AN ADVANCED VAPOR-COMPRESSION

DESALINATION SYSTEM

A Dissertation
by
\section*{JORGE HORACIO JUAN LARA RUIZ}

Submitted to the Office of Graduate Studies of Texas A\&M University
 in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

December 2005

Major Subject: Interdisciplinary Engineering

AN ADVANCED VAPOR-COMPRESSION DESALINATION SYSTEM

A Dissertation
by
JORGE HORACIO JUAN LARA RUIZ

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Approved by:
Chair of Committee, Mark T. Holtzapple
Committee members, Mahmoud El-Halwagi
Je C. Han
John T. Baldwin
Head of Department N. K. Anand

December 2005

Major Subject: Interdisciplinary Engineering

ABSTRACT
An Advanced Vapor-Compression Desalination System. (December 2005)
Jorge Horacio Juan Lara Ruiz, B.S., National Polytechnic Institute, Mexico; M.S., Lamar University;
M.Eng., Texas A\&M University
Chair of Advisory Committee: Dr. Mark Holtzapple

Currently, the two dominant desalination methods are reverse osmosis (RO) and multi-stage flash (MSF). RO requires large capital investment and maintenance, whereas MSF is too energy intensive.

An innovative vapor-compression desalination system is developed in this study. A comprehensive mathematical model for the heat exchanger/evaporator is described. The literature indicates that extraordinarily high overall heat transfer coefficients for the evaporator are possible at selected operating conditions that employ dropwise condensation in the steam side and pool boiling in the liquid side. A smooth titanium surface is chosen to promote dropwise condensation and to resist corrosion.

To maximize energy efficiency, a combined-cycle cogeneration scheme is employed composed of a gas turbine, a heat recovery boiler, and a steam turbine that drive a compressor. The combined-cycle power source is oversized relative to the needs of the compressor. The excess power is converted to electricity and sold to the open market. A three-effect evaporator is employed. It is fed with seawater, assumed to be 3.5% salt. Boiling brine (7% salt) is in the low pressure side of the heat exchanger and
condensing steam is in the high-pressure side of the heat exchanger. The condensing steam flows at $1.52 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{s})$, which maximizes the heat transfer coefficient. The plant is sized to produce $37,854 \mathrm{~m}^{3} / \mathrm{d}$ ($10 \mathrm{mill} \mathrm{gal} /$ day) and is assumed to be financed with a 5\%, 30-yr municipal bond.

Two economic cases were emphasized: the United States and the Middle East.
For the United States, the fuel costs $\$ 5 / \mathrm{GJ}$ ($\$ 5.27 / \mathrm{mill}$ Btu) with the latent heat exchanger at $\Delta T=1.11 \mathrm{~K}\left(2.00^{\circ} \mathrm{F}\right)$. The required compressor energy is $14 \mathrm{MJ} / \mathrm{m}^{3}(14.7$ kW h/thous gal). The capital cost for the U.S. is $\$ 884 \mathrm{~d} / \mathrm{m}^{3}$ ($\$ 3,342 /$ thous gal) and the delivered water selling price is $\$ 0.47 / \mathrm{m}^{3}$ ($\$ 1.79 /$ thous/gal).

For the Middle East, the fuel costs $\$ 0.5 / \mathrm{GJ}$ ($\$ 0.53 / \mathrm{mill} \mathrm{Btu}$) with the latent heat exchanger at $\Delta T=3.33 \mathrm{~K}\left(6.00^{\circ} \mathrm{F}\right)$. The required compressor energy is $26 \mathrm{MJ} / \mathrm{m}^{3}$ (27.3 kW h/thous gal).). The capital cost for the Middle East is $\$ 620 \mathrm{~d} / \mathrm{m}^{3}$ ($\$ 2,344 /$ thous gal), and the delivered water selling price is $\$ 0.25 / \mathrm{m}^{3}$ ($\$ 0.95 /$ thous $/ \mathrm{gal}$).

In all cases, the water selling price is attractive relative to competing technologies.

To my wife Nelida

Thank you for sharing your life with me.
I am in great debt to you............

ACKNOWLEDGMENTS

I would like to thank Dr. Scott Wellington, Dr. J. M. (Jack) Hirsch, Dr. Renata Karlin, Mr. J. L. (Jerry) Morris, and Dr. Tom Riddle from the Shell Exploration and Production Game Changer Team for the financial support to make this project possible.

I also appreciate Mr. David Carraba of Gooseneck Manufacturing Co. for his help in analyzing the feasibility to manufacture the novel sheet-shell heat exchanger/evaporator.

I thank the faculty and staff of the Chemical Engineering Department of Texas A\&M University for the professionalism and help provided. I also thank my student colleagues for their support.

I want to deeply thank Dr. Mark Holtzapple for his encouraging and knowledgeable advice. His very supportive enthusiasm has been inspirational.

I thank my committee members (Dr. John Baldwin, Dr. Mahmoud El-Halwagi, and Dr. Je Han) for their advice and continuous support.

But most of all I want to thank my family Raniero, Jorge, Nelida, and Fremiet for their unconditional moral support; I am especially in debt with my wife Nelida.

TABLE OF CONTENTS

Page

ABSTRACT iii
DEDICATION v
ACKNOWLEDGMENTS vi
TABLE OF CONTENTS vii
LIST OF FIGURES. x
LIST OF TABLES xiii
CHAPTER
I INTRODUCTION 1
Project Description 3
Objectives 4
Previous Studies and Results 4
II SHEET-SHELL HEAT EXCHANGER 7
Steam Condensation 14
Liquid-Side Boiling 21
Overall Heat Transfer Coefficient 26
Optimization 28
III PRESSURE DROP IN THE HEAT EXCHANGER 33
IV MASS AND ENERGY BALANCE 41
V FACTORS AFFECTING EVAPORATOR PERFORMANCE 45
Boiling Point Elevation 45
Seawater Vapor Pressure Calculation 46
Static Head 47
Corrosion 48
CHAPTER Page
VI POWER SYSTEM 49
VII EQUIPMENT DESIGN. 52
Basic Process-design Variables. 52
Compressor. 53
Gas Turbine 55
Steam Turbine 56
Heat Recovery Boiler 57
Pumps 58
VIII VAPOR COMPRESSION TRADE-OFFS 59
IX DESALINATION PLANT COST ANALYSIS 72
X CONCLUSIONS 83
XI FUTURE WORK 84
REFERENCES 85
APPENDIX A SALT WATER PROPERTIES 92
APPENDIX B EQUIPMENT DESIGN 105
APPENDIX C PRESSURE DROP IN THE LATENT HEAT EXCHANGER 109
APPENDIX D VAPOR COMPRESSION TRADE-OFFS 117
APPENDIX E SENSIBLE \& LATENT HEAT EXCHANGER CALCULATION 158
APPENDIX F DRIVING POWER SCHEME 195
APPENDIX G UNFIRED WASTE- HEAT-STEAM GENERATION 198
APPENDIX H STEAM TURBINE (RECOVERY ENERGY). 202
APPENDIX I ENERGY EFFICIENCY OF THE COMBINED-CYCLE
Page
POWER SYSTEM 204
APPENDIX J PUMPS 205
APPENDIX K CONDENSER 207
APPENDIX L DESALINATION PLANT COST ANALYSIS 208
APPENDIX M COST OF TITANIUM SHEET-SHELL HEAT EXCHANGER CALCULATION 212
APPENDIX N THEORETICAL ENERGY CONSUMPTION FOR SEAWATER DESALINATION 218
VITA 220

LIST OF FIGURES

FIGURE Page
1-1 Advanced vapor-compression desalination system 2
2-1 Perspective view of heat exchanger plates with top and bottom baffles for the boiling side 8
2-2 Top view and side view for latent heat exchanger 9
2-3 Proposed titanium-clad plate for sheet-shell heat exchanger 10
2-4 Temperature differences at different locations near the heat exchanger sheet 11
2-5 Influence of vapor velocity and temperature difference on steam-side heat transfer coefficients 12
2-6 Variation of steam-side heat transfer coefficient with pressure for dropwise condensation corresponding to different ΔT_{s} values 13
2-7 Surface tensions and contact angle θ for a drop that is forming on the solid surface of the plate. 16
2-8 Steam-side temperature difference for condensing steam 19
2-9 Comparison of the overall heat transfer coefficients h 20
2-10 Boiling-side heat transfer coefficients 24
2-11 Calculated overall heat transfer coefficient. 31
3-1 Cross sectional area representation for space between plates in the heat exchanger 36
4-1 Evaporator mass and energy balance diagram 42
5-1 Boiling point elevation and salinity measurements at different temperatures 45
FIGURE Page
5-2 Activity of seawater due to salt concentration (g/kg) 48
6-1(a) Combined-cycle power system with StarRotor gerotor compressor 50
6-1(b) Combined-cycle power system with centrifugal compressor 51
8-1 Overall energy balance 59
8-2 Temperature rise of both brine and distillate 63
8-3 Case A. Gas flow at compressor inlet 65
8-4 Case A. Compressor shaft work for dry compressor 66
8-5 Case A. Compressor shaft work for wet compressor 67
8-6 Case B. Gas flow at compressor inlet 68
8-7 Case B. Compressor shaft work for wet compressor 69
8-8 \quad Case C. Gas flow at compressor inlet 70
8-9 Case C. Compressor shaft work for wet compressor 71
9-1 Elements of cost analysis for the process 72
9-2 Case A. Cost of water for a variety of energy cost and interest rates 80
9-3 Case B. Cost of water for a variety of energy costs and interest rates 81
9-4 Case C. Cost of water for a variety of energy costs and interest rates 82
A-1 Case B. Advanced vapor compressor desalination concept and combined-cycle power source 93
FIGURE Page
B-1 Exiting and entering flows nomenclature of the sensible heat exchanger 106
E-1 Heat transfer arrangement in the latent heat exchanger 182
E-2 Plate area/total flow rate 192
E-3 Film heat transfer coefficient $\alpha\left(\mathrm{W} / \mathrm{m}^{2}\right) /$ pressure drop 193
E-4 Pressure drop/plate flow rate for different areas on water 194
F-1 Combined-cycle power system 196
F-2 Gas turbine delivered power and performance specifications 197
G-1 Heat in flue gases vs percent moisture by weight 200
M-1 Cost of purchase of vessels 216

LIST OF TABLES

TABLE

2-1 | Observed peak heat transfer rates for pool boiling |
| :--- |
| on submerged heaters concerning the pressures and |
| temperature difference at which it occurs 25 |

3-1 Constants in Equation 3.9 for different void fraction $\begin{aligned} & \text { correlations ... } 35\end{aligned}$
3-2 Correlated coefficient of contraction... 40
8-1 Proportionality constant in Equation 8.1....................................... 62
8-2 Cases used in vapor-compression trade-off 64
9-1 Case A. Summary of equipment and utility requirements
for a 10 million gallons/day desalination plant 74
$\begin{array}{ll}\text { 9-2 } & \text { Case B. Summary of equipment and utility requirements } \\ \text { for a } 10 \text { million gallons/day desalination plant } 75\end{array}$
9-3 Case C. Summary of equipment and utility requirements
for a 10 million gallons/day desalination plant 76
9-4 Lang Factor for a fluid processing plant 77
9-5 $\begin{aligned} & \text { Executive summary of unitary costs of the desalination plant } \\ & \text { components for the three design cases presented......................... } 78\end{aligned}$
9-6 Comparison of water desalination methods 79
A-1 Composition of seawater... 94
$\begin{array}{ll}\text { A-2 } & \begin{array}{l}\text { Thermal conductivity of seawater and its concentrates } \\ (\mathrm{mW} /(\mathrm{m} \cdot \mathrm{K}))\end{array} \\ \end{array}$
A-3 $\begin{aligned} & \text { Dynamic viscosity of seawater and its concentrates } \\ & \left(10^{-3} \mathrm{Ns} / \mathrm{m}^{2}\right) . ~\end{aligned} 96$
A-4 Heat capacity of seawater and its concentrates $(\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K}))$......... 98

TABLE
A-5 Density of seawater and its concentrates $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$....................... 100
A-6 Prandtl number of seawater and its concentrates 102
A-7 $\begin{aligned} & \text { Measured seawater vapor pressure and boiling point } \\ & \text { elevation ... } 104\end{aligned}$
B-1 Case B. Individual temperatures and pressures along the $\begin{aligned} & \text { evaporator train ... } 107\end{aligned}$

B-2	Calculated overall heat transfer coefficients
$\left(\mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right) \ldots . ~$	

D-1 Case A. Thermodynamic calculations for dry compressor 154
D-2 Case A. Thermodynamic calculations for wet compressor......... 155
D-3 Case B. Thermodynamic calculations for wet compressor 156
D-4 Case C. Thermodynamic calculations for wet compressor. 157
E-1 Calculated sensible heat exchanger area $\left(\mathrm{ft}^{2}\right)$.............................. 181
E-2 Calculated individual latent heat exchanger area (ft ${ }^{2}$)................. 191
J-1 Individual shaft work required in each seawater feed pump....... 206
M-1 Sheet-shell heat exchanger unitary cost 217

CHAPTER I

INTRODUCTION

Desalination recovers potable water from seawater, brackish water, or treated wastewater. Among water treatment technologies, distillation is the most effective at reducing the widest range of water contaminants.

Mechanical vapor compression is a modern method that produces potable water at acceptable energy efficiency [1]. Because the most critical cost parameters are the fixed charges (amortization) and energy costs [2], the focus of this proposed method is to reduce the energy requirements by innovating the multi-effect evaporator train and by developing a novel latent heat exchanger. Holtzapple and Noyes [3] conceived the system described in their invention disclosure (see Fig. 1-1). It uses a "combined cycle" engine, which consists of a gas turbine (Brayton cycle) and a steam turbine (Rankine cycle). Waste heat from the gas turbine is used to make steam, which powers the steam turbine. Both the gas turbine and the steam turbine power the compressor.

A multi-effect evaporator train operates at successively lower pressures and temperatures. Steam from a high-pressure evaporator boils water in an adjacent lowpressure evaporator. The compressor pulls vapors from the low-pressure evaporator, compresses them, and returns them to the high-pressure evaporator.

The salt water must be degassed prior to being fed to the evaporator.

This dissertation follows the style and format of Desalination.

Figure 1-1. Advanced vapor-compression desalination system [3].

Low-pressure steam from the steam turbine exhaust may be added to the evaporator train where the pressures of the exhaust steam and evaporators most closely match.

Project Description

The goals of this project follow:

- Find the optimal operating conditions in the heat exchanger. To achieve this goal, an extensive review of the literature has been performed.
- In the heat exchanger, find a model that describes dropwise condensation, the most efficient heat transfer mechanism. To achieve this goal, the selected mathematical model has been supported with experimental data.
- Select the best material to construct the heat exchanger. It required an extensive review of the available materials and their ability to produce dropwise condensation on the steam side, and to avoid corrosion on both the steam and the boiling seawater side.
- Determine the condensing and boiling heat transfer coefficients.
- Determine the cost per unit area of heat exchanger by contacting manufacturers of the selected material to request both technical information and price quotes.
- Estimate the capital and operating costs of the whole seawater desalination system to determine the product selling cost.

Objectives

The specific objectives for this project follow:

1. Develop a model for the proposed sheet-shell heat exchanger for the system. This is a core objective because once the overall heat transfer coefficient is obtained, the area of the heat exchanger can be known and consequently its cost.
2. Find the recommended operating conditions of the system including compressor, gas turbine, and steam turbine.
3. Develop a model to determine the capital cost and operating cost of saturated steam compression.
4. Find the cost to produce a unit $\left(\$ / \mathrm{m}^{3}\right)$ of potable water

Previous Studies and Results

There are five basic techniques that remove salt and other dissolved solids from seawater [4]: distillation, reverse osmosis (RO), electrodialysis (ED), ion exchange (IX), and freeze desalination.

Distillation. Feed water is heated and then evaporated to separate out dissolved minerals. The most common distillation methods include multi-stage flash (MSF), multiple-effect distillation MED, and vapor compression (VC). In MSF, liquid water is heated at a high pressure and then the pressure is lowered so the water "flashes" into steam. This process constitutes one stage of a number of stages in series, each at a lower pressure. In MED, the feed water passes through a number of evaporators in series. Vapor from the highest pressure evaporator evaporates water from the adjacent
evaporator, which operates at a lower pressure. Vapor compression (VC) involves evaporating the feed water, compressing the resulting vapor, and then using the pressurized vapor as a heat source to evaporate additional feed water. Some distillation plants are a hybrid of more than one desalination technology. The waste product from these processes is a solution with a high salt concentration. The heat exchangers typically last $30-40$ years and are fairly robust.

Reverse osmosis. Feed water is pumped at high pressure through semi-permeable membranes, separating salts from the water. The feed water is pretreated to remove particles that would clog the membranes. The quality of the water product depends on the pressure, the salt concentration in the feed water, and the salt permeation constant of the membranes. Product quality can be improved by adding a second pass of membranes, whereby product water from the first pass is fed to the second pass. RO membranes must be replaced every 5-7 years which is expensive. Also, the water must be very clean to prevent fouling.

Electrodialysis. The major energy requirement is the direct current used to separate the ionic substances in the membrane stack. The salts dissolved in water are ionic. These ions are attracted to electrodes with an opposite electric charge. Membranes can be constructed to permit selective passage of either anions or cations. The dissolved ionic constituents in a saline solution such as sodium (+), calcium(++), chloride (-), and carbonate(--) are dispersed in water, effectively neutralizing their individual charges. When electrodes connected to an outside source of direct current are placed in a container of saline water, electrical current is carried through the solution, with the ions
tending to migrate to the electrode with the opposite charge. Typical freshwater recovery rates of ED range from 80 to 90% of the feed water volume.

Ion exchange. Undesirable ions in the feed water are exchanged for desirable ions as the water passes through granular ion exchange resins. The higher the concentration of dissolved solids in the feed water, the more often the resins need to be replaced or regenerated.

Freeze desalination. When salt water freezes, ice crystals form pure water leaving the dissolved salt and other minerals in pockets of high-salinity brine. Freeze desalination concentrates a variety of waste streams to higher concentrations with less energy than any distillation process. Freezing involves pre-cooling the feed water, crystallizing ice into slush, separating ice from the brine, washing the ice, and melting the ice.

CHAPTER II

SHEET-SHELL HEAT EXCHANGER

The sheet-shell heat exchanger is a key component of the desalination system. It consists of a novel assembly, which combines features of a conventional plate-and-frame and a shell-and-tube heat exchanger. It can be employed to exchange either sensible heat or latent heat. As a latent heat exchanger, it can be part of a multi-effect evaporator train that operates at successively lower pressures and temperatures. Steam from a highpressure evaporator boils water in an adjacent low-pressure evaporator. Alternatively, it can be part of a vapor-compression evaporator.

Holtzapple and Noyes [3] conceived the sheet-shell heat exchanger depicted in Figures 2-1 and 2-2. In the high-pressure chamber (top view of Figure 2-2) the baffles cause the flow area to progressively reduce, which allows a relatively constant velocity through the heat exchanger. The flow finally pushes any noncondensible gases to the exit. The number of channels per pass is selected to achieve a low pressure drop. In the low-pressure chamber (side view of Figure 2-2), liquid enters from the bottom and boils due to heat transfer through the wall. The produced vapors exit from the top.

Figure 2-1. Perspective view of heat exchanger plates with top and bottom baffles for the boiling side [3].

Figure 2-2. Top view and side view for latent heat exchanger. Note the baffle pattern in the high-pressure side shown in the top view [3].

For the high-pressure side of the sheet-shell heat exchanger, the goal is to produce dropwise condensation. This can be promoted using titanium cladding over carbon steel (see Figure 2-3), a gold plated surface [5], or a titanium plate [6]. Also, a titanium surface reduces fouling and avoids corrosion by seawater [6].

Figure 2-4 shows an example of the temperature drops through a titanium-clad sheet. The total ΔT is the sum of ΔT_{s} (steam side), ΔT_{m} (metal), and ΔT_{b} (boiling side).

Figure 2-3. Proposed titanium-clad plate for sheet-shell heat exchanger.

$$
\Delta T=\Delta T_{b}+\Delta T_{m}+\Delta T_{s}
$$

Figure 2-4. Temperature differences at different locations near the heat exchanger sheet.

Holtzapple and Noyes [3] targeted $\Delta T=5.56^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ as the temperature difference in each heat exchanger of a vapor compression evaporator train. An extensive review on the subject [4-14] indicates that this is a reasonable temperature difference. Further, the literature [15] recommends a velocity of approximately $1.52 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{s})$ on the high-pressure steam side.

Experiments performed by Dollof, Metzger, and Roblee [16] show the effect of steam pressure (and temperature) on the steam-side heat transfer coefficient. O'Bara, Killian, and Roblee [15] show that at $\Delta T_{s}=2.3^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{F}\right)$, large heat transfer coefficients are obtained for a vapor velocity of about $1.52 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{s})$.

Based on the information in Figures 2-5 and 2-6, we will employ the following preliminary conditions:

$$
\begin{aligned}
& \Delta T=5.56^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right) \\
& \Delta T_{s}=2.3^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{F}\right) \\
& P_{\text {steam }}=827.4 \mathrm{kPa}(120 \mathrm{psig}) \\
& T_{\text {steam }}=177^{\circ} \mathrm{C}\left(350^{\circ} \mathrm{F}\right) \\
& V_{\text {steam }}=1.52 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{s})
\end{aligned}
$$

Figure 2-5. Influence of vapor velocity and temperature difference on steam-side heat transfer coefficients [15].

Figure 2-6. Variation of steam-side heat transfer coefficient with pressure for dropwise condensation corresponding to different ΔT_{s} values [16].

Steam Condensation

O’Bara, Killian, and Roblee [15] state that steam-side heat transfer is a significant part of the total resistance; thus, increasing the steam-side coefficient can measurably improve the overall system performance. Also, they found dropwise steam condensation at $\Delta T_{s}=2.3^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{F}\right)$ has a heat transfer coefficient $h_{\text {cond }}$ of $198,744 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$ $\left(35,000 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}{ }^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$ at a steam velocity value of about $1.52 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{s})$ (see Figure $2-5$). Interestingly, they found that as the vapor velocity increased above $1.82 \mathrm{~m} / \mathrm{s}$ (6 ft / s), $h_{\text {cond }}$ abruptly dropped reflecting the transition from dropwise to mixed condensation, resulting from the greater vapor-liquid interfacial shear stress developed at the higher vapor velocities (see Figure 2-5).

It should be remarked that if the total ΔT between the bulk steam and the bulk seawater is about $\Delta T=5.56^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$, and the steam side has a very high heat transfer coefficient $h_{\text {cond }}$, then $\Delta T_{\text {s }}$ will be only about $2.3^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{F}\right)$. Figure 2-5 shows that the steam-side heat transfer coefficient improves at lower ΔT_{s}. At low ΔT_{s}, the heat transfer rate is lower, thus giving time for drops to coalesce and shed. The drops act as an insulator; their removal allows high heat transfer coefficients at the bare metal surface. Figure 6 also shows that regardless of ΔT_{s} the maximum vapor velocity at which dropwise condensation exists is about $1.52 \mathrm{~m} / \mathrm{s}$ ($5 \mathrm{ft} / \mathrm{s}$). Photographs taken by Dolloff, Metzger, and Roblee [16] revealed that dropwise condensation was maintained for pressures up to $P_{\text {steam }}=827.4 \mathrm{kPa}(120 \mathrm{psig}), T_{\text {steam }}=177^{\circ} \mathrm{C}\left(350^{\circ} \mathrm{F}\right)$.

As shown in Figure 2-6, Dolloff, Metzger, and Roblee [16] found experimentally that at $\Delta T_{s}=5.56^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$, the heat transfer coefficient for dropwise condensation reached $193,066 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\left(34,000 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$ at $345 \mathrm{kPa}(50 \mathrm{psig})$. As the steam pressure increases, the heat transfer coefficient increases up to a critical pressure where the coefficient decreases slightly, and then gradually increases as the pressure increases.

Ruckenstein and Metiu [17] used a model to estimate the heat transfer coefficient for dropwise condensation on a solid surface. Their model considers the heat transferred through both the droplet and the film, which is dynamically breaking up on the solid surface.

$$
\begin{equation*}
h_{\text {cond }}=\frac{\left(\frac{S_{f}}{S}\right)}{\left(\frac{1}{h_{e v}}+\frac{\delta_{c}}{2 k}\right)} \tag{2.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& k=\text { liquid film thermal conductivity }=0.3934 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}\right) \\
& \frac{S_{f}}{S}=\text { fraction of droplet to total area }=0.25 \text { (An estimate from References }
\end{aligned}
$$

15 and 16 , which used values of $\theta=72^{\circ} \pm 8^{\circ}$ [14], the angle between the droplet and the solid surface shown in Figure 2-7.)

$$
\delta_{c}=0.27 \mu \mathrm{~m}=8.86 \times 10^{-7} \mathrm{ft} .[16]
$$

Figure 2-7. Surface tensions and contact angle θ for a drop that is forming on the solid surface of the plate [16].

Therefore,

$$
\frac{\delta_{c}}{2 k}=\frac{8.86 \times 10^{-7} \mathrm{ft}}{2 \times 0.3934 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}}}=1.13 \times 10^{-6} \frac{\mathrm{ft}^{2} \cdot \mathrm{~h} \cdot{ }^{\circ} \mathrm{F}}{\mathrm{Btu}}
$$

The heat transfer coefficient through the liquid-vapor interface between the droplet and the steam follows [16, 12, and 18]:

$$
\begin{equation*}
h_{e v}=778 \sigma_{1}\left(\frac{g_{c} M}{2 \pi R T_{\text {ave }}}\right)^{\frac{1}{2}} \frac{h_{f g}^{2}}{T_{s} v_{v}} \tag{2.2}
\end{equation*}
$$

Nabavian and Bromley [19], wrote this equation in engineering units where

$$
g_{c}=4.17 \times 10^{8} \frac{\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{ft}}{\mathrm{bb}_{\mathrm{f}} \cdot \mathrm{~h}^{2}}
$$

$$
\begin{aligned}
M & =\text { molecular weight }=18.01 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{lbmol}} \\
R & =\text { gas constant }=1545.35 \frac{\mathrm{ft} \cdot \mathrm{lb}_{\mathrm{f}}}{\mathrm{lbmol} \cdot{ }^{\circ} \mathrm{R}} \\
T_{\text {ave }} & =\frac{1}{2}\left(T_{s}+T_{v}\right)=794.67^{\circ} \mathrm{R} \\
T_{s} & =\text { temperature }=171.11^{\circ} \mathrm{C}=799.67^{\circ} \mathrm{R} \\
h_{f g} & =\text { latent heat of vaporization }=878 \text { Btu } / \mathrm{lb}_{\mathrm{m}} \\
v_{v} & =\text { Specific volume of vapor under present working conditions }=3.8863 \mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}} \\
\sigma_{1} & =\frac{2 \sigma}{2-\sigma}
\end{aligned}
$$

where
$\sigma=$ mass transfer accommodation coefficient $[20]=0.05$ (Ruckestein and Metiu
[17])

Therefore,

$$
\sigma_{1}=\frac{2(0.05)}{2-0.05}=0.051
$$

Substituting into Equation 2.2:

$$
\begin{aligned}
h_{e v} & =778 \frac{\mathrm{lb}_{\mathrm{f}} \cdot \mathrm{ft}}{\mathrm{Btu}} \times 0.051 \times\left(\frac{\left(4.17 \times 10^{8} \frac{\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \cdot \mathrm{~h}^{2}}\right)\left(18.01 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{lbmol}}\right)}{2 \pi\left(1545.35 \frac{\mathrm{ft} \cdot \mathrm{lb}_{\mathrm{f}}}{\mathrm{lbmol} \cdot{ }^{\circ} \mathrm{R}}\right)\left(794.67^{\circ} \mathrm{R}\right)}\right)^{\frac{1}{2}} \times\left(\frac{\left(878.49 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}\right)^{2}}{\left(799.67^{\circ} \mathrm{R}\right)\left(3.88 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}\right)}\right) \\
& =307,488 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}
\end{aligned}
$$

Substituting into Equation 2.1:

$$
h_{\text {cond }}=\frac{0.25}{\left(\frac{1}{307,488 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}}\right)+1.13 \times 10^{-6} \frac{\mathrm{ft}^{2} \cdot \mathrm{~h} \cdot{ }^{\circ} \mathrm{F}}{\mathrm{Btu}}}=57,049 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}
$$

This calculated value is similar to the experimental measurements of $198,744 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\left(35,000 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$ [15 and $193,065 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$ $\left(34,000 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$ [16].

Measurements of atmospheric-pressure steam made by Le Fevre and Rose [2022], and by Tanner, Potter, Pope, and West [23, 24] were correlated by Rose [14] (see Figure 2-8). It shows that at $\Delta T_{s}=4^{\circ} \mathrm{C}\left(7.2^{\circ} \mathrm{F}\right)$, there is a measured heat flux $Q^{\prime \prime}$ of 1.2 $\mathrm{MW} / \mathrm{m}^{2}\left(380,400 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2}\right)\right)$. The corresponding steam-side heat transfer coefficient is 299,820 $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\left(52,800 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$, which is nearly identical to the value calculated by Equation (2.1).

Figure 2-8. Steam-side temperature difference for condensing steam. Comparison between experiment [20-24] and theory [2]. (Note: ΔT on this figure corresponds to ΔT_{s} in our nomenclature and Q "is the heat flux.)

Gebhart [9] shows that for atmospheric-pressure vapor, dropwise condensation has a heat flow that may be 10 to 20 times greater than filmwise condensation (see Figure 29). The use of different dropwise condensation promoters [19] and the presence of noncondensible gases may cause different measurements.

Figure 2-9. Comparison of the overall heat transfer coefficients h. The coeffiecients were obtained with filmwise condensation and dropwise condensation of atmospheric-pressure steam corresponding to different overall ΔT_{s} values [9].

Liquid-Side Boiling

For saturated pool boiling, ASHRAE Fundamentals [25] gives:

$$
\begin{equation*}
h_{\text {boiling }}=55 P_{\mathrm{r}}^{0.12-0.4343 \ln R_{\mathrm{p}}}\left(-0.4343 \ln P_{\mathrm{r}}\right) M^{-0.5}\left(\frac{q}{A}\right)^{0.67} \tag{2.3}
\end{equation*}
$$

where the correlation requires the following units:

$$
\begin{aligned}
\left(\frac{q}{A}\right) & =\text { heat flux }\left(\frac{\mathrm{W}}{\mathrm{~m}^{2}}\right) \\
h & =\text { liquid-side heat transfer coefficient }\left(\frac{\mathrm{W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}\right) \\
R_{p} & =\text { surface roughness }(\mu \mathrm{m}) \\
P_{r} & =\text { reduced pressure }=\frac{P}{P_{\text {critical }}} \\
P_{\text {critical }} & =22,063.4 \mathrm{kPa}(3,200 \mathrm{psia}) . \\
P_{r} & =\frac{(109.07 \mathrm{psig}+14.7 \mathrm{psi})}{3,200 \mathrm{psia}}=0.038 \\
M & =\text { molecular weight }\left(\frac{\mathrm{g}}{\mathrm{gmol}}\right)
\end{aligned}
$$

The minimum heat exchanger area will result from a design that operates near the peak heat flux [9]. Boiling heat transfer is especially effective at high heat fluxes, so it cools nuclear reactors and rocket engines with heat transfer rates of the order of 9.4×10^{3} to $9.4 \times 10^{4} \mathrm{~kW} / \mathrm{m}^{2}\left(3 \times 10^{6}\right.$ to $\left.3 \times 10^{7} \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}\right)$ [26]. Therefore, high heat transfer coefficients will be obtained from dropwise condensation and pool boiling.

Equation 2.3 requires the heat flux which is

$$
\begin{equation*}
\frac{q}{A}=h_{\text {comp }}\left(\Delta T_{m}+\Delta T_{s}\right) \tag{2.4}
\end{equation*}
$$

For a titanium sheet, $h_{\text {comp }}$ is

$$
\begin{aligned}
h_{\text {comp }} & =\frac{1}{(\text { steam - side resistance })+(\text { wall resistance })} \\
& =\frac{1}{\left(\frac{1}{h_{\text {cond }}}\right)+\left(\frac{1}{\frac{k_{\text {tit }}}{x_{\text {tit }}}}\right)}
\end{aligned}
$$

The properties for a 0.003 -in-thick titanium sheet follow:

$$
\begin{aligned}
& x_{t i t}=0.003 \mathrm{in}=2.5 \times 10^{-4} \mathrm{ft} \\
& k_{\text {tit }}=11.85 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}
\end{aligned}
$$

Thus, from the condensing-side heat transfer coefficient and the resistance from the metal wall,

$$
h_{\text {comp }}=\frac{1}{\frac{1}{57,049 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}}+\frac{1}{\frac{11.85 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}}}{2.5 \times 10^{-4} \mathrm{ft}}}}=25,889.9 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}
$$

Therefore, for $\left(\Delta T_{m}+\Delta T_{s}\right)=6^{\circ} \mathrm{F}$,

$$
\frac{q}{A}=25,889.9 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}} \times 6^{\circ} \mathrm{F}=155,340 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2}} \times \frac{1 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}}{0.3171 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2}}}=489,875 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
$$

Substituting into Equation 2.3

$$
\begin{aligned}
h_{\text {boiling }} & =55 \times(0.038)^{0.12-0.4343 \ln 5}(-0.4343 \ln 0.038)\left(18.01 \frac{\mathrm{~g}}{\mathrm{gmol}}\right)^{-0.5}\left(489,875 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right)^{0.67} \\
& =793,242.7 \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \times \frac{0.177612 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}}{\frac{\mathrm{~W}}{\mathrm{~m}^{2}}}=140,889.43 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}
\end{aligned}
$$

Farber and Scorah [10]performed experiments to measure heat transfer coefficients for boiling pressurized water. Figure 2-10 shows that $\Delta T_{b}=3.3^{\circ} \mathrm{C}\left(6^{\circ} \mathrm{F}\right)$ provides good values for the heat transfer coefficient $h_{\text {boiling }}=0.85 \mathrm{MW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \approx 150,000 \frac{\mathrm{Btu}}{\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}$ for a Chromel A wire heater working under a pressure of $690 \mathrm{kP}_{\text {gauge }}(100 \mathrm{psig})$. This value is very close to the one obtained with Formula 2.3.

Figure 2-10. Boiling-side heat transfer coefficients. These were obtained under different pressures corresponding to different ΔT_{b} when the heated surface is a Chromel A wire [10].

Gebhart's Table 1 [9] summarizes data of experiments performed by Farber and Scorah [10], McAdams [11], and Cichelli and Bonilla [12]. At a pressure of 790.8 kPa (114.7 psia) and a liquid temperature of $169.4^{\circ} \mathrm{C}\left(337^{\circ} \mathrm{F}\right)$, they show it is possible to have a flux of up to $9.03 \mathrm{MW} / \mathrm{m}^{2}\left(1,590,000 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2}\right)\right)$ when the heater surface is a horizontal Chromel C wire (see Table 2.1). Therefore, the calculated heat flux using Equation 2.3 is realistic and conservative.

Table 2-1. Observed peak heat transfer rates for pool boiling on submerged heaters concerning the pressures and temperature difference at which it occurs [7]

Liquid	$\begin{gathered} \text { Pressure } \\ \text { (psia) } \end{gathered}$	$\begin{array}{\|c} \hline \text { Liquid } \\ \text { temperature } \\ \left({ }^{\circ} \mathrm{F}\right) \end{array}$	$\begin{gathered} \text { Peak flux } \\ \frac{q}{A} \\ \left(\frac{B t u}{\mathrm{~h} \cdot \mathrm{ft}^{2}}\right) \end{gathered}$	Critical temperature difference* $\Delta T_{c},\left({ }^{\circ} \mathrm{F}\right)$	$\begin{aligned} & \text { Heater } \\ & \text { surface } \\ & \text { and } \\ & \text { condition } \end{aligned}$	Reference
Water	14.7	212	993,000	99.9	0.04-indiameter horizontal Chromel C wire	[10]
	64.7	297	906,000	39.5		[10]
	114.7	337	1,590,000	12.8		[10]
	14.7	212	210,000	42	0.004-indiameter clean platinum wire	[11]
	14.7	212	380,000	42	$0.008-$ $0.016-$ - and 0.024- diameter clean platinum wire	[12]

*The spots where bubbles originate on the heated surface become more numerous until a critical temperature is reached at which a maximum heat flux is attained [26]. At that point, the bubbles are so numerous that they interfere with each other. If the temperature is increased beyond the critical value by a few degrees, transition boiling begins.

Overall Heat Transfer Coefficient (U)

The overall heat transfer coefficient for a titanium-clad carbon steel heat exchanger is

$$
\begin{equation*}
U=\frac{1}{\frac{1}{h_{\text {cond }}}+\frac{1}{h_{\text {boiling }}}+\frac{1}{\frac{k_{\text {steel }}}{x_{\text {steel }}}}+2\left(\frac{1}{\frac{k_{\text {tit }}}{x_{\text {tit }}}}\right)} \tag{2.5}
\end{equation*}
$$

In one design option, both surfaces of the carbon steel plate are clad with titanium. The boiling waterside is clad to avoid corrosion and the steam condensing side produces dropwise condensation as well as avoiding fouling. Titanium Metals Corporation claims in its website [13] that on 60-day tests of titanium, hard smooth surfaces promote dropwise condensation and minimize buildup of external fouling films, making cleaning and maintenance easier and producing high rates of condensation.

In Equation 2.5

$$
\begin{aligned}
h_{\text {steam }} & =57,049 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}, \text { calculated from Equation } 2.1 \\
h_{\text {boili } \mathrm{ln} g} & =140,889 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}, \text { calculated from Equation } 2.3 \\
k_{\text {steel }} & =\text { thermal conductivity for carbon steeel }=29 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}} \text { at } 340^{\circ} \mathrm{F} \\
x_{\text {steel }} & =\text { carbon steel plate thickness }=0.0375 \mathrm{in}=0.0031 \mathrm{ft} \\
k_{\text {tit }} & =\text { thermal conductivity for titanium }=11.8453 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}} \text { at } 340^{\circ} \mathrm{F}
\end{aligned}
$$

$$
x_{t i t}=0.001 \mathrm{in}=8.33 \times 10^{-5} \mathrm{ft} \text { (first estimate) }
$$

Substituting into Equation 2.5:

$$
\left.\begin{array}{rl}
U= & \frac{1}{\frac{1}{57,049} \frac{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}{\mathrm{Btu}}+\frac{1}{140,889} \frac{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}{\mathrm{Btu}}+\frac{1}{29 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}}} 0}+2\left(\frac{1}{0.0031 \mathrm{ft}}\right. \\
\frac{11.89453 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}}}{8.33 \times 10^{-5} \mathrm{ft}}
\end{array}\right)
$$

For a design option where the wall is 0.003 -in-thick titanium sheet, the overall heat transfer coefficient becomes:

$$
\begin{aligned}
U & =\frac{1}{\frac{1}{57,049} \frac{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}{\mathrm{Btu}}+\frac{1}{140,889} \frac{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}{\mathrm{Btu}}+\left(\frac{1}{\frac{11.89453 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}}}{8.33 \times 10^{-5} \mathrm{ft}}}\right)} \\
& =31,647 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}
\end{aligned}
$$

The single sheet of 0.003 -in titanium has 4 times the heat transfer of a 0.0375 -in carbon steel sheet with 0.001 -in titanium cladding. This calculation shows that the metal heat transfer resistance is significant and that efforts should be taken to minimize metal thickness.

These overall heat transfer coefficients are very promising, but subject to the ideal working condition presented here. It would be desirable to obtain experimental data to verify these calculations.

Optimization

The previous sections showed how individual heat transfer coefficients could be calculated for specific conditions. Here, we will determine the overall heat transfer coefficient by adjusting the condensing-side temperature and the overall temperature difference. Once the relationship is known, an optimal value can be selected.

Step 1. Determine the quantity to be optimized (U) and define variables to be optimized. The quantity to be optimized, the overall heat transfer coefficient, is a mathematical function of:

1. steam pressure P (psig)
2. steam temperature $T\left({ }^{\circ} \mathrm{F}\right)$
3. steam velocity $V(\mathrm{ft} / \mathrm{s})$
4. steam dynamic viscosity $\mu_{s}\left(\mathrm{lb}_{\mathrm{m}} /(\mathrm{h} \cdot \mathrm{ft})\right)$
5. heat transfer surface thermal conductivity $k\left(\mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}\right)\right)$
6. liquid temperature $T\left({ }^{\circ} \mathrm{F}\right)$
7. liquid pressure P (psig)
8. liquid velocity $V(\mathrm{ft} / \mathrm{s})$
9. liquid dynamic viscosity $\mu_{l}\left(\mathrm{lb}_{\mathrm{m}} /(\mathrm{h} \cdot \mathrm{ft})\right)$
10. steam-side heat transfer coefficient $h_{\text {cond }}\left(\mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$
11. liquid-side heat transfer coefficient $h_{\text {boiling }}\left(\mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$
12. overall heat transfer temperature differential $\Delta T\left({ }^{\circ} \mathrm{F}\right)$
13. plate thickness Δx (ft)
14. heat flux $\frac{q}{A}\left(\mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2}\right)\right)$
$U=f\left(P_{\text {steam }}, T_{\text {steam }}, V_{\text {steam }}, \mu_{s}, k_{m}, P_{\text {liq }}, T_{\text {liq }}, V_{\text {liq }}, \mu_{\text {liq }}, h_{\text {cond }}, h_{\text {boiling }}, \Delta T, \Delta x, \frac{q}{A}\right)$
Step 2. Identify all stipulated restrictions, requirements, and limitations:
15. Promote dropwise condensation:

Maximum allowable steam pressure $=120$ psig
Maximum allowable steam velocity $=5 \mathrm{ft} / \mathrm{s}$
Dropwise-condensation-promoting surface
2. Attain the maximum possible overall heat transfer coefficient: saturated condition on both steam and liquid side.
3. Pool boiling conditions.
4. Determine the lowest possible temperature and pressure drop to allow a maximum number of effects in the evaporator train.

Because the optimization process is performed under the severe restrictions described previously, the overall heat transfer coefficient is a function of the temperature drop, which itself is constrained to the parameters solely involved in the heat transfer mechanism

$$
\begin{equation*}
U=f_{1}\left[\Delta T f\left(h_{\text {cond }}, h_{\text {boiling }}, \Delta x, k_{m}, \frac{q}{A}\right)\right] \tag{2.7}
\end{equation*}
$$

Figure 2-11 (Table B-2, Appendix B) shows the calculated overall heat transfer coefficients corresponding to different condensing temperatures and different heat transfer temperature differentials ΔT between the condensing steam side and the boiling liquid side. The overall heat transfer coefficient U reaches an optimal maximum value $278.3 \mathrm{~kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\left(\right.$ about $\left.49,000 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$ at an optimal overall temperature differential $\Delta T=3.3^{\circ} \mathrm{C}\left(6^{\circ} \mathrm{F}\right)$.

It is worthwhile to mention at this point that although high values for the heat transfer coefficient can be attained in theory, it has been decided that a constant value of $24,900 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)$ will be used in the engineering design.

Condensing-side temperature (${ }^{0} \mathbf{F}$)

Figure 2-11. Calculated overall heat transfer coefficients. They correspond to specified overall temperature differentials ΔT and different condensing-side temperatures.

Titanium Metals Corporation [27] claims that in power generating plants, where saline, brackish, or polluted waters are used as the cooling medium, titanium thin-wall condenser tubing will last for the life of the condenser (with a 40-year warranty against failure under proper conditions) and will eliminate the need for a corrosion allowance.

Titanium Metals Corporation [13] also performed tests on titanium in a seawater environment. It showed excellent resistance to turbulence and erosion-corrosion, which permits the use of relatively high flow rates of $5.48-6.70 \mathrm{~m} / \mathrm{s}(18-22 \mathrm{ft} / \mathrm{s})$ (silt-laden seawater) or even up to $30.48 \mathrm{~m} / \mathrm{s}$ ($100 \mathrm{ft} / \mathrm{s}$) (clean seawater) without damaging the passive oxide film. Tests in $26.7^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$ seawater for 60 days at $7.6 \mathrm{~m} / \mathrm{s}(25 \mathrm{ft} / \mathrm{s})$
have shown titanium's corrosion-erosion resistance to be 80 times better than that of the next-best material, a copper-nickel alloy. Other tests in $29.4^{\circ} \mathrm{C}\left(85^{\circ} \mathrm{F}\right)$ seawater for 60 days at $8.2 \mathrm{~m} / \mathrm{s}(27 \mathrm{ft} / \mathrm{s})$ proved titanium to be almost 100 times better than stainless steel, the next best material.

The overall heat transfer coefficient of titanium in a desalination environment equaled that of 90-10 copper-nickel after a short operating period because titanium did not experience corrosion fouling. In this experiment, seawater moved at $1.52 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{s})$ inside $3 / 4$-in, 19-gauge tubes with steam condensing on the outside.

CHAPTER III

PRESSURE DROP IN THE HEAT EXCHANGER

For two-phase flow inside horizontal tubes and channels, the 2001 ASHRAE Fundamentals Handbook [25] presents a model where the pressure gradient is the sum of frictional and momentum terms. Thus,

$$
\begin{equation*}
\frac{d P}{d z}=\left(\frac{d P}{d z}\right)_{\text {friction }}+\left(\frac{d P}{d z}\right)_{\text {momentum }} \tag{3.1}
\end{equation*}
$$

Dukkler, Wicks, and Cleveland [28] give a correlation for the frictional pressure gradient as

$$
\begin{equation*}
\left(\frac{d P}{d z}\right)_{\text {friction }}=-\frac{2 G^{2} f_{0} \alpha(\lambda) \beta}{D_{h} \rho_{N S}} \tag{3.2}
\end{equation*}
$$

where,

$$
\begin{aligned}
D_{h} & =\text { hydraulic diameter }(\mathrm{ft})=\frac{4 A}{P} \\
A & =\text { cross-sectional area }\left(\mathrm{ft}^{2}\right) \\
P & =\text { wetted perimeter }(\mathrm{ft})
\end{aligned}
$$

$$
G=\text { mass flux }=\rho_{\mathrm{v}} V\left(\mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{2} \cdot \mathrm{~s}\right)\right)
$$

$$
f_{\circ}=\text { Single-phase friction coefficient evaluated at two-phase Reynolds number }
$$

$$
\begin{equation*}
=0.0014+0.125\left(\frac{4 m_{t} \beta}{\pi D_{i} \mu_{\mathrm{NS}}}\right)^{-0.32} \tag{3.3}
\end{equation*}
$$

$$
m_{t}=\text { mass flow rate }=\rho_{v} V A\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{s}\right)
$$

$$
V=\text { steam velocity }(\mathrm{ft} / \mathrm{s})
$$

$$
\begin{align*}
& \rho_{v}=\text { steam density }\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right) \\
& \alpha(\lambda)=\frac{1-(\ln \lambda)}{\left[1.281+0.478 \ln \lambda+0.444(\ln \lambda)^{2}+0.094(\ln \lambda)^{3}+0.00843(\ln \lambda)^{4}\right]} \tag{3.4}\\
& \beta=\left(\frac{\rho_{l}}{\rho_{\text {NS }}}\right) \frac{\lambda^{2}}{(1-\Psi)}+\left(\frac{\rho_{v}}{\rho_{N S}}\right) \frac{(1-\lambda)^{2}}{\Psi} \tag{3.5}\\
& \rho_{\text {NS }}=\rho_{l} \lambda+\rho_{v}(1-\lambda) \tag{3.6}\\
& \mu_{\text {NS }}=\mu_{l} \lambda+\mu_{v}(1-\lambda) \tag{3.7}\\
& \lambda=\frac{1}{\left(1+\frac{x}{(1-x)} \frac{\rho_{v}}{\rho_{l}}\right)} \tag{3.8}
\end{align*}
$$

where,

$$
\begin{aligned}
& \rho_{v}=\text { vapor density }\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right) \\
& \rho_{v}=\text { lquid density }\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right) \\
& \mu_{l}=\text { liquid dynamic viscosity }\left(\mathrm{lb}_{\mathrm{m}} /(\mathrm{h} \cdot \mathrm{ft})\right) \\
& \mu_{l}=\text { vapor dynamic viscosity }\left(\mathrm{lb}_{\mathrm{m}} /(\mathrm{h} \cdot \mathrm{ft})\right) \\
& x=\text { mass fraction of vapor }=0.999
\end{aligned}
$$

The void fraction Ψ is calculated from:

$$
\begin{equation*}
\Psi=\frac{1}{1+A_{l}\left[\frac{(1-x)}{x}\right]^{q_{l}}\left(\frac{\rho_{v}}{\rho_{l}}\right)^{r_{l}}\left(\frac{\mu_{l}}{\mu_{v}}\right)^{s_{l}}} \tag{3.9}
\end{equation*}
$$

where A_{l}, q_{l}, r_{l}, and s_{l} are constants and are listed for the various correlations in Table 3-
1.

Table 3-1. Constants in Equation 3.9 for different void fraction correlations [25]

Model	A_{l}	q_{l}	r_{l}	s_{l}
Homogeneous (Collier [30])	1.0	1.0	1.0	0
Lockhart- Martinelli	0.28	0.64	0.36	0.07
Baroczy	1.0	0.74	0.65	0.13
Thom	1.0	1.0	0.89	0.18
Zivi	1.0	1.0	0.67	0
Turner-Wallis	1.0	0.72	0.40	0.08

The mass flow rate m_{t} is calculated from

$$
m_{t}=\rho_{v} V A
$$

where A is the cross sectional area between plates in the heat exchanger (see Fig. 3-1).

Figure 3-1. Cross sectional area representation for space between plates in the heat exchanger.

The hydraulic diameter D_{h} is

$$
D_{h}=\frac{4 A}{P}
$$

where

$$
\begin{aligned}
& A=\text { cross-sectional area }\left(\mathrm{ft}^{2}\right) \\
& P=\text { wetted perimeter }(\mathrm{ft})
\end{aligned}
$$

The proposed steam velocity by Dolloff, Metzger, and Roblee [16] is $1.52 \mathrm{~m} / \mathrm{s}$ (5 ft / s) whereas O'Bara, Killian and Roblee [15] suggested $1.98 \mathrm{~m} / \mathrm{s}(6.5 \mathrm{ft} / \mathrm{s})$.

The pressure drop due to momentum is calculated following reference [25] as

$$
\begin{equation*}
\left(\frac{d P}{d z}\right)_{\text {momentum }}=-G^{2}\left(\frac{d x}{d z}\right)\left\{\frac{2 x}{\rho_{v} \Psi}-\frac{2(1-x)}{\rho_{l}(1-\Psi)}+q_{l}\left[\frac{\Psi(1-x)}{x(1-\Psi) \rho_{l}}-\frac{x(1-\Psi)}{\Psi(1-x) \rho_{v}}\right]\right\} \tag{3.10}
\end{equation*}
$$

The heat exchanger geometry [29] (see Figures 2.1 and 2.2) suggests that there is a pressure drop ΔP due to the sudden channel enlargement when the steam flow exits the channel before it turns 180° and bends towards a sudden contraction when it enters to the plate channel.

Colliere [30] recommends the following scheme for 180° bends:

$$
\begin{equation*}
\frac{\Delta P_{T P}}{\Delta P_{f}}=1+C X+X^{2} \tag{3.11}
\end{equation*}
$$

This corresponds to pressure drop with vapor flowing alone, where

$$
\begin{aligned}
\Delta P_{T P} & =\text { pressure drop of the two-phase flow } \\
\Delta P_{f} & =\text { pressure drop of the liquid-phase flow } \\
X & =\text { Martinelli parameter }=\frac{1}{\left(\frac{x}{1-x}\right)\left(\frac{v_{g}}{v_{f}}\right)^{0.5}} \\
v_{g} & =\text { vapor specific volume }\left(\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}\right) \\
v_{f} & =\text { liquid specific volume }\left(\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}\right)
\end{aligned}
$$

$$
C=\text { Chisholm correlation coefficient }=\left[\lambda+\left(\mathrm{C}_{2}-\lambda\right)\left(\frac{v_{f g}}{v_{g}}\right)^{0.5}\right]\left[\left(\frac{v_{g}}{v_{f}}\right) 0.5+\left(\frac{v_{f}}{v_{g}}\right)^{0.5}\right]
$$

Chisholm [31] recommends the following values for C_{2} and λ :

$$
\begin{aligned}
C_{2} & =1+20\left(\frac{D}{L}\right) \\
\lambda & =1
\end{aligned}
$$

From reference [28],

$$
\begin{equation*}
\Delta P_{f}=K\left(\frac{\rho_{f}}{g_{c}}\right)\left(\frac{V^{2}}{2}\right) \tag{3.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& K=0.30 \text { for a flanged welded bend } \\
& V=\text { fluid velocity }(\mathrm{ft} / \mathrm{s}) \\
& \rho_{f}=\text { fluid density }\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right) \\
& g_{c}=32.2 \mathrm{lb} \mathrm{~m} \cdot \mathrm{ft} /\left(\mathrm{lb}_{\mathrm{f}} \cdot \mathrm{~s}^{2}\right)
\end{aligned}
$$

It should be remembered that this pressure drop corresponds to each bend that the flow encounters. Therefore, this value has to be multiplied times the number of bends required in the heat exchanger. The number of bends corresponds to the number of baffles. Consider for example that there are 10 plates per baffle.

Collier [30] derived the following equation to compute the pressure drop in a sudden enlargement:

$$
\begin{equation*}
P_{2}-P_{1}=G_{1}^{2} \sigma(1-\sigma) v_{f}\left[\frac{(1-x)^{2}}{(1-\alpha)}+\left(\frac{v_{g}}{v_{f}}\right) \frac{x^{2}}{\alpha}\right] \tag{3.13}
\end{equation*}
$$

where

$$
\begin{aligned}
G_{1} & =\text { steam mass velocity }=\rho_{v} V\left(\mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{2} \cdot \mathrm{~s}\right)\right) \\
\alpha & =\text { void fraction }=\Psi=0.999 \\
v_{f} & =\text { specific volume of saturated liquid }\left(\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}\right) \\
x & =\text { steam (vapor) quality }(\%) \\
V & =\text { velocity }(\mathrm{ft} / \mathrm{s}) \\
\sigma & =\text { enlargement ratio }=A_{1} / A_{2}
\end{aligned}
$$

where A_{2} is estimated to be 10 times larger than A_{1}
Collier [30] proposes the following equation for a contraction:

$$
\begin{equation*}
P_{2}-P_{1}=\frac{G_{2}^{2} v_{f}}{2}\left[\left(\frac{1}{C_{c}}-1\right)^{2}+\left(1-\frac{1}{\sigma^{2}}\right)\right]\left[1+\left(\frac{v_{f g}}{v_{f}}\right) x\right] \tag{3.14}
\end{equation*}
$$

where
$C_{c}=$ coefficient of contraction is a function of σ (see Table 3-2)

$$
\begin{aligned}
G_{2} & =\text { steam mass flux }\left(\mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{2} \cdot \mathrm{~s}\right)\right) \\
v_{f} & =\text { specific volume of saturated liquid }\left(\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}\right) \\
\sigma & =\text { contraction ratio }=\frac{A_{2}}{A_{1}}
\end{aligned}
$$

Therefore, the total pressure drop per channel is the sum

$$
\Delta P_{\text {TOTAL }}=\sum\left[(\text { channel })+\left(180^{\circ} \text { bend }\right)+(\text { enlargement })+(\text { contraction })\right]
$$

As can be appreciated in the sample calculation in Appendix C, the pressure drop in the sheet-shell heat exchanger is not a major issue. The operating pressure in Stage 1 is $756.4 \mathrm{kPa}(109.7 \mathrm{psia})$ and the calculated total pressure drop in the heat exchanger is $0.362 \mathrm{kPa}(0.0525 \mathrm{psid})$, which is negligible. However, it should be noted that the liquid head as well as the boiling point elevation reduces the available temperature drop in each effect of the multiple-effect evaporator.

Table 3-2 shows correlated coefficient of contraction values corresponding to different contraction ratios as given by Collier [30].

Table 3-2. Correlated coefficient of contraction [30]

$\frac{1}{\sigma}$	0	0.2	0.4	0.6	0.8	1.0
C_{c}	0.586	0.598	0.625	0.686	0.790	1.0
$\left(\frac{1}{C_{c}}-1\right)^{2}$	0.5	0.45	0.36	0.21	0.07	0

CHAPTER IV

MASS AND ENERGY BALANCE

The steam latent heat of condensation is transferred through the hot surface to vaporize water from seawater. Assuming the heat exchanger is well insulated, the condensing-steam enthalpy change equals the seawater boiling-side enthalpy change. The evaporator mass and energy flow diagram is depicted in Figure 4-1. The following symbols are used:

$$
\begin{aligned}
& m_{s}=\text { rate of steam flow and condensate }\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{h}\right) \\
& m_{f}=\text { rate of seawater feed flow }\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{h}\right) \\
& m_{v}=m_{f}-m_{b}=\text { rate of vapor flow to the next effect }\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{h}\right) \\
& m_{b}=\text { rate of exiting brine flow }\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{h}\right) \\
& T_{s}=\text { condensing temperature of the steam }\left({ }^{\circ} \mathrm{F}\right) \\
& T_{b}=\text { boiling temperature of the seawater }\left({ }^{\circ} \mathrm{F}\right) \\
& T_{f}=\text { temperature of the seawater feed }\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

The enthalpy balance has the following assumptions [32]:

1. no leakage or entrainment
2. negligible flow of non-condensable gases
3. no heat losses from evaporator
4. small superheat of steam
5. small subcooling of condensate

Figure 4-1. Evaporator mass and energy balance diagram.

The steam-side enthalpy balance is

$$
\begin{equation*}
q_{s}=m_{s}\left(H_{s}-H_{c}\right)=m_{s} h_{f g} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& q_{s}=\text { rate of heat transfer }(\mathrm{Btu} / \mathrm{h}) \\
& H_{c}=\text { specific enthalpy of condensate }\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right) \\
& H_{s}=\text { specific enthalpy of steam }\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right) \\
& h_{f g}=\text { latent heat of evaporation }\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)
\end{aligned}
$$

The seawater side enthalpy balance is:

$$
\begin{align*}
q & =m_{v} H_{v}-m_{f} H_{f}+m_{b} H_{b} \\
& =\left(m_{f}-m_{b}\right) H_{v}-m_{f} H_{f}+m_{b} H_{b} \tag{4.2}
\end{align*}
$$

where

$$
\begin{aligned}
& H_{v}=\text { specific enthalpy of vapor }\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right) \\
& H_{f}=\text { specific enthalpy of feed }\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right) \\
& H_{b}=\text { specific enthalpy of exiting brine }\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)
\end{aligned}
$$

Therefore, for the heating surface shown in Figure 4-1

$$
\begin{align*}
& q_{s}=q \\
& m_{s} h_{f g}=\left(m_{f}-m_{b}\right) H_{v}-m_{f} H_{f}+m_{b} H_{b} \tag{4.3}
\end{align*}
$$

Seawater does not have an appreciable heat of dilution [32], which simplifies calculations. For simplicity, liquid brine at T_{b} can be used as a reference condition for the enthalpy calculations. The enthalpy for the exiting brine is

$$
H_{b}=C_{p}\left(T_{b}-T_{b}\right)=0
$$

The enthalpy H_{f} can be calculated from the specific heat of seawater

$$
H_{f}=C_{p f}\left(T_{b}-T_{f}\right)
$$

where

$$
C_{p f}=\text { specific heat of seawater feed }(\text { at } 3.5 \% \text { concentration })\left(\mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}\right)\right)
$$

Table A-4 gives the specific heat as a function of seawater concentration. Tables A-2 through A-6 [33] provide the seawater data used in the calculations.

At steady-state flow conditions in the evaporator, the seawater concentration has been set to 7%. Under these circumstances, there is an appreciable boiling point elevation. The vapor leaving the evaporator solution is superheated by about $1.5^{\circ} \mathrm{C}$ $\left(2.7^{\circ} \mathrm{F}\right)$ (see Figure $5-1$), which corresponds to the boiling point elevation. Using the boiling temperature as a reference, the specific enthalpy H_{v} of the leaving vapor equals the latent heat of vaporization plus the sensible superheat. However, the sensible superheat is small, so it is approximately true that H_{v} is the latent heat of vaporization, which is called λ.[32] (See Appendix D for numerical calculations.) With this simplifying assumption, the steady-state evaporator energy balance becomes:

$$
\begin{align*}
m_{s} h_{f g} & =\left(m_{f}-m_{b}\right) \lambda-m_{f} H_{f}+m_{b} H_{b} \\
& =\left(m_{f}-m_{b}\right) \lambda-m_{f} C_{p f}\left(T_{b}-T_{f}\right)+0 \tag{4.4}
\end{align*}
$$

CHAPTER V

FACTORS AFFECTING EVAPORATOR PERFORMANCE

As was explained in the last part of Chapter IV, the evaporator energy balance must include the boiling point elevation. Increasing the seawater concentration elevates its boiling temperature and reduces its vapor pressure. These and other factors affect evaporator performance.

Boiling Point Elevation

Figure 5-1 shows the boiling point elevation as a function of salinity and temperature.

Figure 5-1. Boiling point elevation and salinity measurements at different temperatures. Data from Table A-7.

Seawater Vapor Pressure Calculation

The water vapor pressure of seawater and its concentrates has been measured in a temperature range $100^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$ by Emerson and Jamieson [34]. The results of their measures are given in Table A-7. There is a close agreement with the analytical method described by The National Engineering Laboratory of England in Reference [35]. The vapor pressure of pure water at a measured temperature p_{0} can be obtained from steam tables or it can be calculated from

$$
\begin{equation*}
\log _{10} p_{0}=a+\frac{b}{z}+\frac{c X}{z}\left(10^{d x^{2}}-1\right)+e 10^{f y^{1.25}} \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& p_{0}=\text { pure water vapor pressure }\left(10^{5} \mathrm{~N} / \mathrm{m}^{2}\right) \\
& x=z^{2}-g \\
& y=344.11-t \\
& z=t+273.16 \\
& t=\text { measured temperature }{ }^{\circ} \mathrm{C} \\
& a=5.432368 \\
& b=-2.0051 \times 10^{3} \\
& c=1.3869 \times 10^{-4} \\
& d=1.1965 \times 10^{-11} \\
& e=-4.4000 \times 10^{-3} \\
& f=-5.7148 \times 10^{-3}
\end{aligned}
$$

$$
g=2.9370 \times 10^{5}
$$

The activity p / p_{0} fits an equation of the form

$$
\begin{equation*}
\log _{10}\left(p / p_{0}\right)=h S+j S^{2} \tag{5.2}
\end{equation*}
$$

where
$p=$ vapor pressure of salt water at the same temperature $\left(10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$
$h=-2.1609 \times 10^{-4}$
$j=-3.5012 \times 10^{-7}$
$S=$ salinity (g salt/kg seawater)
The seawater activity is shown in Figure 5-2 and Appendix A.

Static Head

Because seawater depth in the evaporator is significant $-2.4 \mathrm{~m}(8 \mathrm{ft})$ in the present design - the boiling point corresponding to the pressure vapor is the boiling point of the surface layers only [32]. The liquid below the surface is under the pressure vapor plus a head of liquid and therefore has a slightly higher boiling point. This effect is overcome by pumping the seawater upwards so the warmed water at the bottom of the heat exchanger can readily vaporize.

Figure 5-2. Activity of seawater due to salt concentration (g/kg). The line indicates average activity values of measurements at different temperatures for various salinity samples.

Corrosion

Seawater attacks ferrous metals. In addition, seawater deposits scale on heating surfaces. To avoid corrosion, it is suggested to construct the heat exchanger of titanium. It is known that scale forms at temperatures higher than $120^{\circ} \mathrm{C}$. If the working conditions are above this limit, small abrasive balls can be suspended in the flow to remove scale from the walls.

CHAPTER VI

POWER SYSTEM

Waste heat from the gas turbine is recovered in a heat recovery boiler (HRB) as shown in Figures 6.1(a) and 6.1(b). The combined-cycle power system consists of a gas turbine, a heat recovery boiler (HRB), and a steam turbine that drives a compressor and an electric generator. In the case of a centrifugal compressor, the exiting steam is superheated. The superheat is removed by contacting the superheated steam with liquid water in a packed column (Figure 6.1(b)). In the case of a gerotor compressor, liquid water can be injected directly into the compressor so it emerges saturated (Figure 6.1(a)). The generator shown in both Figures 6.1 (a) and 6.1 (b) produce electricity used for pumps. Also, they allow any excess power produced by the gas turbine and steam turbine to be converted to to electricity and sold on the open market.

The gas turbine produces 11.19 MW, which corresponds to the output of a Mars 100 gas turbine produced by Solar Turbines. The steam turbine produce 5.032 MW and operates with the following inlet and outlet conditions:

$$
\begin{aligned}
& p_{\text {in }}=4,240 \mathrm{kPa}(615 \mathrm{psia}) \\
& p_{\text {out }}=10.1 \mathrm{kPa}(1.47 \mathrm{psia}) \\
& T_{\text {in }}=400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right) \\
& T_{\text {out }}=46.1^{\circ} \mathrm{C}\left(115^{\circ} \mathrm{F}\right)
\end{aligned}
$$

The combined efficiency of this combined cycle is 51.5%, which is conservative. Some combined cycles have efficiencies of 57\% [36].

Figure 6-1(a). Combined-cycle power system with StarRotor gerotor compressor.

Figure 6-1(b). Combined-cycle power system with centrifugal compressor.

CHAPTER VII

EQUIPMENT DESIGN

Basic Process-design Variables

Fluids. Degassed seawater supplied to the evaporator train is connected in parallel to satisfy individual evaporator temperature needs. The flow is between $147.5 \mathrm{~kg} / \mathrm{s}$ $\left(324.5 \mathrm{lb}_{\mathrm{m}} / \mathrm{s}\right)$ and $\left.144.57 \mathrm{~kg} / \mathrm{s}\left(318.05 \mathrm{lb}_{\mathrm{m}} / \mathrm{s}\right)\right)$. Saturated steam is supplied to the first stage at $176.7^{\circ} \mathrm{C}\left(350^{\circ} \mathrm{F}\right)$ and recovered from the last stage at $163.5^{\circ} \mathrm{C}\left(326^{\circ} \mathrm{F}\right)$, assuming three evaporator stages, each with $\Delta T=3.3333 \mathrm{~K}\left(6^{\circ} \mathrm{F}\right)$ and 7% brine.

Flow rates. The flow rates are individually calculated for each evaporator as required by production.

Entrance temperatures. The estimated seawater temperature range is: $21.1-26.2^{\circ} \mathrm{C}$ $\left(70-80^{\circ} \mathrm{F}\right)$.

Amount of vaporization or condensation. The amount of condensation as required by flow rates or production is calculated by the corresponding mass balance.

Operating pressures. To ensure dropwise condensation, 827.4 kPa gauge (120 psig) is the maximum pressure on steam side

Fouling factors. None (surfaces are assumed to be cleaned by entrained scrubbing balls)

Heat transfer coefficient. About 0.14 MW/($\left.\mathrm{m}^{2} \cdot \mathrm{~K}\right)\left(24,900 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$. To be conservative, the heat transfer coefficient is less than those presented in Figure 2-11.
$\underline{\text { Maximum steam velocity. } 1.52 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{s}) \text { to allow dropwise condensation }}$
Suggested codes of construction API-ASME codes .
Material of construction. Smooth surface 0.007 -in-thick titanium plates are expected to attain dropwise condensation, the evaporator is constructed with elastomer gaskets, and a carbon steel vessel coated with epoxy or titanium cladding to protect it from corrosion on seawater side.

Center-to-center distance between adjacent plates. 0.25 inches.
Standard plate dimension. $2.4 \mathrm{~m} \times 2.4 \mathrm{~m}(8 \mathrm{ft} \times 8 \mathrm{ft})$.
Vessel shell thickness. 29.6 mm is recommended (see Appendix M).

Compressor

For a dry centrifugal compressor, the isentropic compressor work is

$$
\begin{equation*}
W=\frac{\frac{k}{k-1} p_{1} v_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}}-1\right]}{\eta_{c}}=\frac{H_{2}-H_{1}}{\eta_{c}} \tag{7.1}
\end{equation*}
$$

where
$W=$ compressor work $(\mathrm{J} / \mathrm{kg})$
$p_{1}=$ entering compressor pressure (Pa)
$p_{2}=$ exiting compressor pressure (Pa)
$v_{1}=$ steam specific volume at compressor entrance $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$
$k=$ isentropic constant $=C_{p} / C_{v}=1.3$ for steam
$H_{2}=$ specific enthalpy of compressor outlet $(\mathrm{J} / \mathrm{kg})$
$H_{1}=$ specific enthalpy of compressor inlet $(\mathrm{J} / \mathrm{kg})$

$$
\eta_{c}=\text { isentropic compressor efficiency }=0.85 \text { (assumed) }
$$

The work supplied to the compressor [37] increases the gas pressure and temperature. The compressor is small relative to the flow through it, so it is essentially adiabatic, i.e., a small amount of energy is lost to heat transfer out of the compressor. The goal is to increase the pressure of the gas using the least possible work, which is accomplished by making the compression process as reversible as possible.

The work required in a reversible isothermal compression is less than that done in a reversible adiabatic compression. If the vapor temperature is maintained near the suction temperature by injecting liquid water, then the process becomes nearly isothermal.

Conventional centrifugal compressors do not allow water injection because the high-speed blades can be damaged from the impact with the droplets. In contrast, a StarRotor compressor operates at lower speeds and has robust components that can tolerate liquid injection. The StarRotor compressor uses gerotors, which are positive displacement devices.

For the case of liquid water injection, the compressor work W is evaluated [3] as

$$
\begin{equation*}
W=\frac{(1+x) H_{2}^{v a p}-\left(H_{1}^{v a p}+x H_{1}^{\text {liq }}\right)}{\eta_{c}} \tag{7.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& H_{2}^{\text {vap }}=\text { vapor enthalpy at compressor exit (2) }(\mathrm{J} / \mathrm{kg}) \\
& H_{1}^{\text {vap }}=\text { vapor enthalpy at compressor inlet (1) }(\mathrm{J} / \mathrm{kg}) \\
& H_{1}^{\text {liq }}=\text { liquid enthalpy at compressor inlet }(\mathrm{J} / \mathrm{kg})
\end{aligned}
$$

$$
\left.\eta_{c}=\text { compressor efficiency }=0.85 \text { (assumed }\right)
$$

$$
x=\text { the amount of injection water that evaporates in the compressor }
$$

$$
\begin{equation*}
=\frac{S_{1}^{\text {vap }}-S_{2}^{\text {vap }}}{S_{2}^{\text {vap }}-S_{1}^{\text {liq }}} \tag{7.3}
\end{equation*}
$$

where
$S_{1}^{\text {liq }}=$ entropy of liquid water at compressor inlet $(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K}))$
$S_{1}{ }^{\text {vap }}=$ entropy of steam at compressor inlet $(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K}))$
$S_{2}{ }^{\text {vap }}=$ entropy of steam at compressor exit $(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K}))$

Gas Turbine

In conjunction with the steam turbine, the gas turbine must supply the compressor and generator work requirements. From the manufacturer's chart [38] (see Appendix F):
a) gas turbine power output: $11,190 \mathrm{~kW}$
b) gas turbine fuel requirements: $10,600 \mathrm{~kJ} / \mathrm{kW} \mathrm{h}$

Steam Turbine

The steam turbine is designed according to the available steam working conditions. The enthalpy change defines the work output from the steam turbine. At the turbine inlet (1), the steam is superheated with the following properties:

$$
S_{1}=\text { superheated steam entropy }(\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{~K}))
$$

$H_{1}=$ superheated steam enthalpy $(\mathrm{kJ} / \mathrm{kg})$
After an isentropic expansion, the steam properties at the turbine outlet (2)
correspond to saturated steam

$$
\begin{aligned}
& S_{2 l}=\text { entropy of saturated liquid }(\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \\
& S_{2 v}=\text { entropy of saturated vapor }(\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \\
& H_{2 l}=\text { enthalpy of saturated liquid }(\mathrm{kJ} / \mathrm{kg}) \\
& H_{2 v}=\text { enthalpy of saturated vapor }(\mathrm{kJ} / \mathrm{kg}) \\
& x=\text { saturated vapor quality }=\frac{S_{1}-S_{2 l}}{S_{2 v}-S_{2 l}} \\
& H_{2}=x H_{2 v}+(1-x) H_{2 l}
\end{aligned}
$$

The energy recovered from the steam turbine is

$$
\begin{equation*}
W=m\left(H_{1}-H_{2}\right) \eta_{t u r b} \tag{7.4}
\end{equation*}
$$

Therefore the total mechanical power available for the proposed combined-cycle system is

$$
\text { Total power }=[\text { Power from gas turbine }]+[\text { Power from steam turbine }]
$$

Heat Recovery Boiler

For a given steam capacity (kg / s) [39], a boiler plant can be selected using the methodology provided in Appendix B-7. The size and price information provided includes the complete boiler, feed water deaerator, boiler feed pumps, chemical injection system, and shop assembly labor [40].

The rate of heat available is

$$
q=\dot{m} C_{p}\left(T_{\text {in }}-T_{\text {out }}\right)
$$

where

$$
\begin{aligned}
& q=\text { heat recovered in HRB }(\mathrm{J} / \mathrm{s}) \\
& T_{\text {in }}=\text { gas temperature at boiler inlet }(\mathrm{K}) \\
& T_{\text {out }}=\text { gas temperature at boiler outlet }(\mathrm{K}) \\
& C_{p}=\text { gas heat capacity }(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{~K})) \\
& \dot{m}=\text { exhaust gas flow rate } \\
& =150,390 \mathrm{~kg} / \mathrm{s} @ 485^{\circ} \mathrm{C}\left(905^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Pumps

Pumps will handle a total of $0.876 \mathrm{~m}^{3} / \mathrm{s}$ of seawater (3.5% concentrated feed).
Three pumps are required, one per stage. The purchase cost shown in Table 9.1 includes the electrical motor. The total power requirements for pumping [41] are 704.8 kW .

Table 9.1 summarizes the individual feed pumping requirements at each stage in the vapor-compression train, and provides the estimated working conditions and purchase cost. The discharge pressure required corresponds to the sum of the pressure drop in the sensible heat exchanger plus the vapor pressure in the latent heat exchanger. The price is obtained from Figure 12-20 of Reference [40]. Pumps P-1, P-2, and P-3 receive a correction factor of 1.6 because the pressure required exceeds $1,035 \mathrm{kPa}$. In addition, there is a factor of 1.26 for bronze anti-corrosion material for all pumps used in the seawater environment.

CHAPTER VIII

VAPOR COMPRESSION TRADE-OFFS

Figure 8-1 shows the system boundary for an overall energy balance. Compressor work (W) enters the system and exits as thermal energy carried out by the distillate $\left(m_{s} C_{p s}\left(T_{s}-T_{f}\right)\right)$ and the brine $\left(m_{b} C_{p b}\left(T_{b}-T_{f}\right)\right)$.

Figure 8-1. Overall energy balance.

Therefore, the energy balance is

$$
\begin{aligned}
& W=m_{b} C_{p b}\left(T_{b}-T_{f}\right)-m_{s} C_{p s}\left(T_{s}-T_{f}\right) \\
& W=m_{b} C_{p b} \Delta T_{b}-m_{s} C_{p s} \Delta T_{s}
\end{aligned}
$$

Let $\Delta T=\Delta T_{b}=\Delta T_{s}$

$$
\begin{aligned}
W & =m_{b} C_{p b} \Delta T-m_{s} C_{p s} \Delta T \\
& =\left(m_{b} C_{p b}-m_{s} C_{p s}\right) \Delta T \\
\frac{W}{m_{s}} & =\left(\frac{m_{b}}{m_{s}} C_{p b}-C_{p s}\right) \Delta T
\end{aligned}
$$

Total mass balance: $m_{s}+m_{b}=m_{f}$

Salt mass balance: $m_{f} x_{f}=m_{b} x_{b}$

$$
\begin{aligned}
& m_{f}=m_{b} \frac{x_{b}}{x_{f}} \\
& m_{s}+m_{b}=m_{b} \frac{x_{b}}{x_{f}}
\end{aligned}
$$

$$
m_{s}=m_{b} \frac{x_{b}}{x_{f}}-m_{b}
$$

$$
m_{s}=m_{b}\left(\frac{x_{b}}{x_{f}}-1\right)
$$

$$
1=\frac{m_{b}}{m_{s}}\left(\frac{x_{b}}{x_{f}}-1\right)
$$

$$
\frac{m_{b}}{m_{s}}=\frac{1}{\left(\frac{x_{b}}{x_{f}}-1\right)}
$$

$$
\frac{W}{m_{s}}=\left(\frac{1}{\left(\frac{x_{b}}{x_{f}}-1\right)} C_{p b}+C_{p s}\right) \Delta T
$$

This ΔT represents the temperature rise of the distillate and brine. In addition, it is the approach temperature in the sensible heat exchangers. The seawater feed is 3.5\% salt $\left(x_{f}=35 \mathrm{~g} / \mathrm{kg}\right)$ and the following brine concentrations $\left(x_{b}\right)$ are employed: 50, 70, 100 and $150 \mathrm{~g} / \mathrm{kg}$. The ΔT is proportional to W / m_{s}; the proportionality constant is shown in Table 8.1. The results are plotted on Figure 8.2. It is observed that at 7% concentration and low ΔT (between 1.5 and 3.5 K) the compressor shaft work requirements are between 12 and $27 \mathrm{MJ} / \mathrm{m}^{3}$, which is an acceptable range.

Table 8-1. Proportionality constant in Equation 8.1

$x_{f}(\mathrm{~g} / \mathrm{kg})$	$x_{b}(\mathrm{~g} / \mathrm{kg})$	$C_{p b}(\mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{K}))$	$C_{p s}(\mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{K}))$	$\frac{1}{\left(\frac{1}{\frac{x_{b}}{x_{f}}-1}\right) C_{p b}+C_{p s}}\left(\frac{\mathrm{~kg} \cdot \mathrm{~K}}{\mathrm{~kJ}}\right)$
35	50	3.917	4.209	0.07491
35	70	3.822	4.209	0.1245
35	100	3.649	4.209	0.16197
35	150	3.521	4.209	0.18937

Figure 8-2. Temperature rise of both brine and distillate. This ΔT is also the approach temperature in the sensible heat exchanger.

Table 8-2. Cases used in vapor-compression trade-off

Case	A	B	C
$\Delta T_{\text {cond }}$	$3.333 \mathrm{~K}\left(6^{\circ} \mathrm{F}\right)$	$2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)$	$1.111 \mathrm{~K}\left(2^{\circ} \mathrm{F}\right)$
$\Delta T_{\text {sens }}$	$3.25 \mathrm{~K}\left(5.85^{\circ} \mathrm{F}\right)$	$2.5 \mathrm{~K}\left(4.5^{\circ} \mathrm{F}\right)$	$1.75 \mathrm{~K}\left(3.15^{\circ} \mathrm{F}\right)$
Salinity $(\mathrm{g} / \mathrm{kg})$	70	70	70
No. of Stages	3	3	3
Compressor energy $\left(\mathrm{MJ} / \mathrm{m}^{3}\right.$ liquid product $)$	26	20	14

Three trade-off cases will be studied as shown in Table 8.2. Appendix D provides a detailed thermodynamic evaluation of each case. Tables from D. 3 to D. 6 summarize the results. The analysis follows:

Case A. Figure 8-3 shows the compressor inlet volume as a function of number of stages. Figure 8-4 shows the compressor work for a dry compressor. Figure 8-5 shows the compressor work for a wet compressor, such as a gerotor compressor. In all cases, the wet compressor had significantly less work requirements, so only wet compressors were evaluated in Cases B and C.

Case B. Figure 8-6 shows the compressor inlet volume and Figure $8-7$ shows the compressor work.

Case C. Figure 8-8 shows the compressor inlet volume and Figure 8-9 shows the compressor work.

Figure 8-3. Case A. Gas flow at compressor inlet. (Latent heat exchanger $\Delta T=$ $3.333 \mathrm{~K}\left(6^{\circ} \mathrm{F}\right)$, Seawater feed $=3.5 \%$, Heat exchanger inlet $T=446.53 \mathrm{~K}\left(173{ }^{\circ} \mathrm{C}, 344^{\circ} \mathrm{F}\right)$).

Figure 8-4. Case A. Compressor shaft work for dry compressor. (Latent heat exchanger $\Delta T=3.333 \mathrm{~K}\left(6^{\circ} \mathrm{F}\right)$, Seawater feed $=3.5 \%$, Heat exchanger inlet $T=446.53 \mathrm{~K}$ $\left(173^{\circ} \mathrm{C}, 344.08^{\circ} \mathrm{F}\right)$. Compressor efficiency $\left.=85 \%\right)$.

Figure 8-5. Case A. Compressor shaft work for wet compressor. (Latent heat exchanger $\Delta T=3.333 \mathrm{~K}\left(6^{\circ} \mathrm{F}\right)$, Seawater feed $=3.5 \%$, Heat exchanger inlet $T=446.53 \mathrm{~K}$ $\left(173^{\circ} \mathrm{C}, 344.08^{\circ} \mathrm{F}\right)$. Compressor efficiency $\left.=85 \%\right)$.

Figure 8-6. Case B. Gas flow at compressor inlet. (Latent heat exchanger $\Delta T=$ $2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)$, Seawater feed $=3.5 \%$, Heat exchanger inlet $T=447.63 \mathrm{~K}\left(174.4^{\circ} \mathrm{C}, 346.06^{\circ} \mathrm{F}\right)$).

Figure 8-7. Case B. Compressor shaft work for wet compressor. (Latent heat exchanger $\Delta T=2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)$, Seawater feed $=3.5 \%$, Heat exchanger inlet $T=447.63 \mathrm{~K}$ $\left(174^{\circ} \mathrm{C}, 346.06^{\circ} \mathrm{F}\right)$. Compressor efficiency $\left.=85 \%\right)$.

Figure 8-8. Case C. Gas flow at compressor inlet. (Latent heat exchanger $\Delta T=$ $1.111 \mathrm{~K}\left(2^{\circ} \mathrm{F}\right)$, Seawater feed $=3.5 \%$, Heat exchanger inlet $T=448.7$ $\mathrm{K}\left(175.5^{\circ} \mathrm{C}, 348^{\circ} \mathrm{F}\right)$).

Figure 8-9. Case C. Compressor shaft work for wet compressor. (Latent heat exchanger $\Delta T=1.111 \mathrm{~K}\left(2^{\circ} \mathrm{F}\right)$, Seawater feed $=3.5 \%$, Heat exchanger inlet $T=446.53 \mathrm{~K}$ $\left(175^{\circ} \mathrm{C}, 348^{\circ} \mathrm{F}\right)$. Compressor efficiency $\left.=85 \%\right)$.

CHAPTER IX

DESALINATION PLANT COST ANALYSIS

The elements of cost analysis for desalination processes [40] are depicted in the flowchart shown in Figure 9-1.

Figure 9-1. Elements of cost analysis for the process [40].

Tables 9.1, 9.2 and 9.3 summarize the equipment needed in the advanced vaporcompression desalination plant for Cases A, B, and C respectively. Also these tables provide utility requirements for operating the plant. Table 9.4 shows the components of the Lang Factor used to estimates the total plant cost from the equipment cost.

Table 9.5 shows the unitary cost of desalinated water produced for the three cases studied at two energy costs: $\$ 0.5 / \mathrm{GJ}$ and $\$ 5 / \mathrm{GJ}$. For $\$ 0.5 / \mathrm{GJ}$, Cases A and B were the least expensive $\left(\$ 0.252 / \mathrm{m}^{3}, \$ 0.95 /\right.$ thousand gal). For $\$ 5 / \mathrm{GJ}$, Case C was the least expensive ($\$ 0.474 / \mathrm{m}^{3}$, $\$ 1.79 /$ thousand gal).

Table 9.6 compares this cost to other water desalination methods. Vaporcompression technology has a significantly lower capital cost and selling price. Figures $9-2,9-3$, and $9-4$ show the water cost for a variety of fuel prices and interest rates for each case.

Table 9-1. Case A. Summary of equipment and utility requirements for a 10 million gallons/day desalination plant

code	Name	Description	Purchase cost (\$)	Utilities		
				Nat Gas	Electricity	Cooling water
L1	Latent Heat Exchanger 1	6,895 ft ${ }^{2}$	48, 748			
L2	Latent Heat Exchanger 2	6,874 ft ${ }^{2}$	48, 600			
L3	Latent Heat Exchanger 3	6,846 ft ${ }^{2}$	48,401			
B1	Brine Sensible Heat Exchanger 1	$42,358 \mathrm{ft}^{2}$	299,471			
B2	Brine Sensible Heat Exchanger 2	40,957 ft ${ }^{2}$	289,566			
B3	Brine Sensible Heat Exchanger 3	$42,550 \mathrm{ft}^{2}$	300,829			
D1	Distillate Sensible Heat Exchanger 1	$46,458 \mathrm{ft}^{2}$	328,458			
D2	Distillate Sensible Heat Exchanger 2	$43,313 \mathrm{ft}^{2}$	306,223			
D3	Distillate Sensible Heat Exchanger 3	$46,067 \mathrm{ft}^{2}$	325,699			
P1	Pump 1 Seawater feed. Stage 1	$\begin{aligned} & 1,480 \mathrm{kPa} \\ & 147.5 \mathrm{~kg} / \mathrm{s} \end{aligned}$	20,000		251.3 kW	
P2	Pump 2 Seawater feed. Stage 2	$\begin{aligned} & 1,480 \mathrm{kPa} \\ & 146.03 \mathrm{~kg} / \mathrm{s} \end{aligned}$	20,000		248.81 kW	
P3	Pump 3 Seawater Feed. Stage 3	$\begin{aligned} & 1,480 \mathrm{kPa} \\ & 0.0584 \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$	20,000		246.32 kW	
GT	Gas Turbine		800,000	10,600 kJ/kW-h	$11,190 \mathrm{~kW}$	
C	Compressor		450,000		$11,390 \mathrm{~kW}$	
ST	Steam Turbine		300,000		$5,032 \mathrm{~kW}$	
G	Generator		100,000		$5,086 \mathrm{~kW}$	
C	Condenser		19,000			$0.198 \mathrm{~m}^{3} / \mathrm{s}$
HRB	Heat recovery boiler (unfired)		800,000			
Total Equipment			4,524,995			
Fixed Capital Investment $=5.19 \times 4,524,995$				3,484,724		

Table 9-2. Case B. Summary of equipment and utility requirements for a 10 million gallons/day desalination plant

code	Name	Description	Purchase cost (\$)	Utilities		
				Nat Gas	Electricity	Cooling water
L1	Latent Heat Exchanger 1	$10,311 \mathrm{ft}^{2}$	72,899			
L2	Latent Heat Exchanger 2	10,279 ft^{2}	72,673			
L3	Latent Heat Exchanger 3	10,237 ft^{2}	72,376			
B1	Brine Sensible Heat Exchanger 1	$55,065 \mathrm{ft}^{2}$	389,310			
B2	Brine Sensible Heat Exchanger 2	$53,244 \mathrm{ft}^{2}$	376,435			
B3	Brine Sensible Heat Exchanger 3	$55,315 \mathrm{ft}^{2}$	391,078			
D1	Distillate Sensible Heat Exchanger 1	$60,395 \mathrm{ft}^{2}$	426,993			
D2	Distillate Sensible Heat Exchanger 2	$58,906 \mathrm{ft}^{2}$	416,466			
D3	Distillate Sensible Heat Exchanger 3	$59,888 \mathrm{ft}^{2}$	423,409			
P1	Pump 1 Seawater feed. Stage 1	$\begin{aligned} & 1,480 \mathrm{kPa} \\ & 147.5 \mathrm{~kg} / \mathrm{s} \end{aligned}$	20,000		251.3 kW	
P2	Pump 2 Seawater feed. Stage 2	$\begin{aligned} & 1,480 \mathrm{kPa} \\ & 146.03 \mathrm{~kg} / \mathrm{s} \end{aligned}$	20,000		248.81 kW	
P3	Pump 3 Seawater Feed. Stage 3	$\begin{aligned} & 1,480 \mathrm{kPa} \\ & 0.0584 \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$	20,00		246.32 kW	
GT	Gas Turbine		800,000	10,600kJ/kW-h	11,190 kW	
C	Compressor		450,000		$8,760 \mathrm{~kW}$	
ST	Steam Turbine		300,000		$5,032 \mathrm{~kW}$	
G	Generator		110,000		$7,714 \mathrm{~kW}$	
C	Condenser		19,000			$0.198 \mathrm{~m}^{3} / \mathrm{s}$
HRB	Heat recovery boiler (unfired)		800,000			
Total Equipment			5,180,639			
Fixed Capital Investment $=5.19 \times 5,180,639=$ \$26,887,517						

Table 9-3. Case C. Summary of equipment and utility requirements for a 10 million gallons/day desalination plant

code	Name	Description	Purchase cost (\$)	Utilities		
				Nat Gas	Electricity	Cooling water
L1	Latent Heat Exchanger 1	20,551 ft ${ }^{2}$	145, 296			
L2	Latent Heat Exchanger 2	20,499 ft^{2}	144,928			
L3	Latent Heat Exchanger 3	20,417 ft^{2}	144,349			
B1	Brine Sensible Heat Exchanger 1	78,665 ft ${ }^{2}$	556,130			
B2	Brine Sensible Heat Exchanger 2	$76,059 \mathrm{ft}^{2}$	537,738			
B3	Brine Sensible Heat Exchanger 3	$79,018 \mathrm{ft}^{2}$	558,655			
D1	Distillate Sensible Heat Exchanger 1	$86,275 \mathrm{ft}^{2}$	609,960			
D2	Distillate Sensible Heat Exchanger 2	$84,147 \mathrm{ft}^{2}$	594,922			
D3	Distillate Sensible Heat Exchanger 3	85,550 ft ${ }^{2}$	604,840			
P1	Pump 1 Seawater feed. Stage 1	$\begin{aligned} & 1,480 \mathrm{kPa} \\ & 147.5 \mathrm{~kg} / \mathrm{s} \end{aligned}$	20,000		251.3 kW	
P2	Pump 2 Seawater feed. Stage 2	$\begin{aligned} & 1,480 \mathrm{kPa} \\ & 146.03 \mathrm{~kg} / \mathrm{s} \end{aligned}$	20,000		248.81 kW	
P3	Pump 3 Seawater Feed. Stage 3	$\begin{aligned} & 1,480 \mathrm{kPa} \\ & 0.0584 \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$	20,00		246.32 kW	
GT	Gas Turbine		800,000	10,600 kJ/kW-h	$11,190 \mathrm{~kW}$	
C	Compressor		450,000		$6,130 \mathrm{~kW}$	
ST	Steam Turbine		300,000		$5,032 \mathrm{~kW}$	
G	Generator		120,000		10,340 kW	
C	Condenser		19,000			$0.198 \mathrm{~m}^{3} / \mathrm{s}$
HRB	Heat recovery boiler (unfired)		800,000			
Total Equipment			6,445,818			
Fixed Capital Investment $=5.19 \times 6,445,818$				= \$33,453,796		

Table 9-4. Lang Factor for a fluid processing plant [41]

Item	Fraction of delivered equipment (Fluid processing plant)
Purchased equipment	1.00
Delivery	0.10
Installation of purchased equipment	
Instrumentation and controls (installed)	0.47
Piping (installed)	0.36
Electrical systems (installed)	0.68
Buildings (including services)	0.11
Yard improvements	0.18
Services facilities (installed)	0.10
Engineering and supervision	0.70
Construction expenses	0.33
Legal expenses	0.41
Contractor's fee	0.04
Contingency	0.22
Working capital*	0.44
	0.05

*Industrial plants use 0.20 , but this municipal plant is assumed to have lower working capital requirements.

Table 9-5. Executive summary of unitary costs of the desalination plant components for the three design cases presented

Case A		Fuel cost \$0.5/GJ			Fuel cost \$5/GJ		
	Variable Costs	\$/m ${ }^{3}$	\$/day	\$/yr	\$/m ${ }^{3}$	\$/day	\$/yr
	Fuel	0.037	1,423	519,650	0.376	14,237	5,196,505
	Labor ${ }^{\text {a }}$	0.089	3,367	1,228,955	0.089	3,367	1,228,955
	Cooling water ${ }^{\text {b }}$	0.031	1,200	438,000	0.031	1,200	438,000
	Electricity ${ }^{\text {c }}$	-0.032	-1,220	-445,534	-0.097	-3,661	-1,336,600
	Fixed costs						
	Debt Service ${ }^{\text {d }}$	0.109	4,146	1,513,046	0.109	4,146	1,513,046
	Maintenance ${ }^{\text {e }}$	0.015	568.83	207,622.00	0.015	568.83	207,622.00
	Insurance ${ }^{\text {f }}$	0.003	142.2	51,906	0.003	142.2	51,906
	TOTAL	0.252			0.526		
Case B	Variable Costs						
	Fuel	0.037	1,423	519,650	0.376	14,237	5,196,505
	Labor ${ }^{\text {a }}$	0.089	3,367	1,228,955	0.089	3,367	1,228,955
	Cooling water ${ }^{\text {b }}$	0.031	1,200	438,000	0.031	1,200	438,000
	Electricity ${ }^{\text {c }}$	-0.048	-1,851	-675,746	-0.146	-5,554	-2,027,240
	Fixed Costs						
	Debt Service ${ }^{\text {d }}$	0.125	4,745	1,732,056	0.125	4,745	1,732,056
	Maintenance ${ }^{\text {e }}$	0.015	568.83	207,622.00	0.015	568.83	207,622.00
	Insurance ${ }^{\text {f }}$	0.003	142.2	51,906	0.003	142.2	51,906
	TOTAL	0.252			0.493		
Case C	Variable Costs						
	Fuel	0.037	1,423	519,650	0.376	14,237	5,196,505
	Labor ${ }^{\text {a }}$	0.089	3,367	1,228,955	0.089	3,367	1,228,955
	Cooling water ${ }^{\text {b }}$	0.031	1,200	438,000	0.031	1,200	438,000
	Electricity ${ }^{\text {c }}$	-0.065	-2,482	-905,784	-0.196	-7,445	-2,717,352
	Fixed Costs						
	Debt Service ${ }^{\text {d }}$	0.156	5,904	2,155,046	0.156	5,904	2,155,046
	Maintenance ${ }^{\text {e }}$	0.015	568.83	207,622.00	0.015	568.83	207,622.00
	Insurance ${ }^{f}$	0.003	142.2	51,906	0.003	142.2	51,906
	TOTAL	0.266			0.474		

${ }^{\mathrm{a}}$ \$33.67/h [34]
${ }^{\mathrm{b}} \$ 0.07 / \mathrm{m}^{3}$ (tower)
' $\$ 0.03 / \mathrm{kWh}$. Fuel cost @ \$5/GJ
$\$ 0.01 / \mathrm{kWh}$. Fuel cost @ $\$ 0.5 / \mathrm{GJ} *$
${ }^{\mathrm{d}} 30$-year bond at 5% interest rate
${ }^{\mathrm{e}}$ Maintenance: 4% FCI
${ }^{\mathrm{f}}$ Insurance: $1 \% \mathrm{FCI}$
*www.sciencemag.org May/27/2005
Vol. 308

Table 9-6. Comparison of water desalination methods

	Water cost $\left(\$ / \mathrm{m}^{3}\right)$	Capital cost $\left(\$ /\left(\mathrm{m}^{3} / \mathrm{day}\right)\right)$	Heat $\left(\mathrm{MJ} / \mathrm{m}^{3}\right)$		Work $\left(\mathrm{MJ} / \mathrm{m}^{3}\right)$
Theoretical (see Appendix N)					2.55
Advanced Vapor- compression \$0.50/GJ (Case A) $\$ 5.00 / \mathrm{GJ}$ (Case C)	0.252	620	54.3	or	$27.7^{* *}$
Cantr	0.474	884	30.8	or	$15.7^{* *}$
Conventional Vapor- compression*	0.46 to 2.50	894 to 1322	-		21.6 to 36.0
Reverse Osmosis*	0.64 to 1.98	1035 to 1665	-		21.6 to 36.0
Multi-stage flash*	0.77 to 1.84	1598 to 2269	145 to 290	and	14.4

*Economics of Desalination, www.cepmagazine.org 12,2002
**Includes both compressor and pump work.

Energy Cost (\$/GJ)

Figure 9-2. Case A. Cost of water for a variety of energy cost and interest rates. The price of electricity sold was extrapolated to $-\$ 0.168 / \mathrm{m}^{3}$ for a cost of gas of $\$ 10 / \mathrm{GJ}$.

Figure 9-3. Case B. Cost of water for a variety of energy costs and interest rates. The price of electricity sold was extrapolated to $-\$ 0.254 / \mathrm{m}^{3}$ for a cost of gas of \$10/GJ.

Figure 9-4. Case C. Cost of water for a variety of energy costs and interest rates. The price of electricity sold was extrapolated to $-\$ 0.345 / \mathrm{m}^{3}$ for a cost of gas of \$10/GJ.

CHAPTER X

CONCLUSIONS

A novel heat exchanger/evaporator design was analyzed. According to literature data, dropwise condensation on the steam side and pool boiling on the liquid side makes it possible to obtain overall heat transfer coefficients of up to $0.28 \mathrm{MW} / \mathrm{m}^{2}\left(49,000 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$ under specific working conditions. To allow dropwise condensation, the recommended steam velocity should not exceed $1.52 \mathrm{~m} / \mathrm{s}$ (5 ft / s), and steam pressure should not exceed 828 kPa gauge (120 psig). Smooth-surface titanium thin sheets were the heat transfer surfaces. Pressure drops due to vapor flow across the evaporator surface were shown to be minor. Figure 2-11 shows that the maximum heat transfer coefficient ocurrs at an overall temperature drop across the heat exchanger of $3.33^{\circ} \mathrm{C}\left(6^{\circ} \mathrm{F}\right)$. Compared to a conventional centrifugal compressor, the StarRotor gerotor compressor has the following advantages technical advantages:

- StarRotor gerotor compressor is less expensive (\$450,000 vs $\$ 3,000,000$).
- The StarRotor gerotor compressor can tolerate liquid water injection making the compression nearly isothermal requiring less work.
- The StarRotor gerotor compressor can be easily sized to the specific compression needs.
- The StarRotor gerotor compressor is efficient over a wide range of operating conditions.

CHAPTER XI

FUTURE WORK

The present study establishes solid ground basis for future optimization work. The following variables should be explored:

- Use of waste heat from steam turbine
- Use of waste heat exiting the heat recovery boiler
- Evaporator operating pressure and temperature

The study presented here was somewhat simplified and did not address some minor pieces of equipment that degas the feedwater, remove noncondensibles from the evaporator, and recover the abrasive scrubbing balls. These items should be included in future studies.

REFERENCES

1. G. Ejjeh, Desalination, A Reliable Source of New Water, International Desalination Association, Brussels, Belgium, 2001.
2. International Atomic Energy Agency, Examining the Economics of Seawater Desalination Using the DEEP Code, Technical Document 1186, International Atomic Energy Agency, Vienna, Austria 2000.
3. M. Holtzapple and G. Noyes, Advanced Vapor-Compression Evaporator and Heat Exchanger System, Disclosure of Invention, Department of Chemical Engineering, Texas A\&M University, January 2004.
4. Princeton University, For Desalination Technologies Overview, October 2004, http://www.wws.princeton.edu/cgibin/byteserv.prl/~ota/disk2/1988/884204.PDF.
5. P. Griffith and M. S. Lee, The Effect of Surface Thermal Propieties and Finish on Dropwise Condensation. Int. J. Heat Mass Transfer. 10 (1967) 697.
6. J. W. Rose, On the Mechanism of Dropwise Condensation. Int. J. Heat Mass Transfer 10 (1967) 755.
7. C. Haslego and G. Polley, Compact Heat Exchanger Part 1: Designing Plate and Frame Heat Exchangers, CEPmagazine, http://cepmagazine.org, September 2002.
8. B. B. Mikic, On the Mechanism of Dropwise Condensation. Int. J. Heat Mass Transfer 12 (1969) 1311.
9. B. Gebhart, Heat Transfer, $2^{\text {nd }}$ ed., McGraw Hill, New York, 1971.
10. E. A. Farber and R. L. Scorah, Heat Transfer to Water Boiling Under Pressure, Trans. ASME, 70 (1948) 369.
11. W. H. McAdams, Heat Transmission. 3rd ed., McGraw Hill, New York, 1954.
12. M. T. Cichelli and C. F. Bonilla, Heat Transfer to Liquids Boiling Under Pressure, AIChE. Trans. 42 (1946) 2.
13. Titanium Metals Corporation, Titanium, Products and Applications. November 2004, http://www.timet.com/fab-p09.htm.
14. C. Graham and P. Griffith, Drop Size Distributions and Heat Transfer in Dropwise Condensation. Int. J. Heat Mass Transfer 16 (1972) 337.
15. J. T. O'Bara, E.S. Killian and L. H. S. Roblee, Jr., Dropwise Condensation of Steam at Atmospheric and Above Pressures, Chem. Eng. Sci., 22 (1967) 1305.
16. J. B. Dolloff, N. H. Metzger and L. H. S. Roblee, Jr., Dropwise Condensation of Steam at Elevated Pressures, Chem. Eng. Sci., 24 (1969) 571.
17. E. Ruckestein and H. Metiu, On Dropwise Condensation on a Solid Surface, Chem. Eng. Sci., 20 (1965) 173.
18. C. Graham and P. Griffith, Drop Size Distributions and Heat Transfer in Dropwise Condensation, Int. J. Heat Mass Transfer, 16 (1972) 337.
19. K. Nabavian and L. A. Bromley, Condensation Coefficient of Water, Chem. Eng. Sci., 18 (1963) 651.
20. E. J. Le Fevre and J. W. Rose, A Theory of Heat Transfer by Dropwise Condensation, in: Proceedings of the Third International Heat Transfer Conference, Chicago, Vol. 2, 1966, p. 362.
21. E. J. Le Fevre and J. W. Rose, Heat-transfer Measurements During Dropwise Condensation of Steam, Int. J. Heat Mass Transfer, 7 (1964) 272.
22. E. J. Le Fevre and J. W. Rose, An Experimental Study of Heat Transfer by Dropwise Condensation, Int. J. Heat Mass Transfer, 8 (1965) 1117.
23. D. W. Tanner, C. J. Potter, D. Pope and D. West, Heat Transfer in Dropwise Condensation- Part I: The Effects of Heat Flux, Steam Velocity and NonCondensable Gas Concentration, Int. J. Heat Mass Transfer, 8 (1965) 419.
24. D. W. Tanner, C. J. Potter, D. Pope and D. West, Heat Transfer in Dropwise Condensation- Part II: Surface Chemistry, Int. J. Heat Mass Transfer, 8 (1965) 427.
25. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., ASHRAE Fundamentals Handbook, Atlanta, GA, 2001.
26. Z. Novak, On the Stability of Boiling Heat Transfer, Paper Presented at the ASME-AIChE Heat Transfer Conference, University Park, PA., August 11, 1957.
27. Titanium Metals Corporation, Design and Fabrication, October 2004, http://www.timet.com/.
28. A. E. Dukler, Wicks, III and R. G. Cleveland, Frictional Pressure Drop in TwoPhase Flow: An Approach Through Similarity Analysis. AIChE Journal, 10 (1964) 44.
29. T. Kuppan, Heat Exchanger Design Handbook. Mechanical Engineering; Marcel Dekker, Inc., New York, 2000.
30. J. G. Collier and J. R. Thome, Convective Boiling and Condensation, $2^{\text {nd }}$ ed., McGraw Hill, New York, 1981.
31. D. Chisholm, and L. A. Sutherland, Prediction of Pressure Gradients in Pipeline Systems during Two Phase Flow, Paper Presented at Symposium of Fluid Mechanics and Measurements in Two-phase Flow Systems, Leeds, September 24-25, 1969.
32. W. L. Mc Cabe and J. C. Smith, Unit Operations of Chemical Engineering, $3^{\text {rd }}$ ed., McGraw Hill, New York, 1976.
33. G. F. Hewitt, Ed., Handbook of Heat Exchanger Design, Beggel House Inc., New York, 1992.
34. W. H. Emerson and D. T. Jamieson, Some Physical Properties of Sea Water in Various Concentrations, Desalination, 3 (1967) 213.
35. The National Engineering Laboratory, NEL Steam Tables, Her Majesty's Stationary Office, Edinburg, United Kingdom, 1964.
36. M. Lucas and B. Tabourier, The Mechanical Vapor-Compression Process Applied to Seawater Desalination, Desalination, 52 (1985) 123.
37. P. C. Hanlon, Compressor Handbook, McGraw-Hill, New York, 2000.
38. Solar Turbines, Mars 100 Compressor Set, April 2005, http://mysolar.cat.com/cda/layout?m=41428\&x=7.
39. W. C. Turner, Energy Management Handbook, $4^{\text {th }}$ ed., Prentice Hall Inc., Upper Saddle River, NJ, 2001.
40. H. M. Ettouney, H. T. El-Dessouky and P. J. Gowing. Evaluating the Economics of Desalination, CEPmagazine, http://cepmagazine.org, December 2002.
41. M. S. Peters, K. D. Timmerhaus, and R. E. West, Plant Design and Economics for Chemical Engineers, $5^{\text {th }}$ ed., McGraw Hill, New York, 2003.
42. MacDonald Company, - Calculate Total Dynamic Head (TDH).htm. November (2004).
http://www.rfmacdonald.com/techtalk/headcalc.html
43. US Government, Cost of Minerals, June 2005, http://minerals.usgs.gov/minerals/pubs/commodity/titanium/670798.pdf.
44. R. Rautenbach and B. Arzt, Gas Turbine Waste Heat Utilization for Desalination, Desalination, 52 (1985) 105.

Suplemental Sources Consulted

Alpha Knife Supply, Titanium Sheets, January 2005, http://www.alphaknifesupply.com/ti-small.htm.

Aquara, Costs of Desalination, November 2004, www.uara.com/Merchant2/merchant.mv?Screen=CTGY\&Store_Code=2 2e\&Category_Code=Sea+Water+R.O.+Membranes++2-8.

Matche. Compressor Costs, March 2005, http://matche.com/EquipCost/Compressor.htm.

StarRotor Corporation, Engine Development, January 2005 http://www.starrotor.com/indexflash.htm

Perry, J. H. Chemical Engineers' Handbook, $5^{\text {th }}$ ed., McGraw-Hill, New York, 1973.

Texas A\&M University, Mixalco Process, February 2005 http://64.233.187.104/u/tamu?q=cache:3AAasMqj9yEJ:www.ct.ornl.gov/sympos ium/20th/Abstracts/Paper26.htm+Mixalco+process+at+Texas+A\%26M\&hl=en\& ie=UTF- 8

Urila, Desalination, November 2004, http://urila.tripoid.com/Seawater.htm.
US Department of Energy, Federal Energy Management Program, June 2005, http://www.eere.energy.gov/femp/technologies/derchp_fedrequire.cfm.

Utah Net Metering \& Small Electrical Generators, January 2005, http:// www.utahpower.net/File/File3880.pdf.

Water Properties, June 2005, http//www.Isbu.ac.uk/water/data.html.

WebDopc, Boiling Point Problem Solutions, June 2005,
http://dbhs.wvusd.k12.ca.us/webdocs/Solutions/BP-Elev-Probs.html

APPENDIX A

SALT WATER PROPERTIES

The following data corresponds to an advanced vapor-compression desalination plant designed to produce $37,854 \mathrm{~m}^{3} /$ day (10 million gallons /day) of potable water.

Figure A-1. Case B. Advanced vapor compressor desalination concept and combined-cycle power source.

Table A-1. Composition of seawater [33]

Ion	Concentration in seawater $(\mathrm{g} / \mathrm{kg})$
Chloride	19.344
Sodium	10.773
Sulfate	2.712
Magnesium	1.294
Calcium	0.412
Potassium	0.399
Bicarbonate	1.142
Bromide	0.067
Strontium	0.008
Boron	0.004
Fluoride	0.0013
	35.00

Table A-2. Thermal conductivity of seawater and its concentrates (mW/(m•K)) [33]

Salinity (g/kg)																	
$\begin{gathered} \mathbf{t} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$0^{\text {a }}$	10	20	30	$35^{\text {b }}$	40	50	60	70	80	90	100	110	120	130	140	150
0	572	570	569	567	566	565	563	562	560	558	556	554	552	550	548	546	544
10	589	587	586	584	584	583	581	580	578	577	575	573	571	570	568	566	564
20	604	603	602	600	600	599	598	597	595	594	592	591	589	588	586	585	583
30	618	617	616	615	614	614	613	612	611	609	608	607	606	604	603	602	600
40	630	629	629	628	628	627	626	626	625	624	623	622	621	620	618	617	616
50	641	641	640	640	639	639	639	638	637	637	636	635	634	633	632	631	630
60	651	651	650	650	650	650	649	649	649	648	648	647	646	646	645	644	644
70	659	659	659	659	659	659	659	659	658	658	658	658	657	657	656	656	655
80	666	666	667	667	667	667	667	667	667	667	667	667	667	666	666	666	666
90	672	672	673	673	673	674	674	674	674	675	675	675	675	675	675	675	675
100	676	677	678	678	679	679	680	680	681	681	681	682	682	682	682	682	683
110	680	681	682	683	683	683	684	685	685	686	687	687	688	688	688	689	689
120	682	683	684	685	686	686	687	688	689	690	691	691	692	693	693	694	694
130	683	685	686	687	688	688	690	691	692	693	694	695	695	696	697	698	699
140	684	685	687	688	689	689	691	692	693	694	696	697	698	699	700	701	702
150	683	684	686	688	688	689	691	692	694	695	696	698	699	700	701	702	703
160	681	683	684	686	687	688	690	691	693	694	696	697	699	700	701	703	704
170	678	680	682	684	685	686	687	689	691	693	694	696	698	699	701	702	704
180	674	676	678	680	681	682	684	686	686	690	692	694	695	697	699	700	702

${ }^{\text {a }}$ While these values for pure water are within the claimed accuracy, more accurate values are available in the appropriate ESDU Data Item.
b "Normal" seawater

Table A-3. Dynamic viscosity of seawater and its concentrates $\left(10^{-3} \mathrm{Ns} / \mathrm{m}^{2}\right)$ [33]

Salinity (g/kg)																
$\begin{gathered} \mathrm{t} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$0^{\text {a }}$	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
0	1.775	1.802	1.831	1.861	1.893	1.928	1.965	2.005	2.049	2.096	2.147	2.202	2.261	2.326	2.395	2.470
10	1.304	1.327	1.350	1.375	1.401	1.429	1.459	1.491	1.526	1.563	1.603	1.646	1.693	1.743	1.797	1.855
20	1.002	1.021	1.041	1.061	1.083	1.106	1.131	1.157	1.185	1.216	1.248	1.283	1.321	1.361	1.404	1.451
30	0.797	0.814	0.830	0.848	0.866	0.886	0.906	0.929	0.952	0.977	1.004	1.033	1.064	1.098	1.133	1.171
40	0.653	0.667	0.681	0.696	0.712	0.729	0.747	0.765	0.786	0.807	0.830	0.845	0.880	0.908	0.938	0.970
50	0.546	0.559	0.571	0.585	0.599	0.613	0.629	0.645	0.662	0.681	0.700	0.721	0.744	0.768	0.793	0.821
60	0.466	0.477	0.488	0.500	0.512	0.525	0.539	0.533	0.568	0.584	0.602	0.620	0.639	0.660	0.682	0.706
70	0.404	0.414	0.424	0.434	0.445	0.457	0.469	0.481	0.495	0.509	0.524	0.540	0.558	0.576	0595	0.616
80	0.355	0.364	0.373	0.382	0.392	0.402	0.413	0.424	0.436	0.449	0.463	0.477	0.492	0.508	0.525	0.544
90	0.315	0.323	0.331	0.340	0.349	0.358	0.368	0.378	0.389	0.400	0.412	0.425	0.439	0.453	0.469	0.485
100	0.282	0.290	0.397	0.305	0.313	0.322	0.331	0.340	0.350	0.360	0.371	0.383	0.395	0.408	0.422	0.436
110	0.255	0.262	0.269	0.276	0.284	0.291	0.300	0.308	0.317	0.326	0.336	0.347	0.358	0.370	0.382	0.395
120	0.232	0.239	0.245	0.252	0.259	0.266	0.273	0.281	0.289	0.298	0.307	0.317	0.327	0.337	0.349	0.361
130	0.213	0.219	0.225	0.231	0.237	0.244	0.251	0.258	0.266	0.273	0.282	0.291	0.300	0.310	0.320	0.331
140	0.196	0.201	0.207	0.213	0.219	0.225	0.231	0.238	0.245	0.252	0.260	0.268	0.277	0.286	0.295	0.305
150	0.181	0.187	0.192	0.197	0.203	0.208	0.214	0.221	0.227	0.234	0.241	0.249	0.256	0.265	0.273	0.283
160	0.169	0.173	0.178	0.183	0.189	0.194	0.200	0.205	0.211	0.218	0.224	0.231	0.239	0.246	0.254	0.263
170	0.157	0.162	0.167	0.171	0.176	0.181	0.186	0.192	0.198	0.203	0.210	0.216	0.223	0.230	0.237	0.245
180	0.147	0.152	0.156	0.161	0.165	0.170	0.175	0.180	0.185	0.191	0.196	0.202	0.209	0.215	0.222	0.230

Table A-3. Continued

Salinity (g/kg)											
$\begin{gathered} \mathrm{t} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	30	31	32	33	34	35	36	37	38	39	40
0	1.861	1.864	1.867	1.871	1.874	1.877	1.880	1.883	1.887	1.890	1.893
10	1.375	1.377	1.380	1.382	1.385	1.388	1.390	1.393	1.396	1.398	1.401
20	1.061	1.063	1.065	1.068	1.070	1.072	1.074	1.076	1.078	1.081	1.083
30	0.848	0.850	0.851	0.853	0.855	0.857	0.859	0.861	0.862	0.864	0.866
40	0.696	0.698	0.699	0.701	0.702	0.704	0.706	0.707	0.709	0.710	0.712
50	0.585	0.586	0.587	0.589	0.590	0.592	0.593	0.594	0.596	0.597	0.599
60	0.500	0.501	0.503	0.504	0.505	0.506	0.507	0.509	0.510	0.511	0.512
70	0.434	0.435	0.437	0.438	0.439	0.440	0.441	0.442	0.443	0.444	0.445
80	0.382	0.383	0.384	0.385	0.386	0.387	0.388	0.389	0.390	0.391	0.392
90	0.340	0.341	0.342	0.343	0.343	0.344	0.345	0.349	0.347	0.348	0.349
100	0.305	0.306	0.307	0.308	0.308	0.309	0.310	0.311	0.312	0.312	0.313
110	0.276	0.277	0.278	0.278	0.279	0.280	0.281	0.281	0.282	0.283	0.284
120	0.252	0.252	0.253	0.254	0.254	0.255	0.256	0.257	0.257	0.258	0.259
130	0.231	0.231	0.232	0.233	0.233	0.234	0.235	0.235	0.236	0.237	0.237
140	0.213	0.213	0.214	0.215	0.215	0.216	0.216	0.217	0.218	0.218	0.219
150	0.197	0.198	0.198	0.199	0.199	0.200	0.200	0.201	0.202	0.202	0.203
160	0.183	0.184	0.184	0.185	0.186	0.186	0.187	0.187	0.188	0.188	0.189
170	0.171	0.172	0.172	0.173	0.173	0.174	0.174	0.175	0.175	0.176	0.176
180	0.161	0.161	0.161	0.162	0.162	0.163	0.163	0.164	0.164	0.165	0.165

${ }^{\text {a }}$ While these values for pure water are within the claimed accuracy, more accurate values are available in the appropriate ESDU Data Item

Table A-4. Heat capacity of seawater and its concentrates (kJ/(kg $\cdot \mathrm{K})$) [33]

Salinity (g/kg)																
$\begin{gathered} \mathrm{t} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$0^{\text {a }}$	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
0	4.209	4.143	4.081	4.021	3.964	3.910	3.858	3.809	3.763	3.720	3.679	3.641	3.606	3.573	3.543	3.516
10	4.198	4.136	4.077	4.020	3.965	3.913	3.863	3.815	3.770	3.727	3.686	3.648	3.612	3.579	3.547	3.518
20	4.189	4.131	4.074	4.020	3.967	3.917	3.868	3.822	3.777	3.735	3.649	3.656	3.619	3.584	3.552	3.521
30	4.184	4.128	4.074	4.021	3.971	3.922	3.874	3.829	3.785	3.743	3.702	3.663	3.626	3.591	3.557	3.525
40	4.180	4.127	4.075	4.024	3.975	3.927	3.881	3.836	3.793	3.751	3.710	3.671	3.633	3.597	3.562	3.529
50	4.180	4.128	4.078	4.029	3.981	3.934	3.888	3.844	3.801	3.759	3.719	3.679	3.641	3.604	3.568	3.533
60	4.181	4.131	4.082	4.034	3.987	3.941	3.896	3.853	3.810	3.768	3.727	3.687	3.649	3.611	3.574	3.538
70	4.186	4.137	4.088	4.041	3.995	3.950	3.905	3.861	3.819	3.777	3.736	3.696	3.657	3.618	3.581	3.544
80	4.192	4.144	4.096	4.050	4.004	3.959	3.914	3.871	3.828	3.786	3.745	3.704	3.665	3.626	3.588	3.551
90	4.202	4.154	4.106	4.059	4.014	3.968	3.924	3.880	3.837	3.795	3.754	3.713	3.673	3.634	3.595	3.558
100	4.213	4.165	4.118	4.071	4.025	3.979	3.934	3.891	3.847	3.805	3.763	3.722	3.82	3.642	3.603	3.565
110	4.228	4.179	4.131	4.083	4.037	3.991	3.946	3.901	3.857	3.815	3.772	3.731	3.690	3.651	3.612	3.573
120	4.245	4.195	4.146	4.097	4.050	4.003	3.957	3.912	3.868	3.825	3.782	3.740	3.700	3.659	3.620	3.582
130	4.264	4.213	4.162	4.113	4.064	4.016	3.970	3.924	3.879	3.835	3.792	3.750	3.709	3.669	3.629	3.591
140	4.286	4.233	4.181	4.129	4.079	4.030	3.982	3.936	3.890	3.845	3.802	3.760	3.718	3.678	3.639	3.601
150	4.311	4.255	4.201	4.148	4.096	4.045	3.996	3.948	3.902	3.856	3.812	3.769	3.728	3.688	3.649	3.611
160	4.338	4.279	4.222	4.167	4.113	4.061	4.010	3.961	3.913	3.867	3.823	3.780	3.738	3.698	3.659	3.622
170	4.367	4.306	4.246	4.188	4.132	4.078	4.025	3.974	3.926	3.878	3.833	3.790	3.748	3.708	3.670	3.634
180	4.399	4.334	4.271	4.210	4.152	4.095	4.041	3.988	3.938	3.890	3.844	3.800	3.758	3.719	3.681	3.646

Table A-4. Continued

Salinity (g/kg)											
$\begin{gathered} \mathrm{t} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	30	31	32	33	34	35	36	37	38	39	40
0	4.021	4.015	4.010	4.004	3.998	3.992	3.987	3.981	3.975	3.970	3.964
10	4.020	4.014	4.009	4.003	3.998	3.992	3.987	3.981	3.976	3.971	3.965
20	4.020	4.015	4.009	4.004	3.999	3.993	3.988	3.983	3.978	3.973	3.967
30	4.021	4.016	4.011	4.006	4.001	3.996	3.991	3.986	3.981	3.976	3.971
40	4.024	4.019	4.014	4.009	4.004	4.000	3.995	3.990	3.985	3.980	3.975
50	4.029	4.024	4.019	4.014	4.009	4.004	4.000	3.995	3.990	3.985	3.981
60	4.034	4.029	4.025	4.020	4.015	4.011	4.006	4.001	3.997	3.992	3.987
70	4.041	4.037	4.032	4.027	4.023	4.018	4.013	4.009	4.004	4.000	3.995
80	4.050	4.045	4.040	4.036	4.031	4.027	4.022	4.017	4.013	4.008	4.004
90	4.059	4.055	4.050	4.046	4.041	4.036	4.032	4.027	4.023	4.018	4.014
100	4.071	4.066	4.061	4.057	4.052	4.048	4.043	4.038	4.034	4.029	4.025
110	4.083	4.079	4.074	4.069	4.065	4.060	4.055	4.051	4.046	4.041	4.037
120	4.097	4.092	4.088	4.083	4.078	4.073	4.069	4.064	4.059	4.054	4.050
130	4.113	4.108	4.103	4.098	4.093	4.088	4.083	4.078	4.074	4.069	4.064
140	4.129	4.124	4.119	4.114	4.109	4.104	4.099	4.094	4.089	4.084	4.079
150	4.148	4.142	4.137	4.132	4.127	4.121	4.116	4.111	4.106	4.101	4.096
160	4.167	4.162	4.156	4.151	4.145	4.140	4.135	4.129	4.124	4.119	4.113
170	4.188	4.182	4.177	4.171	4.165	4.160	4.154	4.149	4.143	4.137	4.132
180	4.120	4.204	4.198	4.192	4.187	4.181	4.175	4.169	4.163	4.157	4.152

${ }^{\mathrm{a}}$ While these values for pure water are within the claimed accuracy, more accurate values are available in the appropriate ESDU Data Item

Table A-5. Density of seawater and its concentrates $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ [33]

Salinity (g/kg)																
$\begin{gathered} \mathrm{t} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$0^{\text {a }}$	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
0	999.8	1008.1	1016.2	1024.2	1032.0	1039.8	1047.6	1055.5	1063.5	1071.6	1079.7	1088.0	1096.2	1104.4	1112.5	1120.4
10	999.7	1007.7	1015.5	1023.2	1.030.2	1038.4	1046.0	1053.8	1061.6	1669.6	1077.6	1085.7	1093.9	1102.0	1110.1	1118.0
20	998.4	1005.8	1013.3	1020.8	1028.3	1035.9	1043.5	1051.2	1058.9	1066.7	1074.5	1082.4	1090.3	1098.2	1106.2	1114.2
30	995.4	1002.8	1010.2	1017.6	1025.1	1032.6	1040.2	1047.8	1055.4	1063.1	1070.8	1078.5	1086.3	1094.1	1102.0	1109.9
40	991.9	999.2	1006.6	1013.9	1021.4	1028.8	1036.3	1043.8	1051.4	1059.0	1066.6	1074.2	1081.9	1089.6	1091.4	1105.2
50	987.7	995.0	1002.3	1009.7	1017.1	1024.5	1031.9	1039.4	1046.9	1054.4	1062.0	1069.5	1077.1	1084.8	1092.4	1100.1
60	982.9	990.2	997.5	1004.9	1012.2	1019.6	1027.0	1034.5	1041.9	1049.4	1056.9	1064.4	1072.0	1079.5	1087.1	1094.8
70	977.6	984.9	992.2	999.5	1006.9	1014.3	1021.7	1029.1	1036.5	1043.9	1051.4	1058.9	1066.4	1074.0	1081.5	1089.1
80	971.7	979.0	986.4	993.7	1001.1	1008.4	1015.8	1023.2	1030.6	1038.1	1045.5	1053.0	1060.5	1068.0	1075.6	1083.1
90	965.3	972.7	980.0	987.4	994.7	1002.1	1009.5	1017.0	1024.4	1031.8	1039.3	1046.8	1054.3	1061.8	1069.3	1076.8
100	958.4	965.8	973.2	980.6	988.0	995.4	1002.8	1010.3	1017.7	1025.2	1032.7	1040.2	1047.7	1055.2	1062.7	1070.3
110	951.0	958.5	965.9	973.3	980.8	988.3	995.7	1003.2	1010.7	1018.2	1025.7	1033.2	1040.8	1048.3	1055.9	1063.4
120	943.2	950.7	958.2	965.7	973.2	980.7	988.2	995.8	1003.3	1010.9	1018.4	1026.0	1033.6	1041.2	1048.7	1056.3
130	934.8	942.4	950.0	957.6	965.2	972.8	980.4	988.0	995.6	1003.2	1010.8	1018.5	1026.1	1033.7	1041.3	1049.0
140	926.1	933.8	941.4	949.1	956.8	964.5	972.2	979.9	987.6	995.2	1002.9	1010.6	1018.3	1026.0	1033.7	1041.4
150	916.9	924.7	932.5	940.3	948.1	955.9	963.7	971.4	979.2	987.0	994.8	1002.5	1010.3	1018.0	1025.8	1033.6
160	907.3	915.2	923.2	931.1	939.0	946.9	954.8	962.7	970.6	978.5	986.3	994.2	1002.0	1009.9	1017.7	1025.5
170	897.3	905.4	913.5	921.6	929.6	937.7	945.7	953.7	961.7	969.7	977.6	985.6	993.5	1001.4	1009.3	1017.2
180	887.0	895.3	903.5	911.7	919.9	928.1	936.3	944.4	952.6	960.7	968.7	976.8	984.8	992.8	1000.8	1008.7

Table A-5. Continued

Salinity (g/kg)											
$\begin{gathered} \mathrm{t} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	30	31	32	33	34	35	36	37	38	39	40
0	1024.2	1024.9	1025.7	1026.5	1027.3	1028.1	1028.9	1029.6	1030.4	1031.2	1032.0
10	1023.2	1023.9	1024.7	1025.4	1026.2	1027.0	1027.7	1028.5	1029.3	1030.0	1030.8
20	1020.8	1021.5	1022.3	1023.0	1023.8	1024.5	1025.3	1026.0	1026.8	1027.5	1028.3
30	1017.6	1018.4	1019.1	1019.9	1020.6	1021.4	1022.1	1022.9	1023.6	1024.4	1025.1
40	1013.9	1014.7	1015.4	1016.2	1016.9	1017.7	1018.4	1019.1	1019.9	1020.6	1021.4
50	1009.7	1010.4	1011.2	1011.9	1012.6	1013.4	1014.1	1014.8	1015.6	1016.3	1017.1
60	1004.9	1005.6	1006.3	1007.1	1007.8	1008.6	1009.3	1010.0	1010.8	1011.5	1012.2
70	999.5	1000.3	1001.0	1001.7	1002.5	1003.2	1003.9	1004.7	1005.4	1006.2	1006.9
80	993.7	994.4	995.2	995.9	996.6	997.4	998.1	998.8	999.6	1000.3	1001.1
90	987.4	988.1	988.8	989.6	990.3	991.1	991.8	992.5	993.3	994.0	994.7
100	980.6	981.3	982.1	982.8	983.5	984.3	985.0	985.8	986.5	987.2	988.0
110	973.3	974.1	974.8	975.6	976.3	977.1	997.8	978.6	979.3	980.0	980.8
120	965.7	966.4	967.2	967.9	968.7	969.4	970.2	970.9	971.7	972.4	973.2
130	957.6	958.4	959.1	959.9	960.6	961.4	962.1	962.9	963.7	964.4	965.2
140	949.1	949.9	950.7	951.4	952.2	953.0	953.7	954.5	955.3	956.0	956.8
150	940.3	941.1	941.8	942.6	943.4	944.2	945.0	945.7	946.5	947.3	948.1
160	931.1	931.9	932.7	933.5	934.4	935.1	935.8	936.6	937.4	938.2	939.0
170	921.6	922.4	923.7	924.0	924.8	925.6	926.4	927.2	928.0	928.8	929.6
180	911.7	912.6	913.4	914.2	915.0	915.8	916.7	917.5	918.3	919.1	919.9

${ }^{\mathbf{a}}$ While these values for pure water are within the claimed accuracy, more accurate values are available in the appropriate ESDU Data Item

Table A-6. Prandtl number of seawater and its concentrates [33]

Salinity (g/kg)																	
$\begin{gathered} \mathrm{t} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$0^{\text {a }}$	10	20	30	$35^{\text {b }}$	40	50	60	70	80	90	100	110	120	130	140	150
0	13.1	13.1	13.1	13.2	13.2	13.3	13.4	13.5	13.6	13.8	14.0	14.3	14.5	14.8	15.2	15.5	16.0
10	9.29	9.35	9.39	9.46	9.49	9.53	9.62	9.72	9.84	9.97	10.1	10.3	10.5	10.7	11.0	11.2	11.6
20	6.95	6.99	7.04	7.11	7.13	7.17	7.24	7.33	7.43	7.53	7.67	7.80	7.96	8.13	8.32	8.52	8.76
30	5.40	5.45	5.49	5.54	5.58	5.60	5.67	5.74	5.82	5.92	6.01	6.12	6.24	6.39	6.54	6.69	6.88
40	4.33	4.38	4.41	4.46	4.48	4.51	4.57	4.63	4.70	4.78	4.86	4.95	5.05	5.16	5.28	5.42	5.56
50	3.56	3.60	3.64	3.68	3.71	3.73	3.77	3.83	3.89	3.95	4.02	4.10	4.18	4.28	4.38	4.48	4.60
60	2.99	3.03	3.06	3.10	3.12	3.14	3.19	3.24	3.28	3.34	3.40	3.47	3.54	3.61	3.69	3.78	3.88
70	2.57	2.60	2.63	2.66	2.68	2.70	2.74	2.78	2.82	2.87	2.92	2.98	3.04	3.11	3.18	3.25	3.33
80	2.23	2.26	2.29	2.32	2.34	2.35	2.39	2.42	2.46	2.50	2.55	2.60	2.65	2.71	2.77	2.83	2.90
90	1.97	2.00	2.02	2.05	2.06	2.08	2.11	2.14	2.18	2.21	2.25	2.29	2.34	2.39	2.44	2.50	2.56
100	1.75	1.78	1.80	1.83	1.84	1.86	1.88	1.92	1.94	1.98	2.01	2.05	2.09	2.13	2.18	2.23	2.28
110	1.59	1.61	1.63	1.65	1.66	1.68	1.70	1.73	1.75	1.78	1.81	1.84	1.88	1.92	1.96	2.00	2.05
120	1.44	1.47	1.49	1.51	1.51	1.53	1.55	1.57	1.60	1.62	1.65	1.68	1.71	1.75	1.78	1.82	1.86
130	1.33	1.35	1.37	1.38	1.39	1.40	1.42	1.44	1.46	1.49	1.51	1.54	1.57	1.60	1.63	1.66	1.70
140	1.23	1.24	1.26	1.28	1.29	1.30	1.31	1.33	1.35	1.37	1.39	1.42	1.44	1.47	1.50	1.53	1.56
150	1.14	1.16	1.18	1.19	1.20	1.21	1.22	1.24	1.26	1.27	1.30	1.32	1.34	1.36	1.39	1.42	1.45
160	1.08	1.08	1.10	1.11	1.12	1.13	1.14	1.16	1.17	1.19	1.21	1.23	1.25	1.28	1.30	1.32	1.35
170	1.01	1.03	1.04	1.05	1.06	1.06	1.07	1.09	1.10	1.12	$1.132 \backslash$	1.16	1.17	1.20	1.22	1.24	1.26
180	0.959	0.975	0.983	0.997	1.00	1.00	1.02	1.03	1.04	1.06	1.07	1.09	1.10	1.13	1.14	1.17	1.19

${ }^{\text {a }}$ While these values for pure water are within the claimed accuracy, more accurate values are available in the appropriate ESDU Data Item
b "Normal" seawater

Factors affecting the evaporator performance

A-2 Boiling point elevation

Having measured the vapor pressure of seawater at a variety of concentrations and temperatures, Emerson and Jamieson [32] used the NEL steam tables (1964) to evaluate the boiling point elevation (see Table A-7). In Table A-7, the boiling point elevation increases with salinity (g / kg) and temperature.

It should be remarked that the vapor coming from the boiling solution in the evaporator is at the solution temperature [32] and is therefore superheated by the amount of the boiling point elevation.

A-3 Seawater vapor-pressure

Table A-6 shows the measured vapor pressures of saline solutions as given by Emerson and Jamieson [34]. The last column shows values of the calculated boiling point elevation. Note that the values correspond to a salinity of up to 8 times the normal water salinity.

Table A-7. Measured seawater vapor pressure and boiling point elevation [34]
MEASUREMENT OF VAPOUR PRESSURE OF SALINE SOLUTIONS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sample No. \& Salinity

(g/kg) \& Temperature \& | Measured pressure |
| :--- |
| (p) $\left(10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$ | \& \[

$$
\begin{gathered}
\text { Pressure } \\
\text { of pure } \\
\text { water }\left(p_{0}\right) \\
\left(10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\hline \text { Activity } \\
\mathbf{p} / \mathbf{p}_{0}
\end{gathered}
$$
\] \& Pressure

\[
\left(10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)

\] \& | $\frac{\mathbf{p}^{\prime}-\mathbf{p}}{\mathbf{p}}$ |
| :--- |
| (\%) ${ }^{\text {a }}$ | \& Boilingpoint elevation at measured pressure $\left({ }^{\circ} \mathrm{C}\right)$

\hline \multirow[t]{5}{*}{1} \& 33.13 \& 100.392 \& 1.0098 \& 1.0275 \& 0.98277 \& 1.0098 \& 0.002 \& 0.49

\hline \& 33.21 \& 119.686 \& 1.9317 \& 1.9657 \& 0.98270 \& 1.9317 \& 0.002 \& 0.55

\hline \& 33.32 \& 136.705 \& 3.2318 \& 3.2890 \& 0.98261 \& 3.2320 \& 0.007 \& 0.61

\hline \& 33.56 \& 159.998 \& 6.0698 \& 6.1801 \& 0.98215 \& 6.0723 \& 0.041 \& 0.70

\hline \& 33.88 \& 180.315 \& 9.9134 \& 10.1000 \& 0.98152 \& 9.9219 \& 0.086 \& 0.81

\hline \multirow[t]{5}{*}{2} \& 33.43 \& 99.887 \& 0.9922 \& 1.0092 \& 0.98315 \& 0.9918 \& -0.041 \& 0.48

\hline \& 33.21 \& 120.155 \& 1.9608 \& 1.9951 \& 0.98281 \& 1.9607 \& -0.007 \& 0.55

\hline \& 33.32 \& 136.542 \& 3.2162 \& 3.2736 \& 0.98247 \& 3.2169 \& 0.001 \& 0.61

\hline \& 33.54 \& 159.808 \& 6.0410 \& 6.1503 \& 0.98223 \& 6.0430 \& 0.002 \& 0.70

\hline \& 33.84 \& 177.948 \& 9.3850 \& 9.5624 \& 0.98145 \& 9.3940 \& 0.009 \& 0.81

\hline \multirow[t]{5}{*}{3} \& 66.26 \& 101.970 \& 1.0484 \& 1.0866 \& 0.96484 \& 1.0477 \& -0.001 \& 1.01

\hline \& 66.41 \& 119.422 \& 1.8806 \& 1.9493 \& 0.96476 \& 1.8792 \& -0.001 \& 1.13

\hline \& 66.66 \& 137.635 \& 3.2570 \& 3.3781 \& 0.96415 \& 3.2562 \& -0.001 \& 1.27

\hline \& 67.09 \& 158.705 \& 5.7608 \& 5.9795 \& 0.96343 \& 5.7622 \& 0.001 \& 1.45

\hline \& 67.72 \& 179.031 \& 9.4414 \& 9.8055 \& 0.96287 \& 9.4456 \& 0.004 \& 1.63

\hline \multirow[t]{5}{*}{4} \& 115.97 \& 101.776 \& 1.0074 \& 1.0792 \& 0.93347 \& 1.0077 \& 0.030 \& 1.94

\hline \& 116.24 \& 119.748 \& 1.8385 \& 1.9695 \& 0.93349 \& 1.8387 \& 0.012 \& 2.16

\hline \& 116.66 \& 138.059 \& 3.1907 \& 3.4194 \& 0.93312 \& 3.1933 \& 0.020 \& 2.41

\hline \& 117.44 \& 159.583 \& 5.7069 \& 6.1152 \& 0.93323 \& 5.7043 \& -0.046 \& 2.69

\hline \& 118.61 \& 180.531 \& 9.4616 \& 10.1502 \& 0.93216 \& 9.4606 \& -0.011 \& 3.03

\hline \multirow[t]{4}{*}{5} \& 116.27 \& 121.250 \& 1.9289 \& 2.0652 \& 0.93400 \& 1.9280 \& -0.045 \& 2.16

\hline \& 116.67 \& 138.354 \& 3.2181 \& 3.4483 \& 0.93324 \& 3.2183 \& 0.008 \& 2.39

\hline \& 117.49 \& 160.463 \& 5.8357 \& 6.2536 \& 0.93317 \& 8.8332 \& -0.042 \& 2.71

\hline \& 118.69 \& 181.240 \& 9.6170 \& 10.3164 \& 0.93321 \& 9.6150 \& -0.021 \& 3.04

\hline \multirow[t]{5}{*}{6} \& 165.68 \& 102.800 \& 1.0059 \& 1.1188 \& 0.89909 \& 1.0077 \& 0.182 \& 3.01

\hline \& 166.03 \& 119.030 \& 1.7322 \& 1.9251 \& 0.89980 \& 1.7335 \& 0.075 \& 3.29

\hline \& 166.68 \& 137.520 \& 3.0285 \& 3.3670 \& 0.89947 \& 3.0304 \& 0.062 \& 3.66

\hline \& 167.70 \& 158.330 \& 5.3304 \& 5.9222 \& 0.90007 \& 5.3260 \& -0.082 \& 4.06

\hline \& 169.27 \& 178.760 \& 8.7678 \& 9.7442 \& 0.89980 \& 8.7526 \& -0.174 \& 4.50

\hline
\end{tabular}

[^0]
APPENDIX B

EQUIPMENT DESIGN

Sample calculation

Figure B-1 shows the nomenclature used to identify each stage of the evaporator. Calculations showing the temperature and pressure of Points A, B, and I are shown on the next few pages. Temperatures and pressure drops for the sensible heat exchanger are obtained from Appendix C. The enthalpy of vaporization from Points A to B is obtained from steam tables.

Figure B-1. Exiting and entering flows nomenclature of the sensible heat exchanger.

Table B-1. Case B. Individual temperatures and pressures along the evaporator train

Stage	Point (see Figure (B-1)	Flow$(\mathrm{kg} / \mathrm{s})$	Calculated Vapor Pressure		Temperature(K)
			(atm) ${ }_{\text {abs }}$	(kN/m²)	
1	A	147.5	9.16	928.36	449.86
	B	147.5	9.16	928.36	449.86
	C	147.5			
	D	295			
	E	147.5			
	F	147.5			
	G	147.5	8.3658		447.638
	H	147.5			301
	I	146.03	8.3658	691.8	447.638
2	A	146.03	8.3658	691.8	447.638
	B	146.03	8.3658	691.8	446.004
	C	146.03			
	D	292.06			
	E	146.03			
	F	146.03			
	G	146.03	7.6303	641.8	443.782
	H	146.03			
	I	144.57	7.6303	641.8	443.782
3	A	144.57	7.6303	641.8	443.782
	B	144.57	7.6303	641.8	442.179
	C	144.57			
	D	289.14			
	E	144.57			
	F	144.57			
	G	144.57	6.9523	704.6	439.95
	H	144.57			
	I	143.12	6.9523	704.6	439.95

Table B-2 summarizes the results of a numerical trade-off performed to find the best heat transfer coefficient corresponding to the optimal temperature drop across the latent heat exchanger.

Table B-2. Calculated overall heat transfer coefficients $\left(\mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$. It Corresponds to different condensing temperatures and different heat transfer temperature differentials ΔT between the condensing steam side and the boiling liquid side

Condensing Temperature $\left({ }^{\circ} \mathrm{F}\right)$	Overall heat transfer coefficient. $\Delta \mathrm{T}=4^{\circ} \mathrm{F}$	Overall heat transfer coefficient $\Delta \mathrm{T}=6^{\circ} \mathrm{F}$	Overall heat transfer coefficient $\Delta \mathrm{T}=8^{\circ} \mathrm{F}$	Overall heat transfer coefficient $\Delta \mathrm{T}=10^{\circ} \mathrm{F}$
40	372	372	371	
40	695	695	694	371
60	1224	1224	1221	694
80	2046	2048	2037	1221
100	3265	3269	3238	2039
120	4995	5004	4924	3244
140	7351	7374	7178	4939
160	10440	10493	10044	7214
180	14331	14448	13483	10126
200	19020	19261	17322	13654
220	24415	24888	21251	17656
240	30275	31150	24814	21850
260	36852	38253	28636	25799
280	41586	44041	28945	30054
300	45804	49478	28957	30935
320	48484	53585	27771	31402
340			30532	

APPENDIX C

PRESSURE DROP IN THE LATENT HEAT EXCHANGER

(First Stage)

For saturated steam at $340^{\circ} \mathrm{F}\left(178^{\circ} \mathrm{C}\right)$:

$$
\begin{aligned}
& \rho_{v}=\text { vapor density }=0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}} \\
& \rho_{l}=\text { liquid density }=55.95 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}} \\
& \mu_{l}=\text { liquid dynamic viscosity }=0.393 \mathrm{lb}_{\mathrm{m}} /(\mathrm{h} \cdot \mathrm{ft}) \\
& \mu_{\mathrm{v}}=\text { vapor dynamic viscosity }=0.066 \mathrm{lb}_{\mathrm{m}} /(\mathrm{h} \cdot \mathrm{ft}) \\
& x=\text { mass fraction of vapor }=0.999
\end{aligned}
$$

Then, substituting into Equation 3.8:

$$
\lambda=\frac{1}{\left(1+\frac{0.999}{(1-0.999)}\left(\frac{0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}}{55.95 \frac{\mathrm{~b}_{\mathrm{m}}}{\mathrm{ft}^{3}}}\right)\right.}=0.999
$$

From Equation 3.4:

$$
\begin{aligned}
\alpha(\lambda) & =1-\frac{\ln 0.999}{\left[1.281+0.478 \ln 0.999+0.444(\ln 0.999)^{2}+0.094(\ln 0.999)^{3}+0.00843(\ln 0.999)^{4}\right]} \\
& =1.00031
\end{aligned}
$$

Substituting the homogeneous model constants into Equation 3.9:

$$
\Psi=\frac{1}{1+1 \times\left(\frac{1-0.999}{0.999}\right)^{1}\left(\frac{\left.0.264 \frac{\mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{3}}{55.95 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}}\right)^{1}\left(\frac{0.393 \frac{\mathrm{lb}}{\mathrm{~h} \cdot \mathrm{ft}}}{0.066 \frac{\mathrm{lb}}{\mathrm{~h} \cdot \mathrm{ft}}}\right)^{0}}{}=0.9999\right.}
$$

From Equations 3.6 and 3.9:

$$
\begin{aligned}
& \rho_{N S}=\left(55.95 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}\right)(0.999)+0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}(1-0.9996)=55.92 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}} \\
& \mu_{\text {NS }}=\left(0.393 \frac{\mathrm{lb}}{\mathrm{~h} \cdot \mathrm{ft}}\right)(0.999)+0.066 \frac{\mathrm{lb}}{\mathrm{~h} \cdot \mathrm{ft}}(1-0.393)=0.3928 \frac{\mathrm{lb}}{\mathrm{~h} \cdot \mathrm{ft}}
\end{aligned}
$$

From Equation 3.5:

$$
\beta=\frac{55.95 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}}{55.92 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}} \times \frac{(0.999)^{2}}{(1-0.999)}+\frac{0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}}{55.92 \frac{1 \mathrm{~b}_{\mathrm{m}}}{\mathrm{ft}^{3}}} \times \frac{(1-0.999)^{2}}{0.9457}=18.3999
$$

The hydraulic diameter D_{h} is

$$
D_{h}=\frac{4 A}{P}
$$

where

$$
\begin{aligned}
& A=\text { cross sectional area }=0.028 \mathrm{ft} \times 8 \mathrm{ft}=0.224 \mathrm{ft}^{2} \\
& P=\text { wetted perimeter }=16.06 \mathrm{ft}
\end{aligned}
$$

Therefore

$$
D_{h}=\frac{4 \times 0.224 \mathrm{ft}^{2}}{16.04 \mathrm{ft}}=0.055 \mathrm{ft}
$$

Then, the mass flow rate m_{t} is:

$$
m_{t}=0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}} \times 5 \frac{\mathrm{ft}}{\mathrm{~s}} \times 0.224 \mathrm{ft}^{2}=0.295 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~s}}
$$

From Equation 3.3:

$$
f_{\circ}=0.0014+0.125\left(\frac{4 \times 0.295 \times 18.4}{\pi \times 0.055 \times 0.393}\right)^{-0.32}=0.02114
$$

From Equation 3.2

$$
\begin{aligned}
\left(\frac{d P}{d z}\right)_{f} & =-\frac{2 G^{2} f_{o} \alpha(\lambda) \beta}{D_{h} \rho_{N S}} \\
& =\text { Pressure gradient per unit length } \\
& =\frac{2 \rho_{v}^{2} V^{2} f_{o} \alpha(\lambda) \beta}{D_{k} \rho_{N S}}\left(\frac{\mathrm{~b}_{\mathrm{f}}}{\mathrm{ft}^{2}}\right) \text { per } \mathrm{ft} \\
& =\frac{2 \times\left(5 \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times\left(0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}\right)^{2} \times 0.02114 \times 1.00031 \times 18.4}{0.055 \mathrm{ft} \times 32.2 \frac{\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \cdot \mathrm{~s}^{2}} \times 55.95 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}} \\
& =0.013 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{2}} \times \frac{1 \mathrm{ft}^{2}}{144 \mathrm{in}^{2}} \text { per } \mathrm{ft} \text { of length }=9.502 \times 10^{-5} \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{in}^{2}} \frac{1}{\mathrm{ft}}
\end{aligned}
$$

Then, for a 8 -ft plate:

$$
\left(\frac{d P}{d z}\right)_{f}=0.0008 \mathrm{psi}
$$

The pressure drop due to momentum is calculated following Reference [25] as

$$
\begin{aligned}
& =\left(0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}\right)^{2} \times\left(5 \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{1}{\mathrm{ft}} \times\left\{\begin{array}{l}
\frac{2 \times 0.999}{0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}} \times 0.999}-\frac{2(1-0.999)}{55.95 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}(1-0.999)}+1 \times \\
{\left[\frac{0.9994 \times(1-0.999)}{0.9994-0.999 \times 55.95 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}}\right]-\frac{0.999(1-0.999)}{0.999(1-0.999) \times 0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}}}
\end{array}\right\} \\
& =6.83 \frac{\mathrm{lb} \frac{\mathrm{~m}}{\mathrm{ft} \cdot \mathrm{~s}^{2}} \times \frac{1}{32.2 \frac{\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \cdot \mathrm{~s}^{2}}} \times \frac{1}{\mathrm{ft}}=0.2123 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{2}} \times \frac{1 \mathrm{ft}^{2}}{144 \mathrm{in}^{2}} \times \frac{1}{\mathrm{ft}}=0.0014 \frac{\mathrm{psi}}{\mathrm{ft}}}{}
\end{aligned}
$$

Then for a 8-ft plate:

$$
\left(\frac{d P}{d z}\right)_{m}=0.011 \mathrm{psi}
$$

Substituting into Equation 3.1:

$$
\begin{aligned}
\frac{d P}{d z}=\left(\frac{d P}{d z}\right)_{\text {friction }}+\left(\frac{d P}{d z}\right)_{\text {momentum }} & =0.0008 \mathrm{psi}+0.011 \mathrm{psi} \\
& 0.011 \mathrm{psi} \text { per plate channel }
\end{aligned}
$$

ΔP due to a sudden channel enlargement when the steam flow is coming out of the channel before it turns 180° and bends towards a sudden contraction when it comes back to the plate channel.

$$
\begin{aligned}
& v_{g}=\text { vapor specific volume }=3.7878 \mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}} \\
& v_{f}=\text { fluid specific volume }=0.017878 \mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}
\end{aligned}
$$

Chisholm [31] recommends the following values for C_{2} and λ :

$$
C_{2}=1+20\left(\frac{D}{L}\right)
$$

$$
\begin{aligned}
\lambda & =1 \\
D & =0.0282 \mathrm{ft} \\
L & =8 \mathrm{ft} \\
\frac{D}{L} & =0.0035 \\
C_{2} & =1.07 \\
v_{f g} & =3.7699 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}
\end{aligned}
$$

Then

$$
\begin{aligned}
C & =\left[1+(1.07-1)\left(\frac{3.7699 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}}{3.7878 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}}\right)^{0.5}\right] \cdot\left[\left(\frac{3.7878 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}}{0.01787 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}}\right)^{0.5} 0.5+\left(\frac{0.01787 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}}{3.7878 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}}\right)^{0.5}\right] \\
& =17.38 \\
X & =\left[\left(\frac{0.999}{1-0.999}\right)\left(\frac{3.7878}{0.01787}\right) 0.5\right]^{-1}=6.9 \times 10^{-4}
\end{aligned}
$$

Substituting into Equation 3.11:

$$
\begin{aligned}
\frac{\Delta P_{T P}}{\Delta P_{f}} & =1+(17.38)\left(6.9 \times 10^{-4}\right)+\left(\times 6.9 \times 10^{-4}\right)^{2}=1.011 \\
\Delta P_{f} & =K\left(\frac{\rho_{f}}{g_{c}}\right)\left(\frac{V^{2}}{2}\right)
\end{aligned}
$$

where
$K=0.30$ for a flanged welded bend [25]

$$
\begin{aligned}
& V=\text { fluid velocity }=5 \mathrm{ft} / \mathrm{s} \\
& \rho_{f}=\text { fluid density }=55.95 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3} \\
& g_{c}=32.2 \mathrm{lb}_{\mathrm{m}} \cdot \mathrm{ft} /\left(\mathrm{lb}_{\mathrm{f} \cdot} \cdot \mathrm{~s}^{2}\right) \\
& \Delta P_{f}=\frac{0.30 \times 55.95 \frac{\mathrm{lb} \frac{\mathrm{~m}}{}}{\mathrm{ft}} \times\left(5 \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2}}{32.174 \frac{\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \cdot \mathrm{~s}^{2}} \times 2}=6.52 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{2}} \times \frac{1 \mathrm{ft}^{2}}{144 \mathrm{in}^{2}}=0.045 \mathrm{psi}
\end{aligned}
$$

Therefore, substituting in Equation 3.11

$$
\Delta P_{T P}=1.011 \times 0.045=0.0457 \mathrm{psi}
$$

From Equation 3.13

$$
P_{2}-P_{1}=G_{1}^{2} \sigma(1-\sigma) v_{f}\left[\frac{(1-x)^{2}}{(1-\alpha)}+\left(\frac{v_{g}}{v_{f}}\right) \frac{x^{2}}{\alpha}\right]
$$

where

$$
\begin{aligned}
G_{1} & =\text { steam mass velocity }=\rho_{v} V=0.264 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}} \times 5 \frac{\mathrm{ft}}{\mathrm{~s}}=1.32 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{2} \cdot \mathrm{~s}} \\
\alpha & =\text { void fraction }=\Psi=0.999 \\
v_{f} & =\text { specific volume of the saturated liquid }=0.01787 \mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}} \\
x=0.999 & \left(@ 340^{\circ} \mathrm{F}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V=5 \mathrm{ft} / \mathrm{s} \\
& \sigma=\text { enlargement ratio } A_{1} / A_{2}
\end{aligned}
$$

where
A_{2} is estimated 10 times larger than A_{1}

$$
\sigma=\frac{(0.02083 \mathrm{ft})^{2}}{(0.2083 \mathrm{ft})^{2}}=0.1
$$

then

$$
\begin{aligned}
P_{2}-P_{1} & =\left(\frac{1.32 \mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{2} \cdot \mathrm{~s}}\right)^{2} \times 0.1 \times(1-0.1) \times 0.01787\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right) \\
& {\left[\frac{(1-0.999)}{1-0.999}+\left(\frac{0.37878 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}}{0.1787 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}}\right)\left(\frac{(0.999)^{2}}{0.999}\right)\right] } \\
& =\frac{0.5933 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft} \cdot \mathrm{~s}^{2}}}{32.2 \frac{1 \mathrm{~b}_{\mathrm{m}} \cdot \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \cdot \mathrm{~s}^{2}}}=0.1842 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{2}} \times \frac{1 \mathrm{ft}^{2}}{144 \mathrm{in}^{2}}=1.27 \times 10^{-4} \mathrm{psi}
\end{aligned}
$$

For a contraction in the homogeneous model:

$$
\begin{aligned}
p_{2}-p_{1} & =\frac{G_{2}^{2} v_{f}}{2}\left[\left(\frac{1}{C_{c}}-1\right)^{2}+\left(1-\frac{1}{\sigma^{2}}\right)\right]\left[1+\left(\frac{v_{f g}}{v_{f}}\right) x\right] \\
G_{2} & =\text { steam mass flux }=1.32 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{2} \cdot \mathrm{~s}} \\
v_{f} & =\text { specific volume of saturated liquid }=0.01787 \mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}} \\
\sigma & =\frac{(0.2083 \mathrm{ft})^{2}}{(0.02083 \mathrm{ft})^{2}}=10 \\
v_{f g} & =3.7699 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}\left(@ 340^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& P_{2}-P_{1}=\frac{\left(\frac{1.32 \mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{2} \cdot \mathrm{~s}}\right)^{2} \times 0.017 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}}{2}\left[\left(\frac{1}{0.592}-1\right)^{2}+\left(1+\frac{1}{100}\right)\right] \\
&\left.\left.0.01787 \frac{3.7699 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}}{\mathrm{ft}^{3}}\right) \times 0.999\right] \\
&=\left(\frac{\left.0.5933 \frac{\mathrm{lb} \frac{\mathrm{~m}}{}}{32.2 \frac{\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{~s}^{2}}{\mathrm{lb}_{\mathrm{f}} \cdot \mathrm{st}^{2}}}\right)=0.0184 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{2}} \times \frac{1 \mathrm{ft}^{2}}{144 \mathrm{in}^{2}}=1.2796 \times 10^{-4} \mathrm{psi}}{}\right.
\end{aligned}
$$

Therefore, the total pressure drop per channel is the sum

$$
\begin{aligned}
& \Delta \mathrm{P}_{\text {TOTAL }}=\sum\left[(\text { channel })+\left(180^{\circ} \text { bend }\right)+(\text { enlargement })+(\text { contraction })\right] \\
& \quad=(0.011 \mathrm{psi})+(0.045 \mathrm{psi})+\left(1.27 \times 10^{-4} \mathrm{psi}\right)+\left(1.279634 \times 10^{-4} \mathrm{psi}\right) \\
& \quad=0.0525 \mathrm{psi}
\end{aligned}
$$

As can be appreciated, the pressure drop in this sheet-shell heat exchanger is not a major issue.

APPENDIX D

VAPOR COMPRESSION TRADE-OFFS

Case A. $\Delta T_{\text {cond }}=3.333 \mathrm{~K}=\left(6^{\circ} \mathrm{F}\right)$

15\% Salt Activity Calculation

For $\mathrm{S}=150 \mathrm{~g} / \mathrm{kg}$, substitute in the activity formula given in Chapter V.

$$
\begin{aligned}
\log _{10}\left(p / p_{0}\right) & =\left(-2.1609 \times 10^{-4}\right)(150)+\left(-3.5012 \times 10^{-7}\right)(150)^{2} \\
& =-0.04028 \\
p / p_{0} & =10^{-0.04028}=0.9114
\end{aligned}
$$

The nomenclature follows Figure B-1 (Appendix B)

Stage 1

A $\quad P=9.16 \mathrm{~atm}$ (Maximum pressure for dropwise condensation, 120 psig) $T=449.86 \mathrm{~K}$ (Saturated, steam table)

B $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$
I $\quad T=449.89-3.333=446.53 \mathrm{~K}$
$P_{0}=8.47123 \mathrm{~atm}$
$P=0.9114(8.47123)=7.7203 \mathrm{~atm}(15 \%$ salt $)$
Stage 2
A $\quad P=7.7207 \mathrm{~atm}$

$$
T=446.53 \mathrm{~K}
$$

B $\quad P=7.7207 \mathrm{~atm}$

$$
T=442.664 \mathrm{~K} \text { (saturated steam table) }
$$

I $\quad T=442.664 \mathrm{~K}-3.333 \mathrm{~K}=439.331 \mathrm{~K}$

$$
P_{0}=7.11672 \mathrm{~atm} \text { (saturated steam table) }
$$

$$
P=0.9114(7.11672)=6.486 \mathrm{~atm}(15 \% \text { salt })
$$

Stage 3

A $\quad P=6.486 \mathrm{~atm}$

$$
T=439.331 \mathrm{~K}
$$

B $\quad P=6.486 \mathrm{~atm}$
$T=435.601 \mathrm{~K}$ (saturated, steam table)
I $\quad T=435.601-3.333=432.263 \mathrm{~K}$
$P_{0}=5.96001 \mathrm{~atm}$
$P=0.9114(5.96001)=5.4320 \mathrm{~atm}(15 \%$ salt $)$
Stage 4
A $\quad P=5.4320 \mathrm{~atm}$

$$
T=432.263 \mathrm{~K}
$$

B $\quad P=5.4320 \mathrm{~atm}$

$$
T=428.667 \mathrm{~K}
$$

I $\quad T=428.667-3.333=425.334 \mathrm{~K}$ $P_{0}=4.97665 \mathrm{~atm}$ (saturated, steam table)

$$
P=0.9114(4.97665)=4.536 \mathrm{~atm}
$$

Stage 5
A $\quad P=4.536 \mathrm{~atm}$

$$
T=425.334 \mathrm{~K}
$$

B $\quad P=4.536 \mathrm{~atm}$

$$
T=421.87 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=421.87 \mathrm{~K}-3.333 \mathrm{~K}=418.54 \mathrm{~K}$
$P_{0}=4.143 \mathrm{~atm}$ (saturated steam table)
$P=0.9114(4.143)=3.776 \mathrm{~atm}$
Stage 6
A $\quad P=3.776 \mathrm{~atm}$
$T=418.54 \mathrm{~K}$
B $\quad P=3.776 \mathrm{~atm}$
$T=445.195 \mathrm{~K}$ (Saturated, steam table)
I $\quad T=415.195-3.333=411.86 \mathrm{~K}$
$P_{0}=3.4366 \mathrm{~atm}$ (Saturated, steam table)
$P=0.9114(3.4366 \mathrm{~atm})=3.132 \mathrm{~atm}(15 \%$ salt $)$
Stage 7
A $\quad P=3.132 \mathrm{~atm}$
$T=411.86 \mathrm{~K}$
B $\quad P=3.132 \mathrm{~atm}$
$T=408.632 \mathrm{~K}$ (saturated steam table)
I $\quad T=408.632 \mathrm{~K}-3.333 \mathrm{~K}=405.30 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=2.8409 \mathrm{~atm}(\text { saturated steam table }) \\
& P=0.9114(2.8403 \mathrm{~atm})=2.589 \mathrm{~atm}(15 \% \text { salt })
\end{aligned}
$$

Stage 8
A $\quad P=2.589 \mathrm{~atm}$

$$
T=405.30 \mathrm{~K}
$$

B $\quad P=2.589 \mathrm{~atm}$

$$
T=402.186 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=402.186 \mathrm{~K}-3.333 \mathrm{~K}=398.85 \mathrm{~K}$ $P_{0}=2.3396 \mathrm{~atm}$ (saturated, steam table)

$$
P=0.9114(2.3396)=2.132 \mathrm{~atm}(15 \% \text { salt })
$$

Stage 9
A $\quad P=2.132 \mathrm{~atm}$

$$
T=398.85 \mathrm{~K}
$$

B $\quad P=2.132 \mathrm{~atm}$
$T=395.844 \mathrm{~K}$ (saturated, steam table)
I $\quad T=395.844-3.333=392.51 \mathrm{~K}$
$P_{0}=1.9195 \mathrm{~atm}$ (saturated, steam table)

$$
P=0.9114(1.9195)=1.749 \mathrm{~atm}(15 \% \text { salt })
$$

Stage 10
A $\quad P=1.749 \mathrm{~atm}$

$$
T=392.51 \mathrm{~K}
$$

B $\quad P=1.749 \mathrm{~atm}$

$$
T=389.61 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=389.61 \mathrm{~K}-3.333 \mathrm{~K}=386.28 \mathrm{~K}$
$P_{0}=1.5689 \mathrm{~atm}$ (saturated steam table)

$$
P=0.9114(1.5689)=1.430 \mathrm{~atm}(15 \% \text { salt })
$$

10\% Salt Activity Calculation

For $\mathrm{S}=100 \mathrm{~g} / \mathrm{kg}$, substitute in the activity formula given in Chapter V.

$$
\begin{aligned}
\log _{10}\left(p / p_{0}\right) & =\left(-2.1609 \times 10^{-4}\right)(100)+\left(-3.5012 \times 10^{-7}\right)(100)^{2} \\
& =-0.02251102 \\
p / p_{0} & =10^{-0.0251102}=0.94382
\end{aligned}
$$

10% Salt $\Delta T_{\text {cond }}=3.333 \mathrm{~K}$

Stage 1

A $\quad P=9.16 \mathrm{~atm}$ (Maximum pressure for dropwise condensation, 120 psig) $T=449.86 \mathrm{~K}$ (Saturated, steam table)

B $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

I $\quad T=449.89-3.333=446.53 \mathrm{~K}$
$P_{0}=8.47123 \mathrm{~atm}$

$$
P=0.94382(8.47123)=7.9953 \mathrm{~atm}(10 \% \text { salt })
$$

Stage 2

A $\quad P=7.9953 \mathrm{~atm}$

$$
T=446.53 \mathrm{~K}
$$

B $\quad P=7.9953 \mathrm{~atm}$
$\mathrm{T}=444.112 \mathrm{~K}$ (saturated steam table)
I $\quad T=444.112 \mathrm{~K}-3.333 \mathrm{~K}=440.779 \mathrm{~K}$
$P_{0}=7.37430 \mathrm{~atm}$ (saturated steam table) $P=0.94382(7.37430)=6.96001 \mathrm{~atm}(10 \%$ salt $)$

Stage 3
A $\quad P=6.96001 \mathrm{~atm}$ $T=440.779 \mathrm{~K}$

B $\quad P=6.96001 \mathrm{~atm}$ $T=438.430 \mathrm{~K}$ (saturated, steam table)

I

$$
\begin{aligned}
& T=438.430-3.333=435.097 \mathrm{~K} \\
& P_{0}=6.40429 \mathrm{~atm}(\text { saturated }, \text { steam table }) \\
& P=0.94382(6.40429 \mathrm{~atm})=6.0445 \mathrm{~atm}(10 \% \text { salt })
\end{aligned}
$$

Stage 4
A $\quad P=6.0445 \mathrm{~atm}$

$$
T=435.097 \mathrm{~K}
$$

B $\quad P=6.0445 \mathrm{~atm}$

$$
T=432.815 \mathrm{~K}
$$

I $\quad T=432.815-3.333=429.482 \mathrm{~K}$
$P_{0}=5.54827 \mathrm{~atm}$ (saturated, steam table)
$P=0.94382(5.54827 \mathrm{~atm})=5.2366 \mathrm{~atm}(10 \%$ salt $)$
Stage 5
A $\quad P=5.2366 \mathrm{~atm}$

$$
T=429.482 \mathrm{~K}
$$

B $\quad P=5.2366 \mathrm{~atm}$

$$
T=427.265 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=427.165 \mathrm{~K}-3.333 \mathrm{~K}=423.93 \mathrm{~K}$ $P_{0}=4.79444 \mathrm{~atm}$ (saturated steam table)

$$
P=0.94382(4.79444 \mathrm{~atm})=4.5251 \mathrm{~atm}(10 \% \text { salt })
$$

Stage 6
A $\quad P=4.5251 \mathrm{~atm}$

$$
T=423.93 \mathrm{~K}
$$

B $\quad P=4.5251 \mathrm{~atm}$
$T=421.778 \mathrm{~K}$ (Saturated, steam table)
I $\quad T=421.778-3.333=418.445 \mathrm{~K}$
$P_{0}=4.13219 \mathrm{~atm}$ (Saturated, steam table)
$P=0.94382(4.13219 \mathrm{~atm})=3.900 \mathrm{~atm}(10 \%$ salt $)$
Stage 7
A $\quad P=3.900 \mathrm{~atm}$
$T=418.445 \mathrm{~K}$
B $\quad P=3.900 \mathrm{~atm}$
$T=416.353 \mathrm{~K}$ (saturated steam table)
I $\quad T=416.353 \mathrm{~K}-3.333 \mathrm{~K}=413.02 \mathrm{~K}$
$P_{0}=3.55174 \mathrm{~atm}$ (saturated steam table)
$P=0.94382(3.55174 \mathrm{~atm})=3.3522 \mathrm{~atm}(10 \%$ salt $)$
Stage 8
A $\quad P=3.3522 \mathrm{~atm}$

$$
T=413.02 \mathrm{~K}
$$

B $\quad P=3.3522 \mathrm{~atm}$

$$
T=410.989 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=410.989 \mathrm{~K}-3.333 \mathrm{~K}=407.656 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=3.0444 \mathrm{~atm}(\text { saturated, steam table }) \\
& P=0.94382(3.04433 \mathrm{~atm})=2.8733 \mathrm{~atm}(10 \% \mathrm{salt})
\end{aligned}
$$

Stage 9

A $\quad P=2.8733 \mathrm{~atm}$

$$
T=407.656 \mathrm{~K}
$$

B $\quad P=2.8733 \mathrm{~atm}$
$T=405.685 \mathrm{~K}$ (saturated, steam table)
I $\quad T=405.685-3.333=402.35 \mathrm{~K}$
$P_{0}=2.60194 \mathrm{~atm}$ (saturated, steam table)
$P=0.94382(2.60194)=2.45579 \mathrm{~atm}(10 \%$ salt $)$
Stage 10
A $\quad P=2.45576 \mathrm{~atm}$
$T=402.351 \mathrm{~K}$
B $\quad P=2.45576 \mathrm{~atm}$
$T=400.438 \mathrm{~K}$ (saturated, steam table)
I $\quad T=400.438 \mathrm{~K}-3.333 \mathrm{~K}=397.105 \mathrm{~K}$
$P_{0}=2.21716 \mathrm{~atm}$ (saturated, steam table)
$P=0.94382(2.21716 \mathrm{~atm})=2.093 \mathrm{~atm}(10 \%$ salt $)$

7\% Salt Activity calculation

For $\mathrm{S}=70 \mathrm{~g} / \mathrm{kg}$, substitute in the activity formula given in Chapter V.

$$
\begin{aligned}
\log _{10} p / p_{0} & =\left(-2.1609 \times 10^{-4}\right)(70)+\left(-3.5012 \times 10^{-7}\right)(70)^{2} \\
& =-0.0168419 \\
p / p_{0} & =10^{-0.6168419}=0.961962
\end{aligned}
$$

7% Salt $\Delta T_{\text {cond }}=3.333 \mathrm{~K}\left(6^{\circ} \mathrm{F}\right)$

Stage 1

A $\quad P=9.16 \mathrm{~atm}$ (Maximum pressure for dropwise condensation, 120 psig) $T=449.86 \mathrm{~K}$ (Saturated, steam table)

B $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

I $\quad T=449.89-3.333=446.53 \mathrm{~K}$
$P_{0}=8.47123 \mathrm{~atm}$

$$
P=0.96196(8.47123)=8.149 \mathrm{~atm}(7 \% \text { salt })
$$

Stage 2
A $\quad P=8.149 \mathrm{~atm}$

$$
T=446.53 \mathrm{~K}
$$

B $\quad P=8.149 \mathrm{~atm}$
$T=444.905 \mathrm{~K}$ (saturated steam table)
I $\quad T=444.905 \mathrm{~K}-3.333 \mathrm{~K}=441.572 \mathrm{~K}$
$P_{0}=7.51847 \mathrm{~atm}$ (saturated steam table)
$P=0.94382(7.51847)=7.2325 \mathrm{~atm}(7 \%$ salt $)$
Stage 3
A $\quad P=7.2325 \mathrm{~atm}$

$$
T=441.572 \mathrm{~K}
$$

B $\quad P=7.2325 \mathrm{~atm}$

$$
T=439.987 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=439.987-3.333=436.654 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=6.65935 \mathrm{~atm}(\text { saturated, steam table }) \\
& P=0.96196(6.65935 \mathrm{~atm})=6.4060 \mathrm{~atm}(7 \% \text { salt })
\end{aligned}
$$

Stage 4
A $\quad P=6.4060 \mathrm{~atm}$

$$
T=436.654 \mathrm{~K}
$$

B $\quad P=6.4060 \mathrm{~atm}$

$$
T=435.108 \mathrm{~K}
$$

I $\quad T=435.108-3.333=431.775 \mathrm{~K}$
$P_{0}=5.88605 \mathrm{~atm}$ (saturated, steam table)

$$
P=0.96196(5.88605 \mathrm{~atm})=5.66214 \mathrm{~atm}(7 \% \text { salt })
$$

Stage 5
A $\quad P=5.66214 \mathrm{~atm}$

$$
T=431.775 \mathrm{~K}
$$

B $\quad P=5.66214 \mathrm{~atm}$

$$
T=430.267 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=430.267 \mathrm{~K}-3.333 \mathrm{~K}=426.934 \mathrm{~K}$
$P_{0}=5.19127 \mathrm{~atm}$ (saturated steam table)

$$
P=0.94382(5.19127 \mathrm{~atm})=4.9938 \mathrm{~atm}(7 \% \text { salt })
$$

Stage 6
A $\quad P=4.9938 \mathrm{~atm}$

$$
T=426.934 \mathrm{~K}
$$

B $\quad P=4.9938 \mathrm{~atm}$
$T=425.464 \mathrm{~K}$ (Saturated, steam table)
I $\quad T=425.464-3.333=422.131 \mathrm{~K}$
$P_{0}=4.56834 \mathrm{~atm}$ (Saturated, steam table)
$P=0.96196(4.56834 \mathrm{~atm})=4.39456 \mathrm{~atm}(7 \%$ salt $)$
Stage 7
A $\quad P=4.39456 \mathrm{~atm}$
$T=422.131 \mathrm{~K}$
B $\quad P=4.39456 \mathrm{~atm}$
$T=420.698 \mathrm{~K}$ (saturated steam table)
I $\quad T=420.698 \mathrm{~K}-3.333 \mathrm{~K}=417.365 \mathrm{~K}$
$P_{0}=4.10095 \mathrm{~atm}$ (saturated steam table)
$P=0.96196(4.10095 \mathrm{~atm})=3.8584 \mathrm{~atm}(7 \%$ salt $)$
Stage 8
A $\quad P=3.8584 \mathrm{~atm}$
$T=417.365 \mathrm{~K}$
B $\quad P=3.8584 \mathrm{~atm}$

$$
T=415.968 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=415.968 \mathrm{~K}-3.333 \mathrm{~K}=412.635 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=3.15319 \mathrm{~atm} \text { (saturated, steam table) } \\
& P=0.96196(3.15319 \mathrm{~atm})=3.3795 \mathrm{~atm}(7 \% \text { salt })
\end{aligned}
$$

Stage 9

A $\quad P=33795 \mathrm{~atm}$

$$
T=412.635 \mathrm{~K}
$$

B $\quad P=3.3795 \mathrm{~atm}$

$$
T=411.273 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=411.273-3.333=407.94 \mathrm{~K}$ $P_{0}=3.06964 \mathrm{~atm}$ (saturated, steam table)

$$
P=0.94382(3.06964)=2.95287 \mathrm{~atm}(7 \% \text { salt })
$$

Stage 10
A $\quad P=2.95287 \mathrm{~atm}$

$$
T=407.94 \mathrm{~K}
$$

B $\quad P=2.95287 \mathrm{~atm}$
$T=406.613 \mathrm{~K}$ (saturated, steam table)
I $\quad T=406.613 \mathrm{~K}-3.333 \mathrm{~K}=403.28 \mathrm{~K}$
$P_{0}=2.67532 \mathrm{~atm}$ (saturated, steam table)
$P=0.96196(2.67532 \mathrm{~atm})=2.5736 \mathrm{~atm}(7 \%$ salt $)$

5\% Salt. Activity calculation

For $S=50 \mathrm{~g} / \mathrm{kg}$, substitute in the activity formula given in Chapter V.

$$
\begin{aligned}
\log _{10} p / p_{0} & =\left(-2.1609 \times 10^{-4}\right)(50)+\left(-3.5012 \times 10^{-7}\right)(50)^{2} \\
& =-0.0116798 \\
p / p_{0} & =0.97346
\end{aligned}
$$

5\% Salt
Stage 1
A $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

B $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$ (saturated, steam table)
I $\quad T=449.86-3.333=446.53 \mathrm{~K}$
$P_{0}=8.47123 \mathrm{~atm}$ (saturated, steam table)
$P=0.97346(8.47123)=8.246 \mathrm{~atm}$
Stage 2
A $\quad P=8.2464 \mathrm{~atm}$
$T=446.53 \mathrm{~K}$
B $\quad P=8.2464 \mathrm{~atm}$
$T=445.401 \mathrm{~K}$ (saturated, steam table)
I $\quad T=444.401-3.333=442.07 \mathrm{~K}$
$P_{0}=7.61014 \mathrm{~atm}$ (saturated, steam table)
$P=0.973465(7.61014)=7.4082 \mathrm{~atm}(5 \%$ salt $)$
Stage 3
A $\quad P=7.4082 \mathrm{~atm}$
$T=442.07 \mathrm{~K}$
B $\quad P=7.4082 \mathrm{~atm}$
$T=440.967 \mathrm{~K}$ (saturated, steam table)

I $\quad T=440.967 \mathrm{~K}-3.333 \mathrm{~K}=437.63 \mathrm{~K}$
$P_{0}=6.82399 \mathrm{~atm}$

$$
P=0.97346(6.82399)=6.643 \mathrm{~atm}
$$

Stage 4
A $\quad P=6.643 \mathrm{~atm}$

$$
T=437.63 \mathrm{~K}
$$

B $\quad P=6.643 \mathrm{~atm}$
$T=436.556 \mathrm{~K}$ (saturated, steam table)
I $\quad T=436.556-3.333=433.223 \mathrm{~K}$
$P_{0}=6.0766 \mathrm{~atm}$ (saturated, steam table)

$$
P=0.97346(6.0766)=5.9456 \mathrm{~atm}(5 \% \text { salt })
$$

Stage 5

A $\quad P=5.9456 \mathrm{~atm}$

$$
T=433.223 \mathrm{~K}
$$

B $\quad P=5.9456 \mathrm{~atm}$

$$
T=432.168 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=432.168-3.333=428.835 \mathrm{~K}$
$P_{0}=5.45582 \mathrm{~atm}$ (saturated, steam table)

$$
P=0.97346(5.45582)=5.3110 \mathrm{~atm}
$$

Stage 6
A $\quad P=5.3110 \mathrm{~atm}$

$$
T=428.835 \mathrm{~K}
$$

B $\quad P=5.3110 \mathrm{~atm}$

$$
T=427.804 \mathrm{~K} \text { (saturated, steam table) }
$$

I $\quad T=427.804-3.333=424.47 \mathrm{~K}$

$$
P_{0}=4.86374 \mathrm{~atm} \text { (saturated, steam table) }
$$

$$
P=0.97346(4.86374)=4.7347 \mathrm{~atm}(5 \% \text { salt })
$$

Stage 7

A $\quad P=4.7347 \mathrm{~atm}$
$T=424.47 \mathrm{~K}$
B $\quad P=4.7347 \mathrm{~atm}$
$T=423.46 \mathrm{~K}$ (saturated, steam table)
I $\quad T=423.46-3.333=420.13 \mathrm{~K}$
$P_{0}=4.32686 \mathrm{~atm}$ (saturated, steam table)
$P=0.973465(4.32686)=4.212 \mathrm{~atm}(5 \%$ salt $)$
Stage 8
A $\quad P=4.2122 \mathrm{~atm}$

$$
T=420.13 \mathrm{~K}
$$

B $\quad P=4.2122 \mathrm{~atm}$
$T=419.142 \mathrm{~K}$ (saturated, steam table)
I $\quad T=419.142 \mathrm{~K}-3.333 \mathrm{~K}=415.81 \mathrm{~K}$
$P_{0}=3.84142 \mathrm{~atm}$ (saturated, steam table)
$P=0.97346(3.84142)=3.7395 \mathrm{~atm}$

Stage 9

A $\quad P=3.7395 \mathrm{~atm}$
$T=415.81 \mathrm{~K}$
B $\quad P=3.7395 \mathrm{~atm}$
$T=414.848 \mathrm{~K}$ (saturated, steam table)
I $\quad T=414.848-3.333=411.515 \mathrm{~K}$
$P_{0}=3.40296 \mathrm{~atm}$ (saturated, steam table)
$P=0.97346(3.40296)=3.3127 \mathrm{~atm}(5 \%$ salt $)$
Stage 10
A $\quad P=3.3127 \mathrm{~atm}$
$T=411.515 \mathrm{~K}$
B $\quad P=3.3127 \mathrm{~atm}$
$T=410.576 \mathrm{~K}$ (saturated, steam table)
I $\quad T=410.576-3.333=407.24 \mathrm{~K}$
$P_{0}=3.00784 \mathrm{~atm}$ (saturated, steam table)
$P=0.97346(3.00784)=2.928 \mathrm{~atm}(5 \%)$

Case B. $\Delta T_{\text {cond }}=2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)$

The nomenclature follows Figure B-1 (Appendix B)

15\% Salt

Stage 1
A $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

B $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

I $\quad T=449.89-2.222=447.638 \mathrm{~K}$
$P_{0}=8.69665 \mathrm{~atm}$

$$
P=0.9114(8.69665)=7.93613 \mathrm{~atm}
$$

Stage 2
A $\quad P=7.92613 \mathrm{~atm}$
$T=447.638 \mathrm{~K}$
B $\quad P=7.92613 \mathrm{~atm}$

$$
T=443.751 \mathrm{~K}
$$

I $\quad T=443.751 \mathrm{~K}-2.222 \mathrm{~K}=441.529 \mathrm{~K}$
$P_{0}=7.51059 \mathrm{~atm}$

$$
P=0.9114(7.71059)=6.8452 \mathrm{~atm}
$$

Stage 3
A $\quad P=6.8452 \mathrm{~atm}$

$$
T=441.529 \mathrm{~K}
$$

B $\quad P=6.8452 \mathrm{~atm}$

$$
T=437.759 \mathrm{~K}
$$

I $\quad T=437.759-2.222=435.537 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=6.47556 \mathrm{~atm} \\
& P=0.9114(6.47556)=5.9018 \mathrm{~atm}
\end{aligned}
$$

Stage 4

A $\quad P=5.9018 \mathrm{~atm}$

$$
T=435.537 \mathrm{~K}
$$

B $\quad P=5.9018 \mathrm{~atm}$

$$
T=431.879 \mathrm{~K}
$$

I $\quad T=431.879-2.222=429.657 \mathrm{~K}$
$P_{0}=5.57349 \mathrm{~atm}$
$P=0.9114(5.57359)=5.0797 \mathrm{~atm}$
Stage 5
A $\quad P=5.0797 \mathrm{~atm}$
$T=429.657 \mathrm{~K}$
B $\quad P=5.0797 \mathrm{~atm}$
$T=426.109 \mathrm{~K}$
I $\quad T=426.109-2.222=423.887 \mathrm{~K}$
$P_{0}=4.78872 \mathrm{~atm}$
$P=0.9114(4.78872)=4.3644 \mathrm{~atm}$

```
\(\mathbf{1 0 \%}\) Salt \(\Delta T_{\text {cond }}=2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)\)
```

Stage 1
A $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$
B $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$
I $\quad T=449.86-2.222=447.638 \mathrm{~K}$
$P_{0}=8.69665 \mathrm{~atm}$
$P=0.94382(8.69665)=8.2081 \mathrm{~atm}$
Stage 2
A $\quad P=8.2081 \mathrm{~atm}$
$T=447.6381 \mathrm{~K}$
B $\quad P=8.2081 \mathrm{~atm}$
$T=445.207 \mathrm{~K}$
I $\quad T=445.207-2.222=442.985 \mathrm{~K}$
$P_{0}=7.78088 \mathrm{~atm}$
$P=0.94382(7.78088)=7.3438 \mathrm{~atm}$
Stage 3
A $\quad P=7.3438 \mathrm{~atm}$
$T=442.985 \mathrm{~K}$
B $\quad P=7.3438 \mathrm{~atm}$
$T=440.609 \mathrm{~K}$

I $\quad T=440.609-2.222=438.387 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=6.95268 \mathrm{~atm} \\
& P=0.94382(6.95268)=6.5621 \mathrm{~atm}
\end{aligned}
$$

Stage 4
A $\quad P=6.5621 \mathrm{~atm}$

$$
T=438.387 \mathrm{~K}
$$

B $\quad P=6.5621 \mathrm{~atm}$
$T=436.066 \mathrm{~K}$
I $T=436.066-2.222=433.844 \mathrm{~K}$
$P_{0}=6.20472 \mathrm{~atm}$

$$
P=0.94382(6.20472)=5.8561 \mathrm{~atm}
$$

Stage 5
A $\quad P=5.8561 \mathrm{~atm}$
$T=433.844 \mathrm{~K}$
B $\quad P=5.8561 \mathrm{~atm}$
$T=431.576 \mathrm{~K}$
I $\quad T=431.576-2.222=429.3549 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=5.52988 \mathrm{~atm} \\
& P=0.94382(5.52988)=5.2192 \mathrm{~atm}
\end{aligned}
$$

7% Salt $\Delta T_{\text {cond }}=2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)$

Stage 1
A $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$
B $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$
I $\quad T=449.86-2.222=447.638 \mathrm{~K}$
$P_{0}=8.69665 \mathrm{~atm}$
$P=0.961062(8.69665)=8.3658 \mathrm{~atm}$
Stage 2
A $\quad P=8.3658 \mathrm{~atm}$ $T=447.638 \mathrm{~K}$

B $\quad P=8.3658 \mathrm{~atm}$
$T=446.004 \mathrm{~K}$
I $\quad T=446.004-2.222=443.782 \mathrm{~K}$
$P_{0}=7.93206 \mathrm{~atm}$
$P=0.961962(7.93206)=7.63034 \mathrm{~atm}$
Stage 3
A $\quad P=7.63034 \mathrm{~atm}$
$T=443.782 \mathrm{~K}$
B $\quad P=7.63034$ atm
$T=442.179 \mathrm{~K}$

I $\quad T=442.179-2.222=439.957 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=7.22719 \mathrm{~atm} \\
& P=0.94382(7.22719)=6.9523 \mathrm{~atm}
\end{aligned}
$$

Stage 4
A $\quad P=6.9522 \mathrm{~atm}$

$$
T=439.957 \mathrm{~K}
$$

B $\quad P=6.9522 \mathrm{~atm}$

$$
T=438.385 \mathrm{~K}
$$

I $\quad T=438.385-2.222=436.163 \mathrm{~K}$
$P_{0}=6.57888 \mathrm{~atm}$

$$
P=0.961962(6.57888)=6.3286 \mathrm{~atm}
$$

Stage 5
A $\quad P=6.3286 \mathrm{~atm}$
$T=436.163 \mathrm{~K}$
B $\quad P=6.3286 \mathrm{~atm}$
$T=434.626 \mathrm{~K}$
I $T=434.626-2.222=432.4 \mathrm{~K}$
$P_{0}=5.98152 \mathrm{~atm}$

$$
P=0.94382(5.98152)=5.75399 \mathrm{~atm}
$$

5\% Salt $\Delta T_{\text {cond }}=2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)$
Stage 1
A $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$
B $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$
I $\quad T=449.86-2.222=447.638 \mathrm{~K}$
$P_{0}=8.69665 \mathrm{~atm}$
$P=0.97346(8.69665)=8.4658 \mathrm{~atm}$
Stage 2
A $\quad P=8.4658 \mathrm{~atm}$

$$
T=447.638 \mathrm{~K}
$$

B $\quad P=8.4658 \mathrm{~atm}$
$T=446.504 \mathrm{~K}$
I $\quad T=446.503-2.222=444.281 \mathrm{~K}$
$P_{0}=8.02786 \mathrm{~atm}$
$P=0.97346(8.02789)=7.8148 \mathrm{~atm}$
Stage 3
A $\quad P=7.8148 \mathrm{~atm}$
$T=444.281^{`} \mathrm{~K}$

B $\quad P=7.8148 \mathrm{~atm}$
$T=443.165 \mathrm{~K}$

I $\quad T=443.165-2.222=440.943 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=7.40394 \mathrm{~atm} \\
& P=0.94382(7.40394)=7.2074 \mathrm{~atm}
\end{aligned}
$$

Stage 4
A $\quad P=7.2074 \mathrm{~atm}$

$$
T=440.943 \mathrm{~K}
$$

B $\quad P=7.2074 \mathrm{~atm}$

$$
T=439.845 \mathrm{~K}
$$

I $T=439.845-2.222=437.623 \mathrm{~K}$

$$
P_{0}=6.82213 \mathrm{~atm}
$$

$$
P=0.97346(6.82213)=6.6411 \mathrm{~atm}
$$

Stage 5

A $\quad P=6.6411 \mathrm{~atm}$
$T=437.623 \mathrm{~K}$
B $\quad P=6.6411 \mathrm{~atm}$
$T=436.544 \mathrm{~K}$
I $T=436.544-2.222=434.322 \mathrm{~K}$
$P_{0}=6.28026 \mathrm{~atm}$
$P=0.97346(6.28206)=6.1136 \mathrm{~atm}$

Case C. $\Delta T_{\text {cond }}=1.111 \mathrm{~K}\left(2^{\circ} \mathrm{F}\right)$
The nomenclature follows Figure B-1 (Appendix B)

15\% salt

Stage 1
A $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

B $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

I $\quad T=449.89-1.111=448.749 \mathrm{~K}$

$$
P_{0}=8.92741 \mathrm{~atm}
$$

$$
P=0.9114(8.92741)=8.1364 \mathrm{~atm}
$$

Stage 2

A $\quad P=8.1364 \mathrm{~atm}$

$$
T=448.74 \mathrm{~K}
$$

B $\quad P=8.1364 \mathrm{~atm}$

$$
T=444.841 \mathrm{~K}
$$

I $\quad T=444.84-1.111=443.73 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=7.92212 \mathrm{~atm} \\
& P=0.9114(7.92212)=7.2202 \mathrm{~atm}
\end{aligned}
$$

Stage 3
A $\quad P=7.2202 \mathrm{~atm}$

$$
T=443.73 \mathrm{~K}
$$

B $\quad P=7.2202 \mathrm{~atm}$
$T=439.918 \mathrm{~K}$
I $\quad T=439.918-1.111=438.807 \mathrm{~K}$
$P_{0}=7.02529 \mathrm{~atm}$
$P=0.9114(7.02529)=6.4028 \mathrm{~atm}$
Stage 4
A $\quad P=6.4028 \mathrm{~atm}$
$T=438.807 \mathrm{~K}$
B $\quad P=6.4028 \mathrm{~atm}$
$T=435.088 \mathrm{~K}$
I $\quad T=435.088-1.111=433.977 \mathrm{~K}$
$P_{0}=6.22566 \mathrm{~atm}$
$P=0.9114(6.22566)=5.6741 \mathrm{~atm}$
Stage 5
A $\quad P=5.6741 \mathrm{~atm}$
$T=433.977 \mathrm{~K}$
B $\quad P=5.6741 \mathrm{~atm}$
$T=430.349 \mathrm{~K}$
I $\quad T=430.349-1.111=429.238 \mathrm{~K}$

$$
P_{0}=5.51254 \mathrm{~atm}
$$

$$
P=0.9114(5.51254)=5.024 \mathrm{~atm}
$$

10% Salt $\Delta T_{\text {cond }}=1.111 \mathrm{~K}\left(2^{\circ} \mathrm{F}\right)$
Stage 1
A $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

B $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

I $\quad T=449.86-1.111=448.749 \mathrm{~K}$

$$
P_{0}=8.92741 \mathrm{~atm}
$$

$$
P=0.94382(8.92741)=8.4259 \mathrm{~atm}
$$

Stage 2

A $\quad P=8.4259 \mathrm{~atm}$

$$
T=448.749 \mathrm{~K}
$$

B $\quad P=8.4259 \mathrm{~atm}$

$$
T=446.304 \mathrm{~K}
$$

I $\quad T=446.304-1.111=445.193 \mathrm{~K}$
$P_{0}=8.20540 \mathrm{~atm}$

$$
P=0.94382(8.20540)=7.7444 \mathrm{~atm}
$$

Stage 3
A $\quad P=7.7444 \mathrm{~atm}$

$$
T=445.193 \mathrm{~K}
$$

B $\quad P=7.7444 \mathrm{~atm}$

$$
T=442.791 \mathrm{~K}
$$

I $\quad T=442.791-1.111=441.68 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=7.53827 \mathrm{~atm} \\
& P=0.94382(7.53827)=7.114 \mathrm{~atm}
\end{aligned}
$$

Stage 4
A $\quad P=7.1148 \mathrm{~atm}$
$T=441.68 \mathrm{~K}$
B $\quad P=7.1148 \mathrm{~atm}$
$T=439.320 \mathrm{~K}$
I $\quad T=439.320-1.111=438.21 \mathrm{~K}$
$P_{0}=6.92209 \mathrm{~atm}$
$P=0.94382(6.92209)=6.5332 \mathrm{~atm}$

Stage 5

A $\quad P=6.5332 \mathrm{~atm}$

$$
T=438.21 \mathrm{~K}
$$

B $\quad P=6.5332 \mathrm{~atm}$
$T=435.89 \mathrm{~K}$
I $\quad T=435.89-1.111=434.779 \mathrm{~K}$
$P_{0}=6.35316 \mathrm{~atm}$
$P=0.94382(6.35316)=5.9962 \mathrm{~atm}$
7% Salt $\Delta T_{\text {cond }}=1.111 \mathrm{~K}\left(2^{\circ} \mathrm{F}\right)$
Stage 1
A $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$
B $\quad P=9.16 \mathrm{~atm}$

$$
T=449.86 \mathrm{~K}
$$

I $\quad T=449.86-1.111=434.779 \mathrm{~K}$

$$
P_{0}=8.92741 \mathrm{~atm}
$$

$$
P=0.961962(8.9274)=8.5878 \mathrm{~atm}
$$

Stage 2

A $\quad P=8.5878 \mathrm{~atm}$
$T=448.749 \mathrm{~K}$
B $\quad P=8.5878 \mathrm{~atm}$

$$
T=447.106 \mathrm{~K}
$$

I $\quad T=447.10-1.111=445.995 \mathrm{~K}$
$P_{0}=8.36405 \mathrm{~atm}$
$P=0.961962(8.36405)=8.0459 \mathrm{~atm}$
Stage 3
A $\quad P=8.0459 \mathrm{~atm}$
$T=445.99 \mathrm{~K}$
B $\quad P=8.0459 \mathrm{~atm}$

$$
T=444.374 \mathrm{~K}
$$

I $\quad T=444.37-1.111=443.263 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=7.83335 \mathrm{~atm} \\
& P=0.961962(7.83335)=7.53539 \mathrm{~atm}
\end{aligned}
$$

Stage 4
A $\quad P=7.53539 \mathrm{~atm}$
$T=443.263 \mathrm{~K}$
B $\quad P=7.53539 \mathrm{~atm}$
$T=441.66 \mathrm{~K}$
I $\quad T=441.66-1.111=440.553 \mathrm{~K}$
$P_{0}=7.33362 \mathrm{~atm}$
$P=0.961962(7.3336)=7.0547 \mathrm{~atm}$

Stage 5

A $\quad P=7.0547 \mathrm{~atm}$
$T=440.553 \mathrm{~K}$
B $\quad P=7.0547 \mathrm{~atm}$
$T=438.97 \mathrm{~K}$
I $\quad T=438.976-1.111=437.865 \mathrm{~K}$
$P_{0}=6.86327 \mathrm{~atm}$
$P=0.961962(6.86327)=6.6022 \mathrm{~atm}$
5% Salt $\Delta T_{\text {cond }}=1.111 \mathrm{~K}\left(2^{\circ} \mathrm{F}\right)$
Stage 1
A $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$
B $\quad P=9.16 \mathrm{~atm}$
$T=449.86 \mathrm{~K}$

I $\quad T=449.86-1.111=448.749 \mathrm{~K}$
$P_{0}=8.92741 \mathrm{~atm}$
$P=0.97346(8.92741)=8.6905 \mathrm{~atm}$

Stage 2

A $\quad P=8.6905 \mathrm{~atm}$
$T=448.749 \mathrm{~K}$
B $\quad P=8.6905 \mathrm{~atm}$
$T=447.608 \mathrm{~K}$
I $\quad T=447.608-1.111=446.497 \mathrm{~K}$
$P_{0}=8.46459 \mathrm{~atm}$
$P=0.97346(8.46459)=8.2399 \mathrm{~atm}$
Stage 3
A $\quad P=8.2399 \mathrm{~atm}$
$T=446.497 \mathrm{~K}$
B $\quad P=8.2399 \mathrm{~atm}$
$T=445.369 \mathrm{~K}$

I $\quad T=445.369-1.111=444.258 \mathrm{~K}$

$$
\begin{aligned}
& P_{0}=8.02345 \mathrm{~atm} \\
& P=0.97346(8.02345)=7.8105 \mathrm{~atm}
\end{aligned}
$$

Stage 4
A $\quad P=7.8105 \mathrm{~atm}$
$T=444.258 \mathrm{~K}$

B $\quad P=7.8105 \mathrm{~atm}$
$T=443.142 \mathrm{~K}$
I $\quad T=443.142-1.111=442.031 \mathrm{~K}$
$P_{0}=7.60293 \mathrm{~atm}$
$P=0.97346(7.60293)=7.4011 \mathrm{~atm}$

Stage 5

A $\quad P=7.4011 \mathrm{~atm}$

$$
T=442.031 \mathrm{~K}
$$

B $\quad P=7.4011 \mathrm{~atm}$
$T=440.928 \mathrm{~K}$
I $\quad T=440.928-1.111=439.817 \mathrm{~K}$
$P_{0}=7.20237 \mathrm{~atm}$
$P=0.97346(7.20237)=7.0112 \mathrm{~atm}$

Equations used in the thermodynamic tables

The dry compressor work is calculated with Equation 7.1. The wet compressor work is calculated with Equation 7.2. Results in the last column of Tables D. 1 to D. 4 are given per unit of water product. The amount of water injected into the wet compressor is calculated with Equation 7.3

The thermodynamic values are read from the steam tables with data from the tradeoffs.

Table D.1. Case A Thermodynamic calculations for dry compressor. $\Delta T=3.333 \mathrm{~K}\left(6^{\circ} \mathrm{F}\right)$

Salt	n	$\begin{gathered} m_{1} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} P_{1} \\ (\mathrm{~atm}) \end{gathered}$	$\begin{gathered} T_{1} \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} V_{1} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$	$\begin{aligned} & \hat{H}_{1}^{v a p} \\ & (\mathrm{~kJ} / \mathrm{kg}) \end{aligned}$	$\begin{gathered} \hline \hat{S}_{1}^{\text {vap }} \\ (\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \end{gathered}$	$\begin{gathered} P_{2} \\ (\mathrm{~atm}) \end{gathered}$	$\begin{aligned} & T_{2} \\ & (\mathrm{~K}) \end{aligned}$	H_{2} (kJ/kg)	$\begin{gathered} V_{1} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$	$\begin{gathered} * W_{1} \\ \left(\mathrm{~kJ} / \mathrm{m}^{3}\right) \end{gathered}$
5\%	1	1000	8.246	446.53	0.231381	27772.34	6.65045	9.16	457.348	2792.91	231.38	24,200
	2	500	7.4082	442.07	0.256122	2767.85	6.68683	9.16	464.092	2809.67	128.06	24,600
	3	33	6.643	437.63	0.283956	2763.16	6.72369	9.16	471.221	2826.90	94.56	24,971
	4	250	5.9456	433.22	0.315326	2758.30	6.76107	9.16	478.737	2844.66	78.83	25,400
	5	200	5.3110	428.84	0.350757	2753.29	6.79904	9.16	486.650	2862.99	70.15	25,812
	10	100	2.928	407.24	0.613771	2725.90	6.99777	9.16	532.176	2964.11	61.38	28,025
7\%	1	1000	8.149	446.53	0.234344	2773.12	6.65733	9.16	458.601	2796.06	234.34	26,988
	2	500	7.233	441.57	0.262370	2768.04	6.69768	9.16	466.161	2814.71	131.19	27,456
	3	33	6.406	436.65	0.294289	2762.75	6.73863	9.16	474.192	2833.97	98.0	27,901
	4	250	5.662	431.78	0.330666	2757.28	6.78016	9.16	482.681	2853.83	82.67	28,397
	5	200	4.994	426.93	0.372173	2751.57	6.82213	9.16	491.593	2874.28	74.43	28,873
	10	100	2.574	403.28	0.693329	2720.77	7.04281	9.16	543.377	2988.33	69.33	31,477
10\%	1	1000	7.995	446.53	0.239194	2774.36	6.66837	9.16	460.633	2801.13	239.19	31,494
	2	500	6.960	440.78	0.272726	2768.32	6.71509	9.16	469.532	2822.86	136.36	32,082
	3	33	6.045	435.10	0.311546	2762.03	6.76238	9.16	479.006	2845.29	103.74	32,618
	4	250	5.237	429.48	0.356646	2755.48	6.81031	9.16	489.051	2868.48	89.16	33,235
	5	200	4.525	423.93	0.409208	2748.73	6.85904	9.16	499.693	2892.57	81.84	33,845
	10	100	2.093	397.11	0.842965	2712.44	7.11493	9.16	561.946	3028.19	84.29	37,147
15\%	1	1000	7.721	446.53	0.248296	2776.53	6.68838	9.16	464.386	2810.39	248.30	39,835
	2	500	6.486	439.33	0.292721	2768.65	6.74666	9.16	475.807	2837.78	146.36	40,665
	3	33	5.432	432.26	0.345937	2760.41	6.80566	9.16	488.058	2866.21	115.20	41,449
	4	250	4.536	425.33	0.409810	2751.90	6.86543	9.16	501.119	2895.77	102.45	42,315
	5	200	3.776	418.54	0.486769	2743.17	6.92614	9.16	515.014	2926.61	97.25	43,162
	7	143	2.589	405.30	0.69315	2725.07	7.05084	9.16	545.406	2992.70	99.02	45,025
	10	100	1.430	386.28	1.20728	2696.88	7.24723	9.16	597.980	3104.89	120.73	48,001

$* \eta_{\text {compressor }}=0.85$

Table D.2. Case A. Thermodynamic calculations for wet compressor. $\Delta T_{\text {cond }}=3.333 \mathrm{~K}\left(6^{\circ} \mathrm{F}\right)$

$T_{1}^{\text {liq }}=300$ (K)			$(\mathrm{kJ} / \mathrm{kg})$			$\begin{array}{cc} P_{2}=9.16 & T_{2}^{\text {sat }}=449.85 \\ (\mathrm{~atm}) & (\mathrm{K}) \end{array}$			2773.58 kg)	$\begin{aligned} & S_{2}^{v a p}=6.60784 \\ & (\mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \end{aligned}$	
Salt	n	$\begin{gathered} m_{1} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} P_{1} \\ (\mathrm{~atm}) \end{gathered}$	$\begin{gathered} T_{1} \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} V_{1} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$	$\begin{gathered} \hat{H}_{1}^{\text {vap }} \\ (\mathrm{kJ} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \hat{S}_{1}^{\text {vap }} \\ (\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \end{gathered}$	$\begin{gathered} V_{1} \\ \left(\frac{\mathrm{~m}^{3} \text { vapor }}{\mathrm{m}^{3} \text { liquid }}\right) \end{gathered}$	X	$\begin{gathered} * \hat{W} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} * \hat{W} \\ \left(\mathrm{~kJ} / \mathrm{m}^{3}\right) \end{gathered}$
5\%	1	1,000	8.246	446.53	0.231381	2772.34	6.65045	231.38	0.00685	22.91	22,919
	2	500	7.408	442.07	0.256122	2767.85	6.68683	128.06	0.01270	46.54	23,273
	3	333	6.643	437.63	0.283956	2763.16	6.72369	94.56	0.01863	70.59	23,508
	4	250	5.945	433.22	0.315326	2758.30	6.76107	78.83	0.02460	95.01	23,752
	5	200	5.311	428.84	0.350757	2753.29	6.79904	70.15	0.03075	120.17	24,033
	10	100	2.928	407.24	0.613771	2925.90	6.99777	61.38	0.06272	252.48	25,248
7\%	1	1,000	8.149	446.53	0.234344	2773.12	6.65733	234.34	0.0079	25.46	25,466
	2	500	7.233	441.57	0.262370	2768.04	6.69768	131.19	0.0144	51.61	25,805
	3	333	6.406	436.65	0.294289	2762.75	6.73863	98.0	0.0210	78.50	26,140
	4	250	5.662	431.78	0.330666	2757.28	6.78016	82.67	0.0277	105.91	26,478
	5	200	4.994	426.93	0.372173	2751.57	6.82213	74.43	0.0344	133.83	26,766
	10	100	2.574	403.28	0.693329	2720.77	7.04281	69.33	0.0699	281.23	28,122
10\%	1	1,000	7.995	446.53	0.239194	2774.36	6.66837	239.19	0.0097	29.56	29,569
	2	500	6.960	440.78	0.272726	2768.32	6.71509	136.36	0.0172	67.47	30,027
	3	333	6.045	435.10	0.311546	2762.03	6.76238	103.74	0.0248	91.29	30,402
	4	250	5.237	429.48	0.356646	2755.48	6.81031	89.16	0.0325	123.07	30,768
	5	200	4.525	423.93	0.409208	2748.73	6.85904	81.84	0.0404	155.74	31,149
	10	100	2.093	397.11	0.842965	2712.44	7.11493	84.29	0.0815	327.32	32,732
15\%	1	1,000	7.721	446.53	0.248296	2776.53	6.68838	248.30	0.0129	37.10	37,103
	2	500	6.486	439.33	0.292721	2768.65	6.74666	146.36	0.0223	75.63	37,818
	3	333	5.432	432.26	0.345937	2760.41	6.80566	115.20	0.0318	115.08	38,322
	4	250	4.536	425.33	0.409810	2751.90	6.86543	102.45	0.0414	155.24	38,812
	5	200	3.776	418.54	0.486769	2743.17	6.92614	97.25	0.0511	195.99	39,198
	10	100	1.430	386.28	1.20728	2696.88	7.24723	120.73	0.1028	412.26	41,226

$* \eta_{\text {compressor }}=0.85$

Table D. 3 Case B Thermodynamic calculations for wet compressor. $\Delta T_{\text {cond }}=2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)$

	$T_{1}^{\text {liq }}=300$ (K)		$\begin{gathered} H_{1}^{\text {liq }}=111.916 \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$		$\begin{aligned} S_{1}^{\text {liq }}= & 0.390357 \\ & (\mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \end{aligned}$	$\begin{array}{cc} P_{2}=9.16 & T_{2}^{\text {sat }}=449.85 \\ (\mathrm{~atm}) & (\mathrm{K}) \end{array}$		$\begin{gathered} H_{2}^{v a p}=2773.58 \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$		$\begin{aligned} S_{2}^{v a p} & =6.60784 \\ & (\mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \end{aligned}$	
Salt	n	$\begin{gathered} m_{1} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} P_{1} \\ (\mathrm{~atm}) \end{gathered}$	T_{1} (K)	$\begin{gathered} V_{1} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$	$\begin{gathered} \hat{H}_{1}^{\mathrm{vap}} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \hat{S}_{1}^{\text {vap }} \\ (\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \end{gathered}$	$\begin{gathered} V_{1} \\ \left(\frac{\mathrm{~m}^{3} \text { vapor }}{\mathrm{m}^{3} \text { liquid }}\right) \end{gathered}$	X	$\begin{gathered} * \hat{W} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} * \hat{W} \\ \left(\mathrm{kJJ} / \mathrm{m}^{3}\right) \end{gathered}$
5\%	1	1,000	8.4658	447.64	0.225673	2773.42	6.64149	225.67	0.00541	17.14	17,136
	2	500	7.8148	444.28	0.243474	2770.10	6.66870	121.74	0.00978	34.71	17,360
	3	333	7.2074	440.94	0.262873	2766.67	6.69613	87.54	0.01420	52.59	17,514
	4	250	6.6411	437.62	0.284034	2763.15	6.72379	71.01	0.01864	70.63	17,660
	5	200	6.1136	434.32	0.307139	2759.53	6.75170	61.43	0.02314	88.98	17,797
7\%	1	1,000	8.3658	447.64	0.228579	2774.22	6.64842	228.58	0.00652	19.68	19,685
	2	500	7.6303	443.782	0.249419	2770.34	6.67962	124.71	0.01154	39.94	19,974
	3	333	6.9523	439.96	0.272388	2766.35	6.71109	90.71	0.01660	60.48	20,142
	4	250	6.3286	436.16	0.297684	27620	6.74270	74.42	0.02169	81.31	20,329
	5	200	5.7540	432.40	0.325668	2757.98	6.77469	65.13	0.026836	102.39	20,477
10\%	1	1,000	8.2081	447.638	0.233303	2775.48	6.65946	233.30	0.00830	23.76	23,763
	2	500	7.3438	442.99	0.259231	2770.69	6.69705	129.62	0.01434	48.30	24,152
	3	333	6.5621	438.39	0.288326	2765.72	6.73488	96.01	0.02043	73.22	24,382
	4	250	5.8561	433.84	0.321011	2760.58	6.77299	80.25	0.02656	98.46	24,616
	5	200	5.2192	429.35	0.357792	2755.33	6.81146	71.56	0.03275	124.02	24,804
15\%	1	1,000	7.926	447.64	0.242221	2777.70	6.67961	242.22	0.01154	31.30	31,299
	2	500	6.845	441.53	0.278217	2771.11	6.72869	139.11	0.01943	63.74	31,874
	3	333	5.902	435.54	0.319946	2764.30	6.77810	106.54	0.02738	96.65	32,186
	4	250	5.080	429.66	0.368441	2757.28	6.82792	92.11	0.03539	129.99	32,499
	5	200	4.364	423.89	0.424974	2750.10	6.87830	84.99	0.0435	163.84	32,768

$* \eta_{\text {compressor }}=0.85$

Table D.4. Case C Thermodynamic calculations for wet compressor. $\Delta T_{\text {cond }}=1.111 \mathrm{~K}\left(2^{\circ} \mathrm{F}\right)$

$T_{1}^{\text {liq }}=300$ (K)			$\begin{gathered} H_{1}^{\text {liq }}=111.916 \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$		$\begin{aligned} S_{1}^{\text {liq }}= & 0.390357 \\ & (\mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \end{aligned}$	$\begin{gathered} \begin{array}{c} P_{2}=9.16 \\ (\mathrm{~atm}) \end{array} \\ \hline \begin{array}{c} \hat{H}_{1}^{\text {vap }} \\ (\mathrm{kJ} / \mathrm{kg}) \end{array} \end{gathered}$	$T_{2}^{\text {sat }}=449.85$ (K)	$\begin{gathered} H_{2}^{\text {vap }}=2773.58 \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$		$\begin{aligned} S_{2}^{v a p} & =6.60784 \\ & (\mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \end{aligned}$	
Salt	n	$\begin{gathered} m_{1} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} P_{1} \\ (\mathrm{~atm}) \end{gathered}$	$\begin{gathered} T_{1} \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} V_{1} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$		$\begin{gathered} \hat{S}_{1}^{\text {vap }} \\ (\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{~K})) \end{gathered}$	$\begin{gathered} V_{1} \\ \left(\frac{\mathrm{~m}^{3} \text { vapor }}{\mathrm{m}^{3} \text { liquid }}\right) \end{gathered}$	X	$\begin{gathered} * \hat{W} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} * \hat{W} \\ \left(\mathrm{~kJ} / \mathrm{m}^{3}\right) \end{gathered}$
5\%	1	1,000	8.6905	448.75	0.220125	2774.49	6.63255	220.13	0.00397	11.374	11,374
	2	500	8.2399	446.50	0.231544	2772.31	6.65071	115.77	0.00689	23.07	11,535
	3	333	7.8105	444.26	0.243603	2770.08	6.66890	81.12	0.00982	34.87	11,615
	4	250	7.4011	442.03	0.256354	2767.81	6.68716	64.09	0.01275	46.72	11,680
	5	200	7.0112	439.82	0.269836	2765.51	6.70550	53.97	0.01571	58.68	11,736
7\%	1	1,000	8.5878	448.75	0.22966	2775.31	6.63951	222.97	0.00509	13.91	13,915
	2	500	8.0459	446.00	0.237194	2772.60	6.66168	118.60	0.00866	28.28	14,140
	3	333	7.5353	443.26	0.252391	2769.80	6.68385	84.05	0.01222	42.71	14,223
	4	250	7.0544	440.55	0.268642	2766.97	6.70615	67.16	0.01581	57.28	14,320
	5	200	6.6022	437.87	0.286027	2764.10	6.72852	57.21	0.01941	71.93	14,386
10\%	1	1,000	8.4259	448.75	0.227582	2776.59	6.65060	227.58	0.00687	17.99	17,994
	2	500	7.7444	445.19	0.246516	2772.97	6.67910	123.26	0.01146	36.60	18,301
	3	333	7.1148	441.68	0.267112	2769.29	6.70769	88.95	0.01605	55.30	18,416
	4	250	6.5332	438.21	0.289529	2765.51	6.73635	72.38	0.02066	74.18	18,547
	5	200	5.9962	434.80	0.313957	2761.71	6.76521	62.79	0.02531	93.22	18,645
15\%	1	1,000	8.1364	448.75	0.236288	2778.86	6.67081	236.29	0.01012	25.50	25,502
	2	500	7.2202	443.73	0.264544	2773.52	6.71085	132.27	0.01656	51.92	25,963
	3	333	6.4028	438.81	0.296310	2768.06	6.75098	98.67	0.02302	78057	26,167
	4	250	5.6741	433.98	0.332033	2762.47	6.79120	83.01	0.02949	105.41	26,354
	5	200	5.0240	429.24	0.372309	2756.77	6.83164	74.46	0.03600	132.51	26,501

APPENDIX E

SENSIBLE HEAT EXCHANGER CALCULATION

The sensible heat exchanger for the evaporator exiting flow and the entering seawater feed is divided in two parts: one corresponds to the sensible heat transfer between the exiting distillate and 50% of the seawater feed, and the other corresponds to the sensible heat transfer between the exiting brine and 50% of the seawater feed.

The sensible heat exchangers are plate-and-frame type and are to be sized to produce the following:

$$
\begin{aligned}
\text { Distilled flow } & =10,000,000 \text { gallons } / \text { day } \\
& =1,568,182 \mathrm{~kg} / \mathrm{h} \\
& =3.45 \times 10^{6} \mathrm{lb}_{\mathrm{m}} / \mathrm{h} \\
& =0.4356 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

To design the sensible heat exchanger, first a mass balance and an enthalpy balance are performed for each evaporator. The data are used to compute both the sensible heat exchanger area, and the latent heat exchanger area.

The design methodology is that suggested by Cooper and Usher [32]. A separate design is performed for each of the effects.

The calculation method is based on an iterative process where the goal is to establish the number of plates (n) and the number of passes (H), such that the pressure drop and the heat transfer requirements of the heat exchanger are satisfied. Let

$$
m_{f}=\text { required seawater flow }(\mathrm{kg} / \mathrm{s})
$$

$\Delta T=$ temperature difference between the evaporator exit flow and the seawater feed (K)
$\Phi=$ required seawater temperature change (K)
$\Delta p=$ permissible pressure drop $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$n / 2 H=$ passages per pass
$2 m_{f} \mathrm{H} / \mathrm{n}=$ plate flow rate $(\mathrm{kg} / \mathrm{s})$
The methodology follows:

1. Select from the plate area/flow rate graph (Figure E-1), the approximate area (a) of the plate to be used, based on the higher of the two flow rates, the seawater and the corresponding distillate or brine.
2. Find the number of plates (n) and the number of passes (H) according to the requirements as follows:
(a) Select a whole number of passes (H) and determine the available pressure drop per pass on each side as given by

$$
\Delta p=\frac{\text { allowable pressure }}{H}
$$

(b) Select (α) values from Figure E-2 corresponding to Δp values for each side.
(c) Obtain the overall (U) value excluding metal resistance by combining the two (α) values obtained above.
(d) Determine (q) corresponding to the allowable pressure drop per pass on each side (Figure E-3).
(e) Calculate $n=2 H V / q$ where (V) is the higher of the two liquid flow rates and select the higher of the two values (q) found in (d).
(f) Calculate $\operatorname{Una\Delta T}$ and compare with the required heat transfer rate. Repeat, if necessary, with different values of (H) until acceptable agreement is found.

The nomenclature used in the following sensible heat exchanger design is depicted in Figure B-1 for the exiting and entering flows. Figure A-1 depicts the identifying nomenclature corresponding to the individual sensible heat exchangers.

D1: Distillate/Seawater Sensible Heat Exchanger (Case B, Effect 1)

Distillate	seawater
$T_{B}=449.86 \mathrm{~K}$	$T_{E}=447.4 \mathrm{~K}$
$T_{C}=301 \mathrm{~K}$	$T_{D}=297 \mathrm{~K}$
$C_{p}=4.36 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$	$C_{p}=4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$

The log mean heat exchanger temperature difference is

$$
\Delta T=L M T D=2.5 \mathrm{~K}
$$

Mass balance:
Required steam input $=m_{\text {steam }}=147.5 \frac{\mathrm{~kg}}{\mathrm{~s}}$

Calculate m_{D}, the seawater feed flow required in the sensible heat exchanger

$$
m_{D}=\left(\frac{1}{1-\frac{3.5 \%}{7 \%}}\right) \times m_{\text {steam }}=2 \times 147.5 \frac{\mathrm{~kg}}{\mathrm{~s}}=295 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

This feed flow is divided into two parts. 50% of the flow goes to the distillate/feed flow sensible heat exchanger.

$$
m_{E}=0.5 \times 295=147.5 \mathrm{~kg} / \mathrm{s}
$$

50% of the flow goes to the brine/feed flow sensible heat exchanger

$$
m_{F}=0.5 \times 295=147.5 \mathrm{~kg} / \mathrm{s}
$$

Energy balance:

$$
Q=m_{B} C_{p_{B}} \Delta T_{\text {distillate }}=m_{E} C_{p_{E}} \Delta T_{\text {seawater }}
$$

Therefore, the rate of heat required in the distillate/feed sensible heat exchanger is
$Q_{R}=147.5 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \times(447.4-297) \mathrm{K}=89,623.36 \mathrm{~kW}$
2) Heat exchanger design

2-1) Given the mass flow on each side of the heat exchanger:

$$
\begin{aligned}
& m_{B}=147.5 \mathrm{~kg} / \mathrm{s} \\
& m_{E}=147.5 \mathrm{~kg} / \mathrm{s}=0.1475 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Select the area using Figure E-2

$$
a=1.4 \mathrm{~m}^{2}
$$

2-2) Define the pressure drop allowed on each side of the heat exchanger and number of passes (H)

Let:

$$
\begin{aligned}
& \Delta P_{1}=800 \mathrm{kN} / \mathrm{m}^{2}(\text { distillate side }) \\
& \left.\Delta P_{2}=800 \mathrm{kN} / \mathrm{m}^{2} \text { (seawater side }\right) \\
& H=20
\end{aligned}
$$

Therefore

$$
\Delta P_{1}=800 / 20 \mathrm{kN} / \mathrm{m}^{2}=40 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\Delta P_{2}=800 / 20 \mathrm{kN} / \mathrm{m}^{2}=40 \mathrm{kN} / \mathrm{m}^{2} \text { (Use a correction factor due to seawater }
$$

properties different from pure water $=0.82$)

2-3) Find the heat transfer coefficients from Figure E-3

$$
\begin{aligned}
& \alpha_{1}=10,000 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \\
& \alpha_{2}=11,200 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \text { (Use a correction factor due to seawater properties }
\end{aligned}
$$

different from pure water $=1.22$)
2-4) Calculate the overall heat transfer coefficient U
$U=\frac{1}{\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}}=\frac{1}{\frac{1}{10,000}+\frac{1}{11,200}}=5,283 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$

2-5) Estimate the individual flow rate q (use Figure E-4)

$$
\begin{aligned}
& q_{1}=1.3 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& q_{2}=1.2 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

2-6) Calculate the number of plates (n)

$$
n=\frac{2 H V}{q}=\frac{2 \times 20 \times 147.5 \times 10^{-3}}{1.3 \times 10^{-3}}=4,538
$$

2-7) Find the rate of heat achieved with present design, and compare with required rate of heat

$$
Q=U a n \Delta T=5,055 \times 1.4 \times 4,538 \times 2.5 \times 10^{-3}=83,910 \mathrm{~W}
$$

Consider this number close to the heat rate required. Therefore the iteration stops.
2-8) calculate the heat exchanger area

$$
A=n \times a=4,538 \times 1.4 \mathrm{~m}^{2}=5,353 \mathrm{~m}^{2}=68,387 \mathrm{ft}^{2}
$$

B1: Brine/Seawater Sensible Heat Exchanger (Case B, Effect 1)

Brine	seawater
$T_{G}=447.638 \mathrm{~K}$	$T_{F}=445.17 \mathrm{~K}$
$T_{H}=301 \mathrm{~K}$	$T_{D}=297 \mathrm{~K}$
$C_{p}=3.891 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$	$C_{p}=4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$

The log mean heat exchanger temperature difference is
$\Delta T=L M T D=2.5 \mathrm{~K}$
Mass balance:

$$
m_{G}=m_{F}
$$

The feed seawater flow is

$$
\begin{aligned}
& m_{G}=147.5 \mathrm{~kg} / \mathrm{s} \\
& m_{F}=147.5 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

1) Calculate the required rate of heat on the seawater to achieve the temperatures expected

Energy balance:

$$
Q_{\text {brine }}=Q_{\text {feed }}
$$

The rate of heat required is

$$
\begin{aligned}
& m_{G} C_{p_{\text {brine }}}\left(T_{G}-T_{H}\right)=m_{F} C_{p_{\text {feed }}}\left(T_{F}-T_{D}\right) \\
& Q=m_{F} \times C_{p_{\text {feed }}} \times\left(T_{F}-T_{D}\right) \\
& Q=147.5 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \times(445.17-297) \mathrm{K}=88,294.5 \mathrm{~kJ} / \mathrm{s}
\end{aligned}
$$

2) Heat exchanger design

2-1) given the mass flow on each side of the heat exchanger

$$
\begin{gathered}
m_{G}=147.5 \mathrm{~kg} / \mathrm{s} \\
m_{F}=147.5 \mathrm{~kg} / \mathrm{s}
\end{gathered}
$$

Select the area from Figure E-2,

$$
a=1.4 \mathrm{~m}^{2}
$$

2-2) Define the pressure drop allowed on each side of the heat exchanger, and the number of passes.

Let $H=20$
Find pressure drop:

$$
\Delta P_{1}=\frac{740}{20}=37 \mathrm{kN} / \mathrm{m}^{2} \text { (brine side) (use a correction factor }=0.86 \text { due to seawater }
$$

concentration compared to pure water)

$$
\Delta P_{2}=\frac{740}{20}=37 \mathrm{kN} / \mathrm{m}^{2} \text { (seawater side) (use a correction factor }=0.82 \text { due to }
$$

seawater concentration compared to pure water)

2-3) Find the heat transfer coefficients corresponding to each side. From Figure E-3

$$
\begin{aligned}
& \alpha_{1}=10,800 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \\
& \alpha_{2}=11,040 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
\end{aligned}
$$

2-4) Calculate the overall heat transfer coefficient U

$$
U=\frac{1}{\frac{1}{10,800}+\frac{1}{11,040}}=5,462.1 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
$$

2-5) Estimate the individual flow rate q from Figure E-4

$$
\begin{aligned}
& q_{1}=1.1 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& q_{2}=1.2 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

2-6) Calculate the number of plates (n)

$$
n=\frac{2 \times H \times V}{q}=\frac{2 \times 20 \times 147.5 \times 10^{-3}}{1.2 \times 10^{-3}}=4,917
$$

2-7) Calculate the heat rate obtained with this arrangement

$$
Q=U \times a \times n \times \Delta T=5,462.1 \times 1.4 \times 4,917 \times 2.5 \times 10^{-3}=94,000 \mathrm{~kW}
$$

Reduce the number of plates to 4,618 giving a heat rate value close to the calculated rate of heat required. Therefore the iteration is closed.

Find area

$$
A=1.4 \mathrm{~m}^{2} \times 4,618=6,466 \mathrm{~m}^{2}=69,601 \mathrm{ft}^{2}
$$

Total area for the sensible heat exchanger:

$$
69,601 \mathrm{ft}^{2}+55,065 \mathrm{ft}^{2}=137,988 \mathrm{ft}^{2}
$$

D2: Distillate/Seawater Sensible Heat Exchanger (Case B, Effect 2)

Distillate	seawater
$T_{B}=447.638 \mathrm{~K}$	$T_{E}=445.17 \mathrm{~K}$
$T_{C}=301 \mathrm{~K}$	$T_{D}=297 \mathrm{~K}$
$C_{p}=4.36 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$	$C_{p}=4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$

The log mean heat exchanger temperature difference is

$$
\Delta T=L M T D=2.5 \mathrm{~K}
$$

Mass balance:
Required steam input $=m_{\text {steam }}=146.03 \frac{\mathrm{~kg}}{\mathrm{~s}}$

Calculate m_{D}, the seawater feed flow required in the sensible heat exchanger

$$
m_{D}=\left(\frac{1}{1-\frac{3.5 \%}{7 \%}}\right) \times m_{\text {steam }}=2 \times 146.03 \frac{\mathrm{~kg}}{\mathrm{~s}}=292.06 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

This feed flow is divided into two parts. 50% of the flow goes to the distillate/feed flow sensible heat exchanger.

$$
m_{E}=0.5 \times 292.06=146.03 \mathrm{~kg} / \mathrm{s}
$$

50% of the flow goes to the brine/feed flow sensible heat exchanger

$$
m_{F}=0.5 \times 292.06=146.03 \mathrm{~kg} / \mathrm{s}
$$

Energy balance:

$$
Q=m_{B} C_{p_{B}} \Delta T_{\text {distillate }}=m_{E} C_{p_{E}} \Delta T_{\text {seawater }}
$$

Therefore, the rate of heat required in the distillate/feed sensible heat exchanger is

$$
Q_{R}=146.03 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \times(445.17-297) \mathrm{K}=87,414 \mathrm{~kW}
$$

2) Heat exchanger design

2-1) Given the mass flow on each side of the heat exchanger:
$m_{B}=146.03 \mathrm{~kg} / \mathrm{s}$

$$
m_{E}=146.03 \mathrm{~kg} / \mathrm{s}=0.146 \mathrm{~m}^{3} / \mathrm{s}
$$

Select the area using Figure E-2

$$
a=1.4 \mathrm{~m}^{2}
$$

2-2) Define the pressure drop allowed on each side of the heat exchanger and number of passes (H)

Let:

$$
\begin{aligned}
& \Delta P_{1}=800 \mathrm{kN} / \mathrm{m}^{2} \text { (distillate side) } \\
& \Delta P_{2}=800 \mathrm{kN} / \mathrm{m}^{2} \text { (seawater side) } \\
& H=20
\end{aligned}
$$

Therefore

$$
\Delta P_{1}=800 / 20 \mathrm{kN} / \mathrm{m}^{2}=40 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\Delta P_{2}=800 / 20 \mathrm{kN} / \mathrm{m}^{2}=40 \mathrm{kN} / \mathrm{m}^{2} \text { (Use a correction factor due to seawater }
$$

properties different from pure water $=0.82$)
2-3) Find the heat transfer coefficients from Figure E-3

$$
\begin{aligned}
& \alpha_{1}=10,000 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \\
& \alpha_{2}=11,200 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \text { (Use a correction factor due to seawater properties }
\end{aligned}
$$

different from pure water $=1.22$)
2-4) Calculate the overall heat transfer coefficient U

$$
U=\frac{1}{\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}}=\frac{1}{\frac{1}{10,000}+\frac{1}{110200}}=5,283 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
$$

2-5) Estimate the individual flow rate q (use Figure E-4)

$$
\begin{aligned}
& q_{1}=1.3 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& q_{2}=1.2 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

2-6) Calculate the number of plates (n)

$$
n=\frac{2 H V}{q}=\frac{2 \times 20 \times 146.03 \times 10^{-3}}{1.3 \times 10^{-3}}=4,494
$$

2-7) Find the rate of heat achieved with present design, and compare with required rate of heat

$$
Q=\operatorname{Uan} \Delta T=5,055 \times 1.4 \times 4,494 \times 2.5 \times 10^{-3}=83,097 \mathrm{~kW}
$$

Consider this value close to the required heat rate. Therefore the iteration stops.
2-8) calculate the heat exchanger area

$$
A=n \times a=4,494 \times 1.4 \mathrm{~m}^{2}=6,291 \mathrm{~m}^{2}=67,724 \mathrm{ft}^{2}
$$

B2: Brine/Seawater Sensible Heat Exchanger (Case B, Effect 2)

Brine	seawater
$T_{G}=443.782 \mathrm{~K}$	$T_{F}=441.322 \mathrm{~K}$
$T_{H}=301 \mathrm{~K}$	$T_{D}=297 \mathrm{~K}$
$C_{p}=3.891 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$	$C_{p}=4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$

The log mean heat exchanger temperature difference is
$\Delta T=L M T D=2.5 \mathrm{~K}$

Mass balance:

$$
m_{G}=m_{F}
$$

The feed seawater flow is

$$
\begin{aligned}
& m_{G}=146.03 \mathrm{~kg} / \mathrm{s} \\
& m_{F}=146.03 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

1) Calculate the required rate of heat on the seawater to achieve the temperatures expected

Energy balance:

$$
Q_{\text {brine }}=Q_{\text {feed }}
$$

The rate of heat required is

$$
\begin{aligned}
& m_{G} C_{p_{\text {brine }}}\left(T_{G}-T_{H}\right)=m_{F} C_{p_{\text {feed }}}\left(T_{F}-T_{D}\right) \\
& Q=m_{F} \times C_{p_{\text {feed }}} \times\left(T_{F}-T_{D}\right) \\
& Q=146.03 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \times(441.322-297) \mathrm{K}=85,144.38 \mathrm{~kJ} / \mathrm{s}
\end{aligned}
$$

2) Heat exchanger design

2-1) given the mass flow on each side of the heat exchanger

$$
\begin{aligned}
m_{G} & =146.03 \mathrm{~kg} / \mathrm{s} \\
m_{F} & =146.03 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Select the area from Figure E-2,

$$
a=1.4 \mathrm{~m}^{2}
$$

2-2) Define the pressure drop allowed on each side of the heat exchanger, and the number of passes.

Let $H=20$
Find pressure drop:

$$
\Delta P_{1}=\frac{740}{20}=37 \mathrm{kN} / \mathrm{m}^{2} \text { (brine side) }(\text { correction factor }=0.86 \text { due to brine }
$$

concentration with respect to pure water)

$$
\Delta P_{2}=\frac{740}{20}=37 \mathrm{kN} / \mathrm{m}^{2} \text { (seawater side) (correction factor }=0.82 \text { due to seawater }
$$ feed concentration with respect to pure water)

2-3) Find the heat transfer coefficients corresponding to each side. From Figure E-3

$$
\begin{aligned}
& \alpha_{1}=10,920 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \\
& \alpha_{2}=10,800 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
\end{aligned}
$$

2-4) Calculate the overall heat transfer coefficient U

$$
U=\frac{1}{\frac{1}{10,800}+\frac{1}{10,920}}=5,447.36 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
$$

2-5) Estimate the individual flow rate q from Figure E-4

$$
\begin{aligned}
& q_{1}=1.1 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& q_{2}=1.0 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

2-6) Calculate the number of plates (n)

$$
n=\frac{2 \times H \times V}{q}=\frac{2 \times 20 \times 146.03 \times 10^{-3}}{1.1 \times 10^{-3}}=5,310
$$

2-7) Calculate the heat rate obtained with this arrangement

$$
Q=U \times a \times n \times \Delta T=5,447.36 \times 1.4 \times 5,310 \times 2.5 \times 10^{-3}=101,239 \mathrm{~kW}
$$

Reduce the number of plates to 4,463giving a heat rate value close to the calculated rate of heat required. Therefore the iteration is closed.

Find area

$$
A=1.4 \mathrm{~m}^{2} \times 4,463=6,248 \mathrm{~m}^{2}=67,255 \mathrm{ft}^{2}
$$

Total area for the sensible heat exchanger in stage 2 is

$$
67,724 \mathrm{ft}^{2}+67,255 \mathrm{ft}^{2}=134,979 \mathrm{ft}^{2}
$$

D3: Distillate/Seawater Sensible Heat Exchanger (Case B, Effect 3)

Distillate	seawater
$T_{B}=443.782 \mathrm{~K}$	$T_{E}=441.322 \mathrm{~K}$
$T_{C}=301 \mathrm{~K}$	$T_{D}=297 \mathrm{~K}$
$C_{p}=4.36 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$	$C_{p}=4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$

The log mean heat exchanger temperature difference is

$$
\Delta T=L M T D=2.5 \mathrm{~K}
$$

Mass balance:
Required steam input $=m_{\text {steam }}=144.57 \frac{\mathrm{~kg}}{\mathrm{~s}}$

Calculate m_{D}, the seawater feed flow required in the sensible heat exchanger

$$
m_{D}=\left(\frac{1}{1-\frac{3.5 \%}{7 \%}}\right) \times m_{\text {steam }}=2 \times 144.57 \frac{\mathrm{~kg}}{\mathrm{~s}}=289.14 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

This feed flow is divided into two parts. 50% of the flow goes to the distillate/feed flow sensible heat exchanger.

$$
m_{E}=0.5 \times 289.14=144.57 \mathrm{~kg} / \mathrm{s}
$$

50% of the flow goes to the brine/feed flow sensible heat exchanger

$$
m_{F}=0.5 \times 289.14=144.57 \mathrm{~kg} / \mathrm{s}
$$

Energy balance:

$$
Q=m_{B} C_{p_{B}} \Delta T_{\text {distillate }}=m_{E} C_{p_{E}} \Delta T_{\text {seawater }}
$$

Therefore, the rate of heat required in the distillate/feed sensible heat exchanger is

$$
Q_{R}=144.57 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \times(441.322-297) \mathrm{K}=84.293 \mathrm{~kW}
$$

2) Heat exchanger design

2-1) Given the mass flow on each side of the heat exchanger:

$$
m_{B}=144.57 \mathrm{~kg} / \mathrm{s}
$$

$$
m_{E}=144.57 \mathrm{~kg} / \mathrm{s}=0.144 \mathrm{~m}^{3} / \mathrm{s}
$$

Select the area using Figure E-2

$$
a=1.4 \mathrm{~m}^{2}
$$

2-2) Define the pressure drop allowed on each side of the heat exchanger and number of passes (H)

Let:

$$
\begin{aligned}
& \Delta P_{1}=660 \mathrm{kN} / \mathrm{m}^{2}(\text { distillate side }) \\
& \Delta P_{2}=660 \mathrm{kN} / \mathrm{m}^{2}(\text { seawater side }) \\
& H=20
\end{aligned}
$$

Therefore

$$
\Delta P_{1}=660 / 20 \mathrm{kN} / \mathrm{m}^{2}=33 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\Delta P_{2}=660 / 20 \mathrm{kN} / \mathrm{m}^{2}=33 \mathrm{kN} / \mathrm{m}^{2} \text { (Use a correction factor due to seawater }
$$

properties different from pure water $=0.82$)
2-3) Find the heat transfer coefficients from Figure E-3

$$
\begin{aligned}
& \alpha_{1}=9,500 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \\
& \alpha_{2}=10,200 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \text { (Use a correction factor due to seawater properties }
\end{aligned}
$$

different from pure water $=1.22$)

2-4) Calculate the overall heat transfer coefficient U

$$
U=\frac{1}{\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}}=\frac{1}{\frac{1}{9,500}+\frac{1}{10,200}}=4,925 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
$$

2-5) Estimate the individual flow rate q (use Figure E-4)

$$
\begin{aligned}
& q_{1}=1.2 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& q_{2}=1.8 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

2-6) Calculate the number of plates (n)

$$
n=\frac{2 H V}{q}=\frac{2 \times 20 \times 144.57 \times 10^{-3}}{1.2 \times 10^{-3}}=4,819
$$

$2-7)$ Find the rate of heat achieved with present design, and compare with required rate of heat
$Q=U \times a \times n \times \Delta T=4,925 \times 1.4 \times 4,819 \times 2.5 \times 10^{-3}=83,067 \mathrm{~kW}$

Consider this values close to the rate of heat required. The iteration stops.
Find the area

$$
A=1.4 \mathrm{~m}^{2} \times 4,819=6,746 \mathrm{~m}^{2}=72,615 \mathrm{ft}^{2}
$$

B3: Brine/Seawater Sensible Heat Exchanger (Case B, Effect 3)

Brine	seawater
$T_{G}=439.957 \mathrm{~K}$	$T_{F}=437.497 \mathrm{~K}$
$T_{H}=301 \mathrm{~K}$	$T_{D}=297 \mathrm{~K}$
$C_{p}=3.891 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$	$C_{p}=4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$

The log mean heat exchanger temperature difference is
$\Delta T=L M T D=2.5 \mathrm{~K}$

Mass balance:

$$
m_{G}=m_{F}
$$

The feed seawater flow is

$$
\begin{aligned}
& m_{G}=144.57 \mathrm{~kg} / \mathrm{s} \\
& m_{F}=144.57 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

1) Calculate the required rate of heat on the seawater to achieve the temperatures expected

Energy balance:

$$
Q_{\text {brine }}=Q_{\text {feed }}
$$

The rate of heat required is

$$
\begin{aligned}
& m_{G} C_{p_{\text {brine }}}\left(T_{G}-T_{H}\right)=m_{F} C_{p_{\text {feed }}}\left(T_{F}-T_{D}\right) \\
& Q=m_{F} \times C_{p_{\text {feed }}} \times\left(T_{F}-T_{D}\right) \\
& Q=144.57 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 4.04 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \times(437.497-297) \mathrm{K}=82,059.07 \mathrm{~kJ} / \mathrm{s}
\end{aligned}
$$

2) Heat exchanger design

2-1) given the mass flow on each side of the heat exchanger

$$
\begin{aligned}
m_{G} & =146.03 \mathrm{~kg} / \mathrm{s} \\
m_{F} & =146.03 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Select the area from Figure E-2,

$$
a=1.4 \mathrm{~m}^{2}
$$

2-2) Define the pressure drop allowed on each side of the heat exchanger, and the number of passes.

Let $H=20$
Find pressure drop:

$$
\Delta P_{1}=\frac{740}{20}=37 \mathrm{kN} / \mathrm{m}^{2} \text { (brine side) }(\text { correction factor }=0.86 \text { due to brine }
$$

concentration with respect to pure water)

$$
\Delta P_{2}=\frac{740}{20}=37 \mathrm{kN} / \mathrm{m}^{2} \text { (seawater side) (correction factor }=0.82 \text { due to seawater }
$$

feed concentration with respect to pure water)

2-3) Find the heat transfer coefficients corresponding to each side. From Figure E-3

$$
\begin{aligned}
& \alpha_{1}=10,920 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \\
& \alpha_{2}=10,800 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
\end{aligned}
$$

2-4) Calculate the overall heat transfer coefficient U

$$
U=\frac{1}{\frac{1}{10,800}+\frac{1}{10,920}}=5,447.36 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
$$

2-5) Estimate the individual flow rate q from Figure E-4

$$
\begin{aligned}
& q_{1}=1.1 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& q_{2}=1.0 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

2-6) Calculate the number of plates (n)

$$
n=\frac{2 \times H \times V}{q}=\frac{2 \times 20 \times 146.03 \times 10^{-3}}{1.1 \times 10^{-3}}=5,310
$$

2-7) Calculate the heat rate obtained with this arrangement

$$
Q=U \times a \times n \times \Delta T=5,447.36 \times 1.4 \times 5,310 \times 2.5 \times 10^{-3}=101,239.1 \mathrm{~kW}
$$

Reduce the number of plates to 4,300 giving a heat rate value close to the calculated rate of heat required. Therefore the iteration is closed.

Find area

$$
A=1.4 \mathrm{~m}^{2} \times 4,300=6,020 \mathrm{~m}^{2}=64,800 \mathrm{ft}^{2}
$$

Total area for the sensible heat exchanger in stage 3 is

$$
72,615 \mathrm{ft}^{2}+64,800 \mathrm{ft}^{2}=137,415 \mathrm{ft}^{2}
$$

Table E-1 summarizes the calculated individual sensible heat exchanger areas.

Table E-1. Calculated sensible heat exchanger area $\left(\mathrm{ft}^{2}\right)$

Stage	Distillate/seawater	Brine/seawater	Stage area
1	68,387	69,601	137,988
2	67,724	67,255	134,979
3	72,615	64,800	137,415
TOTAL			$\mathbf{4 1 0 , 3 8 2}$

To scale up the sensible heat exchanger area for Case $\mathrm{C}\left(S_{c}\right)$ a temperature relationship has been used as follows:

$$
\text { Area Case } \mathrm{C}\left(S_{c}\right)=\left(\frac{2.5}{1.75}\right) S_{B}
$$

where
$\left(S_{B}\right)=$ sensible heat exchanger area for Case B
The corresponding scaling ratio for Case A is

$$
\text { Area Case A }\left(S_{A}\right)=\left(\frac{2.5}{3.25}\right) S_{B}
$$

Results are summarized in Tables 9.1 and 9.2

LATENT HEAT EXCHANGER CALCULATION

Figure E-1. Heat transfer arrangement in the latent heat exchanger.

Figure E. 1 shows nomenclature and flows direction in the latent heat exchanger. In steady-state flow, the seawater concentration on the liquid side is considered to be 7%.

Before sizing the heat exchanger, the following must be resolved:

- Mass and energy balance (Chapter IV).
- Factors affecting the evaporator performance (Chapter VI and Appendix A-2).

Although the optimization process performed in Chapter V delivers a heat transfer coefficient of $278,242 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\left(49,000 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$ the latent heat exchanger design will use a conservative value $\left(24,900 \mathrm{Btu} /\left(\mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\right)\right)$ for all Cases A, B and C

L1: Latent Heat Exchanger (Case B, Effect 1)

From the relation

$$
q=A U \Delta T
$$

The required heat transfer area is calculated as

$$
A=\frac{m_{s}\left[h_{f g_{s}}+\left(\frac{1}{1-\frac{3.5 \%}{7 \%}}\right) \times C_{p}\left(\Delta T_{\text {sens }}\right)\right]}{U_{1} \Delta T_{H X}}
$$

where

$$
\begin{aligned}
m_{s} & =\text { entering steam }=147.5 \mathrm{~kg} / \mathrm{s}\left(324,5 \mathrm{lb}_{\mathrm{m}} / \mathrm{s}=1,168,200 \mathrm{lb}_{\mathrm{m}} / \mathrm{h}\right) \\
h_{f g} & =\text { enthalpy of vaporization of steam at entering conditions }=870.5 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}} \\
C_{p_{f}} & =\text { seawater heat capacity at } 3.5 \%=4.04 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})\left(0.9651 \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}\right)\right) \\
\Delta T_{\text {sens }} & =\text { sensible temperature increment }=2.5^{\circ} \mathrm{K}\left(5^{\circ} \mathrm{F}\right)(\text { required, see Appendix } \mathrm{A}) \\
U_{1} & =\text { calculated overall heat transfer coefficient }=24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}
\end{aligned}
$$

$$
\Delta T_{H X}=\text { optimum overall heat exchanger temperature difference }=2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)
$$

$$
\begin{aligned}
A & =\frac{1,168,200 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~h}}\left[870.5 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}+(2)\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}}\right)\left(4.44^{\circ} \mathrm{F}\right)\right]}{\left(24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}\right)\left(4^{\circ} \mathrm{F}\right)} \\
& =10,311 \mathrm{ft}^{2}
\end{aligned}
$$

(Case A, Effect 1)

From Table 8.2

$$
\begin{aligned}
& \Delta T_{\text {sens }}=3.25^{\circ} \mathrm{K}\left(5.85^{\circ} \mathrm{F}\right) \\
& \Delta T_{\text {sens }}=3.333^{\circ} \mathrm{K}\left(6^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A & =\frac{1,168,200 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~h}}\left[870.5 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}+(2)\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}}\right)\left(5.85^{\circ} \mathrm{F}\right)\right]}{\left(24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}\right)\left(6^{\circ} \mathrm{F}\right)} \\
& =6,895 \mathrm{ft}^{2}
\end{aligned}
$$

(Case C, Effect 1)

From Table 8.2

$$
\begin{aligned}
& \Delta T_{\text {sens }}=1.75^{\circ} \mathrm{K}\left(3.15^{\circ} \mathrm{F}\right) \\
& \Delta T_{\text {sens }}=1.111^{\circ} \mathrm{K}\left(2^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A & =\frac{1,168,200 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~h}}\left[870.5 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}+(2)\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}}\right)\left(3.15^{\circ} \mathrm{F}\right)\right]}{\left(24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}\right)\left(2^{\circ} \mathrm{F}\right)} \\
& =20,551 \mathrm{ft}^{2}
\end{aligned}
$$

L2: Latent Heat Exchanger (Case B, Effect 2)

The required amount of steam supplied to this stage is

$$
(0.99)(147.5 \mathrm{~kg} / \mathrm{s})=146.03 \mathrm{~kg} / \mathrm{s}=321.26 \mathrm{lb}_{\mathrm{m}} / \mathrm{s}=1,156,557.6 \mathrm{lb}_{\mathrm{m}} / \mathrm{h}
$$

The required heat transfer area is calculated as

$$
A=\frac{m_{s}\left[h_{f g}+\left(\frac{1}{1-\frac{3.5 \%}{7 \%}}\right) \times C p_{f}\left(\Delta T_{\text {sens }}\right)\right]}{U_{1} \Delta T_{H X}}
$$

where

$$
\begin{aligned}
m_{s} & =\text { entering steam }=1,156,557.6 \mathrm{lb}_{\mathrm{m}} / \mathrm{h} \\
h_{f g_{s}} & =\lambda=\text { enthalpy of vaporization of steam at entering conditions }=876.6 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}} \\
C_{p_{f}} & =\text { seawater heat capacity at } 3.5 \%=0.9651 \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}\right) \\
\Delta T_{\text {sens }} & \left.=\text { sensible temperature increment }=4.44^{\circ} \mathrm{F} \text { (required }\right) \\
U_{1} & =\text { calculated overall heat transfer coefficient }=24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}
\end{aligned}
$$

$$
\Delta T_{H X}=\text { optimum overall heat exchanger temperature difference }=4^{\circ} \mathrm{F}
$$

Substituting

$$
\begin{aligned}
A & =\frac{1,156,557.6 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~h}}\left[876.6 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}+(2)\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}}\right)\left(4.44^{\circ} \mathrm{F}\right)\right]}{\left(24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}\right)\left(4^{\circ} \mathrm{F}\right)} \\
& =10,279 \mathrm{ft}^{2}
\end{aligned}
$$

(Case A, Effect 2)

From Table 8.2

$$
\begin{aligned}
& \Delta T_{\text {sens }}=3.25^{\circ} \mathrm{K}\left(5.85^{\circ} \mathrm{F}\right) \\
& \Delta T_{\text {sens }}=3.333^{\circ} \mathrm{K}\left(6^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A & =\frac{1,156,557.6 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~h}}\left[876.6 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}+(2)\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}}\right)\left(5.85^{\circ} \mathrm{F}\right)\right]}{\left(24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}\right)\left(6^{\circ} \mathrm{F}\right)} \\
& =6,874 \mathrm{ft}^{2}
\end{aligned}
$$

(Case C, Effect 2)

From Table 8.2

$$
\begin{aligned}
& \Delta T_{\text {sens }}=1.75^{\circ} \mathrm{K}\left(3.15^{\circ} \mathrm{F}\right) \\
& \Delta T_{\text {sens }}=1.111^{\circ} \mathrm{K}\left(2^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A & =\frac{1,156,557.6 \frac{\mathrm{lb} \frac{\mathrm{~m}}{\mathrm{~h}}\left[876.6 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}+(2)\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}}\right)\left(3.15^{\circ} \mathrm{F}\right)\right]}{\left(24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}\right)\left(2^{\circ} \mathrm{F}\right)}}{} \\
& =34,347 \mathrm{ft}^{2}
\end{aligned}
$$

L3: Latent Heat Exchanger (Case B, Effect 3)

The required amount of steam supplied to this stage is

$$
(0.99)(146.03 \mathrm{~kg} / \mathrm{s})=144.57 \mathrm{~kg} / \mathrm{s}=318.05 \mathrm{lb}_{\mathrm{m}} / \mathrm{s}=1,144,994.4 \mathrm{lb}_{\mathrm{m}} / \mathrm{h}
$$

The required heat transfer area is calculated as

$$
A=\frac{m_{s}\left[h_{f g}+\left(\frac{1}{1-\frac{3.5 \%}{7 \%}}\right) \times C_{p_{f}}\left(\Delta T_{\text {sens }}\right)\right]}{U_{1} \Delta T_{H X}}
$$

where

$$
\begin{aligned}
m_{s} & =\text { entering steam }=1,144,994.4 \frac{\mathrm{lb}}{\mathrm{~m}} \\
h_{f g} & =\lambda=\text { enthalpy of vaporization of steam at entering conditions }=881.9 \frac{\mathrm{Btu}}{\mathrm{l}_{\mathrm{m}}} \\
C_{p_{f}} & =\text { seawater heat capacity at } 3.5 \%=4.04 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{F}}\right) \\
\Delta T_{\text {sens }} & =\text { sensible temperature increment }=2.46 \mathrm{~K}\left(4.44{ }^{\circ} \mathrm{F}\right) \quad(\text { Required }) \\
U_{1} & =\text { calculated overall heat transfer coefficient }=24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}} \\
\Delta T_{\mathrm{HX}} & =\text { optimum overall heat exchanger temperature difference }=2.222 \mathrm{~K}\left(4^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Substituting

$$
\begin{aligned}
A & =\frac{1,144,994.4 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~h}}\left[881.90 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}+(2)\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}}\right)\left(4.44^{\circ} \mathrm{F}\right)\right]}{\left(24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}\right)\left(4^{\circ} \mathrm{F}\right)} \\
& =10,237 \mathrm{ft}^{2}
\end{aligned}
$$

(Case A, Effect 3)

From Table 8.2

$$
\begin{aligned}
& \Delta T_{\text {sens }}=3.25^{\circ} \mathrm{K}\left(5.85^{\circ} \mathrm{F}\right) \\
& \Delta T_{\text {sens }}=3.333^{\circ} \mathrm{K}\left(6^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A & =\frac{1,144,994.4 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~h}}\left[881.90 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}+(2)\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}}\right)\left(5.85^{\circ} \mathrm{F}\right)\right]}{\left(24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}\right)\left(6^{\circ} \mathrm{F}\right)} \\
& =6,846 \mathrm{ft}^{2}
\end{aligned}
$$

(Case C, Effect 3)

From Table 8.2

$$
\begin{aligned}
& \Delta T_{\text {sens }}=1.75^{\circ} \mathrm{K}\left(3.15^{\circ} \mathrm{F}\right) \\
& \Delta T_{\text {sens }}=1.111^{\circ} \mathrm{K}\left(2^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A & =\frac{1,144,994.4 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~h}}\left[881.9 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}+(2)\left(0.9651 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{F}}\right)\left(3.15^{\circ} \mathrm{F}\right)\right]}{\left(24,900 \frac{\mathrm{Btu}}{\mathrm{~h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}}\right)\left(2{ }^{\circ} \mathrm{F}\right)} \\
& =20,417 \mathrm{ft}^{2}
\end{aligned}
$$

Table E-2. Calculated individual latent heat exchanger area $\left(\mathrm{ft}^{2}\right)$

Case B	
Effect	Area
1	10,311
2	10,279
3	10,237
Total latent heat exchanger area	30,827
Case A	
1	6,895
2	6,874
3	6,846
Total latent heat exchanger area	20,615
Case C	
1	20,551
2	20,499
3	20,417
Total latent heat exchanger area	61,467

Figure E-2. Plate area/total flow rate [32].

Figure E-3. Film heat transfer coefficient $\alpha\left(\mathrm{W} / \mathrm{m}^{2}\right) /$ pressure drop [32].

Figure E-4. Pressure drop/plate flow rate for different plate areas on water [32].

APPENDIX F

DRIVING POWER SCHEME

Waste heat from the gas turbine exhaust is recovered in the heat recovery boiler HRB which is an unfired boiler (see Appendix G) that generates steam to drive the steam turbine. The gas turbine and the steam turbine drive the compressor. Excess shaft power is used in the generator to make electricity used for pumps, or to be sold to the grid.

Figure F-1. Combined-cycle power system.

GT-1: Gas Turbine

Mars 100 Mechanical Drive Package

The Mars ${ }^{\circledR}$ gas turbine has been engineered for very high reliability and durability as well as ease of maintenance. Like Solar's other gas turbine families, Mars gas turbines are available for compressor, generator, and mechanical-drive applications.

ISO Performance/Specifications			Metric	$\bar{\top}$
Mars 100 MD				
Power	kWe	11190		
Heat Rate	kJ/kW-hr	10600		
Exhaust Flow	kg/hr	150390		
Exhaust Temperature	${ }^{\circ} \mathrm{C}$	485		
Axial Exhaust		Yes		
SoLoNOx		Yes		
Package Length	mm	8992		
Package Width	mm	2794		
Package Height	mm	3563		
Approximate Weight				

Figure F-2. Gas turbine delivered power and performance specifications (from Solar Turbines Manufacturing Co.).

Figure F-2 shows the performance specifications for the selected gas turbine. The gas turbine delivers $11,190 \mathrm{~kW}$ at its maximum capacity.

APPENDIX G

UNFIRED WASTE-HEAT-STEAM GENERATION

Guidelines from Reference [39] provide a criterion on the amount of steam that could be reasonably generated using an unfired waste-heat-steam generator. The gas turbine exhaust flue-gas temperature drop could practically be reduced to 65 or to $100^{\circ} \mathrm{F}$ above the boiler feedwater temperature. It will be assumed that feedwater is supplied at $115^{\circ} \mathrm{F}$ from the condenser. Using an approach temperature of $65^{\circ} \mathrm{F}$ yields an exit-flue gas temperature of $180^{\circ} \mathrm{F}$.

An energy balance on the flue-gas side based on the temperature drop provides the total heat available for steam generation.

The sensible heat of the flue-gas is derived from Figures G-1 and G-2 [39] based on the flue-gas temperature and percent moisture.

The percentage moisture in the flue-gas is a function of type of fuel fired in the gas turbine and percentage of excess air operation in its combustor. A typical value of percentage moisture for natural gas [39] with 10% excess air is 12.1%. Then, from Figure G-1 considering that the waste heat gas exits at $905^{\circ} \mathrm{F}$, the total sensible heat available from the flue gas for steam generation becomes
(330,858 lb/h W.G.) (230 Btu/lb W.G.) $=76,097,340 \mathrm{Btu} / \mathrm{h}$
where W.G. stands for waste gas.
The amount of steam generated is determined by an energy balance on the steam side.

To generate superheated steam @ $752^{\circ} \mathrm{F}$, it will be assumed [39] that boiler blowdown is 10% of steam flow. So, feedwater flow through the boiler drum is 1.10 times the steam outflow from the boiler drum.

Let $X=$ steam outflow

$$
\begin{aligned}
& h_{1}=\text { enthalpy of steam }=1377.47 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}} \\
& h_{3}=\text { enthalpy of feedwater }=82.97 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}
\end{aligned}
$$

Then, the energy balance equals the heat absorved by the waste-heat-steam generator to the heat available from reducing the flue-gas temperature from 905 to $180^{\circ} \mathrm{F}$

$$
(1.10)(X)\left(h_{1}\right)+(X)\left(h_{3}\right)=76,097,340 \frac{\mathrm{Btu}}{\mathrm{~h}}
$$

Therefore, solving for X

$$
\begin{aligned}
& (1.10)(X)\left(1377.47 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}\right)+(X)\left(82.97 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}\right)=76,097,340 \frac{\mathrm{Btu}}{\mathrm{~h}} \\
& X=\frac{76,097,340 \frac{\mathrm{Btu}}{\mathrm{~h}}}{(1.10)\left(1377.47 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}\right)+\left(82.97 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}\right)}=47,615 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~h}}
\end{aligned}
$$

Flue gas temperature $\left({ }^{\circ} \mathrm{F}\right)$

Flue gas temperature $\left({ }^{\circ} \mathrm{F}\right)$

Figure G. 1 Heat in flue gases vs percent moisture by weight. [39]. Derived from Keenan and Kayes 1948.

Flue gas temperature $\left({ }^{\circ} \mathrm{F}\right)$

Flue gas temperature $\left({ }^{\circ} \mathrm{F}\right)$

Figure G. 1 Continued

APPENDIX H

STEAM TURBINE (RECOVERY ENERGY)

The steam turbine operating conditions follow:
@ inlet, superheated steam @ $752{ }^{\circ} \mathrm{F}$ and 615 psia

$$
\begin{aligned}
& S_{1}=1.6074 \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{R}\right) \\
& H_{1}=1377.47 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}
\end{aligned}
$$

After an isentropic expansion in the turbine
@ outlet, saturated steam @ 1.47 psi and $115^{\circ} \mathrm{F}$

$$
\begin{aligned}
& S_{2 l}=0.1559 \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{R}\right) \\
& S_{2 v}=1.9456 \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{R}\right) \\
& H_{2 l}=82.97 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}} \\
& H_{2 v}=1111.45 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}
\end{aligned}
$$

$$
x=\frac{S_{1}-S_{2 l}}{S_{2 v}-S_{2 l}}=\frac{1.6074 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}}-0.1559 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}}}{1.9456 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}}-0.2313 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}}}=0.8462
$$

$$
H_{2}=x H_{2 v}+(1-x) H_{2 l}
$$

$$
=0.8462 \times 1111.45 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}+(1-0.8462) \times 82.97 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}=953.26 \mathrm{Btu}^{2} / \mathrm{lb}_{\mathrm{m}}
$$

The energy recovered from the steam turbine $=W_{\text {turb }}=m\left(H_{1}-H_{2}\right) \eta_{\text {turb }}$

$$
\begin{aligned}
W_{\text {turb }} & =47,615 \frac{\mathrm{lb}}{\mathrm{~m}}\left(1377.47 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}-953.26 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}\right) \times 0.85=17,168,945.3 \frac{\mathrm{Btu}}{\mathrm{~h}} \\
& =5,032 \mathrm{~kW}
\end{aligned}
$$

Therefore the total mechanical power available for the compressor is
[Gas turbine set] + [steam turbine recovery] $=11,190 \mathrm{~kW}+5,032 \mathrm{~kW}=16,222 \mathrm{~kW}$

It should be noted that the power available from the gas and steam turbines surpasses the actual compressor needs; therefore, the power surplus will drive a generator that makes electricity for the grid, further reducing the desalinated water unitary cost. The total power requirement for pumping (746.3 kW) will be satisfied with a portion of this electrical power.

APPENDIX I

ENERGY EFFICIENCY OF THE COMBINED-CYCLE POWER SYSTEM

From the manufacturer's chart, the gas turbine heat requirements are
$2,719.5 \mathrm{GJ} /$ day $=31,476 \mathrm{~kW}$
therefore,

$$
\eta_{\text {energy }}=\frac{\text { power output }}{\text { heat input }}=\frac{16,222 \mathrm{~kW}}{31,476 \mathrm{~kW}}=0.5153
$$

APPENDIX J

PUMPS

Feed Seawater Pumps

Table J-1 shows individual pressure and flow requirements at each vapor-compressiontrain stage. The shaft work of each the pumps is calculated from [42]

$$
W_{o}=\frac{H m_{v}}{\eta_{\text {pump }} \rho_{\text {seawater }}}
$$

where:

$$
\begin{gathered}
W_{o}=\text { shaft work }(\mathrm{kW}) \\
H=\text { total dynamic head }(\mathrm{kPa}) \\
m_{v}=\text { mass flow rate }(\mathrm{kg} / \mathrm{s}) \\
\rho_{\text {seawater }}=1,021.90 \mathrm{~kg} / \mathrm{m}^{3} \\
\eta_{\text {pump }}=\text { pump efficiency }=0.85
\end{gathered}
$$

Results are shown in Table J.1. It is to be noted that distillate and brine discharges from the sensible heat exchanger do not need pumping. Brine and distillate flows lose most of the pressure in the heat exchanger, but still can flow out.

Table J-1. Individual shaft work required in each seawater feed pump

Pump	Volumetric flow rate $(\mathrm{kg} / \mathrm{s})$	Discharge pressure required (kPa)	Shaft work
(kW)			

APPENDIX K

CONDENSER

The required cooling water flow is estimated as follows

$$
Q=m C_{p} \Delta T
$$

where

$$
\begin{aligned}
Q & =\text { heat load }=1,000 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}, \text { steam }} \\
m & =\text { cooling water flow }\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{h}\right) \\
C_{p} & =\text { cooling water specific heat }=1 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{F}
\end{aligned}
$$

$$
\Delta T=\text { cooling water temperature increment }
$$

$$
=(105-70)^{\circ} \mathrm{F}=35^{\circ} \mathrm{F}
$$

Therefore

$$
m=\frac{Q}{C_{p} \Delta T}=\frac{1,000 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}, \text { steam }}}{\left(1 \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}, \text { cooling water }} \cdot{ }^{\circ} \mathrm{F}\right)\right) \times\left(35^{\circ} \mathrm{F}\right)}=33 \frac{\mathrm{lb}_{\mathrm{m}, \text { cooling water }}}{\mathrm{lb}_{\mathrm{m}, \text { steam }}}
$$

Steam flow $=47,615 \mathrm{lb}_{\mathrm{m}}$, therefore, the total cooling water flow required is

$$
47,615 \frac{\mathrm{lb}_{\mathrm{m}, \text { steam }}}{\mathrm{h}} \times 33 \frac{\mathrm{lb}_{\mathrm{m}, \text { cooling water }}}{\mathrm{lb}_{\mathrm{m}, \text { steam }}}=1,571,295 \frac{\mathrm{~b}_{\mathrm{m}, \text { cooling water }}}{\mathrm{h}}=17,141 \frac{\mathrm{~m}^{3}}{\text { day }}=0.198 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

From reference [34], the purchased cost of a multi-jet spray-type condenser is

$$
\text { cost }=\$ 19,000
$$

APPENDIX L

DESALINATION PLANT COST ANALYSIS

Total Capital cost

Case A

Table 8.1 shows the calculated total capital investment $=\$ 23,484,724$

Amortization ${ }^{\text {a }}$: $@ 5 \%$ interest 30 years $=\$ 126,087.18 /$ month $=\$ 4,146 /$ day
${ }^{\text {a }} \mathrm{http}: / / w w w . e n g i n e e r i n g t o o l b o x . c o m / 12 _812 q f r a m e d . h t m l ~$

The following formula is used to calculate the monthly loan payment [34]:

$$
\widehat{R}=P_{0} \frac{i}{1-\left(1+\frac{i}{m}\right)^{-m t}}
$$

where:

$$
\begin{aligned}
& \hat{R}=\text { yearly loan payment (\$/year) } \\
& P_{o}=\text { initial amount of the loan }(\$) \\
& i=\text { nominal interest rate }=0.05 \\
& t=\text { repayment period }=30 \text { years }
\end{aligned}
$$

$$
m=\text { number of monthly payments per year }=12
$$

$$
\widehat{R}=23,484,724 \frac{0.05}{1-\left(1+\frac{0.05}{12}\right)^{-12(30)}}=\$ 1,513,046.16 / \text { year }=\$ 126,087.18 / \mathrm{month}
$$

Case B

Table 8.1 shows the calculated total capital investment $=\$ 26,887,517$

Amortization ${ }^{\text {a }}$: $@ 5 \%$ interest 30 years $=\$ 144,338.00 /$ month $=\$ 4,745 /$ day
${ }^{\text {a } h t t p: / / w w w . e n g i n e e r i n g t o o l b o x . c o m / 12 _812 q f r a m e d . h t m l ~}$

The following formula is used to calculate the monthly loan payment [40]:

$$
\hat{R}=P_{0} \frac{i}{1-\left(1+\frac{i}{m}\right)^{-m t}}
$$

where:

$$
\begin{aligned}
& \widehat{R}=\text { yearly loan payment (\$/year) } \\
& P_{o}=\text { initial amount of the loan }(\$)
\end{aligned}
$$

$$
i=\text { nominal interest rate }=0.05
$$

$$
t=\text { repayment period }=30 \text { years }
$$

$$
m=\text { number of monthly payments per year }=12
$$

$$
\hat{R}=26,887,517 . \frac{0.05}{1-\left(1+\frac{0.05}{12}\right)^{-12(30)}}=\$ 1,732,056 / \text { year }=\$ 144,338.00 / \mathrm{month}
$$

Case C

Table 8.1 shows the calculated total capital investment $=\$ 33,453,796$

Amortization ${ }^{\text {a }}$: $@ 5 \%$ interest 30 years $=\$ 179,587.21 /$ month $=\$ 5,904.23 /$ day
${ }^{\text {a } h t t p: / / w w w . e n g i n e e r i n g t o o l b o x . c o m / 12 _812 q f r a m e d . h t m l ~}$

The following formula is used to calculate the monthly loan payment [40]:

$$
\hat{R}=P_{0} \frac{i}{1-\left(1+\frac{i}{m}\right)^{-m t}}
$$

where:
$\widehat{R}=$ yearly loan payment (\$/year)
$P_{o}=$ initial amount of the loan (\$)
$i=$ nominal interest rate $=0.05$
$t=$ repayment period $=30$ years
$m=$ number of monthly payments per year $=12$

$$
\widehat{R}=33,453,796 \frac{0.05}{1-\left(1+\frac{0.05}{12}\right)^{-12(30)}}=\$ 2,155,046.52 / \text { year }=\$ 179,624.07 / \mathrm{month}
$$

APPENDIX M

COST OF TITANIUM SHEET-SHELL HEAT EXCHANGER CALCULATION

The following were developed in cooperation with Gooseneck ${ }^{\mathrm{TM}}$ Manufacturing Co. They have experience with sheet metal fabrication.

The cost of the 0.007 -in-thick titanium sheets is determined considering the following:

1. Cost per pound of material
2. Add cost of stamping the dimple patterns on the sheets
3. Manufacturing cost

Unitary cost of titanium sheet

Cost per pound [43]: $\$ 14.00 / 1 \mathrm{~b}_{\mathrm{m}}$, Grade 2 (rolled)
Sheet volume $=(8 \mathrm{ft})(8 \mathrm{ft})(0.007 \mathrm{in})(\mathrm{ft} / 12 \mathrm{in})=0.0373 \mathrm{ft}^{3}=1,056.219 \mathrm{~cm}^{3}$
Sheet weight $=\left(4.5 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(1,056.219 \mathrm{~cm}^{3}\right)=4,52.98 \mathrm{~g}$

$$
=4.75298 \mathrm{~kg}=10.456 \mathrm{lb}
$$

Cost per sheet $=(10.456 \mathrm{lb})(\$ 14 / \mathrm{lb})=\$ 146.38($ rolled $)$
Cost per square foot $=\$ 146.38 / 64 \mathrm{ft}^{2}=\$ 2.28$

Manufacturing cost. Goosneck Manufacturing Company provided the following estimates of the cost to produce dimpled pattern on the sheets:

Cost of die tool $=\$ 20,000$
Machine cost index $=\$ 70 / \mathrm{h}$ (includes labor and acess to stamping machine)
Working at 3 cycles per minute pressing 4 inches at a time, the rate of machine work is 1 $\mathrm{ft} / \mathrm{min}$, therefore, 1 sheet will take 8 minutes $=7.5$ sheets/h or conservatively 7 sheets/h.

Dimpling cost $=\left(\frac{\$ 70}{\mathrm{~h}}\right)\left(\frac{\mathrm{h}}{7 \text { sheets }}\right)=\frac{\$ 10}{\text { sheet }}$
Because each sheet is $64 \mathrm{ft}^{2}$, the unitary cost is
Unitary cost $=\$ 10.00 / 64 \mathrm{ft}^{2}=\mathbf{\$ 0 . 1 5 6 3} / \mathbf{f t}^{\mathbf{2}}$
This cost does not include the amortized cost of the die; however, this cost is negligible in a large production run.

Cost of vessel:

Vessel Shell Thickness

The recommended design equation for a vessel under internal pressure is [41]

$$
t=\frac{P \cdot r_{i}}{S \cdot E_{j}-0.6 P}+C_{c} \quad\left\{\begin{array}{l}
t \leq \frac{r_{i}}{2} \\
P \leq 0.385 S \cdot E_{j}
\end{array}\right\}
$$

where

$$
C_{c}=\text { Allowance for corrosion }=0
$$

$P=$ Maximum allowable internal pressure
$=10 \%$ over the maximum operating pressure [41]
$=1.10 \times 120 \mathrm{psig}=132 \mathrm{psig}=910.1 \mathrm{kPa}$
$r_{i}=$ inside radius of shell before corrosion allowance is added (m) [41]
$=2 \mathrm{~m}$
$S=$ maximum allowable working stress (kPa)
$=1 / 4$ of the ultimate strength of the material [41]
$=88,350 \mathrm{kPa}($ carbon steel SEA J412 $)$
$E_{j}=$ efficiency of joints, expressed as a fraction $=0.85$ (spot examined joints) [41]

Therefore, substituting

$$
t=\frac{910.1 \mathrm{kPa} \times 2}{(88,350 \mathrm{kPa} \times 0.85)-(0.6 \times 910.1 \mathrm{kPa})}=0.0296 \mathrm{~m}=29.6 \mathrm{~mm}
$$

Area per plate $=64 \mathrm{ft}^{2}$
Separation between plates $0.25 \mathrm{in}=0.0208 \mathrm{ft}$
Plate thickness $=0.007 \mathrm{in}=0.000583 \mathrm{ft}$
[plate thickness] + [separation] = unitary space per plate

$$
=0.0208+0.000583=0.02141 \mathrm{ft}
$$

vessel length $(l)=($ No. of plates $)(0.02141 \mathrm{ft} /$ plate $)$
vessel diameter $=\sqrt{8^{2}+8^{2}}=\sqrt{128}=11.31 \mathrm{ft}$ approximate 4 m.
From Figure E-1 [34], consider a vessel $20 \mathrm{~m}=65.6 \mathrm{ft}$ long
Cost of purchase $=\$ 60,000.00$
pressure adjustment factor $=1.6$ for 109.7 psig operation
Number of plates $=(65.6 \mathrm{ft})\left(\frac{\text { plate }}{0.0214 \mathrm{ft}}\right)=3,064$ plates
Cost $=\left(\frac{1.6 \times \$ 60,000}{3,064 \mathrm{pplates}}\right)\left(\frac{\text { plates }}{64 \mathrm{ft}^{2}}\right)=\frac{\$ 0.4895}{\mathrm{ft}^{2}}$
Unitary cost of vessel $=\mathbf{\$ 0 . 4 8 9 5} / \mathbf{f t}^{\mathbf{2}}$

Figure M-1. Cost of purchase of vessels [41].

Table M-1 summarizes the cost of the heat exchanger components and provides a preliminary estimate total unitary cost.

Table M. 1 Sheet-shell heat exchanger unitary cost

Sheet-shell heat exchanger cost per square foot	
	Cost $(\$)$
Rolled titanium sheet (0.007 in)	2.28
Sheet manufacture	0.16
Vessel	0.49
Other (assembly, gaskets, vessel modification)	4.14
Total unitary cost	

*Agrees with Rautenbach and Arzt [44] estimate.

APPENDIX N

THEORETICAL ENERGY CONSUMPTION FOR SEAWATER DESALINATION

The theoretical work required to desalinate seawater is obtained from the Gibbs free energy change

$$
\begin{aligned}
\Delta G & =-R T \ln a \\
& =-R T \ln \frac{p}{p_{0}}
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta G & =\text { Gibbs free energy change }(\mathrm{J} / \mathrm{mol}) \\
R & =\text { Universal gas constant }=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) \\
T & =\text { Absolute temperature }=300 \mathrm{~K} \\
p & =\text { vapor pressure over } 35 \mathrm{~g} / \mathrm{kg} \text { seawater solution }(\mathrm{Pa}) \\
p_{0} & =\text { vapor pressure over pure water }(\mathrm{Pa}) \\
a & =\text { activity }
\end{aligned}
$$

The activity is obtained from Equation 1

$$
\begin{align*}
\log _{10} a & =\log _{10} \frac{p}{p_{0}}=h S+j S^{2} \tag{N.1}\\
& =-2.1609 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~g}}\left(35 \frac{\mathrm{~g}}{\mathrm{~kg}}\right)-3.5012 \times 10^{-7} \frac{\mathrm{~kg}^{2}}{\mathrm{~g}^{2}}\left(35 \frac{\mathrm{~g}}{\mathrm{~kg}}\right)^{2} \\
& =-0.007992047
\end{align*}
$$

$$
\begin{aligned}
a & =\frac{p}{p_{0}}=10^{-0.007992047}=0.981766 \\
\Delta G & =-\left(8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(300 \mathrm{~K}) \ln 0.981766 \\
& =-45.9 \frac{\mathrm{~J}}{\mathrm{~mol}} \times \frac{\mathrm{mol}}{18 \mathrm{~g}} \times \frac{1,000 \mathrm{~g}}{\mathrm{~L}} \times \frac{1,000 \mathrm{~L}}{\mathrm{~m}^{3}} \times \frac{\mathrm{MJ}}{10^{6} \mathrm{~J}} \\
& =2.55 \frac{\mathrm{MJ}}{\mathrm{~m}^{3}}
\end{aligned}
$$

VITA

Jorge Horacio Juan Lara Ruiz
9205 Shadowcrest
College Station, TX 77845

Education:

B.S. Mechanical Engineering, National Polytechnic Institute. Mexico 1975
M.S. Mechanical Engineering, Lamar University. 1979
M.Eng. Mechanical Engineering, Texas A\&M University. 2003

Ph.D. Interdisciplinary Engineering, Texas A\&M University. 2005

Professional Experience:

Production Manager. 1980-1985. Mexico City.
Professor. 1985-2000. University of Puebla, Mexico
Director of 3 sponsored research projects. National Council of Science (CONACYT)
Research Assistant. 2001-2003. Energy Systems Laboratory. Texas A\&M University

Publications:

1. J. Lara. Computer Aided Design of Centrifugal Pumps. Paper presented at Symposium for the Development of Latin American Countries, UNESCO, Puebla, Mexico, 1995
2. J. Lara. A Numerical Method for the Design of Radial Centrifugal Pumps, Paper presented at Turbo Machinery International Congress, Acapulco, Mexico, May 1996.
3. J. Lara. An Algorithm for the Aero Dynamical Design of Axial Flow Turbo Compressors, Paper presented at Turbo Machinery International Congress, Mexico City, November 1997.
4. J. Lara. Small Wind Tunnel Tests for the Characterization of Gas Turbine Blades, Paper presented at Turbo Machinery International Congress, Aberdeen, Scotland, October 1997.
5. J. Lara. A Report on the Design Manufacture and Tests of an Aero Dynamical Prototype of Axial Turbo Compressors, Paper presented at Turbo Machinery International Congress, Veracruz, Mexico, November 1998.

[^0]: ${ }^{\text {a }}$ Standard deviation 0.069 per cent.

