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Abstract—Pulsed wave (PW) Doppler ultrasound is a common 
technique used for making non-invasive velocity measurements of 
blood flow in humans. Most current PW Doppler ultrasound 
designs rely on fixed signal processing hardware; greatly limiting 
their versatility. This paper presents a highly efficient and highly 
versatile FPGA-based PW spectral Doppler ultrasound system. 
The system is implemented on a Virtex-5 FPGA using Xilinx's 
ISE design suite. In order to measure the accuracy of the system, 
a similar design was implemented in MATLAB. Furthermore, 
the design was also implemented in 65 nm CMOS ASIC design 
for performance comparisons. The Virtex-5 design requires 1,159 
of 17,280 slice resources and consumes 1.089 watts of power when 
running at its maximum clock speed of 333 megahertz. The ASIC 
design has an area of .573 mm2 and consumes 41 mW of power at 
a maximum clock speed of 1 GHz. 

Keywords—Doppler ultrasound; High performance; FPGA; 
CMOS; 65 nm; 

I. INTRODUCTION 
Pulsed Wave (PW) Doppler ultrasound is an important 

technique commonly used for making non-invasive velocity 
measurements of blood flow in the human body [2]. The 
technique makes use of what is known as the Doppler effect, a 
phenomenon in which there is a change in frequency of a wave 
for an observer moving relative to its source. Using the 
Doppler effect relationship between velocity and frequency, it 
is possible to determine the velocity of an object by measuring 
the change of the object’s frequency relative to the medium in 
which the waves are transmitted. In order for PW Doppler 
ultrasound systems to measure blood velocity, they must be 
able to analyze the change in the observed frequency relative to 
the emitted frequency while filtering out noise. Therefore, these 
systems rely heavily on the use of digital signal processing 
(DSP) techniques. Most common PW Doppler ultrasound 
imaging systems use fixed DSP hardware to accomplish this. 
As a consequence, these systems have limited target frequency 
ranges.  

In this paper, we propose a PW spectral Doppler ultrasound 
imaging system that is both highly efficient and versatile. The 
design is implemented on a Virtex-5 FPGA using Xilinx ISE 
design suite as well as in 65 nm CMOS ASIC design. The main 
components constituting the design include a finite impulse 
response (FIR) filter, hamming window, discrete Fourier 

transform (DFT), non-DC shift and magnitude, and finally a 
logarithmic compression. All of the frequency-specific 
components have been designed such that they can be tuned for 
a range of target frequencies by simply replacing corresponding 
lookup tables (LUTs). The following sections begin by 
discussing the overall design and its main components. Then, 
simulation data is presented and analyzed. From there, the 
FPGA implementation is compared to its equivalent ASIC 
implementation for performance purposes.  

II. BACKGROUND 
There are currently only a few studies available for the 

implementation of an efficient, reconfigurable FPGA-based 
PW Doppler ultrasound system. These studies mainly discuss 
a few variations of the system but fail to discuss performance 
and details on the reconfigurability of the system [3][5]. For 
instance in [3], their system was implemented on a Virtex-II 
Pro with reported slice usage of 29%. However, without 
knowing the particular FPGA device, the slice count 
utilization is unknown. The report also fails to discuss power 
usage. Furthermore, the system is composed only of a 
hamming window and FFT, which have no discussion of 
reconfigurability. In [5], the system is designed using 
MATLAB Simulink tool. This tool was used to auto generate 
synthesizable HDL code. Unfortunately, no details are 
provided as to the reconfigurability or performance of the 
system.  

III. PW DOPPLER ULTRASOUND SYSTEM DESIGN 

A. Overview 
As mentioned previously, the design consists of 5 major 

components: 107-Tap finite impulse response (FIR) filter, 128-
point hamming window, 128-point discrete Fourier transform, 
non-DC shift & magnitude, and a base-10 log compression. For 
this design, we are assuming a sampling frequency of 150 kHz 
and 128 samples per set. This provides an adequate frequency 
resolution of 1.172 kHz. Figure 1 depicts a simplified block 
diagram of the design. The system receives 2 16-bit inputs 
representing the real and imaginary portion received from the 
ultrasound transducers. The signals are then passed through a 
bandpass FIR filter. The filtered signals are then sent through a 
hamming window to prevent leakage/aliasing when sent 
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through the discrete Fourier transform. After a set of 128 
samples is sent through the DFT, the outputs are squared and 
added together. These single values are then compressed using 
a logarithmic compression. Only the first 64 samples of each 
128-sample set are provided on the output data bus since we 
are interested in a single-sided spectrum. Subsections B. – F. 
discuss in detail each of the major components. 

 
Figure 1: Proposed PW Doppler Ultrasound Imaging System Block Diagram 

B. 107-Tap FIR Filter 
The FIR filter is designed to meet the requirements detailed 

in TABLE I. The FIR filter is implemented using a N-stage delay 
design. 

TABLE I.     FIR FILTER DESIGN SPECIFICATIONS 

FIR Requirements 
Lower Stopband ≤ 1 kHz 15 dB Attenuation 

Passband 1.6 – 10 kHz 3 dB Ripple 
Upper Stopband ≥ 11 kHz 25 dB Attenuation 
Sampling Freq 150 kHz 

 

In order to meet the requirements, the design needs 107 
coefficients. However, due to symmetry of the filter, only 64 
coefficients need to be stored [1].  

Figure 2 depicts the design of the 107-tap FIR filter where N 
in this case is 107. Since the sampling frequency is 150 kHz, 
the main clock can be easily made to be 64 times faster than the 
sampling clock. The design can then utilize this faster clock 
and perform the 64 multiplications and 63 additions using only 
one multiply-accumulate (MAC) unit. The design also requires 
53 adders to sum each delayed value with the symmetric 
delayed value. These coefficients can be updated by replacing a 
LUT.  Also, more than 107 taps can be accommodated while 
still maintaining the same throughput by utilizing more MAC 
units. 

                
Figure 2: 107-Tap FIR Filter Design 

The coefficients for the design were produced using 
MATLAB. The FIR filter component’s accuracy was 
determined by comparing its outputs to outputs produced in 
MATLAB for the same input set. The plot in Figure 3 shows the 
output produced by both MATLAB and Verilog 
implementations where the input stream consisted of 64 
samples with a value of 127 followed by 64 samples with a 
value of 3192. The mean percent error in this example is 
6.09%. 

  
Figure 3: Plot of FIR filter Output in MATLAB & Verilog 

C. Hamming Window 
The hamming window is the next component the input 

stream is sent through. The purpose of the windowing is to 
prevent aliasing occurring in the following DFT stage from 
potentially non-periodic input sets [7]. The design required 128 
coefficients since this is the size of a set. The hamming window 
design is depicted in Figure 4, below. 

             
Figure 4: 128-Point Hamming Window Design 

The hamming window coefficients were determined using 
the following equation [1]. 

𝑤 𝑛 =   0.54 − 0.46×𝑐𝑜𝑠 !  !  !
!

, 0   ≤   n   ≤   N  
 
These coefficients are also located in a LUT. In this 
implementation, N is set to be 128. Due to symmetry, only the 
first 64 coefficients are needed. The coefficients were also 
multiplied by 214 so that they can be stored as 16-bit 2’s 
complement integers. The output for the block is then shifted 
by 14-bits to correct for this multiplication. Similar to the FIR 
filter, these coefficients can be replaced if other windowing 
styles are desired. The hamming window’s accuracy was 
determined by comparing its outputs to outputs produced in 
MATLAB for the same 128 input set. The plot in Figure 5 
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shows the output produced for fixed inputs of 2239. The 
maximum percent error was found to be only .509%. 
 

        
Figure 5: Plot of Hamming Window Output in MATLAB & Verilog 

D. 128-Point DFT 
The discrete Fourier transform is implemented using a fast 

Fourier transform (FFT) algorithm [6]. The Fourier transform 
maps each set of 128 samples from the time-domain to its 
corresponding frequency-domain. The following equation 
shows how each frequency value is determined: 

𝑋! =    𝑥!×𝑒
!!!"#! !

!

!!!

   ,𝑁 = #  𝑃𝑜𝑖𝑛𝑡𝑠 

  
Figure 6: 128-Point DFT Design 

Figure 6 shows the design of the 128-point DFT. As seen in 
the design, the 128-point DFT is implemented using an 8-point 
FFT and a 16-point FFT along with a twiddle rotator. The 
twiddle rotator multiplies the current output of the 8-point FFT 
with the appropriate twiddle factor. The twiddle factors are a 
predetermined set of values corresponding to the exponential 
in the DFT equation. A twiddle factor is typically denoted as 

𝑊!
!,𝑤ℎ𝑒𝑟𝑒  𝑊!

! = 𝑒!
!!"
! !. Comparing the design’s output to 

the output produced by MATLAB for some given input set 
measured the accuracy of the 128-point DFT design. The plots 
depicted in Figure 7 were produced by supplying an impulse for 
the input set, such that input samples were 1 except input 
sample 63 and 64, which had values of 8000. The Verilog 
version was able to mirror almost exactly the output produced 
in MATLAB with a maximum percent error of .367% for the 
real and .616% for the imaginary portion. 
 

 
Figure 7: Plot of 128-Point DFT Real & Imaginary Output in MATLAB & 

Verilog 

E. Non-DC Shift & Magnitude 
The first 64 output pairs of the DFT are then sent through 

the non-DC shift & magnitude component. This component is 
responsible for squaring both the real and imaginary inputs and 
then summing these values together. Additionally, the non-DC 
components are multiplied by a factor of 22, which is done 
using a counter and shifter unit. Discarding the second 64 
output pairs and multiplying the non-DC components by 4 is 
done to convert from a two-sided power spectrum to a single-
sided spectrum. The design for this component can be seen in 
Figure 8. 

       
Figure 8: Non-DC Shift & Magnitude Design 

The component was again tested for accuracy, but is 
omitted here due to the simplicity of the design. 

F. LOG10 Compression 
The final component constituting to the overall design is a 

base-10 logarithmic compression. There are various ways of 
implementing such a component. The approach taken in this 
design uses Mitchel’s Approximation Method [4]. The input 
data is taken as unsigned 16.0 format and the output is put in 
unsigned 4.12 format. The whole portion of the output is equal 
to the index of the most significant bit (MSB) of the input. This 
is done using a modified 16x4 decoder. The fractional portion 
of the output is equal to the input’s bits to the right of the MSB 
and is padded on the right with zeros as needed. The design of 
the log compression is shown in Figure 9.   
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Figure 9: Log10 Compression Design 

Comparing the design’s output to the output produced by 
MATLABs log10() function for some given input set measured 
the accuracy of the logarithmic compression. The plot depicted 
in Figure 10 was produced by supplying an input set that swept 
from 20 to 216 with increments of 3. Looking at the plot, it is 
clear that the approximation does an excellent job of 
interpolating the actual values with a maximum percent error of 
less than 2%.  

   

 
Figure 10: Plot of Log10 Compression Output in MATLAB & Verilog 

IV. PROPOSED SYSTEM SIMULATION RESULTS 
After designing all of the necessary components, they were 

then connected together with pipeline stages between each 
component. Each component also included many pipeline 
stages internally in order to allow for even higher clock 
frequencies if needed. From examining each component’s 
design, it can be seen that the overall design can be easily 
reconfigured for various target frequencies. In particular, the 
FIR filter and hamming window contain all of their frequency-
dependent information in LUTs. The following plot, Figure 11, 
shows the output produced in MATLAB as well as from the 
design simulated in Xilinx’s ISim software. The input data 
consists of 224,896 samples that were taken from an actual 
ultrasound transducer and saved in a text file. The FPGA 
design was passed the input data via an input file and the output 
of the design was similarly stored in an output file. This output 
file was then imported into MATLAB and displayed using the 

imshow() function. A MATLAB function was also written to 
mirror that of the FPGA design. This function used the same 
code used previously to test each main component. The 
function was passed the input data file and used imshow() to 
produce its image.  

   
Figure 11: Ultrasound Image generated in MATLAB & Verilog 

The design was also programmed on an Xilinx ML505 
board housing a Virtex-5 FPGA. The same input file was sent 
to the board from the computer via USB-to-Serial Comm. port. 
The data was then processed, stored into memory, and 
displayed on a monitor via DVI connector. An image of the 
setup with results is shown in Figure 12. 

       
Figure 12: Design Implemented on Xilinx ML505 Board 

V. ASICS IMPLEMENTATION AND COMPARISON 
The PW Doppler ultrasound system is also implemented in 

65 nm CMOS ASIC design. The RTL version of the system 
was generated using RTL Compiler and then laid out in an 
ASIC design using standard cells in Cadence Encounter 
software. The following, Figure 13, is an image of the layout for 
the ASIC implementation.  

Verilog Generated

MATLAB Generated
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Figure 13: ASIC Implementation of PW Doppler Ultrasound System 

Place and route results indicate that the ASIC layout 
occupies a total area of .573 mm2 and can operate at clock 
speeds of up to 1 GHz with a power consumption of .0408 
watts. As stated previously, the design is also implemented in 
an Xilinx Virtex-5 FPGA. The FPGA implementation used 
3,223/69,120 slice registers, 3,199/69,120 slice LUTs, and 
1,159/17,280 slices. Xilinx XPower Analyzer estimated a 
power consumption of 1.089 W of which 0.046 W is from 
dynamic and the rest is from quiescent power consumption. 
The maximum reported reliable clock speed using a balanced 
design strategy for the FPGA implementation is 333 MHz. The 
two design implementations’ characteristics are summarized in 
TABLE II and TABLE III. 

TABLE II.     FPGA IMPLEMENTATION CHARACTERISTICS 

FPGA Implementation 
Technology 65 nm, 1 V 

 Utilization Total Available 
Slice Register  3,223 69,120 

Slice LUT  3,199 69,120 
Occupied Slices 1,159 

Performance (MHz) 333 
Total Power (W) 1.089 

TABLE III.     ASIC IMPLEMENTATION CHARACTERISTICS 

ASIC Implementation 
Technology 65 nm, 1 V 

Logic Utilization 93% 
Total Area (mm2) .573 

Performance (MHz) 1,000 
Total Power (W) 0.0408 

 

It is clear from the tables that the ASICs implementation 
consumes far less power and can run at a much higher clock 

frequency than the FPGA implementation. The dynamic power 
dissipation of the ASIC implementation when scaled to 333 
MHz is approximately 12 mW, which is 4 times lower than the 
FPGA implementation’s dynamic power of 46 mW. More 
importantly, the FPGAs leakage is very high at about 1043 
mW, which is 115 times higher than ASICs leakage power of 
8.995 mW. On the other hand, FPGAs provide an economically 
suitable reconfigurable platform whereas the cost of producing 
the ASIC design would only be feasible for large-scale 
production. Furthermore, in order to alter the ASIC design 
requires redoing the layout, which is not efficient. Advanced 
FPGAs, such as a Virtex-7, are a very good alternative as they 
can be easily reconfigured while still maintaining relatively 
high efficiency. 

VI. CONCLUSION 
This paper presents an efficient PW Doppler ultrasound 

imaging system implemented in both an FPGA and ASIC 
design. The current system is targeted for 150 kHz sampling 
frequency, but can be easily adjusted for other target 
frequencies. The FPGA design had comparable efficiency and 
performance compared to the ASIC implementation, while 
having the advantage of being cost-effective and 
reconfigurable. The ASIC implementation is capable of being 
driven at clock frequencies up to 1 GHz while consuming only 
approximately 0.0408 W. Additionally, the ASICs layout has a 
total area of .573 mm2 with 93% logic utilization. The FPGA 
implementation is capable of being driven at clock frequencies 
up to 333 MHz and consuming approximately 1.089 watts of 
power. Programming the FPGA design on a Virtex-5 and 
running a sample test-bench produced excellent results when 
compared to results produced in MATLAB. 
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