INTRODUCTION TO PARTICLE PHYSICS

From atoms to quarks
 An elementary historical review of concepts, discoveries and achievements

Recommended reading:
D.H. Perkins, Introduction to High Energy Physics
F.E. Close, The cosmic onion

Luigi DiLella, Summer Student Program 2004

The "elementary particles" in the $19^{\text {th }}$ century:

The Atoms of the 92 Elements

92. Uranium

Estimate of a typical atomic radius

Number of atoms $/ \mathrm{cm}^{3}: \quad n=\frac{N_{A}}{A} \rho \quad\left(\begin{array}{l}N_{\mathrm{A}} \approx 6 \times 10^{23} \mathrm{~mol}^{-1}(\text { Avogadro costant }) \\ A: \text { molar mass } \\ \rho: \text { density }\end{array}\right)$
Atomic volume: $\mathrm{V}=\frac{4}{3} \pi R^{3}$
Packing fraction: $\boldsymbol{f} \approx 0.52-0.74$
$\longmapsto R=\left(\frac{3 f}{4 \pi n}\right)^{1 / 3} \quad \begin{array}{r}\text { Example: } \operatorname{Iron}(\mathbf{A}=55.8 \mathrm{~g} ; \rho=7.87 \mathrm{~g} \\ R=(1.1-1.3) \times 10^{-8} \mathrm{~cm}\end{array}$

1894 - 1897: Discovery of the electron

Study of "cathode rays": electric current in tubes at very low gas pressure ("glow discharge")
Measurement of the electron mass: $\boldsymbol{m}_{\mathrm{e}} \approx \mathrm{M}_{\mathrm{H}} / 1836$ "Could anything at first sight seem more impractical than a body which is so small that its mass is an insignificant fraction of the mass of an atom of hydrogen?" (J.J. Thomson)

J.J. Thomson

\longrightarrow ATOMS ARE NOT ELEMENTARY

Thomson's atomic model:

- Electrically charged sphere
- Radius $\sim 10^{-8} \mathrm{~cm}$
- Positive electric charge

- Electrons with negative electric charge embedded in the sphere

1896: Discovery of natural radioactivity (Henri Becquerel)

1909 - 13: Rutherford's scattering experiments

Ernest Rutherford Discovery of the atomic nucleus

Henri Becquerel

$\underline{\alpha}$-particles: nuclei of Helium atoms spontaneously emitted by heavy radioactive isotopes Typical α - particle velocity $\approx 0.05 c \quad(c:$ speed of light $)$

Expectations for α-atom scattering

α - atom scattering at low energies is dominated by Coulomb interaction

α - particles with impact parameter $=b$ "see" only electric charge within sphere of radius $=\boldsymbol{b}$ (Gauss theorem for forces proportional to \boldsymbol{r}^{-2})

For Thomson's atomic model the electric charge "seen" by the α-particle is zero, independent of impact parameter

\Rightarrow no significant scattering at large angles is expected

Rutherford's observation:

significant scattering of α - particles at large angles, consistent with scattering expected for a sphere of radius \approx few $\times 10^{-13} \mathrm{~cm}$ and electric charge $=\boldsymbol{Z e}$, with $\boldsymbol{Z}=79$ (atomic number of gold) and $\boldsymbol{e}=\mid$ charge of the electron \mid
an atom consists of
a positively charged nucleus surrounded by a cloud of electrons

Nuclear radius $\approx 10^{-13} \mathrm{~cm} \approx 10^{-5} \mathrm{x}$ atomic radius
Mass of the nucleus \approx mass of the atom
(to a fraction of 1%)

Two questions:

- Why did Rutherford need α - particles to discover the atomic nucleus?
- Why do we need huge accelerators to study particle physics today?

Answer to both questions from basic principles of Quantum Mechanics

Observation of very small objects using visible light

Aperture diameter: $\boldsymbol{D}=20 \mu \mathrm{~m}$ Focal length: 20 cm
Observation of light diffraction, interpreted as evidence that light consists of waves since the end of the $17^{\text {th }}$ century Angular aperture of the first circle (before focusing):

$$
\alpha=1.22 \lambda / D
$$

Opaque disk, diam. $10 \mu \mathrm{~m}$ in the centre
Presence of opaque disk is detectable

Opaque disk of variable diameter

no opaque disk

The presence of the opaque disk in the centre is detectable if its diameter is larger than the wavelength λ of the light
The RESOLVING POWER of the observation depends on the wavelength λ
Visible light: not enough resolution to see objects smaller than $0.2-0.3 \mu \mathrm{~m}$

Opaque screen with two circular apertures

Image obtained with both apertures open simultaneously

aperture diameter: $10 \mu \mathrm{~m}$ distance between centres: $15 \mu \mathrm{~m}$

Image obtained by shutting one aperture alternatively for 50% of the exposure time

Photoelectric effect: evidence that light consists of particles

Observation of a threshold effect as a function of the frequency of the light impinging onto the electrode at negative voltage (cathode):
Frequency $v<v_{0}$: electric current = zero, independent of luminous flux;
Frequency $v>v_{0}$: current >0, proportional to luminous flux
INTERPRETATION (A. Einstein):

- Light consists of particles ("photons")
- Photon energy proportional to frequency:

$$
E=h \mathrm{~V} \quad\left(\text { Planck constant } h=6.626 \times 10^{-34} \mathrm{~J}\right. \text { s) }
$$

- Threshold energy $E_{0}=h \nu_{0}$: the energy needed to extract an electron from an atom (depends on the cathode material)

Albert Einstein

Repeat the experiment with two circular apertures using a very weak light source Luminous flux = 1 photon /second (detectable using modern, commercially available photomultiplier tubes)
Need very long exposure time
aperture diameter: $10 \mu \mathrm{~m}$ distance between centres: $15 \mu \mathrm{~m}$

Question: which aperture will photons choose?

Answer: diffraction pattern corresponds to both apertures simultaneously open, independent of luminous flux

Photons have both particle and wave properties simultaneously It is impossible to know which aperture the photon traversed
The photon can be described as a coherent superposition of two states

1924: De Broglie's principle

Not only light, but also matter particles possess both the properties of waves and particles
Relation between wavelength and momentum:

$$
\lambda=\frac{h}{p}
$$

h : Planck constant
$p=m \mathrm{v}$: particle momentum

Hypothesis soon confirmed by the observation of diffraction pattern in the scattering of electrons from crystals, confirming the wave behaviour of electrons (Davisson and Germer, 1927)

Wavelength of the α - particles used by Rutherford in the discovery of the atomic nucleus:

$$
\lambda=\frac{h}{m_{\alpha} \mathrm{v}} \approx \frac{6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}}{\left(6.6 \times 10^{-27} \mathrm{~kg}\right) \times\left(1.5 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right)} \approx 6.7 \times 10^{-15} \mathrm{~m}=6.7 \times 10^{-13} \mathrm{~cm}
$$

Typical tools to study objects of very small dimensions

	Resolving power	
Optical microscopes	Visible light	$\sim 10^{-4} \mathrm{~cm}$
Electron microscopes	Low energy electrons	$\sim 10^{-7} \mathrm{~cm}$
Radioactive sources	α-particles	$\sim 10^{-12} \mathrm{~cm}$
Accelerators	High energy electrons, protons	$\sim 10^{-16} \mathrm{~cm}$

Units in particle physics

Energy

1 electron-Volt (eV):
the energy of a particle with electric charge $=|e|$, initially at rest, after acceleration by a difference
of electrostatic potential $=1$ Volt
($e=1.60 \times 10^{-19} \mathrm{C}$)

$$
1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
$$

Multiples:

$$
\begin{array}{ll}
1 \mathrm{keV}=10^{3} \mathrm{eV} ; & 1 \mathrm{MeV}=10^{6} \mathrm{eV} \\
1 \mathrm{GeV}=10^{9} \mathrm{eV} ; & 1 \mathrm{TeV}=10^{12} \mathrm{eV}
\end{array}
$$

Energy of a proton in the LHC (in the year 2007):
$7 \mathrm{TeV}=1.12 \times 10^{-6} \mathrm{~J}$
(the same energy of a body of mass $=1 \mathrm{mg}$ moving at speed $=1.5 \mathrm{~m} / \mathrm{s}$)

Energy and momentum for relativistic particles

 (velocity v comparable to c)Speed of light in vacuum $c=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\underline{\text { Total energy: }} E=m c^{2}=\frac{m_{0} c^{2}}{\sqrt{1-(\mathrm{v} / c)^{2}}} \quad\binom{\boldsymbol{m}:$ relativistic mass }{$\boldsymbol{m}_{0}:$ rest mass }
Expansion in powers of $(\mathrm{v} / c): \quad E=m_{0} c^{2}+\frac{1}{2} m_{0} \mathrm{v}^{2}+\ldots$

Momentum: $\quad p=m \mathrm{v}=\frac{m_{0} \mathrm{v}}{\sqrt{1-(\mathrm{v} / c)^{2}}}$

$$
\frac{p c}{E}=\frac{\mathrm{v}}{c} \equiv \beta
$$

$E^{2}-\boldsymbol{p}^{2} \boldsymbol{c}^{2}=\left(\boldsymbol{m}_{0} \boldsymbol{c}^{2}\right)^{2}$ "relativistic invariant"

(same value in all reference frames)
Special case: the photon ($\mathrm{v}=\boldsymbol{c}$ in vacuum)

$$
\begin{aligned}
& E=h \nu \\
& \lambda=h / p
\end{aligned} \quad \square \quad \begin{aligned}
& E / p=v \lambda=c \text { (in vacuum) } \\
& E^{2}-p^{2} c^{2}=0 \\
& \text { photon rest mass } m_{\gamma}=0
\end{aligned}
$$

Momentum units: eV / c (or $\mathrm{MeV} / c, \mathrm{GeV} / c, \ldots$)
 Mass units: $\mathrm{eV} / \mathrm{c}^{2}$ (or $\mathrm{MeV} / \mathrm{c}^{2}, \mathrm{GeV} / c^{2}, \ldots$)

Numerical example: electron with $\mathbf{v}=0.99 c$
Rest mass: $m_{\mathrm{e}}=0.511 \mathrm{MeV} / c^{2}$
$\gamma \equiv \frac{1}{\sqrt{1-(\mathrm{v} / c)^{2}}}=7.089 \quad$ (often called "Lorentz factor")
Total energy: $E=\gamma m_{\mathrm{e}} c^{2}=7.089 \times 0.511=3.62 \mathrm{MeV}$
Momentum: $p=(\mathrm{v} / c) \times(E / c)=0.99 \times 3.62=3.58 \mathrm{MeV} / c$

First (wrong) ideas about nuclear structure (before 1932)

Observations

- Mass values of light nuclei \approx multiples of proton mass (to few \%) (proton \equiv nucleus of the hydrogen atom)
- β decay: spontaneous emission of electrons by some radioactive nuclei

Hypothesis: the atomic nucleus is a system of protons and electrons strongly bound together
Nucleus of the atom with atomic number Z and mass number A :
a bound system of A protons and $(A-Z)$ electrons
Total electric charge of the nucleus $=[A-(A-Z)] e=Z e$

Problem with this model: the "Nitrogen anomaly"

Spin of the Nitrogen nucleus $=1$
Spin: intrinsic angular momentum of a particle (or system of particles)
In Quantum Mechanics only integer or half-integer multiples of $\boldsymbol{\hbar} \equiv(h / 2 \pi)$ are possible:

- integer values for orbital angular momentum (e.g., for the motion of atomic electrons around the nucleus)
- both integer and half-integer values for spin

Electron, proton spin $=1 / 2 \hbar$ (measured)
Nitrogen nucleus $(A=14, Z=7)$: 14 protons +7 electrons $=21 \mathrm{spin} 1 / 2$ particles
TOTAL SPIN MUST HAVE HALF-INTEGER VALUE
Measured spin = 1 (from hyperfine splitting of atomic spectral lines)

DISCOVERY OF THE NEUTRON (Chadwick, 1932)

Neutron: a particle with mass \approx proton mass
but with zero electric charge
Solution to the nuclear structure problem:
Nucleus with atomic number Z and mass number A :
a bound system of Z protons and $(A-Z)$ neutrons

James Chadwick

Nitrogen anomaly: no problem if neutron spin $=1 / 2 \hbar$
Nitrogen nucleus ($\mathrm{A}=14, \mathrm{Z}=7$): 7 protons, 7 neutrons $=14$ spin $1 / 2$ particles
\Rightarrow total spin has integer value
Neutron source in Chadwick's experiments: a ${ }^{210} \mathrm{Po}$ radioactive source ($5 \mathrm{MeV} \alpha$-particles) mixed with Beryllium powder \Rightarrow emission of electrically neutral radiation capable of traversing several centimetres of Pb :

$$
\underset{\uparrow}{\uparrow_{\text {- particle }}^{4} \mathbf{H e}_{2}}+{ }^{9} \mathbf{B e}_{4} \rightarrow{ }^{12} \mathbf{C}_{6}+\text { neutron }
$$

Basic principles of particle detection

Passage of charged particles through matter

Interaction with atomic electrons \longrightarrow ionization

(neutral atom \rightarrow ion $^{+}+$free electron)
\longrightarrow excitation of atomic energy levels
(de-excitation \rightarrow photon emission)
Ionization + excitation of atomic energy levels \longrightarrow energy loss
Mean energy loss rate $-d E / d x$

- proportional to (electric charge) ${ }^{2}$ of incident particle
- for a given material, function only of incident particle velocity
- typical value at minimum:
$-d E / d x=1-2 \mathrm{MeV} /\left(\mathrm{g} \mathrm{cm}^{-2}\right)$
NOTE: traversed thickness $(d x)$ is given in $\mathrm{g} / \mathrm{cm}^{2}$ to be independent of material density (for variable density materials,
 such as gases) - multiply $d E / d x$ by density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ to obtain $d E / d x$ in $\mathrm{MeV} / \mathrm{cm}$

Residual range

Residual range of a charged particle with initial energy E_{0}

 losing energy only by ionization and atomic excitation:$$
R=\int_{0}^{R} d x=\int_{E_{0}}^{M c^{2}} \frac{1}{d E / d x} d E=M F(\mathrm{v}) \quad\left(\begin{array}{c}
M: \text { particle rest mass } \\
\mathrm{v}: \text { initial velocity } \\
E_{0}=M c^{2} / \sqrt{1-(\mathrm{v} / c)^{2}}
\end{array}\right)
$$

\Rightarrow the measurement of \mathbf{R} for a particle of known rest mass \mathbf{M} is a measurement of the initial velocity
Passage of neutral particles through matter: no interaction with atomic electrons \Rightarrow detection possible only in case of collisions producing charged particles

Neutron discovery:

observation and measurement of nuclear recoils in an "expansion chamber" filled with Nitrogen at atmospheric pressure

> An old gaseous detector based on an expanding vapour; ionization acts as seed for the formation of liquid drops. Tracks can be photographed as strings of droplets

Plate containing free hydrogen (paraffin wax)

Recoiling Nitrogen nuclei
proton tracks ejected from paraffin wax
Assume that incident neutral radiation consists of particles of mass \boldsymbol{m} moving with velocities $v<V_{\text {max }}$
Determine max. velocity of recoil protons $\left(U_{p}\right)$ and Nitrogen nuclei $\left(U_{N}\right)$
from max. observed range

$$
\boldsymbol{U}_{\mathbf{p}}=\frac{2 \boldsymbol{m}}{\boldsymbol{m}+\boldsymbol{m}_{\mathbf{p}}} \mathbf{V}_{\max } \quad \boldsymbol{U}_{\mathbf{N}}=\frac{2 \boldsymbol{m}}{\boldsymbol{m}+\boldsymbol{m}_{\mathbf{N}}} \mathbf{V}_{\max }\left(\begin{array}{l}
\text { From non-relativistic energy-momentum } \\
\text { conservation } \\
\boldsymbol{m}_{\mathbf{p}}: \text { proton mass; } \boldsymbol{m}_{\mathrm{N}}: \text { Nitrogen nucleus mass }
\end{array}\right)
$$

$\longmapsto \frac{U_{\mathrm{p}}}{U_{\mathrm{N}}}=\frac{m+m_{\mathrm{N}}}{m+m_{\mathrm{p}}}$ From measured ratio U_{p} / U_{N} and known values of m_{p}, m_{N} determine neutron mass: $m \equiv m_{\mathrm{n}} \approx m_{\mathrm{p}}$

Present mass values : $m_{\mathrm{p}}=938.272 \mathrm{MeV} / \boldsymbol{c}^{2} ; \boldsymbol{m}_{\mathrm{n}}=939.565 \mathrm{MeV} / \mathrm{c}^{2}$

Pauli's exclusion principle

In Quantum Mechanics the electron orbits around the nucleus are "quantized": only some specific orbits (characterized by integer quantum numbers) are possible.
Example: allowed orbit radii and energies for the Hydrogen atom

$$
\begin{array}{ll}
R_{n}=\frac{4 \pi \varepsilon_{0} \hbar^{2} n^{2}}{m e^{2}} \approx 0.53 \times 10^{-10} n^{2}[\mathrm{~m}] \\
E_{n}=-\frac{m e^{4}}{2\left(4 \pi \varepsilon_{0}\right)^{2} \hbar^{2} n^{2}} \approx-\frac{13.6}{n^{2}}[\mathrm{eV}] \quad\binom{\boldsymbol{m}=\boldsymbol{m}_{\mathrm{e}} \boldsymbol{m}_{\mathbf{p}} /\left(\boldsymbol{m}_{\mathrm{e}}+\boldsymbol{m}_{\mathbf{p}}\right)}{n=1,2, \ldots . . .}
\end{array}
$$

In atoms with $Z>2$ only two electrons are found in the innermost orbit - WHY?

ANSWER (Pauli, 1925): two electrons (spin = $1 / 2$) can never be

 in the same physical stateHydrogen ($Z=1$) Helium ($Z=2$)

Lithium ($Z=3$)

Wolfgang Pauli

Pauli's exclusion principle applies to all particles with half-integer spin (collectively named Fermions)

ANTIMATTER

Discovered "theoretically" by P.A.M. Dirac (1928)

Dirac's equation: a relativistic wave equation for the electron

Two surprising results:

P.A.M. Dirac

- Motion of an electron in an electromagnetic field: presence of a term describing (for slow electrons) the potential energy of a magnetic dipole moment in a magnetic field
\Rightarrow existence of an intrinsic electron magnetic dipole moment opposite to spin

$$
\mu_{e}=\frac{e \hbar}{2 m_{e}} \approx 5.79 \times 10^{-5}[\mathrm{eV} / \mathrm{T}]
$$

- For each solution of Dirac's equation with electron energy $\boldsymbol{E}>0$ there is another solution with $E<0$ What is the physical meaning of these "negative energy" solutions?

Generic solutions of Dirac's equation: complex wave functions $\Psi(\vec{r}, t)$
In the presence of an electromagnetic field, for each negative-energy solution the complex conjugate wave function Ψ^{*} is a positive-energy solution of Dirac's equation for an electron with opposite electric charge ($+\boldsymbol{e}$)

Dirac's assumptions:

- nearly all electron negative-energy states are occupied and are not observable.
- electron transitions from a positive-energy to an occupied negative-energy state are forbidden by Pauli's exclusion principle.
- electron transitions from a positive-energy state to an empty negative-energy state are allowed \Rightarrow electron disappearance. To conserve electric charge, a positive electron (positron) must disappear $\Rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
- electron transitions from a negative-energy state to an empty positive-energy state are also allowed \Rightarrow electron appearance. To conserve electric charge, a positron must appear \Rightarrow creation of an $\mathrm{e}^{+} \mathrm{e}^{-}$pair.

\Rightarrow empty electron negative-energy states describe positive energy states of the positron

Dirac's perfect vacuum: a region where all positive-energy states are empty and all negative-energy states are full.

Positron magnetic dipole moment $=\mu_{\mathrm{e}}$ but oriented parallel to positron spin

Experimental confirmation of antimatter
 (C.D. Anderson, 1932)

Detector: a Wilson cloud - chamber (visual detector based on a gas volume containing vapour close to saturation) in a magnetic field, exposed to cosmic rays

Measure particle momentum and sign of electric charge from magnetic curvature
Lorentz force $\vec{f}=e \overrightarrow{\mathrm{~V}} \times \vec{B} \longrightarrow$ projection of the particle trajectory in a plane perpendicular to $\overrightarrow{\boldsymbol{B}}$ is a circle
p_{\perp} : momentum component perpendicular to magnetic field direction

NOTE: impossible to distinguish between positively and negatively charged particles going in opposite directio

\Rightarrow need an independent determination of the particle direction of motion

Neutrinos

A puzzle in β-decay: the continuous electron energy spectrum

First measurement by Chadwick (1914)

Radium E: ${ }^{210} \mathbf{B i}_{83}$
(a radioactive isotope
produced in the decay chain
of ${ }^{238} \mathrm{U}$)

If β - decay is $(A, Z) \rightarrow(A, Z+1)+\mathrm{e}^{-}$, then the emitted electron is mono-energetic:
electron total energy $E=[M(A, Z)-M(A, Z+1)] c^{2}$
(neglecting the kinetic energy of the recoil nucleus $1 / 2 p^{2} / M(A, Z+1) \ll E$)
Several solutions to the puzzle proposed before the 1930's (all wrong), including violation of energy conservation in β - decay

December 1930: public letter sent by W. Pauli to a physics meeting in Tübingen

Dear Radioactive Ladies and Gentlemen, ...because of the "wrong" statistics of the N and ${ }^{6} \mathrm{Li}$ nuclei and the continuous β-spectrum, I have hit upon a desperate remedy to save the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have spin $1 / 2$ and obey the exclusion principle The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous β-spectrum would then become understandable by the assumption that in β-decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and electron is constant.

....... For the moment, however, I do not dare to publish anything on this idea So, dear Radioactives, examine and judge it. Unfortunately I cannot appear in Tübingen personally, since I am indispensable here in Zürich because of a ball on the night of 6/7 December.
W. Pauli

NOTES

- Pauli's neutron is a light particle \Rightarrow not the neutron that will be discovered by Chadwick one year later
- As everybody else at that time, Pauli believed that if radioactive nuclei emit particles, these particles must exist in the nuclei before emission

Theory of β-decay (E. Fermi, 1932-33)

β^{-}decay: $\mathbf{n} \rightarrow \mathbf{p}+\mathbf{e}^{-}+\overline{\mathbf{v}}$
$\boldsymbol{\beta}^{+}$decay: $\mathbf{p} \rightarrow \mathbf{n}+\mathbf{e}^{+}+\boldsymbol{v}$ (e.g., ${ }^{14} \mathrm{O}_{8} \rightarrow{ }^{14} \mathrm{~N}_{7}+\mathrm{e}^{+}+\mathrm{v}$)
v : the particle proposed by Pauli (named "neutrino" by Fermi)

$\overline{\mathrm{v}}$: its antiparticle (antineutrino)
Enrico Fermi

Fermi's theory: a point interaction among four spin $1 / 2$ particles, using the mathematical formalism of creation and annihilation operators invented by Jordan
\Rightarrow particles emitted in β - decay need not exist before emission they are "created" at the instant of decay

Prediction of β - decay rates and electron energy spectra as a function of only one parameter: Fermi coupling constant G_{F} (determined from experiments)

Energy spectrum dependence on neutrino mass μ (from Fermi's original article, published in German on Zeitschrift für Physik, following rejection of the English version by Nature)
Measurable distortions for $\mu>0$ near the end-point (E_{0} : max. allowed electron energy)

Neutrino detection

Prediction of Fermi's theory: $\overline{\mathbf{v}}+\mathbf{p} \rightarrow \mathbf{e}^{+}+\mathbf{n}$
$\bar{v}-p$ interaction probability in thickness $d x$ of hydrogen-rich material (e.g., $\mathrm{H}_{2} \mathrm{O}$)

Target: surface S, thickness $d x$ containing n protons cm^{-3}
$\overline{\mathbf{v}} \mathbf{p}$ interaction rate $=\boldsymbol{\Phi} \boldsymbol{S} \boldsymbol{n} \boldsymbol{\sigma} d \boldsymbol{x}$ interactions per second
$\sigma: \bar{v}$ - proton cross-section (effective proton area, as seen by the incident \bar{v})
$\bar{v} p$ interaction probability $=n \sigma d x=d x / \lambda$
Interaction mean free path: $\lambda=1 / n \sigma$
Interaction probability for finite target thickness $T=1-\exp (-T / \lambda)$ $\sigma(\bar{v} p) \approx 10^{-43} \mathrm{~cm}^{2}$ for $3 \mathrm{MeV} \bar{v} \Rightarrow \lambda \approx \mathbf{1 5 0}$ light-years of water!
Interaction probability $\approx T / \lambda$ very small $\left(\sim 10^{-18}\right.$ per metre $\left.H_{2} \mathrm{O}\right)$
\Rightarrow need very intense sources for antineutrino detection

Nuclear reactors: very intense antineutrino sources
Average fission: $\mathrm{n}+{ }^{235} \mathrm{U}_{92} \rightarrow(\underbrace{\left.A_{1}, Z\right)+\left(A_{2}, 92-Z\right.}_{\text {nuclei with }})+2.5$ free neutrons +200 MeV
large neutron excess
\longrightarrow a chain of β decays with very short lifetimes:
$(A, Z) \underset{\mathrm{e}^{-} \overline{\mathrm{v}}}{\longrightarrow}(A, Z+1) \underset{\mathrm{e}^{-} \overline{\mathrm{v}}}{\longrightarrow}(A, Z+2) \xrightarrow[\mathrm{e}^{-} \overline{\mathrm{v}}]{\longrightarrow} \quad \cdots \quad$ (until a stable or long lifetime
On average, $6 \bar{v}$ per fission
$\overline{\mathrm{V}}$ production rate $=\frac{6 P_{t}}{200 \mathrm{MeV} \times \underbrace{1.6 \times 10^{-13}}_{\begin{array}{c}\text { conversion factor } \\ \text { ev } \rightarrow \mathrm{J}\end{array}}}=1.87 \times 10^{11} P_{t} \overline{\mathrm{~V}} / \mathrm{s}$
$\boldsymbol{P}_{\boldsymbol{t}}:$ reactor thermal power $[\mathbf{W}] \quad$
For a typical reactor: $\boldsymbol{P}_{\boldsymbol{t}}=3 \times 10^{9} \mathbf{W} \Rightarrow 5.6 \times 10^{20} \overline{\mathrm{v}} / \mathrm{s}$ (isotropic) Continuous \bar{v} energy spectrum - average energy $\sim 3 \mathrm{MeV}$

First neutrino detection

(Reines, Cowan 1953)

$$
\overline{\mathbf{v}}+\mathbf{p} \rightarrow \mathbf{e}^{+}+\mathbf{n}
$$

- detect $0.5 \mathrm{MeV} \gamma$-rays from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ ($t=0$)
- neutron "thermalization" followed by capture in Cd nuclei \Rightarrow emission of delayed γ-rays (average delay $\sim 30 \mu \mathrm{~s}$)

Event rate at the Savannah River nuclear power plant:
3.0 ± 0.2 events / hour
(after subracting event rate measured with reactor OFF)
in agreement with expectations

COSMIC RAYS

- Discovered by V.F. Hess in the 1910's by the observation of the increase of radioactivity with altitude during a balloon flight
- Until the late 1940 's, the only existing source of high-energy particles

Composition of cosmic rays at sea level - two main components

- Electromagnetic "showers", consisting of many $\mathrm{e}^{ \pm}$and γ-rays, mainly originating from:
$\gamma+$ nucleus $\rightarrow \mathrm{e}^{+} \mathrm{e}^{-}+$nucleus (pair production);
$\mathrm{e}^{ \pm}+$nucleus $\rightarrow \mathrm{e}^{ \pm}+\gamma+$ nucleus ("bremsstrahlung")
The typical mean free path for these processes
("radiation length", x_{0}) depends on Z.
For $\mathrm{Pb}(Z=82) x_{0}=0.56 \mathrm{~cm}$
Thickness of the atmosphere $\approx 27 x_{0}$
- Muons ($\mu^{ \pm}$) capable of traversing as much as $\mathbf{1 m}$ of $\mathbf{P b}$ without interacting; tracks observed in cloud chambers in the 1930's.
Determination of the mass by simultaneous measurement of momentum $\boldsymbol{p}=\boldsymbol{m v}\left(1-\mathbf{v}^{2} / \boldsymbol{c}^{2}\right)^{-1 / 2}($ track curvature in magnetic field) and velocity \mathbf{v} (ionization):

$$
m_{\mu}=105.66 \mathrm{MeV} / c^{2} \approx 207 m_{\mathrm{e}}
$$

Cloud chamber image of an electromagnetic shower. Pb plates, each 1.27 cm thick

> Muon decay
> $\mu^{ \pm} \rightarrow \mathrm{e}^{ \pm}+\mathrm{v}+\overline{\mathrm{v}}$

Decay electron momentum distribution

Cosmic ray muon stopping in a cloud chamber and decaying to an electron

Muon spin $=1 / 2$

Muon lifetime at rest: $\tau_{\mu}=2.197 \times 10^{-6} \mathrm{~s} \equiv 2.197 \mu \mathrm{~s}$

Muon decay mean free path in flight:

$$
\lambda_{\text {decay }}=\frac{\mathrm{v} \tau_{\mu}}{\sqrt{1-(\mathrm{v} / c)^{2}}}=\frac{p \tau_{\mu}}{m_{\mu}}=\frac{p}{m_{\mu} c} \tau_{\mu} c \quad\binom{p: \text { muon momentum }}{\tau_{\mu} c \approx 0.66 \mathrm{~km}}
$$

\Rightarrow muons can reach the Earth surface after a path $\geq \mathbf{1 0} \mathbf{~ k m}$ because the decay mean free path is stretched by the relativistic time expansion

Particle interactions (as known until the mid 1960's)

In order of increasing strength:

- Gravitational interaction (all particles)

Totally negligible in particle physics
Example: static force between electron and proton at distance D
Gravitational: $f_{G}=G_{N} \frac{m_{e} m_{p}}{D^{2}} \quad$ Electrostatic: $f_{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{D^{2}}$
Ratio $f_{\mathrm{G}} / f_{\mathrm{E}} \approx 4.4 \times 10^{-40}$

- Weak interaction (all particles except photons)

Responsible for β decay and for slow nuclear fusion reactions in the star core Example: in the core of the Sun ($\left.T=15.6 \times 10^{6}{ }^{\circ} \mathrm{K}\right) \quad 4 \mathrm{p} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{e}^{+}+2 v$
Solar neutrino emission rate $\sim 1.84 \times 10^{38}$ neutrinos / s
Flux of solar neutrinos on Earth $\sim 6.4 \times 10^{10}$ neutrinos $\mathrm{cm}^{-2} \mathbf{s}^{-1}$
Very small interaction radius $R_{\text {int }}$ (max. distance at which two particles interact)
($R_{\text {int }}=0$ in the original formulation of Fermi's theory)

- Electromagnetic interaction (all charged particles)

Responsible for chemical reactions, light emission from atoms, etc.
Infinite interaction radius
(example: the interaction between electrons in transmitting and receiving antennas)

- Strong interaction (neutron, proton, NOT THE ELECTRON!)

Responsible for keeping protons and neutrons together in the atomic nucleus Independent of electric charge
Interaction radius $R_{\text {int }} \approx 10^{-13} \mathrm{~cm}$

In Relativistic Quantum Mechanics static fields of forces DO NOT EXIST ;

 the interaction between two particles is "transmitted" by intermediate particles acting as "interaction carriers"Example: electron - proton scattering (an effect of the electromagnetic interaction) is described as a two-step process: 1) incident electron \rightarrow scattered electron + photon

$$
\text { 2) photon + incident proton } \rightarrow \text { scattered proton }
$$

The photon (γ) is the carrier of the electromagnetic interaction

> In the electron - proton centre-of-mass system

Energy - momentum conservation:

$$
\left.\begin{array}{rl}
E_{\gamma} & =0 \\
\vec{p}_{\gamma} & =\vec{p}-\vec{p}, \quad(|\vec{p}|=\mid \vec{p}
\end{array}\right)
$$

"Mass" of the intermediate photon: $Q^{2} \equiv E_{\gamma}{ }^{2}-\boldsymbol{p}_{\gamma}{ }^{2} c^{2}=-2 \boldsymbol{p}^{2} \boldsymbol{c}^{2}(1-\cos \theta)$
The photon is in a VIRTUAL state because for real photons $E_{\gamma}{ }^{2}-p_{\gamma}{ }^{2} c^{2}=0$
(the mass of real photons is ZERO) - virtual photons can only exist for a very short time interval thanks to the "Uncertainty Principle"

The Uncertainty Principle

CLASSICAL MECHANICS

Position and momentum of a particle can be measured independently and simultaneously with arbitrary precision

QUANTUM MECHANICS

Measurement perturbs the particle state \Rightarrow position and momentum measurements are correlated:

$$
\Delta x \Delta p_{x} \approx \hbar \quad \text { (also for } y \text { and } z \text { components) }
$$

Similar correlation for energy and time measurements:

$$
\Delta E \Delta t \approx \hbar
$$

Quantum Mechanics allows a violation of energy conservation by an amount ΔE for a short time $\Delta t \approx \hbar / \Delta E$
Numerical example: $\Delta E=1 \mathrm{MeV} \longrightarrow \Delta t \approx 6.6 \times 10^{-22} \mathrm{~s}$

1937: Theory of nuclear forces (H. Yukawa)

Existence of a new light particle ("meson")
as the carrier of nuclear forces
Relation between interaction radius and meson mass m :

$$
R_{\mathrm{int}}=\frac{\hbar}{m c} \quad \begin{aligned}
& m c^{2} \approx 200 \mathrm{MeV} \\
& \text { for } R_{\mathrm{int}} \approx 10^{-13} \mathrm{~cm}
\end{aligned}
$$

Hideki Yukawa

Yukawa's meson initially identified with the muon - in this case μ^{-}stopping in matter should be immediately absorbed by nuclei \Rightarrow nuclear breakup (not true for stopping μ^{+}because of Coulomb repulsion - μ^{+}never come close enough to nuclei, while μ^{-}form "muonic" atoms)

Experiment of Conversi, Pancini, Piccioni (Rome, 1945):

study of μ^{-}stopping in matter using μ^{-}magnetic selection in the cosmic rays
In light material $(Z \leq 10)$ the μ^{-}decays mainly to electron (just as μ^{+})
In heavier material, the μ^{-}disappears partly by decaying to electron, and partly by nuclear capture (process later understood as $\mu^{-}+\mathbf{p} \rightarrow \mathbf{n}+v$). However, the rate of nuclear captures is consistent with the weak interaction.
the muon is not Yukawa's meson

1947: Discovery of the π - meson (the "real" Yukawa particle)

Observation of the $\pi^{+} \rightarrow \mu^{+} \rightarrow \mathrm{e}^{+}$decay chain in nuclear emulsion exposed to cosmic rays at high altitudes

Nuclear emulsion: a detector sensitive to ionization with $\sim 1 \mu \mathrm{~m}$ space resolution (AgBr microcrystals suspended in gelatin)

In all events the muon has a fixed kinetic energy (4.1 MeV, corresponding to a range of $\sim 600 \mu \mathrm{~m}$ in nuclear emulsion) \Rightarrow two-body decay
$m_{\pi}=139.57 \mathrm{MeV} / \mathrm{c}^{2} ;$ spin $=0$
Dominant decay mode: $\pi^{+} \rightarrow \mu^{+}+v$
(and $\pi^{-} \rightarrow \mu^{-}+\bar{v}$)
Mean life at rest: $\tau_{\pi}=2.6 \times 10^{-8} \mathbf{s}=26 \mathrm{~ns}$
π^{-}at rest undergoes nuclear capture, as expected for the Yukawa particle
A neutral $\pi-\operatorname{meson}\left(\pi^{\circ}\right)$ also exists:
$\mathrm{m}\left(\pi^{\circ}\right)=134.98 \mathrm{MeV} / c^{2}$
Decay: $\pi^{\circ} \rightarrow \gamma+\gamma$, mean life $=8.4 \times 10^{-17} \mathrm{~s}$ π - mesons are the most copiously produced particles in proton - proton and proton - nucleus
 collisions at high energies

CONSERVED QUANTUM NUMBERS

Why is the free proton stable?

Possible proton decay modes (allowed by all known conservation laws: energy - momentum, electric charge, angular momentum):

$$
\begin{aligned}
& \mathbf{p} \rightarrow \pi^{\circ}+\mathbf{e}^{+} \\
& \mathbf{p} \rightarrow \pi^{\circ}+\mu^{+} \\
& \mathbf{p} \rightarrow \pi^{+}+v
\end{aligned}
$$

No proton decay ever observed - the proton is STABLE
Limit on the proton mean life: $\tau_{\mathrm{p}}>1.6 \times 10^{25}$ years
Invent a new quantum number : "Baryonic Number" B
$B=1$ for proton, neutron
$B=-1$ for antiproton, antineutron
$B=0$ for $\mathbf{e}^{ \pm}, \mu^{ \pm}$, neutrinos, mesons, photons
Require conservation of baryonic number in all particle processes:

$$
\sum_{i} \mathrm{~B}_{i}=\sum_{f} \mathrm{~B}_{f}
$$

(i : initial state particle ; f : final state particle)

Strangeness

Late 1940's: discovery of a variety of heavier mesons (K - mesons) and baryons ("hyperons") - studied in detail in the 1950's at the new high-energy proton synchrotrons (the 3 GeV "cosmotron" at the Brookhaven National Lab and the $\mathbf{6 ~ G e V}$ Bevatron at Berkeley)

Examples of mass values

Mesons (spin $=0$): $\boldsymbol{m}\left(\mathbf{K}^{ \pm}\right)=493.68 \mathrm{MeV} / \boldsymbol{c}^{2} \quad ; \quad \boldsymbol{m}\left(\mathrm{K}^{0}\right)=497.67 \mathrm{MeV} / \boldsymbol{c}^{2}$
Hyperons $(\operatorname{spin}=1 / 2): m(\Lambda)=1115.7 \mathrm{MeV} / \boldsymbol{c}^{2} ; \boldsymbol{m}\left(\boldsymbol{\Sigma}^{ \pm}\right)=1189.4 \mathrm{MeV} / \boldsymbol{c}^{2}$

$$
m\left(\Xi^{\circ}\right)=1314.8 \mathrm{MeV} / c^{2} ; m\left(\Xi^{-}\right)=1321.3 \mathrm{MeV} / c^{2}
$$

Properties

- Abundant production in proton - nucleus, π - nucleus collisions
- Production cross-section typical of strong interactions ($\sigma>10^{-27} \mathbf{c m}^{2}$)
- Production in pairs (example: $\pi^{-}+\mathbf{p} \rightarrow \mathbf{K}^{0}+\Lambda ; \mathbf{K}^{-}+\mathbf{p} \rightarrow \boldsymbol{\Xi}^{-}+\mathbf{K}^{+}$)
- Decaying to lighter particles with mean life values $10^{-8}-10^{-10} \mathrm{~s}$ (as expected for a weak decay)

Examples of decay modes

$\mathbf{K}^{ \pm} \rightarrow \pi^{ \pm} \pi^{\circ} ; \mathbf{K}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-} ; \mathbf{K}^{ \pm} \rightarrow \pi^{ \pm} \pi^{\circ} \pi^{\circ} ; \mathbf{K}^{\circ} \rightarrow \pi^{+} \pi^{-} ; \mathbf{K}^{\circ} \rightarrow \pi^{\circ} \pi^{\circ} ; \ldots$
$\Lambda \rightarrow \mathbf{p} \pi^{-} ; \Lambda \rightarrow \mathbf{n} \pi^{\circ} ; \Sigma^{+} \rightarrow \mathbf{p} \pi^{\circ} ; \Sigma^{+} \rightarrow \mathbf{n} \pi^{+} ; \Sigma^{+} \rightarrow \mathbf{n} \pi^{-} ; \ldots$
$\Xi^{-} \rightarrow \Lambda \pi^{-} ; \Xi^{\circ} \rightarrow \Lambda \pi^{\circ}$

Invention of a new, additive quantum number "Strangeness" (S)

 (Gell-Mann, Nakano, Nishijima, 1953)- conserved in strong interaction processes: $\quad \sum_{i} \mathrm{~S}_{i}=\sum_{f} \mathrm{~S}_{f}$
- not conserved in weak decays: $\left|\mathrm{S}_{i}-\sum_{f} \mathrm{~S}_{f}\right|=1$
$\mathbf{S}=+1: \mathbf{K}^{+}, \mathbf{K}^{\circ} ; \mathbf{S}=-1: \Lambda, \Sigma^{ \pm}, \Sigma^{\circ} ; \mathbf{S}=-2: \Xi^{\circ}, \Xi^{-} ; \mathbf{S}=\mathbf{0}:$ all other particles (and opposite strangeness $-S$ for the corresponding antiparticles)

Example of a K ${ }^{-}$stopping in liquid hydrogen:

$$
\mathbf{K}^{-}+\mathbf{p} \rightarrow \Lambda+\pi^{\circ}
$$

(strangeness conserving)
followed by the decay

$$
\Lambda \rightarrow \mathbf{p}+\pi^{-}
$$

(strangeness violation)

Antiproton discovery (1955)

Threshold energy for antiproton ($\overline{\mathbf{p}}$) production in proton - proton collisions

 Baryon number conservation \Rightarrow simultaneous production of $\overline{\mathbf{p}}$ and \mathbf{p} (or $\overline{\mathbf{p}}$ and \mathbf{n})
Example: $\mathrm{p}+\mathrm{p} \rightarrow \mathrm{p}+\mathrm{p}+$ "Bevatron": 6 GeV proton synchrotron in Berkeley

Threshold energy $\sim 6 \mathrm{GeV}$

- build a beam line for $1.19 \mathrm{GeV} / \mathrm{c}$ momentum
- select negatively charged particles (mostly π^{-})
- reject fast π^{-}by Čerenkov effect: light emission in transparent medium if particle velocity $\mathrm{v}>\boldsymbol{c} / n$ (n : refraction index) - antiprotons have $\mathrm{v}<\boldsymbol{c} / n$ \Rightarrow no Čerenkov light
- measure time of flight between counters S_{1} and S_{2} (12 m path): 40 ns for $\pi^{-}, 51 \mathrm{~ns}$ for antiprotons

Example of antiproton annihilation at rest in a liquid hydrogen bubble chamber

DISCRETE SYMMETRIES

PARITY: the reversal of all three axes in a reference frame

$$
\left(\vec{u}_{x} \times \vec{u}_{y}\right) \cdot \vec{u}_{z}=1
$$

(\vec{u} : unit vectors along the three axes)
P transformation equivalent to a mirror reflection

(first, rotate by 180° around the z - axis ; then reverse all three axes)

PARITY INVARIANCE:

All physics laws are invariant with respect to a P transformation;
For any given physical system, the mirror-symmetric system is equally probable; In particle physics Nature does not know the difference between Right and Left.

Vector transformation under \boldsymbol{P}

Radial (position) vector $\vec{r} \equiv(x, y, z) \Rightarrow(-x,-y,-z)$
Momentum vector $\vec{p} \equiv\left(p_{x}, p_{y}, p_{z}\right) \Rightarrow\left(-p_{x},-p_{y},-p_{z}\right)$
(all three components change sign)
Angular momentum $\vec{L} \equiv \vec{r} \times \vec{p} \Rightarrow \vec{r} \times \vec{p}$
(the three components do not change)
$\operatorname{Spin} \overrightarrow{\mathbf{s}}$: same behaviour as for angular momentum ($\overrightarrow{\mathbf{s}} \Rightarrow \overrightarrow{\mathbf{s}}$)
\longrightarrow a scalar term of type $\vec{s} \cdot \vec{p}$ changes sign under P
If the transition probability for a certain process depends on a term of type $\vec{s} \cdot \vec{p}$, the process violates parity invariance

A puzzle in the early 1950's : the decays $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{\circ}$ and $\mathrm{K}^{+} \rightarrow 3 \pi\left(\pi^{+} \pi^{+} \pi^{-}\right.$and $\left.\pi^{+} \pi^{\circ} \pi^{\circ}\right)$
A system of two π-mesons and a system of three π - mesons, both in a state of total angular momentum $=0$, have OPPOSITE PARITIES

1956: Suggestion (by T.D. Lee and C.N. Yang)
Weak interactions are NOT INVARIANT under Parity

$$
\pi^{+} \rightarrow \mu^{+}+v \text { decay }
$$

Parity invariance requires that the two states

A

B
must be produced with equal probabilities \Rightarrow the emitted μ^{+} is not polarized

Experiments find that the μ^{+}has full polarization opposite to the momentum direction \Rightarrow STATE A DOES NOT EXIST \Rightarrow MAXIMAL VIOLATION OF PARITY INVARIANCE

CHARGE CONJUGATION (C)

Particle \Leftrightarrow antiparticle transformation
Experiments find that state B does not exist

$\Longrightarrow \pi-$ meson decay violates maximally C and P invariance, but is invariant under $\boldsymbol{C P}$

Method to measure the μ^{+}polarization (R.L. Garwin, 1957)
 precession rate $\omega=2 \mu_{\mu}$ B / \hbar

Electron angular distribution from μ^{+}decay at rest :

$d \mathbf{N} / d \Omega=1+\alpha \cos \theta$
θ : angle between electron direction and $\mu^{+} \operatorname{spin} s_{\mu}$ $\cos \theta \propto s_{\mu} \cdot p_{\mathrm{e}}$ (term violating P invariance)
Spin precession: $\cos \theta \Rightarrow \cos (\omega t+\phi)$
\Rightarrow modulation of the decay electron time distribution
Experimental results:

- $\alpha=-1 / 3 \Rightarrow$ evidence for P violation in μ^{+}decay
- Simultaneous measurement of the μ^{+}magnetic moment:

$$
\mu_{\mu}=\frac{e \hbar}{2 m_{\mu}} \approx 2.79 \times 10^{-7}[\mathrm{eV} / \mathrm{T}]
$$

Another neutrino

A puzzle of the late 1950's: the absence of $\mu \rightarrow \mathbf{e} \gamma$ decays
Experimental limit: <1 in $10^{6} \mu^{+} \rightarrow \mathrm{e}^{+} \nu \overline{\mathrm{v}}$ decays
A possible solution: existence of a new, conserved "muonic" quantum number distinguishing muons from electrons
To allow $\mu^{+} \rightarrow \mathrm{e}^{+} \nu \bar{v}$ decays, $\overline{\mathrm{v}}$ must have "muonic" quantum number but not $v \Rightarrow$ in μ^{+}decay the \bar{v} is not the antiparticle of v
\Rightarrow two distinct neutrinos $\left(v_{e}, v_{\mu}\right)$ in the decay $\mu^{+} \rightarrow \mathrm{e}^{+} v_{\mathrm{e}} \overline{\mathrm{v}}_{\mu}$
Consequence for π - meson decays: $\pi^{+} \rightarrow \mu^{+} \nu_{\mu} ; \pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu}$ to conserve the "muonic" quantum number

High energy proton accelerators: intense sources of $\pi^{ \pm}-$mesons $\Rightarrow v_{\mu}, \bar{v}_{\mu}$

If $v_{\mu} \neq v_{\mathrm{e}}, \nu_{\mu}$ interactions produce μ^{-}and not \mathbf{e}^{-}(example: $\nu_{\mu}+\mathbf{n} \rightarrow \mu^{-}+\mathbf{p}$)

1962: v_{μ} discovery at the Brookhaven AGS (a 30 GeV proton synchrotron running at 17 GeV for the neutrino experiment)

Neutrino energy spectrum known from π, K production
 and $\pi \rightarrow \mu, K \rightarrow \mu$ decay kinematics

13.5 m iron shielding (enough to stop 17 GeV muons)

Spark chamber
each with 9 Al plates
$(112 \times 112 \times 2.5 \mathrm{~cm})$
mass 1 Ton

Muon - electron separation
Muon: long track
Electron: short, multi-spark event from electromagnetic shower

Neutrino detector

64 "events" from a 300 hour run:

- 34 single track events, consistent with μ track
- 2 events consistent with electron shower (from small, calculable v_{e} contamination in beam)
Clear demonstration that $\nu_{\mu} \neq v_{\mathrm{e}}$

Three typical single-track events in the BNL neutrino experiment

THE "STATIC" QUARK MODEL

Late 1950's - early 1960's: discovery of many strongly interacting particles at the high energy proton accelerators (Berkeley Bevatron, BNL AGS, CERN PS), all with very short mean life times $\left(10^{-20}-10^{-23} \mathrm{~s}\right.$, typical of strong decays) \Rightarrow catalog of >100 strongly interacting particles (collectively named "hadrons")

ARE HADRONS ELEMENTARY PARTICLES?

1964 (Gell-Mann, Zweig): Hadron classification into "families"; observation that all hadrons could be built from three spin $1 / 2$ "building blocks" (named "quarks" by Gell-Mann):

	u	d	\boldsymbol{S}
Electric charge (units $\|e\|$)	+2/3	-1/3	-1/3
Baryonic number	1/3	1/3	1/3
Strangeness	0	0	-1

and three antiquarks ($\bar{u}, \bar{d}, \bar{s}$) with opposite electric charge and opposite baryonic number and strangeness

Mesons: quark - antiquark pairs

Examples of non-strange mesons:

$$
\pi^{+} \equiv u \bar{d} ; \pi^{-} \equiv \bar{u} d ; \pi^{0} \equiv(d \bar{d}-u \bar{u}) / \sqrt{2}
$$

Examples of strange mesons:

$$
K^{-} \equiv s \bar{u} \quad ; \quad \bar{K}^{0} \equiv s \bar{d} \quad ; \quad K^{+} \equiv \bar{s} u \quad ; \quad K^{0} \equiv \bar{s} d
$$

Baryons: three quarks bound together
Antibaryons: three antiquarks bound together
Examples of non-strange baryons:

$$
\text { proton } \equiv u u d \quad ; \quad \text { neutron } \equiv u d d
$$

Examples of strangeness -1 baryons:

$$
\Sigma^{+} \equiv \operatorname{suu} \quad ; \quad \Sigma^{0} \equiv \text { sud } \quad ; \quad \Sigma^{-} \equiv s d d
$$

Examples of strangeness - 2 baryons:

$$
\Xi^{0} \equiv s s u \quad ; \quad \Xi^{-} \equiv s s d
$$

Prediction and discovery of the Ω^{-}particle
A success of the static quark model The "decuplet" of spin $\frac{3}{2}$ baryons
Strangeness

0	$\underset{\text { uиu }}{\mathbf{N}^{*++}}$	$\begin{aligned} & \mathbf{N}^{*+} \\ & \text { uud } \end{aligned}$		$\begin{aligned} & \mathrm{N}^{* o} \\ & \mathrm{u} d \boldsymbol{d} \end{aligned}$		$\begin{aligned} & \mathbf{N}^{*-} \\ & d d d \end{aligned}$	1232
-1	$\begin{gathered} \Sigma^{*+} \\ \text { suи } \end{gathered}$		$\begin{aligned} & \Sigma^{* 0} \\ & \text { sud } \end{aligned}$		$\begin{gathered} \Sigma^{* *} \\ s d d \end{gathered}$		1384
-2		$\begin{aligned} & \Xi * \circ \\ & s s u \end{aligned}$		$\begin{aligned} & \Xi_{s-}^{*} \\ & \text { ssd } \end{aligned}$			1533
-3			$\begin{gathered} \Omega^{-} \\ s s s \end{gathered}$				1672

Ω^{-}: the bound state of three $s-$ quarks with the lowest mass with total angular momentum $=3 / 2 \Rightarrow$
Pauli's exclusion principle requires that the three quarks cannot be identical

The first Ω^{-}event (observed in the 2 m liquid hydrogen bubble chamber at BNL using a $5 \mathrm{GeV} / \mathrm{c} \mathrm{K}^{-}$beam from the 30 GeV AGS)

Chain of events in the picture:
$\mathbf{K}^{-}+\mathbf{p} \rightarrow \mathbf{\Omega}^{-}+\mathbf{K}^{+}+\mathbf{K}^{\circ}$ (strangeness conserving)

$$
\Omega^{-} \rightarrow \Xi^{\circ}+\pi^{-}
$$

$$
(\Delta S=1 \text { weak decay })
$$

$\Xi^{\circ} \rightarrow \pi^{\circ}+\Lambda$
($\Delta \mathrm{S}=1$ weak decay)

$$
\begin{aligned}
& \Lambda \rightarrow \pi^{-}+\mathbf{p} \\
& (\Delta \mathbf{S}=1 \text { weak decay })
\end{aligned}
$$

$\pi^{\circ} \rightarrow \gamma+\gamma$ (electromagnetic decay)

with both γ-rays converting to an $\mathrm{e}^{+} \mathrm{e}^{-}$in liquid hydrogen
(very lucky event, because the mean free path for $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$in liquid hydrogen is $\sim 10 \mathrm{~m}$)
Ω^{-}mass measured from this event $=1686 \pm 12 \mathrm{MeV} / \mathrm{c}^{2}$

"DYNAMIC" EVIDENCE FOR QUARKS

Electron - proton scattering using a 20 GeV electron beam from the Stanford two - mile Linear Accelerator (1968-69).
The modern version of Rutherford's original experiment: resolving power \approx wavelength associated with 20 GeV electron $\approx 10^{-15} \mathrm{~cm}$

Three magnetic spectrometers to detect the scattered electron:

- 20 GeV spectrometer (to study elastic scattering $\mathrm{e}^{-}+\mathrm{p} \rightarrow \mathrm{e}^{-}+\mathrm{p}$)
- 8 GeV spectrometer (to study inelastic scattering $\mathrm{e}^{-}+\mathrm{p} \rightarrow \mathrm{e}^{-}+$hadrons)
- 1.6 GeV spectrometer (to study extremely inelastic collisions)

The Stanford two-mile electron linear accelerator (SLAC)

Electron elastic scattering from a point-like charge $|e|$ at high energies: differential cross-section in the collision centre-of-mass (Mott's formula)

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}(\hbar c)^{2}}{8 E^{2}} \frac{\cos ^{2}(\theta / 2)}{\sin ^{4}(\theta / 2)} \equiv \sigma_{M} \quad\left(\alpha=\frac{e^{2}}{\hbar c} \approx \frac{1}{137}\right)
$$

Scattering from an extended charge distribution: multiply σ_{M} by a "form factor":

$\frac{d \sigma}{d \Omega}=F\left(\left|\mathrm{Q}^{2}\right|\right) \sigma_{M} \quad$| $\|\mathrm{Q}\|=\hbar / \mathrm{D}:$ mass of the exchanged virtual photon |
| :--- |
| D : linear size of target region contributing to scattering |
| Increasing $\|\mathrm{Q}\| \Rightarrow$ decreasing target electric charge |

$F\left(\left|\mathrm{Q}^{2}\right|\right)=1$ for a point-like particle
\Rightarrow the proton is not a point-like particle

Inelastic electron - proton collisions

scattered electron

For deeply inelastic collisions, the cross-section depends only weakly on $\left|\mathrm{Q}^{2}\right|$, suggesting a collision with a POINT-LIKE object

Interpretation of deep inelastic e-p collisions
Deep inelastic electron - proton collisions are elastic collisions with point-like, electrically charged, spin $1 / 2$ constituents of the proton carrying a fraction x of the incident proton momentum
Each constituent type is described by its electric charge e_{i} (units of $|e|$) and by its x distribution ($d \mathbf{N}_{i} / d x$) ("structure function")
If these constituents are the u and d quarks, then deep inelastic $\mathrm{e}-\mathrm{p}$ collisions provide information on a particular combination of structure functions:

$$
\left(\frac{d N}{d x}\right)_{\mathrm{e}-\mathrm{p}}=e_{u}{ }^{2} \frac{d N_{u}}{d x}+e_{d}{ }^{2} \frac{d N_{d}}{d x}
$$

Comparison with $v_{\mu}-\mathbf{p}$ and $\bar{v}_{\mu}-\mathbf{p}$ deep inelastic collisions at high energies under the assumption that these collisions are also elastic scatterings on quarks

$$
\begin{array}{lll}
v_{\mu}+\mathbf{p} \rightarrow \mu^{-}+\text {hadrons : } & v_{\mu}+d \rightarrow \mu^{-}+\boldsymbol{u} & \text { (depends on } \left.d \mathbf{N}_{d} / d x\right) \\
\bar{v}_{\mu}+\mathbf{p} \rightarrow \mu^{+}+\text {hadrons : } & \bar{v}_{\mu}+\boldsymbol{u} \rightarrow \mu^{+}+\boldsymbol{d} & \text { (depends on } \left.d \mathbf{N}_{u} / d x\right)
\end{array}
$$

(Neutrino interactions do not depend on electric charge)
All experimental results on deep inelastic $\mathbf{e}-\mathbf{p}, \nu_{\mu}-\mathbf{p}, \bar{v}_{\mu}-\mathbf{p}$ collisions are consistent with $e_{u}{ }^{2}=4 / 9$ and $e_{d}{ }^{2}=1 / 9$
the proton constituents are the quarks

PHYSICS WITH $\mathrm{e}^{+} \mathrm{e}^{-}$COLLIDERS

Two beams circulating in opposite directions in the same magnetic ring and colliding head-on

A two-step process: $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow$ virtual photon $\rightarrow f+\bar{f}$
f : any electrically charged elementary spin $1 / 2$ particle (μ, quark) (excluding $\mathrm{e}^{+} \mathrm{e}^{-}$elastic scattering)
Virtual photon energy - momentum : $E_{\gamma}=2 E, p_{\gamma}=0 \Rightarrow Q^{2}=E_{\gamma}{ }^{2}-p_{\gamma}{ }^{2} c^{2}=4 E^{2}$

$$
\begin{aligned}
& \text { Cross - section for } \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \bar{f}: \quad \sigma=\frac{2 \pi \alpha^{2} \hbar^{2} c^{2}}{3 Q^{2}} e_{f}^{2} \beta(3-\beta) \\
& \begin{array}{l}
\alpha=e^{2} /(h c) \approx 1 / 137 \\
e_{f}: \text { electric charge of particle } \mathrm{f}(\text { units }|e|) \\
\beta=v / c \text { of outgoing particle } f
\end{array} \quad \text { (formula precisely verified for } \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-} \text {) }
\end{aligned}
$$

Assumption: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ quark (q) + antiquark $(\bar{q}) \rightarrow$ hadrons
\Rightarrow at energies $E \gg m_{q} c^{2}$ (for $\left.q=u, d, s\right) \beta \approx 1$:

$$
R \equiv \frac{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)}=e_{u}{ }^{2}+e_{d}{ }^{2}+e_{s}^{2}=\frac{4}{9}+\frac{1}{9}+\frac{1}{9}=\frac{2}{3}
$$

Experimental results from the Stanford $\mathbf{e}^{+} \mathbf{e}^{-}$collider SPEAR (1974 -75):

- For $Q<3.6 \mathrm{GeV} R \approx 2$. If each quark exists in three different states, $R \approx 2$ is consistent with $3 \times(2 / 3)$. This would solve the Ω^{-}problem.
- Between 3 and 4.5 GeV , the peaks and structures are due to the production of quark-antiquark bound states and resonances of a fourth quark ("charm", c) of electric charge $+2 / 3$
- Above $4.6 \mathrm{GeV} \boldsymbol{R} \approx 4.3$. Expect $\boldsymbol{R} \approx 2($ from $u, d, s)+3 \times(4 / 9)=3.3$ from the addition of the c quark alone. So the data suggest pair production of an additional elementary spin $1 / 2$ particle with electric charge $=1$ (later identified as the τ - lepton (no strong interaction) with mass $\approx 1777 \mathrm{MeV} / \mathrm{c}^{2}$).
$\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \tau^{ \pm}+\tau^{\mp}$

$$
L_{\mathrm{e}^{ \pm} v \bar{v}}^{\stackrel{\longrightarrow}{\longrightarrow}} \mu^{\mp} v \bar{v}
$$

Final state : an electron - muon pair + missing energy

Evidence for production of pairs of heavy leptons $\tau^{ \pm}$

THE MODERN THEORY OF STRONG INTERACTIONS:

the interactions between quarks based on "Colour Symmetry" Quantum ChromoDynamics (QCD) formulated in the early 1970's

- Each quark exists in three states of a new quantum number named "colour"
- Particles with colour interact strongly through the exchange of spin 1 particles named "gluons", in analogy with electrically charged particles interacting electromagnetically through the exchange of spin 1 photons

A MAJOR DIFFERENCE WITH THE ELECTROMAGNETIC INTERACTION

 Electric charge: positive or negativePhotons have no electric charge and there is no direct photon-photon interaction
Colour: three varieties
Mathematical consequence of colour symmetry: the existence of eight gluons with eight variety of colours, with direct gluon - gluon interaction

- The observed hadrons (baryons, mesons) are colourless combinations of coloured quarks and gluons
- The strong interactions between baryons, mesons is an "apparent" interaction between colourless objects, in analogy with the apparent electromagnetic interaction between electrically neutral atoms

Free quarks, gluons have never been observed experimentally; only indirect evidence from the study of hadrons - WHY?

CONFINEMENT: coloured particles are confined within colourless hadrons because of the behaviour of the colour forces at large distances
The attractive force between coloured particles increases with distance \Rightarrow increase of potential energy \Rightarrow production of quark - antiquark pairs which neutralize colour \Rightarrow formation of colourless hadrons (hadronization)

At high energies (e.g., in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow q+\bar{q}$) expect the hadrons to be produced along the initial direction of the $q-\bar{q}$ pair \Rightarrow production of hadronic "jets"

CONFINEMENT, HADRONIZATION: properties deduced from observation. So far, the properties of colour forces at large distance have no precise mathematical formulation in QCD.
$\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow$ hadrons
A typical event at $Q=2 E=35 \mathrm{GeV}$: reconstructed charged particle tracks

A typical proton-antiproton collision at the CERN $\overline{\mathbf{p}} \mathbf{p}$ collider (630 GeV) producing high-energy hadrons at large angles to the beam axis (UA2 experiment, 1985)

1962-66: Formulation of a Unified Electroweak Theory (Glashow, Salam, Weinberg)

4 intermediate spin 1 interaction carriers ("bosons"):

- the photon (γ)
responsible for all electromagnetic processes
- three weak, heavy bosons $\mathbf{W}^{+} \mathbf{W}^{-} \mathbf{Z}$
$\mathbf{W}^{ \pm}$responsible for processes with electric charge transfer $= \pm 1$ (Charged Current processes)

Examples:

$$
\begin{aligned}
& \mathbf{n} \rightarrow \mathbf{p} \mathrm{e}^{-} \bar{v}: \mathbf{n} \rightarrow \mathbf{p}+\mathbf{W}^{-} \text {followed by } \mathbf{W}^{-} \rightarrow \mathrm{e}^{-} \bar{v} \\
& \mu^{+} \rightarrow \mathrm{e}^{+} v_{\mathbf{e}} \bar{v}_{\mu}: \mu^{+} \rightarrow \bar{v}_{\mu}+\mathbf{W}^{+} \text {followed by } \mathbf{W}^{+} \rightarrow \mathrm{e}^{+} v_{\mathbf{e}}
\end{aligned}
$$

Z responsible for weak processes with no electric charge transfer (Neutral Current processes) PROCESSES NEVER OBSERVED BEFORE
Require neutrino beams to search for these processes, to remove the much larger electromagnetic effects expected with charged particle beams

First observation of Neutral Current processes in the heavy liquid bubble chamber Gargamelle at the CERN PS (1973)

Example of
$\bar{v}_{\mu}+\mathrm{e}^{-} \rightarrow \overline{\mathrm{v}}_{\mu}+\mathrm{e}^{-}$ (elastic scattering)
Recoil electron energy $=400 \mathrm{MeV}$
(\bar{v}_{μ} beam from π^{-}decay in flight)

Example of
$\nu_{\mu}+\mathbf{p}(\mathbf{n}) \rightarrow \nu_{\mu}+$ hadrons (inelastic interaction)
(v_{μ} beam from π^{+}decay in flight)

Measured rates of Neutral Current events \Rightarrow estimate of the \mathbf{W} and \mathbb{Z} masses (not very accurately, because of the small number of events):

$$
M_{W} \approx 70-90 \mathrm{GeV} / c^{2} \quad ; \quad M_{Z} \approx 80-100 \mathrm{GeV} / c^{2}
$$

too high to be produced at any accelerator in operation in the 1970's 1975: Proposal to transform the new 450 GeV CERN proton synchrotron (SPS) into a proton - antiproton collider (C. Rubbia)

Beam energy $=315 \mathrm{GeV} \Rightarrow$ total energy in the centre-of-mass $=630 \mathrm{GeV}$
Beam energy necessary to achieve the same collision energy on a proton at rest :

$$
\left(E+m_{p} c^{2}\right)^{2}-p^{2} c^{2}=(630 \mathrm{GeV})^{2} \square \boldsymbol{E}=210 \mathrm{TeV}
$$

Production of W and Z by quark - antiquark annihilation:

$$
\begin{array}{ll}
u+\bar{d} \rightarrow W^{+} & \\
\bar{u}+d \rightarrow W^{-} \\
u+\bar{u} \rightarrow Z & \\
d+\bar{d} \rightarrow Z
\end{array}
$$

UA1 and UA2 experiments ($1981 \mathbf{- 1 9 9 0}$)

Search for $\mathbf{W}^{ \pm} \rightarrow \mathbf{e}^{ \pm}+\nu$ (UA1, UA2) ; $\mathbf{W}^{ \pm} \rightarrow \mu^{ \pm}+\nu$ (UA1)
$\mathbf{Z} \rightarrow \mathbf{e}^{+} \mathrm{e}^{-}$(UA1, UA2) ; $\mathbf{Z} \rightarrow \mu^{+} \mu^{-}$(UA1)

UA1: magnetic volume with trackers, surrounded by "hermetic" calorimeter and muon detectors

UA2: non-magnetic, calorimetric detector with inner tracker

One of the first $\mathbf{W} \rightarrow \mathbf{e}+v$ events in UA1

48 GeV electron identified by surrounding calorimeters

UA2 final results

Events containing two high-energy electrons: Distributions of the "invariant mass" $M_{\text {ee }}$

$$
\left(M_{e e} c^{2}\right)^{2}=\left(E_{1}+E_{2}\right)^{2}-\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2} c^{2}
$$

$\left(\right.$ for $\mathbf{Z} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \quad \boldsymbol{M}_{\mathrm{ee}}=\mathbf{M}_{\mathbf{Z}}$)

Events containing a single electron with large transverse momentum (momentum component perpendicular to the beam axis) and large missing transverse momentum (apparent violation of momentum conservation due to the escaping neutrino from $\mathbf{W} \rightarrow$ ev decay)

\mathbf{m}_{T} ("transverse mass"): invariant mass of the electron - neutrino
pair calculated from the transverse components only
$\mathbf{M}_{\mathbf{W}}$ is determined from a fit to the $\mathbf{m}_{\mathbf{T}}$ distribution: $\mathbf{M}_{\mathbf{W}}=80.35 \pm 0.37 \mathrm{GeV} / \boldsymbol{c}^{2}$

$\mathbf{e}^{+} \mathbf{e}^{-}$colliders at higher energies

$$
R \equiv \frac{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad \text { between } 0.3 \text { and } 200 \mathrm{GeV}
$$

The two orthogonal views of an event $\mathrm{Z} \rightarrow q \bar{q} \rightarrow$ hadrons at LEP (ALEPH detector)

CONCLUSIONS

The elementary particles today:

$3 \times 6=18$ quarks
+6 leptons
$=24$ fermions (constituents of matter)
+24 antiparticles
48 elementary particles
consistent with point-like dimensions within the resolving power of present instrumentation ($\sim 10^{-16} \mathbf{c m}$)

12 force carriers ($\gamma, \mathbf{W}^{ \pm}, \mathbf{Z}, 8$ gluons)

+ the Higgs spin 0 particle (NOT YET DISCOVERED) responsible for generating the masses of all particles

