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1. ABSTRACT

ABSTRACT. The Riemann-Hurwitz formula is an elegant equation in its own right. The formula
illustrates a relation between the integer invariants associated with holomorphic maps between
Riemann surfaces. Further, the equation manages to answer the remarkably broad following question:
Given all possible holomorphic maps between two compact Riemann surfaces, what may we say
about the constraints on the invariants, if any such exist? Indeed, we find that the Riemann-Hurwitz
formula tells us precisely what these constraints are.

2. INTRODUCTION

This paper serves as an introduction to the Riemann-Hurwitz formula. The goal of this paper
is to provide a reader, who has little knowledge of complex analysis, topology, or geometry, with
the basic necessities in order to understand the Riemann-Hurwitz formula. Thus, we will need to
patiently and deliberately build up adequate understanding of key concepts in these disciplines
in order to understand some of the foundational definitions and theorems from Hurwitz theory.
However, after a thorough reading of this paper, a reader should be familiar with the role that the
Riemann-Hurwitz formula plays and have some understanding of how it can be applied.

Riemann surfaces are a kind of manifold. Manifolds are all around us. Naturally, we would like
to consider all of the possible maps between Riemann surfaces. Unfortunately, we find that we
are unable to do so. However, if we put a few constraints on the manifolds and the maps between
them then we are able to describe all possible maps between manifolds. Namely, we require that
our manifolds be Riemann surfaces and we require that our maps between Riemann surfaces be
holomorphic. It is through the Riemann-Hurwitz formula that we are able to desribe these maps.

The Riemann-Hurwitz formula is worthy of an entire paper for two reasons. First, the formula
allows us to make very strong claims about the relationships that our discrete invariants have when
looking at holomorphic maps between two compact Riemann surfaces. Second, the Riemann-
Hurwitz formula allows us to deal with just integer values despite the continuous nature of our
maps.

Hurwitz Theory, the discipline that we find our formula of interest nested in, seeks to utilize
connections between complex analysis, geometry, and algebra. Namely, Hurwitz theory is the
enumerative study of analytic functions between Riemann Surfaces. The Riemann-Hurwitz formula
relates integer invariants associated to all holomorphic maps between compact Riemann surfaces
via an equation. Riemann Surfaces, one-dimensional complex manifolds, are locally identified
with C. Thus, it is natural to require maps between Riemann surfaces locally to be identified with
holomorphic maps from C to C. The study of such objects is important for many reasons, just one
of which is because when studying maximal domains of complex analytic functions we find that
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looking at geometric spaces which are locally indistinguishable from C, but globally are different
from C is optimal.

Riemann surfaces are found in different areas of mathematics. Bernhard Riemann (1826-1866)
was the first to study such objects. As such, they are named after him. Riemann first introduced
Riemann surfaces when dealing with complex functions in his dissertation in 1851. Riemann, at age
25, would go on to lay the building blocks of a general theory of complex functions, which would
launch a systematic study of topology, revolutionize algebraic geometry and allow him to create his
famous approach to differential geometry.

In 1851 and in 1857, Riemann discussed Riemann surfaces and the holomorphic maps between
them. One of the tools that would emerge from his discussion would be a formula. This formula
would become the Riemann-Hurwitz formula. Riemann claimed that if we had a surjective map ϕ

Riemann surfaces X and Y , then we could relate the genus of X ,Y , the degree of ϕ and the amount
of ramification. This formula will be explored in section 4.

The structure of our paper will be as follows: we will start by unpacking some of the necessary
preliminary facts, definitions, and examples. Then we will discuss Riemann surfaces in detail. After
devoting some time to Riemann surfaces, we will talk about the analytic maps between Riemann
surfaces. Finally, we will be able to discuss the Riemann-Hurwitz formula.

2.1. The Preliminaries. We can not properly understand the Riemann-Hurwitz formula without
first building the necessary foundation. Here, that means taking some time to become acquainted
with some terminology and definitions. Let us first define what it means for a function to be
analytic, since these will be our functions of interest. We should note that holomorphic functions
are equivalent to analytic functions on an open set Ω⊂ C, thus we will take a moment to define
both.

Definition. A function f : Ω→ C defined on an open set Ω⊂ C is said to be analytic at a point
z0 ∈Ω if there exists a power series ∑an(z− z0)

n centered at z0 with positive radius of convergence
such that, for all z in a neighborhood of z0, f (z) = ∑

∞
n=0 an(z− z0)

n

Definition. Let ω be an open set in C and f be a complex-valued function on ω . The function is
holomorphic at a point z0 ∈Ω if f (z0+h)− f (z0)

h converges to a limit when h→ 0

With this in mind, we will have some idea of the kinds of functions we will be examining. In our
introduction, we stated that Hurwitz theory was the study of analytic functions between Riemann
Surfaces. So, we have some notion of the kind of mappings we will be looking at, but what of the
mathematical structures? Thus, a natural course of action would be to define a Riemann Surface.
However, we must not get too quickly ahead of ourselves.

For one to understand a Riemann surface, one must have some notion of a topological space, a
manifold, and a surface.

Definition. A topological space is an ordered pair (X ,τ) in which X is set and τ is a collection of
subsets (namely, open sets) of X , satisfying three axioms: [2]

(i) The empty set and X itself belong to τ .
(ii) Any union of elements in τ is still in τ .
(iii) The intersection of any finite number of elements in τ is in τ .

Here we have an example that should adequately demonstrate what we mean by a topological
space.
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Example 2.1.1 Consider x=R2 or X =C. We then define a subset U ⊂X to be Euclidean-open if
for all x∈U there exists ε ∈R such that Bε(x)⊂U . Here Bε(x) denotes the ball of radius ε centered
at x i.e. Bε(x) = {y ∈ R2 | d(x,y) < ε}. The Euclidean topology on R2 is T = {Euclidean-open
sets , U ⊂ R2}.

Having defined a topological space, we are now able to define a homeomorphism.

Definition. A homeomorphism is a function f → Y such that f is continuous and the inverse of f
is also continuous.

Definition. If X ,Y are topological spaces, a function f : X → Y is continuous if f−1(U) ⊂ X is
open whenever U ⊂ Y is open.

With some understanding of topological spaces and homeomorphisms, we may now turn our
attention to a manifold, which we will not define formally, but will make use of a visual aid.

Here we have an image to visualize precisely what we are talking about. We have some topological
space X , with a neighborhood Ux ⊂ X of x and a homeomorphism ϕx. We call the pair (Ux,ϕx)
local charts. We call Ty,x and Tx,y transition functions.. We require these transition functions be
smooth in order for X to be a manifold.

In Figure 1, below, X is covered by open sets Ux, each of which has a homeomorphism ϕx : Ux→
Vx, where Vx ⊂ Rn is open in the Euclidean topology. Our transition functions Ty,x,Tx,y compares
different local coordinates for the same points in X . Here Tx,y = ϕx ◦ϕy

FIGURE 1. A visual of a manifold [3]

With this notion of a manifold in mind, we will define a surface. We note that the dimension of a
manifold is the n in Rn or Cn.

Definition. A surface is a manifold of dimension 2.
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FIGURE 2. This image from Renzo Cavalieri’s Riemann Surfaces and Algebraic
Curves gives us a visual intuition of the components of a Riemann surface.[3]

With these definitions, examples, and aids at our disposal, we can now discuss Riemann surfaces.

3. RIEMANN SURFACES AND HOLOMORPHIC MAPS

Since Riemann surfaces are the most important objects of this narrative, we will define them
formally and carefully below.

Definition. A Riemann Surface is a complex analytic manifold of dimension 1. To expand, we
have two conditions in order for X to be a Riemann Surface:

(i) X is a real 2 dimensional manifold.
(ii) For any Ux,Uy, such that Ux∩Uy =∅ the transition function
Ty,x := ϕy ◦ϕ−1

x : ϕx(Ux∩Uy)→ ϕ(Ux∩Uy) is analytic.

To further understand the structure of a Riemann surface, let us consider figure 2. We can see
that we have a Riemann surface, in which local charts (Ux,ϕx) and (Uy,ϕy) allow us to see that
that ϕx,ϕy take points from our Riemann surface and map them to C. Further, we can see that our
transition functions Tyx,Txy allows us to transition from Vx to Vy and from Vy to Vx respectively.

3.1. Examples Of Riemann Surfaces. Next, we will look at some basic examples of Riemann
surfaces in order to gain some insight into the mathematical structures of primary interest. Firstly,
we will look at how we might naturally come to consider Riemann surfaces, by starting with a
function. Second, we will consider the most basic example of a Riemann surface. Then we will
look at the prototypical example of a Riemann surface, the Riemann sphere.
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Example 3.1.1

We first observe that natural algebraic expressions have some nature of ambiguity in their
solutions. In other words they define multi-valued rather than single valued functions. When we are
working in R, it becomes fairly obvious how to go about fixing said ambiguity. We simply select
one branch of the function. To illustrate this, consider f (x)=

√
x.

We know that the domain of this function is [0,∞). Then we have a continuous function
f : [0,∞)→ R, which is analytic everywhere but 0. If we approach the same function from a
complex perspective, we take w=

√
z to mean w2=z, but to have a single-valued function of z we

need to make a choice. If we want to preserve continuity, we require a “cut” in the domain. We may
do this by defining

√
z: C-R−→ C to be the square root with positive real part. Then our function

is holomorphic away from the negative real axis.
So there is no continuous extension of f over this missing half-line. If we take the limits of the

chosen values of
√

z our results will be opposite signs. Then clearly our problem is at 0. We may
fix this by considering Riemann surfaces. Our idea will be to have the graph of the function replace
the complex plane as domain of the multi-valued function. In the case of w=

√
z, the graph of the

function is a closed subset of C2. S = {(z,w) ∈ C2 | w2 = z}. Then, in fact, the graph of S is a
simple example of a Riemann surface.

This example illustrates the basic idea behind the theory of Riemann surfaces, to replace the
domain of a multi-valued function, i.e. a polynomial equation P(z,w) by its graph S = {(z,w) ∈
C2 | P(z,w)=0}

Example 3.1.2

The most straightforward example of a Riemann surface is the complex plane C itself. We define
our map as the identity map, with Ux = X and ϕx = id, which defines a chart for C and the set
containing f acts as an atlas for C. By atlas, we just mean a collection of local charts that cover all
of X , or in this case, C. Note, this is just one possible chart and atlas for C.

Example 3.1.3

The Riemann sphere, denoted P1(C),viewed as a one-dimensional complex manifold, may be
described by two charts with their domains equal to C. To construct our sphere we do the following:

(i) We let ζ be some complex number in one copy of the complex plane
(ii) We then let ξ be a complex number in another copy of the complex plane.
(iii) Identify every nonzero complex number ζ of the first C with the nonzero complex number 1

ζ

of the second C. Thus, for example, ζ = 2 is the same as ξ = 1/2

Further, we can view P1(C) as the following: P1(C) := C2−{(0,0)}
∼ , where (z,w) ∼ (λ z,λw) for

all λ ∈ C∗. This allows us to have useful notation. The equivalence class of (z,w) is denoted at
[z : w]. For example, (1,2) ∈ C2−{(0,0)} and (3,6) ∈ C2−{(0,0)} with (1,2) ∼ (3,6) so [1 : 2]
∈ P1 and [3 : 6] ∈ P1. Thus, we write [1 : 2] = [3 : 6]. Next, we must check that that there are
local charts that form an atlas for P1(C). Further, we must verify that the transition function is
holomorphic. This will confirm that P1(C) is a Riemann surface.

Indeed we have two local charts: U1 = {[z : w] | w 6= 0} paired with ϕ1 : U1→ C, where ϕ1([z :
w]) = z

w . U2 = {[z : w] | z 6= 0} paired with ϕ2 : U2→ C, where ϕ2([z : w]) = w
z . We also do have
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FIGURE 3. Here, we may see another example of a Riemann surface, the Riemann sphere.

a holomorphic transition function: P1(C):(ϕ2 ◦ϕ1
−1)(u) = ϕ2([u : 1]) = 1

u , which is holomorphic.
Thus we have verified that P1(C) is a Riemann surface.

Intuitively, we may view the transition maps as providing instruction on how to go about gluing
our two copies of C together. The planes are glued in an inside out manner, so the overlap is almost
ubiquitous. However, each copy of C contributes just one point (its origin) missing from the other
plane. To elaborate, almost every point in the Riemann sphere has two values, both a ζ and a ξ

value, related by ζ = 1
ξ

. Here the points where ξ =0 takes on the value 1
0 . In this sense, the origin of

the ξ charts plays the role of ∞ in the ζ chart.
To gain some further intuition of example 3.1.3, let us consider an example of something a little

more earthly, our globe. Indeed we see, from figure 4, that our process is analogous to working with
the globe. We may think about how Earth may be represented on our computer screens (i.e. an open
set in C). Then we are really considering how would we would about including every point on the
surface of our Earth by flattening our globe.

Now armed with two examples, a formal definition, and an intuitive aid, we will look at holor-
morphic maps between Riemann surfaces.

3.2. Holomorphic Maps Between Riemann Surfaces. We shall start by formally defining a
holomorphic map between Riemann surfaces:

Definition. Let X ,Y be Riemann surfaces and f : X → Y be a set function.
(i) We say that f is holomorphic at x ∈ X if for every choice of charts ϕx,ϕ f (x) the function
ϕ f (x) ◦ f ◦ϕx

−1 is holomorphic at x.
(ii)If Ux ⊂ X is open, we say that f is holomorphic on U if f is holomorphic at each x ∈U
(iii) If f is holomorphic on Ux = X then we say that f is a holomorphic map.

3.3. Some Important Terminology. As mentioned in our introduction, it is natural to require
maps of Riemann surfaces locally to be identified with holomorphic maps from C to C. This
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FIGURE 4. In this image, we first consider our roughly-spherical globe and we
suppose that we want to somehow include every point on the surface by flattening
out the globe.

FIGURE 5. Here X ,Y are Riemann surfaces and f : X → Y is a holomorphic map.
We see our local expression is given by ϕ f (x) ◦ f ◦ϕ−1

x . A chart (Ux,ϕx) is centered
at if ϕx(x) = 0. This image shows how a Riemann surface is locally indistinguishable
from C. In fact, this image will be valuable because it allows us to see Riemann
surfaces of genus, the number of holes our Riemann surface has, greater than 1. [3]

identification is referred to as a local expression and requires that both our source and target have
associated chosen charts. This is a feature, and, as a consequence we have two useful theorems we
will state.

Theorem 3.1. Let f : X → Y be a non-constant holomorhpic map of Riemann surfaces. For any
x ∈ X there are charts centered at x, f (x), such that the local expression of f using these charts is
z→ zk for some integer k ≥ 1.

It’s Theorem 3.1 that allows us to develop the notion of ramification index. In this way, if our
map f , between Riemann surfaces, is a holomorphic map, we are able to ensure the existence of
charts such that our local expression will be a power function.

As we mentioned above, we are indeed always able to find a local expression such that our
function will be a power function. Figure 6 shows us we are able to alter charts to get local
expression of zk. Essentially, this explains theorem 3.1, visually. We note that we start with any
charts φ ,ψ centered at x, f (x), giving us a local expression F := ψ ◦ f ◦φ−1. We consider the Taylor
expansion of F at 0 and let k be the smallest positive integer such that our coefficient zk will not
vanish. Then we find that F(z) = zk(∑∞

n=0 ak+nzn) because F(0) = 0,k ≥ 1. We denote the second
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FIGURE 6. Via an image from Cavalieri’s text, we are able to see how we are able
to alter charts to have our local expression be a power function.[3]

factor in F(z) by G(z)=ak +ak+1z+ ... Then G(z) is holomorphic at 0 and G(0) 6= 0. We choose
the branch so that our map k

√
G(z) is well-defined and holomorphic around φ(x)=0.

We define h(z)=z k
√

G(z), so that gives us that F=hk. The function h is holomorphic in a neigh-
borhood U of φ(x)=0, h(0)=0, and h′(0)=0. We claim that that composition φ̃=h ◦ φ gives us a
local chart for X centered at x. We relate the local coordinate z̃ coming from φ̃ to z via z̃=h(z).
Finally, the local expression for f around x is obtained by changing coordinates from z to z̃ in F:
F̃(z̃)=F(z(z̃)=h(z)k

We will see that this theorem allows us to meaningfully define new terms. As a result of the above
theorem, the complex analytic notion of order of vanishing of a function at a point may be extended
to Riemann surfaces. We call this vanishing the ramification index. More formally, the integer kx
such that there exists a local expression centered at p of the form F(z)=zkx is the ramification index
of f at x. Then we may simply define the differential length of f at x as kx−1.

Our second theorem will be equally important. In the way that our previous allows us to consider
the concept of ramification index, theorem 3.2 allows us speak about further useful concepts.

Theorem 3.2. Let f : X → Y be a non-constant holomorhpic map of compact Riemann surfaces. If
y0,y1 ∈ Y are not in the branch locus of f , then | f−1(y0) | = | f−1(y1) |

The number of inverse images is referred to as the degree of the map. Lastly, we should note that
a chart (Ux,φx) for a Riemann surface X is centered at x if ϕx(x) = 0

A point x such that kx ≥ 2 is called a ramification point. The ramification locus R is the subset
of X consisting of all ramification points. Lastly, If x is a ramification point, then f(x) ∈Y is called a
branch point. The branch locus B is a subset of Y consisting of all branch points. In other words
the branch locus is the image via f of the ramification locus, as seen in figure 7.

3.4. Some Examples of Holomorphic Maps Between Riemann Surfaces. We will get a feel for
the kinds of maps that we are talking about by explicitly looking at two examples. In these examples,
we will be using the notation as we introduced in Example 3.1.3.
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FIGURE 7. This image visualizes ramification points and branch points [3]

Example 3.4.1

Consider two Riemann surfaces, X=Y =P1(C). So, both our target and source are Riemann
spheres. Consider the point x = [0 : 1]. Then suppose that our map is defined by f ([z : w])=[z2 : w2].
So, f (x) = f ([0 : 1]) = [0,1]. Consider the chart φx given by φx =

z
w and φx

−1(u)=[u : 1]. We also
define φ f (x) by φ f (x)([z,w]) =

z
w .

Then to confirm that f is holomorphic requires that we check our composition.

φ f (x) ◦ f ◦φx
−1(u) = (φ f (x) ◦ f )([u : 1])

= (φ f (x))([u
2 : 12)

=
u2

12

= u2

Thus, we have found a chart centered at [0 : 1] in which f looks like u→ u2. We conclude that
our ramification index of f at [0 : 1] is 2. This tells us that [0 : 1] is the only point that maps to [0 : 1],
but for other points in the chart, two points in our source map to any one point in our target. Further
then, our differential length of f at [0 : 1] is vx = 2−1=1. Lastly, we say that the degree of f is 2
because the fiber of f over any y other than [1 : 0] and [0 : 1] has cardinality 2.

Example 3.4.2
We suppose that X and Y are as in Example 3.4.1, but we change our map f to f ([z : w]) = [w : z]

Then suppose x = [0 : 1], then f (x) = [1 : 0].

Let φx([z : w]) = z
w . Then φx

−1(u) = [u : 1]. Suppose φ f (x)([z : w]) = w
z

Then, as in our previous example, we check that our map f is holomorhpic by checking that the
composition is holomorphic.
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(φ f (x) ◦ f ◦φx
−1)(u) = (φ f (x) ◦ f )([u : 1])

= φ f (x)([1 : u])

=
u
1

= u

Thus, we found a chart centered at [0 : 1] in which f looks like u→ u. We then say that the
ramification index of f at [0 : 1] is 1. We say that f is unramified at [0,1]. Note, this implies that
our differential length is 1-1=0. Lastly, we observe that our map is injective, which is another way
of saying that the fiber of any point has cardinality one, meaning the degree of f is 1.

4. THE RIEMANN-HURWITZ FORMULA AND APPLICATIONS

4.1. An Explanation. Finally, we are ready to start discussing the Riemann-Hurwitz formula.
Before we state the formula, there still remains some unpacking of terminology to do. Namely, we
will give some examples of various Riemann surfaces of differing genus.

Roughly speaking, the genus of a surface is the number of holes that the surface has. We see in
figure 8 and figure 9 that we may have Riemann surfaces of genus greater than 1.

FIGURE 8. A torus is a Riemann surface of genus 1. We may see that it has one
hole, analogus to a donut.

Indeed, we may consider Riemann surfaces of various genus. We will see below that the discrete
number that is the genus of a Riemann surface is found on both sides of our equation and is thus of
significance.

An important detail in the Riemann-Hurwitz formula is the condition that two Riemann surfaces
X and Y are both compact. In other words, X and Y are compact as topological spaces. Thus, we
would be well served to look at an important fact:

Theorem 4.1. If X is a compact Riemann surface and f : X → Y is a nonconstant holomorphic
map of Riemann surfaces, then the ramification locus R is a finite set. Since the branch locus is the
image of R via f, it follows that the branch locus is also a finite set.
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FIGURE 9. From left to right, we have Riemann surfaces of genus 0, genus 1, and
genus 2, respectively. [1]

Theorem 4.1 will be important because it tells us that our summation in the Riemann-Hurwitz
formula is indeed a summation and is not an infinite series, which might have the potential to
diverge.

4.2. The Formula Itself. The Riemann-Hurwitz formula gives the following relation among all
discrete invariants associated with maps of compact Riemann surfaces:

The Riemann-Hurwitz Formula

Theorem 4.2. Suppose f : X → Y is a non-constant, degree d, holomorphic map of compact
Riemann surfaces. We denote gX and gY as the genus of X and Y respectively. Then we have:

2gX −2 = d(2gY −2)+∑x∈X(vx) where vx is the differential length of f at x.

With the Riemann-Hurwitz formula explicitly stated via Theorem 4.2, let us now consider two
examples that demonstrate how the formula can be used. For example 4.3.0, we will see that the
Riemann-Hurwitz formula allows us to make some strong claims about the possibility, or lack
thereof of ramification points. Example 4.3.1 will show us that we are able to solve a previous
example, in which we found the degree of f , the ramification index of f at x, and knew the genus of
X and Y .

Example 4.3.0
Let f : P1(C)→ P1(C) be a degree d holomorphic map. Suppose that two points x1 and x2 ∈

P1(C) have full ramification (i.e. kx1 = kx2 = d). Then, using our formula, we will show that there
do not exists any more ramification points for f .

We set gX = gY = 0 and we have

2(0)−2 = d(2(0)+ ∑
x∈X

vx =−2 = d(−2)+(d−1)+(d−1)+ ∑
x1 6=x2

(kx−1)

0 = ∑
x1 6=x2

(kx−1)

Since each differential length is a non-negative integer, we have that each vx is 0.
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Example 4.3.1 Now, let us apply the Riemann-Hurwitz formula to Example 3.4.1, in which we
found that when both our target and source was P1(C). We considered the function f ([z : w]) = [z2 :
w2]. Further, we concluded that the degree of f was 2. Lastly, we found that the ramification index
of f at [0 : 1] was 2. Then using the Riemann-Hurwitz formula to verify this, we have:

2(0)−2 =−2d + ∑
x∈X

(kx−1)

2(0)−2 =−2d +2
−2 =−2d +2
−4 =−2d

2 = d

Indeed in our example we did find that the degree of f was 2.

Example 4.3.2
The Riemann-Hurwitz formula may also be applied to Riemann surfaces that are not the Riemann

sphere of course, in this case we will apply it to a projective plane curve. We will find the genus of
C.

Consider the Riemann surface C = {[x : y : z] ∈ P2 | y2z2 = x4− z4}. We define a map
f : C→ P1(C) by f ([x : y : z]) = [x : z].

Claim: the degree of f is 2 and the branch points of are [1 : 1], [−1 : 1], [i : 1], [−i : 1].

We see this by letting [x : z] ∈ P1(C). If z 6= 0, then we may assume z = 1, so f−1([x : 1]) = {[x :
y : 1] | y2 = x2−1. Then given x, there are two choices for y, unless x ∈ {1,−1, i,−i}.

By using the Riemann-Hurwitz formula, we will find the genus of C. We have that the degree
of f is 2, that the genus of the Riemann sphere is 0, and that over our summation 1,−1, i,−i will
contribute an addition of 1 each. So we have:

2(gC)−2 =−2(0−2)+ ∑
x∈X

(kx−1)

2(gC)−2 =−4+(1+1+1+1)

2(gC)−2 = 0

2(gC) = 2
gC = 1

We may draw some interesting conclusions from the Riemann-Hurwitz Formula as well:
• ∑x∈X vx is even.
• gX ≥ gY . A Riemann Surface X can never map (nontrivially) to a Riemann Surface Y of a

higher genus.
• If ∑x∈X vx = 0 then gX = dgY −d +1

5. CONCLUSION

The Riemann-Hurwitz formula, as we discovered, allows us to draw conclusions about certain
invariants if we consider values for the other integer invariants. For example, we were able to
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conclude in example 4.3.0, by using the formula, that if two points in our source x1,x2 were fully
ramified in our source, then we were able to conclude that the formula allowed us conclude that no
other ramification points existed.

If our goal is to describe maps between manifolds, we find that the Riemann-Hurwitz formula
only requires that we limit our consideration to non-constant holomorphic maps between compact
Riemann surfaces. If we abide by these constraints, we find that we are able to relate the genus
of compact Riemann surfaces, the degree of our holomorphic map, and the ramification index of
ramification points via an equation.
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