- Capture LPA with screen/baffles
- Minimize catalyst pluggage potential
- Minimize erosion potential

coal & gas

Mixing Priorities for SCR Optimization

Ammonia

Injection technique plays a key role

NOx

- May not be uniform at coal-fired boiler outlet
- Generally uniform at gas turbine discharge

Ammonia-to-NOx ratio

 Must be uniform to maximize deNOx performance and minimize ammonia slip

Temperature

 SCR reactions occur optimally within a specific temperature range

NOx Removal Efficiency vs Temperature

Mixing System Design

Computational Fluid Dynamics (CFD) modeling

Physical flow modeling

Mixing System Design Tools

Computational Fluid Dynamics (CFD) modeling

Physical flow modeling

Influences on Ammonia Mixing

- Ammonia injection technique
 - Nozzle design, location, quantity
- Residence time, diffusion
- General turbulence
 - Elbows, trusses
- Static mixers
 - Induced turbulence
- Negatives to mixing
 - Vanes, rectifiers, straighteners, gas laning
 - CO catalysts, tube banks

Ammonia Injection Grid Design

- Two basic strategies are used for the ammonia injection grid (AIG)
 - Coarse grid of injection points with large mixers
 - Dense grid of injection points, optional local mixers

Ammonia Injection Grid Design

- Two basic strategies are used for the ammonia injection grid (AIG)
 - Coarse grid of injection points with large mixers
 - Dense grid of injection points, optional local mixers

Dense Grid Ammonia Injection

- Many injection lances with multiple nozzles per lance
 - Depending on SCR size, could have 50-100 lances per reactor
 - Numerous nozzles per lance, 10+
 - Often has thousands of discrete injection points
- Either no mixer or only a "local" mixer
- Lances grouped into zones for tuning
- Benefits of dense grid injection
 - More tunable for maximum NOx reduction
 - No negative influence on velocity or flyash distribution at catalyst
 - Lower pressure drop

Dense Grid AIG Issues

- Pluggage of nozzles
- Requires very good velocity profile at AIG location
- Tuning not as predictable as sometimes envisioned
 - Velocity distribution issues
 - Unequal flow per nozzle
 - Low resolution of reactor outlet sample grid
- Valve issues over time

Coarse Grid Ammonia Injection

- Fewer injection lances compared to dense grid by factor of 5-10
 - Depending on SCR size, could have 5, 10, 20 lances per reactor
 - Some systems have just 1 injection point per lance
 - Others have multiple nozzles per lance (2 to 10)
- Lances located immediately upstream or downstream of a static mixer
- Often multiple stages of static mixers
- Benefits of coarse grid injection
 - Fewer nozzles and larger openings less prone to pluggage
 - Mixing and high turbulence reduces sensitivity of gradients
 - Does not need as much tuning?
 - More consistent performance over the load range

Coarse Grid AIG Issues

- Higher pressure loss
- Duct wall and internal structure erosion
- Ash accumulation on mixers
- Tuning not as straightforward due to purposeful creation of turbulence

Vaporized Ammonia Injection vs Direct Injection

Vaporized Ammonia Injection

- utilizes vaporizer skid to get ammonia into gaseous form prior to injection
- o need to ensure ammonia properly vaporized and mixed with dilution air
- more common but higher capital cost

Direct Injection

- inject aqueous ammonia directly in liquid form without dilution air or vaporization
- relies on heat from flue gas for vaporization
- requires special spray nozzles to insure proper vaporization and mixing
- o concern about liquid ammonia impingement on walls, mixer

Coal Fired SCR Performance Goals

Performance goals compete with each other:

- Uniform ammonia-to-NOx ratio
- Uniform velocity at AIG
- Unform velocity at the catalyst
- Vertical flow entering catalyst
- Uniform temperature at catalyst
- Minimize pressure loss
- Capture LPA with screen/baffles
- Minimize pluggage potential
- Minimize erosion potential

Ammonia-to-NOx Ratio

- Ammonia-to-NOx ratio at the catalyst inlet plane should be "uniform"
- Allows optimal NOx reduction with minimum ammonia slip
- Typical goal is %RMS < 5% or a deviation within +/-5% of mean
- Can be highly influenced by velocity patterns

NOx Stratification

- NOx is not necessarily uniform at the boiler exit; it is a function of
 - Boiler design
 - Burner air flow balance
 - Coal pipe balance
 - Mills out-of-service

Solutions

- Tune the NH₃ to the NOx profile
 - Consistency over load range important
- Mix the NOx prior to the NH₃ injection "Pre-mixer"
- Mix the NOx and the NH₃ one or more stages of mixing

Example of NOx Profile at Economizer Outlet

Types of Mixers

- Shear Mixers
- Swirl-Shear Mixers
- Vortex Mixers

Shear Mixers

Shear Mixers

U.S. Patent US 8,066,424 B2

U.S. Patent US 7,448,794 B2

Courtesy Haldor Topsoe

Mixer Issues

Mixer Issues

Pressure Drop

	Location	Total Pressure Loss (inH2O)	Total Pressure Loss (mmH2O)
A	Evaporator Outlet	0	0
В	Upstream AIG	-0.03	-0.8
C	Downstream AIG	-0.75	-19.1
D	Upstream SCP Duct Expansion	-0.95	-24.1
E	Downstream SCP. Duct Expansion	-1.07	-27.1
F	Upstream Flow Rectifier	-1.23	-31.2
G	Upstream (Future) 1st Catalyst Layer	-1.26	-32.1
Н	Upstream 2nd Catalyst Layer	-1.29	-32.7
13	Upstream 3rd Catalyst Layer	-2.30	-58,3
J	Downstream 3rd Catalyst Layer	-3.29	-83.7
K	Economizer Inlet	-3.31	-84.0
A-K	Total DP, Evaporator Outlet to Economizer Inlet	3.31	84.0
A-K	Total DP, Excluding Catalyst Lavers	1.27	32.3

DP = 0.72 IWC

Typical mixer stage DP = 0.3 to 0.8 IWC

Summary – Coal Fired SCR

- NH₃, NOx, and temperature distributions are key players in SCR performance
- Pre-mixer often used for NOx and temperature at boiler outlet
- Dense Grid injection generally no mixer or "local" mixer
- Coarse Grid injection will have 1 or more high turbulence mixer layers
- Ammonia injection and mixer design involves many competing criteria which must be understood and optimized

Gas Turbine SCR

Gas turbine systems come in many sizes and flavors

- Simple cycle
- Combined cycle / HRSG
- With / without CO catalyst
- With / without tempering air

Gas Turbine SCR Performance Goals

Typical performance goals compete with each other:

- Uniform ammonia-to-NOx ratio
- Uniform velocity at AIG
- Uniform velocity at CO and SCR catalyst
- CO catalyst influence on SCR
- Uniform temperature at catalyst
- Minimize pressure loss

Flow Distribution in Gas Turbine SCR

- Gas Flow Through System
 - Uniform velocity profile (15% RMS or better) at
 - CO/NOx/Dual Action Catalyst
 - AIG
 - Tube banks
- Not easy given that the inlet condition resembles a tornado
- Requires intricate design of flow devices
 - Baffles
 - Straighteners
 - Perforated plates

Flow Streamlines in a HRSG CFD model

Ammonia Injection in Gas Turbine SCR

- Design considerations for ammonia injection
 - The key factor in deNOx performance and ammonia slip
 - o Goal is uniform concentration (ammonia-to-NOx ratio) at SCR catalyst
 - General target is 10% RMS or better
 - Optimization requires balance of competing goals
 - Velocity profile at AIG & SCR catalyst
 - Pressure drop
 - AIG design is not straightforward
 - Residence time for mixing is limited
 - Temperature heat up can affect distribution
 - Updated design practices have led to advances
 - Older systems likely have room for improvement

Ammonia Injection Grid

AIG Design:

- General goal is to inject equal ammonia from each nozzle to within 2% or better
- Correct sizing of header ID, lance ID, and nozzle diameters is important
- Need to consider heat transfer from gas side to the internal pipe flow; this can influence the balance between nozzles
- The presence of tuning valves cannot always fix a poor AIG header/lance design

Ammonia Injection Grid

Ammonia Distribution at SCR

- Need to ensure sufficient number of lances/nozzles to cover the cross section
- Depends on residence time to catalyst and turbulence intensity
- Additional mixing may be required depending on geometry details
 - Static mixer after AIG
 - Turbulence generators integrated with AIG
- Modeling and testing to guide design

AIG Optimization Case Study

- HRSG unit struggling with poor ammonia distribution at the SCR catalyst and high ammonia slip.
- Plant AIG tuning was not successful, could not eliminate high ammonia gradients near walls
- CFD model corroborated field data showing velocity profile at the AIG having large areas of low flow or recirculation.
- NH3 slip results in fouled tubes

AIG Optimization Case Study

- CFD model indicates very high ammonia concentrations near the walls of the unit.
- Ammonia RMS of 59% at the SCR catalyst face.

AIG Optimization Case Study

 AIG modifications added to improve local mixing and ammonia distribution

Ammonia RMS improved to 8% at the catalyst face

Summary – Gas Turbine SCR

- There are many parameters that affect gas turbine and SCR performance
- AIG design involves many competing criteria which must be understood and optimized
- Residence time is usually quite limited in gas turbine SCR; local mixer may be necessary
- Need optimized design at beginning, and design improvements over time
- Cost-effective enhancements are possible to existing systems

Questions & Contact Information

Robert Mudry, P.E.

President

734-525-0300 x202

rmudry@airflowsciences.com

www.airflowsciences.com www.azorecfd.com

