Hashing and Sketching
 Part One

Randomized Data Structures

- Randomization is a powerful tool for improving efficiency and solving problems under seemingly impossible constraints.
- Over the next three lectures, we'll explore a sampler of data structures that give a feel for the breadth of what's out there.
- You can easily spend an entire academic career just exploring this space; take CS265 for more on randomized algorithms!

Where We're Going

-Hashing and Sketching (This Week)

- Using hash functions to count without counting.
-Cuckoo Hashing (Next Week)
- Hashing with worst-case O(1) lookups, along with a splash of random hypergraph theory.

Outline for Today

- Hash Functions
- Understanding our basic building blocks.
- Frequency Estimation
- Estimating how many times we've seen something.
- Concentration Inequalities
- "Correct on expectation" versus "correct with high probability."
- Probability Amplification
- Increasing our confidence in our answers.

Preliminaries: Hash Functions

Hashing in Practice

- Hash functions are used extensively in programming and software engineering:
- They make hash tables possible: think C++ std: :hash, Python's __hash__, or Java's Object.hashCode().
- They're used in cryptography: SHA-256, HMAC, etc.
- Question: When we're in Theoryland, what do we mean when we say "hash function?"

Hashing in Theoryland

- In Theoryland, a hash function is a function from some domain called the universe (typically denoted थ) to some codomain.
- The codomain is usually a set of the form

$$
[m]=\{0,1,2,3, \ldots, m-1\}
$$

$$
h: \mathscr{U} \rightarrow[m]
$$

Hashing in Theoryland

- Intuition: No matter how clever you are with designing a specific hash function, that hash function isn't random, and so there will be pathological inputs.
- You can formalize this with the pigeonhole principle.
- Idea: Rather than finding the One True Hash Function, we'll assume we have a collection of hash functions to pick from, and we'll choose which one to use randomly.

Families of Hash Functions

- A family of hash functions is a set \mathscr{H} of hash functions with the same domain and codomain.
- We can then introduce randomness into our data structures by sampling a random hash function from \mathscr{H}.
- Key Point: The randomness in our data structures almost always derives from the random choice of hash functions, not from the data.

Data is adversarial.
Hash function selection is random.

- Question: What makes a family of hash functions \mathscr{H} a "good" family of hash functions?

Goal: If we pick $h \in \mathscr{H}$ uniformly at random, then h should distribute elements uniformly randomly.

Problem: A hash function that distributes n elements uniformly at random over [m] requires $\Omega(n \log m)$ space in the worst case.

Question: Do we actually need true randomness? Or can we get away with something weaker?

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

> Find an "obviously bad" family of hash functions
> that satisfies the distribution property.

Formulate a hypothesis!

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

> Problem: This rule doesn't guarantee that elements are spread out.

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Independence Property: Where one element is placed shouldn't impact where a second goes.

For any distinct $x, y \in \mathscr{U}$ and random $\boldsymbol{h} \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

A family of hash functions \mathscr{H} is called 2-independent (or pairwise independent) if it satisfies the distribution and independence properties.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

Question: Where did these elements collide with one another?

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.
$\frac{y}{x}$

$$
\begin{aligned}
& \operatorname{Pr}[h(x)=h(y)] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i \wedge h(y)=i] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i] \cdot \operatorname{Pr}[h(y)=i] \\
= & \sum_{i=0}^{m-1} \frac{1}{m^{2}}
\end{aligned}
$$

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

$$
=\sum_{i=0}^{m-1} \frac{1}{m^{2}}
$$

$$
=\frac{1}{m}
$$

This is the same as if h were a truly random function.

For more on hashing outside of Theoryland, check out this Stack Exchange post.

Approximating Quantities

What makes for a good "approximate" solution?

Let \boldsymbol{A} be the true answer. Let $\hat{\boldsymbol{A}}$ be a random variable denoting our estimate.

This would not make for a good estimate. However, we have

$$
\mathrm{E}[\hat{A}]=A .
$$

Observation 1: Being correct in expectation isn't sufficient.

What does it mean for an approximation to be "good"?

Let \boldsymbol{A} be the true answer. Let $\hat{\boldsymbol{A}}$ be a random variable denoting our estimate.

It's unlikely that we'll get the right answer, but we're probably going to be close.

Observation 2: The difference $|\hat{A}-A|$ between our estimate and the truth should ideally be small.

What does it mean for an approximation to be "good"?

Let \boldsymbol{A} be the true answer. Let $\hat{\boldsymbol{A}}$ be a random variable denoting our estimate.

This estimate skews low, but it's very close to the true value.

Observation 3: An estimate doesn't have to be unbiased to be useful.

What does it mean for an approximation to be "good"?

Let \boldsymbol{A} be the true answer. Let $\hat{\boldsymbol{A}}$ be a random variable denoting our estimate.

The more resources we allocate, the better our estimate should be.

Observation 4: A good approximation should be tunable.

Memory used: 256MB

We have two user-provided values

$$
\begin{aligned}
& \varepsilon \in(0,1] \\
& \delta \in(0,1]
\end{aligned}
$$

where ε represents accuracy and δ represents confidence.

Goal: Make an estimator \hat{A} for some quantity A where
$\left.\begin{array}{c|l}\text { With probability at least } 1-\delta,\} \longleftarrow & \text { Probably } \\ |\hat{A}-A| \leq \varepsilon \cdot \operatorname{size}(\text { input })\end{array}\right\} \begin{aligned} & \text { Approximately } \\ & \text { Correct }\end{aligned}$
for some measure of the size of the input.

What does it mean for an approximation to be "good"?

Goal: Make an estimator \hat{A} for some quantity A where

$$
\begin{aligned}
& \text { With probability at least } 1-\delta,\} \longleftarrow \\
& |A-\hat{A}| \leq \varepsilon \cdot \text { size(input) }\}
\end{aligned} \begin{aligned}
& \text { Probably } \\
& \text { Approximately } \\
& \text { Correct }
\end{aligned}
$$

for some measure of the size of the input.
$\delta=1 / 2$
ε small

What does it mean for an approximation to be "good"?

Goal: Make an estimator \hat{A} for some quantity A where

$$
\begin{aligned}
& \text { With probability at least } 1-\delta,\} \longleftarrow \\
& |A-\hat{A}| \leq \varepsilon \cdot \text { size(input) }\}
\end{aligned} \begin{aligned}
& \text { Probably } \\
& \text { Approximately } \\
& \text { Correct }
\end{aligned}
$$

for some measure of the size of the input.

$$
\delta=1 / 4
$$

ε small

Goal: Make an estimator \hat{A} for some quantity A where

$$
\begin{aligned}
& \text { With probability at least } 1-\delta,\} \longleftarrow \\
& |A-\hat{A}| \leq \varepsilon \cdot \text { size(input) }\} \longleftarrow
\end{aligned} \begin{aligned}
& \text { Probably } \\
& \text { Approximately } \\
& \text { Correct }
\end{aligned}
$$

for some measure of the size of the input.

What does it mean for an approximation to be "good"?

Time-Out for Announcements!

PS2 / IA2

- PS1 and IA1 were due today at 3:15PM.
- Need more time? You can submit during the grace period, which ends tomorrow at 3:15PM.
- PS2 and IA2 go out today. They're due next Thursday at the start of class.
- Explore balanced trees, data structure isometries, and the Method of Four Russians!

Final Project Logistics

- We've posted information about the CS166 final project to the course website.
- The brief summary:
- You'll work in teams of three or four.
- You'll pick a data structure and become an expert on it.
- You'll put together an explanatory article that guides readers on a magical journey to understanding.
- You'll do something "interesting" with the topic, broadly construed.
- You'll meet with the course staff for a Q\&A session to discuss your writeup, "interesting" component, and the topic at large.
- We hope you have fun with this one - you'll learn a ton in the process of working through this!

Final Project Logistics

- Your first deliverable is a project proposal, which is due next Thursday at the start of class.
- Because we need to do topic matchmaking, there is no grace period for the project proposal.
- What you need to do:
- Select a team of 3-4 people.
- Give us an ordered list of your top four project topics, along with two sources for each topic. (One source per topic must be a research paper.)
- We've compiled an extensive list of recommended project topics. It's available up on the course website.

Back to CS166!

Frequency Estimation

Frequency Estimators

- A frequency estimator is a data structure supporting the following operations:
- increment(x), which increments the number of times that x has been seen, and
- estimate(x), which returns an estimate of the frequency of x.
- Using BSTs, we can solve this in space $\Theta(n)$ with worst-case $\mathrm{O}(\log n)$ costs on the operations.
- Using hash tables, we can solve this in space $\Theta(n)$ with expected $\mathrm{O}(1)$ costs on the operations.

Frequency Estimators

- Frequency estimation has many applications:
- Search engines: Finding frequent search queries.
- Network routing: Finding common source and destination addresses.
- In these applications, $\Theta(n)$ memory can be impractical.
- Goal: Get approximate answers to these queries in sublinear space.

The Count-Min Sketch

Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- Idea: Store a fixed number of counters and assign a counter to each $x_{i} \in \mathscr{U}$. Multiple χ_{i} 's might be assigned to the same counter.
- To increment(x), increment the counter for x.
- To estimate (x), read the value of the counter for x.

Our Initial Structure

- We can model "assigning each χ_{i} to a counter" by using hash functions.
- Pick a number of counters w (for "width;" more on that later). We'll choose the exact value of w later.
- Choose, from a family of 2 -independent hash functions \mathscr{H}, a uniformly-random hash function $h: \mathscr{U} \rightarrow[w]$.
- Create an array count of w counters, each initially zero.
- To increment(x), increment count[$h(x)$].
- To estimate(x), return count[$h(x)$].

Analyzing our Structure

Some Notation

- Let $x_{1}, x_{2}, x_{3}, \ldots$ denote the list of distinct items whose frequencies are being stored.
- Let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \ldots$ denote the frequencies of those items.
- e.g. \boldsymbol{a}_{i} is the true number of times x_{i} is seen.
- Let $\hat{\boldsymbol{a}}_{1}, \hat{\boldsymbol{a}}_{2}, \hat{\boldsymbol{a}}_{3}, \ldots$ denote the estimate our data structure gives for the frequency of each item.
- e.g. $\hat{\boldsymbol{a}}_{i}$ is our estimate for how many times χ_{i} has been seen.
- Important detail: the \boldsymbol{a}_{i} values are not random variables (data are chosen adversarially), while the $\hat{\boldsymbol{a}}_{i}$ values are random variables (they depend on a randomly-sampled hash function).

Our Goal

- We want to show that, with high probability, our estimate isn't too far from the correct value.
- Mathematically, we want to look at the expression $\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}$ and show that there is a "high probability" that this is "small enough."
- We need to pin down what "high probability" and "small enough" mean. To do that, let's first work out, mathematically, what $\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}$ is.

Idea: Think of our element frequencies $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \ldots$ as a vector

$$
\boldsymbol{a}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \ldots\right]
$$

The total number of objects is the sum of the vector entries.

This is called the L_{1} norm of \boldsymbol{a}, and is denoted $\|\boldsymbol{a}\|_{1}$:

$$
\|\boldsymbol{a}\|_{1}=\sum_{i}\left|\boldsymbol{a}_{i}\right|
$$

There are $\|\boldsymbol{a}\|_{1}$ total elements distributed across w buckets. We're using a 2 -independent hash family.
Reasonable guess: each bin has $\|\boldsymbol{a}\|_{1} / w$ elements in it, so

$$
E\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] \leq\|\boldsymbol{a}\|_{1} / w
$$

Number of buckets: w

Question: Intuitively, what should we expect our approximation error to be?

Analyzing this Structure

- Let's look at $\hat{\boldsymbol{a}}_{i}=$ count $\left[h\left(x_{i}\right)\right]$ for some choice of x_{i}.
- For each element x_{j} :
- If $h\left(x_{i}\right)=h\left(x_{j}\right)$, then χ_{j} contributes \boldsymbol{a}_{j} to count[$h\left(x_{i}\right)$].
- If $h\left(x_{i}\right) \neq h\left(x_{j}\right)$, then x_{j} contributes 0 to count[$\left.h\left(x_{i}\right)\right]$.
- To pin this down precisely, let's define a set of random variables X_{1}, X_{2}, \ldots, as follows:

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Each of these variables is called an indicator random variable, since it "indicates" whether some event occurs.

Analyzing this Structure

- Let's look at $\hat{\boldsymbol{a}}_{i}=$ count $\left[h\left(x_{i}\right)\right]$ for some choice of x_{i}.
- For each element x_{j} :
- If $h\left(x_{i}\right)=h\left(x_{j}\right)$, then χ_{j} contributes \boldsymbol{a}_{j} to count[$h\left(x_{i}\right)$].
- If $h\left(x_{i}\right) \neq h\left(x_{j}\right)$, then x_{j} contributes 0 to count[$\left.h\left(x_{i}\right)\right]$.
- To pin this down precisely, let's define a set of random variables X_{1}, X_{2}, \ldots, as follows:

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

- The value of $\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}$ is then given by

$$
\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}=\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right]
\end{aligned}
$$

This follows from linearity of expectation. We'll use this property extensively over the next few days.

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

The values of \boldsymbol{a}_{j} are not random. The randomness comes from our choice of hash function.

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\mathrm{E}\left[X_{j}\right]=1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right]
$$

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right)\end{cases}
$$

0 otherwise

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

If X is an indicator variable for some event \mathcal{E}, then $\mathbf{E}[\boldsymbol{X}]=\operatorname{Pr}[\mathcal{E}]$. This is really useful when using linearity of expectation!

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

$$
=\frac{1}{w}
$$

Hey, we saw this earlier!

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

$$
=\frac{1}{w}
$$

Hey, we saw this earlier!

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w} \\
& \leq \frac{\|\boldsymbol{a}\|_{1}}{w}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right] \\
& =\frac{1}{w}
\end{aligned}
$$

Goal: Make an estimator $\hat{\boldsymbol{a}}$ for some quantity \boldsymbol{a} where

for some measure of the size of the input.

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}}
\end{aligned}
$$

We don't know the exact distribution of this random variable.

However, we have a one-sided error: our estimate can never be lower than the true value. This means that $\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i} \geq 0$.

Markov's inequality says that if X is a nonnegative random variable, then

$$
\operatorname{Pr}[X \geq c] \leq \frac{\mathrm{E}[X]}{c}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}} \\
\leq & \frac{\|\boldsymbol{a}\|_{1}}{w} \cdot \frac{1}{\varepsilon\|\boldsymbol{a}\|_{1}}
\end{aligned}
$$

$$
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] \leq \frac{\|\boldsymbol{a}\|_{1}}{w}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}} \\
\leq & \frac{\|\boldsymbol{a}\|_{1}}{w} \cdot \frac{1}{\varepsilon\|\boldsymbol{a}\|_{1}} \\
= & \frac{1}{\varepsilon w}
\end{aligned}
$$

Goal: Make an estimator $\hat{\boldsymbol{a}}$ for some quantity \boldsymbol{a} where
With probability at least $1-\delta\},-{ }^{2}$ Probably

$$
|\hat{\boldsymbol{a}}-\boldsymbol{a}| \leq \varepsilon \cdot \operatorname{size}(\text { input })\} \longleftarrow \frac{\text { Approximately }}{}
$$

for some measure of input size.

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq \frac{1}{\varepsilon w}
$$

Initial Idea:

Pick $w=\varepsilon^{-1} \cdot \delta^{-1}$. Then

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq \delta
$$

Suppose we're counting 1,000 distinct items.
If we want our estimate to be within $\varepsilon\|\boldsymbol{a}\|_{1}$ of the true value with 99.9\% probability, how much memory do we need?

Answer: 1,000 $\cdot \varepsilon^{-1}$.
Can we do better?

Goal: Make an estimator $\hat{\boldsymbol{a}}$ for some quantity \boldsymbol{a} where

With probability at least $1-\delta\}$,$-\quad Probably$
Approximately
Correct
for some measure of input size.
$\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq \frac{1}{\varepsilon w}$

Revised Idea: Pick $w=e \cdot \varepsilon^{-1}$. Then

We could choose $w=k \cdot \varepsilon^{-1}$ for any constant k to get a failure probability of at most k^{-1}. The choice of e is (mostly) arbitrary.

Goal: Make an estimator $\hat{\boldsymbol{a}}$ for some quantity \boldsymbol{a} where

With probability at least $1-\delta\}$,$-\quad Probably$
Approximately
Correct
for some measure of input size.

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq \frac{1}{\varepsilon w}
$$

Revised Idea: Pick $w=e \cdot \varepsilon^{-1}$. Then

This simple data structure, by itself, is likely to be wrong.
What happens if we run a bunch of copies of this approach in parallel?

Running in Parallel

- Let's run d copies of our data structure in parallel with one another.
- Each row has its hash function sampled uniformly at random from our hash family.
- Each time we increment an item, we perform the corresponding increment operation on each row.

	$w=\left\lceil e \cdot \varepsilon^{-1}\right\rceil$						
h_{1}	31	41	59	26	53	...	58
h_{2}	27	18	28	18	28	...	45
h_{3}	16	18	3	39	88	...	75
...	\cdots						
h_{d}	69	31	47	18	5	...	59

Running in Parallel

- Imagine we call estimate(x) on each of our estimators and get back these estimates.
- We need to give back a single number.
- Question: How should we aggregate these numbers into a single estimate?

Formulate a hypothesis!

Running in Parallel

- Imagine we call estimate(x) on each of our estimators and get back these estimates.
- We need to give back a single number.
- Question: How should we aggregate these numbers into a single estimate?

Discuss with your neighbors!

Estimator 5:
261

Running in Parallel

- Imagine we call estimate(x) on each of our estimators and get back these estimates.
- We need to give back a single number.
- Question: How should we aggr Intuition: The smallest into a single estimate?
estimate returned has the least "noise," and that's the best guess for the frequency.

Estimator 5:
261

$$
\operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
$$

$$
=\operatorname{Pr}\left[\bigwedge_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right]
$$

> The only way the minimum estimate is inaccurate is if every estimate is inaccurate.

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigcap_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right] \\
= & \prod_{j=1}^{d} \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
\end{aligned}
$$

> Each copy of the data structure is independent of the others.

Let $\hat{\boldsymbol{a}}_{i j}$ be the estimate from the j th copy of the data structure.

Our final estimate is $\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigcap_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right] \\
= & \prod_{j=1}^{d} \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \prod_{j=1}^{d} e^{-1}
\end{aligned}
$$

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i} \geq \varepsilon\|\boldsymbol{a}\|_{1}\right] \leq e^{-1}
$$

Let $\hat{\boldsymbol{a}}_{i j}$ be the estimate from the j th copy of the data structure.

Our final estimate is $\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigwedge_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right] \\
= & \prod_{j=1}^{d} \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \prod_{j=1}^{d} e^{-1} \\
= & e^{-d} \quad \begin{array}{c}
\begin{array}{c}
\text { Let } \hat{\boldsymbol{a}}_{i j} \text { be the } \\
\text { estimate from the } \\
j \text { th copy of the data } \\
\text { structure. } \\
\text { Our final estimate is } \\
\text { min }\left\{\hat{\mathbf{a}}_{i j}\right\}
\end{array}
\end{array}
\end{aligned}
$$

Goal: Make an estimator $\hat{\boldsymbol{a}}$ for some quantity \boldsymbol{a} where
With probability at least $1-\delta,\} \longleftarrow \sim$ Probably
$|\hat{\boldsymbol{a}}-\boldsymbol{a}| \leq \varepsilon \cdot \operatorname{size}($ input $)\} \longleftarrow \begin{aligned} & \text { Approximately } \\ & \text { Correct }\end{aligned}$
for some measure of input size.

$$
\operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq e^{-d}
$$

Idea: Choose $d=-\ln \delta$.
(Equivalently: $d=\ln \delta^{-1}$.) Then
$\operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq \delta$

The Count-Min Sketch

$w=\left\lceil e \cdot \varepsilon^{-1}\right\rceil$

h_{1}
h_{2}
h_{3}
\ldots
h_{d}

31	41	59	26	53	\ldots	58
27	18	28	18	28	\ldots	45
16	18	3	39	88	\ldots	75
\ldots						
69	31	47	18	5	\ldots	59

$d=\left\lceil\ln \delta^{-1}\right\rceil$

Sampled uniformly and independently from a 2-independent family of hash functions

The Count-Min Sketch

h_{1}	32	41	59	26	53	...	58
h_{2}	27	18	28	19	28	...	45
h_{3}	16	19	3	39	88	...	75
\ldots	\ldots						
h_{d}	69	31	47	18	5	...	60

```
increment(x):
    for i = 1 ... d:
        count[i][hi(x)]++
```

```
estimate(x):
    result = m
    for i = 1 ... d:
        result = min(result, count[i][hi(x)])
    return result
```


The Count-Min Sketch

- Update and query times are $\Theta(d)$, which is $\Theta\left(\log \delta^{-1}\right)$.
- Space usage: $\Theta\left(\varepsilon^{-1} \cdot \log \delta^{-1}\right)$ counters.
- Each individual estimator has $\Theta\left(\varepsilon^{-1}\right)$ counters, and we run $\Theta\left(\log \delta^{-1}\right)$ copies in parallel.
- This is a major improvement over our earlier approach that used $\Theta\left(\varepsilon^{-1} \cdot \delta^{-1}\right)$ counters.
- This can be significantly better than just storing a raw frequency count!
- Provides an estimate to within $\varepsilon\|\boldsymbol{a}\|_{1}$ with probability at least 1 - δ.

Major Ideas From Today

- 2-independent hash families are useful when we want to keep collisions low.
- A "good" approximation of some quantity should have tunable confidence and accuracy parameters.
- Sums of indicator variables are useful for deriving expected values of estimators.
- Concentration inequalities like Markov's inequality are useful for showing estimators don't stay too much from their expected values.
- Good estimators can be built from multiple parallel copies of weaker estimators.

Next Time

- Count Sketches
- An alternative frequency estimator with different time/space bounds.
- Cardinality Estimation
- Estimating how many different items you've seen in a data stream.

