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Abstract: In this article, we are interested in social resource sharing systems such as
Flickr, which use a lightweight knowledge representation called folksonomy. One of
the fundamental questions asked by sociologists and actors involved in these online
communities is to know whether a coherent tags categorization scheme emerges at
global scale from folksonomy, though the users don’t share the same vocabulary. In
order to satisfy their needs, we propose an algorithm to detect clusters in folksonomies
hypergraphs by generalizing the Girvan and Newman’s clustering algorithm. We test
our algorithm on a sample of an hypergragh of tag co-occurrence extracted from Flickr
in September 2006, which gives promising results.

1 Introduction

The development of the different online communities goes with original regulation forms

in which the self-organization principles play an important role. In the scope of this article,

we are interested in social resource sharing systems, which use a lightweight knowledge

representation called folksonomy. The word folksonomy is a blend of the words ”taxon-

omy” and ”folk” coined in 2004 by Thomas Vander Wal1, and stands for conceptual struc-

tures created by the people. Resource sharing systems, such as Flickr2 or YouTube3 have

acquired large number of users within these last years. Their users describe and organize

the resources (photos, videos, etc.) with their own vocabulary and assign one or more key-

words, namely tags, to each resource [CSB+07]. The folksonomy emerged thus through

the different tags assigned. The folksonomy could be understood as an organization by

folks of the resources over the Web. Being different from the traditional approaches to

1http://vanderwal.net/folksonomy.html
2http://www.flickr.com
3http://www.youtube.com
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classification, the classifiers in folksonomy are not any more some dedicated profession-

als, and Thomas Vander Wal described this as a bottom-up social classification [SW05].

In such participative perspectives, online communities are doomed to fail if both the so-

cial scientists and the actors involved in these communities are not concerted. Our main

goal is to supply social scientists with analysis and visualization tools that allows them

to understand exchange structures and the gouvernementality particular forms of online

communities such as Flickr. One of the fundamental questions which have inspired the

present paper was whether a coherent tags categorization scheme emerges at global scale

from folksonomy, though the users do not share the same vocabulary. We will focus in this

article on the Flickr folksonomy case.

This work takes place within the pluridisciplinary field of large complex networks analy-

sis and visualization [AB02, DM02, CbAH02]. Recent papers addressed the folksonomy

analysis and tags clustering. After an overview on related works using a graph modeli-

sation of a folksonomy, we briefly describe hypergraphs. We then detail our clustering

algorithm. Finally, we present our results obtained on hypergraphs extracted from Flickr

in september 20064.

2 Related works

Recent papers addressed the folksonomy analysis and tag clustering. A first approach is

to study how tags are conjointly used, and thus build a graph where an edge exists if two

tags have been used together to describe a resource or used by the same user. Such graphs

are called graphs of tag co-occurrence and can reveal relevant semantic structures of tags

[SW05]. But folksonomy involves the three basic actors of collaborative tagging, namely

users, tags and resources. Understanding the global tags usage implies understanding the

connections between these tags and how they are used, by which users, to describe which

resource. The most intuitive way of modeling the relations between those three elements

is to consider a tripartite graph. Since tripartite graph are rather difficult to manipulate

(both algorithmics and interpretation), [YGS] propose to reduce into bipartite graphs. If

Mutual Contextualization focuses on one user (respectively tag or resource), only the tags

and resources associated to this user are extracted; in such a representation, an edge exists

between a tag and a resource if the current user has annotated this resource with this tag.

They center in this way the analysis on each of the three types of elements and provide

then refined knowldege.

However these graphs representations waste information: each single tagging occurrence,

e.g. ”a user associates tags to a resource”, disappears: a tag is connected to all the re-

sources but without the memory of who made the association. [Mik05] introduced the

4Many thanks to the AUTOGRAPH project for providing us relevant data. AUTOGRAPH is a French project

which is interested in self-organization and visualization of online communities on Internet. This pluridisci-

plinary project gathers in particular computer scientists from the University Paris VII and France Telecom, social

scientists from the French EHESS School (advanced studies in social sciences) and the French national institute

of demographic studies (INED), actors involved in online communities like Wikipedia and international civil

society militants.
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hypergraph modelisation to keep the tagging occurrences safe. Recent studies generalize

graph algorithms to hypergraphs such as [CSB+07] and [BWR07]. We propose here an

algorithm for clustering hypergraphs in order to address rich models of complex networks.

Recently, Estrada and Rodrı́guez-Velásquez introduced the complex hyper-networks as a

natural generalization of the complex networks [ERV06]. The complex hyper-networks

are hypergraphs encountered in practice that can modelize the structure of certain com-

plex systems in a more precise way than the complex networks. In a graph, an edge

connects only two nodes while the edges of a hypergraph (known as hyperedges) can link

groups of several nodes and preserve a more realistic modelisation of a phenomena. Thus,

they use hypergraph to model a co-authorship of scintific papers: the nodes are the authors

and hyperedges correspond to groups of authors having published together. Estrada and

Rodrı́guez-Velásquez proposed in the same article a generalisation of clustering coeffi-

cient to the complex hyper-networks. Brinkmeier has generalized his clustering algorithm

[Bri03] to complex hyper-netwoks [BWR07].

In our study, contrary to [SW05], we will consider hypergraphs of tag co-occurrence where

the hyperedges correspond to the set of tags which co-occur in the description of resources.

Formally, a hypergraph of tag co-occurrence HT = (T,ET ) can be obtained by projection

from the folksonomy H : a set of tags are connected by a hyperedge in the hypergraph

HT if they are all connected to a same couple (u, r) in the folksonomy H . In addition,

these hypergraphs have the advantage in practice to be much more compact in memory

compared with graphs of tag co-occurrence.

3 Preliminaries on hypergraphs

A hypergraph is a generalisation of a graph, where the set of edges is replaced by a set

of hyperedges. An hyperedge extends the notion of an edge by allowing more than two

vertices to be connected by a hyperedge. Formally, a hypergraph is a pair H = (V,E)
, where V = {v1, · · · , vn} is the set of vertices and E = {e1, · · · , em} is the set of

hyperedges, which are nonempty subsets of V such as

i=m
⋃

i=1

ei = V [Ber85]. The size of

a hyperedge is defined as its cardinality. Two nodes are adjacents in H = (V,E) if it

exists a hyperedge ei which contains them. A simple hypergraph is a hypergraph H such

as ei ⊆ ej ⇒ i = j. A simple graph is a simple hypergraph, each edge of which has

cardinality 2. A hypergraph H can be represented by an incidence matrice E(H) = (eij)
such as eij ∈ {0, 1} in which each of n rows is associated with a vertex and each m
column is associated with a hyper-edge:

∀eij ∈ E(H), eij =

{

1 if vi ∈ ej
0 otherwise.

A hyperpath P from s ∈ V to t ∈ V is defined as an alternate sequence of vertices and

hyperedges P = (s = v′1, e
′
1, · · · , e

′
k−1, v

′
k = t) such that P starts at s and ends at t,
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and for 1 ≤ i ≤ k − 1 the hyperedge e′i spans the vertices v′i and v′i+1. The length of a

hyperpath P is the total number of hyperedges in the hyperpath P . Let dH(s, t) denote the

minimum length of any hyperpath connecting s and t in H . By definition, dH(s, s) = 0
and dH(s, t) = dH(t, s).

Because of their low density in practice, we have chosen to represent the hypergraphs

as bipartite graphs connecting the vertices to the hyperedges (which they belong). The

complexity of this representation costs O(m+ n+ k) space (where k denotes the number

of edges of this bipartite graph). As we will consider only connected hypergraphs (k ≥
m+ n− 1), this gives a spatial complexity of O(k) space.

We will consider throughout this paper a simple, undirected and unweighted hypergraph

H with n = |V | vertices et m = |E| hyperedges. We also suppose that H is connected,

the case where it is not being treated by considering the connected components as different

hypergraphs. Es will denote the set of hyperedges of size s in H .

4 Generalization of the Newman and Girvan’s algorithm

As any large complex network, a folksonomy (modeled by a graph) reveals the presence of

a community structure. A community C is seen as a set of nodes whose edges proportion

inside the community (internal edges) is high compared to the edges proportion outgoing

from C (external edge) [GN02, RCC+04, FLG00, CNM04]. The goal is then to find

communities satisfying this criterion. The field has recently received a large attention

since the discovering of new algorithms which can be classified in two categories.

The divisive approach: [GN02, NG04, ACJM03, RCC+04] divides the graph into many

communities by removing one by one the edges connecting two different communities. On

each step, the connected components of the remaining graph are identified as communities.

The process is repeated until the removing of all edges. Finally, we obtain a communities

hierarchical structure. The existing methods differ in the choice of the edges to remove.

The agglomerative approach: [New04, CNM04, DM04, PL06] is related to hierarchical

clustering in which the vertices are merged iteratively into communities. Our algorithm is

a generalization of the Newman and Girvan’s algorithm [GN02, NG04] (described in the

next subsection) to hypergraphs.

Our algorithm is a generalization of the divisive hierarchical decomposition algorithm

by Newman and Girvan [GN02, NG04]. They argued that if a network contains distin-

guishable communities, then edges crossing communities boundaries should be relatively

infrequent. Accordingly, these infrequent edges will have high betweenness centralities

(the betweenness of an edge is defined by the proportion of shortest paths that runs along

it) since all of the shortest paths between nodes in different communities would run along

them. Thus, by removing these bridging edges, the underlying communities structure will

reveal itself.
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4.1 Description of our algorithm

We start from the partition P1 = {V } containing only one community (corresponding to

all the hypergraph). Then this partition evolves by repeating the following operations until

no hyperedges remain: (1) compute all the nodes and hyperedges betweenness centralities

presented in section 4.2 — complexity O(nk + k log k) time; (2) remove the hyperedge

with the highest betweenness score — complexity O(k) time; (3) compute a partition

of the hypergraph into communities5 — complexity O(k) time; (4) compute and store

a quality parameter (called hypermodularity) Q detailled in section 4.3 — complexity

O(k log k).

After m steps, the algorithm finishes and we obtain the partition Pm = {{v}, v ∈ V } of

the hypergraph into n communities reduced to a single vertex. The algorithm induces a

sequence (Pi)1≤i≤m of partitions into communities. The best partition is then considered

to be the one that maximizes the hypermodularity Q.

As the complexity of an iteration is O(nk + k log k) time, we can deduce that the over-

all worst case complexity of this algorithm is O(m(nk + k log k)) time. However, this

upper bound is not reached in practical cases because most real-world complex networks

are sparse (m = O(n)) [CbAH02]. In this case, the complexity is therefore O(n2k +
nk log k)) time.

Let’s note that the original Newman and Girvan algorithm has a complexity of O(m2n)
time, thus O(n3) for sparse graphs.

4.2 Computing betweenness centrality

We describe here the algorithm we have proposed for computing the betweenness cen-

trality measures of all the vertices and hyperedges in a hypergraph. The betweenness

centrality of a vertex or a hyperedge u (that we will note B(u)) is the proportion of short-

est hyperpaths passing through u. Let’s define the dependency of a vertex s on a vertex

or a hyperedge u as δs(u) =
∑

t∈V

δst(u) where δst(u) denotes the fraction of shortest

hyperpaths between vertices s and t that pass through u. Thus, the dependency δs(u) cor-

responds to the proportion of shortest hyperpaths starting at s that pass through u. Clearly,

we have B(u) =
∑

s∈V

δs(u).

From this constatation, we sketch an algorithm for computing betweenness centrality for

each node and hyperedge in H . The algorithm computes for each node s ∈ V the de-

pendency of s on each vertex and each hyperedge u of the hypergraph (namely δs(u)) as

follows:

• in the first time we compute in O(k) time the shortest hyperpath directed acyclic

5The connected components of the remaining hypergraph are identified as communities. We can find the

connected components of a hypergraph with a BFS in O(k) time.
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hypergraph (DAH) Ds with a modified BFS. We define Ds as follows: a vertex or a

hyperedge u is a parent of a vertex t in Ds if u lies on a shortest hyperpath from s to

t. We also define Ps(u) as the set of parents of u in Ds. Thus, if a vertex t has three

parents in Ds then it exists at least three short hyperpaths from s to t. The figure 1.b

shows the DAH Da computed from the hypergraph represented in the figure 1.a.

• in the second time we compute in O(k) time the dependency of the node s on

each hyperedge and each vertex, which are respectively set to 0 and 1. More

precisely, we process the set of vertices or hyperedges in the reverse BFS order

(f g D C e d c b B A a in our case represented in the figure 1.b):

– the dependency δs(u) is added to the betweenness centrality B(u): B(u) ←
B(u)+δs(u). When we process for example the hyperedge D, we add the de-

pendency δa(D) (which will not increase in the rest of search) to its centrality

B(D).

– δs(u) is then distributed evenly among its parents w: Bv(w) ← Bv(w)+
Bv(u)
nu

where nu denotes the number of parents of u. The hyperedge D distributes for

example the dependency Ba(D) = 1 fairly among its parents c and d which

will receive then each one 0.5.

To calculate correctly the dependency of the node s on all vertices and hyperedges of

the hypergraph, the approach we follow is similar to Girvan and Newman: multiple

shortest hyperpaths between the vertices s and t are given equal weights summing

to 1 (Figure 1.b). Thus, some hyperedges may lie in several shortest hyperpaths

between the vertices s and t and then get greater dependency (such as the hyperedge

D in our example).

The figure 1.b illustrates then one iteration of the algorithm After n iterations, we obtain

the betweenness centralities for all vertices and hyperedges of the hypergraph H . As

the complexity of an iteration is O(k) time, we can deduce that the overall worst case

complexity of this algorithm is O(nk) time.

4.3 Evaluating the quality of a partition

We propose the hypermodularity Q(P ) in order to evaluate the quality of a partititon P
into communities:

Q(P ) =
∑

C∈P

[

e(C)−
(

s=n
∑

s=2

as(C)
s
)]

(1)

where e(C) is the fraction of hyperedges inside the community C and as(C) is the fraction

of hyperedges of size s bound to the community C (hyperedges of size s whose at least

164



a. An hypergraph. b. The directed acyclic hypergraph Da.

Figure 1: An hypergraph and the directed acyclic hypergraph Da (bipartite graph representation).
The hyperedge D has for parents c and d. Since there are two shortest hyperpaths between a and f ,
each will be given weight 0.5.

one endpoint belongs to C). This quality measure is a generalization of the modularity

introduced by Girvan and Newman in their algorithm.

An hyperedge is said to be internal to the community C if all its endpoints are in the

community C. The number of internal hyperedges equals thus to |{e ∈ E/e ⊆ C}|.
The proportion of internal hyperedges e(C) is taken compared to the total number of

hyperedges m.

A hyperedge of size s is said to be bound to the community C if at least one of its s
endpoints belongs to the community C. Thus, the hyperedges of size 4 having 2 endpoints

in C count for half ( 24 ) compared to the hyperedges of size 4 having all their endpoints in

C. We obtain then the following expression for the proportion of internal hyperedges of

size s bound to C: as(C) =

∑

vi∈C

∑

ej∈Es

eij

sm
.

The objective is to have communities of high internal density measured by e(C). However,

the large communities have mechanically a higher proportion of internal hyperedges: if C
is a random vertex set and if the hyperedges are also random then the expected proportion

of internal hyperedges of size s is as(C)s. Indeed, each of s endpoints of an hyperedge

taken randomly has on this assumption a probability of as(C) of being in the community

C. Hence the total expected proportion of internal hyperedges is

s=n
∑

s=2

as(C)
s
.

Like the modularity, the hypermodularity compares the effective proportion of internal

hyperedges with the expected proportion according to this schema. The hypermodularity

is computed in O(k log k) time. Because of lack of space, we omit the details of the

algorithm computing the hypermodularity.
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5 Application to Flickr hypergraphs of tag co-occurrence

As a first experimentation, we have applied our algorithm to hypergraphs of tag co-occurrence

obtained from the photo sharing website Flickr. The nodes represents the tags and the hy-

peredges corresponds to the set of tags which co-occur frequently in the description of

photos. The Flickr data has been extracted from the web site during September 2006. We

here focus on a connected sub-hypergraph of 5,000 hyperedges (Figure 2).

Figure 2: Few hyperedges extracted from Flickr (September 2006)

a. community suzuki b. community wedding

Figure 3: Examples of computed tag clouds. The displayed tags are the most representative of
communities according to the centrality criterion.

Communities calculation captures cohesive sub-hypergraphs which unveil different asso-

ciations of words corresponding to common sense shared by users. A tag with a high cen-

trality means that people frequently use it in different contexts (presence of this hypernode

on many shortest hyperpaths in the initial hypergraph). Therefore, the most central tags

within a community are precisely the tags which reveal, through their usage, an emerging

collective meaning (Figure 3). We can observe a consensus in the use of tags inside each

tags community which seems to confirm the hypothesis of social scientists (Figure 3).

The participants expressed the need to handle multiple representation for a community.

That’s why we have proposed two representations: an ego-network presenting the graph

where the tag vacation is connected to the close tag, and also and tag cloud. For the tags

cloud representation, the police of each tag is proportional to its betweenness centrality in

the initial hypergraph.
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6 Conclusion

We have proposed in this paper an algorithm for clustering hypergraphs of tag co-occurrence.

This algorithm allowed us to know whether a coherent tags categorization scheme emerge

at global scale from folksonomy, through the users don’t share the same vocabulary. Ac-

cording to our first experiments, the results are encouraging. As the field of complex

hyper-networks is very recent, we also wanted through this paper to propose an algorithm

for detecting communities in complex hyper-networks by generalizing the famous Gir-

van and Newman’s algorithm. Nevertheless, better performances should be obtained by

adapting our model to weighted hypergraphs and by reducing the complexity bounds.
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Herwig Unger, editors, IICS, volume 2877 of Lecture Notes in Computer Science, pages
20–35. Springer, 2003.

[BWR07] Michael Brinkmeier, Jeremias Werner, and Sven Recknagel. Communities in graphs
and hypergraphs. In Mário J. Silva, Alberto H. F. Laender, Ricardo A. Baeza-Yates,
Deborah L. McGuinness, Bjrn Olstad, ystein Haug Olsen, and André O. Falco, editors,
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