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ABSTRACT

Understanding noise in submicron MOS devices is an ongoing challenge in the area of mixed-

signal modeling. Experimental observations show that the classical long-channel MOSFET noise

formulation underestimates the drain current noise of short-channel devices by a factor often

referred to as the excess noise factor. The numerical value of this factor is still a matter of contro-

versy, raising questions regarding the future of CMOS analog design. In order to predict the effects

of this excess noise on amplitude and phase noise in future CMOS circuits, it is crucial to have a

reliable MOSFET noise model and an accurate phase noise formulation. 

In this dissertation we first present the semi-ballistic MOSFET noise model which is based on

the transport properties of ballistic MOSFETs. Unlike most existing models, this model is not

based on the long-channel formulation. Thus it does not require continual revision as we discover

emerging short-channel effects. We first show that the dominant physical phenomenon responsible

for noise in ballistic devices is the shot noise generated by the potential barrier next to source. We

then use results of historic studies on vacuum tubes to show that noise in short-channel MOSFETs

is partially-suppressed shot noise. Using this model, we study the overall noise performance of

future MOSFETs and discuss its implications for the future of circuit and device engineering for

analog applications.

We then discuss the effects of device noise on phase noise of electrical oscillators and present

the time-domain formulation of phase noise, a method that is especially accurate for switching-

based oscillators. The advantage of having an accurate phase noise formulation is twofold. It can

be used to predict phase noise for a given device noise level and to calculate the device noise from

phase noise measurements. The latter application is called indirect device noise characterization

through phase noise measurement, a method that we introduce in this work. The time-domain

phase noise formulation can also be used to investigate the properties of phase noise, especially at

close-in frequencies. We explore all of these applications. 

To validate our semi-ballistic MOSFET noise model we use detailed hydrodynamic device sim-
iv



Abstract
ulations and show that the predictions of our model for the behavior of noise versus temperature

and noise versus biasing voltage are consistent with simulation results. The accuracy of our phase

noise formulation is then verified by presenting experimental data on the phase noise of ring oscil-

lators with various device sizes. Finally, we present an asymmetrical ring oscillator, especially-

designed for MOSFET noise characterization. The accurately-predictable phase noise of this oscil-

lator allows indirect characterization of device noise through phase noise measurements. We show

that this method of extracting device noise parameters is much easier than direct noise measure-

ments and, further, that these parameters substantiate the validity of our semi-ballistic MOSFET

noise model. Our findings provide insight about the future of analog CMOS design, as well as

guidelines for low-noise circuit design and device engineering.
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 CHAPTER 1:

INTRODUCTION

Understanding noise in electronics is an important problem for integrated systems. The perfor-

mance of many of these systems is affected by noise in various ways. For example, electrical noise

is one of the key factors that determines the maximum possible communication speed in communi-

cation systems. Electrical noise also determines how many users can share the same transmission

media. In high-precision measurement systems, electrical noise dictates the maximum achievable

precision. At the circuit level, the dynamic range of a circuit is limited on one side by its noise. At

the device level, the minimum achievable noise figure is one of the most important parameters for

an active device. Because of all these practical considerations, noise in electronic systems has been

under investigation for several decades.

Noise in electrical systems can be divided into two components in general: amplitude noise and

phase noise. Amplitude noise is a measure of random fluctuations of electrical signal around its

nominal value. These random, unwanted fluctuations make it difficult to detect the desired signal

and degrade the performance of the system when working with small-amplitude signals. Electrical

engineers normally define a parameter called noise figure to characterize amplitude noise for a

given system. The formal definition of noise figure is the signal-to-noise ratio at the input of the

system divided by the signal-to-noise ratio at its output [1].

Unlike amplitude noise, which is present in all systems, phase noise is only observed in oscilla-

tory systems. The phase noise of an oscillatory system is a measure of random deviations of its

oscillation frequency from a nominal value. These deviations are due to the various noise sources

in the system which modulate its oscillation frequency. The formal definition of phase noise is

based on the distribution of signal power around the nominal frequency and will be discussed in

Chapter 3.

Amplitude and phase noise affect the performance of electrical systems in different ways. Fig. 1

shows the effect of these two noise components on the performance of an RF receiver. This figure
1
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shows the front-end blocks where noise has the most serious influence. Amplitude noise (e.g. LNA

noise) adds to the original noise floor of the input signal degrading the signal-to-noise ratio at the

output of the LNA and consequently at the output of the IF filter. The effect of phase noise of the

local oscillator is also graphically shown in this figure. As can be seen, the frequency instability of

the local oscillator results in non-zero power at some offset frequency, ∆f, from the nominal oscil-

lation frequency (in the absence of phase noise, the spectrum of the LO would be a delta function

at fo). The signal power located around fo-∆f can be modulated by an interfering signal at fs-∆f,

generating a noise component at fo-fs. Unfortunately, this noise component cannot be filtered out

by the IF filter because it has the same frequency as the IF signal. Thus, phase noise adds another

component to the noise at the output of IF filter. The combination of these two noise sources

degrades the signal-to-noise ratio at the output of IF filter and can potentially mask the input sig-

nal, as can be seen in this figure.

Both amplitude and phase noise in electrical systems are generated by noise sources in individ-

ual electronic elements. As we will discuss shortly, there is a nonzero amount of noise associated

with all these elements. The analysis of noise in electrical systems starts with a careful character-

ization of these noise sources using physical and sometimes empirical models. Once these noise

sources are sufficiently characterized, the analysis of noise at the circuit and system levels is per-

formed using well-developed mathematical methods. Accurate characterization of device noise

appears to be the most challenging part of electrical noise analysis.
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Fig. 1: Front-end of an RF receiver and the effect of amplitude and phase noise on its performance.
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Introduction
Today, MOSFETs are the most popular active devices for commercial applications. Therefore,

having an accurate noise formulation for these devices is crucial for analog applications. Extensive

research in this area has brought us a classical formulation of MOSFET noise which can accurately

predict noise in long-channel MOSFETs. However, experimental observations show this formula-

tion may underestimate the drain current noise of short-channel MOSFETs. Several studies have

tried to explain this phenomenon. As we will see in Chapter 2, these studies have not yet led to a

final answer.

Noise in short-channel MOSFETs might continue to increase as we shrink transistors. Accord-

ing to the 2002 International Technology Roadmap for Semiconductors, transistors as small as

9 nm in physical gate length will be available by 2017 (Fig. 2). As can be seen in Fig. 3, the major-

ity of noise in typical CMOS technologies is due to the intrinsic MOS noise. Thus, it is important

to have a clear understanding of noise in these devices to predict scalability and limits for future

low-noise CMOS design. In this work, we focus on the noise properties of future MOSFETs and

present a physics-based noise model for these devices. 

One of the major difficulties of noise modeling for electronic elements is model verification.

Measuring amplitude noise is usually a difficult process; it requires careful de-embedding of para-

sitic elements as well as accurate control of environmental parameters. Fortunately, measuring

phase noise in electrical oscillators is a relatively easy process, as we discuss in Chapter 3. This is

because the phase noise measurement is a comparative measurement between the power at the fun-

damental frequency and the power at some offset from it. Therefore, many of the parasitic ele-

ments are not important in this measurement. Furthermore, only the physical parameters of the

elements which are inside the oscillator loop are important for phase noise. Thus it is easier to con-

trol the environmental parameters in this kind of measurement.

In this work, we introduce indirect noise characterization through phase noise measurement. To
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Introduction
provide an accurate characterization, we first present an accurate phase noise formulation for the

specific oscillator topology used in our experiment (Chapter 3). The advantage of our phase noise

formulation is twofold; it can be used for indirect noise characterization and it can be used for pre-

dicting phase noise in oscillators if the device noise in known. For this formulation to be most use-

ful, we present Chapter 3 as a self-sufficient chapter. We also present some of the implications of

our phase noise formulation such as the minimum achievable phase noise of RC oscillators and the

properties of close-in phase noise in this chapter.

The connection between Chapter 2 and Chapter 3 will become clear in Chapter 4 where we ver-

ify our model using simulation and experiment. In this chapter, we first verify our MOSFET noise

model using device simulations. Our phase noise formulation is then verified using experimental

work. Finally, we use indirect characterization of device noise to verify our device noise model

using phase noise measurement. Note that the absolute accuracy of this method remains inferior to

amplitude noise measurements because of the approximations involved in the phase noise formu-

lation. Nevertheless, this method provides a relative accuracy which suffices in many practical

cases. Furthermore, as we will see in Chapter 4, special oscillator structures can be designed for

which phase noise is predictable with higher accuracy.

Our formulation of device noise provides insight about the future of MOSFET noise, while our

phase noise formulation can be used for device noise characterization or as an independent tool for

studying oscillators. Chapter 5 discusses these applications and summarizes our findings on ampli-

tude and phase noise in CMOS circuits. These findings can help designers understand the origins

of noise in future CMOS circuits and provide them with guidelines for designing low-noise

devices and circuits.

L=0.18 µm, f=3 GHz

88%

Fig. 3: Relative significance of various noise sources in a typical 0.18 micron CMOS technology [2].
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 CHAPTER 2:

AMPLITUDE NOISE IN MOSFETS

For the decades following the pioneering work of J. B. Johnson [3], the study of noise in electri-

cal devices has been an exciting research topic. During these years, the emergence of each new

device has stimulated researchers to investigate its noise behavior. After the commercialization of

MOSFETs in the early 60s, extensive investigations were launched that helped designers under-

stand major MOSFET noise sources in less than a decade. These investigations revealed that there

are two partially-correlated noise sources in every MOSFET: channel thermal noise [4] and

induced gate noise [5]. By 1970, the classical formulation of MOSFET noise was finalized. This

formulation was subsequently validated through measurements which substantiated its accuracy

for existing MOSFETs.

In 1986, Jindal [6] and Abidi [7] suggested that the classical noise model underestimates noise

in short-channel devices. Since then, several studies have tried to replicate those results or theoret-

ically explain this phenomenon. As can be seen in Fig. 4, these investigations have led to different

(and sometimes conflicting) results for MOSFET noise behavior. Today, these studies generally

agree on one fact: If noise in short-channel MOSFETs is higher than classically predicted, it is by

factors much smaller than reported in early investigations such as [7]. 

Understanding noise in short-channel MOSFETs is thus an ongoing challenge. Most existing

short-channel noise models are based on the aforementioned classical formulation, modified to

accommodate emerging short-channel effects. Unfortunately, these models often need continual

revision because MOSFET scaling is an ongoing process. Furthermore, they usually fail to clearly

predict noise performance of future devices. In this chapter, we present a new noise model for

short-channel MOSFETs. The advantage of our model is that it is not founded on the classical for-

mulation of MOSFET noise. Rather, it is based on a noise model that we directly derive for future

ballistic MOSFETs1. 

The organization of this chapter is as follows. We first present some basic definitions which will
5



Amplitude Noise in MOSFETs
be helpful for studying amplitude and phase noise in electrical systems. We then briefly discuss

noise in electrical elements and present the classical formulation of noise in MOSFETs. This for-

mulation is followed by a brief survey of existing short-channel noise models. We then present a

model for noise in ballistic MOSFETs which is subsequently modified to fit today’s short-channel

devices. Finally, we use our simple model to predict the overall noise performance of future

devices.

2.1.   EXISTING MOSFET NOISE MODELS

 2.1.1.   Basic definitions
Electrical noise is a measure of random fluctuations of current or voltage at the terminals of an

electrical element. These fluctuations originate from the discrete nature of charge carriers and their

random movement2. At any non-zero temperature, charge carriers undergo a random motion that

induces a voltage noise,  and/or a current noise, , on device terminals. These functions

are mathematically referred to as random processes. In this subsection, we briefly discuss the prop-

erties of such functions. 

A random process  (which can be current or voltage noise) is a function of time whose

value at any given moment is a random variable. Such a process can be studied in either the time or

frequency domain. To study this process in the time domain, we need the probability distribution

function (PDF) of  for all t and the conditional PDF of  if the value of xn is known at t1,

t2, t3,..., tn, for any given n. Thus, we need an infinite number of PDFs to fully characterize a gen-

eral random process in time domain. 

In practice, we can use several simplifying assumptions to facilitate the characterization of ran-

dom processes. Many practical random processes, including those studied in this work, are

wide-sense stationary Gaussian3 processes which are sufficiently characterized by values of their

mean, mean square, and covariance. 

1.  As MOSFET scaling continues, carriers face progressively fewer scattering events in the chan-
nel. Ultimately, MOSFETs are expected to become so small that a carrier would travel from source 
to drain without scattering. Such a movement is called a ballistic movement and these devices are 
known as ballistic devices. 

2.  Current and voltage fluctuations can also originate from other sources such as electromagnetic 
interference and power supply noise. We will not study this kind of noise.

vn t( ) in t( )

xn t( )

xn t( ) xn t( )
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Amplitude Noise in MOSFETs
To characterize a random process in the frequency domain, we need the definition of power

spectral density (PSD) which is based on Fourier transform. Unfortunately, the Fourier transform

of  is often undefined because the total energy of noise in many cases is infinite. To circum-

vent this difficulty, the definition of PSD is based on the Fourier transform of a windowed version

of . The formal definition of the unilateral PSD, which will be used in this work, is as fol-

lows:

(1)

where  is the Fourier transform of , a windowed version of  that is the same as

xn(t) for  and zero otherwise.

It is important to understand the physical meaning of the PSD. The PSD at any frequency gives

the signal power that is concentrated in 1 Hz of bandwidth around that frequency. The unit of PSD

is , where  is the unit of . It can be shown that for wide-sense stationary pro-

cesses, the PSD is the Fourier transform of the autocorrelation function [8]. This theorem is known

3.  A process is called wide-sense stationary if its mean, , and mean square, , are inde-

pendent of t and its covariance, , is only a function of t1-t2 (not t1 or t2). A process is 

called Gaussian if the PDF of  and all of its conditional PDFs are Gaussian.
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Fig. 4: Some reported values of measured noise factor in short-channel MOSFETs compared to the
long-channel prediction. The numbers given in the parentheses are channel lengths of the devices
under investigation.
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Amplitude Noise in MOSFETs
as the Wiener-Khinchin theorem. By definition, if the PSD of a process is independent of fre-

quency, the process is called a process with white spectrum. For such a process the autocorrelation

function is a delta function which means that the process has no memory of its past. Therefore, a

process with white spectrum is a memory-less process and vice versa. To characterize a wide-sense

stationary Gaussian, memory-less random process with zero mean, it is sufficient to have its PSD

at a single frequency.

The discussion presented in this subsection will prove useful for studying amplitude and phase

noise in electrical systems. However, the reader is strongly encouraged to consult [8] for a thor-

ough discussion of random processes and random functions.

 2.1.2.   Noise in electrical elements
To analyze noise in an electrical element we must quantitatively characterize the fluctuations of

the electrical signal (current and/or voltage) which can be sensed at its external terminals. For the

purpose of this characterization, electrical systems can be divided into those in thermal equilib-

rium and those in non-equilibrium. Thermally-equilibrated systems are those in which there is no

electrical current or energy flow. In general, a thermally-equilibrated system can have a potential

difference between its terminals. For example, a MOSFET with vS=vD=vB is in thermal equilib-

rium for most practical purposes regardless of the voltage on its gate terminal.

Formulation of noise in equilibrated systems is relatively straightforward and is based on the

fluctuation-dissipation theorem of thermodynamics. According to this theorem, dissipative proper-

ties of a system provide sufficient information to characterize its fluctuation properties under equi-
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Fig. 5: Noise PSD in equilibrium is dictated by the fluctuation-dissipation theorem and Nyquist
formula (a). Under non-equilibrium conditions, noise formulation is much more complicated. A
famous non-equilibrium case is the appearance of shot noise in the presence of potential barriers
such as PN junctions (b).
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Amplitude Noise in MOSFETs
librium conditions [9]. Thus, the equilibrium noise properties of a system are fully known if one

can calculate or measure its dissipative properties. For example, the noise of a resistor in equilib-

rium can be modeled by a voltage (current) noise source in series (parallel) with the resistor with a

white PSD of  ( ) (Fig. 5). In general, the PSD of the noise voltage that appears at any

open terminal of an equilibrated system is white and is given by , where R is the real part of

the impedance seen from this terminal. The PSD of the current noise which would flow into this

terminal (if it were shorted externally) is white too and is given by . This result is known as

the Johnson-Nyquist formula, which was first suggested by the experimental work of Johnson [3]

and subsequently derived by the theoretical work of Nyquist [10]. The Johnson-Nyquist formula,

which can also be derived using Brownian motion analysis [11], is considered a special case of the

fluctuation-dissipation theorem [9].

The formulation of noise under non-equilibrium conditions is generally more complicated

because a full understanding of dissipative properties is no longer sufficient for noise calculations

[9]4. The Johnson-Nyquist formula cannot be proved for non-equilibrium systems using either the

Nyquist approach [10] or with Brownian motion analysis [11]. However, experiments show that

non-equilibrium noise in macroscopic resistors is the same as its equilibrium value and is given by

the Johnson-Nyquist formula. It is important to note that this result does not necessarily hold for

microscopic resistors; it specially breaks down in mesoscopic conductors as will be discussed

shortly [12][13].

Although a general formulation of noise in non-equilibrium is not available, this formulation

can be performed in special cases. A famous case is illustrated in Fig. 5. It can be shown that if the

injections of carriers across a potential barrier are mutually independent, fluctuations of current

have a white spectrum with a PSD of 2qI, where q is the quantum of charge and I is average rate of

charge flow (current) [8]. Thus, the noise of the device can be modeled by a current noise source in

parallel with the barrier with a PSD of 

. (2)

This noise source is known as shot noise and is observed in PN junctions, BJTs and cathode tubes.

We will use this formula for our formulation of noise in ballistic MOSFETs.

4.  This means that we can improve our understanding of carrier transport in a non-equilibrated 
system by studying its noise behavior, something that is not possible for an equilibrated system. 
This is a very useful insight.

4kTR 4kT R⁄
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Amplitude Noise in MOSFETs
 2.1.3.   Classical formulation of MOSFET noise
According to the classical formulation, high-frequency noise in MOSFETs originates from the

random thermal motion of carriers in the channel. For noise analysis, it is usually assumed that the

source (which is also connected to body) is the common terminal. The purpose of MOSFET noise

analysis is to characterize quantitatively the noise currents that would flow in the drain and gate

terminals if they were ac-shorted to the source terminal. These noise currents are called drain and

gate noise. From a circuit point of view, these noise currents can be modeled by two noise current

sources connected between drain and source, and gate and source, respectively. These noise

sources are partially correlated because of their shared origin. For full characterization of MOS-

FET noise, we must calculate the PSD of these two sources as well as their correlation factor (a

complex number in general).

Fig. 6 shows a noise equivalent circuit for a MOSFET working in the saturation region along

with the PSD of its noise sources. As can be seen in this figure, the drain noise PSD increases at

low frequencies due to the 1/f noise that is observed in nearly all non-equilibrated devices. The

appearance of this noise in MOSFETs is usually linked to traps. The properties of this noise will

not be studied in this work; for a comprehensive discussion, please see [9]. 

Fig. 6 also shows that the PSD of the gate noise increases at high frequencies. This increase is

due to the capacitive coupling of channel carrier fluctuations to the gate. We will not discuss this

noise source or its correlation to the drain noise here; it is left for future work. Instead, we focus on

the fluctuation properties of the high-frequency portion of the drain noise, hereafter briefly

referred to as drain noise and denoted by ind.

The classical approach for the formulation of drain noise PSD is graphically shown in Fig. 7. In

this approach, the channel is first sliced into small pieces of resistance dR. These slices are then

replaced by their noisy model and the noise contribution of each slice at the output terminal is cal-

culated using analytical or numerical means. Subsequently, these contributions are summed up,

ing Cgsgg gmvgs go ind

Gate
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Drain

ing Cgsgg gmvgs go ind
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1/f noise
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Fig. 6: The equivalent circuit of a MOSFET working in the saturation region, and the PSD of its noise
sources.
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Amplitude Noise in MOSFETs
assuming independence, to give the total device noise. This formulation leads to the famous

Klaasen and Prins equation which gives the PSD as [14]

. (3)

Here, k is Boltzmann’s constant, T is the absolute temperature, Lc is channel length, iD and vD are

the dc drain current and voltage, respectively and g(v) is the channel conductance at a point in

channel with potential v with respect to the source. Performing the integration for an ideal MOS-

FET, we find PSD of the drain noise as [15][16]

, (4)

where γ is a constant whose numerical value is 2/3 for devices working in saturation and gd0 is the

output conductance of the device for vD=0 (with the value of vG unaltered).

The classical formulation of noise in MOSFETs is, in fact, based on a more general approach

called the impedance field method (IFM) [17]. In this method, we first divide the device into small

volumes (segments in 1-D analysis). We then calculate the contribution of the noise of each seg-

ment at the output terminals using an impedance transfer function. The validity of this method is

not limited to MOSFETs; it can be used to prove the Johnson-Nyquist noise formula as well as to

calculate noise under non-equilibrium condition. This method is usually used in device simulators

to numerically calculate terminal noise currents [18].

 2.1.4.   Existing short channel noise theories
Although the classical formulation accurately predicts drain noise in long-channel MOSFETs, it

is believed to underestimate noise in short channel devices (e.g. [6][7]). To characterize the excess

Fig. 7: Classical formulation of MOSFET noise.
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Amplitude Noise in MOSFETs
noise in short-channel MOSFETs, a noise factor is normally defined as

. (5)

Fig. 4 shows some reported values of measured noise factor for short-channel MOSFETs com-

pared to the long-channel prediction. For several years, researchers have proposed various meth-

ods to explain this excess noise and predict its power. In this subsection, we present a brief survey

of these methods.

Excess noise in short channel devices is sometimes explained using detailed multidimensional

device simulations (e.g. [19] [20]). These simulations confirm the existence of excess noise in

short-channel MOSFETs and suggest that most of this noise is associated with the source end of

the channel [19]. Multidimensional simulations can be done using various orders of transport mod-

els5. Bonani and colleagues use the drift-diffusion model and show that it fails to capture excess

noise in short-channel devices even in 3-D simulations [20]. To capture excess noise, higher order

transport models such as the hydrodynamic model must be used. Therefore, using the right trans-

port model appears to be the crucial factor for noise analysis in short-channel MOSFETs. 

In another effort to explain excess noise, Goo and colleagues use the classic impedance field

method (IFM) for a 1-D analysis with device parameters extracted from 2D simulations. For

parameter extraction, they employ both hydrodynamic and drift-diffusion transport models and

compare the results [18]. They show that the hydrodynamic transport model gives much better

results compared to the drift-diffusion model. This observation reinforces that the key issue in

modeling noise in submicron devices is a thorough understanding of transport mechanisms.

The data presented by Goo shows that although his approach is accurate at high gate voltages

with respect to source, it loses its accuracy at small gate voltages [18]. This result can be explained

by looking at carrier transport in MOSFETs. At small gate voltages, smaller perpendicular electric

field leads to higher mobility and fewer scattering events. This phenomenon makes the devices

behave closer to the ballistic limit. As the device deviates more dramatically from the long-chan-

nel model, it becomes more difficult to predict its behavior using long-channel-based analysis.

This observation and the importance of transport models call for a noise model based on ballistic

transport in MOSFETs, which is the purpose of this chapter. 

Excess noise is also sometimes explained using carrier velocity fluctuations [22]. These fluctua-

5.  For a discussion about transport models, including drift-diffusion and hydrodynamic models, 
please see [21].

γ
Sind
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Amplitude Noise in MOSFETs
tions are normally associated with the small number of scattering events in the channel.

Franca-Neto suggests that carrier velocity fluctuations are the outcome of having only “some of

the carriers” move across the device without scattering (while others experience scattering inside

the channel). This velocity fluctuation then results in an excess noise in short channel devices.

Although the physical argument given in [22] is different from the one we present in this work, the

end results are somehow related. In both cases, having a small number of scattering events in the

channel is introduced as the origin of excess noise because scattering is an equilibrating mecha-

nism.

In an effort to provide a compact model for excess noise, several studies try to revise the classi-

cal formulation by considering short-channel effects. Some of these studies explain excess noise

based on elevated electron temperature (e.g. [16][23]). These studies usually manage to capture

some excess noise in short-channel MOSFETs but suffer from a significant drawback; they imply

that the phenomenon responsible for excess noise is associated with the drain end of the channel

where electron temperature is maximum. This implication does not agree with quasi-2-D numeri-

cal simulation results for HEMT devices which clearly show that the source end of the channel is

responsible for most of the excess noise [19].

Several other compact models based on second-order device considerations have also been pro-

posed recently [24]-[27]. All of these methods are based on a revision of the long-channel noise

formulation to account for emerging short-channel effects. Existing noise models often treat

today’s MOSFETs as imperfect long-channel devices. 

Modeling of noise in MOSFETs does not have to depend on the long-channel noise formulation.

It is interesting that the noise properties of ballistic devices are relatively easy to model. If we con-

sider today’s MOSFETs as imperfect ballistic devices (semi-ballistic devices), we can obtain a

MOSFET noise model based on the ballistic MOSFET noise formulation. The following section

presents such a model. Note that noise modeling in ballistic transistors has already been reported

by other authors (e.g. [28]) using detailed quantum mechanical simulations. Here we present a

simple model which is most suitable for predicting overall device performance, as we will see

shortly.

2.2.   BALLISTIC AND SEMI-BALLISTIC MOSFET NOISE MODELS

 2.2.1.   Noise in ballistic MOSFETs
Although true ballistic MOSFETs are not available yet, their electrical properties are already
13



Amplitude Noise in MOSFETs
under extensive research. Comprehensive work has been done by Lundstrom and colleagues on

the deterministic properties of ballistic devices (e.g. [29]). However, less attention has been paid to

the noise properties of these devices. The rest of this subsection presents a simple model for noise

in ballistic MOSFETs.

To investigate the noise properties of ballistic MOSFETs, a clear understanding of current flow

in MOSFETs is crucial. A careful look at carrier transport in MOSFETs shows that there are two

obstacles for current flow in every MOSFET: the potential barrier next to the source and the chan-

nel resistance (Fig. 8). The potential barrier next to the source is the up-curvature of the conduc-

tion band edge produced by the gradient in impurity concentration in that region. The properties of

this barrier and its bias dependencies are discussed in [29]. Carriers are injected from the source to

the channel at a rate, finj, that depends upon the barrier height and carrier concentration at the

boundary of source and channel, among other physical parameters. Subsequently, these carriers

travel through the channel to reach the drain. The nonzero resistance of the channel implies that

the carriers get scattered by various sources in the channel, especially near the silicon surface. The

rate, ftra, at which the carriers cross the channel depends upon the average number of scattering

events experienced by a carrier on its way from source to drain, as well as, on the physical proper-

ties of the scattering phenomena. Therefore, in every MOSFET there are two obstacles for current

flow: limited source injection rate and the channel resistance.

Because these two obstacles are in series, the dominant obstacle will dictate the current flow in

a given device. As can be seen in Fig. 9, carrier flow in MOSFETs is analogous to the flow of a liq-

uid in a series connection of two pipes with different cross-sections, where the rate of liquid flow

is dictated by the cross-section of the thinnest pipe regardless of the order in which the pipes are

Movement with Movement with 
scatteringscattering

Carrier Flow

Source Channel Drain

N+ N+

G
S D

Potential Barrier

Conduction 
band edge

Fig. 8: Two current-limiting mechanisms in every MOSFET are the potential barrier next to source and
the channel resistance.
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connected. In the case of the long-channel MOSFET, finj>>ftra, causing channel resistance to dic-

tate carrier flow and electrical current in the device. In ballistic MOSFETs, finj<<ftra, and the

source injection rate dictates current. Whichever of these obstacles dictates current will also dic-

tate the electrical properties such as noise.

In a long-channel MOSFET, the injection rate of carriers from the source is so high that the

details of carrier flow in the region next to the source are of little importance and can be neglected

for device analysis. This approximation justifies the long-channel MOSFET formulation that only

focuses on channel region. In a ballistic MOSFET, on the other hand, current flow is mainly lim-

ited by the source barrier (Fig. 9). For characterization of the electrical properties of these devices,

we need to focus on the details of carrier transport in the region next to source.

To understand the noise properties of ballistic devices we consider an ideal ballistic MOSFET in

which the carriers instantaneously reach the drain after their injection. In such a device, carrier

injections across the barrier will be nearly mutually independent because the injection of each car-

rier will not affect the electrostatic fields of the device long enough and strongly enough to have a

sensible effect on the probability of the next injection. As we discussed earlier in this chapter, such

a situation leads to the appearance of shot noise. Therefore, the drain noise of this device can be

modeled by a white noise current source with a PSD of 2qID connected between source and drain.

In practice, the injection of carriers is never completely mutually independent because of sec-

ond-order effects. This phenomenon generally causes the partial suppression of shot noise as will

be discussed in the next subsection. Nevertheless, the fictitious device introduced in this subsec-

tion is a powerful tool for developing a model for noise in short channel devices.

G

N+ N+

S D

N+ N+

G
S D

Fig. 9: The two extreme cases of carrier transport in MOSFETs are the long-channel device (left) and
the ballistic device (right).

Rinj>>Rtra Rinj<<Rtra
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 2.2.2.   Noise in semi-ballistic MOSFETs
Carrier transport in semi-ballistic devices is not entirely controlled by the source injection rate.

In these devices, carrier flow is affected by both carrier injection and channel resistance because

each injected carrier has to undergo channel scattering to reach the drain. This process alters the

electrostatic fields in the device until the injected electron is absorbed and device fields relax to

their steady-state condition. More specifically, the height of the barrier is modulated upward by the

injection of each electron, Fig. 10, reducing the probability of next injection for some period of

time. This process generates a negative feedback which regulates the carrier flow. Such a regula-

tion makes the noise power smaller than 2qID, a phenomenon that is referred to as partial suppres-

sion of shot noise.

Partial suppression of shot noise can be explained using the following example. Imagine a sys-

tem in which carriers are injected independently across a potential barrier at an average rate of finj

carriers per second. For such a system the dc current is given by Idc=qfinj and its noise PSD is

2qIdc. To see how negative feedback can suppress shot noise, assume that the injection of carriers

is regulated by negative feedback that restricts the carrier injection for Tinj=1/finj after each injec-

tion while maintaining the same dc current. In this situation, all injections have to be exactly finj

seconds apart because if two of them are further apart, two others have to be less than Tinj apart to

maintain an average injection rate of finj, a situation that is not permitted because of our first

assumption. Since all injections are Tinj seconds apart, the PSD of current is a train of delta func-

tions at the harmonics of finj. This frequency is normally a very large number and experimentally

undetec tab le .  F or  example ,  fo r  a  t yp ica l  cur ren t  f low  of  1 µA, f i n j  eva lua t es  to

N+ N+

S D

G

Modulation

Fig. 10: In semi-ballistic devices the injection of each carrier modulates the height of the potential
barriers because it affects the electrostatic fields of the device. This phenomenon causes a
negative feedback which partially regulates current flow and partially suppresses shot noise.
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1e-6/1.6e-19=6.25e12 Hz or 6.25 THz. Therefore shot noise is fully suppressed in this system.

Although this is an extreme example, it illustrates what happens in systems with limited negative

feedback such as our semi-ballistic device.

We can qualitatively analyze partial suppression of shot noise in semi-ballistic MOSFETs using

historical studies on vacuum tubes. As discussed in [30], current flow in vacuum tubes can be lim-

ited by two mechanisms: the injection of carriers from the cathode (cathode efficiency) and the

space charge region next to this electrode. In early vacuum tubes, the materials used for the cath-

ode had a low injection efficiency. The current flow in these devices were mainly limited by carrier

injection from cathode and the dominant noise phenomenon in the device was shot noise because

carrier injections from the cathode are nearly mutually independent. With the emergence of high

efficiency materials for the cathode, current in modern tubes is not limited by cathode efficiency.

In these tubes, the cathode injects electrons at such a high rate that current flow is mainly limited

by the space-charge region. In this space-charge limited regime, the injection events of carriers

through the space charge region are not mutually independent anymore because the injection of

each carrier alters the fields in the space charge region which in turn reduces the probability of the

next injection. This phenomenon is discussed in detail in [30] and it is shown that in this situation

the PSD of current noise is given by

, (6)

where I is the dc current and ks<1 is the shot noise suppression factor which is a function of physi-

cal parameters of the device.

A semi-ballistic MOSFET resembles a vacuum tube in that there exist two current-limiting

mechanisms in both devices. In a semi-ballistic MOSFET, the source barrier is analogous to cath-

ode efficiency in cathode tubes while channel resistance resembles the space-charge region. By

causing a negative feedback, this resistance suppresses noise to the value given in (6), in exactly

the same way that the space charge region does it in modern vacuum tubes (Fig. 11)6. The suppres-

sion factor, ks, appears to be a better parameter for noise characterization of short-channel MOS-

FETs than the γ factor commonly used in literature because of its more intimate connections to the

underlaying physics.

6.  It is interesting that in fully-space-charge-limited tubes, current noise PSD is given by (4) with 
γ=0.6438 (it is called θ in that formulation). This number is very close to the noise factor of 
long-channel MOSFETs even though this equation is derived in a totally different way for cathode 
tubes [30].

Si 2ksqI=
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Based on this simple model, we can develop a compact noise model for short-channel MOS-

FETs. Using the power law formula for drain dc current, we have , where α

and I1 are empirical parameters. Combining this equation with (6), current noise is compactly

modeled as

(7)

where β and In1 are empirical parameters. Note that the numerical value of β is not necessarily the

same as α because ks drops with increasing vGS. This phenomenon will be discussed in Chapter 4.

Equation (6) suggests that in contrast to long-channel MOSFETs, which only show thermal

noise, the dominant non-equilibrium noise source in short-channel MOSFETs is shot noise. As we

will see in Chapter 4, this phenomenon is already significant in today’s short-channel devices. The

appearance of shot noise in non-equilibrated small conductors is not unprecedented; it has already

been discovered in mesoscopic and other small-size conductors. 

Mesoscopic conductors are those whose lengths are between those of microscopic and macro-

scopic systems. These limits are bounded on one side by the deBroglie wavelength of the electron,

and on the other by the length scales of various scattering mechanisms. In these conductors the

appearance of shot noise in non-equilibrium is both theoretically predicted [12] and experimen-

tally observed [13]. Non-equilibrium noise in a mesoscopic conductor with one scattering site in
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Fig. 11: Current flow in early vacuum tubes were limited by cathode efficiency, resembling a ballistic
MOSFET. With the emergence of better cathode materials, modern tubes are space-charge
limited. These devices are similar to today’s semi-ballistic MOSFETs in which channel
resistance is equivalent to the space-charge region. MOSFETs and vacuum tubes have evolved in
opposite directions throughout history. This observation helps us understand the noise properties
of short-channel MOSFETs using historical studies on vacuum tubes.
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its channel contains a partially-suppressed shot noise term. A detailed simulation shows that this

term progressively gets more heavily suppressed as the number of non-elastic scattering sites in

the channel increases [31]7. In the limit, when there are a large number of inelastic scattering sites

located in the channel, the mesoscopic conductor turns into a macroscopic, dissipative conductor

for which non-equilibrium noise is the same as the equilibrium noise and is given by the

Johnson-Nyquist formula. This explains why the noise power in a macroscopic resistor is often the

same under equilibrium and non-equilibrium and obeys the Johnson-Nyquist formula.

Partially suppressed shot noise also exists in non-equilibrium noise of small conductors. Fig. 12

shows the non-equilibrium noise in conductors of sizes comparable to electron-electron scattering

and electron-phonon scattering lengths [32]-[36]. As can be seen, noise in these devices is smaller

than shot noise but still proportional to current. From a pure physics point of view, the appearance

of partially-suppressed shot noise in short-channel MOSFETs, mesoscopic conductors and small

conductors can probably be traced back to a common origin.

It is worth mentioning here that the existence of a shot noise component in drain current noise

has already been proposed for modeling purposes [37]. However, the existence of this noise is not

associated with the dominance of source barrier over the channel resistance in short-channel

devices. The argument presented in this section provides a theoretical ground for the appearance of

shot noise and facilitates the prediction of the overall performance of future MOSFETs as we dis-

cuss in the next subsection.

7.  The main reason for this phenomenon is the Pauli exclusion principle for electrons. This is why 
shot noise is never suppressed for photons; the Pauli exclusion principle does not hold for photons.
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Fig. 12: Partially-suppressed shot noise in small conductors.
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 2.2.3.   Overall noise performance of short-channel MOSFETs

Our short-channel noise model can be used to predict the overall noise performance of future

MOSFETs and to provide prescriptions for optimizing the noise behavior of these devices. For a

rigorous analysis, we first define an appropriate figure of merit for noise. The figure of merit that is

usually used by circuit designers is the input-referred noise power. Unlike the drain noise,

input-referred noise power may be directly compared to the input signal and therefore plays a sig-

nificant role for determining amplifiers’ noise figure [1]. As can be seen in Fig. 13, the

input-referred noise in a MOSFET is given by 

. (8)

According to (8), predicting the overall noise performance of future devices involves the predic-

tion of their drain noise and their transconductance. Experiments show that for typical current den-

sities in MOSFETs, the numerical value of shot noise, 2qI, is larger than the numerical value of

long-channel thermal noise, 4kTγgdo. This observation suggests that noise in MOSFETs might

increase as these devices are scaled down towards the ballistic limit because ballistic MOSFETs

show shot noise. On the other hand, shot noise is also observed in BJTs while these devices have

better noise characteristics than MOSFETs. This second observation makes it unclear whether the

appearance of shot noise in MOSFETs will have a deteriorating or enhancing effect on their noise

performance.

For an accurate analysis, we need to carefully compare short-channel MOSFETs to BJTs. In bal-

listic MOSFETs, both noise and transconductance are dictated by the potential barrier next to

source. In this situation, the dominant noise phenomenon is shot noise which is very similar to

what happens in BJTs. The potential barrier also dictates the transconductance in ballistic MOS-
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Fig. 13: A very useful parameter for noise analysis is the input-referred noise whose power can be readily
compared to the input signal power.
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FETs. As discussed in [29], the modulation of current in ballistic MOSFETs is through the modu-

lation of the height of this barrier, which is in turn modulated by the gate voltage. This

phenomenon is again similar to that in BJTs where collector current is modulated by the modula-

tion of the emitter-base barrier height through base voltage. Thus ballistic MOSFETs resemble

BJTs in many respects.

Unfortunately, the transconductance of a ballistic MOSFET is often smaller than that of its cor-

responding BJT. Although the modulation of current in both cases is through the modulation of the

barrier height, this modulation is smaller in ballistic MOSFETs because of the indirect control of

channel voltage through Cgs. As shown in Fig. 14, this capacitor drops part of the input voltage

making the transconductance of ballistic MOSFETs inferior to that of BJT. Therefore, a ballistic

MOSFET has the noise of a BJT and the transconductance of a MOSFET, the worst of two worlds.

This is an unfavorable combination for low-noise analog design.

Whether future commercial MOSFETs will deteriorate in noise performance and how fast this

deterioration will occur are still open questions. Investigations show that present MOSFETs are

working at fifty percent of the ballistic limit which means that current in these devices is 50 per-

cent of the expected current in a ballistic device with the same physical dimensions. This percent-

age has been the same for the past 10-15 years [38]. Although MOSFETs continue to scale, higher

perpendicular field in small devices causes more scattering in the channel which has kept them at

the same percentage of the ballistic limit for the past 10-15 years. This observation explains why

the noise factor has not increased much during the past few years. 

Our model can also explain the wide range of reported values for γ. Noise factor is in fact a

function of the relative strength of the two current limiting mechanisms and not the absolute value

of channel length. It should even be possible to design a high-noise-factor transistor with a long

channel through careful engineering. 

During the past decade, careful device engineering which has tried to optimize various device
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Fig. 14: Current modulation in both ballistic MOSFETs, (a), and BJTs, (b), is through the modulation of
the barrier height, Ecp. However the gm of a MOSFET is often smaller than that of its
corresponding BJT because part of the gate voltage is dropped across Cgs.
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parameters, might have led to accidental optimization of noise in short-channel devices. It is not

certain, however, whether this trend will continue. In any case, our noise model suggests that

future MOSFETs should be designed in a way that avoids the dominance of source injection rate

over the channel resistance. This prescription does not mean that more scattering should be added

to the channel to achieve this goal; rather, better source engineering is required to guarantee an

ample injection of carriers from source. This condition seems to be possible to satisfy today

because we have stayed at fifty percent of the ballistic limit for such a long time. Ultimately, ultra

short MOSFETs or new devices will emerge with more ballistic carrier transport. At that stage,

more study will be necessary to guarantee optimum performance.

2.3.   SUMMARY

A MOSFET noise model has been presented based on the study of noise in ballistic MOSFETs.

The advantage of this model is that it progressively gets more accurate as the devices scale to

smaller sizes and work closer to the ballistic limit. Furthermore, it provides a clear prediction of

noise in future devices. Drain current noise in short-channel devices is shown to be best modeled

by a partially-suppressed shot noise term. Based on this observation a compact model for noise in

short-channel MOSFETs is presented. Overall noise performance analysis of future MOSFETs

shows that, in the ballistic limit, these devices will have the transconductance of a MOSFET and

the noise of a BJT, an unfavorable combination. Based on the proposed model, practical guidelines

for noise optimization in future MOSFETs are presented. In the next chapter, we turn into the anal-

ysis of phase noise in electrical oscillators and discuss its relation to device noise.
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 CHAPTER 3:

PHASE NOISE IN OSCILLATORS

Due to its practical importance in communications, the frequency stability of electrical oscilla-

tors has been the object of extensive research. Several methods have been proposed for estimating

the phase noise of these oscillators, often using approximations and numerical approaches that

provide significant insight about the behavior of phase noise (e.g. [45][57][58]). Unfortunately

these methods are often based on frequency-domain analysis, which unnecessarily complicates the

formulation of phase noise, a formulation that can be performed through time-domain jitter analy-

sis with fewer approximations and sometimes even analytically. Furthermore, they sometimes lead

to erroneous conclusions about the behavior of phase noise (especially at close-in frequencies rela-

tive to the center frequency) because the approximations are not valid for the entire spectrum.

To discuss the effects of device noise on phase noise, we present a time-domain formulation of

phase noise in this chapter, a formulation that is specifically accurate for switching-based oscilla-

tors. The advantage of having an accurate phase noise analysis method is twofold. This method

can be used to predict phase noise for a given device noise level or to back-calculate the device

noise from phase noise measurements. These measurements are normally easier to perform than

direct device noise characterization. Compared to a frequency-domain formulation, the

time-domain formulation of phase noise is more accurate at small offset frequencies because of the

fewer approximations used in this method. Thus, the properties of close-in phase noise can also be

studied using this formulation.

To provide a rigorous treatment of phase noise, we start with a discussion of the formal defini-

tion of phase noise. We then present our time-domain phase noise formulation for switching-based

oscillators. As specific examples of time-domain phase noise analysis, we calculate the minimum

achievable phase noise for relaxation (including ring) oscillators after showing that one of the fun-

damental principles of thermodynamics sets a lower limit on the phase noise of RC type oscilla-

tors. For the sake of completeness, phase noise in coupled RC oscillators is also discussed. Finally,
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we discuss the properties of close-in phase noise using a time-domain phase noise formulation.

To get the most benefit from our phase noise formulation and its implications, we present this

chapter as a self-sufficient part, independent of previous chapters. The relevance of our phase

noise formulation to MOSFET noise characterization will become clear in Chapter 4.

3.1.   THE FORMAL DEFINITION OF PHASE NOISE

Despite its practical importance in communications, the formal definition of phase noise

remains a matter of controversial. At least two distinct definitions are introduced by various

authors. One of these definitions involves the power spectral density (PSD) of phase [40], the other

is based on the PSD of the signal itself [39]. The choice of definition appears to be irrelevant at

large offset frequencies (hereafter referred to as far-out phase noise) because the PSD of phase can

be approximated by the PSD of the signal at far-out frequencies [42]. However, the numerical

value of phase noise at small offset frequencies (the close-in phase noise) strongly depends on the

definition. Furthermore, as we will see shortly, depending on which definition we use, some

well-known properties of the far-out phase noise, such as the superposition of phase noise, can be

violated at close-in frequencies. To decide which definition is more appropriate, we need to under-

stand how frequency instability affects the performance of electrical systems.

An electrical oscillator is responsible for generating a periodic signal with a stable oscillation

frequency. In an ideal oscillator, this frequency remains constant over time. In a real oscillator,

however, the frequency of oscillation is modulated by electronic noise, present in all real systems.

Because of this electronic noise, the oscillation frequency randomly fluctuates with time. These

frequency fluctuations degrade the performance of the system in which the oscillator is used.

To evaluate the performance of a communication system in the presence of noise, we need to

characterize the frequency fluctuations of its oscillator. This characterization can be performed

using time-domain or frequency-domain analysis and different measures can be defined corre-

spondingly. From a practical point of view, the best measure is the one that best facilitates the per-

formance assessment of the communication system. Thus, depending on which kind of system is

under consideration, different measures of frequency instability might be favorable. One instabil-

ity measure often referred to in the literature is phase noise. In this section, we first present the

existing definitions of phase noise as a measure of frequency instability. We then discuss the effect

of frequency instability on the performance of various types of communication systems. In light of

this discussion, we choose an appropriate definition of phase noise for our study.
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 3.1.1.   Existing definitions of phase noise
Fig. 15 shows an ideal periodic square-wave signal along with a signal, which has nonzero fre-

quency instability. The nominal oscillation period for this signal is denoted by To. In the presence

of noise, the real duration of the ith period is a random variable denoted by Ti. For stationary oscil-

lators, the expected value of this random variable is independent of i and, by definition, is the nom-

inal period of oscillation. Demir et al. explain the properties of stationary oscillators [39]. The

duration of the ith half-period of oscillation is denoted by τi. Thus

. (9)

We define jitter in the ith period, ∆Ti, as the difference between the actual and the nominal dura-

tion of this period, . The period jitter, , is the variance of ∆Ti. For a stationary

oscillator, this is independent of i. The cycle-to-cycle jitter, , is defined as the expected value

of ∆Ti∆Tj, which is normally only a function of i-j and not of i or j alone8. Similarly, we define

half-period jitter and half-cycle-to-cycle jitter as the variance of ∆τi and the expected value of

∆τi∆τj, respectively. In most practical situations, having  for all (i-j) provides enough infor-

mation for the characterization of frequency instability in the time domain.

The characterization of the frequency instability in the frequency domain is more complicated

and is based on the definition of phase noise. At least two distinct definitions are used by various

authors: one based on the PSD of the phase [40] and the other based on the PSD of the signal itself

8.  This definition of cycle-to-cycle jitter is different from the one used by some other authors. This 
definition best suits our analysis, as we will see shortly.
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Fig. 15: Real and ideal waveforms for a rectangular oscillatory signal with parameter definitions.

Ti τ2i 1– τ2i+=

∆Ti Ti To–= ∆T
2

∆Ti j,
2

∆Ti j,
2

25



Phase Noise in Oscillators
[39].

According to the first definition, phase noise is the PSD of the phase. The main advantage of

this definition is that it keeps the phase noise independent of the amplitude noise. However, this

choice of definition also generates some mathematical and practical difficulties. For example,

phase is not a stationary random variable and its PSD is mathematically undefined9. Although it is

possible to define a generalized PSD for phase, this would complicate the already involved mathe-

matics for two reasons. First, the total power of the generalized PSD would be infinite, making it

impossible to normalize. Second, the generalized PSD would grow without bound around zero fre-

quency. Such an ill-behaved function is hard to work with, especially when close-in phase noise is

of interest. 

According to the second definition, the phase noise is the PSD of the signal itself, normalized to

the power of the fundamental tone. Using this definition, the phase noise can be calculated analyt-

ically and is a well-behaved function around zero offset frequency [39][41]. However, the PSD of

the signal is a function of both jitter and amplitude noise.

It has been shown that the behavior of phase noise at large offset frequencies is independent of

the choice of definition [42]. At small offset frequencies, however, these two definitions provide

significantly different values for phase noise. To decide which definition is more appropriate for a

specific application, we first need to study the effect of frequency instability on the performance of

communication systems.

 3.1.2.   Phase noise in communication systems
RF communication systems normally require an accurate time reference because of their

multi-user nature. In these systems, several users share the same communication channel, necessi-

tating modulation/demodulation of the messages. Reliable modulation and demodulation is highly

dependent upon the accuracy of the frequency of the oscillators used in these systems. On the other

hand, in high-speed digital communication systems, the necessity of having an accurate time refer-

ence stems from the desire to reach higher data rates. In both cases, the frequency instability of the

carrier or clock degrades the performance of the system. However, because of the different nature

of these systems, different sets of tools are required to assess performance.

Fig. 16 shows a typical RF communication system. The desired signal and an interfering one are

located at ωRF and ωRF+∆ω, respectively. Note that the presence of a high-power interfering signal

9.  Note that phase can be made stationary if it is kept between 0 and 2π. We do not consider this interpretation of phase 
here because it causes discontinuity and is rarely used for phase noise analysis.
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is the result of using the same transmission medium for several users. This interfering signal is

multiplied by the local oscillator signal in the mixer. Thus the noise of the local oscillator is modu-

lated by this interfering signal and appears at the output of the mixer. At the output of the mixer,

the noise power at IF is proportional to the magnitude of the PSD of the local oscillator signal in

the vicinity of ωLO+∆ω. Since the IF signal power is proportional to the total power of the local

oscillator at the output of the mixer, the degradation of the signal-to-noise ratio due to phase noise

is proportional to the phase noise of the local oscillator if we adopt the second definition of phase

noise. Therefore, the performance assessment of RF communication systems is greatly simplified

if we adopt this definition.

In high-speed digital communication systems, the frequency instability of the clock increases

the bit error rate. The bit error rate in these systems is solely a function of jitter and is independent

of amplitude noise. Since the amplitude noise affects the PSD of the signal but not that of phase, it

might seem that the first definition of phase noise is more convenient for these systems. However,

the analysis of bit error rate in communication systems is most easily performed in the time

domain. Consequently, the choice of the definition of phase noise is of little importance for these

systems.

The second definition of phase noise also facilitates experimental work. The measurement of the

PSD of the signal using a spectrum analyzer is a routine measurement procedure. On the other

hand, the process of measuring the PSD of phase is usually much more involved. Furthermore, as

we will see in the next section, the analytical calculation of the PSD of the signal is relatively

straightforward. 

Fig. 16. The front-end of a typical RF receiver.
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The comparison of the two definitions of phase noise reveals that defining the phase noise in

terms of the PSD of the signal, normalized to the total power, facilitates its measurement and ana-

lytical calculations and is usually more helpful for assessing the performance of RF communica-

tion systems. The main drawback of adopting this definition is that the amplitude noise affects the

PSD of the signal. In practice, the effect of this amplitude noise can usually be suppressed using a

limiting amplifier and should be distinguished from effects of jitter, which are impossible to sup-

press. To circumvent this problem, we need to perform phase noise analysis after taking into

account the effect of the limiting amplifier. We believe that the benefits of defining the phase noise

as the normalized PSD of the signal outweighs this complexity.

3.2.   TIME-DOMAIN FORMULATION OF PHASE NOISE

In this section we introduce a formulation of jitter entirely in the time domain. Phase noise is

subsequently calculated using pre-derived mathematical relationships between jitter and phase

noise as will be discussed shortly. This method is especially appropriate for switching-based oscil-

lators. We first provide a brief definition for this class of oscillators and then describe our formula-

tion.

In switching-based oscillators, Fig. 17, the energy injecting elements act like ideal switches, i.e.

they have a countable number of states between which transitions may be considered instanta-

neous. Relaxation oscillators can be modeled as switching based oscillators. For this class of oscil-

lators, phase noise is most easily calculated by first calculating the jitter in the time domain. Since

the oscillator’s feedback path is broken by the active devices (modeled by ideal switches in

Fig. 17: A simplified model for a typical switching-based oscillator.
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Fig. 17) during the non-switching time interval, the calculation of jitter for these oscillators is rela-

tively simple. Once the jitter is determined, phase noise can be calculated using available mathe-

matical relationships presented in Appendix A. In the rest of this section we elaborate on how

these calculations are performed.

Fig. 18a shows part of a switching based oscillator. The energy injecting element switches when

the voltage of the control terminal reaches v1. We use the first crossing approximation, which

assumes that the switching takes place when the voltage reaches v1 for the first time [43]. Using a

linear approximation, the variance of the switching time jitter is found to be proportional to the

variance of the control terminal voltage and inversely proportional to the square of the rate of

change of voltage at this node. 

The variance of the control terminal voltage can be calculated by knowing the total resistance

and total capacitance on this node as well as the stochastic properties of the noise sources con-

nected to this node. Fig. 18b shows the noise circuit model of the passive network connected to the

input of each switch. The problem definition is also given in the inset of this figure. The variance of

the capacitor voltage at t=0 is assumed to be a Gaussian random variable with zero mean and a

variance of . We are interested in calculating the variance of this voltage at some later time t.

The voltage on the capacitor at time t is given by

. (10)

Since in is a Gaussian process with zero mean, (10) dictates that ∆vC is also a Gaussian process

Ideal
Switch

Control
Terminal Output

Control
Terminal

in
vC

(a) (b)

=?

in
2

f( ) 4kT∆f
Rn

---------------=

in τ( )in τ'( ) 2kTδ τ τ'–( )
Rn

------------------------------=

∆vC
2

0( ) σo
2

=

∆vC
2

t( )

v1

Jitter

Voltage
Uncertainty

Energy-Injecting
Element

Fig. 18: (a) Switching time jitter in switching-based oscillator (b) Noise circuit model of the passive
network connected to the input of each switch and problem definition for calculation of voltage
uncertainty on the control terminal.

σo
2

∆vC t( ) e

t
RC
--------–

C
------------ e

τ
RC
--------

in τ( ) τd
0
t

∫ ∆vC 0( )e

t
RC
--------–

+=
29



Phase Noise in Oscillators
with zero mean [44]. Consequently, the fluctuation properties of ∆vC are completely conveyed by

its variance. Using (10) we can find the variance of ∆vC at time t:

, (11)

in which  is the autocorrelation function of the noise source. Let us assume that the

noise source is white with the autocorrelation function given in the onset of Fig. 18b. Using this

autocorrelation function in (11) and performing the integration, the variance of ∆vC is found to

be10

. (12)

Note that if Rn=R the variance of vC converges to kT/C as  and becomes independent of R

and .

Under the linear approximation, the variance of the switching time jitter is simply the variance

of ∆vC divided by the square of the capacitor’s voltage rate of change:

. (13)

The total period jitter in the oscillator is then calculated by adding up all of the individual switch

time jitters, which are assumed to be independent in the absence of colored noise.

Once the period jitter is calculated, phase noise can easily be calculated. In most cases (includ-

ing relaxation oscillators) the output of the switching oscillator can be approximated by a stochas-

tic square wave signal with mutually-independent, Gaussian-distribution period jitter. As

presented in Appendix A, the phase noise of such a signal has a nearly-Lorentzian shape around

each harmonic. The phase noise around the first harmonic at an offset frequency of  is given by

, (14)

10.  The presented derivation is simplified for brevity. A rigorous derivation shows that the final 
result is, nevertheless, correct [44].
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where fo and ∆f are the center and offset frequency, respectively, and  is the variance of the

period. This equation predicts that the phase noise has a 1/f 2 shape for sufficiently large offset fre-

quencies, which is consistent with the previously reported measurement results (e.g. [45][46]). 

Note that (14) is valid only if period jitters of different cycles are mutually independent. In the

presence of colored noise this condition is usually violated and hence (14) would lose its validity.

We will discuss those cases later in this chapter. 

In the following section, we first present a physical argument about the minimum achievable

phase noise of RC oscillators, a discussion that will be of great value in assessing the feasibility of

using certain oscillators for a particular application. We will then use time-domain phase noise

analysis to formulate the minimum phase noise of specific oscillator topologies.

3.3.   MINIMUM ACHIEVABLE PHASE NOISE OF RC OSCILLATORS

The significance of phase noise in RF systems limits the usefulness of RC oscillators11 because

of their typically inferior phase noise properties compared to inductor-based and distributed oscil-

lators. RF designers need to improve these properties in order to benefit from the attractive inte-

grated nature of RC oscillators, a virtue that has made them popular for clock-recovery circuits

[59] and on-chip clock distribution [60]. Several investigations have focused on improving the fre-

quency stability of RC oscillators (e.g. [51]). However, the literature does not include a study of

the possible theoretical limits on the phase noise of RC oscillators for a given power. Such a study

will help assess the feasibility of designing low-phase noise RC oscillators and will reduce the lin-

gering uncertainty about the future of RFIC design.

In this section we first show that one of the fundamental principles of thermodynamics imposes

a lower limit on the phase noise of RC oscillators. After establishing this, we use a time-domain

phase noise formulation to calculate the minimum achievable phase noise for a few oscillator

topologies. This discussion helps to understand this method and provides useful insight about the

future of RC oscillators.

Nonzero phase noise in an oscillatory signal indicates that the period of oscillation is not truly

constant. To stabilize this period (and hence to build a low-phase-noise oscillator), we should

11.  In this chapter, lumped, inductorless oscillators, including ring and other relaxation oscillators, 
are all referred to as RC oscillators.

∆To( )2
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make the period of oscillation dependent on a reliable physical phenomenon, one which can force

the oscillation period to be traceable to a physical constant with the dimension of time. In induc-

tor-based oscillators (like the Colpitts) this constant is  where L is the inductor and C is the

capacitor. In transmission-line-based oscillators the ratio of  establishes the time constant in

which l is the length of the transmission line and v is the velocity of electromagnetic wave inside

the transmission line. In RC oscillators the product of  is usually the time constant. There is,

however, a fundamental difference between this latter case and the first two cases. The fluctua-

tion-dissipation theorem of thermodynamics states that a nonzero amount of thermal noise is asso-

c i a t e d  w i th  a ny  r e s i s to r 1 2 .  T hu s ,  i n  c on t r a s t  t o  l o s s l e s s - in d uc t o r - b a s e d  a n d

lossless-transmission-line-based oscillators, the time constant of RC oscillators is inherently noisy

because of the resistor dissipation. This noise component will affect the period of oscillation in a

random fashion and result in nonzero phase noise. Consequently, even if the rest of the circuit is

noise-free, the resistor noise imposes a lower limit on the phase noise of RC oscillators.

To provide a quantitative prediction of this minimum achievable phase noise, we use simple

models for relaxation oscillators. For the formulation of minimum achievable phase noise of relax-

ation oscillators, only the equilibrium noise current of the feedback resistor (given by ) is

taken into account. For the special case of ring oscillators, we assume that the only noise sources in

the circuit are those associated with MOSFETs. To find the minimum achievable phase noise, the

power spectral density of this noise source is predicted by the long channel MOSFET noise theory.

In order to provide a quantitative analysis of minimum achievable phase noise, we first use the

time-domain phase noise analysis method for switching-based oscillators introduced earlier in this

chapter.

 3.3.1.   Phase noise in RC relaxation oscillators
Fig. 19 shows a typical RC relaxation oscillator. The oscillator is composed of a Schmitt trigger

comparator in an RC feedback loop. We first derive the basic equations governing the behavior of

this oscillator and then present an analysis for jitter and phase noise. Since we are interested in the

minimum achievable phase noise, we take into account only the equilibrium resistor noise (whose

12.  The fluctuation-dissipation theorem is strictly applicable to the thermal equilibrium state of 
the resistor. Nonetheless, experimental observations show that a resistor’s nonequilibrium noise is 
also finite and, in most cases, has the same value as that of the thermal equilibrium noise. The 
power spectral density of this noise source is given by Nyquist formula which will be used for 
quantitative analysis in this paper.

LC

l v⁄

RC

4kT R⁄
32



Phase Noise in Oscillators
density is given by 4kT/R) and neglect all other noise sources associated with the comparator and

all non-equilibrium noise sources (such as 1/f noise).

The oscillator of Fig. 19 works as follows: during the first half of the period, the capacitor volt-

age changes exponentially from v1 to v2 (the two comparison levels). The duration of the first half

of the period is found to be

. (15)

Similarly, the duration of the second half of the period is

, (16)

and the frequency of oscillation is given by

, (17)

where To is the nominal period of oscillation.

The absolute minimum power dissipation of this oscillator (neglecting the power consumed by

the comparator) is dictated by the amount of charge transferred to the capacitor as its voltage

moves between v1 and v2 in each cycle:

. (18)
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Fig. 19: Typical relaxation oscillator and the respective waveform.
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The nonzero minimum power dissipation is another distinct property of RC oscillators. For loss-

less LC and transmission-line-based oscillators, the minimum power dissipation is zero; the energy

can be exchanged losslessly between two energy-storage elements.

The jitter is generated by the fluctuations of vC which are in turn caused by the resistor noise.

The probability density function of the fluctuations of vC at any given time t can be found using the

circuit model of Fig. 18b. Since the switching takes place when the capacitor voltage reaches the

decision levels, v1 and v2, this voltage is accurately known at the beginning of each half-period.

Using (12) with  and Rn=R we get

. (19)

Using t=T1 or T2 in this equation, we can find the variance of ∆vC at the end of the first and second

half-periods, respectively.

The switching time jitter at the end of each half period can be found using (13):

(20)

and

, (21)

where the linearization is justified due to the fact that the noise level is normally small. The vari-

ance of the period is the sum of (20) and (21) because ∆T1 and ∆T2 are uncorrelated variables

based on the following argument. The switching takes place when vC equals v1 or v2. Conse-

quently, at the beginning of each half cycle the value of vC is known accurately. Since the only

noise source taken into account is white, the uncertainty of vC at the end of each half cycle is com-

pletely independent of the one at the end of previous half cycle. This ensures that ∆T1 and ∆T2 are

in fact independent and the variance of the period jitter is the sum of (20)and (21):

, (22)

in which we have assumed a duty cycle of 50% so that we can replace 2t in (19) by To. 

After eliminating R between (17) and (22) we get
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, (23)

where  is the normalized decision level. We have assumed v2=vdd-v1, which ensures

a duty cycle of 50%. The second part of (23), called the jitter factor, is only a function of v1n and

can be plotted versus this parameter. Fig. 20 presents such a plot and it shows that the jitter factor

is minimized for . For constant values of temperature, capacitance, oscillation fre-

quency and bias voltage, jitter (and hence phase noise) assumes its minimum value for

 and . Hereafter, we will use these values to find the minimum achiev-

able phase noise. The minimum power dissipation and minimum period jitter are then found to be

(24)

and

. (25)

Using (25) in (14) the phase noise at offset frequencies much larger than , which are

the only practically important frequencies, is found to be

. (26)

It is instructive to compare this equation to the one presented in [47] for differential LC oscilla-
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tors derived using Leeson’s formula. This comparison shows that the phase noise of a differential

LC oscillator is smaller than that of an RC oscillator by roughly a factor of Q2. Equation (13) in

[47] reduces to (26) with Q=1, except for a numerical constant which is determined by the oscilla-

tor’s topology. This is also consistent with the discussion presented in [47] regarding definitions of

Q in various oscillators.

Equation (26) also shows that the phase noise is inversely proportional to the minimum power

dissipation, which is in turn proportional to the capacitor value and the square of the bias voltage.

We will see that this result holds for ring oscillators as well.

 3.3.2.   Phase noise in ring oscillators

To calculate the phase noise in ring oscillators, we model them as switching-based oscillators. In

this model, each inverter is assumed to have only two distinct states for noise calculations. In its on

state, TT, it delivers (or sinks) a constant current, IC, independent of its input and output voltages.

Its output resistance is 1/go in this state and its equivalent noise resistance is , as pre-

dicted by the long channel theory of MOSFET noise [48]. Here, go and gdo are the device output

conductance values in the saturation region and for zero vds, respectively. For simplicity, the two

transistors in each inverter are assumed to be properly sized to be equivalent. In its off state, TE, the

inverter is in equilibrium and can be replaced by a resistor of  because its output conduc-

tance is dominantly determined by the conducting device (Fig. 21).

In this model, the interstage noise effects are neglected. That is, variations of the voltage on

node A do not affect the voltage on node B regardless of the inverter’s state. For simplicity we

3 2gdo( )⁄
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+-

Fig. 21: A ring oscillator modeled as a switching-based oscillator. Dominant noise sources are also
demonstrated.
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assume that the electrical properties of NMOS and PMOS transistors are identical. Furthermore,

each inverter is assumed to switch when its input voltage reaches vdd/2 (Fig. 21). These assump-

tions do not affect the general validity of the derivation.

To calculate phase noise one first finds the variance of the control voltage right before the

switching moment. Since we have assumed that the switching takes place when the voltage

reaches vdd/2, the value of the control voltage is a deterministic variable after each switching. We

can then use (12) with  repeatedly for various regions of one half-period, starting with the

second half of RT1, to find the variance of voltage at the new switching time. Fortunately certain

simplifications are possible in the case of our model. According to (12), if the equilibrium time,

TE, is much longer than the time constant , the variance of the control voltage at the end of

this time interval is . This condition is usually well satisfied because gdo is a relatively large

number. The approximation further improves for ring oscillators with many inverters.

During the first half of TT2, the output impedance of the inverter is 1/go which is normally large.

Consequently, we can assume that TT2/2 is much smaller than C/go in this region and we can

replace the exponential terms in (12) by their series expansion. The variance of control voltage at

the switching time is then given by

, (27)

where we have used , , ,  and  in (12). Since we

assumed that current is constant during the on state, (27) can be rewritten as

, (28)

and using (13) the variance of the switching time jitter is

. (29)

Since there are 2N independent switching events in each period, the total period jitter will be

, (30)
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where N is the number of inverters in the oscillator. The nominal period of the signal from this

oscillator is equal to the sum of all delays from individual inverters:

. (31)

After eliminating Ic between (30) and (31) and using the long-channel expression for gdo in (30),

the period jitter is found to be

. (32)

For calculation of the minimum phase noise for ring oscillators, we assume the optimum case of

,  and note that . We can then find the minimum jitter and

minimum phase noise, just as we did for other relaxation oscillators:

(33)

and

. (34)

 3.3.3.   Phase noise in coupled oscillators
Coupled oscillators are used for several applications, including high-resolution delay circuits

and multi-phase clock generators in digital systems [49]. Phase noise in these oscillator topologies

(in their most general form) has been studied elsewhere and it is shown that the phase noise of a

network of M optimally-coupled, identical oscillators is M times smaller than that of each individ-

ual oscillator working by itself [50].

The time-domain analysis presented here supports this result. In a set of M coupled oscillators, if

the random noise delays the transition at any of the nodes in any of the oscillators beyond the nom-

inal transition time, the transitions in the corresponding node in other oscillators accelerate the

transition through coupling. In an optimally-coupled set of oscillators, the final jitter in each of the

oscillators is the average of what the jitter would be in an individual oscillator working by itself.

Since the jitters in individual oscillators are independent random variables, the variance of their

average is 1/M of the jitter in each single oscillator working by itself. This finding, combined with

(14), dictates that the phase noise of a set of M optimally-coupled oscillators is 1/M of the phase
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noise in each oscillator. 

The coupling of oscillators reduces the phase noise at the expense of higher power dissipation.

A network of M coupled oscillators exhibits M times smaller phase noise compared to single oscil-

lators while it also consumes M times more power. Equations (25) and (34) show that a suppres-

sion factor of M in the phase noise of individual oscillators is already achievable through

increasing the power consumption by the same factor. The use of coupling is thus not particularly

useful for phase noise suppression because it does not reduce the minimum achievable phase

noise.

3.4.   CLOSE-IN PHASE NOISE IN ELECTRICAL OSCILLATORS

One of the advantages of time-domain analysis of phase noise is that it is based on fewer

approximations compared to frequency-domain analysis. The results of this method are valid over

a wider range of spectrum. This characteristic makes it possible to study the properties of phase

noise at close-in frequencies using time-domain analysis. As we will see shortly, some of these

properties are distinctly different from those of far-out phase noise.

“Close-in” is defined at small offset frequencies relative to the oscillation frequency, where the

phase noise spectrum does not have a 1/f 2 shape. The analysis of phase noise at these frequencies

is usually more complicated than that of the far-out phase noise mainly because close-in phase

noise is, by definition, affected by low-frequency colored noise, such as generation/recombination

noise and  noise. 

The analysis of close-in phase noise is often regrettably avoided in the literature on the ground

that phase-locked-loops, which are used in most communication systems, suppress the phase noise

at small offset frequencies. However, with the emergence of submicron MOSFETs with 1/f-noise

corner frequencies on the order of 100 MHz, close-in phase noise can have a noticeable effect on

the overall performance of future communication systems13. Furthermore, a deep understanding of

phase noise demands its characterization at all offset frequencies.

In this section, we use a simple, practical relaxation oscillator to study the properties of close-in

phase noise. We first present the analytical formulation of the phase noise of the signal shown in

13.  The spectrum of phase noise generated by 1/f-noise has a 1/f 3 shape. Thus, a large 1/f-noise 

corner frequency causes a large 1/f 3 corner frequency in phase noise spectrum. By definition, this 
extends close-in phase noise region to larger offset frequencies. 

1 f⁄
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Fig. 15. This signal can represent the output of a relaxation oscillator as well as the output of an

arbitrary oscillator after passing it through a limiting amplifier. Thus, many of the phase noise

properties of this signal are generally applicable to all kinds of oscillators. We first introduce a

relaxation oscillator whose output can be represented by the signal given in Fig. 15. We then

present the analytical formulation of phase noise due to white noise and low-frequency colored

noise. Unless otherwise stated, our formulation assumes that the signal of Fig. 15 is generated by

the simple relaxation oscillator shown in Fig. 22. This assumption does not affect the generality of

the final results. Using these formulations, we discuss various properties of close-in phase noise as

well as various ways of suppressing the effect of low-frequency, colored noise on phase noise.

This discussion provides useful insight about the frequency stability of electrical oscillators and

practical guidelines for designing low-phase-noise oscillators. Some of the formulations provided

in subsection 3.4.1 are already briefly presented in previous parts when we studied the minimum

achievable phase noise of this oscillator in absence of colored noise. These parts are repeated here

for completeness.

 3.4.1.   Formulation of jitter in relaxation oscillators
The relaxation oscillator of Fig. 22 is composed of a Schmitt trigger comparator in an RC feed-

back loop. The details of the operation of this oscillator were explained earlier in this chapter. In

this section we assume that the output of this oscillator has a duty cycle of fifty percent.

For the analysis of jitter and phase noise of this oscillator, we assume that the only noise source

of the system is in, which is in parallel with the resistor (the comparator is noise-free). The jitter is

the result of the uncertainty of the capacitor voltage at the end of each half period, which is in turn

Fig. 22: (a) A typical RC relaxation oscillator. (b) The Schmitt comparator transfer function. (c) The
capacitor voltage waveform.
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the result of the resistor noise. The value of the capacitor voltage at the start of each half period is

a deterministic variable because the comparison levels v1 and v2 are assumed to be noise-free. We

define the series of random variables ∆vi to characterize the uncertainty of the capacitor voltage at

the end of the ith half-period. Using (10), these random variables as functions of the noise source

and circuit parameters are given by

, (35)

where we have approximated the duration of the ith half-period by its nominal value. Using this

equation, we can calculate the fluctuation properties of ∆vi’s:

(36)

and

. (37)

The random variable ∆τi characterizing the fluctuations of the duration of the ith half period is

merely ∆vi divided by the slope of the capacitor voltage at the transition time if we use the linear

approximation. Consequently, we can write the half-cycle-to-cycle jitter as

, (38)

where Si is the slope of the capacitor voltage at the end of the ith half-period (a signed number).

Evaluation of this integral is possible only after knowing the fluctuation properties of in. 

 3.4.2.   Formulation of phase noise generated by white noise

In the case of white noise, , where inw is the amplitude of the sin-

gle-sided PSD of the white noise source. Equation (38) dictates that in this case the

half-cycle-to-cycle jitter is zero for any . That is, the variations of the duration of all half-peri-

ods are mutually independent. By setting  in (38), the half-period jitter is found to be
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(39)

where, for simplicity, we have assumed that the slope of the waveform is the same for all falling

and rising edges. Using (9) we can calculate the period jitter as

. (40)

The variance of the duration of k consecutive periods, called cumulative jitter, is k times this

number and grows linearly with k (or, equivalently, with the total duration under consideration).

This result is essential for the formulation of phase noise presented in this sub-section. Although

our proof of the linear dependency of cumulative jitter on k is limited to the circuit of Fig. 22, it is

generally a valid approximation if the following conditions are satisfied. First, all of the noise

sources in the system should be white, and second, all poles of the system should be significantly

higher in frequency than the offset frequency at which we calculate phase noise. The proof of this

supposition is presented in Appendix B.

Knowing that the variance of the cumulative jitter grows linearly with time, we can analytically

calculate the PSD of the signal given in Fig. 16. This analysis is performed in Appendix A for

Guassian distributed jitter, and it is shown that the spectrum of phase noise around the first har-

monic can be approximated by

. (41)

Equation (41) indicates that the phase noise around the first harmonic can be approximated by a

Lorentzian function. Stratonovich [41] shows that the phase noise of a noisy sinusoidal signal can

also be approximated by such a function. In fact, this result is quite general and applies to any peri-

odic signal (regardless of its shape) as long as the square root of the period jitter is much smaller

than the period and the cumulative jitter grows linearly with time. The first of these conditions is

satisfied in any circuit that one could practically call an oscillator. The second condition was dis-

cussed earlier.

Equation (41) shows that the far-out phase noise drops as  when  is the off-

set frequency. This far-out phase noise behavior is well-known from measurement results [51] and
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Phase Noise in Oscillators
other theoretical work [42] and is independent of the choice of definition for phase noise. The

phase noise, however, becomes flat in the vicinity of the carrier. This latter result is dependent

upon the choice of definition for phase noise.

 3.4.3.   Formulation of phase noise generated by colored noise

In the presence of colored noise, the formulation of phase noise becomes complicated because

the autocorrelation of the in is no longer a delta function and cycle-to-cycle jitter can be non-zero

for . In this subsection, we assume that the autocorrelation function of colored noise is Lorent-

zian. The effect of 1/f noise can be captured by modeling it as the sum of several Lorentzian

sources.

The power spectral density and autocorrelation function of a single Lorentzian-shape current

noise source are given by  and ,

respectively, where inl is the amplitude of the single-sided PSD at ω=0, and θ determines how fast

the autocorrelation function drops with time. Using this autocorrelation function, (38) reduces to:

(42)

and 

(43)

for any . 

The above equations can be combined with (9) to calculate the period jitter and cycle-to-cycle

jitter. This calculation shows that period jitter can be minimized by equalizing the slope of the sig-

nal at all transitions (rising and falling edges). This result is consistent with previous findings [51]

and can be explained intuitively. The change in the duration of each half-period due to noise can be

compensated by the change in the duration of the adjacent half period because the fluctuation

properties of the noise source vary slowly with time, and the Si’s have different signs at the end of

two consecutive half-periods. In the fully symmetric case, , and the effect of

low-frequency colored noise is greatly suppressed.

In the fully asymmetric case  and  is finite. Since we are usually interested in the

effect of low frequency colored noise on close-in phase noise, we have  and . The
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calculations of cycle-to-cycle jitter using these relationships for the fully unsymmetrical case leads

to

, (44)

where Aθ is given by 

. (45)

Equation (44) is exact only for .

Equation (44) shows that the cycle-to-cycle jitter drops in a manner similar to a Lorentzian auto-

correlation function. This result is essential for the phase noise formulation presented in this

sub-section. Although our proof of this phenomenon is limited to the circuit of Fig. 22, it can be a

reasonable approximation for many other circuits if the following conditions are satisfied. First,

the only noise source of the circuit should be a Lorentzian noise, and second, the lowest-frequency

pole of the system should be much larger than the offset frequency at which we calculate phase

noise (Appendix B). Thus the validity of the phase noise formulation presented in this chapter is

not limited to the circuit of Fig. 22.

The phase noise of a signal with cycle-to-cycle jitter given in (44) is calculated in Appendix A

as

, (46)

which is in fact the sum of several Lorentzian functions. Cθ, Dθ and Eθ are given by

, (47)
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(48)

and

. (49)

In the presence of multiple independent noise sources in a system, the total cycle-to-cycle jitter

will be the sum of the cycle-to-cycle jitters generated by individual sources. It is easy to show that

in this case the cumulative jitter is also the sum of the cumulative jitter generated by individual

sources. After calculating the accumulated jitter, we can calculate the phase noise using the

method presented in Appendix A.

 3.4.4.   The characteristics of close-in phase noise
In this section we use our phase noise formulation to discuss the properties of close-in phase

noise. We first examine the general shape of the phase noise spectrum in the presence of various

kinds of noise sources and discuss the validity of some of the generally-accepted beliefs about this

spectrum. We then explain the differences between the properties of the close-in phase noise and

that of the far-out phase noise. Our analysis shows that some of the approximations, which are

valid for far-out phase noise, are not acceptable for close-in phase noise. Finally, we discuss vari-

ous ways of suppressing the effect of low-frequency, colored noise on phase noise.

Contrary to popular belief, the spectrum of the phase noise is not necessarily Lorentzian in the

absence of colored noise. According to our formulation, the phase noise has a Lorentzian shape in

the vicinity of the oscillation frequency only if we assume that the cumulative jitter grows linearly
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with time. As discussed earlier, the validity of this assumption requires that not only all of the

noise sources in the system be white but also all poles of the system lie significantly beyond the

offset frequency at which we calculate the phase noise. This second condition is not necessarily

satisfied for circuits containing only white noise sources. In fact, from a circuit-theory point of

view, a colored noise source can often be constructed using a network of white noise sources and

noise-free electronic components. Fig. 23 shows the reconstruction of a Lorentzian noise source as

an example. The construction of 1/f noise sources is straightforward if we notice that a 1/f spec-

trum is the sum of several independent Lorentzian sources. Using such construction networks, we

can start from an arbitrary oscillatory system and replace the colored noise sources with their

white-noise equivalent networks to arrive at a system with only white noise sources. We would

expect the phase noise spectrum of this system to have a Lorentzian shape if the absence of colored

noise sources were a sufficient condition for having a Lorentzian-shape phase noise spectrum.

That is, we would expect the phase noise to be Lorentzian in all systems. However, this result is

experimentally shown to be invalid [51].

The fallacy of this result can also be shown using our phase noise formulation. This formulation

in the presence of colored noise sources shows that the phase noise of a system with one Lorentz-

ian noise source is the sum of several Lorentzian functions. Fig. 24 shows such a phase noise spec-

trum along with the PSD of the noise source generating this phase noise. The numerical

parameters used in this simulation are given in the inset of this figure. Note that the spectrum of

phase noise has a 1/f 4 shape at far-out frequencies.

Fig. 25 shows that in the co-presence of independent Lorentzian and white-noise sources, the

spectrum of phase noise eventually returns to a nearly-1/f 2 shape at far-out offset frequencies. This
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result is expected because at high frequencies the white noise eventually dominates the Lorentzian

noise. This analysis is performed using the superposition properties of cumulative jitter, as

explained earlier. The numerical parameters used in this simulation are the same as the ones given

in the inset of Fig. 24.

One of the generally-accepted approximations about the spectrum of far-out phase noise is

superposition [51]. Unfortunately, this approximation is invalid for close-in phase noise. To see

this, consider the oscillator in Fig. 22 with only one noise source .

The phase noise of this oscillator is given by (41) in the vicinity of the fundamental frequency. We

can rewrite the noise source as . According

to superposition, the spectrum of phase noise would be the sum of the phase noise spectra gener-

ated by individual sources (with appropriate normalization). Fig. 26 shows the phase noise calcu-
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lated using superposition and the directly-calculated phase noise. This graph clearly shows that the

superposition approximation is valid only for far-out phase noise and breaks down at small offset

frequencies.

Our analysis of phase noise can explain why the effect of low-frequency, colored noise on oscil-

lators’ phase noise can be suppressed by noise source switching. To suppress the effect of

non-white noise, we need to force the cumulative jitter to grow linearly with time. The cumulative

jitter grows linearly with time if, and only if, the jitter in each period is independent of the jitters of

the previous cycles. If the system does not have a memory of the jitter induced in the previous

cycles, its phase noise will be Lorentzian and the effect of the colored noise will be suppressed.

The memory of the system can be reduced by periodically switching the noisy devices on and off.

For example, the basic device physics for MOS devices shows that switching these devices moves

the relative location of the Fermi level to the trap sites responsible for 1/f noise (Fig. 27) [52].

Thus, the trap sites that are located in the vicinity of the Fermi level during the ‘on’ state move to

locations significantly higher or lower than the Fermi level due to switching and their occupancy

becomes relatively deterministic during the off time. Once the device is switched back on, its noise

properties are only functions of the initial conditions generated during the off time and are rela-

tively independent of what had happened in the previous on-time. In effect, if we periodically

switch the device on and off, it loses its memory of what had happened in the previous ‘on’ times,

which means that it will have less colored noise. The experimental data supports this suppression

of 1/f noise in switched MOS circuits [53][54]. This phenomenon is partially responsible for the

experimentally-observed suppression of 1/f 3 phase noise in single-ended ring oscillators [51].

Another way of suppressing the effect of low-frequency, colored noise on phase noise is sym-

metrization. Since low-frequency colored noise sources have a rich content at low frequencies,

Ef

Ec

Ev

Ec
Ef

Ev

Traps (responssible 
for 1/f noise)

Transistor On Transistor Off

Fig. 27: Relative position of traps and the Fermi level in On and Off states.
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their fluctuation properties change slowly with time. Consequently, if we symmetrize the signal in

terms of duty cycle and rise/fall slope, we can compensate for the effect of jitter in one half-period

by its effect in the other half-period. However, the symmetrization techniques can only be useful

for the noise sources which are active during the whole period. For example, this technique is

effective for suppression of the effect of the noise sources associated with the tail current source in

differential ring oscillators. On the other hand, this technique is ineffective for noise sources which

are present only in half of the period such as MOSFET device noise in single-ended ring oscilla-

tors. In this case, the symmetrization of the waveform has an insignificant effect on phase noise

because the noise of the PMOS and NMOS devices are independent, and only one of them is

active in each half-period. In single-ended ring oscillators, the symmetrization can only suppress

the effect of the noise of the short circuit time during which both devices conduct. It is then clear

that the main mechanism of suppression of phase noise in single-ended ring oscillators is the

switching effect described earlier.

The study of close-in phase noise, presented in this section, is one of the many applications of

time-domain phase noise formulation. Having the advantage of being remarkably simple, this for-

mulation can be applied to many practical problems. In the next chapter we apply this method to

an asymmetrical ring oscillator to indirectly characterize MOSFET noise. The indirect character-

ization of MOSFET noise provides a fast and reliable method for studying noise in emerging

CMOS technologies.

3.5.   SUMMARY

The analysis of phase noise in electrical oscillators and its relationship to device noise have been

studied. After discussing the formal definition of phase noise we presented a time-domain formu-

lation of phase noise which is especially accurate for switching-based oscillators. We used this

method to predict the minimum achievable phase noise of different types of RC oscillators after

showing that a lower limit is imposed on the phase noise of such oscillators by the fluctuation-dis-

sipation theorem of thermodynamics. We then used this method to study the properties of close-in

phase noise which is crucial for analyzing the effects of low-frequency, colored noise on the fre-

quency stability of electrical oscillators. We showed that these properties are distinctly different

from those of far-out phase noise commonly studied in the literature using frequency-domain anal-

ysis. In the next chapter, we will use our time-domain phase noise formulation to indirectly charac-

terize device noise through phase noise measurement.
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 CHAPTER 4:

SIMULATION AND EXPERIMENTAL RESULTS

Verification of the accuracy of noise models is arguably the most difficult problem in noise anal-

ysis. The number of parasitic elements and environmental variables that can affect the outcome of

a noise measurement experiment is virtually countless. In order to obtain reliable results, these ele-

ments and variables should be de-embedded, and accounted for or controlled during the course of

the experiment. Because of the complexity of such experiments, there are usually endless argu-

ments about the validity of any experimental noise data reported in the literature.

To circumvent this problem, compact noise models are sometimes validated using detailed

device simulations. In this approach, we use device simulators with various degrees of complexity

to verify a compact model. These simulators are in turn validated using theoretical and experimen-

tal means. The advantage of this method is that there are fewer parasitic elements and uncertainties

to be accounted for. Furthermore, environmental parameters such as temperature are much easier

to control in these simulators. As we will see shortly, a graph of noise versus a wide range of tem-

perature conditions can reveal crucial information about major noise sources in MOSFETs. Such a

plot can be generated easily using device simulation while it is almost impossible to generate using

experimental data.

In this chapter we first validate our compact MOSFET noise model using detailed hydrody-

namic simulations. Transistors as small as 60 nm in printed gate length are used in these simula-

tions. The results of these simulations are presented after describing the hydrodynamic device

simulator used in this study.

We then turn to our phase noise formulation and verify its accuracy using previously-published

phase noise data. Some of the implications of our minimum achievable phase noise formulation

are also discussed in this section. To get the most benefit out of our phase noise formulation, we

present this section independently of the rest of this chapter. Thus, the reader who is interested

only in phase noise formulations can skip Section 4.1.
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The connection between our MOSFET and phase noise formulations will become clear in

Section 4.3. In this section, we experimentally validate our MOSFET noise model using indirect

noise characterization through phase noise measurement. We first introduce an asymmetrical ring

oscillator for which the time-domain phase noise formulation provides accurate phase noise pre-

dictions. We then use phase noise measurements to estimate the noise of the MOSFETs used in this

oscillator. As discussed in Chapter 1, this method facilitates noise characterization and provides a

high level of relative accuracy which suffices in many practical cases, including those presented in

this work. We compare MOSFET noise for various channel lengths and under different biasing

conditions to verify the predictions of our model. Finally, we discuss phase noise performance of

future ring oscillators.

4.1.   AMPLITUDE NOISE IN MOSFETS

 4.1.1.   Hydrodynamic device simulators
Device simulators are powerful tools for predicting the behavior of an electronic device before it

comes into existence. A device simulator is a TCAD tool which takes impurity profiles and bound-

ary conditions (such as terminal voltages) as inputs and provide deterministic and random fluctua-

tions of terminal currents as outputs. Today, these simulators are commercially available with

various degrees of complexity. Such simulators normally solve the Poisson equation along with a

carrier transport model to find the carrier flow in the device. Once carrier flow is calculated, termi-

nal currents can be found using the Shockley-Ramo theorem [64][65].

One of the most important parts of a device simulator is its carrier transport model which

describes the relationship between electric field and carrier movement. Various carrier transport

models can be used in device simulators. The origin of all of these models is the Boltzmann trans-

port equation (BTE). The BTE is, in principle, the continuity equation for the carriers in the

six-dimensional position-momentum space [21]. In the absence of generation/recombination, BTE

can be written as

, (50)

where f is the probability distribution function of finding a carrier at position r with momentum p,

v is carrier velocity and F is the external force. For noise analysis we also need to include carrier

velocity and density fluctuation terms in this equation so that we can capture current fluctuations.

These terms will be omitted in our simplified discussion here.
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The BTE is a general relationship between carrier flow, external force and carrier concentration,

and is thus very difficult to solve in its raw form. To find more useful relationships, we usually

multiply the BTE by a function θ(p) and integrate both sides of the equation over the momentum

space to arrive at simpler relationships known as balance equations. For example, defining θ(p)=1

leads to balance equations for carrier density. Similarly defining θ(p)=p, and θ(p)=E(p)14 leads to

balance equations for momentum and energy density, respectively [21].

Using some simplifying assumptions, balance equations can lead us to the transport equations

needed for device simulators15. The simplest set of transport equations which can be obtained

using this method are the famous drift-diffusion equations:

(51)

and

, (52)

where µ and D are the mobility and diffusion constant, respectively, while n and p stand for elec-

tron and hole concentrations. 

Drift-diffusion equations, although very helpful in many practical applications, have a signifi-

cant deficiency. These equations ignore carrier heating and non-local transport effects. Therefore

this model fails when the gradient of carrier temperature is non-zero [21], a situation which is

observed in short-channel MOSFETs.

To obtain a more accurate transport model for small devices, we need to treat balance equations

with more accurate approximations to arrive at a new transport model known as the hydrodynamic

model [21]. The hydrodynamic model captures many non-local effects and is more accurate than

drift-diffusion equations when applied to small-scale devices16. Eventually, this model will also

fail for very small devices where Monte-Carlo simulators have to be used. Monte-Carlo simulators

track the movement of individual carriers one by one and provide the most reliable numbers

among all device simulators. Unfortunately, these simulators are very slow and thus cannot be

used as everyday tools.

In this work we use a hydrodynamic simulator which is specially tailored for noise simulation.

14.  E(p) is the energy of a particle with momentum p. 

15.  For a thorough discussion, please consult [21].

16.   A drawback of this model is that it involves relaxation rates which are normally very hard to 
estimate accurately; they are often treated as fitting parameters. This deficiency does not affect the 
validity of our results on the behavior of MOSFET noise.

Jn nqµnE qDn n∇+=
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In this simulator, carrier fluctuation terms are first calculated using lengthy Monte-Carlo simula-

tions for various impurity levels and electric fields. These numbers are then stored in a lookup

table for later use by a hydrodynamic simulator. It is shown that this method gives good accuracy

for noise analysis and has the advantage of being reasonably fast because the fluctuation terms are

calculated only once using the Monte-Carlo simulator. The details of this simulator is discussed in

[61] and [62].

 4.1.2.   Hydrodynamic simulation of noise in MOSFETs
For the hydrodynamic simulations presented in this work we have selected bulk devices with

channel lengths ranging from 60 nm to 2000 nm. The two ends of the length range represent

short-channel and long-channel MOSFETs, respectively. While they do not operate like ideal short

and long-channel MOSFETs, these devices are good representatives of the two extremes. As dis-

cussed earlier, the hydrodynamic transport model fails at very small channel lengths preventing us

from looking at shorter devices.

The devices used in this work are the same as the device used and discussed in [63] which is

scaled (using bulk doping as a parameter) to have a constant off-current of 5e-3 A/cm at 1.0 V

drain and 0 V gate bias at room temperature. We have not changed the source/drain structure with

gate length. Unless otherwise stated all data are for vgs=0.8 V, vds=1 V and temperature=300 K.

Fig. 28 shows the dc characteristics of short and long channel devices used in this study. In

60 nm devices, current depends almost linearly on vgs resulting in a nearly constant transconduc-

tance, as we expect from short-channel devices. The slight drop in transconductance at large gate

voltages is due to the strong perpendicular field which degrade carrier mobility. In 2000 nm

devices, the transconductance increases with increasing gate voltage as expected for long-channel

MOSFETs. Although the device does not exactly follow the square law relationship, it is a good

Fig. 28: Dc characteristics of long-channel and short channel devices used in hydrodynamic simulations.
Drain voltage is kept constant at 1 V.
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representative of long-channel MOSFET behavior. 

The temperature dependency of drain current noise PSD reveals crucial information about the

major noise phenomenon in MOSFETs. For example, if the major noise mechanism is thermal

noise, its noise power usually increases with temperature. Such a device often shows inferior noise

performance at high temperatures. On the other hand, if the major noise mechanism is a non-ther-

mal effect, the noise-temperature dependency will be different. For instance, if the major noise

source is shot noise, the noise power will be independent of temperature as long as the current flow

is constant. Thus a graph of noise versus temperature is very useful for determining the dominant

noise phenomenon in MOSFETs.

Fig. 29 shows a graph of noise PSD versus temperature for the 60 nm and 2000 nm devices

studied in this work. The graphs are generated using a hydrodynamic simulation. To have a fair

comparison, noise PSD is normalized to device current. This is equivalent to using wider devices

at high temperatures so that the total device current levels remain constant. For long-channel

devices, this normalization compensates for the change of gdo with temperature. Fig. 29 shows that

normalized noise has a strong component that is almost linearly proportional to temperature in

long-channel devices17. This observation suggests that the dominant noise source in these devices

is thermal noise, as expected. On the other hand, noise power drops at high temperatures in

short-channel devices suggesting a non-thermal effect in these devices. As we explained earlier,

the dominance of the potential barrier next to source leads to the appearance of shot noise in these

devices which results in a distinctive temperature dependency of noise in these devices.

Fig. 30 compares MOSFET noise to the long-channel prediction and full shot noise at different

17.  For 2000 nm devices, the graph of Fig. 29, if extrapolated, does not intercept zero at 0 K. Thus 
these devices are not ideal long-channel devices, consistent with their I-V relationship. 

Fig. 29: Noise PSD normalized to the device current versus temperature for long and short-channel
devices. Source and drain voltages are kept constant at 0.8 V and 1 V, respectively.
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temperatures for short and long-channel devices. Note that the noise power spectral density is not

normalized to current in this and the following graphs. While the drain noise of the 2000 nm-long

devices closely matches long-channel predictions, the noise of the 60 nm devices drops similar to

the shot noise and is always smaller than full shot noise. In these devices, drain noise drops faster

than full shot noise at elevated temperatures. This is because at high temperatures, the number of

scattering events in the channel increases due to lattice scattering, resulting in greater suppression

of shot noise as explained in Chapter 2.

To better understand the origin of noise in MOSFETs, we also study the dependency of drain

current noise on drain voltage. Fig. 31 shows drain current noise versus drain voltage for short and

long-channel MOSFETs at a constant gate voltage of 0.8 V. In long-channel devices, the drain cur-

rent noise decreases with increasing drain voltage, as expected from the long-channel noise formu-

lation. On the other hand, drain current noise of the short channel device monotonically increases

with drain voltage. This behavior can be explained using our MOSFET noise model. With increas-

0

4E-20

8E-20

1.2E-19

1.6E-19

2E-19

100 200 300 400 500 600

Fig. 30: Actual drain noise of a MOSFET, (1), compared to the classical prediction, (2), and full shot
noise, (3) for short and long-channel devices. Source and drain voltages are kept constant at
0.8 V and 1 V, respectively.
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ing drain voltage, drain current increases which results in the increase in drain current noise due to

the existence of partially-suppressed shot noise. 

Fig. 31 suggests that the excess noise in short-channel MOSFETs cannot be due to carrier heat-

ing or strong electric field effects. If these phenomena were responsible for excess noise, we would

expect the noise to initially drop at low drain voltages before increasing at higher drain voltages.

This is because at low drain voltages, the device does not experience a strong electric field or car-

rier heating and thus it should behave similar to a long-channel device at small drain voltages.

Since the noise of the short-channel device increases monotonically with drain voltage, it is hard to

explain this excess noise based on carrier heating or strong electric field because at small drain

voltages these effects are insignificant.

A comparison between the drain noise of a short-channel MOSFET (Fig. 31) and that of a car-

bon nanotube (Fig. 3 in [66]) reveals striking similarities. In fact, the fundamental phenomena

responsible for noise in both devices are the same. In both cases nearly-independent injection of

carriers from one terminal to the other terminal leads to the appearance of shot noise which is con-

sequently partially-suppressed due to feedback.

A larger number of scattering events in the channel also results in heavier suppression of shot

noise at large values of gate voltage. Fig 32 shows ks and γ at different gate voltages. As can be

seen in this figure, the shot noise suppression factor drops at high gate voltages, a behavior that can

be explained by our physical argument about noise in short-channel MOSFETs. On the other hand,

the dependency of γ on gate voltage cannot be easily explained. This results in a great deal of con-

fusion when various authors report this factor (usually for different biasing conditions) and try to

compare the results.

To quantitatively verify our compact model, we present in Fig. 33 a graph of noise in a

Fig. 32: Noise factor and shot noise suppression factor for a 60 nm MOSFET versus gate voltage at
vds=1 V.
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short-channel (60 nm) MOSFET versus gate voltage and compare it to our compact model predic-

tion given in (7). vT is extracted from Fig. 28 while β and In1 are fitting parameters. The numerical

value of β is found to be 0.65. The maximum difference between the noise power predicted by

eq. (7) and the actual device noise power is less than 3 percent or 0.13 dB. It is instructive to note

that the best linear fit (as suggested by the long-channel prediction) would result in an error of

more than 13 percent or 0.53 dB.

Using the data extracted from these simulations, we can discuss the overall noise performance

of short-channel MOSFETs. As a figure of merit we study input-referred noise in these devices18.

Given the distinctly different noise-temperature dependency of short-channel device suggested by

Fig. 29, it is instructive to look at the input referred power of drain noise versus temperature.

18.  It is also possible to look at the minimum achievable noise figure of the device. However, this 
factor is also a function of gate noise and the correlation factor between the two noise sources 
which are not studied in this work.
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Fig. 33: Drain noise versus gate voltage compared to our compact model prediction for a 60 nm
MOSFET. The dashed curve shows our compact model prediction. Drain voltage is held constant
at 1 V.
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Fig. 34 shows such a graph for short and long-channel devices. To generate these graphs, both

drain noise and gm are normalized to dc current. As discussed earlier this is equivalent to using

wider devices at high temperatures so that the current level stays constant. The input-referred

power of drain noise increases monotonically for long-channel devices, as expected. On the other

hand, for short channel devices this power reaches a minimum at a specific temperature. For the

devices studied in this work, this temperature happens to be around room temperature.

4.2.   PHASE NOISE IN OSCILLATORS

We start verifying our phase noise formulation by looking at the phase noise of ring oscillators.

These oscillators can usually be modeled as switching-based oscillators as discussed in Chapter 3.

Table I compares the measurement results reported in [51] to the theoretical prediction of the min-

imum achievable phase noise (assuming long-channel MOSFET noise formulation) given by (34)

for the same power. The index numbers are the same as the ones assigned in [51]. N is the number

of stages and Lmin is the channel length of the shortest transistor in the circuit. The data is pre-

sented in descending order of Lmin. ∆PN is the difference between the minimum achievable phase

noise PNmin and the measured phase noise PNmeas.. Hereafter, this parameter will be referred to as

the “wastefulness factor”, a factor that gives a measure of the efficiency of the oscillator in terms

of the power-phase-noise trade-off. Note that the simple equation given in (34) is capable of pre-

dicting the phase noise within a few dB. This confirms the accuracy of the time domain phase

noise calculation method presented in this paper.

Table I shows that the wastefulness factors of these ring oscillators are smaller than 6 dB with

most numbers around 2 dB. This is much better than the relaxation oscillators as we will see

shortly. This table also shows that the wastefulness factor of a ring oscillator increases with

decreasing Lmin. This phenomenon can be attributed to higher short-circuit switching current in

faster transistors (when PMOS and NMOS transistors conduct at the same time) or to the higher

excess noise in short-channel MOS devices. The origin of this second phenomenon was discussed

earlier.

It is instructive to calculate the wastefulness of practical relaxation oscillators and compare it to

that of ring oscillators. The expression given in (26) provides the minimum achievable phase-noise

for the idealized version of the relaxation oscillator shown in Fig. 19. Most practical relaxation

oscillators are not implemented exactly in this fashion. Fig. 35 provides the schematic and the
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design parameters of a CMOS relaxation oscillator reported in [45]. Although this oscillator is not

exactly of the same form as the idealized relaxation oscillator given in Fig. 19, it can be modeled

as such. In the case of the oscillator of Fig. 35, the charging and discharging mechanism of the

capacitor is not through a resistor but rather through the current sources and the transistors. Never-

theless, these components are noisy and thus result in finite phase noise for this architecture. We

compare the measured phase noise of this oscillator to the minimum phase noise predicted by (26)

for the same power to get a measure of the power efficiency of the oscillator.

Fig. 36 compares the phase noise reported in [45] to the minimum achievable phase noise given

Table 1. Experimental results vs. theoretical prediction of minimum achievable 
phase noise at an offset frequency of 1MHz for the ring oscillators of [51].

Index
N

Lmin
µm

fo
MHz

Power
mW

PNmeas.
dBc/Hz

PNmin
dBc/Hz

∆PN
dB

Current
Starved

1 5 2 232 1.5 -118.5 -119.7 1.2 No

2 11 2 115 2.5 -126 -128 2 No

4 3 0.53 751 5.85 -114 -115.4 1.4 Yes

5 5 0.39 850 6.27 -112.6 -114.6 2 Yes

6 7 0.36 931 6.22 -111.7 -113.8 2.1 Yes

7 9 0.32 932 6.82 -112.5 -114.2 1.7 Yes

8 11 0.32 869 6.62 -112.2 -114.6 2.4 Yes

9 15 0.28 929 7 -112.3 -114.3 2 Yes

10 17 0.25 898 9.5 -112 -115.9 3.9 Yes

11 19 0.25 959 9.75 -110.9 -115.5 4.6 Yes

3 19 0.25 1330 25 -111.5 -116.7 5.2 No

Fig. 35: The schematic and design parameters of the relaxation oscillator reported in [45].

RR

IB
IB

C

W/L=100 µ/0.5µ
gm=1/84 S
R=275 Ω
C=0.6 pF
IB=3 mA
fosc=920 MHz
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by the second part of (26) under a constraint of constant power. To calculate Pmin, we have

assumed vdd=3.3 V, which is typical for a 0.5 µm technology. The minimum achievable phase

noise for this power level is -122.6 dBc/Hz and -136.6 dBc/Hz at 1 MHz and 5 MHz offset fre-

quencies, respectively. The measured values reported in [45] are -102 dBc/Hz and -115 dBc/Hz.

The wastefulness factor is around 21 dB for this oscillator at these offset frequencies.

A similar architecture is reported in [46] as a relaxation VCO, which draws 2.3 mA of current

from a 6 V power supply at 115 MHz (Fig. 5a and 7 in [46]). Under constant power, (26) predicts

that the minimum achievable phase noise for this oscillator is -139 dBc/Hz at an offset frequency

of 1 MHz. This is again 21 dB lower than the reported value of -118 dBc/Hz given in [46]. These

two examples illustrate that this particular relaxation oscillator configuration suffers a high waste-

fulness factor. The large wastefulness factor in these relaxation oscillators can be due to the contin-

uous current flow in these oscillator topologies. It is also possible that the presence of other noise

sources in the comparator lead to a high wastefulness factor. 

4.3.   INDIRECT CHARACTERIZATION OF MOSFET NOISE THROUGH 

PHASE NOISE DATA

Experimental verification of noise models is a very costly and time-consuming process. In this

section, we introduce a new indirect method for MOSFET noise characterization and use this

method to experimentally validate our MOSFET noise model. Being based on phase noise mea-

surements, this method is much faster than direct device noise characterization which requires

Fig. 36: Minimum achievable phase noise compared to the data reported in [45] for an oscillator with
fosc=920 MHz and Pmin=19.8 mW at T=300 K.
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accurate control of environmental variables and de-embedding of all parasitic elements. This is

because the phase noise of an oscillator is predominantly set by the noise sources and electrical

components inside the oscillation loop. Thus most off-chip parasitic elements have an insignificant

effect on the phase noise of integrated oscillators. Furthermore, phase noise measurement is a

comparative measurement between the signal power at the center frequency and that at a small off-

set frequency. Therefore, the effects of many parasitic elements such as cable loss and impedance

mismach are significantly canceled out in this measurement.

In the rest of this section, we first introduce an asymmetrical ring oscillator that will be used for

indirect characterization of device noise. This oscillator is designed to provide a predictable phase

noise power for a given device noise level. We present experimental results for the phase noise of

this oscillator and discuss its implications for noise in MOSFETs. These results substantiate the

predictions of our semi-ballistic MOSFET noise model presented in Chapter 2.

 4.3.1.   An oscillator for indirect MOSFET noise characterization
Figure 37 shows the asymmetrical ring oscillator designed for our experiment. This oscillator

satisfies most of the simplifying assumptions used in the time-domain phase noise formulation

presented in Chapter 3. Therefore the phase noise of this oscillator is accurately predictable using

that formulation.

As can be seen in Fig. 37, our asymmetrical ring oscillator is composed of seven inverters

capacitively loaded with large metal-insulator-metal (MIM) capacitors. These capacitors are

designed to be large enough to swamp the total capacitance of all internal nodes of the oscillator.

Therefore the total capacitance is guaranteed to be linear and have a weak temperature depen-

dency. Furthermore the capacitors are the same in different ring oscillators making it possible to

compare the device noise of MOSFETs with various channel lengths.

The seven inverters in the oscillation loop are sized differently, hence the name asymmetrical.

There are three 1X inverters and four 10X ones in the oscillation loop. With the loading capacitors

being the same, the outputs of the small inverters change much more slowly than the outputs of

large inverters (Fig. 37). Thus the frequency of oscillation is mainly determined by these inverters.

Also, because of the faster voltage rate of change, the noise of large inverters has an insignificant

effect on the phase noise of the oscillator. This is because the induced jitter at each stage is

inversely proportional to the square of the voltage rate of change at its output. Even though current

noise power at the output of the large inverters is approximately ten times stronger than that at the

output of the small oscillators, their jitter contribution is ten times smaller because of the faster

voltage rate of change. Therefore the formulations presented in Chapter 3 are valid for this oscilla-
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tor with N=3. 

Another feature of this oscillator is the fact that the gate to source voltage of the transistors in

small inverters is nearly constant for the duration of charge or discharge of the capacitors at their

outputs. This is because the large inverters are capable of charging and discharging their output

nodes much faster than are the small inverters. Since these nodes are the input to small inverters,

the gate to source voltage of the transistors in these inverters stays constant during most of the

charge and discharge time. This means that the biasing condition of the transistors whose noise

power set the oscillator’s phase noise is constant during their active time. This is an important vir-

tue of this oscillator which enables reliable indirect characterization of device noise though phase

noise measurements for various biasing condition.

As can be seen, the approximations involved in the time-domain formulation of phase noise pre-

sented in Chapter 3 are closely satisfied in this oscillator. Thus we expect this formulation to pro-

vide accurate numbers for phase noise for a given device noise level. Similarly, it should be

possible to back-calculate device noise power using the same equations after measuring phase

noise.

To study device noise at different channel lengths, three oscillators have been designed with the

same topology and the same loading capacitance but different channel lengths. We expect the

shortest transistors to be semi-ballistic devices and the longest MOSFETs to follow long-channel

Large
MIM Capacitors

10X1X 1X 1X10X 10X

Fig. 37: An asymmetrical ring oscillator for indirect characterization of device noise through phase noise
measurement.
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AABABAB
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MOSFET formulation. The width-to-length ratio has been kept constant in these oscillators to

ensure comparable oscillation frequencies. The transistors are built with multiple gate fingers to

minimizes gate resistance noise. In all cases, the noise power of the gate resistance is at least a fac-

tor of ten smaller than the device noise, according to the published data. All inverters in all three

oscillators are loaded by similar MIM capacitors of a nominal value of 500 fF. Thus the loading

capacitance is, to the first order, the same in these oscillators. 

Using circuit simulation, we have estimated the parasitic capacitance at internal nodes by

increasing the loading capacitance to 2CMIM and taking note of the frequency change. The effec-

tive value of the parasitic capacitance can be found using the following equation:

(53)

where fosc-old and fosc-new are the oscillation frequencies before and after increasing the loading

capacitance, respectively.

The oscillators described above are fabricated in a commercially-available 0.18 µm CMOS pro-

Cparasitic CMIM+

Cparasitic 2CMIM+
------------------------------------------------

focs new–

fosc old–
----------------------=

Table 2. Design parameters for the three asymmetrical ring oscillators.

Oscillator
Number

Ln_small
(µm)

Wn_small
(µm)

Lp_small
(µm)

Wp_small
(µm)

Ln_large
(µm)

Wn_large
(µm)

Lp_large
(µm)

Wp_large
(µm)

CMIM+Cparas.
(fF)

OSC1 0.18 0.28 0.18 0.56 0.18 2.8 0.18 5.6 525

OSC2 0.38 0.56 0.38 1.12 0.38 5.6 0.38 11.2 570

OSC3 0.54 0.84 0.54 1.68 0.54 8.4 0.54 16.8 625

OSC1

OSC2

OSC3

Fig. 38: Die photo of the three asymmetrical ring oscillators.

Functionality Test
Ring Oscillators forMIM

Capacitors
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cess technology. Figure 38 shows a photo of the die carrying these oscillators. Table 2 shows the

design parameters for these oscillators. Total capacitance per node for each of the oscillators

extracted from simulation is also reported in this table. In the following section we present the

result of phase noise measurement on these oscillators and their implication for noise in

short-channel MOSFETs.

 4.3.2.   Phase noise measurement results and discussion
We have measured the phase noise of the three oscillators, under various biasing conditions,

using an HP8563 spectrum analyzer. Figure 39 shows the spectrum of the three oscillators with a

typical supply voltage of 1.8 V after amplification using an RF amplifier. As presented in Table 2,

these oscillators have the same loading capacitance and transistor width-to-length ratio while their

transistor lengths are different. OSC1, OSC2 and OSC3 use 0.18 µm- 0.38 µm- and 0.54 µm-long

transistors, respectively. As can be seen in this figure, the oscillators with longer transistors have a

superior spectral purity and smaller phase noise. To measure the phase noise of these oscillators

accurately, we use the phase noise measurement module on HP8563.

Figure 40 shows the phase noise of these oscillators with a typical supply voltage of 1.8 V. All

of the phase noise measurements are performed at an offset frequency of 1 MHz from the center

frequency. This offset frequency is located in the 1/f 2 region of phase noise for all oscillators.

Because the effect of 1/f noise is thus insignificant, the phase noise at this offset frequency is pre-

dominantly set by the power in the white region of noise spectrum.

As can be seen in Fig. 40, the phase noise of the oscillators with longer channel lengths is gener-

ally smaller, a phenomenon which is expected because of the smaller noise power in these devices.

It is difficult to quantitatively estimate the effect of excess noise on the performance of these oscil-

lators from these numbers because the oscillation frequency and the loading capacitance are also

slightly different in these oscillators.

To quantify the effect of excess device noise, we compare the phase noise of these oscillators to

the minimum achievable phase noise of ring oscillators derived in Chapter 3. Fig. 41 presents such

a comparison. For the calculation of minimum achievable phase noise we have used the first part

of (34) assuming a room temperature of 300 K and N=3, as justified earlier in this section. Multi-

ple measurements have been performed to obtain more reliable results. The solid line connects the

average values. Fig. 41 shows that the difference between the minimum achievable phase noise

and the measured phase noise is larger at small channel lengths, with a difference of around 6.5 dB

between the longest and the shortest transistors. Thus we estimate that the noise power of the min-
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Fig. 39: The spectrum of three asymmetrical ring oscillators with different channel lengths (IF bandwidth
= 300 Hz).
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Fig. 40: Phase noise of three asymmetrical ring oscillators.
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imum-channel-length transistors in this technology is almost four times the noise power of transis-

tors with a channel length of three times minimum channel length in the same technology.

Using the time-domain formulation of phase noise, we can also calculate noise parameters of the

transistors from phase noise measurement data. Re-deriving (34) and assuming an unknown

gamma factor, we get

, (54)

where γ is the gamma factor of the transistors having the dominant effect on the oscillator’s phase

noise and PNmeas is the measured phase noise. All other parameters are the same as those defined

in (34). Using (54) we can use phase noise data to calculate the gamma factor of the transistors for

various gate to source voltages. Fig. 42 shows the result of such experiment for long-channel

(0.54 µm) devices. To change vGS, we change the supply voltage of the oscillator. For the calcula-

tion of gamma, we have assumed a room temperature of 300 K and N=3, as justified earlier. 

PNmeas ∆f( )
2 1 4γ+( )fokT

NCvdd
2 ∆f( )2

----------------------------------≈
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Fig. 41: The difference between minimum achievable phase noise and measured phase noise for
oscillators with different minimum channel lengths.
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Fig. 42 shows that the gamma factor of our long-channel transistors is generally greater than the

long-channel prediction of 0.67 and increases at high gate voltages. The deviation of the gamma

factor from its long-channel value and its increase at high gate voltages can be partly attributed to

measurement error (notice the scattered data points at each biasing condition). Furthermore, the

limited accuracy of our phase noise formulation might have led to some error. For example, our

formulation assumes that the NMOS and PMOS transistors are identical in this process. Although

we have tried to make these devices identical by appropriate sizing, this assumption can be a

source of error in gamma. This kind of error affects the absolute value of gamma but is less likely

to affect the relative value of gamma at different gate voltages because the same formulation is

used at all data points. The difference between the extracted gamma factor and long-channel pre-

diction can also be an indication of short-channel effects in these transistors. It is possible that

longer transistors are needed in order to arrive at the long-channel prediction of gamma. 

Although we have tried to increase the accuracy of the data of Fig. 42 through multiple mea-

surements, the variations, due to various sources of noise, are too large to draw a definite conclu-

sion regarding the dependency of gamma factor on the supply voltage. Nevertheless, by looking at

the solid line connecting the average values of the data points, one might infer that the gamma fac-

tor increases at high supply voltages. This can be due to hot electron effects at excessively high

supply voltages; these transistors are designed to work at a nominal supply voltage of 1.8 V.

We can also calculate the noise parameters of short-channel transistors from phase noise mea-

surement results. In this case, however, we cannot calculate gamma using (54) because this equa-

tion assumes long-channel I-V relationships which are not valid for short-channel devices.

Furthermore, as we discussed earlier, noise mechanisms in short-channel devices are different

from long-channel MOSFETs, making gamma a less relevant parameter.

As discussed in Chapter 2, the appropriate noise parameter for short-channel MOSFETs is the

shot noise suppression factor, ks. To extract ks, we need to re-drive (34) assuming an unknown

noise source of  for each MOSFET. It is easy to show that this derivation leads to

, (55)

where IC is the charging current and all other parameters are the same as those defined in (34). The

numerical value of IC can be found using (31). As before, we assume a room temperature of 300 K

and N=3 for this calculation.
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Fig. 43 shows the extracted value of shot noise suppression factor in short-channel MOSFETs. It

can be seen that the suppression factor is close to one in this case and its value drops at higher gate

voltage. The apparent slight increase of ks at vGS=2.2 and 1.9 is within the error bars and thus may

be artifacts. The overall drop of ks at high vGS values is consistent with our model. At high gate

voltages, carriers experience more scattering in the channel causing noise power to deviate more

heavily from full shot noise. This phenomenon has been discussed in detail earlier in this chapter.

It is instructive to predict the phase noise of ring oscillators assuming full shot noise for its

active devices. Using (55) we can show that for , phase noise can be written as

, (56)

where  is the thermal voltage. Comparing (56) to (34) shows that the phase noise of

oscillators built with full-shot-noise devices is always larger than that of those built with

long-channel MOSFETs unless vdd becomes smaller than 5.33vTH, a condition that is unlikely to

be satisfied for practical reasons19. Thus the phase noise of long-channel-MOSFET ring oscillators

will continue to be superior to those built using full-shot-noise devices. However, the phase noise

of the oscillators built using full-shot-noise devices gets smaller at lower supply voltages if the

power consumption is kept constant. On the other hand, the phase noise of long-channel-MOSFET

ring oscillators stays constant with decreasing supply voltage if the power consumption is kept

19.  At T=300 K, vTH=26 mV.
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constant. Thus, with the decrease of supply voltage in integrated circuits the difference is expected

to get smaller. To get the best oscillation performance from the devices which have full shot noise,

they should be designed with as low a supply voltage as possible while keeping the power con-

sumption constant.

4.4.   SUMMARY

Simulation and measurement results were used to verify the accuracy of the semi-ballistic

MOSFET noise model and the time-domain formulation of phase noise presented in the previous

chapters. We first used hydrodynamic device simulations to validate our MOSFET noise model.

We then used measurement results of the phase noise of ring and other relaxation oscillators and

compared the results to the predictions of our time-domain phase noise formulation. Finally, we

introduced an indirect device noise characterization method through phase noise measurement.

Using our time-domain phase noise formulation and an asymmetrical ring oscillator designed for

this purpose, we calculated device noise parameters and showed that their behavior is consistent

with the predictions of our model. We used the semi-ballistic MOSFET noise model and the

time-domain formulation of phase noise to predict the phase noise of future CMOS ring oscilla-

tors.
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Conclusions and Future Work
 CHAPTER 5:

CONCLUSIONS AND FUTURE WORK

We have developed a new model for noise in short-channel MOSFETs based on the transport

properties of ballistic MOSFETs. Unlike most existing MOSFET noise models, our model does

not rely on a long-channel noise formulation. Thus, it does not have to face continual revisions as

MOSFET scaling continues and short-channel effects become more severe. According to this

model, the major noise phenomenon in short channel MOSFETs is the shot noise generated by the

potential barrier next to the source. This noise is partially suppressed due to the finite channel

resistance in today’s semi-ballistic MOSFETs. We used historical studies on vacuum tubes to

avoid a re-derivation of the formulation that already exists for this noise component. Our model

shows that excess noise in short-channel MOSFETs is not solely a function of channel length.

Rather, it is a result of the competing effects of channel resistance and source injection efficiency.

This explains the wide range of reported gamma factors at nearly all channel lengths for the past

two decades. The model’s prediction of temperature and bias dependencies of MOSFET noise are

consistent with detailed hydrodynamic device simulation results. Our study shows that future bal-

listic MOSFETs are expected to have the high noise power of a BJT and the poor transconductance

of a MOSFET. These findings provide useful insight for the design of future MOSFETs and for the

prediction of the future of analog CMOS design.

To experimentally validate our model, we introduced a new indirect method for MOSFET noise

characterization based on the phase noise of electrical oscillators. As part of our indirect MOSFET

noise characterization method, we presented a time-domain formulation for phase noise. In this

formulation, the analysis of jitter is performed entirely in the time domain. This analysis is then

followed by the calculation of phase noise using pre-derived relationships between jitter and phase

noise. When applied to ring oscillators, this time-domain phase noise formulation provides a sim-

ple formula which predicts the phase noise of these oscillators within a few dB. The advantage of

having this accurate phase noise model is twofold: It can be used to study phase noise for a given
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device noise level and it can be used for indirect characterization of device noise from phase noise

data. Both applications were explored in this work.

Using the time-domain phase noise formulation, we have studied the characteristics of close-in

phase noise in ring oscillators and showed that some of the approximations which are routinely

used for far-out phase noise are not acceptable at close-in frequencies. Unlike the far-out phase

noise, the behavior of close-in phase noise is dependent upon the choice of definition between the

two widely accepted definitions of phase noise. We compared these two definitions of phase noise

and chose the definition of phase noise as the normalized PSD of the signal for this study. With this

definition, phase noise has a Lorentzian spectrum if we assume that the cumulative jitter grows lin-

early with time. This condition is satisfied if the system does not include any colored noise sources

or any poles at frequencies comparable to the offset frequency at which we calculate the phase

noise. Therefore, contrary to general belief, white noise sources can, in principle, generate

non-Lorentzian phase noise spectra. In practice, however, the deviation of phase noise spectrum

from a Lorentzian shape is usually an indication of the presence of a colored noise source because

well-designed oscillators rarely have a pole at frequencies comparable to the offset frequency at

which we measure phase noise.

The suppression of the effect of low-frequency colored noise on the oscillator’s phase noise is

possible by switching the noise sources on and off periodically or by symmetrization of the wave-

form. In single-ended ring oscillators, the switching of transistors is the main suppression mecha-

nism of the effect of 1/f noise on the phase noise. On the other hand, symmetrization is most

effective for the noise sources which are always on, such as the tail current source in differential

ring oscillators. These findings provide insight for efficient design of low-phase-noise electrical

oscillators.

To experimentally validate our MOSFET noise model using an indirect device noise character-

ization method, we designed asymmetrical ring oscillators whose phase noise is accurately pre-

dictable using a time-domain phase noise formulation. These oscillators were built with three

different channel lengths and it was shown that the phase noise of the oscillator built with

short-channel devices is considerably larger than that of the oscillators built with long-channel

devices for the same frequency and power consumption. Using the time-domain phase noise for-

mulation we calculated the gamma factor of long-channel devices and shot noise suppression fac-

tor of short-channel devices from phase noise data. These calculation show that the gamma factor

of long-channel devices is close to the classical prediction of 2/3 while the shot noise suppression

factor is close to unity in short channel devices. The bias dependency of this parameter is shown to
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be consistent with the predictions of our model. 

We also studied the phase noise of future ring oscillators. Our time-domain phase noise formula-

tion predicts that the phase noise of the oscillators built with full-shot-noise active devices is

always inferior to that of the oscillators built with long-channel MOSFETs. However the differ-

ence between the two is expected to shrink as lower supply voltages are used in the former cate-

gory of oscillators.

Recommendation for future work

Accurate noise modeling for short-channel MOSFETs is of the utmost importance for analog

circuit design. A full characterization of MOSFET noise normally includes quantitative analysis of

both drain noise and gate noise. The model presented in this work predicts the drain noise by

assuming a semi-ballistic carrier transport in the channel. In many applications, MOSFET gate

noise is also significant in determining the overall noise performance of analog circuits. Quantita-

tive analysis of this noise component should be possible based on the same assumptions made for

drain noise modeling. This is a problem that has not been addressed in this work and awaits to be

explored.

In the area of phase noise analysis, we have introduced a time-domain phase noise analysis

method and developed a formulation for switching-based oscillators. This method has the advan-

tages of being very simple and providing good intuition about the effect of various noise sources

on phase noise. In principle, it should be possible to apply this analysis to other oscillators such as

the Colpitts oscillator. This is because well-designed oscillators normally limit the contribution of

the active devices to a small time interval in every period to minimize their noise contribution.

This feature facilitates the calculation of jitter in the time domain. The development of a

time-domain formulation of phase noise for non-switching based oscillators is a problem that is

not addressed in this work and needs to be explored in a future study. 

The analysis of phase noise with colored noise sources is another problem which is not yet fully

addressed. We have developed the relationships between jitter and phase noise for white and

Lorentzian jitter spectra in Appendix A. However, to formulate phase noise generated by colored

noise sources such as 1/f noise, extraction of jitter-phase-noise relationships for such jitter spectra

is necessary. This interesting problem is very important in practice for achieving a fast and accu-

rate formulation of phase noise in circuits with colored noise sources.

Indirect characterization of device noise offers a new method and is presented in this work for

the first time. We applied this method to the white portion of MOSFET noise. However, this
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method is much more general and can be applied to many other problems. For example, given an

accurate formulation of phase noise generated by colored noise, we can use this method to indi-

rectly characterize 1/f noise. Given that this noise component is highly varied and hard to model,

this indirect characterization would be very useful from a practical point of view. Also, the noise of

emerging devices such as carbon nano-tubes can be studied using indirect characterization of

device noise through phase noise data. The oscillator that we introduced for this characterization in

this work is only one of many possible circuits that can be designed for this purpose. When work-

ing with emerging active devices, other oscillators can be designed to help with this indirect device

noise characterization. This is an emerging and promising method which can be of great impor-

tance as researchers continue their quest for new devices to replace MOSFETs.
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 APPENDIX A:

AN ANALYTICAL FORMULATION OF PHASE NOISE

In this Appendix, we present the analytical formulation of the phase noise of a noisy square

wave signal with noise-free amplitude and Gaussian-distributed jitter (Fig. 44). This signal can

represent both the output of a relaxation or ring oscillator and the output of a limiting amplifier fed

by an arbitrary periodic signal. Such amplifiers are routinely used for suppressing amplitude noise

in periodic signals. Thus, our formulation is applicable to many oscillatory systems. We consider

both white and Lorentzian jitter spectra and discuss the implications of the final equations in each

case. Our formulation will improve our understanding of the characteristics of phase noise at

close-in frequencies and will facilitate its calculation through time-domain jitter analysis.

To find an analytical expression for the phase noise of the stochastic signal x(t) shown in

Fig. 22, we first treat the function x(t) as the sum of rectangular pulses whose start and stop times

are a set of random variables:

, (57)

where u represents a step function, To is the nominal period of the signal, and ak and bk are random

variables characterizing the time fluctuations of the actual rise and fall instants of the signal in the
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An Analytical Formulation of Phase Noise
kth period with respect to the anticipated rise and fall instants (Fig. 44). The statistical properties

of these random variables will be discussed shortly.

We define phase noise as the single-sided power spectral density (PSD) of the signal, normal-

ized to the total signal power. The PSD of a stochastic signal x(t) is given by

, (58)

where XT(jω) is the Fourier transform of the windowed function, xT(t), which equals x(t) for 

and is zero outside this interval. For simplicity, we set T=nTo in (58) and evaluate the limit as n

goes to infinity. 

Since x(t) is real, |XT(jω)|2 can be written as

. (59)

After inserting x(t) from (57), exchanging the order of integration and summation, and performing

the integration, we have

. (60)

where we have also used some triangular identities. 

To simplify this equation further, we note that . Using this identity, we con-

vert the squared summations of (60) to double summations and combine them into one:

p jω( )
XT jω( ) 2

T
-----------------------

T ∞→
lim=

t T<

XT jω( ) 2
x t( ) ω t( )sin td

nTo–

nTo

∫

2

x t( ) ωt( )cos td

nTo–

nTo

∫

2

+=

XT jω( ) 2

4

ω2
------ ω k 1

4
---+⎝ ⎠

⎛ ⎞ To

bk ak+

2
-----------------+ ω

To

4
------

bk ak–

2
----------------+sinsin

k n–=

n

∑

2

4

ω2
------ ω k 1

4
---+⎝ ⎠

⎛ ⎞ To

bk ak+

2
-----------------+ ω

To

4
------

bk ak–

2
----------------+sincos

k n–=

n

∑

2

+

=

sk∑( )
2

sisj∑∑=
76



An Analytical Formulation of Phase Noise
. (61)

The expression inside the curvy brackets constitutes the cosine of the difference between

 and . Thus, we can rewrite (61) as

, (62)

where, once again, we have used some triangular identities to arrive at the final form of (62).

The terms inside this double summation are only functions of i-j and not of i or j alone; there is

no preferred time spot for the oscillator. We can then replace bi-bj by c(i-j), where c(i-j) is the ran-

dom variable characterizing the fluctuations in the duration of the total time of (i-j) consecutive

periods. By the same token, ai-aj, ai-bj and bi-aj can be replaced by ,  and ,

respectively. Hence, the expression inside the double summation of (62) is only a function of .

This summation can then be simplified as follows:

. (63)
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and fk. Due to the linearity of the expected value operator, the expected value of (63) is the sum of

the expected values of the individual terms. Since each term is only a function of one random vari-

able, we do not need to have any information about the correlation factors between the random

variables involved in this expression. For calculating the expected value of (63) it is sufficient to

have the statistical properties of each of the cks, dks, eks and fks as stand-alone random variables.

Each of these random variables is the sum of several independent, zero-mean, Gaussian-distrib-

uted random variables, each of which characterizes the jitter in one half-period of oscillation. Con-

sequently, ck, dk, ek and fk are all zero-mean, Gaussian random variables as well. We call the

variances of these random variables , ,  and , respectively. 

We can now find the expected value of  if we note that for a zero-mean, Gaussian ran-

dom variable p, the expected value of  is given by , where  is

the variance of p. Thus, the expected value of (63) is

. (64)

 To find an analytical expression for phase noise we use (64) in (58), set T=nTo and evaluate the

summation. It can be shown that the part of the summation that includes  is finite, so it

vanishes when we evaluate the limit. Consequently, the PSD can be written as

. (65)

To evaluate the summation in (65), , ,  and  should be expressed as functions of
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consecutive periods. Their variances can be replaced by  where  is the

variance of the duration of this time interval. The ek and fk are the random variables characterizing

the fluctuations of the total time of k consecutive periods minus and plus a half-period respec-

tively. The variance of these random variables can be denoted by  and

, respectively.

We now make an approximation which facilitates the calculation of phase noise with a Lorentz-

ian jitter spectrum. At small offset frequencies, the fast variations of phase are not important. Thus,

we can assume that the jitter occurs entirely in the second half-period and the duration of the first

half -period  is  a  dete rminis t ic variable.  With this  assumption one can veri fy  that

. We can then simplify (65) to

, (66)

where the second equality is because  around the fundamental frequency. We

use (66) for calculating phase noise with a Lorentzian jitter spectrum. With a white jitter spectrum,

however, this approximation is not necessary; in that case, we can find phase noise in its exact

form.

A.1.   PHASE NOISE WITH A WHITE JITTER SPECTRUM

A white jitter spectrum is normally observed in oscillators, which have no colored noise sources

and have poles only at frequencies considerably larger than the offset frequency at which we cal-

culate phase noise (Appendix B). With this jitter spectrum, the fluctuations of the duration of dif-
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, where  is the variance of the duration of the first half of the

period, which is assumed independent of the variance of the duration of the second half of the

period, . Using these equations in (65), we get the following closed-form expression for the

PSD of the signal:

. (67)

The phase noise is defined as the PSD normalized to the total power of the carrier. We assume

that the total power of the carrier is not greatly affected by noise. The total power of the first har-

monic of this oscillator is 2/π2. The phase noise at an offset frequency of  is

then given by

. (68)

Using (68) it can be shown that the phase noise has a nearly-Lorentzian shape around each har-

monic. Around the first harmonic, phase noise can be approximated by

. (69)

Fig. 45 compares (68) to (69) around the first harmonic on a logarithmic scale. It can be seen

that these two equations are equivalent up to relatively large offset frequencies.

It has been shown that the phase noise of a quasi-sinusoidal signal can also be approximated by

a Lorentzian spectrum [55]. Equation (69) extends those results to rectangular pulses. This result is

also consistent with other theoretical work on oscillatory systems [39][56]. 
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A.2.   PHASE NOISE WITH A LORENTZIAN JITTER SPECTRUM

A Lorentzian jitter spectrum is normally observed in oscillators, which have a dominant Lorent-

zian noise source and have poles only at frequencies considerably higher than the offset frequency

at which we calculate phase noise (Appendix B). With this jitter spectrum, the jitter autocorrela-

tion function is

. (70)

In this case, we calculate the phase noise using (66). This approach requires us to first calculate

the variance of the duration of k consecutive periods, which can be written as

. (71)

Using (70) in (71) we get

, (72)

which after evaluating the summation, gives

, (73)
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where

, (74)

, (75)

and

. (76)

Using (73) in (66) we can calculate the PSD of the signal as

. (77)

After expanding  in a power series, (77) becomes

. (78)

To simplify it further we change the order of summations to get

. (79)
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The inner summation represents a Lorentzian PSD shown in (69) with

. We then see that the PSD of the signal with Lorentzian jitter spec-

trum is a summation of several Lorentzian functions:

. (80)

which after normalization gives the phase noise as

. (81)
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Accumulation of Jitter with White and Lorentzian Noise Sources
 APPENDIX B:

ACCUMULATION OF JITTER WITH WHITE AND 
LORENTZIAN NOISE SOURCES

We can prove, in general, that cumulative jitter is linearly dependent upon the accumulation

time if the following conditions are satisfied. First, all of the noise sources in the system should be

white, and second, all poles of the system should be significantly beyond the offset frequency at

which we calculate phase noise. The proof is based on elementary circuit theory. Consider an

oscillator with P state variables and, therefore, P poles, the smallest of which is denoted by Ps.

Also assume that there are several white noise sources in this system. We select the time interval

TT significantly larger than 1/Ps and much smaller than 1/∆f when  is the offset fre-

quency. Note that this is possible only if Ps is much larger than ∆f as required above. Since TT is

much larger than all of the inverse pole frequencies in the system, the values of the state variables

at time 2TT are approximately independent of their values at time TT. Thus, state variables are only

a function of the behavior of noise sources in the time interval between TT and 2TT. Since these

sources are assumed to be white, their behavior between TT and 2TT is independent of their behav-

ior between 0 and TT. Thus the jitter, which is uniquely given by the value of the state variables at

the end-points of the cycles, is mutually independent for different TT-long intervals of time. For a

total time of kTT the cumulative jitter grows linearly with k and is k times the cumulative jitter in

each of these intervals. The distribution of jitter inside each of these time intervals is insignificant

for the phase noise at ∆f because TT is much smaller than 1/∆f. We can then assume that the distri-

bution of jitter inside each of these time intervals is uniform. With this assumption, jitter will grow

linearly with time inside each TT-long interval of time as well.

In many circuits, if the only noise source of the circuit is a Lorentzian noise and the lowest fre-

quency pole is much higher than the offset frequency at which we calculate phase noise, the

∆f f fo–=
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Accumulation of Jitter with White and Lorentzian Noise Sources
cycle-to-cycle jitter drops in a manner similar to a Lorentzian autocorrelation function. This is

because in such conditions the period jitters in different periods of the oscillation are correlated

mostly through the memory of the noise source which has a Lorentzian autocorrelation function.

Thus the correlation between the jitter in different periods of oscillation will drop in a similar man-

ner.
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