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ABSTRACT

The growing energy needs are forcing utility companies towards the use of Advanced

Metering Infrastructure (AMI). Smart meters are a part of the AMI, that capture fine grained

electric consumption data from households and share it with the utility company, operations

center, and other third party entities in the smart grid network, in order to make the grid

more efficient and reliable. Yet, sharing such fine grained data gives rise to privacy concerns

from the consumer’s perspective. As a response to such privacy concerns, several smart meter

data perturbation techniques have been proposed to fortify against extraction of sensitive

personal information from the consumers’ electric consumption data. However, due to the

lack of a unified framework for assessing and comparing different perturbation techniques,

consumers do not have access to a readily available tool to measure and evaluate the privacy

provided by these perturbation techniques. We introduce a unified and practical data centric

framework for evaluating and measuring the privacy offered by different smart meter data

perturbation techniques. The framework trains multiple smart meter data models based on

past smart meter data and other auxiliary information (e.g., time, temperature, location,

etc.) that may be easily available to the adversary. The framework then evaluates the privacy

offered by different perturbation techniques by carrying out reconstruction attacks (usually

the adversary’s first step before performing more advanced inference attacks) using trained

models suitable for the characteristics of the perturbed data. Accuracy of reconstruction

and the loss of privacy is measured in terms of well-known metrics, such as R-squared

correlation and relative entropy. The framework is said to be unified because it considers all

the elements required for evaluation such as the prior information available to the adversary,

perturbation techniques, and the reconstruction strategy. To validate the effectiveness of our

framework, for evaluating and measuring privacy offered by some of the popular perturbation

techniques, we test the framework using real smart meter power consumption data collected

from twenty-two households over a period of two-years.
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CHAPTER 1
INTRODUCTION

Smart Meters (SMs) are a part of the Advanced Metering Infrastructure (AMI), that

capture fine grained electric consumption data from consumers and report it to the utility

provider, operations center, and other third party entities in the Smart Grid Network (SGN).

As many as 800 million SMs are expected to be installed globally by 2020 as a part of the SGN

[10], and the information collected by these SMs will be beneficial for various operations such

as real time monitoring, fault detection, time-of-use billing, load balancing, demand response,

self healing [23][22] and peak shaving [35][30]. Despite the utility, collection of fine grained

information gives rise to privacy concerns especially from the consumer’s point-of-view. A

common privacy threat is inference of private information about a consumer by eavesdropping

on the data as it passes through the SGN. Another possible threat is the misuse of data by the

utility company. The company could release, or even sell, power consumption information

it has collected from its customers. In both cases, the information can be misused by

advertising companies, nosy landlords, employers, or even stalkers. Various research efforts

have attempted to study the private information that can be inferred from the fine-grained

power consumption data [13][28]. Research shows that it is possible to estimate the number of

residents in a household based on the frequency of power switches turned on and the number

of appliances simultaneously in use [19]. One could infer information about the appliances

used in a house by observing power consumption data, as shown in Figure 1.1 [25] or could

even monitor the location of a resident inside the home based on the type of appliances being

used [18]. By inferring information about appliance usage, the behavior of people living in

the house can be inferred. For example, energy cycle of TV implies someone’s presence at

home, energy cycle of coffee pot tells the adversary when people wakeup, and energy cycles

of water heater can be used to infer the number of occupants in a house. Sufficiently fine-
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grained data even allows identifying the TV channel or movies being watched since television

power consumption changes with the image being displayed on the television screen [33].

Figure 1.1: Mapping from power consumption to appliance usage [25]

To overcome these concerns, many privacy preserving mechanisms have been proposed,

such as use of cryptographic techniques with homomorphic properties to aggregate data

[9, 24, 19, 13, 17, 3], use of zero knowledge proofs and certified policies for private bill

computation [26], distortion of SM data by addition of random noise [15] and use of large

batteries [21, 4, 16] to ”flatten” the output from SMs.

Although there have been several research efforts on designing Smart Meter Data Pertur-

bation Mechanisms (SDPM), there has been very limited research in quantifying the privacy

provided by such SDPMs. Sankar et al. [29] proposed a generic framework for modeling

privacy and utility of released SM data. However, their model abstracts away specific per-

turbation mechanisms and inference techniques, and considers a highly capable adversary

with individual appliance-level data access. They use Hidden Markov Models to represent

smart meter data, where the hidden state is the appliance information. Taking cues from

efforts to quantify privacy in various other domains, such as location-based services [31],
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databases [12], anonymity protocols [5] and RFID [34], we apprehend the need of a unified

and practical framework for measuring and evaluating the effectiveness of different SDPMs.

In this paper, we introduce a unified framework for measuring and evaluating the effec-

tiveness of different SDPMs. The proposed framework is highly customizable as it does not

abstract away the specifications of the SDPMs being evaluated, and can evaluate the SDPM

under different adversarial capabilities, reconstruction strategies and effectiveness metrics.

As we consider an adversary who can only observe the aggregated (and perturbed) power

consumption of the target household, and has no information about individual appliances

inside the household, we represent the SM power consumption values in our framework as

states of a n-order Markov Chain. The framework trains multiple Markov models based

on combinations of past smart meter data and additional contextual information (such as

time, temperature, location, etc.) assumed to be available to the adversary. The framework

then evaluates the privacy offered by existing perturbation techniques by carrying out re-

construction attacks using the trained Markov models (suitable for the characteristics of the

perturbed data) by using them as a state sequence generator. Accuracy of reconstruction or

privacy loss is measured in terms of well known metrics, such as R-squared correlation and

relative entropy. We implement our framework as a modular software tool using python,

which can be easily extended to add new SDPMs, reconstruction strategies, adversarial

strengths and privacy metrics.
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CHAPTER 2
BACKGROUND AND RELATED WORK

A series of power surges over a twelve-second period triggered a cascade of shutdowns

in the US and Ontario on August 14, 2003. The result was the biggest blackout in North

American history. 61800 megawatts of power was lost and over 50 million people we affected.

Studies showed that the outage was because of lack of real-time monitoring and diagnosis

[1].

A group of experts at the US Department of Energy (DOE) proposed the term smart grid

for the goal of extending intelligence to parts of the electric grid. Title XIII of the energy

independence and security act of 2007 mentions ten features of a smart grid [14]:

1. Increased use of digital information and controls technology to improve reliability,

security, and efficiency of the electric grid.

2. Dynamic optimization of grid operations and resources, with full cyber security.

3. Deployment and integration of distributed resources and generation, including renew-

able resources.

4. Development and incorporation of demand response, demand-side resources, and energy-

efficiency resources.

5. Deployment of smart technologies (real time, automated interactive, that optimize the

physical operation of appliances and consumer devices) for metering, communications

concerning grid operations and status, and distribution automation.

6. Integration of smart appliances and consumer devices.

7. Deployment and integration of advanced electricity storage and peak-shaving technolo-

gies, including plug-in electric and hybrid electrical vehicles, and thermal-storage air

conditioning.
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8. Provision to consumers of timely information and control options.

9. Development of standards for communication and interoperability of appliances and

equipment connected to the electric grid, including the infrastructure serving the grid.

10. Identification and lowering of unreasonable or unnecessary barriers to adoption of smart

grid technologies, practices, and services.

While there are many advantages of the SGN as described in [8] and the references

therein, previous research literature such as [6] uncovers security and privacy vulnerabilities

associated with the SGN. Cohen [6] studied the possible attacks on the SGN and analyzed

existing solution strategies. Kalogridis et. al [16] identify the need for privacy of load

signatures from households as they can be used to carry out inference attacks. They propose

the use of batteries and alternative power sources to reduce the usefulness of load signatures

from an intruder’s perspective. They also propose three different privacy metrics: relative

entropy, clustering classification, and a correlation/regression metric. In the same area of

research, Sultanem [32] shows that local measurement of variations in active and reactive

power is sufficient in most cases to identify an appliance. In SGN, data-oriented privacy is

of greater interest, as compared to context-oriented privacy, because it deals with private

consumer data. The security threats to the smart grid can target the confidentiality and the

integrity of the gathered fine-grained user data. They can also threaten the availability of

the power grid. It should go without saying that appropriate security and privacy-preserving

technique are needed for large-scale deployment and consumer-acceptance of the SGN.

Sankar et al. [29] propose a framework for modeling privacy and utility of the released

smart meter data. The authors model the privacy-utility trade-off by abstracting away

specific perturbation mechanisms and inference techniques. The goal of our work is to

quantify the privacy afforded by existing data perturbation techniques when they are applied

to real smart meter data. We propose a model that considers the strength of the adversary

such as the past data it has and the knowledge about the target user or household. Dong
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et al. [11] quantify the utility-privacy trade-off in the smart grid and show how frequency

of sampling affects performance of the smart grid operations. The goal of our work is not

to compare the privacy-utility trade-off of data perturbation techniques (which can be done

using standard utility measurement metrics). Our goal is to develop a framework, and its

corresponding modular implementation, to enable consumers/utility companies to assess the

effectiveness of the data perturbation schemes used (or envisioned to be used) by household

SMs.
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CHAPTER 3
SYSTEM AND ADVERSARY MODEL

3.1 System Model

An illustration of a typical smart grid communication network is shown in Figure 3.1.

Smart meters are associated with customers who can be residential or commercial users of

power from a service provider. Smart meters measure aggregate power consumption of all

appliances used by the consumer and share it with the service provider or utility center,

operations and markets. The data is sent from the smart meter to utility company using a

public network such as the Internet. In order for this communication to be secure against

basic forms of eavesdropping, protocols that offer a high level of data confidentiality and

integrity, such as, Internet Protocol Security (IPSec), Secure Socket Layer (SSL), Transport

Layer Security (TLS) and Secure Shell (SSH) are used. These protocols use standard cryp-

tographic techniques to provide data confidentiality, integrity and authenticity between the

smart meter and the utility provider. Our system model assumes that such protocols are

already in place when the data is shared by the smart meter to the other entities in the

smart grid network and we quantify the loss of privacy of the user, once the data is with its

legitimate receiver.

3.2 Adversary Model

The adversary considered in our model is the legitimate recipient of the perturbed data

sent by the smart meter. Such an adversary may be the utility company or other third party

entities in the SGNs with whom the data is shared. The adversary is also able to obtain

some contextual information about the household and its environment, e.g., temperature,

geographic location, etc. We assume that the adversary has some past ground truth data

from similar (or the same) users. Such an assumption is based on the possibility that

sometimes data may be available from before a perturbation technique is applied or an

7



Figure 3.1: Illustration of the smart grid network [20]

adversary can have some homes with similar location, size and occupancy as that of its

target user, from which it is able to collect data. The goal of the adversary is to infer fine-

grained information about the target user or household from the power consumption data,

archived from the SMs. One of the initial steps of the adversary prior to performing such

inference attacks is to get back the original data from the perturbed data (i.e., reconstruction

of the original data from the perturbed data obtained from the SMs). We refer to this process

of getting back the original data from the perturbed data as a reconstruction attack.
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CHAPTER 4
FRAMEWORK

Our proposed framework consists of a tuple of inseparable elements:

(D, SDPM,O, ADV,METRIC) (4.1)

where D is the actual power consumption data of the target user or household, represented

by a time ordered set of real numbers, SDPM stands for smart meter data perturbation

mechanism, which is a mapping from a set of time ordered real numbers D to another time

ordered set of real numbers O, where O is the perturbed data of the target user shared by

the smart meter. We refer to O as the observed power consumption data sequence as this is

the data that the adversary can observe. The adversary ADV is an entity who has knowledge

about the SDPM used, some past generated power consumption data from similar (or the

same) users and some additional information about the customer or user with whom the

smart meter data is associated. The goal of the adversary is to implement a reconstruction

attack on the observed data O, where a reconstruction attack, given O, is a technique that

is used to obtain a time ordered sequence of power consumption values R, which has almost

identical to D, i.e., has identical information as contained in D. The success of the adversary

can be defined by quantifying the similarity between the reconstructed data R and the actual

data D. By similarity we mean that using the reconstructed data, same (or almost same)

information about a user can be extracted, as would be possible using the actual data D. The

quantification of adversary’s success and user’s loss of privacy is captured by an evaluation

metric METRIC.

In the following sections we describe all the entities of our framework and their inter-

relationship.

9



Figure 4.1: Elements of proposed smart grid privacy framework. The user’s power consump-
tion data is perturbed to preserve privacy. The adversary has some past power consumption
data and some additional information about the user, which he uses to contruct different
Markov models. We refer to the process of creating different models as model construction
(MC).

4.1 Smart meter data as a n-order Markov chain

In our framework, we model the SM data and reconstruction attacks considering that the

adversary can only see the observed data O. Ideally, SM and its data could be represented as

a Hidden Markov Model [29] where each state could be modeled as one of the combinations

of appliances in use by the customer. Unfortunately, our adversary cannot construct such

a model as he has no knowledge about the appliances the user has and cannot relate the

observed data with the state transition of the appliances. Such an assumption makes our

model more practical, as not all adversaries can have access to such fine-grained information

about the user. As a consequence, we model smart meter data D, as a discrete n-order

Markov chain, where the present state of the system can be probabilistically described using

n previous states. Each state in our model represents a power consumption value that lies

10



in a range that belongs to the set L = {l1, l2, ., lN}. Each element li of set L denotes a

range of power values. Time is divided into discrete instants and the set of time instants

under consideration is T = {1, 2, .., T}. The granularity in terms of power levels and time

depends on the precision desired by the user of the framework. Smart meters capture power

consumption data at instants of time in T. The sequence of actual power consumption values

for a user is a T-size vector D = (d(1), d(2), .., d(T )).

A Markov model is characterized as follows:

1. Let N be the finite and countable number of states in the system. We denote the set

of states as S = {S1, S2, ..., SN} and the state at time t is represented by a random

variable qt. Each state is our model represents a region of power in L.

2. The state transition probability distribution denoted by A = {aij} where

aij = P [qt+1 = Sj|qt = Si]qt−3, qt−2, qt−1. (4.2)

with the state transition coefficients having the following

aij ≥ 0 (4.3a)

N∑
j=1

aij = 1 (4.3b)

since they obey standard stochastic constraints.

3. The initial state distribution π = {πi} where

πi = P [q1 = Si], 1 ≤ i ≤ N (4.4)

Though Markov chains are memoryless by definition, Markov chains can be created to

have multiple time-step memory. In first-order Markov chains, the current state depends

11



only on the previous state, but it is possible to create n-order Markov chain where current

state depends on n previous states. For example in a third-order Markov chain (n = 3)

the current state qt would depend on the three previous states qt−3, qt−2, qt−1. The equation

below represents the state transition probability for a third-order Markov chain:

ai(j,k,l) = P [qt = Si|qt−3 = Sj, qt−2 = Sk, qt−1 = Sl] 1 ≤ i, j, k, l ≤ N (4.5)

In our model we use n-order Markov chains hence there will be Nn previous states.

Therefore, A will be a Nn × Nn matrix, where reach row represents a tuple of n previous

states and each column represents a tuple of n− 1 previous states and the current state.

The complete specification of a Markov model requires parameter N , two probability

measures A, π and n. For convenience, we use the following compact notation to represent

model parameters:

λ = {N,A, π, n} (4.6)

to indicate complete parameter set of the model.

Calculation of A : In order to calculate A, we need to estimate the value of a(k,l,...,m)j, 1 ≤

j, k, l, . . .m ≤ N .

â(k,l,...,m)j =

T∑
t=1

1{qt = Sj , qt−n = Sk, qt−n+1 = Sl, . . . , qt−1 = Sm}

T∑
t=1

1{qt−n = Sk, qt−n+1 = Sl, . . . , qt−1 = Sm}
(4.7)

where, 1{} represents an identity function.

Calculation of π: Let us consider that we are using V training sequences. The initial

probability is the ratio of the number of times the initial n states were Sk, Sl, ...., where

1 ≤ k, l,m . . . ≤ N , to the total number of training sequences. As estimation of the initial

probability is represented by π̂(k,l,...,m) and calculated as follows:

12



π̂(k,l,...,m) =

V∑
v=1

1{q1 = Sk, q2 = Sl, . . . , qn = Sm}

V
(4.8)

Given the definition of a Markov model for smart meter data as above, we define a set

Markov models for the smart meter under consideration. One of the way to define these

models is by considering different combinations of time durations and climate conditions

determined by using average temperature. The set of all such Markov models is defined as

Models = {m1,m2, . . . ,mM}. For each model mi, generated for a particular combination

of time and climate information associated with the target user (or geographical location

of the target household), we define the state transition probability matrix as A and initial

probability distribution π, as discussed before.

4.2 Smart Meter Data Perturbation Techniques

A perturbation function f in a SDPM, is a function that maps the actual data D to the

observed data O.

f :D 7→ O (4.9)

The goal of perturbation is to preserve the privacy of users by not sharing very fine grained

power consumption data. There are several perturbation techniques such as data hiding using

cryptographic techniques, random perturbation, flattening of power consumption data using

batteries and down sampling. Down sampling is one of the commonly used perturbation

techniques, mainly because the perturbed data contains samples from the actual power

consumption without any modifications and such information is useful to the utility company.

For the purpose of evaluation we consider down sampling as a perturbation technique, but

our framework is not restricted to down sampling. Any perturbation technique can be

incorporated into our framework.
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If K is the down sampling factor then from the actual data D every Kth sample is

transmitted as a part of the observed data O, all other samples of the observed data are null

values. We consider the following downsampling techniques:

• Uniform Down Sampling: In this down sampling technique, the down sampling fac-

tor K is a fixed value that remains constant for the entire duration of time under

consideration, T.

• Random Down Sampling: This is a perturbation technique in which the down sampling

factor K is not constant throughout the duration under consideration and is calculated

before sending each perturbed data sample. K is random number generated from a

uniform probability distribution having range (1,T− t).

• Probabilistic Down Sampling: In this technique, a Gaussian function with mean and

standard deviation represented by µ and σ respectively is used. Based on a threshold

applied to values sampled from the Gaussian distribution, it is determined whether to

send a power consumption value in the observed data O at a particular instance of

time. Instead of a Gaussian function any other probabilistic distribution can also be

used.

4.3 Adversary

In order to evaluate an SDPM accurately, it is important to model the adversary ADV

against whom the protection is placed. The strength of an adversary is defined by his knowl-

edge about the target user and the attacks he performs in order to reconstruct the user’s

original smart meter data sequence from the observed data sequence. We assume that the

adversary has the data shared by the smart meters i.e. O. Additionally, we assume that the

adversary knows the details of the SDPM, used to perturb the actual data. The adversary

may have some past generated actual data from the smart meters. An example of such a sit-

uation is; a utility company starts implementing a perturbation technique recently but it has
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the unperturbed values of power consumption from a user (or household), before it started

applying the perturbation techniques. It is important to point that the adversary is just

using its knowledge about the user and observed data because he does not know about the

appliances present in a household and hence cannot model the data based on the power con-

sumption information of the appliances. The adversary may also have additional contextual

information about the target user or household, which it could use for reconstruction.

The adversary may be interested in reconstructing the original power values only for a

certain duration of time in day, a particular day of the week or some length of days. There

can be a separate Markov model for each day of the week or for each part of the day such

as morning, afternoon, evening and night, since power consumption of a user may follow

a repetitive pattern. Based on his intentions the adversary will use past generated power

consumption values and appropriate Markov models to reconstruct the actual data from the

SM.

4.4 Reconstruction Technique

We recall from section 4.3 that the goal of the adversary is to reconstruct the original

data sequence for a period of interest. For such a reconstruction, the adversary can use the

appropriate Markov model (constructed earlier by him) as a state sequence generator. In

order to generate a state sequence of length T, the following steps need to be done;

1. If no perturbed data sample exists for the fist n samples, choose initial state sequence

{q1, q2, ...qn} according to the initial state distribution π. Else, choose from the highest

probability distribution among the initial state sequences, that best fit the available

perturbed data.

2. Set t = n+ 1
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3. If perturbed data exists at time t, qt will be the state associated with perturbed value i.e

O(t). Else, transit to a new state qt = Sj according to the state transition probability

matrix A.

4. Set t = t+ 1; return to step 3 if t < T ; otherwise terminate the procedure.

Let us denote the reconstructed power consumption for a user as a vector of size T, repre-

sented as R = (r(1), r(2), .., r(T )). Once the state sequence is known, the reconstructed data

R at any instance of time t ∈ T , denoted by r(t), is the power value associated with state qt.

This technique is chosen for our evaluation because it works well with down sampling,

our perturbation technique of choice. This is because in down sampling the perturbed data

contains samples from the actual data itself and such data can be directly used in the

reconstructed data sequence. For other perturbation techniques where the actual data may

be unavailable in the perturbed data, the actual value corresponding to instances for which

the perturbed data is available will also need to be predicted. Readers should note that our

framework is flexible enough to easily incorporate other, more complex, reconstruction or

prediction techniques as well.

4.5 Metric

As reconstruction is generally the first step to advanced inference attacks, the success

with which the original data can be recovered from the perturbed power consumption values

determines the loss of privacy of the consumer, due to the perturbation technique. Even

though the original data D and the reconstructed data R consist of discretized values, their

correlation still measures the “closeness” or “similarity” of one of the datasets with the other,

which is a good indication of the success of the adversary, and thus the loss of privacy to

the consumer. Our goal is not to measure the exact difference between the original data

and the reconstructed data, but to evaluate a perturbation technique in terms of loss of

privacy to the consumer. We use the R-squared correlation coefficient to measure the linear
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dependence between original data D and reconstructed data R. It gives a value between 0 to

1 inclusive, where 1 is total correlation and 0 is no correlation. Higher correlation signifies

greater probability that the two data sets comes from the same distribution, which could

enable an adversary to draw similar conclusions from both data sets.

Alternatively, there could also be another measure of privacy when an adversary is able

to identify a power consumption event within the home using the reconstructed data. This

identification can be done by monitoring the change in power consumption values between

successive power measurements. We represent the sequence of such change in power con-

sumption values in original data D by PD, where each element of the set of values in PD is,

pD(t) = d(t)− d(t− 1). Similarly for the reconstructed data R, the sequence of values rep-

resenting the difference in power between successive values is denoted by PR. Each element

of this set pR(t), is calculated as pR(t) = r(t)− r(t− 1). In order to measure loss of privacy

in this case, we use relative entropy which is a well known information theoretic measure

for quantifying the relation between two probability distribution functions (pdfs). Relative

entropy of two identifical pdfs is zero and relative entropy is always positive. The higher

value of relative entropy means lower loss of privacy. We assume that PD and PR can be

modeled as stochastic processes with pdfs, P ′D and P ′R respectively. The relative entropy

D(P ′D‖P ′R) is defined as follows: [7]:

D(P ′D‖P ′R) =
tmax∑
tmin

P ′D(t)log
P ′D(t)

P ′R(t)
(4.10)

We are using the two metrics discussed above, for our evaluation but the framework can

be extended to support other metrics as well.
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CHAPTER 5
EVALUATION

5.1 Software Tool

We developed a modular python-based, software tool for the proposed framework to

evaluate the efficiency of smart meter data perturbation techniques. In this tool, users can

input time-series power consumption data from a household for a time period of interest and

select from predefined perturbation techniques or they can even add perturbation techniques

of their choice to the tool. The efficiency of the various perturbation techniques is evaluated

by employing statistical reconstruction techniques, and their effectiveness is quantified using

an appropriate metric, that captures the accuracy of the reconstruction attack. Our tool has

the flexibility to specify any additional contextual information that the adversary may have

regarding the SM, household or conditions near the household. For simplicity, we currently

restrict this additional information available to the adversary to the external temperature

information of the geographical location of the smart meters. The goal of having such a

software tool is to enable ease of comparison and evaluation of various smart meter data

perturbation techniques using a unified and practical framework, such as the one proposed

in this work.

5.2 Experimental Set-up

We conduct an empirical evaluation of perturbation techniques using real power con-

sumption data from twenty-two households in Midlands, UK [27]. In this dataset, we have

over 2 years (from 2008 and 2009) of power consumption data, recorded every minute. We

also have the weather information in the Midland region of UK for the years of 2008 and

2009 [2]. The evaluation results presented below have been collected by executing our soft-

ware tool on a traditional personal computer comprising of a 2.3 GHz processor and 8GB

memory.
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5.3 Results

The following initial evaluation is conducted to validate the performance of the proposed

framework and the corresponding software tool by considering a small-sized data set and

limited computation resources. However, in order to perform a large scale analysis, an

adversary could take advantage of this framework by executing this tool over a much larger

dataset and by using computational systems with higher resources.

5.3.1 Standard Deviation of Actual Data

Figure 5.1: Variation in reconstruction accuracy in terms of relative entropy of actual data
with respect to the reconstructed data, as the standard deviation of the actual data changes,
when n = 3 and N = 8. The perturbation techniques applied is down sampling with a factor
of 5 i.e. 12 samples/hour.

Table 5.1: Variation of reconstruction accuracy in terms of relative entropy of actual data
with respect to the reconstructed data for different values of standard deviation of actual
data. The same training data with standard deviation of 0.59 was used for all measurements.

Order of Markov chains
Std. Dev 1 2 3 4 5

1.1 0.157 0.433 0.433 0.0.433 0.433
0.83 0.104 0.104 0.525 0.078 0.078
0.45 0.023 0.023 0.023 0.023 0.023
0.04 0.003 0.003 0.003 0.003 0.003

The success of reconstruction and loss of user’s privacy is measured in terms of R-squared

correlation and relative entropy as discussed in section 4.5. For all the measurements in this

19



Figure 5.2: Reconstruction accuracy in terms of R-squared correlation of actual data with
respect to the reconstructed data when n = 3 (third order Markov chains) and N=8 i.e.
number of states in the model are 8. The perturbation techniques applied is down sampling
with a factor of 5 i.e. 12 samples/hour.

Table 5.2: Variation of reconstruction accuracy in terms of R-squared correlation, with
respect to standard deviation values of actual data. The same training data with standard
deviation of 0.59 was used for all measurements.

Order of Markov chains
Std. Dev 1 2 3 4 5

1.1 0.373 0.014 0.014 0.070 0.070
0.83 0.547 0.467 0.525 0.525 0.525
0.45 0.261 0.261 0.261 0.261 0.261
0.04 0.071 0.071 0.071 0.071 0.071

subsection the training data was constant and had a standard deviation of 0.59. We used one

month of training data to calculate the transition matrix and initial probability distribution

and carry out reconstruction attacks on actual data D. The adversary has knowledge about

the average temperature on the day, for which the reconstruction is carried out and the

temperature of the geographical location during the time the training data was collected.

The plot for relative entropy of actual data with respect to the reconstructed data, seen in

Figure 5.1 shows that, as the standard deviation of actual data increases, the value of relative

entropy also increases, which signifies that as the variance in the actual data increases it is

more difficult to carry out a reconstruction attack successfully. In the same figure, from the

trend seen for R-squared correlation we observe that when the actual data D is similar to
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the training data, in terms of standard deviation, the correlation between the actual and

reconstructed data is higher. As the difference between standard deviation of the actual data

and the training data increases, the reconstructed data is less correlated with respect to the

actual data.

Graph 5.2 is plotted for n = 3 i.e. a third order Markov chain. The standard deviation

of the actual data is varied and the accuracy of reconstruction is measured in terms of R-

squared correlation. The trends in the Figure 5.2, show that, as the variance of the actual

data differs from the training data, the correlation between the actual data and reconstructed

data decreases. When the standard deviation of the actual data differs from the standard

deviation training data by a considerable amount, the accuracy of reconstruction in terms of

correlation is observed to be reduced. This is expected because if the training data does not

have many power consumption values changes, i.e. it has low standard deviation and the

actual data has many fluctuations, the model will not be able to accurately predict the next

state for reconstruction. Similarly, if the training data has very high standard deviation and

the actual data is comparatively flat, the model would have over learned and will inaccurately

predict more fluctuations in power consumption values. Similar results for different values

of order of Markov chains can be concluded from table 5.2.

By observing the results in Figure 5.1 and table 5.1, we see that when the variance of the

actual data is very low, the accuracy of reconstruction in terms of relative entropy is high

irrespective of the order of Markov chains. This is because relative entropy measurements

capture the accuracy of reconstructing power consumption changes and when the standard

deviation of actual data is low, there will be fewer changes in power consumption values. As

the standard deviation of the actual data increases irrespective of the standard deviation of

the training data, the accuracy of reconstruction in terms of relative entropy decreases. This

is expected as higher standard deviation means significant changes in the power consumption

values (or patterns) and the model may not have learnt of all such changes from the training

data.
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5.3.2 Order of Markov Chains and Number of States

Figure 5.3: Reconstruction accuracy in terms of relative entropy when data is perturbed
with a factor of 5 i.e. 12 samples/hour.

Figure 5.4: Reconstruction accuracy in terms of relative entropy when data is perturbed
with a factor of 10 i.e. 6 samples/hour.

In this section, we discuss the significance of the order of Markov chains and the num-

ber of states in the model, on the reconstruction accuracy. Figures 5.3, 5.4 and 5.5 show

the accuracy of reconstruction and loss of privacy in terms of relative entropy, for pertur-

bation using down sampling factors of 5, 10 and 15, respectively. These plots represent a

reconstruction duration of one hour using a training data of one month and relevant tem-

perature information. It can be observed from the plots that as the order of Markov chains

increases the relative entropy of the actual data with respect to the reconstructed data de-

creases, which signifies that the accuracy of reconstruction increases as the Markov chain
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Figure 5.5: Reconstruction accuracy in terms of relative entropy when data is perturbed
with a factor of 15 i.e. 4 samples/hour.

Figure 5.6: This figure shows accuracy of reconstruction in terms of R-squared correlation
when data is perturbed with a down sampling factor of 5 i.e. 12 samples/hour.

order increases. Each legend in these graphs denotes results for a unique number of states.

Based on these observations, we conclude that the reconstruction using higher order Markov

chains is most accurate. This is intuitively expected since higher order Markov Chains are

constructed using information of the n previous states, where n represents the order of the

Markov chains and having more information increases the accuracy of prediction. Also, this

would help capture and reconstruct more accurately, repetitive sets of power consumption

values.

Figures 5.6, 5.7 and 5.8 represent accuracy of reconstruction in terms of R-squared cor-

relation for data perturbed with sampling factors of 5, 10 and 15 respectively. It can be
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Figure 5.7: Reconstruction accuracy in terms of R-squared correlation when data is per-
turbed with a down sampling factor of 10 i.e. 6 samples/hour.

Figure 5.8: Reconstruction accuracy in terms of R-squared correlation when data is per-
turbed with a down sampling factor of 15 i.e. 4 samples/hour.

observed that, as the order of Markov chains increases, the correlation between the actual

data and the reconstructed data increases for sampling factors of 5 and 10. For downsam-

pling factor of 15, which means the perturbed data contains very few samples from the actual

data, we see that the accuracy of reconstruction peaks at a certain order of Markov chains

and then drops as we increase the order of Markov chains further, except for when we use a

larger number of states in our Markov models i.e. N = 8. Based on all the observations in

this section we can conclude that, as the order of Markov chains and the number of states in

the model increases, in most cases, the accuracy of reconstruction increases. We have also

identified special cases where this observation is not applicable.Considering all the results
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presented above, we conclude that down sampling by itself does not provide privacy to the

users and using very minimal computing power and training data, the actual data can be

reconstructed by the adversary.

5.3.3 Random Perturbation

Figure 5.9: Reconstruction accuracy measured in terms of R-squared correlation when data
was perturbed using a random sampling rate.

Figure 5.10: Reconstruction accuracy measured in terms of relative entropy when data was
perturbed using a random sampling rate.

In the above sections, all the results were calculated considering down sampling as the

perturbation technique. In this section we evaluate our model for random perturbation

techniques.

25



Figure 5.11: Reconstruction accuracy measured in terms of R-squared correlation when data
was perturbed using a random samples from a Gaussian distribution with mean of 1, standard
deviation of 0.5 and threshold of 0.75 to decide if data should be sent in a particular instant
or not.

Figures 5.9 and 5.10 represent reconstruction accuracy, in terms of R-squared correlation

and relative entropy, respectively, when data is down sampled at a random rate. We observe

that, the results for accuracy of reconstruction do not follow any specific trend. Such a

behavior is expected because the quantity of actual data samples present in the perturbed

data varies randomly in such a technique and accuracy of reconstruction is affected by the

occurrence of actual data samples in the perturbed data. The accuracy of reconstruction

using our model is 0.09 in terms of relative entropy which signifies that power events (change

in power consumption value between two consecutive instants of time) is captured with a

good accuracy but the average correlation of the reconstructed data with respect to the

actual data is low (0.309).

Similarly, when data is perturbed using random samples from a Gaussian distribution

(for the purpose of evaluation we used a Gaussian distribution with mean 1 and variance 0.5,

with a threshold of 0.75) to decide whether to send a value of power consumption data or

not in a particular instant, we notice that the results do not follow any specific pattern. The

accuracy of reconstruction varies randomly as we increase the number of states and order

of Markov chains, but the model still reconstructs the actual data with very high accuracy.
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Figure 5.12: Reconstruction accuracy measured in terms of relative entropy when data was
perturbed using a random samples from a Gaussian distribution with mean of 1, standard
deviation of 0.5 and threshold of 0.75 to decide if data should be sent in a particular instant
or not.

Especially for higher order Markov chains the accuracy captured in terms of relative entropy

and R-squared correlation is high.

5.3.4 Performance

Figure 5.13: Time of reconstruction with respect to order of Markov chains.

In this section, we analyze the time taken for reconstruction with respect to the order of

Markov chains. We measure the time required to generate the transition matrix A, initial

probability distribution π and carry out the reconstruction attack. Such measurements were

recorded by varying model parameters such as the number of states (N), variance of actual

data and the quantity of training data. The results shown in Figure 5.13 represent an average
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of 10 such measurements. We observe from the results of time measurements with respect

to the order of Markov chains, as shown in Figure 5.13, that as the order of Markov chains

increases the total reconstruction time also increases. This is because the number of rows

in a transition matrix depends exponentially on the order of Markov chains, as discussed

earlier in section 4.1.
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CHAPTER 6
DISCUSSION AND FUTURE WORK

We verified the functionality of our proposed framework using real smart meter data. For

this purpose we picked few well known perturbation techniques, metrics and reconstruction

strategy. It is seen that the model performs well when the standard deviation of training data

is similar to that of the actual data. The framework is not recommended for use with random

perturbation techniques based on the results observed. We don’t anticipate these techniques

becoming very popular because the utility of the data after applying these techniques cannot

be controlled and is pretty low. Because of reasonable accuracy achieved using lower order

Markov chains and the complexity associated with implementing and executing higher order

Markov chains, we do not evaluate the proposed framework for Markov chains higher than

the 5th order. For the purpose of evaluating the model we considered few sample scenarios

but in the future more evaluations can be carried out for additional perturbation strategies,

metrics and availability of other auxiliary information.
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CHAPTER 7
CONCLUSION

The deployment of the future power grid or SGN is slow due to privacy concerns from the

consumers’ perspective. Several privacy preserving data perturbation techniques have been

proposed to protect the user’s private information. In order to give the users the flexibility

to analyze the privacy offered to them by the perturbation technique used on their power

consumption data, we propose a unified framework for evaluating the efficiency of smart

meter data perturbation techniques. Our framework considers not only the perturbation

technique, but also the strength and knowledge of the adversary. The results validate that the

framework can be used for evaluation of different data perturbation techniques as applied to

real smart meter data. The order of Markov chain required for a good reconstruction can also

be determined using the proposed framework. This information will be helpful in analyzing

the amount of computing power, training data and perturbed data the adversary would need

for an accurate reconstruction. Such analysis can allow users’ measure the privacy offered

to them by the perturbation technique used to send their data to the utility company.

30



BIBLIOGRAPHY

31



BIBLIOGRAPHY

[1] IESO, Blackout 2003. http://www.ieso.ca/imoweb/EmergencyPrep/black-out2003.

[2] WeatherOnline. http://www.weatheronline.co.uk, 2014.
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