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ABSTRACT

A Dim(n,m) Sudoku puzzle is an nm×nm grid with n×m subgrids. We interpret the

Dim(n,m) Sudoku puzzle as a vertex coloring problem in graph theory. This provides a

broad framework for investigation. We will also discuss the relationship between Latin

squares and Sudoku puzzles and show that the set of Dim(n,m) Sudoku puzzles is sub-

stantially smaller than the set of rank nm Latin squares. Our work is a generalization of

a paper that appeared in the “Notices” of the American Mathematical Society, June/July

2007, titled “Sudoku Squares and Chromatic Polynomials”. [8]
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CHAPTER 1

INTRODUCTION

The Sudoku puzzle is a relatively new phenomenon in the United States that has be-

come very popular. You will find them in many magazines and newspapers alongside the

crossword puzzles.

Sudoku puzzles are related to Latin squares, which were developed by the 18th century

Swiss mathematician Leonhard Euler. Latin squares are square-grids of size n× n where

each of the numbers from 1 through n appear in every column and in every row precisely

once. They are referred to as rank n Latin squares.

Magic squares are square grids that are filled with (not necessarily different) numbers

such that the numbers in each row and column add up to the same sum. It is easy to see

that Latin squares are also magic squares.

In the late 19th century a Paris-based daily newspaper, Le Siecle published a partially

completed 9× 9 magic square that had 3× 3 subgrids. The object of the game was to fill

out the magic square such that the numbers in the grids also sum to the same number as in

the rows and columns.

The standard Sudoku puzzle consists of a partially filled out 9×9 grid in which some

of the entries have a number from 1 to 9. We call this a Dim(3,3) puzzle because it is

composed of subgrids of size 3× 3. The challenge is to complete the grid in such a way

that each row, column, and all nine 3×3 sub-grids contain each of the numbers from 1 to

9 exactly once. So it is easy to see that a standard Sudoku puzzle is actually a rank 9 Latin

square. An example of a Sudoku puzzle and its completion is given in Figure 1.1.
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FIGURE 1.1. A standard Sudoku puzzle and its solution

Soon after Le Siecle, the magazine Le France refined the puzzle to essentially the same

format as the modern Sudoku; with the only exception that the puzzles were required to

have the numbers 1 through 9 in both of the diagonals, to ensure a unique solution.

Dell Magazines began publishing Sudoku puzzles in the late 1970’s. The puzzles most

likely were developed by an independent puzzle maker and architect, Howard Garnes, and

the newspaper called them Number Place.

While the name of the game is of Japanese origin (“SuDoku” means “single number”),

it was not till 10 years later when the Japanese company Nikoli, Inc. started to publish a

version of the Sudoku at the suggestion of its president, Mr. Maki Kaji. He gave the game

its current name.

Almost two decades passed before (near the end of 2004) The Times newspaper in

London has started to publish Sudoku as its daily puzzle due to the efforts of Wayne Gould,

who has spent many years to develop a computer program that generates Sudoku puzzles.

By 2005 major newspapers in the US have begun publishing Sudoku puzzles and by

now many new versions of the game can be found on the web. The reader is referred to

more details on the history or the variations of Sudoku to the Wikipedia article [1] from

which many of the above information were obtained.
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FIGURE 1.2. A Dim(2,3) Sudoku

The puzzles require logic, sometimes intricate, to solve but no formal mathematics

is required. However, the puzzles lead naturally to certain mathematical questions. For

example, how many Sudoku puzzles are there? How does the number of Dim(n,n) Sudoku

puzzles compare to the number of rank n2 Latin squares? Which puzzles have solutions

and which do not? If a puzzle has a solution, is it unique? What is the minimum number

of initial entries that need to be specified in order for a puzzle to have a unique solution?

At this time, it is unknown if a puzzle beginning with 16 entries exists that has a unique

solution. [8]

In the June/July issue of the American Mathematical Society’s publication Notices,

Agnes Herzberg and M. Ram Murty wrote an interesting article [8] on Dim(n,n)-puzzles

such as the Dim(3,3)-puzzle shown in Figure 1.1.

In this article “Sudoku Squares and Chromatic Polynomials”, the authors employed

elements of graph theory, Chromatic polynomials, set theory, and the theory of permanents

to prove some interesting things about Sudoku and also to arrive at an upper bound for the

number of completed Dim(n,n) Sudoku puzzles. In particular, they show that the number

of Dim(n,n) puzzles is much less than the number of rank n2 Latin squares. So much so
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that as n tends to infinity, the probability that a randomly chosen rank n2 Latin square is

also a Dim(n,n) Sudoku puzzle goes to zero as n goes to infinity.

The organization of this thesis is as follows: In the first two chapters we will go through

some standard definitions that are required for our results. For our generalized Sudoku

puzzle we will define a graph such that a solution to a Sudoku puzzle corresponds to a

proper coloring of this graph. We will then analyze this graph – much the same way as

the Herzberg and Murty article does –, using results of Hall to bound the number of Latin

squares from below and using matrix theory results to bound the number of Sudoku puzzles

from above. This way we will obtain an upper bound on the fraction of Latin squares that

are also Sudoku puzzles. The main result of this thesis is to generalize their work to the

case of Dim(n,m) Sudoku puzzles such as the Dim(2,3) puzzle shown in Figure 1.2.
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CHAPTER 2

GRAPH THEORY PRELIMINARIES

A Sudoku puzzle can easily be interpreted as a graph and then analyzed using concepts

of graph theory. Graph colorings are of particular importance. All of the material in this

chapter is standand, and can be found in textbooks such as [4] and [13].

2.1. DEFINITIONS

DEFINITION 2.1. A simple graph G is a set of elements called vertices, denoted

V(G), together with a collection of unordered pairs of vertices called edges, denoted by

E(G), that meets the following condition.

E(G)⊆ {{u,v} | u,v ∈V (G),u $= v}.

For the remainder of this thesis, when referring to an edge, we will use the notation uv, or

vu to mean the unordered pair {u,v}. We will also use the term graph as an abbreviation

for simple graph.

A graph H is called a subgraph of a graph G if V (H)⊆V (G) and E(H)⊆ E(G). The

order of a graph is the number of vertices, denoted V (G), and its size is the number of

edges, denoted E(G). Also, if u and v are two vertices of a graph and if the unordered pair

{u,v} is an edge denoted by e, we say that e joins u and v or that it is an edge between

u and v. In this case, the vertices are said to be adjacent, and both u and v are said to

be incident upon e. A graph can be easily represented on paper using dots to represent

the vertices and drawing a line (curved or straight) between unordered pairs of vertices to

represent the edges. An example of such a depiction is in Figure 2.1.
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FIGURE 2.1. A visual illustration of a graph

DEFINITION 2.2. The neighborhood of a vertex v, denoted N(v), is the collection of

vertices which are adjacent to v. Formally, we write N(v) = {u ∈V (G) : uv ∈ E(G)}.

The number of elements in N(v) is referred to as the degree of vertex v. If all of the

vertices in a graph have the same degree, then the graph is said to be regular.

DEFINITION 2.3. The complete graph, denoted Kn, is a graph with n vertices in which

there is an edge joining each pair of vertices u,v for which u $= v.

Note that Kn is a regular graph, the degree of each vertex is n− 1, and the number of

edges is
(n

2
)
, since there is one edge for each pair of vertices.

Now, from a graph we can create new graphs by adding or subtracting edges, and also

by identifying vertices. These kinds of modifications to a graph will be important so we

define them precisely.

DEFINITION 2.4. Let G = (V,E) be a graph and let u,v ∈ V , u $= v. Then G+uv is the

graph with vertex set V and edge set E ′ = E
⋃

uv.

An example is in Figure 2.2. Note that if u and v are adjacent, then G = G+uv.

DEFINITION 2.5. Let G = (V,E) be a graph and let u,v ∈ V , u $= v. Then G−uv is the

graph with vertex set V and edge set E ′ = E \uv.

6
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FIGURE 2.2. Edge addition
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FIGURE 2.3. Edge removal

An example is in Figure 2.3.

Now what do we mean by identifying vertices? Below is the precise definition.

DEFINITION 2.6. Let G = (V,E) be a graph and let u,v ∈ V , w /∈ V . Then G·uv is the

graph with vertex set V ′ = {V \{u,v}}∪{w} and edge set

E ′ = {E \ ({xu | x ∈ N(u)}∪{xv | x ∈ N(v)})}
⋃

{wx | x ∈ (N(u)∪N(v))\{u,v})}.

In Figure 2.4 is a picture of a graph G and also G·uv.
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FIGURE 2.4. Vertex identification

FIGURE 2.5. A depiction of a
graph coloring

Next we define what we mean by a coloring of a graph. A λ coloring of a graph G

is a function f from G to {1,2, ...,λ}. We call this map a proper coloring if f (x) $= f (y)

whenever x and y are adjacent in G. The minimal number of colors required to give the

graph G a proper coloring is called the chromatic number of G and is denoted by χ(G).

To make pictures easier to interpret, we replace the integers in the range of our function

with actual colors. An example is given in Figure 2.5. Notice that no two adjacent vertices

have the same color.
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DEFINITION 2.7. The total number of ways one can properly color a graph G with λ

colors is denoted CG(λ ).

2.2. LEMMATA

Next we state a few important lemmata about graph colorings. It turns out that the

number of ways to color a graph can be equal to coloring certain combinations of the

same graph after it has been modified by adding or subtracting an edge, or identifying two

vertices.

LEMMA 2.8. Let G be a graph and let u and v be non-adjacent vertices in G. Then the

number of proper λ -colorings of G that give u and v the same color is equal tocG·uv(λ ).

PROOF. Let w ∈ G·uv be the vertex that results in the identification of u and v. Let A

be the set of proper λ -colorings of G that give u and v the same color. Let B be the set of

proper λ -colorings of G·uv.

Define α : A →B by α( f ) = fα where

fα =






f (x) if x ∈V (G·uv)\w,

f (u) if x = w

Clearly, fα : V (G·uv) → {1,2, . . . ,λ}. Moreover, if x,y are adjacent vertices of G·uv and

w /∈ {x,y}, then they are adjacent vertices of G, and so fα(x) = f (x) $= f (y) = fα(y). Also,

if w is adjacent to a vertex x, then x is adjacent to either u or v in G, which implies that

fα(x) = f (x) $= f (u) = f (v) = fα(w). Thus, α is a well defined function from A to B,

since each coloring of G will determine a unique coloring of G·uv. We show that α is

one-to-one and onto.

To show that α is 1-1, let f1 and f2 be two different elements of A . Then for some

x ∈V (G), f1(x) $= f2(x). There are two cases.

Case 1: x $= u and x $= v. Then x ∈V (G·uv)\{w}. Then

( f1)α(x) = f1(x) $= f2(x) = ( f2)α(x).

9



Hence

( f1)α(x) = ( f2)α(x),

which implies that ( f1)α $= ( f2)α .

Case 2: x = u or x = v. Then f1(x) = f1(u) and f2(x) = f2(u). Now,

( f1)α(w) = f1(u) = f1(x) $= f2(x) = f2(u) = ( f2)α(w).

Hence

( f1)α $= ( f2)α

.

So α is 1-1 from A to B.

To show that α is onto, let g ∈B. Define f by

f (x) =






g(x) if x ∈V (G)\{u,v},

g(w) if x = u or x = v

First we show that f ∈ A . Clearly, f : V (G) → {1,2, . . . ,λ} and f (u) = f (v), so we

only need to show that f is a proper coloring.

Suppose x,y ∈ V (G), and x,y are adjacent. Note that since u and v are non-adjacent,

{u,v} $= {x,y}. Now, there are two cases.

Case 1: x,y ∈ V (G) \ {u,v}. Then f (x) = g(x) $= g(y) = f (y). So x and y are given

different colors by the function f .

Case 2: {x,y} ∩ {u,v} $= /0. Then by our previous remark, only one of x or y is an

element of {u,v}. WOLG, we let x∈{u,v} and y∈V (G)\{u,v}. Since x and y are adjacent

in G, it must be that w and y are adjacent in G·uv. Hence f (x) = g(w) $= g(y) = f (y). So x

and y are given different colors by the function f .

So f is a function that, using λ colors, properly colors vertices in G with the stipulation

that u and v are given the same color. Hence f ∈A .

10



Now we show that fα(x) = g(x). By definition,

fα(x) =






f (x) = g(x) if x ∈V (G·uv)\w,

f (u) = g(w) if x = w

So fα(x) = g(x) for all x ∈V (G·uv). Hence α maps A onto B. Since α is both 1-1 and

onto, | A | = | B |. !

LEMMA 2.9. Let G be a graph and let u and v be distinct vertices in G. Then cG+uv(λ )

is equal to the number of proper λ -colorings of G which give u and v different colors.

PROOF. Let A be the set of proper λ -colorings of G such that u and v receive different

colors. Let B be the set of proper λ -colorings of G+uv.

We define α : A → B by α( f ) = fα , where for each x ∈ V (G+uv) we have fα(x) =

f (x). Then α is a function from A to B, since each proper λ -coloring of G that assign

different colors to u and v will determine a unique proper λ -coloring of G+uv. We must

show that α is 1-1 and onto.

For 1-1, let f1 and f2 be two separate elements of A . Then for some x ∈V (G), f1(x) $=

f2(x). But then ( f1)α(x) = f1(x) $= f2(x) = ( f2)α(x). Hence α is 1-1 from A to B.

For onto, let g ∈B. Define f by f (x) = g(x). Then fα(x) = f (x) = g(x). So ( f (x)) =

g(x) for all x ∈ V (G+uv). Therefore α is onto. Since α is both 1-1 and onto, | A | =

| B |. !

LEMMA 2.10. If u and v are non-adjacent vertices in a graph G, then

CG(λ ) = CG+uv(λ )+CG·uv(λ ).

PROOF. In any proper coloring of the graph G that uses λ colors, there are two distinct

possibilities. Either u and v will have the same color, or they will have different colors.

By Lemma 2.8 the number of ways to color G giving u and v the same color is equal to

CG·uv(λ ). By Theorem 2.9 the number of ways to color G giving u and v different colors is

equal to CG+uv(λ ). Hence CG(λ ) = CG+uv(λ )+CG·uv(λ ). !

11



LEMMA 2.11. If u and v are adjacent vertices in a graph G, then

CG(λ ) = CG−uv(λ )−CG·uv(λ ).

PROOF. Since u and v are adjacent, any coloring of G must assign different colors to u

and v. Now, in any coloring of CG−uv(λ ), u and v may have different colors, or they may

be the same. But by Lemma 2.8, C(G−uv)·uv(λ ) is equal to the number of ways to properly

color G−uv, with the stipulation that u and v be given the same color. We must subtract

these possibilities so CG(λ ) = CG−uv(λ )−C(G−uv)·uv(λ ). Since C(G−uv)·uv(λ ) = CG·uv(λ ) we

have CG(λ ) = CG−uv(λ )−CG·uv(λ ). !

12



CHAPTER 3

POLYNOMIALS

As we have mentioned, but have not yet shown, the number of ways one can fill out

a Sudoku puzzle is the same as the number of proper colorings of a corresponding graph.

Hence we are interested in how to determine the number of ways to properly color a graph

with λ colors, and hence the number of ways to fill out a Sudoku puzzle, is equal to a monic

polynomial evaluated at λ . In this chapter we will develop and apply these ideas.

DEFINITION 3.1. A (complex or real) polynomial of x is a function of the form

p(x) =
∞

∑
i=1

aixi,

where only finitely many of the ai are nonzero (and each ai is complex or real, alterna-

tively). The ai are called the coefficients of the polynomial.

Note that the above definition implies that a polynomial p(x) can be written in the form

p(x) = anxn +an−1xn−1 + . . .+a1x+a0, which we will do from now on.

DEFINITION 3.2. A polynomial p(x) = amxm + am−1xm−1 + ...+ a1x + a0 is the zero

polynomial, if each of the ai are zero; with other words p(x) = 0. If p(x) is a nonzero

polynomial, then its degree is n if an $= 0 and ai = 0 for all i≥ n.

We will need another idea:

DEFINITION 3.3. A polynomial with degree n is monic if and only if an = 1.

DEFINITION 3.4. Let p(x) be a polynomial. The number x0 is a root of p(x) if p(x0) =

0

13



THEOREM 3.5. (Fundamental Theorem of Algebra) Let p(x) be a non-zero polynomial

of degree n with complex coefficients. Then p(x) has n roots, when repeated roots are

counted up to their multiplicity. [12]

COROLLARY 3.6. Let P(x) and Q(x) be two monic polynomials, and assume that there

exists an integer m such that P(λ ) = Q(λ ) for all integers λ with λ ≥m. Then P(x) = Q(x).

PROOF. Assume there exists Q(x) which equals P(x) for all λ ≥ m. Assume that the

maximum of the degrees of P(x) and Q(x) is n. Then Then (P−Q)(x) is a polynomial

of degree ≤ n with an infinite number of zero roots. This contradicts the Fundamental

Theorem of Algebra. !

Later we will make use of the following Lemma:

LEMMA 3.7. Let p(x) be a nonzero polynomial of degree n with integer coefficients and

a be an integer root of p(x). Then p(x) = (x−a)q(x), where q(x) is a polynomial of degree

n−1 and has integer coefficients.

PROOF. We will do this by induction on n, the degree of p(x). We will assume that an

is the leading coefficient of p(x)

If n = 1, then 1
an

p(x) and x−a are two monic polynomials with the same roots (since

both have one root, and it must be n. By Corollary 3.6, 1
an

p(x) = x−a, so we may choose

q(x) = an, which clearly satisfies the conditions.

Now let n > 1 and assume the statement is true for all polynomials with degree n′ < n.

Let p′(x) = p(x)−anxn−1(x−a). Since anxn−1(x−a) is a polynomial of degree n with an

as its leading coefficient, and it has all integer coefficient, we have that p′(x) has integer

coefficients and the degree of p′(x) is some n′, where n′ < n. Also, p′(a) = p(a)−anan−1 ·

0 = 0. Therefore by the induction hypothesis there is a polynomial q′(x) that has degree

n′ − 1 ≤ n− 2 that has integer coefficients and p′(x) = (x− a)q′(x). Therefore p(x) =

q′(x)(x−a)+anxn−1(x−a) = (x−a)(anxn−1 +q′(x)), and choosing q(x) = anxn−1 +q′(x),

q(x) is a degree n−1 polynomial with all integer roots. hypothesis, there is !
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We begin with the complete graph on n vertices, and then work our way towards the

general case of any graph on n vertices.

THEOREM 3.8. Let G be the complete graph Kn. Then there exists a unique monic

polynomial with integer coefficients of degree n, denoted PG(x), which equals CG(λ ) for all

nonnegative integers λ .

PROOF. The uniqueness of such a monic polynomial follows from Corollary 3.6, so we

only need to show the existence.

We will show that PG(x) = x(x−1)...(x−n+1). This is clearly is a monic polynomial

of degree n with integer coefficients.

Let λ be a nonnegative integer.

Suppose first that λ < n. Clearly, PG(λ ) = 0. Now, in a proper coloring of Kn, any

two vertices must have different colors. So any proper coloring of Kn must use n different

colors. Hence CG(λ ) = 0 as well. So for each λ < n, CG(λ ) = 0 = PG(λ ).

Now suppose that λ ≥ n. Then PG(λ ) = λ (λ −1) · · ·(λ −n + 1). If we color G using

λ colors, we may color the first vertex with λ colors, the second vertex with λ −1 colors,

etc.. Hence CG(λ ) = (λ )(λ −1)...(λ −n+1). But this is equal to PG(λ ).

So for any λ , CG(λ ) = PG(λ ). !

THEOREM 3.9. Let G be obtained from the complete graph Kn by removing one edge.

Then there exists a unique monic polynomial of degree n with integer coefficients, denoted

by PG(x), which equals CG(λ ) for all nonnegative integers λ .

PROOF. The uniqueness of such a monic polynomial follows from Corollary 3.6, so we

only need to show the existence.

Suppose that u and v are the two non-adjacent vertices that result from removal of the

single edge. By Theorem 2.9, we have CG(λ ) = CG+uv(λ )+CG·uv(λ ). Now CG+uv(λ ) is a

complete graph on n vertices and is equal to a monic polynomial of degree n with integer

coefficients, PG+uv(x) for all nonnegative integers λ by Theorem 3.8. But G·uv is a complete

graph on n−1 vertices and, also by Theorem 3.8, cG·uv(λ ) is equal to a monic polynomial
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of degree n−1 with integer coefficients, PG·uv(x) for all nonnegative integers λ . Hence we

may choose PG(x) = PG+uv(x)+PG·uv(x), which is a monic polynomial of degree n and has

integer coefficients. !

THEOREM 3.10. Let G be a graph on n≥ 1 vertices. Then there exists a unique monic

polynomial of degree n with integer coefficients, denoted PG(x), which equals CG(λ ) for all

λ ≥ 0.

PROOF. We will use a double induction. Upward on the number of vertices, and then

downward on the number of edges.

For the base step on the number of vertices, note that when n = 1, G consists of a single

vertex, so we have that CG(λ ) = λ for all nonnegative integers λ . We let PG(x) = x, which

is a monic polynomial of degree 1 and has integer coefficients. Then CG(λ ) = PG(λ ) = λ ,

and we are done.

So now let n > 1, and for the induction hypothesis on the number of vertices, assume

that for any graph H on less than n vertices there exists a monic polynomial PH(x) of degree

n with integer coefficients such that PH(λ ) = CH(λ ) for all nonnegative integers λ .

Let G be a graph on n vertices. Let k be the number of edges in G. We need to show

that there exists a monic polynomial PG(x) of degree n with integer coefficients, for which

PG(λ ) = CG(λ ) for all nonnegative integers λ . We will show this by using a downward

induction on the possible values of k..

To begin the base case on the number of edges, assume that G has as many edges

as possible. This means there is an edge between any pairs of two different vertices, so

G = Kn, and k =
(n

2
)
. Then by Theorem 3.8 we are done. Also, if k =

(n
2
)
−1 edges, then

by Theorem 3.9 we are done.

So let k ≤
(n

2
)
− 2. For the induction hypothesis on the number of edges, assume that

for any graph H which has n vertices and k′ edges, where k < k′ ≤
(n

2
)
, there exists a monic

polynomial PH(x) of degree n with integer coefficients, for which PH(λ ) = CH(λ ) for all

nonnegative integers λ .
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Since k, the number of edges in G, is less then
(n

2
)
, there exist two vertices u,v which

are non-adjacent. By theorem 2.9,

CG(λ ) = CG+uv(λ )+CG·uv(λ ).

But CG+uv(λ ) is the number of ways to color the graph G+uv that has n vertices and k + 1

edges. Since k < k + 1 ≤
(n

2
)
, by the induction hypothesis on the number of edges, there

is a monic polynomial PG+uv(x) of degree n with integer coefficients such that PG+uv(λ ) =

cG+uv(λ ) for all nonnegative integers λ . Also, G·uv is a graph with n− 1 points. By the

induction hypothesis on the number of vertices, there is a monic polynomial PG·uv of degree

n−1 with integer coefficients, such that PG·uv(λ ) = CG·uv(λ ) for all nonnegative integers λ .

Now choose PG(x) = PG+uv(x)+ PH·uv(x). Clearly, this is a monic polynomial of degree n

that satisfies the required conditions. !

We have established that the number of ways to color a graph with λ colors is given

by a unique monic polynomial. What can we say about a graph that is already partially

colored? In particular can we represent the number of ways of extending a partial coloring

to a complete coloring by a monic polynomial?

DEFINITION 3.11. Let G be a graph on some n vertices and let t be a nonnegative

integer, t ≤ n. A partial proper coloring H of G on some t vertices is a function H :

B→{1,2, . . . ,λ}, where B⊆V (G), |B| = t, and if u,v ∈ B are adjacent vertices of G, then

H(u) $= H(v).

DEFINITION 3.12. Let n be a positive integer and t,d,λ be nonnegative integers such

that 0 ≤ t ≤ n. Let G be a finite graph on n vertices and H be a partial proper coloring of t

vertices of G using some d colors. We denote by CG,H(λ ) be the number of ways to extend

H to a proper λ -coloring of G.

THEOREM 3.13. Let n be a positive integer and t,d be nonnegative integers such that

0 ≤ t ≤ n. Let G be a finite graph on n vertices and H be a partial proper coloring of t
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vertices of G using some d colors. Then there exists a unique monic polynomial of degree

n− t, denoted PG,H(x), which equals CG,H(λ ) for all integersλ for which λ ≥ d.

PROOF. First note that for any n, if t = n, then or partial coloring already properly

colors G, therefore we only have one way to extend it. So for any λ ≥ d we have cG,H(λ ) =

1, and we may choose PG,H(x) = 1, which is clearly a monic polynomial of degree 0. Since

n− t = n−n = 0, we are done.

Also, for any n, if t = 0, then cG,H(λ ) = cG(λ ) and we are done by Theorem 3.10.

Therefore in the rest we will assume that 0 < t < n.

We will use a double induction. First upward on the number of vertices n, and then

upward on the number of edges of the graph. For the base step on the number of vertices,

let n = 1. Then we are done since the only possible values of t are t = 0 or t = 1 = n.

So not let n > 1, and assume that the statement is true for any graph on less than n

points. Let G be a graph on n points and k edges. We will proceed by induction on the

number of edges in G.

For the base step on the number of edges, suppose G has zero edges. Let H be a partial

proper coloring of G on t points and d colors, and let λ be an integer such that λ ≥ d. Then

we are free to color any of the remaining n− t uncolored vertices with any of our λ colors.

Hence CG,H(λ ) = λ n−t , and we let PG,H(x) = xn−t , a monic polynomial of degree n− t.

So let k > 1, and suppose that the statement is true for any graph on n points and at

most k−1 edges.

Let H be a partial proper coloring of G on t points and d colors, and let λ be an integer

such that λ ≥ d. There are two cases.

Case 1: Every edge of G connects two points that are colored by H: We may color the

remaining vertices with any of our λ colors. So there are λ n−t ways to extend the partial

coloring to a complete coloring of G. Thus we let PG,H(x) = xn−t .

Case 2: There exists an edge, whose end vertices are u and v, with at least one end

vertex in G\H. Note that CG−uv,H(λ ) is equal to the number of ways to extend the partial

coloring of H to G if we allow u and v to have either the same or different colors. Let H ′
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be the coloring on G·uv that agrees with H everywhere, except on u and v. If one of u or v

is colored by H, then H ′ assigns this color to w, otherwise H ′ does not color w. Since only

one of u,v is in H, it is clear that H and H ′ both color the same number of vertices, t and

use the same number of colors, d.

Also, note that CG·uv,H ′(λ ) is equivalent to the number of ways to extend the partial

coloring of H to G if we were to require that u and v are given the same color. Hence we

have the equation:

CG,H(λ ) = CG−uv,H(λ )−CG·uv,H ′(λ )

By the induction hypothesis on the number of edges, there is a monic polynomial

PG−uv,H(x) of degree n− t such that PG−uv,H(λ ) = CG−uv,H(λ ) for every integer λ ≥ d.

By the induction hypothesis on the number of point, there is a monic polynomial

PG·uv,H ′(x) of degree n−1− t such that CG·uv,H ′(λ ) = PG·uv,H ′(λ ) for all integers λ ≥ d.

Set PG,H(x) = PG−uv,H(x)−PG·uv,H ′(x). This clearly is a monic polynomial of degree

n− t with CG,H(λ ) = PG,H(λ ) for all integers λ ≥ d. !
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CHAPTER 4

THE BIG-OH NOTATION

The big-oh notation was introduced by a German number theorist Paul Bachmann in

his book Analitische Zahlentheorie in 1894 [3]. Though it can be extended to functions of

real variables, we will only use it for functions of positive integers just as in D.E. Knuth’s

The Art of Computer Programming [9]. The interested reader is referred to more general

definitions in standard textbooks.

The O-notation allows us to quantify the degree of accuracy in our approximation,

for example in expressions like f (n) = en2+O(n ln(n)). In general, the notation O( f (n)) —

or sometimes more precisely On( f (n)) — may be used whenever f (n) is a function of the

positive integer n; it roughly states that magnitude of the quantity for which we use O( f (n))

(while may not be explicitly known) is not too large.

DEFINITION 4.1. Suppose that f (n) and g(n) are two functions defined on the positive

integers. We say that f (n) = O(g(n)) if and only if there exist integers no,M such that

| f (n) |≤M | g(n) | for all n≥ no.

Note that in this context, the equality sign loses some of its usual conveniences. For

example, from f (n) = O(g(h)) and h(n) = O(g(n)) we can not conclude that f (n) = h(n).

DEFINITION 4.2. Suppose that f (n) and g(n) are two functions defined on the positive

integers. We say that f (n)≤O(g(n)) iff there exists a function h(n) and an integer n0 such

that h(n) = O(g(n)) and f (n)≤ h(n) for all n≥ n0.

In order to be able to understand expressions like f (n) = en2+O(n ln(n)), we need another

definition.
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DEFINITION 4.3. Suppose that f (n), g(n) are functions on the positive integers, and

h(n,x) is an algebraic expression on the positive integers n and a variable x where the

variable x appears once. We say that f (n) = h(n,O(g(n))) iff f (n) = h(n, !(n)) for some

function !(n) where !(n) = O(g(n)).

In the following, f (n) and g(n) are functions and C is a constant. Here are some simple

operations that we can do with the O-notation that follow fairly trivially from the definition:

f (n) = O( f (n))

C ·O( f (n)) = O( f (n))

O( f (n))+O(g(n)) = O( f (n)+g(n))

O(O( f (n)) = O( f (n))

O( f (n)) ·O(g(n)) = O( f (n) ·g(n))

f (n) ·O(g(n)) = O( f (n) ·g(n))
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CHAPTER 5

ANALYSIS OF THE SUDOKU GRAPH

In this chapter we use what we know about graph theory and polynomials to obtain

some interesting results about the general Dim(n,m) Sudoku puzzle.

It is easy to see how a completed Sudoku puzzle is equivalent to a proper graph coloring.

We will associate a graph Xnm with the Dim(n,m) Sudoku grid as follows. Xnm will have

(nm)2 vertices, each corresponding to a cell in the Sudoku grid. Two distinct vertices will

be adjacent if and only if the corresponding cells in the grid are either in the same row, the

same column, or the same sub-grid. This way each vertex will be given a color distinct

from that of its neighbors. So for each completed Sudoku puzzle, there corresponds a

proper coloring of the graph Xnm.

To put this in a more general and formal context, consider an Dim(n,m) grid. Each

cell in the grid will be associated with a vertex in Xnm that is labeled (i, j) with 0 ≤ i, j ≤

nm−1. We will consider (i, j) and (i′, j′) to be adjacent if either (1) i = i′ or j = j′ or (2)

,i/n-= ,i′/n- and , j/n-= , j′/n-.

THEOREM 5.1. Xnm is regular and the degree of each vertex is 3nm− (n+m)−1.

PROOF. Let v be and arbitrary vertex of Xnm. Then v is adjacent to nm−1 other vertices

in its row, and nm−1 other vertices in its column. It is also adjacent to nm−1 others in the

n×m subgrid it lies in, but n−1 of these were already counted in its column and m−1 of

them were counted in its row. So v is adjacent to (nm− 1)+ (nm− 1)+ [(nm− 1)− (n−

1)− (m−1)] = 3nm− (n+m)−1 vertices. !

To determine the chromatic number of Xnm, we will recall the following definitions:
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DEFINITION 5.2. Let n be an integer, n > 2, and let k,m be integers. We will say that

k ≡ m (mod n) if n divides m− k.

DEFINITION 5.3. Let n be an integer, n > 2, and let k be an integers. k mod n denotes

the unique integer m for which k ≡ m (mod n) and 0≤ m < n.

Now we are ready to state and prove the following:

THEOREM 5.4. The chromatic number of Xnm is nm.

PROOF. Without loss of generality m ≥ n. If mn = 1, then Xnm consists of a single

point, and the statement is trivial. So assume that mn > 1.

First we show that Xnm cannot be properly colored with fewer than nm colors. Note that

the vertices of Xnm which represent the cells in the upper n×m grid are all adjacent to each

other. These vertices and the edges connecting them form the complete graph Knm. Since

we need at least nm colors to properly color Knm, we need at least nm colors to properly

color Xnm.

Next we show that nm colors are sufficient. To do this we will explicitly construct a

proper coloring of Xnm using nm colors. First without loss of generality we assume that

n≤m. Consider the vertices (i, j) with 0≤ i≤ nm−1 and 0≤ j ≤ nm−1. Now, using the

division algorithm, we let i = an + r and we let j = bm + s, where a =
⌊

i′
n

⌋
and b =

⌊
j

m

⌋
.

Hence,

0 ≤ a < m

0 ≤ r < n

0 ≤ b < n

0 ≤ s < m
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and the 4-tuple (a,r,b,s) is uniquely determines each (i, j). Now we will define a function

f that will properly color each vertex of Xnm using nm colors as follows

f (i, j) = (rm+a+bm+ s) mod nm

Clearly, f only uses numbers from the set {0,1,2, ...,nm−1}, which has order nm. Also,

since (a,r,b,s) is unique for each (i, j), f (i, j) assigns a unique color to each vertex (i, j).

Hence f is a function that colors each vertex in the graph Xn,m with nm colors (and note

that by our previous remark, if f is a proper coloring it does indeed use all the colors). To

show that the coloring will be proper, we need to show that if two vertices (i, j) and (i′, j′)

receive the same color then they are not adjacent.

So assume that (i, j) and (i′, j′) receive the same color. Since if they are not in the same

row, color or subgrid, they can not be adjacent, we need to examine three cases.

Case 1: Suppose that the two vertices (i, j) and (i′, j′) represent cells in the same

Dim(n,m) subgrid. By virtue of being in the same n×m subgrid, we have

⌊
i
n

⌋
=

⌊
i′

n

⌋
and

⌊
j

m

⌋
=

⌊
j′

m

⌋
,

hence a = a′ and b = b′.

Now, since the vertices (i, j) and (i′, j′) have the same color,

f (i, j) = (rm+a+bm+ s) mod nm = (r′m+a′+b′m+ s′) mod nm = f (i′, j′)

(rm+a+bm+ s) mod nm = (r′m+a+bm+ s′) mod nm

(rm+ s) mod nm = (r′m+ s′) mod nm

Notice that rm+s≤ (n−1)m+s = nm+(s−m) < nm and similarly r′m+s′ < nm. Hence

rm + s = r′m + s′. This implies that m | r− r′ |=| s′ − s |. Since 0 ≤ s,s′ < m, it must be

that min(s,s′)≥ 0 and max(s,s′)≤ m−1. Therefore | s′ − s | s = max(s,s′)−min(s,s′)≤

m− 1− 1 < m But | s− s′ | is an integer that is divisible by m. Therefore | s− s′ |= 0, so

s = s′. So | r− r′ |= |s′−s|
m = 0 and r = r′.
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We have established that (a,r,b,s) = (a′,r′,b′,s′). Thus i = an + r = a′m + r′ = i′ and

j = bm + s = b′m + s′ = j′. So whenever two vertices which represent cells in the same

sub-grid have the same color, they are identical.

Case 2: Suppose that two vertices (i, j) and (i′, j′) represent cells in the same column.

In this case j = j′, so f (i, j) = f (i′, j′) = f (i′, j). Then

f (i, j) = (rm+a+bm+ s) mod nm = (r′m+a′+bm+ s) mod nm = f (i′, j)

(rm+a) mod nm = (r′m+a′) mod nm

Notice that rm+a≤ (n−1)m+a < (n−1)m+m = nm and similarly r′m+a′ < nm. Hence

rm+a = r′m+a′. Since 0≤ a,a′ < m, we reason as in case 1 to show that r = r′ and a = a′.

We have established that (a,r) = (a′,r′). Thus i = an + r = a′n + r′ = i′. So when-

ever two vertices which represent cells in the same column have the same color, they are

identical.

Case 3: Suppose that two vertices(i, j) and (i′, j′) represent cells in the same row. In

this case i = i′, so f (i, j) = f (i′, j′) = f (i, j′). Then

f (i, j) = (rm+a+bm+ s) mod nm = (rm+a+b′m+ s′) mod nm = f (i, j′)

(bm+ s) mod nm = (b′m+ s′) mod nm

By definition, bm + s = j < nm. Similarly b′m + s′ = j′ < nm. Hence bm + s = b′m + s′,

therefore j = j′. So whenever two vertices which represent cells in the same row have the

same color, they are identical.

Hence f (i, j) properly colors Xnm using nm colors. Therefore the chromatic number of

Xnm is nm. !

Suppose now that we have a Dim(n,m) Sudoku puzzle that is partially filled out using

only nm− 2 colors. Since two colors have not been used in the initial partial coloring,

it is apparent that these two colors can be interchanged in a final coloring to get another
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coloring. Hence there will not be a unique solution to the Dim(n,m) Sudoku puzzle unless

at least nm−1 colors are used in an initial, partial coloring. We make this rigorous in the

next theorem.

THEOREM 5.5. Any Dim(n,m) solvable Sudoku puzzle will have a unique solution only

if it begins with at least nm−1 colors.

PROOF. Let H be the initial partial coloring of 0 ≤ t < nm vertices of Xnm. Suppose

that H uses only d ≤ nm− 2 colors. Then by theorem 3.13, there exists a unique monic

polynomial of degree ≥ 2, denoted PXnm,H(x), which equals CXnm,H(λ ) for all λ ≥ d.

Since the chromatic number of Xnm is nm, we must have CXnm,H(λ ) = 0 for λ ∈ {d,d +

1, ...,nm− 1}. Therefore PXnm,H(x) = 0 for x ∈ {d,d + 1, ...,nm− 1}. So we may write

PXnm,H(x) = (x− d)(x− d − 1)...(x− nm + 1)q(x) for some monic polynomial q(x). By

repeated application of Lemma 3.7, we get that q(x) has integer coefficients. For the case

x = nm, we have PXnm,H(nm) = (nm−d)!q(nm).

Now we have assumed that d ≤ nm−2, so certainly (nm−d)! ≥ 2. Also, q(nm) must

be positive, else we would not have any ways to finish properly coloring Xnm. Since q(x)

has integer coefficients, q(nm) ≥ 1. Finally, this implies that CXnm,H(nm) = PXnm,H(nm) =

(nm−d)!q(nm)≥ 2, and so there is not a unique solution to the Dim(n,m) Sudoku puzzle

when fewer than nm−1 colors are used. !
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CHAPTER 6

PERMANENTS AND SYSTEMS OF DISTINCT

REPRESENTATIVES

In this chapter, we will develop the idea of a system of distinct representatives ( SDR),

and we also show how permanents of matrices can be used to count SDR’s. This material

was all developed in the 20th century.

6.1. SYSTEMS OF DISTINCT REPRESENTATIVES

We begin with the concept of an SDR. Basically this involves taking one unique ele-

ment from a collection of non-empty sets.

DEFINITION 6.1. Let n be a positive integer. Let S = (S1,S2, ...,Sn) be an (ordered)

collection of non-empty subsets of a set M. A System of Distinct Representatives (abbre-

viated SDR) is an n-tuple X = (x1,x2, ...,xn) of pairwise distinct elements of M, such that

xi ∈ Si for all i ∈ {1,2, . . . ,n}.

A result known as Hall’s marriage theorem tells us exactly when it is possible to have a

system of distinct representatives. Let us work towards an understanding of this result.

DEFINITION 6.2. The finite collection S satisfies the marriage condition if for every

∆⊆ {0,1, . . . ,n}, we have that

|
⋃

i∈∆
Si |≥| ∆ | .

(i.e. any k subsets taken together have at least k elements)

Note that the marriage condition is trivially satisfied for ∆ = /0, so we do not need to

check it for that case.
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We first state a quick lemma that will help us prove the marriage theorem.

LEMMA 6.3. If a collection S = (S1,S2, ...,Sn) of finite subsets of a set M satisfies the

marriage condition, then each Si is non-empty.

PROOF. Assume that S satisfies the marriage condition, and fix an i ∈ {1,2, . . . ,n}

arbitrarily. Choose ∆ = {i}. The marriage condition implies that

1 =| ∆ |≤|
⋃

!∈∆
S! |=| Si | .

Hence Si contains at least one element and cannot be empty. !

Now we have another definition that will help us in the proof of our main theorem about

SDRs

DEFINITION 6.4. Let S = (S1,S2, ...,Sn) be an (ordered) collection of non-empty sub-

sets of a set M and let ∆ be a nonempty proper subset of {1,2 . . . ,n}. ∆ is critical with

respect to S , if

| ∆ |=|
⋃

i∈∆
Si |

Now we are ready to state and prove the following:

THEOREM 6.5. A collection S = {S1,S2, ...,Sn} of finite subsets of a set M has a SDR

if and only if S satisfies the marriage condition.

PROOF. Suppose first (x1, . . . ,xn) is an SDR for the collection S . Let ∆⊆{1,2, . . . ,n}.

Define X = {xi : i ∈ ∆}. Then, since the xi are part of an SDR, and consequently are all

different, | X |=| ∆ |. But since xi ∈ Si for each i, it must be that X ⊆ ∪i∈∆Si, therefore

| X |≤| ∪i∈∆Si |. Therefore | ∆ |≤| ∪i∈∆Si |, and so S satisfies the marriage condition.

Now suppose that S satisfies the marriage condition. We will proceed by induction

on n, the number of sets in S . For the base case let | S |= 1. Then S = (S1). Choose

∆ = {1}. By Lemma 6.3 we have that S1 $= /0, so we must have an x1 ∈ S1. But then (x1) is

an SDR for S .
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Now let n > 1 and assume the theorem is true for all | S ′ |< n.

Since S satisfies the marriage condition, we have the following cases:

Case 1: S has no critical sets, with other words for every nonempty proper subsets∆

of {1,2, . . . ,n} we have that

| ∆ |<|
⋃

i∈∆
Si |

By Theorem 6.3, each Si is non empty. So we may pick an xn ∈ Sn arbitrarily. Define the

ordered collection S ′ = (S′1 \{xn}, ...,S′n−1) where S′i = Si−{xn}. We will show that S ′

satisfies the marriage condition. Let ∆ ⊆ {1,2,3, . . . ,n−1} be nonempty. Note that ∆ is a

nonempty proper subset of {1,2, . . . ,n}, therefore from our assumption we have that

| ∆ | ≤ |
⋃

i∈∆
Si | −1 =|

( ⋃

i∈∆
Si

)
\{xn} |

= |
( ⋃

i∈∆
(Si \{xn}

)
|=|

⋃

i∈∆
S′i,

proving that S ′ does satisfy the marriage condition. Since |S ′ |< n, an SDR (x1, . . . ,xn−1)

exists for S ′ by the induction hypothesis. Clearly, (x1, . . . ,xn) then is an SDR for S

Case 2: S has a critical set ∆0 = {i1, . . . , ik}. Clearly, 1 ≤ k ≤ n− 1. We will

use ∆1 = {1,2, . . . ,n} \ ∆0 = { j1, . . . , jn−k}, where j1 < j2 < .. . < jn−k. We will de-

fine two ordered collection of sets, S ′ and S ” as follows: S ” = (Si1,Si2, . . . ,Sik) and

S ′ = (S′j1,S
′
j2, . . . ,S

′
jn−k

), where S′ji = S ji−X , where X =
⋃k

!=1 Si! . Clearly, S ” satisfies the

marriage condition, therefore by the induction hypothesis it has an SDR (xi1,xi2, . . . ,xik).

Moreover, since ∆0 is critical, we have that X = {xi1,xi2, . . . ,xik}. We will also show that

S ′ satisfies the marriage condition. Let ∆′ ⊆ ∆1, and define ∆ = ∆′ ∪∆0. Since ∆0 and ∆1

are disjoint

| ∆′ | +k =| ∆′ ∪∆0 |=| ∆ |

Since ∆0 is critical, we have that |X | = k = |∆0|. Since ∆0 ⊆ ∆ we have that

X =
k⋃

!=1
Si! ⊆

⋃

!∈∆
S!,
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which implies that

⋃

!∈∆
S! =

(( ⋃

!∈∆
S!

)
−X

)
∪X =

( ⋃

!∈∆
(S!−X)

)
∪X =

(
n−k⋃

!=1
S′j!

)
∪X

Now each of the S′j! are disjoint from X , therefore

|
⋃

!∈∆
S! |=|

n−k⋃

!=1
S′j! | + | X |=|

n−k⋃

!=1
S′j! | +k

By the marriage condition on S we have that

k+ | ∆1 |=| ∆ |≤|
⋃

!∈∆
S! |=|

(
n−k⋃

!=1
S′j!

)
| +k

from which it follows that S ′ satisfies the marriage condition. Therefore it has an SDR

(x j1,x j2, . . . ,x jn−k). Now for any t ∈ {1,2, . . . ,n−k} we have that x jt ∈ S jt −X , so x jt ∈ S jt

and x jt /∈ X . But x jt /∈ X gives us that x jt $= xi! for any ! ∈ {1,2, . . . ,k}. This implies that

(x1, . . . ,xn) is an SDR for S , completing the proof. !

6.2. PERMANENTS AND THE HALL MATRIX

We now know when it is possible to have an SDR. But how many SDR’s does a

collection of non-empty sets have? To count SDR’s we will represent our sets as matrices.

The matrix we will use is a special incidence matrix called the Hall Matrix. This matrix

was named after Philip Hall, who originally proved the marriage theorem in 1935. An

illustration of the Hall Matrix for three sets is given in Figure 6.1.

DEFINITION 6.6. Let A = (A1,A2, ...An) be a collection of finite subsets of a the set

A = {1,2, ...,n}. The Hall Matrix, associated with the collection A is the n× n, (0,1)

matrix whose (i, j)− th entry is 1 if and only if i ∈ A j.

Additionally, we need to define the permanent of a matrix.
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1 2

A1

3

4

5

A collection of three

subsets of {1,2,3,4,5}
Hall Matrix for

this collection

1 1 1 0 0

0 1 1 1 0

0 0 1 0 1

A2

A3

FIGURE 6.1. General Hall Matrix

DEFINITION 6.7. If A is an n×n matrix with the i, j entry given by ai j, the Permanent

of A, denoted per(A), is

∑
σ∈π(n)

a1σ(1)a2σ(2)...anσ(n)

where π(n) denotes the symmetric group on the n symbols {1,2, ...,n}.

The following is immediate from the definition:

LEMMA 6.8. Let A be an n×n matrix and c be a constant. Then per(cA) = cnper(A)

PROOF. Let A = (ai j) and cA = (bi j). Then bi j = cai j and so for any σ ∈ π(n) we have

that

b1σ(1)b2σ(2)...bnσ(n) = ca1σ(1)ca2σ(2)...canσ(n) = cna1σ(1)a2σ(2)...anσ(n)

Then

per(cA) = ∑
σ∈π(n)

b1σ(1)b2σ(2)...bnσ(n) = ∑
σ∈π(n)

cna1σ(1)a2σ(2)...anσ(n)

= cn ∑
σ∈π(n)

a1σ(1)a2σ(2)...anσ(n) = cnper(A)
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!

Now we show that it is possible to count an SDR’s by evaluating a permanent.

THEOREM 6.9. Suppose A = (A1,A2, ...An) is a collection of finite subsets of a the set

{1,2, ...,n}. Then the number of ways to select an SDR for A is equal to the permanent

of the Hall matrix, H, associated with A .

PROOF. In the evaluation of per(H), the product corresponding to a particular permuta-

tion σ is 1 precisely when i∈Aσ(i) for all i, otherwise the product equals to 0. So the perma-

nent counts the number of permutations σ for which i ∈ Aσ(i) for all i. But i ∈ Aσ(i) for all

i is equivalent with σ−1(i) ∈ Ai, which means precisely that (σ−1(1),σ ,−1 (2), ...,σ−1(n))

is an SDR for (A1,A2, ...An). So each such permutation σ gives an SDR for A . Thus the

number of ways to select an SDR for A is at least equal to per(H).

Now, any SDR arises from such a permutation, since its elements x1, . . . ,xn are all

different and they are in {1,2, . . . ,n}. Hence per(H) is at least equal to the number of ways

to select an SDR for A .

Hence the number of ways to select an SDR for A is equal to per(H). !

6.3. TWO FAMOUS THEOREMS

So the number of SDR’s is equal to a permanent, but how do you evaluate a perma-

nent? In 1926 B.L. van der Waerden suggested the problem of determining the minimal

permanent among all n×n doubly stochastic matrices, which are matrices in which the row

sums and the column sums are all equal to 1. He conjectured that for any doubly stochastic

matrix A,

per(A)≥ n!/nn

By 1981, D.I. Falikman and G.P. Egoritsjev had both provided different proofs of the con-

jecture. The theorem is known as the van der Waerden conjecture. [7] and [6]
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Additionally, in 1967 H. Minc conjectured that if A is a (0,1) matrix with row sums ri,

then

per(A)≤
n

∏
i=1

ri!
1
ri

This was proved in 1973 by L.M. Bregman. [5]

33



CHAPTER 7

THE NUMBER OF LATIN SQUARES

In this chapter we will use a Hall Matrix to count the number of Latin squares. Recall

that

DEFINITION 7.1. A Latin square of rank n is an n× n matrix where every row and

every column contains precicely one of each of the numbers 1,2, . . . ,n.

A partially filled rank 4 Latin Square and the corresponding Hall Matrix for it’s third

column is shown in Figure 7.1. The ith row of the matrix tells us which numbers are

allowable in the ith cell in the third column of the Latin square.

THEOREM 7.2. The number of rank s Latin squares is at least s!2s/s(s2).

PROOF. For a rank s Latin square, the number of ways to fill in the first column is

clearly s!. Suppose we have completed k columns of the Latin square. We now want to

fill in the k + 1-st column. For each cell (i,k + 1) of the k + 1st column, we let Ai be the

set of numbers not yet used in the ith row. The size of Ai is therefore s− k. Now, filling

in the k + 1st column is equivalent to finding an SDR for the collection (A1,A2, ...,As),

since the number put in the i-th row has to be in Ai and the numbers in the column must

all be different. The number of ways this can be done is equal to the permanent of the

1 4
2 1
3 2
4 3

0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0

FIGURE 7.1. A rank 4 Latin square and the Hall Matrix
for its 3rd column
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corresponding Hall matrix for the collection (A1,A2, ...,As). We denote this matrix H.

Consider the matrix (s− k)−1H. Each row has s− k non-zero entries of size 1/(s− k).

Hence the row sums are all equal to 1. Now consider the ith column of the Hall matrix

H. Since the number i was used exactly once in each of the k columns already filled in

our s× s Latin square, there will be exactly s− k 1’s in the ith column of H. But as this is

true for each i, we can say that H has s− k 1’s in each column. Therefore the columns of

(s− k)−1H all sum to 1. Hence (s− k)−1H is a doubly stochastic, s× s matrix.

By the van der Warden conjecture, per
(
(s− k)−1H

)
≥ s!/ss. Hence per(H) ≥ (s−

k)ss!/ss. By Theorem 6.9, there are at least (s−k)ss!/ss ways to fill in the k+1-st column,

once the first k columns have been filled in. Now to obtain a lower bound on the number of

Latin squares, we simply need to take the product over k ranging from 0 to s−1.

s−1

∏
k=0

(s− k)ss!
ss =

(
s!
ss

)s s−1

∏
k=0

(s− k)s =

(
s!
ss

)s

(s!)s =
s!2s

s(s2)

Hence the number of rank s Latin squares is at least s!2s/s(s2). !

At this point we would like to re-formulate the above result in terms of the exponential

function. This will make it easier to compare to the corresponding formula for Sudoku

puzzles. We will invoke Stirling’s formula for factorials. There are many versions of this

result. We will use the one used in [8]. The interested reader may also refer to [11] or [14]

for details.

THEOREM 7.3.

ln(n!) = n ln(n)−n+
1
2

ln(n)+O(1)

THEOREM 7.4. The number of rank s Latin squares is at least s!2s

ss2 = ss2
e−2s2−O(s lns).

PROOF. Let N be the number of rank s Latin squares. By Theorem 7.2, we see that

N ≥ s!2s

ss2
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But, using Stirling’s formula,

ln
(s!2s

ss2

)
= 2s ln(s!)− s2 lns

= 2s[s lns− s+
1
2

lns+O(1)]− s2 lns

= s2 lns−2s2 + s lns+2sO(1)

= lnss2
+ s ln(s)−2s2 +2sO(1)

Therefore,

s!2s

ss2 = ss2
e−2s2+s ln(s)+2sO(1)

Since for any constant C we have that if s≥ e2C then ln(s)≥ 2C and thus s ln(s)≥ 2sO(1),

we get that s ln(s)+2sO(1)≤ 2s ln(s). Also since s ln(s)→ ∞ as s→ ∞, if s is big enough,

s ln(s)+2sO(1) > 0. Therefore s ln(s)+ sO(1) = O(s ln(s)), and so

s!2s

ss2 = ss2
e−2s2+O(s lns)

!

From now on when we talk about n and m we will view m as some function m(n) of n.

This means that any function of m and n will ultimately become just a function of n. Thus,

the O-notations we use will refer to functions of n only.

THEOREM 7.5. Let m = m(n) be a function of n such that n ≤ m(n). Then there is a

positive constant C and a nummber n0 such that fod all n ≥ n0 number of rank nm Latin

squares is at least (nm)(nm)2
e−2(nm)2−C(nm lnm).

PROOF. Let s = nm. Then immediately from 7.4 we get that the number of Latin

squares is at least

(nm)(nm)2
e−2(nm)2+O(nm lnmn)
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This means that there is a function g(n) = O(ln(nm)) such that the number of Latin squares

is at least

(nm)(nm)2
e−2(nm)2+g(n)

Since g(n) ∈ O(nm ln(mn)) measn that there is a positive constant C1 and a num,ber n0

such that

|g(n)| ≤Cmn ln(nm) = Cmn(ln(n)+ ln(m))≤ 2C1 ln(m),

we get that −2C1nm ln(m)≤ g(n), and the result follows. !
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CHAPTER 8

TECHNICAL DETAILS

We use the same conceptual process to count the number of Sudoku puzzles as we used

count the number of Latin squares. However, the algebra that results is much more difficult.

In this section we present several lemmata which will eventually simplify our calculation

at the end. These by themselves are just the algebraic details, their meaning will become

clear in the later chapters.

Throughout this chapter, for each we will assume that m = m(n) is an integer valued

function of n, n,r are integers, where 2 ≤ n ≤ m and 1 ≤ r ≤ n, we will use the following

notation:

αr = / (r−1)m
n−1 0 (1)

β =
m

n−1
(2)

The goal of this chapter is to prove the following single equality, namely, that under

appropriate conditions we have that

n

∑
r=1

{
αr

∑
k=1

ln(nm− (r−1)m− k +1)+
m

∑
k=αr+1

ln(nm− (k−1)n)

}

< nm ln(nm)−1.5nm

38



Note that since m≥ n, this gives us that β > 1. We now have the following inequalities

(using also that r ≤ n:

(r−1)β =
(r−1)m

n−1
≤ αr (3)

(r−1)β +1 ≥
⌊

(r−1)m
n−1

⌋
+1≥ αr (4)

α1 = 0 (5)

αr ≤
⌈

(n−1)m
n−1

⌉
= m (6)

αr ≥
⌈

m
n−1

⌉
≥ 2 for all r ≥ 2 (7)

Also,

n−1

∑
r=0

β r =
βn(n−1)

2
=

mn
2

(8)

n−2

∑
r=0

β r =
mn
2
− (n−1)β =

mn
2
−m (9)

We will need the following Lemmata

LEMMA 8.1. For each positive integers n,k, k
n+k < ln(n+ k)− ln(n) < k

n

PROOF. Since the derivative of ln(x) is 1
x , and these two functions are continuous on

(0,∞), by the Mean Value Theorem for derivatives [2] we have that there is a ψ ∈ (n,n+k)

such that

ln(n+ k)− ln(n)
k

=
1
ψ

Since 1
n+k < 1

ψ < 1
n , the statement follows. !

LEMMA 8.2. For each integers !, j where 2≤ !≤ j we have that

j

∑
i=!

1
i
≤ ln( j)− ln(!)+

1
!
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PROOF. Since 1
x is a decreasing positive function on the interval [1,∞), we get, using

the left-hand Riemann sums [2] of the corresponding intervals of length 1 that

j

∑
i=!

1
x
≤

j∫

!−1

1
x

dx

The statement follows from noting that

∫ 1
x

dx = ln(x)+C

and using Lemma 8.1 !

LEMMA 8.3. For each integers !, j where 2≤ !≤ j we have that

j ln( j)− (!−1) ln(!)+ !− j ≤
j

∑
i=!

ln(i)

≤ ( j +1) ln( j +1)− ! ln(!)+ !− j−1

PROOF. Since ln(x) is an increasing nonnegative function on the interval [1,∞), we get,

using the left- and right-hand Riemann sums of the corresponding intervals of length 1 that

j∫

!−1

ln(x)dx ≤
j+1

∑
i=!

ln(i)≤
j∫

!−1

ln(x)dx

The statement follows from noting that

∫
ln(x)dx = x ln(x)− x+C

!

LEMMA 8.4. For each integers !, j where 2≤ !≤ j we have that

j2

2
ln( j)− (!−1)2

2
ln(!−1) +

(!−1)2

4
− j2

4
≤

j

∑
i=!

i ln(i)

≤ ( j +1)2

2
ln( j +1)− !2

2
ln(!)+

!2

4
− ( j +1)2

4
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PROOF. Since x ln(x) is an increasing nonnegative function on the interval [1,∞), we

get, using the left- and right-hand Riemann sums of the corresponding intervals of length 1

that

j∫

!−1

x ln(x)dx ≤
j

∑
i=!

i ln(i)≤
j+1∫

!

x ln(x)dx

Note that
∫

x ln(x)dx =
x2

2
ln(x)− x2

4
+C

The lemma follows. !

LEMMA 8.5.

n

∑
r=1

αr

∑
k=1

1
nm− (r−1)m− k +1

+
n

∑
r=1

m

∑
k=αr+1

1
nm− (k−1)n

≤ 3lnm+2

PROOF. We have from equation (5) that

n

∑
r=1

αr

∑
k=1

1
nm− (r−1)m− k +1

=
n

∑
r=2

αr

∑
k=1

1
nm− (r−1)m− k +1

=
n

∑
r=2

nm−(r−1)m

∑
j=nm−(r−1)m−αr+1

1
j

Using equation (6) we obtain

nm− (r−1)m−αr +1≥ mn− (r−1)m−m+1 = mn− rm+1

Therefore

n

∑
r=2

αr

∑
k=1

1
nm− (r−1)m− k +1

≤
n

∑
r=2

nm−(r−1)m

∑
j=nm−(r)m−1

1
j
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because this one is summing more terms. Since reversing the sum over r nicely gives us

n

∑
r=2

nm−rm+m

∑
j=nm−rm+1

1
j

=
m

∑
j=1

1
j
+

3m

∑
j=2m+1

1
j
+ · · ·+

nm−m

∑
j=(n−2)m+1

1
j

=
nm−m

∑
h=1

1
h

= 1+
1

nm−m
+

nm−m−1

∑
h=1

1
h
,

we get from Lemma 8.2 and Lemma 8.1 that

n

∑
r=2

αr

∑
k=1

1
nm− (r−1)m− k +1

≤ 1+
1

nm−m
+ ln(nm−m)− ln(2)

≤ 1
m(n−1)

+ ln(nm)+
1

nm

≤ ln(nm)+1≤ 2ln(m)+1

Also,

n

∑
r=1

m

∑
k=αr+1

1
nm− (k−1)n

<
n

∑
r=1

m

∑
k=1

1
nm− (k−1)n

= n
m−1

∑
k=0

1
nm− kn

=
m−1

∑
k=0

1
m− k

=
m

∑
h=1

1
h
≤ 1+

1
m

+ ln(m)− ln(2)≤ ln(m)+1

and the statement follows. !

LEMMA 8.6.

n

∑
r=1

{ αr

∑
k=1

ln(nm− (r−1)m− k +1)
}

≤ mn ln(nm)−m ln(nm)+ ln(nm)−nm+
m
n

−
n

∑
r=2

{ m

∑
k=αr+1

ln
(
m(n− r +1)− k +1

)}

PROOF. Clearly, if r = 1 then αr = 0. Therefore

n

∑
r=1

{ αr

∑
k=1

ln(nm− (r−1)m− k +1)
}

=
n

∑
r=2

{ αr

∑
k=1

ln(nm− (r−1)m− k +1)
}
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From equations (6) and (7) we get 1≤ αr ≤ m for r > 1. Also note that for any k such that

1≤ k ≤ m, we have that

m(n− r)+1≤ nm− (r−1)m− k +1≤ nm− (r−1)m (10)

Now,

E =
n

∑
r=2

{ αr

∑
k=1

ln(nm− (r−1)m− k +1)
}

=
n

∑
r=2

{ αr

∑
k=1

ln(m(n− r +1)− k +1)
}

=
n

∑
r=2

{ (n−r+1)m

∑
j=(n−r+1)m−αr+1

ln( j)
}

=
n

∑
r=2

{ (n−r+1)m

∑
j=(n−r)m+1+m−αr

ln( j)
}

=
n

∑
r=2

{ (n−r+1)m

∑
j=(n−r)m+1

ln( j)−
(n−r)m+m−αr

∑
j=(n−r)m+1

ln( j)
}

=
n

∑
r=2

{ (n−r+1)m

∑
j=(n−r)m+1

ln( j)−
(n−r+1)m−αr

∑
j=(n−r)m+1

ln( j)
}

=
n

∑
r=2

{ (n−r+1)m

∑
j=(n−r)m+1

ln( j)−
m

∑
k=αr+1

ln
(
m(n− r +1)− k +1

)}

It is easy to see using Lemma 8.3 that

n

∑
r=2

(n−r+1)m

∑
j=(n−r)m+1

ln( j) =
(n−1)m

∑
s=1

ln(s) =
(n−1)m

∑
s=2

ln(s)

≤ ((n−1)m+1) ln((n−1)m+1)−2ln(2)− (n−1)m+1

Thus, using Lemma 8.1 we get that

n

∑
r=2

(n−r+1)m

∑
j=(n−r)m+1

ln( j) ≤ ((n−1)m+1)
(

ln(nm)− m−1
mn

)
− (n−1)m−1.8
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Now,

(m−1)(n−1)m+m−1
nm

=
m2n−mn−m2 +2m−1

mn

= m−1− m
n

+
2
n

+
1

nm

≥ m−1− m
n

therefore

n

∑
r=2

(n−r+1)m

∑
j=(n−r)m+1

ln( j) ≤ ((n−1)m+1) ln(nm)−nm−1+
m
n

= mn ln(nm)−m ln(nm)+ ln(nm)−nm+
m
n

Hence,

n

∑
r=2

{ αr

∑
k=1

ln(nm− (r−1)m− k +1)
}

≤ mn ln(nm)−m ln(nm)+ ln(nm)−nm+
m
n

−
n

∑
r=2

{ m

∑
k=αr+1

ln
(
m(n− r +1)− k +1

)}

!

LEMMA 8.7. We have that

n−2

∑
r=2

(
m(n− r +1)− (r−1)β −1

)
ln

(
m(n− r +1)− (r−1)β −1

)
≥

(mn2

2
−n− 3mn

2
+2

)
ln(nm)+

m
2
− n2

2
− 1

2
− mn(n−1)

4
+

m+β
2

ln(n)

PROOF.

C2 :=
n−2

∑
r=2

(
m(n− r +1)− (r−1)β −1

)
ln

(
m(n− r +1)− (r−1)β −1

)

=
n−3

∑
r=1

(
mn− r(β +m)−1

)
ln

(
mn− r(β +m)−1

)
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Clearly, (n− 2)(β + m) = (n− 1)β − β + (n− 2)m = nm−m− β , so using appropriate

Riemann sums on intervals of length β +m we obtain that

(β +m)C2 ≥
mn−β−m−1∫

m+β−1

x ln(x)dx

≥ (mn−β −m−1)2

2
ln(mn−β −m+1)

−(mn−β −m−1)2− (m+β −1)2

4

−(m+β −1)2

2
ln(m+β −1)

=
(mn−β −m−1)2

2
ln(mn−β −m−1)

−m2n2

4
+

mn(β +m−1)
2

− (m+β −1)2

2
ln(m+β −1),

therefore

C2 >
(mn−β −m−1)2

2(m+β )
ln(mn−β −m−1)− m2n2

4(m+β )

+
mn
2
− mn

2(m+β )
− (m+β −1)2

2(m+β )
ln(m+β −1)

>
(mn−β −m−1)2

2(m+β )
ln(mn−β −m−1)− m2n2

4(m+β )

+
mn
2
− mn

2(m+β )
− m+β

2
ln(m+β )

Now, it is easy to see that

(
mn− (β +m)−1

)2

2(β +m)
=

m2n2

2(m+β )
− mn

(m+β )
−mn+

β +m
2

+1+
1

2(β +m)

so using the fact that m+β = mn
n−1 , we obtain that

(
mn− (β +m)−1

)2

2(β +m)
=

mn(n−1)
2

−n+1−mn+
β +m

2
+1+

1
2(β +m)

>
mn2

2
−n− 3mn

2
+

β +m
2

+2
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Also by Lemma 8.1,

ln
(

mn−β −m−1
)

≥ ln(mn)− β +m+1
mn−β −m−1

Now,

(
mn− (β +m)−1

)2

2(β +m)
· (β +m+1)

mn−β −m−1
=

mn− (β +m)−1
2

+
(mn− (β +m)−1)

2(β +m)

<
mn− (β +m)

2
−1+

n(n−1)
2

Putting all these together, we obtain that

(
mn− (β +m)−1

)2

2(β +m)
· ln

(
mn−β −m−1

)

>
(mn2

2
−n− 3mn

2
+

β +m
2

+2
)

ln(nm)− mn− (β +m)
2

− n2

2
+

n
2
−1

Now,

m+β
2

ln(m+β ) <
m+β

2

(
ln(m)+

β
m+β

)
=

m+β
2

ln(m)+
β
2

Combining all these, we get

C2 >
(mn2

2
−n− 3mn

2
+

β +m
2

+2
)

ln(nm)− mn− (β +m)
2

− n2

2
+

n
2
−1

− m2n2

4(m+β )
+

mn
2
− mn

2(m+β )
− m+β

2
ln(m)− β

2

≥
(mn2

2
−n− 3mn

2
+

β +m
2

+2
)

ln(nm)+
m
2
− n2

2
− 1

2
− mn(n−1)

4

−m+β
2

ln(m)

!
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LEMMA 8.8.

n−1

∑
r=2

m(n− r) ln(m(n− r)) ≤ ln(m)
(mn2

2
− 3mn

2
+m

)

+ ln(n)
(mn2

2
−mn+m

)
− mn2

4
−0.8m

PROOF.

n−1

∑
r=2

m(n− r) ln(m(n− r)) =
n−2

∑
r=1

mr ln(mr) = m ln(m)

{
n−2

∑
r=1

r

}
+m

{
n−2

∑
r=1

r ln(r)

}

= m ln(m)
(n−1)(n−2)

2

+m

{
− (n−1) ln(n−1)+

n−1

∑
r=2

r ln(r)

}
,

where

n−1

∑
r=2

r ln(r) ≤ n2

2
ln(n)− n2

4
−2ln(2)+1,

−(n−1) ln(n−1) ≤ −(n−1)
(

ln(n)− 1
n−1

)
=−(n−1) ln(n)+1.

Therefore

n−1

∑
r=2

m(n− r) ln(m(n− r)) ≤ m ln(m)
(n−1)(n−2)

2

+m

{
− (n−1) ln(n)+

n2

2
ln(n)− n2

4
−1.8

}

= ln(m)
(mn2

2
− 3mn

2
+m

)

+ ln(n)
(mn2

2
−mn+m

)
− mn2

4
−0.8m

!
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LEMMA 8.9.

n

∑
r=2

{ m

∑
k=αr+1

ln
(
m(n− r +1)− k +1

)}
>

2.3m− n2

2
− 1

2
− mn

4
− ln(m)

(
m+n−2

)
+ ln(n)

(5mn
2

− m
2
−n+2+

β
2

)

PROOF. Using equation αn = m, we obtain

B2 =
n

∑
r=2

m

∑
k=αr+1

ln
(

m(n− r +1)− k +1
)

=
n−1

∑
r=2

m(n−r+1)−αr

∑
k=m(n−r)+1

ln(k)

Now,

m(n−r+1)−αr

∑
k=m(n−r)+1

ln(k) ≥
m(n−r+1)−αr∫

m(n−r)

ln(x)dx

= (m(n− r +1)−αr) ln(m(n− r +1)−αr)−m(n− r +1)+αr

−m(n− r) ln(m(n− r))+m(n− r)

= (m(n− r +1)−αr) ln(m(n− r +1)−αr)−m+αr

−m(n− r) ln(m(n− r)),

So

B2 ≥
n−1

∑
r=2

{
(m(n− r +1)−αr) ln(m(n− r +1)−αr)−m+αr

−m(n− r) ln(m(n− r)),

}
.
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Using Lemma 8.8 we can see that

B2 ≥ (2m−αn−1) ln(2m−αn−1)

+
n−2

∑
r=2

(m(n− r +1)−αr) ln(m(n− r +1)−αr)

+

{
n−1

∑
r=2

(−m+αr)

}
+ ln(m)

(
− mn2

2
+

3mn
2

−m
)

+ ln(n)
(
− mn2

2
+mn−m

)
+

mn2

4
+0.8m

Now, 2m−αn−1 = 2m−/(n−2)β0 ≥ 2m− (n−1)β = m, so

B2 ≥
n−2

∑
r=2

(m(n− r +1)−αr) ln(m(n− r +1)−αr)

+

{
n−1

∑
r=2

(−m+αr)

}
+ ln(m)

(
− mn2

2
+

3mn
2

)

+ ln(n)
(
− mn2

2
+mn−m

)
+

mn2

4
+0.8m

By equations (3) and (4), if we substitute −(r− 1)β − 1 for −αr and (r− 1)β for αr, we

obtain

B2 ≥
n−2

∑
r=2

(m(n− r +1)− (r−1)β −1) ln(m(n− r +1)− (r−1)β −1)

+

{
n−1

∑
r=2

(−m+(r−1)β )

}
+ ln(m)

(
− mn2

2
+

3mn
2

−m
)

+ ln(n)
(
− mn2

2
+mn−m

)
+

mn2

4
+0.8m

Now

n−1

∑
r=2

(
−m+(r−1)β

)
= −m(n−2)+

β (n−1)(n−2)
2

= −mn+2m+
m(n−2)

2
=−mn

2
+m.
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Using this and Lemma 8.7 we obtain

B2 ≥
(mn2

2
−n− 3mn

2
+2

)
ln(nm)

+
m
2
− n2

2
− 1

2
− mn(n−1)

4
+

m+β
2

ln(n)

+ ln(m)
(
− mn2

2
+

3mn
2

−m
)

+ ln(n)
(
− mn2

2
+mn−m

)

+
mn2

4
+0.8m− mn

2
+m

= 2.3m− n2

2
− 1

2
− mn

4

− ln(m)
(

m+n−2
)

+ ln(n)
(5mn

2
− m

2
−n+2+

β
2

)

!

LEMMA 8.10.

n−2

∑
r=1

(
(m− rβ ) ln(m− rβ −1) ≤ ln(m)

(mn
2
− nβ

2
−1

)
− (β −3) ln(β −1)

−mn
4
− 3m

4
+−1+

3β
2(n−1)

PROOF. Since (n−2)β = m−β ,

n−3

∑
r=1

ln(m− rβ −1) =
1
β

n−3

∑
r=1

β ln(m− rβ −1)

≤ 1
β

∫ m−β−1

β−1
ln(x)dx

≤ (m−β −1) ln(m−β −1)− (β −1) ln(β −1)−m−2

Now,

(m−β −1) ln(m−β −1) ≤ (m−β −1)(ln(m)− β +1
m

)

= (m−β −1) ln(m)−β −1+
(β +1)2

m
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Now, if n (and therefore m) is big enough, then

(β +1)2

m
=

β 2

m
+

2β
m

+
1
m

=
β

n−1
+

2
n−1

+
1
m

<
β

n−1
+1,

from which

(m−β −1) ln(m−β −1) ≤ (m−β −1) ln(m)−β +
β

n−1
.

Thus,

n−3

∑
r=1

ln(m− rβ −1)+β ln(β −1) ≤ (m−β −1) ln(m)−β +
β

n−1

+ ln(β −1)−m−2

Therefore,

n−2

∑
r=1

(m− rβ ) ln(m− rβ −1) = β ln(β −1)+
n−3

∑
r=1

(m− rβ ) ln(m− rβ −1)

≤ (m−β −1) ln(m)−β +
β

n−1

+ ln(β −1)−m−2

+
n−3

∑
r=1

(m− rβ −1) ln(m− rβ −1)

Now, since (n−2)β = m−β ,

D =
1
β

n−3

∑
r=1

β (m− rβ −1) ln(m− rβ −1)

≤ 1
β

m−β−1∫

β−1

x ln(x)dx

≤ (m−β )2

2β
ln(m−β )− (m−β −1)2− (β −1)2

4β
− (β −1)2

β
ln(β −1)
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Now,

ln(m−β )≤ ln(m)− β
m

we have, using that m−β = (n−2)β , that

(m−β )2

2β
ln(m−β )≤ (m−β )(n−2)

2
ln(m)− (m−β )2

2m
.

Also, an easy computation gives that

(m−β −1)2− (β −1)2

4β
=

m2−2mβ +2β −1
4β

>
m(n−1)

4
− m

2
+

1
4

>
mn
4
− 3m

4
+

1
4

Therefore, we get that

D <
(m−β )(n−2)

2
ln(m)− (m−β )2

2m

−mn
4

+
3m
4
− 1

4
−β ln(β −1)+2ln(β −1)

<
(m−β )(n−2)

2
ln(m)−β ln(β −1)+2ln(β −1)

−m
2

+β − mn
4

+
3m
4

+
β

2(n−1)

Therefore,

n−2

∑
r=1

(m− rβ ) ln(m− rβ −1) ≤ (m−β )(n−2)
2

ln(m)−β ln(β −1)+2ln(β −1)

−m
2

+β − mn
4

+
3m
4

+
β

2(n−1)

+(m−β −1) ln(m)−β +
β

n−1

+ ln(β −1)−m−2

= ln(m)
(mn

2
− nβ

2
−1

)
− (β −3) ln(β −1)

−mn
4
− 3m

4
+−1+

3β
2(n−1)
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Now,

!

LEMMA 8.11. For big enough n, we have

n

∑
r=2

{ m

∑
k=αr+1

ln(nm− (k−1)n)
}
≤ ln(n)

(mn
2
−3m−n+β −1

)

+ ln(m)
(mn

2
− nβ

2
+2−β

)
− 3mn

4
+3m+n−β

PROOF. Using αn = m, we obtain that

B1 =
n

∑
r=2

m

∑
k=αr+1

ln
(

nm− (k−1)n
)

=
n−1

∑
r=2

m

∑
k=αr+1

ln
(

nm− (k−1)n
)

=
n−1

∑
r=2

m

∑
k=αr+1

ln
(

n(m− k +1)
)

=
n−1

∑
r=2

m−αr

∑
k=1

(
ln(n)+ ln(k)

)

and consequently, using equation (3)

B1 = ln(n)

{
n−1

∑
r=2

(m−αr)

}
+

n−1

∑
r=2

m−αr

∑
k=1

ln(k)

≤ ln(n)

{
n−2

∑
r=1

(m− rβ −1)
}

+
n−1

∑
r=2

(
ln(m−αr)+(m−αr) ln(m−αr)−m+αr)

)

≤ ln(n)
(
(m−1)(n−2)− β (n−1)(n−2)

2

)

+
n−2

∑
r=1

(
(m− rβ ) ln(m− rβ −1)−m+ rβ )

)

= ln(n)
(
(m−1)(n−2)− m(n−2)

2

)
+

n−2

∑
r=1

(
(m− rβ ) ln(m− rβ −1)

)

−m(n−2)+
m(n−2)

2

= ln(n)
(mn

2
−3m−n+2

)
− mn

2
+3m+n−2

+
n−2

∑
r=1

(
(m− rβ ) ln(m− rβ −1)

)
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Now using Lemma 8.10 we obtain

B1 ≤ ln(n)
(mn

2
−3m−n+2

)
− mn

2
+3m+n−2

+ ln(m)
(mn

2
− nβ

2
−1

)
− (β −3) ln(β −1)

−mn
4
− 3m

4
+−1+

3β
2(n−1)

= ln(n)
(mn

2
−3m−n+2

)
+ ln(m)

(mn
2
− nβ

2
−1

)

−3mn
4

+3m+n−3− (β −3) ln(β −1)

Now,

ln(β −1)≤ ln(β )− 1
β

,

so

(
3−β

)
ln(β −1) <

(
3−β

)
ln(β )+1

Using that ln(β ) = ln(m)− ln(n−1)≤ ln(m)− ln(n)+ 1
n−1 , we get that

(
3−β

)
ln(β −1)≤

(
3−β

)
(ln(m)− ln(n))+3−β

This means

B1 ≤ ln(n)
(mn

2
−3m−n+2

)
+ ln(m)

(mn
2
− nβ

2
−1

)

−3mn
4

+3m+n−3+
(

3−β
)
(ln(m)− ln(n))+3−β

= ln(n)
(mn

2
−3m−n+β −1

)
+ ln(m)

(mn
2
− nβ

2
+2−β

)

−3mn
4

+3m+n−β

!
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LEMMA 8.12. If for some δ such that 0 < δ ≤ 3 we have that whenever m ≥ n and

m ∈ O(n4−δ ), then there is an N such that for all n≥ N we have

n

∑
r=1

{
αr

∑
k=1

ln(nm− (r−1)m− k +1)+
m

∑
k=αr+1

ln(nm− (k−1)n)

}

< nm ln(nm)−1.5nm

PROOF. By Lemma 8.6 we have that

n

∑
r=1

{ αr

∑
k=1

ln(nm− (r−1)m− k +1)
}

≤ mn ln(nm)−m ln(nm)+ ln(nm)−nm+
m
n

−
n

∑
r=2

{ m

∑
k=αr+1

ln
(
m(n− r +1)− k +1

)}

By Lemma 8.9 we have

n

∑
r=2

{ m

∑
k=αr+1

ln
(
m(n− r +1)− k +1

)}
>

2.3m− n2

2
− 1

2
− mn

4
− ln(m)

(
m+n−2

)
+ ln(n)

(5mn
2

− m
2
−n+2+

β
2

)

By Lemma 8.11 we have

n

∑
r=2

{ m

∑
k=αr+1

ln(nm− (k−1)n)
}
≤ ln(n)

(mn
2
−3m−n+β −1

)

+ ln(m)
(mn

2
− nβ

2
+2−β

)
− 3mn

4
+3m+n−β
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Combining these three Lemmata we get that the expression F we want to estimate in the

Lemma is

F ≤ mn ln(nm)−m ln(nm)+ ln(nm)−nm+
m
n

−2.3m+
n2

2
+

1
2

+
mn
4

+ ln(m)
(

m+n−2
)

+ ln(n)
(
− 5mn

2
+

m
2

+n−2− β
2

)
+ ln(n)

(mn
2
−3m−n+β −1

)

+ ln(m)
(mn

2
− nβ

2
+2−β

)
− 3mn

4
+3m+n−β

Thus,

F ≤ mn ln(nm)−1.5nm+ ln(m)
(

n+1+
mn
2
− nβ

2
−β

)

+ ln(n)
(
−2mn− m

2
−2+

β
2
−3m

)
+01.2+

n2

2
+n−β +

m
n

Now, using

G = ln(m)
(

n+
mn
2
− nβ

2
−β

)
+ ln(n)

(
−2mn− m

2
−2+

β
2
−3m

)

+1.2+
n2

2
+n−β +

m
n

we get that

G
mn

= ln(m)
( 1

m
+

1
mn

+
1
2
− 1

2(n−1)
− 1

n(n−1)

)

+ ln(n)
(
−2− 1

2n
− 2

mn
+

1
n(n−1)

− 3
n

)

+
1.2
mn

+
n

2m
+

1
m
− 1

n(n−1)
+

1
n2
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Clearly, for a fixed ε > 0, we get that if n≥ n0, then

G
mn

= ln(m)
( 1

m
+

1
mn

+
1
2
− 1

2(n−1)
− 1

n(n−1)

)

+ ln(n)
(
−2− 1

2n
− 2

mn
+

1
n(n−1)

− 3
n

)
+ ε

Now, since m≥ n, if n−1 < m, so 1
mn < 1

n(n1)
. Thus,

1
m

+
1

mn
− 1

2(n−1)
− 1

n(n−1)
<

1
m
− 1

2(n−1)

So if m≥ 2n−2, then we have that

G
mn

<
1
2

ln(m)−2ln(n)+
1.2
mn

+
n

2m
+

1
m
− 1

n(n−1)
+

1
n2

and if also m = O(n4−δ ), then, using that if n ≥ n0 then m ≤ Cn4−δ , so ln(m) ≤ ln(C)+

(4−δ ) ln(n), we get

G
mn

≤ 2ln(n)− δ
2

ln(n)+
1
2

ln(C)+ ε

= −δ
2

ln(n)+ ε,

and, since ln(n)→ ∞, we get that G
mn < 0, thus, G < 0. If m≤ 2n−2, then

ln(n)≤ ln(2n−2) = 2ln(n−1)≤ 2ln(n)− n−1
,

and we get similarly that if n is big enough, then for some ε1 > 0 we have that

G
mn

≤−2ln(n)+ ln(n)+ ε1 <− ln(n)+ ε2,

and as before, we get that G < 0. Therefore,

F ≤ mn ln(nm)−1.5nm+G < mn ln(mn)−1.5mn

!
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CHAPTER 9

COUNTING SUDOKU PUZZLES

We now turn our attention to calculating an upper bound for the number of Sudoku

puzzles. Again, we will do this by calculating the sum of the permanents of the Hall ma-

trices for each column of the Sudoku puzzle. However, we will formulate the Hall Matrix

one way for some of the columns, and another way for the others. We will extensively use

results from the previous chapter

A picture of a Hall matrix, formulated the first way, is given in Figure 9.1. This Matrix

represents the third column of the Dim(2,3) puzzle to its left. As with the Latin square, the

ith row of the matrix tells us which numbers are allowable in the ith cell in the third column

of the Sudoku puzzle. For this Hall Matrix, we only allow numbers for a cell which have

not been used in the sub-grid the cell lies in.

Again we will assume that m = m(n) is some function of n such that m ≥ n. Note that

when n = 1, then a Dim(n,m) Sudoku puzzle just becomes a rank m Latin square: the size

of a subgrid is just 1×m, and the condition that we do not have repeating numbers in a

sub-grid is the same as the condition that we do not have repeating numbers in a row.

1 2
4 5
3 4
2 6
6 1
5 3

0 0 1 0 0 1
0 0 1 0 0 1
1 0 0 0 1 0
1 0 0 0 1 0
0 1 0 1 0 0
0 1 0 1 0 0

FIGURE 9.1. A Dim(2,3) Sudoku puzzle and the Hall
Matrix for its 3th column
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1 2 3 6
4 5 6 2
3 4 1 5
2 6 5 3
6 1 2 4
5 3 4 1

0 0 0 1 1 0
1 0 1 0 0 0
0 1 0 0 0 1
1 0 0 1 0 0
0 0 1 0 1 0
0 1 0 0 0 1

FIGURE 9.2. A Dim(2,3) Sudoku puzzle and the Hall
Matrix for its 5th column

THEOREM 9.1. If there is a δ such that 0 < δ < 3 and the function m = m(n) satisfies

n ≤ m and m = O(n4−δ ), then there is a positive constant C and a number n0 such that if

n≥ n0 then the number of Dim(n,m) Sudoku puzzles is at most

(nm)(nm)2
e−2.5(nm)2+C(nm ln(m))2

PROOF. Note that since the result is valid for large n only, we will assume that n≥ 2.

Recall that a band is a column of sub-grids. Suppose we have filled in the first r− 1

bands. Now consider the rth band, and suppose we already have filled the first k−1 column

How many ways can we fill in the kth column of this band? For each cell (i,(r−1)m+ k),

we let Ai be the set of numbers available for that cell. In the ith row, there are (r− 1)m

options already taken; and in the first (k− 1) columns of this sub-grid, there are (k− 1)n

options already taken. The options taken in the row and taken in the sub-grid might overlap,

so we can only be sure that we have used up at least

max{(r−1)m+ k−1,(k−1)n}

options that we can not use for this cell. There are also possibly some options already used

in the column we are in.

The Hall matrix for this situation will look like the one in Figure 9.2
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So the size of Ai is at most nm−max{(r−1)m+ k−1,(k−1)n}. Hence we have at

most

min{nm− [(r−1)m+ k−1],nm− (k−1)n}

many numbers available to use. Since we must use each number from 1 to nm exactly

once in this column, filling this column is equivalent to finding an SDR for the collec-

tion {A1,A2, ...,Anm}. By Theorem 6.9 the number of ways this can be done is equal to the

permanent of the corresponding Hall matrix for the collection {A1,A2, ...,Anm}. Denote this

matrix H. Each row i of H will have sum si≤min{nm− [(r−1)m+ k−1],nm− (k−1)n}.

We will now use Minc’s conjecture. Notice that

nm− (k−1)n≤ nm− (r−1)m

implies that

k ≥ (r−1)m
n−1 +1

Hence when k ∈ {1,2, ...,/ (r−1)m
n−1 0} the number of ways to fill in the kth column is at most

(nm− (r−1)m− k +1)!
nm

nm−(r−1)m−k+1

When k ∈ {/ (r−1)m
n−1 0+1, ...,m} the number of ways to fill in the kth column is at most

[nm− (k−1)(n)]!
nm

nm−(k−1)(n)

We must take the product over all columns to estimate the number of ways to fill in this

band.

Hence the number of ways to fill in the rth band is at most

αr

∏
k=1

[nm− (r−1)m− k +1]!
nm

nm−(r−1)m−k+1 ×
m

∏
k=αr+1

[nm− (k−1)(n)]!
nm

nm−(k−1)(n)
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So if Sn,m is defined to be the number of ways to fill in the entire Sudoku puzzle, then

Sn,m ≤
n

∏
r=1

{
αr

∏
k=1

[nm− (r−1)m− k +1]!
nm

nm−(r−1)m−k+1×

×
m

∏
k=αr+1

[nm− (k−1)(n)]!
nm

nm−(k−1)(n)

}
(11)

In order to prove our theorem, it is enough to show that there is a constant C and a number

n0 such that for all n≥ n0 we have

Sn,m ≤ (nm)(nm)2
e−2.5(nm)2+C(ln(m))2)

or, alternatively, that

ln(Sn,m)≤ (nm)2 ln(nm)−2.5(nm)2 +C(nm ln(m))2

This is equivalent with showing that

ln(Sn,m)
nm

+nm≤ nm ln(nm)−1.5nm+C(ln(m))2 (12)

Now from the expression we have in equiation (11)

ln(Sn,m)≤
n

∑
r=1

{
αr

∑
k=1

ln
{

[nm− (r−1)m− k +1]!
nm

nm−(r−1)m−k+1
}

+

+
m

∑
k=αr+1

ln
{

[nm− (k−1)(n)]!
nm

nm−(k−1)(n)
}}

And so

ln(Sn,m)
nm

≤
n

∑
r=1

{
αr

∑
k=1

ln[nm− (r−1)m− k +1]!
nm− (r−1)m− k +1

+
m

∑
k=αr+1

ln[nm− (k−1)(n)]!
nm− (k−1)n

}
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applying Sterlings formula to the factorials shows that there is a constant C1 > 0 and a

number n1 such that whenever n≥ n1, the expression on the right side is at most

n

∑
r=1

αr

∑
k=1

{
ln(nm− (r−1)m− k +1)−1+

(1
2) ln(nm− (r−1)m− k +1)+C1

nm− (r−1)m− k +1

}

+
n

∑
r=1

m

∑
k=αr+1

{
ln(nm− (k−1)n)−1+

(1
2) ln(nm− (k−1)n)+C1

nm− (k−1)n

}

Notice that−1 is summed nαr times in the first line, and then n(m−αr) times in the second

line for a total of nm times. Pulling this out and re-arranging terms gives us

ln(Sn,m)
nm

+nm≤

n

∑
r=1

{
αr

∑
k=1

ln(nm− (r−1)m− k +1)+
m

∑
k=αr+1

ln(nm− (k−1)n)

}
(13)

+
n

∑
r=1

{
αr

∑
k=1

(1
2) ln(nm− (r−1)m− k +1)

nm− (r−1)m− k +1
+

m

∑
k=αr+1

(1
2) ln(nm− (k−1)n)

nm− (k−1)n

}
(14)

+
n

∑
r=1

{
αr

∑
k=1

C1

nm− (r−1)m− k +1
+

m

∑
k=αr+1

C1

nm− (k−1)n

}
(15)

Now, by Lemma 8.12 we have

( 13)≤ nm ln(nm)−1.5nm (16)

So in order to show equation(12), it is enough to show that for n big enough, there is a

constant C such that (14)+(15) is at most C(log(m))2.

In (14), the numerator of each expression is at most 1
2 lnnm≤ lnm. Hence

( 14)≤ lnm
n

∑
r=1

{
αr

∑
k=1

1
nm− (r−1)m− k +1

+
m

∑
k=αr+1

1
nm− (k−1)n

}

So by lemma 8.5, we have,

( 14)≤ lnm× (3lnm+2) = 3(lnm)2 +2ln(m)
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In ( 15), we again use lemma 8.5 and immediately see that for some constant C

( 15)≤C×3lnm+2

Therefore, (14) and (15) together are at most 3((ln(m))2 + 5ln(m)+ 2, which is certainly

smaller than 4(ln(m))2 if n (and therefore m) are big enough. !
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CHAPTER 10

THE PROPORTION OF LATIN SQUARES THAT ARE ALSO

SUDOKU PUZZLES

In this chapter we estimate the fraction of rank nm Latin squares that are also Dim(n,m)

Sudoku puzzle, with other words, we estimate the probability that if we randomly select

a rank nm Latin square such that every such square is selected with the same probability,

then this randomly selected Latin square is also a Dim(n,m) Sudoku puzzle.

THEOREM 10.1. Let pnm be the probability that a randomly chosen rank nm Latin

square is also a Sudoku puzzle. Then there is a positive constant C and a number n0 such

that if n≥ n0 then

pnm ≤ e−(nm)2+C(mn(ln(m))2)

In particular, pnm → 0 as n tends to infinity.

PROOF. By Theorem 9.1, there is a positive constant C1 and a number n1 such that if

n≥ n1, then the number of Sudoku puzzles of Dim (n,m) is at most

(nm)(nm)2
e−2.5(nm)2+C1(nm(lnm)2).

By Theorem 7.5, there is a negative constant C2 and a number n2 such that if n≥ n2 number

of Latin squares of rank nm is at least

(nm)(nm)2
e−2(nm)2+C2(nm lnm).
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Select n3 = max(n1,n2). If n≥ n3, then the probability that a random Latin square of rank

nm is also a Dim(m,n) Sudoku puzzle is at most

(nm)(nm)2
e−2.5(nm)2+C1(nm(lnm)2)

nm(nm)2e−2(nm)2+C2(nm lnm)
≤ e−0.5(nm)2+C1nm(lnm)2)−C2nm ln(m)

Now,

C1nm(lnm)2)−C2nm ln(m) = C1nm(ln(m))
(

1−C2
1

ln(m)

)

But clearly, if m ≥ e|C2|, then this is at most 2C2nm(ln(m))2. Since m ≥ n, if n ≥ e|C2|, this

is achieved. So selecting C0 = 2C1 and n0 = max(n2,e|C2|) will be enough for the first part

of the claim. Since a probability is never negative, we only need to show that

lim
n→∞

(
e−(nm)2+C(mn(ln(m))2

)

)
= 0

Since

e−0.5(nm)2+C(mn(ln(m))2
=

1
e0.5(nm)2−C(mn(ln(m))2 =

1(
e0.5(nm)−C(ln(m))2)nm ,

it is enough to show that

lim
n→∞

(e0.5(nm)−C(ln(m))2
) = ∞,

or, alternatively, that

lim
n→∞

(0.5(nm)−C(ln(m))2) = ∞,

But this follows from using the L’Hopital Rule [2] to obtain

lim
m→∞

m
ln2(m)

= lim
n→∞

m
2ln(m)

= lim
n→∞

m
2

= ∞

and using that

0.5(nm)−C(ln(m))2 = 0.5n(ln(m))2

(
m

(ln(m))2 −
C
2n

)
→ ∞

!
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