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ABSTRACT
We propose a novel automated grading system that can com-
pare two multiview engineering drawings consisting of three
views that may have allowable translations, scales, and off-
sets, and can recognize frequent error types as well as in-
dividual drawing errors. We show that translation, scale,
and offset-invariant comparison can be conducted by esti-
mating the affine transformation for each individual view
within drawings. Our system directly aims to evaluate stu-
dents’ skills creating multiview engineering drawings. Since
it is important for our students to be familiar with widely
used software such as AutoCAD, our system does not require
a separate interface or environment, but directly grades the
saved DWG/DXF files from AutoCAD. We show the efficacy
of the proposed algorithm by comparing its results with hu-
man grading. Beyond the advantages of convenience and ac-
curacy, based on our data set of students’ answers, we can
analyze the common errors of the class as a whole using our
system.

Author Keywords
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ACM Classification Keywords
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COMPUTER VISION

INTRODUCTION
Multiview drawing is an international standard “graphical
language” to represent 3D objects with 2D drawings. By fol-
lowing the rules of the graphical language, people can com-
municate the shape of three-dimensional objects without am-
biguity. A multiview drawing consists of orthogonal projec-
tions to mutually perpendicular planes, typically the front,
top, and right views. In the U.S., these are arranged on the
page using so-called third angle projection, as if orthogonal
projections onto the sides of a transparent glass box contain-
ing the object had been unfolded onto the page [1]. The
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Figure 1. 3D geometry represented in multiview drawings in Figure 2-4.

Figure 2. An example of a formal multiview drawing. Note that in multi-
view engineering drawings the views are not labeled; the placement and
alignment communicates the relative viewpoints.

three typical projections of a simple 3D object under third
angle projection are shown in Figure 2. Sometimes addi-
tional projections are drawn for interpretation convenience.
At the University of California at Berkeley, multiview draw-
ing is taught in the lower division course “Basic Engineering
Design Graphics,” Engineering 28 (E28).

Due to the fundamental importance of engineering drawing
for design and communication, E28 is a large class serving
students majoring in fields including mechanical engineer-
ing, electrical engineering, computer science, industrial en-
gineering, civil engineering, nuclear engineering, and archi-
tecture. Manually grading students’ multiview drawing sub-
missions and manually giving feedback to them is very time
consuming, and the feedback is not always precise or timely.
In the era of Massive Open Online Courses (MOOCs), we ex-
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Figure 3. Four typical cases of mistakes. Note that the labels on the
views are not present in the actual multiview drawing.

pect high future demands for this type of engineering drawing
course on an even larger scale, for which an automated grad-
ing/feedback tool would be critical. Particularly in a MOOC,
but also with the large variety of backgrounds of students tak-
ing our on-campus course, different levels of students are en-
gaged in the same curriculum. For effective education, we
envision a system that should be able to distinguish them and
provide specialized additional focused instruction and prac-
tice problems for different groups of students. To understand
where students make mistakes frequently, an automated grad-
ing tool is essential not only for grading but also for analyzing
big data.

Our autograder addresses several frequent error types that in-
experienced engineers and designers make [11], summarized
below.

Missing and Incorrect Lines
A common problem with hand-created or 2D Computer-
Aided Design (CAD) software-created drawing is that one or
more lines may be missing. Figure 3a shows this error type.
This error is especially difficult to recognize when someone
else made the drawing [1]; even when a grader has a solution
to compare with, the grader may miss such a subtle mistake.

Mismatched View Scales
Each view of a drawing must have the same scale. Figure 3b
shows an example when the scale of the right view is dif-
ferent, which makes for misaligned features between views.
This is not permitted in multiview drawings. Note that as long
as a drawing has the same scale throughout the views, the
scale itself can be arbitrary for undimensioned drawings. So

an automated grading tool should be scale-invariant, yet rec-
ognize mismatched scales between views in the same draw-
ing.

Misaligned Views
Misaligned views, as shown in Figure 3c, also make it diffi-
cult for a human to match up features between adjacent views;
they are not permitted in multiview drawings. The orthogo-
nal views must be aligned both horizontally and vertically.
Note that once the views are aligned appropriately, the off-
set distances between pairs of adjacent views do not need
to match. So an automated grading tool should be offset-
invariant. Moreover, because the entire drawing can be trans-
lated anywhere relative to the origin, the grading tool should
be translation-invariant, up to alignment and relative location
of views.

Views in Incorrect Relative Locations
Each view in a drawing must be located appropriately with
respect to each other view. One possible mistake is caused
by confusion of views (e.g., mistakenly placing a left view
in the right view location). Sometimes students mistakenly
rotate an entire view, typically by 90◦. Another mistake is
mirroring a view, as shown in Figure 3d.

These subtle mistakes are very easy for students to make, and
are also easy for graders to miss. Especially with the tradi-
tional grading method where each student’s printed drawing
is graded by comparing it with a printed solution, a human
grader can not guarantee a perfect comparison.

We show an example of a solution drawing and a student’s
drawing in Figure 4. Since they have different scale, transla-
tion, and offsets, the naı̈ve comparison shown in Figure 4(c)
does not work. Therefore we propose that an automated grad-
ing tool should be translation, scale, and offset-invariant when
grading individual views, yet take these factors into account
between views.

In this paper, we propose a simple and flexible automated
grading/feedback system, which is translation, scale, and
offset-invariant in the sense described above. The proposed
algorithm determines the transformation information for each
view (top, front, and right) in a drawing (Section “Algo-
rithm”). We implement the automated grading/feedback sys-
tem using MATLAB and address how the student errors de-
tailed above can be graded using the transformation informa-
tion (Section “Grading Checks”).

RELATED WORK
To our knowledge, no existing work addresses machine grad-
ing of multiview engineering drawings. AutoCAD provides
a plug-in called Drawing Compare [20], but it just visualizes
the temporal changes of edits to a single drawing, and there-
fore it is not suitable to compare two drawings that include
scale, translation, and offset differences.

There has been research on multiview engineering drawing
interpretation in the context of using the drawings as input to
reconstruct 3D models [15, 18, 18, 6, 19, 10]. However, none
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Ds(solution)

Dt(student)

(c) naı̈ve comparison between Ds and Dt

Figure 4. An example of (a) a solution drawing and (b) a student’s draw-
ings and (c) their naı̈ve comparison. Because they have different scales,
translations, and offsets, a naı̈ve comparison does not work.

of these techniques are useful to compare and grade multi-
view drawings given that the reconstruction algorithms may
fail when they face the incompleteness of students’ drawings.
Moreover the computation would be very intensive (both re-
construction and 3D object comparison).

On the educational side, Suh and McCasland developed edu-
cation software to help train students in the interpretation of
multiview drawings [16]. In their software, complete multi-
view drawings are given as input, and students are asked to
draw the corresponding 3D models. This is very useful to
enhance and evaluate students’ multiview-drawings interpre-
tation skills, the inverse of our purpose of evaluating students’
multiview creation skills when 3D models are given as input.
Since it is important for students to be familiar with popular
CAD software such as AutoCAD, we chose to compare and
grade native format AutoCAD files, which is easily extended
to batch processing.

We use the random sample consensus (RANSAC) method [5]
to estimate an affine transformation between the individual
views of the two given drawings. RANSAC is an iterative
method used to estimate parameters of a mathematical model
from a set of data. RANSAC is very popular due to its effec-
tiveness when the data has a high percentage of noise. The
fact that much research in the computer vision field relies on
RANSAC, for example, estimating the fundamental matrix
[2], recognizing primitive shapes from point-clouds [14], or
estimating an affine transformation between two line sets [4,
9], shows RANSAC’s efficacy in multiple contexts. There
have also been many variations introduced such as MLE-
SACK [17] and Preemptive RANSAC [12], as well as re-
search comparing the performance of the variations [3, 13].
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Figure 5. An example pair of views for transformation estimation.

In our current application, we have found that the original
RANSAC concept is efficacious enough. We next discuss the
basic RANSAC algorithm and how we apply it to estimate
parameters of the transformation between single view draw-
ings.

ALGORITHM

Single View Transformation Estimation
Initially we ignore the offset-invariant problem by assuming
a drawing consists of only one view (e.g., front, top, or right).
Let Vs be a single view from the source drawing (solution),
and Vt be a single view from the target drawing (student’s).
Then the task here is to estimate the optimal transformation
T ∗ between Vs and Vt in order to address the translation and
scale-invariant problems. Once we know this transformation,
we can transform Vs into the coordinate system of Vt. Let V ′s
be the transformed version of Vs. We denote this as

T ∗ : Vs → V ′s
or equivalently,

V ′s = T ∗(Vs).

We can then compare V ′s and Vt fairly. (In the next section,
we will discuss how to apply this single view transformation
in the context of full multiview drawings to address the flexi-
ble offsets permitted between views.)

As a transformation model between the two views, we assume
an affine transformation. Its parameters are translation in x
and y (tx, ty), scale in x and y (sx, sy), rotation θ, and skew
k.

We take the pair of drawings in Figure 5 as an illustrative ex-
ample for this section. Vt (Figure 5(b)) was obtained from
Vs (Figure 5(a)) by applying a uniform scale, mirroring, and
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Figure 6. (a) Even if we align the two views in terms of scale and trans-
lation, it is not easy to compare them at a glance; here half the elements
still appear to be slightly off. (b) In fact, most elements match perfectly
if the correct affine transformation is applied. The real problem is mir-
roring and two lines that only partially differ.

translation to Vs, and then editing two lines. It is not easy
for a human to recognize what changes are there. The naı̈ve
comparison (Figure 5(c)) does not work at all. Even if scale
and translation is properly considered, a grader may simply
think most lines are slightly wrong as shown in Figure 6(a).
However, better feedback can be provided by recognizing that
the overall representation is in fact correct, except for mir-
roring and partially differing lines, as shown in Figure 6(b).
Therefore, for a fair comparison that correctly identifies what
conceptual errors led to the student’s mistake, we need to es-
timate the affine transformation and use it to align the two
drawings first, before comparing individual line elements.

The affine transformation estimation procedure is based on
RANSAC, which consists of the following generically de-
scribed four steps:

1. At each iteration, randomly select a subset S of the data
set D. Hypothesize that this subset (called hypothetical
inliers) satisfies the ground truth model we seek.

2. Solve (or fit) the hypothetical model parameters Θ based
on the hypothetical inliers S. Note that S is the only in-
put for choosing Θ, so if S includes incorrect of “noisy”
elements, naturally the estimated model parameters Θ will
not be high quality.

3. Evaluate the estimated model parameters Θ using all data
D. The subset C ⊆ D whose members are consistent with
the estimated model parameters Θ is called a consensus set.

4. Iterate steps 1-3. The optimal choice of model parameters
Θ∗ is that with the largest consensus set. Terminate when
the probability of finding a better consensus set is lower
than a certain threshold.

Our data set D is obtained by extracting certain points re-
lated to the elements in the drawings. The element types that
we currently consider are line, circle, and arc. The point set
consists of the two endpoints of line elements and the center
points of circle and arc elements. Let Ps and Pt be the point
sets extracted from all elements (lines, circles and arcs) from
Vs and Vt, respectively. Ps and Pt together comprise the data
set D.

2D Affine transformations have six degrees of freedom
(DOFs): two each for translation and scale, and one each
for rotation and skew: therefore three noncolinear point pairs
(correspondences between the two views) will give a unique
solution. We randomly pick three ordered points from both
Ps and Pt, and pair them in order. The three randomly se-
lected point pairs are the hypothetical inliers S, and we solve
for the (hypothetical) affine transformation matrix T based
on the three pairs of points. The full 3 × 3 affine transfor-
mation matrix can be solved for by using the homogeneous
coordinate representation of the three pairs of points. (See
for example [8] for more details.)

To evaluate T , we now transform the entire point set Ps by
T . Let P ′s be the transformed version of Ps. If T is the op-
timal transformation, then most or even all points of Ps will
be coincident with those of Pt. We define the consensus set
C as C = P ′s ∩ Pt. Our evaluation metric is the cardinality of
the consensus set (that is, the number of coincident points).
We iterate this process; the optimal affine transformation T ∗
is the T with the largest |C|. We can denote this as

P ′s = T (Ps)

T ∗ = arg max
T
|C|

= arg max
T
|P ′s ∩ Pt)|

= arg max
T
|T (Ps) ∩ Pt)|

where arg max stands for the argument of the maximum, the
argument element(s) of the given argument space for which
the given function attains its maximum value.

We terminate the iteration when |C| > R ∗ min(|Ps|, |Pt|),
where R is the minimum match rate, or all the cases are
checked. We have found R = 80% to work well in prac-
tice. Once we have found a transformation that matches more
than 80% of the points in the solution subview with points in
the target drawing, we have found the region of interest that
we are searching for, and there is no need to search further.

Consider the example of Figure 5; the optimal affine transfor-
mation is

T ∗ =

[
1.2494 0 −8.5118

0 −1.2494 30.7256
0 0 1

]
,
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or equivalently, tx = −8.5118, ty = 30.7256, sx =
1.2494, sy = −1.2494, θ = 0, and k = 0. Figure 6(b)
shows the comparison between the transformed version of
Vs, V ′s = T ∗(Vs), and Vt. In other words, we know that
Vs should be scaled by 1.2494 and -1.2494 along the x and
y axes respectively, and translated by (-8.5118, +30.7256) in
order to compare it to Vt. The opposite signs for the x and y
scales indicates mirroring. There is no skew or rotation.

Application to Multiview Drawings
In this section, we discuss how to apply the transformation
estimation process to multiview drawing grading. Again, let
the source drawing Ds be the solution drawing and the target
drawing Dt be a student’s drawing.

First a grader must manually subdivide the solution drawing
(but not the student’s drawing) into the front, right, and top
views. Call them Vfront, Vright, and Vtop, respectively:

Ds = Vfront ∪ Vright ∪ Vtop.
In the general case, a view can be any subset of the solution
drawing. One can specify arbitrary views Vi depending on
the complexity of the solution drawing:

Ds ⊇
⋃
i

Vi.

We individually estimate optimal transformations T ∗Vi
be-

tween each view Vi (⊆ Ds) and the entire student drawing
Dt. By calculating separate transformations for each view,
we can address offset flexibility.

Consider the example input shown in Figure 4. For the
front view, we have tx = −5.4785, ty = 1.4114, sx =
1.5, sy = 1.5, θ = 0, and k = 0. For the top view, we
have tx = −5.4785, ty = 8.0145, sx = 1.5, sy = 1.5, θ = 0,
and k = 0. For the right view, we have tx = 11.1657, ty =
1.4114, sx = 1.5, sy = 1.5, θ = 0, and k = 0.

We next discuss how these components, and their relation-
ships, can be used to grade the student drawing.

GRADING CHECKS
Once the optimal transformations T ∗Vi

(and their components)
are calculated, one can set up a flexible set of rubrics. The
checks described here correspond to the common student er-
rors presented in the introduction.

Element Comparison
By applying each transformation T ∗Vi

to the corresponding
view Vi from the solution Ds, we can compare individual el-
ements of the two full multiview drawings. Suppose we have
T ∗Vfront

, T ∗Vtop
and T ∗Vright

from Ds. The transformed version
D′s is:

D′s =
⋃
Vi

T ∗Vi
(Vi)

= T ∗Vfront
(Vfront) ∪ T ∗Vtop

(Vtop) ∪ T ∗Vright
(Vright).

Figure 7 shows the transformed version of the solution, D′s,
super imposed on the student’s drawing Dt. The transformed
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Figure 7. We estimate the transformation for each view individually
using RANSAC. By applying the transformations to the views in Ds, we
get the transformed version D′

s. Then the elements of D′
s and Dt can

be compared one by one.

version has the same location, offset and scales as the stu-
dent’s. In Figure 7(c), red highlights the missed elements
(elements that exist in the solution, but not in the student’s
drawing: D′s − Dt), and blue highlights the incorrect ele-
ments (elements that exist in the student’s drawing, but not in
the solution, Dt −D′s). If both set differences are the empty
sets, the two drawings are the same up to scale, translation,
rotation, and skew.

Front-Right View Alignment
The front view and right view should be aligned horizontally.
This can be checked by confirming that the ty components of
T ∗Vfront

and T ∗Vright
are the same. We also need to check if

the right view is in fact to the right side of the front view in
the student’s drawing (in other words, tx of T ∗Vright

should be
greater than tx of T ∗Vfront

.)

Front-Top View Alignment
The front view and top view should be aligned vertically.
This can be checked by confirming that the tx components
of T ∗Vfront

and T ∗Vtop
are the same. We also need to check if

the top view is on the upper side of the front view in the stu-
dent’s drawing (in other words, ty of T ∗Vtop

should be greater
than ty of T ∗Vfront

.)

Uniform Scale
In multiview drawings, the aspect ratio must be preserved,
and all views must have the same scale, even though the
scale factor itself can be arbitrarily. This can be checked
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by confirming that all six scale components (sx and sy of
T ∗Vfront

, T ∗Vtop
, and T ∗Vright

) are the same.

Mirroring
By confirming that the signs of all six scale components are
positive, we can recognize mirroring, which should not be
present.

Rotation / Skew
The rotation and skew components of the transformations of
all views should be zero, as long as the homework assignment
is to reproduce the typical front, top, and right views.

COMPUTATION FILTERING
Suppose we estimate a transformation between point sets Ps

and Pt. Let ns and nt be the cardinality of Ps and Pt, respec-
tively. In the hypothesis generation step in RANSAC, there
are 6

(
ns

3

)(
nt

3

)
possible cases, and for each case we need nsnt

comparisons to calculate the consensus set. This requires a
huge number of iterations in the worst case. But we can filter
out some hypotheses to reduce computation, as follows.

Choice Filtering
We store two simple attributes with each point: the element
type (∈ {line, circle, arc}) that gave rise to the point, and
the number of intersecting elements at the point (in the case
of the center points of circle and arcs, the number is zero). In
the hypothesis generation step, we skip a hypothesis if these
attributes of any of the pairs are inconsistent.

Transformation Filtering
Because the hypothesis transformations are acquired from the
randomly chosen set of three pairs of points, most of them im-
ply severe distortions, which are not typical of student errors.
We can skip the evaluation step for this kind of unrealistic
transformation. To filter out these cases, when we solve for
T , we decompose T into its six components (DOFs). The un-
realistic cases include when the absolute value of translations
are too big, scales are too big, too small, or too imbalanced,
etc. We skip those where:

• translation: |tx|, |ty| > 300;

• scale: |sx|, |sy| < 1/3 or |sx|, |sy| > 3;

• skew: |k| > 0.1; and

• rotation: no constraint.

Here the thresholds for tx, ty, sx and sy are practically deter-
mined based on the default visible canvas size when Auto-
CAD is opened. Students do not make mistakes such that the
skew is nonzero, so theoretically k should be always zero, but
due to numerical errors, the k value may be a very small num-
ber, e.g. 10−8. Note that this is solely to reduce the search
space, and one can shrink/expand the permissible ranges if
analysis of a larger dataset indicates smaller/larger valid vari-
ations in students’ drawings.

IMPLEMENTATION ISSUES
In practice, there are additional steps that needed to be imple-
mented to fully automate the grading/feedback system. We
briefly mention some of them below.

Converting DWG→ DXF
Students draw using AutoCAD, which by default saves files
in DWG format. Because AutoCAD is commercial software
and DWG is its binary file format, to our knowledge, there is
no open source code for accessing DWG files directly. So we
need to convert DWG files to DXF file format, which is a file
format developed by AutoDesk for enabling data interoper-
ability between AutoCAD and other programs. For an auto-
mated batch process of this conversion on all students’ sub-
missions, we also implemented an AUTOLISP script, which
runs in AutoCAD.

Loading DXF in MATLAB
We extract drawing elements from each DXF file using MAT-
LAB. Currently the loading operation is based on the open
source code in the MATLAB CENTRAL File Exchange web-
site [22, 21].

Merging Elements
Some elements may be drawn (partially) duplicated, overlap-
ping, or decomposed into sub-segments. Especially in the
case of lines/arcs, one may have several connected or over-
lapping partial lines/arcs instead of one long line/arc. For this
reason, we merge objects into one if they can be represented
as a simpler one. This also makes the point set smaller, which
reduces computation time.

Pre-defining Layer Names
Currently we do not autograde dimensioning and header parts
of multiview drawings, only visible and hidden lines. Since
visible and hidden lines should be drawn with different line
styles and thickness, we teach students to put them in sepa-
rate layers and define these properties to apply to the entire
layer. For autograding, we provide a template with the layer
names, and only load elements drawn on the visible and hid-
den layers. Even though giving predetermined layer names is
a constraint for the autograding system, declaring layers and
grouping objects of the same type into a single layer is an
important skill for student to learn regardless.

RESULTS
We show another grading example in Figure 8. The solution
drawing Ds (Figure 8a) and the student drawing Dt (Fig-
ure 8b) can not be compared using a naı̈ve algorithm due
to translation, scale, and offsets (Figure 8c). Using the esti-
mated transformation for each view, we take our transformed
version of the solution, D′s, and compare Ds and Dt (Fig-
ure 8d).

Grading result visualization
Beyond the advantages of more accurate, timely feedback to
students, another advantage of an autograding tool will be its
ability to analyze and summarize the grading results. As an
example, we can visualize which elements of a drawing were
most frequently drawn incorrectly by students, which can be
useful information for instructors. We ran our algorithm in
batch mode on the submissions in Fall 2013 for two prob-
lems assigned in homeworks #2 and #3 in E28. These assign-
ment batches consisted of 115 and 113 students’ submissions
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Figure 8. Comparing the solution to a student’s drawing. To be com-
pared to Dt, all views in Ds are scaled 1.7 times larger. The top, front,
and right views are translated (-33.8, +186.2), (-33.8, +39), and (+187.7,
+39), respectively. All views have zero rotation and skew. By aligning
them, the algorithm finds incorrect and missing lines, which are repre-
sented in blue and dark red.

respectively. For each element in the solution drawing, we
count in how many student submissions it is “missing.” Sim-
ilarly, for each “incorrect” element in the student drawing,
we count how many student submissions have it. Figure 9
shows the solution with the elements color coded: the most
difficult elements — that are most frequently missing/incor-
rect — are represented in dark red/blue, and those less fre-
quently missing/incorrect are represented in light red/blue. In
the problem from assignment #2, we can see that the top view
causes more mistakes than the other views, and that students
miss the diagonal and hidden lines in the front and right view
most frequently (Figure 9a). Figure 9b shows that the diag-
onal features are frequently misdrawn. In the problem from
assignment #3, many times students get confused in the upper
part of the front view, and hidden lines are frequently missed.

Comparison with human grading
To verify the efficacy of the proposed algorithm, we compare
the autograding results with human grading. A human grader
with a full semester of experience grading for the course
graded the 115 submissions of the homework #2 problem in-
troduced above, using gradescope [7] with pdf files of the
submission.

Manual vs. autograding

Category A: Same feedback.
Both give the same feedback.

Category B: Similar feedback.
The same errors are identified, but described differently.

Category C: Better autograding feedback.
Manual grading fails to catch some mistakes.

Category D: Incorrect autograding feedback.
Autograding fails to estimate proper transformation.

65.2% 9.6%

21.7%

3.5%

We divide the comparison results into four categories. In the
case of category A and B, autograding and human grading
find the same errors, which account for 74.8% of the total 115
submissions. In the case of category B, although the same
drawing elements are identified as errors, the human grader
described them differently in her grading feedback to the stu-
dent. Figure 10 shows two examples of category B. While the
human grader interprets the mistake as “lines not aligned,” the
autograder reports it as the number of missing lines and incor-
rect lines. The human’s interpretation can be more flexible,
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(a) visualization of missing errors on a problem from assignment #2
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(b) visualization of incorrect errors on a problem from assignment
#2. Correct lines (solution) are shown in green.
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(c) visualization of missing errors on a problem from assignment #3

Figure 9. Color coded difficulty. The elements that are most frequently
“missing” are shown in dark red, and those less frequently missing are
shown in light red (a and c). The elements that are most frequently
“incorrect” are shown in dark blue, and those less frequently incorrect
shown in light blue (b). The numbers in the color bar indicate the frac-
tion of student submissions that made the mistake for each element.

(a) While autograding (left) reports “1 missing line, 2 incorrect lines”,
a human grader (right) reports “1 incorrect position.”

(b) While autograding (left) reports “3 missing line, 3 incorrect lines”,
a human grader (right) reports “1 line not aligned.”

Figure 10. Two examples of category B. Even though different rubrics
are applied, errors are identified.

nuanced, and higher level. We leave more advanced emula-
tion of such human grading rubrics as future work.

The most dramatic result is category C. For 21.7% of the sub-
missions, the new autograding system catches students’ mis-
takes that the human grader misses. We show two examples
in Figure 11. This happens especially when a drawing in-
cludes subtle mistakes such as a slightly incorrect location,
and/or when a drawing includes incorrect locations that are
nonetheless consistent in neighboring views. In these cases,
human graders may not notice them on the printed drawing.

For 3.5% of the submissions, the autograding system failed to
estimate the appropriate transformation, and gave incorrect
feedback. We show an example in Figure 12. The student
drawing (Figure 12b) has an incorrect front view. Note that
our RANSAC evaluation metric is the number of coincident
points. When a student drawing has several wrong elements,
the RANSAC algorithm may regard a strange transformation
as the best transformation for the reason that it yields the max-
imum number of coincident points. We expect that this prob-
lem can be solved by extending the RANSAC evaluation met-
ric to consider lines as well as points in future work. Note that
even though the proposed algorithm fails to give correct feed-
back for 3.5% of the submissions, this happens only when the
student drawing has multiple errors. In these cases, a whole
view was reported as incorrect by the autograder, where in
fact some partial credit should have been given. The pro-
posed algorithm never failed to recognize perfect drawings as
such.

CONCLUSION
Motivated by the importance of an automated grading system
for multiview drawings, we propose a novel system that can
compare two multiview drawings, a reference solution and a
student’s submission. These drawings may have inconsistent
translations, scales, mirroring, skew, and/or rotation, all of
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(a) A human grader (right) succeeded in recognizing the incorrect
elements in the top view, but failed to catch the element in a slightly
incorrect position in the right view.

(b) A human grader (right) failed to notice elements in incorrect po-
sitions and gave a perfect score. Such errors are difficult for humans
to catch because the positions are consistent with the neighboring
view.

Figure 11. Two examples of category C. While a human grader failed to
notice these mistakes, our autograding system found them.

(a) solution drawing (b) student drawing

(c) transformed solution. The
transformation estimate for
the front view is wrong.

 

 
transformed front view

student drawing

coincident points

(d) The wrong transformation
is chosen because it matches
six points among the total
eight points of the front view.

Figure 12. An example of category D. Our algorithm failed to estimate
an appropriate transformation for the front view of the solution draw-
ing. Note that the student drawing (b) has multiple mistakes in the front
view.

which must be distinguished from allowable differences in
scale, offset, and translation to reliably identify and classify
errors in the students’ drawings.

Our system provides fair comparison and grading checks for
students’ drawings, which can be used as input for a flexible
scoring system. For example, in many cases, a grader may
not want to reduce scores for duplicate errors of the same
type. A grader may want to place different scores (empha-
sis) on different elements. One possibility would be to use
our element-wise difficulty analysis to assign an appropriate
score to each element.

The proposed system can be useful for large classes, elimi-
nating time consuming manual grading and incomplete feed-
back, and for MOOCs on engineering drawing, which cur-
rently do not exist.
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