An Animated Guide©: Proc UCM (Unobserved Components Model)

Russ Lavery, Contractor for ASG, Inc.

ABSTRACT

This paper explores the underlying model and several of the features of Proc UCM, new in the Econometrics and Time Series (ETS) module of SAS ®. This procedure can be used by programmers in many fields, not just Econometrics. Time series data is generated by marketers as they monitor "sales by month" and by medical researchers who collect vital sign information over time. This technique is well suited to modeling the effect of interventions (drug administration or a change in a marketing plan). This new procedure combines the flexibility of Proc ARIMA with the ease of use and interpretability of Smoothing models. UCM does not have the capability to easily model transfer functions, a useful ARIMA function that is planned for Proc UCM.

INTRODUCTION

This paper explains the underlying model several of the features of Proc UCM, new in the Econometrics and Time Series (ETS) module.

This procedure can be used by programmers in many fields, not just Econometrics. Time series data is generated by marketers as they monitor "sales by month" and by medical researchers who collect vital sign information over time. This technique is well suited to modeling the effect of interventions (drug administration or a change in a marketing plan). This new procedure combines the flexibility of Proc ARIMA with the ease of use and interpretability of Smoothing models.

THE MODEL NEW DEFINITIONS

One thing that makes UCM useful is its similarity to regression. A useful conceptual framework for UCM is that of a regression model ($Y = B_0 + B_1X_1 + B_2X_2 + \varepsilon$) where the betas are allowed to be time varying. A major difference between data properly modeled with regression and data typically modeled by time series techniques is the presence of auotocorrelation, or serial correlation. In "time series data" observations close together tend to behave similarly. If observation number n is above a fitted regression line, it is likely that observations N-1 and N+1 will also be above the regression line. This pattern of correlation between observations (and errors) breaks down as observations get farther apart in time. These characteristics suggest that a model for the data should place more "weight" or "importance" on "recent" observations and not give all observations in the data set equal importance. Proc ARIMA, and Proc UCM, both create models that are "local", that is they attribute more importance to "close" observations.

> + $\sum \beta_j X_{jt}$ + ϵ_t + A regressive term on indep. vars. + error term

The model components μ_t , γ_t , ψ_t and r_t are assumed to be independent of each other and model underlying "drivers" of the time series.

Y _t	Dependent Variable	
μ _t	Trend is implemented through the <i>combination</i> of level and slope statements, and their options.	Trend is the natural tendency of a series in the absence of seasonality, cycles or the effect of any independent variables. In UCM, this is a mean and a slope, so it corresponds to B_0 and B_1 in regression. Trend is modeled in two ways and it's relationship to B_0 and B_1 can be seen below.
	A UCM with just a level statement, models a time series with 0 slope. A UCM with just a slope statement	One method is a random walk $\mu_t = \mu_{t-1} + \hat{\eta}$ (where $\hat{\eta}$ is an IID error term). The second method is a locally linear trend with a slope that varies, only, with time.
	gives an error.	$ \mu_t = \mu_{t-1} + \beta_{t-1} + \dot{\eta}_t $ (where $\dot{\eta}$ is ~i.i.d N(0, $\sigma^2_{\dot{\eta}}$ IID error term). As beta goes forward, it can vary with time as
		$\beta_{t-1} = \beta_{t-1} + \zeta_t$ (where ζ is is ~i.i.d N(0, σ^2_{ζ} IID error term).
γt	Season is implemented through the season statement and it's options.	Season is the effect of seasonal effects and does not imply a yearly period to the season. The main characteristic of seasonally is that it's period (the time it takes to get through one full cycle) is known. The effects of seasonality sum to zero over the cycle. Seasonality is modeled in two ways. One method is a dummy variable method
		-
		$\Sigma \gamma = \omega_t$ (where ω_t is ~i.i.d N(0, σ^2_{ω} IID error term).
		The second method is a Uses a trigonometric form and seasonality is the sum of different cycles.
		Proc UCM allows blocking of cycles, or specifying cycles within cycles. The need for this can occurr in many instances. One example is admissions at an Emergency Room. There is a weekly cycle, where Monday admissions are low and Saturday admissions are high. There is also a daily cycle that starts slow in early AM and has early PM and evening peaks. These cycles of admission nest and produce very high admissions on Saturday evening.
Ψt	Cycle is important	Cycles are like seasons, but with an unknown period. They are not often used in their "pure form", but are employed as building blocks. Cycle effects are similar to seasonal effects but the period is not known and determined from the data. A periodic pattern, no matter how complex, can be expressed as a sum of cycles. UCM has implemented cycles as having fixed periods but time varying amplitude and phase.
r _t	Autoregressive term	UCM considers an autoregressive term as a cycle where frequency is either 0 or π . The expression for UCM autoregression is: $r_t = \rho r_{t-1} + v_t$ (where v is ~i.i.d N(0, $\sigma^2 v$ IID error term).
	A regressive terms involving	$\mathbf{r}_t = \rho \mathbf{r}_{t-1} + \upsilon_t$ (where υ is ~1.1 d N(0, $\sigma_{-\upsilon}$ IID error term). These two terms allow the programmer/statistician to great flexibility in
Σ φ _i Υ _{t-1}	lagged dep. Variables	describing the process under study.
$\frac{\Sigma \ \phi_i \ Y_{t-1}}{\Sigma \ \beta_j \ X_{jt}}$	A regressive term on indep. vars.	$\Sigma \beta_j X_{jt}$ allows the determination of effects of outside intervention and support dummy variable and continuous variable coding. They can be used to model the effect of investigator interventions like drug administration or a change in a marketing plan.
E _t	Irregular term or error term	$\mathbf{\mathcal{E}}_{\mathbf{t}}$ is ~i.i.d N(0, $\sigma_{\mathbf{\epsilon}}^2$ IID error term).

The programmer/statistician can create a great many types of time series by adding and deleting components from the model as well as changing options associated with statements in the model. Some knowledge of this is required because the determination of the best model will involve a process that is similar to the stepwise removal process in regression. While a parsimonious model is the goal of any modeling project, there is no general agreement in the literature on how this is best to be done. This paper, not in conflict with the literature but perhaps foolishly, makes an attempt to simplify a model.

UCM output parameters are different from regression and this has impact on how UCM is used. Proc UCM can

interpolate missing/new values of Y within the time span of the estimating data set. It can also forecast future values of Y. UCM produces two tables that show components of the model and their associated P values. Below, please find some rules on interpreting these P values and how the interpretation can be used to purify the model.

1) variances of the disturbance terms of the unobserved components

-if not significant, the term is not *time varying and should be made deterministic*

2) Dampening coefficients and Frequency of cycles-

-if not significant, the term is not *contributing to the model and should be removed*

3) Dampening coefficient of autoregression terms

- If not significant, the term is not *contributing to the model and should be removed*

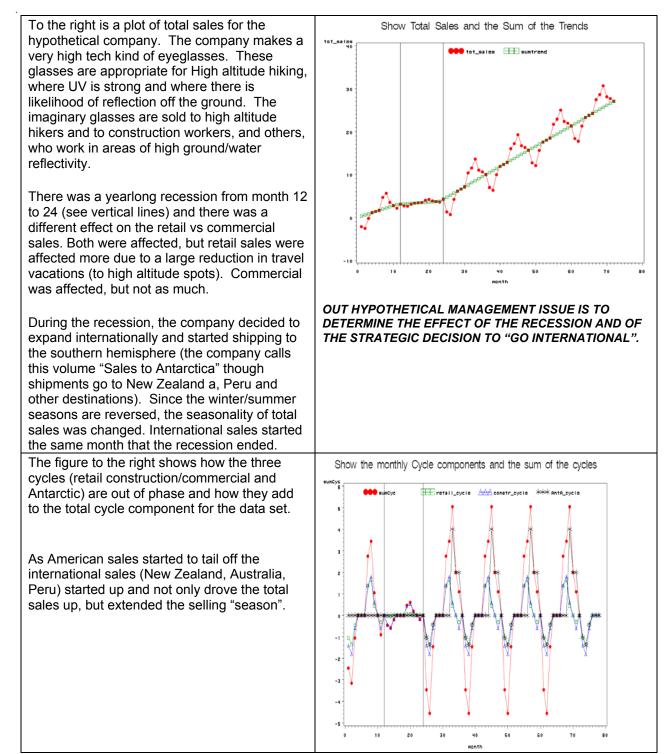
4) Regression coefficient of Regression terms

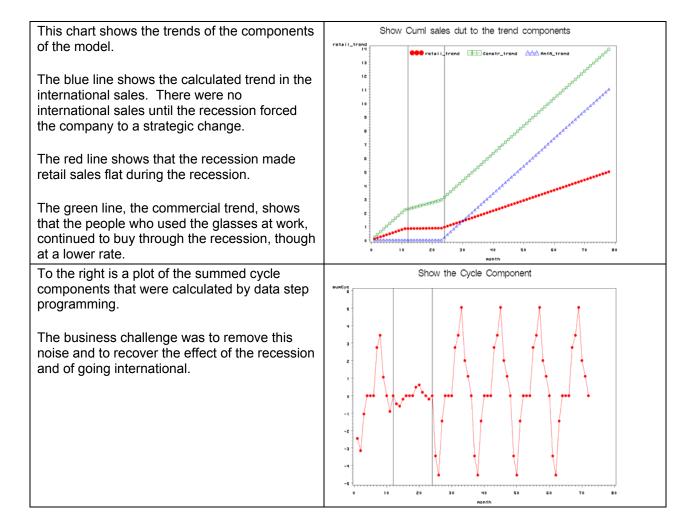
-if not significant, the term is not *contributing to the model and should be removed*

UCM allows the programmer/statistician to set the above parameters to a specific value. This is important because the stepwise process of improving the model involves: 1) removing statements from the model to remove an underlying process from the model and/or 2) setting variance parameters to zero to change the associated underlying process from time varying to fixed.

As an example of changing the form of the model by setting parameters to be fixed at zero, examine the submodels below that are associated with trend. Trend, we should remember, is only one component of the model. The common conditions of the UCM, that of a locally linear trend is implied in the two equations below.

 $\mu_t = \mu_{t-1} + \beta_{t-1} + \dot{\eta}_t$ (where $\dot{\eta}$ is ~i.i.d N(0, $\sigma_{\dot{\eta}}^2$ IID error term) Interpret this as the mean of the current period =last period's mean, + effect of 1 period of time + a random term


 $\beta_{t-1} = \beta_{t-1} + \zeta_t$ (where ζ is ~i.i.d N(0, σ_{ζ}^2 IID error term). Interpret this as the slope changes randomly. The change is the effect of "time" and not an independent variable.


If $\sigma^2 \zeta = 0$	$B_t=B_{t-1}$ or B is a constant. This transforms the above equations to just one. $\mu_t = \mu_{t-1} + \beta + \dot{\eta}_t$.
	This is called a linear trend with fixed slope model
If $\sigma^2 \dot{\eta} = 0$	This transforms the above equations to: $\mu_t = \mu_{t-1} + \beta_{t-1} + 0 \text{(where } \zeta \text{ is } \sim i.i.d \text{ N}(0, \sigma^2_{\zeta} \text{ IID error term)}.$ $\beta_{t-1} = \beta_{t-1} + \zeta_t (\text{where } \zeta \text{ is } \sim i.i.d \text{ N}(0, \sigma^2_{\zeta} \text{ IID error term}).$ Which often produces a smoother trend than the original two equation UCM model.
If both $\sigma^2 \zeta = 0$ and $\sigma^2 {}_{\dot{\eta}} = 0$	B is a constant and there is no error term in the trend component. The trend is no longer random and is modeled as: $\mu_t = \mu_o + \beta t$

PROJECT1

To demonstrate Proc UCM, a dataset was created by data step programming. Components of the UCM model

were calculated individually in a datastep and summed to get the total sales, shown below. The program is attached to the article. The task was to use Proc UCM to model this dataset.

The code submitted, matched by some explanation of the commands, is shown below:

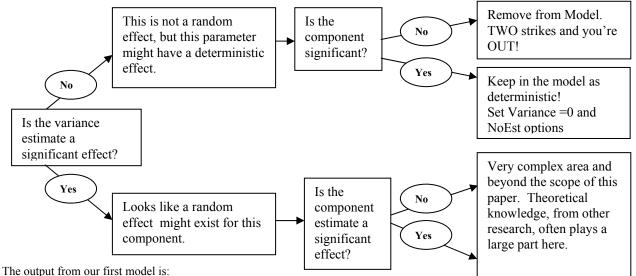
Proc UCM data=for_ucm	Printall turns on all printing options for the procedure.
PRINTALL ;	ID specifies a variable to be used as an identifier.
<pre>id idmonth interval=month;</pre>	The model statement says Y is total sales and is to be
<pre>model tot_sales =Rcsn_dv Int_DV;</pre>	explained by a time series and two independent variables. Irregular instructs SAS to include the error term (irregular
irregular ;	term) $\mathbf{\epsilon}_{t}$ in the model.
level ;	Level and slope, with no options, combine to tell Proc UCM
slope;	to model with time varying slope and mean.
cycle;	Cycle says include a cyclical component. This behavior is
	complex.
SEASON LENGTH=12 TYPE=TRIG ;	The season statement and options instruct SAS to look for a 12-month cycle and not to use the dummy variable coding. The observed cyclical behavior seems to be too irregular for dummy variable coding.
deplag lags=1;	o i
	Deplags 1 instructs SAS to include $\phi_i Y_{t-1}$ in the model. ϕ_i will be estimated from the model.
estimate	
OUTEST=UCM_ESTIMATES;	The estimate command tells SAS to estimate parameters and put them in a file called UCM ESTIMATES.
	. –
forecast lead=6	The forecast command tells SAS to forecast values for 6
print=decomp	periods, to calculate the components of the model and put
OUTFOR=UCM_FORECASTS ; run;	them in a file called UCM_FORECASTS

The procedure outputs several sub-tables that will be described and not included in this paper

First, UCM prints some summary statistics on the data that was used for creation of the model. This includes min, max, mean, date of first obs. and date of last obs. This information is useful in data checking and is a valuable QC feature.

Second, UCM prints some summary statistics on the data that was used for estimation. This includes min, max, mean, date of first obs. and date of last obs. One method for forecasting future observations is to put them in the input data set with no Y values. Additionally, programmers/statistician can check to see how well the model is performing by using options to tell SAS to not use the last n observations in the data set (which do have Y values) in creating the model. This allows the model to forecast these time periods and the programmer/statistician to check forecasted vs actual values. This information is useful in model checking.

Included tables are:


The two tables that must be examined as part of the model selection (stepwise process) are shown below. They are the "Final Estimates of the Free Parameters" table and the "Significance Analysis of Components (Based on the Final State) " tables.

The parameters of the models, as reported above, are a mixture of variance components and regression-like parameter estimates (Rcsn_dv, Int_DV and DepLag). Variance parameters show up in both tables. Regression-like parameters only show up in one. These different types of parameters have different uses. While the literature has not shown agreement on a procedure for creating a parsimonious model, stepwise logic has not been judged incorrect and can produce a model that predicts and is interesting.

For Regression-like parameters: If there are insignificant p-values, the variables should be eliminated, one variable at a time, in a stepwise fashion. The worst performing variable should be eliminated first.

For variance type parameters: Creating a parsimonious model involves two steps. The first step is to decide if the component of the model is time varying. The second step is to determine if is contributing. The starting assumption is that the components (Irregular, slope, cycle and season) are both time varying and significant. This model shows indications that these assumptions are not true (see bold below).

A component can be significant but not time varying. This means that the non-stochastic part of the component could be left in the model, but as deterministic contributor to Y (like parameters in a regression). A component of the model can not be time varying and "not significant". A rough outline of the process for making the time varying parts of the model parsimonious is:

Final Esti	mate	s of the Fre	e Parameters			
					Approx	Approx
Component	Para	ameter	Estimate	Std Error	t Value	Pr > t
Irregular	Err	or Variance	0.00001323	8.60115E-6	1.54	0.1241
Level	Err	or Variance	6.50277E-12	7.94696E-9	0.00	0.9993
Slope	Er	ror Variance	0.0000483	1.41347E-6	3.42	0.0006
Season	Er	ror Variance	0.00001169	2.76826E-6	4.22	<.0001
Cycle	Dar	mping Factor	0.93881	0.04069	23.07	<.0001
Cycle	Pe	riod	16.60643	2.22289	7.47	<.0001
Cycle E	rror	Variance	7.006927E-7	<i>6.11491E-7</i>	1.15	0.2518
Rcsn_dv	Coe	fficient	3.55172	0.04018	88.4	0 <.0001
Int_DV	Coe	fficient	5.67481	0.06373	89.0	4 <.0001
DEPLAG	PH	I_1	0.34053	0.02848	11.9	6 <.0001
Significan	.ce A	nalysis of C	omponents (B	ased on the H	Final Sta	ate)
Component	DF	Chi-Square	Pr > ChiSq	_		
Irregular	1	0.00	0.9868		Full Mode	el
Level	1	37311.7	<.0001			
Slope	1	4073.99	<.0001			
Cycle	2	0.94	0.6241			
Season	11	113948	<.0001			

Step two would be to remove level (modify the model for the highest P value in the Free parameter table) **as a time varying component** of the model by adding the options Variance=0 and NoEst to the level statement. This option tells Proc UCM to start the model with a variance estimate equal to zero, and not to attempt to estimate a better value (fix the value at zero). The code for step two is below.

eller value (IIX life value al Zero). The code	
Proc UCM data=for_ucm	Printall turns on all printing options for the procedure.
PRINTALL ;	ID specifies a variable to be used as an identifier.
<pre>id idmonth interval=month;</pre>	
<pre>model tot_sales=Rcsn_dv Int_DV;</pre>	The model statement says Y is total sales and is to be explained by a time series and two independent variables
irregular ;	Irregular instructs SAS to include the error term (irregular term) ϵ_t in the model.
level variance=0 Noest ;	The variance of this time varying component, level, has been assigned a staring estimate of at 0 with the NOEST option - to make level NOT time variant. NoEst tells SAS not to try to estimate the variance from the data.
slope;	Slope can still be time varying.
cycle;	Cycle says include a cyclical component.
	The season statement and options instruct SAS to look for a
SEASON LENGTH=12	12-month cycle and not to use the dummy variable coding.
TYPE=TRIG ;	The observed cyclical behavior seems to be too irregular for dummy variable coding.
<pre>Deplag lags=1;</pre>	Deplags 1 instructs SAS to include $\phi_i Y_{t-1}$ in the model. ϕ_i will be estimated from the model.
	The estimate command tells SAS to estimate parameters
	and put them in a file called UCM_ESTIMATES.
estimate OUTEST=UCM ESTIMATES;	The forecast command tells SAS to forecast values for 6
forecast lead=6	periods, to calculate the components of the model and put
print=decomp	them in a file called UCM_FORECASTS.
OUTFOR=UCM_FORECASTS ;run;	_

The SAS output is below:

Final Esti	mate	s of the Fre	e Parameters	3		
				Арр	rox	Approx
Component	Pai	rameter	Estimate	Std Error t	Value	Pr > t
Irregular	Erre	or Variance	0.00001323	8.60123E-6	1.54	0.1241
Slope	Eri	for Variance	0.0000483	1.4139E-6	3.42	2 0.0006
Season	Eri	for Variance	0.00001169	2.76829E-	6 4.22	2 <.0001
Cycle	Dar	mping Factor	0.93881	0.04070	23.0	07 <.0001
Cycle	Pei	riod	16.60643	2.22861	7.4	45 <.0001
Cycle E	Trror	Variance	7.006937E-7	6.11598E-7	1.15	0.2519
Rcsn_dv	Coet	ficient	3.55172	0.04018	88.40	<.0001
Int_DV	Coet	ficient	5.67481	0.06373	89.04	<.0001
DEPLAG	PHI	[_1	0.34053	0.02848	11.96	<.0001
Significan	ice Ai	nalysis of (Components (H	Based on the Fi	inal Stat	e)
Component	DF (Chi-Square P	r > ChiSq	г		
Irregular	1	0.00	0.9868		Model Wit	th Level variance=0
Level	1	37311.7	<.0001			
Slope	1	4073.99	<.0001			
Cycle	2	0.94	0.6241			
Season	11	113948	<.0001			

Step three would be to remove irregular (modify the model for the highest P value in the Free parameter table) as a time varying component of the model by adding the options Variance=0 and NoEst =(variance) to the cycle statement. It does not seem to be significant but, alternatively, it might be mis-specified.

The logic is that a mis-specified variable can look insignificant. Try to properly specify it (usually only two ways to specify it) before removing it from the model. The code for step three is below.

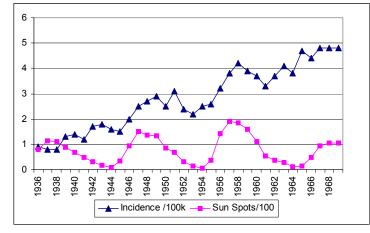
Dura TON data fan unu	
Proc UCM data=for_ucm	Printall turns on all printing options for the procedure
PRINTALL ;	ID specifies a variable to be used as an identifier
<pre>id idmonth interval=month;</pre>	Y is total sales and is to be explained by a time series
<pre>model tot_sales=Rcsn_dv Int_DV ;</pre>	and two independent variables
	Irregular instructs SAS to include the error term
<pre>irregular variance=0 noest;</pre>	(irregular term) ϵ_t in the model
<pre>level variance=0 noest;</pre>	The variance of this time varying component has
	been assigned a staring estimate of at 0 to make it
	NOT time variant. NoEst tells SAS not to try to
	estimate the variance from the data.
slope;	Slope can still be time varying.
	Cycle has been commented out of the model.
cycle;	The season statement and options instruct SAS to look
SEASON LENGTH=12	for a 12-month cycle and not to use the dummy variable
TYPE=TRIG ;	coding. The observed cyclical behavior seems to be too
	irregular for dummy variable coding.
<pre>deplag lags=1;</pre>	
	Deplags 1 instructs SAS to include $\phi_i Y_{t-1}$ in the model.
	ϕ_{I} will be estimated from the model.
	The estimate command tells SAS to estimate
estimate OUTEST=UCM_ESTIMATES;	parameters and put them in a file called
	UCM ESTIMATES.
forecast lead= 6	The forecast command tells SAS to forecast values for 6
print=decomp	periods, to calculate the components of the model and
OUTFOR=UCM_FORECASTS ; run;	put them in a file called UCM FORECASTS.
1 1 1	

Final Estim	nates of the Free	Parameters			
				Approx	Approx
Component	Parameter	Estimate	Std Erro	r t Value	Pr > t
Slope	Error Variance	0.0000369	9.5664E	-7 3.86	0.0001
Season	Error Variance	0.0000961	2.2805E	-6 4.21	<.0001
Cycle	Damping Factor	0.97764	0.010	71 91.25	<.0001
Cycle	Period	6.61696	0.050	34 130.15	<.0001
Cycle	Error Variance	0.00000222	1.50905E-6	1.47	0.1411
Rcsn_dv	Coefficient	3.46256	0.036	53 94.78	<.0001
Int_DV	Coefficient	5.68550	0.057	98.23	<.0001
DepLag	Phi_1	0.36535	0.020	35 17.96	<.0001
Significanc	e Analysis of Co	mponents (Based	on the Fina	l State)	
Component	DF Ch	ni-Square Pr > C	hiSq 🦳		
Irregular	1			odel With:	
Level	1 40	<. 450.6	0001	evel Variance=0	
Slope	1 48	\$42.97 <.	0001 In	egular Variance=0	
Cycle	2	0.08 0.95	599		
Season	11 1	L27708 <.	0001		

Step four would be to remove cycle (modify the model for the highest P value in the Free parameter table) as a time varying component of the model by adding the options Variance=0 and NoEst =(variance) to the cycle statement. It does not seem to be significant but, alternatively, it might be mis-specified.

The logic is that a mis-specified variable can look insignificant. Try to properly specify it (usually only two ways to specify it) before removing it from the model. The code for step three is below.

Proc UCM data=for_ucm	Printall turns on all printing options for the procedure
PRINTALL ;	ID specifies a variable to be used as an identifier
id idmonth interval=month;	Y is total sales and is to be explained by a time series
<pre>model tot_sales=Rcsn_dv Int_DV ;</pre>	and two independent variables
<pre>irregular variance=0 noest;</pre>	Irregular instructs SAS to include the error term
	(irregular term) $\boldsymbol{\epsilon}_t$ in the model
<pre>level variance=0 noest;</pre>	The variance of this time varying component has
	been assigned a staring estimate of at 0 to make it
	NOT time variant. NoEst tells SAS not to try to
	estimate the variance from the data.
slope;	Slope can still be time varying.
*cycle;	Cycle has been commented out of the model.
SEASON LENGTH=12	The season statement and options instruct SAS to look
TYPE=TRIG ;	for a 12-month cycle and not to use the dummy variable
,	coding. The observed cyclical behavior seems to be too
<pre>deplag lags=1;</pre>	irregular for dummy variable coding.
	Deplags 1 instructs SAS to include $\mathbf{\phi}_i Y_{t-1}$ in the model.
	$\boldsymbol{\varphi}_{l}$ will be estimated from the model.
	The estimate command tells SAS to estimate
estimate OUTEST=UCM_ESTIMATES;	parameters and put them in a file called
	UCM_ESTIMATES.
forecast lead=6	The forecast command tells SAS to forecast values for 6
print=decomp	periods, to calculate the components of the model and
OUTFOR=UCM_FORECASTS ; run;	put them in a file called UCM_FORECASTS.


The SAS output is below:

Final Est	imate	s of the Fre	e Parameters	3			
Final Est	imates	s of the Fre	e Parameters				
					7	7	
<i>a</i> .					Approx		
Component	Para	ameter	Estimate	Std Error	t Value	Pr > t	
Slope	Erroi	r Variance	0.00000676	1.79115E-6	3.78	0.0002	
Season	Erroi	r Variance	0.00001586	3.74634E-6	4.23	<.0001	
Rcsn_dv	Coeff	ficient	3.63449	0.04622	78.63	<.0001	
Int_DV	Coefi	ficient	5.81361	0.07322	79.40	<.0001	
DEPLAG	PHI_1		0.34204	0.02439	14.02	<.0001	
Signifiga	nge M	nalysis of (lomponents				
Significa		ed on the Fi	_				
	(Dab	cu on the ri	mai beace,				
Component	DF	Chi-Square	Pr > ChiSq				
Irreqular	1						
Level			<.0001				
Slope		2944.99					
Season							
BCabon	± ±		<.0001				

All of these variables are significant, in both tables, though there might well be better models. Cycle was originally put in the model in hopes that it would automatically model the effects of the three different cycles. It did not end up as a strong predictor.

PROJECT 2 TAKEN FROM SAS DOCUMENTATION

The goal of this project is to model some cancer data from the Connecticut Tumor registry as reported by Houghton, Flannery and Viola in the International Journal of Cancer. They calculated the age-adjusted incidence of Melanoma per 100,000 subjects. This data, and sunspot data, is shown in the graph below. The original article did not make any link to sunspot activity (that idea is from a helpful SAS, Inc. employee).

The code for step 1 is

	a cycle or seasonal	ity. We will le	et the data tell	us about the cycle.	
proc ucm data =	= both;				
id year i	interval = year ;				
model Inc	cidences ;				
irregular					
	riance= 0 noest ;				
-	riance= 0 noest ;				
	ot=smooth ;				
	<pre>plot=(residual</pre>				
forecast	<pre>lead=10 plot=(d</pre>			;	
		Output is sho	wn below		
Final Estimates of	f the Free Parame	ters			
			Approx	Approx	
Component Paramete	er Estimate	Std Error	t Value	Pr > t	
Irregular Error Va	ariance 0.05706	0.01750	3.26	0.0011	
Cycle Damping	Factor 0.96476	0.04857	19.86	<.0001	
Cycle Period	9.68327	0.62860	15.40	<.0001	
Cycle Error Va	ariance 0.00302	0.0022975	1.31	0.1893	
Significance Analy	ysis of Component	S			
(Based	on the Final Sta	te)			
Component DF (Chi-Square Pr >	ChiSq			
Irregular 1	0.03 0.8698				
Level 1	3097.46 <.0001				
Slope 1	694.83 <.0001				
Cycle 2	2.54 0.2810				
		Damping	Final %Re	elative Cycle	
Name Type I	Period Frequency	Factor A	mplitude to	Level Variance	
Cycle Stationary 9	9.68327 0.64887	0.96476	0.20439 4.	29794 0.04356	
Cycle is a poor perfo arises if we posit a su	· · · · ·				

sunspots (to the smart folks at SAS- not to the original authors).

ndependent variable in		it and create a	SAS data sei	. Use Sunspots and an	
proc ucm data = 1					
1	terval = year ;				
_	dences = sunspots	s ;			
irregular					
	ance=0 noest ;				
1	ance=0 noest ;				
cycle plot					
	plot=(residual no ead=10 plot=(deo				
IDIECast I		utput is shown b			
inal Estimates of					
			Approx	Approx	
Component Parameter	Estimate	Std Error	t Value	Pr > t	
- Irreqular Error Var	iance 0.11227	0.02807	4.00	<.0001	
Cycle Damping F	actor 0.99999	0.0015394	649.60	<.0001	
Cycle Period	2.60497	0.13294	19.59	<.0001	
Cycle Error Vari	ance 4.91638E-8	1.94826E-7	0.25	0.8008	
sunspots Coefficie	ent 0.0008408	4 0.0010898	0.77	0.4404	
Significance	Analysis of Com	ponents			
(Based o	n the Final State	e)			
Component DF Chi-	Square Pr > C	hiSq			
Irregular 1	0.15 0.6	942			
Level 1 11	.70.86 <.0	001			
Slope 1 4	56.73 <.0	001			
Cycle 2	0.69 0.70	75			
		· _·		- ~ l	
		ampening Fina		ive Cycle	
21		Factor Amplit			
Cycle Stationary	2.60497 2.41200	0.99999	0.03292	0.69612 0.00211	

The code for step 3 is shown below

Follow theory.	-	p sunspots ir		and lag the	m		
Lag them by t Folks at SAS	-	•	,			iable in a data step (not shown). ice.	
Comment cyc	le out	of the model	l.				
ods html	;						
ods graph							
_		n data = bo					
	-	interval =	-				
	er 1. equl	ncidences =	agzsr;				
		ariance= 0 n	noest :				
		ariance= 0 n					
		cle plot=sm					
		e plot=(re		rmal acf);			
for	ecas	t lead= 10	plot=(dec	omp foreca	asts);		
run ;							
ods graph							
ods html	clos	e ;					
				tput is show	n below		
Final Estima	ates	of the Free	e Paramete	ers			
					Approx	Approx	
Component Pa	arame	ter I	Estimate	Std Error			
component ra	arame			Stu EIIOI	c varue		
Irregular E	rror	Variance	0.06283	0.01524	4.12	<.0001	
lag2SP Co	oeffi	cient	0.00429	0.0007966	5.39	<.0001	
Significance							
		d on the F:					
	(base	a on the F.	IIIAI SLALE	:)			
Component	DF	Chi-Square	e Pr > Ch	iSq			
Irregular	1	0.73	3 0.39	37			
Level	1	1731.59	9 <.00	001			
Slope	1	764.32	2 <.00	01			
	-						

Components of model are strong. All P values are very small. There is a strong sunspot link.

With the code above, SAS also gives lots of very interesting and useful output. The output from the final model is shown below.

Input Data Set						
Name	WORK.BOTH					
Time ID Variable	year					

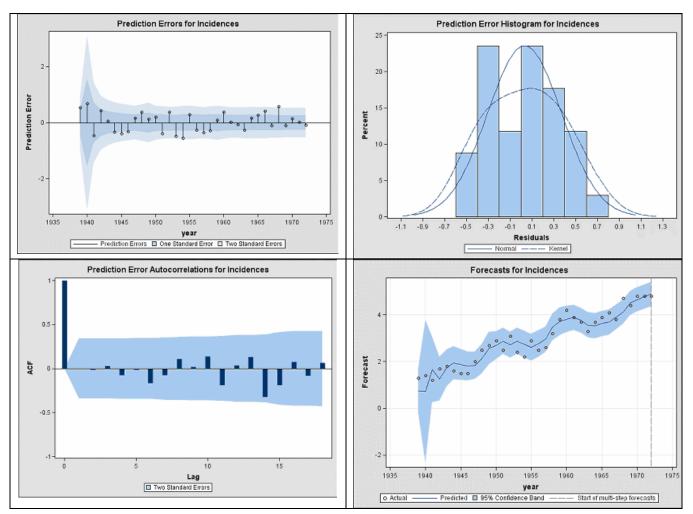
	Estimation Span Summary								
Variable	Туре	First Obs	Last Obs	NObs	NMiss	Min	Max	Mean	Standard Deviation
Incidences	Dependent	1936	1972	37	0	0.80000	4.80000	2.80811	1.23904
lag2SP	Predictor	1936	1972	37	0	4.40000	190.20000	75.35135	52.88085

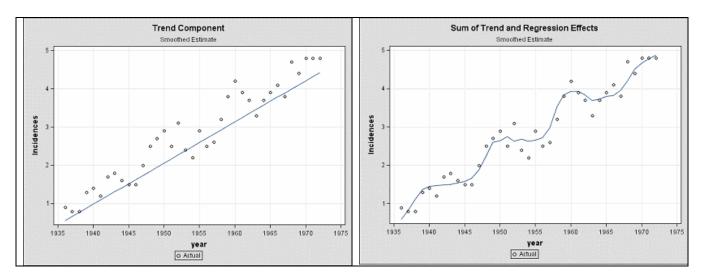
	Forecast Span Summary								
Variable	Туре	First Obs	Last Obs	NObs	NMis s	Min	Max	Mean	Standard Deviation
Incidences	Dependent	1936	1972	37	0	0.80000	4.80000	2.80811	1.23904
lag2SP	Predictor	1936	1972	37	0	4.40000	190.20000	75.3513 5	52.88085

	Fixed Parameters in the Model						
Component	Value						
Level	Error Variance	0					
Slope	Error Variance	0					

Preliminary Estimates of the Free Parameters						
Component	Parameter	Estimate				
Irregular	Error Variance	3.41052				

Likelihood Based Fit Statistics								
Full Log-Likelihood-15.04479								
Diffuse Part of Log-Likelihood	-2.14211							
Normalized Residual Sum of Squares	34.00000							
Akaike Information Criterion	38.08957							
Bayesian Information Criterion	44.53324							
Number of non-missing observations used for computing the log-likelihood = 37								


Likelihood Optimization Algorithm Converged in 7 Iterations.


Final Estimates of the Free Parameters							
Component	Parameter	Estimate	Approx Std Error	t Value	Approx Pr > t		
Irregular	Error Variance	0.06283	0.01524	4.12	<.0001		
lag2SP	Coefficient	0.00429	0.0007966	5.39	<.0001		

Fit Statistics Based on Residuals

Mean Squared Error	0.11260
Root Mean Squared Error	0.33556
Mean Absolute Percentage Error	13.00476
Maximum Percent Error	48.79725
R-Square	0.90998
Adjusted R-Square	0.90998
Random Walk R-Square	0.38472
Amemiya's Adjusted R-Square	0.90452
Number of non-missing residual	s used for computing the fit statistics = 34

Significance Analysis of Components (Based on the Final State)							
Component	DF	Chi-Square	Pr > ChiSq				
Irregular	1	0.73	0.3937				
Level	1	1731.59	<.0001				
Slope	1	764.32	<.0001				

CONCLUSIONS

Proc UCM, with some study, can be a strong competitor for ARIMA modeling. It is easy to code and has lots of very attractive and useful output.

While the procedure for creating a parsimonious model is not well defined, there is hope that logical playing with the model will result in models with few components and predictive power.

REFERENCES

Houghton, A., Flannery, N, and Viola.V.M. (1980). "Malignant Melanoma in Connecticut", International Journal of Cancer, 25, 95-114

ACKNOWLEDGMENTS

The author wishes to thank the folks at SAS who have been so very helpful on many issues. Special thanks to Rajesh Selukar for his patience.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Russell Lavery 9 Station Ave. Apt 1, Ardmore, PA 19003, 610-645-0735 # 3 Email: <u>russ.lavery@verizon.net</u> Contractor for ASG, Inc. WWW.ASG-INC.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

```
data for ucm;
retain retail trend
        Constr trend
        AntA trend
                     ;
infile datalines firstobs=6 missover;
input @1 idmonth monyy7. @9 month 2.0 Rcsn_dv Int_DV ret_rec_fct constr_rec_fct AntA_rec_fct;
if _n_=1 then
        do; /*initialize*/
             retail trend=0;
             Constr_trend=0;
             AntA trend =0;
        end;
*Explanation of the recession fctors below: 1=good times 0=no sales at all;
*RECESSION FACTORS COULE BE NAMED BETTER. THEY MODIFY THE CYCLE AND THE TRAND;
*** TREND SECTION ****;
*calculate trend components;
*there is a constant trend and a modifier to produce recessions and no sales;
*add a bit to last quarters data- we retained it;
retail trend = retail trend + (.15 *ret rec fct );/*if factor is close to 0, little change*/
Constr_trend =constr_trend + (.20 *constr_rec_fct);
AntA trend =AntA trend + (.10 *AntA rec fct );
** CYCLE SHAPE SECTION ****;
*calculate cyclical components - this section sets the shape of the cycle;
*domestic retail cycle;
if
        mod(month,12) = (7) then retail cycle= .9 *ret rec fct;
                                                                        /*vacation sales*/
else if mod(month,12) = (8) then retail cycle= 1.1*ret rec fct;
else if mod(month,12) = (9) then retail_cycle= .3 *ret_rec_fct;
                                                                        /*poser/school sales*/
else if mod(month,12) = (11) then retail_cycle=-.2 *ret_rec_fct;
                                                                         /*winter sales downturn*/
else if mod(month,12) = (12) then retail_cycle= .7 *ret_rec_fct;
                                                                        /*holiday sales*/
else if mod(month,12) = (1) then retail_cycle=-.7 *ret_rec_fct;
else if mod(month,12) = (2) then retail_cycle=-.9 *ret_rec_fct;
else if mod(month,12) = (3) then retail_cycle=-.3 *ret_rec_fct;
else retail cycle =0;
*domestic construction cycle ;
if
      mod(month,12) = (7) then constr_cycle=.7 *constr_rec_fct; /*START OF WORK PERIOD*/
else if mod(month,12) = (8) then constr_cycle=.9 *constr_rec_fct;
else if mod(month,12) = (9) then constr_cycle=.3 *constr_rec_fct; /*replacing lost items*/
else if mod(month,12) = (11) then constr_cycle=-.3*constr_rec_fct;
                                                                          /*holidavs*/
else if mod(month,12) = (1) then constr cycle=-.7*constr rec fct; /* less work in winter*/
else if mod(month,12) = (2) then constr_cycle=-.9*constr_rec_fct;
else if mod(month,12) = (3) then constr cycle=-.3*constr rec fct;
else constr cycle =0;
*Antarctic sales - Sun from Sept to March - people buy early protection is important;
       mod(month, 12) = (9) then AntA cycle= 2 *AntA rec fct;
                                                                        /*START OF WORK PERIOD*/
if
else if mod(month,12) = (10) then AntA_cycle= 1 *AntA_rec_fct;
else if mod(month,12) = (11) then AntA_cycle= 1 *AntA_rec_fct;
else if mod(month,12) = (12) then AntA_cycle=-.1 *AntA_rec_fct;
else if mod(month,12) = (1) then AntA_cycle=-.5 *AntA_rec_fct;
else if mod(month,12) = (2) then AntA_cycle=-.7 *AntA_rec_fct;
else if mod(month,12) = (3) then AntA_cycle=-.2 *AntA_rec_fct;
                                                                        /*replacing lost items*/
else AntA cycle =0;
** EXPAND OR CONTRACT THE CYCLE SECTION **;
*MODIFY cyclical components - this section sets the magnitude of the cycle;
* this section is just to make for easy changes in the curves;
retail_cycle =retail_cycle *3 ; *set to three to make it show on plot;
constr cycle =constr cycle *2;
                             *1 :
AntA_cycle =AntA_cycle
*ADD UP COMPONENTS SECTION;
```

```
tot sales =sum(retail trend,retail cycle,constr trend,constr cycle,AntA trend,AntA cycle) ;
sumTrend =sum(retail_trend,constr_trend,AntA_trend);
sumCyc =sum(retail_cycle,constr_cycle,AntA_cycle);
** blank Y values for last 6 months so that they can be c=forcasted by this proc;
if month GE 73 then do;
                 tot sales=.;
                 sumtrend =.;
                 sumCyc=.;
                 end;
datalines;
this is monthly data
 ---
Explanation of the recession fctors below: 1=good times 0=no sales at all
Cmnth mnth Rcsn_dv Int_DV ret_rec_fct constr_rec_fct AntA_rec_fct
Jan2000 01
             0
                  0
                           .5
                                                              0 /*good times :-)*/
                                              1
                                                                  /*selling to Us sports and construction*/
               0
                    0
                            .5
Feb2000 02
                                              1
                                                               0
Mar2000 03
               0
                    0
                            .5
                                              1
                                                               \cap
Apr2000 04
                                              1
               0
                    0
                           .5
                                                               0
May2000 05
              0
                    0
                            .5
                                              1
                                                               0
Jun2000 06
              0
                    0
                            .5
                                              1
                                                               0
             0
Jul2000 07
                    0
                            .5
                                             1
                                                               0
Aug2000 08
              0
                    0
                            .5
                                              1
                                                               0
Sep2000 09
             0
                   0
                           .5
                                              1
                                                               0
                            .5
Oct2000 10
              0
                   0
                                             1
                                                               0
Nov2000 11
              0
                   0
                           .5
                                              1
                                                               0
Dec2000 12
                   0
                           .02
                                             .3
                                                               0
                                                                    /*start of 12 month recession :-( */
             1
Jan2001 13
             1
1
                   0
                           .02
                                             .3
                                                               0
                                                                    /* 1 IN Rcsn dv INDICATES A RECESSION */
Feb2001 14
                   0
                                             .3
                                                               0
                           .02
             1
Mar2001 15
                   0
                           .02
                                             .3
                                                               0
Apr2001 16
                    0
                           .02
                                             .3
                                                               0
              1
             1
May2001 17
                   0
                           .02
                                             .3
                                                               0
             1
1
                           .02
                   0
Jun2001 18
                                             .3
                                                               0
Jul2001 19
                   0
                           .02
                                             .3
                                                               0
Aug2001 20
             1
                   0
                           .02
                                             .3
                                                               0
Sep2001 21
              1
                    0
                            .02
                                             .3
                                                               0
             1
Oct.2001 22
                   0
                           .02
                                             .3
                                                               0
Nov2001 23
             1
                    0
                           .02
                                             .3
                                                               0
                                                                    /*end of 12 month recession \, :-) */
Dec2001 24
              0
                    1
                           .5
                                              1
                                                               2
                                                                    /*Enter international sports market*/
Jan2002 25
                                                               2
              0
                    1
                           .5
                                             1
                                                                    /*1 IN Int DV SHOWS INTERNAIONAL SALES*/
Feb2002 26
                            .5
                                             1
                                                               2
              0
                    1
Mar2002 27
                                                               2
              0
                    1
                            .5
                                              1
Apr2002 28
              0
                    1
                           .5
                                             1
                                                               2
                                                               2
May2002 29
              0
                    1
                            .5
                                              1
Jun2002 30
                                                               2
              0
                    1
                            .5
                                              1
                                                               2
Jul2002 31
              0
                    1
                           .5
                                              1
Aug2002 32
                    1
                            .5
                                              1
                                                               2
               0
Sep2002 33
                                              1
                                                               2
              0
                    1
                           .5
Oct2002 34
Nov2002 35
                                                               2
              0
                    1
                            .5
                                              1
                                                               2
              0
                    1
                            .5
                                              1
Dec2002 36
                                              1
                                                               2
              0
                    1
                           .5
                                                               2
Jan2003 37
              0
                    1
                            .5
                                              1
Feb2003 38
                                                               2
              0
                    1
                            .5
                                              1
                                                               2
Mar2003 39
              0
                    1
                            .5
                                              1
Apr2003 40
              0
                    1
                            .5
                                              1
                                                               2
May2003 41
                                                               2
              0
                    1
                            .5
                                              1
Jun2003 42
                            .5
                                              1
                                                               2
              0
                    1
                                                               2
Jul2003 43
               0
                    1
                            .5
                                              1
Aug2003 44
              0
                    1
                           .5
                                              1
                                                               2
Sep2003 45
              0
                    1
                            .5
                                              1
                                                               2
Oct2003 46
                                                               2
              0
                    1
                            .5
                                              1
                                                               2
Nov2003 47
              0
                    1
                            .5
                                              1
Dec2003 48
               0
                    1
                            .5
                                              1
                                                               2
                                                               2
2
Jan2004 49
              0
                    1
                            . 5
                                              1
Feb2004 50
              0
                    1
                            .5
                                              1
                                                               2
Mar2004 51
              0
                    1
                            .5
                                              1
Apr2004 52
                                              1
                                                               2
              0
                    1
                           .5
                                                               2
May2004 53
              0
                    1
                            .5
                                              1
Jun2004 54
                                                               2
             0
                    1
                           .5
                                              1
Jul2004 55
             0
                    1
                           .5
                                              1
                                                               2
Aug2004 56
                    1
                                                               2
               0
                            . 5
                                              1
```

Sep2004 Oct2004 Dec2004 Jan2005 Feb2005 Apr2005 Apr2005 Jun2005 Jun2005 Aug2005 Sep2005	58 59 60 61 62 63 64 65 66 65 66 67 68 69		1 1 1 1 1 1 1 1 1 1 1 1	.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
Oct2005 Nov2005 Dec2005 Jan2006 Feb2006 Mar2006 Apr2006 May2006	71 72 73 74 75 76	0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	.5 .5 .5 .5 .5 .5 .5 .5 .5	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2	/*blank /*blank /*blank	calculations calculations calculations calculations calculations	and fo and fo and fo	rcast w rcast w rcast w	/ UCM*/ / UCM*/ / UCM*/
Jun2006 ; run ;	5 78	0	1	.5	1	2	/*blank	calculations	and fo	rcast w	/ UCM*/
	colo inte valu			s;							
run;											
symbol2	inte valu	r=gree rpol= <u>;</u> e=squa ht= 1;	join								
run;											
symbol3	inte valu	r=blue rpol= <u>-</u> e=tria ht= 1;	join								
symbol4	inte valu	r=blac rpol= <u>;</u> e=stan ht= 2;	join								
run;	-										
legend1	shap posi	<mark>e</mark> =symk	ool(4,2) (top cen	ter inside)							
proc gp	lot d Show tot_	<mark>ata=</mark> fo Total	Sales a *month	nd the Sum of	f the Trends"; gend=legend1 }						
title " plot r C	Show etail onstr	Cuml s trend trend	sales du d *month d*month		nd components' end=legend1 hi						

```
run;
quit;
proc gplot data=for_ucm;
title "Show the monthly Cycle components and the sum of the cycles";
plot sumCyc *month
     retail cycle *month
     constr cycle *month
     AntA cycle *month /overlay legend=legend1 href=12 24;
run;
quit;
proc gplot data=for ucm;
title "Show the Cycle Component";
    plot sumCyc*month / legend=legend1 href=12 24;
run;
quit;
title "";
*** from paper step 1 initial model****;
id idmonth interval=month;
model tot sales = Rcsn dv Int DV ;
irregular;
level ;
slope;
cycle;
SEASON LENGTH=12
       TYPE=TRIG ;
deplag lags=1;
estimate
      OUTEST=UCM ESTIMATES;
forecast lead=6
      print=decomp
   OUTFOR=UCM FORECASTS ;
run;
***from paper step 2 variance of level is set to 0*****;
Proc UCM data=for ucm PRINTALL ;
id idmonth interval=month;
model tot_sales = Rcsn_dv Int_DV ;
irregular ;
level variance=0 noest;
slope;
cycle;
SEASON LENGTH=12
      TYPE=TRIG ;
deplag lags=1;
estimate
      OUTEST=UCM ESTIMATES;
forecast lead=6
      print=decomp
   OUTFOR=UCM FORECASTS ;
run;
***from paper step 3 set irregular to zero*****;
id idmonth interval=month;
model tot sales = Rcsn dv Int DV ;
irregular variance=0 noest;
level variance=0 noest;
```

slope;

cycle;

```
SEASON LENGTH=12
    TYPE=TRIG ;
deplag lags=1;
```

estimate OUTEST=UCM_ESTIMATES; forecast lead=6 print=decomp OUTFOR=UCM_FORECASTS ;

from paper step 4 get rid of cycle*;

id idmonth interval=month; model tot_sales = Rcsn_dv Int_DV ; irregular variance=0 noest;

level variance=0 noest;
slope;

*cycle;

```
SEASON LENGTH=12
    TYPE=TRIG ;
deplag lags=1;
```

estimate OUTEST=UCM_ESTIMATES; forecast lead=6 print=decomp OUTFOR=UCM FORECASTS ;

```
data melanoma ;
    input Incidences @@ ;
    year = intnx('year','1jan1936'd,_n_-1) ;
    *year=1936+_n_-1;
    label Incidences = 'Adg. Inc/100k';
    datalines ;
        0.9 0.8 0.8 1.3 1.4 1.2 1.7 1.8 1.6 1.5
        1.5 2.0 2.5 2.7 2.9 2.5 3.1 2.4 2.2 2.9
        2.5 2.6 3.2 3.8 4.2 3.9 3.7 3.3 3.7 3.9
        4.1 3.8 4.7 4.4 4.8 4.8 4.8
    ;
```

```
Proc sort data=melanoma;
by year;
```

```
data sunspots;
infile datalines missover;
input @1year @10 sunspots;
        year = intnx('year','1jan1931'd,_n_-1);
        format year year4.;
/*
```

```
http://www1.physik.tu-muenchen.de/~gammel/matpack/html/Astronomy/Sunspots.html#yearly_data
1.2.2 Yearly Data
In the table below the yearly sunspot counts from 1700 to 1992 can be found.
```

Cear Nu		neans have r Number	been calcu Year Num	the average of Year Number	f the daily means Year Number
/	1001		1041 114	 rour number	1001 1100001
latalir	nes;				
931	21.2				
932	11.1				
933	5.7				
934	8.7				
935	36.1				
936	79.7				
937	114.4				
.938	109.6				
.939	88.8				
.940	67.8				
.941	47.5				
942	30.6				
943	16.3				
944	9.6				
945	33.2				
946	92.6				
947	151.6				
948	136.3				
949	134.7				
950	83.9				
951	69.4				
952	31.5				
953	13.9				
954	4.4				
955	38.0				
.956	141.7				
.957	190.2				
.958	184.8				
.959	159.0				
.960	112.3				
.961	53.9				
962	37.6				
963	27.9				
964	10.2				
965	15.1				
966	47.0				
967	93.8				
968	105.9				
969	105.5				
970	104.5				
971	66.6				
.972	68.9				
.972	38.0				
.973					
	34.5				
.975	15.5				
.976	12.6				
.977	27.5				
.978	92.5				
979	155.4				
980	154.6				
981	140.4				
982	115.9				
983	66.6				
984	45.9				
985	17.9				
.986	13.4				
.987	29.4				
.988	100.2				
.989	157.6				
.990	142.6				
.991	145.7				
992	94.3				
un;					
	ort data=sunsp	acta.			

data both;

```
merge sunspots melanoma(in=M) ;
by year;
smallsun=sunspots/100; * for plotting;
lag2SP=lag2(sunspots);
if M;
run;
ods html ;
  ods graphics on ;
  proc ucm data = both;
     id year interval = year ;
      model Incidences ;
      irregular ;
     level variance=0 noest ;
     slope variance=0 noest ;
      cycle plot=smooth ;
      estimate plot=(residual normal acf);
     forecast lead=10 plot=(decomp forecasts);
   run ;
  proc ucm data = both;
      id year interval = year ;
      model Incidences = sunspots ;
      irregular ;
      level variance=0 noest ;
      slope variance=0 noest ;
      cycle plot=smooth ;
      estimate plot=(residual normal acf);
forecast lead=10 plot=(decomp forecasts);
   run ;
 ods html ;
  ods graphics on ;
      proc ucm data = both;
      id year interval = year ;
      model Incidences =lag2SP;
      irregular ;
      level variance=0 noest ;
      slope variance=0 noest ;
      *cycle plot=smooth ;
      estimate plot=(residual normal acf);
      forecast lead=10 plot=(decomp forecasts);
  run ;
   ods graphics off ;
   ods html close ;
```