

Hashing and Sketching
Part One

Randomized Data Structures
● Randomization is a powerful tool for

improving efficiency and solving problems
under seemingly impossible constraints.

● Over the next three lectures, we’ll explore
a sampler of data structures that give a
feel for the breadth of what’s out there.

● You can easily spend an entire academic
career just exploring this space; take
CS265 for more on randomized algorithms!

Where We’re Going
● Hashing and Sketching (This Week)

● Using hash functions to count without
counting.

● Cuckoo Hashing (Next Week)
● Hashing with worst-case O(1) lookups, along

with a splash of random hypergraph theory.

Outline for Today
● Hash Functions

● Understanding our basic building blocks.
● Frequency Estimation

● Estimating how many times we’ve seen
something.

● Concentration Inequalities
● “Correct on expectation” versus “correct with

high probability.”
● Probability Amplification

● Increasing our confidence in our answers.

Preliminaries: Hash Functions

Hashing in Practice
● Hash functions are used extensively in

programming and software engineering:
● They make hash tables possible: think C++
std::hash, Python’s __hash__, or Java’s
Object.hashCode().

● They’re used in cryptography: SHA-256, HMAC,
etc.

● Question: When we’re in Theoryland, what
do we mean when we say “hash function?”

Hashing in Theoryland
● In Theoryland, a hash function is a

function from some domain called the
universe (typically denoted 𝒰) to some
codomain.

● The codomain is usually a set of the form
[m] = {0, 1, 2, 3, …, m – 1}

h : → [𝒰 m]

Hashing in Theoryland
● Intuition: No matter how clever you are with

designing a specific hash function, that hash
function isn’t random, and so there will be
pathological inputs.
● You can formalize this with the pigeonhole

principle.
● Idea: Rather than finding the One True Hash

Function, we’ll assume we have a collection of
hash functions to pick from, and we’ll choose
which one to use randomly.

h

Families of Hash Functions
● A family of hash functions is a set of ℋ

hash functions with the same domain
and codomain.

● We can then introduce randomness into
our data structures by sampling a
random hash function from ℋ.

● Key Point: The randomness in our data
structures almost always derives from
the random choice of hash functions,
not from the data.

Data is adversarial.
Hash function selection is random.

● Question: What makes a family of hash
functions a “good” family of hash ℋ
functions?

ℋ

 0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick
h ∈ uniformly at ℋ

random, then h should
distribute elements
uniformly randomly.

y
z

Problem: A hash function
that distributes n elements
uniformly at random over
[m] requires Ω(n log m)
space in the worst case.

Question: Do we actually
need true randomness? Or

can we get away with
something weaker?

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

Find an “obviously bad”
family of hash functions

that satisfies the
distribution property.

Formulate a
hypothesis! 😃

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

Problem: This rule
doesn’t guarantee that

elements are spread out.

x
y
z
w

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

Independence Property:
Where one element is

placed shouldn’t impact
where a second goes.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

w
uA family of hash functions is called ℋ 2-independent (or
pairwise independent) if it satisfies the distribution

and independence properties.

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
m

Question: Where did
these elements collide

with one another?

x
y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
m This is the same as

if h were a truly
random function.

x
y

For more on hashing outside of Theoryland,
check out this Stack Exchange post.

https://softwareengineering.stackexchange.com/questions/49550/

Approximating Quantities

What makes for a good
“approximate” solution?

What does it mean for an

approximation to be “good”?

A
(True answer)

Distribution
of our

estimate Â.

Let A be the true
answer. Let Â be a
random variable

denoting our estimate.

This would not make for a good
estimate. However, we have

E[Â] = A.

Observation 1: Being correct in
expectation isn’t sufficient.

What does it mean for an

approximation to be “good”?

A
(True answer)

Distribution
of our

estimate Â.

Let A be the true
answer. Let Â be a
random variable

denoting our estimate.

It’s unlikely that we’ll get the right
answer, but we’re probably going to

be close.

Observation 2: The difference
|Â – A| between our estimate and the

truth should ideally be small.

What does it mean for an

approximation to be “good”?

A
(True answer)

Distribution
of our

estimate Â.

Let A be the true
answer. Let Â be a
random variable

denoting our estimate.

This estimate skews low, but it’s
very close to the true value.

Observation 3: An estimate doesn’t
have to be unbiased to be useful.

What does it mean for an

approximation to be “good”?

A
(True answer)

Let A be the true
answer. Let Â be a
random variable

denoting our estimate.

Memory used: 256MB

The more resources we allocate, the
better our estimate should be.

Observation 4: A good
approximation should be tunable.

What does it mean for an

approximation to be “good”?

We have two user-provided values

ε ∈ (0, 1]
δ ∈ (0, 1]

where ε represents accuracy and δ
represents confidence.

Goal: Make an estimator Â for some
quantity A where

With probability at least 1 – δ,

|Â – A| ≤ ε · size(input)

for some measure of the size of the input.

Probably
Approximately
Correct

What does it mean for an

approximation to be “good”?

Probably
Approximately

Goal: Make an estimator Â for some
quantity A where

With probability at least 1 – δ,

|A – Â| ≤ ε · size(input)

for some measure of the size of the input.
Correct

True answer

δ = ½
ε small

What does it mean for an

approximation to be “good”?

Probably
Approximately

Goal: Make an estimator Â for some
quantity A where

With probability at least 1 – δ,

|A – Â| ≤ ε · size(input)

for some measure of the size of the input.
Correct

True answer

δ = ¼
ε small

What does it mean for an

approximation to be “good”?

Probably
Approximately

Goal: Make an estimator Â for some
quantity A where

With probability at least 1 – δ,

|A – Â| ≤ ε · size(input)

for some measure of the size of the input.
Correct

True answer

δ = ¹/₁₆
ε small

Time-Out for Announcements!

PS2 / IA2
● PS1 and IA1 were due today at 3:15PM.

● Need more time? You can submit during the
grace period, which ends tomorrow at
3:15PM.

● PS2 and IA2 go out today. They’re due
next Thursday at the start of class.
● Explore balanced trees, data structure

isometries, and the Method of Four Russians!

Final Project Logistics
● We’ve posted information about the CS166 final project

to the course website.
● The brief summary:

● You’ll work in teams of three or four.
● You’ll pick a data structure and become an expert on it.
● You’ll put together an explanatory article that guides readers

on a magical journey to understanding.
● You’ll do something “interesting” with the topic, broadly

construed.
● You’ll meet with the course staff for a Q&A session to discuss

your writeup, “interesting” component, and the topic at large.
● We hope you have fun with this one – you’ll learn a ton in

the process of working through this!

Final Project Logistics
● Your first deliverable is a project proposal, which

is due next Thursday at the start of class.
● Because we need to do topic matchmaking, there is

no grace period for the project proposal.
● What you need to do:

● Select a team of 3 – 4 people.
● Give us an ordered list of your top four project topics,

along with two sources for each topic. (One source
per topic must be a research paper.)

● We’ve compiled an extensive list of
recommended project topics. It’s available up on
the course website.

Back to CS166!

Frequency Estimation

Frequency Estimators
● A frequency estimator is a data structure

supporting the following operations:
● increment(x), which increments the number of

times that x has been seen, and
● estimate(x), which returns an estimate of the

frequency of x.
● Using BSTs, we can solve this in space Θ(n)

with worst-case O(log n) costs on the
operations.

● Using hash tables, we can solve this in space
Θ(n) with expected O(1) costs on the
operations.

Frequency Estimators
● Frequency estimation has many applications:

● Search engines: Finding frequent search
queries.

● Network routing: Finding common source and
destination addresses.

● In these applications, Θ(n) memory can be
impractical.

● Goal: Get approximate answers to these
queries in sublinear space.

The Count-Min Sketch

Revisiting the Exact Solution
● In the exact solution to the frequency estimation

problem, we maintained a single counter for each
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a
counter to each xᵢ ∈ . Multiple 𝒰 xᵢ's might be assigned
to the same counter.

● To increment(x), increment the counter for x.
● To estimate(x), read the value of the counter for x.

12 6 5 7

Our Initial Structure
● We can model “assigning each xᵢ to a counter” by using hash

functions.
● Pick a number of counters w (for “width;” more on that later).

We’ll choose the exact value of w later.
● Choose, from a family of 2-independent hash functions , a ℋ

uniformly-random hash function h : → [𝒰 w].
● Create an array count of w counters, each initially zero.
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

137 42 166 … 161

h

x

Analyzing our Structure

Some Notation
● Let x₁, x₂, x₃, … denote the list of distinct items

whose frequencies are being stored.
● Let a₁, a₂, a₃, … denote the frequencies of those

items.
● e.g. aᵢ is the true number of times xᵢ is seen.

● Let â₁, â₂, â₃, … denote the estimate our data
structure gives for the frequency of each item.
● e.g. âᵢ is our estimate for how many times xᵢ has been

seen.
● Important detail: the aᵢ values are not random variables

(data are chosen adversarially), while the âᵢ values are
random variables (they depend on a randomly-sampled hash
function).

Our Goal
● We want to show that, with high probability,

our estimate isn’t too far from the correct
value.

● Mathematically, we want to look at the
expression âᵢ – aᵢ and show that there is a
“high probability” that this is “small enough.”

● We need to pin down what “high probability”
and “small enough” mean. To do that, let’s
first work out, mathematically, what âᵢ – aᵢ is.

Question: Intuitively, what should we expect

our approximation error to be?

9 5 4

Number of buckets: w

There are ║a║₁ total elements
distributed across w buckets.
We’re using a 2-independent

hash family.

Reasonable guess: each bin
has ║a║₁ / w elements in it, so

E[âᵢ – aᵢ] ≤ ║a║₁ / w

Idea: Think of our
element frequencies

a₁, a₂, a₃, … as a vector

a = [a₁, a₂, a₃, …].

The total number of
objects is the sum of
the vector entries.

This is called the
L₁ norm of a, and is

denoted ║a║₁:

‖a‖1 = ∑
i

|ai|

Analyzing this Structure
● Let's look at âᵢ = count[h(xᵢ)] for some choice of xᵢ.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = { 1 if h(xi) = h(x j)
 0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j

Each of these variables is
called an indicator

random variable, since
it “indicates” whether

some event occurs.

Analyzing this Structure
● Let's look at âᵢ = count[h(xᵢ)] for some choice of xᵢ.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random
variables X₁, X₂, …, as follows:

● The value of âᵢ – aᵢ is then given by

X j = { 1 if h(xi) = h(x j)
 0 otherwise

âi−ai = ∑
j≠ i

a j X j

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

This follows from linearity
of expectation. We’ll use
this property extensively
over the next few days.

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

The values of aⱼ are not
random. The randomness
comes from our choice of

hash function.

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 X j={ 1 if h(xi)=h(x j)
 0 otherwise

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 If X is an indicator variable for some event Ɛ,
then E[X] = Pr[Ɛ]. This is really useful when

using linearity of expectation!

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 Hey, we saw this
earlier!

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 Hey, we saw this
earlier!

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

Probably
Approximately

Goal: Make an estimator â for some
quantity a where

With probability at least 1 – δ,

|â – a| ≤ ε · size(input)

for some measure of the size of the input.
Correct

E[âi−ai] ≤
‖a‖1

w

aᵢ

ε║a║₁

How do we tune
w so we’re

likely to fall in
this range?

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

We don’t know the exact distribution of
this random variable.

However, we have a one-sided error:
our estimate can never be lower than the

true value. This means that âᵢ – aᵢ ≥ 0.

Markov’s inequality says that if X is a
nonnegative random variable, then

Pr [X ≥ c] ≤ E[X]
c .

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

E[âi−ai] ≤
‖a‖1

w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

Pr [âi−ai > ε‖a‖1] ≤
1

εw

Probably
Approximately

Goal: Make an estimator â for
some quantity a where

With probability at least 1 – δ,

|â – a| ≤ ε · size(input)

for some measure of input size.
Correct

Initial Idea:
Pick w = ε-1 · δ-1. Then

Pr [âi−ai > ε‖a‖1] ≤ δ

Suppose we’re counting
1,000 distinct items.

If we want our estimate
to be within ε║a║₁ of the
true value with 99.9%
probability, how much
memory do we need?

Answer: 1,000 · ε-1.
Can we do better?

Pr [âi−ai > ε‖a‖1] ≤
1

εw

Probably
Approximately

Goal: Make an estimator â for
some quantity a where

With probability at least 1 – δ,

|â – a| ≤ ε · size(input)

for some measure of input size.
Correct

Revised Idea: Pick
w = e · ε-1. Then

Pr [âi−ai > ε‖a‖1] < e−1

We could choose
w = k · ε-1 for any
constant k to get a

failure probability of at
most k-1. The choice of e

is (mostly) arbitrary.

Pr [âi−ai > ε‖a‖1] ≤
1

εw

Probably
Approximately

Goal: Make an estimator â for
some quantity a where

With probability at least 1 – δ,

|â – a| ≤ ε · size(input)

for some measure of input size.
Correct

Revised Idea: Pick
w = e · ε-1. Then

Pr [âi−ai > ε‖a‖1] < e−1

This simple data
structure, by itself, is

likely to be wrong.

What happens if we run
a bunch of copies of this

approach in parallel?

Running in Parallel
● Let’s run d copies of our data structure in parallel with

one another.
● Each row has its hash function sampled uniformly at

random from our hash family.
● Each time we increment an item, we perform the

corresponding increment operation on each row.

w = ⌈e · ε-1⌉

d =
 ??

h₂
h₃

hd

…

27 18 28 18 28 … 45

16 18 3 39 88 … 75

69 31 47 18 5 … 59

...

h₁ 31 41 59 26 53 58…

Running in Parallel
● Imagine we call estimate(x) on each of our estimators

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Formulate a hypothesis! 😃

Running in Parallel
● Imagine we call estimate(x) on each of our estimators

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Discuss with your
neighbors! 😃

Running in Parallel
● Imagine we call estimate(x) on each of our estimators

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 5:

261
Estimator 4:

103

Intuition: The smallest
estimate returned has
the least “noise,” and

that’s the best guess for
the frequency.

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

The only way the
minimum estimate
is inaccurate is if
every estimate is

inaccurate.

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Each copy of the
data structure is

independent of the
others.

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Pr [âi−ai ≥ ε‖a‖1] ≤ e−1

Let âᵢⱼ be the
estimate from the

jth copy of the data
structure.

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e− d

Probably
Approximately

Goal: Make an estimator â for some
quantity a where

With probability at least 1 – δ,

|â – a| ≤ ε · size(input)

for some measure of input size.
Correct

Pr [min {âij}−ai > ε‖a‖1] ≤ e−d

Idea: Choose d = -ln δ.
(Equivalently: d = ln δ-1.) Then

Pr [min {âij}−ai > ε‖a‖1] ≤ δ

The Count-Min Sketch

31 41 59 26 53 58h₁
27 18 28 18 28 … 45h₂
16 18 3 39 88 … 75h₃

69 31 47 18 5 … 59hd

...…

w = ⌈e · ε-1⌉
d =

 ⌈ln δ
-1⌉

…

Sampled uniformly and
independently from a
2-independent family

of hash functions

The Count-Min Sketch

h₁
h₂
h₃

hd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)]++ᵢ

estimate(x):
 result = ∞
 for i = 1 … d:
 result = min(result, count[i][h (x)])ᵢ
 return result

32 41 59 26 53 58

27 18 28 19 28 … 45

16 19 3 39 88 … 75

69 31 47 18 5 … 60

...

…

The Count-Min Sketch
● Update and query times are Θ(d), which is Θ(log δ-1).
● Space usage: Θ(ε-1 · log δ-1) counters.

● Each individual estimator has Θ(ε-1) counters, and we run
Θ(log δ-1) copies in parallel.

● This is a major improvement over our earlier
approach that used Θ(ε-1 · δ-1) counters.

● This can be significantly better than just storing a
raw frequency count!

● Provides an estimate to within ε║a║₁ with probability
at least 1 – δ.

Major Ideas From Today
● 2-independent hash families are useful when we

want to keep collisions low.
● A “good” approximation of some quantity should

have tunable confidence and accuracy parameters.
● Sums of indicator variables are useful for deriving

expected values of estimators.
● Concentration inequalities like Markov’s

inequality are useful for showing estimators don’t
stay too much from their expected values.

● Good estimators can be built from multiple parallel
copies of weaker estimators.

Next Time
● Count Sketches

● An alternative frequency estimator with
different time/space bounds.

● Cardinality Estimation
● Estimating how many different items you’ve

seen in a data stream.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

