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ABSTRACT 

Observations on recent research of clustering problems illustrate that most of 

the approaches used to deal with these problems are based on meta-heuristic and 

hybrid meta-heuristic to improve the solutions. Hyperheuristic is a set of heuristics, 

meta- heuristics and high-level search strategies that work on the heuristic search space 

instead of solution search space. Hyperheuristics techniques have been employed to 

develop approaches that are more general than optimization search methods and 

traditional techniques. In the last few years, most studies have focused considerably 

on the hyperheuristic algorithms to find generalized solutions but highly required 

robust and efficient solutions. The main idea in this research is to develop techniques 

that are able to provide an appropriate level of efficiency and high performance to find 

a class of basic level heuristic over different type of combinatorial optimization 

problems. Clustering is an unsupervised method in the data mining and pattern 

recognition. Nevertheless, most of the clustering algorithms are unstable and very 

sensitive to their input parameters. This study, proposes an efficient and robust 

hyperheuristic clustering algorithm to find approximate solutions and attempts to 

generalize the algorithm for different cluster problem domains. Our proposed 

clustering algorithm has managed to minimize the dissimilarity of all points of a cluster 

using hyperheuristic method, from the gravity center of the cluster with respect to 

capacity constraints in each cluster. The algorithm of hyperheuristic has emerged from 

pool of heuristic techniques. Mapping between solution spaces is one of the powerful 

and prevalent techniques in optimization domains. Most of the existing algorithms 

work directly with solution spaces where in some cases is very difficult and is 

sometime impossible due to the dynamic behavior of data and algorithm. By mapping 

the heuristic space into solution spaces, it would be possible to make easy decision to 

solve clustering problems. The proposed hyperheuristic clustering algorithm performs 

four major components including selection, decision, admission and hybrid 

metaheuristic algorithm. The intensive experiments have proven that the proposed 

algorithm has successfully produced robust and efficient clustering results.   
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ABSTRAK 

Pemerhatian terhadap penyelidikan terkini berkaitan dengan masalah 

pengelompokan menunjukkan bahawa kebanyakan pendekatan yang menangani 

masalah ini menggunakan meta-heuristik dan hibrid meta-heuristik untuk 

menyelesaikan masalah tersebut. Hiperheuristik adalah satu set heuristik atau strategi 

carian peringkat tinggi yang berfungsi pada ruang carian heuristik dan bukannya ruang 

carian penyelesaian. Teknik hiperheuristik telah dibangunkam untuk membangunkan 

pendekatan yang lebih umum daripada kaedah carian pengoptimuman dan teknik 

tradisional yang biasa. Dalam beberapa tahun kebelakangan ini, kebanyakan kajian 

telah memberi tumpuan kepada algoritma hiperheuristik untuk mencari suatu 

algoritma hiperheuristik yang umum. Idea utama kajian ini adalah untuk 

membangunkan teknik yang dapat memberi tahap kecekapan dan prestasi yang sesuai 

dalam mencari suatu kelas tahap heuristik asas yang sesuai untuk pelbagai jenis 

masalah kombinasi pengoptimuman. Pengelompokan adalah satu kaedah tanpa 

pengawasan dalam pengumpulan data dan pengiktirafan corak. Walau bagaimanapun, 

sebahagian besar algoritma pengelompokan adalah kurang stabil dan sangat sensitif 

kepada parameter input. Kajian ini mencadangkan algoritma berkelompok 

hiperheuristik yang efisen dan teguh untuk mencari penyelesaian terbaik dan cuba 

menjadikannya algoritma umum untuk domain masalah kelompok yang berbeza. 

Tujuan pendekatan pengelompokan adalah untuk mengurangkan ketidaksamaan 

semua titik pada sesuatu kelompok dengan menggunakan kaedah hiperheuristik dari 

pusat graviti kelompok berkenaan dengan kekangan kapasiti dalam setiap kelompok. 

Pemetaan antara ruang adalah salah satu teknik yang hebat dan digunakan secara 

meluas dalam semua bidang saintifik, kebanyakan algoritma yang ada boleh 

bekerjasama dengan ruang yang ada di mana dalam situasi ini ianya amat sukar dan 

kebanyakannya agak mustahil untuk dilihat berdasarkan tingkahlaku data dan 

algoritma. Dengan menggunakan pengelompokan heuristik dalam penyelesaian ini, 

secara tidak langsung ianya memudahkan keputusan diambil untuk menyelesaikan 

masalah pengelompokan. Algoritma yang dicadangkan melakukan empat komponen 

utama termasuk mekanisma seleksi, keputusan, penerimaan dan algoritma hibrid meta 

heuristik. Eksperimen intensif yang dijalankan membuktikan algoritma yang 

dicadangkan berjaya menghasilkan keputusan pengkelompokan yang teguh dan efisen.   
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1 CHAPTER 1 

INTRODUCTION 

1.1 An Overview 

Clustering approaches have received attention in several study fields like 

biology, medicine, engineering and data analysing fields (Niknam, Taherian Fard et 

al. 2011). The main goal of clustering approaches are to collect data points. Clustering 

is the process of grouping data in similar groups. The k-means approach is one of the 

most widely-used clustering approach is one of main algorithms used for analysis of 

unsupervised data. However, the k-means algorithm results are depend on the 

initialization and converge towards the local optimum. In order to overcome obstacles 

due to local optimum, many studies have reported on clustering-related works (Wang, 

Zhang et al. 2007, Kao, Zahara et al. 2008, Niknam and Amiri 2010). This thesis 

presents a new and efficient hyperheuristic algorithm based on a proposed online 

genetic clustering learning method, thus advancing the heuristic selection method for 

optimum clustering solutions. The new hyperheuristic clustering algorithm (HHCA) 

was tested on different datasets and its performance was compared with several meta-

heuristic algorithms such as Honey Bee Mating Optimization (HBMO), Simulated 

Annealing (SA), ant colony optimization (ACO), Tabu Search (TS), Artificial Bee 

Colony (ABC) particle swarm optimization (PSO), Genetic Algorithm (GA), and K-

means algorithm (Wang, Zhang et al. 2007, Kao, Zahara et al. 2008, Kuo, Suryani et 

al. 2013).  

For decades, a large quantity of raw data has been collected from various 

application areas such as health care systems, telecommunications, science and 
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business (Dolnicar 2003, Bewley, Shekhar et al. 2011). The volume of such data has 

increased exponentially because of the widespread use of various technologically 

sophisticated devices for the gathering of scientific data from different fields. Many 

scientists have applied data mining techniques to explore large amounts of data 

instances in a wide-variety of applications for instances in scheduling and planning, 

finance, sales and marketing. However, several data mining tasks differ when used for 

various purposes.  

Clustering is the process of categorizing unlabelled data according to their 

similarity. In cluster analysis, each class of data is called a ‘cluster’ and it consists of 

data instances which are similar within a cluster and dissimilar between other clusters 

(dissimilar between the objects of other groups and similar among themselves). As a 

result, clustering techniques are powerful exploratory approaches for the extraction of 

a pattern in the data. Many difficulties are encountered in general clustering techniques 

when it comes to the analysis of the data pattern due to the similarity measurement and 

the optimum cluster centres (Kao, Zahara et al. 2008).  Hence, this work looked into 

improving the solutions by proposing a hyperheuristic algorithm.   

1.2 Background of the Research 

Clustering techniques are data analysis tools that are utilized for categorizing 

data with similar attributes. Cluster analysis has been applied in the data mining and 

machine learning tasks such as the unsupervised classification (Omran, Salman et al. 

2006) and summation of data (Ng and Wong 2002) . The main objective in data 

clustering is to detect the natural categories of observations. Data clustering methods 

have been applied in several fields such as telecommunications networks, financial 

investments (fraud detection, credit card data, interest rates, stock prices and indexes),  

nuclear science, medicine (several diagnostic information), clustering of coals, local 

model development, discovery of classes in DNA dinucleotides, process monitoring, 

data compression and qualitative interpretation, analysis of chemical compounds, 

manufacturing (troubleshooting and process optimization) and radar scanning 

(Krishna and Murty 1999, Zhang, Wong et al. 1999, Maulik and Bandyopadhyay 

2000, Sung and Jin 2000, Hee-Su and Sung-Bae 2001, Bandyopadhyay and Maulik 
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2002, Ng and Wong 2002, Shelokar, Jayaraman et al. 2004, Laszlo and Mukherjee 

2006, Laszlo and Mukherjee 2007, Kao, Zahara et al. 2008, Nguyen and Cios 2008, 

Niknam, Firouzi et al. 2008, Žalik 2008, Firouzi, Sadeghi et al. 2010, Niknam and 

Amiri 2010, Zou, Zhu et al. 2010).   

Generally, data clustering techniques have been used when large data need to 

be stored. Cluster analysis can be divided into partitional or hierarchical clustering. 

This study focused on partitional cluster analysis, and specifically, a popular and 

common partitional clustering technique known as the k-means algorithm. The k-

means algorithm is a process of categorizing data into groups so that the objects in 

each class have a maximum similarity, while having a minimum dissimilarity with 

other classes. The dissimilarity is specifically based on the feature values of the 

objects. Distance measures are commonly utilized.  

The k-means has its roots in several areas comprising image segmentation, 

machine learning, neural networks, statistics, and biology such as fraud detection, 

disease diagnosis, time series predictions, financial statement fraud, shareholder value 

predictions, traffic predictions, sensor networks (Bewley, Shekhar et al. 2011), 

business and marketing, medical imaging (Bewley and Upcroft 2013), analysis of 

antimicrobial activity, social network analysis, crime analysis, educational data 

mining, and mathematical chemistry (Basak, Magnuson et al. 1988, Kao, Zahara et al. 

2008, Nguyen and Cios 2008, Žalik 2008). Despite significant improvements up to 

now in groups of data for a wide range of application domains, the k-means method 

still suffers from various disadvantages. The k-means objective function is not convex 

and it is confined to a local optimum.  

As a result, there exists a possibility of trapping to local optima, in the 

minimization of the fitness function (Firouzi, Sadeghi et al. 2010). Consequently, the 

results of the k-means technique depend heavily on the initial state and initial cluster 

centres that are randomly selected.  

To overcome these disadvantages, many clustering approaches, according to 

evolutionary algorithms for instance TS, BA, PSO, HBMO, SA, ABC and ACO have 
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been presented. The Table 1.1 summarizes the previous researches related to the 

current research.  

Table 1.1: Related works on clustering  

Clustering methods 

(Author / Year) 
Summary Future work / Limitation 

“An Improved Animal 
Migration Optimization 
Algorithm for Clustering 

Analysis” 

(Ma, Luo et al. 2015) 

“Propose a new evolutionay 

based algorithm based on 
the improved animal 

migration optimization to 
deal with clustering 

algorithm” 

fall into local optima 
easily, sensitive to data 

behavior and no good for  
high dimensional datasets   

“A Hybrid Monkey Search 
Algorithm for Clustering 

Analysis” 
(Chen, Zhou et al. 2014) 

“Introduce an algorithm 
according to the monkey 

algorithm and artificial bee 
colony operator” 

Sensitive to parameters 
and sensitive to noise and 

outliers, limited for use of 
heuristics 

“Artificial Bee Colony 
algorithm, A novel clustering 

approach:” 
 (Karaboga and Ozturk 2011) 

“Propose a clustering 
algorithm inspired by 

foraging behaviour of a 
honey-bee swarm” 

trapping into local 

optimum, senstive to 
initialization and parametrs  

“An efficient hybrid 

algorithm according to 
modified ICA and K-means 

for data clustering” 
(Niknam, Taherian Fard et al. 

2011) 

“presents a new hybrid 
evolutionary algorithm 

according to K-means and 
modified ICA for clustering 

of data” 

sensitive to noise and 
outliers, and  parameters 
setting, limited to use of 

heuristic algorithm 

“A hybridized approach to 
data clustering” 

(Kao, Zahara et al. 2008) 

“A combined algorithm 
according to mixing 

Nelder–Mead simplex 

search, the K-means 
algorithm, and particle 
swarm optimization” 

Problem on parameters 
setting, limited for use of 

heuristics, trapping into 
local optimum still exist 

“Cluster center initialization 
algorithm for K-means 

clustering” 
(Khan and Ahmad 2004) 

“Performance of iterative 
approaches that converges 
to numerous local optima 
depend highly on initial 

state intial centers”  

Problem on finding outlier 
data, sensitive to 

parameters of algorithm 
and less efficiency and 

computational expensive 

 

The Figure 1.1, gives a summary of the current research. For instance, , Ma et 

al. proposed an improved algorithm for cluster analysis according to the Improved 

Animal Migration Optimization (IAMO) algorithm that uses a population updating 

process and a new migration process by organizing a living area to find optimum 

cluster centres. However, the performance and results of the Improved Animal 

Migration Optimization (IAMO) algorithm are greatly affected by the size of the living 

area. The Improved Animal Migration Optimization (IAMO) algorithm produces the 

best performance for the Animal Migration Optimization (AMO) algorithm but it 
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suffers from several drawbacks in that it is sensitive to initialization (parameter 

setting), it cannot be used for high dimensional datasets, and it is sensitive to outliers 

and noisy data (Ma, Luo et al. 2015).  Chen et al. introduced a combined clustering 

algorithm according to the monkey search algorithm and artificial bee colony (ABC) 

algorithm, which the algorithm uses the artificial-bee-colony search operator for the 

clustering of data. According to the simulation results, the algorithm gives a better 

performance than the basic monkey search algorithm for the solving of clustering 

problems, but suffers from sensitivity to parameters, noise and outliers, and limitations 

on the use of the heuristics (Chen, Zhou et al. 2014). Karaboga and Ozturk introduced 

an algorithm for the clustering of data based on the ABC algorithm that simulates the 

behavior of a swarm of honey bees (Karaboga and Ozturk 2011). The artificial bee-

colony optimization method was presented by Karabogaa in 2005 (Karaboga 2005) for 

the optimization of numerical problems. However, the algorithm is hampered by 

initialization and parameter setting, and is easily affected by local optima. Niknaam et 

al. proposed a combined algorithm according to the k-means approach and a modified 

imperialist competitive algorithm (ICA). The article proposed a new mutation operator 

to improve the performance of the imperialist competitive method. The algorithm has 

several drawbacks such as premature convergence, falling into local minima, 

sensitivity to noise and outlier data, and is limited to the use of heuristics (Niknam, 

Taherian Fard et al. 2011).  Kao et al. introduce a combined method based on a 

combination of the Nelder-Mead simplex search, partial swarm optimization and a 

genetic algorithm (Kao, Zahara et al. 2008). However, the algorithm is still subject to 

parameter adjustments, tapping into a local optimum, and is limited to the use of 

heuristics. Some approaches attempted to select the initial cluster centres appropriately 

through the use of certain tricks (Khan and Ahmad 2004). Khan and Ahmad proposed 

an approach for selecting the initial cluster centres because the performance of the 

iterative algorithm is highly dependent on the initial cluster centre in order to escape 

from falling into the local optimum. The algorithm is based on individual attributes 

and similar patterns. Some of the drawbacks of this algorithm are that it has a problem 

in finding outlier data, is sensitive to the parameters of the algorithm, is less efficient 

and is computationally expensive.  

Most meta heuristic approaches such as Genetic Algorithm, Simulated 

Annealing, etc., are usually very slow in solving optimization problems. Recently, 
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researchers have introduced new algorithms like BA, ABC, ACO and lately, a hybrid 

version of evolutionary algorithms (MICA, k-NM-PSO, ACO-PSO, etc.) has emerged 

in the search for optimum solutions, which not only produce better results in 

comparison with other evolutionary algorithms but also converge faster (Krishna and 

Murty 1999, Firouzi, Sadeghi et al. 2010).  

However, the evolutionary-based algorithm (meta-heuristic and a hybrid of 

meta-heuristics) also suffers from several drawbacks including limited hybridization, 

sensitivity to data parameters, no routine approach to hybridization, sensitivity to 

random initialization, possibility of getting stuck in local optima, and sensitivity to the 

behaviour of algorithms. 

To overcome these drawbacks, a robust clustering algorithm based on a 

hyperheuristic algorithm (HHCA) was proposed according to the performance of a 

population-based simulated annealing algorithm combined with a genetic clustering 

algorithm. The algorithm has been used in hyperheuristic algorithms to search in the 

heuristic space for an optimal and suitable low-level heuristic methods (Burke, Kendall 

et al. 2003, Misir 2012, Mısır, Verbeeck et al. 2013).  

A hyperheuristic algorithm is a heuristic search algorithm which looks for an 

automated process, often by the inception of a machine learning strategy and a 

selection process to combine, generate and adapt several simple heuristics to solve 

computational search problems efficiently. The goal of a hyperheuristic algorithm is 

to reduce the domain knowledge in the search strategies (Ross, Marín-Blázquez et al. 

2004, Bilgin, Özcan et al. 2007, Poli and Graff 2009, Qu and Burke 2009, Burke, 

Gendreau et al. 2013, Pillay 2013, Sabar, Ayob et al. 2015). The resulting method 

must be fast and cheap for implementing, should be robust enough to handle a wide 

range of problems from different types of domains and should require less expertise in 

the heuristic approach or problem domain. 
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Figure 1.1:  overview on research 

Figure 1.1 gives an overview of the development of the algorithm and the steps 

taken in the current research.  To develop the HHCA algorithm, some pre-requisites 

had to be taken into consideration. The first pre-requisite was a set of easy and non-

parameterized low-level heuristics, which were used to search in the solution space 

and were placed in the heuristics pool.  

 

Prerequisite 
of hyper-
heuristic  

set of Low-
Level 

Heuristic

Admission 
Mechanism

selection 
mechanism

measure 
for 

heuristic 
quality
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Figure 1.2: Prerequisite of hyperheuristic 

The second prerequisite was to measure the quality of the heuristic in order to 

evaluate the low-level heuristics. The next prerequisite was to have a selection 

mechanism in the hyperheuristic algorithm that would be able to select a sequence of 

low-level heuristics that would make the greatest improvement on the solutions. The 

final prerequisite was to be able to move to acceptance in order to try to choose the 

most suitable and best solutions during the optimization process (Admission 

Mechanism). Figure 1.2 lists the prerequisites for the hyperheuristic in this research. 

The proposed method incorporated four prerequisites: (1) the introduction of a 

new algorithm for the cluster analysis based on the hyperheuristic algorithm; (2) a 

modified learning algorithm based on the learning vector quantization (LVQ); (3) a 

proposed new acceptance scenario to accept newly discovered solutions; and (4) a 

proposed low-level heuristics to search within the solution domain. 

1.3 Problem Statement 

Three main problems were addressed in this study. The first problem is the 

limitations of meta-heuristic and hybrid meta-heuristic based clustering algorithms in 

the search for solutions within the solution space. It has been proven that existing meta-

heuristic based clustering algorithms outperform traditional clustering algorithms, but 

these frequently have limitations, thus resulting in the use of several combinations of 

algorithms. This has made it necessary to have a hyperheuristic clustering algorithm 

without any limitations and with a dynamic section for the setting of parameters in 

order to increase the power of exploration and exploitation within the solution space. 

The second problem is the absence of algorithm for interpreting and validating 

the heuristics during clustering process. In some cases, it is difficult to decide whether 

the used heuristic and its performance in one hybrid algorithm are good enough 

because the theories underlying some techniques are not very elaborate. In order to 

evaluate the performance of the heuristic algorithms used, a hyperheuristic clustering 

algorithm is used to achieve the optimum solutions and results. 
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1.4 Research Questions 

The following research questions have been formulated in order to analyse the 

problems of clustering algorithms.   

1. Which strategy (i.e. heuristic and Meta-heuristic algorithms, hybrid of meta-

heuristics, and hyperheuristic algorithms) is appropriate for solving 

partitioning-based clustering problems? 

2. Which criteria (i.e. execution time, number of function evaluations, number of 

new best solutions found) should be used to compare the heuristics? 

3. Which selection method (i.e. elitist selection, random selection, tournament 

selection, and roulette wheel selection) is appropriate for selecting a suitable 

heuristic? 

4. Which solution representation (i.e. continuous solution representation or 

discrete solution representation) is suitable for representing the solutions for 

the earlier mentioned problems? 

5. Which model (i.e. dynamic programming, linear and non-linear programming) 

should be used to solve the earlier mentioned problems? 

1.5 Aim of the Research  

The aim of this study was to propose a new, robust hyperheuristic clustering 

algorithm that can produce an efficient and high quality performance across various 

low-level heuristic sets in solving generic clustering problems in order to minimize the 

dissimilarity between all objects of a cluster from the centre of gravity of the cluster 

with respect to the capacity constraints in each cluster, such that each element is 

allocated to only one cluster (hard-clustering). In addition, the purpose of this study 

was also to contribute to the combined meta-heuristic algorithms and hyperheuristic 



10 

search algorithm to find the optimum cluster centre by minimizing the distance 

between the objects and the cluster centres, and improving the scale of the clustering 

on the large dataset and finding the optimum results for the model from the data. 

1.6 Research Objectives 

The objectives of this research were defined based on the literature review, 

background of the study, and the statement of the problem. The main objectives of the 

current research were as follows: 

1. To propose efficient and robust hyperheuristic based on meta and heuristic 

algorithms by optimizing the initialization and setting of parameters 

adaptively.  

2. To obtain optimum cluster centre by introducing low level heuristics to achieve 

better results for increasing the performance of hyperheuristic algorithm.  

3. To validate stability and high performance of the proposed hyperheuristic 

clustering algorithm by identifying the optimum cluster centers using standard 

criteria. 

1.7 Scope of the Research 

This research was confined to the following scopes. The first scope was about 

the meta-heuristic and hyperheuristic algorithm, while the second scope was about the 

data clustering technique for this problem. 

1. This study used the k-means algorithm and the partition-based clustering 

algorithm, which was used as a partitioning-based clustering algorithm. 

2. The mixed and individual meta-heuristics were used in this study. 
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3. Evolutionary algorithms and clustering methods were applied for this problem 

(GA, PSO, BA, ABC, HS, SA , DE and K-means) 

4. Nineteen low-level heuristic algorithms were used to deal with clustering 

problems, where seventeen of them were existing heuristics and two of them 

were proposed heuristics. 

5. The standard case studies, artificial datasets and industrial images were used in 

order to validate the efficiency of the proposed methods and the standard 

datasets available from the UCI library.  

1.8 Significance of the Research 

Despite significant improvements in the analysis of data for a wide range of 

application areas up to now, these methodologies still need to be integrally merged and 

combined with other intelligence methods. Many experts from the fields of operational 

research, artificial-intelligence and computer science have acknowledged the need to 

develop automated systems to replace the roles of humans in such circumstances. 

The goal of a hyperheuristic algorithm is to reduce the amount of domain 

knowledge by using the abilities of low-level heuristics and the capabilities of high-

level heuristics simultaneously in the search strategies. The resulting method should 

be fast and cheap to implement, should be robust enough to handle a wide-range of 

problems from different types of domains and it require less expertise in either the 

heuristic approach or the problem domain. One of the aims of hyperheuristic 

algorithms is to increase the level of popularity of decision support strategies, perhaps 

at the expense of reduced solutions qualities when compared to tailor made meta-

heuristic strategies. A robust hyperheuristic has been proposed in order to reduce the 

gap between hyperheuristic based methodologies and tailor-made designs. 

In today’s data environment, it seems important to minimize the similarity 

between clusters and to find the best representation for each cluster simultaneously in 

order to obtain high-quality results, and to increase the similarity at the same time. By 
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implementing this approach, both of these goals (high quality results and maximum 

similarity) can be achieved and satisfied at the same time. 

One of the most important motivations in studying hyperheuristics is to create 

and build systems that can handle group of problems instead of solving just one 

problem. Hyperheuristics use heuristics (or meta-heuristics) to choose heuristics (or 

meta-heuristics). 

In hyperheuristics, the high-level approaches, depending upon the current state 

of the problem or the search conditions elects which low-level heuristic should be used 

at any given time. A hyperheuristic can generate new heuristics based on the used 

algorithms. Hyperheuristic methods can be categorized in to two most important 

classes, the first being heuristics to choose heuristics, while the second is heuristics to 

generate heuristics. In Figure 1.3 shows the summary of the justifications. 

 

Figure 1.3:  Summary of justifications 

The proposed methods have been tested by various sample problems. In 

addition, it should be noted that calculated results showed the efficiency and capability 

of the proposed solutions. Although the use of a meta-heuristic algorithm for data 

clustering with the k-means clustering method takes into consideration the problem of 

sensitivity to initial values, yet the risk of getting trapped in local optimality threatens 

the algorithm. The hyperheuristic algorithm is a global optimization method that is 

generality

• 𝑐𝑎𝑛 ℎ𝑎𝑛𝑑𝑙𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 𝑟𝑎𝑡ℎ𝑒𝑟 𝑡ℎ𝑎𝑛
𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑗𝑢𝑠𝑡 𝑜𝑛𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

selection

• 𝑢𝑠𝑒 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 𝑜𝑟 𝑚𝑒𝑡𝑎ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 𝑡𝑜 𝑐ℎ𝑜𝑜𝑠𝑒
ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 (𝑜𝑟 𝑚𝑒𝑡𝑎 − ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠)

generation

• 𝑐𝑎𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑛𝑒𝑤 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒
𝑢𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠

generality

• 𝑡𝑜 𝑟𝑎𝑖𝑠𝑒 𝑡ℎ𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑚𝑒𝑡ℎ𝑜𝑑𝑜𝑙𝑜𝑔𝑦
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appropriate for overcoming the mentioned problem. In this study, a proposed 

hyperheuristic method was developed by taking advantage of the low-level heuristics 

based on the proposed algorithm, in which the clustering of the data was selected 

properly.  

1.9 Structure of the Thesis 

This thesis consists of seven chapters, with the structure of the dissertation 

being given as follows:  

Chapter 1: This is the introduction, which gives an overview of the 

development of the methods and techniques that are applied in cluster analysis, the 

background of the study and the common problems that are usually encountered in 

cluster analysis. It also consists of the problem statement, the research questions, the 

aims of the research, the research objectives, the scope of the research, and the 

significance of the research and the justification for the thesis.  

Chapter 2: This is the literature review, which is made up of three main parts 

based on clustering, meta-heuristic and hyperheuristic algorithms that explored the 

concept of clustering methods, heuristic, meta-heuristic and hyperheuristic algorithms, 

the validation of clusters, and the interpretation and detection of optimum cluster 

centers. This chapter also contains a review of previous works related to clustering, 

meta-heuristic and hyperheuristic algorithms.  

 Chapter 3: This chapter presents the Research Methodology, which explains 

the approach that was taken to solve clustering problems, and gives a detailed 

description of the proposed hyperheuristic clustering algorithm. In addition, the 

experimental schemas and procedures are also discussed in this chapter.  

Chapter 4: This chapter, titled ‘Proposed Hyperheuristic Clustering Algorithm 

and Hybrid Algorithms’, describes the basic and the main proposed algorithms, and 

gives a detailed description of the proposed hybrid and hyperheuristic clustering 

algorithms.  
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Chapter 5: This chapter presents an analysis of the results obtained on several 

datasets (i.e. artificial datasets and benchmark datasets) and image data (i.e. industrial 

and benchmark) with several criteria (i.e. accuracy, precision, F-measure, G-measure, 

variance of solutions, standard deviation, Rand index, etc.). This chapter also discusses 

in detail the simulation results for each dataset.  

Chapter 6: This chapter, titled ‘Conclusions and Future Work’, provides a 

summary of the work, the contribution of the research, its extension and suggestions 

for future works, and the final remarks.  
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