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Abstract 

For mobile payments using Near Field 

Communication (NFC), a Secure Element (SE) is the 

preferred place to securely store cardholder data. This 
paper summarizes shortcomings in Global Platform's 

(GP) SE access control specifications and weaknesses in 

its implementation by the Android Operating System 

(OS). Moreover, a coherent model for an alternate and 

secure SE access control is proposed using SE and 

Mobile Trusted Module (MTM) specifications. This new 

model is secured by design and can be implemented 

using existing specifications, technologies and 

hardware. 

1. Introduction

Android is a smartphone OS, developed by the
Google Inc. from Linux source and highly customized 
for the resource constrained mobile phone environment. 
Google Inc. relies heavily on Android for its NFC mobile 
payment solution, Google Wallet, which makes use of an 
SE embedded in the NFC chip to store card holder data. 
The SE is a highly secure and tamper resistant execution 
environment. The SE execution environment is based 
upon Java and is capable of securely executing Java 
Virtual Machines (VM) [1]. Each VM can store and 
execute a single physical smart card. The NFC chip is 
connected to the SE and can emulate a smart card over its 
inductive wireless link. A NFC reader device can read 
this information and process the card information, similar 
to when a card is presented. NFC operates within a very 
short distance, usually about one centimeter. Moreover, 
NFC radio in an Android mobile phone is only enabled 
when its screen is activated [16]. These design 
considerations prevent remote leakage of card holder 
information over the NFC wireless interface. There is, 
however, a relay attack that may result in leakage over 
the NFC internal interface [7]. The SE is also connected 
internally to the Android OS. The SE needs to 
communicate with Android applications (apps), such as 
Google Wallet, for user interaction, card selection and 
updating. In response to the relay attack described in [7], 
Google Inc. disabled its payment SE applications to 
process payments to and from the interface connected to 
the Android OS. Instead, Google SE applications now 
communicate only payment related information to and 
from the NFC radio interface. This workaround is 
possible because of SE applications’ ability to detect the 
communication interface. 

 However, this countermeasure limits the system’s 
design and operation, and Google SE applications can no 

longer be used for online browser based payments 
because the Internet browser runs on top of the Android 
OS, which used an internal Android to NFC chip 
interface to communicate with the SE [20]. Any Android 
app can access the SE provided it is whitelisted. This 
whitelist is stored inside the Android system partition, 
and only the Android OS or its modules can access or 
modify it.  

GP SE specifications are based upon smartcard 
specifications and its secure operation is guaranteed by 
strict implementation of these specifications for its 
architecture, functions and access control. It is very 
important that SE access is granted only to an app able to 
authenticate itself to the SE. A GP compliant SE will 
transition to a non-reversible TERMINATE state if an 
app fails to authenticate itself within ten successive 
attempts. This fail-safe characteristic of the SE can be 
manipulated by a rogue app, in order to launch a denial 
of service (DoS) attack. Since an embedded SE is 
embedded in the NFC chip on the mobile phone 
mainboard, the SE is rendered useless after transitioning 
to the TERMINATE state, and so a user will be unable to 
make mobile payments unless they procure a new mobile 
phone, which is obviously costly and time consuming. 
As NFC mobile payments become more prevalent, this 
type of DoS attack may occur on a wider scale, and is an 
unacceptable risk to the economic system of a large 
population or country.  

To address this problem, GP specifies three different 
kinds of SE access control [1]. Each control makes use of 
a whitelist stored inside the SE. The SE provides secure 
storage, and so the whitelist cannot be tampered with or 
changed by the Android OS. The Android OS can only 
fetch and read from this  whitelist  stored inside the SE, 
which can only be modified by  one having access to the 
security domain of that SE, i.e., the SE owner or its 
delegate.  

There is an important assumption underlying this 
approach to SE access control.   Since the mobile OS is 
ultimately responsible for fetching this whitelist from the 
SE and implementing access control (using the so-called 
Access Control Enforcer system module), both Android's 
implementation, as well as GP’s specification relies on 
the OS for SE access enforcement, and thus both 
ultimately trust the OS. This is not a realistic assumption, 
especially in the case of Android, since Android has been 
shown to be rooted by malicious code. 

On a rooted Android device, the underlying kernel, 
including any access enforcement module can be 
manipulated, and thus so can the whitelist for SE access 
control. The SE will be unaware of any such tampering. 
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In addition to relay and DoS attacks, other types of 
privacy threats, such as leakage of NFC broadcasts, pose 
significant security risks to the adaptation of NFC mobile 
payment on a wider scale. For these reasons, we suggest 
that it is time to rethink current SE access control 
implementations and specifications, and address this 
problem in such a way that there is a significant level of 
assurance with NFC mobile payment technology. 

Mobile trusted computing provides this much needed 
level of assurance. The Trusted Computing Group (TCG) 
has published Mobile Trusted Module (MTM) 
specifications, version 1 [8]. Use cases for version 2 are 
published [8] and MTM specifications version 2 may be 
published in the near future. TCG does not specify how a 
MTM is to be implemented, but it can be implemented 
either in software or in specialized hardware.  

Android devices are based upon the ARM 
architecture, which is capable of a fairly seamless 
adaptation of trusted computing, since it has, since 2003, 
provided the needed execution environment [11]. This 
execution environment is called Trusted Execution 
Environment (TrEE) and is separated from the normal, 
so-called Rich Execution Environment (REE). MTM has 
been demonstrated to be implementable in TrEE. 

Trusted computing based on MTM [11] can ensure 
that an Android OS is tamper resistant, but its use in a 
mobile environment poses some serious limitations. 
These limitations can render a mobile device unusable, 
sacrificing availability to integrity. This paper proposes a 
solution for SE access control that not only ensures 
integrity but also ensures confidentiality and availability 
for NFC mobile payment on Android devices. 

The proposed solution is designed specifically for 
Android, but we believe the design is an improvement 
over current GP SE access control specifications.  In the 
following sections, we first describe Android’s various 
implementations and GP's specifications and their 
weaknesses, and then explore various hardware and 
software primitives.  Subsequently, we describe our 
alternate model and the changes to those specifications 
that are needed in order to implement our proposed 
solution.  

2. Existing approaches to SE Access  

Control 

The Android development framework specifies that 
each application or executable module must be 
accompanied by a certificate, and the hash of that 
certificate must be signed by its developer [17]. Each 
module runs within a separate Java Dalvik VM. The 
architecture limits execution to that VM and enforces app 
isolation. However, modules signed by the same 
developer can share data and communicate with each 
other. As certificate hashes are self-signed, Public Key 
Infrastructure (PKI) is not used to verify the authenticity 

of its source, but this method ensures that further updates 
to that specific module come from the original source.  

Since Android version 2.3.4, Google Inc. includes an 
NFC Application Program Interface (API) and, initially, 
access to NFC functions was limited to system modules 
only.  Since Android version 4.0.4, Google Inc. has 
implemented a more flexible method, using a whitelist 
written to an XML file (NFCEE_ACCESS.XML), which 
stores the self-signed hashes of those third party Android 
apps permitted to access the SE [2]. Google Inc. retains 
the exclusive right to grant SE access to a third party 
Android app:  the whitelist is stored inside Android's 
system partition, and only those system modules signed 
by Google Inc. can access and modify that whitelist. This 
whitelist can be updated, over-the-air, using system 
software provisioning. This solution is scalable, and third 
party application developers receive access to the SE  

Figure 1: Android SE Access Control 

when their application's certificate hash is added to 
the whitelist. Figure 1 depicts this method of access 
control. These two methods of access control so far 
described are secure only in so far as the Android OS is 
secure [2]. 
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GP specifies SE architecture and functions; it also 
specifies SE access control. In GP's architecture, the 
operating system fetches the access rule stored inside the 
SE. Figure 2 shows one of the rule fetching scenarios by 
a mobile operating system using the SE. Access Control 
Enforcer fetches the rules from Access Rule Application 
Master ARA-M, verifies device application’s certificate 
and grant or deny access to SE using transport layer. GE 
further mandates the use of a whitelist file that is stored 
in a PKCS#15 based file system inside the SE, and is 
fetched by the access control logic of a mobile operating 
system [1]. These rules can be cached by the OS.  These 
specifications ensure that a mobile OS  has only a  read-
only copy of  the set of rules, and that it is not allowed to 
update or modify this access control data:  the data is 
stored inside the SE and hence is modifiable only by  a 
trusted party with access to the SE issuer’s or SE 
application’s security domains. GP specifies the use of 
SE as a secure storage and all the access control 
functionality is the responsibility of the mobile device 
OS. This access control methodology is as secure as the 
device OS is. 

 
Figure 2: GP SE Access Control Specification [1] 

All of the methods of SE access control reviewed so 
far have weaknesses. The Android operating system is an 
open platform which allows for dynamically installing, 
upgrading and removing of Android applications. A 
mobile operating system is neither a trusted nor a fully 
controlled environment.  Tampering with a whitelist is 
relatively easy after an Android phone is rooted. 
Moreover, Android uses a static permission based model 
[4] to grant access to its various hardware resources, such 
as its camera, SMS functionality, MIC, Internet access, 
etc. Once a rogue application gets access to the SE and 
these other hardware resources, it can listen to NFC event 
broadcasts, connect to the Internet, send SMS messages 
for any event, or join a botnet for harvesting a user’s 
private information. 

Android application developers are encouraged to 
have their certificate self-signed [5]. This practice helps 
grow the android market, as developers need not have 
their application certificates signed by a globally trusted 
authority. This implies that, if a rogue application 
successfully exploits an android phone, there is no way 
to revoke its certificate and stop it from being installed 
on other android phones. Though Google Inc. or a 
Mobile Network Operator (MNO) could remotely 
terminate a specific instance of an application, this will 
not block its spread, and it is not clear how efficient this 
remote termination process is. 

Once an application has added its certificate signature 
to the XML file, it can communicate with the SE and 
listen to NFC broadcasts. Although this application 
cannot communicate with the Card Manager unless it has 
the required keys, it can still perform a DoS attack by 
repeatedly attempting to authenticate to the Card 
Manager [2]; after the 10th unsuccessful attempt, a 
Global Platform compliant card goes into an irreversible 
TERMINATED state.  As the Card Manager is the 
interface between SE applications and the outside 
environment, transition to this TERMINATED state has 
the result that the SE cannot communicate with the 
outside environment and is essentially bricked. Thus the 
mobile phone cannot perform mobile payments and the 
user must change the mobile phone. [2]. A similar type 
of DoS attack can also be performed against individual 
SE applications. The Card Manager will change the state 
of an SE application to TERMINATED if an Android 
application from outside the SE fails to authenticate to 
that particular SE application. This second type of DoS 
attack will not brick the whole SE, but it will terminate 
that particular SE application [2]. This means that the 
terminated SE application must be installed again in 
order to be used.  

Another concern with this access model is remote 
execution of SE commands, where one may use the SE 
from another phone for mobile payment over the 
Internet.  Relay attacks have been described in [7], and 
[6] demonstrates how NFC Event broadcasts can be 
sniffed by any third party application. A rogue Android 
app can use these broadcasts as triggers, since these 
broadcasts provide indications about the background 
processing of the NFC hardware. It also poses privacy 
concerns, since harvesting this information on a large 
scale can reveal the buying habits, type of card used, and 
location (using phone GPS data) at which a particular 
card is used.  Such information may then be transferred 
and sold for marketing purposes without the user’s 
knowledge. 

 We believe that the forgoing considerations 
demonstrate that SE access control implementations and 
specifications have failed to properly secure SE access.  
In subsequent sections of this paper we propose that SE 
access control rely on trusted computing principles and 
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specifications, and propose moving the enforcement of 
SE access control from the OS to the SE itself. 

3. Redesigning SE Access Control 
 
It is clear by now that a smartphone operating system 

such as Android cannot be trusted to enforce access 

control to its SE.  Use of keyed authentication, such as a 

Personal Identification Number (PIN), is not robust in a 

smartphone as it can be sniffed by any rogue application 

installed on that smartphone, which can then use that PIN 

to automatically authenticate itself to the SE and perform 

any operation a valid user can perform. Similarly, 

caching or storing the authentication PIN hash inside the 

application would make it vulnerable to all kinds of 

attacks designed to recover and reuse that hash.  
Restricting an application’s communication with the SE 

to payment specific commands is also not ideal, since 

this limits the true potential of the SE for mobile 

payment.  Our proposal is based upon trusted computing. 

Only the trusted modules are granted access to SE. 

Careful reliance on trusted computing principles should 

ensure the following: 
 The Android OS and its applications should be 

trustable, not only at start-up, but at run time also. If an 
Android OS is compromised, then the underlying file 
system (and thus, e.g., the whitelist described in the 
previous section) is also compromised.  Securing the 
Android OS and its applications automatically 
prevents known NFC specific relay, replay and DoS 
attacks. 

 An Android application’s access to the SE should be 
enforced by the SE, rather than by the OS.  This 
ensures independent decision making and reduces the 
chances of relay attacks by a remote application acting 
as a local android application. Only authorized 
applications should communicate with the SE. These 
objectives are met only if access control is 
implemented independent of the mobile operating 
system. On mobile devices, there is need for an 
underlying, independent, tamper resistant and security 
enhanced module.  One such module is the SE itself. 
Other candidates include MTM and TrEE.  Let us now 
turn to these components, to see whether and how their 
functionality might be used or modified to achieve our 
objective. 

A. MTM 

 
To achieve our objective of mobile trusted 

computing, we propose the use of Mobile Trusted 
Modules (MTM) as specified by the Trusted Computing 
Group (TCG), and its derivations as described in [8]. 
MTM is a Trusted Platform Module (TPM) 
implementation for mobile devices that discards many 
traditional functions of a standard TPM and introduces 
new functions tailored to the mobile environment.  There 

are two types of MTM:  Mobile Remote-owner Trusted 
Module (MRTM) and Mobile Local-owner Trusted 
Module (MLTM).  MRTM mandates the use of 
additional security functions necessary to communicate 
with the remote owner of the module. MRTM uses a 
subset of the TPM v1.2 specification, making use of 
Root-of-Trust-for-Storage (RTS) and Root-of-Trust-for-
Reporting (RTR). [8] 

Figure 3 shows the building blocks of a typical 
MRTM. It requires at least two additional components, 
Root-of-Trust-for-Verification (RTV) and Root-of-Trust-
for Measurement and Measurement and Verification 
Agent (MVA).  We will refer to these two as 
'RTV+RTM'.  RTV+RTM must be executed, in order, 
before anything else can execute in the mobile 
environment.   RTV+RTM verifies and registers its own 
hash inside the MRTM, using a function named 
MTM_VerifyRIMCertAndExtend, as shown in Figure 3.  
RTV+RTM then measures and loads MVA, and registers 
its measurement inside the MRTM using the same 
function. MRTM then verifies the measurements 
presented by RTV+RTM, both of itself and of the MVA 
module, and aborts the boot sequence unless these 
measurements match the already provisioned 
measurements stored inside MRTM. 

 

Figure 3: TCG Mobile Trusted Module [8] 

Mobile trusted computing uses two forms of boot 
sequence: a secure boot sequence and an authenticated 
boot sequence:  

During a secure boot sequence each module measures 
the next module before executing it [10]. This 
measurement involves computing the hash of the next 
module image. The measuring module then forwards the 
Reference Identity Metric (RIM) of the measured module 
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to the MRTM. RIM is specified by TCG, and is 
essentially a certificate containing the signed hash of a 
module. The MRTM is used for this certificate 
verification. If the MRTM trusts the presented certificate 
RIM, the MVA verifies the measurement it made. If the 
MRTM does not trust the presented RIM, the boot 
process is aborted. Measurements are registered in the 
Platform Configuration Registers (PCR) by the 
measuring module at each step.  

There are two options for validating an Android 
application's RIM certificate.  One option is for its RIM 
certificate to be signed by a party whose public key is 
signed by the Root Verification Authority Identifier 
(RAVI) key. RAVI is the top level key generated inside a 
TPM for RIM verification and certification.  A second 
option is for an Android application’s RIM to be certified 
by the TPM using RAVI. For Android using NFC, the 
first option is more practical, as a Trusted Security 
Manager (TSM) can become a RIM certification 
authority by having its public key signed, at provisioning 
time, by the RAVI of its TPM.    

Unfortunately, a secure boot sequence is inconsistent 
with the traditional practice of self-signing Android 
applications. For the authenticated boot sequence, 
measurements are made and the next module is executed 
[10]. There is however no verification process, but rather, 
measurements are registered in the PCR at each step.  
Because most modules in Android use self-signed 
certificates, an authenticated boot sequence is the 
preferred choice for our design. Moreover, measurements 
registered in the PCR can be used to attest to the system 
state, for authentication and access control purposes. The 
MLTM provides these necessary functions. MLTM uses 
a shared secret to authenticate a local user, and the SE 
can act as a local user in this scenario. 

As no other executable is loaded before RTV+RTM 
and MVA, a low level Application Programing Interface 
(API) can be used to communicate with the MLTM. A 
high level API similar to a system service can be used 
once the OS is loaded [10]. 

B. ARM TrustZone 

 
The majority of mobile devices are based upon the 

ARM architecture. ARM provides a Trust Zone Security 
Extension [12] that enables a single Central Processing 
Unit (CPU) to execute code in parallel without affecting 
or mixing with each other. The ARM Architecture 
defines two parallel environments or 'zones', a 'secure 
zone' and a 'normal zone'. This secure zoning technology 
is called TrustZone. TrustZone is briefly described in 
[11]. 

The TrEE environment has been further standardized 
in GP's Trusted Execution Environment (TEE) [1] as 
shown in Figure 4. TEE is independent of REE and TEE 
can have more control over REE by having full access to 

its shared memory space. GP specifies TEE as an 
intermediary environment between a normal or Rich 
Execution Environment (REE) [1] and the SE. TEE can 
be implemented using System-on-a-Chip (SoC) 
technology, such as TrustZone. However, TEE is not as 
physically secure and tamper resistant as the SE.  The 
fact that TrEE is independent of the mobile OS is 
particularly useful for our purpose, as MTM or mobile 
TPM can be implemented in software in TrEE, and TrEE 
can host code for the TPM's low level API to 
communicate with the SE. This communication is 
independent of the mobile OS and hence is highly 
resistant to any type of outside attack.  

 
Figure 4: GP TEE Architecture [1] 

In TrustZone TrEE, a secure zone module can access 
the resources in REE, but a REE module cannot access 
TrEE resources [11]. If an SE access control module is 
implemented in TrEE, this module can proxy APDU 
communication by reading and writing to REE memory, 
but a REE module such as an Android payment 
application cannot directly communicate with this proxy 
module or the SE.  

Another consideration is the use of system 
peripherals. In ARM, the ‘Corelink’ system bus 
interconnects the Central Processing Unit (CPU) and 
memory using the Advanced eXtensible Interface (AXI). 
The rest of the system peripherals interconnect using the 
Advanced Peripheral Bus (APB). AXI is capable of 
distinguishing TrEE and REE transactions, but APB does 
not. In this case, the AXI-to-APB bridge is responsible 
for managing security relevant states. AXI-to-APB logic 
selects the desired peripheral based on the incoming AXI 
transaction. The bridge is responsible for rejecting REE 
transactions to the peripherals designated to be used by 
TrEE [11]. The AXI-to-APB Bridge is programmable, 
and can dynamically switch the security state of a given 
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peripheral.  This property is especially useful for access 
control.  A number of studies have either described 
theoretically, or report having actually implemented 
software based on TPM in TrEE.  See [11], [12], [13] 
and [15]. Practical integration of the MTM with the 
Android platform is described in [8].  

C. Secure Element 

 
The secure element is a highly trusted and tamper 

resistant execution environment. It is based on smart card 
technologies. Java and MultOS are two popular operating 
systems for this execution environment. GP has 
published detailed specifications for smart cards and SE 
implementation [1]. The SE execution environment 
consists of various types of Virtual Machines (VM). 
These VMs are essentially executable modules 
containing applications and data. Each SE app's VM is 
associated with but firewalled to an executable VM 
called Security Domain (SD). This association and 
isolation is guaranteed by the card execution 
environment.  The SD is responsible for securely storing 
keys and for cryptographic operations. Upon initializing 
a SE, the first VM installed is the Card Manager, and the 
first security domain created is the Issuer security 
domain. Also, the Global Platform execution 
environment (OPEN) is created. OPEN is responsible for 
the secure architecture of SE, and implements application 
isolation and API functions between SE applications and 
the Card Manager. The Card Manager sends and receives 
APDUs to SE applications using the OPEN API, and 
vice versa. The Card Manager has global access to the 
SE and all other SE applications and security domains. 
The Card Manager acts as an interface between installed 
SE applications and the outside world. It also acts as a 
proxy for other SE applications and forwards all APDUs 
to the relevant SE application, unless the APDUs are 
directed to itself. The Card Manager also provides card 
holder verification services, essentially a PIN verification 
service.  

Card Manager is the card's representative. Figure 5 

shows several of its states. Our proposed design ensures 

that an irreversible TERMINATED state does not occur 

as a result of using the card in a smartphone 

environment. Instead, we propose a reversible 

Card_Locked state for the card and other smartphone 

primitives. 
 

 

Figure 5: Smart Card Life Cycle State Transition 

[1] 

4. Proposed approach to SE Access Control   
 

The proposed SE access control is designed to 
achieve the two objectives as outlined in section III: a) 
provide a level of assurance of integrity of Android and 
its system module and b) control access to SE 
independent of the mobile OS and where that access is 
based upon the level of integrity of the OS. We believe 
this can only be achieved by establishing a chain of trust 
starting from the most secure parts of this system and 
working towards less secure parts of the system. This 
design is more secure than the existing solutions for the 
following reasons: 

Whitelists are not stored in the system partition but 
instead are stored in the most secured area: the SE. SE is 
tamper resistant and is secure by design. In this new 
design SE not only serves as secure storage for the 
whitelist but is also capable of making decisions. It 
decides and then signals MTM to enforce access. The 
whitelist never leaves SE secure storage and there is no 
chance that it can be tampered with. This approach also 
ensures that only the most secure part of this system 
decides whether to grant access to the secure areas. In 
existing designs, less secure parts of the system, such as 
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the mobile OS decide to grant access to more secure 
areas of the system, and are flawed by this simple reason.  

Secondly, SE is the most secure part of this system 
and therefore the chain of trust should start from it. In our 
design SE is trusted by the owner of the trusted domain 
of SE. SE then trusts MTM and MTM eventually trust 
the mobile OS. If this chain of trust cannot be established 
then access to SE is denied by default. This design 
ensures that only the valid and genuine MTM is allowed 
to communicate with SE. A trusted MTM then ensures 
that only a valid and genuine OS is allowed to 
communicate with SE. Presently this design is only 
limited to establishing a boot-time chain of trust. Future 
research in this area can be focused on establishing a run 
time chain of trust and allowing access based upon that. 

Our proposed SE access control solution for Android 
based NFC smartphones makes use of all the above and 
other available primitives with little or no deviation from 
standards. SE, TrEE and REE all are available in modern 
NFC enabled Android smart phones. We select the SE as 
the most highly trusted module, to which access must be 
protected.  

An MTM implementation is described in [18], and it 
is this implementation that we select for our proposed 
model. It makes use of virtualization under TrEE to 
further secure the MTM, its keys and registers against 
rogue commands and other types of attack.  Figure 6 
shows all design components and how they interact.  

 

Figure 6: Proposed SE Access Control Model 

The proposed design has three main components: SE, 
MTM and a mobile OS such as Android. SE is the most 
secure part of the design. The owner of the SE trusted 
domain ensures its integrity. MTM is a less secure part 
and the mobile OS is an insecure part. MTM ensures its 
own integrity and is designed in such a way that it won’t 
work if integrity of its components is compromised. Our 
design operates at boot time to ensure SE boots first and 
then MTM is booted and then, finally, the mobile OS is 
booted. This sequence allows us to ensure that the first 
booted component is capable of measuring the integrity 
of the next component to be booted, and so on down the 
chain of trust. 

The proposed model operates in following order, 
starting from system boot: 

1. At system startup, the secure boot process in 
TrEE ensures that the TrustZone VM is loaded 
securely using a secure boot-loader. 

2. The TrustZone VM then measures the Android 
OS boot loader and records its value in the PCR, 
using the TPM backend VM. 

3. The Android boot loader then measures the 
Android kernel image and loads it. It also 
communicates this measurement to the MTM 
using the low level TPM API calls. 

4. The Android kernel measures other system 
modules, reports to the MTM using standard the 
TPM API, and loads those modules. 

5. The Android system module then measures any 
Android application image and reports that to 
MTM before loading it into memory. 

6. Up until the time that the system modules are 
measured and loaded, the TrustZone VM makes 
sure that the NFC peripheral is locked. It can 
achieve this by programming the AIX-to-APB 
Bridge. This locking of the NFC peripheral 
prohibits any communication to the SE while the 
system is being measured and those 
measurements reported to the SE. 

7. Once the system modules are measured and the 
results stored in the PCR, the MTM initiates 
APDU communication with the Card Manager 
using the low level API implemented in the 
TrustZone VM. 

8. The MLTM receives a nonce from the Card 
Manager, encrypted with a shared secret. The 
MTM decrypts the nonce using the same shared 
secret. 

9. Using the nonce in a hashing function on the 
PCR values, the MLTM computes the master 
hash. 
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10. The MTM then encrypts the master hash with 
the shared secret, and reports the master hash to 
the SE, again using the low level API 
implemented in the TrustZone VM. It resets the 
PCR after reporting, in order to protect against a 
replay of those measurement values. 

11. Upon receiving the master hash from the MTM, 
the SE Card Manager decrypts it using the 
shared secret and compares the result to the 
value in its state value database. The Card 
Manager communicates its (positive or negative) 
evaluation to the TrustZone VM. 

12. If the evaluation is positive, the TrustZone VM 
unlocks the NFC peripheral and the Card 
Manager engages in no further action. If the 
evaluation is negative, the TrustZone VM will 
not unlock the NFC peripheral, and the Card 
Manager changes its state from SECURED to 
CARD_LOCKED. 

13. The Card Manager acts as an interface between 
the outside world and SE applications. In the 
LOCKED state, the Card Manager will not send 
or receive APDUs to or from the outside world, 
when those APDUs are destined to SE apps, 
essentially blocking communication between the 
outside world and any SE application. 

14. The Card Manager will also go into the 
LOCKED state if any APDU, other than that 
intended for evaluation, is received after the boot 
process. This safeguard prevents bypassing of 
evaluation in any case. 

15. If evaluation is negative, the TrustZone VM will 
not unlock the NFC peripheral. The SE Card 
Manager remains LOCKED until the system is 
rebooted. The Card Manager will change its 
state from CARD_LOCKED to SECURED 
upon reboot. 

The proposed model deviates slightly from the TCG 
MTM, GP card and SE access control specifications; it 
deviates in following ways: 

1. The Card Manager must store state values for 
evaluation. The Card Manager can easily do that 
by storing the values in its application data 
space. 

2. The evaluation routines have to be implemented 
in the Card Manager. These routines closely 
match or exceed the current functionality of the 
GP Execution Environment (OPEN) as 
described in GP's Card Specifications v. 2.2.0-15 
[1]. OPEN is, basically, the card management 
arm of Card Manager.  

3. Nonce generation and communication with 
MTM functions must be incorporated into the 
Card Manager. 

4. Fall back mechanisms and exception handling 
must be incorporated into the Card Manager. 

5. A low level API designed to communicate with 
the SE must be implemented in the TrustZone 
VM. This is an addition to the TrEE based MTM 
design mentioned in [18]. 

6. Conversion of APDU and API calls inside TrEE 
can be achieved by the methods described by 
[19]. 

In addition to the aforementioned, a provision method 
must be implemented, in order to update the Card 
Manager’s state values and the secret shared between the 
MTM and Card Manager. This provisioning process 
includes the following: 

1. MTM software must be loaded securely into 
TrEE at device manufacturing or initialization 
time. 

2. The MTM must generate its own key pair using 
its cryptographic functions. The public portion 
of this key and the public portion of the Card 
Manager key must be signed by the same or its 
delegated authority. 

3. The MTM and Card Manager must agree on a 
shared secret using asymmetric cryptography. 

4. This shared secret must encrypt all subsequent 
communication between the MTM and Card 
Manager.  

5. State values must be populated, e.g. by the Issuer 
of the SE, using Over-the-Air (OTA) updates 
and GP’s Secure Channel.  

6. RID certificates must be appropriately coupled 
with executable modules inside the TrEE, in 
order for a secure boot to occur inside the TrEE. 

Once this proposed access control model is 
implemented, the current SE access control 
implementation (as shown in figure 1) is sufficient to 
control access for third party Android apps. As the 
mobile operating system will get access only if its 
integrity is verified using MTM and SE, extended trust 
can be established between the SE and mobile operating 
system.  Since extended trust is established, the operating 
system can safely make use of whitelists to protect 
against any rogue Android application. 

This model is an alternative to the current SE access 
control models and we have argued that this model is a 
better defense against rogue access. However, this model 
does not completely eliminate the risk of denial of 
mobile payment services. DoS attacks against mobile 
services and devices is still possible. If an attacker 
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successfully corrupts a mobile OS system partition or 
system module, the mobile device is rendered unusable 
and a denial of mobile payment service does happen for 
that particular user of the mobile device. This model does 
protect a mobile device from becoming completely 
unusable, as a corrupted OS can be reinstalled easily and 
SE is reusable after that. On the other hand a ‘bricked’ 
mobile device’s SE is totally unrecoverable.  

5.  Conclusion 

The current design and implementation of SE access 
control is flawed, and is vulnerable to different kinds of 
attacks that threaten to compromise the whole system.  
We propose a theoretically sound and portable trusted 
computing model and design. However, the concepts and 
logical model presented in this paper must be 
implemented and tested for full assurance in real world 
applications. It must also be noted that our design ensures 
the integrity of a device OS to enforce SE related security 
only at boot time, but not at run time. 
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