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Abstract

This paper describes an algorithm to improve a computational cost for estimation using the Kriging method with a

large number of sampling data. An improved formula to compute the weighting coefficient for Kriging estimation is

proposed. The Sherman–Morrison–Woodbury formula is applied to solving an approximated simultaneous equation to

determine a weighting coefficient. A profile of the matrix is reduced by sorting of given data.

Applying the proposal formula to several examples indicates its characteristics. As a numerical example, layout

optimization of a beam structure for eigenfrequency maximization is solved. The results show an applicability and

effectiveness of the proposed method.
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1. Introduction

An approximate optimization method is available for industrial design problems, and several methods
have been studied. It seems that those methods can be classified in three categories such as, the response

surface method (RSM) with optimization of coefficients for a base function, the neural network approxi-

mation (NN) and an estimation method with using observed values at sampling locations to compute an

estimated value at an optional location in a solution space. Although these all can be used practically in

industry, each method has different features to be applied to approximation. Several comparisons among

those methods have been reported [1–4].

The RSM is one of the very effective approaches for an optimization problem with small numbers

of design variable and its solution space is not so complex. Many researchers have been reported its
* Corresponding author. Tel./fax: +81-852-32-6840.

E-mail address: sakata@ecs.shimane-u.ac.jp (S. Sakata).

0045-7825/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.cma.2003.10.006

mail to: sakata@ecs.shimane-u.ac.jp


386 S. Sakata et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 385–404
effectiveness of the RSM against optimization problems in engineering [5–8]. Barthelemy and Haftka [9] or
Haftka and Scott [10] reported on their survey of optimization using the RSM. It seems that parameter

optimization to determine coefficients of an approximate function is not so difficult. However, the RSM,

which is based on experimental programming, normally requires the assumption of the order of the

approximated base function because the approximation process is performed using the least-square method

for the coefficients of the function. Therefore, the designer must evaluate the schematic shape of the

objective function over an entire solution space. This will sometimes be difficult because it requires an

understanding of the qualitative tendency of the entire design space. This is because it would be difficult to

determine an order of the base function to minimize the approximation error without any knowledge of the
solution space. As the another problem in using the RSM, Shi et al. [11] pointed out the difficulty of

applying RSM based on experimental programming to a design problem having many design variables.

NN has been used for an approximate optimization to solve difficult optimization problems [12–14]. NN

generally minimizes the sum of the approximation errors at sampling locations, so that the accuracy of the

approximated value at a sampling location is relatively high. As the other merit of using NN, Carpenter and

Barthelemy [1] reported that NN offers more flexibility to allow fitting than RSM.

NN, however, presents some practical difficulties. One is the computational cost incurred for learning. A

learning process will be same as optimization for a large number of design variables, and it will involve high
computational cost. The other problem is, for example, the need for the operator to be skilled or experi-

enced in using NN [1].

The Kriging method, which is one of the spatial estimation methods with using the sample data, has been

noticed recently. Several researches on an approximate optimization using Kriging estimation were re-

ported [15–18]. Simpson et al. [19] reported a comparison between RSM and the Kriging method. Sakata

et al. [20] reported a comparison between NN and the Kriging method.

To use Kriging estimation for structural optimization, more sample points in a solution space will be

required for more precise estimation. Especially, using a large number of sampling (training) data will
enable NN or the Kriging method to estimate a complex function, a valid approximated surface for a multi-

peaked solution space can be produced. However, increase the number of sampling data generally causes a

higher computational cost.

Computational cost of the Kriging method to determine the estimation model is not so high, however,

that to estimate a function value at each location will be higher than NN or RSM. The reason for high

computational cost for Kriging estimation is that large-scale simultaneous equations must be solved to

determine a weighting coefficient for each location where that is to be estimated. A large number of sample

points are required for the more precise estimation, while the number of equations increases in the number
of sample data, therefore, increase of the total number of sample points causes high computational cost for

estimation. In case of using a large number of sampling data, reducing a computational cost to solve a

simultaneous equation to determine the weighting coefficient is very important to apply the Kriging method

to optimization of a complex problem such as an approximate optimization of multi-peaked solution space.

In this paper, to reduce a computational cost for Kriging estimation, a new formula to calculate a

weighting coefficient is proposed. Some numerical examples illustrate an application of proposed method.

As an example of structural optimization by using the proposed method, layout optimization of a beam

structure is attempted using the proposed method.
2. Kriging estimation

The Kriging method [21,22] is a method of spatial prediction that is based on minimizing the mean error

of the weighting sum of the sampling values. A linear predictor of bZZðs0Þ can be obtained from Eq. (1) using

a weighting coefficient w ¼ fw1;w2; . . . ;wngT.
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bZZðs0Þ ¼Xn
i¼1

wiZðsiÞ; ð1Þ

where Zðs1Þ; Zðs2Þ; . . . ; ZðsnÞ observed values which are obtained at the nth known locations s1; s2 . . . ; sn in a

solution space, bZZðs0Þ, which shows an estimated value of Zðs0Þ at s0 2 S, which is the point where we want

to estimate the value of the function, is obtained as follows.bZZðs0Þ will be determined to minimize the mean-squared predictor error as

r2ðs0Þ ¼ EfjbZZðs0Þ � Zðs0Þj2g ¼ �wTCwþ 2wTc��: ð2Þ
A conditioned extreme value problem for Eq. (2) with an unbiased condition for bZZðs0Þ, the following

Lagrange function can be determined.

/ðw; kÞ ¼ �wTCwþ 2wTc�� � 2kðwT1� 1Þ; ð3Þ
where C and c�� are a coefficient function matrix and vector, which are expressed as

C ¼ fcðsi � sjÞgij; ð4Þ

c�� ¼ cðs1f � s0Þ; . . . ; cðsn � s0Þg; ð5Þ
where c is a correlation function that is described as a semivariogram model. A semivariogram is a variance

function in a probabilistic field, which is used to express the dispersion of the data. In this study, the

Gaussian-type semivariogram model was adopted since estimated surface using the Gaussian-type semi-

variogram model semivariogram will be smooth and continuous, making it suitable for use in an optimizing

design. The Gaussian-type semivariogram model is expressed by the following form,

cðh; hÞ ¼ h0 þ h1 1

"
� exp

 
� jhj

h2

� �2
!#

; ð6Þ

where h0, h1 P 0, h2 > 0 are the model parameters. Typically, the parameter h ¼ fh0; h1; h2g in Eq. (6) is

determined, for example, using the least-square method. To determine the parameter h, Cressie�s criterion
[23], which is a robust efficient estimator to a change in the scale of data, is used in this paper.

By applying stationary condition d/ ¼ 0, the following standard equation is obtained.

C 1
1T 0

� �
w
k

� �
¼ c��

1

� �
: ð7Þ

An estimated value can be calculated by Eq. (1) using a solution of Eq. (7) for each s0. To determine a

weighting coefficient w, a simultaneous equation Eq. (7) must be solved. Since a dimension of a coefficient

matrix C is equal to the number of sampling data, it will be large when a large number of sampling data are

used for estimation.
3. Fast Kriging algorithm

The weighting coefficient w can be calculated by solving Eq. (7). Then we can obtain the following form

as a solution.

wi ¼ C�1
ij c

��
j þ

1� 1iC
�1
ij c

��
j

1iC
�1
ij 1j

 !
C�1

ij 1j; ð8Þ

where C�1
ij is an inverse matrix of Cij and 1i ¼ ð1; 1; . . . ; 1Þ.
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From Eq. (8), it is recognized that C�1
ij must be calculated at a first step in estimation process, and C�1

ij c
��
j

must be calculated for each estimated location to determine w. A computational cost for Kriging estimation

is mainly affected by the cost for solving a simultaneous equation as

Cijxj ¼ c��i ; ð9Þ

where xj is an unknown variable vector. Generally, an effective algorithm such as the Gaussian elimination

with LU factorization is used to solve a linear simultaneous equation with symmetric coefficient matrix for

several different right-side vectors. However, a coefficient matrix Cij will be generally a full matrix, high

computational cost will be involved for estimation with using a large number of sampling data even if a LU
factorization is used. To reduce a computational cost for Kriging estimation, therefore, reducing a com-

putational cost for solving Eq. (9) should be endeavored.

Now we assume that the Gaussian-type model is used as a semivariogram model, a component of the

coefficient matrix Cij can be expressed by

Cij ¼ cðlij; hÞ ¼ h0 þ h1 1

"
� exp

 
� lij

h2

� �2
!#

; ð10Þ

where lij ¼ jsi � sjj shows a distance between two locations.

A semivariogram model parameter vector h is determined for once generation of estimation model. Then

a semivariogram matrix that is expressed by Eq. (10) can be rewritten as follows by difference of two

matrices such as

Cij ¼ h0 þ h1 1

 
� exp

 
� lij

h2

� �2
!!

¼ h0 þ h1 � h1 exp

 
� lij

h2

� �2
!

¼ ðh0 þ h1Þ1i � 1j � h1 exp

 
� lij

h2

� �2
!
: ð11Þ

The inverse of Cij can be, therefore, calculated by using Sherman–Morrison–Woodbury formula [24] as

C�1
ij ¼ ðh0

 
þ h1Þ1i � 1j � h1 exp

 
� lij

h2

� �2
!!�1

¼ Aij �
Aij1j � 1iAij

1

ðh0 þ h1Þ
þ liAij1j

¼ Aij �
P

j Aij �
P

i Aij

1

ðh0 þ h1Þ
þ
X
i

X
j

Aij

; ð12Þ

where

Aij ¼
 

� h1 exp

 
� lij

h2

� �2
!!�1

: ð13Þ

Thus Cijc��j can be calculated as

C�1
ij c

��
j ¼ Aijc

��
j �

P
j Aij �

P
i Aij

1

ðh0 þ h1Þ
þ
X
i

X
j

Aij

c��j : ð14Þ
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Here, we assume that a component of Cij can be regarded as zero when lij is enough large. In general cases,

zero components will appear randomly in Cij which is an approximate matrix of Cij, such as

Cij � Cij ¼

c1;1 c1;2 � � � h c1;iþ1 � � � c1;m
c2;2 � � � c2;i h � � � h

. .
. ..

. ..
. ..

.

ci;i ci;iþ1 ci;m
ciþ1;iþ1 h

sym: . .
. ..

.

cm;m

266666666664

377777777775
; ð15Þ

where h is a constant.

Generally, a computational cost of Eq. (14) will be same degree or more than direct calculation of C�1
ij c

��
j

even if an approximated coefficient matrix Cij where many components are constant. However, if a
bandwidth of non-constant components of Cij is enough narrow, a calculation cost for the first term of right

side of Eq. (14) can be clearly reduced comparing with that for a full matrix by using an effective algorithm

such as the skyline method. Therefore, minimization of a profile is applied to an approximated coefficient

matrix of Aij. A profile b can be determined by Eq. (16)

b ¼
Xn
i¼1

bi; ð16Þ

where bi is the number of components from a minimum line that has a non-zero component to ith diagonal
component for each ith column.

Fig. 1 illustrates a scheme of transformation of Cij into a banded matrix C�
ij to minimize a profile of a

coefficient matrix Aij. In minimizing the profile, constant components in Cij can be regarded as zero. Only

the non-constant components in a skyline, which is shown in Fig. 1, will be used to compute Aijc��j in Eq.

(14). If a bandwidth can be enough reduced, it is considered that a computational cost of Aijc��j will be also

reduced.

For practicality, it is considered that the components of Cij had better to be arranged to reduce a

bandwidth of C�
ij. Since the components of Cij can be rewritten as
Fig. 1. Transformation of Cij into a banded matrix C�
ij.
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Cij ¼
Cij : Cij=Cii P th;
h : Cij=Cii < th;

�
ð17Þ

the bandwidth can be reduced by arranging the order of the c�� according to each distance between si and sj.
As the simplest approach, the order may be arranged by the distance between s1 and si for one-dimensional

problem. For a higher dimensional problem, a general algorithm to minimize bandwidth of a coefficient

matrix will be used.

If we can reduce a profile of Cij, then a banded symmetric matrix C�
ij can be obtained. In this case, a

coefficient matrix Aij expressed by Eq. (13) is also to be a banded matrix A�
ij. Therefore, an approximated

form of Eq. (14) can be expressed as the following equation.

C�1
ij c

��
j � A�

ijc
��
j �

P
j A

�
ij �

P
i A

�
ij

1

ðh0 þ h1Þ
þ
X
i

X
j

A�
ij

c��j ¼ A�
ijc

��
j � 1

c
ai�aajc��j ; ð18Þ

where

ai ¼
X
j

A�
ij; ð19Þ

�aaj ¼
X
i

A�
ij; ð20Þ

c ¼ 1

ðh0 þ h1Þ
þ
X
i

X
j

A�
ij ¼

1

ðh0 þ h1Þ
þ
X
j

�aaj: ð21Þ

Substitution of Eq. (18) into Eq. (8) yields an approximation form of the weighting coefficient as

wi � w�
i ¼ A�

ijc
��
j � 1

c
�aajc��j ai þ

1� 1i A�
ijc

��
j � 1

c
�aajc��j ai

� �
1i A�

ij1j �
1

c
�aaj1jai

� � A�
ij1j

�
� 1

c
�aaj1jai

�
¼ �wwi þ

1�
P

i �wwiP
i ai

ai; ð22Þ

where

�wwi ¼ A�
ijc

��
j � 1

c
�aajc��j ai: ð23Þ

Since the second term of Eq. (23) can be easily rewritten as

1

c
�aajc��j ai ¼

1

c

X
i

ðA�
ijc

��
j Þai; ð24Þ

an additional calculation cost for the second term of Eq. (23) in an iterating process involves only nth
summation. Since a calculation cost for inverse of a banded matrix C�

ij is clearly less than that of Cij, if a

calculation cost for Aijc��j is enough reduced, total calculation cost for w�
i will be also reduced.
4. Discussions about correlation between a threshold and estimation error

Reducing components of a coefficient matrix may cause increase of an estimation error. In the following

section, therefore, an effect of reduction of components of a coefficient matrix on estimation error is

investigated.



S. Sakata et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 385–404 391
4.1. One-dimensional problem

As one of the simplest examples, estimation of the following equation is attempted by using the proposed

method. This function is multi-peaked, continuous and smooth in a considered region.

f ðxÞ ¼ sinð0:02xÞ � cosð0:2ðxþ 25ÞÞ � cosð0:1ðxþ 50ÞÞ; 0:06 x6 100:0: ð25Þ
Sample values used for estimation are calculated at several points, which are generated at regular intervals
as sampling point. Since the function is multi-peaked, it is considered that many sample points should be

involved for precise estimation. In this case, 101st sampling points are generated.

Fig. 2 shows an exact surface of Eq. (26) and estimated surface produced by using the Kriging method

without using the proposed algorithm. From Fig. 2, it is considered that good estimation can be obtained

for such multi-peaked function. The RMS error between original and estimated surface is 0.0273. This error

is calculated by using about one thousand exact function values and estimated values. In this case, the

parameters of semivariogram for estimation are as follows. These parameters are determined by using the

Cressie�s criteria [23] and the Burnell�s Algorithm [25].

fb0; b1; b2g ¼ f1:00� 10�5; 1:62� 10�1; 5:76� 100g: ð26Þ
Now we attempt to apply the proposed formula to estimation of this function. To reduce a computational
cost for Eq. (8), a threshold th in Eq. (17) must be determined. A computational cost for Eq. (8) will be

more reduced when th is larger, an estimation errors, however, will increase. To determine an appropriate

threshold, therefore, a relationship between th and estimation errors must be investigated.

Fig. 3 shows an example of a relationship between a threshold and distance from an optional location. In

this case, its relationship at x ¼ 0:0 is illustrated. This figure indicates, for example, estimation at location

x ¼ 0:0 uses the sample data that ranges between x ¼ 0:0 and x ¼ 26:0 when th ¼ 10�4. From this figure, it

is clearly found that a weight of the data for estimation will goes small exponentially as it is far from a

location where is estimated, and it is considered that an observed value at a location far from an location
that is attempted to estimate has few effect on a result of estimation.
Fig. 2. Test function and its estimation.



Fig. 3. Semivariogram function value at each location for x ¼ 0:0.

Fig. 4. Estimated surface using each threshold.
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To evaluate an effect of a threshold on accuracy of estimation, change of the estimated function by each
threshold is illustrated in Fig. 4. From Fig. 4, it is found that an estimated surface becomes to be different

from an exact surface of a considered function as a threshold is larger. This fact shows that accuracy of

estimation decreases with reduction of the number of observed data that are used for estimation at each

location. Fig. 5 shows an effect of a threshold on estimation error. It can be recognized that an estimation



Fig. 5. Relationship between RMS error and a threshold.
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error hardly increases when th is smaller than 10�3, and estimation error increases dramatically when th is

larger than 10�1 in this case.

4.2. Two-dimensional problem

As a more general problem, two-dimensional function, which is expressed as the following equation, is

approximated using the proposed formula.

f ðx1; x2Þ ¼ sinð0:4x1Þ þ cosð0:2x2 þ 0:2Þ; 0:06 x1; x2 6 10:0: ð27Þ
A surface of the original function is shown in Fig. 6. Although a surface is not so complex, sometimes a
large number of sampling points are required. For example, high dense sampling points will be used for

precise estimation. In this case, 2601 sampling data are prepared to estimate this surface. Each 51 points are

generated as sampling points at regular interval for each axis.

For this function, effects of a threshold on estimation are investigated. Fig. 7 shows a reduction of

computational cost for estimation at different ten thousands points, which are used to draw an estimated

surface by each different threshold. Normalized value of total numbers of profiles, computational time to

execute LU factorization of a coefficient matrix C�
ij, total computational time to estimate ten thousands

values are plotted in Fig. 7. All components are effectively improved by raising a threshold, especially,
computational time to execute LU factorization is greatly improved.

To determine a threshold, change of estimated surface by difference of thresholds is investigated. Esti-

mated surfaces for thresholds th ¼ 10�8, 10�4, 10�3, 10�2, 10�1 are shown in Figs. 8–12. From these figures,

it is found that the surface is well estimated when a threshold is smaller than 10�3, and the surface becomes

to be fluctuated when a threshold is larger than 10�2. From these results, the larger threshold causes invalid

estimation.

For detail evaluation, change in estimation error by thresholds is also investigated. Fig. 13 shows an

estimation error for each threshold. From Fig. 13, effect on estimation error can be neglected when a



Fig. 7. Improvement of computational cost with change of a threshold.

Fig. 6. Surface of the original function.
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Fig. 8. Estimated surface for th ¼ 10�8.

Fig. 9. Estimated surface for th ¼ 10�4.
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Fig. 10. Estimated surface for th ¼ 10�3.

Fig. 11. Estimated surface for th ¼ 10�2.
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Fig. 12. Estimated surface for th ¼ 10�1.

Fig. 13. Mean estimation error for each threshold.
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threshold is smaller than 10�4. From Figs. 8–13, it can be considered that a threshold can be allowed to be
less than 10�3. Although the larger threshold can be adopted and a computational cost can be reduced if

any estimation errors are allowed, generally, it can be recommended that a threshold is smaller than 10�3 in



Fig. 14. Total number of zero components in C�
ij for each threshold.
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the case of two-dimensional problem. In this case, about 20% of computational cost can be reduced, the

effectiveness of the proposed method was illustrated.

As the other viewpoint, effect of a bandwidth reduction procedure on a computational cost is discussed.

Reduction efficiency of computational cost is greatly affected by efficiency of a bandwidth reduction
algorithm. We have no approximation algorithm for bandwidth minimization, thus the Cuthill–Mckee [26]

and Gibbs–Poole–Stockmeyer [27] algorithms are used in this case. By using these algorithms, total profiles

of a coefficient matrix can be effectively reduced, however, a large numbers of zero components are still

remained in an arranged coefficient matrix. Fig. 14 shows a total profile b and the total number of zero

components in the skyline of an arranged coefficient matrix. Total profiles are effectively reduced when a

threshold becomes large, however, the total number of zero components in the skyline are increased. Since

only non-zero components are used to compute an estimated value, a computational cost for estimation can

be reduced increasingly if a more effective algorithm to reduce the profiles is used.
5. Structural optimization using the proposed method

5.1. Layout optimization of a beam structure

As an application of the proposed method to a structural optimization, a layout optimization problem of

a beam structure for eigenfrequency maximization is solved. Eigenfrequency problem of a beam structure is
solved by using the finite element method. To determine a location of an additional element to maximize

eigenfrequency of a structure, effect of additional element on eigenfrequency for each different inserted

location must be investigated. Although a surface of solution space will be almost continuous and smooth,

the effect of insertion can be evaluated at discrete locations in the case of using FEM analysis for evalu-

ation, and thus an approximation optimization method will be effective to solve the optimization problem.

In this paper, a layout optimization of additional member to a two-dimensional beam structure is solved.

Geometry of a beam structure is illustrated in Fig. 15. Total numbers of finite element nodes are 201.



Fig. 15. Geometry of a beam structure.

Fig. 16. First-order eigenmode of the beam structure.
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Fig. 16 shows a first-order eigenmode of the structure. The optimization problem can be formulated as

follows.

find l ¼ fl1; l2g
to maximize x

�
; ð28Þ

where l1 shows a location of one edge of an inserted member on a lower element of a structure, which is

illustrated in Fig. 15, l2 shows a location of the another edge on an upper element, and x is a first-order
eigenfrequency of a structure. The optimization problem is, therefore, to find a layout of an inserted

member to maximize a first-order eigenfrequency of a structure.

Since a transformation of eigenmode or multi-peaked optimization should be considered when a layout

optimization of a beam structure for eigenfrequency problem is solved, a large number of sampling points

should be prepared for valid approximate optimization.

In this case, 2500 sampling points are used to estimate a solution space. Each 50 sampling points are

generated at regular interval for each axis. By using the proposed method, a surface of solution space is

estimated. A threshold th it set at 10�3 in this case. Fig. 17 shows an estimated surface. Estimated values at
ten thousands of different locations are computed. Fig. 18 shows an original surface of a solution space,

which is plotted using solutions for all combinations of nodes. Comparing Figs. 17 and 18, it can be

recognized that a good estimated surface can be obtained. A total estimation time was about 1562 seconds

by using Pentium4-2 GHz based PC, while about 2728 seconds was taken if bandwidth is not reduced.

From this result, it is recognized that about 42% of a computational cost for estimation can be reduced.

By using the proposed algorithm with a threshold th ¼ 10�3, the approximated optimum solution is

searched. Since this optimization problem is not a convex optimization problem, a global optimization

method is used to find an optimum solution. In this case, the CSSL method [28], which was proposed by
authors, is used to solve the optimization problem.

An estimated optimum solution and computational cost are shown in Table 1. l1 in Table 1 expresses a

location of one edge of an inserted member on a lower element of a beam structure which is illustrated in



Fig. 17. Estimated solution space for eigenfrequency optimization of a beam structure.

Fig. 18. Solution space for eigenfrequency optimization of a beam structure.
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Table 1

Estimated optimum solution and computational time

Estimated optimum solution Computational time (s)

Original Kriging optimization ðl1; l2Þ ¼ ð0:829; 0:089Þ 402.6

Proposed method ðl1; l2Þ ¼ ð0:829; 0:089Þ 278.4

Optimum solution ðl1; l2Þ ¼ ð0:83; 0:09Þ –
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Fig. 15, l2 in Table 1 expresses a location of another edge on an upper element. Variables l1 and l2 is
normalized by 0.5, if l1 equals 0.5, for example, it shows that one edge is located at x ¼ 0:25 m on a lower

element of the beam structure. ‘‘Optimum solution’’ in Table 1 expresses an exact solution that is obtained

by fully FEM analyses.

An estimated optimum solution, which is obtained by using the proposed method, accords with an

optimum solution by using the original method, which uses not-reduced coefficient matrix. On the other

hand, a computational cost using the proposed method is reduced by about 30% of the original method.

This result shows that the proposed method enables to reduce a computational cost with similar precision

of approximate optimization, and it shows effectiveness of the proposed algorithm.
Fig. 19 shows an optimum layout created by an estimated optimum solution. This layout almost accords

with the optimum solution, which is selected by all candidates evaluated by exact FEM analysis. This result

shows validity of the proposed approximate optimization procedure.

5.2. Eigenfrequency optimization of a wing structure

As the other problem, thickness optimization of a stiffened hollow wing structure to control of an ei-

genfrequency of a structure is solved by using the proposed method. Fig. 20 shows geometry and design
variables of the winged structure. ti in Fig. 20 shows thickness at each substructure of the wing structure. t4
and t5 show thickness of each lib. As shown in Fig. 20, thickness at five substructures is optimized. Fig. 21

shows a finite element model of the structure. A 4-node isoparametric shell element is used. Total number of

elements is 858, total number of nodes is 845. In this case, a difference between first and second eigen-

frequency is minimized. Therefore, the optimization problem can be formulated as follows:

find t ¼ ft1; t2; t3; t4; t5g
to minimize x2 � x1

such as 0:016 ti 6 0:51

9=;; ð29Þ
Fig. 19. Estimated optimum layout.



Fig. 20. Scheme of a wing structure (unit: m). (a) Geometry and (b) design variables.

Fig. 21. Finite element model of a wing structure. (a) Top view, (b) side view and (c) bird view.
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where t is thickness, x1 and x2 are first- and second-order eigenfrequencies. Namely, five-dimensional

optimization problem is solved by using the proposed method.

To apply the proposed method, sampling values are evaluated in the solution space. In this case, five

sampling points are generated at regular intervals for each design variable axis, therefore 3125 sampling

point are totally generated. A total computational time for sampling evaluations was about 4130 minutes

by using 2.4 GHz-based Windows PC, therefore an average computational time for a single analysis was

about 1.3 minutes.

According to the previous discussion, we evaluate computational times and estimated optimum solutions
for each threshold th ¼ 10�5, 10�4, 10�3, 10�2, 10�1. Table 2 shows estimated optimum solutions and com-

putational times for each threshold. Similarly to the previous example, the CSSL method is applied to

minimizing the estimated objective function. From Table 2, it can be recognized that a similar solution to the

optimum solution, which is obtained with no approximation (th ¼ 0) of the coefficient matrix, can be ob-

tained when the threshold is less than 10�3. In the case of th ¼ 10�3, computational time can be reduced at

about 48% of the conventional approach, therefore effectiveness of the proposed method can be also shown.

This numerical result shows effectiveness of the proposedmethod for high dimensional optimization problem.



Table 2

Estimated optimum thickness and computational time

Threshold t1 (m) t2 (m) t3 (m) t4 (m) t5 (m) Time (s)

0 (Original Kriging) 0.127 0.376 0.01 0.183 0.374 1759

10�5 0.127 0.376 0.01 0.183 0.374 1069

10�4 0.127 0.376 0.01 0.183 0.374 1041

10�3 0.127 0.376 0.01 0.183 0.374 840

10�2 0.126 0.376 0.01 0.182 0.375 576

10�1 0.117 0.364 0.01 0.213 0.071 117
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6. Conclusion

This paper has described an algorithm to improve a computational cost for Kriging estimation. The
Kriging method involves solving a simultaneous equation to determine weighting coefficients for estima-

tion. For a large numbers of sampling points or a large-scale system, a computational cost for estimation is

mainly affected by solving a simultaneous equation. Especially, a computational cost for solving a simul-

taneous equation must be reduced when the Kriging method is used for an approximate optimization, since

an estimated value or a gradient component of an estimated surface must be computed at several locations

in a solution space.

To reduce a computational cost for Kriging estimation, The Sherman–Morrison–Woodbury formula

has been introduced to compute an inverse of a coefficient matrix. And by introducing a threshold into a
coefficient matrix, an approximated coefficient matrix can be constructed. By sorting a component of

coefficient matrix by using Cuthill–Mckee and Gibbs–Poole Stockmeyer algorithm, a computational cost

for Kriging estimation can be reduced by about 20%.

A structural optimization, which is to determine the optimum layout of a beam structure to maximize a

first-order eigenfrequency, has been solved by using the proposed method. From the numerical results, the

effectiveness of the proposed method has been illustrated. In this case, the proposed method saved about

30% of a computational cost comparing with the original method, which does not have a bandwidth

reduction process, and gave a good estimated optimum solution. These results show validity and effec-
tiveness of the proposed method.

As a higher dimensional optimization problem, thickness optimization of a wing structure has been

solved. From the numerical result, a computational cost can be also reduced at about 48% of the original

method in the case of the threshold is 10�3, effectiveness of the proposed method on a higher dimensional

problem is also shown.

As an additional discussion, possibility of an improvement in computational cost by using the proposed

method has been pointed out. If the more effective algorithm for minimization of bandwidth of a coefficient

matrix can be used, a computational cost for Kriging estimation will be more reduced.
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