An Advanced Extensible Parametric Geometry Engine for Multi-Fidelity and Multi-Physics Analysis in Conceptual Design

Rob McDonald

NASA Ames July 23, 2016

Team Members

Cal Poly

J.R. Gloudemans

- Rob McDonald
- David Marshall
- Alex Gary
- Pat Meyers
- Joel Belben
- Mitch Lane
- Brandon Clark

Phoenix Integration

- Andy Ko
- Yue Han
- Hongman Kim
- Mike Haisma
- Peter Menegay
- Scott Ragon

Motivation

2.2 Robust Aircraft Conceptual Design Geometric Modeling

Objective

The objective of this topic is to enhance the ability to employ higher-order, physics-based analysis during conceptual design through robust, easy to create geometry

2.2 Robust Aircraft Conceptual Design Geometric Modeling

<u>Objective</u>

The objective of this topic is to enhance the ability to employ higher-order, physics-based analysis during conceptual design through robust, easy to create geometry models. The research goal is to automate the rigorous steps required for intelligent conversion of a b o conceptual level parametric geometry model into the detailed representation necessary for higher-order analysis. Conceptual design is the starting point for a new engine or aircraft st development. A successful design is highly dependent on accurate geometric а representations, since they are used throughout the computational engineering process. Over the past several decades computational capability has drastically improved as has the h understanding of human-computer interfaces. These advances have enabled less to experienced users to perform far more sophisticated tasks without the requirement of extensive training time. More accurate geometry representations will advance the state-offa art in conceptual design by enabling more routine use of higher-order analysis tools.

analysis. This typically involves modification of the geometry through meshing to meet specific needs. Currently these intermediate steps are very time consuming – and transitioning between tools loses necessary parametric definitions that could provide valuable sensitivity analyses. Being able to accomplish these steps in more intelligent ways, with less labor would provide timely access to more sophisticated tools. Such capability is not merely about attaching geometry interfaces to the most powerful CFD (computational fluid dynamics) or FEA (finite element analysis) tools– it is about bringing all levels of analysis capability to the designer in a easier and more rapid fashion, with less data loss from geometric translations.

Project Timeline

Yr 5 Augmentation Task List

CST/Kulfan airfoils Flat Blunt Airfoil TE modeling Flat Blunt TE mesh Negative volumes VSPAERO & CBAERO Integration **OpenVSP Training & Promotion** Rounded Blunt Airfoil LE & TE modeling **CFDMesh Symmetry Plane Improvements Tessellation spacing** Simplified Fuse Skinning Actuator disk Propeller component End Caps Fit Model Save/Restore Fit Model Merge Parameter Drag-N-Drop Improve Search UW **Projected Areas**

Yr 5 Augmentation Task List

CST/Kulfan airfoils Flat Blunt Airfoil TE modeling Flat Blunt TE mesh Negative volumes VSPAERO & CBAERO Integration **OpenVSP Training & Promotion** Rounded Blunt Airfoil LE & TE modeling **CFDMesh Symmetry Plane Improvements** Tessellation spacing Simplified Fuse Skinning Actuator disk Propeller component End Caps Fit Model Save/Restore Fit Model Merge Parameter Drag-N-Drop Improve Search UW **Projected Areas**

v3.4.0 on 11/18/15 v3.2.0 on 7/24/15 v3.2.0 on 7/24/15 v3.2.0 on 7/24/15 v3.1.0 on 4/29 & v3.2.0 on 7/24/15 OpenVSP Workshop August 2015 & 2016 v3.6.0 on 5/6/16 v3.2.0 on 7/24/15 v3.5.1 on 1/23/16 v3.2.3 on 9/20/15 v3.2.0 on 7/24/15 v3.8.1 on 8/1/16 v3.6.0 on 5/6/16 v3.2.0 on 7/24/15 v3.2.0 on 7/24/15 v3.2.0 on 7/24/15 v3.2.3 on 9/20/15 v3.6.1 on 5/29/16

Agenda

	8/23		8/24		8/25	
	Tuesday		Wednesday		Thursday	
8:00 8:30	Welcome & Overview	Rob McDonald	Automated FEM	Wu Li	Wave Drag	Rob/Michael
8:30 9:00	Intro to OpenVSP	Brandon Litherland	Structural Modeling and OpenVSP	Trevor Laughlin	Drag buildup	Bryan Schmidt
9:00 9:30	Basic modeling	Brandon Litherland	TOW Steered Wing Structure Design	Mike Hensen	Aerodatabases with GoCart & Cart3D	Aerion
9:30 10:00	Tour of main components	Brandon Litherland	OpenVSP Inertia Calculation	Mark McMillin	Aerodatabases with GoCart & Cart3D	Aerion
10:00 10:30	Break		Break		Break	
10:30 11:00	Cal Poly NRA Final Review	Rob McDonald	RapidFEM & PBWeight	Tyler Winter	Projected Area	Rob McDonald
11:00 11:30	XSecs in detail	Brandon Litherland	VSPAERO Background	Dave Kinney	NDARC Integration	Travis Perry
11:30 12:00	USAF SBIR Report	Ben Schiltgen	VSPAERO GUI VLM Basics	Nick Brake	Aircraft design framework	Alessandro Silva
12:00 12:30						
12:30 13:00	Lunch		Lunch		Lunch	
13:00 13:30	NASA SBIR Report	Nick Brake	VSPAERO GUI VLM Advanced	Nick Brake	CompGeom and Meshing tutorial	Rob McDonald
13:30 14:00	Attach, symmetry, sets, subsurfaces	Rob McDonald	VSPAERO GUI Panel Method	Nick Brake	Flightstream	Roy Hartfield
14:00 14:30	Skinning explained	Rob McDonald	VSPAERO Test and Verification	Dave Kinney	Flightstream	Roy Hartfield
14:30 15:00	Break		Break		Break	
15:00 15:30	Advanced Wing Modeling	Rob McDonald	VSPAERO Next Steps	Dave Kinney	Design vars & xddm, API, Scripting	Rob McDonald
15:30 16:00	Conformal Components	J.R. Gloudemans	VSPAERO SUGAR braced wing aero	Doug Wells	Automation	Rob McDonald
16:00 16:30	Saved Parameter Settings	Bryan Schmidt	Advanced Parameter Linking	Rob McDonald	Fit Model Presentation	Rob McDonald
16:30 17:00	Modeling Demo	Rob McDonald	Leveraging DegenGeom	Erik Olson	Fit Model Interactive	Rob McDonald
17:00 17:30	Modeling Demo	Rob McDonald	Custom Components	Rob McDonald	Feedback session	
17:30 18:00						
18:00 18:30	BBQ social					

Major NRA Contributions

	8/23		8/24		8/25	
	Tuesday		Wednesday		Thursday	
8:00 8:30	Welcome & Overview	Rob McDonald	Automated FEM	Wu Li	Wave Drag	Rob/Michael
8:30 9:00	Intro to OpenVSP	Brandon Litherland	Structural Modeling and OpenVSP	Trevor Laughlin	Drag buildup	Bryan Schmidt
9:00 9:30	Basic modeling	Brandon Litherland	TOW Steered Wing Structure Design	Mike Hensen	Aerodatabases with GoCart & Cart3D	Aerion
9:30 10:00	Tour of main components	Brandon Litherland	OpenVSP Inertia Calculation	Mark McMillin	Aerodatabases with GoCart & Cart3D	Aerion
10:00 10:30	Break		Break		Break	
10:30 11:00	Cal Poly NRA Final Review	Rob McDonald	RapidFEM & PBWeight	Tyler Winter	Projected Area	Rob McDonald
11:00 11:30	XSecs in detail	Brandon Litherland	VSPAERO Background	Dave Kinney	NDARC Integration	Travis Perry
11:30 12:00	USAF SBIR Review	Ben Schiltgen	VSPAERO GUI VLM Basics	Nick Brake	Aircraft design framework	Alessandro Silva
12:00 12:30						
12:30 13:00	Lunch		Lunch		Lunch	
13:00 13:30	NASA SBIR Report	Nick Brake	VSPAERO GUI VLM Advanced	Nick Brake	CompGeom and Meshing tutorial	Rob McDonald
13:30 14:00	Attach, symmetry, sets, subsurfaces	Rob McDonald	VSPAERO GUI Panel Method	Nick Brake	Flightstream	Roy Hartfield
14:00 14:30	Skinning explained	Rob McDonald	VSPAERO Test and Verification	Dave Kinney	Flightstream	Roy Hartfield
14:30 15:00	Break		Break		Break	
15:00 15:30	Advanced Wing Modeling	Rob McDonald	VSPAERO Next Steps	Dave Kinney	Design vars & xddm, API, Scripting	Rob McDonald
15:30 16:00	Conformal Components	J.R. Gloudemans	VSPAERO SUGAR braced wing aero	Doug Wells	Automation	Rob McDonald
16:00 16:30	Saved Parameter Settings	Bryan Schmidt	Advanced Parameter Linking	Rob McDonald	Fit Model Presentation	Rob McDonald
16:30 17:00	Modeling Demo	Rob McDonald	Leveraging DegenGeom	Erik Olson	Fit Model Interactive	Rob McDonald
17:00 17:30	Modeling Demo	Rob McDonald	Custom Components	Rob McDonald	Feedback session	
17:30 18:00						
18:00 18:30	BBQ social					

Publications & MS Theses

MS Theses Completed

Belben, Joel. Reduced Fidelity Geometry for Conceptual Design in VSP. MS Thesis, California Polytechnic State University, San Luis Obispo, CA, April 2013.

Papers Presented

McDonald, R., "Advanced Modeling in OpenVSP:, AIAA Aviation AIAA-2016-3282.

McDonald, R., Gloudemans, J.R., "User Defined Components in the OpenVSP Parametric Geometry Tool", AIAA Aviation, AIAA-2015-2547.

Gary, A., McDonald, R., "Parametric Identification of Surface Regions in OpenVSP for Improved Engineering Analysis", 53rd AIAA Aerospace Sciences Meeting, AIAA 2015-1016.

McDonald, R., "Interactive Reconstruction of 3D Models in the OpenVSP Parametric Geometry Tool", 53rd AIAA Aerospace Sciences Meeting, AIAA 2015-1014.

Gary, A., McDonald, R., "Aerodynamic Shape Optimization of Propulsion Airframe Integration While Matching Lift Distribution", 52nd AIAA Aerospace Sciences Meeting, AIAA-2014-0533

Marshall, D., "Creating Exact Bezier Representations of CST Shapes", 21st AIAA Computational Fluid Dynamics Conference, AIAA-2013-3077.

Belben, J., McDonald, R., "Enabling Rapid Conceptual Design Using Geometry-Based Multi-Fidelity Models in VSP", 51st AIAA Aerospace Sciences Meeting, AIAA 2013-0328.

ASM Oral Presentations

Gary, A., McDonald, R., "Demonstration of OpenVSP Community Website", 51st AIAA Aerospace Sciences Meeting, 2013.

McDonald, R., "Curvature Based Surface Meshing in VSP and Validation of VSP Geometry Representation for CFD", 51st AIAA Aerospace Sciences Meeting, 2013.

McDonald, R., "Geometry Requirements for High-Fidelity CAE", 50th AIAA Aerospace Sciences Meeting, 2012. McDonald, R., "VSP Directions; Advancing Vehicle Sketch Pad Multi-Fidelity and Multi-Physics Analysis in Conceptu Design." 50th AIAA Aerospace Sciences Meeting, 2012.

Propeller Component

AEROSPACE ENGINEERING • CAL POLY • SAN LUIS OBISPO

F

Chord Distribution

Hamilton Standard, 'Advanced General Aviation Propeller Study', 1971, NASA CR 114289.

Chord Distribution

Chord Distribution

Hamilton Standard, 'Advanced General Aviation Propeller Study', 1971, NASA CR 114289.

Twist Distribution

Hamilton Standard, 'Advanced General Aviation Propeller Study', 1971, NASA CR 114289.

Twist Distribution

Hamilton Standard, 'Advanced General Aviation Propeller Study', 1971, NASA CR 114289.

Blade Element Import/Export

...BEM Propeller... Num_Sections: 12 Num_Blade: 3 Diameter: 30.00000000 Beta 3/4 (deg): 20.00000000 Feather (deg): 0.00000000 Center: 0.00000000, 0.00000000, 0.00000000 Normal: -1.00000000, 0.00000000, 0.00000000

Radius/R, (Chord/R, Twis	st (deg), Rake	/R, Skew/R	
0.2000000,	, 0.08000000,	46.75000000,	0.00000000,	0.0000000
0.27272727	, 0.11601803,	42.31743050,	0.00000000,	0.0000000
0.34545455	, 0.14698723,	38.15773854,	0.00000000,	0.0000000
0.41818182	, 0.17182569,	34.27092412,	0.00000000,	0.0000000
0.49090909	, 0.18945154,	30.65698723,	0.00000000,	0.0000000
0.56363636	, 0.19878287,	27.31592787,	0.00000000,	0.0000000
0.63636364	, 0.2000000,	24.24774606,	0.00000000,	0.0000000
0.70909091	, 0.2000000,	21.45244177,	0.00000000,	0.0000000
0.78181818,	, 0.2000000,	18.93001503,	0.00000000,	0.0000000
0.85454545	, 0.2000000,	16.68046582,	0.00000000,	0.0000000
0.92727273	, 0.2000000,	14.70379414,	0.00000000,	0.0000000
1.0000000	, 0.13000000,	13.0000000,	0.00000000,	0.0000000

	$\bigcirc \bigcirc \bigcirc$
	Export
	Export Set
	Set: All 🗘
	File Format
	XSec (*.hrm)
	PLOT3D (.p3d)
	Stereolith (.stl)
	NASCART (.dat)
ļ	Cart3D (.tri)
Į	Gmsh (.msh)
Į	POVRAY (.pov)
Į	X3D (.x3d)
ł	STEP (.stp)
r	IGES (.IQS)
Ľ	
	000
(Import
	File Format
	Cart3D (.tri)
	Stereolith (.stl)
	NASCART (.dat)
ļ	XSec (.hrm)
ļ	Point Cloud (.pts)
	OpenVSP v2 (.vsp)
l	Blade Element (.bem)

Demo/Practice

Rob McDonald

2'

Questions?