An Excellent Phase 6 Adventure:

Estimating Upland Erosion & Sediment Delivery (to very small streams)

Peter Claggett and Gary Shenk, USGS David Saavedra and Alex Riddle, UMBC Gopal Bhatt, Penn State/CBPO

November 3, 2015 CBP Modeling Quarterly Annapolis, Maryland

Sediment Delivery to Simulated Rivers

Sediment Delivery to Simulated Rivers

North Fork Shenandoah River

RUSLE2_Pasture 0-4 tons/acre/month(April)

Revised Universal Soil Loss Equation 2

Erosion (tons/acre/yr):

r*k*l*s*c*p

where,

r = erosivity factor

k = soil erodibility factor,

I = slope length factor,

S = slope steepness factor,

c = cover-management factor, and

p = supporting practices factor (assumed to equal "1" due to lack of data)

r -> Erosivity Factor (monthly) r = 1.24 * p^{1.36} p = precipitation (inches)

Cooper's equation* relates the storm intensity and kinetic energy required to initiate motion of sediment particles to annual precipitation. Long-term (30-year monthly mean precipitation data from PRISM (800m2-resolution) was used to represent "p".

*http://www.engr.colostate.edu/~pierre/ce _old/Projects/linkfiles/Cooper%20R-factor-Final.pdf

Figure 25 - Error Between the Actual and Predicted R-Factors in the Eastern United States

k_w -> Soil Erodibility Factor

Now with Rocks!

Represents susceptibility of soil to erosion and the rate of runoff.

 Fine textures: (clays)
 0.05-0.15

 Coarse textures: (sands)
 0.05-0.20

 Medium textures: (loams)
 0.25-0.45

 Silts:
 0.45-0.65

K-factor values may change abruptly at county lines due to varying interpretations of soil characteristics.

c -> Crop Management Factor (monthly for crop, pasture, turf, impervious, forest)

- crop type,
- planting/grazing date,
- Planting technique
- Harvesting/grazing end date
- Harvesting/grazing

Crop Management Zones

C-factors estimated separately for:

Alfalfa Hay Harvested Area	Potato
Broccoli, spring	Snap Beans
Cabbage	Soybean
Corn & Wheat	Soybean & Wheat
Corn for Grain	Tomato
Corn for Silage	Watermelon
Cucumber	Wheat for Grain
Other managed hay Harvested Area	Soybean Wheat - Relay
Pasture / Range	

L -> Slope Length Factor

(relative to a 22.1m field unit with uniform 9% slope)

$L = (m+1)(Area/22.1)^{m}$

Area = upslope drainage area (m²) m = empirical measure of soil susceptibility to erosion, aka the rill-to-interrill ratio.

S -> Slope Steepness Factor

 $S = sin(t)/0.09)^{m+1}$

t = slope in radians

RUSLE2_Pasture 0-4 tons/acre/month(April)

Peter Claggett Geographer, USGS Annapolis, Maryland

pclaggett@usgs.gov