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Abstract

This is an expository introduction to simplicial sets and simplicial homotopy the-

ory with particular focus on relating the combinatorial aspects of the theory to their

geometric/topological origins. It is intended to be accessible to students familiar with

just the fundamentals of algebraic topology.
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1 Introduction

The following notes grew out of my own difficulties in attempting to learn the basics of sim-

plicial sets and simplicial homotopy theory, and thus they are aimed at someone with roughly

the same starting knowledge I had, specifically some amount of comfort with simplicial ho-

mology (e.g. that available to those of us who grew up learning homology from Munkres [14],

slightly less so for those coming of age in Hatcher [9]) and the basic fundamentals of topologi-

cal homotopy theory, including homotopy groups. Equipped with this background, I wanted

to understand a little of what simplicial sets and their generalizations to other categories

are all about, as they seem ubiquitous in the literature of certain schools of topology. To

name just a few important instances of which I am aware, simplicial objects occur in May’s

work on recognition principles for iterated loop spaces [10], Quillen’s approach to rational

homotopy theory (see [16, 6]), Bousfield and Kan’s work on completions, localization, and

limits in homotopy theory [1], Quillen’s abstract treatment of homotopy theory [17], and

various aspects of homological algebra, including group cohomology, Hochschild homology,

and cyclic homology (see [21]).

However, in attempting to learn the rudiments of simplicial theory, I encountered imme-

diate and discouraging difficulties, which led to serious frustration on several occasions. It

was only after several different attempts from different angles that I finally began to “see

the picture,” and my intended goal here is to aid future students (of all ages) to ease into

the subject.

My initial difficulty with the classic expository sources such as May [11] and Curtis [3] was

the extent to which the theory is presented purely combinatorially. And the combinatorial

definitions are not often pretty; they tend to consist of long strings of axiomatic conditions

(see, for example, the combinatorial definition of simplicial homotopy, Definition 8.6, below).

Despite simplicial objects originating in very topological settings, these classic expositions

often sweep this fact too far under the rug for my taste, as someone who likes to comprehend

even algebraic and combinatorial constructions as visually as possible. There is a little bit

more geometry in Moore’s lecture notes [13], though still not much, and these are also

more difficult to obtain (at least not without some good help from a solid Interlibrary Loan

Department). On the other hand, there is a much more modern point of view that sweeps

both topology and combinatorics away in favor of axiomatic category theory! Goerss and

Jardine [8] is an excellent modern text based upon this approach, which, ironically, helped

me tremendously to understand what the combinatorics were getting at!

So what are we getting at here? My goal, still as someone very far from an expert in either

combinatorial or axiomatic simplicial theory, is to revisit the material covered in, roughly,

the first chapters (in some cases the first few pages) of the texts cited above and to provide

some concrete geometric signposts. Here, for the most part, you won’t find many complete

proofs of theorems, and so these notes will not be completely self-contained. Rather, I try
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primarily to show by example how the very basic combinatorics, including the definitions,

arise out of geometric ideas and to show the geometric ideas underlying the most elementary

proofs and properties. Think of this as an appendix or a set of footnotes to the first chapters

of the classic expositions, or perhaps as a Chapter 0. This may not sound like much, but

during my earliest learning stages with this material, I would have been very grateful for

something of the sort. Theoretically my reader will acquire enough of “the idea” to go forth

and read the more thorough (and more technical) sources equipped with enough intuition

to see what’s going on.

In Section 2, we lay the groundwork with a look at the more familiar topics of simplicial

sets and, their slight generalizations, Delta sets. Simplicial sets are then introduced in Section

3, followed by their geometric realizations in Section 4 and a detailed look at products of

simplicial sets in Section 5. In Section 6, we provide a brief look at how the notion of

simplicial sets is generalized to other kinds of simplicial objects based in different categories.

In Section 7, we introduce Kan complexes; these are the simplicial sets that lend themselves

to simplicial analogues of homotopy theory, which we study in Section 8. This section gets

a bit more technical as we head toward more serious applications and theorems in simplicial

theory, including the definition and properties of the simplicial homotopy groups πn(X, ∗)
in Section 9. Finally, in Section 10, we make some concluding remarks and steer the reader

toward more comprehensive expository sources.

Acknowledments. I thank Jim McClure for his useful suggestions and Efton Park for his

careful reading of and comments on the preliminary manuscript. Later useful corrections

were suggested by Henry Adams, Daniel Müllner, and Peter Landweber.

2 A build-up to simplicial sets

We begin at the beginning with the relevant geometric notions and their immediate combi-

natorial counterparts.

2.1 Simplicial complexes

Simplicial objects are, essentially, generalizations of the geometric simplicial complexes of

elementary algebraic topology (in some cases quite extreme generalizations). So let’s recall

simplicial complexes, referring the absolute beginner to [14] for a complete course in the

essentials.

Recall that a simplicial complex X is made up of simplices (generalized tetrahedra) of

various dimensions, glued together along common faces (see Figure 1). The most efficient

description, containing all of the relevant information, comes from labeling the vertices (the

0-simplices) and then specifying which collections of vertices together constitute the vertices

of simplices of higher dimension. Most often one assumes that the collection of vertices is

countable so that we can label them v0, v1, v2, . . ., though this is not strictly necessary - we
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Figure 1: A simplicial complex. Note that [v0, v1, v2] is a simplex, but [v1, v2, v4] is not.

could label by {vi}i∈I for any indexing set I. Then if some collection of vertices {vi0 , . . . , vin}
constitutes the vertices of a simplex, we can write that simplex as [vi0 , . . . , vin ].

A nice way to organize the combinatorial information involved is to define the skeleta

Xk, k = 0, 1, . . ., of a simplicial complex so that Xk is the set of all k-simplices of X. Notice

that, having labeled our vertices so that X0 = {vi}i∈I , we can think of the elements of Xk

as subsets of X0; a subset {vi0 , . . . , vik} ⊂ X0 is an element of Xk precisely if [vi0 , . . . , vik ] is

a k-dimensional simplex of X.

If X is a complex and [vi0 , . . . , vik ] is a simplex of X, then any subset of {vi0 , . . . , vik}
is a face of that simplex and thus itself a simplex of X. This observation and this type of

notation leads us directly to the notion of an abstract simplicial complex:

Definition 2.1. An abstract simplicial complex consists of a set of “vertices” X0 together

with, for each integer k, a set Xk consisting of subsets of X0 of cardinality k + 1. These

must satisfy the condition that any (j+ 1)-element subset of an element of Xk is an element

of Xj.

So, an abstract simplicial complex has exactly the same combinatorial information as a

geometric simplicial complex (what we have lost is geometric information about how big a

simplex is, what are its dimensions, how is it embedded in euclidean space, etc.), but we have

retained all of the information necessary to reconstruct the complex up to homeomorphism.

It is straightforward that a geometric complex yields an abstract complex, but conversely, we

can obtain a geometric complex (up to homeomorphism) from an abstract one by assigning to

each element of X0 a geometric point and to each abstract simplex [vi0 , . . . , vik ] a geometric

k-simplex spanned by the appropriate vertices and gluing these simplices together via the

quotient topology.

Ordered simplicial complexes. A slightly more specific way to do all this is to let our

set of vertices X0 be totally ordered, in which case we obtain an ordered simplicial complex.

When we do this, [vi0 , . . . , vik ] may stand for a simplex if and only if vij < vil whenever
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j < l. This poses no undue complications as each collection {vi0 , . . . , vik} of cardinality

k still corresponds to at most one simplex. We’re just being picky and removing some

redundancy in how many ways we can label a given simplex of a simplicial complex.

Example 2.2. Of course the prototypical example of a simplicial complex is the n-simplex

itself, denoted |∆n| (see Figure 2); it will become clear later why we want to employ the

notation |∆n| instead of just ∆n.

Figure 2: The standard 0-, 1-, 2-, and 3-simplices

The n-simplex is so fundamental that one often labels the vertices simply with the num-

bers 0, 1, . . . , n. This notation should be suggestive when compared with the simplices

[vi0 , . . . , vin ] appearing within more general simplicial complexes, and it is worth pointing

out at this early stage that one can think of any such simplex in a complex X as the image

of |∆n| under a simplicial map taking 0 to vi0 , and so on; we will discuss simplicial maps

more formally in a moment. If X is an ordered complex, then there is precisely one way to

do this for each simplex of X. Thus another point of view on ordered simplicial complexes

is that they are made up out of images of the standard simplices (Figure 3). This will turn

out to be a very useful point of view as we progress.

Figure 3: [v2, v3, v4] as the image of |∆2|

Note also that the faces of the standard n-simplex can be represented simply as collections

of numbers [j1, . . . , jm] with 0 ≤ j1 < j2 < · · · < jm ≤ n and, as an ordered simplicial

complex, the set of simplices (of all dimensions) in |∆n| is equivalent to the collection of

ordered subsets of {0, . . . , n}.

Face maps. Another aspect of ordered simplicial complexes familiar to the student of

basic algebraic topology is that, given an n-simplex, we would like a handy way of referring
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to its (n− 1)-faces. This is handled by the face maps. On the standard n-simplex, we have

n + 1 face maps d0, . . . , dn, defined so that dj[0, . . . , n] = [0, . . . , ̂, . . . , n], where, as usual,

the ˆ denotes a term that is being omitted. Thus applying dj to [0, . . . , n] picks out the

(n− 1)-face missing the vertex j (see Figure 4).

Figure 4: The face maps of |∆2|

Within more general simplicial complexes, we make the obvious extension: if [vi0 , . . . , vin ] ∈
Xn is a simplex of the complex X, then dj[vi0 , . . . , vin ] = [vi0 , . . . , v̂ij , . . . , vin ]. Assembled

all together, we get, for each fixed n, a collection of functions d0, . . . , dn : Xn → Xn−1. Note

that here is where the ordering of the vertices of the simplices becomes important.

If one wanted to be a serious stickler, we might be careful to label the face maps from

Xn to Xn−1 as dn0 , . . . , d
n
n, but this is rarely done in practice, for which we should probably

be grateful. Thus dj is used to represent the face map leaving out the jth vertex in any

dimension where this makes sense (i.e. dimensions ≥ j).

Furthermore, one readily sees by playing with |∆n| that there are certain relations sat-

isfied by the face maps. In particular, if i < j, then didj = dj−1di. Indeed, didj[0, . . . , n] =

[0, . . . , ı̂, . . . , ̂, . . . , n] = dj−1di[0, . . . , n] (notice the reason that we have dj−1 in the last

expression is that removing the i first shifts the j into the j − 1 slot).

Clearly, the relation didj = dj−1di must hold for any simplex in a complex X (which is

made up of copies of |∆n|). This relation will become one of the axioms in the definition of

a simplicial set when we get there.

Another observation that will come up later is that there are more general face maps.

We could, for example, assign to [0, 1, 2, 3, 4, 5, 6] the face [1, 3, 4], and we could define such

general face maps systematically. However, any such face can be obtained as a combination

of face maps that lower dimension by 1. For example, we can decompose the map just

described as d0d2d5d6. It may entertain the reader to use the “face map relations” and some

basic reasoning to show that any generalized face map can be obtained as a composition

di1 · · · dim uniquely if we require that ij < ij+1 for all j.
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2.2 Simplicial maps

The heart of the transition (in my opinion) from simplicial complexes to simplicial sets is

tied up in simplicial maps.

Recall (see [14, Section 2]) that if K and L are simplicial complexes, then a simplicial

map f : K → L is determined by taking the vertices {vi} to vertices {f(vi)} of L such that if

[vi0 , . . . , vik ] is a simplex of K then f(vi0), . . . , f(vik) are all vertices (not necessarily unique)

of some simplex in L. Given such a function K0 → L0, the rest of f : K → L is determined

by linear interpolation on each simplex (if x ∈ K can be represented by x =
∑n

j=1 tjvij in

barycentric coordinates of the simplex spanned by the vij , then f(x) =
∑n

j=1 tjf(vij)). The

resulting function f : K → L is continuous (see [14]).

Example 2.3. We have already seen one example of a simplicial map in Example 2.2, the one

that takes the n-simplex |∆n| to a simplex [vi0 , . . . , vin ] of some simplicial complex.

Example 2.4. The interesting feature of simplicial maps, from the point of view of simplicial

sets, is that simplicial maps can collapse simplices. For example, consider the simplicial map

f : ∆2 → ∆1 determined by f(0) = 0, f(1) = 1, f(2) = 1 that collapses the 2-simplex down

to the 1-simplex (see Figure 5). The great benefit of the theory of simplicial sets is a way to

generalize these kinds of maps in order to preserve information so that we can still see the

image of the 2-simplex hiding in the 1-simplex as a degenerate simplex (see Section 3).

Figure 5: A collapse of |∆2| to |∆1|

2.3 Delta sets and Delta maps

Delta sets (sometimes called ∆-sets) constitute an intermediary between simplicial com-

plexes and simplicial sets. These allow a degree of abstraction without yet introducing the

degeneracy maps we have begun hinting at.
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Definition 2.5. A Delta set1 consists of a sequence of sets X0, X1, . . . and, for each n ≥ 0,

maps di : Xn+1 → Xn for each i, 0 ≤ i ≤ n+ 1, such that didj = dj−1di whenever i < j.

Of course this is just an abstraction, and generalization, of the definition of an ordered

simplicial complex, in which the Xn are the sets of n-simplices and the di are the face maps.

However, there are Delta sets that are not simplicial complexes:

Example 2.6. Consider the cone C obtained by starting with the standard 2-simplex |∆2| =
[0, 1, 2] and gluing the edge [0, 2] to the edge [1, 2] (see Figure 6). This space is no longer a

simplicial complex (at least not with the “triangulation” given), since in a simplicial complex,

the faces of a given simplex must be unique. This is no longer the case here as, for example,

the “edge [0,1]” now has both endpoint vertices equal to each other.

Figure 6: Gluing |∆2| into a cone

However, this is a Delta set. Without (I hope!) too much risk of confusion, we use the

notation for the simplices in the triangle to refer also to their images in the cone. So, for

example [0] and [1] now both stand for the same vertex in the cone and [0, 1] stands for the

circular base edge. Then C0 = {[0], [2]}, C1 = {[0, 1], [0, 2]}, C2 = [0, 1, 2], and Cn = ∅ for

all n > 2. The face maps are the obvious ones, also induced from the triangle, so that, e.g.

d2[0, 1, 2] = [0, 1] and d0[0, 1] = d1[0, 1] = [0] = [1]. It is not hard to see that the axiom on

the di is satisfied - it comes right from the fact that it holds for the standard 2-simplex.

Example 2.7. One feature of Delta sets we need to be careful about is that, unlike for

simplicial complexes, a collection of vertices does not necessarily specify a unique simplex.

For example, consider the Delta set with X0 = {v0, v1}, X1 = {e0, e1}, d0(e0) = d0(e1) = v0,

and d1(e0) = d1(e1) = v1. Both 1-simplices have the same endpoints. See Figure 7.

Figure 7: A Delta set containing two edges with the same vertices

1It seems to be at least fairly usual to capitalize the word “Delta” in this context, probably since it

is essentially a stand-in for the Greek capital letter ∆. However, for reasons that will become clear, it is

probably best to avoid the notation “∆-set” and to use instead the English stand-in.
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Thus Delta sets afford some greater flexibility beyond ordered simplicial complexes. One

may continue to think of the sets Xn as collections of simplices and interpret from the face

maps how these are meant to be glued together (Exercise: Give each “simplex” of the cone

X of the preceding example an abstract label, write out the full set of face maps in these

labels, then reverse engineer how to construct the cone from this information. One sees that

everything is forced. For example, there is one 2-simplex, two of whose faces are the same,

so they must be glued together!). However, it is common in the fancier literature not to

think of the Xn as collections of simplices at all but simply as abstract sets with abstract

collections of face maps. At least this is what authors would have us believe - I tend to

picture simplices in my head anyway, while keeping in mind that this is more of a cognitive

aid than it is “what’s really going on.”

The category-theoretic definition. While we’re walking the tightrope of abstraction,

let’s take it a step further. Recall that we discussed in Example 2.2 that we can think of an

ordered simplicial complex as a collection of isomorphic images of the standard n-simplices.

Of course to describe the simplicial complex fully we need not only the images of the standard

simplices but we need to know which image faces are attached together. This information

is contained in the face maps, which tell us when two simplices share a face. There’s an

alternative definition of Delta complexes that takes more of this point of view. It might be

a little scary if you’re not that comfortable with category theory, but don’t worry, I’ll walk

you through it (though I do assume you know the basic language of categories and functors).

First, we define a category ∆̂:

Definition 2.8. The category ∆̂ has as objects the finite ordered sets [n] = {0, 1, 2 . . . , n}.
The morphisms of ∆̂ are the strictly order-preserving functions [m] → [n] (recall that f is

strictly order-preserving if i < j implies f(i) < f(j)).

Of course the objects of ∆̂ should be thought of as our prototype ordered n-simplices. The

morphisms are only defined when m ≤ n, and you can think of these morphisms as taking an

m-simplex and embedding it as a face of an n-simplex (see figure 8). Note that, since order

matters, there are exactly as many ways to do this as there are strictly order-preserving

maps [m]→ [n].

Next, we think about the opposite category ∆̂op. Recall that this means that we keep

the same objects [n] of ∆̂, but for every morphism [m] → [n] in ∆̂, we instead have a map

[n] → [m] in ∆̂op. What should this mean? Well if a given morphism [m] → [n] was the

inclusion of a face, then the new opposite map [n]→ [m] should be thought of as taking the

n-simplex [n] and prescribing a given face. This is just a generalization of what we have seen

already: if we consider in ∆̂ the morphism Di : [n] → [n + 1] defined by the strictly order-

preserving map {0, . . . , n} → {0, . . . , ı̂, . . . , n+ 1}, then in ∆̂op this corresponds precisely to

the simplex face map di. Even better, it is easy to check once again that, with this definition,

didj = dj−1di when i < j, simply as an evident property of strictly order-preserving maps.

This is really how we argued for this axiom in the first place!

So, in summary, the category ∆̂op is just the collection of elementary n-simplices together

with the face maps (satisfying the face map axiom) and the iterations of face maps. But
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Figure 8: A partial illustration of the category ∆̂

this should be precisely the prototype for all Delta sets:

Definition 2.9 (Alternative definition for Delta sets). A Delta set is a covariant functor

X : ∆̂op → Set, where Set is the category of sets and functions. Equivalently, a Delta set is

a contravariant functor ∆̂→ Set.

Let’s see why this makes sense. A functor takes objects to objects and morphisms to

morphisms, and it obeys composition rules. So, unwinding the definition, a covariant functor

∆̂op → Set assigns to [n] ∈ ∆̂op a set Xn (which we can think of, and which we refer to,

as a set of simplices) and gives us, for each strictly order-preserving [m] → [n] in ∆̂ (or

its corresponding opposite in ∆̂op) a generalized face map Xn → Xm (which we think of

as assigning an m-face to each simplex in Xn). As noted previously, these generalized face

maps are all compositions of our standard face maps di, so the di (and their axioms) are the

only ones we usually bother focusing on.

So what just happened? The power of this definition is really in its point of view. Instead

of thinking of a Delta set as being made up of a whole bunch of simplices one at a time, we

can now think of the standard n-simplex as standing for all of the simplices in Xn, all at

once - the functor X assigns to [n] the collection of all of the simplices of Xn (see Figure 9).

The face map di applied to the standard simplex [n] represents all of the ith faces of all the

n-simplices simultaneously.

At the same time, we see how any argument in X really comes from what happens back

in ∆̂. The commutativity axiom didj = dj−1di in a Delta set X is just a consequence of this

being true in the prototype simplex [n] and inherent properties of functors. We’ll get a lot of
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Figure 9: A Delta complex as the functorial image of ∆̂

mileage out of this kind of thinking: things we’d like to prove in a Delta set X can often be

proved just by proving them in the prototype standard simplex and applying functoriality.

Delta maps. We won’t dwell overly long on Delta maps, except to observe that they, too,

point toward the need for simplicial sets (however, see [18] where Delta complexes and Delta

maps are treated in their own right).

Going directly to the category theoretic definition, given two Delta sets X, Y , thought

of as contravariant functors ∆̂ → Set, a morphism X → Y is a natural transformation of

functors from X to Y . Thus a morphism consists of a collection of set maps Xn → Yn that

commute with the face maps.

Example 2.10. There is an apparent Delta map from the standard 2-simplex [0, 1, 2] to the

cone C of Example 2.6. See Figure 10.

Figure 10: The Delta map from |∆2| to the cone

The astute reader will notice something fishy here. We would hope that simplicial maps

of simplicial complexes would yield morphisms of Delta sets. However, consider the collapse

π : |∆2| = [0, 1, 2] → |∆1| = [0, 1] defined by π(0) = 0 and π(1) = π(2) = 1 (see Figure

5). To be a Delta set morphism, the simplex [0, 1, 2] ∈ |∆2|2 would have to be taken to

an element of |∆1|2. But this set is empty! There are no 2-simplices of |∆1|. Something is

amiss. We need simplicial sets.
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3 Simplicial sets and morphisms

Simplicial sets generalize both simplicial complexes and Delta sets.

When approaching the literature, the reader should be very careful about terminology.

Originally ([5]), Delta sets were referred to as semi-simplicial complexes, and, once the

degeneracy operations we are about to discuss were discovered, the term complete semi-

simplicial complex (c.s.s. set, for short) was introduced. Over time, with Delta sets becoming

of less interest, “complete semi-simplicial” was abbreviated back to “semi-simplicial” and

eventually to “simplicial,” leaving us with the simplicial sets of today. Meanwhile, some

modern authors have returned to using ”semi-simplicial complexes” to refer to what we are

calling Delta sets, on the grounds that, as we will see, the category ∆ is the prototype for

simplicial sets, not Delta sets, for which we have been using the prototype category ∆̂. This

all sounds very confusing because it is, and the reader is advised to be very careful when

reading the literature.2

We try to be careful and use only the three terms “simplicial complex,” “Delta set,” and

“simplicial set.” In particular, be sure to note the difference between “simplicial complex”

and “simplicial set” going forward.

Degenerate simplices. Recall from Example 2.4 that a simplicial map can collapse a

simplex. In that example, we had a simplicial map π : |∆2| → |∆1| defined on vertices so

that π(0) = 0 and π(1) = π(2) = 1. Recall also that we have begun to think of simplicial

complexes and Delta sets as collections of images of standard simplices under appropriate

maps. Well, here is a map of the standard 2-simplex |∆2|. What image simplex does it give

us in |∆1| under π? In the land of simplicial sets, the image π(|∆2|) is an example of a

degenerate simplex.

Roughly speaking, degenerate simplices are simplices that don’t have the “correct”

number of dimensions. A degenerate 3-simplex might be realized geometrically as a 2-

dimensional, 1-dimensional, or 0-dimensional object. Geometrically, degenerate simplices

are “hidden”; thus the clearest approach to dealing with them lies in the combinatorial

notation we have been developing all along.

The key both to the idea and to the notation is in allowing vertices to repeat. The natural

way to label π(|∆2|) = π([0, 1, 2]) in our example is as [0, 1, 1], reflecting where the vertices

of |∆2| go under the map. This violates our earlier principle that simplices in complexes

should be written [v0, . . . , vn] with the vi distinct vertices written in order, but sometimes

in mathematics we need a new, more general principle. For degenerate simplices, we’ll keep

the orderings but dispense with the uniqueness. Thus, officially, a degenerate simplex is a

[vi0 , . . . , vin ] for which the vij are not all distinct.

Example 3.1. How many 1-simplices, including degenerate ones, are lurking within the ele-

mentary 2-simplex [0, 1, 2]? A 1-simplex is still written [a, b], with a ≤ b, but now repetition

is allowed. The answer is six: [0, 1], [0, 2], [1, 2], [0, 0], [1, 1], and [2, 2]. See the middle picture

in Figure 11.

2I thank Jim McClure for explaining to me this historical progression.
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Similarly, within |∆2| = [0, 1, 2] there are now three kinds of 2-simplices. We have the

nondegenerate [0, 1, 2], the 2-simplices that degenerate to 1-dimension such as [0, 1, 1] and

[0, 0, 2], and we have the 2-simplices that degenerate to 0-dimensions such as [0, 0, 0] and

[2, 2, 2].

Working with degenerate simplices makes drawing diagrams much more difficult. We

take a crack at it in Figure 11.

Figure 11: The first picture represents all of the 1-simplices in |∆1|, including the degenerate

ones that are taken to individual vertices. The second picture represents all the 1-simplices

in |∆2|, and the last picture represents all of the degenerate 2-simplices in |∆2|.

As implied by the diagram, we can think of degenerate simplices as being the images of

collapsing maps such as that in Example 2.4.

Of course any simplicial complex or Delta set can be expanded conceptually to include

degenerate simplices. In the example of Figure 1, we might have the degenerate 5-simplex

[v2, v2, v2, v3, v3].

Notice also that our innocent little n-dimensional simplicial complexes suddenly contain

degenerate simplices of arbitrarily large dimension. Even the 0-simplex |∆0| = [0] becomes

host to degenerate simplices such as [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

The situation has degenerated indeed! To keep track of it all, we need degeneracy maps.

Degeneracy maps. Degeneracy maps are, in some sense, the conceptual converse of face

maps. Recall that the face map dj takes an n-simplex and give us back its jth (n− 1)-face.

On the other hand, the jth degeneracy map sj takes an n-simplex and gives us back the jth

degenerate (n+ 1)-simplex living inside it.
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As usual, we illustrate with the standard n-simplex, which will be a model for what

happens in all simplicial sets. Given the standard n-simplex |∆n| = [0, . . . , n], there are

n + 1 degeneracy maps s0, . . . , sn, defined by sj[0, . . . , n] = [0, . . . , j, j, . . . , n]. In other

words, sj[0, . . . , n] gives us the unique degenerate n + 1 simplex in |∆n| with only the jth

vertex repeated.

Again, the geometric concept is that sj|∆n| can be thought of as the process of collapsing

∆n+1 down into ∆n by the simplicial map πj defined by πj(i) = i for i < j, πj(j) = πj(j+1) =

j and πj(i) = i− 1 for i > j + 1.

This idea extends naturally to simplicial complexes, to Delta sets, and to simplices that

are already degenerate. If we have a, possibly degenerate, n-simplex [vi0 , . . . , vin ] with ik ≤
ik+1 for each k, 0 ≤ k ≤ n, then we set sj[vi0 , . . . , vin ] = [vi0 , . . . , vij , vij , . . . , vin ], i.e. repeat

vij . This is a degenerate simplex in [vi0 , . . . , vin ].

It is not hard to see that any degenerate simplex can be obtained from an ordinary

simplex by repeated application of degeneracy maps. Thus, just as any face of a simplex can

be obtained by using compositions of the di, any degenerate simplex can be obtained from

compositions of the si.

Also, as for the di, there are certain natural relations that the degeneracy maps possess.

In particular, if i ≤ j, then sisj[0, . . . , n] = [0, . . . , i, i, . . . , j, j, . . . , n] = sj+1si[0, . . . , n]. Note

that we have j + 1 in the last formula, not sj, since the application of si pushes j one slot

to the right.

Furthermore, there are relations amongst the face and degeneracy operators. These are

a little more awkward to write down since there are three possibilities:

disj = sj−1di if i < j,

djsj = dj+1sj = id,

disj = sjdi−1 if i > j + 1.

These can all be seen rather directly. For example, applying either side of the first formula

to [0, . . . , n] yields [0, . . . , ı̂, . . . , j, j, . . . , n]. Note also that the middle formula takes care of

both i = j and i = j + 1.

Simplicial sets. We are finally ready for the definition of simplicial sets:

Definition 3.2. A simplicial set consists of a sequence of sets X0, X1, . . . and, for each

n ≥ 0, functions di : Xn → Xn−1 and si : Xn → Xn+1 for each i with 0 ≤ i ≤ n such that

didj = dj−1di if i < j,

disj = sj−1di if i < j,

djsj = dj+1sj = id, (1)

disj = sjdi−1 if i > j + 1,

sisj = sj+1si if i ≤ j.

Example 3.3. Every simplicial complex or Delta set can be made into a simplicial set by

adjoining all possible degenerate simplices. Conversely, each simplicial set is also a Delta set
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by neglect of structure. However, a simplicial set does not necessarily come from a simplicial

complex as, for example, not every Delta set is a simplicial complex.

Example 3.4. The standard 0-simplex X = [0], now thought of as a simplicial set, is the

unique simplicial set with one element in each Xn, n ≥ 0. The element in dimension n is
n+1 times︷ ︸︸ ︷
[0, . . . , 0].

Example 3.5. As a simplicial set, the standard 1-simplex X = [0, 1] already has n+2 elements

in each Xn. For example, X2 = {[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]}.
Remark 3.6. We will use ∆n or [0, . . . , n] to refer to the standard n-simplex, thought of as

a simplicial set.

Example 3.7. Now for an example familiar from algebraic topology. Given a topological

space X, let S (X)n be the set of continuous functions from |∆n| to X. Together with face

and degeneracy maps that we will describe in a moment, these constitute a simplicial set

called the singular set of X. The singular chain complex S∗(X) from algebraic topology has

each Sn(X) equal to the free abelian group generated by S (X)n.

To define the face and degeneracy maps, let σ : |∆n| → X be a continuous map repre-

senting a singular simplex (Figure 12). The singular simplex diσ is defined as the restriction

of σ to the ith face of |∆n|. Equivalently it is the composition of σ and the simplicial in-

clusion map [0, . . . , n − 1] → [0, . . . , ı̂, . . . , n] (Figure 13). These are precisely the same as

the terms that show up in the boundary map of the singular chain chain complex where

∂ =
∑n

i=0(−1)idi.

Figure 12: A singular simplex

On the other hand, the degeneracy si takes the singular simplex σ to the composition

of σ : |∆n| = [0, . . . , n] → X with the geometric collapse represented by the degeneracy

[0, . . . , n + 1] → [0, . . . , i, i, . . . , n]. Once again, a degenerate simplex is a collapsed version

of an ordinary simplex (Figure 14).

S (X) is clearly a simplicial set: a face map takes a singular simplex to the map defined

along a face of the model simplex and a degeneracy is represented by a collapsed simplex.

It is our usual model, just redesigned within the context of the continuous map σ.
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Figure 13: A face of a singular simplex

Figure 14: A degenerate singular simplex

Some more examples of simplicial sets are given below in Section 4, where we can better

study their geometric manifestations.

Nondegenerate simplices.

Definition 3.8. A simplex x ∈ Xn is called nondegenerate if x cannot be written as siy for

any y ∈ Xn−1 and any i.

Every simplex in the sense of Section 2 of a simplicial complex or Delta set is a nondegen-

erate simplex of the corresponding simplicial set. If Y is a topological space, an n-simplex

of S (Y ) is nondegenerate if it cannot be written as the composition ∆n π→ ∆k σ→ Y , where

π is a simplicial collapse with k < n and σ is a singular k-simplex.

Note that it is possible for a nondegenerate simplex to have a degenerate face (see Exam-

ple 4.7, below, though it might be good practice to try to come up with your own example

first). It is also possible for a degenerate simplex to have a nondegenerate face (for example,

we know djsjx = x for any x, degenerate or not).
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The categorical definition. As for Delta sets, the basic properties of simplicial sets

derive from those of the standard n-simplex. In fact, that is where the prototypes of both

the face and degeneracy maps live and where we first developed the axioms relating them.

Thus it is not surprising (at this point) that there is a categorical definition of simplicial

sets, analogous to the one for Delta sets, in which each simplicial set is the functorial image

of a category, ∆, built from the standard simplices.

Definition 3.9. The category ∆ has as objects the finite ordered sets [n] = {0, 1, 2 . . . , n}.
The morphisms of ∆ are order-preserving functions [m]→ [n].

Notice that the only difference between the definitions of ∆̂ and ∆ is that the morphisms

in ∆ only need to be order-preserving and not strictly order-preserving. Thus, equating the

objects [n] with the simplices ∆n, the morphisms no longer need to represent only inclusions

of simplices but may represent degeneracies as well. In more familiar notation, a typical

morphism, say, f : [5] → [3] might be described by f [0, 1, 2, 3, 4, 5] = [0, 0, 2, 2, 2, 3], which

can be thought of as a simplicial complex map taking the 5-simplex degenerately to the

2-face of the 3-simplex spanned by 0, 2, and 3.

As in ∆̂, the morphisms in ∆ are generated by certain maps between neighboring car-

dinalities Di : [n] → [n + 1] and Si : [n + 1] → [n], 0 ≤ i ≤ n. The Di are just as for ∆̂:

Di[0, . . . , n] = [0, . . . , ı̂, . . . , n+ 1]. The new maps, which couldn’t exist in ∆̂, are defined by

Si[0, . . . , n+ 1] = [0, . . . , i, i, . . . , n]. It is an easy exercise to verify that all morphisms in ∆

are compositions of the Di and Si and that these satisfy axioms analogous to those in the

definition of simplicial set. Later on, we will also use Di and Si to stand for the geometric

maps they induce on the standard geometric simplices.

To get to our categorical definition of simplicial sets, we must, as for Delta sets, consider

∆op. The maps Di become their opposites, denoted di, and these correspond to the face

maps as before: the opposite of the inclusion Di : [n] → [n + 1] of the ith face is the ith

face map, di, which assigns to the n-simplex its ith face. The opposites of the Si become

the degeneracies; the opposite of the collapse Si : [n + 1] → [n] that pinches together the i

and i + 1 vertices of an n + 1 simplex is the ith degeneracy map, si, which assigns to the

n-simplex ∆n the degenerate n+1-simplex within ∆n that repeats the ith vertex. See Figure

15.

Of course, the di and si can be checked to satisfy the axioms in the definition of simplicial

set given above.

Definition 3.10 (Categorical definition of simplicial set). A simplicial set is a contravariant

functor X : ∆→ Set (equivalently, a covariant functor X : ∆op → Set).

The reader should compare this with the categorical definition of Delta sets and reassure

himself/herself that this definition is equivalent to Definition 3.2. As for Delta sets, the

power in this definition is that we can think of the standard n-simplex as standing for all

of the simplices in Xn, all at once - the functor X assigns to [n] all of the n-simplices in

Xn - and the standard face and degeneracy maps di and si pick out all of the faces and

degeneracies of Xn by functoriality.
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Figure 15: How to visualize Di, di, Si, and si. Our difficulty with drawing degeneracies

extends here so that we represent the image of si pictorially by the picture for Si. In other

words, the image of s1 in the bottom right is the degenerate 2-simplex arising from the

collapse map S1.

Example 3.11. Let’s re-examine the singular set S (Y ) of the topological space Y from this

point of view. The singular set S (Y ) is a functor ∆ → Set that assigns to [n] the set

HomTop(|∆n|, Y ), the set of all continuous maps from |∆n| to Y . It assigns to the face

and degeneracy maps of ∆ the face and degeneracy maps of Example 3.7, i.e. we have the

following correspondences:

[n] HomTop(|∆n|, Y ) [n] HomTop(|∆n|, Y )

⇒ ⇒

[n− 1]

di

?

HomTop(|∆n−1|, Y )

di

?

[n+ 1]

si

?

HomTop(|∆n+1|, Y ).

si

?

The reader should check that the definitions for the face and degeneracy maps of the singular

set defined above are consistent with the claimed functoriality. (Notice that the maps on the

right sides of these diagrams should more appropriately be labeled S (Y )(di) and S (Y )(si),

but we stick with common practice and use di and si for face and degeneracy maps wherever

we find them.)

Simplicial morphisms. Simplicial sets themselves constitute a category S. In the cat-

egorical language, if X and Y are simplicial sets (and thus functors ∆ → Set), then a

morphism f : X → Y is a natural transformation of functors. Unwinding this to more

concrete language, f consists of set maps fn : Xn → Yn that commute with face operators

and with degeneracy operators.

Example 3.12. At last we have a context in which to explain properly the collapse map

π : |∆2| → |∆1| of Example 2.4. We extend π to the map of simplicial sets π : ∆2 → ∆1 that

takes ∆2 = [0, 1, 2] to the degenerate simplex [0, 1, 1] = s1([0, 1]). At the same time, it is

doing an infinite number of other things. For example, it takes the vertex [0] ∈ ∆2 to [0] ∈ ∆1,

it takes the vertices [1], [2] ∈ ∆2 to [1] ∈ ∆1, it takes the 1-simplex [0, 1] ∈ ∆2 to [0, 1] ∈ ∆1,
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it takes the 1-simplex [1, 2] ∈ ∆2 to the degenerate 1-simplex3 [1, 1] = s0[1] ∈ ∆1, and it even

takes the degenerate simplex [0, 1, 1, 2, 2, 2] = s4s3s1[0, 1, 2] ∈ ∆2 to the degenerate simplex

s4s3s1[0, 1, 1] = [0, 1, 1, 1, 1, 1] ∈ ∆1. And much much more.

Example 3.13. Notice that, unlike simplicial maps on simplicial complexes, morphisms on

simplicial sets are not completely determined by what happens on vertices. For example,

consider the simplicial morphisms from ∆1 to the Delta set decomposition of the circle with

two distinct vertices of Example 2.7. If we have a simplicial morphism that takes [0] to [v0]

and [1] to [v1], there are still two possibilities for where to send [0, 1].

Example 3.14. On the other hand, given a map of ordered simplicial complexes f : X → Y ,

this induces a map of the associated simplicial sets obtained by adjoining all naturally

occurring degenerate simplices, i.e. all simplices of the form [vi0 , . . . , vin ] with i0 ≤ · · · ≤ in,

where all vij are vertices of some particular simplex of X (or, respectively, of Y ). In this

case, a function on vertices does determine a simplicial map.

Remark 3.15. Notice that it is always enough to define a simplicial morphism by what it

does to nondegenerate simplices. What happens to the degenerate simplices is forced by the

definition since, e.g. f(si(x)) = si(f(x)). Similarly, what happens on faces is forced by what

happens on the simplices of which they are faces. Thus, altogether, simplicial morphisms

can be described by specifying what they do to a rather small collection of nondegenerate

simplices.

From here on, we’ll abandon the distinction between “simplicial map” and “simplicial

morphism” and use the terms interchangeably as applied to simplicial sets.

4 Realization

If the idea of simplicial objects is to abstract from geometry to combinatorics, there should

be a way to reverse that process and turn simplicial sets into geometric objects. Indeed that

is the case. The definition looks a bit off-putting at first (what concerning simplicial sets

doesn’t?), but, in fact, we’ll see that simplicial realization is a very natural thing to do.

Definition 4.1. Let X be a simplicial set. Give each set Xn the discrete topology and let

|∆n| be the n-simplex with its standard topology. The realization |X| is given by

|X| = q∞n=0Xn × |∆n|/ ∼,

where ∼ is the equivalence relation generated by the relations (x,Di(p)) ∼ (di(x), p) for

x ∈ Xn+1, p ∈ |∆n| and the relations (x, Si(p)) ∼ (si(x), p) for x ∈ Xn−1, p ∈ |∆n|. Here Di

and Si are the face inclusions and collapses induced on the standard geometric simplices as

in our discussion above of the category ∆.

3Careful: [1] is a 0-simplex, so s0 is the appropriate (indeed the only well-defined) degeneracy map.

Remember that s0 tells us to repeat what occurs in the 0th place - it doesn’t know what’s in that place.
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To see why this definition makes sense, let’s think about how we would like to form a

simplicial complex out of the data of a simplicial set. From the get-go, we have been thinking

of the Xn as collections of simplices. So this is just what Xn × |∆n| is: a disjoint collection

of simplices, one for each element of Xn. The next natural thing to do is to identify common

faces. This is precisely what the relation (x,Di(p)) ∼ (di(x), p) encodes (see Figure 16): The

first term of (x,Di(p)) ⊂ (x, |∆n+1|) is an (n+ 1)-simplex of X and the second term Di(p) is

a point on the ith face of a geometric (n+1)-simplex. On the other hand, (di(x), p) is the ith

face of x together with the same point, now in a stand-alone n-simplex. So the identification

described just takes the n-simplex corresponding to di(x) in Xn × |∆n| and glues it as the

ith face of the (n+ 1)-simplex assigned to x in Xn+1× |∆n+1|. Since a similar gluing is done

for any other y and j such that dj(y) = di(x), the effect is to glue faces of simplices together.

Figure 16: In the realization, the 1-simplex representing d0x, pictured on the right, is glued

to the 2-simplex representing x, pictured on the left, along the appropriate face.

The next natural thing to do is suppress the degenerate simplices, since they’re encoded

within nondegenerate simplices anyway. This is what the relation (x, Si(p)) ∼ (si(x), p)

for x ∈ Xn−1, p ∈ |∆n| does, although more elegantly. This relation tells us that given a

degenerate n-simplex si(x) and a point p in the pre-collapse n-simplex |∆n|, we should glue

p to the (n−1)-simplex represented by x at the point Si(p) in the image of the collapse map.

That still sounds a little confusing, but the idea is straightforward: |∆n|s corresponding to

degenerate n-simplices get collapsed in the natural way into the (n − 1)-simplices they are

degeneracies of. See Figure 17. We note also that there is no reason to believe that x itself is

nondegenerate. It might be, in which case the simplex corresponding to x is itself collapsed.

This provides no difficulty.

Example 4.2. Recall that the 0-simplex [0], thought of a simplicial set, has one simplex

[0, . . . , 0] in each dimension≥ 0. Thus |[0]| = q∞i=0|∆i|/ ∼. So in dimension 0 we have a single

vertex v. In dimension 1, we have a single simplex [0, 0] = s0[0]. The gluing instructions tell

us to identify each (si(x), p) = ([0, 0], p) ∈ ([0, 0], |∆1|) with ([0], S0(p)) = ([0], v). Thus the

|∆1| in dimension 1 gets collapsed to the vertex. Similarly, since each point of the 2-simplex

([0, 0, 0], |∆2|) gets identified to a point of ([0, 0], |∆1|), and so on, we see that the whole

situation collapses down to a single vertex.

Example 4.3. Generalizing the preceding example, |[0, . . . , n]| = |∆n| is just the standard

geometric n-simplex, justifying our earlier use of notation. We encourage the reader to

explore this example on his or her own, noting that all of the degenerate simplices wind up

tucked away within actual faces of |∆n|, just where we expect them.
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Figure 17: In the realization, the 2-simplex representing s1x, pictured on the right, is glued

to the 1-simplex representing x, pictured on the left, via the appropriate collapse, depicted

by S1.

Example 4.4. More generally, given any simplicial complex, the realization of the simplicial

set associated to it by adjoining only degenerate simplices returns the original simplicial

complex.

Example 4.5. There is an analogous realization procedure for Delta sets. Given a Delta set

X, we can define the realization |X|∆ by

|X|∆ = q∞n=0Xn × |∆n|/ ∼,

where ∼ is the equivalence relation generated by (x,Di(p)) ∼ (di(x), p) for x ∈ Xn+1, p ∈
|∆n|. These realizations yield the types of spaces we have been drawing already to represent

Delta sets. These are sometimes called Delta complexes; see, e.g., [9].

However, given a simplicial set X, the simplicial set realization of X is not generally

going to be the same as the Delta set realization of the associated Delta set, say X∆, that

we obtain by neglect of structure.

For example, consider the simplicial set ∆0. As noted, its simplicial realization, |∆0| is

the topological space consisting of a single point. But recall that the simplicial set ∆0 has

exactly one simplex in each dimension, and the neglect of structure that turns this into a

Delta set drops the degeneracy relation but still leaves a Delta set with one simplex in each

dimension and all face maps the unique possible ones. Thus the Delta set realization |∆0
∆|∆

is an infinite dimensional CW complex with one cell in each dimension whose n-dimensional

cell is attached by gluing each face of an n-simplex, in an order-preserving manner, to the

image of the unique (n − 1)-simplex in the (n − 1)-skeleton. Thus the 1-skeleton of |∆0
∆|∆

is a circle, the 2-skeleton is the “dunce cap” (see, e.g., [2, Section 14]), and so on. This is

evidently not homeomorphic to |∆0|. (However, they are homotopy equivalent; this will be

true in general, see [18]).

In what follows, discussion of “realization” and the notation |X| will refer exclusively to

simplicial set realization unless noted otherwise.

Example 4.6. Let Y be a topological space, and let S (Y ) be its singular set. |S (Y )| will

be huge (unless Y is discrete - what will it be then?). While this looks discouraging, it turns

out that the natural map |S (Y )| → Y (which acts on the realization of each of each singular

simplex by the map defining that singular simplex) induces isomorphisms on all homotopy
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groups; see [12, Theorem 4]. In particular, if Y is a CW complex, this is enough to assure

|S (Y )| and Y are homotopy equivalent as a consequence of the Whitehead Theorem (see [2,

Corollary VII.11.14]), as we will see below in Theorem 4.9 that the realization of a simplicial

set is always a CW complex. Thus, for many of the purposes of algebraic topology, Y and

|S (Y )| are virtually indistinguishable. So perhaps, wearing the appropriate glasses, Y and

S (Y ) can be treated as the same thing, especially if Y is a CW complex? We’ll return to

this idea later.

Example 4.7. As noted in Example 4.4, the realization of a simplicial set that we obtained

from a simplicial complex is the original simplicial complex. So, for example, we can obtain

a topological (n− 1)-sphere as the realization of the boundary of the n-simplex, ∂∆n. What

does ∂∆n look like as a simplicial set? Since every m-simplex of ∂∆n is also a simplex of

∆n, each can be written [i0, . . . , im], where 0 ≤ i0 ≤ · · · ≤ im ≤ n. The only caveat is

that we cannot allow any m-simplex that contains all of the vertices 0, . . . , n, since any such

simplex would either be the “top face” [0, . . . , n], itself, or a degeneration of it, and these

are not allowable faces of ∂∆n. In summary, then, we have Sn−1 ∼= |∂∆n|, where ∂∆n is the

simplicial set consisting of all sequences of the numbers 0, . . . , n that do not contain all of

the numbers 0, . . . , n.

Is this the most efficient way to realize Sn−1 as the realization of a simplicial set? After all,

∂∆n contains quite a number of simplices, many of which are nondegenerate (the interested

reader might go and count them). Here is another way to do it, at least for n ≥ 2, suggested

by CW complexes. Let X be a simplicial set whose only nondegenerate simplices are denoted

by [0] ∈ X0 and [0, . . . , n− 1] ∈ Xn−1. All simplices in Xi, 0 < i < n− 1, are the degenerate

simplices [0, . . . , 0]. This, of course, forces all of the faces of [0, . . . , n − 1] to be [0, . . . , 0],

and we see that the realization |X| is equivalent to the standard construction of Sn−1 as a

CW complex by collapsing the boundary of an (n− 1)-cell to a point. See Figure 18.

Figure 18: The realization of the simplicial set consisting of only two nondegenerate simplices,

one in dimension 0 and the other in dimension 2, is the sphere S2; this picture represents

the image of the nondegenerate simplex of dimension 2 in the realization.

The preceding example is instructive on several different points:

1. The second part of Example 4.7 relies strongly on the existence of degenerate simplices.

For n > 2, we cannot construct Sn−1 this way as the realization of a Delta set. A Delta
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set with an (n−1)-simplex would require actual (nondegenerate) (n−2)-simplices as its

faces. Of course we can still get Sn−1 as the realization of the Delta set corresponding

to ∂∆n.

2. Notice that the realization of a simplicial set does not necessarily inherit the structure

of a simplicial complex, at least not in any obvious way from the data of the simplicial

set.

3. Realizations are non-unique, in the sense that very different looking simplicial sets can

have the same geometric realization up to homeomorphism. This is not surprising,

since there are many ways to triangulate a piecewise-linear space.

Example 4.7 is also disconcerting in that the reader may be getting worried that realiza-

tions of simplicial sets might be very complicated to understand with all of the gluing and

collapsing that can occur. To mitigate these concerns somewhat, we first observe that all

degenerate simplices do get collapsed down into the simplices of which they are degeneracies,

and so constructing a realization depends only on understanding what happens to the non-

degenerate simplices. A second concern would be that two nondegenerate simplices might

be glued together. This would happen if it were possible for two nondegenerate simplices

to have a common degeneracy. Luckily, this does not happen, as we demonstrate in the

following proposition. As a corollary, we can conclude that the realization of a simplicial

set is made up of the disjoint union of the interiors of the nondegenerate simplices. We

must limit this statement to the interiors as the faces of a nondegenerate simplex may be

degenerate, as in the second part of Example 4.7 - meanwhile, nondegenerate faces will look

out for themselves!

Proposition 4.8. A degenerate simplex is a degeneracy of a unique nondegenerate simplex.

In other words, if z is a degenerate simplex, then there is a unique nondegenerate simplex x

such that z = si1 · · · sikx, for some collection of degeneracy maps si1 , . . . , sik .

Proof. Suppose z is a degenerate simplex. Then z = si1x1 for some x1 and some degeneracy

map si1 . If x1 is degenerate, we can make a similar replacement and continue inductively

until eventually we have z = si1 · · · sikxk for some nondegenerate xk. Thus z can be written

in the desired form.

Next, suppose x and y are nondegenerate simplices, possibly of different dimensions,

and that Sx = Ty, where S and T are compositions of degeneracy operators. Suppose

S = si1 · · · sik . Let D = dik · · · di1 . Then x = DSx = DTy, using the simplicial set axioms

for the first equality, and, by using the simplicial set axioms to trade face maps to the right,

we obtain x = T̃ D̃y for some composition of face operators D̃ and some composition of

degeneracies T̃ . But, by hypothesis, x is nondegenerate, so T̃ must be vacuous, and we must

have x = D̃y. That is x is a face of y. But we could repeat the argument reversing x and y

to obtain that y is also face of x. But this is impossible unless x = y.

Another comforting fact is the following theorem:
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Theorem 4.9. If X is a simplicial set, then |X| is a CW complex with one n-cell for each

nondegenerate n-simplex of X.

Proof. We refer to Milnor’s paper on geometric realization [12] (or, alternatively, to [11,

Theorem 14.1]) for the proof, which is not difficult and which formalizes our discussion

preceding Proposition 4.8.

The adjointness relation. The realization functor | · | turns out to be adjoint to the

singular simplex functor S (·).

Theorem 4.10. If X is a simplicial set and Y is a topological space, then

HomTop(|X|, Y ) ∼= HomS(X,S (Y )).

Sketch of proof. We identify the maps Ψ : HomTop(|X|, Y ) → HomS(X,S (Y )) and Φ :

HomS(X,S (Y ))→ HomTop(|X|, Y ) and leave it to the reader both to check carefully that

these are well-defined and to show that they are mutual inverses.

A map f ∈ HomS(X,S (Y )) assigns to each n-simplex x ∈ X a continuous function

σx : |∆n| → Y . Let Φ(f) be the continuous function that acts on the simplex (x, |∆n|) ∈ |X|
by applying σx to |∆n|.

Conversely, given a function g ∈ HomTop(|X|, Y ), then the restriction of g to a nonde-

generate simplex (x, |∆n|) yields a continuous function |∆n| → Y and thus an element of

S (Y )n. If (x, |∆n|) represents a degenerate simplex, then we precompose with the appro-

priate collapse map of ∆n into |X| before applying g.

One can say much more on the relation between simplicial sets and categories of topologi-

cal spaces. For example, see Theorem 10.1 below, according to which the homotopy category

of CW complexes is equivalent to the homotopy category of simplicial sets satisfying a con-

dition called the Kan condition. The Kan condition is defined in Section 7.

5 Products

Before we move on to a look at simplicial homotopy, we will need to know about products

of simplicial sets. For those accustomed to products of simplicial complexes or products of

chain complexes, the definition of the product of simplicial sets looks surprisingly benign by

comparison.

Definition 5.1. Let X and Y be simplicial sets. Then their product X × Y is defined by

1. (X × Y )n = Xn × Yn = {(x, y) | x ∈ Xn, y ∈ Yn},

2. if (x, y) ∈ (X × Y )n, then di(x, y) = (dix, diy),

3. if (x, y) ∈ (X × Y )n, then si(x, y) = (six, siy).
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Notice that there are evident projection maps π1 : X × Y → X and π2 : X × Y → Y

given by π1(x, y) = x and π2(x, y) = y. These maps are clearly simplicial morphisms.

Definition 5.1 looks disturbingly simple-minded, but it is vindicated by the following

important theorem.

Theorem 5.2. If X and Y are simplicial sets, then |X ×Y | ∼= |X| × |Y | (in the category of

compactly generated Hausdorff spaces). In particular, if X and Y are countable or if one of

|X|, |Y | is locally finite as a CW complex, then |X × Y | ∼= |X| × |Y | as topological spaces.

We refer the reader to [11, Theorem 14.3] or [12] for a proof in the latter situations and

to [7, Chapter III] for a proof of the general case. However, since an example is perhaps

worth a thousand proofs, we will take a detailed look at some special cases.

Example 5.3. Let X be any simplicial set, and let Y = ∆0 = [0]. Since ∆0 has a unique

element in each dimension, X ×∆0 ∼= X. So indeed, |X ×∆0| ∼= |X| × |∆0| ∼= |X|.
Example 5.4. The first interesting example is ∆1×∆1. We would like to see that |∆1×∆1| ∼=
|∆1| × |∆1|, the square. As discussed in Section 4, we need to focus on the nondegenerate

simplices of ∆1 ×∆1. The reader can refer to Figure 19 for the following discussion.

Figure 19: The realization of ∆1 ×∆1

First, in dimension 0, we have the product 0-simplices

X0 = {([0], [0]), ([1], [0]), ([0], [1]), ([1], [1])},

the four vertices of the square.

In dimension 1, we have the pairs (e, f), where e and f are 1-simplices of ∆1. There are

three possibilities for each of e and f - [0, 0], [0, 1], and [1, 1]. So there are nine 1-simplices

of ∆1 ×∆1.

There is only one 1-simplex that is made up completely of nondegenerate simplices:

([0, 1], [0, 1]). Since d0([0, 1], [0, 1]) = (0, 0) and d1([0, 1], [0, 1]) = (1, 1), the simplex ([0, 1], [0, 1])

must be the diagonal. Those with one nondegenerate and one degenerate 1-simplex are

([0, 0], [0, 1]), ([0, 1], [0, 0]), ([1, 1], [0, 1]) and ([0, 1], [1, 1]), which, as we see by checking the

endpoints, are respectively the left, bottom, right, and top of the square. The other four
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1-simplices are the degeneracies of the vertices. For example, ([0, 0], [1, 1]) = (s0[0], s0[1]) =

s0([0], [1]).

Now for the 2-simplices - here’s where things get a little tricky. There are four 2-simplices

of ∆1: [0, 0, 0], [0, 0, 1], [0, 1, 1], and [1, 1, 1]. So there are sixteen 2-simplices of ∆1 × ∆1.

There are two possible degeneracy maps, s0 and s1, from (∆1×∆1)1 to (∆1×∆1)2. These act

on the nine 1-simplices, but there are not eighteen degenerate 2-simplices since s0s0 = s1s0,

and we know there are four degenerate 1-simplices s0vi of ∆1 × ∆1 corresponding to the

degeneracies of the four vertices. Removing these redundancies leaves fourteen degenerate

simplices. There are no other redundancies since s0s0 = s1s0 is the only relation on s1 and

s0. The remaining two 2-simplices are nondegenerate. These turn out to be ([0, 0, 1], [0, 1, 1])

and ([0, 1, 1], [0, 0, 1]), which are the two triangles, as one can check by computing face maps.

Next, we need to see that all 3-simplices of ∆1 × ∆1 and above are degenerate. We

first observe that each 3-simplex of ∆1 must be a double degeneracy of a 1-simplex (since

there are no nondegenerate simplices of ∆1 of dimension greater than 1). But there are

only six such options, of the forms s0s0e, s0s1e, s1s0e, s1s1e, s2s0e and s2s1e for a (possibly

degenerate) 1-simplex e. However, the simplicial set axioms reduce this to the possibilities

s1s0e, s2s0e, and s2s1e. But then, again by the axioms,

(s1s0e, s1s0f) = s1(s0e, s0f)

(s1s0e, s2s0f) = (s0s0e, s0s1f) = s0(s0e, s1f)

(s1s0e, s2s1f) = (s1s0e, s1s1f) = s1(s0e, s1f)

(s2s0e, s1s0f) = (s0s1e, s0s0f) = s0(s1e, s0f)

(s2s0e, s2s0f) = s2(s0e, s0f)

(s2s0e, s2s1f) = s2(s0e, s1f)

(s2s1e, s1s0f) = (s1s1e, s1s0f) = s1(s1e, s0f)

(s2s1e, s2s0f) = s2(s1e, s0f)

(s2s1e, s2s1f) = s2(s1e, s1f).

So all 3-simplices of ∆1 × ∆1 are degenerate. It also follows that all higher dimension

simplices are degenerate: the terms in any such product must be further degeneracies of

these particular doubly degenerate 1-simplices, and using the simplicial set axioms, we can

move s0 and s1 to the left in all expressions. Then we can proceed as in the above list of

computations.

That last bit isn’t very intuitive, but the low-dimensional part makes some sense. If

we take the product of two CW complexes, the cells of the product will be the products

of the cells C1 × C2, where C1 and C2 are not necessarily of the same dimension. These

mixed dimensional cells occur here as products of nondegenerate simplices with degenerate

simplices. What makes matters difficult is that we must preserve a simplicial structure. This

forced “triangulation” is what makes matters somewhat complicated.

It will also be useful for us to look more closely at the products ∆p × ∆q. After all,

all products will be made up of these building blocks. The main point of interest for us is
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that the simplicial product construction yields the same triangulation structure that may be

familiar from homotopy arguments in courses in beginning algebraic topology.

Example 5.5. Since we know that |∆p×∆q| = |∆p|× |∆q|, let us focus on the nondegenerate

(p+ q)-simplices of ∆p×∆q. We let Ej stand for the unique nondegenerate j-simplex of ∆j.

We note immediately that any nondegenerate (p+q)-simplex s of ∆p×∆q (and hence the only

ones that appear nondegenerately in the realization) must have the form s = (SEp, S
′Eq),

where S and S ′ are sequences of degeneracy maps. Why? Otherwise s would have to be of

the form s = (S̄t, S̄ ′t′), where S̄ and S̄ ′ are again sequences of degeneracy maps and t and t′

are faces of Ep and Eq, respectively. But in this case, we would have s ∈ F × F ′, where F

and F ′ are the simplicial subsets corresponding to proper faces of ∆p and ∆q. Consequently

the image of s × |∆p+q| in the realization of ∆p × ∆q will in fact lie within the realization

|F |×|F ′|. But then dim |s| < p+q, so s could not have been a nondegenerate (p+q)-simplex.

So now we see that s = (SEp, S
′Eq), and for dimensional reasons, we can write this as

s = (siq · · · si1Ep, sjp · · · sj1Eq). Furthermore, using the simplicial set axioms, we can assume

that 0 ≤ i1 < · · · < iq < p+ q and 0 ≤ j1 < · · · < jq < p+ q. Now notice that the collection

{i1, . . . , iq, j1, . . . , jp} consists of p+ q numbers from 0 to p+ q − 1. Furthermore, there can

be no redundancy, since if ik = jk′ for some k and k′, then again by the axioms, we can

pull these indices to the front to get s = (sik S̃Ep, sjk′ S̃
′Eq) = sik(S̃Ep, S̃

′Eq) for some S̃, S̃ ′,

making s degenerate.

Thus we conclude that the nondegenerate (p + q)-simplices of ∆p × ∆q are precisely

those of the form s = (siq · · · si1Ep, sjp · · · sj1Eq), where the ik and jk are increasing series of

integers from 0 to p+ q − 1, all completely distinct.

In the special case ∆p × ∆1 = ∆p × I, this rule for nondegenerate (p + 1)-dimensional

simplices reduces to the form s = (siEp, sjp · · · sj1e), where e is the edge [0, 1] of I, and the

sequence j1, . . . , jp is increasing from 0 to p, omitting only i. Thus there are precisely p+ 1

nondegenerate (p + 1)-simplices. Since e = [0, 1], notice that all of the degeneracy maps

before the “gap” at i must adjoin another 0 and all of those after the “gap” adjoin more 1s.

Thus we can also label these nondegenerate (p+ 1)-simplices exactly by the p+ 1 sequences

of length p+ 2 of the form [0, . . . , 0, 1, . . . , 1] that must start with a 0 and end with a 1.

If this looks familiar, it’s because the standard way to triangulate the product prism ∆p×I
when studying simplicial homology theory is by the (p + 1)-simplices [0, . . . , k, k′, . . . , p′],

where the unprimed numbers represent vertices in ∆p×0 and the primed numbers represent

vertices in ∆p× 1. The simplex [0, . . . , k, k′, . . . , p′] corresponds to k+ 1 zeros and p− k+ 1

ones. See Figure 20.

For our upcoming discussion of simplicial homotopy, it’s also worth looking at how these

simplices are joined together along their boundaries. Let’s first look from the point of view of

writing the (p+1)-simplices of ∆p×I in the form Sk = [0, . . . , k, k′, . . . , p′], where 0 ≤ k ≤ p.

If i < k, then diSk = [0, . . . , i − 1, i + 1, . . . , k, k′, . . . , p′]. But this can be thought of as a

p-simplex of [0, . . . , i − 1, i + 1, . . . , p] × I and so is part of the boundary ∂∆p × I. Similar

considerations hold if i > k + 1. The interesting “interior cases” are

dkSk = [0, . . . , k − 1, k′, . . . , p′]

dk+1Sk = [0, . . . , k, (k + 1)′, . . . , p′].
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Figure 20: The realization of |∆2×∆1| with nondegenerate 3-simplices [0, 1, 2, 2′], [0, 1, 1′, 2′],

and [0, 0′, 1′, 2′]

To understand the assembly of the prism ∆p × I, notice that dkSk = dkSk−1 for k > 0 and

dk+1Sk = dk+1Sk+1 for k < p. This tells us how to glue the (p+1)-simplices together to form

|∆p × I|.
In our other notation, if we have Sk = (skEp, sp · · · sk+1sk−1 · · · s0e), then for i < k we

have, using the axioms,

diSk = (sk−1diEp, sp−1 · · · sk+1sk−1 · · · si(disi)si−1 · · · s0e) = (sk−1diEp, sp−1 · · · sksk−2 · · · s0e).

Notice that we use the axioms to “pass di through,” converting each sj to sj−1 along the

way, until it “annihilates” with the original si (leaving the previous si+1 converted to the

new si). We wind up with a p-simplex that is recognizable as a p-simplex in diEp × I.

Similarly, for i > k + 1, we get diSk = (skdi−1Ep, sp−1 · · · sksk−2 · · · s0e). The two “interior”

cases correspond to dkSk and dk+1Sk:

dkSk = (dkskEp, sp−1 · · · sk+1sk−2 · · · s0e) = (Ep, sp−1 · · · sk+1sk−2 · · · s0e)

dk+1Sk = (dk+1skEp, sp−1 · · · sk+2sk−1 · · · s0e) = (Ep, sp−1 · · · sk+2sk−1 · · · s0e).

These are not in ∂∆p × I. However, we do again see that dkSk = dkSk−1 for k > 0 and

dk+1Sk = dk+1Sk+1 for k < p.

6 Simplicial objects in other categories

Before moving on to discuss simplicial homotopy, we pause to note that the categorical

definition of simplicial sets suggests a sweeping generalization.
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Definition 6.1. Let Cat be a category. A simplicial object in Cat is a contravariant functor

X : ∆→ Cat (equivalently, a covariant functor X : ∆op → Cat). A morphism of simplicial

objects in Cat is a natural transformation of such functors.

Another common notation, when Cat is a familiar category with objects of a given

type, is to refer to a simplicial object in Cat as a simplicial [insert type of object]. In

other words, when Cat is the category of groups and group homomorphisms, we speak of

simplicial groups. This is consistent with referring to a simplicial object in the category Set

as a simplicial set. One also commonly encounters simplicial R-modules, simplicial spaces,

and even simplicial categories!

Example 6.2. Let’s unwind the definition in the case of simplicial groups. By definition, a

simplicial group G consists of a sequence of groups Gn and collections of group homomor-

phisms di : Gn → Gn−1 and si : Gn → Gn+1, 0 ≤ i ≤ n, that satisfy the axioms (1).

At this point, unfortunately, trying to picture group elements as simplices breaks down a

little bit since there is so much extra structure around (what does it mean geometrically to

multiply two simplices?). Nonetheless, it is still helpful to refer mentally to the category ∆, in

which we can visualize each simplex [n] as representing a group and picture movement toward

each n − 1 face as representing a different group homomorphism to the group represented

by [n− 1]. See Figure 21.

Figure 21: A pictorial representation of a 2-simplex of a simplicial group with arrows rep-

resenting the face morphisms from dimension 2 to dimension 1 and from dimension 1 to

dimension 0

Example 6.3. Suppose X is a simplicial set. Then we can form the simplicial group C∗(X)

with (C∗X)n = Cn(X) defined to be the free abelian group generated by the elements of Xn

with di in C∗(X) taken to be the linear extensions of the face maps di of X. We can also

form the total face map d =
n∑
i=0

(−1)idi : Cn(X)→ Cn−1(X) and then define the homology

H∗(X) as the homology of this chain complex.

If X = S (Y ), the singular set as defined in Example 3.7, then we have H∗(X) = H∗(Y ),

the singular homology of the space Y .
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Example 6.4. Here’s an example of a simplicial group that is important in the theory of

group cohomology. Let G be a group, and let BG be the simplicial group defined as follows.

Let BGn = G×n, the product of G with itself n times. G×0 is just the trivial group {e}. For

an element (g1, . . . , gn) ∈ BGn, let

d0(g1, . . . , gn) = (g2, . . . , gn)

di(g1, . . . , gn) = (g1, . . . , gigi+1, . . . gn) if 0 < i < n

dn(g1, . . . , gn) = (g1, . . . , gn−1)

si(g1, . . . , gn) = (g1, . . . , gi, e, gi+1, . . . , gn).

The reader can check that this defines a simplicial group. The realization of the under-

lying simplicial set turns out to be the classifying space of the group G. For more on this

simplicial group and its uses, the reader may consult [21, Chapter 8].

7 Kan complexes

One of the goals of the development of simplicial sets (and other simplicial objects) was

to find a combinatorial way to study homotopy theory, just as simplicial homology theory

allows us to derive invariants of simplicial complexes in a purely combinatorial manner (at

least in principle). Unfortunately, it turns out that not all simplicial sets are created equal

as regards their usefulness toward this goal. The underlying reason turns out to be (once

again, at least in principle) related to the reason that homotopy theorists prefer to work

with CW complexes and not arbitrary topological spaces. Pairs of CW complexes satisfy

the homotopy extension property, i.e. inclusions of subcomplexes are cofibrations (see, e.g.,

[4]). The condition we need to impose on simplicial sets to make them appropriate for

the study of homotopy is similarly an extension condition. When seen through sufficiently

advanced lenses, such as from the model category viewpoint presented in [8], the extension

condition on simplicial sets and the homotopy extension property in topology are essentially

equivalent.

As with much else in the theory of simplicial sets, the extension condition comes from a

fairly straightforward idea that is often completely obfuscated in the formal definition.

To explain the idea, we first need the following definition.

Definition 7.1. As a simplicial complex, the kth horn |Λn
k | on the n-simplex |∆n| is the

subcomplex of |∆n| obtained by removing the interior of |∆n| and the interior of the face

dk∆
n. See Figure 22. We let Λn

k refer to the associated simplicial set. This simplicial set

consists of simplices [i0, . . . , im] with 0 ≤ i0 ≤ · · · ≤ im ≤ n such that 1) not all numbers

0, . . . , n are represented (this would be the top face or a degeneracy thereof) and 2) we never

have all numbers except k represented (this would be the missing (n−1)-face or a degeneracy

thereof).

The extension condition, also known as the Kan condition (after Daniel Kan), says that

whenever we see a horn on an n-simplex within a simplicial set, the rest of the simplex is

there, too. Here’s an elegant way to say this:
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Figure 22: The three horns on |∆2|

Definition 7.2. The simplicial object X satisfies the extension condition or Kan condition if

any morphism of simplicial sets Λn
k → X can be extended to a simplicial morphism ∆n → X.

Such an X is often called a Kan complex or, in more modern language, is referred

to as being fibrant (note the risk of confusion here between simplicial sets and simplicial

complexes).

We next present an equivalent formulation that is often used. This version has its ad-

vantages from the point of view of conciseness of combinatorial information, but it is much

less conceptual.

Definition 7.3 (Alternate version of the Kan condition). The simplicial set X satisfies the

Kan condition if for any collection of (n − 1)-simplices x0, . . . , xk−1, xk+1, . . . , xn in X such

that dixj = dj−1xi for any i < j with i 6= k and j 6= k, there is an n-simplex x in X such

that dix = xi for all i 6= k.

The condition on the simplices xi of the alternative definition glues them together to

form the horn Λn
k , possibly with degenerate faces, within X, and the definition says that we

can extend this horn to a (possibly degenerate) n-simplex in X.

Example 7.4. Not even the standard simplices ∆n, n > 0, satisfy the Kan condition! Let

∆1 = [0, 1] be the standard 1-simplex, and consider the horn Λ2
0, which consists of the edges

[0, 2] and [0, 1] of ∆2, along with their degeneracies. Now consider the simplicial morphism

that takes [0, 2] ∈ Λ2
0 to [0, 0] ∈ ∆1 and [0, 1] ∈ Λ2

0 to [0, 1] ∈ ∆1. There is a unique such

simplicial map since we’ve specified what happens on all the nondegenerate simplices of Λ2
0.

Notice that this is perfectly well-defined as a simplicial map since all functions on all simplices

are order-preserving. However, this cannot be extended to a map ∆2 → ∆1 since we have

already prescribed that 0 → 0, 1 → 1, and 2 → 0, which is clearly not order-preserving on

∆2.

Example 7.5. It is easy to check that ∆0 does satisfy the Kan condition.

Example 7.6. Given a topological space Y , the simplicial set S (Y ) does satisfy the Kan

extension condition. It is actually fairly straightforward to see this. Consider any morphism

of simplicial sets f : Λn
k → S(Y ). This is the same as specifying for each n − 1 face, di∆

n,

i 6= k, of ∆n a singular simplex σi : |∆n−1| → Y . Every other simplex of Λn
k is a face

or a degeneracy of a face of one of these (n − 1)-simplices, and so the rest of the map

f is determined by this data. Furthermore, the compatibility conditions coming from the

simplicial set axioms ensure that the topological maps σi piece together to yield, collectively,
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a continuous function f : |Λn
k | → Y . It is now a simple matter to extend this function

to all of |∆n|: let π : |∆n| → |Λn
k | be any continuous retraction (which certainly exists:

(|∆n|, |Λk
n|) is homeomorphic to (In−1 × I, In−1 × 0)), and define σ = fπ : |∆n| → Y . This

is a singular n-simplex whose faces dif , i 6= k, are precisely the singular simplices σi. Thus

this determines the desired extension. See Figure 23.

Figure 23: A demonstration that the singular set satisfies the Kan condition

Example 7.7. Any simplicial group is also, by neglect of structure, a simplicial set. All such

simplicial sets arising from simplicial groups satisfy the Kan condition. The proof is not

difficult, but I don’t know of a version that is particularly illuminating. Since we will not

have much further use for this fact in these notes, we refer the reader to [13, Theorem 2.2]

for a proof.

8 Simplicial homotopy

In this section we begin to look at the homotopy properties of simplicial sets. This is one of

the key reasons that the theory of simplicial sets exists - to allow us to turn homotopy theo-

retic problems, at least in principle, into combinatorial problems by studying the homotopy

groups of simplicial sets instead of those of topological spaces. In order to get started with

simplicial homotopy, it is necessary to restrict attention to simplicial sets satisfying the Kan

condition. This is not as large a handicap as it first appears, however, since we have already

seen that, given a topological space Y , the singular set S (Y ) satisfies the Kan condition,

and eventually, we will see that S (Y ) constitutes an appropriate combinatorial stand-in for

Y .

As we proceed, the reader should bear in mind the extent to which many of the ideas

and definitions mirror those in topological homotopy theory. This may prove a comfort (or

cause serious worry!) at those junctures where the mirror appears somewhat warped by the

combinatorial complexity of the simplicial version.

We begin, naturally enough, with π0, corresponding to the homotopy relationship between

maps of points. This is a quite tractable warm-up for what is to follow.
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8.1 Paths and path components

As in topology, when talking about homotopy, we will let I stand for the simplicial set

∆1 = [0, 1]. As a simplicial set, I has the nondegenerate 1-simplex [0, 1], the nondegenerate

0-simplices [0] and [1], and all other simplices are degenerate. Each simplex has the form

[0, . . . , 0, 1, . . . , 1] (possibly with no 0s or no 1s).

Definition 8.1. A path in a simplicial set X is a simplicial morphism p : I → X. Equiva-

lently, a path in X is a 1-simplex p ∈ X1. If p is a path in X, d1p = p[0] is called the initial

point of the path and d0p = p[1] is called the final point or terminal point.

Definition 8.2. Two 0-simplices a and b of the simplicial set X are said to be in the same

path component of X if there is a path p with initial point a and final point b.

Already this definition appears slightly odd if you’re used to working with simplicial

complexes. In a connected simplicial complex, one might have to traverse several edges to

link two vertices. Here we require it to be done all with one edge. Furthermore, we would

expect “being in the same path component” to be an equivalence relation. This is not at

all clear, say, in an ordered simplicial complex in which we can have a < b or b < a but not

both. What rescues this definition is the Kan condition.

Theorem 8.3. If X is a Kan complex, then “being in the same path component” is an

equivalence relation.

Proof. We will go through the proof in detail as it is very illuminating of how to think

geometrically about simplicial sets.

Reflexivity. This one is easy: for any vertex [a], s0[a] is a path from a to a.

Transitivity. Consider ∆2 = [0, 1, 2]. If p1 is a path from a to b and p2 is a path from b

to c, then let f : Λ2
1 → X take [0, 1] to p1 and [1, 2] to p2. See Figure 24. The Kan condition

lets us extend f to f̄ : ∆2 → X, and f̄ [0, 2] gives us a path from a to c.

Figure 24: The transitivity relation on path connectedness via the Kan condition
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Symmetry. This is only slightly more tricky than the transitivity condition. See Figure

25. Let p be a path in X from a to b. We need a path the other way. Think of p as the [0, 1]

side of ∆2. Let the [0, 2] side of ∆2 represent s0[a], which must exist since X is a simplicial

set. Notice that d0s0[a] = d1s0[a] = [a]. At this point, we can label the three vertices [0, 1, 2]

of ∆2 as [a, b, a], and we have a simplicial map on Λ2
0 taking [0, 1] to p and [0, 2] to s0[a].

The Kan condition tells us that this map can be extended to all of ∆2 and [1, 2] gets taken

to a path p from b to a.

Figure 25: The symmetry relation on path connectedness

Notice how important the Kan condition is here.

Since we have demonstrated that being in the same path component is an equivalence

relation, we have equivalence classes.

Definition 8.4. We denote the set of path components of X (i.e. the equivalence classes of

vertices of X under the relation of being in the same path component) by π0(X).

So far, this is comfortingly familiar.

8.2 Homotopies of maps

There are at least two classical versions of the definition of simplicial homotopy, and at least

two more modern versions for which we refer the reader to [8]. Of the two classical versions,

one has the expected form for a homotopy, H : X×I → Y . The other is more closely related

to the homotopies we see in chain complexes Ĥ : Xn → Yn+1. We will look at both of these

and see how they are related.

Perhaps the most natural definition of simplicial homotopy looks something like this:

Definition 8.5 (Simplicial homotopy 1). Two simplicial maps f, g : X → Y are homotopic

if there is a simplicial map H : X × I → Y such that H|X×0 = g and H|X×1 = f (i.e., if

g = H ◦i0 and f = H ◦i1, where i0, i1 are the evident simplicial inclusion maps i0 : X× [0] ↪→
X × I and i1 : X × [1] ↪→ X × I).

Unfortunately, here is the definition of simplicial homotopy one finds quite often in the

literature:

Definition 8.6 (Simplicial homotopy 2). Two simplicial maps f, g : X → Y are homotopic

if for each p there exist functions hi = hpi : Xp → Yp+1 for each i, 0 ≤ i ≤ p, such that
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1.

d0h0 = f

dp+1hp = g

2.

dihj = hj−1di if i < j

dj+1hj+1 = dj+1hj

dihj = hjdi−1 if i > j + 1

3.

sihj = hj+1si if i ≤ j

sihj = hjsi−1 if i > j.

It will take some doing to see how these two definitions are related. This was one of the

initial motivations for writing this exposition!

As usual, we will consider the universal example, X = ∆p, since once we understand how

a homotopy works on a single simplex, we will also understand what happens along its faces

and degeneracies, and everything else is determined by how the simplices are glued together.

The key here is to recall Example 5.5 of Section 5, in which we showed how the prism

|∆p × I| is decomposed into simplices. In particular, it consists of p + 1 nondegenerate

(p+ 1)-simplices that we labeled Sk ∈ (∆p × I)p+1, 0 ≤ k ≤ p. Suppose now that we have a

homotopy H : ∆p × I → Y from f to g. Everything is determined by what H does to the

Sk, since every other nondegenerate simplex in ∆p× I is a face of one of these simplices. All

other simplices in ∆p × I are degenerate, and so their images are determined by the images

of the simplices of which they are degeneracies.

How does this relate to the combinatorial Definition 8.6? Let us denote the unique

nondegenerate p-simplex of ∆p by Ep. In this version, there are p+1 functions hi : Ep → Yp+1.

Each of the p+ 1 functions hi assigns to Ep a (p+ 1)-simplex of Y . Collectively, these give

us the image of the prism over Ep in Y .

To see this, we use the notation Sk = [0, . . . , k, k′, . . . , p′], 0 ≤ k ≤ p, for the (p + 1)-

simplices of the prism ∆p × I (see Example 5.5). Given H : ∆p × I → Y , let hk(Ep)

correspond to the image H(Sk) in Y . Now let’s look at the conditions in Definition 8.6 and

see what they mean.

Starting with the first conditions, d0h0(Ep) = d0H(S0) = H(d0S0) = H(d0[0, 0′, . . . , p′]) =

H([0′, . . . , p′]) = H ◦ i1(Ep) = f(Ep), using the first definition of homotopy. Similarly,

dp+1hp(Ep) = H([0, . . . , p]) = H ◦ i0(Ep) = g(Ep). So these conditions assure that the ends

of the prism really are controlled by the maps f and g.

The first and third equations of the second set of conditions mirror the observations made

in Example 5.5 that most of the boundaries of the (p+ 1)-simplices of the prism ∆p × I are

themselves simplices of the prisms built on the boundary faces of ∆p. So these equations
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ensure that these faces of the hi(∆
p) are compatible with the actions of the homotopy maps

hji of lower dimensions j < p on the faces of ∆p. The second equation is the condition that

the neighboring simplices Sk and Sk+1 share a boundary. We invite the reader to glean these

combinatorial details from the calculations in Example 5.5.

The third set of equations can also be obtained in a fairly straightforward manner by

working with the Sk. For example, we observe that for i ≤ j, siSj = [0, . . . , i, i, . . . , j, j′, . . . , p′],

which is also the (j+1)st prism simplex on the degenerate simplex [0, . . . , i, i, . . . , j−1, j, j+

1, . . . , p]. In other words, the ith degeneracy of the jth prism (p + 1)-simplex over ∆p is

the (j + 1)st prism simplex over the ith degeneracy of ∆p. The geometric idea is a bit less

obvious than in the preceding paragraphs, but really this is just the condition that the way

the homotopy acts on degenerate simplices is determined by how it acts on the simplices of

which they are degeneracies.

Having described how the combinatorial conditions of the second definition correspond

to the more geometric ideas of the first definition, we now leave it to the interested reader to

verify the complete equivalence of the two definitions, in particular to verify that the data

given by all the hji is enough to reconstruct H.

We would like homotopy to be an equivalence relation, but this will not hold in general.

For example, in our discussion of path connectedness, which we see in the current language

corresponds directly to homotopies of maps ∆0 → X, we saw that path connectedness is not

always an equivalence relation. However, the discussion of path connectedness might lead

one to suspect that we will be safe in the world of Kan complexes, and this is so.

Theorem 8.7. Homotopy of maps X → Y is an equivalence relation if Y is a Kan complex.

If f and g are homotopic, we denote that by f ∼ g.

We invite the reader to prove this by extending the argument given for path connected-

ness.

It is also fairly straightforward to verify other expected elementary fact about homotopy;

for instance if f ∼ f ′, then fg ∼ f ′g and gf ∼ gf ′. Also, homotopic maps induce the same

homomorphisms on homology groups (see Section 3 - this follows as for the usual proof in

singular homology theory by using the triangulation of the homotopy prism; see, e.g. [14]).

8.3 Relative homotopy

The notions of subcomplexes and relative homotopy offer no surprises, but we record the

definitions for clarity.

Definition 8.8. If X is a simplicial set, then A is a simplicial subset of X, denoted A < X,

if A itself is a simplicial set such that An ⊂ Xn for all n and the face and degeneracy maps of

A agree with those from X. A pair of simplicial sets is often denoted by (X,A). Simplicial

maps of pairs (X,A) → (Y,B) are simplicial maps X → Y such that the image of A is

contained in B.

Definition 8.9. If (X,A) are a simplicial set and simplicial subset and both X and A satisfy

the Kan condition, then (X,A) is called a Kan pair.
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Example 8.10. An important example of a simplicial subset of a simplicial set X is a basepoint

for X, consisting of an element of X0 and all of its degeneracies. We will denote basepoints

by ∗. Notice that ∗ is isomorphic as a simplicial set to ∆0 and can be considered as an image

∆0 → X of a simplicial map. Since ∆0 is a Kan complex, (X, ∗) will be a Kan pair if X is

Kan.

Example 8.11. Note that it is not automatic that a subcomplex of a Kan complex be Kan.

For instance, we know from Example 7.4 that the simplex ∆1 is not a Kan complex. We

also know that the singular set S (|∆1|) on the space |∆1| is a Kan complex, by Example

7.6. But the former is a subcomplex of the latter, realized by the singular simplices that

represent |∆1| as a simplicial complex. Namely, ∆1 corresponds to the subcomplex of S(|∆1|)
generated by the singular 0-simplices σ0 : |∆0| → [0] and σ1 : |∆0| → [1], by the singular

1-simplex id : |∆1| → |∆1|, and by their degeneracies.

Definition 8.12. A homotopy H : X × I → Y is a homotopy rel A if the restriction of H

to A× I can be factored as H|A×I = gπ1 : A× I → Y , where g is a simplicial map A→ Y

and π1 is the projection A × I → A. If Y is Kan, then homotopy rel A is an equivalence

relation.

While considering simplicial pairs, there is another crucial theorem we should mention:

the homotopy extension theorem for simplicial maps to Kan complexes:

Theorem 8.13 (Homotopy extension theorem). Let (X,A) be a pair of simplicial sets and

Y a Kan complex. Suppose there is a simplicial map f : X → Y and a simplicial homotopy

H : A× I → Y such that H|A×0 = f |A. Then there exists an extension F : X × I → Y such

that F |A×I = H and F |X×0 = f .

Unfortunately, the proofs I know would all take us too far afield, so we refer the reader

to [13, Chapter 1, Appendix A] for a combinatorial treatment or [8, Section I.4] for a more

modern treatment.

9 πn(X, ∗)
In this section, we will discuss the homotopy groups of Kan complexes. This section is a

bit more technical than the preceding ones, as we here need some theorems and not just

definitions. This section should serve as good technical practice for the reader preparing to

go on to read further material on simplicial objects.

Given a Kan complex with basepoint (X, ∗), there are at least four ways to define

πn(X, ∗):

1. One can define these groups directly as homotopy classes of maps of (simplicial) spheres

to X.

2. There is a purely combinatorial definition.
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3. As in algebraic topology, one can first define appropriate iterated simplicial loop spaces

Ωn(X) and define πn(X) = π0(Ωn(X)).

4. As a more topological alternative, one could try the topological homotopy groups of

the realization of X, i.e. πn(|X|, | ∗ |).

We will focus on the relationship between the first two of these, referring the interested

reader to [13] for the third approach. For hints at the relevance of the fourth approach, see

Theorem 10.1, below, as well as the discussion in Section 10 in general.

The definition of πn(X, ∗) in terms of spheres is straightforward once we decide what a

sphere is. Example 4.7 teaches us that there is more than one reasonable definition, or at

least more than one simplicial set whose realization is a sphere. In fact, we will see that

both versions treated in that example are acceptable.

Definition 9.1 (First definition of πn). Given a Kan complex with basepoint (X, ∗), define

πn(X, ∗), n > 0, to be the set of homotopy equivalence classes of maps (∂∆n+1, ∗)→ (X, ∗).
Here, we take for the basepoint of ∂∆n+1 the simplicial subset of ∆n+1 generated by the

vertex [0], and all homotopies are relative to the basepoint.

The requirement that X be Kan is necessary for homotopy to be an equivalence relation.

Of course, we want πn(X, ∗) to be a group, but this will have to wait a moment. Let’s first

work toward the more combinatorial definition. This takes a little bit of preliminary effort.

Definition 9.2. We say that two n-simplices x, x′ ∈ Xn are homotopic if

1. dix = dix
′ for 0 ≤ i ≤ n, and

2. there exists a simplex y ∈ Xn+1 such that

(a) dny = x,

(b) dn+1y = x′, and

(c) diy = sn−1dix = sn−1dix
′, 0 ≤ i ≤ n− 1.

The idea here is that x and x′ have the same boundaries and that y provides the homotopy

between them, rel boundary, by letting x and x′ be two of the faces of y, while the rest of

the faces of y degenerate to the most straightforward degeneracies of the boundaries of x

and y. See Figure 26.

It can be shown directly that homotopy of simplices is an equivalence relation if X is a

Kan complex. The argument is a generalization of the one showing that path connectedness

is an equivalence relation. Again the idea is to arrange a simplex so that the pieces we know

fall on certain faces of horns and the pieces we’d like to show exist fall on the missing faces.

Then these relations must exist due to the Kan extension condition. We refer the interested

reader to [11, Section I.3].

Definition 9.3 (Second definition of πn). Given a Kan complex with basepoint (X, ∗), we

can also define πn(X, ∗), n > 0, as the set of equivalence classes of n-simplices x ∈ Xn with

dix ∈ ∗ for all i, 0 ≤ i ≤ n, up to homotopy of simplices.
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Figure 26: Above: a homotopy of 1-simplices. Below: a homotopy of 2-simplices. The

picture in the bottom right depicts two 2-simplices glued together along their boundaries.

This version of the homotopy groups corresponds more closely to our second version of

the sphere in Example 4.7. Recall that, as a simplicial set, this version of the sphere Sn had

only two nondegenerate simplices: one in dimension n and one in dimension 0. An n-simplex

of X all of whose faces live in ∗ can be thought of as the image of that simplicial version of

Sn in X. Thus this definition of πn(X, ∗) also makes some geometric sense. However, there

are some obvious questions, such as: Why do the first and second definitions of πn agree?

And where is the group structure we expect?

To answer the first question, we need a series of lemmas:

Lemma 9.4. If X is Kan and dix = dix
′ for all i, we obtain the same equivalence relation

as in Definition 9.2 if we instead require that dry = x, dr+1y = x′ for some 0 ≤ r ≤ n, and

diy = disrx = disrx
′ for i 6= r, r + 1.

Proof. We refer the reader to [11] for the full proof, which is contained within Lemma 5.5

there. The idea is to show that the case of the definition using r, r + 1 is equivalent to the

version with r + 1, r + 2 for each relevant r. This is done using an extension argument by

which one creates an (n + 2)-simplex which has the two desired homotopies on two of the

sides. We illustrate a low-dimensional case in Figure 27: Suppose that x, x′ are 1-simplices

and that we have a y with d0y = x, d1y = x′. We want to find a z with d1z = x, d2z = x′.

We form the horn Λ2
0, shown flattened on the right of Figure 27. We embed y as [0, 1, 3] (note

that this maintains its orientation simplicially despite the oddities of the drawing). We let

the other sides of the horn be appropriate degeneracies of x′. Notice that there is no trouble

embedding this horn in X extending y ∈ X. Now the Kan condition assures us that we can

extend this embedding to all of ∆3, including the remaining face [1, 2, 3]. We can check that

this last face can be taken as the desired z (be careful to notice that d1[1, 2, 3] = [1, 3] and

d2[1, 2, 3] = [1, 2]).
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The idea in higher dimensions is precisely the same; the extra faces of the horn that

exist in higher dimensions contain other degeneracies of faces of x - see [11, Lemma 5.5], [3,

Proposition 1.19].

Figure 27: Shifting indices in the homotopy relation. Here ∗ represents d2s0x = d2s0x
′,

which is a degenerate 1-simplex, both vertices being the first vertex of x, which is also the

first vertex of x′.

Lemma 9.5. If X is Kan, two n-simplices x, x′ ∈ X are homotopic in the sense of Definition

9.2 if and only if the inclusion maps f : ∆n → X and f ′ : ∆n → X that represent x and x′

are homotopic rel boundary as maps.

Proof. Of course to say that f represents x means that f takes the nondegenerate n-simplex

En of ∆n to x ∈ X.

One direction of the argument is fairly straightforward. In order to show that f and f ′

are homotopic, it suffices to find a chain of n+ 1 simplices of dimension n+ 1, representing

the images of nondegenerate simplices of the prism ∆n×I, such that the “top” and “bottom”

faces of the first and last simplex represents x and x′. But if we know that x and x′ are

homotopic as simplices, we know there is one (n + 1)-simplex y connecting them with, say,

dny = x, dn+1y = x′, and diy ∈ ∗ for all other i. So now we just let y be the (n + 1)st

simplex hn(∆n), and we let hi(∆
n) = six for 0 ≤ i ≤ n. In other words, we let the last

nondegenerate simplex in ∆n × I do the work of the homotopy, and we just collapse all the

rest into the face representing x. See Figure 28.

In the other direction, suppose we have an actual homotopy rel ∗ from x to x′ thought of

as inclusion maps. By definition, this gives us a prism ∆n×∆1 ∈ X whose top is x and whose

bottom is x′. We know from the discussion in Example 5.5 that each of the nondegenerate

(n+ 1)-simplices of the prism has two n-faces that are not in ∂∆n ×∆1, and the rest are in

∂∆n × ∆0, all of which goes to ∗ in X. Furthermore, it is not hard to check that the two

n-faces not in ∂∆n×∆1 are consecutive faces. In particular, using the notation of Example

5.5, these faces are dkSk and dk+1Sk. Thus by Lemma 9.4, each Sk is a homotopy between

these two faces. Since the top and bottom faces of the prism are x and x′, we obtain a

simplicial homotopy between x and x′ using the transitivity of simplicial homotopy.

Thus, to show that our two definitions of πn(X, ∗) agree, it is only necessary to prove

the following lemma, which is familiar in the context of algebraic topology. The proof is
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Figure 28: We label the vertices with the “prism notation” of Example 5.5. The bottom

simplex y is a homotopy of the simplices x and x′. Adjoining the degenerate simplex s0x

shows how to obtain a model prism for the homotopy from x to x′ as inclusion maps.

somewhat long, but we provide most of the details, as it is difficult to find a direct proof in

the standard expositions.

Lemma 9.6. If X is a Kan complex, there is a bijection between homotopy classes of maps

f : (∂∆n+1, ∗)→ (X, ∗) and homotopy classes of maps g : (∆n, ∂∆n)→ (X, ∗).

Proof. Given g : (∆n, ∂∆n) → (X, ∗), it is easy to construct an associated f by identifying

∆n with d0∆n+1. Then we let f : (∂∆n+1, ∗)→ (X, ∗) be defined so that f is given by g on

d0∆n+1 and by the unique map to ∗ on each di∆
n+1, i > 0. It is also straightforward to see

that any homotopy of g rel ∂∆n determines a homotopy of f rel ∗.
Conversely, suppose we are given f : (∂∆n+1, [0])→ (X, ∗). We show that f is homotopic

to a function f̃ that takes Λn+1
0 to ∗. Then we can let g be f |d0∆n+1 .

We first observe, as noted in the proof of Lemma 9.5, that to construct a homotopy

between two inclusions of k-simplices x and x′ in X, it suffices to find a simplex y in X with

dky = x, dk+1y = x′ since this can be considered one of the blocks of a prism, and the rest

of the prism can be filled up with degeneracies of x or x′.

Keeping this in mind, we proceed by induction with the following induction step: Suppose

fk−1 : ∂∆n+1 → X is such that f([0]) ∈ ∗ and f(z) ∈ ∗ for all simplices z ∈ ∂∆n+1 of

dimension ≤ k − 1 such that [0] is a vertex of z, then there is a homotopy from fk−1 to an

fk that takes all simplices up to dimension k having [0] as a vertex to ∗. Furthermore, the

homotopy can be performed rel the faces of dimension ≤ k − 1 having [0] as a simplex

Clearly we can take f0 = f . So suppose we have constructed fk−1 for k ≥ 1. We need

only find the desired homotopy on the k-simplices of ∆n+1 that have [0] as a vertex, and then

we can apply the homotopy extension theorem, Theorem 8.13. So let z be a k-simplex of

∆n+1 with 0 as a vertex. We know that fk−1(diz) ∈ ∗ for i 6= 0. Now, consider the horn Λk+1
0 ,

and note that we can map Λk+1
0 into X such that the k-face corresponding to dk+1∆k+1 is

fk−1(z) and such that all other k-faces are taken into ∗. Notice that this is possible precisely

because fk−1(diz) ∈ ∗ for i 6= 0. Now since X is a Kan complex, we can extend this horn to
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a (k + 1)-simplex y in X such that dk+1y = fk−1(z) and dky ∈ ∗. As noted, this is enough

to construct a homotopy on z from fk−1(z) to the unique map of z into ∗. In addition, this

is a homotopy rel those faces of z that have [0] as a simplex. Notice also that it is possible

to find such homotopies for all such z independently and compatibly. In this way, we get

a homotopy on the k-simplices of ∆n+1 having [0] as a vertex from fk−1 to the map to ∗.
Extending this homotopy by the homotopy extension theorem yields the desired homotopy

to fk.

Continuing inductively, we obtain a function fn+1 : ∂∆n+1 → X homotopic to f such

that Λn+1
0 is taken to ∗. Now we can define g to be the restriction of fn+1 to d0∆n+1.

If f, f ′ : (∂∆n+1, [0])→ (X, ∗) are homotopic rel [0], then we can show that the resulting

g and g′ are homotopic by building a homotopy from the homotopy H : ∂∆n+1×I → X from

f to f ′ to a homotopy Hk+1 : ∂∆n+1×I → X such that Hk+1(Λn+1
0 ×I) ∈ ∗ and that extends

the homotopies built over f and f ′ as in the preceding paragraphs. Then Hk+1|d0∆n+1×I will

be a homotopy from g to g′. We leave the details to the reader.

Lemmas 9.5 and 9.6 together prove the following.

Proposition 9.7. If X is a Kan complex, the definitions of πn(X, ∗) in Definitions 9.1 and

9.3 agree.

The group structure. One benefit of the version of πn(X, ∗) given in Definition 9.3,

compared to the perhaps more geometrically transparent Definition 9.1, is the ease of proving

that πn(X, ∗) is a group and of describing the group operation.

Definition 9.8. Let x, y be two n-simplices, n ≥ 1, in the Kan complex X such that

dix = diy ∈ ∗ for all i. Let Λn+1
n be the horn of ∆n+1 in X such that the face corresponding

to dn+1∆n+1 is y, the face corresponding to dn−1∆n+1 is x, and the faces corresponding to

all other sides of the horn are in ∗. Let z be an extension of the horn to ∆n+1 as guaranteed

by the Kan condition. Then define xy as the homotopy class of dnz in πn(X, ∗). See Figure

29.

It can be shown that the definition is independent of the choices made:

Proposition 9.9. The product of Definition 9.8 yields a well-defined function πn(X, ∗) ×
πn(X, ∗)→ πn(X, ∗).

Proof. The proof is by various applications of the Kan extension condition. See [11, Lemma

4.2]. This would also be a good exercise for the reader.

The idea of the product on the simplicial πn(X, ∗) is not far from that for the product

in the topological homotopy groups. First, suppose one has a map of the (n+ 1)-ball Dn+1

to a topological space X such that the equator of the boundary sphere Sn is mapped to

the basepoint of X. Then the restrictions of the map to the upper and lower hemispheres

of Sn determine elements of πn(X, ∗), and the map of all of Dn+1 determines a homotopy

between them. Secondly, recall that, roughly speaking, the product of two elements x, y in
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Figure 29: The product of x and y in π1(X, ∗) (above) or π2(X, ∗) (below).

the topological πn(X, ∗) can be represented by a map of a sphere that agrees with x and y

on two disjoint disks in Sn and takes the rest of Sn to the basepoint.

Definition 9.8 puts these ideas together. In the simplicial world, we can think of dn∆n+1

as being one hemisphere of ∂∆n+1 and the rest of ∂∆n+1 as the other hemisphere. Then in

Definition 9.8, the (n + 1)-simplex z can be thought of as providing a homotopy between

dnz and what is happening on the rest of ∂z (notice that, indeed, ∂dnz ∈ ∗). But the rest

of ∂z contains x and y on two separate faces and everything else goes to ∗, just as for the

topological product.

Of course we expect πn(X, ∗) to be a group if n > 0.

Theorem 9.10. With the product of Definition 9.8, πn(X, ∗) is a group.

Proof. The constructions are pictured in Figure 30.

The constant map ∆n → ∗ (which we will also denote by ∗) is the identity element.

Indeed, given x ∈ X representing an element of πn(X, ∗), the (n+ 1)-simplex snx will have

dn+1snx = dnsnx = x, while for i < n, disnx = sn−1dix ∈ ∗. This realizes x = ∗x. Similarly,

consideration of sn−1x gives x = x∗.
It is also easy to construct inverses: given x ∈ X representing an element of πn(X, ∗),

there is no problem mapping the horn Λn+1
n+1 into X such that the face corresponding to

dn−1∆n+1 goes to x and all other faces land in ∗. The Kan condition lets us extend this to

a map of ∆n+1 into X and then the face corresponding to dn+1∆n+1 is a right inverse to x.

Similarly, we can find a left inverse using Λn+1
n−1 and putting x on the face corresponding to

dn+1∆n+1.

Finally, we show that the group operation is associative, which takes a bit more work.

Let x, y, z be simplices in X representing elements of πn(X, ∗). We choose (n+ 1)-simplices

wn−1 and wn+2 that respectively realize the products xy and yz, and we choose a simplex

wn+1 realizing the product (xy)z, where xy is represented by dnwn−1. Now, we can find a
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Figure 30: Above left: the identity x∗ = x. Above right: construction of the right and left

inverses of x. Below: Associativity (xy)z = x(yz).

horn Λn+2
n in X such that the faces corresponding to di∆

n+2 are the wi for i = n − 1, n +

1, n + 2 and ∗ otherwise. To see that this data is consistent to form the horn, we need

to check the appropriate faces, most of which are in ∗, to see that they correspond. The

only faces of ∆n+2 we don’t need to check are those of the form didn∆n+2 since dn∆n+2

isn’t in the horn. By the simplicial axioms, these also correspond to the faces dn−1di∆
n+2

for i < n and dndi+1∆n+2 for i ≥ n. This leaves the following faces to check: We have

dndn−1∆n+2
n = dnwn−1 = xy = dn−1wn+1 = dn−1dn+1∆n+2

n and dn+1dn−1∆n+2
n = dn+1wn−1 =

y = dn−1wn+2 = dn−1dn+2∆n+2
n . We also have dn+1dn+1∆n+2

n = dn+1wn+1 = z = dn+1wn+2 =

dn+1dn+2∆n+2
n . All other sides in the proposed horn are in ∗, and so the data is consistent.

We can extend this horn to an (n + 2)-simplex u by the Kan condition. So now by

definition of wn+1, (xy)z = dnwn+1 = dndn+1u, which, using the axioms, is also equal to

dndnu. But this also represents the product of dn−1dnu = dn−1dn−1u = dn−1wn−1 = x with

dn+1dnu = dndn+2u = dnwn+2 = yz. So dndnu also represents the product x(yz), proving

associativity.

Also as expected, πn(X, ∗) is an abelian group for n ≥ 2, but this is a bit more difficult

to prove. We refer the reader to [11, Proposition 4.4].

Relative homotopy groups. If (X,A, ∗) is a Kan triple (meaning A is a Kan subcomplex

of the Kan complex X and ∗ is a basepoint in A), there are also relative homotopy groups

πn(X,A, ∗). Corresponding to our first definition of πn(X, ∗) and the topological notion

of relative homotopy, we could define πn(X,A, ∗) to be relative homotopy classes of maps

(∆n, ∂∆n, [0])→ (X,A, ∗), where the homotopies are required to keep the image of ∂∆n× I
in A and the image of [0]× I in ∗. For a version of πn(X,A, ∗) corresponding to our second
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definition of πn(X, ∗), we first need a relative notion of homotopy of simplices:

Definition 9.11. If A is a subcomplex of X, we say that two n-simplices x, x′ ∈ Xn are

homotopic rel A if dix = dix
′ for 1 ≤ i ≤ n, d0x is homotopic to d0x

′ in A via an n-simplex

y, and there exists a simplex w ∈ Xn+1 such that d0w = y, dnw = x, dn+1w = x′, and

diw = sn−1dix = sn−1dix
′, 1 ≤ i ≤ n− 1.

This definition is very similar to that for homotopy of simplices except instead of requiring

d0x = d0x
′, we let d0x and d0x

′ be two simplices that are themselves homotopic in A, and

the homotopy between x and x′, provided by w, contains within it the homotopy between

d0x and d0x
′.

Using this relative notion of homotopy, we can define πn(X,A, ∗).

Definition 9.12. Given a Kan triple (X,A, ∗), we define πn(X,A, ∗), n > 0, as the set of

equivalence classes of n-simplices x ∈ X with d0x ∈ A and dix ∈ ∗ for all i, 1 ≤ i ≤ n, up

to relative homotopy of simplices.

πn(X,A, ∗) is also a group for n ≥ 2 and an abelian group for n ≥ 3. We will define the

product; the proofs of well-definedness and that we have a group are analogous to those for

πn(X, ∗).

Definition 9.13. Suppose x, y represent elements of πn(X,A, ∗), n ≥ 2. Let z represent

the product between d0x and d0y in πn−1(A, ∗). So z ∈ A is such that dn−2z = d0x,

dnz = d0y and dn−1z represents (d0x)(d0y). Now map the horn Λn+1
n into X such that the

sides corresponding to d0∆n+1, dn−1∆n+1, and dn+1∆n+1 are z, x, and y, respectively, and all

other faces go to ∗. One can check that this is consistent data. Then let w be an extension

of the horn, which exists because X is Kan, and define xy to be dnw.

Figure 31: The product of two elements of x, y ∈ π2(X,A, ∗). The 1-simplex with endpoints

1 and 3 represents the product (d0x)(d0y) in π1(A).

An excellent exercise for the reader at this point would be to show that there is a long

exact sequence

· · · → πn(A, ∗)→ πn(X, ∗)→ πn(X,A, ∗)→ πn−1(A, ∗)→ · · · .
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10 Concluding remarks

It is difficult to know where to end a survey of the type we have undertaken here. On the

one hand, although we have included some material from its later chapters, we have not even

covered the entire first chapter of May’s textbook [11]! On the other hand, our goal has never

been to provide a completely rigorous or comprehensive treatise on simplicial theory, but

to provide the reader with an introduction to some of the most important elementary ideas

while maintaining a bridge to the geometric pictures that the combinatorics are based upon.

We hope that we have prepared the interested student to move on to the more standard

texts on simplicial objects with some picture (literally) of what’s going on there.

And what is going on there? Just about everything in topological homotopy theory and

then some. Just a glance at the table of contents of [11] turns up many familiar concepts from

homotopy theory: fibrations, fiber bundles, Postnikov systems, function spaces, Hurewicz

theorems, Eilenberg-Mac Lane complexes, k-invariants, cup and cap products, the Serre

spectral sequence, . . . . This is not surprising in light of the following theorem; we refer

the reader to Curtis [3, Section 12], or to [8, Section I.11] for a modern proof.

Theorem 10.1. The homotopy category of Kan complexes, consisting of Kan complexes and

homotopy classes of maps between them, is equivalent to the category of CW complexes and

homotopy classes of continuous maps.

The functors that realize this equivalence are the realization functor of simplicial com-

plexes and the singular set functor that assigns the singular set to a topological space. Thus

this theorem is closely related to the adjointness theorem, Theorem 4.10. So this tells us that

everything we have been doing in the simplicial realm is a reflection of ordinary homotopy

theory. Yet, despite the geometric point of view we have been emphasizing here, simplicial

theory is purely combinatorial and algebraic, accessible by discrete tools that may not be

evident in pure topology. Thus, using simplicial theory, one can hope to study topological

homotopy theory via these combinatorial tools. Furthermore, we touched upon how the

combinatorial simplicial methods can be transported to other contexts, such as simplicial

groups. They can also be abstracted to broader categorical settings, leading to the theory

of model categories and simplicial categories. We hope to have introduced enough of the

background also to enable the reader to pursue these more modern approaches, such as can

be found in [8], with some understanding of their original motivation in concrete homotopy

theory.

We leave the reader with some bibliographical notes on the sources we have used.

Our primary sources were May’s Simplicial Objects in Algebraic Topology [11] and Moore’s

lecture notes Seminar on algebraic homotopy theory [13]. May’s book, first published in 1967,

is the most comprehensive reference of its time, featuring a direct combinatorial approach.

Moore’s notes are from nearly a decade earlier, but they are perhaps a bit more accessible to

the geometrically-minded reader; they take a different approach to homotopy groups, defining

them as π0 of simplicial loops spaces. Our primary modern source was Simplicial Homotopy

Theory [8] by Goerss and Jardine. It starts off directly from the modern model category

point of view, without much need for the combinatorial underpinnings (some knowledge of
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the combinatorial approach, however, will aid the reader). Despite the abstractness of the

material, I found this book quite readable. The book Calculus of Fractions and Homotopy

Theory [7] by Gabriel and Zisman, though contemporary with May’s book, is something of

a bridge between the classical combinatorics and some of the more current axiomatic ideas.

We should also mention in this paragraph the long survey Simplicial Homotopy Theory [3]

by Curtis. As one might expect, each of these sources contains somewhat different material

and sometimes different approaches to the same material, thus it is well worth consulting

each of them depending on the reader’s interests in terms of both material and style.

Besides these longer expositions, short introductory chapters on simplicial theory can

be found within many other textbooks and surveys. In particular, I know of sections on

simplicial theory in Selick’s Introduction to Homotopy Theory [19], Smirnov’s Simplicial and

Operad Methods in Algebraic Topology [20], and Weibel’s An Introduction to Homological

Algebra [21]. As one might expect, this last reference is a good source for applications of

simplicial theory to homological algebra. There are also review sections on simplicial sets

in Bousfield and Kan’s Homotopy Limits, Completions, and Localizations [1] and in Mixed

Hodge Structures [15] by Peters and Steenbrink. The breadth of topics covered by those

titles alone should give the reader some impression of just how varied the applications of

simplicial theory are.
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