

AMOUNT OF SUBSTANCE

1 - FORMULAE

If you are serious about doing A level Chemistry, you **MUST** be able to write a formula without a second thought. It is the <u>single most essential skill for an A level chemist</u>.

You have to know and be able to use the information on this page – you should not be looking it up. There is no data sheet with ion charges at A level.

If you can't write a formula in an instant, **DROP CHEMISTRY NOW** and choose something else.

Elements

Monatomic	Simple molecular	lonic	Metallic	Giant covalent
helium neon argon krypton xenon radon	hydrogen nitrogen oxygen fluorine chlorine bromine iodine phosphorus sulfur	There are no ionic elements!!	The formula is just the symbol, e.g. magnesium iron sodium nickel	The formula is just the symbol diamond graphite silicon

Compounds

Monatomic	Simple molecular	lonic	Metallic	Giant covalent
There are no monatomic compounds!!	Some common molecular compounds: carbon dioxide carbon monoxide	These have to be worked out using ion charges – you have to know these at AS/A level!	There are no metallic compounds!!	silicon dioxide
	nitrogen monoxide nitrogen dioxide	LEARN them ASAP.		
	sulfur dioxide sulfur trioxide ammonia methane hydrogen sulfide	Note these acids: hydrochloric acid sulfuric acid nitric acid phosphoric acid		

Positive ions		Negative ions		
Group 1 ions:	Group 3 ions:	Group 7 ions:	Other common ions	
lithium	aluminium	fluoride	nitrate	
sodium		chloride	sulfate	
potassium	Other common ions	bromide	carbonate	
Group 2 ions:	silver	iodide	hydrogencarbonate	
magnesium	zinc ammonium hydrogen	Group 6 ions:	hydroxide	
calcium		oxide	hydride	
barium		sulfide	phosphate	

TA	SK 1 – WRITIN	NG FORMULAS OF	FION	IIC COMPOUND	<u>S</u>
1)	silver bromide		9)	lead (II) oxide	
2)	sodium carbonate		10)	sodium phosphate	
3)	potassium oxide		11)	zinc hydrogencarbonate	
4)	iron (III) oxide		12)	ammonium sulphate	
5)	chromium (III) chloride		13)	gallium hydroxide	
6)	calcium hydroxide		14)	strontium selenide	
7)	aluminium nitrate		15)	radium sulfate	
8)	sodium sulfate		16)	sodium nitride	
ТА	SK 2 – WRITIN	NG FORMULAS 1			
1)	lead (IV) oxide		11)	barium hydroxide	
2)	copper		12)	tin (IV) chloride	
3)	sodium		13)	silver nitrate	
4)	ammonium chloride		14)	iodine	
5)	ammonia		15)	nickel	
6)	sulfur		16)	hydrogen sulfide	
7)	sulfuric acid		17)	titanium (IV) oxide	
3)	neon		18)	lead	
9)	silica		19)	strontium sulfate	
10)	silicon		20)	lithium	
		NG FORMULAS 2	11)	harium hydravida	
1)	silver carbonate		11)	barium hydroxide	
2)	gold		12)	ammonia	
3) 4)	platinum (II) fluoride nitric acid		13) 14)	hydrochloric acid fluorine	
	ammonia		15)	silicon	
5) 3)	silicon (IV) hydride		16)	calcium phosphate	
6) 7)	phosphorus		17)	rubidium	
<i>r)</i> 8)	diamond		18)	germanium (IV) oxide	
9)	vanadium (V) oxide		19)	magnesium astatide	
10)	cobalt (II) hydroxide		20)	nitrogen monoxide	
10)	Sobalt (II) Hyuloxide		20)	ma ogen monoxide	

2 - EQUATIONS

From an early age you should have been able to balance chemical equations. However, at A level, you will often need to:

- · work out the formulas yourselves
- work out what is made (so you need to know some basic general equations)
- · for reactions involving ions in solution, write ionic equations

Some general reactions you should know:

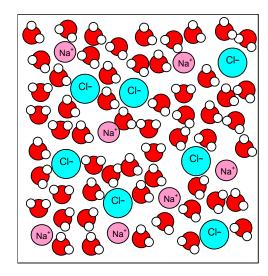
General Reaction	Examples
substance + oxygen → oxides	$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$
	$2 H_2 S + 3 O_2 \rightarrow 2 H_2 O + 2 SO_2$
	$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$
metal + water → metal hydroxide + hydrogen	2 Na + 2 H ₂ O → 2 NaOH + H ₂
metal + acid → salt + hydrogen	$Mg + 2 HCI \rightarrow MgCl_2 + H_2$
oxide + acid → salt + water	MgO + 2 HNO ₃ \rightarrow Mg(NO ₃) ₂ + H ₂ O
hydroxide + acid → salt + water	$2 \text{ NaOH + H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{H}_2\text{O}$
carbonate + acid → salt + water + carbon dioxide	$CuCO_3 + 2 HCI \rightarrow CuCl_2 + H_2O + CO_2$
hydrogencarbonate + acid → salt + water + carbon dioxide	KHCO ₃ + HCl → KCl + H ₂ O + CO ₂
ammonia + acid → ammonium salt	NH ₃ + HCl → NH ₄ Cl
metal carbonate → metal oxide + carbon dioxide (on heating)	$CaCO_3 \rightarrow CaO + CO_2$

TASK 4 – WRITING BALANCED EQUATIONS

- 1) Balance the following equations.
 - a) Mg + HNO₃ \rightarrow Mg(NO₃)₂ + H₂
 - b) $CuCl_2 + NaOH \rightarrow Cu(OH)_2 + NaCl$
 - c) $SO_2 + O_2 \rightarrow SO_3$
 - d) $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$
- 2) Give balanced equations for the following reactions.
 - a) sodium + oxygen → sodium oxide
 - b) aluminium + chlorine → aluminium chloride
 - c) calcium + hydrochloric acid → calcium chloride + hydrogen
 - d) ammonia + sulphuric acid → ammonium sulphate

TASK 5 – WRITING BALANCED EQUATIONS 2

Write balance equations for the following reactions:


- 1) burning aluminium
- 2) burning hexane (C₆H₁₄)
- 3) burning ethanethiol (CH₃CH₂SH)
- 4) reaction of lithium with water
- 5) reaction of calcium carbonate with nitric acid
- 6) thermal decomposition of lithium carbonate
- 7) reaction of ammonia with nitric acid
- 8) reaction of potassium oxide with sulfuric acid
- 9) reaction of calcium hydroxide with hydrochloric acid
- 10) reaction of zinc with phosphoric acid
- 11) reaction of sodium hydrogencarbonate with sulfuric acid
- 12) reaction of potassium hydroxide with sulfuric acid

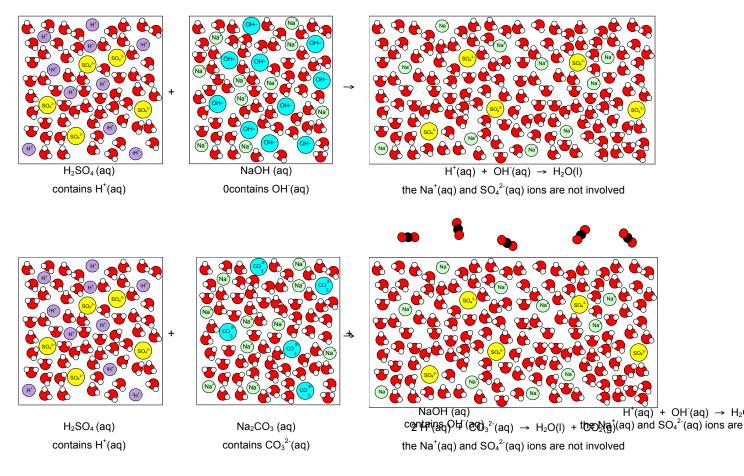
Ionic equations

When an ionic substance dissolves in water, the positive and negative ions separate and become hydrated (they interact with water molecules rather than each other). For example, a solution of sodium chloride could also be described as a mixture of hydrated sodium ions and hydrated chloride ions in water.

In reactions involving ionic compounds dissolved in water, some of the ions may not be involved in the reaction. These are called **spectator ions**. For such reactions, we can write an **ionic equation** that only shows the species that are involved in the reaction.

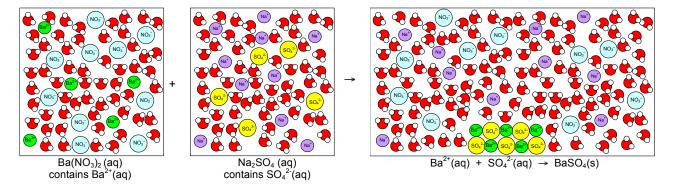
Simple examples are equations for which ionic equations can be written include:

Reactions of acids:

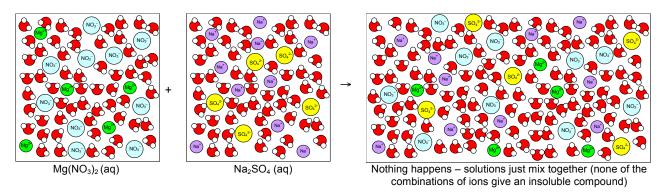

Common ionic equations are: acid + hydroxide $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(I)$

acid + carbonate $2 \text{ H}^{+}(aq) + \text{CO}_{3}^{2^{-}}(aq) \rightarrow \text{H}_{2}\text{O(I)} + \text{CO}_{2}(g)$ acid + hydrogencarbonate $\text{H}^{+}(aq) + \text{HCO}_{3}^{-}(aq) \rightarrow \text{H}_{2}\text{O(I)} + \text{CO}_{2}(g)$

acid + ammonia $H^{+}(aq) + NH_{3}(aq) \rightarrow NH_{4}^{+}(aq)$


We can even use these ionic equations to work out the ratio in which acids react without writing any equation.

For example, in the reaction of $H_2SO_4(aq)$ with NaOH(aq) we know that one lot of H_2SO_4 contains two lots of H^+ ions. As H^+ ions react with OH^- ions in the ratio 1:1 [$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$] we know that we need two lots of NaOH to provide two lots of OH^- ions to react with the two lots of H^+ ions. Therefore, one lot of H_2SO_4 reacts with two lots of NaOH, i.e. the reacting ratio of H_2SO_4 : NaOH = 1:2



Precipitation reactions

Some salts are insoluble in water. If solutions containing those ions are mixed, the insoluble salt forms as a solid as the solutions are mixed. This solid is known as a precipitate, and the reaction as precipitation.

Most salts are soluble in water. Often when solutions of two salts are mixed, no such precipitation reaction will take place and the ions will remain dissolved in water.

TASK 6 – IONIC EQUATIONS

1) Use your knowledge of ionic equations to give the molar ratio in which the following acids react with bases. Complete the table to show your answers.

Acid	Formula of acid	Base	Formula of base	Molar ratio of acid:base
hydrochloric acid		lithium hydroxide		
sulphuric acid		sodium hydrogencarbonate		
nitric acid		ammonia		
sulphuric acid		potassium carbonate		
nitric acid		strontium hydroxide		

- 2) Write ionic equations for each of the following reactions.
 - a) reaction of hydrochloric acid (aq) with potassium hydroxide (aq)
 - b) precipitation of silver iodide from reaction between silver nitrate (aq) and potassium iodide (aq)
 - c) reaction of potassium carbonate (aq) with nitric acid (aq)
 - d) precipitation of calcium hydroxide from reaction between sodium hydroxide (aq) and calcium chloride (aq)
 - e) reaction of ammonia (aq) with hydrochloric acid (aq)
 - f) reaction of sodium hydrogencarbonate (aq) with sulfuric acid (aq)
 - g) precipitation of calcium sulfate from reaction between calcium chloride (aq) and sulfuric acid (aq)
 - h) precipitation of lead (II) chloride from reaction between lead nitrate (aq) and sodium chloride (aq)
 - i) reaction of barium hydroxide (aq) with nitric acid (aq)

3 - SIGNIFICANT FIGURES & STANDARD FORM

Standard Form

- Standard form is very useful for writing very large or small numbers.
- They are written in the form A x 10ⁿ where A is a number between 1 and 10.
- n represents the number of places the decimal point is moved (for +n values the decimal point has been moved to the left, for -n values the decimal point has been moved to the right).

Number	3435	1029000	0.025	23.2	0.0000278
Standard form	3.435 x 10 ³	1.029 x 10 ⁶	2.5 x 10 ⁻²	2.32 x 10 ¹	2.78 x 10 ⁻⁵

- To find the value of n:
 - for numbers greater than 1, n = number of places between first number and decimal place
 - for numbers less than 1, n = number of places from the decimal place to the first number (including that number)

Significant figures

Full number	1 sig fig	2 sig fig	3 sig fig	4 sig fig	5 sig fig
9.378652	9	9.4	9.38	9.379	9.3787
4204274	4000000	4200000	4200000	4204000	4204300
0.903521	0.9	0.90	0.904	0.9035	0.90352
0.00239482	0.002	0.0024	0.00239	0.002395	0.0023948

Significant figures for calculations involving multiplication / division

- Your final answer should be given to the same number of significant figures as the least number of significant figures in the data used.
 - e.g. Calculate the average speed of a car that travels 1557 m in 95 seconds.

average speed =
$$\frac{1557}{95}$$
 = 16 m/s (answer given to 2 sig fig as lowest sig figs in data is 2 sig fig for time)

e.g. Calculate the average speed of a car that travels 1557 m in 95.0 seconds.

```
average speed = \frac{1557}{95} = 16.4 m/s (answer given to 3 sig fig as lowest sig figs in data is 3 sig fig for time)
```

Significant figures for calculations involving addition/subtraction ONLY

- Here the number of significant figures is irrelevant it is about the place value of the data. For example
 - e.g. Calculate the total energy released when 263 kJ and 1282 kJ of energy are released.

 Energy released = 263 + 1282 = 1545 kJ (answer is to nearest unit as both values are to nearest unit)
 - e.g. Calculate the total mass of calcium carbonate when 0.154 g and 0.01234 g are mixed.

Mass = 0.154 + 0.01234 = 0.166 g (answer is to nearest 0.001 g as least precise number is to nearest 0.001 g)

TASK 7 – SIGNIFICANT FIGURES & STANDARD FORM

1) Write the following numbers to the quoted number of significant figures.

b) 297300 3 sig figs e) 0.001563 3 sig figs

c) 0.07896 3 sig figs f) 0.010398 4 sig figs

2) Complete the following sums and give the answers to the appropriate number of significant figures.

3) Write the following numbers in non standard form.

b) 4.6 x 10⁻⁴ e) 1.03 x 10⁶

c) 3.575 x 10⁵ f) 8.35 x 10⁻³

4) Write the following numbers in standard form.

5) Complete the following calculations and give the answers to the appropriate number of significant figures.

a) 6.125 x 10⁻³ x 3.5

b) 4.3 x 10⁻⁴ ÷ 7.00

c) 4.0 x 10⁸ + 35000

d) 0.00156 + 2.4 x 10³

e) 6.10 x 10⁻² - 3.4 x 10⁻⁵

f) 8.00 x 10⁻³ x 0.100 x 10⁻³

4 – THE MOLE & AVOGADRO CONSTANT

- One mole of anything contains 6.02×10^{23} of those things. One mole of bananas is 6.02×10^{23} bananas. One mole of water molecules is 6.02×10^{23} water molecules
- This number is known as the Avogadro constant (= $6.02 \times 10^{23} \text{ mol}^{-1}$).
- The Avogadro number was chosen so that the mass of one mole of particles of a substance equals the M_r in grams. For example, the M_r of water is 18.0, and the mass of one mole of water molecules in 18.0 grams.

Moles = Mass (in grams) Mr

1 ton = 1,000,000 g

1 kg = 1,000 g

1 mg = 0.001 g

Remember Mr Moles!

TASK 8 - MOLES

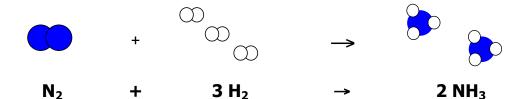
- How many moles are there in each of the following?
 - a) 72.0 g of Mg
- b) 4.00 kg of CuO
- c) 39.0 g of Al(OH)₃

- d) 1.00 tonne of NaCl
- e) 20.0 mg of Cu(NO₃)₂
- What is the mass of each of the following?
 - a) 5.00 moles of Cl₂
- b) 0.200 moles of Al_2O_3
- c) 0.0100 moles of Ag

- d) 0.00200 moles of $(NH_4)_2SO_4$ e) 0.300 moles of $Na_2CO_3.10H_2O$
- a) Calculate the number of moles of CO₂ molecules in 11.0 g of carbon dioxide.
 - b) Calculate the number of moles of C atoms in 11.0 g of carbon dioxide.
 - a) Calculate the number of moles of O atoms in 11.0 g of carbon dioxide.
- a) Calculate the number of moles of Al₂O₃ in 5.10 g of Al₂O₃.
 - b) Calculate the number of moles of Al³⁺ ions in 5.10 g of Al₂O₃.
 - a) Calculate the number of moles of O²⁻ ions in 5.10 g of Al₂O₃.
- An experiment was carried out to find the M_r of vitamin C (ascorbic acid). It was found that 1.00 g contains 0.00568 moles of Vitamin C molecules. Calculate the M_r of vitamin C.
- Use the following data to calculate the mass of the particles shown.

Mass of proton = $1.6726 \times 10^{-24} \, \text{g}$

Mass of electron = $9.1094 \times 10^{-28} \, \text{g}$


Mass of neutron = $1.6749 \times 10^{-24} \text{ g}$

Avogadro constant = 6.022 x 10²³ mol⁻¹

- a) Calculate the mass of a ¹H atom.
- b) Calculate the mass of an ¹H⁺ ion.
- c) Calculate the mass of one mole of ³H atoms.

5 - REACTING MASS CALCULATIONS

What a chemical equation means

 $1 \ molecule \ N_2$

12 molecules N₂ 1 dozen molecules N₂

 $\begin{array}{c} \text{6 x } \text{10}^{23} \, \text{molecule N}_2 \\ \text{1 moles N}_2 \end{array}$

 $10 \ moles \ N_2$

0.5 moles N₂

3 molecules H₂

36 molecules H₂ 3 dozen molecules H₂

36 molecules H₂ 3 dozen molecules H₂

 18×10^{23} molecules H_2 3 moles H_2

30 moles H₂

1.5 moles H₂

2 molecules NH₃

24 molecules NH₃ 2 dozen molecules NH₃

24 molecules NH₃ 2 dozen molecules NH₃

12 x 10²³ molecules NH₃ 2 moles NH₃

20 moles NH₃

1 mole NH₃

TASK 9 — WHAT EQUATIONS MEAN 4 Na + O₂ → 2 Na₂O 12 mol 0.1 mol

2 AI + 3 CI₂ \rightarrow 2 AICI₃

5 mol

0.1 mol

 $C_4 H_{10} \qquad \qquad + \qquad 6 \% \ O_2 \qquad \qquad \rightarrow \qquad 4 \ CO_2 \qquad \qquad + \qquad \qquad 5 \ H_2 O$

0.5 mol

20 mol

 $4 \text{ NH}_3 + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{O}$

0.5 mol

10 mol

Reacting mass calculations

- You can use balanced chemical equations to find out what mass of chemicals (or volume of gases) react or are produced in a chemical reaction. To do this, calculate:
 - (a) moles of ✓ (b) moles of? (c) mass of?
 - e.g. What mass of iron is produced when 32.0 kg of iron (III) oxide is heated with CO?

?
$$Pe_2O_3(s) + 3 CO(g) \rightarrow 2 Pe(s) + 3 CO_2(g)$$

moles of Fe₂O₃ =
$$\frac{\text{mass (g)}}{M_r}$$
 = $\frac{32,000}{159.6}$ = 200.5 mol

1 mole of Fe₂O₃ forms 2 moles of Fe

- .. moles of Fe = 2 x 200.5 = 401.0 mol
- :. mass of Fe = moles x M_r = 401.0 x 55.8 = 22,400 g (3 sig fig)
- e.g. What mass of oxygen is needed to convert 102 g of ammonia into nitrogen?

moles of NH₃ =
$$\frac{\text{mass (g)}}{M_r}$$
 = $\frac{102}{17.0}$ = 6.00 mol

- 4 moles of NH₃ reacts with 3 moles of O₂ :. 1 mole of NH₃ reacts with 3/4 mole of O₂
- :. moles of $O_2 = 6.00 \times \frac{3}{4} = 4.50 \text{ mol}$
- :. mass of O_2 = moles x M_r = 4.50 x 32.0 = **144 g** (3 sig fig)
- **e.g.** When 5.00 g of crystals of hydrated tin (II) chloride, SnCl₂.xH₂O, are heated, 4.20 g of anhydrous tin (II) chloride are formed. Calculate the number of molecules of water of crystallisation are in SnCl₂.xH₂O (i.e. the value of x).

$$SnCl_2.xH_2O \rightarrow SnCl_2 + x H_2O$$

moles of
$$SnCl_2 = \frac{mass (g)}{M_c} = \frac{4.20}{189.7} = 0.02214 \text{ moles}$$

- :. moles of SnCl₂.xH₂O = 0.02214 mol
- $\therefore M_r \text{ of } SnCl_2.xH_2O = \underbrace{mass}_{moles} = \underbrace{5.00}_{0.02214} = 225.8$
- \therefore M_r of xH₂O = 225.8 189.7 = 36.1
- \therefore x = $\frac{36.1}{18.0}$ = 2 (x is a whole number and so the final answer is given as an integer)

TASK 10 – REACTING MASS CALCULATIONS 1

1) What mass of hydrogen is needed to react with 40.0 g of copper oxide?

$$CuO + H_2 \rightarrow Cu + H_2O$$

2) What mass of oxygen reacts with 192 g of magnesium?

$$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$$

3) What mass of sulfur trioxide is formed from 96.0 g of sulfur dioxide?

$$2 SO_2 + O_2 \rightarrow 2 SO_3$$

4) What mass of carbon monoxide is needed to react with 480 kg of iron oxide?

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

5) What mass of carbon dioxide is produced when 5.60 g of butene is burnt.

$$C_4H_8 + 6 O_2 \rightarrow 4 CO_2 + 4 H_2O$$

6) What mass of oxygen is needed to react with 8.50 g of hydrogen sulphide (H₂S)?

$$2 H_2S + 3 O_2 \rightarrow 2 SO_2 + 2 H_2O$$

7) 4.92 g of hydrated magnesium sulphate crystals (MgSO₄.*n*H₂O) gave 2.40 g of anhydrous magnesium sulphate on heating to constant mass. Work out the formula mass of the hydrated magnesium sulphate and so the value of *n*.

$$MgSO_4.nH_2O \rightarrow MgSO_4 + nH_2O$$

8) In an experiment to find the value of *x* in the compound MgBr₂.*x*H₂O, 7.30 g of the compound on heating to constant mass gave 4.60 g of the anhydrous salt MgBr₂. Find the value of *x*.

$$MgBr_2.xH_2O \rightarrow MgBr_2 + x H_2O$$

9) What mass of glucose must be fermented to give 5.00 kg of ethanol?

$$C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$$

10) The pollutant sulfur dioxide can removed from the air by reaction with calcium carbonate in the presence of oxygen. What mass of calcium carbonate is needed to remove 1.000 ton of sulfur dioxide?

$$2 CaCO_3 + 2 SO_2 + O_2 \rightarrow 2 CaSO_4 + 2 CO_2$$

11) What mass of potassium oxide is formed when 7.80 mg of potassium is burned in oxygen?

$$4~\textrm{K}~+~\textrm{O}_2~\rightarrow~2~\textrm{K}_2\textrm{O}$$

12) What mass of hydrogen is produced when 10.0 g of aluminium reacts with excess hydrochloric acid?

$$2 \text{ Al} + 6 \text{ HCl} \rightarrow 2 \text{ AlCl}_3 + 3 \text{ H}_2$$

13) What mass of sodium just reacts with 40.0 g of oxygen?

$$4 \text{ Na} + \text{O}_2 \rightarrow 2 \text{ Na}_2\text{O}$$

14) What mass of nitrogen is produced when 2.00 tonnes of ammonia gas decomposes?

$$2 \text{ NH}_3 \rightarrow \text{N}_2 + 3 \text{ H}_2$$

15) What mass of oxygen is produced when 136 g of hydrogen peroxide molecules decompose?

$$2 H_2O_2 \rightarrow 2 H_2O + O_2$$

16) What mass of lead (II) oxide is produced when 0.400 moles of lead (II) nitrate decomposes?

$$2 \text{ Pb}(NO_3)_2 \rightarrow 2 \text{ PbO} + 4 \text{ NO}_2 + O_2$$

Limiting reagents

- In the real world of chemistry, it is rare that we react the exact right amount of chemicals together. Usually, we have more than we need of one of the reactants and so it doesn't all react it is in excess.
- Sometimes in calculations, we need to work out if one of the reactants is in excess. The reactant that is not in excess is sometimes called the limiting reagent.
 - e.g. Propane reacts with oxygen as shown: $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$

How many moles of products are formed when 1 mole of C₃H₈ is mixed with 8 moles of O₂?

	C ₃ H ₈	+	5 O ₂	\rightarrow	3 CO ₂	+	4 H ₂ O
moles at the start	1 mol		8 mol				
change in moles	1 mol react		5 mol react		3 mol made		4 mol made
moles at the end	1 - 1 = 0 mol		8 - 3 = 1 mol		0 + 3 = 3 mol		0 + 4 = 4 mol
	C₃H ₈ limiting reagent		O ₂ in excess				

e.g. Sulfur dioxide reacts with oxygen as shown: $2 SO_2 + O_2 \rightarrow 2 SO_3$

How many moles of SO₃ are formed when 5 mole of SO₂ is mixed with 2 moles of O₂?

	2 SO ₂	+	O_2	\rightarrow	2 SO ₃
moles at the start	5 mol		2 mol		
change in moles	4 mol react		2 mol react		4 mol made
moles at the end	5 - 4 = 1 mol		2 - 2 = 0 mol		0 + 4 = 4 mol
	SO ₂ in excess		O ₂ limiting reagent		

- In calculations you will be asked to work with masses, but you will need to convert to moles to find out which is the limiting reagent in order to work out the required answer.
 - e.g. In the manufacture of titanium, what mass of titanium can theoretically be formed when 1.00 kg of titanium chloride reacts with 0.100 kg of magnesium?

$$TiCl_4$$
 + 2 Mg \rightarrow Ti + 2 MgCl₂

 $TiCl_4 + 2 Mg \rightarrow Ti + 2 MgCl_2$

moles at the start

rt
$$\frac{1000}{189.9}$$
 = 5.266 mol $\frac{100}{24.3}$ = 4.115 mol $\frac{100}{24.3}$

5.266 moles of TiCl₄ needs 10.53 moles of Mg to react

.. TiCl₄ is in excess and does not all react, so Mg is the limiting reagent

∴ 2.058 moles of TiCl₄ reacts with 4.115 moles of Mg

change in moles
$$-2.058$$
 mol -4.115 mol $+2.058$ $+4.115$ mol moles at the end
$$0 + 2.058$$
 = 2.058 mol

$$\therefore$$
 Mass of Ti = 2.058 x 47.9 = 98.6 g

<u>1</u>		CaO	+	H ₂ O	→	Ca(OH) ₂		
	a)	2 mol		3 mol				
	b)	10 mol		8 mol				
	c)	0.40 mol		0.50 mol				
2		2Ca	+	O ₂	→	2CaO		
	a)	2 mol		2 mol				
	b)	10 mol		2 mol				
	c)	0.50 mol		0.20 mol				
3		2Fe	+	3Cl ₂	→	2FeCl₃		
	a)	3 mol		3 mol				
	b)	12 mol		15 mol				
	c)	20 mol		40 mol				
4		TiCl₄	+	4Na	→	Ti	+	4NaCl
	a)	4 mol		4 mol				
	b)	2 mol		10 mol				
	c)	0.5 mol		1 mol				
<u>5</u>		C₂H₅OH	+	3O ₂	→	2CO ₂	+	3H₂O
	a)	15 mol		30 mol				
	b)	0.25 mol		1 mol				
	c)	3 mol		6 mol				
6		N_2	+	3H ₂	→	2NH₃		
	a)	3 mol		6 mol				
	b)	0.5 mol		0.9 mol				
	c)	6 mol		20 mol				
7		4K	+	O ₂	→	2K₂O		
	a)	10 mol		2 mol				
	b)	6 mol		4 mol				
	c)	0.50 mol		0.20 mol				

TASK 11B – LIMITING REAGENTS 2

- What mass of calcium hydroxide is formed when 10.0 g of calcium CaO + H₂O → Ca(OH)₂ oxide reacts with 10.0 g of water?
- 2 What mass of magnesium bromide is formed when 1.00 g of Mg + $Br_2 \rightarrow MgBr_2$ magnesium reacts with 5.00 g of bromine?
- 3 What mass of copper is formed when 2.00 g of copper(II) oxide $CuO + H_2 \rightarrow Cu + H_2O$ reacts with 1.00 g of hydrogen?
- What mass of sodium fluoride is formed when 2.30 g of sodium $2Na + F_2 \rightarrow 2NaF$ reacts with 2.85 g of fluorine?
- 5 What mass of iron is formed when 8.00 g of iron(III) oxide reacts with $Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$ 2.16 g of aluminium?
- 6 What mass of aluminium chloride is formed when 13.5 g of $2Al + 3Cl_2 \rightarrow 2AlCl_3$ aluminium reacts with 42.6 g of chlorine?

TASK 11C - REACTING MASS CALCULATIONS 2

1) 5.00 g of iron and 5.00 g of sulphur are heated together to form iron (II) sulphide. Which reactant is in excess and what is the maximum mass of iron (II) sulphide that can be formed?

Fe + S
$$\rightarrow$$
 FeS

2) In the manufacture of the fertiliser ammonium sulphate, what is the maximum mass of ammonium sulphate that can be obtained from 2.00 kg of sulphuric acid and 1.00 kg of ammonia?

$$H_2SO_4 + 2 NH_3 \rightarrow (NH_4)_2SO_4$$

3) In the Solvay process, ammonia is recovered by the reaction shown. What is the maximum mass of ammonia that can be recovered from 2.00 tonnes of ammonium chloride and 0.500 tonnes of calcium oxide?

$$2 \text{ NH}_4\text{Cl} + \text{CaO} \rightarrow \text{CaCl}_2 + \text{H}_2\text{O} + 2 \text{ NH}_3$$

4) In the manufacture of titanium, what mass of titanium can theoretically be formed when 0.500 kg of titanium chloride reacts with 0.100 kg of magnesium?

$$TiCl_4 + 2 Mg \rightarrow Ti + 2 MgCl_2$$

5) In the manufacture of ammonia, what mass of ammonia can theoretically be formed when 1.00 kg of nitrogen reacts with 0.500 kg of hydrogen?

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

6) In the manufacture of sulphur troxide, what mass of sulphur trioxide can theoretically be formed when 1.00 kg of sulphur dioxide reacts with 0.500 kg of oxygen?

$$2 SO_2 + O_2 \rightarrow 2 SO_3$$

7) Hydrazine (N₂H₄) was used as the rocket fuel for the Apollo missions to the moon. It is by reaction of ammonia with sodium chlorate. What mass of hydrazine is made by reaction of 100 g of ammonia with 100 g of sodium chlorate?

$$2 \text{ NH}_3 + \text{NaOCl} \rightarrow \text{N}_2\text{H}_4 + \text{NaCl} + \text{H}_2\text{O}$$

- 1) A mixture of anhydrous sodium carbonate and sodium hydrogencarbonate of mass 10.000 g was heated until it reached a constant mass of 8.708 g. Calculate the composition of the mixture in grams of each component. Sodium hydrogencarbonate thermally decomposes to form sodium carbonate.
- 2) A mixture of calcium carbonate and magnesium carbonate with a mass of 10.000 g was heated to constant mass, with the final mass being 5.096 g. Calculate the percentage composition of the mixture, by mass.
- 3) 1 mole of a hydrocarbon of formula C_nH_{2n} was burned completely in oxygen producing carbon dioxide and water vapour only. It required 192 g of oxygen. Work out the formula of the hydrocarbon.
- 4) A mixture of MgSO₄.7H₂O and CuSO₄.5H₂O is heated at 120°C until a mixture of the anhydrous compounds is produced. If 5.00 g of the mixture gave 3.00 g of the anhydrous compounds, calculate the percentage by mass of MgSO₄.7H₂O in the mixture.

Yields

- When you make a new substance by a chemical reaction, you may not get all the expected amount of product. For example, if you reacted 4 g of hydrogen with 32 g of oxygen, you may get less than 36 g of water. Reasons include:
 - the reaction may be reversible (both the forwards and backwards reaction can take place)
 - some of the product may be lost when it is separated from the reaction mixture
 - some of the reactants may react in other reactions.

- e.g. Iron is extracted from iron oxide in the Blast Furnace as shown. Fe₂O₃ + 3 CO \rightarrow 2 Fe + 3 CO₂
- a) Calculate the maximum theoretical mass of iron that can be made from 1.00 tonne of iron oxide.

Moles of Fe₂O₃ =
$$\frac{\text{mass (g)}}{M_r}$$
 = $\frac{1,000,000}{159.6}$ = 6266 moles
∴ moles of Fe = 2 x 6266 = 12530 mol

 \therefore mass of Fe = moles x M_r = 12530 x 55.8 = **699000 g** (3 sig fig)

b) In the reaction, only 650000 g of iron was made. Calculate the percentage yield.

% Yield = <u>mass actually made</u> x 100 = <u>650000</u> x 100 = **93.0%** (3 sig fig) theoretical mass expected

TASK 12 – PERCENTAGE YIELD

- 1) Sulfur dioxide reacts with oxygen to make sulfur trioxide. $2 SO_2 + O_2 \rightarrow 2 SO_3$
 - a) Calculate the maximum theoretical mass of sulfur trioxide that can be made by reacting 96.0 g of sulfur dioxide with an excess of oxygen.
 - b) In the reaction, only 90.0 g of sulfur trioxide was made. Calculate the percentage yield.
 - c) Give three reasons why the amount of sulfur trioxide made is less than the maximum theoretical maximum.
- 2) Iron is extracted from iron oxide in the Blast Furnace as shown. Fe₂O₃ + 3 CO \rightarrow 2 Fe + 3 CO₂
 - a) Calculate the maximum theoretical mass of iron that can be made from 1.00 tonne of iron oxide.
 - b) In the reaction, only 650000 g of iron (to 3 significant figures) was made. Calculate the percentage yield.
- 3) Nitrogen reacts with hydrogen to make ammonia. $N_2 + 3 H_2 \rightarrow 2 NH_3$
 - a) Calculate the maximum theoretical mass of ammonia that can be made by reacting 90.0 g of hydrogen with an excess of nitrogen.
 - b) In the reaction, only 153 g of ammonia was produced. Calculate the percentage yield.
- 4) Titanium can be extracted from titanium chloride by the following reaction. TiCl₄ + 2 Mg → Ti + 2 MgCl₂
 - a) Calculate the maximum theoretical mass of titanium that can be extracted from 100 g of titanium chloride .
 - b) In the reaction, only 20.0 g of titanium was made. Calculate the percentage yield.
 - c) Give three reasons why the amount of titanium made is less than the maximum theoretical maximum.
- 5) Aluminium is extracted from aluminium oxide in the following reaction. 2 $Al_2O_3 \rightarrow 4$ Al + 3 O_2
 - a) Calculate the maximum theoretical mass of aluminium that can be made from 1.00 kg of aluminium oxide.
 - b) In the reaction, only 500 g of aluminium was made. Calculate the percentage yield.
- 6) The fertiliser ammonium sulpfate is made as follows. $2 \text{ NH}_3 + \text{H}_2\text{SO}_4 \rightarrow (\text{NH}_4)_2\text{SO}_4$
 - a) Calculate the maximum theoretical mass of ammonium sulfate that can be made by reacting 85.0 g of ammonia with an excess of sulfuric acid.
 - b) In the reaction, only 300 g of ammonium sulfate was produced. Calculate the percentage yield.
- 7) 0.8500 g of hexanone, C₆H₁₂O, is converted into its 2,4-dinitrophenylhyrazone during its analysis. After isolation and purification, 2.1180 g of product C₁₂H₁₆N₄O₄ are obtained. Calculate the percentage yield.

Atom Economy

• Atom economy is a measure of what proportion of the products of a reaction are the desired product and how much is waste. The higher the atom economy, the less waste that is produced.

Atom economy = $\frac{\text{mass of wanted product from equation}}{\text{total mass of products from equation}} \times 100$

e.g. making ethanol by fermentation

glucose ethanol carbon dioxide
$$C_6H_{12}O_6(aq) \ \rightarrow \ 2\ CH_3CH_2OH(aq) \ + \ 2\ CO_2$$

$$180\ g \qquad \qquad 92\ g \qquad \qquad 88\ g$$

$$\qquad \qquad 180\ g \ products$$

Atom economy = $\frac{92}{180}$ x 100 = 51%

Only 92 g of the 180 g of products is ethanol. This means that 51% of the mass of the products is ethanol, while the other 49% is waste.

TASK 13 – ATOM ECONOMY

- Calculate the atom economy to make sodium from sodium chloride.
- $2 \text{ NaCl} \rightarrow 2 \text{ Na} + \text{Cl}_2$
- Calculate the atom economy to make hydrogen from the reaction of zinc with hydrochloric acid.
- $Zn + 2 HCI \rightarrow ZnCl_2 + H_2$
- Calculate the atom economy to make iron from iron oxide in the Blast Furnace.
- $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- Calculate the atom economy to make calcium oxide from calcium carbonate.
- $CaCO_3 \rightarrow CaO + CO_2$
- Calculate the atom economy to make sulfur trioxide from sulfur dioxide.
- $2\;SO_2\;+\;O_2\;\rightarrow\;2\;SO_3$
- 6) Calculate the atom economy to make oxygen from hydrogen peroxide
- $2 H_2O_2 \rightarrow 2 H_2O + O_2$
- 7) Hydrazine (N₂H₄) was used as the rocket fuel for the Apollo missions to the moon. It is by reaction of ammonia (NH₃) with sodium chlorate (NaOCI).

ammonia + sodium chlorate \rightarrow hydrazine + sodium chloride + water

- $2 \text{ NH}_3 + \text{NaOCl} \rightarrow \text{N}_2\text{H}_4 + \text{NaCl} + \text{H}_2\text{O}$
- a) Calculate the maximum theoretical mass of hydrazine that can be made by reacting 340 g of ammonia with an excess of sodium chlorate.
- b) In the reaction, only 280 g of hydrazine was produced. Calculate the percentage yield.
- c) Calculate the atom economy for this way of making hydrazine.
- d) Explain clearly the difference between atom economy and percentage yield.

6 - GAS CALCULATIONS

THE IDEAL GAS EQUATION

- In order to perform calculations with gases we assume that they behave like an ideal gas (i.e. there are no forces between particles, the size of their particles is negligible, etc.).
- While real gases are not ideal gases (e.g. there are weak forces between particles), treating them like an ideal gas is a very good approximation in calculations and so we use the ideal gas law for all gases.

V = volume (
$$m^3$$
) R = gas constant (8.31 J $mol^{-1} K^{-1}$)

Volume		Pi	Temperature	
$\frac{dm^3}{1000} = m^3$	$\frac{\text{cm}^3}{1000000} = \text{m}^3$	kPa x 1000 = Pa	MPa x 1000000 = Pa	°C + 273 = K

e.g. Calculate the pressure exerted by 0.100 moles of an ideal gas at 50.0°C with a volume of 1500 cm³.

P =
$$\frac{\text{nRT}}{\text{V}}$$
 = $\frac{0.100 \text{ x}}{1500} \frac{\text{8.31 x } 323}{1_{1000000}}$ = **179000 Pa** (3 sf)

TASK 14 - THE IDEAL GAS EQUATION

- 1) Convert the following into SI units.
 - a) 200°C
- b) 98 kPa
- c) 50 cm³
- d) -50°C
- e) 0.1 MPa
- f) 3.2 dm³
- 2) Calculate the volume that 0.400 moles of an ideal gas occupies at 100°C (3sf) and a pressure of 1000 kPa (4sf).
- 3) How many moles of gas occupy 19400 cm³ at 27.0°C and 1.00 atm pressure?
- 4) Calculate the pressure that 0.0500 moles of gas, which occupies a volume of 200 cm³ (3sf) exerts at a temperature of 50.0 K
- 5) 0.140 moles of a gas has a volume of 2.00 dm³ at a pressure of 90.0 kPa. Calculate the temperature of the gas.
- 6) At 273 K and 101000 Pa, 6.319 g of a gas occupies 2.00 dm³. Calculate the relative molecular mass of the gas.
- 7) Find the volume of ethyne (C_2H_2) that can be prepared from 10.0 g of calcium carbide at 20.0°C and 100 kPa (3sf). $CaC_2(s) + 2 H_2O(l) \rightarrow Ca(OH)_2(aq) + C_2H_2(g)$
- 8) What mass of potassium chlorate (V) must be heated to give 1.00 dm³ of oxygen at 20.0°C and 0.100 MPa.

$$2 \text{ KCIO}_3(s) \rightarrow 2 \text{ KCI}(s) + 3 \text{ O}_2(g)$$

9) What volume of hydrogen gas, measured at 298 K and 100 kPa, is produced when 1.00 g of sodium is reacted with excess water?

2 Na + 2
$$H_2O \rightarrow 2$$
 NaOH + H_2

10) What volume of carbon dioxide gas, measured at 800 K and 100 kPa, is formed when 1.00 kg of propane is burned in a good supply of oxygen?

$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

- 11) Calculate the relative molecular mass of a gas which has a density of 2.615 g dm⁻³ at 298 K and 101 kPa.
- 12) A certain mass of an ideal gas is in a sealed vessel of volume 3.25 dm³. At a temperature of 25.0°C it exerts a pressure of 101 kPa. What pressure will it exert at 100°C?
- 13) An ideal gas occupies a volume of 2.75 dm³ at 290K (3sf) and 8.70 x 10⁴ Pa. At what temperature will it occupy 3.95 dm³ at 1.01 x 10⁵ Pa?

REACTING GAS VOLUMES

- The volume of a gas depends on the temperature, pressure and number of moles. What the gas is does not affect its volume.
- This means that under the same conditions of temperature and pressure, 100 cm³ (as an example) of one gas contains the same number of moles as 100 cm³ of any other gas.
 - e.g. What volume of oxygen reacts with 100 cm³ of but-1-ene?

$$C_4H_8(g) + 6 O_2(g) \rightarrow 4 CO_2(g) + 4 H_2O(I)$$

Answer = 600 cm^3

e.g. 1 dm³ of but-1-ene is reacted with 10 dm³ of oxygen. What volume of oxygen remains at the end?

$$C_4H_8(g) + 6 O_2(g) \rightarrow 4 CO_2(g) + 4 H_2O(I)$$

6 dm³ of O₂ reacts with 1 dm³ of but-1-ene ∴ 4 dm³ of oxygen is left over

TASK 15 - REACTING GAS VOLUMES

- 1) What volume of oxygen is required to burn the following gases, and what volume of carbon dioxide is produced?
 - a) $1 \text{ dm}^3 \text{ of methane}$ $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l)$
 - b) 20 cm³ of butene $C_4H_8(g) + 6 O_2(g) \rightarrow 4 CO_2(g) + 4 H_2O(l)$
 - c) 500 cm³ of ethyne $2 C_2H_2(g) + 5 O_2(g) \rightarrow 4 CO_2(g) + 2 H_2O(l)$
 - d) 750 cm³ of benzene $2 C_6H_6(g) + 15 O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(l)$
- 2) When 100 cm³ of hydrogen bromide reacts with 80 cm³ of ammonia, a white solid is formed and some gas is left over. What gas and how much of it is left over?

$$NH_3(g) + HBr(g) \rightarrow NH_4Br(s)$$

3) 100 cm³ of methane was reacted with 500 cm³ of oxygen. What is the total volume of all gases at the end, and indicate how much there is of each gas?

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$$

4) If 4 dm³ of hydrogen sulphide is burned in 10 dm³ of oxygen, what is the final volume of the mixture (give the volume of each gas at the end)?

$$2 H_2S(g) + 3 O_2(g) \rightarrow 2 H_2O(g) + 2 SO_2(g)$$

- 1) A gas has a density of 1.655 g dm⁻³ at 323 K and 1.01 x 10^5 Pa. Calculate the M_r of the gas.
- 2) One method used to inflate air bags in cars is to use nitrogen produced chemically from the decomposition of sodium azide. The sodium formed reacts with potassium nitrate to give more nitrogen.

$$2 \text{ NaN}_3(s) \ \to \ 2 \text{ Na}(s) \ + \ 3 \text{ N}_2(g)$$

$$10 \text{ Na}(s) \ + \ 2 \text{ KNO}_3(s) \ \to \ \text{K}_2\text{O}(s) \ + \ 5 \text{ Na}_2\text{O}(s) \ + \ \text{N}_2(g)$$

- a) In what ratio (by mass) must the sodium azide and potassium nitrate be mixed in order that no metallic sodium remains after the reaction?
- b) Calculate the total mass of the solid mixture needed to inflate a 60.0 dm³ air bag at room temperature and atmospheric pressure.
- 3) 1.00 g of sulphur dissolved completely in an excess of liquid ammonia to give 420 cm 3 of hydrogen sulphide (H_2S), measured at 273 K and 101 kPa, and also a solid containing the elements nitrogen and sulphur. Deduce the empirical formula of the solid.
- 4) When 15 cm³ of a gaseous hydrocarbon was exploded with 60 cm³ of oxygen (an XS), the final volume was 45 cm³. This decreased to 15 cm³ on treatment with NaOH solution (removes CO₂). What was the formula of the hydrocarbon? (all measurements were made at room temperature and pressure, ∴ the water produced is a liquid).
- 5) Find the equation to calculate the root mean square velocity of gas particles. Once you have that equation, use it to calculate the root mean square velocity for nitrogen molecules at 298 K and 100 kPa.
- 6) 10 cm³ of a hydrocarbon, C_xH_y, were exploded with an excess of oxygen. There was a contraction in volume of 30 cm³. When the products were treated with sodium hydroxide (which reacts with carbon dioxide), there was a further contraction of 30 cm³. Deduce the formula of the hydrocarbon, given that all volumes were measured under the same conditions.

Should I get a Health Checkup?

1)		Give the formula of ea	ch of the following	substar	nces.						
	a)	zinc nitrate		e)	phosphorus						
	b)	lead		f)	nitrogen						
	c)	chromium (III) oxide		g)	barium hydroxide						
	d)	ammonium sulphate		h)	aluminium sulphate			(8)			
Use your knowledge of ionic equations to give the molar rate Complete the table to show your answers.						h the following aci	ids react with ba	ses. (4)			
		Acid	Formula of acid		Base	Formula of base	Molar ratio of acid:base				
		sulphuric acid		рс	otassium hydroxide						
hydrochloric acid potassium hydrogencarbonate											
nitric acid ammonia											
		hydrochloric acid			zinc carbonate						
3)	a)	Write ionic equations f						(2)			
	b)	b) precipitation of barium carbonate by mixing solutions of barium hydroxide and sodium carbonate (2)									
	c)	reaction of nitric acid (aq) and ammonia	(aq)				(2)			
	d)	reaction of sulphuric a	cid (aq) and potas	sium hy	drogencarbonate (aq)						
								(2)			

4)	a)	Define the term relative atomic mass.	(0)
	b)	Explain why ¹² C is referred to in the definition.	(2)
	c)	Explain why carbon has a relative atomic mass of 12.011 and not exactly 12.000.	(1)
5)		In each case work out the limiting reagent and moles of ammonia formed (assuming complete reaction).	
		$N_2 + 3 H_2 \rightarrow 2 NH_3$	
	a)	5.00 moles of N_2 + 5.00 moles of H_2 moles of NH_3 formed =	(1)
	b)	2.00 moles of N_2 + 5.00 moles of H_2 moles of NH_3 formed =	(1)
	c)	10.0 moles of N_2 + 50.0 moles of H_2 moles of NH_3 formed =	(1)
	d)	0.200 moles of N_2 + 0.0500 moles of H_2 moles of NH_3 formed =	(1)
6)		Calculate the volume of 0.200 moles of carbon dioxide at 100°C and 2.00 MPa pressure.	
			(3)
7)		Calculate the number of moles of argon in 200 cm ³ (3sf) at 100 kPa (3sf) at 20.0°C.	
			(3)
8)		The equation is for the combustion of ethane in oxygen. $C_2H_6(g) + 3\frac{1}{2}O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(l)$	
		What volume of carbon dioxide is formed and what is the total volume of gases at the end in each of the following reactions.	
	a)	100 cm ³ of ethane + 100 cm ³ of oxygen	
		volume of CO ₂ formed =	(2)
	b)	100 cm ³ of ethane + 500 cm ³ of oxygen	
		volume of CO ₂ formed =	(2)
	c)	200 cm ³ of ethane + 400 cm ³ of oxygen	
		volume of CO ₂ formed =	(2)

9)		What volume of hydrogen is formed at 20.0°C and 100000 Pa (3sf) pressure when 2.00 g of magnesium is reacted with excess sulphuric acid?	
		$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$	
			(4)
10)		What volume of carbon monoxide is formed at 1200°C and 0.140 MPa pressure when 1.00 kg of iron oxide is reduced by carbon?	
		$Fe_2O_3(s) + 3 C(s) \rightarrow 2 Fe(I) + 3 CO(g)$	
			(4)
			(- /
11)	a)	In 20 moles of Al ₂ O ₃ ,	
		i) how many moles of Al ³⁺ ions?	
		ii) how many moles of O ²⁻ ions?	(2)
	b)	In 360 g of water	
		i) how many moles of H atoms?	
		ii) how many moles of O atoms?	(2)
	c)	In 1.00 kg of aluminium sulphate	
		i) how many moles of aluminium ions?	(0)
		ii) how many moles of sulphate ions?	(2)
12)		What mass of Fe ₃ O ₄ is produced when 140 g of iron reacts with excess steam?	
		$3 \text{ Fe(s)} + 4 \text{ H}_2\text{O(g)} \rightarrow \text{Fe}_3\text{O}_4(\text{s}) + 4 \text{ H}_2(\text{g})$	
			(3)
13)		What mass of potassium oxide is formed when 7.80 g of potassium is burned in oxygen?	
10)		4 K + $O_2 \rightarrow 2 K_2 O$	
			(3)

14)	a)	Sulfur trioxide is made from sulfur dioxide by the following reaction. Calculate the maximum amount of sulfur trioxide that can be made from 1.00 kg of sulfur dioxide.	
		$2 SO_2 + O_2 = 2 SO_3$	
			(3)
	b)	In an experiment, only 1200 g of sulfur trioxide was produced.	
		i) Calculate the percentage yield.	
			(1)
		ii) Give three reasons why the yield is less than 100%.	
			(1)
	c)	Calculate the atom economy for this process	(1)
15)	a)	Aluminium is made from aluminium oxide by electrolysis. Calculate the mass of aluminium that can be made from 1.00 kg of aluminium oxide.	
		$2 \text{ Al}_2\text{O}_3 \rightarrow 4 \text{ Al} + 3 \text{ O}_2$	
			(3)
	b)	Calculate the percentage yield if 500 g (3sf) of aluminium is produced.	
			(1)
	c)	Calculate the atom economy for this process.	
			(1)
16)		When 12.30 g of MgSO ₄ . n H ₂ O is heated gently until no further change in mass occurs, to remove the water of crystallisation, 6.00 g of anhydrous magnesium sulfate (MgSO ₄) remained. Work out the relative formula mass (M _r) of the MgSO ₄ . n H ₂ O, and so the value of n .	
		$MgSO_4.nH_2O \rightarrow MgSO_4 + nH_2O$	
			(4)

17)		and zinc oxid	ce 1850, most books and documents have been printed on acidic paper which, over time, becomes brittle disintegrates. By treating books with diethyl zinc vapour, the acids in the book are neutralised. Diethyl vapour penetrates the closed book and reacts with the small amount of water in the paper to form zinc le. The zinc oxide neutralises the acids and protects the book from acids that may be formed later. The is virtually no difference between treated and untreated books.	
		The	reaction between diethyl zinc and water is represented by the equation:	
			$Zn(C_2H_5)_2(g) + H_2O(I) \rightarrow ZnO(s) + 2 C_2H_6(g)$	
		The	total moisture content of a book which was treated was found to be 0.900 g of water.	
	a)	i)	How many moles of water were present in the book?	
				(1)
		ii)	Using the equation, how many moles of diethyl zinc would react with this amount of water?	
		11)	Osing the equation, now many moles of diethyr zinc would react with this amount of water?	(4)
				(1)
		iii)	What is the volume at room temperature and pressure of this amount of diethyl zinc vapour?	
				(1)
		iv)	What mass of zinc oxide would be formed in the book?	
				(2)
	b)	The	acid content of the book was found to be 0.0320 moles of $H^{+}_{(aq)}$. The equation for the reaction between	
	S)		oxide and acid is:	
			$ZnO(s) + 2 H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_2O(l)$	
		i)	Calculate the mass of zinc oxide required to neutralise the acid in the book.	
				(2)
		ii)	Hence calculate the mass of excess zinc oxide which remains in the book.	
				(2)

7 - SOLUTION CALCULATIONS

Normal solution calculations

- Use the volume and concentration of one reactant to calculate the moles.
- Use the balanced (or ionic) equation to find the moles of the other reactant.
- Calculate the volume or concentration as required of that reactant

concentration (mol dm⁻³) = <u>moles</u> volume (dm³)

Note

- Volume in dm³ = $\frac{\text{volume in cm}^3}{1000}$
- In many titrations, a standard solution of one the reagents is made (typically 250 cm³ in a volumetric flask), and 25 cm³ portions of this standard solution are used in each titration
- Monoprotic acids contain one H⁺ ion per unit (e.g. HCl, HNO₃, CH₃COOH) with NaOH they react in the ratio 1:1 (acid: NaOH)
- Diprotic acids contain two H⁺ ions per unit (e.g. H₂SO₄) with NaOH they react in the ratio 1:2 (acid: NaOH)
- Triprotic acids contain three H⁺ ions per unit (e.g. H₃PO₄) with NaOH they react in the ratio 1:3 (acid: NaOH)
- Concentration in g dm⁻³ = concentration in mol dm⁻³ x M_r
- *E.g.* 1: 25.0 cm³ of 0.020 mol/dm³ sulphuric acid neutralises 18.6 cm³ of sodium hydroxide solution.

$$H_2SO_4(aq) + 2 NaOH(aq) \rightarrow Na_2SO_4(s) + 2 H_2O(l)$$

a) Find the concentration of the sodium hydroxide solution in mol/dm³.

Moles of
$$H_2SO_4 = \text{conc x vol } (dm^3) = 0.020 \text{ x}^{25}/_{1000} = 0.000500$$

Moles of NaOH = conc x vol $(dm^3) = 2 \text{ x moles } H_2SO_4 = 0.000500 \text{ x } 2 = 0.00100$
Concentration of NaOH = $\frac{\text{mol}}{\text{vol } (dm^3)} = \frac{0.00100}{(^{18.6}/_{1000})} = \frac{\textbf{0.0538 mol } dm^3}{(^{18.6}/_{1000})}$

b) Find the concentration of the sodium hydroxide solution in g/dm³.

$$M_r$$
 of NaOH = 23.0 + 16.0 + 1.0 = 40.0
Mass of NaOH in 1 dm³ = M_r x moles = 40.0 x 0.0538 = 2.15 g
Concentration = 2.15 g dm⁻³

E.g. 2: Crystals of citric acid contain water of crystallisation (C₆H₈O₇.nH₂O). Citric acid is a triprotic acid. 1.52 g of the citric acid was made up to 250 cm³ solution. 25 cm³ portions of this solution required 21.80 cm³ of 0.100 mol dm⁻³ for neutralisation. Calculate the value of n.

Moles of NaOH = conc x vol (dm³) =
$$0.100 \text{ x}^{21.70}/_{1000} = 0.00218$$

Moles of $C_6H_8O_7.nH_2O$ in each titration = $0.00218 / 3 = 0.000727$ (1 mol of acid reacts with 3 mol of NaOH)
Moles of $C_6H_8O_7.nH_2O$ in 250 cm³ solution = $0.000727 \text{ x } 10 = 0.00727$
 M_r of $C_6H_8O_7.nH_2O = \frac{mass}{moles} = \frac{1.52}{0.00727} = 209.2$

$$n = \frac{17.1}{18.0} = 0.950 = 1$$
 (n is a whole number)

 M_r of $nH_2O = 209.2 - 192.1 = 17.1$

TASK 16 – SOLUTION CALCULATIONS

- 1) Calculate the number of moles in the following.
 - a) 2 dm³ of 0.05 mol dm⁻³ HCl
 - b) 50 litres of 5 mol dm⁻³ H₂SO₄
 - c) 10 cm³ of 0.25 mol dm⁻³ KOH
- 2) Calculate the concentration of the following in **both** mol dm⁻³ and g dm⁻³
 - a) 0.400 moles of HCl in 2.00 litres of solution
 - b) 12.5 moles of H₂SO₄ in 5.00 dm³ of solution
 - c) 1.05 g of NaOH in 500 cm³ of solution
- 3) Calculate the volume of each solution that contains the following number of moles.
 - a) 0.00500 moles of NaOH from 0.100 mol dm⁻³ solution
 - b) 1.00 x 10⁻⁵ moles of HCl from 0.0100 mol dm⁻³ solution
- 4) 25.0 cm³ of 0.020 mol dm⁻³ sulphuric acid neutralises 18.6 cm³ of barium hydroxide solution.

$$H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2 H_2O$$

- a) Find the concentration of the barium hydroxide solution in mol dm⁻³.
- b) Find the concentration of the barium hydroxide solution in g dm⁻³.
- 5) 25.0 cm³ of a solution of sodium hydroxide required 18.8 cm³ of 0.0500 mol dm⁻³ H₂SO₄.

$$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$$

- a) Find the concentration of the sodium hydroxide solution in mol dm⁻³.
- b) Find the concentration of the sodium hydroxide solution in g dm⁻³.
- 6) Calculate the volume of 0.05 mol dm⁻³ KOH is required to neutralise 25.0 cm³ of 0.0150 mol dm⁻³ HNO₃.

$$HNO_3 + KOH \rightarrow KNO_3 + H_2O$$

7) 25.0 cm³ of arsenic acid, H₃AsO₄, required 37.5 cm³ of 0.100 mol dm⁻³ sodium hydroxide for neutralisation.

$$3 \text{ NaOH(aq)} + \text{H}_3 \text{AsO}_4(\text{aq}) \rightarrow \text{Na}_3 \text{AsO}_4(\text{aq}) + 3 \text{H}_2 \text{O(I)}$$

- a) Find the concentration of the acid in mol dm⁻³.
- b) Find the concentration of the acid in g dm⁻³.
- 8) A 250 cm³ solution of NaOH was prepared. 25.0 cm³ of this solution required 28.2 cm³ of 0.100 mol dm⁻³ HCl for neutralisation. Calculate what mass of NaOH was dissolved to make up the original 250 cm³ solution.

9) What volume of 5.00 mol dm⁻³ HCl is required to neutralise 20.0 kg of CaCO₃?

$$2 \text{ HCl} + \text{CaCO}_3 \rightarrow \text{CaCl}_2 + \text{H}_2\text{O} + \text{CO}_2$$

3.88 g of a monoprotic acid was dissolved in water and the solution made up to 250 cm³. 25.0 cm³ of this solution was titrated with 0.095 mol dm³ NaOH solution, requiring 46.5 cm³. Calculate the relative molecular mass of the acid.

- A 1.575 g sample of ethanedioic acid crystals, H₂C₂O₄.nH₂O, was dissolved in water and made up to 250 cm³. One mole of the acid reacts with two moles of NaOH. In a titration, 25.0 cm³ of this solution of acid reacted with exactly 15.6 cm³ of 0.160 mol dm⁻³ NaOH. Calculate the value of n.
- 12) A solution of a metal carbonate, M₂CO₃, was prepared by dissolving 7.46 g of the anhydrous solid in water to give 1000 cm³ of solution. 25.0 cm³ of this solution reacted with 27.0 cm³ of 0.100 mol dm⁻³ hydrochloric acid. Calculate the relative formula mass of M₂CO₃ and hence the relative atomic mass of the metal M.

2) Back titrations

A back titration is done to analyse a base (or acid) that does not react easily or quickly with an acid (or base). Instead, the base (or acid) is treated with an excess of acid (or base), and then the left over acid (or base) titrated. You can then work back to find out about the original base (or acid).

e.g. Imagine that we are trying to find out how many moles of CaCO₃ we have (let's call it x moles). We add 10 moles of HCl (an excess). The excess is made into a 250 cm³ stock solution and then 25 cm³ portions of it require 0.4 moles of NaOH for neutralisation.

$$CaCO_3 + 2 HCI \rightarrow CaCl_2 + H_2O + CO_2$$

- This means that there is 10 x 0.4 moles (= 4 moles) of left over HCl in the stock solution
- This means that 6 moles (10 4 moles) of HCl reacted with the CaCO₃.
- This means that there must have been 3 moles of CaCO₃ (i.e. x = 3) in the first place (remember that 2 moles of HCl reacts with each mole of CaCO₃).
- e.g. Aspirin is a monoprotic acid that can be analysed by a back titration with NaOH. We add 0.25 moles of NaOH (an excess) to y moles of aspirin and make the resulting solution into a 250 cm³ stock solution. We titrate 25 cm³ portions of the solution which require 0.01 moles of HCl for neutralisation. Calculate the original moles of aspirin.

e.g. Malachite is an ore containing copper carbonate (CuCO₃. We add 5.00 moles of HCl (an excess) to some crushed malachite and make the resulting solution into a 250 cm³ stock solution. We titrate 25 cm³ portions of the solution which require 0.15 moles of NaOH for neutralisation. Calculate the original moles of copper carbonate in the malachite.

TASK 17 – BACK TITRATION CALCULATIONS

1) Limestone is mainly calcium carbonate. A student wanted to find what percentage of some limestone was calcium carbonate. A 1.00 g sample of limestone is allowed to react with 100 cm³ of 0.200 mol dm⁻³ HCl. The excess acid required 24.8 cm³ of 0.100 mol dm⁻³ NaOH solution in a back titration. Calculate the percentage of calcium carbonate in the limestone.

2) An impure sample of barium hydroxide of mass 1.6524 g was allowed to react with 100 cm³ of 0.200 mol dm⁻³ hydrochloric acid. When the excess acid was titrated against 0.228 mol dm⁻³ sodium hydroxide in a back titration, 10.9 cm³ of sodium hydroxide solution was required. Calculate the percentage purity of the sample of barium hydroxide.

$$Ba(OH)_2 + 2 HCI \rightarrow BaCI_2 + 2 H_2O$$
 $HCI + NaOH \rightarrow NaCI + H_2O$

3) Calculate (a) the moles and (b) the mass of magnesium carbonate at the start if 0.200 moles of sulfuric acid is added to the magnesium carbonate and the excess sulfuric acid made up to a 250 cm³ solution. 25.0 cm³ of this solution required 0.0300 moles of sodium hydroxide for neutralisation.

$$\label{eq:mgCO3} \text{MgCO}_3 \ + \ \text{H}_2\text{SO}_4 \ \rightarrow \ \text{MgSO}_4 \ + \ \text{H}_2\text{O} \ + \ \text{CO}_2 \\ \hspace{2cm} \text{H}_2\text{SO}_4 \ + \ 2 \ \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{H}_2\text{O}_4 \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{NaOH} \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{NaOH} \ \rightarrow \ \text{NaCl} \ + \ \text{NaOH} \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaOH} \ \rightarrow \ \text{NaOH} \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaOH} \ \rightarrow \ \text{NaOH} \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaOH} \ \rightarrow \ \text{NaOH} \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaOH} \ \rightarrow \ \text{NaOH} \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaOH} \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaOH} \ \rightarrow \ \text{NaOH} \ \rightarrow \ \text{NaOH} \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaOH} \ \rightarrow \ \text{NaOH} \\ \hspace{2cm} \text{NaOH} \ \rightarrow \ \text{NaOH} \ \rightarrow \ \text{NaOH} \ \rightarrow \ \text{NaOH}$$
 \ \rightarrow \ \text{NaOH} \

- 4) A student wanted to find the mass of calcium carbonate in an indigestion tablet. She crushed up a tablet and added an excess of hydrochloric acid (25.0 cm³ of 1.00 mol dm⁻³). She then titrated the excess against 0.500 mol dm⁻³ NaOH requiring 25.8 cm³ of the NaOH. Calculate the mass of calcium carbonate in the tablet.
- 5) A sample containing ammonium chloride was warmed with 100 cm³ of 1.00 mol dm⁻³ sodium hydroxide solution. After the ammonia had reacted the excess sodium hydroxide required 50.0 cm³ of 0.250 mol dm⁻³ HCl for neutralisation. What mass of ammonium chloride did the sample contain?

- 1) A fertiliser contains ammonium sulphate and potassium sulphate. A sample of 1.455 g of the fertiliser was warmed with 25.0 cm³ 0.200 mol dm⁻³ sodium hydroxide solution giving off ammonia gas. The remaining NaOH that was not used required 28.7 cm³ of 0.100 mol dm⁻³ hydrochloric acid for neutralisation. Calculate the percentage by mass of ammonium sulphate in the sample.
- 2) Silicon tetrachloride dissolves in ethoxyethane, an inert solvent. If the ethoxyethane is contaminated with a little water, a partial hydrolysis occurs and two compounds **A** and **B** are formed. The formula of **A** is Si₂OCl₆ and that of **B** is Si₃O₂Cl₈.

When a 0.100 g sample of one of the compounds, **A** or **B** reacted with an excess of water, all the chlorine present was converted to chloride ions. Titration of this solution with aqueous silver nitrate, in the presence of a suitable indicator, required 42.10 cm³ of 0.0500 mol dm⁻³ aqueous silver nitrate for complete precipitation of silver chloride. Deduce which of the compounds **A** or **B** was present in the 0.100 g sample.

8 - EMPIRICAL & MOLECULAR FORMULAS

- Every substance has an empirical formula. It shows the simplest ratio of atoms of each element in a substance.
 - e.g. SiO_2 (giant covalent) the ratio of Si:O atoms in the lattice is 1:2 Al_2O_3 (ionic) the ratio of $Al^{3+}:O^{2-}$ ions in the lattice is 2:3 H_2O (molecular) the ratio of H:O atoms in the substance is 1:2
- Substances made of molecules also have a molecular formula. This indicates the number of atoms of each element in one molecule.

a) Finding the molecular formula from the formula mass and empirical formula

e.g. Empirical formula = CH_2 , $M_r = 42.0$ Formula mass of empirical formula = $14.0 : M_r$ / formula mass of empirical formula = 42.0/14.0 = 3Molecular formula = 3×0 empirical formula = C_3H_6

b) Finding the empirical formula of a compound from its composition by percentage or mass

- i) Write out the mass or percentage of each element,
- ii) Divide each mass or percentage by the A_r of the element (not the M_r)
- iii) Find the simplest whole number ratio of these numbers by dividing by the smallest number. If the values come out as near $\frac{1}{2}$'s then times them by 2, if they are near $\frac{1}{3}$'s then times by 3.
 - e.g. i) A compound is found to contain, by mass, iron 72.4% and oxygen 27.6%.

Fe
$$\frac{72.4}{56}$$
 = 1.29 O $\frac{27.6}{16}$ = 1.73

Simplest ratio Fe:O = 1.29 : 1.73 (divide by smallest, i.e. 1.29) 1 : 1.34 (involves $^{1}/_{3}$'s so x3) 3 : 4

- ∴ empirical formula = Fe₃O₄
- e.g. ii) 0.25 g of hydrogen reacts with oxygen to produce 4.25 g of hydrogen peroxide ($M_r = 34.0$).

Mass of oxygen reacting with hydrogen = 4.25 - 0.25 = 4.00 g

H
$$\frac{0.25}{1}$$
 = 0.25 O $\frac{4.00}{16}$ = 0.25

Simplest ratio H:O = 0.25 : 0.25 (divide by smallest, i.e. 0.25) 1 : 1

∴ empirical formula = HO

Formula mass of empirical formula = 17.0

 \therefore M_r / formula mass of empirical formula = 34.0/17.0 = 2

Molecular formula = $2 \times \text{empirical formula} = H_2O_2$

TASK 18 – EMPRICIAL & MOLECULAR FORMULAS

Write the empirical formula of each of the following substances.

a١ C_2H_6

P₂O₃ h)

SO₂

C₆H₁₂ d)

 $C_2H_4O_2$

f) C_2H_7N B₆H₁₀

h) C₁₂H₂₂O₁₁

The empirical formula and relative molecular mass of some simple molecular compounds are shown below. Work out the molecular formula of each one.

 NH_2 a)

 $M_r = 32$

d) PH₃

 $M_r = 34$

 C_2H_5

 $M_r = 58$

e) CH

 $M_r = 78$

CH₂

 $M_r = 70$

f) CH₂

 $M_r = 42$

Find the simplest whole number ratio for each of the following. The numbers come from experiments so there will be some small random errors which mean that you can round the numbers a little bit.

1.5 : 1

b) 1:1.98 4.97:1

1:2.52

1:1.33 e)

f) 1.66:1

1:1.26 g)

h) 1:1.74

Find the empirical formulae of the following compounds using the data given.

Ca 20 %

Br 80 %

b) Na 29.1 % S 40.5 %

O 30.4 %

53.3 % C c)

H 15.5 %

N 31.1 %

d) С 2.73 q

O 7.27 q

Ν 15.2 g e)

O 34.8 g

3.53 g of iron reacts with chlorine to form 10.24 g of iron chloride. Find the empirical formula of the iron chloride. 5)

- 50.0 g of a compound contains 22.4 g of potassium, 9.2 g of sulphur, and the rest oxygen. Calculate the empirical formula of the compound.
- 7) An oxide of phosphorus contains 56.4 % phosphorus and 43.6 % oxygen. Its relative molecular mass is 220. Find both the empirical and the molecular formula of the oxide.
- A compound contains 40.0 g of carbon, 6.7 g of hydrogen and 53.5 g of oxygen. It has a relative molecular formula of 60. Find both the empirical and the molecular formula of the compound.
- An organic compound X, which contains carbon, hydrogen and oxygen only, has an M_r of 85. When 0.43 g of X are burned in excess oxygen, 1.10 g of carbon dioxide and 0.45 g of water are formed. Find the empirical and molecular formulae of compound X.
- 10) When ammonium dichromate (VI) is added gradually to molten ammonium thiocyanate, Reinecke's salt is formed. It has the formula $NH_4[Cr(SCN)_x(NH_3)_v]$ and the following composition by mass: Cr = 15.5%, S = 38.15%, N = 29.2%. Calculate the values of x and y in the above formula.

- 1) A compound contains 59.4% carbon, 10.9% hydrogen, 13.9% nitrogen and 15.8% oxygen, by mass. Find the empirical formula of the compound.
- 2) A compound containing carbon, hydrogen and oxygen only contains 74.2% carbon and 7.9% hydrogen. Its M_r is found to be 178 by mass spectroscopy. Find its empirical and molecular formulae.
- 3) What mass of carbon monoxide is needed to react with 1.00 kg of iron oxide?

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

4) The reaction below is known as the Thermitt reaction, which is used to form molten iron to mould train tracks together. What mass of aluminium powder is needed to react with 8.00 g of iron (III) oxide?

2 Al + Fe₂O₃
$$\rightarrow$$
 Al₂O₃ + 2 Fe

5) What volume of 0.100 mol dm⁻³ hydrochloric acid would react with 25.0 g of calcium carbonate?

$$CaCO_3 + 2 HCI \rightarrow CaCl_2 + CO_2 + H_2$$

- 6) 25.0 cm³ of 0.0400 mol dm⁻³ sodium hydroxide solution reacted with 20.75 cm³ of sulphuric acid in a titration. Find the concentration of the sulphuric acid.
- 7) 13.80 g of a solid monoprotic acid was dissolved in water and made up to 250.0 cm 3 . 25.00 cm 3 portions of this were titrated against 0.2500 mol dm 3 sodium hydroxide, requiring 23.50 cm 3 . Calculate the M_r of the acid.
- 8) 10.0 g of a mixture of copper powder and magnesium powder was mixed with 100 cm³ of 1.00 mol dm⁻³ hydrochloric acid. The copper does not react, but the magnesium does as shown:

$$Mg + 2 HCI \rightarrow MgCl_2 + H_2$$

The resulting solution was filtered to remove unreacted copper and then made up to 250 cm³ with water. 25.0 cm³ of this solution was found to neutralise 36.8 cm³ of 0.200 mol dm⁻³ NaOH. Find the % by mass of the magnesium in the metal powder mixture.

- 9) 12.0 g of a mixture of calcium carbonate and sodium chloride was treated with 100 cm³ of 2.00 mol dm⁻³ hydrochloric acid (only the calcium carbonate reacts). The resulting solution was made up to 250 cm³ with water and a 25.0 cm³ portion of this needed 34.1 cm³ of 0.200 mol dm⁻³ sodium hydroxide for neutralisation. Find the % by mass of the calcium carbonate in the mixture.
- The solid booster rockets of the space shuttle are fuelled by a mixture of aluminium and ammonium chlorate (VII) (NH_4CIO_4) .
 - a) If no other reagents are involved, and the products are nitrogen, water, hydrogen chloride and aluminium oxide, devise an equation for this reaction.
 - b) Each launch consumes about 160 tonnes of aluminium. What mass of hydrogen chloride gas is produced in the atmosphere above the Cape Canaveral launch pad?

Full worked solutions are available to subscribers of www.chemsheets.co.uk.

Subscribe for many more exercises with answers.

TASK 1 - Writing formulas of ionic compounds

1	AgBr	2	Na ₂ CO ₃	3	K ₂ O	4	Fe ₂ O ₃	5	CrCl ₃	6	Ca(OH) ₂
7	$AI(NO_3)_3$	8	Na ₂ SO ₄	9	PbO	10	Na ₃ PO ₄	11	Zn(HCO ₃) ₂	12	(NH ₄) ₂ SO ₄
13	Ga(OH) ₂	14	SrSe	15	RaSO ₄	16	Na₃N				

TASK 2 - Writing formulas 1

1	PbO_2	2	Cu	3	Na	4	NH ₄ CI	5	NH ₃	6	S ₈
7	H ₂ SO ₄	8	Ne	9	SiO ₂	10	Si	11	Ba(OH) ₂	12	SnCl ₄
13	AgNO₃	14	I_2	15	Ni	16	H ₂ S	17	TiO ₂	18	Pb
19	SrSO ₄	20	Li								

TASK 3 – Writing formulas 2

1	Ag_2CO_3	2	Au	3	PtF ₂	4	HNO ₃	5	NH ₃	6	SiH₄
7	P_4	8	С	9	V_2O_5	10	Co(OH) ₂	11	Ba(OH) ₂	12	NH_3
13	HCI	14	F_2	15	Si	16	$Ca_3(PO_4)_2$	17	Rb	18	GeO_2
19	$MgAt_2$	20	NO								

TASK 4 – Writing balanced equations 1

```
1 a Mg + 2 HNO<sub>3</sub> \rightarrow Mg(NO<sub>3</sub>)<sub>2</sub> + H<sub>2</sub>
```

b $CuCl_2 + 2 NaOH \rightarrow Cu(OH)_2 + 2 NaCl$

 $c \quad 2 \text{ SO}_2 + \text{O}_2 \rightarrow 2 \text{ SO}_3$

d $C_4H_{10} + 6\frac{1}{2}O_2 \rightarrow 4CO_2 + 5H_2O$ or $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$

2 a 4 Na + $O_2 \rightarrow 2 Na_2O$

b $2 AI + 3 CI_2 \rightarrow 2 AICI_3$

c Ca + 2 HCl \rightarrow CaCl₂ + H₂

d $2 NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$

TASK 5 – Writing balanced equations 2

- 1 4 Al + 3 $O_2 \rightarrow 2 \text{ Al}_2 O_3$
- 2 $C_6H_{14} + 9\frac{1}{2}O_2 \rightarrow 6CO_2 + 7H_2O$ or $2C_6H_{14} + 19O_2 \rightarrow 12CO_2 + 14H_2O$
- 3 $CH_3CH_2SH + 4\frac{1}{2}O_2 \rightarrow 2CO_2 + SO_2 + 3H_2O$ or $2CH_3CH_2SH + 9O_2 \rightarrow 4CO_2 + 2SO_2 + 6H_2O$
- 4 2 Li + 2 $H_2O \rightarrow 2$ LiOH + H_2
- 5 $CaCO_3 + 2 HNO_3 \rightarrow Ca(NO_3)_2 + H_2O + CO_2$
- 6 $\text{Li}_2\text{CO}_3 \rightarrow \text{Li}_2\text{O} + \text{CO}_2$

- 7 $NH_3 + HNO_3 \rightarrow NH_4NO_3$
- $K_2O + H_2SO_4 \rightarrow K_2SO_4 + H_2O$ 8
- 9 $Ca(OH)_2 + 2 HCI \rightarrow CaCl_2 + 2 H_2O$
- 10 3 Zn + 2 $H_3PO_4 \rightarrow Zn_3(PO_4)_2 + 3 H_2$
- 11 2 NaHCO₃ + $H_2SO_4 \rightarrow Na_2SO_4 + 2 H_2O + 2 CO_2$
- 12 2 KOH + $H_2SO_4 \rightarrow K_2SO_4 + 2 H_2O$

TASK 6 – Ionic equations

- HCI, LiOH, 1:1; H₂SO₄, NaHCO₃, 1:2; HNO₃, NH₃, 1:1; H₂SO₄, K₂CO₃, 1:1, HNO₃, Sr(OH)₂, 2:1
- 2 a $H^{+} + OH^{-} \rightarrow H_{2}O$
 - b $Ag^+ + I^- \rightarrow AgI$
 - c $2 H^{+} + CO_{3}^{2-} \rightarrow H_{2}O + CO_{2}$
 - d $Ca^{2+} + 2 OH^{-} \rightarrow Ca(OH)_{2}$
 - e $NH_3 + H^+ \rightarrow NH_4^+$
 - $f H^+ + HCO_3^- \rightarrow H_2O + CO_2$
 - g $Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4$
 - h $Pb^{2+} + 2 Cl^{-} \rightarrow PbCl_{2}$
 - $i \quad H^+ + OH^- \rightarrow H_2O$

TASK 7 – Significant figures & standard form

1	a 345800	b 297000	c 0.0790	d 6.10	e 0.00156	f 0.01040
2	a 2350000 (3sf)	b 0.25 (2sf)	c 13.7	d 300 (2sf)	e 0.00198 (3sf)	f 0.00031 (2sf)
3	a 0.0015	b 0.00046	c 357500	d 534	e 1030000	f 0.00835
4	a 1.64 x 10 ⁻⁴	b 5.24 x 10 ⁻²	c 1.5 x 10 ⁻⁸	d 3.45 x 10 ⁴	e 6.2 x 10 ⁻¹	f 8.7 x 10 ⁷
5	a 0.021 (2sf)	b 6.1 x 10 ⁻⁵ (2sf)	c 4.0 x 10 ⁸	d 2400	e 0.0610	f 8.00 x 10 ⁻⁷ (3sf)

TASK 8 - Moles

1	а	2.96	b	50.3	С	0.500	d	17100	е	0.000107
2	а	355 g	b	20.4 g	С	1.08 g	d	0.264 g	е	85.8 g
3	а	0.250	b	0.250	С	0.500				

a 0.0500 b 0.100 c 0.150

a 1.6735×10^{-24} g b 1.6726×10^{-24} g c 3.025 g

TASK 9 - What equations mean

- 12 mol Na + 3 mol $O_2 \rightarrow$ 6 mol Na₂O; 0.1 mol Na + 0.025 mol $O_2 \rightarrow$ 0.05 mol Na₂O
- 5 mol Al + 7.5 mol Cl₂ \rightarrow 5 mol AlCl₃; 0.1 mol Al + 0.15 mol Cl₂ \rightarrow 0.1 mol AlCl₃
- $0.5 \text{ mol C}_4H_{10} + 3.25 \text{ mol O}_2 \rightarrow 2 \text{ mol CO}_2 + 2.5 \text{ mol H}_2O$; 20 mol C₄H₁₀ + 130 mol O₂ \rightarrow 80 mol CO₂ + 100 mol H₂O
- $0.5 \text{ mol NH}_3 + 0.375 \text{ mol O}_2 \rightarrow 0.25 \text{ mol N}_2 + 0.75 \text{ mol H}_2\text{O}$; $10 \text{ mol NH}_3 + 7.5 \text{ mol O}_2 \rightarrow 5 \text{ mol N}_2 + 15 \text{ mol H}_2\text{O}$

TASK 10 – Reacting mass calculations 1

1	1.01 g	2	126 g	3	120 g	4	253000 g	5	17.6 g	6	12.0 g
7	7	8	6	9	9780 g	10	1560000 g	11	0.00940 g	12	1.11 g
13	115 a	14	1650000 a	15	64.0 a	16	89.3 a				

TASK 11A – Limiting reagents 1

1	а	2 mol	b	8 mol	С	0.4 mol
2	а	2 mol	b	4 mol	С	0.4 mol
3	а	2 mol	b	10 mol	С	20 mol
4	а	1, 4 mol	b	2, 8 mol	С	0.25, 1 mol
5	а	20, 30 mol	b	0.5, 0.75 mol	С	4, 6 mol
6	4 r	nol	b	0.6 mol	С	12 mol
7	4 r	nol	b	3 mol	С	0.25 mol

TASK 11B - Limiting reagents 2

1	13.2 g	2 5.75 g	3 1.60 g	4 4.20 g	5 4.48 g
6	53.4 g				

TASK 11C – Reacting mass calculations 2

1	7.88 g	2	2690 g	3	303000 g	4	98.6 g	5	1210 g
6	1250 g	7	42.9 g						

CHALLENGE 1

	1	$NaHCO_3 = 3.51 g$	Na ₂ CO ₃ 6.49 a	2	$CaCO_3 = 40.3\%$, $MgCO_3 = 59.7\%$	3	C ₄ H ₈	4	26.6%
--	---	--------------------	--	---	---------------------------------------	---	-------------------------------	---	-------

TASK 12 - Percentage yield

1	а	120 g	b	74.9%	С	reversible, pro	oduct	lost on isolation	on, other	reactions take place
2	а	700000 g	b	92.3%		3	а	510 g	b	30.0%
4	а	25.2 g	b	79.4%		5	а	529 g	b	94.4%
6	а	330 g	b	90.8%		7	а	2.40 g	b	88.4%

TASK 13 - Atom economy

1	39.3%	2	1.5%	3	45.8%	4	56.0%	5	100%	6	47.1%
7	a 320 q	b	87.5%	С	29.5%						

d % yield compares the amount produced compared to the amount you should get, atom economy is the proportion of the mass of all the products that is the desired product

TASK 14 - Ideal gas equation

1	a 473 K	b	98000 Pa	С	$50 \times 10^{-6} \text{ m}^3$	d	223 K	е	100000 Pa	f	$3.2 \times 10^{-3} \text{ m}^3$
2	1.24 x 10 ⁻³ m ³	3	0.786	4	104000 Pa	5	155 K	6	71.0	7	0.00380 m^3
8	3.36 a	9	0.000538 m ³	10	4.53 m ³	11	64.1	12	483 K	13	126000 Pa

TASK 15 - Reacting gas volumes

CHALLENGE 2

1 44.0 2 1:3.11, $40.9 \,\mathrm{g}$ 3 NS 4 $\mathrm{C}_{2}\mathrm{H}_{4}$ 5 515 ms⁻¹6 $\mathrm{C}_{3}\mathrm{H}_{8}$

Calculations CHECK-UP

- 2 H₂SO₄, KOH, 1:2; HCl, KHCO₃, 1:1; HNO₃, NH₃, 1:1; HCl, ZnCO₃, 2:1
- 3 a $H^+ + OH^- \rightarrow H_2O$ b $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$
 - c $H^{\dagger} + NH_3 \rightarrow NH_4^{\dagger}$ d $H^{\dagger} + HCO_3^{-} \rightarrow H_2O + CO_2$
- 4 a average mass of an atom, relative to 1/12th mass of ¹²C atom b it is the agreed standard
 - c mixture of other isotopes
- 6 $3.10 \times 10^{-4} \,\mathrm{m}^3$ 7 8.21×10^{-3}
- 8 a volume of $CO_2 = 57.1 \text{ cm}^3$, total = 128.5 cm³ b volume of $CO_2 = 200 \text{ cm}^3$, total = 350 cm³
 - c volume of $CO_2 = 229 \text{ cm}^3$, total = 314 cm³
- 9 $2.00 \times 10^{-3} \text{ m}^3$ 10 1.64 m^3
- 11 a 40,60 b 40.0,20.0 c 5.84,8.76
- 12 193.5 g 13 9.39 g
- 14 a 1250 g b i 96% ii reversible, product lost on isolation, other reactions iii 100%
- 15 a 529 g b 94.5% c 52.9% 16 7
- 17 a 0.05, 0.05, 1.22 x 10⁻³ m³, 4.07 g b 1.30 g, 2.77 g

TASK 16 – Solution calculations

- 1 a 0.1 b 250 c 0.0025
- 2 a 0.2 mol dm⁻³, 7.3 g dm⁻³ b 2.5 mol dm⁻³, 245.3 g dm⁻³ c 0.0512 mol dm⁻³, 2.10 g dm⁻³
- 3 a $0.05 \, \text{dm}^3$ b $0.001 \, \text{dm}^3$
- 4 0.0269 mol dm⁻³, 4.61 g dm⁻³ 5 0.0752 mol dm⁻³, 3.01 g dm⁻³ 6 0.0075 dm³
- 7 0.0500 mol dm⁻³, 7.10 g dm⁻³ 8 1.13 g 9 79.9 dm³
- 10 87.8 11 2 12 $A_r = 39.1$, K

CHALLENGE 3

1 9.67% 2 **A** Si₂OCl₆

TASK 17 – Back titration calculations

- 1 87.7% 2 90.8% 3 0.05 mol, 4.22 g
- 4 0.606 g 5 4.01 g

TASK 18 - Empirical & molecular formulas

- 1 a CH_3 b P_2O_3 c SO_2 d CH_2
- 3 a 3:2 b 1:2 c 5:1 d 2:5 e 3:4 f 5:3 g 4:5 h 4:7
- e 3:4 f 5:3 g 4:5 h 4:7 4 a $CaBr_2$ b $Na_2S_2O_3$ c C_2H_7N d CO_2 e NO_2
- 5 FeCl₃ 6 K₂SO₄ 7 P₂O₃, P₄O₆ 8 CH₂O, C₂H₄O₂
- 9 $C_5H_{10}O$, $C_5H_{10}O$ 10 x = 4, y = 2

Calculation Allsorts

- $1 \quad C_5 H_{11} NO \qquad 2 \quad C_{11} H_{14} O_2, \ C_{11} H_{14} O_2 \qquad \qquad 3 \quad 526 \ g \qquad \qquad 4 \quad 2.71 \ g \qquad \qquad 5 \quad 5.00 \ dm^3$
- 6 0.0241 mol dm⁻³ 7 234.9 8 3.21% 9 55.0%
- 10 10 AI + 6 NH₄ClO₄ \rightarrow 3 N₂ + 9 H₂O + 6 HCl + 5 Al₂O₃

 C_3H_6