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Abstract A boost converter for piezoelectric actuator

driving system in haptic smartphones is proposed and

implemented using a 0.35 lm BCDMOS process. The

designed boost converter generates extremely high output

voltage from a low-voltage battery supply. The boost

converter provides stable power for the piezoelectric

actuator with the peak-current control technique. The

minimum variation of the output ripple variation can be

achieved by the designed current-sensing and peak-current

control circuits. The supply voltage of the boost converter

is 2.7–4.2 V and the maximum output voltage is up to

80 V. The complete piezoelectric actuator driving system

consists of a serial interface, SRAM, and signal-shaping

logic as well as the boost converter. It also includes the

resistor-string digital-to-analog converter and high voltage

piezoelectric actuator driver (PZ driver). The fabricated

chip size is 2,100 9 2,200 lm, including bonding pads.

Keywords Boost converter � Power converter �
Power management

1 Introduction

Recent developments in mobile devices require efficient

and application-specific power converters for diverse new

applications [1–7]. New developments in haptic technol-

ogy, which has been implemented in recent mobile devices,

is generating great demand for efficient power systems.

Especially the haptic technology for the real feeling of

touch is progressing with significant importance in market,

which generate new requirements in power converters.

Diverse researches for applying this haptic technology to

mobile devices have been studied [8–13]. To satisfy the

life-like details of haptic technology, two main properties

are required for an actuator. First, the actuator must have a

broad range of frequencies and be functional within a small

area. Second, it must have high electrical–kinetic conver-

sion efficiency in mobile devices [11].

Small vibrating motors have been commonly used in

mobile devices to realize haptic systems. However, the

motor vibrates the entire device and has a limited feedback

conversion property. Its slow response is also incompatible

with mobile devices that require fast, precise, and diverse

feedback for users. To overcome these problems, some

research has focused on using piezoelectric actuators for

haptic systems. Piezoelectric actuators are smaller in size

than vibrating motors, which makes it possible to reduce

the critical size of a mobile system. Piezoelectric actuators

also have high durability, as well as efficient and diverse

actuations that are suitable for various applications [12].

There have been several cases where piezoelectric

actuators were applied to a variety of different systems;

however, no detailed research relating the circuits of pie-

zoelectric actuators to mobile devices has been published

until now. This letter describes the details of piezoelectric

actuator driving system and the design of boost converter

providing high voltage to the system.

2 Overview of piezoelectric actuator driving system

Figure 1 shows an overall block diagram of a system to

drive the piezoelectric actuator. As shown in the figure,

when a user’s finger comes in contact with the touch
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screen, different feelings of vibration can be generated by

the system. The system receives data from the host pro-

cessor using a serial interface to operate the piezoelectric

actuator driving system. SRAM stores various haptic pat-

terns that operate the piezoelectric actuator and delivers

these patterns to the signal-shaping logic. In comparison to

delivering patterns directly to the signal-shaping logic via a

serial interface, using the stored patterns in SRAM

increases the speed of the system by increasing the data

transfer rate [13]. Signal-shaping logic uses haptic patterns

from the SRAM to alter the frequencies and amplitudes

required for the piezoelectric actuator. The haptic patterns

are then delivered to the 8-bit resistor string digital-to-

analog converter (DAC). The DAC converts the digital

waveforms generated by signal-shaping logic to analog

voltage and delivers them to the PZ driver. The high

voltage PZ driver, which receives power from the boost

converter, amplifies the DAC signal and drives the piezo-

electric actuator. A reversed phase signal is also applied to

the piezoelectric actuator to generate differential voltage

for large voltage swing, which in turn results in significant

vibration of the actuator.

In order to generate the required high voltage, flyback

converters could be another choice for implementation.

However, flyback converters use large transformers,

which are not suitable for small mobile devices. There-

fore, we choose a boost converter to reduce the size of

the system in this letter. The designed boost converter

generates up to 80 V, and the current-sensing and peak-

current control circuits maintain stable and uniform rip-

ple voltage despite the variation of input battery voltage.

The boost power converter is implemented by the inte-

grated controller as well as an inductor, a capacitor, a

Schottky diode, and feedback resistors as external

components.

3 Circuit implementation

Figure 2 shows the PZ driver, which can operate the pie-

zoelectric actuator. The PZ driver is composed of two non-

inverting amplifiers and feedback resistors. VP and VN are

DAC signals and VGH is the output voltage of the boost

converter. In general, the piezoelectric actuator can be

modeled by a capacitor. In our application system, the

capacitance is estimated as 60 nF.

Regarding the effective driving of the piezoelectric

actuator, a stronger and vivid vibration can be achieved

with differential signals, which are applied to both ends of

the piezoelectric actuator as opposed to a single end.

Therefore, we use two non-inverting amplifiers to amplify

differential signals and apply these to both ends of the

actuator. TS in Fig. 2 is the period of the haptic pattern with

maximum frequency of 150 Hz in this system.

The boost converter is based on a burst-mode operation.

Figure 3 shows the structure of the designed boost converter.

The converter is composed of a power transistor, buffer,

comparator, current-sensing circuit, and clock generator. If

the output voltage of the boost converter decreases, FB also

decreases. Due to the decreased FB, the Comp1 output

becomes high and SR latch1 output (EN) also becomes high.

During the period when EN is high, the clock (CLK) is

delivered to SET and the MN power transistor can be turned

on. Once the power transistor turns on, the inductor current

increases with a constant slope. When this increasing current

reaches a predetermined peak value, the current-sensing

circuit senses the current and forces the RST signal to high,

which finally turns off the power transistor. This operation is

repeated until FB becomes higher than VrefH. When FB

becomes higher than VrefH, Comp2 output becomes high,

which makes EN low. As a result, the clock can no longer be

delivered to the power transistor.
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Fig. 1 Piezoelectric actuator

driving system for smartphones
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Figure 4 shows the designed current-sensing circuit,

which is similar to [14]. Start-up and peak-current control

circuits are also implemented in order to control the current

in the power transistor and limit the peak current. PT1 and

PT2 transistors are high voltage MOS transistors. The PT2

transistor copies the current flowing in the power transistor

and is 1/800 the size of the power transistor in Fig. 3. D1

and D2 diodes inhibit the high voltage of SW1, and thereby

protect the low-voltage transistors (MN1 and MN3) from

exceeding the maximum voltage.

When the power transistor and PT1 transistor are turned

on, SW and SW1 voltages increase due to the inductor

current. Therefore, the gate voltages of MN3 and MN4

transistors also increase. Increased gate voltage, in turn,

decreases the drain voltage of the MN4 transistor. The

source voltage of the MP4 transistor follows the gate

voltage. As a result, VSEN decreases. VSEN is connected to

the inverting input of comparator CMP1 and is compared

to VLT selected by the analog MUX. VLT is connected to

VLT1, VLT2, or VLT3, depending on the operating condi-

tions. Start-up and peak-current control circuits regulate the

amount of inductor current in three levels to prohibit a

sudden inrush current. The feedback voltage FB, which is

the scaled output voltage by resistors, is compared by two

comparators, CMP2 and CMP3. Depending on the condi-

tion of the output voltage, control logic controls the analog

MUX and determines VLT. During the initial start-up

operation, the inductor current is regulated by VSEN and

VLT1. As the output voltage increases, the inductor peak

current is also increased by VLT2 and VLT3 in turn.

Figure 5 shows the adaptive variation of VSEN and VLT

with respect to the supply voltage. As shown in this figure,

VLT has to be changed according to the variation of supply

voltage. If VLT is fixed to a constant voltage despite the

variations in the supply voltage, the output voltage of the

boost converter cannot be maintained at a constant level.

To solve these problems, VLT1, VLT2, and VLT3 used as

shown in Fig. 4. VLT1, VLT2, and VLT3 are determined by

resistors (R2, R3, and R4) and the current source (IREF). The

voltages can be expressed as

VLT1 ¼ VDD� IREFR2 ð1Þ
VLT2 ¼ VDD� IREFðR2 þ R3Þ ð2Þ
VLT3 ¼ VDD� IREFðR2 þ R3 þ R4Þ ð3Þ

respectively. These voltages have the same amount of

variation as the supply voltage, which allows the inductor

peak current to be maintained at a constant level. The

controlled inductor peak current minimizes the ripple

variation in the output voltage.
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4 Experimental results

The piezoelectric actuator driving system was fabricated

using the 0.35 lm BCDMOS process. Figure 6 shows the

chip photograph. The chip size is 2,100 9 2,200 lm,

including bonding pads. The proposed boost converter

operates at the supply voltage range of 2.7–4.2 V and

generates the maximum output voltage of 80 V. The off-

chip inductor and capacitor are 22 lH and 470 nF,

respectively. The direct current resistance (DCR) of the

inductor and the equivalent series resistance (ESR) of the

capacitor are 200 mX and 50 mX; respectively. Table 1

summarizes the measured performance of the designed

system.

Figure 7 shows the start-up waveforms of the boost

converter. As seen in the measured waveforms, the boost

converter gradually increases the inductor current and the

output voltage during the initial operation.

Figure 8 shows the output signal of the PZ drivers along

with the output of the boost converter when the input
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Table 1 Performance summary

Technology 0.35 lm

Supply voltage (VDD) 2.7–4.2 V

VDDI/O 1.8 or 3 V

Output voltage (VGH) 80 V

DAC resolution 8 bit

Clock frequency 68 kHz

Input frequency of PZ driver

(max)

150 Hz

SRAM 256 kB 9 8

Inductor/DCR 22 lH/200 mX

Capacitor/ESR 470 nF/50 mX

Efficiency 45 % @ VDD = 4.2 V, VGH =

77 V

Chip size 2,100 9 2,200 lm
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supply voltage is 2.7 V. The input pattern is a sinusoidal

signal with a 70 Hz frequency. Figure 9 shows the wave-

forms when the supply voltage is 4.2 V. The frequency of

the input sinusoidal signal is 90 Hz in this measurement.

Figures 10 and 11 show the results when the supply volt-

ages are 2.7 and 4.2 V, and the input patterns are 70 and

120 Hz triangular signals, respectively. As shown in the

measurement results, the proposed piezoelectric actuator

driving system successfully drives piezoelectric actuators

with various input patterns.

5 Conclusion

The boost converter of the single-chip piezoelectric actu-

ator driving system is proposed in this letter for smartphone

haptic technology. The designed boost converter generates

extremely high output voltage for the piezoelectric actua-

tor, and minimizes the ripple voltage variations by adap-

tively controlling the inductor peak current. The

implemented piezoelectric actuator driving system also

integrates the serial interface, a signal-shaping logic, a
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SRAM block, four 8-bit DACs, and four high voltage

amplifiers to drive the piezoelectric actuator. The fabri-

cated chip shows the stable start-up operation, and gener-

ates various high voltage waveforms for the piezoelectric

actuators.
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