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Abstract: This paper presents a description of recent research and the multi-target tracking in experi-
mental passive bistatic radar (PBR) system taking advantage of numerous non-cooperative AM radio
signals via multi-static doppler shifts. However, it raises challenges for use by multiple spatially
distributed AM radio illuminators for multi-target tracking in PBR system due to complex data
association hypotheses and no directly used tracking algorithm in the practical scenario. To solve
these problems, after a series of key array signal processing techniques in the self-developed system,
by constructing a nonlinear measurement model, the novel method is proposed to accommodate non-
linear model by using the unscented transformation (UT) in Gaussian mixture (GM) implementation
of iterated-corrector cardinality-balanced multi-target multi-Bernoulli (CBMeMBer). Simulation and
experimental results analysis verify the feasibility of this approach used in a practical PBR system for
moving multi-target tracking.

Keywords: PBR; CBMeMBer; doppler; tracking

1. Introduction

Passive bistatic radar (PBR) is a subset of bistate radars receiving non-cooperative
transmitters of opportunity scattered by potential targets. Research on PBR has attracted
extensive attention because of well-known advantages, such as no additional frequency
channel allocation, lower costs, and lower probability of being detected with respect to
active radars. Although, PBR systems have a long history, there are not enough opera-
tional systems.

Of all the transmitters of opportunity available in the PBR systems, very high fre-
quency/ultra high frequency (VHF/UHF) bands represent some of the most attractive for
surveillance purposes, such as analog television (ATV) [1,2], digital television-terrestrial
(DTV) [3,4], frequency modulation (FM) radio [5], digital audio/video broadcasting
(DAB/DVB) [6–10]. However, relatively little interest has been shown in the high fre-
quency (HF) band (3–30 MHz) due to the propagation complexity and low range resolution.
Especially, the external illuminators in the HF band have excellent range coverage, propa-
gation over the horizon, and stealth target detection. Some preliminary and pioneering
HF-PBR works have been carried out. In the PBR system [11,12], Thomas et al. from
University College London performed an analysis using the HF digital radio Mondiale
(DRM)signal as transmitter of opportunity. The two-dimensional target localization, using
a linear frequency modulated continuous waveform from a non-cooperative OTH radar
located in Longreach, Australia, with a bandwidth of 10 kHz, is presented in [13].

In fact, compared with other opportunity illuminators in the HF band, commercial
amplitude modulation (AM) broadcast signal sources have the advantages of high trans-
mitter power, larger numbers, and wider coverage. Due to the propagation complexity and
bandwidth limited, little attention is paid to AM radio signal for PBR system. The research
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development on the practical PBR system named “Sugar Tree” was the first using the AM
broadcast signal as a passive radar illuminator to detect the missiles launched near the
broadcast emitter site. Although this system was shut down decades ago, the performance
and method details have not yet been elaborated [14]. One target was tracked by using
HF-AM radio signals in passive system [15]. We note that to date, there has been little
convincing experimental evidence that AM radio based PBR systems, in particular, can be
used for the purpose of multi-target tracking.

Actually, using the AM broadcast signal as an illuminator for air surveillance raises
new challenges for the multi-target tracking algorithm in PBR system. First, range resolu-
tion is not available or often of extremely poor quality. For example, the regular effective
AM radio broadcast bandwidth is 5 kHz so that the practical radar range resolution is up
to 60km. That would be unacceptable for the PBR systems. Second, the signal-to-noise
ratio (SNR) of echo signal is particularly low and there exists the clutter interference, strong
direct path interference, and the missing alarm. Third, in order to track the target, the
system must observe the target’s Doppler history for an extended time before there is suffi-
cient information. Furthermore, an additional type of data association uncertainty arises
due to the use of multiple AM radio broadcast signals, i.e., not only is it unknown which
measurement belongs to which target, there is also the problem that the data association
hypotheses arise from the number of AM radio broadcast illuminators. In this paper, we
report the newly experimental development of a PBR system using multiple AM radio
broadcast signals as a transmission source.

Since the PBR system can typically collect bistatic range, time-of-arrival (TOA),
direction-of-arrival (DOA), and Doppler shift from the received signals, an alternative
choice is to use multi-static Doppler shift as measurements for multi-target tracking. Target
estimation using only Doppler shift measurements is an old problem studied in different
contexts [16–18]. To achieve the target location accuracy, multiple transmitters can be
utilized simultaneously in the system. Therefore, target tracking in the AM radio based
PBR system is a multi-sensor fusion problem. Some works on localization and tracking
multi-targets in a multi-sensor radar system via multi-static Doppler-shift measurements
only have been studied recently. It is shown in [19] that a multi-sensor Bernoulli filter with
multi-static Doppler-only measurements contaminated by unknown probability of false
alarms and missed detections is able to perform multiple target tracking via numerical
simulation examples. An algorithm for fusing data from a constellation of RF sensors
detecting cellular emanations with the output of a multi-spectral video tracker to localize
and track a target with a specific cell phone is present in [20]; the results show that it is
possible to track multiple targets using Doppler differential measurements. However, few
field experiments have been performed to demonstrate the target tracking performance in
similar scenarios.

In this paper, we went a step further and cast close-in moving multi-target tracking
via multi-static Doppler shifts in the practical PBR system by multiple spatially distributed
AM radio illuminators. We made use of a cardinality-balanced multi-target multi-Bernoulli
(CBMeMBer)-based random finite set (RFS) approach to sequentially estimate targets, with
iterated-corrector (IC) iterating the filter update stage. Compared to data association meth-
ods, a CBMeMBer-based Bayesian algorithm can avoid complex association processes; it
also has significant advantages in less cardinality bias and smaller complexity in solving
multi-target tracking problems. There are two implementations of the CBMeMBer filter,
Gaussian mixtures (GM) and sequential Monte Carlo (SMC). Contrary to SMC implementa-
tion, GM implementation provides more reliable state estimates and a lower computation
complexity in an efficient way [21]. However, the GM-CBMeMBer filter does not directly
accommodate a nonlinear measurement model. To solve this, we extended GM implemen-
tation of the CBMeMBer filter to update the procedure by using unscented transformation
(UT). Simulation performance demonstrates the analysis, and the real data from exper-
imental results indicate feasibility performance of the proposed IC-UT-GM-CBMeMBer
filter. The system described in this paper was constructed on one of the simplest and
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lowest cost architectures; therefore, the main contribution of this paper is that the proposed
multi-target tracking method can provide a reference for similar PBR systems.

The rest of this paper is organized as follows. The description of the AM Radio based
PBR system and multi-target tracking formulation are described in Section 2. Section 3
provides the proposed IC-UT-GM-CBMeMBer filter. Simulation and field experimental
implementation are given in Section 4. Finally, conclusion and possible future directions
are drawn in Section 5.

2. Problem Formulation
2.1. System Description

Supposing the ionosphere is homogeneous and spherically symmetric, the bistatic
plane geometry of an AM-radio-based sky-surface wave PBR system in the scenario can be
simplified as shown in Figure 1 (two transmitters are shown explicitly simplistically). In
the system, we exploited one receiving antenna array approximately 20 m above ground
level located over-the-horizon (farther than 1000 km from the noncooperative transmitters
generally) at Hubei province of China, which is equipped with a uniform circular array
(UCA) with 16 antennas.
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Figure 1. Plane geometry of AM-radio based-sky-surface wave PBR system.

The direct wave (emitter-to-receiver) and the illumination wave (emitter-to-target) are
reflected from the ionosphere, while the echo wave (target-to-receiver) was via line-of-sight
(LOS) propagation in the surveillance area.

To obtain multi-static Doppler measurements in the PBR system, some key techniques
in array signal processing are summarized in a block diagram sketched in Figure 2. Similar
to traditional passive radar, surveillance and reference channels are needed to receive target
echoes and reference signal, respectively. The DOA of direct wave can be obtained by the
multiple signal classification (MUSIC) algorithm from the reference channel, which is then
used to clean the reference signal by using conventional beamforming (CBF) technology.
After scanning the surveillance channel by normalized least mean square (NLMS) tech-
nology to obtain the echo signal, we calculated the cross-ambiguity function (CAF) of the
direct path signal and the scattered signal to estimate range vs. Doppler shift of the targets.
Finally, the time delay and Doppler shift of the targets after clutter removal were estimated.
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Furthermore, the greatest limitation on tracking target performance in the
self-developed experimental PBR system is the interference and clutter in the received
signal, for example, dense direct path interference and the DOA of echo signal with very
low SNR under masking effects. Although the classic DOA estimation and clutter suppres-
sion methods have been studied over the past decade [22,23], most of them are unsuitable
for processing HF-AM radio signal. We adopted the method of reference [24] by building
a single-snapshot virtual array signal. After extending the single-snapshot virtual array
signal to multi-snapshots and the MUSIC algorithm, the clutter interference could be
suppressed significantly, and the desired echo signal was enhanced simultaneously. More
details of signal processing and improvement can be found in [24]. Finally, the excellent
Doppler shift information of targets’ corresponding time can be provided on a 2-D time vs.
Doppler map.

2.2. CBMeMBer Filter

The CBMeMBer filter is first introduced to solve the aforementioned tracking problem
in the PBR system in this section [21].

At time k, there are N(k) target states Xk =
{

xk,1, · · · , xk,N(k)

}
⊆ F (χ), which denote

space of finite subsets of χ. Given a target xk at time k, it is either detected in the surveil-
lance area with probability pD,k(xk) and generates a Bernoulli RFS Θk(xk) with likelihood
function gk(·|xk) , or it is missed with probability 1− pD,k(xk). Given a multi-target state
Xk, each xk ∈ Xk either continues to exist at time k + 1 with probability pS(xk+1) and
moves to a new state xk+1 with target transition equation fk+1|k(xk) or dies with probability
1− pS,k(xk+1). Thus, given a target with state xk ∈ Xk at time k, its behavior time k + 1 is
modeled by the Bernoulli RFS Sk+1|k(xk), and Γk+1 denotes the multi-Bernoulli RFS of new
births at time k + 1. The multi-target state is modeled as [25].

Xk+1 = [∪ Sk+1|k(xk)] ∪ Γk+1 (1)

Similarly, there are Nk measurements Zk =
{

zk,1, . . . , zk,Nk

}
, each taking values in an

observation space at time k. In addition, the received measurement also contains a set of
missing alarms or clutter that can be modeled as a Poisson RFS Kk. Thus, multi-target
observation at time k + 1 is modeled as finite sets [26].

Zk+1 = [ ∪
x∈Xk+1

Θk+1(x)] ∪ Kk+1 (2)

where Θ(xk+1) is a Bernoulli RFS that is generated by target state xk+1 ∈ Xk+1.
A multi-Bernoulli RFS X(i) on χ is a union of a fixed number M of independent

Bernoulli RFSs with existence probability r(i) and probability density p(i), X = ∪M
i=1X(i).

Moreover, the probability density π is [27]:

π(∅) = ∏M
j=1 (1− r(j)) (3)
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π({x1, · · · xn}) = π(∅) ∑
1≤i1 6=···6=in≤M

∏M
j=1

r(ij)p(ij)(xj)

(1− r(ij))
(4)

The multi-target bayes recursion propagates in time [27]:

πk+1|k(Xk|Z1:k) =
∫

fk+1|k(Xk+1|X)πk(X|Z1:k)δX (5)

πk+1(Xk+1|Z1:k+1) =
gk+1(Zk+1|Xk+1)πk+1|k(Xk+1|Z1:k)∫

gk+1(Zk+1|X)πk+1|k(X|Z1:k)δX
(6)

where fk+1|k(·|·) is the multi-target transition density and gk+1(·|·) is the multi-target
likelihood.

2.3. Multi-Target Tracking Model

Tracking model is one of the major problems needing to be considered in the multi-
target system. In this paper, we consider the target tracking scenario performed in a 2D
Cartesian coordinate, with the origin point located at a single receiver antenna array; the
x-axis points East and the y-axis points North. Assume that at time k, the i-th target state is

represented by the state vector x(i)k =
[

p(i)x,k v(i)x,k p(i)y,k v(i)y,k

]T
, i = 1, 2, . . . , N(k) Where N(k)

is the number of targets, superscript T denotes the matrix transpose, p(i)k =
[

p(i)x,k p(i)y,k

] T

and v(i)k =
[
v(i)x,k v(i)y,k

]T
are the position and velocity of the target, respectively. Each target

dynamic motion is followed by a nearly constant velocity model:

x(i)k+1 = Fkx(i)k + uk (7)

where uk ∼ N(u; 0, Qk) is zero-mean white Gaussian process noise with covariance Qk. We
adopt:

Fk =

[
A0 02
02 A0

]
Qk = σ2

v

[
∆2 I2 02
02 ∆2 I2

]
In which ∆ is the sampling interval. A0 =

[
1 ∆
0 1

]
, In, and 0n denote n× n identity

and zeros matrices, respectively.
In the two-dimensional surveillance area, three spatially distributed non-cooperative

AM radio illuminators constantly transmit signals with a known carrier frequency f
(i)
c of

the i-th AM radio station, i = 1 . . . 3, and the receiver places are at the original point, as
illustrated in Figure 3. The direct wave and scattered waves from multiple AM broadcast
stations reflected from the ionosphere (three scattered echo waves and one target are shown
simplistically) reach the target and receiver simultaneously on the condition that the AM

broadcast stations located at R(i)
t =

[
x(i)t y(i)t

]T
are far away (>1000 km) from the receiver

antenna array. Doppler shift measurements by i-th illumination can be generally modeled
as [28]:

zk
(i) = h(i)(xk) + εk

(i) (8)

where:

h(i)(xk) = −vT
k

[
pk
‖pk‖

+
pk − R(i)

t

‖pk − R(i)
t ‖

]
f (i)c
c

(9)

→
vk is the constant velocity vector of target at time k, ‖pk‖ =

√
px,k

2 + py,k
2, c is the

speed of light, εk
(i) is the measurement noise, εk

(i) ∼ N
(
w; 0, σw

2).
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As the AM radio stations are typically long distance from the receiver antenna array,
we approximately considered the direction of the direct wave from the i-th illuminator of
AM radio station to the receiver antenna array as equal to the direction of the scattered
wave from the i-th illumination to the target. According to Equation (9), the model can be
approximately written as:

h(i)(xk) =
f (i)c
c

[
−→vk

→
p k

(i) +
→
vk ·

→
vtk

(i)
]

(10)

Here,
→
p k

(i) is the normalized target position relative to the receiver.
→
vtk

(i) is the
normalized incident direction vector of the direct wave from the i-th illuminator of the AM
radio station to the receiver antenna array, which is independent on the target state and
could be easily achieved from DOA estimation of the direct wave, as mentioned before.

Each Doppler-shift subset includes at most one measurement per illuminator and
corresponds to the measurements made by multi-targets across all illuminators practically
contaminated by false alarms and misdetections. The subsets of a partition are disjointed

and comprise measurement space, which is denoted as Z(i)
k =

{
z(i)k,1 z(i)k,2 · · · z(i)

k,N(i)
k

}
,

in which i is the i-th illuminator; N(i)
k is the number of the detection values, including false

alarms and misdetection; z(i)k,j is the j-th detection value. Therefore, Z(I)
k is the measurement

set involving all Ns illuminators at time k, and Z(I)
1:k is the time sequence of measurement

sets encapsulated I = {1, 2, . . . , NS} illuminator characteristics.

3. The Proposed Multi-Target Tracking Method

The GM-CBMeMBer filter has a close-form solution under assumptions of linear
Gaussian models that is difficult to implement on the nonlinear measurement models. To
overcome this limitation, we extended the GM-CBMeMBer filter to a practical nonlinear
measurement model by using unscented transform (UT) techniques [29]. Another straight-
forward extension of the single sensor CBMeMBer filters to the case of multiple illuminators
can be achieved by iterating the filter update stage for each illuminator measurement set.
An IC-UT-GM-CBMeMBer filter can be implemented to accommodate a multi-transmitter
nonlinear Doppler model. However, this IC-CBMeMBer yields final solutions that depend
on the order of the measurement set of illuminators; therefore, the development of efficient
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algorithms for the scenario case are left for future investigation. Hence, in this section we
propose the IC-UT-GM-CBMeMBer filter for multi-target tracking in the PBR system.

3.1. IC-UK-GM-CBMeMBer Filter

We supposed that each target follows a linear Gaussian dynamical and observation
mode [21], i.e.,

fk+1|k(x
∣∣∣ζ) = N(x; Fkζ, Qk) (11)

gk+1(z|x) = N(z; Hk+1x, Rk+1) (12)

where fk+1|k(·
∣∣∣xk) is a transition function commonly known as Markov shift [30].N( · ; m, P)

denotes a Gaussian density with mean m and covariance P, Fk is the state transition matrix,
Qk is the process noise covariance, gk+1(z|x) is likelihood function, Hk+1 is the observation
matrix, and Rk+1 is the observation noise covariance.

A multi-Bernoulli RFS is characterized by a posterior distribution with parameters
existence probability r(i) and probability density p(i) of the i-th hypothesized track, i =

1, . . . , Mk, i.e.,πk =
{

r(i)k , p(i)k (xk)
}Mk

i=1
, which is comprised of Gaussian mixtures of the form

p(i)k (xk) =
J(i)k−1

∑
j=1

w(i,j)
k N(xk; m(i,j)

k , P(i,j)
k ), where w(i,j)

k , m(i,j)
k , P(i,j)

k denote the weights, means,

and covariances of the j-th Gaussian component by the sample time k.
The Bernoulli filter propagates the posterior πk =

{
rk, pk(xk)

}
during the whole

time in “prediction” and “update” steps. This effectively means that rk and pk must be
propagated.

Prediction: At time k + 1, spontaneous births are accounted for by appending a

birth multi-Bernoulli RFS with components
{

r(i)Γ,k+1, p(i)Γ,k+1

}MΓ,k+1

i=1
to surviving targets. The

total number of predicted hypothesized tracks is Mk+1|k = Mk + MΓ,k+1. The predicted
multi-target density is [21]:

πk+1|k= {(r
(i)
P,k+1|k, p(i)P,k+1|k)}

Mk
i=1 ∪

{
(r(i)Γ,k+1, p(i)Γ,k+1)

}MΓ,k+1

i=1

where:

p(i)Γ,k+1(x) =
J(i)Γ,k+1

∑
j=1

w(i,j)
Γ,k+1N(x; m(i,j)

Γ,k+1, P(i,j)
Γ,k+1) (13)

r(i)P,k+1|k = r(i)k pS,k+1 (14)

p(i)P,k+1|k(x) =
J(i)k

∑
j=1

w(i,j)
k N(x; m(i,j)

P,k+1|k, P(i,j)
P,k+1|k) (15)

m(i,j)
P,k+1|k = Fkm(i,j)

k

P(i,j)
P,k+1|k = Qk + FkP(i,j)

k FT
k

Update: In the following, based on nonlinear observations, we propose the unscented
transform implementation of the IC-UK-GM-CBMeMBer filter in the update step.

At time k + 1, the updated multi-Bernoulli density πk+1 is formed by multi-Bernoulli

RFS of the legacy tracks (r(i)L,k+1, p(i)L,k+1)}
Mk+1|k
i=1 and measurement-corrected tracks

{
(rU,k+1(W), pU,k+1(·; z))

}
z∈Zk

[21],
as follows:

πk+1 =
{
(r(i)L,k+1, p(i)L,k+1)

}Mk+1|k

i=1
∪
{
(rU,k+1(z), pU,k+1(·; z))

}
z∈Zk+1
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where:

r(i)L,k+1 = r(i)k+1|k
1− pD,k+1

1− r(i)k+1|k pD,k+1

(16)

p(i)L,k+1 = p(i)k+1|k(x) (17)

rU,k+1(z) =

∑
Mk+1|k
i=1

r(i)k+1|k(1−r(i)k+1|k)ρ
(i)
U,k+1(z)

(1−r(i)k+1|k pD,k+1)
2

κk+1(z) + ∑
Mk+1|k
i=1

r(i)k+1|kρ
(i)
U,k+1(z)

1−r(i)k+1|k pD,k+1

(18)

pU,k+1(x; z) =
∑

Mk+1|k
i=1 ∑

J(i)k+1|k
j=1 w(i,j)

U,k+1(z)N(x; m(i,j)
U,k+1, P(i,j)

U,k+1)

∑
Mk+1|k
i=1 ∑

J(i)k+1|k
j=1 w(i,j)

U,k+1(z)

(19)

Using unscented transform extends the mean matrix and covariance matrix, respectively,

µk+1 = [mk+1|k 0′ 0′]′ (20)

Ck+1 = diag(Pk+1|k, Qk+1, Rk+1) (21)

We constructed a set of 2nU + 1 sigma points
{

χ
(`)
k

}L

`=0
and weights

{
u(`)

}L

`=0
,

L = 2nU , i.e.,
χ
(`)
k+1 = µk+1 u(`) = κU

nU+κU
` = 0

χ
(`)
k+1 = µk+1 +

(√
(nU + κU)Ck+1

)
`

u(`) = 1
2(nU+κU)

` = 1, · · · , nU

χ
(`)
k+1 = µk+1 −

(√
(nU + κU)Ck+1

)
`

u(`) = 1
2(nU+κU)

` = nU + 1, · · · , L

(22)

where nU is the dimension of µk, and κU is the scaling parameters,nU + κU 6= 0.

q(i,j)k+1(z) = N(zk+1; zk+1|k, SK+1) (23)

ρ
(i)
U,k+1(z) = pD,k

J(i)k+1|k

∑
j=1

w(i,j)
k+1|kq(i,j)k+1(z) (24)

m(i,j)
U,k+1(z) = m(i,j)

k+1|k + K(i,j)
U,k+1(zk+1 − zk+1|k) (25)

P(i,j)
U,k+1 = P(i,j)

U,k+1|k − Gk+1S−1
k+1G′k+1 (26)

zk+1|k =
L

∑
`=0

u(`)z(`)k+1|k (27)

KU,k+1 = Gk+1S−1
k+1 (28)

Sk+1 =
L

∑
`=0

u(`)(z(`)k+1|k − zk+1|k)(z
(`)
k+1|k − zk+1|k)

′ + Rk (29)

Gk+1 =
L

∑
`=0

u(`)(χ
(`)
k+1|k −mk+1|k)(z

(`)
k+1|k − zk+1|k)

′ (30)

z(`)k+1|k = hk(χ
(`)
k+1), ` = 0, . . . , L (31)
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w(i,j)
U,k+1(z) =

r(i)k+1|k

1− r(i)k+1|k

pD,k+1w(i,j)
k+1|kq(i,j)k+1(z) (32)

With the i-th illuminator measurement data Z(i)
k+1, the filter is obtained by the afore-

mentioned sequential processing of the measurement set of each illuminator with the CB-
MeMBer filter corrector. The update operator Ψk+1

(i) from π
(i)
k+1|k to π

(i)
k+1 =

{
r(i)k+1, p(i)k+1

}
is [21,31]:

[
Ψk+1

(i)r
]
=

∑
Mk+1|k
i=1

r(i)k+1|k〈pk+1|k
(i),gk+1(Zi |x )pD,k+1〉

1−r(i)k+1|k〈pk+1|k
(i),pD,k+1〉

κk+1(Z(i)) + ∑
Mk+1|k
i=1

r(i)k+1|k〈pk+1|k
(i),gk+1(Z(i) |x )pD,k+1〉

1−r(i)k+1|k〈pk+1|k
(i),pD,k+1〉

(33)

[
Ψk+1

(i)p
]
=

∑
Mk+1|k
i=1

r(i)k+1|k pk+1|k
(i)gk+1(Z(i) |x )pD,k+1

1−r(i)k+1|k〈pk+1|k
(i),pD,k+1〉

∑
Mk+1|k
i=1

r(i)k+1|k〈pk+1|k
(i),gk+1(Z(i) |x )pD,k+1〉

1−r(i)k+1|k〈pk+1|k
(i),pD,k+1〉

(34)

where 〈a, b〉 =
∫

χ a(x)b(x)dx denotes the inner product, and the sequential update process-
ing is as shown

r
k+1

= Ψk+1
(Ns) ◦ · · · ◦Ψk+1

(2) ◦Ψk+1
(1)r(i)k+1|k (35)

pk+1(xk+1) = Ψk+1
(Ns) ◦ · · · ◦Ψk+1

(2) ◦Ψk+1
(1)pk+1|k(xk+1) (36)

where ◦ denotes a composition.

3.2. State Extraction and Cardinality Biass

Extract multi-target states are the same as that of the GM-MB filter; for more details
see [21]. The number of targets is estimated by:

Ñk = ∑
Mk+1|k
i=1 r(i)L,k+1+ ∑

z∈Zk

rU,k+1(z) (37)

For completeness, the key steps of the proposed filter are summarized as a block
diagram of the processing algorithm in Table 1.

Table 1. Pseudocode of the proposed filter.

Input: Initial Gaussian Mixtures {w0,m0,P0}J0
i=1 and Doppler Measurement Set Z(I)

1:k

for k = 1:Time duration
predict surviving Gaussian components

for i = 1:Mk

r(i)P,k+1|k = r(i)k pS,k+1

for j = 1:Jk

compute m(i,j)
P,k+1|k = Fkm(i,j)

k P(i,j)
P,k+1|k = Qk + FkP(i,j)

k FT
k

end
end

construction of birth target Gaussian components using Equation (13)
end

update the legacy tracks
for i = 1:Mk+1|k

r(i)L,k+1 = r(i)k+1|k
1−pD,k+1

1−r(i)k+1|k pD,k+1
m(i)

L,k+1 = m(i)
L,k+1|k P(i)

L,k+1 = P(i)
L,k+1|k

end
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Table 1. Cont.

Input: Initial Gaussian Mixtures {w0,m0,P0}J0
i=1 and Doppler Measurement Set Z(I)

1:k

update the measurement-corrected tracks
for freq = 1:Ns
for i = 1:M f req

k
for j = 1: Mk+1|k

µ
(j)
k+1 =

 m(j)
k+1|k
0
0

 C(j)
k+1 =

 P(j)
k+1|k

Qk+1
Rk+1


each component constructs a set of sigma points and weights using Equation (22) to generate:{

χ
(`)
k , u(`)

}L

`=0

z(`)k+1|k = hk(χ
(`)
k+1), ` = 0, . . . , L h

(
χ
(`)
k

)
=

f ( f req)

c

[
−
→

v(`)k
→
p k

( f req) +

→
v(`)k ·

→
vtk

( f req)

]
end

compute
{
(rU,k+1, pU,k+1)

}
using Equations (18) and (19)

end
prune tracks

end
state extraction and cardinality bias using Equation (37)

end

4. Experimental Results
4.1. Experimental Configuration

We developed the PBR system in Huazhong University of Science and Technology
by tracking a close-in civilian airplane whose working frequency band is 6–30 MHz. The
system is configured to work in multi-transmitter and receiver-only mode. The experiment
was carried out in December 2014, in which three AM radio broadcast stations were
selected as the noncooperative transmitters, namely, Tx1, Tx2, and Tx3, respectively. The
specific parameters can be obtained from the International Telecommunication Union
(ITU) Radiocommunication Sector [32,33] listed in Table 2, including carrier frequency (fc),
transmitting power, distance with respect to the receiver, and so on.

Table 2. Parameters of the three AM radio broadcast stations used as transmitters.

Station Serial
Number fc (kHz) Station

Name
Power
(kW)

Latitude
(deg)

Longitude
(deg)

Distance
(km)

Tx1 17770 UDO 250 17.25 102.48 1866
Tx2 15370 SZG 100 38.04 114.28 842
Tx3 15130 BEI 150 39.55 116.25 1027

The ground distance between the AM radio broadcast station and the receiver antenna
array is over 800 km. Thus, the transmitted signals are reflected by the ionosphere to
reach targets over-the-horizon away. Figure 4 shows the geographical distribution of the
illuminators and the receiver station.
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Figure 4. The geographical distribution of the illuminators and the receiver.

The noncooperative targets in the experiment are two civil aircrafts in the surveil-
lance area with flight numbers CCAXXXX and CSNXXXX, respectively, namely, Target 1
and Target 2. The civil aircrafts parameters were broadcast by the automatic dependent
surveillance-broadcast (ADS-B) system within a short interval of time. The data sets,
including position, velocity, and so on, are the reference to verify the tracking method,
which is recorded by a ground-based AirNav Radar Box. The two real trajectories of the
civil aircrafts during the experiment are plotted in Figure 5a, which start represented by
a triangle symbol and end represented by acircle symbol. As the recorded data show in
Figure 5a, the two targets exist during the whole time in the surveillance. Target 1 flew at a
constant altitude of 8.4 km with a nearly constant speed v(1)x = 106m/s, v(1)y = 238m/s,

and Target 2 flew at a constant altitude of 5 km with a nearly constant speed v(2)x = −87m/s,
v(2)y = −196m/s in the surveillance area. The height of the transmitting station and the
receiver are approximately ignored. Figure 5b plots the variation of direction of the targets
during the experiment. The sampling interval was 4 = 1 s, and the total experimental
duration was 80 s.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 4. The geographical distribution of the illuminators and the receiver. 

The noncooperative targets in the experiment are two civil aircrafts in the surveil-
lance area with flight numbers CCAXXXX and CSNXXXX, respectively, namely, Target 1 
and Target 2. The civil aircrafts parameters were broadcast by the automatic dependent 
surveillance-broadcast (ADS-B) system within a short interval of time. The data sets, in-
cluding position, velocity, and so on, are the reference to verify the tracking method, 
which is recorded by a ground-based AirNav Radar Box. The two real trajectories of the 
civil aircrafts during the experiment are plotted in Figure 5a, which start represented by 
a triangle symbol and end represented by acircle symbol. As the recorded data show in 
Figure 5a, the two targets exist during the whole time in the surveillance. Target 1 flew at 
a constant altitude of 8.4 km with a nearly constant speed (1) 106m/sxv = , (1) 238m/syv = , 

and Target 2 flew at a constant altitude of 5 km with a nearly constant speed (2) 87m/sxv = − , 
(2) 196m/syv = −  in the surveillance area. The height of the transmitting station and the 

receiver are approximately ignored. Figure 5b plots the variation of direction of the targets 
during the experiment. The sampling interval was △ = 1 s, and the total experimental 
duration was 80 s. 

 
(a) (b) 

Figure 5. A part of civil aircraft parameters broadcasted by ADS-B in the experiment. (a) The real civil aircraft traces in x-y 
coordinate; (b) The direction of the civil aircrafts with respect to the receiver (based on the azimuth with respect to Eastern). 
Figure 5. A part of civil aircraft parameters broadcasted by ADS-B in the experiment. (a) The real civil aircraft traces in x-y
coordinate; (b) The direction of the civil aircrafts with respect to the receiver (based on the azimuth with respect to Eastern).



Sensors 2021, 21, 6196 12 of 18

4.2. Field Experimental Results

The targets are observed in the surveillance region with dimensions [−40, 40]km ×
[−40, 40]km. The single-target transition model is a linear Gaussian process given by Equation
(11), in which ∆ = 1 s is the sampling period, and σv = 0.1m/s2 is the standard deviation of the
process noise. The birth process is multiBernoulli with density

πΓ =
{

r(i)Γ , p(i)Γ

}2

i=1
, where r(i)Γ = 0.01,p(i)Γ (x) = N(x; m(i)

Γ , PΓ),m
(1)
Γ = [−20, 000, 0, 20, 000, 0]T,

m(2)
Γ = [20, 000, 0,−20, 000, 0]T, PΓ = diag([1000, 10, 1000, 10]T)

2
. The probability of target

survival is pS,k = 0.95. The probability of target detection is pD,k = 0.5.
After the aforementioned signal processing, we obtained the DOA estimation of

each direct wave and the Doppler shift measurement data, including the false alarms and
misdetections. Figure 6 shows the detected Doppler vs. time obtained from the surveillance
areas using three AM broadcast stations with the carrier frequency of 17.7 MHz, 15.37 MHz,
and 15.5 MHz, respectively. The Doppler measurement sets have clutter and the missing
alarm. Then, the noisy three stations Doppler-shift measurement sets Z(I)

1:80, are passed to
the tracking filter, as plotted in Figure 7. The parameters of the tracking filter are set as
follows: observation noise covariance Rk = σ2

ε I1, where σε = 1Hz is the standard deviation
of the measurement noise. Clutter parameter is Poisson with intensity κk(z) = λcVu(z),
where u(z) is a uniform probability density over the surveillance region, V = 1600 km2 is
the “volume” of the surveillance region, and the clutter intensity is λ

(i)
c = 0.3; i = 1,2,3 for

z ∈ Z = [−30Hz, 30Hz] are all assumed time invariant and independent of the target state.
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Figure 6. The results of target detection and Doppler shift measurements vs. time obtained from the surveillance areas
using three AM broadcast stations. (a) Station 1 with a carrier frequency of 17.77 MHz; (b) Station 2 with a carrier frequency
of 15.37 MHz; (c) Station 3 with a carrier frequency of 15.13 MHz.
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Figure 7. Doppler shift measurement set in which each color triangle stems from an AM broadcast
transmitter.

The initial density of the target state p0(x) is the Gaussian mixture of the form:

p0(x) =
4
∑

n=1
ω0N(x; mn, Q0),where ω0 = 1/4 is the weight factor of each initial state

vector, Q0 = diag([(103m)
2, (10m/s)2, (103m)

2, (10m/s)2]) is the initial covariance matrix,
mn,0 = [pxn,0, 0m/s, pyn,0, 0m/s]T ,n = 1, 2, . . . , 4 are the initial mean state vectors, and
(pxn,0, pyn,0) means four initial positions uniformly distributed in the surveillance area. In
GM implementations, some of the parameters used in the filtering are: the target existence
threshold rk = 0.001; at each time step, Gaussian components are pruned and merged for
each hypothesized track with weight threshold T = 10−10 merging threshold U = 40, maxi-
mum components Jmax = 200. In addition, hypothesized tracks are pruned with maximum
Tmax = 5 and weight threshold L = 10−5. Tracking results of the IC-UT-GM-CBMeMBer
filter are shown in Figures 8 and 9, which show the estimated target traces and four esti-
mated components of the state vector: px, py, vx, vy change vs time compared with the true
trajectories, respectively. At ending time instants, short discontinuities occur in the tracks
owing to the missing alarm of the Doppler measurement. Notice that the number of targets
suffers from latency problem at the beginning of tracking in Figure 10, because the initial
points are located arbitrarily.
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Different numbers of illuminators are a problem in multi-target tracking performance
when only Doppler measurements are used. To study this, the filter is implemented under
the conditions of AM radio broadcast stations Ns = 2,1, corresponding to stations with
serial numbers of I = {1, 2}, {1}, respectively. The optimal subpattern assignment (OSPA)
is used to evaluate the tracking miss-distance. The OSPA distances (for c = 20 and p = 1)
vs. time on conditions of various number of broadcast stations compared with the results
on the condition of Ns = 3, I = {1, 2, 3} is shown in Figure 11. Particularly, the OSPA
distances vs. the time between 6s and 32s is plotted. It can be seen that the estimated
largest OSPA distances are approximately 2880 m, 2922 m, and 5712 m on the condition
of Ns = 3, Ns = 2, and Ns = 1, respectively. The obvious error in the period time from
k = 27 to 56 is due to the missing detections and clutter of the Doppler measurements and
the number of illuminators. Therefore, we believe that the more numerous the AM radio
broadcast stations that are exploited, the more accurate the tracking trajectories are.
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4.3. Simulation Results

In this subsection, the performance of the proposed method is verified via simulation
under similar scenarios to those aforementioned under the situation of cross trajectories, in
consideration that it usually occurs in real data processing on a 2D Cartesian coordinate.
Three AM broadcast stations were chosen, the same as Table 2. The two targets’ motion is
assumed to be a nearly constant model adjusted for civil aircrafts, and the flight parameters
are listed in Table 3. The false alarms are uniformly distributed in the field of view with
range −30 Hz to 30 Hz, and the number of false alarms at each scan follows the Poisson
distribution with a mean of 10. The parameters of the tracking filter are set the same as in
Section 4.2.

Table 3. The flight parameters in simulation.

Item Initial Position
(km)

Initial Velocity
(m/s) Time of Birth (s) Time of Death

(s)

Target 1 (−5,20) (95, −200) 1 80
Target 2 (5,12) (−150, −120) 1 90

As shown in Figure 12, despite the intersection points, the two targets can follow
their trajectories, respectively. In Figure 13, the OSPA metric (p = 1, c = 20) shows the
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track maintenance quality of the proposed method. However, the instantaneous peaks are
observed from times k = 59 to k = 81 due to corresponding intersection point and track
termination latency. The simulation results indicate that the proposed method can deal
with relatively complex tracking problems.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 19 
 

 

maintenance quality of the proposed method. However, the instantaneous peaks are ob-
served from times k = 59 to k = 81 due to corresponding intersection point and track termi-
nation latency. The simulation results indicate that the proposed method can deal with 
relatively complex tracking problems. 

 
Figure 12. The estimated target path compared with the true path in x-y coordinate. 

 
Figure 13. The OSPA distances vs. time under the situation of cross trajectories. 

5. Conclusions 
In this paper, we propose a multi-target tracking filter in a self-developed PBR sys-

tem by using spatially distributed multiple AM broadcast stations. Multiple non-cooper-
ative illuminators with different carrier frequencies located over-the horizon and one re-
ceiver in the surveillance area are involved in the practical system. The direct wave and 
the illumination wave are reflected from the ionosphere received by a uniform circular 

Figure 12. The estimated target path compared with the true path in x-y coordinate.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 19 
 

 

maintenance quality of the proposed method. However, the instantaneous peaks are ob-
served from times k = 59 to k = 81 due to corresponding intersection point and track termi-
nation latency. The simulation results indicate that the proposed method can deal with 
relatively complex tracking problems. 

 
Figure 12. The estimated target path compared with the true path in x-y coordinate. 

 
Figure 13. The OSPA distances vs. time under the situation of cross trajectories. 

5. Conclusions 
In this paper, we propose a multi-target tracking filter in a self-developed PBR sys-

tem by using spatially distributed multiple AM broadcast stations. Multiple non-cooper-
ative illuminators with different carrier frequencies located over-the horizon and one re-
ceiver in the surveillance area are involved in the practical system. The direct wave and 
the illumination wave are reflected from the ionosphere received by a uniform circular 

Figure 13. The OSPA distances vs. time under the situation of cross trajectories.

5. Conclusions

In this paper, we propose a multi-target tracking filter in a self-developed PBR system
by using spatially distributed multiple AM broadcast stations. Multiple non-cooperative
illuminators with different carrier frequencies located over-the horizon and one receiver
in the surveillance area are involved in the practical system. The direct wave and the
illumination wave are reflected from the ionosphere received by a uniform circular array
located over the horizon, while the echo wave (target-to-receiver) is via LOS propagation
in the surveillance area. After some techniques in array signal processing, the Doppler
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measurement sets, including clutter and the missing alarm with corresponding time, can
be collected. To overcome linear Gaussian models, we propose the tracking model and
extend the GM-CBMeMBer filter to a practical nonlinear measurement model by using
unscented transform (UT) techniques by iterating the filter update stage for each illuminator
measurement set in this practical scenario. Three AM broadcast stations were selected
as the non-cooperative illuminators. Two non-cooperative civil aircrafts were chosen
as tracking targets, whose flight parameters were recorded by a ground-based AirNav
Radar Box set. Considering the clutter and missing alarm in the measurement sets, the
OSPA distances are acceptable. Moreover, the performance of simulation has verified the
feasibility of the proposed tracking method. In future work, the unknown clutter rate and
detection probability under unknown background in this practical scenario will be taken
into consideration. Maneuvering target tracking is also worthy of study.
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