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Abstract

In this thesis we present a novel approach to speech recognition that incorporates knowl-

edge of the speech production process. The major contribution is the development of a

speech recognition system that is motivated by the physical generative process of speech,

rather than the purely statistical approach that has been the basis for virtually all cur-

rent recognizers. We follow an analysis-by-synthesis approach. We begin by attributing

a physical meaning to the inner states of the recognition system pertaining to the con-

figurations the human vocal tract takes over time. We utilize a geometric model of the

vocal tract, adapt it to our speakers, and derive realistic vocal tract shapes from elec-

tromagnetic articulograph (EMA) measurements in the MOCHA database. We then

synthesize speech from the vocal tract configurations using a physiologically-motivated

articulatory synthesis model of speech generation. Finally, the observation probability of

the Hidden Markov Model (HMM) used for phone classification is a function of the dis-

tortion between the speech synthesized from the vocal tract configurations and the real

speech. The output of each state in the HMM is based on a mixture of density functions.

Each density models the distribution of the distortion at the output of each vocal tract

configuration. During training we initialize the model parameters using ground-truth

articulatory knowledge. During testing only the acoustic data are used.

In the first part of the thesis we describe a segmented phone classification experiment.

We present results using analysis-by-synthesis distortion features derived from a code-

book of vocal tract shapes. We create a codebook of vocal tract configurations from the

EMA data to constrain the articulatory space. Improvements are achieved by combining

the probability scores generated using the distortion features with scores obtained using

traditional acoustic features.

In the second part of the thesis we discuss our work on deriving realistic vocal tract

shapes from the EMA measurements. We present our method of using EMA data from

each speaker in MOCHA to adapt Maeda’s geometric model of the vocal tract. For

a given utterance, we search the codebook for codewords corresponding to vocal tract

contours that provide the best fit to the superimposed EMA data on a frame-by-frame
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basis. The articulatory synthesis approach of Sondhi and Schroeter is then used to

synthesize speech from these codewords. We present a technique for synthesizing speech

solely from the EMA measurements. Reductions in Mel-cepstral distortion between the

real speech and the synthesized speech are achieved using our adaptation procedure.

In the third part of the thesis we present a dynamic articulatory model for phone clas-

sification. The model integrates real articulatory information derived from EMA data

into its inner states. It maps from the articulatory space to the acoustic space using

an adapted vocal tract model for each speaker and a physiologically-based articulatory

synthesis approach. We apply the analysis-by-synthesis paradigm in a statistical fash-

ion. The distortion between the speech synthesized from the articulatory states and the

incoming speech signal is used to compute the output observation probability of the Hid-

den Markov Model (HMM) used for classification. The output of each state in the HMM

is based on a mixture probability density function. Each probability density models the

distribution of the distortion at the output of each codeword. The estimation algorithm

converges to a solution that zeros out the weights of the unlikely codewords for each

phone. Hence, each state inherits an articulatory meaning based on these estimated

weights and the transition from one state to another reflects articulatory movements.

Experiments with the novel framework show improvements in phone classification accu-

racy over baseline accuracy obtained using a purely statistically-based system, as well

as a close resemblance of the estimated weights to ground-truth articulatory knowledge.

To our knowledge this is the first work that applies the analysis-by-synthesis paradigm

in a statistical fashion for phone classification. It is the first attempt to integrate re-

alistic speaker-adapted vocal tract shapes with a physiologically-motivated articulatory

synthesis model in a dynamic pattern recognition framework. It is also the first work to

synthesize continuous speech waveforms solely from EMA measurements and to perform

a speaker-independent analysis of highly speaker-dependent EMA phenomena.
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Chapter 1

Introduction

Human speech is a product of several physiological parts working jointly to convey an

acoustic message from the speaker to the listener. The main components of the speech

production system are the lungs and glottis comprising the source function and the vocal

tract comprising the filter function.

It has long been known that the physics of the vocal tract greatly constrains the set

and sequence of sounds that a person may produce. The vocal tract comprises several

mechanically coupled components, including articulators such as the lips, jaw, tongue,

palate, and velum, in addition to the various bones, cartilages, and other soft tissues that

affect sound production. Each of these has its own dynamics and physical characteristics

such as compliance, resonance, mass, inertia, momentum, etc. These impose restrictions

both on the static configurations that the vocal tract can take, as well as on the dynamics

of the vocal tract itself, which constrains the set and sequences of sounds that a person

may utter.

Automatic speech recognition (ASR) is the process of recognizing human speech by

machines. State-of-the-art ASR systems do not explicitly or implicitly account for the

restrictions mentioned above. Instead, the speech signal is usually treated in an entirely

phenomenological manner: features that are derived for speech recognition are based

on measurements of the spectral and temporal characteristics of the speech signal [3]

without reference to the actual physical mechanism that generates it. Even spectral

1
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estimation techniques such as linear predictive coding (LPC), that provide an empirical

characterization of the output of the vocal tract, do not directly access the physics of

the generating process – the relationship between the parameters that are estimated and

the vocal tract is chiefly one of analogy.

In addition, the physical constraints that guide the articulators’ movements over

time give rise to various phenomena observed in speech production. Coarticulation oc-

curs due to the effect of context on the current sound unit, or more accurately, on the

current articulatory configuration since articulators move smoothly. Sloppiness (reduced

effort) in spontaneous speech and faster speaking rates cause the articulators to miss

their intended “targets” for a particular sound unit. Hence articulatory target under-

shoot (or overshoot) is also common, which gives rise to different acoustic observations.

Asynchrony in the articulators’ movements causes different articulatory configurations

to overlap in time giving rise to pronunciation variations. The fact that some articu-

lators are “free” to take the path of least resistance compared to “critical” articulators

that should develop a specific configuration pertaining to a particular phone also leads

to pronunciation variations. All of these high-level phenomena hinder the performance

of ASR systems especially during conversational and unrehearsed speech.

The basic sound unit defined in speech recognition systems is the phone. Each phone

corresponds to a particular acoustic distribution. Vocabulary entries are modeled using

non-overlapping sequences of these abstract segmental units [4, 5]. This framework,

shown in Figure 1.1, and the currently-used features cannot account for the phenomena

observed above in spontaneous speech nor can they account for the physical constraints

of speech production. For example, a slight variation in the articulatory configurations

pertaining to a particular phone would cause a variation in the corresponding acoustic

observation, which in turn may change the identity of the phone recognized. Hence, a

new framework that incorporates physical constraints in the articulatory space would be

expected to achieve more robust speech recognition performance.
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1.1 Thesis Objectives and Framework

In this thesis we present a novel approach for speech recognition that incorporates knowl-

edge of the speech production process. We discuss our contributions in moving from a

purely statistical speech recognizer to one that is motivated by the physical generative

process of speech. This process incorporates knowledge of the physical instantaneous

and dynamic constraints of the vocal tract and knowledge of the various phenomena ob-

served in speech production such as coarticulation, pronunciation variation, sloppiness,

speaking rate, etc.

To achieve this, we will utilize an analysis-by-synthesis approach that is based on

an explicit mathematical model of the vocal tract to represent the physics of the sound

production process (synthesis) and constrain a statistical speech recognition system using

this model. In addition, we will incorporate instantaneous and dynamic constraints on

the articulatory configurations (analysis).

The physics and fluid dynamics of the vocal tract have been well studied and the

equations characterizing them have been derived from first principles by a number of

researchers including Flanagan [6] and Stevens [7]. A variety of mathematical models

of the vocal tract that embody these equations has been proposed in the literature,

SPEECH: /S/-/P/-/IY/-/CH//S/ /P/ /IY/ /CH/S1 S2 SnF1F2…F13 F1F2…F13 Acoustic Features
F1F2…F13

Figure 1.1: Current concatenative framework for the word “SPEECH” as pronounced in

cmudict. Each phone is modeled by a three-state HMM, and the acoustic observations

are represented by 13-dimensional feature vectors.
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e.g. by Sondhi and Schroeter [8]. Although the actual number of free parameters in

these equations is large, most sounds can be geometrically specified using only the seven

parameters of Maeda’s model [9], which describes the relevant structure of a capital

section of the vocal tract as will be discussed in Section 2.2. Simple manipulations of

these seven parameters can produce a variety of natural-sounding speech sounds.

We hypothesize that implicit knowledge of articulatory configurations would yield

better speech recognition accuracy. Given a particular configuration of a vocal tract

and information regarding the excitation to the tract, the models described above are

able to synthesize plausible sounds that would have been produced by it. Conversely, by

matching the signal synthesized by the model for a particular configuration to a given

speech signal, it becomes possible to gauge the likelihood that a particular configuration

might have produced that speech, or, alternatively, to obtain a metric for the “distance”

between a given configuration and the one that actually produced the speech signal. The

known relationships between articulator configurations and sounds will be utilized in

conjunction with the rules of physics and physiology that constrain how fast articulators

can move to generate sounds. By appropriate selection of the parameters of the equations

that govern these motions, the effects of speech rate, spontaneity, speaker effects, accents,

etc., can be systematically modeled. Unlike conventional speech recognition systems that

discard the excitation function associated with the waveform and retain only the signal’s

coarse spectral shape, we will explicitly use the excitation signal extracted from the

incoming speech, mimicking it closely. This model is described in Figure 1.2.

In the first part of the thesis, we account for the “instantaneous” or short-term

physical generative process of speech production. We devise a technique to extract new

articulatory features using the analysis-by-synthesis framework. We characterize the

space of vocal tract configurations through a carefully-chosen codebook of configuration

parameters in which each codeword is composed of a vector of Maeda parameters. Maeda

uses seven parameters to represent a vocal tract shape. We derive these configurations

from Electromagnetic Articulograph (EMA) data available in the MOCHA database

[2]. MOCHA contains positional information from sensors placed on the speakers’ lips,
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incisors, tongue, and velum in addition to the speech recorded as the speakers read

TIMIT utterances. Using a heuristic mapping that is independent of the model, the EMA

measurements are converted to a Maeda parameters. Using Maeda’s geometric model of

the vocal tract, we compute the areas and lengths of the tubes model forming the vocal

tract. Sondhi and Schroeter’s articulatory synthesis model is used to compute vocal tract

transfer functions of each of the configurations in the codebook and to excited them by

a source function whose parameters (energy, pitch, etc.) are derived from the incoming

speech signal. The synthesized speech signals for each configuration are compared to the

actual incoming signal to obtain a vector of distances, each dimension of which represents

the distance of the current signal to one of the configurations. The sequence of distance

vectors obtained in this fashion represents the trajectory of the articulator configurations

for the signal. After dimensionality reduction, the sequence of vectors are modeled by

a statistical model used as supporting evidence and combined with a model based on

conventional Mel-frequency cepstral coefficients (MFCCs). A fast analysis-by-synthesis

approach is also developed in this part.

In the second part of the thesis, we present a method for adapting Maeda’s model

to the EMA data and we derive realistic vocal tract shapes from the measurements.All Phones
Articulatory Configurations Parameters Re-estimationIncorporating Constraints Articulatory Synthesis Distortion Computation

Original SpeechExcitation Parameters
ArticulatoryParameters SynthesizedSpeech

Figure 1.2: Analysis-by-synthesis framework mimicking incoming speech by estimating

the vocal tract parameters and using the original signal excitation parameters.
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We thus present a more principled approach for mapping the EMA data to Maeda

parameters. Using the ensemble of all measurements for each speaker, we obtain the

scatter of the distribution whose upper outline is used in the adaptation. For a given

utterance, the algorithm we developed searches the codebook for the codewords whose

vocal tract contours best fit the superimposed EMA data, on a frame-by-frame basis.

Next, the area functions of the corresponding vocal tract shapes are computed. The

articulatory synthesis approach of Sondhi and Schroeter is then applied to synthesize

speech from these area functions. We decouple the source model from the transfer

function, which improves the quality of synthesis and helps speed up the approach.

We have thus presented a technique for synthesizing speech solely from EMA data and

without any statistical mapping from EMA to acoustic parameters.

In the third part, we impose physical constraints on the dynamic configurations of

the vocal tract and utilize a data-driven approach to learn these constraints in a dy-

namic framework. Each state will represent a combination of codewords, which will be

structured in a way that attributes physical meaning to the state. For example, in the

Hidden Markov Model (HMM) framework, the states will resemble different articulatory

configurations rather than abstract segmental units like phones as they currently do.

Statistical dependencies between the states, that capture dynamic relationships (similar

to transition probabilities and state-dependent symbol probabilities in HMMs), will be

learned through a maximum likelihood approach. By comparing the signal synthesized

by applying the vocal tract parameter values represented by the codewords to the math-

ematical model of the vocal tract to the incoming speech signal, we derive a “synthesis

error”. The “synthesis error” and the ground-truth articulatory information will guide

the propagation through the articulatory space and help learn the codeword weights and

state transitions as we will explain in Chapter 5.

In summary, we will incorporate models of the vocal tract directly into the recognition

process itself. This thesis includes three main contributions. The first contribution

is a feature-based approach that attempts to capture the location of the articulatory

configuration for a given frame in the entire space of vocal tract configurations through

6



CHAPTER 1. INTRODUCTION

a feature vector. The second contribution is a procedure for deriving realistic vocal tract

shapes from EMA measures using an adapted geometric model of the vocal tract. The

third contribution is a dynamic articulatory model for phone classification that explicitly

represents articulatory configurations through its states.

1.2 Thesis Outline

In this chapter we introduced at a high level the problem we are solving and the solutions

we develop in this thesis. In Chapter 2 we present the basic background the reader of

this thesis needs. We discuss Maeda’s model, the MOCHA EMA data, and the Sondhi

and Schroeter articulatory synthesis approach.

In Chapter 3 we discuss our first main contribution, deriving the analysis-by-synthesis

distortion features. We present phone classification results and an approach for deriving

fast analysis-by-synthesis features.

In Chapter 4 we discuss our second contribution, deriving realistic vocal tract shapes

from EMA data. We describe how we adapt Maeda’s geometric model of the vocal tract

to the EMA data and then search for vocal tract shapes on a frame-by-frame basis. We

also describe how we can synthesize speech based on EMA data only.

In Chapter 5 we discuss our third contribution, using the analysis-by-synthesis dis-

tortion features in a probabilistic framework. We integrate the adapted vocal tract

shapes, the adapted transfer functions, and analysis-by-synthesis features into the Hid-

den Markov Model (HMM) used for phone classification.

In Chapter 6 we propose future research directions and in Chapter 7 we conclude our

work and summarize our contributions.
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Chapter 2

Background Review

In the past few decades there has been a plethora of scientific research analyzing the

speech production process for speech synthesis, speech recognition, and other speech

disciplines. Acoustic phonetics [7] and speech analysis [6] are mature fields now. As

mentioned in Chapter 1, state-of-the-art speech recognition systems use a small frac-

tion of this knowledge and rely heavily on statistical modeling of abstract speech units.

They model speech as a concatenation of non-overlapping segmental units referred to as

phones. This framework makes it hard to account for the various phenomena discussed

above. These phenomena occur in the articulatory space and their effects are observed

in the acoustic space.

Gesturalists argue for the gesture (articulatory configuration) as the basic unit of

speech production and perception. On average, a human produces 150-200 words a

minute, which corresponds to 10-15 units per second. It would be impossible for humans

to achieve this rate of sound production and maintain speech intelligibility if we follow

a concatenative approach. Coarticulation is viewed as the means to achieve this rate

in perception and production [10]. For example, a rounded /s/ indicates to the listener

that the next vowel /u/ would be rounded like in “student” and cause the speaker to

assimilate the roundness of the lips while producing /s/ to minimize production effort.

Liberman and Mattingly [11] in their “motor theory” proposal hold that the articu-

latory space is essential in retrieving the symbolic sequence (phones) from the acoustic
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signal and that the articulatory gesture is the basic unit of perception. The mapping

from the symbolic units to the gestures can be invariant. The articulatory targets for a

particular phone are known. Nevertheless, achieving them depends on speaking effort,

rate, style, etc., which in turn depends on the physics of the articulators and their ability

to evolve from one target to another. Add to this the fact that the evolution of articu-

lators is not synchronized, neither within nor between phone segments. Therefore, there

will not be a clear correspondence between the segmentation in the phonetic and the

acoustic domains. Hence, the mapping between the symbolic sequence and the observed

acoustics can be arbitrary complex [12] without an intermediate articulatory space such

as the one shown in Figure 2.1. In essence, control over articulatory parameters is more

direct than control over acoustic observations since they resemble control over muscle

movements. Another theory that argues for an overlapping gestural representation is

the articulatory phonology theory developed by Browman and Goldstein [13].

SPEECH: /S/-/P/-/IY/-/CH//S/ /P/ /IY/ /CH/S11F1F2…F13 F1F2…F13 Acoustic Features
F1F2…F13S21 S12S22 S1nS2nS13S23 S14S24Lips SeparationTongue Tip Articulatory Targets

Figure 2.1: A hypothetical framework allowing articulators to flow independently and

asynchronously. The horizontal dashes represents critical articulatory targets that are

neither totally achieved nor synchronized in time. The vertical dash represents a free

articulatory target.
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2.1 Articulatory Modeling for Speech Recognition

Recently, researchers have started incorporating articulatory modeling into speech recog-

nition systems for many of the reasons mentioned above. Speech production information

is added in the form of phonological features or articulatory parameters, as we choose

to distinguish between the two in this thesis. Phonological features are rather discrete

phone related features e.g. manner (vowel or fricative), place (high or front), voicing,

and rounding. Articulatory parameters are continuous measurements of the articulatory

positions.

Articulators can be divided into three groups based on their role in producing each

phone: critical, dependent, and redundant articulators [14]. A critical articulator is one

whose configuration is essential for the production of the current sound, e.g. the position

of the tongue tip in producing /s/. Dependent articulator configurations are affected by

the configuration of the critical articulators while the redundant articulators are free to

take any position and can be considered to be in a “do not care” state. Papcun et al.

[15] have showed using x-ray microbeam data that articulators which are considered free

for a particular phone have much higher variance compared to those that are critical.

On the other hand, Maeda [9] has shown that articulators can compensate for each other

acoustically.

Erler and Freeman [12] proposed an articulatory feature model (AFM) for speech

recognition, which is an HMM-based system with states that resemble phonological con-

figurations, attributing a physical meaning to them. They introduced three feature

evolution constraints. Dynamic constraints mimic the limitations of the articulatory

system such as the rate of change, maximum movement, and how closely a target is

approached or skipped. Instantaneous constraints allow only the configurations that are

physically realizable. Propagation constraints control the range of propagation rules set

on articulatory movements over a period of time and the configurations of the “under-

specified” or free articulators. In a similar approach, Livescu [16] used dynamic Bayesian

networks (DBNs) to model asynchronous phonological feature streams.

Analysis-by-synthesis approaches have previously been applied to speech recognition.
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Blackburn [17] used an articulatory codebook that mapped phones generated from N-best

lists to articulatory parameters. He linearly interpolated the articulatory trajectories

to account for coarticulation and used artificial neural networks (ANNs) to map these

trajectories into acoustic observations. Each hypothesis was then rescored by comparing

the synthesized features to the original acoustic features. Deng [18] used Kalman filters

to smooth the hidden dynamics (represented by vocal tract resonances (VTRs) or pseudo

formants) generated using the hypothesis segmentation, accounted for coarticulation by

smoothing the trajectories, and introduced different statistical mappings from VTRs to

acoustics for rescoring.

Other attempts at incorporating real articulatory measurements have used DBNs

[19, 20] to model jointly the articulatory and acoustic distributions and have also used

linear dynamic models (Kalman filter) [21]. For a thorough review of the literature on

incorporating articulatory information into statistical systems for speech recognition, the

reader is referred to [22].

2.2 Articulatory Speech Synthesis

Modeling the articulatory dynamics and relying on statistical mapping from the articu-

latory states to acoustic observations has been problematic for the approaches described

above. It is hard to align articulatory states with acoustic parameters since ground truth

is usually not available. Even if parallel data were available, it would not be enough to

learn a distribution that can generalize to unseen configurations or even different speak-

ers. We propose the use of articulatory synthesis to compute the observation, or what

statisticians refer to as the emission model.

Maeda’s model [9] uses seven parameters to describe the vocal tract shape and to

compute the cross-sectional areas of the acoustic tubes used to model speech generation.

Using a factor analysis of 1000 frames of cineradiographic and labiofilm data, Maeda

derived a representation of the vocal tract profile as a sum of linear basis vectors or

components in a semipolar coordinate space spanning the midsagittal plane of the vocal

tract. These components are described in Figure 2.2.
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Parameter Description Movement

p1 jaw position vertical

p2 tongue dorsum position forward or backward

p3 tongue dorsum shape roundedness

p4 tongue tip vertical

p5 lip height vertical

p6 lip protrusion horizontal

p7 larynx height vertical

Figure 2.2: Maeda parameters describing the geometry of the vocal tract. Figure extracted

from [1].

Maeda’s model converts each vector of articulatory configurations to a vector of areas

and lengths of the sections of the acoustic tube describing the shape of the vocal tract.

The Sondhi and Schroeter model [8] uses the chain matrices approach to model the

overall transfer function of the vocal tract. Specifically, the transfer function of each

section is modeled by a matrix whose coefficients depend on the area and length of the

section and on the loss parameters. The input (and output) of the matrix is the pressure

and volume velocity in the frequency domain. The transfer function represents the wave

equation at each section. The overall transfer function is the product of the matrices.

The Sondhi and Schroeter model also allows for nasal tract coupling to the vocal tract

by adjusting the velum opening area.

The glottal source and interaction with the vocal tract is modeled in the time domain

using the two-mass model of vocal cords developed by Ishizaka and Flanagan [23]. The

parameters of this model are the lung pressure Ps, the glottal area A0, and the pitch

factor Q. The overall transfer function must be excited in order to generate speech.

2.3 The MOCHA Database

The recent availability of databases such as MOCHA [2], which consists of a set of real

articulatory measurements and the corresponding audio data, opens new horizons for

better understanding of articulatory phenomena and for further analysis and modeling
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of the speech production process.

The MOCHA database contains data from 40 speakers reading 460 TIMIT utterances

(in British English). The articulatory measurements include electromagnetic articulo-

graph (EMA), electroglottograph (EGG), and electropalatograph (EPG) measurements.

The EMA channels include (x, y) coordinates of nine sensors directly attached to the

lower lip (LL), upper lip (UL), lower incisor (LI), upper incisor (UI), tongue tip (TT),

tongue body (TB), tongue dorsum (TD), soft palate (velum, VL), and the bridge of the

nose.

2.4 Discussion

The work described above which models phonological feature streams is limited by the

inherent assumptions that were made. The use of discrete, quantized, and abstract

phonological features makes it hard to incorporate transition rules and leads to weak

dynamic modeling. The mapping from the phone to its corresponding phonological target

is not accurate. It depends on canonical information available in linguistic sources and

not on the acoustic observation or the task at hand. The authors of this approach mention

the lack of real articulatory measurements parallel to acoustic data which would have

provided better initialization of the models. It would also allow for learning of realistic

instantaneous and dynamic constraints rather than using rule based ones. In addition,

using phonological features does not allow for partially achieved targets (i.e. accounting

for target undershoot or overshoot).

Researchers using real articulatory features model a joint probabilistic distribution

of the articulatory measurements and the acoustic parameters instead of using a physical

model of how the acoustics are generated from the articulatory configurations [19, 20].

Hence their approach can only work on limited databases with parallel data and will not

generalize to unseen articulatory configurations.

All of approaches mentioned above are phenomenological. They attempt to apply

constraints based on inferences from observed phenomena. In contrast to these methods,

the approach we will follow is a true analysis-by-synthesis technique that actually models
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the articulatory configurations and movements of the vocal tract and synthesizes speech

based on the physics of sound generation. Consequently, it provides the framework to

model various phenomena like speaking rate and stress explicitly through their effect

on the parameters and the dynamics of the explicit mathematical representation of the

vocal tract.

The recent availability of databases like MOCHA provides many advantages that were

not available before. With real articulatory data, realistic instantaneous and dynamic

constraints can be learned and can help bootstrap the dynamic models. In addition, bet-

ter synthesis techniques can be devised from the articulatory information to the acoustic

data since the ground truth is known. While such approaches were not considered fea-

sible in the past due to computational considerations, modern computers now make it

feasible to incorporate highly computationally-intensive physical models of synthesis into

the recognition process.
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Analysis-by-Synthesis Features

In this chapter we account for the “instantaneous” or short-term physical characteristics

of the physical generative process. We want to answer the questions of what the possible

vocal tract configurations are and how sound is generated from these configurations. We

attempt to answer these questions through a feature computation process.

The first step in the analysis-by-synthesis approach to is to derive the features that

will be used for recognition. These features would convey information about the artic-

ulatory configurations. Since the only observation we have is the acoustic signal, these

features implicitly convey information about the articulatory space through an acoustic

distance measure between the synthesized and incoming speech.

In our first attempt in deriving these features, we characterize the space of vocal

tract configurations through a carefully-chosen codebook of configuration parameters.

Vocal tract models for each of the configurations are excited by a source signal derived

from the incoming speech signal. The synthesized speech signals from each vocal tract

configuration are compared to the actual incoming signal to obtain a vector of distances,

each dimension of which represents the distance of the current signal from one of the

configurations. The sequence of distance vectors thus obtained represents the trajectory

of the articulator configurations for the signal. After dimensionality reduction using

LDA, the sequence of vectors is modeled by a statistical model such as a GMM used

as supporting evidence and combined with a conventional MFCC-based GMM for a
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segmented phone recognition task.

3.1 Generating an Articulatory Codebook

We use the Maeda parameters described in Figure 2.2 as a seven-dimensional represen-

tation of vocal tract configurations. EMA measurements from the MOCHA database

described in Section 2.3 are converted to these seven-dimensional vectors. To do so, we

have developed a model-independent geometric mapping from the EMA measurements

to Maeda parameters. By model-independent we mean that we do not superpose the

EMA data onto Maeda’s model to find the best matching parameters as we do in Chap-

ter 4. For p1 we compute the distance between the lower and upper incisors. For p2, we

use the horizontal distance between the tongue dorsum and the upper incisor. For p3

we compute the angle between the line joining the tongue tip and the tongue body, and

the line joining the tongue body and the tongue dorsum. For p4 we compute the vertical

distance between the upper incisor and the tongue tip. For p5 we compute the distance

between the upper and lower lips. For p6 we compute the distance between the midpoint

of the upper and lower incisors and the line joining the upper and lower lips. Since we

are only using the EMA data, we set p7, which pertains to the larynx height, to zero

in the rest of the experiments. These parameters are then normalized using their mean

and variance, per utterance, to fall within the [-3,+3] range that is required by Maeda’s

model. Using a linear mapping, the mean plus standard deviation value is mapped to +2

and the mean minus standard deviation is mapped to -2. The regions mapped outside

the [-3,+3] range are clipped. We use the energy in the audio file to set the starting

and ending time of the normalization. This way we exclude the regions where the EMA

sensors are off from the steady state position before and after the subject is moving his

or her articulators. Table 3.1 summarizes this mapping procedure.

Once all measured articulatory configurations are converted to their corresponding

Maeda equivalents, we compute a codebook of articulatory parameters. Since p7 is

not measured, we do not consider it in this process. The EMA data, and hence the

derived Maeda parameters, are aligned with the audio data. To cancel out effects of
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Table 3.1: Model-independent approach for mapping EMA to Maeda parameters.

Maeda Parameters Parameters Control Derivation from EMA

p1 jaw vertical position distance(LI, UI)

p2 tongue dorsum position distance(UIx, TDx)

p3 tongue dorsum shape angle([TT TB], [TB TD])

p4 tongue tip position distance(UIy, TTy)

p5 lip height distance(UL, LL)

p6 lip protrusion distance (UI,[UL LL])

p7 larynx height zero

varying speech rate and phone length on the set of available articulatory configurations,

we sample the sequence of Maeda parameter vectors to obtain exactly five vectors from

each phone. To do so, the boundaries of all phones in the data must be known. In our

work these are obtained by training a speech recognizer (the CMU Sphinx system) with

the audio component of the MOCHA database and forced-aligning the data with the

trained recognizer to obtain phone boundaries.

We sample each phone at five positions: the beginning, middle, end, between be-

ginning and middle, and between middle and end, and read the corresponding Maeda

parameter vectors. We perform k-means clustering over the set of parameter vectors

obtained in this manner. We designate the vector closest to the mean of each cluster as

the codeword representing the cluster. This is done to guarantee that the codeword is a

legitimate articulatory configuration. The set of codewords obtained in this manner is

expected to span the space of valid articulatory configurations.

3.2 Deriving Articulatory Features

Once a codebook spanning the space of valid articulatory configurations is obtained, it

is used in an analysis-by-synthesis framework for deriving a feature vector.

For each incoming frame of speech, a corresponding frame of speech is generated

by the synthesis model for the articulatory configuration defined by each codeword.
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Thus there are as many frames of speech synthesized as there are codewords in the

codebook. Each frame of synthesized speech is compared to the incoming signal to

obtain a distortion value1. We use the Mel-cepstral distortion (MCD), as defined in

Equation 3.1, between the incoming and synthesized speech as the distortion metric,

where c is the vector of MFCCs.

MCD(cincoming, csynth) =
10

ln 10

√√√√2
12∑

k=1

(cincoming(k)− csynth(k))2 (3.1)

The set of distortion values effectively locates the signal in the articulatory space. A

vector formed of the distortion values thus forms our basic articulatory feature vector.

The process of creating articulatory feature vectors is shown in Figure 3.1.

The articulatory feature vector obtained in this manner tends to be high-dimensional

– it has as many dimensions as codewords. Its dimensionality is then reduced through

Linear Discriminant Analysis (LDA). Other linear or non-linear dimensionality reduction

mechanisms may also be employed.

3.3 Experiments and Results

We conducted a number of experiments to evaluate the usefulness of the proposed artic-

ulatory feature extraction method for speech recognition. In order to avoid obfuscating

our results with the effect of lexical and linguistic constraints that are inherent in a

continuous speech recognition system, we evaluate our features on a simple phone classi-

fication task, where the boundaries of phones are assumed to be known. All classification

experiments are conducted using simple Gaussian mixture classifiers.

We choose as our data set the audio recordings from the MOCHA database itself,

since it permits us to run “oracle” experiments where the exact articulatory configura-

tions for any segment of sound are known. Of the 40 speakers recorded in MOCHA,
1We use the implementations of Maeda’s model and the Sondhi and Schroeter model provided with

the articulatory synthesis package developed by Riegelsberger [24]. The later work in this thesis is based

on a modifications of these models.
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data for only ten have been released. Of the ten, data for three have already been

checked for errors. We checked the data from the remaining seven speakers ourselves

and retained a total of nine speakers for our work: “faet0”, “falh0”, “ffes0”, “fjmw0”,

“fsew0”, “maps0”, “mjjn0”, “msak0”, and “ss2404”. Five of the speakers are females

and four are males. We checked the EMA, the audio, and the corresponding transcript

files for the nine speakers. We discarded the utterances that had corrupted or missing

EMA channels, corrupted audio files, or incorrect transcripts. We ended up with 3659

utterances, each around 2-4 secs long. We chose to test on the female speaker “fsew0”

and the male speaker “maps0” and train on the rest. All experiments are speaker in-

dependent. The amount of training utterances is 2750 and testing utterances is 909.

Only data from the training speakers were used to compute the articulatory codebook.

The codebook consisted of 1024 codewords after clustering 425673 articulatory vectors

that were sampled from all the phones. The articulatory data of the test speakers have

not been used. The total number of phone-segments used in classification is 14310 for

speaker “fsew0”, 14036 for speaker “maps0”, and 28346 for both speakers.

Articulatory Configurations P1P2…P7P1P2…P7
Synthesis
Synthesis

Original SpeechMFCC
MFCC

MFCCExcitation Parameters
-

-

D1DN
Distortion VectorCodeword 1

Codeword N
Figure 3.1: Framework for deriving the analysis-by-synthesis distortion features. Only

two codewords are shown explicitly in the illustration.
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In all experiments in this section the audio signal was represented as 13-dimensional

MFCC vectors. We trained a Gaussian mixture density with 64 Gaussians to represent

each phone. Cepstral mean normalization (CMN, Atal [25]) was applied. No first-order

or second-order derivatives were used as they were not found to be useful within the

GMM framework.

3.3.1 An Oracle Experiment

We begin with an oracle experiment assuming that the exact articulatory configuration

(expressed as a vector of Maeda parameters) for each frame of speech is known. We

obtain it directly from the EMA measurement for the frame. The articulatory feature

(AF) vector for any frame of speech is obtained simply by computing the Mahalanobis

distance between the known Maeda parameter vector for the frame and each of the 1024

codewords in the codebook. The variances used in the distance are computed for each

cluster after the clustering stage. We reduce the dimensionality of the resultant 1024-

dimensional vectors to 20 dimensions using LDA. A mixture of 32 Gaussians is trained

to represent the distribution of these 20-dimensional vectors for each phone. The phone

Ĉ for any segment is estimated as:

Ĉ = argmaxCP (C)P (MFCC|C)αP (AF |C)(1−α) (3.2)

where C represents an arbitrary phone, and MFCC and AF represent the set of MFCC

features and articulatory features for the segment respectively. α is a positive number

between 0 and 1 that indicates the relative contributions of the two features to classi-

fication. We varied the value of α between 0 and 1.0 in steps of 0.05, and chose the

value that resulted in the best phone error rate (PER). The classification results and the

optimal value of α are shown in Table 3.2.

We note that feature vectors obtained with oracle knowledge of the vocal tract con-

figuration can result in significant improvements in classification performance in combi-

nation with MFCCs, although by themselves they are not very effective.
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Table 3.2: PER using MFCC, AF based on oracle knowledge of articulatory configura-

tions, and a combination of the two features.

Features (dimension) fsew0 maps0 Both

MFCC + CMN (13) 64.2% 68.1% 66.1%

AF + LDA (20) 77.5% 85.8% 81.6%

Combination (α = 0.85) 55.2% 62.9% 59.0%

Relative Improvement 14.0% 7.7% 10.8%

3.3.2 Synthesis with Fixed Excitation Parameters

As explained in Section 3.2, the articulatory feature vector is computed as the vector

of Mel-cepstral distortions between the speech signal and the signals generated by the

Sondhi and Schroeter model of the vocal tract. The latter, in turn, requires the vocal

tract to be excited. In this experiment we assume that the excitation to the synthetic

vocal tract is fixed, i.e. the synthesis is independent of the incoming speech itself. This

may be viewed as a worst-case scenario for computing features by analysis-by-synthesis.

In this experiment we fixed the excitation parameters [Ps, A0, Q] described in Section

2.2 to the values of [7,0.05,0.9] for voiced excitation and [7,0.15,0.7] for unvoiced exci-

tation. Since the synthesis was independent of the incoming signal, two MFCC vectors

were generated from each codeword, one from each excitation. Both synthetic MFCCs

were compared to the MFCCs of the incoming speech. Since the energy level in the

synthesized speech is the same for all codewords, c(0) (zeroth cepstral term) was not

considered when computing the distortion. Since two distortion values were obtained

from each codeword, the final articulatory distortion feature (Dist Feat) vector has 2048

dimensions that were reduced to 20 dimensions using LDA.

The rest of the details of the experiment, including the specifics of dimensionality

reduction, distributions estimated, and likelihood combination were identical to those in

Section 3.3.1. The results of this experiment are summarized in Table 3.3.

We note that even in this pathological case, the combination of the articulatory

features with MFCCs results in a significant improvement in classification, although it is
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Table 3.3: PER with Dist Feat computed using two fixed excitation parameters.

Features (dimension) fsew0 maps0 Both

MFCC + CMN (13) 64.2% 68.1% 66.1%

Dist Feat + LDA (20) 65.9% 72.3% 69.1%

Combination (α = 0.25) 60.8% 65.5% 63.1%

Relative Improvement 5.3% 3.8% 4.5%

much less than what was obtained with oracle knowledge. The value for α obtained in this

experiment looks counter-intuitive, suggesting that the system devotes 75% attention to

the articulatory features. This could be attributed to the way the Dist Feat are extracted.

In this experiment, we compute the distortion with respect to a fixed set of synthesized

speech parameters and derive the new features. This also affects the performance of LDA

projection which might not have been optimal. In the next experiment, we compute the

distortion with respect to a variable set of synthesized speech parameters. Nonetheless,

these results are in line with those of the previous experiment as well as with the results

of the next one.

3.3.3 Excitation Derived from Incoming Speech

Here we actually attempt to mimic the incoming signal using the various codewords, in

order to better localize the incoming signal in articulatory space. To do so, we derive

the excitation signal parameters [Ps,A0,Q] from the original signal. Ps (lung pressure) is

proportional to the rms energy. A0 and Q are proportional to the pitch. These excitations

are then employed to synthesize signals from each of the 1024 articulatory configurations,

which are used to derive a 1024-dimensional articulatory distortion feature vector. As

before, the dimensionality of this vector is reduced to 20, prior to classification. c(0)

was not considered when computing the distortion. All other details of the classification

experiment remain the same as in Section 3.3.1. Table 3.4 summarizes the results of this

experiment.

We observe that in this “fair” test, the articulatory distortion features are effective
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Table 3.4: PER with Dist Feat computed using excitation parameters derived from the

incoming speech.

Features (dimension) fsew0 maps0 Both

MFCC + CMN (13) 64.2% 68.1% 66.1%

Dist Feat + LDA (20) 63.2% 73.1% 68.1%

Combination (α = 0.6) 56.9% 64.2% 60.5%

Relative Improvement 11.3% 5.7% 8.5%

at improving classification. Not only are the distortion features by themselves quite

informative (as indicated by the PER obtained with them alone), they also appear to

carry information not contained in the MFCCs. Interestingly for speaker “fsew0”, the

PER achieved with articulatory distortion features alone is 1% better than with MFCCs.

3.4 Further Optimization of the Setup

3.4.1 Optimizing the Number of Gaussian Mixtures

We further optimize the setup by increasing the number of Gaussian mixtures used to

model the baseline MFCC features and the analysis-by-synthesis distortion features. The

best classification results are achieved using 128 mixture components for each type of

feature. In addition, appending c(0), the energy coefficient, into the distortion features

and employing CMN improves the performance. Improvements are achieved for both the

distortion features alone and in combination with the baseline MFCC features. Table

3.5 shows the classification results using the same features in Subsection 3.3.3 but with

a different setup.

3.4.2 Fast Analysis-by-Synthesis Distortion Features

In the previous section, we used the analysis-by-synthesis distortion features derived

from a codebook of Maeda parameters. For each frame of incoming speech we used

Maeda’s model to convert the codeword to an area function and we then applied Sondhi
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Table 3.5: PER using 128 GMM for each type of features and including c(0) and applying

CMN on the distortion features.

Features (dimension) fsew0 maps0 Both

MFCC + CMN (13) 63.6% 67.1% 65.4%

Dist Feat + LDA + c(0) + CMN (21) 58.3% 69.3% 63.7%

Combination (α = 0.5) 54.2% 62.7% 58.4%

Relative Improvement 14.8% 6.6% 10.7%

and Schroeter’s chain matrices approach to convert the area function to a vocal tract

transfer function. We also use the source information in the frame to synthesize speech.

All of this is part of the “Synthesis” block of Figure 3.1. The source modeling technique

of Sondhi and Schroeter is based on the two-mass model of vocal cords developed by

Ishizaka and Flanagan [23]. In this approach, the source model is coupled with the vocal

tract. This whole framework turned out to be very computationally intensive. We made

two main modifications that improved the computations tremendously (from a week to

a couple of hours worth of features computation for 3659 utterances, each around 2-4

secs long) with small degradation in classification accuracy.

The first modification is in the synthesis model and is explained in Section 4.5.

The second modification is the use of a codebook of transfer functions rather than a

codebook of Maeda parameters. In an off-line procedure, we use Maeda’s model to

convert the codebook of Maeda parameters to a codebook of area functions and use

Sondhi and Schroeter’s chain matrices approach to convert the area functions to a

codebook of transfer functions, {H Tract,H Frication} for each codeword. The en-

tire vocal tract transfer function, H Tract, including the nasal tract is used for voiced

frames. For unvoiced frames, we use the Sondhi and Schroeter frication transfer function

H Frication. The codebook stores the impulse response of h Tract = {hT
1 , hT

2 , . . . , hT
L}

and h Frication = {hF
1 , hF

2 , . . . , hF
L}. L is the length of the impulse response. In com-

puting the analysis-by-synthesis distortion features, we use these transfer functions in

the manner shown in Figure 3.2. This saves a lot of unnecessary computation at run
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time. The impulse response is converted to the frequency domain using the Fast Fourier

Transform (FFT) and multiplied by the generated source signal in the “Fast-Synthesis”

block using the overlap-add approach to synthesize speech from each codeword.

Articulatory Transfer Functions hT1 hF1hT2 hF2…hTL hFL Fast Synthesis
Fast Synthesis

Original SpeechMFCC
MFCC

MFCCExcitation Parameters
-

-

D1DN
Distortion Vectorh_Tract 1h_Frication 1

h_Tract Nh_Frication NhT1 hF1hT2 hF2…hTL hFL
Figure 3.2: A fast dynamic analysis-by-synthesis distortion framework.

Table 3.6 shows the phone classification error rates using the set of features extracted

by this new faster approach. CMN is applied to the distortion features. Adding c(0)

didn’t improve the performance so we excluded it. The classification performance was

slightly degraded but the reduction in computations was high. The degradation in

classification accuracy can be explained by the new synthesis approach that we followed

which is not optimal as explained in Section 4.5.

3.5 Discussion

Our results indicate that the analysis-by-synthesis features we introduce in this chapter

do carry information that is complementary to that contained in the MFCCs. A 10.7% re-

duction in phone classification error is achieved when combining the new features with the

baseline MFCC features. More importantly, the phone classification results indicate that
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Table 3.6: PER using fast analysis-by-synthesis distortion features (Fast Dist) and 128

GMM for each type of features and applying CMN on the distortion features.

Features (dimension) fsew0 maps0 Both

MFCC + CMN (13) 63.6% 67.1% 65.4%

Fast Dist + LDA + CMN (20) 61.6% 67.7% 64.6%

Combination (α = 0.55) 56.9% 63.1% 59.9%

Relative Improvement 10.6% 6.0% 8.3%

articulatory configurations are intrinsic to phone identities. The articulatory features are,

in effect, knowledge-based representations of the speech signal. Our experiments might

thus indicate the potential value of combining physiologically-motivated systems based

on the knowledge of speech production within the statistical framework of speech recog-

nition. This argument is further supported by the fact that while such approaches were

not considered feasible in the past due to computational considerations, modern com-

puters make the incorporation of even highly computationally-intensive physical models

of synthesis into the recognition process feasible.

The experiments we report on in this chapter use a very simple statistical model,

aimed at highlighting the contributions of these features. The baseline results of our

experiments are not optimal. In the GMM framework we are not modeling the transition

probability of the states as in HMMs. Also we model context-independent (CI) phones

that are segmented from connected speech, rather than using detailed triphone modeling.

In addition, we do not use a phone language model or include the first and second order

derivatives of the features for the reasons mentioned. In Chapter 5, we describe means

of improving this framework. It is our hope that these improvements will also carry over

to fully-featured HMM-based large vocabulary systems as well.

In addition to improving the framework, we invest our efforts in the next chapter

to derive realistic vocal tract shapes from the EMA measurements. Rather than rely

on a heuristic mapping from EMA to Maeda as we did in this chapter, we employ

geometric adaptation and profile fitting of the vocal tract model into the EMA data.
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The motivation is that we will be modeling more accurately the geometry of the vocal

tract of each speaker and tracking closely the movements of the articulators. This will

provide enhanced modeling of articulation to our framework.
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Chapter 4

Deriving Realistic Vocal Tract

Shapes from EMA Measurements

4.1 Introduction

ElectroMagnetic Articulography (EMA) has lately been gaining popularity among re-

searchers as a simple technique for measuring the mechanism of speech production [2].

EMA, originally developed in the University of Göttingen in 1982, comprises a set of

sensors placed on the lips, incisors, tongue, and velum of the speaker. A set of transmit-

ters generates magnetic fields at multiple frequencies, each of which induces a current in

the sensors. By measuring the levels of generated current, the (x, y) coordinates of each

of the sensors can then be determined. Each EMA measurement thus consists of a set

of such position coordinates, one from each sensor.

Figure 4.1 illustrates the positions of the sensors and the typical measurements ob-

tained from the MOCHA database [2]. As the person speaks, a sequence of EMA mea-

surements is obtained from the sensors. This sequence of measurements is assumed to

provide at least a partial characterization of the speech production process. In addition

to the EMA data, MOCHA also contains information on the contact of the tongue with

the upper palate, the electro-palatography (EPG). It also contains information about

voicing recorded using electro-glottography (EGG). In our work, we use the EMA data
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Figure 4.1: (a) EMA measurements sampled from the MOCHA database. Notation of EMA data used

is: upper lip (UL), lower lip (LL), upper incisor (UI), lower incisor (LI), tongue tip (TT), tongue body

(TB), tongue dorsum (TD), and velum (VL). (b) MOCHA apparatus showing the EMA sensors in green

(this figure is excerpted from [2]).

But exactly how reliable are these measurements and how much do they tell us about

the vocal tract that produces the speech? The EMA measures only the locations of a

very small number of points on the vocal tract, typically four locations for the lips and

incisors, one location on the velum, and merely three locations on the tongue. The

vocal tract, on the other hand, is a complex three dimensional object that cannot be

fully characterized by a small number of points. Furthermore, the precise location of the

EMA sensors themselves is also highly uncertain and impossible to calibrate with respect

to the vocal tract. Although the sensors on the tongue are placed at calibrated distances

from one another, the elasticity and complexity of tongue structure prevents their actual

positions, both along the tongue surface and relative to overall tongue structure, from

being precisely known.

Given these various factors, it is natural to question the usefulness of these mea-

surements as a characterization of the speech generation process. Clues may be found in
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work by researchers who have previously shown that the EMA measurements are reliable

cues to the speech signal itself. Toda et al. [26] have produced speech from EMA mea-

surements using learned statistical dependencies between them and the corresponding

speech signals, demonstrating that these measurements do indeed relate to the output

of the speech generation process. Toth and Black [27] experimented with using EMA

for voice transformation. While these experiments do provide indirect evidence of the

relation of EMA measurements to the speech production mechanism, it is still not clear

that they provide direct information about the shape of the speaker’s vocal tract itself.

In this chapter we attempt to derive actual characterizations of vocal tract shapes

from EMA measurements. Since the EMA itself comprises only a small set of sensor loca-

tions, we use a model-based approach to estimate the complete vocal tract configuration

from them. Specifically, we use the model proposed by Maeda [9], which represents a

mid-sagittal profile of the vocal tract in terms of seven parameters.

One simple approach to arriving at a vocal tract configuration in this manner is to

determine the specific set of values for the seven Maeda parameters that best explains the

measured EMA sensor positions [28]. This, however, is insufficient. Maeda’s vocal tract

model is not generic; it was originally developed using 1000 frames of cineradiographic

and labiofilm data from only two female speakers. It must be adapted to the speakers

in MOCHA. The specific aspects of the model that are adapted are the location of the

center of the grid, the tilt of the oral cavity, and the length of the vocal tract. This is

done by comparing the geometry suggested by the ensemble of all EMA measurements

for the speaker to that defined by the model. The actual locations of individual sensors

need not be known; hence the procedure is robust to variations and inconsistencies in

sensor placement.

Once Maeda’s model is adapted to the speaker, the actual vocal tract configuration

corresponding to any set of EMA measurements is obtained through a simple codebook

search. We use a codebook of Maeda model parameters that describes a large sampling of

possible vocal tract shapes. For each EMA measurement, we select the vocal tract shape

that is geometrically closest to the set of position coordinates represented in it. In order
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to ensure that the estimate of the vocal tract is based entirely on geometric principles,

since the EMA measurements are geometric in nature, we do not use the audio recordings

of the speech signal in the first pass of the adaptation. For other adaptation approaches,

the reader is referred to the work in [29, 30].

The “truthfulness” of the estimated vocal tract configurations can now be evaluated

by synthesizing speech from them using an articulatory synthesis model and comparing

synthesized speech to the actual speech signal produced during the utterances. We

specifically use a modified version of the Sondhi and Schroeter model [8] for this purpose.

Experiments show that the synthesized speech is similar to the actual speech, both

perceptually and in terms of the Mel-cepstral distortion (MCD) metric [26] as we report

in this chapter. Yet, we have not performed standard perceptual studies that depend on

subjective human evaluation of the synthesis.

4.2 Maeda’s Geometric Model

Maeda’s model is composed of a two-dimensional semi-polar grid spanning the midsagit-

tal plane of the vocal tract. The grid is composed of the red lines in Figure 4.2. The grid

is made of 6 linear sections in the tongue region, 11 polar sections in the velum region,

and 13 linear sections in the larynx region. It is defined by a set of parameters: the

Origin, the width of each section d, and the angle of the polar region θ. The vocal tract

itself is composed of an upper profile and a lower one. The upper profile shown in blue

consists of the upper lip and incisor, upper palate, and pharynx and larynx outer wall.

The inner profile consists of the lower lip and incisor, tongue, and pharynx and larynx

inner wall and is shown in green.

Maeda uses seven parameters to generate the overall profile of the vocal tract. The

formulation in Equation 4.1 summarizes the procedure in pseudo MATLAB code. p1 is

related to the jaw, p2, p3, and p4 to the tongue, p5 and p6 to the lips, and p7 to the larynx.

The bases [Blarynx Buwall Btong Blips] and offsets [Olarynx Ouwall Olips] are derived from

the speaker-specific vocal tract profiles Maeda extracted from the 1000 images. The vocal

tract parameters are normalized within the [-3,+3] range and reflect standard deviations
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Figure 4.2: Maeda’s model composed of grid lines in red, vocal tract upper profile in blue,

and vocal tract lower profile in green corresponding to the steady state shape with all p

values set to zero.
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from the means of the bases rather than absolute numbers. The bases are multiplied

by the parameters and then added to the offsets to generate different shapes. A 29-

dimensional vector is computed using the formulation in Equation 4.1 and projected

onto the grid lines, except for the four points describing the larynx edges and the four

points describing the lips. The vocal tract profiles are composed of the lines joining the

projected points.

Larynx = Blarynx ∗ [p1 p7]′ + Olarynx

UpperWall = Proj(Buwall + Ouwall)

Tongue = Proj(Btong ∗ [p1 p2 p3 p4]′ + Ouwall)

Lips = Blips ∗ [p1 p5 p6]′ + Olips (4.1)

Using the seven Maeda parameters with the current model will create vocal tract

shapes and generate sounds pertaining to the two speakers from whom the bases and

offsets are derived. In order to make the model generate sounds pertaining to different

speakers, it has to be able to match their vocal tract shapes. Hence it is necessary to

adapt Maeda’s model to the EMA data. Since the EMA data are purely geometric, we

must ensure that the geometry of the Maeda model is accurate enough to be able to

characterize the EMA measurements.

Note that the upper palate defined by UpperWall in Equation 4.1 and shown in blue

in Figure 4.2 is independent of the seven Maeda parameters. It is just a projection of the

sum of Buwall basis and the Ouwall offset into the geometric grid. Different parameters of

the grid lead to different projected shapes. Hence, we choose to adapt the grid parameters

and use the bases and offsets without adaptation. Table 4.1 lists the four grid adaptation

parameters and the seven vocal tract shape-describing parameters.

4.3 Vocal Tract Model Adaptation to EMA Data

The grid parameters of Maeda’s model are derived from the 1000 x-ray images of two

female speakers. Hence they need to be adapted to be used with EMA data from
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Table 4.1: Maeda’s model adaptation parameters and vocal tract shape parameters.

Grid Adaptation Parameters k, dx, dy, β

k grid width stretching or compression factor

dx origin x-axis translation (cm)

dy origin y-axis translation (cm)

β polar grid separation angle increment or decrement (radians)

Vocal Tract Shape Parameters p1, p2, . . . p7

p1 jaw vertical position

p2 tongue dorsum position (forward or backward)

p3 tongue dorsum shape (roundedness)

p4 tongue tip vertical position

p5 lip height

p6 lip protrusion

p7 larynx height

MOCHA. We follow a geometric adaptation procedure in this chapter and explain details

of our approach. We start by describing how we processed the EMA data for each

speaker. Since we are using the same adaptation process for all the speakers in MOCHA,

we need to remove inconsistencies in the measurements in centering the data around a

fixed reference and aligning it too. Once the data for each speaker are processed, we

apply the adaptation procedure.

The adaptation process for each speaker can be summarized as follows. First we

estimate the upper palate and mouth opening of each speaker in MOCHA. We then

compute the average distance from the estimated upper palate to the Maeda model

upper palate. Finally we modify the grid adaptation parameters and choose the set that

yields the least average geometric distance between the two upper palates.
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4.3.1 EMA Data Processing

The MOCHA database currently has recordings for only 10 speakers. Data for three

speakers have been checked and processed by the creators of the database [2]. One of

the remaining seven speakers has corrupted files. We have checked the data for the other

six speakers in addition to the first three. We have also applied our own processing on

the data as we explain here. The EMA measurements are recorded at 500-Hz sampling

rate. We downsample the data to 100 Hz, the same sampling rate used for processing the

acoustics (as per frame rate). We apply the MATLAB routine decimate which applies

low-pass filtering beforehand to avoid aliasing. We apply the additional processing of

the EMA data described below on a frame-by-frame basis. In order to use a geometric

model with the data, we need to process the EMA consistently for all the speakers.

Centering the Data

For the three EMA speakers checked by the creators of MOCHA, the upper incisor (UI)

is considered to be the center of the measurements. For all the utterances from the nine

speakers, we subtract the UI from the EMA measurements on a frame-by-frame basis.

Hence, we center the EMA measurements for all the speakers around the UI.

Aligning the Data

After centering the measurements, we noticed that different speakers have different tilt of

their heads while recording the EMA. To align the data consistently for all the speakers,

we align the sensor located at the bridge of the nose with the upper incisor. Hence,

we compute the angle needed to rotate the EMA measurements such that the bridge of

the nose and the upper incisor are vertically aligned. As with centering, we apply this

rotation on a frame-by-frame basis. Rotation by angle α is applied using a matrix of the

form [cosα sinα;−sinα cosα].
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Interpolating between the Tongue Sensors

The sensors on the tongue are placed at the tongue tip, body, and dorsum. The sensors

are separated by 2 cm. Because our work is based on the geometry of the vocal tract,

we need an accurate specification of the geometry of the oral cavity. We attempt to

learn the geometry of the oral cavity from the distribution of all the measurements from

the tongue sensors. To get a more detailed specification, we interpolate between each

pair of sensors and add the interpolated measurements to the distribution. This helps

covering the gap between each pair of sensors. Although it is not from a real sensor, yet

the interpolated measurements should be a reasonable estimate due to the physiology of

the tongue and to the geometric constraints of the oral cavity.

Data Cleaning Results

Figure 4.3 shows the scatter plot of all the raw measurements from speaker “falh0”. Each

dot on the scatter plot belongs to a frame from one utterance. We use all the frames

from the checked utterances. The measurements from the velum sensor are shown in

red, those from the bridge of the nose are in magenta, and the rest of the sensors are

in blue. From the collection of measurements from the sensors on the tongue, one can

infer the geometry of the oral cavity as indicated in the figure. Also shown in the figure

is the gap between the sensors, especially in the upper palate.

Figure 4.4 shows the scatter plot of the measurements after processing. The figure

shows the measurements centered around the upper incisor. All the measurements from

the upper incisor sensor are mapped to (0, 0). In addition, the bridge of the nose and

the upper incisor are vertically aligned. The gap between the sensors is now covered

by the measurements due to interpolation. One additional interesting thing to note in

the figure is the shape of distribution of the velum measurements. It shows the velum

moving as a valve that opens for nasalized sounds and closes for non-nasals. The few

measurements that fall outside the scatter are due to interpolation errors. Some are also

due to an uncommon sensor location, usually at the beginning or end of utterances when

the speaker is not speaking.

36



CHAPTER 4. DERIVING REALISTIC VOCAL TRACT SHAPES FROM EMA
MEASUREMENTS

Figure 4.3: Scatter plot of raw EMA measurements for all sensors for all the frames of

data collected from speaker “falh0”.
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Figure 4.4: Scatter plot of EMA measurements from speaker “falh0” after centering,

rotation, and interpolation.
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4.3.2 Estimating Speaker Upper Palate and Mouth Opening from

EMA

We estimate the upper wall of the EMA data using the distributions of the sensor

positions for all the frames available for the speaker. Figure 4.5 shows the scatter plot of

all the measurements from speaker “msak0”, who will be our adaptation example speaker.

The red circles in the figure are the mean locations of each sensor’s measurements. The

red lines with ‘+’ signs are two-standard deviations from the mean of the distribution.

These red lines summarize the movements of the sensors in two orthogonal directions.

Refer to the caption in Figure 4.1.a for the notation used here.

Figure 4.5: Scatter plot of EMA measurements from speaker “msak0” after centering,

rotation, and interpolation. The red lines show two-standard deviations from the mean

of the sensor movements.

Next we compute a histogram of the distribution of the data. Similar to the spec-
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trogram, the two-dimensional plot of Figure 4.6 conveys three-dimensional information,

the third being the density of the distribution reflected by the color intensity. Note also

the distribution of the interpolated measurements making two of the five globes in the

oral region.
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Figure 4.6: Histogram of the distribution of the sensors. The color becomes darker as

distribution becomes more dense.

We then compute a smoothed histogram of the positions of these sensors and label

five disconnected regions: UL, LL, UI, LI, and the mouth cavity using the MATLAB

command bwlabel. The biggest of these regions is the mouth cavity composed of the

region of the TT, TB, and TD. We set the highest points in the mouth cavity as the

upper wall estimated from the EMA. We add to this estimated upper wall the mean

location of the velum sensor, VL. We also set the top ten points at the left side of this

connected region as the mouth opening. Figure 4.7 shows the smoothed histogram with
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the estimated EMA upper wall.
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Figure 4.7: Smoothed histogram of the distribution of the sensors. The red crosses show

the estimated upper palate and mouth opening.

4.3.3 Translating the Origin of Maeda’s Model

We follow an approach similar to the one by McGowan [29] by superimposing the EMA

data onto the Maeda model semi-polar coordinate space. We first need to match the

coordinates of the two systems. In MOCHA, the sensor placed on the upper incisor is

used as the origin [2]. In Maeda’s model, the upper incisor is at a fixed location defined

by (INCIx, INCIy). Hence we translate Maeda’s model coordinates such that the new

origin coincides with the upper incisor. During adaptation, we shift the origin (labeled

Origin in Figure 4.2) by (dx, dy). This will shift the whole grid and will also change the

projection of the Maeda model upper palate as we explain below.
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4.3.4 Adapting the Grid of Maeda’s Model and Fitting the Estimated

EMA Palate

The Maeda model parameters that we choose to adapt are the origin of the grid Origin,

the width of each of the grid’s linear sections d, and the angle between the polar sections

of the grid θ. These parameters are labeled in Figure 4.2. The Origin is adapted

by the shifting it by (dx, dy). The linear section’s width d is adapted by expanding

or compressing it by a factor of k. The polar section’s angle θ is adapted by a small

increment β in radians. Equation 4.2 describes mathematically the adaptation procedure.

d′ = d(1− k)

θ′ = θ + β

Origin = −(INCIx + dx)− j(INCIy + dy) (4.2)

The adaptation is based on an optimization procedure that is summarized in Equation

4.3. We minimize the distance between a function of the EMA data and a function of

the model parameters. We choose a range over which we vary each of the four grid

adaptation parameters: k, β, dx, dy. For each combination we compute the average

geometric distance between all the points on the estimated EMA and the adapted Maeda

upper walls. These distances are shown in magenta in Figure 4.8. We choose the set of

parameters with the least average distance. Note that the value of k reflects vocal tract

stretching or compression with respect to the standard Maeda model. The value of β

reflects oral tract tilt. Similarly the value of (dx, dy) corresponds to shifting the grid

horizontally and vertically, respectively.

{k̂, β̂, d̂x, d̂y} = argmink,β,dx,dy(|f(EMA)− f(model)|) (4.3)

4.3.5 Lips Translation

The EMA lip sensors are placed outside the mouth on the tip of the lips [2]. This means

that even when the lips are closed there is still a vertical gap between the two sensors
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Figure 4.8: Vocal tract adaptation showing the smoothed scatter plot of the distribution

of the EMA data (yellow, red, and black) and the superimposed Maeda model (red grid

lines). The green contour is for the steady state Maeda lower contour and the blue

contour is the adapted Maeda upper contour resembling lips, palate, and larynx.
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as evident in Figure 4.7. We estimate the minimum lip separation, Lipsep, which is the

gap between the sensors when the lips are closed.

Figure 4.9a shows the smooth distribution of the lip separation and lip protrusion

for all data from speaker “msak0”. The protrusion is defined as the horizontal distance

between the UI and the UL or the LL, whichever is smaller. The separation is defined

as the vertical distance between UL and LL. The distances are negative values since

they are to the left and bottom of the origin. It is clear from the distribution that the

minimum lip separation is 2 cm as indicated by the yellow points. The figure also shows

that the more the lips protrude, the less separated they are. Once Lipsep is estimated,

2 cm in this case, the lip translation is performed for each frame of data as shown in

Figure 4.9b.

In Maeda’s model, the outermost lower lip point has two degrees of freedom propor-

tional to protrusion and separation. We map the four EMA measurements (UL, LL, UI,

and LI) to a point LLM in the vicinity of Maeda’s outermost lower lip point on the green

contour shown in Figure 4.9.b. The protrusion is shown by the horizontal black line in

the figure. The separation is shown by the vertical red line. Lipsep is then subtracted

from the separation measure and the LLM is found. Figure 4.9.b also shows the upper

and lower contours of Maeda’s model forming the lips tubes. In Maeda’s model the two

contours are allowed to close at the lips. To account for this, we subtract Lipsep from

the EMA measurements.

4.3.6 Velum Location and Nasal Tract Opening Area

The Sondhi and Schroeter model allows for nasal tract coupling to the vocal tract by

adjusting the velum opening area. The location of the velum VLloc is set after adaptation

to the grid section number that precedes the one which contains the mean of VL counting

from the glottis to the lips. This is because the velum sensor is placed on the soft palate

[2]. The velum opening area is estimated from the ordinate of the velum sensor VLy.

For each utterance, the nasal tract is opened in proportion to how much the value of

VLy is below its mean over the utterance. The lower the velum, the more nasalized is
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Figure 4.9: (a) Smoothed histogram distribution of lip protrusion and separation. (b)

Lip translation for one frame of data, also showing the Maeda model upper and lower lip

contours.

the sound and hence the larger is the opening area. Figure 4.10 shows the values of VLy

and the corresponding estimated values of nasal tract opening area, normalized between

[0, 1]. The mean value of the ordinate over the utterance is shown in red.

4.3.7 Adaptation Results

As described in Subsection 4.3.4, we vary k, β, dx, dy until the projected Maeda upper

palate best matches the estimated EMA upper palate. Before adaptation the average

distance between the two contours is 0.67 cm and the values of k, β, dx, dy are {0, 0

rad, 0 cm, 0 cm}. This distance is the average of the distances from each point on the

EMA upper palate (red) to the Maeda upper contour (blue), shown in Figure 4.8 in

magenta. The average distance between the two contours after adaptation is 0.25 cm

and the values of k, β, dx, dy are {-0.08, -0.0105 rad, -0.2 cm, 0.6 cm}. This means

that the length of the vocal tract is extended by 8% and that the grid is shifted by 0.2

cm to the left and 0.6 cm upward. These numbers make sense since Maeda’s model is

based on images from two female speakers and the MOCHA speaker “msak0” is a male
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Figure 4.10: Top figure shows the values of the ordinate of the velum sensor for utterance

“Jane may earn more money by working hard”. The bottom figure shows the values of

the estimated nasal tract opening area.
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speaker. In addition, a close match is attained between the two upper palate contours.

One constraint we apply here is that all the points on the EMA estimated upper palate

(in red) should be below the adapted Maeda model upper contour (in blue). We later

relax this constraint. Note also that the mean of the velum sensor locations, VL, almost

falls on the adapted Maeda upper palate. In addition, the figure shows the distances

between the estimated mouth opening and the left side of the grid. This distance is

added in the overall measure to ensure correct matching.

4.4 Vocal Tract Profile Fitting

In Section 3.1, an approach for mapping EMA data to Maeda parameters is described

for the purpose of speech recognition. It uses a heuristic mapping from EMA directly

to Maeda parameters without actually using the model. For example, p5, is simply the

normalized distance between the UL and LL.

The work in this chapter describes a more principled approach that searches for the

best fit of the EMA data to the adapted Maeda model vocal tract contours. We use a

uniform codebook of Maeda parameters that represents different vocal tract shapes. For

each frame of EMA data, we search for the best geometric fit. The best fit of the tongue

and lip contours found for each frame of EMA data is then used in articulatory speech

synthesis.

4.4.1 Codebook Design

We create a uniform codebook composed of 164000 codewords, where p1 to p4 take values

of {-3, -2.25, -1.5, -0.75, 0, 0.75, 1.5, 2.25, 3}. p5 and p6 take the values of {-3, -1.5, 0,

1.5, 3}. p7 is set to zero since we do not have EMA data to estimate the larynx position.

Some of the shapes in this codebook have a constriction in the larynx region as shown

in Figure 4.11. We remove the shapes with an area less that 2.5 cm2 in the first 14

tubes and are left with 18525 codewords for the “msak0” speaker. We believe that the

removed shapes are unlikely to occur for English speech.
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Figure 4.11: The top four best-matching vocal tract shapes for a frame of EMA data.

The EMA points are shown in solid black. The four shapes match the EMA well, but

some of them exhibit a constriction in the larynx region.
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4.4.2 Searching Vocal Tract Shapes

For each codeword, we compute the vocal tract profile and project it onto the adapted

semi-polar coordinate space. For the EMA data, we first translate the UL, LL, UI, and

LI to the LLM point as described in Subsection 4.3.5. Then we compute the distance

from this point to the outermost lower lip point in the lower contour provided by the

given codeword. Thus, we compute the first distance pertaining to the lips. Then, for

the TT, TB, and TD EMA points, we first find the grid section number in which each

of these points falls. We then compute the distance of the EMA point to the segment

of the lower vocal tract contour that falls within this grid section, which enables us to

find the three other distances. The overall geometric distance between the given frame

of EMA data and the vocal tract contour of the given codeword is the mean of the above

four distances. We choose the codeword that yields the least distance.

4.4.3 Search Results

Note in Figure 4.8 that the minimum separation between the lips, Lipsep, is estimated to

be 2 cm. This measure is used to first translate the lips to the LLM point. Figure 4.12

shows results of the search for the vocal tract shapes of the EMA data belonging to two

frames in the middle of phones {‘II’, ‘@@’} in the words “Seesaw = /S-II-S-OO/” and

“Working = /W-@@-K-I-NG/” respectively. It is clear that the resulting vocal tract

shapes fit the projected EMA data well and reflect the articulatory characteristics of

the two phones. Phone ‘II’ is a high front vowel and phone ‘@@’ is a high back vowel.

Note the difference in the lip opening and the protrusion. The solution vector of the

Maeda parameters for Figure 4.12a is [2.25, 0, 0,−2.25, 1.5, 0, 0] and for Figure 4.12b is

[0.75, 1.5, 2.25,−3, 1.5,−1.5, 0].

4.5 A Modified Synthesis Model

Once we find the best matching vocal tract shape, we convert it to the areas and lengths

of the tubes forming the sections of the vocal tract. We follow Maeda’s approach in

computing the effective length and area of each tube bounded within the upper and lower
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Figure 4.12: Search results for two EMA frames for ‘II’ in “Seesaw = /S-II-S-OO/” and

‘@@’ in “Working = /W-@@-K-I-NG/”. The EMA points used are LLM , TT, TB, and

TD shown in magenta. The resulting inner and upper walls of the matched shapes are

in green and blue respectively.

contours and the grid lines. We then feed these areas and lengths to an articulatory

speech synthesizer. We use the Sondhi and Schroeter model [8] which uses the chain

matrices approach to derive the overall transfer function of the vocal tract. The top

plots in Figure 4.13 show the resulting areas and lengths of the sections of the vocal

tract contours of Figure 4.12. The lower plots show the transfer functions obtained

using the Sondhi and Schroeter model. The formant frequencies are marked in red.

In addition, the plots show the LPC smoothed spectra of the real speech for the two

examples. A close match between real and synthesized spectra is attained for the two

vowels, especially for the first three formants.

We then replace the source modeling of Sondhi and Schroeter that uses the two-

mass model of vocal cords developed by Ishizaka and Flanagan [23] with a modified

version. The new approximation decouples the vocal tract from the glottis. The transfer

function is obtained from the Sondhi and Schroeter entire vocal tract transfer function,
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Figure 4.13: Upper plots show the areas and lengths of the sections of the acoustic tubes

of the vocal tract contours in Figure 4.12. Lower plots show the corresponding transfer

functions synthesized using the Sondhi and Schroeter approach in blue. The formants

are shown in red. In addition, the LPC smoothed spectra of the real speech from the two

examples is shown in black.

H Tract, including the nasal tract for voiced frames. For unvoiced frames the Sondhi

and Schroeter frication transfer function H Frication is used. For generating the source

signal, we use the Rosenberg glottal pulse model [31] for voiced frames and random

noise for unvoiced frames as shown in Figure 4.14. We extract the energy and pitch from

the original speech signal and use them in generating the source signal. This approach

improves the synthesis quality and is faster than our previous approach. Nevertheless, it

is still an approximation since some phones, like voiced fricatives (e.g. ‘Z’), are not well

synthesized this way. In general, the synthesis is not as good for fricatives as it is for

vowels. Equation 4.4 describes the overlap-add approach we follow to convolve the source

signal with the transfer function. The operations are computed as multiplications in the

frequency domain. Results are converted back to the time domain using the inverse Fast

Fourier Transform (iFFT). Figure 4.14 shows the building blocks used in this procedure.
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This approach improves the synthesis quality and is faster than our previous approach

[28].

V oiced Speech = overlapp add(H Tract,Rosenberg Glottal Pulse)

Unvoiced Speech = overlapp add(H Frication, Random Noise) (4.4)

Adapted MaedaModel
Original SpeechPitch Extraction
EMASondhi and Schroeter Model Area Functions

VoicedUnvoicedRosenberg Glottal Pulse ModelRandom Noise GeneratorH_Frication+Synthesized Speech H_Tract
Figure 4.14: A fast and dynamic articulatory synthesis framework.

4.5.1 Synthesis Results

We estimate the nasal tract opening area from the EMA measurements of the velum

sensor VL as described in Subsection 4.3.6. Since Maeda’s model is independent of

the Sondhi and Schroeter model, the exact location of the velum is hard to determine.

Experiments have shown that setting VLloc to 8 yields the best synthesis quality.

Figure 4.15 shows a step-by-step analysis of the synthesis procedure for the utterance:

“Those thieves stole thirty jewels”. The upper plot is the spectrogram of the real speech

spoken by speaker “msak0”. The second plot shows the root-mean-squared (rms) energy

of the real speech. The third plot shows the pitch frequency and the fourth plot shows the

source signal generated by our approach. Note that the source amplitude is weighted by

the energy value. When pitch is zero, meaning that the speech is unvoiced, the source

function is random noise. Otherwise, the source is a train of glottal pulses separated
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by the reciprocal of the pitch value. The fifth plot is the transfer function derived

from the EMA measurements using Maeda’s model and Sondhi and Schroeter’s model.

Note also that the transfer function switches from vocal tract function H Tract to the

frication function H Frication depending on the pitch. Finally, the lower plot shows the

synthesized speech, which is the convolution of source and the transfer function.
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Figure 4.15: Analysis of the synthesis procedure for the utterance: “Those thieves stole

thirty jewels”.

Figure 4.16 shows the spectrogram of the real speech and the speech synthesized
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from the EMA measurements in more detail. It is clear in the figure that the synthesized

spectrum corresponds well to the real spectrum.

F
re

qu
en

cy
 (

H
z)

Real Speech

0.6 0.8 1 1.2 2.5 1.6 1.8 2 2.2 2.4 2.6
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (sec)

F
re

qu
en

cy
 (

H
z)

Synthesized Speech

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 4.16: Spectrogram of the real and synthesized speech for the utterance: “Those

thieves stole thirty jewels”.

4.6 Incorporating Search and Synthesis Errors in the

Adaptation Technique

The preceding work on adaptation looked at the geometric match between the estimated

EMA upper palate for speaker “msak0” and the upper palate of Maeda’s model. Relying

only on geometric matching can be tricky. The solution of adaptation parameters for

the best geometric fit is non-unique. There are many degrees of freedom to match the
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upper palates. Even with the constraints we impose on the set of values of adaptation

parameters, different solutions lead to similar average geometric distances.

In this section, we apply two additional measures to decide which set of adaptation

parameters is most optimal. For each value of k, the grid stretch or compression pa-

rameter, we find the values of β, dx, dy that yields the best geometric match between

the palates, i.e. the least average geometric distance GD. Next, we use the first 10

utterances from each speaker to derive two additional measures: the search error SE

and the mean formant difference FD. SE is due to the distance between the EMA

points from each frame and the best-fitted vocal tract contour. Note that in Figure 4.12,

the EMA points did not fall completely on the green contours. The offset is what we

denote as the average search error SE computed for all the mid-vowel frames in the 10

utterances. Similarly, looking at Figure 4.13, there is a mismatch of formants between

the real spectra and the synthesized one for the two frames. We compute the difference

between the first three formants for all the mid-vowel frames in the 10 utterances and

denote it as the average formant difference FD. The overall error is the weighted sum

of the normalized errors. We normalize each error, GD, SE, and FD over the different

sets of adaptation parameters using the minimum and standard deviation of each error.

overall error = a1 ∗ SEn + a2 ∗GDn + a3 ∗ FDn (4.5)

Equation 4.5 shows the computation of the overall error where n denotes normal-

ization. The values of a1, a2, a3 are set to 0.2, 0.3, 0.5 respectively by experimentation.

Starting with a fixed k, we find the values for the rest of adaptation parameters that

yield the least GD. So the basics of the adaptation are still geometric but we add the

acoustic measure FD as a second step. In addition, we only use the mid-vowel frames

from 10 utterances to choose the adaptation set with minimum overall error. The search

error SE is an indication of how well the adaptation set yields vocal tract contours that

match the EMA data for these frames. The set of 10 utterances for each speaker can be

considered as a development set. Using the formants in the adaptation process has been

done before in [29, 30]. Matching the formants of the real and the synthesized speech is
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supposed to improve the synthesis quality.

4.7 Experimental Results on Vocal Tract Adaptation and

Synthesis for the Available Speakers in MOCHA

The MOCHA database contains EMA measurements and the corresponding acoustic

speech signals for 10 speakers reading 460 TIMIT sentences. In this chapter, we use the

EMA data from nine speakers: “msak0”, “maps0”, “mjjn0”, “ss2404”, “fsew0”, “ffes0”,

“faet0”, “falh0”, and “fjmw0”. We use all the EMA data available from each speaker to

geometrically adapt Maeda’s model and derive the average geometric distance GD. The

number of utterances available for each speaker is shown in Tables 4.2 and 4.3.

We use EMA data from the mid-vowel frames of the first 10 utterances of each speaker

to derive the search error SE. We use the first three formant frequencies from the mid-

vowel frames of the first 10 utterances of each speaker to derive the formants difference

measure FD. The first 10 utterances of each speaker are considered as the development

set. They are not used in evaluating the synthesis quality. We use the EMA data from

the remaining utterances as test data to perform the synthesis and compare it to the

corresponding real speech.

Figure 4.17 summarizes the basic operations that we follow to synthesize speech from

the EMA measurements. For each speaker, we preprocess the EMA measurements to

center them around a common reference. Next we estimate the upper palate of the EMA

data and the mouth opening and find the adaptation parameters that produce the best

matching Maeda model grid. The second row of blocks describes the search for the best-

matching Maeda vocal tract contours on a frame-by-frame basis. The areas and lengths

of the corresponding acoustic tubes between the contours are also computed. The third

row of blocks describes the synthesis of speech from the area functions and computation

of the MFCC of the synthesized speech. The last row describes the computation of the

MCD between the synthesized and real speech.

In the overall process, we have derived a set of realistic vocal tract shapes for each

EMA frame for each speaker.
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EMA Preprocessing +Upper Palate Estimation Maeda Model FittingUpper Palate Adaptation Parameters
EMA Search Adapted Maeda’s Model

UniformMaedaCodebook Adapted Shapes to Area FunctionsVocal Tract Shapes Area Functions
Articulatory Synthesis MFCCSynthesizedSpeechArea Functions MFCC Synthesized Speech

Mel-Cepstral Distortion ComputationMFCC Synthesized Speech MFCC Real SpeechMCD
Figure 4.17: Basic building blocks for the adaptation, search, and synthesis procedures.

The diagram summarizes how we synthesize speech from EMA measurements and com-

pare it to real speech.
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4.7.1 Adaptation Results

Tables 4.2 and 4.3 show the resulting adaptation parameters for the male and female

speakers respectively. We also show the computed Lipsep value. GD is the geometric

distance between the estimated EMA upper palate and the Maeda model upper palate.

Note that adaptation reduces significantly this value for almost all the speakers. The

exception is speaker “mjjn0”, where the baseline model matches the EMA palate better,

but it exhibits geometric violations. We exclude setups with such violations from our

search. Examples of such violations are situations where the EMA points fall above the

upper palate given by Maeda’s model. In the adaptation we follow here, we relax this

constraint in the oral region but kept it in the polar region.

After finding the set of adaptation parameters for each speaker, we remove the vocal

tract shapes that are uncommon in English from the generic codebook as described in

Subsection 4.4.1. Different speakers have different codebooks according to their vocal

tract dimensions. In general, the shorter the vocal tract length is (higher values of k),

the smaller the codebook size.

Table 4.2: Number of utterances, adaptation parameters, average geometric distance,

and codebook size for male speakers.

Speaker msak0 maps0 mjjn0 ss2404

Number of Utterances 458 450 460 328

k -0.12 -0.12 -0.02 -0.04

β (rad) -0.0087 -0.0175 0.0262 0.0209

dx (cm) -0.4 -0.6 -0.6 -0.8

dy (cm) 0.6 0.8 -0.6 0.2

Lipsep (cm) 2.00 1.08 2.68 1.10

GD (cm) 0.67 0.70 0.29 0.77

GD + Adaptation (cm) 0.20 0.14 0.39 0.45

Codebook Size 18875 18875 18050 18200

Figures 4.18 and 4.19 show the adaptation results for the male and female speakers
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Table 4.3: Number of utterances, adaptation parameters, average geometric distance,

and codebook size for female speakers.

Speaker fsew0 ffes0 faet0 falh0 fjmw0

Number of Utterances 460 459 456 130 281

k 0.06 0.14 -0.14 -0.1 0.2

β (rad) 0.0175 -0.0087 -0.0175 -0.0175 -0.007

dx (cm) -0.4 -0.2 0 -0.6 0.4

dy (cm) 0.2 1.2 1.4 1.6 0.8

Lipsep (cm) 1.43 1.20 1.45 1.23 1.25

GD (cm) 0.56 0.96 1.13 1.24 0.71

GD + Adaptation (cm) 0.27 0.23 0.25 0.24 0.27

Codebook Size 17325 16400 18050 18700 16225

respectively. The smoothed scatter of the EMA data is shown in yellow, black, and red.

The adapted Maeda grid is superimposed on the EMA scatter (red grid lines). Note the

fit of Maeda’s model upper palate to the EMA data and the length and tilt of the vocal

tract in each figure. In general, it is shown in the plots that males have longer vocal

tract than females reflecting the estimated k parameter.

4.7.2 Synthesis Results

We compare the MCD results derived using the model adaptation and search techniques

described in this chapter with the MCD results derived following the approach in Section

3.1. The latter approach, which we consider as our baseline, maps EMA data to Maeda

parameters using a heuristic mapping from EMA directly to Maeda parameters rather

than using the model itself. For example, p5 is simply the normalized distance between

the UL and LL. It relies on the meaning Maeda attributed to the vocal tract shape

parameters as described in [9] and summarized in Table 2.2. There is no geometric search

involved in the mapping. The consequential difference between the two approaches is in

the values for the areas and lengths of the acoustic tubes and in the nasal tract opening
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area estimation.

We estimate the nasal tract opening area from the EMA measurements of the velum

sensor VL as described in Subsection 4.3.6. Reliable velum sensor measurements are

available only for speakers “msak0”, “fsew0”, “ffes0”, “falh0”, and “fjmw0”. We set the

area to zero for the rest of the speakers. We also set the nasal tract area to zero for the

all the speakers in the baseline MCD computations.

For each frame in the test utterances we synthesize speech following the approach

described in Sections 4.4 and 4.5. Then we extract Mel-cepstral coefficients (MFCC)

from the synthesized and the real speech respectively and compute the MCD between

them for each frame. We compute the average MCD for frames from vowels, fricatives,

nasals, and all the phones. When computing the average MCD, we include the MCD of

the frames at the onset, middle, and offset of phones. Phonetic segmentation has been

automatically extracted beforehand.

For the adapted vocal tract experiment, we achieve 6.54% relative reduction over

baseline in MCD for vowels, 9.10% for nasals, and 4.75% in total for speaker “msak0”.

The MCD for fricatives becomes worse with adaptation. Table 4.4 presents these results.

Table 4.4: MCD results: the absolute and relative differences are between the baseline

experiment without adaptation and the adapted vocal tract approach developed in this

chapter. Detailed results are presented for speaker “msak0”.

MCD Results Vowels Fricatives Nasals All

Frame Count 14517 6660 4215 42294

No Adaptation 6.95 8.66 7.85 8.07

Adapted Vocal Tract 6.50 8.78 7.13 7.68

Absolute Difference 0.46 -0.11 0.71 0.38

Relative Difference 6.54% -1.30% 9.10% 4.75%

For speaker “fsew0”, we achieve 1.33% relative reduction over baseline in MCD for

vowels, 20.04% for nasals, and 2.18% in total. The MCD for fricatives also got worse

with adaptation here. Table 4.5 presents these results.
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Table 4.5: MCD results: the absolute and relative differences are between the baseline

experiment without adaptation and the adapted vocal tract approach developed in this

chapter. Detailed results are presented for speaker “fsew0”.

MCD Results Vowels Fricatives Nasals All

Frame Count 14514 6672 4208 42929

No Adaptation 7.28 7.76 9.31 8.11

Adapted Vocal Tract 7.18 8.50 7.45 7.93

Absolute Difference 0.10 -0.75 1.87 0.18

Relative Difference 1.33% -9.64% 20.04% 2.18%

Figure 4.20 shows the average MCD results from all the test utterance for the male

speakers. It is clear in the plot that reduction in MCD is achieved in adaptation for

vowel frames for most speakers. In addition, reduction in MCD is achieved for all frames

(including vowel frames) for all the male speakers. Similar results are achieved for the

female speakers as shown in Figure 4.21. In the female cases, the MCD is in general

higher than in the male cases.

Figure 4.22 shows the average MCD for the nasal frames from speakers with reliable

velum sensor measurements. Compared to baseline, the adaptation improves the MCD

considerably for all the speakers.

4.8 Conclusions and Future Work

We presented a principled approach for mapping EMA data to vocal tract shapes for the

task of speech synthesis by a physical model of the vocal tract. We used the EMA data

to adapt Maeda’s vocal tract model to all available speakers in the MOCHA database.

We presented a way for searching for the best fitting vocal tract contours. Experiments

showed improvement in synthesis over the baseline approach we adopted without adapta-

tion. We also showed how to estimate the nasal tract opening area from the velum sensor.

In all experiments, we synthesized continuous speech waveforms solely from EMA. To

our knowledge, this is the first work that synthesizes continuous speech utterances from
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EMA data. In the future, we would like to use the ElectroPalatoGraph (EPG) data

provided in MOCHA to improve modeling of fricatives and the constriction location.
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Figure 4.18: Adaptation results for the male speakers. The smoothed scatter of the EMA

data is shown in yellow, black, and red. The adapted Maeda model grid is superimposed

on the EMA scatter (red grid lines). The green contour is for the steady state Maeda

lower contour and the blue contour is the adapted Maeda upper contour. The top-most

point in each figure corresponds to the bridge of the nose cluster.
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Figure 4.19: Adaptation results for the female speakers. The smoothed scatter of the EMA

data is shown in yellow, black, and red. The adapted Maeda model grid is superimposed

on the EMA scatter (red grid lines). The green contour is for the steady state Maeda

lower contour and the blue contour is the adapted Maeda upper contour. The top-most

point in each figure corresponds to the bridge of the nose cluster.
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Figure 4.20: Average MCD results for all test utterances of the male speakers, showing

results for vowel frames and all frames.
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Figure 4.21: Average MCD results for all test utterances of the female speakers, showing

results for vowel frames and all frames.
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Figure 4.22: Average MCD results for speakers with reliable velum sensor measurements,

showing results for nasal frames only.
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Chapter 5

Dynamic Framework Using the

Analysis-by-Synthesis Distortion

Features

5.1 Introduction

Articulatory modeling [12, 32] is used to incorporate speech production information

into automatic speech recognition (ASR) systems. It is believed that solutions to the

problems of co-articulation, pronunciation variations, and other speaking style related

phenomena reside in how accurately we capture the production process.

Our goal in this chapter is a dynamic articulatory framework for speech recognition

where the model states are collections of possible vocal tract shapes. In previous work we

have presented two key components that enable us to address this goal. In Chapter 3 we

propose new features that convey articulatory information. Using a physically-motivated

codebook of vocal tract shapes to derive analysis-by-synthesis distortion features is shown

to provide improvements in phone classification accuracy. In Chapter 4 we show how

to derive realistic vocal tract shapes from the EMA data in the MOCHA database. We

rely solely on the EMA data to perform the synthesis, in contrast to the more common

approach of learning a statistical mapping between the EMA and acoustic recordings
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from parallel recordings of the two [33, 34]. The combination of the adapted vocal

tract models and a physiologically-based articulatory synthesizer, e.g. the Sondhi and

Schroeter synthesizer [8], models the physical speech production process for a speaker.

Previous and current approaches to the incorporation of articulatory models into

speech recognition [32, 35, 16] have used representations of phonological features derived

from the transcript through linguistic expert knowledge. This representation may not

represent the actual underlying articulatory phenomena that produced the speech signal.

The same speech may be produced differently. In the work reported in this chapter we use

EMA measurements as a means for capturing the ground truth articulatory phenomena.

EMA provides exact information about the articulators’ movements rather than abstract

information derived from text.

Our aim here is to build upon our previous work [28, 36] and incorporate the distor-

tion features in a dynamic framework whose inner states are vocal tract shapes. These

vocal tract shapes are derived in a principled geometric fashion as described in [36]. We

then synthesize speech using the adapted vocal tract models for each speaker to closely

mimic the incoming speech signal. The distortion between the incoming speech and the

speech synthesized from the articulatory states is used to dynamically traverse the artic-

ulatory space. This framework not only constrains the set of possible vocal tract shapes

for each phone, but is also capable of modeling the articulatory dynamics and imposing

further constraints in a probabilistic fashion.

The set of all possible vocal tract shapes is quantized into a codebook of shapes, each

represented by a vector of Maeda parameters. For a given phone, only a restricted region

in the space of vocal tract shapes represented by a subset of the codewords is active.

Hence we would only need the distortion features associated with these codewords. In

this chapter, we show how we can learn this subset. We use two approaches, one that

uses the EMA data (i.e. ground truth) and another that is data driven. Both approaches

yield a solution that zeros out the weights associated with codewords not relevant to the

phone in study.

In order to incorporate the distortion into the probabilistic framework, we need to
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convert it to a form of probability. The key point here is to apply a density function that

penalizes higher distortions (e.g. exponential density). The lower the distortion from a

given codeword, the more likely it is to be the codeword that has generated the incoming

frame of speech. Another way of looking at this is saying that we only care about the

codewords that reflect the true articulatory dynamics of the phone in study. We refer

to this as the “OR” approach. In the “AND” approach in Chapter 3 we included the

distortion from all the codewords, whether relevant to the phone or not, and that helped

provide better discrimination and classification accuracy.

Using a subset of distortion features for a particular phone is a means of applying

articulatory knowledge to constrain the recognition problem. It also reduces the amount

of computation involved in using all the distortion features as we did in Chapter 3. The

sparsity in the estimated weights of the codewords for each phone reflects the reductions

in computations. Since each state is a collection of articulatory states, then the state

itself has an articulatory meaning reflected in the weights attributed to the codewords.

The transition from one state to another then reflects articulatory movements. This

framework can be easily expanded to incorporate articulatory dynamics in different ways.

In this chapter we present our design of the dynamic framework and the observation

probability model used. We present several different methods for model training and

initialization. We analyze the sparsity of the solutions to which the algorithms converge

and we present preliminary phone classification results.

5.1.1 Analysis of the Features

Figure 3.2 shows the distortion computed from all the codewords for each frame in an

utterance. In reality, using the EMA measurements we can tell which codeword is active

for each frame. Hence, we can get an exact estimate of the distortion distribution if we

take the codeword identity into consideration. In this section we show the distribution

of the distortion for two phones ‘O’ an ‘II’ for the speaker “msak0” from MOCHA.

Phonetic segmentation has been pre-computed and we show the distribution from all

the frames that belong to segments of these phones. The distortion from each codeword
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is computed from all the utterances. Figure 5.1 shows the distortion distribution for

codewords 45 through 48 for the two phones, where count reflects the number of frames.

Each plot contains two histograms of distortion(codeword = j|phone = C), where j =

{45, 46, 47, 48} and C = { ‘O’,‘II’ }. From the figure we can see that Codeword 45

synthesizes speech that is closer to ‘O’ than ‘II’ due to the overall lower distortions

for most available examples of these phones. Recall that we are following a context-

independent analysis of phonemes. In addition to Codeword 45 synthesizing speech

closer to ‘O’ than the other codewords, the other codewords synthesize speech closer to

‘II’ following the same reasoning. In the right hand side of the figure we plot the square

of the distortion for further insights that help us choose the correct probability density

function to model the distortion.

Figure 5.2 shows the distortion distribution for codewords 45 through 48 for the

two phones. In the figure we use the information from the EMA that provides

ground truth information on which frames each of these codes has occurred at. We

only plot the distribution for these frames. Each plot contains two histograms of

distortion(codeword = j|phone = C, truecode = j), where j = {45, 46, 47, 48} and

C = { ‘O’,‘II’ }.
We first see that the count of the distortion is less than in Figure 5.1 since we are

selecting the frames where each of these codeword truly occurs. From Figure 5.2 we

can also see that codeword 45 is more active for phone ‘O’ than ‘II’ because the overall

count of the number of frames where this codeword occurs is more for ‘O’ than ‘II’. This

also explains the overall lower distortion for ‘O’ than ‘II’ as shown for this codeword in

Figure 5.1. Similarly, codewords 46 and 47 are more active for phone ‘II’ and yielded

a lower overall distortion in Figure 5.1. Codeword 48 is seldom active for both phones,

more for phone ‘O’ than ‘II’, yet overall the synthesis seems to be closer to ‘II’.

5.1.2 Feature Normalization Techniques

We have tried three techniques for features normalization to help with choosing the

probability density function to model the distortion. The top plot in Figure 5.3 shows
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Figure 5.1: Distortion histogram for codewords 45-48 of phones ‘O’ and ‘II’ for speaker

“msak0”. The histogram of the square of the distortion is shown on the right. The count

reflects the number of frames.
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Figure 5.2: Distortion histogram for codewords 45-48 of phones ‘O’ and ‘II’ for speaker

“msak0”, knowing ground-truth from EMA. The histogram of the square of the distortion

is shown on the right. The count reflects the number of frames.
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the distortion from codeword 47 for the same data used above without using ground-truth

information.

Minimum-Frame Codeword Distortion Normalization: minC

This normalization, minC, works on a frame-by-frame basis. At a given time instant

it finds the minimum distortion from all the codewords. This is then subtracted from

the rest of the distortions for that time instant. The motivation is that if the minimum

distortion is from the correct codeword, then this distortion is mainly due to synthesis

inaccuracy. Subtracting this value will make the distortion from the correct codeword

zero. We add a small number (0.01) to avoid numerical instabilities especially when we

apply different probability distributions to the features. The result of this normalization

is shown in the second plot from the top in Figure 5.3.

Mean-Utterance Codeword Distortion Normalization: meanU

This normalization, meanU, works on each feature separately over the whole utterance.

It is analogous to Cepstral Mean Normalization (CMN [25]) that works on the distortion

from each codeword. It computes the mean of each feature over the utterance and

subtracts it out. The result of this normalization is shown in the third plot from top in

Figure 5.3.

Minimum-Utterance Codeword Distortion Normalization: minU

This normalization, minU, is similar to meanU, except that it subtracts the minimum

of each feature over the utterance instead of the mean. The result of this normalization

is shown in the bottom plot in Figure 5.3.

5.2 Dynamic Framework

As mentioned in the introduction of this chapter, we desire a dynamic framework that

reduces computations and is capable of modeling the dynamic constraints of articula-

tors, which we believe helps in improving speech recognition accuracy. In addition, this
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Figure 5.3: Different normalization techniques for the distortion from codeword 47 for

speaker “msak0”.
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framework continues to impose the same set of vocal tract shapes on the phones as the

analysis-by-synthesis distortion framework. In fact, we use the same features but without

compression with LDA.

Figure 6.3 shows the ultimate dynamic framework where the states are shared by

all the phones. The states are the codewords of vocal tract shapes. Weighting for each

state is based on the phone identity. The transition from one state to another reflects

articulatory movements. The output of each state is the distortion between the incoming

speech and the speech synthesized from this state (codeword). We seek the path in the

articulatory space that minimizes the error due to two measures, an articulatory and a

distortion measure; error = acoustic distortion + articulatory distance. The articula-

tory measure is derived from the transition from one codeword to another. So, we seek

smooth paths that are more likely for a given phone sequence. The distortion measure is

the total distortion between the speech synthesized from the codewords and the incom-

ing speech. We seek paths that generate speech that is closer to the incoming speech.

These paths are directly related to the phone identities since the model parameters are

functions of phones.

5.3 Mixture density function for modeling the state output

observation probability

In order to incorporate distortion into the probabilistic framework, we need to convert

it to a form of probability. The key point here is to apply a density function that will

penalize higher distortions. The lower the distortion from a given codeword, the more

likely it is to be the codeword that has generated the incoming frame of speech. Another

way of looking at this is saying that we only care about the likely codewords that reflect

the true articulatory dynamics of the phone in study. In this framework, we do not care

about the distortion from the incorrect codewords since it will not reflect correct dynamic

information. We refer to this as the “OR” approach as mentioned in Section 5.1. In the

“AND” approach, we included the distortion from all the codewords, whether relevant

to the phone or not, and that helped provide better discrimination and classification
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accuracy. We hope that looking at the likely codewords alone for a given phone will

maintain this performance, provided that we take advantage of dynamical constraints

and present a less computationally-costly framework.

In this section we model the set of codewords as a mixture probability density func-

tion. We show how we can learn the subset of relevant codewords for a given phone. We

use two techniques, one that uses the EMA data (i.e. ground-truth) and the other that

is data driven. Both techniques yield a solution that will zero out the weights associated

with codewords not relevant to the phone in question.

The acoustic distortion between the speech synthesized from each of the codewords

and the incoming speech is D = {d1, d2, . . . , dM}, where M is the number of codewords

CD = {cd1, cd2, . . . , cdM} for state S1 and observation x. We follow a soft decision

approach in which we estimate a set of weights for each phone {w1, w2, . . . , wM} that

defines the contribution of each codeword as follows:

P (x|S1) =
M∑

j=1

P (x, cdj |S1)

=
M∑

j=1

P (cdj |S1)P (x|cdj , S1)

=
M∑

j=1

w1jP (x|cdj , S1) (5.1)

We use the expectation-maximization algorithm (EM, Dempster et al. [37]) to esti-

mate the weights and the probability distribution parameters used to model the obser-

vation probability of the distortion of each codeword.

5.3.1 Weights Estimation from Audio

We use the EM algorithm [37] to derive the mixture weights for Equation 5.1 for

a given phone C. Refer to Bilmes [38] for the derivation of EM for a mixture of

Gaussian densities. In our setup, the set of model parameters to estimate φ is

{w1, w2, . . . , wM , θ1, θ2, . . . , θM}. The exact set of {θj , j = 1 : M} depends on the ob-

servation probability used. We assume that these parameters are derived from a set of
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{xi, i = 1 : N} audio data points belonging to phone C and drop the phone identity

from the equations. From Bilmes [38], the maximum likelihood solution is:

wt
j =

1
N

N∑

i=1

P (cdj |xi, θ
t−1
j )

=
1
N

N∑

i=1

wt−1
j P (xi|cdj , θ

t−1
j )

∑M
k=1 wt−1

k P (xi|cdk, θ
t−1
k )

=
wt−1

j

N

N∑

i=1

P (xi|cdj , θ
t−1
j )

∑M
k=1 wt−1

k P (xi|cdk, θ
t−1
k )

(5.2)

Starting with a flat initialization as described in Equation 5.3, we iterate until the

values of {wj , j = 1 : M} converge.

wj =
1
M

, (j = 1 : M) (5.3)

5.3.2 Weights Estimation using EMA

A forced-alignment of the audio and the transcript provides the phonetic segmentation

for the MOCHA database. For each frame we know which phone C it corresponds to.

From the EMA data we can also know which codeword it corresponds to. Hence we can

count the codewords for each phone and estimate the probability of being in a given

codeword for this phone. This estimate can be used as a prior to estimating the weights

from audio and for initialization purposes in other databases where the EMA data are

not available.

wj =
count frames(phone = C, truecode = cdj)

total frames(phone = C)
(5.4)

5.3.3 Output Distortion Probability

For each frame of speech {xi, i = 1 : N}, we compute the distortion {dij , j = 1 : M}
for each codeword {cdj , j = 1 : M}. We consider three different observation probability

densities: exponential, Rayleigh, and Gaussian. As distortion decreases the codeword
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becomes more likely to have produced the speech. This is reflected in our choice of the

probability densities, except for the Gaussian, which is the traditional density used in

HMMs.

Exponential Probability Density

P (xi|cdj) = λj exp−λjd2
ij (5.5)

Rayleigh Probability Density

P (xi|cdj) =
dij

σ2
j

exp
− d2

ij

2σ2
j (5.6)

Gaussian Probability Density

P (xi|cdj) =
1√
2πσ2

j

exp
− (dij−µj)2

2σ2
j (5.7)

The top left plot of Figure 5.4 shows the histogram of the distribution of the squared

distortion from codeword 47 for speaker “msak0” and for phones ‘O’ and ‘II’. The bottom

left shows the exponential densities fitted into the two distributions. The top right plot

shows the distribution of the minC normalized distortion. The bottom right shows the

Rayleigh density fitted to this distribution.

A perfect fit to the distribution of the distortion is not a guarantee of optimal perfor-

mance due to the way we set up this problem. The requirement is that the smaller the

distortion is the higher the likelihood of the codeword should be and vice versa. Using

the model we describe in this chapter, experiments have shown that the exponential

density does slightly better than the Rayleigh density in phone classification. In the

following, we will only show the equations for the exponential distribution.
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Figure 5.4: Exponential density function for modeling the square of the distortion from

codeword 47 for speaker “msak0” on the left. Rayleigh density function for modeling the

minC normalized distortion from codeword 47 for speaker “msak0” on the right. The

count reflects the number of frames.
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5.3.4 Estimating the Lambdas of the Exponential Distribution from

Audio

The set of parameters to estimate is {λ1, λ2, . . . , λM} for a given phone C. Including the

estimation of lambdas in the EM, the update equation is:

λt
j =

∑N
i=1 P (cdj |xi, θ

t−1
j )

∑N
i=1 d2

ijP (cdj |xi, θ
t−1
j )

=

∑N
i=1

wt−1
j P (xi|λt−1

j )∑M
k=1 wt−1

k P (xi|λt−1
k )

∑N
i=1 d2

ij

wt−1
j P (xi|λt−1

j )∑M
k=1 wt−1

k P (xi|λt−1
k )

(5.8)

Starting with a flat initialization as described by Equation 5.9, we iterate until the

values of {λj , j = 1 : M} converge.

λj =
1

mean(d2
ij |phone = C)

, (i = 1 : N) (5.9)

5.3.5 Estimating the Lambdas of the Exponential Distribution from

EMA

As mentioned in Subsection 5.3.2, using forced-alignment and EMA we get the codewords

identities. EM has been used before to overcome this missing information from the audio.

Hence, we can estimate {λ1, λ2, . . . , λM} directly for each codeword without corrupting

the estimation by data generated from other codewords. This estimate can be used as a

prior to estimating {λ1, λ2, . . . , λM} from audio and for initialization purposes in other

databases where the EMA data are not available.

λj =
1

mean(d2
ij |phone = C, truecode = cdj)

(5.10)

5.3.6 Classification using Estimated Parameters

To classify each segment of speech X into the most likely phone Ĉ, we compute:
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Ĉ = argmaxCP (C|X)

P (C|X) = (
L∏

i=1

P (xi|C))P (C)

logP (C|X) =
L∑

i=1

log(
M∑

j=1

wjP (xi|cdj , θj)) + log(P (C)) (5.11)

where P (C) is the prior probability of phone C.

5.3.7 HMM Formulation for Exponential Observation Probabilities/S/ /P/S1 HMM State Spacea12a11
Mixture of Articulatory Codewords 

Distortion Probability

S2 a23a22 S3a33
cdM
cd1cd2... d1d2dM cdM

cd1cd2... d1d2dM
+bd2+bd1

W11 W21W12 W22W1M W2M
Figure 5.5: Mixture probability density for the distortion features in a dynamic frame-

work.

To model dynamics, we use a three-state left-to-right HMM for each phone S =

{S1, S2, S3}. Each state will model part of the phone and hence converge to different

values for the parameters used to model the distribution of the features associated with

it. HMMs are defined by three main parameters φ = π, A, B, where π is the vector of

state initial probabilities, A is the transition matrix, and B is the matrix containing the
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values of the parameters describing the output observation density. Refer to [39, 38] for

a detailed description of HMMs.

We use the basic formulation of HMM parameters in [39, 38], with some modification

to reflect the observation densities used to model the distortion features. To enforce

the left-right three-state topology we initialize the vector of initial state probabilities

πi, (i = 1 : N), where N is the number of states N = 3, as π = [1, 0, 0]. We also initialize

the transition probability matrix aij , i, j = 1 : N to aij = [0.5, 0.5, 0; 0, 0.5, 0.5; 0, 0, 1].

The EM parameters we define for each segment are bdi(t), γi(t), and γil(t). The HMM

model parameters computed from all the segments are wil, and λil. Each segment X of

a given phone is made of observations x(t), t = 1 : T , where T is the number of frames

in each segment. Assuming M mixtures, the output observation probability from each

state is given by Equation 5.12.

bdi(t) = P (x(t)|S(t) = i)

=
M∑

l=1

wilλil exp−λild
2
l (t) (5.12)

Another parameter we modified is γil(t) as shown in Equation 5.13. m(t) is the

mixture at time t. γi(t) is as described in [38].

γi(t) = P (S(t) = i|X, φ)

γil(t) = P (S(t) = i,m(t) = l|X, φ)

= γi(t)
wilλil exp−λild

2
l (t)

bdi(t)
(5.13)

Given E segments of the phone, the HMM model parameters are updated using the

formulation in Equation 5.14. Te is the length of each segment e.

wil =
∑E

e=1

∑Te
t=1 γe

il(t)∑E
e=1

∑Te
t=1 γe

i (t)

λil =
∑E

e=1

∑Te
t=1 γe

il(t)∑E
e=1

∑Te
t=1 d2e

l (t)γe
i (t)

(5.14)
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This formulation is integrated in the forward-backward code for HMM model esti-

mation.

5.3.8 HMM Classification using Estimated Parameters

For scoring each segment we calculate the log-likelihood probability using the sum of αs

of the forward-backward algorithm as in Equation 5.15. The sum of αs over all states at

the end Te of segment e is the likelihood of the segment as shown in [38].

Ĉ = argmaxCP (C|X)

P (C|X) = P (X|C)P (C)

P (X|C, φ)) =
N∑

i=1

αi(Te)

logP (C|X) = log(P (X|C, φ)) + log(P (C)) (5.15)

5.3.9 Alternative Training Approaches for the Exponential Distribu-

tion

We considered several different approaches for model training. These approaches vary

in initialization and update strategies.

Estimating Lambdas and Weights Solely from Data

Using the framework described above, we use flat-initialization of the lambdas and

weights from data as shown in Equations 5.9 and 5.3. The EM algorithm converges

to the most likely solution given the distortion data for each phone separately. EM

has the tendency to arrive at local, rather than global optima. Hence initialization is

important.

Initializing Lambdas and Weights from EMA and Updating them from Data

As we mentioned in the introduction of this chapter, looking only at the distortion data

for a given codeword regardless of the true codeword identity corrupts the distribution of
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the distortion of that codeword. It is corrupted by distortions arising from data actually

generated from other codewords. Using EMA we can tell at which frames each codeword

occurs in the data and learn the weights of the codewords for a given phone as described

in Equation 5.4. We can also use the distortion associated with these frames to learn

the true lambdas of the exponential distribution as described in Equation 5.10. The EM

will start from the solution provided by EMA and converge to the most likely solution

given the distortion data for each phone.

Initializing Lambdas and Weights from EMA and Updating Weights Only

from Data

We can also update just the weights from the distortion data associated with the phone

and keep the lambdas fixed as estimated from EMA. This way the true distribution of

codewords distortion is preserved.

Phone-Independent Initialization of Lambdas from EMA: Analogue to Semi-

Continuous HMMs

Semi-continuous HMMs use a set of distributions that are shared among different phones.

The differences in the models are only in the weights associated with the distribution.

In our problem, we also try an analog to semi-continuous HMMs where the distribution

of the distortion at the output of each codeword is estimated from EMA. Knowing the

codeword’s identity, and irrespective of the phone identity, we estimate the lambda for

the distortions from that codeword. We fix the set of lambdas for each phone and only

update the weights from the distortion data associated with the phone.

5.4 Generating a Realistic Articulatory Codebook and Ar-

ticulatory Transfer Functions

In Chapter 4 we adapt Maeda’s geometric model of the vocal tract to the EMA data

of each speaker in the MOCHA database. We then search, on a frame-by-frame basis,

a uniform codebook of Maeda parameters for vocal tract shapes that fit each frame of
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EMA data. In this chapter, we sample each phone at five positions: the beginning,

middle, end, between beginning and middle, and between middle and end, and read

the corresponding Maeda parameter vectors found in the geometric search process. We

also add the nasal tract opening area as an additional parameter to the Maeda vector

to account for nasal sounds as described in Subsection 4.3.6. Table 5.1 shows the new

codeword description.

Table 5.1: Codeword made of the seven Maeda parameters derived from the uniform

codebook and appending the velum opening area (VA).

Codeword p1 p2 p3 p4 p5 p6 p7 VA

We then perform k-means clustering over the set of parameter vectors obtained in

this manner. We designate the vector closest to the mean of each cluster as codeword

representing the cluster. This is done to guarantee that the codeword is a legitimate

articulatory configuration. The set of codewords obtained in this manner is expected to

span the space of realistic articulatory configurations which also accounts for information

about the velum.

Once we compute the codebook, we convert it to articulatory transfer functions to

be used to derive the analysis-by-synthesis distortion features described in Subsection

3.4.2. We have the option of using the adapted Maeda model to map the codewords to

area functions and then to transfer functions or to use the unadapted model. Figure 5.6

shows the basic blocks for deriving the codebook of realistic vocal tract shapes.

5.4.1 Viewing the Phones in the Condensed Maeda Space

In order to visualize some of the results of our work, we use multi-dimensional scaling

(MDS) [40] for high-dimensional data. MDS applies a technique similar to principal

component analysis (PCA) to compute the eigenvectors of the data. Using the highest

two eigenvectors we can project the data to a two-dimensional plane and visualize it.

We apply MDS on the mean vector of the Maeda parameters for each phone computed

as described above. We have a vector of eight parameters for each phone. Projecting
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the vectors into a two-dimensional plane helps us visualize the phones in a compressed

Maeda space. Figure 5.7 shows this projection. It is interesting to note how the phones

cluster together. For example, ‘B’, ‘P’, and ‘M’ cluster together and so do ‘D’, ‘T’,

and ‘N’. Each set of phones has a very similar vocal tract configuration. For example

‘S’ and ‘Z’ have the same constriction location and vocal tract shape and differ only in

the voicing, as do ‘F’ and ‘V’. The Maeda parameters for these two sets of phones are

very similar. This supports the validity of our speaker-independent mapping from the

EMA data to the Maeda parameters. The means of the Maeda parameters have been

computed over all the speakers. These codewords are used as the basis of the dynamic

framework described in this chapter.

5.5 Experimental Analysis and Results using the Analysis-

by-Synthesis Frameworks

We conduct a number of experiments to evaluate the usefulness of the proposed articu-

latory framework for speech recognition. In order to avoid obfuscating our results with

the effect of lexical and linguistic constraints that are inherent in a continuous speech

recognition system, we evaluate our features on a simple phone classification task, where

EMA Search Adapted Maeda’s Model
UniformMaedaCodebook Articulatory Synthesis ModelAdapted Vocal Tract Shapes AdaptedTransfer FunctionsRealisticCodebook

Figure 5.6: Figure shows our approach of deriving a codebook of realistic vocal tract

shapes from the uniform Maeda codebook.
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by MDS. x and y are the first and second parameters of the MDS decomposition.
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the boundaries of phones are assumed to be known.

We choose as our data set the audio recordings from the MOCHA database itself,

since it permits us to use the exact articulatory configurations for any segment of sound.

We use the data from nine speakers for our work: “faet0”, “falh0”, “ffes0”, “fjmw0”,

“fsew0”, “maps0”, “mjjn0”, “msak0”, and “ss2404”. Five of the speakers are females and

four are males. We choose to test on the female speaker “fsew0” and the male speaker

“msak0” and train on the rest. All experiments are speaker independent. The number

of utterances used for training is 2569 and for testing is 918. The test utterances are

composed of 14352 phone segments from speaker “fsew0”, 14302 segments from speaker

“msak0”, and 28654 segments in total. Only EMA data from the training speakers are

used to compute the articulatory codebook and to initialize the model parameters. The

codebook consists of 1024 codewords after clustering 394247 articulatory vectors sampled

from all the phones. The articulatory data of the test speakers have not been used.

The phone Ĉ for each segment is estimated as:

Ĉ = argmaxCP (C)P (MFCC|C)αP (FastDist|C)(1−α) (5.16)

where C represents an arbitrary phone, and MFCC and FastDist represent the set of

MFCC features and fast analysis-by-synthesis distortion features for the segment respec-

tively. α is a positive number between 0 and 1 that specifies the relative contributions

of the two features to classification. We vary the value of α between 0 and 1.0 in steps

of 0.05, and choose the value that results in the best classification in the form of phone

error rate (PER).

We have tried all of the described training approaches, feature normalization tech-

niques, and probability density functions. We report below the best results achieved

thus far. Most of the best results followed from using the exponential density function

and without feature normalization.
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5.5.1 EXP HMM 1: PER with Flat Initialization from Audio

The Baseline experiment reports phone error rates for the two speakers using 13-

dimensional MFCC features with cepstral mean normalization (CMN). We use a three-

state HMM with left-to-right topology with observation probabilities that are mixtures

of 128 gaussian densities. We use vector quantization (VQ) to initialize the means of the

mixtures.

In experiment EXP HMM 1 we use the distortion features derived as discussed in

Section 3.4.2 but using the realistic codebook described in Section 5.4. We use the

articulatory synthesis model without adaptation to derive these features. We apply a

three-state HMM and mixtures of 1024 exponential densities functions for the output

probabilities. We initialize the weights and lambdas of the exponential distribution from

the distortion features as described in Subsections 5.3.1 and 5.3.4. Using α = 0.2 and

combining the probability of the baseline system with this system yields a reduction of

5.3% in PER. This shows that our new framework does indeed improve the classification

performance. The sparsity of the weights is defined as the percent of weights that are

zeros for a given codeword over the three states, computed over all the codewords and

phones. The codewords that have zero weights over the three HMM states do not need to

be considered during classification, i.e. there is no need to synthesize speech from these

codewords when considering a particular phone. Initializing from the distortion features

(audio only) causes 21% of the weights to become zero. This is the “OR” approach we

described before.

Table 5.2: EXP HMM 1 PER using MFCC and a combination with the fast analysis-by-

synthesis distortion features with parameters initialized from audio.

Features (dimension) Topology Obser Prob Sparsity α fsew0 msak0 Both

MFCC + CMN (13) 3S-128M-HMM Gaussian 0% 1 61.6% 55.9% 58.8%

Fast Dist (1024) 3S-1024M-HMM Exponential 21% 0.2 57.6% 53.7% 55.7%

Relative Improvement 6.5% 4.0% 5.3%
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5.5.2 EXP HMM 2: PER with Initialization from EMA

In experiment EXP HMM 2 we follow the same approach as EXP HMM 1 except

that now we initialize the weights and lambdas from the EMA data as described in

Subsections 5.3.2 and 5.3.5. The EM algorithm starts from the solution provided by

EMA and converges to the most likely solution given the distortion data for each phone.

This increases the sparsity to 51% with small degradation in phone accuracy, which

reduces the computation required considerably.

Table 5.3: EXP HMM 2 PER using MFCC and a combination with the fast analysis-by-

synthesis distortion features with parameters initialized from EMA.

Features (dimension) Topology Obser Prob Sparsity α fsew0 msak0 Both

MFCC + CMN (13) 3S-128M-HMM Gaussian 0% 1 61.6% 55.9% 58.8%

Fast Dist (1024) 3S-1024M-HMM Exponential 51% 0.2 58.3% 53.9% 56.1%

Relative Improvement 5.4% 3.9% 4.6%

5.5.3 EXP HMM 3: PER with Initialization from EMA using Adapted

Transfer Functions

In experiment EXP HMM 3 we follow the same approach as EXP HMM 2 except that

now we use the articulatory synthesis model with adaptation to derive the distortion

features. Table 5.6 shows the effect of adaptation on phone classification. Note that

especially for speaker “msak0”, the adaptation has provided a small improvement in

classification accuracy. The overall classification accuracy is the same as in EXP HMM 1

but with the same sparsity as in EXP HMM 2. This shows that when the system focuses

on a subset of articulatory configurations related to each phone and closely mimics the

incoming speech through adaptation, it is most effective in classification. This is more

evident in the “msak0” speaker case whose geometric adaptation is more effective on the

synthesis quality than the adaptation of speaker “fsew0”.
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Table 5.4: EXP HMM 3 PER using MFCC and a combination with the adapted fast

analysis-by-synthesis distortion features with parameters initialized from EMA.

Features (dimension) Topology Obser Prob Sparsity α fsew0 msak0 Both

MFCC + CMN (13) 3S-128M-HMM Gaussian 0% 1 61.6% 55.9% 58.8%

Adapted Fast Dist (1024) 3S-1024M-HMM Exponential 51% 0.25 58.4% 53.1% 55.7%

Relative Improvement 5.2% 5.3% 5.3%

5.5.4 Viewing the Weights Estimated from Audio, from EMA, and

from EMA with Adaptation

We apply MDS on the eight dimensional codewords derived in Section 5.4. We have

computed 1024 codewords from clustering all the Maeda parameters of the phones. This

way, we can visualize the location of each codeword on a two-dimensional grid. We use

the pixel intensity to show the magnitude of the estimated weights of the codewords.

We plot the weights estimated for phone ‘OU’ after the training approaches described

above.

Figure 5.8 shows these weights derived in four ways. The top left figure shows the

weights estimated from the EMA data as described in Subsection 5.3.2 and before EM

updating from audio. This is the ground-truth prior distribution. The top right shows

the weights initialized from audio as described in Subsection 5.3.1 and after EM update.

These weights are used in EXP HMM 1. There is some correspondence in the two plots

between the regions in the compressed Maeda space where these weights are active.

The bottom left plot shows the weights initialized from EMA and updated using EM.

These weights are used in EXP HMM 2. There is more correspondence to the ground-

truth weights than in the second plot. The bottom right plot shows the distribution

of the weights initialized from EMA and after EM but using analysis-by-synthesis dis-

tortion features derived using an adapted vocal tract model for all the speakers. These

weights are used in EXP HMM 3. It is clear that adaptation preserves the ground

truth distribution of the weights and is a more accurate representation of the production

process.
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Figure 5.8: Projection of codewords weights for phone ‘OU’ for the different experiments

described in Section 5.5 and Table5.6. x and y are the first and second parameters of the

MDS decomposition.

93



CHAPTER 5. DYNAMIC FRAMEWORK USING THE
ANALYSIS-BY-SYNTHESIS DISTORTION FEATURES

5.5.5 EXP GAUS HMM: PER with LDA Compressed Features

Finally, in experiment GAUS HMM we use a similar setup to that in Chapter 3. Here we

use all the distortion features in the “AND” approach. We apply LDA to compress the

features to 20 dimensions and then apply CMN to them. We use a three-state HMM with

128 Gaussian Mixtures to model the new features. We combine the probabilities of this

system with that of the baseline system. Using α = 0.6 yields 10.9% reduction in phone

error rate. This is the biggest improvement we achieved and shows that information in

all the distortion features is helpful in discriminating among phones. The drawback of

this topology is that there is no more an articulatory meaning to the states and hence

we can not model the dynamics explicitly as we can in the previous experiments.

Table 5.5: EXP GAUS HMM PER using MFCC and a combination with the LDA com-

pressed fast analysis-by-synthesis distortion features.

Features (dimension) Topology Obser Prob Sparsity α fsew0 msak0 Both

MFCC + CMN (13) 3S-128M-HMM Gaussian 0% 1 61.6% 55.9% 58.8%

Fast Dist + LDA + CMN (20) 3S-128M-HMM Gaussian 0% 0.6 54.9% 49.8% 52.4%

Relative Improvement 10.8% 11.5% 10.9%

The summary of classification results and the optimal value of α are shown in Table

5.6 [41].

Table 5.6: Phone error rates for the two speakers using different features, topologies, and

initialization procedures.

Experiment Features (dimension) Adaptation Topology Obser Prob Initialization Sparsity α fsew0 msak0 Both Improvement

Baseline MFCC + CMN (13) 3S-128M-HMM Gaussian VQ 0% 1 61.6% 55.9% 58.8%

Exp HMM 1 Fast Dist (1024) NO 3S-1024M-HMM Exponential Flat 21% 0.2 57.6% 53.7% 55.7% 5.3%

Exp HMM 2 Fast Dist (1024) NO 3S-1024M-HMM Exponential EMA 51% 0.2 58.3% 53.9% 56.1% 4.6%

Exp HMM 3 Fast Dist (1024) YES 3S-1024M-HMM Exponential EMA 51% 0.25 58.4% 53.1% 55.7% 5.3%

GAUS HMM Fast Dist + LDA + CMN (20) NO 3S-128M-HMM Gaussian VQ 0% 0.6 54.9% 49.8% 52.4% 10.9%

5.6 Conclusions and Future Work

We have described a dynamic articulatory model for phone classification that incorpo-

rates realistic vocal tract shapes in a statistical HMM framework. We have shown how to
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incorporate analysis-by-synthesis distortion features in a probabilistic pattern recogni-

tion approach. Our new framework attributes articulatory meaning to the states through

a set of weights. We have shown how to initialize these weights from ground-truth ar-

ticulatory information and to update them from distortion data. Experimental results

have demonstrated improvement in phone classification over the accuracy obtained us-

ing baseline MFCC features. We performed a speaker independent analysis of highly

speaker-dependent phenomena. The framework we presented is a basic prototype for

incorporating physical constraints in a statistical framework, and it can be expanded in

the future to incorporate further dynamic constraints. Future work will integrate the

trained models into a continuous speech recognition system.
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Chapter 6

Suggestions for Future Work

Articulatory modeling is at the core of the speech production mechanism. Many problems

in speech research can be approached from this point of view for additional insights.

In our future research we would like to continue investigating articulatory phenomena

and applying the knowledge we gain to various speech problems. In addition to speech

recognition, our approach can be used for speech coding and speech synthesis, for speaker,

age, and gender identification problems, and for pronunciation modeling, assessment, and

tutoring. The synthesis approach we developed can help in speech pathology research.

The articulatory approach we presented is language independent and can be easily used

with other languages.

Below we outline methods for expanding our framework into new domains and into

fully continuous speech recognition.

6.1 Other Domains Where Our Approach Maybe Helpful

We have evaluated our novel approach for speech recognition on the MOCHA database

which is composed of data from nine British English speakers reading TIMIT utterances.

We have obtained improvements for segmented phone recognition experiments.
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6.1.1 Spontaneous Speech

The primary motivation for our work is spontaneous and conversational speech recogni-

tion, which remains a major challenge for current state-of-the-art systems. Our frame-

work models the articulatory mechanism and is expected to provide even greater improve-

ments in the recognition of spontaneous speech than recognizing read speech. Future

experiments are needed to verify this claim.

6.1.2 Noisy Environments

The MOCHA database contains clean recordings. We expect to achieve similar improve-

ments in noisy environments, especially when the nature of the noise is different from

that of human speech. Since our model mimics the speech production system, we expect

that it will be robust to noise. Future experiments are needed to verify this claim.

6.2 Articulatory Features

6.2.1 Further Exploration of the Features

We will continue the work described in chapters 3 and 5 by further exploration of the

analysis-by-synthesis features. We will experiment with different mathematical models

for the vocal tract. Besides Maeda’s model, other geometric models exist in the literature

including those of Mermelstein [42] and Coker [43]. These models use different sets of

parameters and control over these parameters to account for different sounds. We will

seek synthesis models other than the Sondhi and Schroeter model such as Steven’s [7]

electric transmission line analog of the vocal tract.

We will explore different methods to represent the distortion distance between synthe-

sized and incoming speech. The distance can be thought of as a negative log-likelihood.

The larger the distortion (dist) the less likely is the articulatory configuration (AC) used

to generate the incoming observation (x), as is shown in Equation 6.1, with the con-

stants α and β to be determined. For the distortion measure, in addition to Mel-cepstral

distortion as defined in Equation 3.1, we can use the Itakura-Saito distance.
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P (x|AC) ∝ β · exp−α·dist(cincoming,csynth) (6.1)

We will explore other dimensionality-reduction techniques besides LDA. Principal

component analysis (PCA) is a candidate and a neural network can also be used to

map the long-dimensional feature vector to a smaller one whose dimensions represent

posterior probabilities of phone identities, as is done in Hermansky’s tandem approach

[44].

We will also experiment with different codebook sizes and compare with using other

codebooks and mapping functions from codewords to acoustics, such as those used in

speech coding.

6.2.2 Feature Combination

There are different ways to combine the acoustic features and the analysis-by-synthesis

distortion features. We can simply concatenate the two feature streams or use the

hypothesis combination approach of Singh [45].

6.2.3 State Probability Combination

Li in [46] also describes a state combination approach to combine the probabilities from

the states of two systems, each trained using one of the two feature sets. In our frame-

work, we can combine the probability scores from MFCC features with the scores from

the analysis-by-synthesis distortion features at the output of each state as described in

Equation 6.2. For state S(t) = i, the observation density bi(t) is a product of bci(t)

which based on the MFCC features {c0(t), c1(t), . . . , c12(t)} and bdi(t) which is based

on the distortion features {d0(t), d1(t), . . . , dM(t)}. A gaussian mixture density is used

for bci(t) and an exponential mixture density is used from bdi(t). Figure 6.1 describes

this hybrid HMM framework.
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/S/ /P/
S1 HMM State Spacea12a11

Mixture of Articulatory 
Codewords 

Distortion Probability 

S2 a23a22 S3a33
cdM
cd1cd2...W11 d1d2dM cdM

cd1cd2... d1d2dM
+bd2+bd1

Cepstral Probability bc1
X

bc2
b1Combined 

Probability W21W12 W22W1M W2M
Figure 6.1: Hybrid HMM with two streams of features: MFCCs modeled by traditional

mixture of Gaussian densities and distortion features modeled by a mixture density func-

tion where different probability functions would be tried.
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bi(t) = P (x(t)|S(t) = i)

= P (c0(t), c1(t), . . . , c12(t), d0(t), d1(t), . . . , dM(t)|S(t) = i)

≈ P (c(t)|S(t) = i) ∗ P (d(t)|S(t) = i)

≈ bci(t) ∗ bdi(t)

≈
Mc∑

k=1

wcikN(c(t);µik,Σik) ∗
M∑

l=1

wilλil exp−λild
2
l (t) (6.2)

Since the two streams of features and the probability densities used to model them

are different, we need to weight the probability streams separately. We would use a

parameter α to exponentially weight the two probability streams and to compute a

combined output observation probability. This formulation would be applied during

model training and during model testing.

bi(t) = bci(t)α ∗ bdi(t)(1−α) (6.3)

6.3 Smoothing the Estimates to Ensure Sparsity

6.3.1 Estimation with Deleted Interpolation

To obtain a smoother estimate of the weights for each phone C, we would follow the

approach of deleted interpolation which can be summarized as follows. The data would

be split into L parts and a set of weights {αlj , (j = 1 : M)} would be estimated for each

part l separately. We would have L different models for each phone. Each part l would

then be held out and used to get an estimate of the weights {ρml, (m = 1 : L,m 6= l)},
which would be the interpolation weights of the pre-trained L− 1 models.

Once the interpolation weights that maximize the likelihood of part l are found, the

mixture weights would be averaged from the L − 1 models to get {βlj , (j = 1 : M)} .

The mixture weights computed for each of the held out parts would then be averaged

to get the final set of mixture weights {αj , (j = 1 : M)}. Below is the formulation we

would use.
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• Step 1:

Divide the data into L parts, each part consisting of randomly selected NL points.

• Step 2:

For each part l {l = 1 : L}, estimate the mixture weights for this part {αlj , (j =

1 : M)}:

αt
lj =

αt−1
lj

NL

NL∑

i=1

P (xl
i|sj)∑M

k=1 αt−1
lk P (xl

i|sk)
(6.4)

• Step 3:

For each part l designated as the deleted part, {m, m = 1 : L,m 6= l} would be the

remaining set of parts:

P (xl
i|C) =

L∑

m=1,m6=l

ρmlPm(xl
i|C)

Pm(xl
i|C) =

M∑

j=1

αmjP (xj
i |sj) (6.5)

Equation 6.5 is similar to Equation 5.1 since the αmj and hence Pm(xl
i|C) are fixed

and we want to find the maximum likelihood estimate of ρml, the L − 1 mixture

weights in this case. The solution for ρml, {m,m = 1 : L,m 6= l}, would be:

ρt
ml =

ρt−1
ml

NL

NL∑

i=1

Pm(xl
i|C)∑L

k=1,k 6=l ρ
t−1
kl Pk(xl

i|C)
(6.6)

Once the iterations for interpolation weights ρml converge, the average mixture

weights {βlj , (j = 1 : M)} for part l would be computed as follows:

βlj =
L∑

m=1,m6=l

ρmlαmj (6.7)
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• Step 4:

Finally, we would average the {βlj} for all parts:

αj =
1
L

L∑

l=1

βlj (6.8)

6.3.2 Entropy Minimization to Ensure Sparseness in Transition Matri-

ces

In addition to smoothing the estimates using deleted interpolation, we can apply the

minimum entropy approach of Brand [47].

6.4 Dynamic Framework

6.4.1 Extending the Framework for Word Recognition

In our work so far, we have used a simple framework to test the articulatory features. We

used an HMM framework for a segmented context independent (CI) phone recognition

experiment. The CI phone recognition experiments will be extended to word recognition

experiments by incorporating a dictionary and word transition probabilities in the search.

6.4.2 Rescoring the N-best Hypotheses

Using forced-alignment of the acoustic data to the transcript, we determine the state

identity for each frame of speech. Using the EMA data recorded in parallel to speech,

we determine the codeword identity for each frame as well. Following this procedure,

each state will have a collection of codewords assigned to it. The upper HMM states

in Figure 6.2 define acoustic distributions and may correspond to different articulatory

configurations (codewords). Recall that similar acoustic observations may come from

different articulatory configurations. We keep the codewords whose count for a given

state is more than a certain threshold. These are the most common vocal tract shapes

that occur for a given acoustic observation modeled by a state. Then we use this infor-

mation in a rescoring experiment. Forced-alignment of the N-best hypotheses provides
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the acoustic state sequence for each hypothesis. We compute a new score (error) for each

hypothesis that is composed of two measures, an articulatory and a distortion measure.

The articulatory measure is a function of the transitions from one codeword to another.

The distortion measure is the total distortion between the speech synthesized from the

codewords and the incoming speech. Using dynamic programming, we choose the path

that leads to the minimum overall error measure. We then choose the hypothesis with

the minimum error as our best hypothesis. The estimation of α would be optimized

using the MOCHA database development set.

error = α ∗ acoustic distortion + (1− α) ∗ articulatory distance (6.9)

6.4.3 Articulatory Distance

From the EMA we not only find which codewords correspond to which acoustic state,

but also the transition probability of the codewords and the prior probability of each

codeword.
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Figure 6.2: Dynamic framework where each HMM state defines a trajectory in the artic-

ulatory space.
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P (cd2|cd1, S1) =
count transitions(cd2|cd1, S1)

total transitions(S1)
(6.10)

We can also model the articulatory distance as a function of a weighted difference of

the seven Maeda parameters corresponding to the codewords. The weights will penalize

big changes in the Maeda parameters and ensure smooth dynamic transitions. They

can be estimated from the Maeda parameters pertaining to each acoustic state. Since

each acoustic state is a collection of codewords, we can estimate the information gain,

the variance, and the autocorrelation of each parameter in the codewords. We will

run information theoretic analysis on the parameters derived from MOCHA to learn

suitable weights. The relative information gain finds the contribution of each parameter

in classifying each phone. The auto-correlation function of each parameter will give a

measure of the rate of change with time. The variance will determine the range of the

parameters at each time instant for a given phone. Parameters with low variance are

associated with the primary articulators. Hence changes in these parameters would be

penalized more than changes in parameters with high variance which are not important

for articulation and correspond to secondary articulators. Equation 6.11 defines the

articulatory distance between codewords cd1 and cd2 as the squared difference of the

articulatory parameters of these codewords {pi, i = 1 : 7}. The differences are weighted

by {ωi, i = 1 : 7}.

articulatory distance(cd1, cd2) =
7∑

i=1

ωi(p2
i − p1

i )
2 (6.11)

6.4.4 Incorporating Dynamic Constraints into the Articulatory Space

So far, our approach in deriving the articulatory features can be described as being

“instantaneous”. For each incoming frame of speech, distortion is computed with re-

spect to speech synthesized from all the codewords without taking the distortion of the

previous frame into consideration, in a way performing an exhaustive search for all the

possible configurations. Beside being computationally expensive, this approach does not
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take advantage of the physical constraints on the dynamics of the articulators. Smooth

articulatory dynamics are more likely than abrupt changes. Incorporating dynamic in-

formation as a constraint will reduce the computations and improve the performance by

only evaluating these articulatory configurations that are possible at each stage. This

limits the search space and reduces the noise that could be added by the physically

unlikely transitions. In this part, we describe a technique for incorporating “dynamic”

constraints on top of the already existing “instantaneous” constraints that allowed only

a limited set of configurations to span the articulatory space. Dynamic modeling of the

articulatory trajectories is also aimed at tackling some of the phenomena that occur

during speech production like coarticulation, sloppiness in spontaneous speech, faster

speech rates, etc.

In Figure 6.3, the states represent articulatory configurations, unlike conventional

HMM systems where they represent abstract units as mentioned before. Transition from

one state to another can be assigned a physical measure proportional to the “effort” ex-

erted in moving the articulators from one configuration to another as shown in Equation

6.12. We will develop a flexible framework that allows for incorporating different models

for effort.

P (S2|S1) ∝ β · exp−α·effort(AC1,AC2) (6.12)

As shown in Figure 6.3, all the states are shared by all the phones. Each phone C

will have its own transition matrix AC and initial probability vector πC that measure

the likelihood of transition from one articulatory configuration to another within each

phone. The vector of articulatory parameters represented by the state is mapped to

acoustic parameters using the mathematical model of the vocal tract and the excitation

signal of the original speech. So the output of the same state will vary with time. We will

find the best path in this articulatory space that leads to the least distortion between

the incoming speech and the speech synthesized from the states visited and also to the

least articulatory effort, as we will describe next.

We will start with a simple dynamic programming (DP) based approach and incor-

105



CHAPTER 6. SUGGESTIONS FOR FUTURE WORK

SPEECH: /S/-/P/-/IY/-/CH//S/ /P/ /IY/ /CH/S1
C0C1…C12 C0C1…C12 Acoustic Features C0C1…C12
S2...SN

S1S2...SN
............

S1S2...SNArticulatory State Space
a22a21

C0C1…C12SynthesisSynthesis--d1d2 Articulatory Synthesis

Figure 6.3: Dynamic framework in which transition probabilities are denoted by a21, a22,

etc. and distortion features by d1, d2, etc. The darker color corresponds to states and

features being considered in the search process.
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porate dynamic constraints. Two penalties will guide the search process, one based on

the articulatory effort in moving from the previous to the current articulatory configu-

ration and an acoustic one based on the distance between incoming speech and speech

synthesized from the current articulatory configuration. Dynamic constraints on the ar-

ticulators are expected to account for the “many-to-one” problem where many articula-

tory configurations could generate the same acoustic observation. Paths with “minimum

effort” and best acoustic matching between the synthesized and original signal are pre-

ferred. A stack decoder [48] or comparable frame-synchronous search can keep more than

one trajectory hypothesis active until the future context helps resolve the ambiguity.

During training we will find these paths using prior estimates of the transition prob-

abilities. We will present three ways of estimating theses priors: from MOCHA, using

a weighted geometric distance, and using a mechanical analogue of the vocal tract. To

find these paths, we will compare incoming speech to a signal synthesized by applying

the vocal tract parameter values represented by the states to the mathematical model

of the vocal tract to derive a “synthesis error”. This error will be a measure of the “fit”

of each state to the incoming data and will be used together with the prior estimate of

the transition probability to find the paths of least cost.

Once the path is determined, the transition probability matrices will be re-estimated.

We will enforce sparsity on the transition matrices using entropy minimization ap-

proaches [47]. This will help reduce computations since it will prune out the states

that are not likely to be visited.

Finally, we will extend the dynamic framework for connected CI phone recognition

and connected word recognition experiments as mentioned at the beginning of this sec-

tion. We will then combine it with the conventional framework based on MFCC features

following a state combination approach.

6.4.5 Finite Element Model Accounting for Physiological Constraints

In this approach, we will devise a mechanical analogue of the vocal tract. We will

model the articulators using springs, masses, dampers, and other mechanical compo-

107



CHAPTER 6. SUGGESTIONS FOR FUTURE WORK

nents. Hence we propose a finite element model of the vocal tract which will provide

the measure of the energy needed to move the articulators along the x and y axis. Each

articulator will have a velocity and acceleration from which we will predict its movement

and the movement of the dependent articulators. Equation 6.13 describes mathemati-

cally this model. The mass of each articulator is modeled by m, the damping coefficient

by b, and the stiffness coefficient by k. Varying the parameters of the model accounts

for variations in the vocal tract configurations (i.e. phone identities) and in speaker and

speaking style. This model would provide an estimate of the effort described in Equation

6.12. We will use real measurements of articulatory trajectories and biologically inspired

limitations to learn these parameters. This is presently an immature idea thats needs

further analysis and discussion. A task dynamic articulatory model has been proposed

in the literature by Saltzman [49].

effortx =
∑

x

F

= m
d2x

dt2
+ b

dx

dt
+ kx

efforty =
∑

y

F

= m
d2y

dt2
+ b

dy

dt
+ ky (6.13)

6.4.6 Factored-State Representation

We will develop a latent-variable model with each variable representing one articulatory

parameter. Such a model will account for asynchrony in the articulator movements and

pronunciation variations, in addition to the other high-level speech phenomena. It also

allows us to model the critical articulators explicitly.

As before, statistical dependencies between the latent variables that capture dynamic

relationships will be separately learned for each parameter through a maximum likelihood

(or alternative) approach as in the previous section and incorporating the constraints we

mentioned.

Two frameworks can be used here, a factorial HMM and a switched Kalman filter. For
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the factorial HMM, the states will be quantized configurations, each articulator modeled

by an independent state stream. In order to allow for dependencies between the states,

the factorial HMM will be expanded into a Dynamic Bayesian Network (DBN). As for

the Kalman filter, the states are continuous valued and they can model the articulatory

parameters if trained from real data.

xk = Fk · xk−1 + wk−1

zk = Hk · xk + vk (6.14)

The Fk matrix in Equation 6.14 will learn the dynamic propagation constraints while

the Hk matrix models the mapping function from articulatory states to acoustic obser-

vations, which is the articulatory synthesis model. xk is the vector of articulatory states,

zk is the acoustic observation, and wk−1 and vk account for the noise. In testing, the

Fk matrix can be fixed and will track the articulatory parameters imposing the physical

constraints learned in training.

Finally, we would like to extend this approach to other databases where articulatory

information is not available by incorporating in the learning process a Bayesian prior

computed from real data like MOCHA. The EM algorithm will be used to estimate

the parameters of the unobserved articulatory trajectories. Speech mimicry will be the

objective function that will guide the parameter estimation procedure.
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SPEECH: /S/-/P/-/IY/-/CH//S/ /P/ /IY/ /CH/S11
F1F2…F13 F1F2…F13 Acoustic Features F1F2…F13
S21... S12S22... ......... S1nS2n...Articulator Factored State SpaceF1F2…F13Synthesis-Distortion

Articulatory Synthesis

Lips SeparationTongue TipOther Articulators
Figure 6.4: Factored state-space framework where articulators propagate independently.

Some dependencies could be included as shown by the dotted arrows.
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Chapter 7

Conclusions and Contributions

7.1 Summary of Major Results

We presented a novel approach for speech recognition that incorporates knowledge of

the speech production process. We discussed our contributions in going from a purely

statistical speech recognizer to one that is motivated by the physical generative process

of speech. We followed an analysis-by-synthesis approach. We conclude that a model

that mimics the actual physics of the vocal tract results in better classification accuracy.

This work would not be possible without the recent availability of databases that open

new horizons to better understand the articulatory phenomena. In addition, current

advancements in computation and machine learning algorithms facilitate the integration

of physical models in large scale systems.

7.1.1 Analysis-by-synthesis features

In Chapter 3 we explained how we derived the analysis-by-synthesis distortion features

for speech recognition. Improvements on a segmented phoneme classification experi-

ment using nine speakers in the MOCHA database were achieved using these features.

This shows that the proposed features do indeed convey extra information about the

articulatory process that are not present in the acoustic features alone.
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7.1.2 Deriving Realistic Vocal Tract Shapes from EMA Measurements

In Chapter 4 we showed how we derive realistic vocal tract shapes from crude mea-

surements that do not sufficiently describe the overall contour of the vocal tract. We

presented a method for adapting Maeda’s model to the EMA data in the MOCHA

database. This approach is not limited to Maeda’s model or the MOCHA database. The

articulatory synthesis approach of Sondhi and Schroeter was then applied to synthesize

speech from these vocal tract shapes. Our research has thus presented a technique for

synthesizing speech solely from EMA data without any statistical mapping from EMA

to acoustic parameters. This would not have been possible without our knowledge of

the physics of the speech generation process, which was heavily exploited by the models

used in this work. Reductions in Mel-cepstral distortion between the real speech and the

synthesized speech confirmed the effectiveness of the adaptation procedure followed.

7.1.3 Dynamic Framework Using the Analysis-by-Synthesis Distortion

Features

In Chapter 5 we described a dynamic articulatory model for phone classification that

incorporates realistic vocal tract shapes in a statistical HMM framework. We showed

how to incorporate analysis-by-synthesis distortion features in a probabilistic pattern

recognition approach. Our new framework attributed articulatory meaning to the states

through a set of weights. We showed how to initialize these weights from ground-truth

articulatory information and how to update them from distortion data. Experimental

results demonstrated improvements in phone classification over baseline MFCC features.

7.2 Summary of Contributions

We described the basic steps needed to incorporate knowledge of a physical phenomenon

into a statistical patten recognition system to improve its performance. The main con-

tributions of this thesis can be divided into three parts. First, a physical meaning is

attributed to the inner states of the recognition system pertaining to the articulatory
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configurations the human vocal tract takes over time. Second, the mapping from the

states to the observations is based on a biologically-inspired model of speech production.

Third, the distortion between the speech synthesized from the vocal tract configurations

and the incoming speech is used in an analysis-by-synthesis framework to measure the

likelihood of each state (the vocal tract shape generating the sound).

7.2.1 A Knowledge-Based Approach to the Speech Recognition Prob-

lem

State-of-the-art speech recognition systems use Hidden Markov Models (HMMs) which

are composed of states and observations. Each word is represented by a string of phones

which in turn are modeled using a concatenation of non-overlapping states. During

search, the HMM is used to find the best sequence of states that is most likely to have

generated the given acoustic signal. While the HMM is a hypothetical generative model,

the vocal tract is the actual generative model. In this thesis, we devised a technique

for incorporating a mathematical model of the physics of the vocal tract into speech

recognition. Table 7.1 summarizes the main differences between our production-based

HMM and the conventional HMM framework.

Table 7.1: Production-based HMM versus conventional HMM.

Production-Based HMM Conventional HMM

States Real articulatory configurations Abstract, no physical meaning

Output Observ Prob Exponential prob using fast distortion feat Gauss prob using MFCC

Adaptation Vocal tract explicit geometric adaptation VTLN, MLLR, MAP

Transition Probability Learned from articulatory dynamics Based on acoustic observation

Defining the Inner Components of the Model by a Set of Meaningful Units

We defined the inner states of the HMM by a set of codewords. The codewords were

derived using Maeda’s geometric vocal tract model and ElectroMagnetic Articulography

data (EMA) in the MOCHA database. The EMA measurements were obtained from

seven speakers and represented all the different phonemes of British English. Each
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codeword represented a distinct vocal tract shape. This setup constrains the search

process to these vocal tract shapes only.

Utilizing a Realistic Mapping from the Units Space to the Observation Space

To go from the abstract units space to the observation space, we utilized a mapping based

on the physical generative process. Such mappings are essential in order to generalize

among different speakers. We used Sondhi and Schroeter’s articulatory synthesis model

that mimics the physics of the sound generation mechanism to map from the vocal tract

space to the acoustic space. We derived analysis-by-synthesis distortion features between

the incoming speech and the speech synthesized from the vocal tract shapes.

Accounting for Speaker Differences by Adaptation

We adapted Maeda’s model to the geometric distribution of the EMA measurements

of each speaker separately. This accomplished a more accurate mapping from the ar-

ticulatory space to the acoustic one. This accomplished in turn a better estimation of

the likelihoods of the articulatory configurations given the acoustic signals, which led to

improved phone classification.

Initializing the Model’s Free Parameters from Ground-Truth Information

Used as a Prior Distribution

Since the set of codewords that defined the states of the model had articulatory meaning,

we were able to use the articulatory data to initialize the model free parameters (e.g. the

mixture weights and the lambdas of the exponential distribution) associated with the

states. Hence we used ground-truth articulatory knowledge to learn these parameters

and use them as a prior distribution. The estimates of these parameters were updated

in a maximum-likelihood sense from the observation data (i.e. the distortion between

the synthesized speech and the incoming speech). The advantage of this prior was that

the estimation algorithm started from a solution obtained from measurements of the real

phenomenon. It also converged to a similar solution. Hence, this is an additional way
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to constrain the system parameters to the physical phenomena of speech production.

7.2.2 Novel Aspects of Our Work

To the best of our knowledge, we are the first to apply the analysis-by-synthesis paradigm

in a statistical fashion to phone classification. We are the first to integrate realistic

and speaker-adapted vocal tract shapes in a dynamic framework and to incorporate a

physiologically-motivated articulatory synthesis model in a pattern recognition frame-

work. Our work is the first to synthesize continuous speech waveforms solely from EMA

and to perform a speaker-independent analysis of a highly speaker-dependent phenom-

ena.
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