
  

Hashing and Sketching
Part One



  

Randomized Data Structures
● Randomization is a powerful tool for 

improving efficiency and solving problems 
under seemingly impossible constraints.

● Over the next three lectures, we’ll explore 
a sampler of data structures that give a 
feel for the breadth of what’s out there.

● You can easily spend an entire academic 
career just exploring this space; take 
CS265 for more on randomized algorithms!



  

Where We’re Going
● Hashing and Sketching (This Week)

● Using hash functions to count without 
counting.

● Cuckoo Hashing (Next Week)
● Hashing with worst-case O(1) lookups, along 

with a splash of random hypergraph theory.



  

Outline for Today
● Hash Functions

● Understanding our basic building blocks.
● Frequency Estimation

● Estimating how many times we’ve seen 
something.

● Concentration Inequalities
● “Correct on expectation” versus “correct with 

high probability.”
● Probability Amplification

● Increasing our confidence in our answers.



  

Preliminaries: Hash Functions



  

Hashing in Practice
● Hash functions are used extensively in 

programming and software engineering:
● They make hash tables possible: think C++ 
std::hash, Python’s __hash__, or Java’s 
Object.hashCode().

● They’re used in cryptography: SHA-256, HMAC, 
etc.

● Question: When we’re in Theoryland, what 
do we mean when we say “hash function?”



  

Hashing in Theoryland
● In Theoryland, a hash function is a 

function from some domain called the 
universe (typically denoted 𝒰) to some 
codomain.

● The codomain is usually a set of the form
[m] = {0, 1, 2, 3, …, m – 1}

h :  → [𝒰 m]



  

Hashing in Theoryland
● Intuition: No matter how clever you are with 

designing a specific hash function, that hash 
function isn’t random, and so there will be 
pathological inputs.
● You can formalize this with the pigeonhole 

principle.
● Idea: Rather than finding the One True Hash 

Function, we’ll assume we have a collection of 
hash functions to pick from, and we’ll choose 
which one to use randomly.



  

h

Families of Hash Functions
● A family of hash functions is a set  of ℋ

hash functions with the same domain 
and codomain.

● We can then introduce randomness into 
our data structures by sampling a 
random hash function from ℋ.

● Key Point: The randomness in our data 
structures almost always derives from 
the random choice of hash functions, 
not from the data.

Data is adversarial.
Hash function selection is random.

● Question: What makes a family of hash 
functions  a “good” family of hash ℋ
functions?

ℋ



  0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick 
h ∈   uniformly at ℋ

random, then h should 
distribute elements 
uniformly randomly.

y
z

Problem: A hash function 
that distributes n elements 
uniformly at random over 
[m] requires Ω(n log m) 
space in the worst case.

Question: Do we actually 
need true randomness? Or 

can we get away with 
something weaker?



  0 1 2 3 4 5 6 7 ... m-1

Distribution Property: 
Each element should have 

an equal probability of 
being placed in each slot.

For any x ∈   and random𝒰
h ∈ , the value of ℋ h(x) is 
uniform over its codomain.

Find an “obviously bad” 
family of hash functions 

that satisfies the 
distribution property.

Formulate a 
hypothesis! 😃



  0 1 2 3 4 5 6 7 ... m-1

Distribution Property: 
Each element should have 

an equal probability of 
being placed in each slot.

For any x ∈   and random𝒰
h ∈ , the value of ℋ h(x) is 
uniform over its codomain.

Problem: This rule 
doesn’t guarantee that 

elements are spread out.

x
y
z
w



  0 1 2 3 4 5 6 7 ... m-1

Distribution Property: 
Each element should have 

an equal probability of 
being placed in each slot.

Independence Property: 
Where one element is 

placed shouldn’t impact 
where a second goes.

For any x ∈   and random𝒰
h ∈ , the value of ℋ h(x) is 
uniform over its codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent 
random variables.

w
uA family of hash functions  is called ℋ 2-independent (or 
pairwise independent) if it satisfies the distribution

and independence properties.



  0 1 2 ... m-1

For any x ∈   and random𝒰
h ∈ , the value of ℋ h(x) is 

uniform over its 
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent 
random variables.

Intuition:
2-independence means 
any pair of elements is 

unlikely to collide.

Pr [h(x) = h(y )]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y ) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y ) = i]

= ∑
i=0

m−1 1
m2

= 1
m

Question: Where did 
these elements collide 

with one another?

x
y
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For any x ∈   and random𝒰
h ∈ , the value of ℋ h(x) is 

uniform over its 
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent 
random variables.

Intuition:
2-independence means 
any pair of elements is 

unlikely to collide.
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m−1 1
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  0 1 2 ... m-1

For any x ∈   and random𝒰
h ∈ , the value of ℋ h(x) is 

uniform over its 
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent 
random variables.

Intuition:
2-independence means 
any pair of elements is 

unlikely to collide.

Pr [h(x) = h(y )]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y ) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y ) = i]

= ∑
i=0

m−1 1
m2

= 1
m This is the same as 

if h were a truly 
random function.

x
y



  

For more on hashing outside of Theoryland, 
check out this Stack Exchange post.

https://softwareengineering.stackexchange.com/questions/49550/


  

Approximating Quantities



  

What makes for a good
“approximate” solution?



  
What does it mean for an

approximation to be “good”?

A
(True answer)

Distribution 
of our 

estimate Â.

Let A be the true 
answer. Let Â be a 
random variable 

denoting our estimate.

This would not make for a good 
estimate. However, we have

E[Â] = A.
 

Observation 1: Being correct in 
expectation isn’t sufficient.



  
What does it mean for an

approximation to be “good”?

A
(True answer)

Distribution 
of our 

estimate Â.

Let A be the true 
answer. Let Â be a 
random variable 

denoting our estimate.

It’s unlikely that we’ll get the right 
answer, but we’re probably going to 

be close.
 

Observation 2: The difference
|Â – A| between our estimate and the 

truth should ideally be small.



  
What does it mean for an

approximation to be “good”?

A
(True answer)

Distribution 
of our 

estimate Â.

Let A be the true 
answer. Let Â be a 
random variable 

denoting our estimate.

This estimate skews low, but it’s 
very close to the true value.

 

Observation 3: An estimate doesn’t 
have to be unbiased to be useful.



  
What does it mean for an

approximation to be “good”?

A
(True answer)

Let A be the true 
answer. Let Â be a 
random variable 

denoting our estimate.

Memory used: 256MB

The more resources we allocate, the 
better our estimate should be.

 

Observation 4: A good 
approximation should be tunable.



  
What does it mean for an

approximation to be “good”?

We have two user-provided values
 

ε ∈ (0, 1]
δ ∈ (0, 1]

 

where ε represents accuracy and δ 
represents confidence.

Goal: Make an estimator Â for some 
quantity A where

 
With probability at least 1 – δ,

 

|Â – A| ≤ ε · size(input)
 

for some measure of the size of the input.

Probably
Approximately
Correct



  
What does it mean for an

approximation to be “good”?

Probably
Approximately

Goal: Make an estimator Â for some 
quantity A where

 
With probability at least 1 – δ,

 

|A – Â| ≤ ε · size(input)
 

for some measure of the size of the input.
Correct

True answer

δ = ½
ε small



  
What does it mean for an

approximation to be “good”?

Probably
Approximately

Goal: Make an estimator Â for some 
quantity A where

 
With probability at least 1 – δ,

 

|A – Â| ≤ ε · size(input)
 

for some measure of the size of the input.
Correct

True answer

δ = ¼
ε small



  
What does it mean for an

approximation to be “good”?

Probably
Approximately

Goal: Make an estimator Â for some 
quantity A where

 
With probability at least 1 – δ,

 

|A – Â| ≤ ε · size(input)
 

for some measure of the size of the input.
Correct

True answer

δ = ¹/₁₆
ε small



  

Time-Out for Announcements!



  

PS2 / IA2
● PS1 and IA1 were due today at 3:15PM.

● Need more time? You can submit during the 
grace period, which ends tomorrow at 
3:15PM.

● PS2 and IA2 go out today. They’re due 
next Thursday at the start of class.
● Explore balanced trees, data structure 

isometries, and the Method of Four Russians!



  

Final Project Logistics
● We’ve posted information about the CS166 final project 

to the course website.
● The brief summary:

● You’ll work in teams of three or four.
● You’ll pick a data structure and become an expert on it.
● You’ll put together an explanatory article that guides readers 

on a magical journey to understanding.
● You’ll do something “interesting” with the topic, broadly 

construed.
● You’ll meet with the course staff for a Q&A session to discuss 

your writeup, “interesting” component, and the topic at large.
● We hope you have fun with this one – you’ll learn a ton in 

the process of working through this!



  

Final Project Logistics
● Your first deliverable is a project proposal, which 

is due next Thursday at the start of class.
● Because we need to do topic matchmaking, there is 

no grace period for the project proposal.
● What you need to do:

● Select a team of 3 – 4 people.
● Give us an ordered list of your top four project topics, 

along with two sources for each topic. (One source 
per topic must be a research paper.)

● We’ve compiled an extensive list of 
recommended project topics. It’s available up on 
the course website.



  

Back to CS166!



  

Frequency Estimation



  

Frequency Estimators
● A frequency estimator is a data structure 

supporting the following operations:
● increment(x), which increments the number of 

times that x has been seen, and
● estimate(x), which returns an estimate of the 

frequency of x.
● Using BSTs, we can solve this in space Θ(n) 

with worst-case O(log n) costs on the 
operations.

● Using hash tables, we can solve this in space 
Θ(n) with expected O(1) costs on the 
operations.



  

Frequency Estimators
● Frequency estimation has many applications:

● Search engines: Finding frequent search 
queries.

● Network routing: Finding common source and 
destination addresses.

● In these applications, Θ(n) memory can be 
impractical.

● Goal: Get approximate answers to these 
queries in sublinear space.



  

The Count-Min Sketch



  

Revisiting the Exact Solution
● In the exact solution to the frequency estimation 

problem, we maintained a single counter for each 
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a 
counter to each xᵢ ∈ . Multiple 𝒰 xᵢ's might be assigned 
to the same counter.

● To increment(x), increment the counter for x.
● To estimate(x), read the value of the counter for x.

12 6 5 7



  

Our Initial Structure
● We can model “assigning each xᵢ to a counter” by using hash 

functions.
● Pick a number of counters w (for “width;” more on that later). 

We’ll choose the exact value of w later.
● Choose, from a family of 2-independent hash functions , a ℋ

uniformly-random hash function h :  → [𝒰 w].
● Create an array count of w counters, each initially zero.
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

137 42 166 … 161

h

x



  

Analyzing our Structure



  

Some Notation
● Let x₁, x₂, x₃, … denote the list of distinct items 

whose frequencies are being stored.
● Let a₁, a₂, a₃, … denote the frequencies of those 

items.
● e.g. aᵢ is the true number of times xᵢ is seen.

● Let â₁, â₂, â₃, … denote the estimate our data 
structure gives for the frequency of each item.
● e.g. âᵢ is our estimate for how many times xᵢ has been 

seen.
● Important detail: the aᵢ values are not random variables 

(data are chosen adversarially), while the âᵢ values are 
random variables (they depend on a randomly-sampled hash 
function).



  

Our Goal
● We want to show that, with high probability, 

our estimate isn’t too far from the correct 
value.

● Mathematically, we want to look at the 
expression âᵢ – aᵢ and show that there is a 
“high probability” that this is “small enough.”

● We need to pin down what “high probability” 
and “small enough” mean. To do that, let’s 
first work out, mathematically, what âᵢ – aᵢ is.



  
Question: Intuitively, what should we expect

our approximation error to be?

9 5 4

Number of buckets: w

There are ║a║₁ total elements 
distributed across w buckets. 
We’re using a 2-independent 

hash family.
 

Reasonable guess: each bin 
has ║a║₁ / w elements in it, so

E[âᵢ – aᵢ] ≤ ║a║₁ / w

Idea: Think of our 
element frequencies

a₁, a₂, a₃, … as a vector
 

a = [a₁, a₂, a₃, … ].
 

The total number of 
objects is the sum of 
the vector entries.

 

This is called the
L₁ norm of a, and is 

denoted ║a║₁:

‖a‖1 = ∑
i

|ai|



  

Analyzing this Structure
● Let's look at âᵢ = count[h(xᵢ)] for some choice of xᵢ.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random 
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = {  1 if h(xi)  = h(x j)
  0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j

Each of these variables is 
called an indicator 

random variable, since 
it “indicates” whether 

some event occurs.



  

Analyzing this Structure
● Let's look at âᵢ = count[h(xᵢ)] for some choice of xᵢ.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random 
variables X₁, X₂, …, as follows:

● The value of âᵢ – aᵢ is then given by

X j = {  1 if h(xi)  = h(x j)
  0 otherwise

âi−ai = ∑
j≠ i

a j X j



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

This follows from linearity 
of expectation. We’ll use 
this property extensively 
over the next few days.



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

The values of aⱼ are not 
random. The randomness 
comes from our choice of 

hash function.



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[ X j ] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
=  Pr [h(xi)=h(x j)]                                

=  1
w

                                                        X j={  1 if h(xi)=h(x j)
  0 otherwise



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[ X j ] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
=  Pr [h(xi)=h(x j)]                                

=  1
w

                                                        If X is an indicator variable for some event Ɛ, 
then E[X] = Pr[Ɛ]. This is really useful when 

using linearity of expectation! 



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[ X j ] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
=  Pr [h(xi)=h(x j)]                                

=  1
w

                                                        Hey, we saw this 
earlier!



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[ X j ] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
=  Pr [h(xi)=h(x j)]                                

=  1
w

                                                        Hey, we saw this 
earlier!



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[ X j ] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
=  Pr [h(xi)=h(x j)]                                

=  1
w

                                                        



  

Probably
Approximately

Goal: Make an estimator â for some 
quantity a where

 
With probability at least 1 – δ,

 

|â – a| ≤ ε · size(input)
 

for some measure of the size of the input.
Correct

E[âi−ai] ≤
‖a‖1

w

aᵢ

ε║a║₁

How do we tune 
w so we’re 

likely to fall in 
this range?



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

We don’t know the exact distribution of 
this random variable.

 

However, we have a one-sided error: 
our estimate can never be lower than the 

true value. This means that âᵢ – aᵢ ≥ 0.
 

Markov’s inequality says that if X is a 
nonnegative random variable, then

Pr [ X ≥ c ] ≤ E[ X ]
c .



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

E[âi−ai] ≤
‖a‖1

w



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w



  

Pr [âi−ai > ε‖a‖1] ≤
1

εw

Probably
Approximately

Goal: Make an estimator â for 
some quantity a where

 
With probability at least 1 – δ,

 

|â – a| ≤ ε · size(input)
 

for some measure of input size.
Correct

Initial Idea:
Pick w = ε-1 · δ-1. Then

Pr [âi−ai > ε‖a‖1] ≤ δ

Suppose we’re counting 
1,000 distinct items.

If we want our estimate 
to be within ε║a║₁ of the 
true value with 99.9% 
probability, how much 
memory do we need?

Answer: 1,000 · ε-1. 
Can we do better?



  

Pr [âi−ai > ε‖a‖1] ≤
1

εw

Probably
Approximately

Goal: Make an estimator â for 
some quantity a where

 
With probability at least 1 – δ,

 

|â – a| ≤ ε · size(input)
 

for some measure of input size.
Correct

Revised Idea: Pick
w = e · ε-1. Then

Pr [âi−ai > ε‖a‖1] < e−1

We could choose
w = k · ε-1 for any 
constant k to get a 

failure probability of at 
most k-1. The choice of e 

is (mostly) arbitrary.



  

Pr [âi−ai > ε‖a‖1] ≤
1

εw

Probably
Approximately

Goal: Make an estimator â for 
some quantity a where

 
With probability at least 1 – δ,

 

|â – a| ≤ ε · size(input)
 

for some measure of input size.
Correct

Revised Idea: Pick
w = e · ε-1. Then

Pr [âi−ai > ε‖a‖1] < e−1

This simple data 
structure, by itself, is 

likely to be wrong.
 

What happens if we run 
a bunch of copies of this 

approach in parallel?



  

Running in Parallel
● Let’s run d copies of our data structure in parallel with 

one another.
● Each row has its hash function sampled uniformly at 

random from our hash family.
● Each time we increment an item, we perform the 

corresponding increment operation on each row.

w = ⌈e · ε-1⌉

d =
 ??

h₂
h₃

hd

…

27 18 28 18 28 … 45

16 18 3 39 88 … 75

69 31 47 18 5 … 59

...

h₁ 31 41 59 26 53 58…



  

Running in Parallel
● Imagine we call estimate(x) on each of our estimators 

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers 

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Formulate a hypothesis! 😃



  

Running in Parallel
● Imagine we call estimate(x) on each of our estimators 

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers 

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Discuss with your
neighbors! 😃



  

Running in Parallel
● Imagine we call estimate(x) on each of our estimators 

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers 

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 5:

261
Estimator 4:

103

Intuition: The smallest 
estimate returned has 
the least “noise,” and 

that’s the best guess for 
the frequency.



  

Pr [min { âij }− ai > ε‖a‖1]

= Pr [ ∧
j =1

d
(âij − ai > ε‖a‖1 )]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the 

estimate from the 
jth copy of the data 

structure.
 

Our final estimate is
min {âᵢⱼ}

The only way the 
minimum estimate 
is inaccurate is if 
every estimate is 

inaccurate.



  

Pr [min { âij }− ai > ε‖a‖1]

= Pr [ ∧
j =1

d
(âij − ai > ε‖a‖1 )]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the 

estimate from the 
jth copy of the data 

structure.
 

Our final estimate is
min {âᵢⱼ}

Each copy of the 
data structure is 

independent of the 
others.



  

Pr [min { âij }− ai > ε‖a‖1]

= Pr [ ∧
j =1

d
(âij − ai > ε‖a‖1 )]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the 

estimate from the 
jth copy of the data 

structure.
 

Our final estimate is
min {âᵢⱼ}

Pr [âi−ai ≥ ε‖a‖1] ≤ e−1



  

Let âᵢⱼ be the 
estimate from the 

jth copy of the data 
structure.

 

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [ ∧
j =1

d
(âij − ai > ε‖a‖1 )]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e− d



  

Probably
Approximately

Goal: Make an estimator â for some 
quantity a where

 
With probability at least 1 – δ,

 

|â – a| ≤ ε · size(input)
 

for some measure of input size.
Correct

Pr [min {âij}−ai > ε‖a‖1] ≤ e−d

Idea: Choose d = -ln δ.
(Equivalently: d = ln δ-1.) Then

Pr [min {âij}−ai > ε‖a‖1] ≤ δ



  

The Count-Min Sketch

31 41 59 26 53 58h₁
27 18 28 18 28 … 45h₂
16 18 3 39 88 … 75h₃

69 31 47 18 5 … 59hd

...…

w = ⌈e · ε-1⌉
d =

 ⌈ln δ
-1⌉

…

Sampled uniformly and 
independently from a
2-independent family 

of hash functions



  

The Count-Min Sketch

h₁
h₂
h₃

hd

…

increment(x):
   for i = 1 … d:
      count[i][h (x)]++ᵢ

estimate(x):
   result = ∞
   for i = 1 … d:
      result = min(result, count[i][h (x)])ᵢ
   return result

32 41 59 26 53 58

27 18 28 19 28 … 45

16 19 3 39 88 … 75

69 31 47 18 5 … 60

...

…



  

The Count-Min Sketch
● Update and query times are Θ(d), which is Θ(log δ-1).
● Space usage: Θ(ε-1 · log δ-1) counters.

● Each individual estimator has Θ(ε-1) counters, and we run 
Θ(log δ-1) copies in parallel.

● This is a major improvement over our earlier 
approach that used Θ(ε-1 · δ-1) counters.

● This can be significantly better than just storing a 
raw frequency count!

● Provides an estimate to within ε║a║₁ with probability 
at least 1 – δ.



  

Major Ideas From Today
● 2-independent hash families are useful when we 

want to keep collisions low.
● A “good” approximation of some quantity should 

have tunable confidence and accuracy parameters.
● Sums of indicator variables are useful for deriving 

expected values of estimators.
● Concentration inequalities like Markov’s 

inequality are useful for showing estimators don’t 
stay too much from their expected values.

● Good estimators can be built from multiple parallel 
copies of weaker estimators.



  

Next Time
● Count Sketches

● An alternative frequency estimator with 
different time/space bounds.

● Cardinality Estimation
● Estimating how many different items you’ve 

seen in a data stream.
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