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Orthogonal arrays are used widely in manufacturing and high-technology industries for quality and
productivity improvement experiments. For reasons of run size economy or � exibility, nearly-orthogonal
arrays are also used. The construction of orthogonal or nearly-orthogonal arrays can be quite challeng-
ing. Most existing methods are complex and produce limited types of arrays. This article describes
a simple and effective algorithm for constructing mixed-level orthogonal and nearly-orthogonal arrays
that can construct a variety of small-run designs with good statistical properties ef� ciently.
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1. INTRODUCTION

Consider an experiment to screen factors that may in� uence
the blood glucose readings of a clinical laboratory testing
device. One two-level factor and eight three-level factors
are included in the experiments. The nine factors (Wu
and Hamada 2000, table 7.3) are (A) wash (no or yes),
(B) microvial volume (2.0, 2.5, or 3.0 mL), (C) caras H2O
level (20, 28, or 35 mL), (D) centrifuge speed (2,100, 2,300,
or 2,500 rpm), (E) centrifuge time (1.75, 3, or 4.5 minutes),
(F) sensitivity (.10, .25, or .50), (G) temperature (25, 30,
or 37�C), (H) dilution ratio (1:51, 1:101, or 1:151), and (I)
absorption (2.5, 2, or 1.5). To ensure that all the main effects
are estimated clearly from one another, it is desirable to
use an orthogonal array (OA). The smallest OA found for
one two-level factor and eight three-level factors requires
36 runs. However, the scientist wants to reduce the cost of
this experiment and plans to use an 18-run design. A good
solution then is to use an 18-run nearly-orthogonal array
(NOA).

The concept of OA dates back to Rao (1947). OAs have
been used widely in manufacturing and high-technology
industries for quality and productivity improvement experi-
ments, as evidenced by many industrial case studies and recent
design textbooks (Myers and Montgomery 1995; Wu and
Hamada 2000). Applications of NOAs have been described
by Wang and Wu (1992), Nguyen (1996b), and the references
cited therein.

Formally, an OA of strength two, denoted by OA4N 1 s1 ¢ ¢ ¢
sn5, is an N � n matrix of which the ith column has si levels
and for any two columns all of their level combinations appear
equally often. An OA is mixed if not all si’s are equal. An
NOA, denoted by OA04N 1 s1 ¢ ¢ ¢ sn5, is optimal under the J2 cri-
terion (de� ned in Sec. 2.1). From an estimation standpoint, all
of the main effects of an OA are estimable and orthogonal to
each other, whereas all of the main effects of an NOA are still
estimable, but some are partially aliased with others. Because
balance is a desired and important property in practice, in
this article only balanced OA04N 1 s1 ¢ ¢ ¢ sn5 are considered, in

which all levels appear equally often for any column. When an
array is used as a factorial design, each column is assigned to
a factor and each row corresponds to a run. Here the terms
of “array” and “design,” “row” and “run,” and “column” and
“factor” are freely exchanged.

The purpose of this article is to present a simple and
effective algorithm for constructing OAs and NOAs with
mixed levels and small runs. The algorithm can ef� ciently
construct various designs with good statistical properties.
Section 2 introduces the concept of J2-optimality and other
optimality criteria. Section 3 describes an algorithm for
constructing mixed-level OAs and NOAs. Section 4 gives the
performance and compares the algorithm with others in terms
of speed and ef� ciency. Section 5 revisits the blood glucose
experiment, and Section 6 gives concluding remarks.

2. OPTIMALITY CRITERIA

A combinatorial criterion, J2-optimality, is introduced in
Section 2.1. This criterion has the advantages of convenience
for programming and ef� ciency for computation. The statisti-
cal justi� cation of J2-optimality and other optimality criteria
is given in Section 2.2.

2.1 The Concept of J2-Optimality

For an N � n matrix d D 6xik7, weight wk > 0 is assigned
for column k, which has sk levels. For 1 µ i1 j µ N , let

„i1 j4d5 D
nX

kD1

wk„4xik1 xjk51 (1)

where „4x1 y5 D 1 if x D y and 0 otherwise. The „i1 j4d5 value
measures the similarity between the ith and jth rows of d.
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In particular, if wk
D 1 is chosen for all k, then „i1 j4d5 is the

number of coincidences between the ith and jth rows. De� ne

J24d5 D
X

1µi<jµN

6„i1 j4d5720

A design is J2-optimal if it minimizes J2. Obviously, by min-
imizing J24d5, it is desired that the rows of d be as dissimilar
as possible. The following lemma shows an important lower
bound of J2.

Lemma 1. For an N � n matrix d whose kth column has
sk levels and weight wk,

J24d5 ¶ L4n5

D 2ƒ1

"³ nX

kD1

Nsƒ1
k wk

2́

C
³ nX

kD1

4sk
ƒ 154Nsƒ1

k wk5
2

´

ƒ N

³ nX

kD1

wk

2́
#

1 (2)

and the equality holds if and only if d is an OA.

The proof is given in Appendix A. From Lemma 1, an OA
is J2-optimal with any choice of weights if it exists, whereas
an NOA under J2-optimality may depend on the choice of
weights.

Example 1. Consider the 12 � 10 matrix given in Table 1.
The � rst column has three levels, and the other nine columns
have two levels each. For illustration, wk

D 1 is chosen for all
k. First, consider a design comprising the � rst � ve columns.

Table 1. OA0( 12,3129)

Run 1 2 3 4 5 6 7 8 9 10

1 0 0 1 0 1 1 1 0 0 0
2 0 1 0 0 1 1 0 0 1 0
3 0 0 1 1 0 1 0 1 1 1
4 0 1 0 1 0 0 1 1 0 0
5 1 0 0 0 0 0 0 0 0 1
6 1 1 1 0 0 0 1 0 1 1
7 1 0 1 1 1 0 0 1 1 0
8 1 1 0 1 1 1 1 1 0 1
9 2 0 0 1 0 1 1 0 1 0

10 2 1 1 0 0 1 0 1 0 0
11 2 0 0 0 1 0 1 1 1 1
12 2 1 1 1 1 0 0 0 0 1

NOTE: The ’ rst ’ ve columns form an OA(1213124). The pairs of columns (1, 6) and (1, 10)
are nonorthogonal and have an A2 value of .167; the pairs of columns (2, 9), (3, 7), (4, 8),
and (6, 10) are nonorthogonal and have an A2 value of .111; and all other pairs of columns
are orthogonal.

The coincidence matrix 4„i1 j4d55 of the 12 rows is

5 3 3 1 2 2 3 1 1 2 3 2

3 5 1 3 2 2 1 3 1 2 3 2

3 1 5 3 2 2 3 1 3 2 1 2

1 3 3 5 2 2 1 3 3 2 1 2

2 2 2 2 5 3 2 2 3 2 3 0

2 2 2 2 3 5 2 2 1 4 1 2

3 1 3 1 2 2 5 3 2 1 2 3

1 3 1 3 2 2 3 5 2 1 2 3

1 1 3 3 3 1 2 2 5 2 3 2

2 2 2 2 2 4 1 1 2 5 2 3

3 3 1 1 3 1 2 2 3 2 5 2

2 2 2 2 0 2 3 3 2 3 2 5

1

and J2 is the sum of squares of the elements above the diag-
onal. It is easy to verify that J2

D 330 and that the lower
bound in (2) is also 330 for one three-level and four two-level
columns with wk

D 1. Therefore, the � rst � ve columns form
an OA4121 31245, because the J2 value equals the lower bound.
Next, consider the whole array, comprising all 10 columns.
Simple calculation shows that J2 D 11284 and that the lower
bound in (2) is 1,260. Therefore, the whole array is not an
OA, because the J2 value is greater than the lower bound.

Now consider the change in the J2 value if a column is
added to d or if two symbols are switched in a column. If
a column c D 4c11 : : : 1 cN 50 is added to d and dC is the new
N � 4n C15 design, and if c has sk levels and weight wk , then
for 1 µ i1 j µ N ,

„i1 j4dC5 D „i1 j4d5 C wk„i1 j4c51 (3)

where „i1 j4c5 D „4ci1 cj5. In addition, if the added column c
is balanced, then it is easy to show that

J24dC5 D J24d5 C 2wk

X

1µi<jµN

„i1 j4d5„i1 j4c5

C 2ƒ1Nw2
k4Nsƒ1

k
ƒ 150 (4)

The summation in the second term on the right side of (4) does
not involve any multiplication, because „i1 j4c5 is either 0 or 1.
Therefore, calculating J24dC5 as in (4) is much faster than by
taking the sum of squares of all „i1 j4dC5 in (3). Now suppose
that two distinct symbols, ca

6D cb , in rows a and b in the added
column are switched. Then all „i1 j4c5 are unchanged, except
that „a1 j 4c5 D „j1 a4c5 and „b1 j4c5 D „j1 b4c5 are switched for
j 6D a1 b. Hence J24dC5 is reduced by 2wkã4a1 b5, where

ã4a1b5D
X

1µj 6Da1bµN

6„a1j4d5ƒ„b1j4d576„a1j4c5ƒ„b1j4c570 (5)

Calculation of ã4a1 b5 involves no multiplication, because
both „a1 j4c5 and „b1 j4c5 are either 0 or 1. These formulas
provide an ef� cient way to update the J2 value and are used
in the algorithm.
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2.2 Other Optimality Criteria and
Statistical Justi’ cation of J2-Optimality

To gain an understanding of the statistical justi� cation of
J2-optimality, recall other optimality criteria. It is well known
that an s-level factor has s ƒ1 degrees of freedom. Commonly
used contrasts are from orthogonal polynomials, especially for
quantitative factors. For example, the orthogonal polynomials
corresponding to levels 0 and 1 of a two-level factor are ƒ1
and C1, and the orthogonal polynomials corresponding to lev-
els 0, 1, and 2 of a three-level factor are ƒ1, 0, and C1 for
linear effects and 1, ƒ2, and 1 for quadratic effects.

For an N � n matrix d D 6xik7, whose kth column has sk

levels, consider the main-effects model

Y D ‚01 C X1‚1 C ˜1

where Y is the vector of N observations, ‚0 is the general
mean, ‚1 is the vector of all the main effects, 1 is the vector of
1s, X1 is the matrix of contrast coef� cients for ‚1, and ˜ is the
vector of independent random errors. Let X1

D 4x11 : : : 1xm5
and X D 4x1=˜x1

˜1 : : : 1xm=˜xm
˜5, where m D P

4si
ƒ 15.

In the literature, d is known as the design matrix and X1

is the model matrix (of the main-effects model). A design
is D-optimal if it maximizes —X 0X—. It is well known that
—X 0X— µ 1 for any design and that —X 0X— D 1 if and only if the
original design d is an OA. Wang and Wu (1992) proposed
the D criterion

D D —X 0X—1=m (6)

to measure the overall ef� ciency of an NOA. Note that
R D X 0X is the correlation matrix of m columns of X1.

A good surrogate for the D criterion is the 4M1 S5 criterion
(Eccleston and Hedayat 1974). A design is 4M1 S5-optimal
if it maximizes tr4X 0X5 and minimizes tr64X 0X527 among
those designs that maximize tr4X 0X5. The 4M1S5 criterion is
cheaper to compute than the D criterion and has been used
in the construction of computer-aided designs (see, e.g., Lin
1993; Nguyen 2001). Because all diagonal elements of X 0X
are 1s, the 4M1S5 criterion reduces to the minimization of
tr64X 0X527, which is the sum of squares of elements of X 0X,
or, equivalently, to the minimization of the sum of squares of
off-diagonal elements of X 0X . This minimization leads to the
following concept of A2-optimality.

Formally, if X 0X D 6rij 7, let

A2 D
X

i<j

r 2
ij 1

which measures the overall aliasing (or nonorthogonality)
between all possible pairs of columns. In particular, for a
two-level design, A2 equals the sum of squares of correlation
between all possible pairs of columns, and therefore it is
equivalent to the popular ave4s25 criterion in the context
of two-level supersaturated designs. A design is A2-optimal
if it minimizes A2. This is a good optimality criterion for
NOAs because A2 D 0 if and only if d is an OA. Further,
A2-optimality is a special case of the generalized minimum
aberration criterion proposed by Xu and Wu (2001) for
assessing nonregular designs.

The statistical justi� cation for J2-optimality arises from the
following lemma, which shows an important identity relating
the J2 and A2 criteria.

Lemma 2. For a balanced design d of N runs and n fac-
tors, if the weight equals the number of levels for each factor
4i.e., wk

D sk5, then

J24d5 D N 2A24d5 C 2ƒ1N
h
Nn4n ƒ 15 C N

X
sk

ƒ
X

sk

¢2
i
0

The proof is given in Appendix A. For convenience, the
choice of wk

D sk is called natural weights. J2-optimality with
natural weights is equivalent to A2-optimality and thus is a
good surrogate for D-optimality.

Advantages of the use of J2 over D, 4M1S5, A2 and ave4s25

as an objective function include the following:

1. It is simple to program. J2 works with the design matrix,
whereas all other criteria work with the model matrix.

2. It is cheap to compute. Neither the calculation of „i1 j4d5

in (1) nor that of „i1 j4dC5 in (3) involves any multiplication,
because both „4xik1 xjk5 and „i1 j4c5 are either 0 or 1, and this
speeds up the algorithm.

3. It works with columns of more than two levels. Note
that the NOA algorithm of Nguyen (1996b) works only with
two-level columns. To construct an OA0418121385, for exam-
ple, Nguyen has to use a separate blocking algorithm (see
Nguyen 2001) to divide an OA4181 21375 into three blocks.

4. It works with any choice of weights. By choosing
proper weights, one can construct different types of NOAs
with a single algorithm. Note that to construct two types of
OA0412131295’s, Nguyen (1996b) has to code the three-level
column differently in his NOA algorithm. This advantage is
discussed in more detail at the end of Section 4.2.

5. It is very ef� cient when the number of runs is less than
the number of parameters, as in the case of supersaturated
designs.

3. AN ALGORITHM

The basic idea of the algorithm is to add columns sequen-
tially to an existing design. The sequential operation is
adopted for speed and simplicity. This operation avoids
an exhaustive search of columns for improvement, which
could be complex and inef� cient in computation. The two
operations when adding a column are interchange and
exchange. The interchange procedure, also called the pairwise
switch, switches a pair of distinct symbols in a column. For
each candidate column, the algorithm searches all possible
interchanges and makes an interchange that reduces J2 the
most. The interchange procedure is repeated until a lower
bound is achieved or until no further improvement is possible.
The exchange procedure replaces the candidate column by a
randomly selected column. This procedure is allowed to repeat
at most T times if no lower bound is achieved. The value
of T depends on the orthogonality of the previous design.
If the previous design is an OA, then T D T1; otherwise,
T D T2, where T1 and T2 are two constants controlled by the
user. With any speci� ed weights w11 : : : 1 wn, the algorithm
constructs an OA04N 1 s1 ¢ ¢ ¢ sn5, in which the � rst n0 columns
form an OA4N 1 s1: : : sn0

5.
The algorithm proceeds as follows:

1. For k D 11 : : : 1 n, compute the lower bound L4k5 accord-
ing to (2).

TECHNOMETRICS, NOVEMBER 2002, VOL. 44, NO. 4
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2. Specify an initial design d with two columns, 401 : : : 101
11 : : : 111 : : : 1 s1 ƒ 11 : : : 1 s1 ƒ 15 and 401 : : : 1 s2 ƒ 11 01 : : : ,
s2

ƒ11 : : : 101 : : : 1 s2
ƒ15. Compute „i1 j4d5 and J24d5 by de� -

nition. If J24d5 D L425, then let n0
D 2 and T D T1; otherwise,

let n0
D 0 and T D T2.

3. For k D 31 : : : 1 n, do the following:

a. Randomly generate a balanced sk-level column c.
Compute J24dC5 by (4). If J24dC5 D L4k5, go to (d).

b. For all pairs of rows a and b with distinct sym-
bols, compute ã4a1 b5 as in (5). Choose a pair of rows
with largest ã4a1 b5 and exchange the symbols in rows
a and b of column c. Reduce J24dC5 by 2wkã4a1 b5. If
J24dC5 D L4k5, then go to (d); otherwise, repeat (b) until
no further improvement is made.

c. Repeat (a) and (b) T times and choose a column c
that produces the smallest J24dC5.

d. Add column c as the kth column of d, let J24d5 D
J24dC5, and update „i1 j4d5 by (3). If J24d5 D L4k5, then let
n0

D k; otherwise, let T D T2.

4. Return the � nal N � n design d, of which the � rst n0

columns form an OA.

This is an example of a columnwise algorithm. As noted
by Li and Wu (1997), the advantage of columnwise instead of
rowwise operation is that the balance property of a design is
retained at each iteration. A simple way of adding an s-level
column is to choose a best column from all possible candi-
date columns. However, it is computationally impossible to
enumerate all possible candidate columns if the run size N is
not small: N

N =2

¢
balanced columns for s D 2 and N

N =3

¢
2N =3
N =3

¢

balanced columns for s D 3. The numbers grow exponentially
with N ; for example, 24

12

¢
D 217041 156; 32

16

¢
D 6011 0801 390;

18
12

¢
12
6

¢
D 1711531136; and 27

18

¢
18
9

¢
203 � 1011. The inter-

change and exchange procedures used in the algorithm yield
a feasible approach to minimizing J2 for computational ef� -
ciency. An interchange operation searches N 2=4 columns for
s D 2, N 2=3 columns for s D 3, and fewer than N 2=2 columns
for any s. The interchange procedure usually involves a few
(typically less than six) iterations. Compared with the size
of all candidate columns, the interchange operation searches
only a rather small portion of the whole space. Thus it is an
ef� cient local learning procedure, but often ends up with a
local minimum. For this reason, global exchange procedures
are also incorporated into the algorithm to allow the search to
move around the whole space and not be limited to a small
neighborhood. As discussed later, the global exchange proce-
dure with moderate T1 and T2 improves the performance of
the algorithm tremendously.

The values of T1 and T2 determines the speed and perfor-
mance of the algorithm. A large Ti value allows the algorithm
to spend more effort in searching for a good column, which
takes more time. The choice of T1 and T2 depends on the type
of design to be constructed. For constructing OAs, a moderate
T1, say 100, is recommended and T2 can be 0; for constructing
NOAs, moderate T1 and T2 are recommended. More details
are given in the next section.

Remark 1. Both interchange and exchange algorithms
have been proposed by a number of authors for various pur-
poses. (See Nguyen 1996a and Li and Wu 1997 in the context
of constructing supersaturated designs.)

Remark 2. The performance of the algorithm may depend
on the order of levels. Experience suggests that it is most
effective if all levels are arranged in a decreasing order (i.e.,
s1 ¶ s2 ¶ ¢ ¢ ¢ ¶ sn), because the number of balanced columns
is much larger for a higher level than a lower level.

Remark 3. The speed of the algorithm is maximized
because only integer operations are required if integral
weights are used. For ef� ciency and � exibility, the algorithm
is implemented as a function in C and can be called from S.
Both C and S source codes are available from the author on
request.

4. PERFORMANCE AND COMPARISON

This section reports the performance and comparison of the
algorithm with others for the construction of OAs and NOAs.

4.1 Orthogonal Arrays

In the construction of OAs, the weights can be � xed at
wi

D 1, and T2 should be 0 because it is unnecessary to con-
tinue adding columns if the current design is not orthogonal.
Here the choice of T1 is studied in more detail, because it
determines the speed and performance of the algorithm.

The algorithm is tested with four choices of T1: 11101100
and 11000. For each OA and T1, the algorithm is repeated
11000 times with different random seeds on a Sun SPARC
400-MHz workstation. It either succeeds or fails in construct-
ing an OA each time. Table 2 shows the success rate and
the average time in seconds over 1,000 repetitions. In the
construction of a mixed-level OA, as stated in Remark 2,
the levels are arranged in a decreasing order. Table 2 shows
clearly the trade-off between the success rate and speed, which
depends on the choice of T1. The success rate increases and the
speed decreases as T1 increases. A good measure is the num-
ber of OAs constructed per CPU time. The algorithm is least
ef� cient for T1

D 1 and is more ef� cient for T1
D 10 or 100

than T1
D 11000. Overall, the choice of T1

D 100 balances
success rate and speed and so is generally recommended.

The construction of OAs continues to be an active research
topic since Rao (1947) introduced the concept. Construction
methods include combinatorial, geometrical, algebraic, cod-
ing theoretic, and algorithmic approaches. State-of-the-art con-
struction of OAs has been described by Hedayat, Sloane, and
Stufken (1999). Here the focus is on algorithmic construction
and comparison with existing algorithms.

Many exchange algorithms have been proposed for con-
structing exact D-optimal designs. (For reviews, see Cook
and Nachtsheim 1980 and Nguyen and Miller 1992.) These
algorithms can be used to construct OAs; however, they are
inef� cient, and the largest OA constructed and published so
far is OA41212115 (Galil and Kiefer 1980). By modifying the
exchange procedure, Nguyen (1996a) proposed an interchange
algorithm for constructing supersaturated designs. His pro-
gram can be used to construct two-level OAs; the largest OA
constructed and published is OA42012195.

Global optimization algorithms, including simulated anneal-
ing (Kirkpatrick, Gelatt, and Vecchi 1983), thresholding
accepting (Dueck and Scheuer 1990), and genetic algorithms
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Table 2. Performance in the Construction of OAs

T1 D 1 T1 D 10 T1 D 100 T1 D 11000

Array Rate Time Rate Time Rate Time Rate Time

OA(9134) 10000% .001 10000% .001 10000% 0001 10000% 0001
OA(121211) 9306% .002 9305% .002 9509% 0002 9406% 0010
OA(1618128) 202% .002 9608% .006 10000% 0007 10000% 0007
OA(161215) 702% .002 9909% .009 10000% 0008 10000% 0008
OA(16145) 506% .003 1504% .013 1507% 0107 1705% 0889
OA(1813721) 03% .003 4209% .022 8207% 0051 8108% 0260
OA(1816136) 09% .004 1604% .017 1806% 0115 1602% 10110
OA(201219) 0% .005 5409% .029 6304% 0090 6308% 0444
OA(2015128) 0% .003 404% .020 3202% 0107 3305% 0782
OA(241223) 0% .009 901% .055 3004% 0370 2804% 10903
OA(24141220) 0% .008 1605% .056 4505% 0309 4304% 10609
OA(24131216) 0% .008 04% .049 305% 0398 303% 20568
OA(241121212) 0% .006 2801% .059 9808% 0104 9805% 0129
OA(2414131213) 0% .007 04% .045 506% 0383 503% 20507
OA(2416141211) 0% .006 102% .045 1001% 0327 809% 20339
OA(25156) 05% .009 903% .077 1200% 0608 1007% 50989
OA(2719139) 0% .012 1004% .106 9700% 0433 10000% 0450
OA(271313) 0% .013 0% .091 02% 0878 03% 70782
OA(281227) 0% .015 0% .078 104% 0764 08% 50544
OA(321161216) 0% .017 0% .144 8801% 10079 10000% 10158
OA(3218142218) 0% .018 103% .134 3801% 10364 4000% 50644
OA(401201220) 0% .037 0% .258 801% 30146 6809% 130972

NOTE: The entries in the columns are the success rate of constructing an OA and the average time in seconds per repetition.

(Goldberg 1989), may be used to construct OAs. These algo-
rithms often involve a large number of iterations and are very
slow to converge. These algorithms have been applied to many
hard problems and are documented to be powerful. However,
they are not effective in the construction of OAs (Hedayat
et al. 1999, p. 337); for example, thresholding accepting
algorithms of Fang, Lin, Winker, and Zhang (2000) and Ma,
Fang, and Liski (2000) failed to produce any OA42713135 or
OA42812275.

DeCock and Stufken (2000) proposed an algorithm for con-
structing mixed-level OAs via searching some existing two-
level OAs. Their purpose is to construct mixed-level OAs with
as many two-level columns as possible, and their algorithm
succeeded in constructing several new large mixed-level OAs.
In contrast, the purpose in the present article is to construct
as many nonisomorphic mixed-level OAs (with small runs)
as possible, for which the proposed algorithm is more � ex-
ible and effective. For example, the proposed algorithm is
quite effective in constructing an OA420151285 that is known
to have maximal two-level columns whereas the algorithm
of DeCock and Stufken fails to produce any OA420151275.
Furthermore, the proposed algorithm successfully constructs
several new 36-run OAs not constructed by their algorithm.
Appendix B lists nine new 36-run OAs.

It is interesting to have some head-to-head timing compar-
isons between this and other algorithms. A Fedorov exchange
algorithm and Nguyen’s NOA algorithm are chosen for
comparison. Cook and Nachtsheim (1980) reported that the
Fedorov exchange algorithm produces the best result but takes
the longest CPU time among several D-optimal exchange
algorithms. The Fortran source code due to Miller and Nguyen
(1994) is used for the Fedorov algorithm, downloaded from
StatLib (http://www.lib.stat.cmu.edu). The Nguyen algorithm
is implemented by replacing ave4s25 with J2 for convenience
because no source code is available. This modi� cation will

affect the speed, but not the ef� ciency in constructing OAs.
Table 3 shows the comparisons of the algorithms in terms of
speed and ef� ciency. All algorithms were compiled and run
on an iMac PowerPC G4 computer for a fair comparison.
The iMac computer has a 867-MHz CPU, about three times
faster than the Sun workstation described earlier. In the
simulation, the Fedorov algorithm was repeated 1,000 times
for OA4121 2115 and OA41612155 because it is very slow,
and other algorithms were repeated 10,000 times for all
arrays. Table 3 clearly shows that the proposed algorithm
performs the best and the Fedorov algorithm performs the
worst in terms of both speed and ef� ciency. The Fedorov
algorithm is slow because it uses an exhaustive search of
points for improvement and uses D-optimality as the objective
function, which involves real-valued matrix operations. The
(modi� ed) Nguyen algorithm is slower than the proposed
algorithm, because the former uses a nonsequential approach
and the latter uses a sequential approach. The nonsequential
approach stops only when no swap is made on any column
for consecutive n times (where n is the number of columns),
whereas the sequential approach stops when it fails to add
an orthogonal column for consecutive T1 times. When T1

is less than n, the sequential approach stops earlier in the
case of failure. This explains why the sequential approach
is faster. Furthermore, the high success rate of the proposed
algorithm shows that the sequential approach is more ef� cient
than the nonsequential approach. Note that with the increased
computer power, the Fedorov algorithm succeeds in generating
some OA4161 2155’s, whereas the Nguyen algorithm still fails
to generate any OA42412235 in 10,000 repetitions.

4.2 Nearly-Orthogonal Arrays

Wang and Wu (1992) systematically studied NOAs and
proposed some general combinatorial construction methods.
Nguyen (1996b) proposed an algorithm for constructing
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Table 3. Comparison of Algorithms in Terms of Speed and Ef’ ciency

Fedorov Nguyen Author (T1 D 1) Author (T1 D 10)

Array Rate Time Rate Time Rate Time Rate Time

OA(121211) 1207% 0071 55076% .0012 93052% .0005 94088% .0005
OA(161215) 201% 100189 5015% .0054 7042% .0008 99084% .0026
OA(201219) 003% .0151 005% .0015 54026% .0096
OA(241223) 0% .0361 0% .0028 9059% .0189

NOTE: The entries in the columns are the success rate of constructing an OA and the average time in seconds per repetition. The
Fedorov algorithm is due to Miller and Nguyen (1994), and the Nguyen algorithm is implemented with J2-optimality.

NOAs by adding two-level columns to existing OAs. Ma et al.
(2000) proposed two algorithms for constructing NOAs by
minimizing some combinatorial criteria via the thresholding
accepting technique. Here the proposed algorithm is used to
construct J2-optimal mixed-level NOAs and compare them
with others. Table 4 shows the comparison of NOAs in terms
of A2 and D optimality. The arrays are chosen according to
A2-optimality, that is, J2-optimality with natural weights. Of
the designs with the same A2 value, the one with the highest
D ef� ciency is chosen. Orthogonal polynomial contrasts are
used to calculate the D ef� ciency as in (6). The number of
nonorthogonal pairs, Np, is also reported for reference. In
the construction of an OA04N 1 s

n1
1 s

n2
2 5, all s1-level columns

with weight s1 are entered ahead of s2-level columns with
weight s2. The algorithm is very ef� cient; most arrays can be
obtained within seconds with the choice of T1 D T2 D 100.

The advantage of the proposed algorithm is clear from
Table 4. Among all cases, the arrays from this algorithm have
the smallest A2 value and the largest D ef� ciency. Among
the algorithms, the thresholding accepting algorithms of Ma
et al. are most complicated but perform the worst. The poor
performance of these algorithms again suggests that global
optimization algorithms are not effective in the construction

Table 4. Comparison of NOAs With Run Size µ24

Wang and Wu Nguyen Ma et al. Author

Array A2 D Np A2 D Np A2 D Np A2 D Np

OA0(613123) 0333 .901 3 0333 .901 3 0333 .901 3 0333 .901 3
OA0(1015125) 0720 .883 10 0400 .967 10 0400 .967 10 0400 .967 10
OA0(1214134) 0750 .946 6 0750 .946 6 0750 .946 6
OA0(1212334) 0750 .946 6 0750 .946 6 0750 .946 6
OA0(1216125) 0667 .911 6 0444 .959 4 0778 .911 3 0444 .959 4
OA0(1216126) 0667 .947 6 0889 .909 4 0667 .947 6
OA0(1213129) 1000 .867 9 0889 .933 8 0833 .905 5 0778 .933 6
OA0(1212135) 1025 .877 10 1025 .877 10
OA0(1212732) 0917 .899 6 0861 .909 6
OA0(1212533) 0875 .877 6 0875 .877 6
OA0(1515135) 0800 .882 10 0800 .882 10 0800 .882 10
OA0(1812138) 0500 .967 1 0500 .967 3
OA0(1813723) 0333 .970 3 0333 .970 3 0432 .970 7 0333 .970 3
OA0(1819128) 0346 .985 28 0346 .985 28 0346 .985 28 0346 .985 28
OA0(20151215) 2016 .838 30 1000 .922 25 ? ü .623 14 0760 .925 19
OA0(2418138) 0875 .897 28 2024 .845 31 0875 .897 28
OA0(24131221) 2033 .853 21 0889 .968 8 0833 .953 14 0722 .968 23
OA0(24161215) 2000 .870 18 0111 .994 1 1017 .934 12 0111 .994 1
OA0(24161218) 0667 .974 6 2050 .761 18 0667 .974 6
OA0(24121311) 2075 .871 55 2001 .895 56
OA0(2413147) 5044 .594 21 2056 .858 21

NOTE: Np is the number of pairs of nonorthogonal columns in the design matrix. Wang and Wu arrays are based on the construction method
speci’ ed in their Section 6.

ü The value can not be determined because no design was given by Ma et al.

of OAs and NOAs. The Nguyen arrays are competitive
in terms of D and Np; however, Nguyen’s algorithm can
construct only a small number of arrays, because it works
only with two-level columns. Among the designs listed in
Table 4 is a new OA04201512155 that is better than Nguyen’s
in terms of both A2 and D. That array has 19 nonorthogonal
pairs of columns, and his has 25 nonorthogonal pairs; on
the other hand, that array has 7 orthogonal columns (the
� rst 7) and his has 8 orthogonal columns (the � rst 8).
Moreover, two arrays, OA04121 31295 and OA04241 312215,
are better than Nguyen’s in terms of A2. In terms of Np,
the arrays OA0412131295 and OA04201512155 are better and
OA0418121385 and OA04241 312215 are worse than his. For
reference, these arrays are listed in Tables 1, 5, 6, and 7.

The proposed algorithm has an additional feature: Weights
can be used to control the structure of NOAs. For example,
consider the construction of an OA0412131295. If the practi-
tioner is more concerned with a three-level factor, then it is
desirable to have an NOA in which the three-level column is
orthogonal to all two-level columns. If the practitioner is more
concerned with the two-level factors, it is desirable to have an
NOA in which all two-level columns are orthogonal to each
other. Wang and Wu (1992) referred to such designs as type
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Table 5. OA0(20, 51215)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0
2 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1
4 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1
5 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1
6 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0
7 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0
8 1 1 1 0 1 0 0 0 0 0 1 1 1 0 1 1
9 2 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0

10 2 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1
11 2 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0
12 2 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1
13 3 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0
14 3 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0
15 3 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1
16 3 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1
17 4 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1
18 4 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
19 4 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1
20 4 1 0 1 1 1 1 0 0 1 1 0 1 0 1 0

NOTE: The ’ rst seven columns form an OA(2015126 ). The pairs of columns (2, 11), (3, 12), (4, 13), (4, 14), (4, 15), (4, 16), (5, 9), (6, 8),
(6, 14), (6, 15), (6, 16), (7, 10), (8, 14), (8, 15), (8, 16), (13, 14), (13, 15), (13, 16), and (14, 16) are nonorthogonal and have an A2 value
of .04; all other pairs of columns are orthogonal.

I and type II. Using this algorithm, one can easily construct
both types of NOAs. For instance, a type I array is obtained
if weight 10 is assigned to a three-level column and weight 1
to a two-level column, and a type II array is obtained if the
weight assignment is reversed.

5. BLOOD GLUCOSE EXPERIMENT

Consider the blood glucose experiment described in
Section 1. The original experiment used an OA4181 21375 by
combining two factors, sensitivity (F) and absorption (I), into

Table 6. OA0( 24,31221)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1
2 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1
3 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1
4 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0
5 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0
6 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1
7 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0
8 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0
9 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1

10 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0
11 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0
12 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1
13 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0
14 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0
15 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1
16 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1
17 2 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1
18 2 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0
19 2 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1
20 2 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
21 2 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0
22 2 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1
23 2 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0
24 2 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1

NOTE: The ’ rst 11 columns form an OA(24131210). The pair of columns (5119) is nonorthogonal and has an A2 value of .111; the pairs of columns (4115), (4117), (5119), (6120), (6121),
(6122), (9117), (9118), (9122), (10120), (101 21), (10122), (11112), (111 15), (11122), (12114), (121 21), (14118), (15120), (17121), (18120), (20122), and (21122) are nonorthogonal and have an A2
value of .028; and all other pairs of columns are orthogonal.

one factor. The disadvantage of this plan is obvious, in that the
original factor cannot be distinguished if the combined factor
is identi� ed as signi� cant. Unfortunately, data analysis of the
original experiment suggested that the combined factor was
signi� cant. The details of the design matrix, response data,
and data analysis have been given by Hamada and Wu (1992)
and Wu and Hamada (2000, chaps. 7–8).

An alternative of the previous plan, as mentioned in
Section 1, is to use an OA04181 21385. Table 7 lists two
OA0418121385’s. The � rst array, given by Nguyen (1996b),
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Table 7. OA0(18,2138)

Nguyen Author

Run 1 2 3 4 5 6 7 8 9 Run 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 1 0 2 0
2 0 0 1 1 1 1 1 1 0 2 0 1 0 1 2 0 0 1 1
3 0 0 2 2 2 2 2 2 0 3 0 2 2 2 0 1 0 1 2
4 0 1 0 0 1 1 2 2 1 4 0 0 0 2 1 1 1 0 1
5 0 1 1 1 2 2 0 0 1 5 0 1 1 2 0 0 2 0 0
6 0 1 2 2 0 0 1 1 1 6 0 2 0 1 0 2 1 2 0
7 0 2 0 1 0 2 1 2 2 7 0 0 2 1 1 0 2 2 2
8 0 2 1 2 1 0 2 0 2 8 0 1 1 0 1 2 1 1 2
9 0 2 2 0 2 1 0 1 2 9 0 2 2 0 2 2 2 0 1

10 1 0 0 2 2 1 1 0 1 10 1 0 0 2 2 2 2 1 2
11 1 0 1 0 0 2 2 1 1 11 1 1 0 0 0 1 2 2 1
12 1 0 2 1 1 0 0 2 1 12 1 2 1 1 1 1 2 1 0
13 1 1 0 1 2 0 2 1 2 13 1 0 1 1 0 2 0 0 1
14 1 1 1 2 0 1 0 2 2 14 1 1 2 2 1 2 0 2 0
15 1 1 2 0 1 2 1 0 2 15 1 2 1 2 2 0 1 2 1
16 1 2 0 2 1 2 0 1 0 16 1 0 2 0 0 0 1 1 0
17 1 2 1 0 2 0 1 2 0 17 1 1 2 1 2 1 1 0 2
18 1 2 2 1 0 1 2 0 0 18 1 2 0 0 1 0 0 0 2

NOTE: The ’ rst eight columns of each design form an OA(1812137 ). For Nguyen’s array the pair of columns (2, 9) is nonorthogonal and
has an A2 value of .5. For the author’s array the pairs of columns (3, 9), (5, 9), and (8, 9) are nonorthogonal and have an A2 value of .167.

is obtained by adding one column to an OA418121375. The
second array is constructed by the algorithm proposed here.
The comparison of these two NOAs is given in Table 8,
along with the original plan of combined factors. Both
NOAs are superior to the original plan. Either NOA has a
D ef� ciency of .967, which implies that all main effects can
be estimated ef� ciently. Both NOAs have the same overall
nonorthogonality, that is, A2 D 05. The Nguyen array has
one pair of nonorthogonal columns, whereas that of the
proposed algorithm has three pairs of nonorthogonal columns.
However, the nonorthogonal pair of Nguyen’s array has
only six (among nine) different level combinations, whereas
each nonorthogonal pair of the proposed array has all nine
level combinations. Consequently, the aliasing between any
nonorthogonal pair of the proposed array is one-third of the
aliasing between the nonorthogonal pair of Nguyen’s array
(see the a2 values in Table 8). Because the experimenter
does not know in advance which factors will turn out to be
signi� cant, it is important to minimize the maximum aliasing
of any two factors. The array of the proposed algorithm has
the desired property that the nonorthogonality is uniformly
spread among three pairs so that the nonorthogonality of each
pair is minimized.

6. CONCLUDING REMARKS

This article proposes an ef� cient algorithm for construct-
ing mixed-level OAs and NOAs. The basic idea is to add
columns sequentially such that the resultant array is optimal

Table 8. Comparison of OA 0(18,2138)

Array D A2 Np a2

Original plan .000 200 1 20000
Nguyen .967 05 1 0500
Author .967 05 3 0167

NOTE: Np is the number of pairs of nonorthogonal columns in the design matrix, and a2 is
the maximum aliasing among pairs of nonorthogonal columns.

with respect to some optimality criteria. Here the J2-optimality
is used for simplicity in programming and ef� ciency in com-
putation. The algorithm has the following advantages: (a) easy
to use for practitioners, (b) � exible for constructing various
mixed-level designs, (c) outperforms existing algorithms in
both speed and ef� ciency, and (d) generates several new OAs
not found by other algorithms.

The sequential procedure avoids an exhaustive search of
columns for improvement and is computationally ef� cient. As
with all other algorithms, this program may be trapped in
a local minimum. To overcome this problem, the program
should be rerun M times, where M could range from a few to
the thousands. Table 2 provides a guideline on how large M
should be in the construction of OAs.

Traditionally, OAs are used for estimating main effects only.
All OAs are equally good as main-effects plans. For example,
Cheng (1980) showed that OAs are universally optimal. Nev-
ertheless, recent advances in analysis strategies show that OAs
may entertain some interactions besides the main effects under
the effect sparsity principle (Hamada and Wu 1992); hence,
all OAs are no longer equivalent. (See Lin and Draper 1992,
Wang and Wu 1995, Cheng 1995, Box and Tyssedal 1996,
Deng and Tang 1999, Tang and Deng 1999, and Xu and
Wu 2001 for classi� cation or discrimination of OAs.) Vari-
ous purposes of the experiments require different choices of
OAs with different projective and other statistical properties.
However, few standard OAs are listed in most textbooks. The
proposed algorithm is important in this regard, because it can
ef� ciently construct many new OAs with good projective prop-
erties. Appendix C lists six 27-run OAs with 5–10 columns,
which are new in the sense that they are not equivalent to
any existing OAs. Lam and Tonchev (1996) showed that there
are exactly 68 nonisomorphic OA42713135’s. By considering
projections onto three columns, it is shown that all six OAs
given in Appendix C are not equivalent to any subdesigns from
the 68 OA42713135’s. Furthermore, these new OAs have good
projective properties. For example, all projected three-column
designs from them have at least 18 distinct runs. In particular,
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these OAs are better than all designs studied by Cheng and
Wu (2001) for their dual purposes of factor screening and
response surface exploration.

Finally, data from an experiment using OAs and NOAs
can be analyzed by stepwise selection or Bayesian variable
selection procedure. Details and examples have been given by
Hamada and Wu (1992), Chipman, Hamada, and Wu (1997),
and Wu and Hamada (2000, chap. 8).
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APPENDIX A: PROOFS
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where the inequality follows from the Cauchy–Schwartz
inequality. In particular, the equality holds if and only if
all level combinations appear equally often for any pair of
columns; that is, d is an OA.

Proof of Lemma 2

Because A2 is invariant with respect to the choice of treat-
ment contrasts, it is convenient, as done by Xu and Wu (2001),
to use the complex contrasts. For k D 11 : : : 1 n, let 6z
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