

An Analytical Procedure for Evaluating Aerodynamics of Wind Turbines in Yawed Flow

By:

Dr. R. Ganesh Rajagopalan Kanchan Guntupalli Mathew V. Fischels Luke A. Novak

Yawed Flow Aerodynamics

- Turbines are subjected to changing wind directions leading to yaw error and reduced power output
- Zero yaw in free stream, yet turbines in middle of farm see yawed flow
- Analytical prediction based on yaw error is helpful for onboard computations.

Based on momentum theory

• Cp =
$$f(\gamma, \mathbf{v})$$

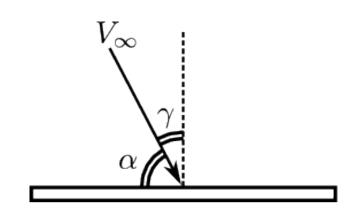
where;

Cp = Coefficient of power for Horizontal Axis Wind Turbine (HAWT)

 γ = Yaw error angle

v = deficit velocity at rotor disk

Yaw error angle and Tip-path-plane angle:


$$\gamma = 90^{\circ} - \alpha$$

Inflow ratio:

$$\lambda = \frac{V_{\infty} \sin \alpha - v}{\Omega R}$$

Advance ratio:

$$\mu = \frac{V_{\infty} \cos \alpha}{\Omega R}$$

where:

 γ = Yaw error angle

 V_{∞} = Free stream velocity

 α = angle between rotor plane and horizontal: *Tip-path-plane (TPP) angle*

 Ω = rotor angular velocity

R = rotor radius

v = induced velocity on the rotor plane

Power Coefficient:

$$k_P = \frac{P}{\rho A(\Omega R)^3}$$

Thrust Coefficient:

$$k_T = \frac{T}{\rho A(\Omega R)^2}$$

• Relation between k_P and k_T :

$$k_P = \lambda k_T$$

Note:

 \checkmark k_P and k_T are simply manipulations of generally accepted definitions of C_P and C_T, where;

$$C_P = \frac{P}{\frac{1}{2}\rho A V_{\infty}^3} \qquad C_T = \frac{T}{\frac{1}{2}\rho A V_{\infty}^2}$$

By momentum conservation in rotor normal direction:

$$T = \dot{m}(2v)$$

$$\dot{m} = \rho A [(V_{\infty} \sin \alpha - v)^2 + (V_{\infty} \cos \alpha)^2]^{1/2}$$

Non-dimensionalizing T:

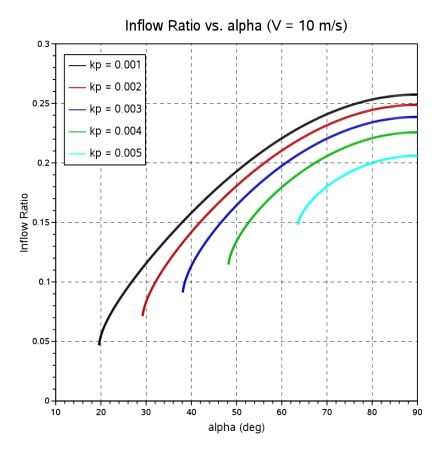
$$k_T = 2(\mu \tan \alpha - \lambda)\sqrt{\mu^2 + \lambda^2}$$

• Replacing k_T with k_P using: $k_P = \lambda k_T$

$$\lambda = \frac{k_P}{2(\mu \tan \alpha - \lambda)\sqrt{\mu^2 + \lambda^2}}$$

 Re-arrange above Eq. in a form solvable by Newton-Raphson's iterative solution technique

<u>k_P – Inflow Equation</u>


$$\lambda_{n+1} = \lambda_n - \frac{\lambda_n - \frac{k_P}{2g}}{1 + \frac{k_P}{2g} \frac{g'}{g}}$$

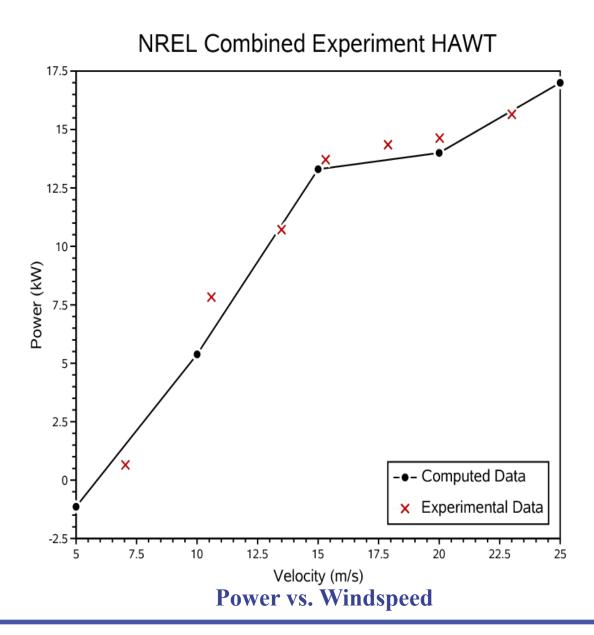
where:

$$g = (\mu \tan \alpha - \lambda)\sqrt{\lambda^2 + \mu^2}$$

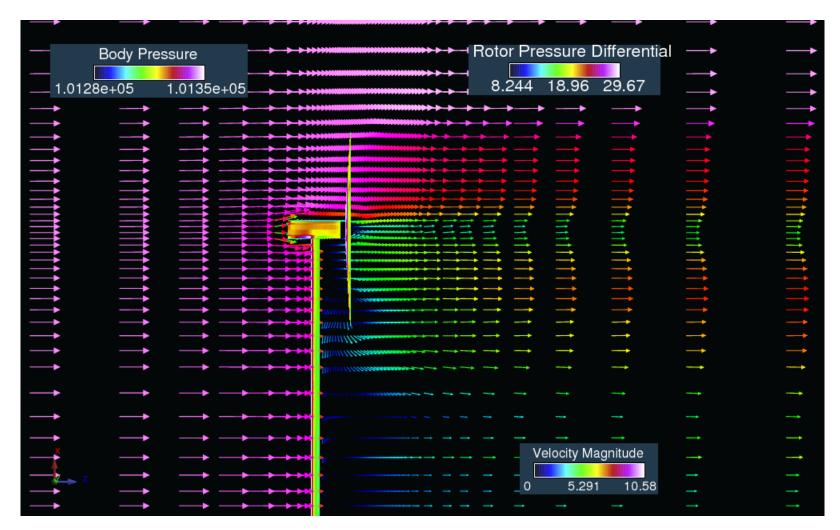
$$g' = \frac{\mu \lambda \tan \alpha - \lambda^2}{\sqrt{\lambda^2 + \mu^2}} - \sqrt{\lambda^2 + \mu^2}$$

- Solve using Newton-Raphson's iterative solution technique
- •Therefore, $k_P = f(\lambda, \alpha) = f(inflow, yaw-error)$

Solution of k_P – Inflow equation for V_{∞} = 10 m/s


Numerical Method

Rot3DC

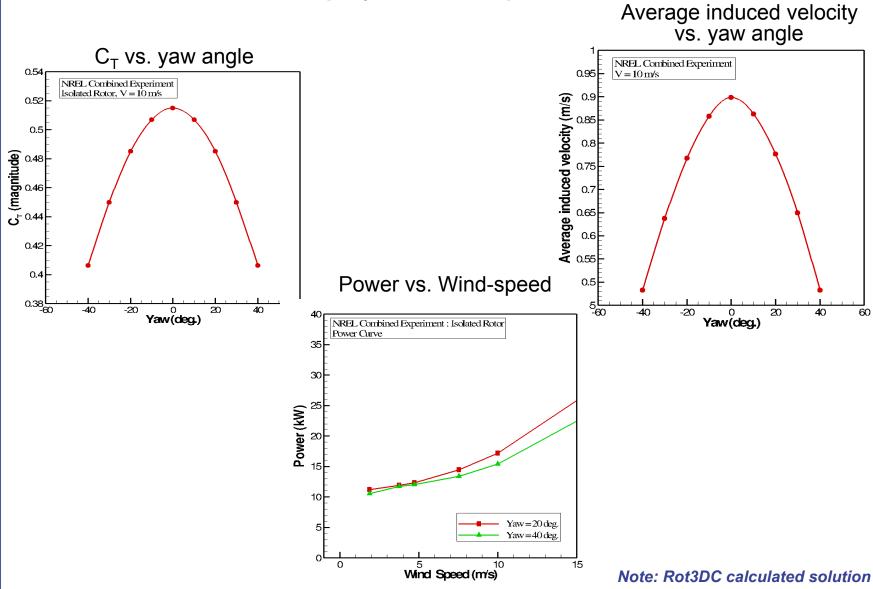

- Structured finite volume solver with turbine treated as momentum sources.
- Solves 3D, unsteady, incompressible RANS Navier-Stokes equations
- Rotor momentum source depends on:
 - local flow properties
 - turbine rotor geometry
 - 2D aerodynamic characteristics of blade cross-section

Rot3DC Validation NREL Combined Experiment

NREL Combined Experiment : Power Comparison

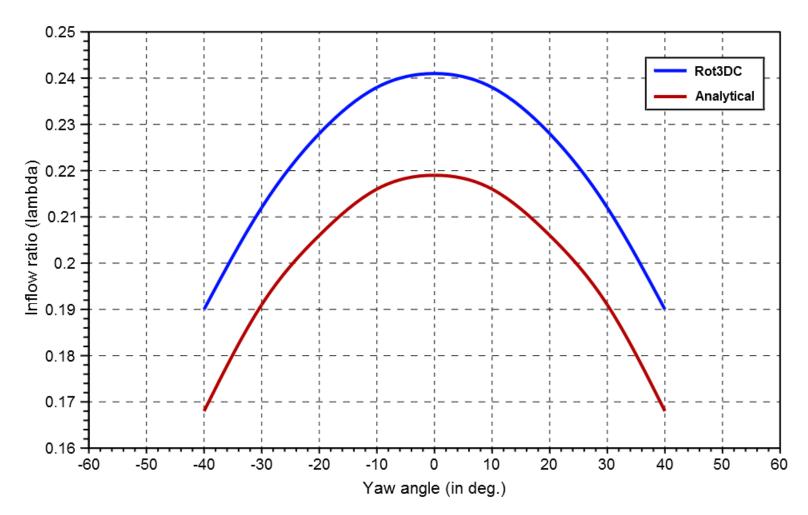
NREL Combined Experiment: Flow Solution

Y-plane through rotor center $V_{\infty} = 10 \text{ m/s}$

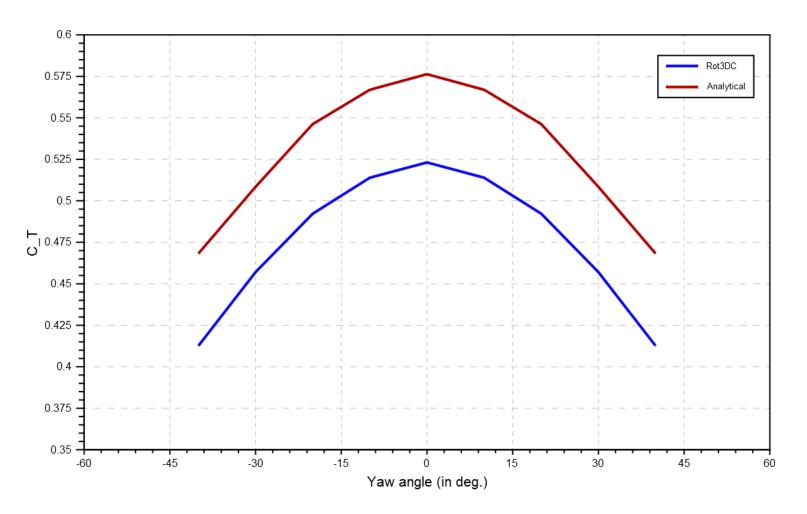

NREL Isolated Rotor: Yaw Study

- NREL rotor without tower and nacelle, in upwind position
- Free stream at angles of [-40°, 40°]
- Relation between Yaw and TPP angle:

$$\gamma = 90^{\circ} - \alpha$$


NREL Isolated Rotor:

Yawed Free Stream ($V_{\infty} = 10 \text{ m/s}$)


Analytical Method and Rot3DC Correlations

Correlations: Comparison of Inflow Ratio ($V_{\infty} = 10 \text{ m/s}$)

Inflow Ratio (λ) vs. Yaw Angle

Correlations: Comparison of C_T ($V_{\infty} = 10$ m/s)

Coefficient of Thrust vs. Yaw Angle

Correlations: Yawed Free stream (V_∞ = 10 m/s)

γ	C_P	λ_{num}	λ_{analy}	% error for λ	C_{Tnum}	C_{Tanaly}	$\%$ error for C_T
0°	0.4764	0.241	0.219	9.13	0.5230	0.5763	9.24
10°	0.4622	0.238	0.216	9.24	0.5139	0.5669	9.34
20°	0.4247	0.228	0.206	9.65	0.4922	0.5462	9.88
30°	0.3665	0.212	0.191	9.91	0.4570	0.5084	10.1
40°	0.2969	0.190	0.168	11.6	0.4126	0.4682	11.9

Comparison between Analytical Solution and Rot3DC

Note: $\alpha = 90^{\circ} - \gamma$

Conclusions

- Simple analytical solution procedure for evaluating wind turbine performance in yawed flow
- Analytical solution within 10% error margin of computational fluid dynamics (Rot3DC) simulations
- CFD results compare well with experiments and adequately predict turbine performance under conditions of yaw
- Simplicity of the developed analytical expression can be exploited to provide input to onboard yaw control feedback systems

Thank You!

Questions?