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Amplitude preprocessing of single and multicomponent 
seismic data 

C. P. A. Wapenaar *, D. J. Verschuur*, and P. Herrmann* 

ABSTRACT 

Whenever the data acquisition is restricted to line 
surveys rather than areal surveys, seismic processing 
is necessarily in two dimensions. In this paper it is 
argued that two-dimensional (2-D) processing is pref- 
erably applied afrrr transforming the point source 
responses into line source responses. The effect of this 
transformation is a correction of the amplitudes in the 
data. For single-component acoustic data as well as for 
multicomponent elastic data a line source response is 
nothing but a superposition of point source responses. 
Hence, in principle a line source response can be 
synthesized by integrating point source responses 
along the desired line source axis. In practice, how- 
ever, this integration cannot be carried out due to the 
incompleteness of the data. It is shown that the 
integration along the source axis can be replaced by an 
integration along the receiver axis. The underlying 
assumption is that the wavefields exhibit a certain type 
of cylindrical symmetry. For horizontally layered 
acoustic and elastic media this assumption is fully 
satisfied. For 2-D inhomogeneous media this assump- 
tion is approximately satisfied, provided the data are 
sorted in CMP gathers. Having transformed the point 
source responses into line source responses, the re- 
sults may be considered as “true amplitude” 2-D data. 
Hence, proceeding with existing 2-D seismic process- 
ing techniques is then justified. 

INTRODUCTION 

By nature, amplitudes in seismic data depend largely on 
the three-dimensional (3-D) expansion of seismic waves 
during propagation (Newman, 1973). As a consequence, 3-D 
seismic processing is required if we want to fully exploit the 

amplitude information contained in the seismic data. Even 
though in the eighties there has been an important shift 
toward 3-D seismic data acquisition and processing, a sig- 
nificant part of seismic data acquisition and processing is still 
two-dimensional (2-D). This applies particularly to the mul- 
ticomponent situation. The shortcomings of 2-D seismic 
processing with respect to structural imaging (migration) are 
well known and are not discussed here. 

This paper deals with the shortcomings of 2-D seismic 
processing with respect to amplitude handling. The underly- 
ing assumption of any 2-D seismic processing technique is 
that the subsurface parameters as well as the seismic wave- 
field are 2-D functions of the horizontal coordinate (x) and 
the depth coordinate ( z). This implies that the seismic waves 
are assumed to be generated by line smrces (along the 
y-axis) rather than point sources. Hence, in 2-D processing 
the amplitudes in the seismic data are treated as if they 
depend on 2-D rather than 3-D expansion of seismic waves. 
Needless to say, this yields erroneous amplitudes in the 
processed seismic data. 

In this paper, we develop an amplitude preprocessing 

procedure which transforms point source responses into line 
source responses. By applying this procedure, the amplitude 
handling of any 2-D seismic processing technique may be 
validated. This is not only true for inversion techniques like 
prestack migration, but also for advanced preprocessing 
techniques like elastic wavefield decomposition and multiple 
elimination, as well as for postprocessing techniques like 
stratigraphic elastic and lithologic inversion. 

FROM POINT SOURCES TO LINE SOURCES 

The principle of transforming a point source response into 
a line source response is simple: as a line source may be seen 
as a distribution of point sources along a line (Figure la), a 
line source response is nothing but a superposition of point 
source responses. The only assumption is that the point 
source responses are described by a linear wave equation 
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(acoustic or elastic). For a continuous distribution of point 
sources along they- axis, the superposition principle may be 
mathematically formulated as 

B(x,, zj-; X,$, z,; t) = 

I 

Z 
P(X,.. Yr = 0, z,; x,, Y.,. z.,; f) dY,, (I) 

-r 

wherep(x,, yr, z,; xs, ys, z,~ ; t) is a point source response 
as a function of time (t) at receiver point (x,, yr, z,) for a 
point source at (x,, ys, z,,) and wherefi(x,, z,; x,, z,; t) is 
a line source response at receiver point (x,, yr = 0, z,,) for 
a line source at (x, , z,, ). When the medium parameters are 
independent of the y-coordinate, the response of a point 
source at (x,, ys, z,, ) is just a shifted version of the response 
of a point source at (x,, , 0, z,,): 

P(Xr, Yr, z,; x., > Ys 3 z., ; f) 

=p(x,, Y, -y,, z,-; x.,, 0, z,; t). (2) 

Substitution in equation (1) yields 

i)(x,, z,; J.,, z.,; t) 

-I 

X 
_ P(Xr > -Y,, z,; x,. 0, z, ; I) dy,, , (34 

-I 

or, renaming the integration variable, 

i)(x,. z,; x,, .?I.,; t) 

-I 

1 
_ P(x,, Y,-> z,-; x.,, 0, z.,; I) dq’,.. (3b) 

-1 

The latter equation states that the line source response b( x,., 
z,; x,, 2,; t) may be synthesized from a single point source 
response by carrying out an integration along the receiver 
coordinate yr The principle is visualized in Figure 1 b. Bear 
in mind that equation (3b) holds for any 2-D inhomogeneous 
acoustic or elastic medium. However, equation (3b) is not 
yet suited for practical situations where the response is 
measured for yr = 0 only. When the response satisfies 
certain symmetry properties in the xI, y,.-plane, the integral 

a b 

(3b) along the receiver coordinate yr may be replaced by an 
integral along the receiver coordinate x,. The simplest 
situation occurs in the case of an acoustic response of a 
horizontally layered medium. This situation is studied in the 
next section. More complicated forms of symmetry occur- 
ring for multicomponent elastic data are studied in the 
subsequent sections. 

HORIZONTALLY LAYERED ACOUSTIC MEDIUM 

Consider a horizontally layered acoustic medium bounded 
by a free surface at z = z0 with a point source at (x = 0, 
y = 0, z = z,,). Let ~(.r, y, z,, t) denote the acoustic 
response at receiver depth level z,- as a function of s, y and 
I (for notational convenience the source point coordinates 
are omitted). With this simplified notation, equation (3b) 
reads 

I 

X 
li(x, Z!., t) = p(x. ?‘, z,-. r) dy. (4) 

--x 

Throughout this section, p may either represent the acoustic 
pressure below the free surface or the vertical component of 
the particle velocity at (or below) the free surface. For both 
situations, the response exhibits cylindrical symmetry with 
respect to the z-axis. Hence, at the receiver depth level z, at 
a fixed time t, p(x. y, zr, t) is constant on circles described 

by 

see Figure 2a. 

V\/x’+?i’ = constant, (5) 

Hence, if the response is measured only for y = 0, the 
unknown response at (x, y, z,.) should be expressed in terms 
of the measured response at (p, 0, z,), according to 

where 

P(.V. Y, z,-, I) =p(p. 0, Z,r f), (64 

p=V/.r’. 

Let p be the new integration variable. Then 

(6b) 

v\/p?-.ul 
dp = dy . (6~) 

P 

FIG. 1. (a) A line source response is obtained from many point source responses by integration along the source coordinate y,. 
(b) For any 2-D inhomogeneous medium, a line source response may be obtained from one point source response by integration 
along the receiver coordinate y,. . 
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The integration along the yaxis in equation (4) may thus be 
replaced by an integration along the p-axis, according to 

see Figure 2b. Equation (7) is the basis for transforming the 
acoustic point source responsep(p, 0, z,, t) into an acoustic 
line source response b(x, I,., I) (amplitude preprocessing). 
The principle of this lateral jltering procedure is visualized 
in Figure 3. 

It is interesting to note that the main contribution to the 
integral comes from the first Fresnel zone starting at p = 1 x/, 
the contributions of the higher Fresnel zones cancel (com- 
pare with diffraction theory). A direct consequence is that 
the assumed cylindrical symmetry is actually required only 
for a small range of azimuth angles. Moreover, in practical 
situations the infinite integration interval in equation (7) may 
be replaced by a finite interval without loosing much accu- 
racy, particularly when a taper is used at the upper integra- 
tion limit. In situations with noise, the integration interval 
chosen should be as narrow as possible (but containing at 
least one Fresnel zone). The square root singularity at the 
lower integration limit needs special attention. Stability is 
guaranteed when using the numerical integration procedure 
as discussed in Fokkema et al. (1992). 

An interesting aspect of the proposed method is that it can 
handle both primaries and multiple reflections since both 
types of reflections fulfill the cylindrical symmetry assump- 
tion. Another interesting aspect is that the method can 
properly handle crossing events, unlike the time-dependent 
scaling procedure that is generally used in practice. This is 
illustrated in Figures 4, 5 and 6. Figure 4 shows modeled data 
(primaries only) for an acoustic two layer model. The two 
data sets represent a point source and a line source response. 
The point source response (Figure 4a) is the input for our 
test, the modeled line source response (Figure 4b) serves as 
a reference for the output of our test. Figure 5 shows the 
results of two ways of amplitude preprocessing. Figure 5a 
was obtained by scaling the data with the square root of the 

a b 

travel time Note that at the crossing point both events were 
scaled with the same factor, which is erroneous for the 
second event. Figure Sb is the result of our lateral filtering 
procedure. At the crossing point, the two events were 
weighted differently due to their different time dips. This can 
be seen more clearly in Figure 6, which shows amplitude 
cross sections of the data in Figures 4 and 5. Figure 6a shows 
that the amplitudes of the first event were properly corrected 
by both methods, which is not surprising because the me- 
dium above the first reflector is homogeneous. For the 
second event, Figure 6b shows that the lateral filtering 
procedure is superior to the temporal scaling procedure 
[remember that equation (7) is exact]. 

RELATION WITH PLANE-WAVE DECOMPOSITION 

For a horizontally layered medium, seismic inversion is 
often applied after plane-wave decomposition. Decomposi- 
tion of a line source response into monochromatic plane 
waves is described mathematically by a double Fourier 
transform (Berkhout, 1985), according to 

with 

i = d-1. (8b) 

For each k, and o value, &k.,, z,, w) represents the 
complex amplitude of a monochromatic plane wave with 
angular frequency w and dip angle a, such that 

k,. = -% sin ~1. (9) 
c(z,) 

where c( z,,) is the propagation velocity at the receiver depth 
level z,.. Note that equations (7) and (8) together may be seen 
as a two-step procedure for decomposing a point source 

response into monochromatic plane waves (Figure 7a). 

FIG. 2. (a) Plan view of Figure lb: cylindrical symmetry assumption. (b) Coordinate transformation. Assuming cylindrical 
symmetry, the integration along the y-axis for fixed x (dashed line) may be transformed into an integration along the p-axis, 

starting at Ix/ (solid line). The scaling factor p/m in equation (7) accounts for the ratio dyidp. 
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Hence, equations (7) and (8) together have the same effect as 
a Fourier-Hankel transform (Treitel et al., 1982), 

where Jo is the zeroth order Bessel function (Figure 7b). The 
proof is given in the Appendix. Brysk and McGowan (1986) 
first showed that a Hankel transform may be efficiently 
implemented as a Fourier transform, followed by a square- 
root filter. Their approach was later improved by Fokkema 
et al. (1991). From the above analysis, it follows that, 
alternatively, a Hankel transform may be implemented as a 
square-root filter, followed by a Fourier transform. From a 
computational point of view, both approaches are equiva- 
lent. However, in the latter approach, the square-root filter 
described by equation (7) has a clear physical meaning: it 
transforms a point source response of a horizontally layered 
acoustic medium into a line source response. In the follow- 
ing sections several variants of equations (7) are studied for 
different configurations. 

b) 

FIG. 3. According to equation (7), one trace of an acoustic 
line source response is obtained as a weighted addition of 
traces of an acoustic point source response (lateral filtering). 

FIG. 4. Modeled data (primaries only) for an acoustic two- 
layer model (velocities 1500 m/s and 3000 m/s; mass densities 
1000 kg/m’ and 2000 kg/m’; layer thicknesses 300 m each). 
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2-D INHOMOGENEOUS ACOUSTIC MEDIUM 

The underlying assumption of equation (7) is that the 
acoustic response is cylindrically symmetric with respect to 
the z-axis. For an arbitrary 2-D inhomogeneous acoustic 
medium this assumption is violated. 

A partial remedy is given by the following procedure: 

1) Resort the common source point (CSP) gathers into 
common midpoint (CMP) gathers. Note that CMP 
gathers are symmetric in p, where p now stands for 
source-receiver offset. 

2) Consider each CMP gather as a point source response 
of a horizontally layered medium and simulate line 
source responses by applying equation (7) to each CMP 
gather. 

3) Resort the CMP gathers into CSP gathers. 

To understand the principle of this procedure, let us first 
consider a situation with a single dipping interface (dip angle 
a), underlying a homogeneous layer (velocity c). The con- 
figuration for a CMP gather (i.e., the result of step I) is 

a 0 
! 

shown in Figure 8a. The traveltime T(/?) as a function of the 
half offset h is given by (Levin, 1971): 

T’(h) = T’(O) + 
4h’ cos’ a 

(.I (11) 

Figure 8b shows the configuration for an equivalent CSP 
gather over a horizontal interface underlying a homogeneous 
layer (velocity c/cos a). This CSP gather is equivalent to the 
CMP gather in the sense that the traveltimes are again 
described by equation (I I). Furthermore, the incidence 
angle p at the interface is identical in both situations, 
meaning that the amplitude versus offset (AVO) effects are 
also the same. Table 1 gives an overview of the analytic 
amplitudes, both for a point source and a line source 
response (far field approximation). In step 2 of the proposed 
procedure the configuration of Figure 8b is assumed, hence 
the data are effectively scaled by a factor (c/cos a)(2TT(h)/ 

iw) “‘, see Table I. However, the actual configuration is 
given by Figure 8a and the desired effective scaling factor is 
c(2nT(h)/iw)“‘, again see Table 1. 

b) 

FIG. 5. Amplitude preprocessing applied to the point source response of Figure 4a. These results should be compared with 
the modeled line source response of Figure 4b. 

1.2 
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FIG. 6. Model with two reflectors. Amplitude cross sections of the data in Figures 4 and 5. 
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Hence, applying the proposed procedure yields a line 
source response with amplitudes that are a factor licos a too 
high. Fortunately this factor is independent of the half offset 
h. Consequently, for this simple configuration, the trans- 
formed data will contain the correct AVO effects, irrespec- 
tive of the magnitude of the dip angle o.. 

Next consider a layered medium with dipping interfaces, 
as shown in Figure 9a. We modeled the CMP response of the 
third reflector by ray tracing. The “true” amplitudes for the 
situation with point sources as well as line sources were 
computed with the method of stationary phase, see Figure 
9b. The amplitudes of the line source response, obtained by 
applying our lateral filtering procedure to the point source 
response, are also shown in Figure 9b. Note that this result, 
which was scaled for display purposes by a constant factor 

LATERAL FILTER 

, t 1 

DOUBLE FOURIER FOURIER-HANKEL 
TRANSFORM TRANSFORM 

t t 

(a) (b) 

FIG. 7. (a) Lateral filtering as one step in a plane-wave 
decomposition process. (b) Plane-wave decomposition by 
Fourier-Hankel transformation. 

0.95, matches well with the amplitudes of the true line source 
response. 

Finally, note that the accuracy of our lateral filtering 
procedure decreases for increasing complexity of the me- 
dium; for very complex media, 3-D acquisition and process- 
ing is the only acceptable approach. 

HORIZONTALLY LAYERED ELASTIC MEDIUM 

Consider a horizontally layered isotropic elastic medium 
bounded by a free surface at z = Z,) with a point force at 
(X = 0, .v = 0, 7 = z,,). Let 71~,~(x, y, z,, t) denote the 
multicomponent response at receiver depth level z, as a 
function of x, .v, and t. The subscripts i andj may stand for 

r\ h h 

(W 

FIG. 8. When the cylindrical symmetry is not fulfilled the 
amplitude transformation should be applied to CMP gathers. 
(a) CMP configuration for a single dipping interface. (b) 
Equivalent CSP configuration for a horizontal interface. 

Table 1. Analytic amplitudes for the CMP configuration of Figure 8a and the equivalent CSP configuration of Figure 8b 
(far-field approximation). 

CMP, velocity c (Figure 8a) 

CSP, velocity &OS (Y (Figure 8b) 

Point 
source 

response 
Line source 

response 
Effective 

scaling factor 

R(P)* 

4~rcT(ir) 

cos ccR(P) 

4wT(h) 

R(P) 

viizziq 
R(P) 

viGi$q 

J 2nT(h) 
C’ 

io 
c 

-J 

2nT(h) 

cos (Y iw 

*Angle dependent reflection coefficient. 
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x, y, or z. The first subscript i refers to the direction of the 
measured particle velocity at (x, y, z,): the second subscript 
j refers to the direction of the force applied at (0. 0, z,). 
Using this notation, equation (3b) becomes 

I 
L 

~i,.j(X, zrr f) = l'i,j(-r, Y, Zr3 j) d.Y. (12) 
-1 

If the response 71~,~(x, y, z,, t) is measured only for y = 0, 
the unknown response at (x, y, z,) should be expressed in 
terms of the measured response at (p, 0, z,), with p defined 
in equation (6b). For a homogeneous as well as for a 
horizontally layered isotropic elastic medium, the symmetry 
properties of multicomponent seismic data read 

7r,.., (x, y, zr, t) = 7,,,,v (P, 0, z, 3 f) $ 

(13a) 

7f?..,(X, Y> Zrr 1) = [71r,.r(P, 0, zr, f) 

7’~.~(P, 
.ry 

_ 0, zr> f)l 73 (13b) 
P- 

7’,,?.(X, Y, zr, f) = [7’x,.,(P, 0, z,, t) 

o- 

500- 

1000- 

1500- 

? 
,; 2000- 

‘I 
4 

2500- 

3000- 

lateral distance (m) 

1000 1500 2000 2500 3000 3500 4000 

a 

XJ’ 

- 7’V.~(P, 0, z,, t)l 7 3 
P- 

(144 

y? 
7J,..,.(.V. .v. Zr, t) = 7’,.,(P, 0, Zr, t) 7 

P- 

(14b) 

(14c) 

7’,.;(.Y. ??T i,-. I) = 7’,,:(p, 0, z,, t) “_, 
P 

(15a) 

Y 
7’?.;(.r. .v> Zr, t) = ?‘.,,;(P, 0, z,, t) -, 

P 
(15b) 

and 

7’:,;(.Y, y, zI-, t) = 7’;.:(P, 0, zr, t). (15c) 

Note that equation (15~) is identical to equation (6a), with p 
replaced by 71;.;. Also note that 7’.,,\., 7~;.?., 7~?,,~ and 71?,: are 
odd functions of y. Hence, substitution into equation (12) 
yields 

and 

b 

FIG. 9. Example of amplitude preprocessing for a 2-D inhomogeneous acoustic medium. (a) CMP configuration for a layered 
medium with dipping interfaces. ci = 4000 m/s, cz = 3200 m/s, c3 = 4800 m/s, c4 = 2000 m/s. (b) Amplitude cross sections 
for the third reflector. All curves are scaled to the same amplitude at zero offset. 
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~J,,.,(X, zr, t) = $.;(x, zr, t) = 0. (16b) 

Equation (16a) states that the particle velocity in the x, 
z-plane due to a force in the y-direction uniformly distrib- 
uted along the y-axis equals zero; equation (16b) describes 
the reciprocal situation. The nonzero line source responses 
are obtained in a similar way as in the acoustic situation. 
Substituting equations (13), (14), or (15) into equation (12) 
and choosing P as the new integration variable, yields in 
analogy with equation (7) 

/ 

X2 

Cr..r(X, Zr 1 r) = 2 = 7l.l.. v (p, 0, Zr, I) 

111 
-\/z dP 

P p-x- 

+2 
d/p’-x2 

%.y(P, 0. z,. t) dP. (17a) 
P 

3,.,(x, ZI, t) = 2 z~:.:(P> 0, z,, t) ,/--& dP, 

(l7c) 

VI..,(P, 0, Zrr t) 

(174 

and, using reciprocity, 

3,,, (x. Zrr r) = f’:..r(-X, z).. 1) = -i’;,.r(x, zr, t). (17e) 

Equations (17a) to (17e) are the basis for transforming the 
elastic point source responses r~~,~(p, 0, z,, t) into elastic 
line source responses i~~,~(x, z,, t). Note that the point 
source response XI?..?. contributes to the line source response 
i,,,, (equation 17a), and the point source response u,.,~ 
contributes to the line source response 3?.? (equation 17b). 
In Figure 10, it can be seen that these cross terms contribute 
to the small offsets only. 

Note that equation (17~) for transforming the x,;,_ data 
(vertical vibrators, vertical geophones) contains the same 
weighting function as equation (7) for the acoustic situation. 
Despite this similarity, the effect of this transformation for 
elastic 2~ 7,2 data is much more important than for acoustic 
data. This is illustrated in Figures 11 and 12. Figure 11 shows 
modeled data (primaries only) for an elastic single layer 
model. The point source response (Figure I la) is the input 
for our test, and the modeled line source response (Figure 
1 lb) serves as a reference for the output of our test. Figure 
12a was obtained by scaling the data with the square root of 
the traveltime. Figure l2b is the result of our lateral filtering 
procedure. Comparing both results with Figure Ilb shows 

that for this situation the lateral filtering procedure is far 
superior. 

Apparently the conflicting time dips of the P and S events 
are properly handled by the lateral filtering procedure, 
whereas they are completely ignored by the temporal scaling 
technique. 

2-D INHOMOGENEOUS ELASTIC MEDIUM 

For a 2-D inhomogeneous elastic medium, equations (17a) 
to (17e) should be applied after resorting the CSP gathers 
into CMP gathers. For similar reasons as previously dis- 
cussed, accurate results may be expected for layered media 
with gentle lateral inhomogeneities. 

DISCUSSION 

Another way of dealing with 3-D amplitudes in 2-D proc- 
essing was proposed in Bleistein et al. (1987) for the acoustic 
situation and refined by Geoltrain (1989) for the full elastic 
situation. They introduced a technique that was called two 
and one-half dimensional (2.5-D) Born inversion. The under- 
lying assumption of 2.5-D inversion is that the subsurface is 
2-D inhomogeneous, whereas the wavefields expand in a 3-D 
sense. Unlike our amplitude transformation procedure, their 
method does not rely on (approximate) cylindrical symmetry 
and is therefore more accurate in the case of significant 
lateral inhomogeneities. On the other hand, unlike our 
method, 2.5-D inversion does not cope with surface related 
phenomena like multiple reflections and conversion. Hence, 
an important advantage of our amplitude transformation 
procedure is that it validates the amplitude handling of any 
2-D processing technique, including advanced preprocessing 
techniques like elastic wavefield decomposition and wave 
equation-based multiple elimination, as long as the lateral 
inhomogeneities are moderate. Remember that in the limit- 
ing case of a horizontally layered acoustic or elastic medium 
our equations (7) and (17) are exact. 

CONCLUSIONS 

Amplitude information plays an increasingly important 
role at all stages of advanced seismic processing and inter- 
pretation. Wave equation-based multiple elimination only 
works properly when the amplitudes of the predicted multi- 
ples match the amplitudes of the true multiples (Verschuur et 
al. 1992). Inverse wavefield extrapolation compensates for, 
amongst others, geometrical spreading effects, provided the 
proper operators are used. And, last but not least, true 
amplitude angle-dependent reflectivity is a prerequisite for 
determining the detailed P- and S-velocities and density in a 
potential reservoir. The amplitude preprocessing method 
proposed in this paper validates the 2-D amplitude handling 
peculiar to any 2-D processing technique. The method 
essentially comes to a lateral filtering procedure, designed as 
an accurate alternative to the conventionally used temporal 
scaling by the square root of the traveltime. 

The lateral filtering procedure is exact for acoustic and 
elastic data over any horizontally layered medium whereas 
the temporal scaling procedure is exact only for acoustic 
data over a constant velocity medium. Therefore, particu- 
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-P -P 

1 t 
I 

FIG. 10. According to equation (17), one trace of an elastic line source response is obtained as a weighted addition of traces of 
a multicomponent elastic point source response. 
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vibrator geophones 
ma----------- 

_- 

I I I 

r 

b AX 

FIG. 11. Modeled data (primaries only) for an elastic two- 
layer model (P-velocities 3000 m/s and 5000 m/s; S-veloci- 
ties 1500 m/s and 2500 m/s; mass densities 1000 kg/m’ each; 
layer thicknesses 600 m and 1000 m). 

larly for multicomponent elastic data, the lateral filtering 
procedure is superior to the temporal scaling method. When 
applied to CMP gathers, the lateral filtering technique allows 
gentle lateral inhomogeneities. The accuracy decreases 
when the complexity of the subsurface increases: for a 
complex geology the only acceptable solution is given by 3-D 
acquisition and processing. 
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FIG. 12. Amplitude preprocessing applied to the point source 
response of Figure I la. These results should be compared 
with the modeled line source response of Figure 1 lb. 
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APPENDIX 
TWO-STEP HANKEL TRANSFORM 

Omitting the temporal Fourier transform for convenience 
and simplifying the notation, equations (7) and (8) can be 
combined to 

Interchanging the order of integrations yields 

Define a new integration variable C$ according to 

x = P cos C$. 

or 

(A-3a) 

s 
C$ = arccos - 

ii P 
(A-3b) 

( A-3c) 

and 

Hence. 

/xX,) = 2 II,‘ph4p rip In p’klIrco\m dh, (A-4) 

or. using Abramowitz and Stegun (1970, equation 9.1.21). 

s 

I 
kc/i, ) = 2Tr P(PVo(h PIP dP. (A-5) 

0 

where J,, is the zeroth order Bessel function. Apart from the 
factor 27r. equation (A-5) represents a zeroth order Hankel 
transform. Equation (IO) can now be obtained by applying a 
temporal Fourier transform to both sides of equation (A-5). 


