

TECHNICAL REPORT
CMU/SEI-2001-TR-018

ESC-TR-2001-018

 An Enterprise
Information System
Data Architecture
Guide

Grace Alexandra Lewis
Santiago Comella-Dorda
Pat Place
Daniel Plakosh
Robert C. Seacord

October 2001

Pittsburgh, PA 15213-3890

An Enterprise
Information System
Data Architecture
Guide

CMU/SEI-2001-TR-018
ESC-TR-2001-018

Grace Alexandra Lewis
Santiago Comella-Dorda
Pat Place
Daniel Plakosh
Robert C. Seacord

October 2001

COTS-Based Systems

Unlimited distribution subject to the copyright.

printed 12/4/01 10:11 AM v1.0 / pw

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should be
addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes pursuant to the copyright license under the clause at 52.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site

(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2001-TR-018 i

Table of Contents

Abstract v

1 Introduction 1

1.1 Data Architecture 1

1.2 Case Study 2

1.3 J2EE Platform and EJBs 2

1.4 Open Applications Group Integration
Specification (OAGIS) 3

2 Forces Affecting the Data Architecture 5

2.1 Data Requirements 5

2.2 Organizational Requirements 6

2.3 Technology Requirements 7

3 Overview of the Proposed Data
Architecture 9

3.1 Business Objects (BOs) 12

4 Architectural Patterns 23

4.1 Access Operation Involving One
Business Object 23

4.2 Access Operation Involving More Than
One Business Object 24

4.3 Report 26

4.4 Ad Hoc Query 29

4.5 Roll Ups 30

4.6 Transactions 33

4.7 Data Warehouses 35

5 Examples 41

5.1 Decomposition of a Use Case into
Service and Data Components 41

ii CMU/SEI-2001-TR-018

5.2 Access to Information in One Business
Object 42

5.3 Access to Information in Two Business
Objects 43

5.4 Report Generated from the User
Interface 45

5.5 Report Generated from a Service
Component 46

5.6 Ad Hoc Query 48

5.7 Batch Roll Up 49

5.8 Continuously Updated Roll Up 50

5.9 Transaction 52

5.10 Data Warehousing 53

6 Conclusions 55

7 Acronyms 57

References 59

Appendix Representation of the Data
Architecture in Rational Rose 61

CMU/SEI-2001-TR-018 iii

List of Figures

Figure 1. OAGIS Virtual Business Object Model 3

Figure 2. BOD Structure 4

Figure 3. Application Integration Using BSRs 4

Figure 4. Data Marts and Data Warehouses 6

Figure 5. Distributed Organization 6

Figure 6. Simplified View of an Application that
Uses the J2EE Platform and the
OAGIS 9

Figure 7. Conceptual Architecture of an Application
that Uses J2EE and OAGIS Application
Components 10

Figure 8. Application Component Structure 11

Figure 9. Data Component Internals – Aggregate
Entity Pattern 16

Figure 10. Types of Wrapper Components 17

Figure 11. Elements of a BSR Interface Package 19

Figure 12. Processing of an Incoming BSR 20

Figure 13. Processing of an Outgoing BSR 21

Figure 14. Sequence Diagram for Access Involving
One Business Object 24

Figure 15. Sequence Diagram for an Access
Operation Involving More than One
Business Object 25

Figure 16. Sequence Diagram for a Report
Executed from an Application
Component 27

Figure 17. Sequence Diagram for a Report
Executed from a Service Component 28

Figure 18. Sequence Diagram for an Ad Hoc
Query 29

Figure 19. Roll-Up Data Component 30

iv CMU/SEI-2001-TR-018

Figure 20. Sequence Diagram for a Batch Roll
Up 31

Figure 21. Sequence Diagram for Continuously
Updated Roll Up Using the Subject-
Observer Pattern 32

Figure 22. Sequence Diagram for a Transaction 34

Figure 23. Pull Option for Data-Warehouse
Population Using BSRs 36

Figure 24. Pull Option for Data-Warehouse
Population Using the Reporting Layer 37

Figure 25. Push Option for Data-Warehouse
Population Using BSRs 38

Figure 26. Push Option for Data-Warehouse
Population Using a Wrapper
Component 39

Figure 27. Decomposition of the Order Consumable
Item Use Case 42

Figure 28. Catalog List Use Case as an Example of
Access to Information in One Business
Object 43

Figure 29. Manual Requisition Use Case as an
Example of Access to Information in Two
Business Objects 44

Figure 30. Backorder Status Report as an Example
of a Report Generated from the User
Interface 45

Figure 31. Ship Exchangeable Item as an Example
of a Report Generated from a Service
Component 47

Figure 32. Ad Hoc Query Example 48

Figure 33. Example of a Batch Roll Up –
Outstanding Orders 50

Figure 34. Example of a Continuously Updated Roll
Up – Average Cost of Inventory 51

Figure 35. Delivery for Customer Pickup as an
Example of a Transaction 53

CMU/SEI-2001-TR-018 v

Abstract

Data architecture defines how data is stored, managed, and used in a system. It establishes com-
mon guidelines for data operations that make it possible to predict, model, gauge, and control the
flow of data in the system. This is even more important when system components are developed
by or acquired from different contractors or vendors.

This report describes a sample data architecture in terms of a collection of generic architectural
patterns that both define and constrain how data is managed in a system that uses the Java 2
Enterprise Edition (J2EE) platform and the Open Applications Group Integration Specification
(OAGIS). Each of these data architectural patterns illustrates a common data operation and how it
is implemented in a system.

TM Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

vi CMU/SEI-2001-TR-018

CMU/SEI-2001-TR-018 1

1 Introduction

1.1 Data Architecture
Data architecture defines how data is stored, managed, and used in a system. In particular, a
data architecture describes

• how data is persistently stored

• how components and processes reference and manipulate this data

• how external/legacy systems access the data

• interfaces to data managed by external/legacy systems

• implementation of common data operations

The data architecture proposed in this report is for a system based on the Java 2 Enterprise
Edition (J2EE) platform and the Open Applications Group Integration Specification
(OAGIS). The data architecture is described in terms of a collection of generic architectural
patterns that both define and constrain how data is managed. Each of these data architectural
patterns illustrates common data operations and how these operations are implemented in the
target supply system. Without such guidance, common data operations might be implemented
differently, making it impossible to predict, model, gauge, or control the flow of data in the
system. This data architecture guide can also help to identify and resolve potential design
risks resulting from inconsistent or contradictory requirements.

The data architecture is a high-level design that cannot always anticipate and accommodate
all implementation details. Some of these details may impose demands that conflict with the
data architecture. In these cases, it may be necessary to reevaluate the data architecture to
determine what can be done to accommodate the additional demands. It is also allowable to
violate the data architecture in places, as long as the rationale for doing so is well understood,
well documented, and does not compromise the robustness, performance, and integrity of the
overall system.

This document is organized into the following sections:

• Section 2: a brief description of the forces affecting the data architecture

• Section 3: a static view of the proposed architecture, describing application components
and business objects (BOs)

2 CMU/SEI-2001-TR-018

• Sections 4 and 5: architectural patterns that describe the way operations take place in the
system. Each pattern is instantiated with examples.

1.2 Case Study
This report is based on a case study that provides the context for the proposed data architec-
ture. This case study involves the modernization of a large retail supply system (RSS) for a
major U.S. retailer. The RSS consists of approximately 2 million lines of MicroFocus
COBOL code running on a Solaris workstation. Data is stored in an Oracle 8i database. How-
ever, the overall architecture of the system has remained largely unchanged over 30 years,
resulting in a system that is extremely brittle and difficult to maintain. (Comella-Dorda and
associates provide a relevant description of an information-system life cycle [Comella 00].)
As a result, the decision was made to modernize the RSS to a J2EE platform. In particular,
the modernized system will consist of Enterprise JavaBeansTM (EJBs) written in the Java
programming language and deployed on an EJB application server. The OAGIS will be used
as the standard to integrate systems defined as sets of BOs.

1.3 J2EE Platform and EJBs
The J2EE platform defines a standard for developing multitier enterprise applications. It sim-
plifies enterprise applications by basing them on standardized, modular components, by pro-
viding a complete set of services to those components, and by handling many details of ap-
plication behavior automatically [J2EE].

EJBs make up the server-side component architecture for the J2EE platform. EJBs are reus-
able, prepackaged pieces of application functionality that are designed to run in an EJB-
compliant application server. They can be combined with other components to create custom-
ized application systems [Thomas 98]. EJB components are supported by the J2EE platform.

The simplest way to define an EJB is as a component that implements a module of business
logic. EJBs are then combined to build an application. There are two types of EJBs: session
beans and entity beans. Session beans implement business tasks and entity beans implement
business entities.

This report covers some aspects of EJBs and the J2EE platform. For more information about
them, see these Sun Microsystems, Inc. Web sites: http://www.javasoft.com/j2ee and
http://www.javasoft.com/ejb.

CMU/SEI-2001-TR-018 3

1.4 Open Applications Group Integration Specification
(OAGIS)

The OAGIS prescribes a content-based, virtual, business object model (shown in Figure 1)
that enables an enterprise business application to build a virtual-object wrapper around itself.
To communicate with a business software component in this model, events are communicated
through the integration backbone in the form of an OAGIS-compliant, business object docu-
ment (BOD) to a virtual-object interface.

Figure 1. OAGIS Virtual Business Object Model

The BOD uses metadata, in the form of an extensible markup language (XML) schema. It
contains the framework necessary to convey its two primary components: the business ser-
vice request and the business data area. This BOD structure is shown in Figure 2.

4 CMU/SEI-2001-TR-018

Figure 2. BOD Structure

Each business service request (BSR) contains a unique verb/noun combination such as POST
JOURNAL or SYNC ITEM that drives the contents of the business data area (BDA). This
BSR and BDA combination corresponds to the object name, method, and arguments model of
a procedure call or method-invocation model.

The use of BSRs prescribes a loosely coupled communication mechanism based on mes-
sages. The intent of this architecture is to support plug-and-play integration. Applications talk
to each other using BSRs and are integrated though a backbone that handles message-based
communication, as shown in Figure 3.

Figure 3. Application Integration Using BSRs

CMU/SEI-2001-TR-018 5

2 Forces Affecting the Data Architecture

Data, organizational, and technology requirements all constrain and influence the data archi-
tecture. The data architecture has to reflect the forces imposed by these often-incompatible
requirements.

2.1 Data Requirements
Data requirements are driven by functional requirements. Examples of common data re-
quirements in enterprise information systems are summarized in the following paragraphs.

Reports and queries, including flexible (ad hoc) queries: Reports and queries involve
extracting, relating, and summarizing data from one or more tables. Reports evolve and new
reports are often added. Support for ad hoc query capability is required so that users can enter
their queries in structured query language (SQL) or using query tools.

Persistent summaries and roll ups: Summaries and roll ups are reports produced from
consolidated information that involves the extraction of data from multiple tables. Roll-up
and summary information is then stored in the database. The process for collecting and
analyzing this data may be computationally intensive, potentially requiring the creation of
interim tables to store data temporarily.

Data warehousing: A data warehouse is a collection of data designed to support manage-
ment decision making at the enterprise level. Data warehouses contain a wide variety of data
that presents a coherent picture of business conditions at a single point in time. The develop-
ment of a data warehouse includes the development of systems to extract data from operating
systems plus the installation of a warehouse database system that provides managers with
flexible access to the data. The term data warehousing generally refers to combining many
different databases across an entire enterprise. A data mart is a database, or collection of da-
tabases, designed to help managers make strategic decisions about their business. Whereas a
data warehouse combines databases across an entire enterprise, data marts are usually smaller
and focus on a particular subject or department. Some data marts, called dependent data
marts, are subsets of larger data warehouses. Data in a data mart is accessed using a business
intelligence (BI) application. An example of data marts and data warehouses as seen by IBM
in its Information Aggregation pattern is shown in Figure 4 [IBM].

6 CMU/SEI-2001-TR-018

Figure 4. Data Marts and Data Warehouses

Complex transactions: Enterprise information systems must support high volumes of
transactions involving data elements in dispersed areas of the system in an efficient manner.

2.2 Organizational Requirements
In any organization, data needs to be fully integrated and seamlessly accessible. Given the
distributed nature of today’s organizations (as shown in Figure 5) the data in the headquar-
ters, in any region, and in any office has to be accessible, given that the user has the appropri-
ate permissions.

Office A-1 Office A-2

Region A

Office B-1 Office B-2

Region B

Office C-1 Office C-2

Region C

Headquarters

Figure 5. Distributed Organization

The challenges in data distribution are best summarized by the promises of distributed data-
bases [Ozsu 99]:

• transparent management of distributed, fragmented, and replicated data

• improved reliability/availability through distributed transactions

• improved performance

• easier and more economical system expansion

Operational
Database

Data
Warehouse
Population
Application

Transactional Applications

Data Warehouse

Data Mart
population

applications

Data Mart
population

applications

Data Mart
Population

Applications

Transactional ApplicationsTransactional
Applications

Data Mart
Data Mart
Data Marts

Business Intelligence (BI)
Applications

Operational
Database

Data
Warehouse
Population
Application

Transactional Applications

Data Warehouse

Data Mart
population

applications

Data Mart
population

applications

Data Mart
Population

Applications

Transactional ApplicationsTransactional
Applications

Data Mart
Data Mart
Data Marts

Business Intelligence (BI)
Applications

CMU/SEI-2001-TR-018 7

2.3 Technology Requirements
Technology requirements are often suggested or imposed by existing organizational integra-
tion frameworks or standards. These frameworks exist for a variety of reasons. By identify-
ing standard products, an organization often hopes to share expertise between development
projects and lower licensing costs by leveraging site or multiple-license discounts. While
these frameworks are often a reasonable approach, care has to be given to provide a process
for obtaining waivers when these technology choices are inappropriate for a project and to
consider the effect of the continued evolution of the framework and its constituent products.

In our case study, the following technology is “suggested” by the organizational integration
framework:

• J2EE platform

• EJBs written in the Java programming language and deployed on an EJB-application
server

• the OAGIS as the mechanism to integrate systems defined as sets of BOs

• MQSeries as the message-oriented middleware package for exchanging BSRs between
OAGIS BOs

• Oracle 8i as the relational database management system (RDBMS)

8 CMU/SEI-2001-TR-018

CMU/SEI-2001-TR-018 9

3 Overview of the Proposed Data
Architecture

A simplified view of an application that combines the J2EE platform and the OAGIS is
shown in Figure 6. The architecture can be viewed roughly as a three-tier, layered architec-
ture where: the application components represent the presentation tier; the BOs represent the
business logic tier; and the database represents the data tier. A more detailed view of the ar-
chitecture is shown in Figure 7 and discussed in the following sections.

Application
Component

Business
Object

Database

Business
Object

BSRs

Application
Component

Business
Object

Business
Object

Application
Component

Business
Object

Business
Object

SQLSQL

RMI
RMI

Application
Component

Business
Object

Database

Business
Object

BSRs

Application
Component

Business
Object

Business
Object

Application
Component

Business
Object

Business
Object

SQLSQL

RMI
RMI

Figure 6. Simplified View of an Application that Uses the J2EE Platform and the
OAGIS1

1 RMI (remote method invocation) is used as the mechanism for communication between application

components and business objects. SQL is used as an interface between business objects and the da-
tabase.

 10

C
M

U
/S

E
I-

20
01

-T
R

-0
18

E
x

te
rn

a
l

S
y

s
te

m
<

<
E

x
te

rn
a

l
S

y
s

te
m

>
>

B
u

s
in

e
s

s

O
b

je
c

t

E
x

te
rn

a
l

S
y

s
te

m

D
a

ta
 B

a
s

e

A
p

p
lic

a
ti

o
n

C

o
m

p
o

n
e

n
t

E
x

te
rn

a
l

B
S

R

In
te

rf
a

c
e

T
a

b
le

 1
T

a
b

le
 1

b
T

a
b

le
 2

B
S

R

In
te

rf
a

c
e

M
Q

 S
e

ri
e

s

D
a

ta
 E

n
ti

ty
 2

<
<

D
a

ta
 C

o
m

p
o

n
e

n
t>

>

S
Q

L

A
c

to
r

1 D
a

ta
 E

n
ti

ty
 1

<
<

D
a

ta
 C

o
m

p
o

n
e

n
t>

>

S
Q

L
S

Q
L

R
e

p
o

rt
in

g
 L

a
y

e
r

<
<

J
a

v
a

/J
D

B
C

>
>

S
Q

L

S
e

rv
ic

e
 C

o
m

p
o

n
e

n
t

2
<

<
S

e
rv

ic
e

s
 C

o
m

p
o

n
e

n
t>

>

G
U

I
1

<
<

A
p

p
le

t>
>

S
e

rv
ic

e
 C

o
m

p
o

n
e

n
t

1
<

<
S

e
rv

ic
e

s
 C

o
m

p
o

n
e

n
t>

>

R
e

p
o

rt
<

<
J

a
v

a
 S

c
ri

p
t>

>
R

M
I

D
a

ta
 E

n
ti

ty
 2

b
<

<
D

a
ta

 C
o

m
p

o
n

e
n

t>
>

S
e

s
s

io
n

 M
a

n
a

g
e

r
<

<
J

a
v

a
S

e
rv

le
t>

>

R
M

I

T
a

b
le

 2
b

S
Q

L

G
e

n
e

ri
c

 Q
u

e
ry

 B
u

ild
e

r
S

Q
L

E
x

te
rn

a
l

S
y

s
te

m
<

<
E

x
te

rn
a

l
S

y
s

te
m

>
>

B
u

s
in

e
s

s

O
b

je
c

t

E
x

te
rn

a
l

S
y

s
te

m

D
a

ta
 B

a
s

e

A
p

p
lic

a
ti

o
n

C

o
m

p
o

n
e

n
t

E
x

te
rn

a
l

B
S

R

In
te

rf
a

c
e

T
a

b
le

 1
T

a
b

le
 1

b
T

a
b

le
 2

B
S

R

In
te

rf
a

c
e

M
Q

 S
e

ri
e

s

D
a

ta
 E

n
ti

ty
 2

<
<

D
a

ta
 C

o
m

p
o

n
e

n
t>

>

S
Q

L

A
c

to
r

1 D
a

ta
 E

n
ti

ty
 1

<
<

D
a

ta
 C

o
m

p
o

n
e

n
t>

>

S
Q

L
S

Q
L

R
e

p
o

rt
in

g
 L

a
y

e
r

<
<

J
a

v
a

/J
D

B
C

>
>

S
Q

L

S
e

rv
ic

e
 C

o
m

p
o

n
e

n
t

2
<

<
S

e
rv

ic
e

s
 C

o
m

p
o

n
e

n
t>

>

G
U

I
1

<
<

A
p

p
le

t>
>

S
e

rv
ic

e
 C

o
m

p
o

n
e

n
t

1
<

<
S

e
rv

ic
e

s
 C

o
m

p
o

n
e

n
t>

>

R
e

p
o

rt
<

<
J

a
v

a
 S

c
ri

p
t>

>
R

M
I

D
a

ta
 E

n
ti

ty
 2

b
<

<
D

a
ta

 C
o

m
p

o
n

e
n

t>
>

S
e

s
s

io
n

 M
a

n
a

g
e

r
<

<
J

a
v

a
S

e
rv

le
t>

>

R
M

I

T
a

b
le

 2
b

S
Q

L

G
e

n
e

ri
c

 Q
u

e
ry

 B
u

ild
e

r
S

Q
L

F
ig

ur
e

7.

C
on

ce
pt

ua
l A

rc
hi

te
ct

ur
e

of
 a

n
A

pp
lic

at
io

n
th

at
 U

se
s

J2
E

E
 a

nd
 O

A
G

IS
 A

pp
lic

at
io

n
C

om
po

ne
nt

s

CMU/SEI-2001-TR-018 11

Application components encapsulate application-specific logic, including user interfaces, re-
ports, query building, and application-specific workflows.

GUI 1
<<Applet>>

Session Manager
<<Java Servlet>>

Generic Query Builder

Report
<<Java Script>>

GUI 1
<<Applet>>

Session Manager
<<Java Servlet>>

Generic Query Builder

Report
<<Java Script>>

Figure 8. Application Component Structure

The structure of an application component is shown in Figure 8. The application component
contains

• a graphical user interface (GUI): The GUI is represented by an applet that displays and
obtains information from the user.

• reports: These are preset reports implemented by Java scripts that use the services of the
reporting layer. The reporting layer provides a level of abstraction using the Java Data-
base Connectivity (JDBC) layer to access the database. This makes the reports independ-
ent of the database implementation.

• a generic query builder: The generic query builder allows the user to construct ad hoc
queries to the database. It can be an applet, an SQL prompt, or any commercial query-
building tool.

• a session manager: The session manager is a Java servlet2 that implements workflow and
session management. It accepts the user’s input, makes invocations to the service compo-
nents located in the BOs, and then issues a response to the client.

Application components can communicate with BOs using BSRs, non-standard component
application programming interfaces (APIs), or some combination of both. Communication
using BSRs has the advantage of maintaining a greater degree of independence between ap-
plications and BOs. In particular, the use of non-standard APIs can create a dependency on a
particular implementation of a BO within the application component. However, the granular-
ity and performance of BSR-based communication may not be sufficient to support user in-
teractions. As a result, the OAGIS permits the use of non-BSR communication in this situa-

2 Session management can also be implemented as Java Server Pages (JSPs). JSPs basically provide

an HTML-like interface for programming Java servlets.

12 CMU/SEI-2001-TR-018

tion. The data architecture uses remote method invocation (RMI) to communicate between
application components and BOs.

Application components access data through the BOs, except in the case of reports and ad
hoc queries: in reports, access is performed through a reporting layer that accesses the data-
base; in ad hoc queries, access to the database is direct.

3.1 Business Objects (BOs)
Business objects (BOs) encapsulate the business logic of a single business entity and data
particular to that entity. BOs communicate with each other through BSRs containing BODs
and with the database layer using SQL. Oracle is the RDBMS.

For each BO one or more service components and one or more data components are defined.
A service component (SC) represents a piece of functionality to be provided by a BO. A data
component (DC) provides encapsulation and communicates with the database to obtain and
update information.

Service components within the business object must provide a BSR interface for communica-
tion with other BOs, as described in Section 1.4. In addition, these service components may
provide other external interfaces that may be invoked by application components or other
service components within the BO.

Service components also need to communicate with external systems. Wrapper components
are used for communication with legacy systems that do not have a BSR interface.

Given the loosely coupled nature of the integration scheme proposed by the OAGIS, it is
tempting to decompose the system into as many business objects as possible to take advan-
tage of being able to replace components easily. Nevertheless, the partitioning of a system
into BOs is a critical issue due to constraints imposed by the message-based communication
required by BSRs and their impact on performance and transaction management.3

Having a large number of BOs is not recommended if there is a high coupling between the
defined BOs that would cause large traffic due to BSR-based communication. This decompo-
sition could potentially degrade performance, require the construction of adapters, and re-
quire the implementation/adaptation/construction of a transaction-management system.

Choosing to decompose a system in more than one BO requires a thorough analysis of sce-
narios versus BOs to determine which BOs are highly coupled. Decreasing the number of

3 Seacord, Robert C., et al. Modernizing Legacy Systems. Boston, MA: Addison-Wesley, to be pub-

lished.

CMU/SEI-2001-TR-018 13

BOs does not eliminate BSR-based communication, but does reduce it. Taking this approach
requires manual transaction-management mechanisms because the transaction context cannot
be maintained easily with MQSeries as the message-oriented middleware package.

Building the system as one BO eliminates internal BSR-based communication. Communica-
tion with BSRs is required only for communication with external systems that have a BSR
interface. The problem with this approach is that the advantages granted by loose coupling
are limited because it reduces the potential for interchanging components and adopting com-
mercial components.

The proposed data architecture defines the system as one BO with a BSR interface to com-
municate with external systems or commercial components. Adapters will have to be con-
structed if the commercial product does not have a BSR-based interface. This could be a
momentous task depending on the underlying technology.

The OAGIS model of XML-based communication is mainly for business-to-business (B2B)
and application-to-application (A2A) communication between applications built by different
vendors. The parsing, construction, and communication using BSRs adds a great overhead
when used in a tightly coupled application like an RSS. The BSR interface should be used
only for communication with external OAGIS-compliant applications.

3.1.1 Service Components
A service component represents business logic, the functionality to be provided by a BO. It
communicates with one or more data components to obtain information, to respond to a call
from another service component or an application, to respond to a BSR, or to generate a
BSR.

Service components do not access the database directly; they access it through data compo-
nents (see Section 3.1.2 on page 15). Service components perform bulk operations on data
components, on behalf of Java servlets in the application components.

A related concept is found in the Session Entity Façade pattern [J2EE 01a]. The service com-
ponent acts as a façade—a unified, simple interface to all of the service’s clients. Those cli-
ents use the service component as “one-stop shopping” for functionality and data access.

Service components are implemented as EJB session beans. Session beans act as agents for
clients and are typically instantiated for each client session. Order placement is a good exam-
ple of functionality that would be implemented as a session bean.

The access of data components through service components also simplifies transaction
management. For example, if “Required” is specified as the transaction attribute on the
session bean implementing the service component, all entity-bean accesses run in the session

14 CMU/SEI-2001-TR-018

bean implementing the service component, all entity-bean accesses run in the session bean’s
transaction.

EJBs define stateless and stateful session beans:

• stateless session beans: These are components that model business processes performed
in a single method call. They hold no conversational state on behalf of clients, which
means that they are free of a client-specific state after each method call. For a stateless
session bean to be useful for a client, the client must pass all client data that the bean
needs as parameters to business logic methods.

• stateful session beans: These are conversational beans because they hold conversations
with clients that span multiple method invocations. Stateful session beans store a conver-
sational state within the bean, and this state must be available for that same client’s next
method request.

When choosing between a stateful and a stateless session bean, the question to ask is, “What
type of business process is the session bean attempting to emulate?” If the business process
spans multiple invocations, the stateful model fits well because client-specific conversations
are part of the bean state. If the business process is being performed on behalf of a specific
client (an order placement, for example), a stateful session bean is appropriate.

A generic service is modeled as a stateless session bean. A service that manipulates multiple
rows in a database and represents a shared view of the data is a common stateless session
bean. An example of such a service is a catalog that presents a list of various products and
categories. Since all users are interested in this information, the stateless session bean that
represents it could be shared easily. When implementing behavior to visit multiple rows in a
database and present a read-only view of data, stateless session beans are the best choice.
They are designed to provide generic services to multiple clients.

Because session beans encapsulate a business task, service components typically match use
cases—there is a strong correlation between service components and use cases identified in
the system. Examples of use cases in an RSS are order placement, requisition, and delivery.
Since these are services performed on behalf of a client, they should be modeled as stateful
session beans.

When defining use cases, it is common to encounter steps that are common to other use cases
(e.g., obtaining a list of items). These steps are usually extracted from the use case and mod-
eled as use cases themselves. They are associated to the original use case with the include
relationship. Use cases that provide a service should be modeled as stateless session beans.

CMU/SEI-2001-TR-018 15

3.1.2 Data Components
The data components provide encapsulation and communicate with the database to obtain or
update information. In this architecture, data components are implemented as EJB entity
beans.

Data components represent data in a database and add behavior to that data. Instead of writ-
ing database logic in an application, the application simply uses the remote interface to the
entity bean to access its data.

Entity beans can use either bean-managed or container-managed persistence. With bean-
managed persistence, database calls are implemented within the bean, for example, using
JDBC. With container-managed persistence, there is no persistence logic inside the bean: the
EJB container manages data persistence based on information provided in the deployment
descriptor.

Even though having container-managed persistence has benefits, such as smaller bean size
and no need to write data-access logic, bean-managed persistence proves to be better in large
and complex systems for three reasons:

1. There is usually the need to write some logic, especially for finder methods.

2. Complex data fields may not be directly mappable to underlying storage.

3. There may be relationships between entity beans that must be specified.

Entity beans should represent coarse-grained objects, such as those that provide complex be-
havior beyond simply getting and setting field values. These coarse-grained objects typically
have dependent objects, which are objects that have real domain meaning only when they are
associated with their coarse-grained parents. Data components are modeled by coarse-grained
entity beans and have Java-class subcomponents that represent the finer-grained, dependent-
data elements. This is represented in the Aggregate Entity Pattern which says to use an ag-
gregate entity bean to model, represent, and manage a set of interrelated persistent objects
rather than representing them as individual fine-grained entity beans [Larman 00]. An aggre-
gate entity bean represents a tree of objects.

For example, an invoice can be represented as a coarse-grained entity bean. The lines in the
invoice are dependent objects. This representation avoids the following problems:

• an interentity-bean communication bottleneck, if the entity-bean schema were to match
the relational schema (each table represented by an entity bean). There would be an entity
bean for each invoice and for each line in the invoice.

• overhead due to the presence of a large number of entity beans

• fine-grained management for fine-grained components

16 CMU/SEI-2001-TR-018

• numerous dynamically established connections between entity beans

• distributed debugging

Figure 9 shows the aggregate entity pattern in which entity beans represent independent ob-
jects with associated sets of dependent objects (subcomponents), thus providing a coarse-
grained, entity-bean schema. The aggregate entity pattern states:

“In general, an entity bean should represent an independent business object that
has an independent identity and life cycle, and is referenced by multiple
enterprise beans and/or clients. A dependent object should not be implemented
as an entity bean. Instead, a dependent object is better implemented as a Java
class (or several classes) and included as part of the entity bean on which it
depends” [Larman 00].

Entity Bean 1

Subentity 1
1

0..n

Subentity 2

Subentity 1a

Table 1 Table 1b

Data Component (Entity Bean)

Subcomponents (Java Classes)

Database

Entity Bean 1

1
0..n

Table 1 Table 1b

Data Component (Entity Bean)

Sub

Database

Entity Bean 1

Subentity 1
1

0..n

Subentity 2

Subentity 1a

Table 1 Table 1b

Data Component (Entity Bean)

Subcomponents (Java Classes)

Database

Entity Bean 1

1
0..n

Table 1 Table 1b

Data Component (Entity Bean)

Sub

Database

Figure 9. Data Component Internals – Aggregate Entity Pattern

This form of aggregation requires access to subcomponents to be performed always through
the entity bean. One way to reduce the overhead of having to go through the entity bean is to
have group operations when necessary. This means that in the above figure, for example, En-
tityBean1 could have a method SetSubentity1(…) that sets all the attributes in Subentity1
without having to call an individual set method for every attribute.

CMU/SEI-2001-TR-018 17

Elements identified as data components have common qualities. In particular, they

• are referenced by more than one component or client

• have an independent life cycle that is not bound or managed by the life cycle of another
element

• require a unique identity

• provide complex behavior beyond simply getting and setting field values

• usually have dependent objects, which are objects that have no real domain meaning
when standing alone

3.1.3 Wrapper Components
A wrapper component is an adapter that allows a service component to communicate with an
external system.

There are two situations in which a wrapper should be used, as shown in Figure 10. A BSR-
to-API wrapper is used to communicate with an external legacy system that will eventually
become a BO of its own. An API-to-Native-API wrapper is used when a component commu-
nicates with an external legacy system that is accessed only by components in the same BO
or that will eventually become a part of the same BO when modernized.

BO

API-to-API
Wrapper

External Legacy System

External Legacy System

Native API

BSR-to-API
WrapperComponent

Java

BSR Native API
BSR

InterfaceBO

API-to-API
Wrapper

External Legacy System

External Legacy System

Native API

BSR-to-API
WrapperComponent

Java

BSR Native API
BSR

Interface

Figure 10. Types of Wrapper Components

3.1.4 BSR interface
The BSR interface provides service for communication between BOs. The layout for most
OAGIS-compliant applications is

1. a layer that receives information in an OAGIS XML BOD from a messaging system or
messaging framework (e.g., MOM, JMS, RMI, SOAP). A requirement for this system is
that the messaging system be MQSeries.

2. a layer that interprets the message and typically includes an XML parser. Newer applica-
tions interface with the parser to retrieve and provide information. In older (legacy) ap-

18 CMU/SEI-2001-TR-018

plications, this is done via an adapter layer. These adapters can be thin or thick depend-
ing on the amount of processing to be done.

3. an application layer that is the actual application that performs the value-added process-
ing

The BSR interface package must be able to receive BSRs, parse the BODs contained in the
BSRs, and translate the BODs into calls to the service components. It also has to generate
BODs and send BSRs when requested from a service component or as a confirmation/reply
to a BSR.

The parts of a BSR interface as shown in Figure 11 include

• BSR interpreter: The BSR interpreter receives XML messages, parses them, and gener-
ates the appropriate calls to the service components inside the BO.

• BSR constructor: The BSR constructor receives requests from service components to
construct BSRs to send to other BOs. The BSR constructor can also be called from the
BSR interpreter if the incoming BSR requires another BSR to be generated as a
confirmation or reply.

• XML schema parser: This is any third-party XML schema parser. Java, for example, has
XML parser and builder classes in the com.sun.xml.parser and com.sun.xml.tree pack-
ages.

• DTD (data type definition) repository: The DTD repository contains the DTDs for all the
BODs defined by the OAGIS. This repository resides in the database or on any file sys-
tem.

CMU/SEI-2001-TR-018 19

Figure 11. Elements of a BSR Interface Package

As shown in Figure 12, the following operations take place when the BSR interface receives
a BSR.

1. The BSR interface of BO 1 sends a BSR over MQSeries to the BSR interface of BO 2.

2. The BSR interface of BO 2 invokes the BSR interpreter that knows how to handle the
incoming BSR.

3. The BSR interpreter invokes the XML schema parser to extract the information from the
BOD associated with the incoming BSR.

4. The XML parser obtains the DTD from the DTD repository.

5. The BSR interpreter invokes the service component that knows how to process the in-
coming BSR and passes it the information that was extracted from the BOD.

BO 1BO 2

BSR Interface

BO 1 BSR
Interface

DTD Repository

(from BSR Interface)

Service Component 3
<<Services Component>>

Service Component 2
<<Services Component>>

BO 2 BSR
Interface

MQSeries

XML/XSD Parser
(from BSR Interface)

BSR Constructor
(from BSR Interface)

Method
Invocation

BSR Interpreter
(from BSR Interface)

Method
Invocation

BO 1BO 2

BSR Interface

BO 1 BSR
Interface

DTD Repository

(from BSR Interface)

Service Component 3
<<Services Component>>

Service Component 2
<<Services Component>>

BO 2 BSR
Interface

MQSeries

XML/XSD Parser
(from BSR Interface)

BSR Constructor
(from BSR Interface)

Method
Invocation

BSR Interpreter
(from BSR Interface)

Method
Invocation

20 CMU/SEI-2001-TR-018

: BSR
Interpreter

: BO 1 BSR
Interface

: BO 2 BSR
Interface

: XML/XSD
Parser

: DTD
Repository

: Service
Component 2

BSR
interpret(BSR)

parse(BOD) get(DTD)

execute()

: BSR
Interpreter

: BO 1 BSR
Interface

: BO 2 BSR
Interface

: XML/XSD
Parser

: DTD
Repository

: Service
Component 2

BSR
interpret(BSR)

parse(BOD) get(DTD)

execute()

Figure 12. Processing of an Incoming BSR

As shown in Figure 13, the following operations take place when a service component in-
vokes the service of a BSR interface for communication with another BO.

1. The service component in BO 2 that needs to communicate with BO 1 sends a request
for BSR construction to the BSR constructor.

2. The BSR constructor invokes the XML schema parser to construct the BOD to be sent in
the BSR.

3. The XML parser obtains the DTD from the DTD repository.

4. The BSR constructor requests the BSR interface of BO 2 to send the BSR to BO 1.

5. The BSR interface of BO 2 sends the BSR to BO 1.

If a BSR is required as a reply to an incoming BSR, the BSR interpreter requests the services
of the BSR constructor, and the operations in steps 2 through 5 above take place.

Another possibility is to have the BSR constructor communicate with the BSR interface of
BO 1 directly. The problem with this is that you have two components that interact through
MQSeries (or are aware of how to do it) instead of having just one. The BSR interfaces know
how to receive a message through MQSeries and send the BSR (or BOD) to the interpreter,
and they know how to take a BSR (or BOD) and bundle it up into a message for MQSeries.

CMU/SEI-2001-TR-018 21

: Service
Component 3

: BSR
Constructor

: XML/XSD
Parser

: DTD
Repository

: BO 2 BSR
Interface

: BO 1 BSR
Interface

construct(BSR)
construct(BOD) get(DTD)

send(BSR) BSR

: Service
Component 3

: BSR
Constructor

: XML/XSD
Parser

: DTD
Repository

: BO 2 BSR
Interface

: BO 1 BSR
Interface

construct(BSR)
construct(BOD) get(DTD)

send(BSR) BSR

Figure 13. Processing of an Outgoing BSR

22 CMU/SEI-2001-TR-018

CMU/SEI-2001-TR-018 23

4 Architectural Patterns

Architectural patterns are templates that represent generic functions required by the system.
They should be used as a guide for component developers.

The architectural patterns that have been identified in this data architecture are

• access operation involving one BO

• access operation involving more than one BO

• report

• ad hoc query

• batch roll up

• continuously updated roll up

• transaction

Each architectural pattern describes the motivation for using the pattern and a Unified Model-
ing Language (UML) sequence diagram, followed by explanatory steps.

4.1 Access Operation Involving One Business Object
4.1.1 Motivation
This pattern is used when an operation accesses data that is fully contained within the system.
It should not be used if the operation communicates with an external system using BSRs.

The sequence of operations for a simple example that accesses data from only one data com-
ponent is shown in Figure 14. An operation requiring access to multiple tables would include
calls to other data components that have access to the tables.

24 CMU/SEI-2001-TR-018

4.1.2 Sequence Diagram

: Session
Manager

: Service
Component 1

: Data Entity 1
: Table 1

: GUI 1

OK
select()

select() SQL SELECT

: Session
Manager

: Service
Component 1

: Data Entity 1
: Table 1

: GUI 1

OK
select()

select() SQL SELECT

Figure 14. Sequence Diagram for Access Involving One Business Object

4.1.3 Explanatory Steps
The sequence of operations for access involving one BO is as follows:

1. The GUI confirms the operation to the session manager.

2. The session manager invokes the service component that performs the operation.

3. The service component communicates with the data component that has access to the
data.

4. The data component executes the necessary SQL command to select the data.

4.2 Access Operation Involving More Than One
Business Object

4.2.1 Motivation
This pattern is used when an operation accesses data that is not fully contained within the
system and access to an external system is needed to complete the operation.

The sequence of operations for a simple example that communicates with an external system
is shown in Figure 15. An operation requiring access to multiple tables would include calls to
other data components with the appropriate access.

This pattern assumes that the BSR that returns the data requested by the system exists. If not,
a BSR for this purpose needs to be defined.

CMU/SEI-2001-TR-018 25

4.2.2 Sequence Diagram

Figure 15. Sequence Diagram for an Access Operation Involving More than One
Business Object

4.2.3 Explanatory Steps
The sequence of operations for an access operation involving more than one BO is as fol-
lows:

1. The GUI confirms the select operation to the session manager.

2. The session manager invokes the service component that performs the operation.

3. The service component communicates with the data component that has access to the
data.

4. The data component executes the necessary SQL command to obtain the data.

5. The service component sends a request to the BSR interface, because it has to obtain
data from another BO.

6. The BSR interface constructs a BSR and sends it to the BSR interface of the second BO.

: Table 1
: Session

Manager

: Service

Component 1

: Data Entity 1 : ILS-S BSR

Interface : Table 2
: External

System

: External BSR

Interface

: GUI 1

OK
select() select()

select()
BSR

SQL SELECT

BSR

Asynchronous
communication
over MQSeries

select() SQL SELECT

: Table 1
: Session

Manager

: Service

Component 1

: Data Entity 1 : ILS-S BSR

Interface : Table 2
: External

System

: External BSR

Interface

: GUI 1

OK
select() select()

select()
BSR

SQL SELECT

BSR

Asynchronous
communication
over MQSeries

select() SQL SELECT

26 CMU/SEI-2001-TR-018

7. The BSR interface of the second BO invokes the service component that performs the
operation.

8. The service component communicates with the data component that has access to the
data.

9. The data component executes the necessary SQL command to obtain the data.

10. The BSR interface constructs a BSR with the obtained data and sends it to the BSR in-
terface of the first BO.

4.3 Report
4.3.1 Motivation
A report is a formatted and organized presentation of data. The report pattern is used when a
report needs to be produced in the system. The output for a report can be printed on paper,
written to a file, or sent to an external system, and can be generated from the application
component or as part of an operation in a service component.

The report is an exception to the rule of always going through BOs to access data, because
SQL is recognized as the best way to handle reports. An example of this is the J2EE Bimodal
Data Access pattern that states

“Under certain conditions, the Bimodal Data Access pattern allows designers to
trade off data consistency for access efficiency. JDBC provides read-only,
potentially dirty reads of lists of objects, bypassing both the functionality and
overhead of entity enterprise beans. At the same time, entity enterprise beans can
still be used for transactional access to enterprise data. The mechanism to select
depends on the requirements of the application” [J2EE 01b].

Reports use the JDBC-based reporting layer for access to data used only for display, since in
this case transactional support is unnecessary. (When the application needs to update the da-
tabase transactionally, it uses enterprise beans.) The sequences of operations are shown in
Figure 16 and Figure 17. The report output is not represented in the sequence diagrams but
should be defined in the report.

Another option that could be considered for reports is to have stored procedures in the data-
base. These procedures can be written in the SQL programming language as either PL/SQL
Stored procedures or Java Stored procedures. The problem with this option is that it makes
the reports database dependent. If the database changes, all the procedures stored in the data-
base would have to be ported to the new database. An additional problem is that even though
most databases support standard SQL, some have enhancements or additional features that,
for example, work only for that particular database and can be used only inside PL/SQL. If
this is the case, the procedures will not work when ported to the new database. The new da-
tabase may not support Java Stored procedures.

CMU/SEI-2001-TR-018 27

4.3.2 Sequence Diagram 1

: Session
Manager : Table 1 : Table 2

: Report : Reporting
Layer

: GUI 1

OK

Report()
Report()

SQL SELECT

SQL SELECT

: Session
Manager : Table 1 : Table 2

: Report : Reporting
Layer

: GUI 1

OK

Report()
Report()

SQL SELECT

SQL SELECT

Figure 16. Sequence Diagram for a Report Executed from an Application
Component

4.3.3 Explanatory Steps for Sequence Diagram 1
The sequence of operations for a report executed from an application component is as fol-
lows:

1. The GUI confirms the report operation to the session manager.

2. The session manager invokes the report script.

3. The report script invokes the Java program (which uses JDBC to access the database) for
the report in the reporting layer.

4. The reporting layer obtains the information from the tables in the database.

28 CMU/SEI-2001-TR-018

4.3.4 Sequence Diagram 2

: Table 2
: Session
Manager

: Service
Component 1

: Reporting
Layer

: Table 1
: GUI 1

OK
execute()

execute()

report() SQL SELECT

SQL SELECT

: Session
Manager

: Service
Component 1

: Reporting
Layer

: Table 1
: GUI 1

OK
execute()

execute()

report() SQL SELECT

SQL SELECT

Figure 17. Sequence Diagram for a Report Executed from a Service Component

4.3.5 Explanatory Steps for Sequence Diagram 2
The sequence of operations for a report executed from a service component is as follows:

1. The GUI confirms the operation to the session manager.

2. The session manager invokes the service component that performs the operation.

3. The service component executes the operation.

4. The service component invokes the Java program (which uses JDBC to access the data-
base) for the report in the reporting layer.

5. The reporting layer obtains the information from the tables in the database.

CMU/SEI-2001-TR-018 29

4.4 Ad Hoc Query
4.4.1 Motivation
This pattern is used when a user needs to obtain information from the database and there is
no predefined report or operation that returns the data in the desired form. Ad hoc queries are
also an exception to the constraint of going through BOs to access data. The sequence of op-
erations for an ad hoc query using a generic, query-builder tool is shown in Figure 18. An-
other option for entering ad hoc queries is using SQL directly.

4.4.2 Sequence Diagram

: Session
Manager 1

: Generic
Query Builder

: SQL Engine
: Table 1 : Table 2

: GUI 1

OK

Start()
SQL

: Session
Manager 1

: Generic
Query Builder

: SQL Engine
: Table 1 : Table 2

: GUI 1

OK

Start()
SQL

Figure 18. Sequence Diagram for an Ad Hoc Query

4.4.3 Explanatory Steps
The sequence of operations for an ad hoc query is as follows:

1. The GUI confirms the ad hoc query to the session manager.

2. The session manager invokes the generic query builder.

3. The generic query builder sends the query entered by the user to the SQL engine.

4. The SQL engine retrieves the results from the tables in the database.

30 CMU/SEI-2001-TR-018

4.5 Roll Ups
Roll ups are persistent reports (also called summaries) that require the consolidation of data
from one or more tables, potentially located on different machines or even different sites.
There are two categories of roll ups:

1. on the fly: These are generated immediately and therefore treated as reports.

2. persistent: These require roll-up tables that must be updated to maintain their data in
sync with operational data. Roll-up tables have an associated data component, as shown
in Figure 19, that is located inside a BO.

The roll-up tables are either batch updated or continuously updated, but the actual generation
of the roll up is a report and is treated as such.

Table 1

Data Entity 1
<<Data Component>>

Roll-Up Table

Table 2

Roll Up 1
<<Data Component>>

Data Entity 2
<<Data Component>>

Table 1

Data Entity 1
<<Data Component>>

Roll-Up Table

Table 2

Roll Up 1
<<Data Component>>

Data Entity 2
<<Data Component>>

Figure 19. Roll-Up Data Component

4.5.1 Batch Roll Up
The batch roll-up pattern is used when an operation requires data to be extracted from differ-
ent sources and consolidated in a persistent table, and this table does not need to be immedi-
ately synchronized with the tables from which it obtains its data. A procedure is executed on
demand to synchronize the roll-up table with its related tables. Figure 20 shows a sequence
diagram for a roll-up table that needs to synchronize with only one other table. If the number
of related tables is greater, a select operation has to be performed against each of the tables to
obtain the necessary data.

CMU/SEI-2001-TR-018 31

4.5.1.1 Sequence Diagram

Figure 20. Sequence Diagram for a Batch Roll Up

4.5.1.2 Explanatory Steps

The sequence of operations during online transaction processing (day-to-day operations) is as
follows:

1. The GUI confirms the update operation to the session manager.

2. The session manager invokes the service component that performs the operation.

3. The service component communicates with the data component that has access to the
data.

4. The data component executes the necessary SQL command to update the data.

The sequence of operations during processing once a day, by request, or any other policy is as
follows:

1. The GUI confirms the synchronization operation to the session manager.

2. The session manager sends a synchronization request to the roll-up data component.

3. The roll-up data component obtains the necessary data from the table associated with the
roll-up table.

4. The roll-up data component updates the roll-up table.

: Session
Manager

: Roll Up 1: Data Entity 1
: Table 1 : Roll-Up Table

: GUI 1 : Service
Component 1

Once a day, by
request, or any
other policy

synchronize()
SQL SELECT

SQL UPDATE

OK

OK

Normal
day-to-day
operations

update() update()
SQL UPDATE

: Session
Manager

: Roll Up 1: Data Entity 1
: Table 1 : Roll-Up Table

: GUI 1 : Service
Component 1

Once a day, by
request, or any
other policy

synchronize()
SQL SELECT

SQL UPDATE

OK

OK

Normal
day-to-day
operations

update() update()
SQL UPDATE

32 CMU/SEI-2001-TR-018

4.5.2 Continuously Updated Roll Up
4.5.2.1 Motivation

This pattern is used when an operation requires data to be extracted from different sources
and consolidated in a persistent table, and this table needs to be immediately synchronized
with the tables from which it obtains its data.

In a continuously updated roll up, the roll-up table has to be updated every time any of its
associated tables is updated. This operation is based on the Subject-Observer pattern [Gamma
95]. In this case, the roll-up table acts as the observer by registering an interest in knowing
when its associated tables have been updated. The associated tables are the subject. After this,
every time an update occurs, the roll-up table is notified.

Figure 21 shows a sequence diagram for a roll-up table that synchronizes with only one table.
If the number of related tables is greater, a select operation has to be performed against each
of the tables to obtain the necessary data.

4.5.2.2 Sequence Diagram

Figure 21. Sequence Diagram for Continuously Updated Roll Up Using the Subject-
Observer Pattern

: Session
Manager

: Roll Up 1 : Data Entity 1
: Table 1 : Roll-Up Table

: Service
Component 1

: GUI 1

Register Interest in Changes

OK
update()

update()
update()

notify()

SQL SELECT

SQL UPDATE

: Session
Manager

: Roll Up 1 : Data Entity 1
: Table 1 : Roll-Up Table

: Service
Component 1

: GUI 1

Register Interest in Changes

OK
update()

update()
update()

notify()

SQL SELECT

SQL UPDATE

CMU/SEI-2001-TR-018 33

4.5.2.3 Explanatory Steps

During normal day-to-day operations, once the roll-up data component registers an interest in
changes made to Table 1 by sending a registration message to the data component associated
to the table, the sequence of operations is as follows:

1. The GUI confirms the update operation to the session manager.

2. The session manager invokes the service component that performs the operation.

3. The service component communicates with the data component that has access to the
data.

4. The data component executes the necessary SQL command to update the data.

5. The data component notifies the roll-up data component that there has been an update.

6. The roll-up data component obtains the necessary data from the table associated with the
roll-up table.

7. The roll-up data component updates the roll-up table.

The operations that take place after the notification can be considered part of the transaction
or can be executed outside of the transaction if the response time is inadequate.

4.6 Transactions
4.6.1 Motivation
This pattern is used when an operation updates data that is entirely contained within the sys-
tem. Transactions that span over two BOs are not covered in this pattern because the transac-
tion context might not be able to be maintained between components that use message-based
communication. Also, because of the asynchronous nature of message-based communication,
the length of time required to perform the transaction across components can vary. This is the
reason why loosely coupled applications are often limited to transient data exchange and
messaging between systems across organization boundaries.

A transaction is an atomic operation that follows the ACID properties for transaction-
processing systems.4 A transaction involves two or more operations on the database, where

4 ACID is an acronym for the four properties of transaction-processing systems: Atomicity, Consis-

tency, Isolation, and Durability. Atomicity refers to the principle that the update operations done by
a transaction on a database are atomic (i.e., either all or none of the operations are done). Consis-
tency is the property of the application that requires any execution of transactions to take the data-
base from one consistent state to another. Isolation pertains to the extent to which operations done
upon data by one transaction are seen by or protected from a different transaction or query running
concurrently. Durability is the property of a system to preserve the effects of committed transactions
and ensure database consistency after recovery from certain types of system failures.

34 CMU/SEI-2001-TR-018

either all or none of the operations are done. A commit operation (where all changes are
kept) or a rollback operation (where all changes are removed) ends a transaction.

Figure 22 shows a sequence diagram for a transaction that requires the update of two tables
as part of the same transaction. The number of tables updated as part of the transaction is ir-
relevant, as the EJB framework manages all updates within the same transaction context.

4.6.2 Sequence Diagram

: Session
Manager

: Service
Component 2

: Data Entity 2
: Table 2 : Table 3

: Data Entity 3: GUI 1

OK

update()
update()

SQL UPDATE

SQL UPDATE

The EJB framework will
create a transaction context
when needed. Both update
operations would be part of
the same transaction.

update

: Session
Manager

: Service
Component 2

: Data Entity 2
: Table 2 : Table 3

: Data Entity 3: GUI 1

OK

update()
update()

SQL UPDATE

SQL UPDATE

The EJB framework will
create a transaction context
when needed. Both update
operations would be part of
the same transaction.

update

Figure 22. Sequence Diagram for a Transaction

4.6.3 Explanatory Steps
The sequence of operations for a transaction is as follows:

1. The GUI confirms the operation to the session manager.

2. The session manager invokes the service component that performs the operation.

3. The EJB framework creates a transaction context.

4. The service component communicates with the first data component participating in the
transaction.

5. The first data component executes the necessary SQL command to update the data.

6. The service component communicates with the second data component participating in
the transaction.

CMU/SEI-2001-TR-018 35

7. The second data component executes the necessary SQL command to update the data.

8. The EJB framework commits or rolls back the transaction.

4.7 Data Warehouses
This pattern is used to interface to data warehouses and data marts. Because data marts are
usually subsets of data warehouses, the data warehouses communicate with the operational
database, and then the data marts populate themselves from data in the data warehouse. This
pattern is dependent on the specific tool that is used for data-warehouse population.

There are two possibilities to populate data warehouses:

1. pull mechanism: The data-warehouse-population application pulls the data from the
operational database either by request or through automated update procedures. In this
case an interface to the operational database has to be implemented.

2. push mechanism: The operational database pushes data to the data warehouse either by
request or through automated update procedures. In this case an interface to the data-
warehouse-population application has to be implemented.

If a pull mechanism is implemented, the functionality for data-warehouse population resides
in a third-party data-warehouse-population tool. This tool can be treated as a BO where popu-
lation operations use BSRs, given that the tool has a BSR-based communication interface, or
it can be treated as an application-specific component where population operations use the
reporting layer. These two possibilities are shown in Figure 23 and Figure 24.

The population operations that take place inside the BOs are omitted in the pull option for
data-warehouse population using BSRs. The sequence of steps in this option is as follows:

1. The data-warehouse-population application communicates with its BSR interface to re-
quest a population operation.

2. The BSR interface constructs a BSR and sends it to a BO.

3. The BO obtains the information and uses its BSR interface to construct a BSR that sends
the requested information to the data-warehouse-population application.

4. The data-warehouse-population application populates the data warehouse with the ob-
tained data.

36 CMU/SEI-2001-TR-018

Figure 23. Pull Option for Data-Warehouse Population Using BSRs

The sequence of steps in the pull option for data-warehouse population using the reporting
layer is as follows:

1. The data-warehouse-population application communicates with the reporting layer to
obtain the data.

2. The reporting layer performs the necessary SQL select operations to obtain the data.

3. The data-warehouse-population application populates the data warehouse with the ob-
tained data.

: Data-Warehouse-
Population Application

: Data-Warehouse-Population
Application BSR Interface

: ILS-S BSR
Interface

: Data
Warehouse

getData() BSR

BSR

populate()

: Data-Warehouse-
Population Application

: Data-Warehouse-Population
Application BSR Interface

: ILS-S BSR
Interface

: Data
Warehouse

getData() BSR

BSR

populate()

CMU/SEI-2001-TR-018 37

Figure 24. Pull Option for Data-Warehouse Population Using the Reporting Layer

If a push mechanism is implemented, the functionality for data-warehouse population resides
within the system. As in the previous option, if the tool has a BSR-based communication in-
terface, communication can take place through BSRs. If this is not a possibility, an adapter
for communication with the tool is to be implemented as a wrapper component. These two
possibilities are shown in Figure 25 and Figure 26.

The operations that take place inside the BOs are omitted in the push option for data-
warehouse population using BSRs. The sequence of steps in this option is as follows:

1. The system uses its BSR interface to construct a BSR that sends information to the data-
warehouse-population application.

2. The BSR interface sends the data-warehouse-population application the incoming data.

3. The data-warehouse-population application populates the data warehouse with the in-
coming data.

4. (Optional) The BSR interface constructs a confirmation BSR and sends it back to the
system.

: Data-Warehouse-
Population Application : Table X : Data

Warehouse

: Reporting
Layer

getData()
SQL SELECT

populate()

: Data-Warehouse-
Population Application : Table X : Data

Warehouse

: Reporting
Layer

getData()
SQL SELECT

populate()

38 CMU/SEI-2001-TR-018

Figure 25. Push Option for Data-Warehouse Population Using BSRs

The operations that obtain the data from the data components in the push option for data-
warehouse population using a wrapper component are omitted. For details see Section 4.1 on
page 23. The sequence of steps in this option is as follows:

1. A service component sends a request to a wrapper component to populate the data ware-
house. Data obtained from the operational database is attached to this request.

2. The wrapper component sends the request and data to the data-warehouse-population
application.

3. The data-warehouse-population application populates the data warehouse with the in-
coming data.

: Data-Warehouse-
Population Application

: Data-Warehouse-Population
Application BSR Interface

: System BSR
Interface

: Data
Warehouse

BSR

BSR

populate()
populate()

: Data-Warehouse-
Population Application

: Data-Warehouse-Population
Application BSR Interface

: System BSR
Interface

: Data
Warehouse

BSR

BSR

populate()
populate()

CMU/SEI-2001-TR-018 39

Figure 26. Push Option for Data-Warehouse Population Using a Wrapper
Component

: Service
Component 1

: Wrapper : Data-Warehouse-
Population Application : Data

Warehouse

populate()
populate()

populate()

: Service
Component 1

: Wrapper : Data-Warehouse-
Population Application : Data

Warehouse

populate()
populate()

populate()

40 CMU/SEI-2001-TR-018

CMU/SEI-2001-TR-018 41

5 Examples

This section contains examples taken from RSS use cases. The instantiations of the architec-
tural patterns do not correspond completely to use cases because only data-interaction activi-
ties are considered. Aspects like notifications to other users and communication between us-
ers are not represented.

The assumption for all of the patterns is that the application component is responsible for
validating users, displaying forms, and handling all communication between the user and the
system. For simplicity, details on the actual tables managed by the data components and sub-
components are not included.

5.1 Decomposition of a Use Case into Service and
Data Components

This example corresponds to the Order Consumable Item use case. This use case’s sequence
of steps is summarized below and illustrated in Figure 27.

1. The user accesses the order-management application and selects the ordering option for
a consumable item.

2. The user is presented with an order form.

3. The user fills out the order form and can obtain a list of items in the catalog if desired.

4. The user submits the order.

5. The system validates the order and communicates with the financial system to check
funds as part of the process. If the order is not valid, the user is informed.

6. If the item is available: it is reserved; the Pull Item from Warehouse Location use case is
initiated; and the user is presented with an order confirmation.

7. If an item is not available, a list of alternate items is presented. If this is not satisfactory,
the Backorder use case is initiated.

42 CMU/SEI-2001-TR-018

Order Item Line
<<Data Subcomponent>>

Backorder
<<Service Component>>

Order
<<Data Component>>

Financial System
<<Wrapper Component>>

Pull Item from Warehouse
<<Service Component>>

Order Consumable Item
<<Service Component>>

Reserve Info
<<Data Subcomponent>>

Stock Info
<<Data Subcomponent>>

Alternate Items
<<Data Subcomponent>>

Inventory
<<Data Component>>

Order Item Line
<<Data Subcomponent>>

Backorder
<<Service Component>>

Order
<<Data Component>>

Financial System
<<Wrapper Component>>

Pull Item from Warehouse
<<Service Component>>

Order Consumable Item
<<Service Component>>

Reserve Info
<<Data Subcomponent>>

Stock Info
<<Data Subcomponent>>

Alternate Items
<<Data Subcomponent>>

Inventory
<<Data Component>>

Figure 27. Decomposition of the Order Consumable Item Use Case

In this use case

• Order Consumable Item, Pull Item from Warehouse, and Backorder are service compo-
nents implemented as stateful session beans, because they require knowledge of the user.

• The Order Consumable Item service component contains the logic for validating an or-
der, creating an order, and reserving an item. If other use cases require reserving an item,
a Reserve Item service component can be created.

• Inventory and Order are data components implemented as entity beans and can be used
by any service component in the system.

• Reserve Information, Stock Information, and Alternate Items are data subcomponents
implemented as Java classes and are subcomponents of the Inventory data component.

• Order Item Line is a data subcomponent implemented as a Java class and is a subcompo-
nent of the Order data component.

• There is a wrapper component for communication with the financial system. If the finan-
cial system has a BSR interface, the communication would take place through the BSR
interface, making the wrapper component unnecessary.

The Catalog List service component is not part of the Order Consumable Item use case. It can
be invoked from the application component and should be implemented as a stateless session
bean, because it only displays information and does not require knowledge of the user.

5.2 Access to Information in One Business Object
The Obtaining a Catalog List operation is an example of access to information in one BO.
The sequence of steps in this operation is summarized below and illustrated in Figure 28.

1. A user submits a request for a catalog list.

CMU/SEI-2001-TR-018 43

2. The session manager invokes the Catalog List service component.

3. The Catalog List service component requests the catalog information from the Item data
component.

4. The Item data component obtains the catalog information from the Item table.

5. The session manager sends the data to the user screen to be displayed.

: Session
Manager

Catalog List : Service
Component 1

Item : Data
Entity 1 Item : Table 1

User Screen : GUI 1

getCatalog()
getCatalog()

getCatalogInfo() SQL SELECT

displayCatalog()

: Session
Manager

Catalog List : Service
Component 1

Item : Data
Entity 1 Item : Table 1

User Screen : GUI 1

getCatalog()
getCatalog()

getCatalogInfo() SQL SELECT

displayCatalog()

Figure 28. Catalog List Use Case as an Example of Access to Information in One
Business Object

5.3 Access to Information in Two Business Objects
This example corresponds to the Manually Prepared Requisition use case. The sequence of
steps in this use case is summarized below and illustrated in Figure 29.

1. An authorized supply clerk accesses the order-management application and selects the
option for manually entering a requisition.

2. The user is presented with an order form.

3. The user fills out the order form and can obtain a list of items in the catalog if desired.

4. The user submits the order.

5. The system validates the order and communicates with the financial system to check
funds as part of the process. If the order is not valid, the user is informed.

6. If the item is available: it is reserved; the Pull Item from Warehouse Location service
component is initiated; and the user is presented with an order confirmation.

7. If an item is not available, a list of alternate items is presented. If this is not satisfactory,
the Backorder use case is initiated.

 44

C
M

U
/S

E
I-

20
01

-T
R

-0
18

:
S

e
ss

io
n

M
a

n
a

g
e

r

M
a

n
u

a
l R

e
q

u
is

iti
o

n
 :

S
e

rv
ic

e
 C

o
m

p
o

n
e

n
t

1

It
e

m
 :

 D
a

ta

E
n

tit
y

1

:
IL

S
-S

 B
S

R

In
te

rf
a

ce
It

e
m

 :
 T

a
b

le
 1

R
e

q
u

is
iti

o
n

 :

T
a

b
le

 2

R
e

q
u

is
iti

o
n

 :

D
a

ta
 E

n
tit

y
2

S
M

A
S

 :
 E

xt
e

rn
a

l

S
ys

te
m

S
M

A
S

 :
 E

xt
e

rn
a

l

B
S

R
 I

n
te

rf
a

ce

U
se

r
S

cr
e

e
n

 :

G
U

I
1 su

b
m

itR
e

q
u

is
iti

o
n

()
p

ro
ce

ss
R

e
q

u
is

iti
o

n
()

g
e

tI
te

m
()

S
Q

L
 S

E
L

E
C

T

g
e

tF
in

a
n

ci
a

lIn
fo

rm
a

tio
n

()
B

S
R

(G
E

T
)

B
S

R
(S

H
O

W
)

g
e

tF
in

a
n

ci
a

lIn
fo

()

cr
e

a
te

R
e

q
u

is
iti

o
n

()
S

Q
L

 I
N

S
E

R
T

d
is

p
la

yR
e

q
S

ta
tu

s(
)

T
h

is
 h

a
p

p
e

n
s

o
n

ly

if
fu

n
d

s
a

re
 a

v
a

ila
b

le
.

:
S

e
ss

io
n

M
a

n
a

g
e

r

M
a

n
u

a
l R

e
q

u
is

iti
o

n
 :

S
e

rv
ic

e
 C

o
m

p
o

n
e

n
t

1

It
e

m
 :

 D
a

ta

E
n

tit
y

1

:
IL

S
-S

 B
S

R

In
te

rf
a

ce
It

e
m

 :
 T

a
b

le
 1

R
e

q
u

is
iti

o
n

 :

T
a

b
le

 2

R
e

q
u

is
iti

o
n

 :

D
a

ta
 E

n
tit

y
2

S
M

A
S

 :
 E

xt
e

rn
a

l

S
ys

te
m

S
M

A
S

 :
 E

xt
e

rn
a

l

B
S

R
 I

n
te

rf
a

ce

U
se

r
S

cr
e

e
n

 :

G
U

I
1 su

b
m

itR
e

q
u

is
iti

o
n

()
p

ro
ce

ss
R

e
q

u
is

iti
o

n
()

g
e

tI
te

m
()

S
Q

L
 S

E
L

E
C

T

g
e

tF
in

a
n

ci
a

lIn
fo

rm
a

tio
n

()
B

S
R

(G
E

T
)

B
S

R
(S

H
O

W
)

g
e

tF
in

a
n

ci
a

lIn
fo

()

cr
e

a
te

R
e

q
u

is
iti

o
n

()
S

Q
L

 I
N

S
E

R
T

d
is

p
la

yR
e

q
S

ta
tu

s(
)

T
h

is
 h

a
p

p
e

n
s

o
n

ly

if
fu

n
d

s
a

re
 a

v
a

ila
b

le
.

F
ig

ur
e

29
.

M
an

ua
l R

eq
ui

si
tio

n
U

se
 C

as
e

as
 a

n
E

xa
m

pl
e

of
 A

cc
es

s
to

 In
fo

rm
at

io
n

in
 T

w
o

B
us

in
es

s
O

bj
ec

ts

CMU/SEI-2001-TR-018 45

5.4 Report Generated from the User Interface
According to the Manually Prepared Requisition use case, supply customers are allowed to
query the status of their organizations’ backorders and linked requisitions at any time before
the final receipt of the order. This example corresponds to the Backorder Status Report use
case. The sequence of steps in this use case is summarized below and illustrated in Figure 30.

1. The supply clerk submits a request for a Backorder Status Report.

2. The session manager invokes the Backorder Status Report script.

3. The script assembles a request to the reporting layer with the user parameters.

4. The Backorder Status Report program in the reporting layer converts the request into
SQL statements using JDBC and obtains the data from the database.

 The report can be sent to a printer, a file, or an external system.

: Session
Manager Backorder :

Table 1
Requisition :

Table 2

Backorder Status
Report : Report

Backorder Status Report
: Reporting Layer

User Screen :
GUI 1

submitRequest()

report()
report()

SQL SELECT

SQL SELECT

This report can be
sent to a printer, a
file, or an external
system.

: Session
Manager Backorder :

Table 1
Requisition :

Table 2

Backorder Status
Report : Report

Backorder Status Report
: Reporting Layer

User Screen :
GUI 1

submitRequest()

report()
report()

SQL SELECT

SQL SELECT

This report can be
sent to a printer, a
file, or an external
system.

Figure 30. Backorder Status Report as an Example of a Report Generated from the
User Interface

46 CMU/SEI-2001-TR-018

5.5 Report Generated from a Service Component
The Ship Exchangeable Item use case is an example of a report that is generated from a ser-
vice component. After the shipment suspense is created, a hard copy of the shipment
documentation is generated and attached to the property. The sequence of steps in this use
case is summarized below and illustrated in Figure 31.

1. An authorized supply clerk accesses the order-management application and selects the
option for shipping an exchangeable item.

2. The supply clerk is presented with a shipping information form.

3. The supply clerk fills out the form.

4. The supply clerk submits the form.

5. The session manager invokes the Ship Exchangeable Item service component.

6. The Ship Exchangeable Item service component sends a request to obtain the shipping
information for the item to the Item data component.

7. The Item data component obtains the shipping information for the item from the Item
table.

8. The Ship Exchangeable Item service component sends a request to decrease the stock
for the item to the Inventory data component.

9. The Inventory data component updates the stock information for that item in the Inven-
tory table.

10. The Ship Exchangeable Item service component sends a request to create a shipment
suspense to the Shipment Suspense data component.

11. The Shipment Suspense data component creates the shipment suspense in the Shipment
Suspense table.

12. The Ship Exchangeable Item service component sends a request for a Shipment Docu-
mentation Report to the reporting layer.

13. The Shipment Documentation Report program in the reporting layer converts the request
into SQL statements using JDBC and obtains the data from the database.

 C
M

U
/S

E
I-

20
01

-T
R

-0
18

47

S
h

ip
 E

xc
h

a
n

g
e

a
b

le
 I

te
m

:

S
e

rv
ic

e
 C

o
m

p
o

n
e

n
t

1

:
S

e
ss

io
n

M
a

n
a

g
e

r

:
R

e
p

o
rt

in
g

L
a

ye
r

It
e

m
 :

 T
a

b
le

 1
In

ve
n

to
ry

 :
 T

a
b

le
 2

S
h

ip
m

e
n

t

S
u

sp
e

n
se

 :
 T

a
b

le
 3

S
h

ip
m

e
n

t
S

u
sp

e
n

se
 :

D
a

ta
 E

n
tit

y
3

In
ve

n
to

ry
 :

 D
a

ta

E
n

tit
y

2

It
e

m
 :

 D
a

ta

E
n

tit
y

1

U
se

r
S

cr
e

e
n

 :

G
U

I
1

O
K

sh
ip

It
e

m
()

re
p

o
rt

()

g
e

tI
te

m
()

S
Q

L
 S

E
L

E
C

T

d
e

cr
e

a
se

S
to

ck
()

S
Q

L
 U

P
D

A
T

E

cr
e

a
te

S
h

ip
m

e
n

tS
u

sp
e

n
se

()
S

Q
L

 I
N

S
E

R
T

S
Q

L
 S

E
L

E
C

T

S
Q

L
 S

E
L

E
C

T

R
e

p
o

rt
 is

 s
e

n
t

to
 p

ri
n

te
r.

d
is

p
la

yS
ta

tu
s(

)

S
h

ip
 E

xc
h

a
n

g
e

a
b

le
 I

te
m

:

S
e

rv
ic

e
 C

o
m

p
o

n
e

n
t

1

:
S

e
ss

io
n

M
a

n
a

g
e

r

:
R

e
p

o
rt

in
g

L
a

ye
r

It
e

m
 :

 T
a

b
le

 1
In

ve
n

to
ry

 :
 T

a
b

le
 2

S
h

ip
m

e
n

t

S
u

sp
e

n
se

 :
 T

a
b

le
 3

S
h

ip
m

e
n

t
S

u
sp

e
n

se
 :

D
a

ta
 E

n
tit

y
3

In
ve

n
to

ry
 :

 D
a

ta

E
n

tit
y

2

It
e

m
 :

 D
a

ta

E
n

tit
y

1

U
se

r
S

cr
e

e
n

 :

G
U

I
1

O
K

sh
ip

It
e

m
()

re
p

o
rt

()

g
e

tI
te

m
()

S
Q

L
 S

E
L

E
C

T

d
e

cr
e

a
se

S
to

ck
()

S
Q

L
 U

P
D

A
T

E

cr
e

a
te

S
h

ip
m

e
n

tS
u

sp
e

n
se

()
S

Q
L

 I
N

S
E

R
T

S
Q

L
 S

E
L

E
C

T

S
Q

L
 S

E
L

E
C

T

R
e

p
o

rt
 is

 s
e

n
t

to
 p

ri
n

te
r.

d
is

p
la

yS
ta

tu
s(

)

F
ig

ur
e

31
.

S
hi

p
E

xc
ha

ng
ea

bl
e

Ite
m

 a
s

an
 E

xa
m

pl
e

of
 a

 R
ep

or
t G

en
er

at
ed

 fr
om

 a
 S

er
vi

ce
 C

om
po

ne
nt

48 CMU/SEI-2001-TR-018

5.6 Ad Hoc Query
An ad hoc query tool provides users with “on-demand” query and reporting capabilities. An
example of an ad hoc query could be “I need to know how many units of item X have been
transferred to Office Y in the past Z weeks.” The sequence of steps in this operation is sum-
marized below and illustrated in Figure 32.

1. The user submits a request for an ad hoc query to the session manager.

2. The session manager invokes the ad hoc query tool.

3. The ad hoc query tool allows the user to assemble the ad hoc query and submits it to the
database SQL engine.

4. The SQL engine retrieves the necessary data from the tables involved.

: Session
Manager

: Generic Query Builder SQL
Engine Item : Table 1 Inventory : Table

2
Office : Table 3

User Screen :
GUI 1

OK

run()
SQL

SELECT

SELECT

SELECT

: Session
Manager

: Generic Query Builder SQL
Engine Item : Table 1 Inventory : Table

2
Office : Table 3

User Screen :
GUI 1

OK

run()
SQL

SELECT

SELECT

SELECT

Figure 32. Ad Hoc Query Example

To avoid the problems of not being able to find data or having a tool that is too difficult for
end users, ad hoc query tools (such as Oracle Discoverer) provide an End User Layer
(EUL), which is a metadata repository and query management engine. The EUL presents us-
ers with a business view of their data and shields the complexity of database structures. End
users interact with their data using familiar business terminology, not cryptic database termi-
nology. If this is the case, the metadata repository becomes an element of this architectural
pattern.

CMU/SEI-2001-TR-018 49

5.7 Batch Roll Up
Batch roll ups are typical in the current system. An example of a batch roll up is Outstanding
Orders. Orders that are, for example, seven days old and have not been delivered can be
rolled up into an Outstanding Order Roll-Up data component. This data can then be used in
reports, queried by users of other systems, transferred to other systems, or kept for long-range
demand planning. The sequence of steps for the generation of an Outstanding Orders batch
roll up is summarized below and illustrated in Figure 33. It is combined with the Order Con-
sumable Item use case to show the relationship between the roll-up table and its associated
table.

During online transaction processing (day-to-day operations), these steps are taken:

1. The user accesses the order-management application and selects the ordering option for
a consumable item.

2. The user is presented with an order form.

3. The user fills out the form.

4. The user submits the form.

5. The session manager invokes the Order Consumable Item service component.

6. As part of its operations, the Order Consumable Item service component requests the
creation of an order from the Order data component.

7. The Order data component creates the order in the database.

Once a week, these steps are taken:

1. The user submits a request for Outstanding Orders.

2. The session manager invokes the synchronization procedure in the Outstanding Orders
Roll-Up data component.

3. The Roll-Up data component obtains the necessary data from the Order table and cre-
ates/updates entries in the Outstanding Orders table.

50 CMU/SEI-2001-TR-018

Figure 33. Example of a Batch Roll Up – Outstanding Orders

5.8 Continuously Updated Roll Up
Continuously updated roll ups differ from batch roll ups in that the former must be updated as
operations occur in the system, as opposed to waiting for a synchronization operation to oc-
cur. An example of a continuously updated roll up is Average Cost of Inventory. The average
cost of inventory in the supply system varies with every change in the Inventory table. The
average cost of inventory data can be used in reports, queried by users of other systems,
transferred to other systems, or kept for long-range demand planning. The sequence of steps
for the update of an Average Cost of Inventory continuously updated roll up is summarized
below and illustrated in Figure 34. It is combined with the Ship Exchangeable Item use case
to show the relationship between the roll-up table and its associated table.

The following step is taken once: the Average Cost of Inventory Roll-Up data component
registers an interest in changes made to the Inventory table, by sending a registration message
to the Inventory data component associated with the table.

During normal day-to-day operations, these steps are taken:

1. An authorized supply clerk accesses the order-management application and selects the
option for shipping an exchangeable item.

2. The supply clerk is presented with a shipping information form.

3. The supply clerk fills out the form.

4. The supply clerk submits the form.

Outstanding Orders :

: Session
Manager

Outstanding
Orders : Roll Up 1

Order : Data
Entity 1 Order : Table 1

Roll-Up Table

User Screen :
GUI 1

Order Consumable Item :
Service Component 1

Once a day, by
request, or any
other policy

Normal
day-to-day
operations

submit()

submit()
synchronize()

SQL SELECT

SQL UPDATE

processOrder() create()
SQL INSERT

: Session
Manager

Outstanding
Orders : Roll Up 1

Order : Data
Entity 1 Order : Table 1

Roll-Up Table

User Screen :
GUI 1

Order Consumable Item :
Service Component 1

Once a day, by
request, or any
other policy

Normal
day-to-day
operations

submit()

submit()
synchronize()

SQL SELECT

SQL UPDATE

processOrder() create()
SQL INSERT

CMU/SEI-2001-TR-018 51

5. The session manager invokes the Ship Exchangeable Item service component.

6. As part of its operations, the Ship Exchangeable Item service component sends a request
to decrease the stock for the item to the Inventory data component.

7. The Inventory data component updates the stock information for that item in the Inven-
tory table.

8. The Inventory data component notifies the Average Cost of Inventory Roll-Up data com-
ponent that there has been an update.

9. The Average Cost of Inventory Roll-Up data component obtains data from the Inventory
table (if necessary).

10. The Average Cost of Inventory Roll-Up data component updates the Average Cost of
Inventory Roll-Up table.

Steps 8 to 10 can be considered part of the transaction or can be executed outside of the
transaction if the response time is inadequate. The component developer can decide which
will be done based on performance requirements.

: Session

Manager

Average Cost of

Inventory : Roll Up 1

Inventory : Data

Entity 1 Inventory : Table

1

Average Cost of

Inventory : Roll-Up Table

Ship Exchangeable Item :

Service Component 1

User Screen :

GUI 1

Register Interest in Changes

submit()
shipItem()

decreaseStock()
SQL UPDATE

notify()

SQL SELECT

SQL UPDATE

: Session

Manager

Average Cost of

Inventory : Roll Up 1

Inventory : Data

Entity 1 Inventory : Table

1

Average Cost of

Inventory : Roll-Up Table

Ship Exchangeable Item :

Service Component 1

User Screen :

GUI 1

Register Interest in Changes

submit()
shipItem()

decreaseStock()
SQL UPDATE

notify()

SQL SELECT

SQL UPDATE

Figure 34. Example of a Continuously Updated Roll Up – Average Cost of Inventory

52 CMU/SEI-2001-TR-018

5.9 Transaction
This example corresponds to the Delivery – Customer Pickup use case. The sequence of steps
in this use case is summarized below and illustrated in Figure 35.

1. An authorized delivery clerk accesses the order-management application and selects the
option for delivering an item to a customer.

2. The delivery clerk is presented with a delivery information form.

3. The delivery clerk fills out the form.

4. The delivery clerk submits the form.

5. The session manager invokes the Delivery for Customer Pickup service component.

6. The EJB framework creates a transaction context.

7. The Delivery for Customer Pickup service component sends a request to update the
warehouse-tracking information to the Warehouse Tracking data component.

8. The Warehouse Tracking data component updates the warehouse-tracking information in
the Warehouse Tracking table.

9. The Delivery for Customer Pickup service component sends a request to decrease the
stock for the delivered item to the Inventory data component.

10. The Inventory data component updates the stock information for that item in the Inven-
tory table.

11. The EJB framework commits or rolls back the transaction.

12. The delivery clerk is informed of the transaction’s status.

CMU/SEI-2001-TR-018 53

Delivery for Customer Pickup :

Service Component 2

: Session

Manager

Warehouse Tracking :

Data Entity 2 Warehouse

Tracking : Table 2
Inventory : Table

3

Inventory : Data

Entity 3

User Screen :

GUI 1

processDelivery()
updateWarehouseTrackingInfo()

SQL UPDATE

updateStock()
SQL UPDATE

submit()

The EJB framework will

create a transaction

context when needed.

Both update operations

would be part of the

same transaction.

Delivery for Customer Pickup :

Service Component 2

: Session

Manager

Warehouse Tracking :

Data Entity 2 Warehouse

Tracking : Table 2
Inventory : Table

3

Inventory : Data

Entity 3

User Screen :

GUI 1

processDelivery()
updateWarehouseTrackingInfo()

SQL UPDATE

updateStock()
SQL UPDATE

submit()

The EJB framework will

create a transaction

context when needed.

Both update operations

would be part of the

same transaction.

Figure 35. Delivery for Customer Pickup as an Example of a Transaction

5.10 Data Warehousing
A specific example of data warehousing will not be included here, because it depends on the
tool that will be used for data-warehouse population. Refer to Section 4.7 on page 35 for ex-
amples of communication between the system and a data-warehousing application.

54 CMU/SEI-2001-TR-018

CMU/SEI-2001-TR-018 55

6 Conclusions

The architectural patterns included in this guide provide templates to create a data architec-
ture for a system based on the J2EE platform and the OAGIS. This guide can also be used to
identify and resolve potential design risks resulting from inconsistent or contradictory re-
quirements.

The application of this guide should result in a system with the following characteristics:

• fulfillment of the data requirements

• capability of communication with other BOs through a BSR interface

• compliance with the given technical requirements

• decoupling of data components from data representation

• conservation of ACID properties for transactions provided by the EJB framework

• use of J2EE design patterns representing best practices

As always, sound engineering judgment should be used in applying the architectural patterns
included in this guide, since it is difficult (if not impossible) to predict all possible scenarios.
This guide should be maintained and updated to reflect lessons learned during early iterations
of the development process.

56 CMU/SEI-2001-TR-018

CMU/SEI-2001-TR-018 57

7 Acronyms

A2A application to application

API application programming interface

ASP active server pages

B2B business to business

BO business object

BOD business object document

BSR business service request

DC data component

DTD data type definition

EJBs Enterprise JavaBeans

J2EE Java 2 Enterprise Edition

JDBC Java Database Connectivity

JMS Java Message Services

JSP Java Server Pages

MOM message-oriented middleware

OAGI Open Applications Group, Inc.

OAGIS Open Applications Group Integration Specification

RMI remote method invocation

58 CMU/SEI-2001-TR-018

SC service component

SOAP simple object access protocol

SQL standard query language

UML unified modeling language

XML extensible markup language

W3C WorldWide Web Consortium

CMU/SEI-2001-TR-018 59

References

Comella 00 Comella-Dorda, Santiago; Wallnau, Kurt; Seacord, Robert C.; & Robert,
John. A Survey of Legacy System Modernization Approaches (CMU/SEI-
2000-TN-003, ADA377453). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2000. Available <http://www.sei.cmu.edu/
publications/documents/00.reports/00tn003.html>.

Gamma 95 Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley Publishing Company, January 1995.

IBM International Business Machines. “Fundamental Information Aggregate
Concepts” [online]. Available <http://www-106.ibm.com/developerworks/
patterns/bi/concepts.html> (2001).

J2EE Sun Microsystems, Inc. Java 2 Platform, Enterprise Edition.
<http://java.sun.com/j2ee>.

J2EE 01a Sun Microsystems, Inc. “Session Façade Design Pattern” [online]. Available
<http://java.sun.com/j2ee/blueprints/design_patterns/session_entity_facade/
index.html> (2001).

J2EE 01b Sun Microsystems, Inc. “Fast-Lane Reader Design Pattern” [online]. Avail-
able <http://java.sun.com/j2ee/blueprints/design_patterns/
bimodal_data_access/index.html> (2001).

Larman 00 Larman, Craig. “Enterprise JavaBeans 201: The Aggregate Entity Pattern.”
Software Development Magazine, April 2000. Available
<http://www.sdmagazine.com/documents/s=745/sdm0004c/0004c.htm>.

OAG 99 Open Applications Group. “Plug and Play Business Software Integration:
The Compelling Value of the Open Applications Group.” Atlanta, GA: Open
Applications Group, Inc., 1999.

60 CMU/SEI-2001-TR-018

Ozsu 99 Ozsu, M. T. & Valduriez P. Principles of Distributed Database Systems. Up-
per Saddle River, NJ: Prentice Hall, January 1999.

Thomas 98 Thomas, A. “Enterprise JavaBeans Technology – Server Component Model
for the Java Platform”[online]. Available <http://java.sun.com/products/ejb/
white/white_paper.html> (1998).

CMU/SEI-2001-TR-018 61

Appendix Representation of the Data
Architecture in Rational Rose

Use Case View
There should be a mapping between use cases and service components.

Logical View

BO Realization (Package)
• for each service component: class of stereotype <<service component>>

• for each data component: class of stereotype <<data component>>

• for each wrapper component: class of stereotype <<external system wrapper>>

• class diagram including

− “uses” relationships between service component and wrapper components
− <<BSR>> relationships between service component and the BSR interface
− <<Uses>> relationships between service components and data components

• class diagram mapping data component to subcomponents and tables, and relationships
between data components

• sequence diagrams for operations performed by service components, if needed

Application Components
• application component 1 (package)

− Applets
− Reports/Summaries
− Global View (layered diagram showing the interaction between all components)

• application component 2 (package)

 :

• application component N (package)

62 CMU/SEI-2001-TR-018

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2001

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

An Enterprise Information System Data Architecture Guide

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Grace Alexandra Lewis, Santiago Comella-Dorda, Pat Place, Daniel Plakosh, Robert C. Seacord
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TR-018

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2001-018

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Data architecture defines how data is stored, managed, and used in a system. It establishes common guidelines for
data operations that make it impossible to predict, model, gauge, or control the flow of data in the system. This is even
more important when system components are developed by or acquired from different contractors or vendors.

This report describes a sample data architecture in terms of a collection of generic architectural patterns that both de-
fine and constrain how data is managed in a system that uses the Java 2 Enterprise Edition (J2EE) platform and the
Open Applications Group Integration Specification (OAGIS). Each of these data architectural patterns illustrates a
common data operation and how it is implemented in a system.

14. SUBJECT TERMS

Data architecture, J2EE, OAGIS, component-based design, enterprise information
systems, architectural patterns

15. NUMBER OF PAGES

72

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Contents
	Figures
	Abstract
	1 Introduction
	2 Forces Affecting the Data Architecture
	3 Overview of the Proposed Data Architecture
	4 Architectural Patterns
	5 Examples
	6 Conclusions
	7 Acronyms
	References
	Appendix Representation of the Data Architecture in Rational Rose

