
An Efficient & Reconfigurable FPGA and ASIC
Implementation of a Spectral Doppler Ultrasound

Imaging System
Adam Page

Dept. of Computer Science & Electrical Engineering
University of Maryland, Baltimore County

Baltimore City, USA

Tinoosh Mohsenin
Dept. of Computer Science & Electrical Engineering

University of Maryland, Baltimore County
Baltimore City, USA

Abstract—Pulsed wave (PW) Doppler ultrasound is a common
technique used for making non-invasive velocity measurements of
blood flow in humans. Most current PW Doppler ultrasound
designs rely on fixed signal processing hardware; greatly limiting
their versatility. This paper presents a highly efficient and highly
versatile FPGA-based PW spectral Doppler ultrasound system.
The system is implemented on a Virtex-5 FPGA using Xilinx's
ISE design suite. In order to measure the accuracy of the system,
a similar design was implemented in MATLAB. Furthermore,
the design was also implemented in 65 nm CMOS ASIC design
for performance comparisons. The Virtex-5 design requires 1,159
of 17,280 slice resources and consumes 1.089 watts of power when
running at its maximum clock speed of 333 megahertz. The ASIC
design has an area of .573 mm2 and consumes 41 mW of power at
a maximum clock speed of 1 GHz.

Keywords—Doppler ultrasound; High performance; FPGA;
CMOS; 65 nm;

I. INTRODUCTION
Pulsed Wave (PW) Doppler ultrasound is an important

technique commonly used for making non-invasive velocity
measurements of blood flow in the human body [2]. The
technique makes use of what is known as the Doppler effect, a
phenomenon in which there is a change in frequency of a wave
for an observer moving relative to its source. Using the
Doppler effect relationship between velocity and frequency, it
is possible to determine the velocity of an object by measuring
the change of the object’s frequency relative to the medium in
which the waves are transmitted. In order for PW Doppler
ultrasound systems to measure blood velocity, they must be
able to analyze the change in the observed frequency relative to
the emitted frequency while filtering out noise. Therefore, these
systems rely heavily on the use of digital signal processing
(DSP) techniques. Most common PW Doppler ultrasound
imaging systems use fixed DSP hardware to accomplish this.
As a consequence, these systems have limited target frequency
ranges.

In this paper, we propose a PW spectral Doppler ultrasound
imaging system that is both highly efficient and versatile. The
design is implemented on a Virtex-5 FPGA using Xilinx ISE
design suite as well as in 65 nm CMOS ASIC design. The main
components constituting the design include a finite impulse
response (FIR) filter, hamming window, discrete Fourier

transform (DFT), non-DC shift and magnitude, and finally a
logarithmic compression. All of the frequency-specific
components have been designed such that they can be tuned for
a range of target frequencies by simply replacing corresponding
lookup tables (LUTs). The following sections begin by
discussing the overall design and its main components. Then,
simulation data is presented and analyzed. From there, the
FPGA implementation is compared to its equivalent ASIC
implementation for performance purposes.

II. BACKGROUND
There are currently only a few studies available for the

implementation of an efficient, reconfigurable FPGA-based
PW Doppler ultrasound system. These studies mainly discuss
a few variations of the system but fail to discuss performance
and details on the reconfigurability of the system [3][5]. For
instance in [3], their system was implemented on a Virtex-II
Pro with reported slice usage of 29%. However, without
knowing the particular FPGA device, the slice count
utilization is unknown. The report also fails to discuss power
usage. Furthermore, the system is composed only of a
hamming window and FFT, which have no discussion of
reconfigurability. In [5], the system is designed using
MATLAB Simulink tool. This tool was used to auto generate
synthesizable HDL code. Unfortunately, no details are
provided as to the reconfigurability or performance of the
system.

III. PW DOPPLER ULTRASOUND SYSTEM DESIGN

A. Overview
As mentioned previously, the design consists of 5 major

components: 107-Tap finite impulse response (FIR) filter, 128-
point hamming window, 128-point discrete Fourier transform,
non-DC shift & magnitude, and a base-10 log compression. For
this design, we are assuming a sampling frequency of 150 kHz
and 128 samples per set. This provides an adequate frequency
resolution of 1.172 kHz. Figure 1 depicts a simplified block
diagram of the design. The system receives 2 16-bit inputs
representing the real and imaginary portion received from the
ultrasound transducers. The signals are then passed through a
bandpass FIR filter. The filtered signals are then sent through a
hamming window to prevent leakage/aliasing when sent

978-1-4799-0493-8/13/$31.00 © 2013 IEEE ASAP 2013198

through the discrete Fourier transform. After a set of 128
samples is sent through the DFT, the outputs are squared and
added together. These single values are then compressed using
a logarithmic compression. Only the first 64 samples of each
128-sample set are provided on the output data bus since we
are interested in a single-sided spectrum. Subsections B. – F.
discuss in detail each of the major components.

Figure 1: Proposed PW Doppler Ultrasound Imaging System Block Diagram

B. 107-Tap FIR Filter
The FIR filter is designed to meet the requirements detailed

in TABLE I. The FIR filter is implemented using a N-stage delay
design.

TABLE I. FIR FILTER DESIGN SPECIFICATIONS

FIR Requirements
Lower Stopband ≤ 1 kHz 15 dB Attenuation

Passband 1.6 – 10 kHz 3 dB Ripple
Upper Stopband ≥ 11 kHz 25 dB Attenuation
Sampling Freq 150 kHz

In order to meet the requirements, the design needs 107
coefficients. However, due to symmetry of the filter, only 64
coefficients need to be stored [1].

Figure 2 depicts the design of the 107-tap FIR filter where N
in this case is 107. Since the sampling frequency is 150 kHz,
the main clock can be easily made to be 64 times faster than the
sampling clock. The design can then utilize this faster clock
and perform the 64 multiplications and 63 additions using only
one multiply-accumulate (MAC) unit. The design also requires
53 adders to sum each delayed value with the symmetric
delayed value. These coefficients can be updated by replacing a
LUT. Also, more than 107 taps can be accommodated while
still maintaining the same throughput by utilizing more MAC
units.

Figure 2: 107-Tap FIR Filter Design

The coefficients for the design were produced using
MATLAB. The FIR filter component’s accuracy was
determined by comparing its outputs to outputs produced in
MATLAB for the same input set. The plot in Figure 3 shows the
output produced by both MATLAB and Verilog
implementations where the input stream consisted of 64
samples with a value of 127 followed by 64 samples with a
value of 3192. The mean percent error in this example is
6.09%.

Figure 3: Plot of FIR filter Output in MATLAB & Verilog

C. Hamming Window
The hamming window is the next component the input

stream is sent through. The purpose of the windowing is to
prevent aliasing occurring in the following DFT stage from
potentially non-periodic input sets [7]. The design required 128
coefficients since this is the size of a set. The hamming window
design is depicted in Figure 4, below.

Figure 4: 128-Point Hamming Window Design

The hamming window coefficients were determined using
the following equation [1].

𝑤 𝑛 = 0.54 − 0.46×𝑐𝑜𝑠 ! ! !
!

, 0 ≤ n ≤ N

These coefficients are also located in a LUT. In this
implementation, N is set to be 128. Due to symmetry, only the
first 64 coefficients are needed. The coefficients were also
multiplied by 214 so that they can be stored as 16-bit 2’s
complement integers. The output for the block is then shifted
by 14-bits to correct for this multiplication. Similar to the FIR
filter, these coefficients can be replaced if other windowing
styles are desired. The hamming window’s accuracy was
determined by comparing its outputs to outputs produced in
MATLAB for the same 128 input set. The plot in Figure 5

199

shows the output produced for fixed inputs of 2239. The
maximum percent error was found to be only .509%.

Figure 5: Plot of Hamming Window Output in MATLAB & Verilog

D. 128-Point DFT
The discrete Fourier transform is implemented using a fast

Fourier transform (FFT) algorithm [6]. The Fourier transform
maps each set of 128 samples from the time-domain to its
corresponding frequency-domain. The following equation
shows how each frequency value is determined:

𝑋! = 𝑥!×𝑒
!!!"#! !

!

!!!

 ,𝑁 = # 𝑃𝑜𝑖𝑛𝑡𝑠

Figure 6: 128-Point DFT Design

Figure 6 shows the design of the 128-point DFT. As seen in
the design, the 128-point DFT is implemented using an 8-point
FFT and a 16-point FFT along with a twiddle rotator. The
twiddle rotator multiplies the current output of the 8-point FFT
with the appropriate twiddle factor. The twiddle factors are a
predetermined set of values corresponding to the exponential
in the DFT equation. A twiddle factor is typically denoted as

𝑊!
!,𝑤ℎ𝑒𝑟𝑒 𝑊!

! = 𝑒!
!!"
! !. Comparing the design’s output to

the output produced by MATLAB for some given input set
measured the accuracy of the 128-point DFT design. The plots
depicted in Figure 7 were produced by supplying an impulse for
the input set, such that input samples were 1 except input
sample 63 and 64, which had values of 8000. The Verilog
version was able to mirror almost exactly the output produced
in MATLAB with a maximum percent error of .367% for the
real and .616% for the imaginary portion.

Figure 7: Plot of 128-Point DFT Real & Imaginary Output in MATLAB &

Verilog

E. Non-DC Shift & Magnitude
The first 64 output pairs of the DFT are then sent through

the non-DC shift & magnitude component. This component is
responsible for squaring both the real and imaginary inputs and
then summing these values together. Additionally, the non-DC
components are multiplied by a factor of 22, which is done
using a counter and shifter unit. Discarding the second 64
output pairs and multiplying the non-DC components by 4 is
done to convert from a two-sided power spectrum to a single-
sided spectrum. The design for this component can be seen in
Figure 8.

Figure 8: Non-DC Shift & Magnitude Design

The component was again tested for accuracy, but is
omitted here due to the simplicity of the design.

F. LOG10 Compression
The final component constituting to the overall design is a

base-10 logarithmic compression. There are various ways of
implementing such a component. The approach taken in this
design uses Mitchel’s Approximation Method [4]. The input
data is taken as unsigned 16.0 format and the output is put in
unsigned 4.12 format. The whole portion of the output is equal
to the index of the most significant bit (MSB) of the input. This
is done using a modified 16x4 decoder. The fractional portion
of the output is equal to the input’s bits to the right of the MSB
and is padded on the right with zeros as needed. The design of
the log compression is shown in Figure 9.

200

Figure 9: Log10 Compression Design

Comparing the design’s output to the output produced by
MATLABs log10() function for some given input set measured
the accuracy of the logarithmic compression. The plot depicted
in Figure 10 was produced by supplying an input set that swept
from 20 to 216 with increments of 3. Looking at the plot, it is
clear that the approximation does an excellent job of
interpolating the actual values with a maximum percent error of
less than 2%.

Figure 10: Plot of Log10 Compression Output in MATLAB & Verilog

IV. PROPOSED SYSTEM SIMULATION RESULTS
After designing all of the necessary components, they were

then connected together with pipeline stages between each
component. Each component also included many pipeline
stages internally in order to allow for even higher clock
frequencies if needed. From examining each component’s
design, it can be seen that the overall design can be easily
reconfigured for various target frequencies. In particular, the
FIR filter and hamming window contain all of their frequency-
dependent information in LUTs. The following plot, Figure 11,
shows the output produced in MATLAB as well as from the
design simulated in Xilinx’s ISim software. The input data
consists of 224,896 samples that were taken from an actual
ultrasound transducer and saved in a text file. The FPGA
design was passed the input data via an input file and the output
of the design was similarly stored in an output file. This output
file was then imported into MATLAB and displayed using the

imshow() function. A MATLAB function was also written to
mirror that of the FPGA design. This function used the same
code used previously to test each main component. The
function was passed the input data file and used imshow() to
produce its image.

Figure 11: Ultrasound Image generated in MATLAB & Verilog

The design was also programmed on an Xilinx ML505
board housing a Virtex-5 FPGA. The same input file was sent
to the board from the computer via USB-to-Serial Comm. port.
The data was then processed, stored into memory, and
displayed on a monitor via DVI connector. An image of the
setup with results is shown in Figure 12.

Figure 12: Design Implemented on Xilinx ML505 Board

V. ASICS IMPLEMENTATION AND COMPARISON
The PW Doppler ultrasound system is also implemented in

65 nm CMOS ASIC design. The RTL version of the system
was generated using RTL Compiler and then laid out in an
ASIC design using standard cells in Cadence Encounter
software. The following, Figure 13, is an image of the layout for
the ASIC implementation.

Verilog Generated

MATLAB Generated

201

Figure 13: ASIC Implementation of PW Doppler Ultrasound System

Place and route results indicate that the ASIC layout
occupies a total area of .573 mm2 and can operate at clock
speeds of up to 1 GHz with a power consumption of .0408
watts. As stated previously, the design is also implemented in
an Xilinx Virtex-5 FPGA. The FPGA implementation used
3,223/69,120 slice registers, 3,199/69,120 slice LUTs, and
1,159/17,280 slices. Xilinx XPower Analyzer estimated a
power consumption of 1.089 W of which 0.046 W is from
dynamic and the rest is from quiescent power consumption.
The maximum reported reliable clock speed using a balanced
design strategy for the FPGA implementation is 333 MHz. The
two design implementations’ characteristics are summarized in
TABLE II and TABLE III.

TABLE II. FPGA IMPLEMENTATION CHARACTERISTICS

FPGA Implementation
Technology 65 nm, 1 V

 Utilization Total Available
Slice Register 3,223 69,120

Slice LUT 3,199 69,120
Occupied Slices 1,159

Performance (MHz) 333
Total Power (W) 1.089

TABLE III. ASIC IMPLEMENTATION CHARACTERISTICS

ASIC Implementation
Technology 65 nm, 1 V

Logic Utilization 93%
Total Area (mm2) .573

Performance (MHz) 1,000
Total Power (W) 0.0408

It is clear from the tables that the ASICs implementation
consumes far less power and can run at a much higher clock

frequency than the FPGA implementation. The dynamic power
dissipation of the ASIC implementation when scaled to 333
MHz is approximately 12 mW, which is 4 times lower than the
FPGA implementation’s dynamic power of 46 mW. More
importantly, the FPGAs leakage is very high at about 1043
mW, which is 115 times higher than ASICs leakage power of
8.995 mW. On the other hand, FPGAs provide an economically
suitable reconfigurable platform whereas the cost of producing
the ASIC design would only be feasible for large-scale
production. Furthermore, in order to alter the ASIC design
requires redoing the layout, which is not efficient. Advanced
FPGAs, such as a Virtex-7, are a very good alternative as they
can be easily reconfigured while still maintaining relatively
high efficiency.

VI. CONCLUSION
This paper presents an efficient PW Doppler ultrasound

imaging system implemented in both an FPGA and ASIC
design. The current system is targeted for 150 kHz sampling
frequency, but can be easily adjusted for other target
frequencies. The FPGA design had comparable efficiency and
performance compared to the ASIC implementation, while
having the advantage of being cost-effective and
reconfigurable. The ASIC implementation is capable of being
driven at clock frequencies up to 1 GHz while consuming only
approximately 0.0408 W. Additionally, the ASICs layout has a
total area of .573 mm2 with 93% logic utilization. The FPGA
implementation is capable of being driven at clock frequencies
up to 333 MHz and consuming approximately 1.089 watts of
power. Programming the FPGA design on a Virtex-5 and
running a sample test-bench produced excellent results when
compared to results produced in MATLAB.

REFERENCES
[1] A. V. Oppenheim, A. S. Willsky, “Signals & Systems,” 2nd ed.,

Prentice Hall, 1997.
[2] C. Huang, P. lee, P. Chen, and T. Liu, “Design and Implementation of a

Smartphone- Based Portable Ultrasound Pulsed-Wave Doppler Device
for Blood Flow Measurement,” IEEE Trans on Ultrasonics,
Ferroelectronics, & Freq Control, vol. 59, pp. 182-188, January 2012.

[3] C. Hu, Q. Zhou, & Shun, "Design and Implementation of High
Frequency Ultrasound Pulsed-Wave Doppler using FPGA," Ultrasonics,
Ferroelectrics and Frequency Control, IEEE Transactions, vol. 55, no.9,
pp. 2109-2111, September 2008

[4] D. J. McLaren, “Improved Mitchell-Based Logarithmic Multiplier for
Low-power DSP Applications,” published.

[5] D. Mahmoud, A. M. Youssef, and Y. M. Kadah, “Embedded Doppler
Ultrasound Signal Processing Using Field Programmable Gate Arrays,”
unpublished.

[6] S. Cho, K. Kang, “A low-Complexity 128-Point Mixed-Radix FFT
Processor for MB-OFDM UWB Systems.”

[7] “Understanding FFT Windows,” Application Note AN014, LDS Ltd,
2003.

202

