
An Alternate Secure Element Access Control for NFC Enabled

Android Smartphones

Waqar Anwar, Dale Lindskog, Pavol Zavarsky, Ron Ruhl

Concordia University College of Alberta

Abstract

For mobile payments using Near Field

Communication (NFC), a Secure Element (SE) is the

preferred place to securely store cardholder data. This
paper summarizes shortcomings in Global Platform's

(GP) SE access control specifications and weaknesses in

its implementation by the Android Operating System

(OS). Moreover, a coherent model for an alternate and

secure SE access control is proposed using SE and

Mobile Trusted Module (MTM) specifications. This new

model is secured by design and can be implemented

using existing specifications, technologies and

hardware.

1. Introduction

Android is a smartphone OS, developed by the
Google Inc. from Linux source and highly customized
for the resource constrained mobile phone environment.
Google Inc. relies heavily on Android for its NFC mobile
payment solution, Google Wallet, which makes use of an
SE embedded in the NFC chip to store card holder data.
The SE is a highly secure and tamper resistant execution
environment. The SE execution environment is based
upon Java and is capable of securely executing Java
Virtual Machines (VM) [1]. Each VM can store and
execute a single physical smart card. The NFC chip is
connected to the SE and can emulate a smart card over its
inductive wireless link. A NFC reader device can read
this information and process the card information, similar
to when a card is presented. NFC operates within a very
short distance, usually about one centimeter. Moreover,
NFC radio in an Android mobile phone is only enabled
when its screen is activated [16]. These design
considerations prevent remote leakage of card holder
information over the NFC wireless interface. There is,
however, a relay attack that may result in leakage over
the NFC internal interface [7]. The SE is also connected
internally to the Android OS. The SE needs to
communicate with Android applications (apps), such as
Google Wallet, for user interaction, card selection and
updating. In response to the relay attack described in [7],
Google Inc. disabled its payment SE applications to
process payments to and from the interface connected to
the Android OS. Instead, Google SE applications now
communicate only payment related information to and
from the NFC radio interface. This workaround is
possible because of SE applications’ ability to detect the
communication interface.

 However, this countermeasure limits the system’s
design and operation, and Google SE applications can no

longer be used for online browser based payments
because the Internet browser runs on top of the Android
OS, which used an internal Android to NFC chip
interface to communicate with the SE [20]. Any Android
app can access the SE provided it is whitelisted. This
whitelist is stored inside the Android system partition,
and only the Android OS or its modules can access or
modify it.

GP SE specifications are based upon smartcard
specifications and its secure operation is guaranteed by
strict implementation of these specifications for its
architecture, functions and access control. It is very
important that SE access is granted only to an app able to
authenticate itself to the SE. A GP compliant SE will
transition to a non-reversible TERMINATE state if an
app fails to authenticate itself within ten successive
attempts. This fail-safe characteristic of the SE can be
manipulated by a rogue app, in order to launch a denial
of service (DoS) attack. Since an embedded SE is
embedded in the NFC chip on the mobile phone
mainboard, the SE is rendered useless after transitioning
to the TERMINATE state, and so a user will be unable to
make mobile payments unless they procure a new mobile
phone, which is obviously costly and time consuming.
As NFC mobile payments become more prevalent, this
type of DoS attack may occur on a wider scale, and is an
unacceptable risk to the economic system of a large
population or country.

To address this problem, GP specifies three different
kinds of SE access control [1]. Each control makes use of
a whitelist stored inside the SE. The SE provides secure
storage, and so the whitelist cannot be tampered with or
changed by the Android OS. The Android OS can only
fetch and read from this whitelist stored inside the SE,
which can only be modified by one having access to the
security domain of that SE, i.e., the SE owner or its
delegate.

There is an important assumption underlying this
approach to SE access control. Since the mobile OS is
ultimately responsible for fetching this whitelist from the
SE and implementing access control (using the so-called
Access Control Enforcer system module), both Android's
implementation, as well as GP’s specification relies on
the OS for SE access enforcement, and thus both
ultimately trust the OS. This is not a realistic assumption,
especially in the case of Android, since Android has been
shown to be rooted by malicious code.

On a rooted Android device, the underlying kernel,
including any access enforcement module can be
manipulated, and thus so can the whitelist for SE access
control. The SE will be unaware of any such tampering.

International Journal for Information Security Research (IJISR), Volume 4, Issue 1, March 2014

Copyright © 2014, Infonomics Society 391

In addition to relay and DoS attacks, other types of
privacy threats, such as leakage of NFC broadcasts, pose
significant security risks to the adaptation of NFC mobile
payment on a wider scale. For these reasons, we suggest
that it is time to rethink current SE access control
implementations and specifications, and address this
problem in such a way that there is a significant level of
assurance with NFC mobile payment technology.

Mobile trusted computing provides this much needed
level of assurance. The Trusted Computing Group (TCG)
has published Mobile Trusted Module (MTM)
specifications, version 1 [8]. Use cases for version 2 are
published [8] and MTM specifications version 2 may be
published in the near future. TCG does not specify how a
MTM is to be implemented, but it can be implemented
either in software or in specialized hardware.

Android devices are based upon the ARM
architecture, which is capable of a fairly seamless
adaptation of trusted computing, since it has, since 2003,
provided the needed execution environment [11]. This
execution environment is called Trusted Execution
Environment (TrEE) and is separated from the normal,
so-called Rich Execution Environment (REE). MTM has
been demonstrated to be implementable in TrEE.

Trusted computing based on MTM [11] can ensure
that an Android OS is tamper resistant, but its use in a
mobile environment poses some serious limitations.
These limitations can render a mobile device unusable,
sacrificing availability to integrity. This paper proposes a
solution for SE access control that not only ensures
integrity but also ensures confidentiality and availability
for NFC mobile payment on Android devices.

The proposed solution is designed specifically for
Android, but we believe the design is an improvement
over current GP SE access control specifications. In the
following sections, we first describe Android’s various
implementations and GP's specifications and their
weaknesses, and then explore various hardware and
software primitives. Subsequently, we describe our
alternate model and the changes to those specifications
that are needed in order to implement our proposed
solution.

2. Existing approaches to SE Access

Control

The Android development framework specifies that
each application or executable module must be
accompanied by a certificate, and the hash of that
certificate must be signed by its developer [17]. Each
module runs within a separate Java Dalvik VM. The
architecture limits execution to that VM and enforces app
isolation. However, modules signed by the same
developer can share data and communicate with each
other. As certificate hashes are self-signed, Public Key
Infrastructure (PKI) is not used to verify the authenticity

of its source, but this method ensures that further updates
to that specific module come from the original source.

Since Android version 2.3.4, Google Inc. includes an
NFC Application Program Interface (API) and, initially,
access to NFC functions was limited to system modules
only. Since Android version 4.0.4, Google Inc. has
implemented a more flexible method, using a whitelist
written to an XML file (NFCEE_ACCESS.XML), which
stores the self-signed hashes of those third party Android
apps permitted to access the SE [2]. Google Inc. retains
the exclusive right to grant SE access to a third party
Android app: the whitelist is stored inside Android's
system partition, and only those system modules signed
by Google Inc. can access and modify that whitelist. This
whitelist can be updated, over-the-air, using system
software provisioning. This solution is scalable, and third
party application developers receive access to the SE

Figure 1: Android SE Access Control

when their application's certificate hash is added to
the whitelist. Figure 1 depicts this method of access
control. These two methods of access control so far
described are secure only in so far as the Android OS is
secure [2].

International Journal for Information Security Research (IJISR), Volume 4, Issue 1, March 2014

Copyright © 2014, Infonomics Society 392

GP specifies SE architecture and functions; it also
specifies SE access control. In GP's architecture, the
operating system fetches the access rule stored inside the
SE. Figure 2 shows one of the rule fetching scenarios by
a mobile operating system using the SE. Access Control
Enforcer fetches the rules from Access Rule Application
Master ARA-M, verifies device application’s certificate
and grant or deny access to SE using transport layer. GE
further mandates the use of a whitelist file that is stored
in a PKCS#15 based file system inside the SE, and is
fetched by the access control logic of a mobile operating
system [1]. These rules can be cached by the OS. These
specifications ensure that a mobile OS has only a read-
only copy of the set of rules, and that it is not allowed to
update or modify this access control data: the data is
stored inside the SE and hence is modifiable only by a
trusted party with access to the SE issuer’s or SE
application’s security domains. GP specifies the use of
SE as a secure storage and all the access control
functionality is the responsibility of the mobile device
OS. This access control methodology is as secure as the
device OS is.

Figure 2: GP SE Access Control Specification [1]

All of the methods of SE access control reviewed so
far have weaknesses. The Android operating system is an
open platform which allows for dynamically installing,
upgrading and removing of Android applications. A
mobile operating system is neither a trusted nor a fully
controlled environment. Tampering with a whitelist is
relatively easy after an Android phone is rooted.
Moreover, Android uses a static permission based model
[4] to grant access to its various hardware resources, such
as its camera, SMS functionality, MIC, Internet access,
etc. Once a rogue application gets access to the SE and
these other hardware resources, it can listen to NFC event
broadcasts, connect to the Internet, send SMS messages
for any event, or join a botnet for harvesting a user’s
private information.

Android application developers are encouraged to
have their certificate self-signed [5]. This practice helps
grow the android market, as developers need not have
their application certificates signed by a globally trusted
authority. This implies that, if a rogue application
successfully exploits an android phone, there is no way
to revoke its certificate and stop it from being installed
on other android phones. Though Google Inc. or a
Mobile Network Operator (MNO) could remotely
terminate a specific instance of an application, this will
not block its spread, and it is not clear how efficient this
remote termination process is.

Once an application has added its certificate signature
to the XML file, it can communicate with the SE and
listen to NFC broadcasts. Although this application
cannot communicate with the Card Manager unless it has
the required keys, it can still perform a DoS attack by
repeatedly attempting to authenticate to the Card
Manager [2]; after the 10th unsuccessful attempt, a
Global Platform compliant card goes into an irreversible
TERMINATED state. As the Card Manager is the
interface between SE applications and the outside
environment, transition to this TERMINATED state has
the result that the SE cannot communicate with the
outside environment and is essentially bricked. Thus the
mobile phone cannot perform mobile payments and the
user must change the mobile phone. [2]. A similar type
of DoS attack can also be performed against individual
SE applications. The Card Manager will change the state
of an SE application to TERMINATED if an Android
application from outside the SE fails to authenticate to
that particular SE application. This second type of DoS
attack will not brick the whole SE, but it will terminate
that particular SE application [2]. This means that the
terminated SE application must be installed again in
order to be used.

Another concern with this access model is remote
execution of SE commands, where one may use the SE
from another phone for mobile payment over the
Internet. Relay attacks have been described in [7], and
[6] demonstrates how NFC Event broadcasts can be
sniffed by any third party application. A rogue Android
app can use these broadcasts as triggers, since these
broadcasts provide indications about the background
processing of the NFC hardware. It also poses privacy
concerns, since harvesting this information on a large
scale can reveal the buying habits, type of card used, and
location (using phone GPS data) at which a particular
card is used. Such information may then be transferred
and sold for marketing purposes without the user’s
knowledge.

 We believe that the forgoing considerations
demonstrate that SE access control implementations and
specifications have failed to properly secure SE access.
In subsequent sections of this paper we propose that SE
access control rely on trusted computing principles and

International Journal for Information Security Research (IJISR), Volume 4, Issue 1, March 2014

Copyright © 2014, Infonomics Society 393

specifications, and propose moving the enforcement of
SE access control from the OS to the SE itself.

3. Redesigning SE Access Control

It is clear by now that a smartphone operating system

such as Android cannot be trusted to enforce access

control to its SE. Use of keyed authentication, such as a

Personal Identification Number (PIN), is not robust in a

smartphone as it can be sniffed by any rogue application

installed on that smartphone, which can then use that PIN

to automatically authenticate itself to the SE and perform

any operation a valid user can perform. Similarly,

caching or storing the authentication PIN hash inside the

application would make it vulnerable to all kinds of

attacks designed to recover and reuse that hash.
Restricting an application’s communication with the SE

to payment specific commands is also not ideal, since

this limits the true potential of the SE for mobile

payment. Our proposal is based upon trusted computing.

Only the trusted modules are granted access to SE.

Careful reliance on trusted computing principles should

ensure the following:
 The Android OS and its applications should be

trustable, not only at start-up, but at run time also. If an
Android OS is compromised, then the underlying file
system (and thus, e.g., the whitelist described in the
previous section) is also compromised. Securing the
Android OS and its applications automatically
prevents known NFC specific relay, replay and DoS
attacks.

 An Android application’s access to the SE should be
enforced by the SE, rather than by the OS. This
ensures independent decision making and reduces the
chances of relay attacks by a remote application acting
as a local android application. Only authorized
applications should communicate with the SE. These
objectives are met only if access control is
implemented independent of the mobile operating
system. On mobile devices, there is need for an
underlying, independent, tamper resistant and security
enhanced module. One such module is the SE itself.
Other candidates include MTM and TrEE. Let us now
turn to these components, to see whether and how their
functionality might be used or modified to achieve our
objective.

A. MTM

To achieve our objective of mobile trusted

computing, we propose the use of Mobile Trusted
Modules (MTM) as specified by the Trusted Computing
Group (TCG), and its derivations as described in [8].
MTM is a Trusted Platform Module (TPM)
implementation for mobile devices that discards many
traditional functions of a standard TPM and introduces
new functions tailored to the mobile environment. There

are two types of MTM: Mobile Remote-owner Trusted
Module (MRTM) and Mobile Local-owner Trusted
Module (MLTM). MRTM mandates the use of
additional security functions necessary to communicate
with the remote owner of the module. MRTM uses a
subset of the TPM v1.2 specification, making use of
Root-of-Trust-for-Storage (RTS) and Root-of-Trust-for-
Reporting (RTR). [8]

Figure 3 shows the building blocks of a typical
MRTM. It requires at least two additional components,
Root-of-Trust-for-Verification (RTV) and Root-of-Trust-
for Measurement and Measurement and Verification
Agent (MVA). We will refer to these two as
'RTV+RTM'. RTV+RTM must be executed, in order,
before anything else can execute in the mobile
environment. RTV+RTM verifies and registers its own
hash inside the MRTM, using a function named
MTM_VerifyRIMCertAndExtend, as shown in Figure 3.
RTV+RTM then measures and loads MVA, and registers
its measurement inside the MRTM using the same
function. MRTM then verifies the measurements
presented by RTV+RTM, both of itself and of the MVA
module, and aborts the boot sequence unless these
measurements match the already provisioned
measurements stored inside MRTM.

Figure 3: TCG Mobile Trusted Module [8]

Mobile trusted computing uses two forms of boot
sequence: a secure boot sequence and an authenticated
boot sequence:

During a secure boot sequence each module measures
the next module before executing it [10]. This
measurement involves computing the hash of the next
module image. The measuring module then forwards the
Reference Identity Metric (RIM) of the measured module

International Journal for Information Security Research (IJISR), Volume 4, Issue 1, March 2014

Copyright © 2014, Infonomics Society 394

to the MRTM. RIM is specified by TCG, and is
essentially a certificate containing the signed hash of a
module. The MRTM is used for this certificate
verification. If the MRTM trusts the presented certificate
RIM, the MVA verifies the measurement it made. If the
MRTM does not trust the presented RIM, the boot
process is aborted. Measurements are registered in the
Platform Configuration Registers (PCR) by the
measuring module at each step.

There are two options for validating an Android
application's RIM certificate. One option is for its RIM
certificate to be signed by a party whose public key is
signed by the Root Verification Authority Identifier
(RAVI) key. RAVI is the top level key generated inside a
TPM for RIM verification and certification. A second
option is for an Android application’s RIM to be certified
by the TPM using RAVI. For Android using NFC, the
first option is more practical, as a Trusted Security
Manager (TSM) can become a RIM certification
authority by having its public key signed, at provisioning
time, by the RAVI of its TPM.

Unfortunately, a secure boot sequence is inconsistent
with the traditional practice of self-signing Android
applications. For the authenticated boot sequence,
measurements are made and the next module is executed
[10]. There is however no verification process, but rather,
measurements are registered in the PCR at each step.
Because most modules in Android use self-signed
certificates, an authenticated boot sequence is the
preferred choice for our design. Moreover, measurements
registered in the PCR can be used to attest to the system
state, for authentication and access control purposes. The
MLTM provides these necessary functions. MLTM uses
a shared secret to authenticate a local user, and the SE
can act as a local user in this scenario.

As no other executable is loaded before RTV+RTM
and MVA, a low level Application Programing Interface
(API) can be used to communicate with the MLTM. A
high level API similar to a system service can be used
once the OS is loaded [10].

B. ARM TrustZone

The majority of mobile devices are based upon the

ARM architecture. ARM provides a Trust Zone Security
Extension [12] that enables a single Central Processing
Unit (CPU) to execute code in parallel without affecting
or mixing with each other. The ARM Architecture
defines two parallel environments or 'zones', a 'secure
zone' and a 'normal zone'. This secure zoning technology
is called TrustZone. TrustZone is briefly described in
[11].

The TrEE environment has been further standardized
in GP's Trusted Execution Environment (TEE) [1] as
shown in Figure 4. TEE is independent of REE and TEE
can have more control over REE by having full access to

its shared memory space. GP specifies TEE as an
intermediary environment between a normal or Rich
Execution Environment (REE) [1] and the SE. TEE can
be implemented using System-on-a-Chip (SoC)
technology, such as TrustZone. However, TEE is not as
physically secure and tamper resistant as the SE. The
fact that TrEE is independent of the mobile OS is
particularly useful for our purpose, as MTM or mobile
TPM can be implemented in software in TrEE, and TrEE
can host code for the TPM's low level API to
communicate with the SE. This communication is
independent of the mobile OS and hence is highly
resistant to any type of outside attack.

Figure 4: GP TEE Architecture [1]

In TrustZone TrEE, a secure zone module can access
the resources in REE, but a REE module cannot access
TrEE resources [11]. If an SE access control module is
implemented in TrEE, this module can proxy APDU
communication by reading and writing to REE memory,
but a REE module such as an Android payment
application cannot directly communicate with this proxy
module or the SE.

Another consideration is the use of system
peripherals. In ARM, the ‘Corelink’ system bus
interconnects the Central Processing Unit (CPU) and
memory using the Advanced eXtensible Interface (AXI).
The rest of the system peripherals interconnect using the
Advanced Peripheral Bus (APB). AXI is capable of
distinguishing TrEE and REE transactions, but APB does
not. In this case, the AXI-to-APB bridge is responsible
for managing security relevant states. AXI-to-APB logic
selects the desired peripheral based on the incoming AXI
transaction. The bridge is responsible for rejecting REE
transactions to the peripherals designated to be used by
TrEE [11]. The AXI-to-APB Bridge is programmable,
and can dynamically switch the security state of a given

International Journal for Information Security Research (IJISR), Volume 4, Issue 1, March 2014

Copyright © 2014, Infonomics Society 395

peripheral. This property is especially useful for access
control. A number of studies have either described
theoretically, or report having actually implemented
software based on TPM in TrEE. See [11], [12], [13]
and [15]. Practical integration of the MTM with the
Android platform is described in [8].

C. Secure Element

The secure element is a highly trusted and tamper

resistant execution environment. It is based on smart card
technologies. Java and MultOS are two popular operating
systems for this execution environment. GP has
published detailed specifications for smart cards and SE
implementation [1]. The SE execution environment
consists of various types of Virtual Machines (VM).
These VMs are essentially executable modules
containing applications and data. Each SE app's VM is
associated with but firewalled to an executable VM
called Security Domain (SD). This association and
isolation is guaranteed by the card execution
environment. The SD is responsible for securely storing
keys and for cryptographic operations. Upon initializing
a SE, the first VM installed is the Card Manager, and the
first security domain created is the Issuer security
domain. Also, the Global Platform execution
environment (OPEN) is created. OPEN is responsible for
the secure architecture of SE, and implements application
isolation and API functions between SE applications and
the Card Manager. The Card Manager sends and receives
APDUs to SE applications using the OPEN API, and
vice versa. The Card Manager has global access to the
SE and all other SE applications and security domains.
The Card Manager acts as an interface between installed
SE applications and the outside world. It also acts as a
proxy for other SE applications and forwards all APDUs
to the relevant SE application, unless the APDUs are
directed to itself. The Card Manager also provides card
holder verification services, essentially a PIN verification
service.

Card Manager is the card's representative. Figure 5

shows several of its states. Our proposed design ensures

that an irreversible TERMINATED state does not occur

as a result of using the card in a smartphone

environment. Instead, we propose a reversible

Card_Locked state for the card and other smartphone

primitives.

Figure 5: Smart Card Life Cycle State Transition

[1]

4. Proposed approach to SE Access Control

The proposed SE access control is designed to
achieve the two objectives as outlined in section III: a)
provide a level of assurance of integrity of Android and
its system module and b) control access to SE
independent of the mobile OS and where that access is
based upon the level of integrity of the OS. We believe
this can only be achieved by establishing a chain of trust
starting from the most secure parts of this system and
working towards less secure parts of the system. This
design is more secure than the existing solutions for the
following reasons:

Whitelists are not stored in the system partition but
instead are stored in the most secured area: the SE. SE is
tamper resistant and is secure by design. In this new
design SE not only serves as secure storage for the
whitelist but is also capable of making decisions. It
decides and then signals MTM to enforce access. The
whitelist never leaves SE secure storage and there is no
chance that it can be tampered with. This approach also
ensures that only the most secure part of this system
decides whether to grant access to the secure areas. In
existing designs, less secure parts of the system, such as

International Journal for Information Security Research (IJISR), Volume 4, Issue 1, March 2014

Copyright © 2014, Infonomics Society 396

the mobile OS decide to grant access to more secure
areas of the system, and are flawed by this simple reason.

Secondly, SE is the most secure part of this system
and therefore the chain of trust should start from it. In our
design SE is trusted by the owner of the trusted domain
of SE. SE then trusts MTM and MTM eventually trust
the mobile OS. If this chain of trust cannot be established
then access to SE is denied by default. This design
ensures that only the valid and genuine MTM is allowed
to communicate with SE. A trusted MTM then ensures
that only a valid and genuine OS is allowed to
communicate with SE. Presently this design is only
limited to establishing a boot-time chain of trust. Future
research in this area can be focused on establishing a run
time chain of trust and allowing access based upon that.

Our proposed SE access control solution for Android
based NFC smartphones makes use of all the above and
other available primitives with little or no deviation from
standards. SE, TrEE and REE all are available in modern
NFC enabled Android smart phones. We select the SE as
the most highly trusted module, to which access must be
protected.

An MTM implementation is described in [18], and it
is this implementation that we select for our proposed
model. It makes use of virtualization under TrEE to
further secure the MTM, its keys and registers against
rogue commands and other types of attack. Figure 6
shows all design components and how they interact.

Figure 6: Proposed SE Access Control Model

The proposed design has three main components: SE,
MTM and a mobile OS such as Android. SE is the most
secure part of the design. The owner of the SE trusted
domain ensures its integrity. MTM is a less secure part
and the mobile OS is an insecure part. MTM ensures its
own integrity and is designed in such a way that it won’t
work if integrity of its components is compromised. Our
design operates at boot time to ensure SE boots first and
then MTM is booted and then, finally, the mobile OS is
booted. This sequence allows us to ensure that the first
booted component is capable of measuring the integrity
of the next component to be booted, and so on down the
chain of trust.

The proposed model operates in following order,
starting from system boot:

1. At system startup, the secure boot process in
TrEE ensures that the TrustZone VM is loaded
securely using a secure boot-loader.

2. The TrustZone VM then measures the Android
OS boot loader and records its value in the PCR,
using the TPM backend VM.

3. The Android boot loader then measures the
Android kernel image and loads it. It also
communicates this measurement to the MTM
using the low level TPM API calls.

4. The Android kernel measures other system
modules, reports to the MTM using standard the
TPM API, and loads those modules.

5. The Android system module then measures any
Android application image and reports that to
MTM before loading it into memory.

6. Up until the time that the system modules are
measured and loaded, the TrustZone VM makes
sure that the NFC peripheral is locked. It can
achieve this by programming the AIX-to-APB
Bridge. This locking of the NFC peripheral
prohibits any communication to the SE while the
system is being measured and those
measurements reported to the SE.

7. Once the system modules are measured and the
results stored in the PCR, the MTM initiates
APDU communication with the Card Manager
using the low level API implemented in the
TrustZone VM.

8. The MLTM receives a nonce from the Card
Manager, encrypted with a shared secret. The
MTM decrypts the nonce using the same shared
secret.

9. Using the nonce in a hashing function on the
PCR values, the MLTM computes the master
hash.

International Journal for Information Security Research (IJISR), Volume 4, Issue 1, March 2014

Copyright © 2014, Infonomics Society 397

10. The MTM then encrypts the master hash with
the shared secret, and reports the master hash to
the SE, again using the low level API
implemented in the TrustZone VM. It resets the
PCR after reporting, in order to protect against a
replay of those measurement values.

11. Upon receiving the master hash from the MTM,
the SE Card Manager decrypts it using the
shared secret and compares the result to the
value in its state value database. The Card
Manager communicates its (positive or negative)
evaluation to the TrustZone VM.

12. If the evaluation is positive, the TrustZone VM
unlocks the NFC peripheral and the Card
Manager engages in no further action. If the
evaluation is negative, the TrustZone VM will
not unlock the NFC peripheral, and the Card
Manager changes its state from SECURED to
CARD_LOCKED.

13. The Card Manager acts as an interface between
the outside world and SE applications. In the
LOCKED state, the Card Manager will not send
or receive APDUs to or from the outside world,
when those APDUs are destined to SE apps,
essentially blocking communication between the
outside world and any SE application.

14. The Card Manager will also go into the
LOCKED state if any APDU, other than that
intended for evaluation, is received after the boot
process. This safeguard prevents bypassing of
evaluation in any case.

15. If evaluation is negative, the TrustZone VM will
not unlock the NFC peripheral. The SE Card
Manager remains LOCKED until the system is
rebooted. The Card Manager will change its
state from CARD_LOCKED to SECURED
upon reboot.

The proposed model deviates slightly from the TCG
MTM, GP card and SE access control specifications; it
deviates in following ways:

1. The Card Manager must store state values for
evaluation. The Card Manager can easily do that
by storing the values in its application data
space.

2. The evaluation routines have to be implemented
in the Card Manager. These routines closely
match or exceed the current functionality of the
GP Execution Environment (OPEN) as
described in GP's Card Specifications v. 2.2.0-15
[1]. OPEN is, basically, the card management
arm of Card Manager.

3. Nonce generation and communication with
MTM functions must be incorporated into the
Card Manager.

4. Fall back mechanisms and exception handling
must be incorporated into the Card Manager.

5. A low level API designed to communicate with
the SE must be implemented in the TrustZone
VM. This is an addition to the TrEE based MTM
design mentioned in [18].

6. Conversion of APDU and API calls inside TrEE
can be achieved by the methods described by
[19].

In addition to the aforementioned, a provision method
must be implemented, in order to update the Card
Manager’s state values and the secret shared between the
MTM and Card Manager. This provisioning process
includes the following:

1. MTM software must be loaded securely into
TrEE at device manufacturing or initialization
time.

2. The MTM must generate its own key pair using
its cryptographic functions. The public portion
of this key and the public portion of the Card
Manager key must be signed by the same or its
delegated authority.

3. The MTM and Card Manager must agree on a
shared secret using asymmetric cryptography.

4. This shared secret must encrypt all subsequent
communication between the MTM and Card
Manager.

5. State values must be populated, e.g. by the Issuer
of the SE, using Over-the-Air (OTA) updates
and GP’s Secure Channel.

6. RID certificates must be appropriately coupled
with executable modules inside the TrEE, in
order for a secure boot to occur inside the TrEE.

Once this proposed access control model is
implemented, the current SE access control
implementation (as shown in figure 1) is sufficient to
control access for third party Android apps. As the
mobile operating system will get access only if its
integrity is verified using MTM and SE, extended trust
can be established between the SE and mobile operating
system. Since extended trust is established, the operating
system can safely make use of whitelists to protect
against any rogue Android application.

This model is an alternative to the current SE access
control models and we have argued that this model is a
better defense against rogue access. However, this model
does not completely eliminate the risk of denial of
mobile payment services. DoS attacks against mobile
services and devices is still possible. If an attacker

International Journal for Information Security Research (IJISR), Volume 4, Issue 1, March 2014

Copyright © 2014, Infonomics Society 398

successfully corrupts a mobile OS system partition or
system module, the mobile device is rendered unusable
and a denial of mobile payment service does happen for
that particular user of the mobile device. This model does
protect a mobile device from becoming completely
unusable, as a corrupted OS can be reinstalled easily and
SE is reusable after that. On the other hand a ‘bricked’
mobile device’s SE is totally unrecoverable.

5. Conclusion

The current design and implementation of SE access
control is flawed, and is vulnerable to different kinds of
attacks that threaten to compromise the whole system.
We propose a theoretically sound and portable trusted
computing model and design. However, the concepts and
logical model presented in this paper must be
implemented and tested for full assurance in real world
applications. It must also be noted that our design ensures
the integrity of a device OS to enforce SE related security
only at boot time, but not at run time.

6. References

[1] GlobalPlatform, http://www.globalplatform.org, (Access Date:

15/9/ 2012).

[2] N Elenkov, “Exploring Google Wallet using the secure element

interfaces,” http://nelenkov.blogspot.ca/2012/08/exploring-

google-wallet-using-secure.html, (Access Date: 30/8/ 2012).

[3] XDA Developers Forum, “[02/02/12] Google Wallet v1.1-

R48V4 - ICS v4.0.3+,” http://forum.xda-

developers.com/showthread.php?t=1311072, (Access Date:

22/10/ 2012).

[4] R. Johnson, Z. Wang, C. Gagnon, A. Stavrou, "Analysis of

Android applications' permissions," Software Security and

Reliability Companion (SERE-C), 2012 IEEE sixth international

conference on, vol., no., pp.45-46, 20-22, June 2012, http://doi:

10.1109/SERE-C.2012.44.

[5] A. Gargenta, “Deep dive into Android security”, Presented at the

Android Developer Confernce, San Franscisco CA, USA. 2012,

http://marakana.com/static/tutorials/AnDevCon2-

DeepDiveIntoAndroidSecurity.pdf, (Access Date: 10/11/ 2012).

[6] N. Elenkov, “Accessing the embedded secure element in

Android 4.x,” Aug 22, 2012,

http://nelenkov.blogspot.ca/2012/08/accessing-embedded-

secure-element-in.html, (Access Date: 10/11/ 2012).

[7] L. Francis, G. Hancke, K. Mayes and K. Markantonakis,

“Practical NFC peer-to-peer relay attack using mobile phones,”

In 6th international conference on Radio Frequency

Identification: Security and Privacy Issues (RFIDSec'10),

Siddika Berna Ors Yalcin (Ed.). Springer-Verlag, Berlin,

Heidelberg, 35-49, 2010.

[8] Trusted Computing Group,

http://www.trustedcomputinggroup.org/, (Access Date: 08/11/

2012).

[9] H. Uppal, “Enabling trusted distributed control with remote

attestation,” August, 2012,

 http://people.cs.umass.edu/~hardeep/Thesis.pdf, (Access Date:

13/11/ 2012).

[10] K. Dietrich and J. Winter. 2008. “Secure Boot Revisited,” In

Proceedings of the 2008 The 9th International Conference for

Young Computer Scientists (ICYCS '08). IEEE Computer

Society, Washington, DC, USA, 2360-2365,

DOI=10.1109/ICYCS.2008.535,

http://dx.doi.org/10.1109/ICYCS.2008.53.

[11] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome and J. M.

McCune, 2012. “Trustworthy execution on mobile devices: what

security properties can my mobile platform give me?” In

Proceedings of the 5th international conference on Trust and

Trustworthy Computing (TRUST'12), S. Katzenbeisser, E.

Weippl, L. J. Camp, M. Volkamer and M. Reiter, (Eds.).

Springer-Verlag, Berlin, Heidelberg, 159-178.

DOI=10.1007/978-3-642-30921-2_10,

http://dx.doi.org/10.1007/978-3-642-30921-2_10.

[12] J. Ekberg and S. Bugiel, 2009, “Trust in a small package:

minimized MRTM software implementation for mobile secure

environments,” In Proceedings of the 2009 ACM workshop on

Scalable Trusted Computing (STC '09). ACM, New York, NY,

USA, 9-18,

DOI=10.1145/1655108.1655111,

http://doi.acm.org/10.1145/1655108.1655111.

[13] J. Grossschadl, T. Vejda, D. Page "Reassessing the TCG

specifications for trusted computing in mobile and embedded

systems," Hardware-Oriented Security and Trust, 2008. HOST

2008. IEEE International Workshop on, vol., no., pp.84-90, 9-9

June 2008, doi: 10.1109/HST.2008.4559060.

[14] M. Landsmann, "Evaluating an MTM based security concept for

Linux-kernel grounded mobile systems," Bachelor Thesis, Dept.

of Comp. Science, Hamburg Univ. of Applied Sci., Hamburg,

2011, http://opus.haw-hamburg.de/volltexte/2012/1447/.

[15] M. Lemay, C.A. Gunter, "Cumulative Attestation Kernels for

Embedded Systems," Smart Grid, IEEE Transactions on , vol.3,

no.2, pp.744-760, June 2012, doi: 10.1109/TSG.2011.2174811.

[16] E. Haselsteiner and K. Breitfuß, “Security in Near Field

Communication (NFC), strengths and weaknesses” Philips

Semiconductors, June 2010.

[17] Google Inc. Android SDK, 2013,

http://developer.android.com/sdk/index.html, (Access Date:

19/01/ 2013).

[18] P. England and T. Tariq, “Towards a programmable TPM,” In

proceedings of the 2nd international conference on Trusted

Computing (Trust '09), L. Chen, M. J. Chris and A. Martin,

(Eds.). Springer-Verlag, Berlin,

Heidelberg, 1-13, 2009, DOI=10.1007/978-3-642-00587-9_1,

http://dx.doi.org/10.1007/978-3-642-00587-9_1.

[19] K. Dietrich and J. Winter, “Implementation aspects of mobile

and embedded Trusted Computing,” In proceedings of the 2
nd

international conference on Trusted Computing (Trust '09), L.

Chen, M. J. Chris and A. Martin (Eds.). Springer-Verlag, Berlin,

Heidelberg, 29-44, 2009, DOI=10.1007/978-3-642-00587-9_3,

http://dx.doi.org/10.1007/978-3-642-00587-9_3.

[20] G. Alpár, L. Batina and R. Verdult, “Using NFC phones for

proving credentials,” In proceedings of the 16th international

GI/ITG conference on Measurement, Modelling, and Evaluation

of Computing Systems and Dependability and Fault Tolerance

(MMB'12/DFT'12), Jens B. Schmitt (Ed.). Springer-Verlag,

Berlin, Heidelberg, 317-330, 2012, DOI=10.1007/978-3-642-

28540-0_26, http://dx.doi.org/10.1007/978-3-642-28540-0_26.

International Journal for Information Security Research (IJISR), Volume 4, Issue 1, March 2014

Copyright © 2014, Infonomics Society 399

