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ABSTRACT 

We have shown that the Schrödinger wave equation can be explained and derived from 

fundamental postulates that are based on the conservation of probability, significance of measurements 

at infinity and nature’s tendency of maintaining a system as unbiased as possible. As a reasonable 

measure for the local randomness, Fisher information is considered. The presented approach provides 

an axiomatic derivation for the Schrödinger wave equation, avoiding imperfect models borrowed from 

classical mechanics such as direct application of the energy conservation, statistical mechanics or 

vibrating string models.  
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1.  INTRODUCTION 

 

Since the birth of quantum mechanics, it was interpreted in many ways and the so-called 

wave equations were derived based on different set of postulates [1-7]. Among all the attempts 

to interpret the quantum behavior, statistical postulates exhibit a reasonable approach of 

explaining how the nature works [2-4]. However, even the most renowned scientists such as 

Einstein had a dispute over this approach [8, 9], where they argued that there should be set of 

well-defined physical principles that determines the behavior of particles at quantum scale. 
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Analysis on the available literature suggests that the term “well defined” in above 

statement, indirectly refer to postulates that are very closer in definition and notion to the 

classical mechanics.  

The base of deriving the wave equation plays an important role in how we interpret 

quantum mechanics. Even though the quantum mechanics is conceptually far away from 

classical mechanics, Schrödinger wave equation was first derived from set of concepts 

burrowed from classical mechanics. Some of the later attempts to explain or derive the 

Schrodinger equation, often inserted the concepts from classical mechanics, resulting an 

imperfect or less rigorous theoretical ground. As examples, Morse and Feshbach uses an 

imperfect vibrating model [8, 9] while Nelson rely on the Brownian motion [1] to derive the 

Schrodinger wave equation. The construction of such models uses the practices in statistical 

mechanics, starting from a non-quantum dynamical systems and use necessary approximations 

to arrive Schrodinger’s wave equation or equations that structurally resemble with the 

Schrodinger’s wave equation. However, it is questionable to assume that classical mechanical 

principals are meaningful in the quantum domain. As we see, the main questions to raise against 

classical mechanical approach to the quantum mechanics has two components, (a) Wave 

particle duality: It is observed that the particles have a wave like behavior in quantum scale. 

Therefore, the notion of mass in classical mechanics cannot be directly applied in the quantum 

domain and (b) Uncertainty: In the quantum domain, the measurements are not exact and they 

are associated with a probability. There is no way to know the exact system dynamics in the 

quantum domain and the observations are dependent on the observer. Therefore, it is clear that, 

classical mechanics is not enough to explain quantum mechanics and such foundations for 

quantum mechanics, mixed up with classical principals is not perfect. Many attempts were 

recently made to axiomatize the quantum mechanics using more fundamental principles. 

However, almost all of them have a statistical origin. It is evident that these approaches were 

chosen heuristically, reviewing the experimental results and the facts given by existing quantum 

theories.  

When describing an entity associated with uncertainty, entropic concepts or the measure 

of information is very useful and provide deeper insights [10, 14, 15]. Information is associated 

with the randomness or in another word, with the probability distribution. Considering the 

above, one can state that solving Schrodinger equation reveals the wave function that expresses 

the probability distribution, ultimately revealing the information measures. Going back in this 

deduction process suggests that, principles on information measures can determine the 

properties of the desired or allowed probability distribution functions, which might ultimately 

describe the behavior of quantum states. Reviews of the information theory leave us the belief 

of information theory based principles being a very reasonable and very fundamental base for 

quantum mechanics [10, 15]. 

Different attempts to derive quantum mechanical equation, using information theoretical 

approaches can be found in literature. In such attempts, Fisher information is used to derive a 

dynamic equation through variation principle. But to derive, the Schrodinger equation, one has 

to introduce a potential energy term to the equations. Frieden [2] uses the energy conservation 

law to derive a kinetic energy term and then to form a constraint optimization problem. Even 

though it solves the problem of introducing a potential term, this approach permits only real 

valued wave function solutions. Reginatto [3] uses the continuity equation as a constraint to 

derive an equation in the form of the Schrodinger wave equation. The approach does 

immediately result the wave equation for a free particle. But to arrive at the general form of the 
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Schrodinger wave equation, a potential term is introduced without proper justifications. Most 

of the works that uses Fisher information to derive the Schrodinger wave equation, introduce a 

Hamiltonian and add a potential term and the time derivative term to the equation, directly 

without serious justifications. 

In the current work, we derive a form of Schrodinger wave equation considering a novel 

set of postulates or axioms having information theoretical and statistical origins. The basic 

statistical postulates are based on the conservation of probability, significance of measurements 

at infinity and nature’s tendency of maintaining maximum disorder. As a reasonable measure 

for the disorder [10, 12], Fisher information is considered. During the derivation, the 

intermediate results suggest equation structures similar to classical mechanics.  

 

 

2.  THE AXIOMS 
 

In this section, we suggest a set of axioms that are very much fundamental and having 

more of a mathematical origin compared to the postulates in classical mechanics. The present 

formulation is based on the position space for the simplicity. However, the moment space based 

derivation is possible. First we would like to discuss about categorizing the axioms based on 

their use and theoretical backgrounds. They are namely, conservation of probability, 

significance of measurements at infinity, local variation in probability distribution. 

The conservation of probability can be considered as a basic principle or a definition. 

Considering an evolving probability density function in the space, over time, results a continuity 

equation. For the continuity equation, the conservation of probability:  

 

 
3 1d r





  
(1) 

 

here 𝜌 is the three-dimensional probability density function of space and time. 

 

  
 . 0

d

dt


 u  (2) 

 

Note that the flux of probability is defined as, u . Here u is the flow velocity of the 

probability. At this point, let’s introduce a function ( , )G tr  in such a way that: 

 

 1
G

m
 u  

Then eq. 2 becomes, 

 

 
1

. 0
d

d
G

t m



 

   
 

 (3) 

At this point, we should think about how to interpret this equation. It is obvious that  G  

is having the dimensions of momentum. But it is not clear at this point how G  expresses 

something physically.  
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It is necessary to have an argument about, how significant, a physical condition at 

distance, contribute to shape the local dynamics of a particle. From some of the concepts 

borrowed from classical mechanics, one might postulate that an effect of a physical phenomena 

get reduced linearly or proportionally to some power of the distance measured (ex: Gravity). 

But in this domain, we cannot reasonably postulate a relationship between the distance and an 

influence of some physical phenomenon. Rather we would like to consider suggesting a 

“significance” of physical conditions that contribute to the dynamics of a quantum particle. We 

postulate a measure of significance is X , where  is the probability distribution describing 

the presence of a particle in space time while X  being a measurement of some physical 

quantity. Then we postulate that the significance of X  should be negligible at infinity or in 

another word, X must be zero as the distance goes to infinity. 

Let us consider the case where the magnitude of a position vector r  in three-dimension 

goes to infinity. As, r : 

 

             lim 0



r

                                                                  (4) 

 

This is because 0  and eq. 1 holds. 

If X is the momentum defined by G  then: 

 

 0lim G


 
r

 (5) 

   

If X is the kinetic energy defined by 
21

2
G

m
 , then: 

 

 2
0lim

2m
G




 

r
 

(6) 

 

If X is the time derivative of the field G defined by dG dt , then: 

 

 
lim 0

dG

dt





r
 

(7) 

 

Even though, we do not directly attach physical laws that are derived from Newtonian 

mechanics, we still would like to consider the definition of the Potential Energy. One of the 

main reasons to look at the definitions as such, is that the measurements that we use to describe 

our understandings of a system are dependent upon the definitions introduced by classical 

mechanics.  

Define the quantity P  as follows, 

 

 
3G d r





  P  (8) 

 



World Scientific News 116 (2019) 209-221 

 

 

-213- 

We note that P  represents some average momentum quantity with relevant units. Now 

define a quantity F   which is the time derivative of  P : 

 

 
d

dt


P
F  (9) 

 

Looking at the units, one can see that F  defines some kind of an average force. We 

cannot link this force with any physical entity at this moment. 

Finally, define a potential energy U as, 

 

 
3U d r





 F  
(10) 

 

If X is the potential energy U  that was defined above, then considering our postulate of 

significance of measurements at infinity: 

 

 lim 0U



r

 (11) 

 

In our problem, we consider a probability distribution in the space and we try to come up 

with an axiom which helps us to select a set of probability distributions out of infinite number 

of possible distributions, that are possible and reasonable to describe a quantum behavior. Here 

we can say that our probability distribution cannot be biased to have lower or higher values in 

particular space coordinates without a reason.  

That means in another words our probability distribution function ρ, cannot have local 

spatial variations unless there is a reason. To insert this idea into a mathematical construction, 

we should come up with a measure [10, p. 35]. 

Therefore, we consider a popular functional that measure the information content or the 

randomness of an entity which is called the Fisher Information [13]. Here we do not jump into 

selecting Fisher Information directly, the reason will be explained. It is however, noted that the 

Fisher Information has become popular in deriving quantum equation during last few decades 

[2, 4], [10, p. 112-127], [11, 12]. In such previous works, Fisher Information was chosen due 

to various reasons and justifications.  

Fisher Information function I is defined in one-dimension as follows: 

 

 2
1

I dx
x









 
  

 
  

(12) 

   

Take a function ( , )R x t  such that: 

 

 
1/2R   (13) 

 

Substituting eq. 12 in eq.13 leads to: 
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 2

4
R

I dx
x





 
  

 
  

(14) 

 

The eq. 14 implies that I  measures the overall variations in the probability distribution 

and to come up with a less biased probability distribution, it is needed to minimize.  

 

 

3.  CONSTRUCTION OF A DYNAMIC EQUATION  

 

We start the construction of the dynamic equation in one dimension by considering the 

definitions in eq. 9 and 10 which result: 

 

 d U
dx

dt x







 


P

     (15) 

 

Equation 15 gets further expanded with the substitution of eq. 8: 

 

 G G
dx dx

x t

d U
dx

dt x x





 

  

   
 

   


 

       
(16) 

 

Taking the left side of the equation 16 and performing the integration by parts 

 

 2G G
dx

t x
x

x t

G
d

xt













  


   
 

     


 
  

 

 

and substituting for / t   from eq. 3: 

 

 2G G G
dx

x m x x

G

t x x t
dx

 




 





      
    

     
 

  
  

 

 

 2 2 2

2

1 G G G G
dx

m x x m x x x t

G
dx

t x

 











     
               

  


   


   

      

 

 2 2 21

2 2

G G G
dx

m x x x m x x

G
dx

x tt

 


 

 

         
        



     



   

 



 
    
     (17) 

 

Integrating by parts, 

2 221

2 2

G G G
dx

m x x x t

G
dx

t x m x

 











  



 

       
  

  
                 
                 (18) 
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Since

2
G

x


 
 
 

 is zero at infinity from eq. 6: 

 

 
   

2 21

2

G G
dx

m x x x t

G
dx

t x






 

    
    

  
 

       
    (19) 

 

Again using integration by parts, 

 
2

1

2

G G G
dx

m x x
d

t x t

G
x

x t

 









 

      
          

  
 

   
                       (20) 

 

 

and Since G t    is zero at infinity from eq. 7:  

 

 2
1

2

G G
dx

m

G
dx

x x x x tt

  








     
    

  
 

       
     (21) 

 

The right side of eq. 16: 

 

( )
U

dx U U dx Udx U
x x x x

 
  

  




  

   
       

    
                        (22) 

 

Since from eq. 11 U  is zero at infinity: 

 

 
U

dx Udx
x x




 

 

 
 

        (23) 

Combining eq. 21 and 23 yield: 

 
2

1
0

2

G G
U dx

m x x x t x

  




      
           

                                (24) 

 

Rearrange eq. 24:  

 
2

1
0

2

G G
U dx

x m x t






    
         

                                         (25) 

 

The result in eq. 4, will allow us use the Du Bois-Raymond Lemma on eq. 25: 
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2
1

 (constant) 
2

G G
U C

m x t

  
   

  
 (26) 

 

Since eq. 1 holds, eq. 26 results: 

 

 

 

 

 

2

0

1

2

G G
U dx C

m x t






   
        

                                                (27) 

 

4.  SHRODINGER WAVE EQUATION 
 

Now we would like to consider our last postulate of the need of minimizing the Fisher 

Information I . For our construction, we can think of a one dimensional version as in eq.14. 

 

 

2

4
R

I dx
x





 
  

 
  (28) 

 

Now we are in a position to come up with an optimization problem. To find the minimum 

of  

 

 

2

2R
dx CR dx

x


 

 

 
 

 
   (29) 

 

with the use eq. 27 as a constraint where C is defined by eq. 26. 

Now we define our Lagrangian as follows: 

 

 

2

2 2 2  '
R

L CR R CR
x

 
 

    
 

   (30) 

 

Using the Euler Lagrange method, we can write, 

 

 0
'

d L L

dx R R

 
  

  
 (31) 

 

where ' /R R x   . With the substitution for the Lagrangian, eq. 30 is obtained: 

 

 

2
"

2

2

1

2

R
R

x

G
RC R

G

m tx
U 

  
  

   

 
    

  

 (32) 

 

At this point we can introduce a function, 

  (33) 
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e GR    

 

Here  can be any real or imaginary constant. 

Taking the second derivative of eq. 33 with respect to x : 

 

 
22 2 2

2

2 2 2
2 e GR R G G G

R R
x x x x x x


  

       
             

 
(34) 

 

Taking the first derivative of eq. 33 with respect to t : 

 

 

 

e GR G
R

t t t




   
  

   
 

(35) 

 

Substitution of eq. 3 with eq. 13 
1/2R   

 

 

2
G R

R
t x m x t

    
   

    
 

 

in eq. 35 result:  
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e

2

GR G G
R

t R x m x t




     
    

       
 

 

 

2

2

1
e

2

GR G R G G
R

t m x x m x t




     
    

       

(36) 

 

Eq. 34 and eq. 36 result: 

 

 

22 2
2 2

2 2

1 1
e e

2 2

G GR G G
R R

m x t m x x t

  
  

      
            

 (37) 

 

Further expansion, 

 

 

22 2
2 2

2 2

1 1 1
2 e e

2 2 2

G GR G G
m R U RU

m x t m x m x t

  
  

       
                 

 (38) 
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Since we can set any imaginary value for  in eq. 33,  let,  

 

 
2

i
m


   (39) 

 

Please note that the selection of  defines our choice of  in eq. 33.  

Then eq. 38 reduces to the following form: 

 

 
2

2

2

1
e

2

GRU
m x t

 
 

 
  

 
 (40) 

 

Substitution of eq. 33 in eq. 40 and rearranging the equation, result: 

 

 
2

2 2

1 1

2
U

t m x

 


 

 
  

 
 (41) 

 

Letting 
2

2m



  and substituting in eq.39 would reduce the eq.41 to the following, 

 

 
2 2

22
i U

t m x

 


 
  

 
 (42) 

 

We immediately recognize that this is the one-dimension version of the Schrödinger wave 

equation. 

 

 

5.  HEISENBERG UNCERTAINITY PRINCIPLE 

 

Here we would like to highlight the link between Heisenberg uncertainty principles in 

quantum mechanics and Fisher Information. The Cramer Rao lower bound serves as the basis 

of the uncertainty inequality incorporated with the definition of the momentum operator which 

is a direct result of the Schrödinger wave equation [17-18]. Following Stam’s approach [18] we 

would like to show the important steps and results as follows. 

Define ψ(x) and φ(p) to be position and momentum wave functions. 

From the Schrödinger wave equation (eq. 42) ,it can be shown that  there exists a Fourier 

relation between them as defined by eq. 43 and eq. 44. 

 

    
1

ipx

x p e dp 



      

(43) 

 

 

 

   
1

ipx

p x e dx 
 


      

(44) 
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Following the eq.14, we can write, 

 

 
 

2

4
x

I dx
x





 
  

  


 
 (45) 

 

Considering Stam’s approach [18], we can have the following inequality, 

 

 
2

2

4
I   (45) 

where, 2

  is the variance of momentum. 

Also the Cramer-Rao lower bound [19] suggests the relation between the variance of an 

unbiased estimator and the fisher information, which can be directly applied to our case as 

follows. 

 

 
2 1

I
   (46) 

 

where, 2

 is the variance of position parameter. 

Combining the eq.45 and eq.46 result the Heisenberg uncertainty principle as follows. 

 

 
2

2 2

4
     (47) 

 

 

6.  CONCLUSIONS 
 

The core concept delivered in the paper is that, nature always tries to keep a system as 

unbiased as possible. The physical realities or laws appear as a result of applying conditions on 

systems which are trying to stay as unbiased as possible.  From our construction, it is clear that 

how we define such conditions such as the limits at infinity described by eq. 5, eq. 7 and eq. 

11. In the quantum domain, the focus is more about the local information or the local 

randomness. This again justify Fisher information as a reasonable measure of the biasness in 

local context due to the derivative term defined in eq. 12 which is sensitive to local variations 

in the probability distribution function. 

Our construction, is mainly based on the postulate that the nature tries to keep a system 

as unbiased as possible unless there is a proper reason for a particular biasness. Out of the 

triviality i.e. probability density function with no local variations, we try to derive physical 

phenomenon using conditions suggested as postulates herein which are dependent upon the 

observer. The equations resulted from the postulates regarding the observations at infinity are 

some way similar to the assumptions used in limit evaluations of integrals by Klein [4]. Klein 

also uses additional assumptions regarding the limits at infinity to simplify the integrations. 

However, Klein’s approach goes in a different route with different set of assumptions mainly 

on independent parameters of equations describing motion to arrive the Schrodinger wave 
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equation. The approach also has the lack of justifications in limiting the number of parameters 

at Klein’s final assumption. 

It should be also noted that our postulates defining conditions at infinity, also suggest a 

particular way to look at the notion of “distance” and “time”. Notion of infinity distance or 

reaching to infinity is associated with the scale. If we consider, negligible influence of the 

conditions that occur at infinity suggests that time to receive information from the conditions 

at infinity is infinitely long. We might conclude that, how we define infinity in “time” also 

depends on the scale we are considering similarly to the case of infinity in “distance”. This 

argument can be linked to the Scale Relativity [16]. 
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