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Abstract— This work proposes an adaptive cryptographic
and embedded system (ACES) design that can adapt its
hardware and software functionalities at runtime to different
system requirements. By using the hardware virtualization
technique in the ACES design, a fixed set of logic resources
can be configured as different hardware modules at runtime
to support multiple software applications. Further, by taking
the advantages of architectural characteristics of FPGAs,
the ACES can support high-performance computing for
computing-intensive functions such as cryptographic and
image processing functions. Experiments with ubiquitous
computing applications have also demonstrated that the
ACES can accelerate by up to 26.5x the processing time
required by using the software solution. Compared to the
traditional embedded system design, the ACES can reduce
29% of slice registers and 33% of slice LUTs required
for supporting all the five required hardware functions.
Through the advantage of system adaptation, the ACES can
also dynamically reduce its power consumption at runtime,
according to different environmental conditions.
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1. Introduction
As network technology scaling, transferring information

and data between different electronic devices becomes more
and more convenient. Further, with the increase in user
requirements, mobile ubiquitous computing applications en-
able information processing to be thoroughly integrated into
everyday living. In such a ubiquitous computing environ-
ment, services and devices can be dynamically adapted to
changing environments.

The target applications of this work are mainly used
in the ubiquitous computing environments, especially for
the field of image processing and cryptographic applica-
tions. To support dynamically changing and unpredictable
ubiquitous computing applications, adaptability becomes a
key requirement in providing high-performance computing
and complete data protection on the network in this work.
However, in the most existing dynamic adaptive approaches
[1]–[5], only software services and applications can be
adapted, and hardware devices support the changing software
applications passively. This means that hardware functions

cannot be reconfigured at runtime, which also leads to the
inefficient use of hardware resources. To be able to not
only adapt on-demand functionalities but also provide better
system performance, designing an efficient embedded system
architecture to meet the dynamic requirements of various
environmental situations becomes very important.

This work tries to solve the above problem about system
adaptability and performance by proposing an Adaptive
Cryptographic and Embedded System (ACES) design. Figure
1 gives an example for illustrating the practicability of the
proposed ACES. Here, real-time image are captured from
the camera and then displayed on the monitor. The filters are
used to reduce the effects of the noise in the source images
for further image processing applications. The images can
also be transferred to a client via the network. To ensure
the security of data transfers on the network, all data are
first encrypted and then transferred to the client. Based on
the effects of noise in the source images and the security
requirements of data transfers, the ACES can adapt on-
demand its filter and cryptographic functions for providing
better Quality-of-Service (QoS).

Figure 1 gives the ideal blueprint to apply the ACES
to ubiquitous computing environments. It must solve the
following issues related to ubiquitous computing, including
1) what method can make hardware adaptable? 2) how to
use hardware resources efficiently? 3) how to support high-
performance computing and reduce power consumption at
runtime?

To make hardware adaptable, the ACES design integrates
the dynamic partial reconfiguration technology from Xilinx
[6]. Thus, one part of the FPGA device in the ACES is
being reconfigured, while other parts can remain operational
without being affected by reconfiguration. This shows that
the filter and cryptographic hardware functions in the ACES
can be dynamically adapted to different environmental re-
quirements. Further, the partial reconfiguration technology
can also be considered as the gate-level hardware virtu-
alization technique, using which multiple applications can
access a fixed set of logic resources in a temporally exclusive
way. Thus, the utilization of hardware resources can be
increased significantly. For system performance, computing-
intensive functions such as filter and cryptographic functions
are implemented in hardware, so that the ACES can take
the advantages of architectural characteristics of FPGAs for
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Fig. 1: Application Example

further enhancing system performance. Further, the ACES
contains the blank modules to disable the functionality of the
partial reconfigurable region in the FPGA. When no requests
are received from software applications, the blank module
can be used in the ACES to reduce power consumption at
runtime.

The rest of this paper is organized as follows. Section 2
introduces the related work. The detailed ACES design is
illustrated in Section 3. Section 4 presents our experiments
and analyses, and conclusions are given in Section 5.

2. Related Work
In a ubiquitous computing environment, computing de-

vices can be adapted to environmental changes for satisfying
user requirements. To support the capability of adaptation
more efficiently, Efstratious et al. [1] proposed an archi-
tecture that could support adaptive context-aware applica-
tions. However, their infrastructure only notified applications
about the environmental changes, and application themselves
needed to trigger the adaptive mechanism. Instead of the
passive application adaptation, Ghim et al. [2] further pro-
posed a reflective approach to dynamic adaptation that could
perform adaptation operation triggered by changes in the
policy and context. The other existing work [3]–[5] also
adopted the software solutions to adapt itself to different
system requirements. However, in the above designs [1]–
[5], hardware cannot be adapted to different requirements,
which also restricts system adaptation and performance.

As for our target cryptographic applications, the corre-
sponding algorithms are usually computation-intensive, hard
real-time and non-adaptive to changing network conditions.
The algorithms make different tradeoffs between security
and complexity. To allow multiple tradeoffs and to adapt
to changing network conditions at runtime, a data protective
process needs a high-speed and flexible embedded system.
T. Wollinger and C. Paar [7] demonstrated the advantages of
reconfigurable devices for cryptographic applications in em-
bedded systems, including architecture efficiency, resource

efficiency, throughput, and algorithm agility. Lagger et al.
[8] also compared a full-software design with a coprocessor
design embedded with an FPGA device that could be con-
figured with Data Encryption Standard (DES), triple DES,
and Route Coloniale 4 (RC4) hardware cores. Compared
to the software solution, the performance of the FPGA-
based design was significantly enhanced due to the specific
architecture. In other related researches such as [9], [10],
they leveraged the advantages of reconfigurable FPGA to
further enhance the performance of cryptographic hard-
ware applications. All the above researches [7]–[10] have
demonstrated that reconfigurable FPGAs are very suitable
for implementing cryptographic applications.

By using the architectural advantages of FPGAs, crypto-
graphic functions of the ACES are implemented in hardware
to support high-performance computing. Compared to the
software solutions [1]–[5], the ACES design supports the
hardware virtualization technique, so that system adaptabil-
ity and hardware resource utilization can be enhanced sig-
nificantly. The details of the ACES design will be introduced
in Section 3.

3. Adaptive Cryptographic and Embed-
ded System Design

To support high-performance and adaptive features, the
proposed ACES design is realized on an FPGA device, as
shown in Figure 2. The capture controller is responsible
for capturing real-time images from the camera, while the
display controller is responsible for displaying the process-
ing results on the monitor. Before the processing results
are transferred to a client via the network, they are first
encrypted through the cryptographic hardware function. To
reduce the effects of noise in the source images, the filter
function is also integrated into the image processing hard-
ware function.

Besides realizing the image processing function and the
cryptographic function as hardware circuits for enhancing
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Fig. 2: Adaptive cryptographic and embedded system design

system performance, the ACES further integrates the hard-
ware virtualization technology to increase the utilization of
hardware resources. As shown in Figure 2, two Partially
Reconfigurable Regions (PRRs), namely PRR1 and PRR2,
are implemented in the FPGA for configuring the filter
function and the cryptographic function, respectively. Thus,
the logic resources of each PR region can be reconfigured
as different hardware functions, according to system require-
ments. Therefore, besides the traditional software adaptation,
the ACES can also support hardware adaptation.

Based on the partial reconfiguration flow [6], two blank
modules are also individually generated to disable the func-
tionalities of PRR1 and PRR2. All the partial bitstreams
corresponding to the reconfigurable hardware modules are
stored in a CF card, and they are accessed by using the
SysACE controller. To support system adaptability, an In-
ternal Configuration Access Port (ICAP) [11] controller is
also implemented in the ACES for configuring the corre-
sponding partial bitstreams. Through the ICAP controller,
the ACES can dynamically adapt its hardware functionali-
ties at runtime, without the user’s intervention. To provide
efficient hardware/software communication and to support
complete system adaptation, a hardware/software communi-
cation interface, a virtualizable and hierarchical design, and
an adaptation policy are also proposed in the ACES. The
details are described in the following sections.

3.1 Hardware/Software Communication Inter-
face

To support seamless data transfers between reconfig-
urable modules and the microprocessor efficiently, a hard-
ware/software interface component based on the Intellectual
Property Interface (IPIF) is proposed in the ACES, as
shown in Figure 3. It contains a bidirectional buffer and
a device interrupt controller. Through the hardware/software
interface component, the processing results of the reconfig-
urable hardware module can be stored in the bidirectional
buffer sequentially, while the microprocessor can read the
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Fig. 3: Hardware/software interface component and PR
template

processing results from the bidirectional buffer at the same
time. To ensure that all processing results can be read by the
microprocessor in real-time, the device interrupt controller
is used to notify the microprocessor to read the processing
results.

To enhance system scalability, our previously proposed
partially reconfigurable template (PR template) [12] is also
used in the ACES to ease the integration of user-designed
hardware functions with different I/O interfaces. The PR
template consists of eight 32-bit input data signals, one 32-
bit input control signal, four 32-bit output data signals, and
one 32-bit output control signal. To bridge with the interface
of the PR template, the proposed hardware/software inter-
face component also contains fourteen software accessible
registers for the microprocessor to access the reconfigurable
hardware module. Therefore, through the use of the PR
template and the hardware/software communication interface
component, new user-designed hardware functions can be
easily integrated into the ACES.

3.2 Virtualizable and Hierarchical Design
To provide a complete hardware virtualization mechanism,

besides the support of the hardware/software interface design
as described in Section 3.1, the device drivers corresponding
to different hardware functions need to be also implemented
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Fig. 4: Virtualizable and hierarchical design

in the ACES. In the design of the device driver, the related
Application Programming Interfaces (APIs) are provided for
software applications to interact with the software accessible
registers in the hardware/software interface component. As
a result, through the APIs, a software application can easily
access the reconfigurable hardware modules.

According to the requirements of our target applications,
a software application need to access only one of the filter
functions and one of the cryptographic functions at a time in-
stant. When the traditional embedded system design method
is used to support multiple functions, all the corresponding
hardware designs need be configured in the system at design-
time. Although this method enables system performance to
be significantly enhanced, because of hardware acceleration;
however, system adaptation and the utilization of hardware
resources also degrade. To solve the above problem, the
ACES is thus realized as a virtualizable and hierarchical
design, as shown in Figure 4. Here, besides the software
application layer and the device driver layer, the hardware
design of the ACES is divided into two layers, including the
logic hardware layer and the physical hardware layer.

Through the partial reconfiguration technique, the required
filter and cryptographic functions can be dynamically con-
figured in PRR1 and PRR2, respectively. This also indicates
that, only two hardware functions are configured in the
system at a time instant. The virtualization layer, including
the logic hardware layer and the physical hardware layer,
abstracts the real hardware characteristics. Furthermore, in
the ACES, all the device drivers corresponding to the recon-
figurable hardware modules are also provided for software
applications. From the viewpoints of software applications,
the ACES can support all the hardware functions, even
though not all hardware functions are configured in the sys-
tem at the same time. As a result, through the virtualizable
and hierarchical deign, system adaptation and the utilization
of hardware resources can be further enhanced.

3.3 Adaptation Policy
In our current implementation, the system adaptation

mechanism is realized as a software program executed on
the microprocessor. The ACES design contains two types of
adaptable hardware functions, including the filter function
and the cryptographic function.

The hardware filters are responsible for reducing the
effects of noises in the source images. The quality of source
images is classified into different levels according to the
Signal-to-Noise Ratio (SNR). Different hardware filters are
individually associated with their corresponding efficiencies
for the reduction of noise in the images. With the increase in
the effects of noise, the ACES can dynamically configure the
corresponding hardware filter to reduce the effects of noise
in the source images. In contrast, the ACES can reconfigure
the blank module to improve system performance, when the
effects of noise in the source images decrease.

The cryptographic functions are responsible for support-
ing the service of Secure Socket Layer (SSL). When a
client makes a request for data transfers, the ACES thus
negotiates with it to adopt the same cryptographic function
for ensuring the security of data transfers on the network.
If the negotiation succeeds, the ACES then configures the
requested cryptographic function into the FPGA to adapt
itself to different security requirements. Additionally, when
no requests for data transfers on the network are received,
the ACES can also reconfigure the blank module to improve
system performance and reduce power consumption. The
related experiments will be discussed in Section 4.

4. Experiments and Analyses
To demonstrate the practicability of our proposed method,

real applications are implemented in the ACES. In the
following sections, we will introduce the experimental setup,
the system resource analysis, the power consumption analy-
sis, and the system performance analysis.

4.1 Experimental Setup
The ACES design was implemented on the Xilinx

ML605 FPGA development board [13] with a Virtex-6
XC6VLX240T FPGA chip. A soft-core MicroBlaze mi-
croprocessor [14] at 100 MHz was integrated into the
ACES design. Two hardware median filters, including one-
dimensional (1D) median filter and two-dimensional (2D)
median filter, and three cryptographic functions, including
Advanced Encryption Standard (AES), DES, and triple DES,
were also implemented in the ACES. Two different sized
PR regions, namely a small PRR1 and a large PRR 2, were
implemented for the dynamic configuration of median filter
functions and cryptographic hardware functions, respec-
tively. As shown in Figure 5, the small PRR1 configured with
2D median filter and the large PRR2 configured with triple
DES are highlighted for displaying the relative locations
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Fig. 5: FPGA implementation result

Table 1: Resource Usage

#Slice registers #Slice LUTs
1DMF 45 101
2DMF 730 1,795
AES 1,042 3,627
DES 3,955 6,152
3DES 11,457 18,312

1DMF: one-dimensional median filter. 2DMF: two-dimensional median filter.
3DES: triple DES.

in the implementation result of ACES. Further, a software
solution was also implemented and executed on the host
computer (Intel CoreTM i7-3770 3.40GHz, 32GB RAM) for
the comparison with the ACES design.

In the experiments, a point target detection function called
PMCE [15] was adopted as the main image processing ap-
plication. Real-time 320 × 240 pixel images were captured
from the camera for the application of point target detection,
which were then encrypted using the cryptographic functions
for data transfers on the network.

4.2 Resource Utilization
Compared to a conventional embedded design that re-

quires all the five functions to be implemented and integrated
into the system design, the ACES design can support all the
five functions by implementing only two PR regions. The
resource usages for the five hardware functions, including
1D median filter, 2D median filter, AES, DES, and triple
DES, are given in Table 1.

To further compare with the conventional embedded sys-
tem design, Figure 6 gives a comparison on the numbers
of slices registers and those of slice LUTs required for sup-
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Table 2: Power consumption

Dynamic (W) Quiescent (W) Total (W)
1DMF,DES 0.672 4.780 5.452
2DMF,AES 0.765 4.783 5.548

2DMF,3DES 1.020 4.791 5.812
PRR1BM,PRR2BM 0.594 4.778 5.372

1DMF: one-dimensional median filter. 2DMF: two-dimensional median filter.
3DES: triple DES. PRR1BM: blank module for PRR1. PRR2BM: blank module

for PRR2.

porting all the five functions. Experimental results show that
the ACES needs at most 12,187 slice registers and 20,107
slice LUTs in terms of the Xilinx Virtex-6 XC6VLX240T
FPGA. This presents the maximal resource usage by the
reconfigurable modules of 2D median filter and triple DES.
Compared to the conventional embedded system design,
the ACES can reduce 29% of slice registers and 33% of
slice LUTs in the Xilinx Virtex-6 XC6VLX240T FPGA.
Furthermore, by using the hardware/software interface and
the PR template, as described in Section 3.1, new user-
designed hardware functions can be easily integrated into
the ACES. This shows that, besides having efficient system
scalability and adaptation, the ACES can also support a
larger number of hardware functions by using the capability
of hardware virtualization.

4.3 Power Consumption
Besides supporting higher resource utilization as described

as Section 4.2, the ACES design can also reduce power
consumption. To perform the experiment on power consump-
tion, the Xilinx XPower estimator [16] was used to measure
the power consumption of the placed and routed netlists for
different combinations of hardware functions in the ACES.
Here, our measured results, including the dynamic power, the
quiescent power, and the total power, in watt (W) are given
in Table 2. Considering the worst case of using maximum
power for each of the two PRRs, that is, 2D median filter
in PRR1 and triple DES in PRR2, the ACES requires 5.812
watt.



Table 3: Configuration Time

Function Time (ms)
PRR1BM 174

PRR 1 1DMF 192
2DMF 192

PRR2BM 2,009
AES 2,227

PRR 2 DES 2,227
3DES 2,009

1DMF: one-dimensional median filter. 2DMF: two-dimensional median filter.
3DES: triple DES. PRR1BM: blank module for PRR1. PRR2BM: blank module

for PRR2.

When the effects of noises in the source images de-
crease and no requests for data transfers on the network
are received, the ACES can reconfigure the blank modules
for PRR1 and PRR2 to reduce its power consumption.
As shown in Table 2, compared to the ACES configured
with 2D median filter and triple DES hardware functions,
when the corresponding blank modules are configured in
the ACES, the total power consumption can be reduced by
0.44 watt. This shows that, through system adaptation, the
power consumption of the ACES can be further reduced
at runtime, according to different environmental conditions.
This feature also benefits the development of low-power
embedded systems.

4.4 System Performance
Compared to the conventional embedded system design,

for hardware function switching, the ACES contains an
additional time overhead, that is, the configuration time. The
configuration time for each hardware function is given in
Table 3. We can observe that, the configuration times for the
hardware functions configured in PRR1 are approximately
the same, while that for the hardware functions configured in
PRR2 are also approximately the same. This is because the
configuration time is directly proportionate to the bitstream
size, which in turn is directly proportionate to the size of the
PR region. To reduce the reconfiguration time overhead, in
this work, the configuration prefetch approach [17] is also
applied to the ACES.

To further analyze system performance, 100 to 1,000
real-time 320 × 240 pixel images were applied to the
software solution and the ACES design. Figures 7(a), 7(b),
and 7(c) show the average time to process an image frame
by using AES, DES, and triple DES, respectively. Here, each
cryptographic function was also individually cooperated with
three different image processing applications, including the
pure PMCE function, the PMCE function with 1D median
filter, and the PMCE function with 2D median filter. We can
observe that, compared to the software solution, the ACES
can efficiently enhance system performance. According to
the experimental results, the ACES can accelerate by up
to 1.5x, 2.2x, and 5.2x the times required by using the
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Fig. 7: Average processing time using AES, DES, and triple
DES

software solutions, when the pair of AES and the 2D median
filter, that of the DES and the 2D median filter, and that of
the triple DES and the 2D median filter, respectively, are
configured in the FPGA.

For the current ACES implementation, the data transfers
between the microprocessor and the cryptographic function
are mainly through the software accessible registers. In
order to further analyze the execution process for each
cryptographic function, the average time per register access
for different numbers of registers were measured as illus-
trated in Figure 8. We can observe that the average time
per register access gradually becomes a constant (196 ns).
This is because the operation of register access is mainly
through the system bus, and thus the measured time also
contains the initialization time over the bus. Considering the
number of register access for each cryptographic function
and the experimental results as shown in Figure 8, the pure
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execution times required by using the AES, DES, and triple
DES can be further calculated. In fact, the pure execution
times required by using the AES, DES, and triple DES
only take around 7%, 19%, and 29%, respectively, of the
measured time as shown in Figures 7(a), 7(b), and 7(c). The
experimental results show that, when the time per register
access is not considered, the ACES can accelerate by up
to 26.5x the time required by using the software solution.
This also demonstrates that, the ACES design leverages the
architectural features of FPGAs efficiently, so that system
performance can be enhanced significantly.

5. Conclusion
The proposed adaptive cryptographic and embedded sys-

tem (ACES) design can not only provide high-performance
computing by using the architectural advantages of the
FPGA device, but also can adapt its functionalities to dif-
ferent system requirements. Through the hardware virtual-
ization technique in the ACES, system adaptation and the
utilization of hardware resources can be further enhanced.
Experiments with real applications have also demonstrate
that ACES can accelerate by up to 26.5x the processing time
required by using the software solution. Further, through the
ability of system adaptation, the power consumption of the
ACES can also be reduced at runtime, according to different
environmental conditions.
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