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Preface

This book was originally conceived as the first of a series to be entitled What’s the
Big Idea? Fundamental Concepts in Mathematics and Science for the Dedicated
Amateur. The second book in the series was—and still is—to present the founda-
tions of physics; and a third, if it came to be, would deal with complex systems:
physical, biological, etc. It was intended that these books would treat their topics in
a way that was accessible to the nonprofessional (the dedicated amateur of the sub-
title) while providing a depth of understanding usually achieved only by a lengthy
course of study. These were to be the books that I wished had been available to
me in my youth. In the case of the physics book—which is still incomplete—this
has led to a much greater attention to mathematical precision than is usual in that
subject, and the result could be described—rather incompletely, albeit not entirely
inaccurately—as Foundations of Physics for Mathematicians. The present book, on
the foundations of mathematics, could be described in the same vein as Foundations
of Mathematics for (All) Mathematicians.

The emphasis here is on all. Mathematicians generally take an interest in the
foundations of their subject and have done so since antiquity: witness the attention
paid to Euclid’s axiomatization of geometry and the logical status of the parallel
postulate, for example. Descartes’s identification of geometrical points with real
numbers is familiar to everyone, as is the work of Bolzano, Weierstrass, Cauchy,
Dedekind and others formalizing the notions of limit and continuity, and defining
real numbers in terms of sequences or sets of rational numbers. The work of Cantor
defining set theory is also well known by reputation, if not in historical detail, and an
understanding of basic set theory is universally recognized as an essential part of any
mathematician’s toolbox today. Less well known is the early work of Frege, Peano,
and others on the logical underpinnings of this enterprise, but the conclusion of that
development, viz., that the mathematical method is the derivation of theorems from
axioms in a formal language using formal logic, is thoroughly understood.

By the year 1900, the centrality of foundational issues in mathematics was
sufficiently clear that David Hilbert, the foremost mathematician of his day, placed
them at the head of his famous list of problems for mathematicians of the coming
century: the first problem asked whether the continuum hypothesis is true, and
whether the set of real numbers can be wellordered; the second asked for a proof
of the consistency of (Peano) arithmetic. (The tenth problem asked for a decision
procedure for the solvability of diophantine equations, which we now understand is
also a foundational question.) Most mathematicians are aware that each of these
problems has been solved in some sense, but relatively few can state precisely in
what sense, and even fewer know how this has been done.

The questions of the axiom of choice and the continuum hypothesis are merely
two of many deep issues that arise when one inquires closely into the nature of
infinitarity. As Hilbert was later to write, after praising Weierstrass’ work on the
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foundations of analysis:
‘. . . in spite of the foundation Weierstrass has provided for the infinitesimal

calculus, disputes about the foundations of analysis still go on.
‘These disputes have not terminated because the meaning of the infinite, as that

concept is used in mathematics, has never been completely clarified. Weierstrass’s
analysis did indeed eliminate the infinitely large and the infinitely small by reducing
statements about them to [statements about] relations between finite magnitudes.
Nevertheless the infinite still appears in the infinite numerical series which defines
the real numbers and in the concept of the real number system which is thought of
as a completed totality existing all at once.

‘In his foundation for analysis, Weierstrass accepted unreservedly and used re-
peatedly those forms of logical deduction in which the concept of the infinite comes
into play, as when one treats of all real numbers with a certain property or when
one argues that there exist real numbers with a certain property.

‘Hence the infinite can reappear in another guise in Weierstrass’s theory and
thus escape the precision imposed by his critique. It is, therefore, the problem of
the infinite in the sense just indicated which we need to resolve once and for all.

‘. . . The foregoing remarks are intended only to establish the fact that the defini-
tive clarification of the nature of the infinite, instead of pertaining just to the sphere
of specialized scientific interests, is needed for the dignity of the human intellect
itself.’[11]

One might think that a course of study in the foundations of mathematics
would be part of every mathematician’s education (even every thoughtful person’s,
per Hilbert), but this is not the case; indeed, the foundations of mathematics is
often regarded as something apart from mathematics proper. Upon reflection, this
is not so surprising: although mathematicians have learned that mathematics is not
defined by the objects of its attention but rather by the method of its attention, it
is a big step to make that method itself the object of one’s mathematical attention.
This takes some getting used to, and existing texts do not always make it easy for
the outsider looking in.

For example, introductory texts in mathematical logic typically attend closely
to the necessary distinction between the use of an expression (in, say, a mathemat-
ical proof one is presenting) and the mention of an expression (as, say, an element
of a mathematical proof one is talking about). (Gödel’s incompleteness theorem,
which supplies the solution to Hilbert’s second problem, depends critically on atten-
tion to this distinction.) Beyond the introductory level, however, the use-mention
distinction is typically not scrupulously observed in conventional texts; the reader
is presumed to be aware of it and able to edit the text appropriately. I decided
at the outset that this was an undue imposition on a reader who is not intent on
specializing in the field, and I have introduced some notational innovations that
relieve the reader of this interpretive task without being unduly intrusive.

A more substantive issue relates to the natural tendency to refer to an attribute
in terms of the class of objects with that attribute. Perfectly harmless, you might
say; what’s the difference? The difference is that the assertion of the existence of a
class as an object, which is itself a member of (some) classes, is a dangerous thing,
as shown by Russell’s paradox, which points out that the class of all classes that are
not members of themselves is a member of itself if and only if it is not a member
of itself. The Zermelo-Fraenkel theory ZF, in which all classes are sets, avoids
paradox by adopting rather limited axioms of class existence. The Gödel-Bernays
class theory has a more generous axiom of class existence, but some classes are not
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sets, which is to say, they are disallowed as members of classes. While inconsistency
is thereby avoided, these so-called proper classes nevertheless present difficulties in
the definition of the most basic relation in the foundations of mathematics, viz., that
of satisfaction of a formula in a structure. Such difficulties incline one to work in a
pure set theory, but the complete avoidance of proper classes is itself difficult and
artificial. Most writers therefore nominally work in a pure set theory such as ZF,
but refer to proper classes as though they exist, using various ad hoc arrangments
to deal with the satisfaction problem and generally relying on the reader to supply
correct (ZF) arguments as needed.

Again, I felt this was an undue burden on the nonspecialist, but it was not clear
initially how to alleviate it without introducing additional machinery so cumber-
some as to defeat its purpose. Fortunately, a solution lay at hand, viz., a simple
and robust definition of satisfaction for proper classes[27] which I have found so
efficacious in the presentation of this subject that I feel it merits mention in this
Preface.

Designed as it is with the nonspecialist in mind, this book has not been con-
structed as a text in the usual sense. All its roads lead to Big Ideas, without
the numerous byways that would be appropriate if its purpose were to prepare
the reader directly for research in the field. Likewise, there are very few formal
exercises. Some proofs are left to the reader, but these are typically quite straight-
forward. Proofs are otherwise given in considerable detail. Definitions are likewise
given in meticulous detail, so much so that the book may appear at a glance to be
more technically demanding than a standard text. It is not: the detail that is here
presented on the page must in any event be present in the reader’s mind.

That said, the aspiring student of the subject has never been far from my
thoughts, and I have been gratified to find that the Big Ideas approach to the
organization of the subject has actually resulted in a serviceable introductory text.
The serious student will of course consult additional sources that extend what is
found here and carry one closer to the research frontier, but this book provides a
solid foundation in mathematical logic and set theory and can be a vade mecum
for the early years of graduate study.

The interests of the tourist and the student coincide in what is perhaps the
book’s greatest strength, viz., that it is selfcontained. If we need a theorem, we
prove it; we do not refer the reader to the literature. This sometimes leads to rather
long proofs in the service of rather small Big Ideas, “medium-sized ideas” if you
will.1 Feel free to skip these. In general, there is nothing wrong with omitting
any bit of the book until one feels the need for it later. This mode of reading is
facilitated by a high density of cross-references. And by all means, if you reach a
point where you feel you have learned all you wish to know about the foundations of
mathematics then set the book aside. For example, a course of reading consisting
of Sections 1.1–5, 2.1–2, 3.1–7, 4.1–11, 7.1–4, and 8.1–10, about 300 pages, may
more than satisfy many readers.2

We conclude this Preface with an overview of the contents of the book for the
purpose of orientation. We begin Chapter 1 with an informal discussion of formal
language, then proceed to a formal definition of structure, language, satisfaction,
and entailment. By the end of Chapter 1 we are able to prove the celebrated

1As a way of providing the requisite level of detail without unduly impeding the flow of the
narrative or obscuring the big picture, we have made extensive use of notes—footnotes for shorter
and endnotes for longer insertions.

2The serious student will of course leave no crumb on the plate.
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theorem of Gödel and Tarski on the undefinability of truth.
In the second chapter we prove Gödel’s completeness theorem, which yields

the laws of logic by equating entailment with derivability. We have not at this
point assumed the axiom of Infinity, so we do not suppose the existence of infinite
sets, although we do suppose the existence of infinite classes (automatically, since
proper classes are necessarily infinite), as we must in order to state the completeness
theorem. As we continue in this investigation, we begin to glimpse the role that
Infinity may play. In Section 2.5 we illustrate some of the ideas we have developed in
a discussion of the axiomatic method in the historically important case of geometry.
We conclude by proving that the predicative theory of classes without Infinity is
essentially finitary, inasmuch as it is a conservative extension of pure set theory
without Infinity.

The third chapter develops the theory of membership both as a tool—which
we have, of course, already used in the first two chapters—and as an object of
metamathematical interest. By the end of the chapter we are able to show that
any theory that is capable of talking about itself and its models is incomplete in
the sense that there is a sentence true in its intended model that is not provable.

In the fourth chapter we define and develop the science of computation. This
allows us to formulate and answer the question as to whether logic is decidable,
i.e., is there an algorithm that decides whether a sentence is logically valid.3 We
find that there is not. We then prove Gödel’s celebrated incompleteness theorems,
which provide the solution of Hilbert’s second problem by showing that no con-
sistent theory can prove its own consistency. As a bonus, we discover that there
is a fascinating world of structure of sets of natural numbers based on relative
computability, of which we only scratch the surface.

We have noted above the concern that Hilbert expressed as to the need for
clarification of the nature of the infinite. We briefly touch on this problem in our
remarks about the complexity of individual sets of natural numbers in Chapter 4,
but in Chapter 5 we take up this program in earnest. As Hilbert noted, for founda-
tional purposes real numbers are the simplest infinitary objects, equivalent to sets
of natural numbers, and the need for clarification of infinitarity is already evident in
this context, as both questions stated in Hilbert’s first problem have to do with sets
of real numbers. Much progress was made in the early twentieth century regarding
definable sets of real numbers in the context of Lebesgue measurability and other
regularity properties of sets of real numbers, as well as structural principles such as
separation, reduction, and uniformization. We present the most important insights
from this period, and then, in the same context, we introduce the extraordinary
notion of determinacy, which has come to be regarded as a central insight into
the nature of infinitarity. We conclude with the statement of Suslin’s hypothesis
concerning the structure of the real line, which figures importantly in the sequel.

As the lingua franca of mathematics, set theory is naturally the preferred theory
to investigate the metatheory of set theory. It is now apparent that the converse
is also true: the metatheory of set theory plays a vital role in set theory itself and
is essentially inseparable from it. Chapter 6 presents some of the basic metatheory
of membership, which we use to show that the axiom of Choice is consistent with
the Zermelo-Fraenkel theory ZF, and that the negation of Choice is also consistent
with the theory ZFA, which allows urelements, or atoms, i.e., elements other than
sets. This is a nearly satisfactory answer to Hilbert’s question about wellordering,
which is equivalent to Choice, but we can do better.

3It also allows us to formalize Hilbert’s tenth problem and reveal its foundational character.
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In Chapter 7 we present the constructible universe L, which is a sort of minimum
model of ZF, of great importance in foundational studies. This was defined by Gödel
for the purpose of showing the consistency ZF with the axiom of choice and the
continuum hypothesis, inter alia, and we show how these proofs go. The notion
of constructibility is far more potent than this, but further development is largely
beyond the scope of this book, and we content ourselves with Jensen’s proof that
Suslin’s hypothesis fails in L and Friedman’s proof that the Power axiom is needed
to prove the determinacy of Borel sets.

In Chapter 8 we introduce another seminal concept in set theory, that of gener-
icity. This completes the solution of Hilbert’s first problem by showing that the
negations of the axiom of choice and continuum hypothesis are consistent with ZF,
but it does much much more than this—indeed, it is an expansion of our under-
standing of the concept of set that is genuinely revolutionary. We spend a bit more
time and space on this topic than is perhaps strictly necessary to fulfill the mandate
of this book, but it is well worth it. For example, we are able to present Solovay’s
construction of a model of ZF in which all sets of real numbers are Lebesgue mea-
surable, an issue left over from Chapter 5.

In Chapter 9 we explore the possibility of extending ZF in such a way as to
answer some of the questions it does not settle, which, as we have by now seen, are
legion. There are two major currents. Historically, the first to be investigated was
the general category of large cardinal hypotheses, by which we mean both large
cardinals per se and also properties of “small cardinals” with “large cardinal” con-
sequences. Not surprisingly, “small” and “large” jump around in meaning as we
apply constructibility and genericity methods. The other major current is deter-
minacy, which we encountered in Chapter 5, and which here comes into its own.
The big news is that these concepts, which at first glance appear to have nothing
in common except that they answer a lot of questions, are very closely related.
Although a detailed explication is beyond the scope of this book, we are able to
develop enough of each theory individually and of the implications of each for the
other to give a sense of how they are aspects of a single vision of reality.

Bon appétit!
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In the beginning was the Word, . . .

The Gospel according to John 1:1

1.1 Introduction

In the beginning was λόγος, says John, by which he meant not just word in the
English sense, but also logic or reason. John goes on to say, ‘. . . and the Word
was with God, and the Word was God. The same was in the beginning with
God. All things were made by it; and without it was not anything made that was
made’, expressing the concept of λόγος as the fundamental order of the universe
and means of its creation, a concept expressed in the teachings of Heraclitus six
hundred years earlier and elaborated in Sophist philosophy and Hebrew wisdom
literature. The notion that word is primary, even to the extent of being the source
of physical existence, may initially strike you as curious. We need not go along with
John on that point, which is probably best regarded as belonging to the domain of
metaphysics, rather than physics; however, do not be surprised if by the time you
finish this series of books you find the idea quite plausible. For the time being, let’s
just accept that since our understanding of the world exceeds that of the nonverbal
animals largely as a result of our command of language; and since the purpose
of this book is to communicate by means of language some of the fundamental
principles of that understanding; then an examination of language itself properly
belongs at the beginning.

Of the several uses of language the one that concerns us here is that of repre-
sentation. A representation in this sense is a linguistic structure that mirrors some
other structure of interest. In the early evolution of language the latter structures
were aspects of the physical world, and language could be viewed in that context
as an abstract structure mirroring a concrete structure, but the distinction between
the abstract and the concrete in this context is of limited utility. On the one hand,
language is a concrete structure if its irreducible units, or individuals, are taken
to be individual physical utterances or, more recently, writings.1 On the other
hand, the great utility of language in the present day derives in no small measure
from its ability to represent structure in the abstract, independent of any specific
embodiment, concrete or otherwise.

(1.1) Structure in a general sense is therefore intrinsic to the representational
function of language.

1The (physical) context of an individual utterance contributes to its meaning, so we must
properly regard distinct individual utterances as distinct expressions. Morphologic equivalence
must be one of the relations of the structure of language in this sense. That said, we ordinarily
take the units of language to be the abstract types of which individual utterances are instances—
to be morphologic equivalence classes, if you will. This works well enough for natural languages,
and it works perfectly well for the formal languages that are our only concern in this book, in
which the context is the same for all instances of a given expression (in a given interpretation).
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The founders of philosophy in the Hellenistic world realized the importance of
language. It was their great achievement to have invented a process by which such
things as beauty or human behavior or physical reality could be analyzed and talked
about. Most significantly for our present purpose, they invented—perhaps we should
say ‘discovered’—logic. As noted above, the word ‘logic’ derives from the Greek
word ‘λόγος’, which also means ‘word’. Logic, in other words, is an intrinsic part
of the way one talks about things; it is the methodology of manipulating linguistic
representations so as to illuminate the structures they represent.2

This chapter is devoted to a careful analysis of formal language and structure.
In the next chapter we will see how logic arises from this analysis. The remainder
of the present introductory section is devoted to (relatively) informal remarks that
provide a context for these investigations and introduce some of the conventions we
will use.

1.1.1 Formal language

Despite the lofty tenor of its title, this chapter has a reasonably circumscribed goal.
We will not attempt to deal with natural language as it is commonly spoken and
written, which would be a much greater task than that which we have actually
undertaken. Instead, we will present and examine a category of relatively simple
languages—the first-order predicate languages—which differ from natural languages
in that they are entirely formal.

Like natural languages, formal languages consist of expressions, which are re-
lated to one another in a structure that constitutes the grammar or syntax of the
language. In general there exists a collection of simple or primitive expressions
from which complex expressions may be assembled according to a list of rules. The
meaning of a complex expression is determined by its structure from the meaning
of its primitive constituents according to rules that constitute the semantics of the
language. The meaning of the primitive expressions is more or less arbitrary.

Formal languages differ from natural languages in several ways. Firstly, their
syntax and semantics are exact. Any expression formed according to the rules is
meaningful, and its meaning is unambiguously determined by its form (i.e., struc-
ture) and the meanings of its primitive constituents. This is the origin of the des-
ignation ‘formal’. Secondly, the meanings of the primitive expressions of a formal
language really are completely arbitrary, unlike those of a natural language, which
usually carry a lot of historical baggage (etymology)—neologisms, like ‘quark’, be-
ing exceptional. Thirdly, formal language expressions are used only to convey
or—in the case of computer programming languages, for example—to manipulate
information, unlike natural language expressions, which may be used to inquire,
exhort, reprimand, soothe, etc. Lastly, formal languages have a much narrower
range of expressivity than natural languages, even when the latter are confined to
the transmission of information.

1.1.2 Formal logic

Logic is the methodology by which we draw conclusions from premises—conclusions
and premises being linguistic expressions. A formal logic is such a methodology in
the context of formal languages. In a formal logic, the relation of conclusion to
premise is based entirely on the structure (i.e., form) of those expressions.

2The etymology may not be sound, but the etymythology is.
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The purpose of this chapter and the next is to present a concept of language
and logic that is rich enough to include mathematical and scientific discourse, and
formal enough to be itself amenable to mathematical analysis. Among the most sat-
isfying intellectual achievements of the last century are the surprising and beautiful
conclusions to which this analysis has led.

Clearly, formal languages and logics are not suitable for many of the uses of
natural languages. The domain of inquiry in which they have been found most
useful is mathematics.

(1.2) Indeed, a reasonable modern definition of ‘mathematics’ is ‘all discussions
carried out in a formal language using formal logic’.

1.1.3 Metalanguage and metatheory

We may, if we wish, consider linguistic expressions to be a specified class of abstract
entities, e.g., strings of symbols, but it is not necessary or desirable to do so. To
discuss language in general we need not say what a word is, or what a sentence
is; we need only say how words and sentences and the like relate to one another.
Nevertheless, this discussion has to be carried out within a language, because lan-
guage is the only tool we have to deal with abstractions—or at least the only tool
sufficiently adaptable to serve our present purpose.

In a discussion of this sort, i.e., when the objects under study are themselves
linguistic, the language employed for the discussion is called the metalanguage, and
the languages under study are called object languages. The use here of the prefix
‘meta’ parallels to a certain extent its use in the term ‘metaphysics’.3 We note that
the metalanguage might itself be an object language, i.e., it might talk about itself,
just as you can talk about yourself.

A theory is a collection of premises, along with the conclusions that follow
logically from them. The main impetus for the study of formal language and logic
is the desire to understand the properties of theories. This study must itself be
carried out in the framework of a theory that reflects our understanding of the
objects of study, viz., structures, languages, logics, theories and related entities.

3The articles on metaphysics and meta- in the Oxford English Dictionary (OED) are must
reading. This from the second edition: “[Metaphysics is t]hat branch of speculative inquiry which
treats of the first principles of things, including such concepts as being, substance, essence, time,
space, cause, identity, etc.; theoretical philosophy as the ultimate science of Being and Knowing.
[The word derives from the Greek phrase] τὰ μετὰ τὰ ϕυσικά, meaning ‘the (works) after the
Physics’. . . , the title applied, at least from the 1st century A.D., to the thirteen books of Aristotle
dealing with questions of ‘first philosophy’ or ontology.

“This title doubtless originally referred (as some of the early commentators state) to the position
which the books so designated occupied in the received arrangement of Aristotle’s writings (τὰ
ϕυσικά being used to signify, not the particular treatise so called, but the whole collection of
treatises relating to matters of natural science). It was, however, from an early period used as
a name for the branch of study treated in these books, and hence came to be misinterpreted as
meaning ‘the science of things transcending what is physical or natural’. This misinterpretation
is found, though rarely, in Greek writers, notwithstanding the fact that μετὰ does not admit of
any such sense as ‘beyond’ or ‘transcending’. In scholastic Latin writers the error was general
(being helped, perhaps, by the known equivalence of the prefixes meta- and trans- in various
compounds); and in English its influence is seen in the custom, frequent down to the 17th c., of
explaining metaphysical by words like ‘supernatural’, ‘transnatural’, etc.”

As for meta-, again according to the second edition of the OED : “The supposed analogy of
metaphysics (misapprehended as ‘the science of that which transcends the physical’) has been
followed in the practice of prefixing meta- to the name of a science (actual or hypothetical) of the
same nature but dealing with ulterior and more fundamental problems.”
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Such a theory is referred to as a metatheory to distinguish it from (or among) the
object theories of interest.

For the present we will take for our metalanguage the language you see repre-
sented before you: the language in which this book is written. This language is not
entirely formal, and it will not be an object of our formal consideration. It would
be premature at this time to attempt to define a formal metalanguage adequate
to the task at hand, not least because we have not yet properly defined ‘formal
language’.

Similarly, we will not at this time define the metatheory within which this
discussion takes place. Rest assured, however, that we will attend to both of these
tasks in due course, as we must if we are to reap the full rewards of our labor.

1.1.4 Identity, equivalence, and definition

We use ‘=’ to mean ‘is’ in the sense of ‘is the same thing as’ or, equivalently, ‘is
identical to’.

For example, ‘1` 2 “ 3’ means that 1` 2 is 3, i.e., it asserts that the thing named
by the expression ‘1 ` 2’ is the thing named by the expression ‘3’. We apply this
to things of any sort, not just to numbers or other “mathematical entities”. Thus
we may write ‘the third planet from the sun = the planet on which we live’. Note
that ‘is’ is also used in other ways, as in this sentence, i.e., the sentence you are
now reading.

We use ‘Ø ’, ‘ ðñ ’, and ‘iff’ to mean ‘if and only if ’.

For example, ‘x3 “ 8Øx “ 2’ means that x3 “ 8 if and only if x “ 2. One may say
that—in the given context, which in this case might be that of real numbers—the
statements ‘x3 “ 8’ and ‘x “ 2’ are equivalent statements about an unspecified real
number represented by ‘x’.

We use ‘ def
“ ’ and ‘

def
ðñ ’ to indicate that the expression on the left is being defined

by the expression on the right.

‘ def
“ ’ is used to define an expression that names something and may be read ‘is, by

definition,’ or ‘is defined to be’. For example,

3
?
x

def
“ that y such that y3 “ x.

‘
def
ðñ ’ is used to define an expression that asserts something and may be read ‘if

and only if, by definition,’ or ‘is defined to mean that’. For example,

(1.3) n is prime
def
ðñ n has no divisors other than 1 and n.

‘ def
“ ’ and ‘

def
ðñ ’ are notational conveniences, and not every definition we make will

contain one of these symbols.
Note that we often use a distinctive font, as for ‘prime’ in (1.3), to indicate the

portion of the expression on the left that is being defined, although in principle that
should be clear from the context, since any expression must be defined exactly once,
and its first occurrence must be in its definition. Clearly, though, in a discussion as
primordial as this one, one cannot adhere strictly to this rule. Indeed, we diverge
extremely from strict adherence: only a tiny proportion of the expressions we use
in this discussion do we define. The rest are supposed to be generally understood.
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1.1.5 Typographical languages

Like most languages meant to be read by people, our global metalanguage—the lan-
guage in which this book is written—is a typographical language, by which we mean,
literally,4 a language that may be set in type. The expressions of a typographical
language are therefore arrangements of typographical characters.

We permit considerable latitude in the choice of characters of a language, but
ease of understanding dictates that we adhere to certain conventions that we will
specify in due course and which we will refer to as standard. The correspond-
ing languages are standard typographical languages. Our global metalanguage—the
language in which this book is written—has as its core a standard typographical
language, one which is however considerably augmented—both to increase readabil-
ity and to allow us greater freedom of expression than a strictly formal language
permits.

1.1.5.1 Concatenation

In the narrowest sense, a typographical language is one whose expressions are finite
strings of typographical characters.

Definition The fundamental operation on strings is concatenation, denoted by ‘⌢’,
that joins strings end to end. Thus, for example, if ϕ “ ‘abc’ and ψ “ ‘de’, then

ϕ ⌢ ψ “ ‘abc’ ⌢ ‘de’ “ ‘abcde’.

Note that concatenation is associative, i.e., pα ⌢ βq ⌢ γ “ α ⌢pβ ⌢ γq, so expressions
like ‘α ⌢ β ⌢ γ’ are unambiguous.5 When the meaning is clear, we may omit ‘⌢’ and
form a name for the concatenation of two strings by simply concatenating names
of the strings.

Formal language is frequently defined in terms of character strings, but this
is unnecessarily restrictive and tends to obscure the essential nature of language.
Nevertheless, most familiar languages are largely linear in this sense, and we will use
the example of linear typographical languages heavily in the following discussion.

It is perhaps unnecessary to say so, but for the purpose of this discussion we
regard a character as an abstract form, distinct from its physical representations
as—for example—patterns of ink on paper or illuminated pixels on a screen. Thus
the single character ‘e’ occurs many times in this book. Slight variations in the
appearance of a physical representation of a character do not alter the identity
of the character. We in fact tolerate considerable variation in appearance when
we write by hand (more, usually, than our penmanship teachers allow). Certain
variations in appearance, however, do indicate distinct abstract characters. For
example, we might use ‘e’, ‘e’, and ‘e’ as three distinct characters. All of this is
familiar from ordinary mathematical writing.

1.1.5.2 Names for typographical expressions

(1.4) As we have done routinely in the discussion thus far, we use single quotes to
create a typographical name for a typographical expression.

The following sentences illustrate this convention. They are all true.
4Literally literally, actually.
5We hold this truth to be self-evident.
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(1.5)

1. Zero is the least natural number.

2. ‘zero’ is a four-letter word that denotes zero.

3. 0 is the least natural number.

4. ‘0’ is a numeral that denotes the number 0.

5. 0 is zero.

6. ‘0’ is not ‘zero’.

7. ‘0’ denotes zero.

8. ‘ ‘zero’ ’ is an expression—specifically, a four-letter word contained between
single quotes—that denotes the four-letter word ‘zero’.

9. ‘0 is zero’ is true, but ‘ ‘0’ is ‘zero’ ’ is false.

Note that the last two sentences involve repeated single quotes, not double quotes.

(1.6) We will use double quotes informally as an equivalent of the interjection ‘so
to speak’ or ‘as it is said’, often to mark an expression that is not quite right or
merits scrutiny.

The use of quotation marks to create names for typographical expressions has
limited utility. Consider, for example,

(1.7) ‘a’ and ‘b’.

If we regard the first two quotation marks as forming a pair and the last two as
forming another pair, then this phrase refers to two strings, each consisting of one
letter. If, however, we regard the first and last quotation marks as forming a pair,
then this is a name for a single string consisting of five letters, two spaces and two
quotation marks.

(1.8) To avoid this sort of ambiguity we may use the convention of drawing a line
under a typographical expression to create a name for it.

This convention has the additional virtue of being relatively unobtrusive. With this
convention (1.5) may be written

(1.9)

1. Zero is the least natural number.

2. zero is a four-letter word that denotes zero.

3. 0 is the least natural number.

4. 0 is a numeral that denotes the number 0.

5. 0 is zero.

6. 0 is not zero.

7. 0 denotes zero.

8. zero is an expression—specifically, an underlined four-letter word—that de-
notes the four-letter word zero.

9. 0 is zero is true, but 0 is zero is false.
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We should also point out that we employ other means of naming a typographical
expression. We may put it in a distinctive font, as in the clause ‘we call this
operation conjunction’, where we use an italic font to create a name for the word
‘conjunction’; or we may display it in the manner of equations, as we have in (1.7)
and (1.9). We rely somewhat on the reader’s interpretive participation and good
will in thus allowing us to avoid excessively cumbersome notation. For example, we
have presumed that you understood that in (1.7) the period (full stop) is not part
of the displayed expression but rather part of the sentence in which the displayed
expression is the direct object.

Another way to make a name for an expression is by definition. For exam-
ple, we may say ‘let ϕ “ roses are red’. We may also use symbols as variables
over expressions. We might, for example, say ‘let ϕ be an arbitrary declarative
expression’.

By way of illustration, suppose ϕ “ roses are red and ψ “ violets are blue.
Then

ϕ andψ “ ϕ ⌢ and ⌢ ψ “ roses are red ⌢ and ⌢ violets are blue
“ roses are red and violets are blue.6

(1.10)

The Knight’s Song An illustration of the distinction between a thing and its
name (and the name of its name) is the following exchange between Alice and
the White Knight in Through the Looking Glass, by Samuel Dodgson, aka Lewis
Carroll (two names for the same thing).

“It’s long [his song],” said the Knight, “but it’s very, very beautiful.
Everybody that hears me sing it—either it brings the tears into their
eyes, or else—”

“Or else what?” said Alice, for the Knight had made a sudden pause.
“Or else it doesn’t, you know.7 The name of the song is called

‘Haddocks’ Eyes.’ ”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel

interested.
“No, you don’t understand,” the Knight said, looking a little vexed.

“That’s what the name is called. The name really is ‘The Aged Aged
Man.’ ”

6Two points:
1) It would be improper to write ϕ and ψ (equivalently, ‘ϕ andψ’) where we have written ϕ andψ

(equivalently, ‘ϕ andψ’) in (1.10). To put it another way: The expression ϕ andψ does not denote
the expression ϕ andψ. ϕ and ψ are (by definition) declarative expressions. ϕ and ψ are nom-
inative expressions (each consisting of one symbol, a Greek letter) that denote these declarative
expressions. (‘ϕ’ and ‘ψ’ are in their turn nominative expressions denoting ϕ and ψ, respectively.)
Thus ϕ andψ is a nominative expression homologous to Mary and John or roses and violets, and
refers to a pair of Greek letters. Note that in the expressions named in the preceding sentence, in
contrast to (1.10), ‘and’ does not serve as a logical connective, but rather as an operation symbol
that forms a name for a pair of things from names for those things. The former is the ‘and’ in ‘I
am cold and I am hungry’; the latter is the ‘and’ in ‘cold and hunger’. These two uses of ‘and’
should not be confused.
2) We are aware that we have inserted spaces between ϕ, and, and ψ instead of just concatenating
them. Only the pathologically punctilious would cavil at this concession to convenience.

7This is an illustration of the law of the excluded middle—in other words, the tautology (ϕ or

␣␣␣ϕ), with ‘␣␣␣’ indicating negation. This is rejected by the school of intuitionism, which insists
that either ϕ or ␣␣␣ϕ must be known to be true before (ϕ or ␣␣␣ϕ) may be concluded. In this book
we present only the standard, or classical, logic.
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“Then I ought to have said ‘That’s what the song is called’?” Alice
corrected herself.

“No, you oughtn’t: That’s quite another thing! The song is called
‘Ways And Means’: but that’s only what it’s called, you know!”

“Well, what is the song, then?” said Alice, who was by this time
completely bewildered.

“I was coming to that,” the Knight said. “The song really is ‘A-
sitting On A Gate’: and the tune’s my own invention.”

Apparently the name of the song is ‘The Aged Aged Man’. ‘Haddocks’ Eyes’ is
a name for this name. ‘Ways and Means’ is another name for the song (perhaps
erroneous, as the Knight emphasizes that this is only what the song is called). As
written, the Knight’s last statement can only be interpreted to mean that the entire
content of the song is the phrase ‘A-sitting On A Gate’, as in “The first verse of the
Gospel according to John really is ‘In the beginning was the Word.’ ”. Did Lewis
Carroll make a mistake? It would make sense to omit the single quotes and write,
“The song really is A-sitting On A Gate: and the tune’s my own invention.” This
would be a grammatical construction parallel to “My mother really is Lucile”, and
would imply that ‘A-sitting On A Gate’ is yet a third name for the song. I suspect
that Carroll did not make a mistake, and that he really did mean the Knight to
say that the song consisted of the single phrase ‘A-sitting On A Gate’. That this
statement is contradicted by the Knight’s subsequent rendition of the song—which
is a droll ballad including that phrase, but containing also a great deal more—can
hardly be taken as a refutation of this position, given the tenor of Carroll’s Alice
books.

1.1.6 The elements of language

1.1.6.1 Nominative and declarative expressions

The purpose of the formal languages we discuss here is to make statements about
things. In ordinary grammatical terms, things are indicated by nominative ex-
pressions (so called because they name things). These are inserted into incom-
plete declarative expressions to make complete declarative expressions. For ex-
ample, Mary and John are nominative expressions, and ¨ loves ¨ is an incomplete
declarative expression with two “slots”—each indicated by ¨—into which nomina-
tive expressions may be inserted. From these elements we can form four sentences:
Mary loves John, John loves Mary, Mary loves Mary, and John loves John.

Mary and John are complete nominative expressions. We may have incom-
plete nominative expressions as well. For example, the expression the mother of ¨
is an incomplete nominative expression, which may be completed to a nominative
expression by inserting any nominative expression in the indicated slot. (We’ll
ignore for the moment the fact that such an expression may not actually name
anything—e.g., the mother of Tokyo or the mother of Eve.) Incomplete nomina-
tive expressions may have any finite number of slots—e.g., the eldest child of ¨ and ¨
or the sum of ¨, ¨, and ¨. Likewise, incomplete declarative expressions may have any
finite number of slots—e.g., ¨ gave ¨ to ¨.

1.1.6.2 Variables

The expression Mary loves Mary illustrates a defect in the rudimentary notion of
incomplete expression just described. As presented above, this expression is on
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a par with Mary loves John, both being derived from ¨ loves ¨ by the insertion of
nominative expressions in its two slots. But it is desirable that we distinguish
these two sorts of substitution; indeed, in a treatise on narcissism, for example,
we might quite naturally wish to define an incomplete expression with just one
slot, into which Mary could be inserted to generate Mary loves Mary. Natural
languages have devices to accomplish this in simple cases. For example, we might
use ¨ loves herself as a template. Inserting Mary gives Mary loves herself, which
means the same as Mary loves Mary. But such ad hoc devices cannot handle the
elaborate substitution patterns that arise in even simple mathematics.

The inadequacy of our notation stems from the use of ‘¨’ as a generic label for
the slots of an incomplete expression, and a solution is to allow multiple labels. For
example, suppose we have labels ‘x’ and ‘y’ at our disposal. Then we can form two
essentially different types of “incomplete expression” from ‘¨ loves ¨’. One type is
represented by ‘x loves y’, the other by ‘x loves x’. ‘x’ and ‘y’ are placeholders, like
‘¨’, and have no fixed meaning; we call them variables.

Expressions containing variables may be used as templates in much the same
way as expressions containing ‘¨’, with the following proviso: if we substitute a
nominative expression for some occurrence of a variable in an expression, we must
substitute the same expression for all occurrences of that variable in that expression.
For example, from ‘x loves x’ we may obtain ‘Mary loves Mary’ and ‘John loves
John’, but not ‘Mary loves John’. Note that there is no rule against substituting
the same expression for different variables. From ‘x loves y’, for example, we may
obtain ‘Mary loves Mary’ as well as ‘Mary loves John’.

Note that—as templates—‘x loves x’ is equivalent to ‘y loves y’, ‘z loves z’, etc.;
and ‘x loves y’ is equivalent to ‘x loves z’, ‘y loves x’, etc.

1.1.6.3 Terms

In the interest of terminological brevity we refer to complete nominative expressions
as terms, and we include variables and nominative expressions containing variables
under this rubric. Examples of terms are ‘x’ (assuming we have declared ‘x’ to be a
variable), ‘Mary’, ‘the mother of x’, ‘the mother of John’, etc. Note that whenever
we have a term that contains a variable we may substitute a term for the variable to
obtain another term, as we have substituted ‘John’ for ‘x’ in the term ‘the mother
of x’ above. We may also form ‘the mother of the mother of x’, etc. Terms derived
in this way are called complex or compound. All other terms are called simple or
primitive.

A simple term is either a variable or the result of inserting variables into the
slots of an incomplete nominative expression that is not the result of combining
other expressions of the language. In a typographical language these basic expres-
sions are often indicated by unique symbols. For example, in a language suitable
for arithmetic, we might have symbols ‘0’ for zero, ‘S’ for the successor operation,
‘+’ for addition, and ‘ˆ’ for multiplication. We call these operation symbols (or,
interchangeably, function symbols). In the general case of languages that are not
necessarily typographical, we have operation or function indices that play a similar
role. In the typographical case an operation symbol may also serve as an oper-
ation index, and operation indices are often referred to generically as symbols in
discussions of formal language. We will, however, generally preserve the distinction
between indices and the symbols that may represent them, at least until we have
gotten through these introductory chapters. In this connection it should be noted
that familiar typographical languages often do not have a symbol for each basic
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operation; for example, in a language for arithmetic, we may represent multiplica-
tion by juxtaposition, as in ‘(1 + 1)(3 + 4) = 14’. A proper treatment of such a
language requires that we have an index for multiplication even if we do not have
a symbol for it.

The operation indices of a language correspond to the primitive incomplete
nominative expressions we have spoken of previously. Each index has an arity,
which is the number of its “slots”. The arity is a natural number. An operation
symbol of arity, say, n, along with an n-sequence of terms, determines a new term by
the process of specification, which is the insertion of the terms into the slots, in our
previous terminology. We call the specified terms the arguments of the resulting
expression. Note that this is slightly different from the process of substitution,
which is the replacement of a variable by a term.

Operation indices of arity 0 are an important special case. They do not take
any arguments and are called constants. In the above example of arithmetic ‘0’ is
a constant.

Substitution in terms As discussed above, the essential purpose of a variable
is to indicate a place where a term may be substituted in an expression, with the
understanding that any substitution of a term τ 1 for a variable v in a term τ must
substitute τ 1 for all occurrences of v in τ . (The situation is slightly different for
formulas, as we will see presently.)

(1.11) Definition Suppose v is a variable and τ and τ 1 are terms. Then

τ
`

v
τ

1

˘ def
“ the result of substituting τ 1 for every occurrence of v in τ .

1.1.6.4 Formulas

We refer to complete declarative expressions as formulas. Like terms, formulas may
be simple or complex, but the processes by which complex formulas are generated
differ from those for terms, and we use a slightly different terminology. We call
the simplest formulas atomic. These result from the insertion of terms into the
slots of an incomplete declarative expression that is not analyzable as a compound
of simpler expressions. These are similar in several ways to primitive nominative
expressions. In a typographical language a basic declarative expression, like a basic
nominative expression, is often indicated by symbol. For example, referring again
to arithmetic, the symbols ‘=’ and ‘ă’ are often used to indicate the basic relations
of identity and order. In general, each primitive declarative expression is associated
with a unique predicate index or, interchangeably, relation index. Like operation
indices, each predicate index has an arity. The process of specification for predicate
indices creates an atomic formula from an index of arity n and an n-sequence of
terms. ‘px ` yq ă px ` Spyqq’ is an example of an atomic formula, in which the
terms ‘px` yq’ and ‘px` Spyqq’ have been inserted into ‘¨ ă ¨’.

We defer for the moment the definition of substitution of terms for variables in
formulas.
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1.1.7 Syntax and semantics

The meaning of an expression depends on its intrinsic structure and on the inter-
pretation of its primitive constituents,8 and the great power of language resides
in its recognition of the separate roles of grammatical structure and interpretation
in the generation of meaning. Syntax is synonymous with grammar and refers
to the structure of a language and its expressions; semantics refers to the way
that syntax assigns meaning to expressions given an interpretation. We will not
delve too deeply here into the meaning of ‘meaning’; we are concerned chiefly with
the perhaps narrower—at any rate, precisely defined—concept of the value of an
expression under an interpretation.

The value of a term is a thing, ‘thing’ being understood in the most general
sense to include both concrete and abstract entities. A formula, on the other
hand, becomes either true or false under an interpretation, and we may say that its
value is either trueness or falseness—or true or false, construing these adjectives as
representing the qualities that they predicate. We often refer to this sort of value
as truth value.

1.1.7.1 Propositional connectives

Formulas may be combined by means of propositional connectives. For example,
from the expressions ‘roses are red’ and ‘violets are blue’ we may form the expres-
sions ‘roses are red and violets are blue’, ‘roses are red or violets are blue’, ‘roses
are red if violets are blue’, etc. In these expressions, ‘and’, ‘or’, and ‘if’ are proposi-
tional connectives. Semantically, the essential feature of propositional connectives
is that the truth value of formulas formed with them depends in a defined way on
the truth values of the constituents.

It is common in mathematical writing to represent propositional connectives by
individual symbols rather than by the words we use for this purpose in ordinary
discourse. For example, we frequently use ‘^’ for ‘and’. Thus, we might write
‘x ă y ^ y ă z’ for ‘x ă y and y ă z’. We likewise introduce symbols for several
other propositional connectives: for any formulas ϕ and ψ

␣ϕ means not ϕ;
ϕ^ψ means ϕ and ψ;
ϕ_ψ means ϕ or ψ;
ϕÑψ means ϕ only if ψ, i.e., ϕ implies ψ, or if ϕ then ψ; and

ϕØψ means ϕ if and only if ψ.

1.1.7.2 Quantification

Consider the expression ‘roses are red’, which we have used above as a example of
a formula. This may be analyzed as ‘all roses are red’, or, equivalently, ‘everything
that is a rose is red’, or, equivalently, ‘for every thing, if that thing is a rose then
that thing is red’. In the same vein, consider the expression

8The primitive constituents of a language are its operation, predicate, and domain9 indices,
and its variables.10

9 We will define ‘domain’ and ‘domain index’ presently; at this time we are concerned chiefly
with introducing the notion of value.

10We will make a special case of the interpretation of a variable, calling it by the name ‘assign-
ment’, and restricting the formal application of ‘interpretation’ to the indices of a language.
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(1.12) every cloud has a silver lining.

This may be analyzed as

(1.13) for every thing, if that thing is a cloud then there is a thing such that that
thing is a silver lining and the first thing has the second thing.

The phrases ‘for every thing’ and ‘there exists a thing’ are called quantifier phrases
because they make quantitative assertions about the collection of things satisfying
the formulas they introduce.11 The phrase ‘for every thing’ is called universal and
the phrase ‘there exists a thing’ is called existential.

(1.13) illustrates the difficulty that arises when one has more than one quantifier
phrase in a given expression: one must keep track of the “things” quantified and
how they relate to one another. We have used ‘that thing’, ‘the first thing’, and
‘the second thing’ above, but clearly a more systematic approach is wanted, and
variables, as introduced above, are ideally suited to the task. (1.13), for example,
may be written:

for all x, if x is a cloud then there exists y such that y is a silver lining and x has
y.

In typographical languages we often use the characters ‘@’ (an inverted ‘A’ for all)
for the phrase ‘for all’ (which has the same meaning as ‘for every’), and ‘D’ (an
inverted ‘E’ for exists) for ‘there exists’. Using these symbols and the propositional
connective symbols introduced above, we may write

(1.14) @x
´

px is a cloudq Ñ Dy
`

py is a silver liningq ^ px has yq
˘

¯

.

‘@x’ and ‘Dy’ are examples of quantifier phrases.

1.1.8 Variables in formulas

1.1.8.1 Occurrences, free and bound

The raison d’être of variables is their use repetitively.§ 1.1.6.2 Our definition1.11 of
substitution of a term τ0 for a variable v in a term τ1 applies to terms τ1 with any
number of occurrences of v. The notion of substitution of a term for a variable in
a formula is a little more involved.

Let us review the way formulas are constructed. Along the way we will define
the notions of occurrence of a variable and of a quantifier phrase in an expression,
and free and bound occurrences of variables.

We begin with atomic formulas, which are created by specification of a predicate
index P and are of the form P̃ xτ0, . . . , τn´1y, where n is the arity of P , and P̃
is the operation that takes an n-sequence xτ0, . . . , τn´1y to the formula that results
from the specification of P to xτ0, . . . , τn´1y.

11These “quantitative assertions” are admittedly of a rather qualitative nature (which does
not contradict their being quantitative: the difference in meaning between ‘quantitative’ and
‘qualitative’ is quantitative, not qualitative—or, to put it more accurately, if less epigrammatically,
they indicate opposite directions along a continuum, not distinct states). They don’t tell exactly
how many things satisfy the associated formula. We can design more specific quantifier phrases—
for example, ‘there exists exactly one thing’ and ‘there exist infinitely many things’—but we will
not incorporate these into our basic concept of a formal language.
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In the case of a typographical language or any other linear language, in which ex-
pressions are finite sequences of symbols, we may define an occurrence of a variable
v in an atomic formula α to be an ordered pair pm, vq, where v occurs in the mth
place in α. In the case of an atomic formula we define all the occurrences of vari-
ables to be free, no occurrences are bound, and of course there are no quantifier
phrases.

We define occurrence of a quantifier phrase in an arbitrary formula in the same
way we have defined occurrence of variables for atomic formulas: it is simply the
quantifier phrase together with an indicator of its position within the formula. The
notions of free and bound do not apply to quantifier phrases.

We now extend these definitions to all formulas by recursion on the complexity
of formulas.12 Atomic formulas all have minimal complexity—i.e., no formula is
less complex than an atomic formula. Suppose ϕ is a complex formula. Then it is
composed from simpler—i.e., less complex—formulas by the formation of a basic
propositional connection (negation, conjunction, disjunction, etc.) or by quantifi-
cation on a variable. Exactly one of these possibilities is realized.

If ϕ is formed by propositional connection then the occurrences of a variable
v in ϕ are in one-one correspondence with the occurrences of v in the constituent
formulas in the obvious way. The free (respectively, bound) occurrences of v in
ϕ are those that correspond to free (respectively, bound) occurrences of v in the
constituent formulas.

Suppose now that ϕ is of the form @v ψ or Dv ψ. We define the occurrences of
v in ϕ to be those that correspond to occurrences of v in ψ. Variables in quantifier
phrases do not occur there according to this definition—rather, it is the entire
quantifier phrase that occurs. We define all free occurrences of v in ψ to be bound by
the indicated quantifier phrase occurrence, and to be bound in ϕ. Any occurrence of
v already bound in ψ remains bound in ϕ by the same quantifier phrase occurrence
as binds it in ψ. Occurrences of all variables in ψ other than v are bound in ϕ iff
they are bound in ψ.

All formulas are obtained from atomic formulas by a succession of operations of
this sort, and the above description uniquely defines occurrence, free, and bound.

1.1.8.2 Substitution in formulas

(1.15) Definition Suppose v is a variable, τ is a term, and ϕ is a formula. Then

ϕ
`

v
τ

˘ def
“ the result of substituting τ for every free occurrence of v in ϕ.

A formula ϕ may be thought of as making a statement about the objects denoted
by its free variables. We would like ϕ

`

v
τ

˘

to make the same statement about the
object denoted by the term τ as it makes about the object denoted by v. This is
guaranteed by the requirement that no variable in τ is bound in ϕ

`

v
τ

˘

:

(1.16) Definition [C0] A term τ is free to be substituted for a variable v in a

formula ϕ
def
ðñ no variable occurrence in τ is bound in ϕ

`

v
τ

˘

. We also say briefly
that τ is free for v in this event.

12We will not define ‘complexity’ here, as its meaning may be inferred from its use in the
definition that follows, and our presentation of language thus far is not so formal as to benefit
significantly from a definition of ‘complexity’ at this point. We assume that you have derived from
the preceding discussion a mental image of linguistic expressions, and the following definition is
based on that image. A formal definition will follow.
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For example, let ϕ “ @y pxˆ y “ xq. In the standard interpretation in terms of
real numbers, ϕ is equivalent to x “ 0. Let τ “ y ` z. To say τ has the prop-
erty that ϕ asserts for x, we cannot substitute τ for x in ϕ, because this yields
@y ppy ` zq ˆ y “ py ` zqq, in which the occurrence of y in τ is inappropriately
bound, and which is not a statement about y ` z, but rather about z (and is
not true of any real number). The problem is that τ is not free for x in ϕ.

1.1.8.3 Change of variables

Note that when a term is substituted for a variable v in a formula,1.15 it is substituted
only for the free occurrences of v. Substitution of a term for a bound occurrence of
v is generally not a useful transformation. If the term is itself a variable, however,
say v1, and we substitute v1 for all occurrences of v bound by the same quantifier
phrase, and we substitute v1 for v in the quantifier phrase itself, then as long as
none of the introduced occurrences of v1 are bound by a pre-existing quantifier
phrase, the resulting formula is structurally identical to the original. This is called
a change of variables. This sort of transformation is often used in preparation for
a substitution that would otherwise lead to unwanted binding of variables.

In the preceding example, we could effect a change of variables to replace ϕ by
the equivalent ϕ1 “ @w pxˆ w “ xq. τ is free for x in ϕ1, and if we substitute τ for
x in ϕ1, we obtain @w ppy ` zq ˆ w “ py ` zqq, which does say that y ` z “ 0.

1.1.9 Identity

Identity is a binary relation that holds for two things iff they are the same thing.
Note that by this we do not mean that they are the same type of thing, as in
‘Everywhere I look I find the same thing: a pile of dust!’, but rather that they
are the same individual thing, that “they” are in fact “it”, one thing, as in ‘I am
I.’.13 By universal convention, ‘=’ is used in typographical languages to denote the
identity relation. Unlike other primitive symbols, it is not open to interpretation:
it always denotes the identity relation. A language need not have such a dedicated
notation and is said to be with or without identity according as it does or does not.

Since ‘=’ is a typographical character, the foregoing convention applies only to
typographical languages. It is convenient to have a similar convention for languages
in general. In the general case, predicates are represented by indices, which may
be elements of any type. We will adopt the convention that, as a predicate index,
0 will be used exclusively for identity, and we will say that a language is with or
without identity according as 0 is or is not among its predicate indices.

1.1.10 Domains of discourse

Consider the statement (1.13). Here ‘thing’ refers a priori to anything whatsoever.
But note that we immediately restrict the first instance of ‘thing’ to refer specifically

13It must be admitted that this fails to define ‘identity’. We can never distinguish between the
apparently obvious meaning that you have no doubt gathered from the explication to which this
footnote is attached and another meaning in which distinct things may stand in the relation of
identity to one another as long as the substitution of an individual for an identical individual does
not change the truth value of any relation specification, and such a substitution in an operator
specification leads to an expression with an identical (not necessarily the same) value. Fortunately,
by its very nature such an interpretation would not differ in any “observable” way from the simplest
interpretation. Indeed, we could regard the equivalence classes of such an “identity” relation as
the true individuals.
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to clouds and the second instance of ‘thing’ to refer to silver linings. A cloud is
a sort (or type or species) of thing. Likewise, a silver lining is a sort of thing. If
we were to discuss clouds and silver linings at length we would find it tiresome
to use the generic term ‘thing’ with the qualifying declarations ‘thing is a cloud’
and ‘thing is a silver lining’, preferring instead to refer directly to clouds and silver
linings, as in (1.12).

The collection of all entities to which ‘thing’ may refer is the universe of dis-
course or simply the universe of the discussion, and the collections of clouds and
silver linings are domains of discourse or simply domains, or sorts. To use a more
“mathematical” example, consider the theory of vector spaces. Here there are two
domains of interest: the collection of scalars (which may, for example, be the col-
lection of real numbers) and the collection of vectors.

Note that the universe may be regarded as a domain also, which may be called
the universal domain or the domain of discourse, but we will not require that it be
explicitly a domain.

The introduction of multiple sorts of entities allows us to streamline our notation
even further. For example, let ‘C’ and ‘SL’ refer respectively to the domains of
clouds and silver linings. We may qualify our quantifiers by affixing a subscript for
the domain over which the quantification takes place. Then (1.14) may be written

@Cx DSLy px has yq.

In a typographical language we often represent domains of discourse by symbols,
such as ‘C’ and ‘SL’ above, which are naturally called domain symbols. In the
general case, as for operations and predicates, we use domain indices to indicate
domains.

1.1.11 A minimal framework

In a language with identity, operations may be eliminated.

We could, for example, dispense with the binary operation ‘¨`¨’ in favor of a ternary
predicate, say ‘Sp¨, ¨, ¨q’ defined by

Spz, x, yq
def
ðñ x` y “ z.

S has the special property that for any x and y there is a unique z such that
Spz, x, yq. For any natural number n, any n-ary operation may be replaced by an
pn ` 1q-ary predicate in this way. Operations are therefore a convenience, not a
necessity, but “operational” predicates are so common and useful that we prefer to
incorporate them explicitly in our definition of formal language.

Similarly, any reference to a domain may be replaced by a reference to a unary
predicate.

For example, we could formulate the theory of vector spaces with unary predicate
symbols ‘S’ and ‘V ’ and replace, for example, ‘for every scalar α’ by ‘for every
thing α, if Spαq then’ and ‘there exists a vector a such that’ by ‘there exists a thing
a such that V paq and’. As in this example, we often find it convenient to use a
different family of variable symbols for each sort of entity. We say that ‘α’ and ‘a’
range over the domains of scalars and vectors, respectively.
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(1.17) Definition We call a language relational
def
ðñ it has only relation (i.e.,

predicate) indices. We call it operational
def
ðñ it has only operation indices with

the possible exception of an index for the identity relation.

If we wish, we can make do with only two propositional connectives, say negation
and conjunction. For example, we may replace ϕ_ψ by

␣pp␣ϕq ^ p␣ψqq.

In fact, we can get by with just one propositional connective: popular choices for
such a connective in the information processing world are nor and nand, where
ϕ nor ψ is equivalent to ␣pϕ_ψq and ϕ nand ψ is equivalent to ␣pϕ^ψq.

We can also make do with one quantifier, as @v ϕ is equivalent to

␣Dv␣ϕ,

and vice versa, for any variable v and formula ϕ.
Definitions and proofs concerning languages in general can often be effectively

indicated by reference to one or another of the above simplified types.

(1.18) We will frequently take ␣, Ñ, and D as a minimal set of logical operations.14

1.1.12 Typographical conventions

Formal languages may be represented typographically in a number of ways. In
standard typographical languages the expressions are strings of characters. Certain
characters are reserved. Among these are the characters used for propositional con-
nectives and quantifiers, as well as characters used to make variables. A potentially
infinite supply of variables is required, so these must, from a practical standpoint,
be composite. We could, for example, say that a variable is a string of the form
v ⌢N , where N is an arabic numeral, so that, for example, v0, v1, and v65537 are
variables. In this case v, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are reserved characters. More
neatly, we may form variables by using subscripts, so that a variable is of the form

vN ,

where N is an arabic numeral, and our variables are

v0, v1, . . . .

We regard each of these as a reserved character, leaving v, 0, 1, etc., free for general
use.

One might have other reserved characters as well, such as p, q, and ,. In addi-
tion, one typically has a character for each relation and operation index, which are
referred to respectively as relation and operation symbols. These are distinct from
the reserved characters and from one another.

To construct expressions from these characters, perhaps the simplest convention
to describe is so-called Polish notation, in which each expression begins with a
quantifier, a propositional connective, a relation symbol, or an operation symbol,
which is followed by expressions of the types and number appropriate to it. For
example, in a language appropriate to discussing rational numbers, we might use

14ϕ_ψ is equivalent to p␣ϕq Ñψ, etc.
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‘`’ for addition, ‘ˆ’ for multiplication, ‘0’ for zero and ‘1’ for one, and ‘=’ (as
always) for identity. The expression

@ v0 Ñ ␣ “ v0 0 D v1 “ ˆ v0 v1 1

means that every nonzero element has a multiplicative inverse, as may be seen by
introducing brackets and the familiar order for binary operations and relations:

@ v0 Ñ ␣ “ v0 0 D v1 “ ˆ v0 v1 1
@ v0 Ñ ␣pv0 “ 0q D v1 “ pv0 ˆ v1q 1
@ v0 Ñ p␣pv0 “ 0qq D v1ppv0 ˆ v1q “ 1q
@ v0 Ñ p␣pv0 “ 0qq pDv1 ppv0 ˆ v1q “ 1qq
@ v0pp␣pv0 “ 0qq Ñ pDv1 ppv0 ˆ v1q “ 1qqq

One virtue of Polish notation is that no bracketing characters are necessary to in-
dicate which substrings constitute subexpressions, and Polish notation is efficient
for communicating with computers, but humans have trouble with it. One com-
mon modification is to place the arguments of a binary symbol on either side of
it, as above. Once we do this, however, we must indicate which substrings are
subexpressions, usually by the use of paired brackets, such as p and q.

To economize on the use of brackets for grouping in formulas, we follow precedence
rules similar to those used in arithmetic for negation, multiplication, and addition.
Negation and quantification take precedence over disjunction and conjunction, which
take precedence over implication and bi-implication.

For example,
␣␣␣ϕ0 ^̂̂ @@@uϕ1ÑÑÑϕ2 “

`

p␣␣␣ϕ0q ^̂̂p@@@uϕ1q
˘

ÑÑÑϕ2

Another common modification is to separate the arguments of a relation or
operation symbol by commas and to demarcate the entire list by brackets, as in

HpA,B,C,Dq.

We may also place arguments as subscripts or superscripts, as in ‘δµν ’, or in more
elaborate arrangements, as in ‘

ř8
i“1 ai’. We even have terms in which the “op-

eration symbol” is lacking altogether, as in ‘ab’ or ‘ab’, denoting respectively the
product of a and b and a raised to the power b. We also have, quite commonly,
“symbols” that consist of more than one character. For example, in the expression
‘sin θ’, ‘sin’ is the symbol for the sine function.

A cursory perusal of ordinary mathematical writing reveals that the types of
construction illustrated above, while they characterize “math” in the popular imag-
ination and while they admittedly allow a page of “mathematical” writing to be
instantly recognized as such, do not include the most common type of relation and
operation specifications. For example, in the expression ‘V is a vector space’, ‘is a
vector space’ functions as a unary predicate symbol. Similarly, the expression ‘V
has dimension n over W’ is regarded as derived from some such ternary predicate
symbol as ‘¨ has dimension ¨ over ¨’.

It might be conceptually convenient to limit typographical languages to some
standard construction, and many expositions of mathematical logic do so—but,
at least in our approach, nothing of substance is gained thereby, and there are
moreover good reasons not to do this. First, our metalanguage has nonstandard
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constructions, and we certainly want it to fall within the purview of our general
analysis. Second, to properly understand language we must consider it in the
abstract, and it will be conceptually easier to make that transition if our notion of
typographical language is already relatively fluid.

1.1.13 Metalanguage notation for expression-building op-
erations

(1.19) Languages of the sort we have described are called first-order predicate
languages.15 They are

1. predicate languages in that they involve predicates applied to terms; and

2. first-order in that they involve quantification over the arguments of predicates
but not over predicates themselves, i.e., they do not employ “predicate vari-
ables’.

Allowing quantification over predicate variables yields a second-order language, and
if we allowed quantification over variables that range over predicates applicable to
predicates, we would have a third-order language, etc. Disallowing these higher-
order entities is not a significant limitation, as the full expressivity of higher-order
languages can be achieved in the context of a first-order theory of the membership
relation (the notion of something being a member of a collection). On the other
hand, excluding predicates altogether, along with the machinery of variables and
quantification that goes with them, leaves so-called propositional languages, which
are significantly less expressive than predicate languages and are not adequate for
general purposes.

It will be convenient to have a uniform way to refer (in the metalanguage) to
the expression-forming operations of first-order predicate languages. These are of
three types:

1. argument specification;

2. logical connection; and

3. quantification.

1.1.13.1 Argument specification

We indicate the operation of specification as follows.

(1.20) Definition Suppose X is a relation or operation index with arity n. Then
X̃

def
“ the operation that takes an n-sequence τ “ xτ0, . . . , τn´1y of terms to the

expression that is the result of specifying the arguments of X to be τ0, . . . , τn´1.

1.1.13.2 Propositional connection

For each propositional connective we have a corresponding operation on expressions.
For example, for a standard typographical language,

if ϕ and ψ are formulas,
ϕ ^̂̂ψ

def
“ pϕq^pψq.

15Languages with operations and/or multiple domains fall under this rubric if, as indicated
above,§ 1.1.11 an operation or a domain is regarded as a particular sort of predicate.
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Note the difference between ‘^̂̂’ and ‘^’. The typographical difference is that the
former is boldface and the latter is lightface. The difference in significance is that
whereas ‘^’ is a(n object-language) propositional connective, which joins two for-
mulas to make a formula, ‘^̂̂’ is a (metalanguage) operation symbol that denotes the
operation of conjunction (as applied to object-language formulas). This is a type
of use/mention relationship: ‘^’ is part of an object-language formula, whereas ‘^̂̂’
is part of a metalanguage term that names that formula. We define metalanguage
symbols for all the object-language connectives in the same way. For a standard
typographical language,

␣␣␣ϕ
def
“ ␣pϕq

ϕ ^̂̂ψ
def
“ pϕq ^ pψq

ϕ___ψ
def
“ pϕq _ pψq

ϕÑÑÑψ
def
“ pϕq Ñ pψq

ϕØØØψ
def
“ pϕq Ø pψq.

(1.21)

Note that there is nothing to prevent us from using the lightface characters ‘␣’,
etc., as metalanguage connectives. For example, we might write ‘(ϵ is a term) Ñ
(ϵ is not a formula)’.

1.1.13.3 Quantification

Similarly,

@@@v ϕ
def
“ @v pϕq

DDDv ϕ
def
“ Dv pϕq,

(1.22)

for any variable v and formula ϕ. This prescription presumes that variables are
domain-specific, so that if we wish to quantify over individuals of a given domain
D, we use a variable of that sort.

Alternatively, we may apply the domain specification to the quantifier and allow
the variable to be generic, thusly:

@@@Dv ϕ
def
“ @Dv pϕq

DDDDv ϕ
def
“ DDv pϕq,

for any domain index D, variable v, and formula ϕ. The former convention allows
us to assign domains to terms that contain variables, so that we can tell at once
whether they and formulas that contain them are well formed. We adopt the posi-
tion that an expression of the latter form is understood to stand for the expression
of the former type obtained by replacing v in the quantifier phrase and every free
occurrence of v in ϕ by the “D-specific” version of v.

1.1.14 Structure

As noted above,1.1 the notions of structure, language, and logic are inextricably in-
tertwined. We have also indicated above1.2 that formal language, with formal logic,
is essentially coextensive with mathematics. Mathematicians have had millennia
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to figure out the range of topics to which their methods apply, and the existing
body of mathematics is a representative sample of the sort of structure that is the
subject of formal language and logic. Let’s examine some familiar mathematical
theories with this in mind.

Take number theory for example. In the most restricted sense this seems to be
talking about natural numbers t0, 1, . . .u. What does it say about them? First note
that it doesn’t say what they are. This is not to say that people have not talked
about what numbers are, but this is not the concern of number theory. Instead,
number theory talks about how numbers are related. It talks, for example, about
prime versus composite numbers. (Recall that n is prime if and only if for all k and
l, if k ¨ l “ n then either k “ n or l “ n.) A typical theorem of number theory is
the statement:

(1.23) There are infinitely many prime numbers.

One way to interpret this statement is to say:

(1.24) The collection of prime numbers is infinite.

If we do this, then we are talking not only about numbers, but also about collections
of numbers, and distinguishing finite and infinite collections.

There is, however, another way to interpret (1.23) that does not talk about
collections:

(1.25) For every number m there is a subsequent number n such that n is prime.

Note that, inasmuch as they talk about primality, which is defined in terms of
multiplication, both (1.23) and (1.25) (as well as (1.24)) concern not just numbers
but also the multiplication operation. Additionally (1.25) talks about the order
relation—the notion of one number following another.

Let’s look at another theorem of number theory, Fermat’s theorem:16

If p is prime and p does not divide a, then ap´1 ´ 1 is divisible by p.

Now we’re talking about subtraction and exponentiation as well as multiplication
(implicit in the notions of primality and divisibility). Or Wilson’s theorem:

For all primes p, pp´ 1q! ” ´1 mod p.

We’ve now introduced the factorial operation and modular equivalence; and so it
goes.

Evidently the question of what number theory is about is one of some delicacy.
Let’s look at another mathematical theory, projective geometry. Plane projective
geometry talks about points and lines, while solid projective geometry talks about
points, lines, and planes. Let’s restrict ourselves for the time being to plane geome-
try. The fundamental relation is that of incidence. Intuitively, a point P and a line
l are incident iff P lies on l, or, equivalently l runs through P . A typical statement
of projective geometry is:

If P and Q are distinct points, then there is a unique line l such that l is incident
with both P and Q.

Another is:
16This is a theorem of Fermat, but it is not Fermat’s last theorem.
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If l and m are distinct lines, then there is a unique point P such that P is incident
with both l and m.

(Actually, both of these are true in projective geometry. Projective geometry differs
from euclidean geometry in this regard: In euclidean geometry there exist pairs of
distinct lines that are not both incident with any point: parallel lines.)

Note that incidence is distinct from membership, i.e., we do not regard a line
as the set of points incident with it, any more than we regard a point as the set of
lines incident with it. Indeed, the concepts of a set of points and a set of lines are
not a part of projective geometry in its elementary form.

Our next example is set theory, which talks about sets. The fundamental rela-
tion of set theory is membership, denoted by ‘P’, i.e., ‘x P y’ means ‘x is a member
of y’. A typical statement of set theory is:

If for all z, z P x iff z P y, then x is y.

Another is:

There is a set x such that for all y, it is not the case that y P x.

In other words, x has no members; it is empty. Along the same lines, we have the
statement:

If for some x, x P z, then for some x, x P z and for all y, if y P z then it is not the
case that y P x.

A common feature of the preceding examples is the existence of a single structure
whose properties the relevant theories are meant to elucidate. In the case of number
theory, that structure is the collection t0, 1, . . .u with the usual notion of order.17 In
the case of plane projective geometry, that structure is the “ordinary” plane with
the adjunction of points at infinity and a line at infinity. In the case of set theory, the
structure in question is the class of all pure sets. Following Euclid, we systematize
our understanding of these structures by positing certain statements about them
as axioms. Traditionally these are chosen because they are “self-evident”, and are
sufficient to prove any other self-evident statement. The theory then consists of all
statements derivable from the axioms (which must include some statements that
are not self-evident if the enterprise is to have any merit).

As mathematics developed, mathematicians began to observe certain structural
elements occurring in a variety of settings, and they came to see the utility of talking
about structures in the abstract. The concept of a group is an early example of
this. The integers (positive, negative, and zero) form a group under the operation
of addition. The rational numbers do as well. The nonzero rational numbers
form a group under the operation of multiplication. So do the positive rational
numbers. The bijections (one-one onto mappings) of a set to itself form a group
under composition. These are just a few of the many and varied examples of groups
in mathematics.

Other types of structures—like ring, field, topological space, etc.—have also
been found to arise in diverse settings. A large part of mathematics is the study
of defined classes of structures. What can we say about all groups? Or all finite
groups? Or commutative groups? All topological vector spaces? Our point of

17We are not at present concerned with the various operations and relations that we men-
tioned above, like multiplication and exponentiation, which have definitions for this structure
that uniquely characterize them.
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view in this endeavor is different than when we are trying to find out all that is
true about a single structure, like the natural numbers, the projective plane, or the
universe of all pure sets. Instead of asking what are all the statements true of a
given structure, we ask what are all the structures of which given statements are
true and what additional statements are true of all these structures.

1.1.15 Our metatheory

Up to this point our discussion has been largely descriptive, but we will soon begin
to draw conclusions about the objects we are describing. We could go about this
informally, using the sort of “common sense” that mathematicians develop over
time, but this approach is unsatisfactory on two counts. First, we want our study of
the foundations of mathematics to be itself mathematical, so we want to use formal
language and formal logic—which, as discussed above, characterize mathematics.
One of the purposes of our study of the foundations of mathematics is to examine
the issue of the “reliability” of mathematics: How do we know that formal methods
are “correct”; what does that even mean? If we arrive at answers to these questions
by informal methods, then the reliability of our conclusions will be suspect. On the
other hand, if we clearly state the premises of our analysis, and we apply formal
logic, then at the end of the process we will have a clear idea of where we stand.

As it happens, the “amount” of mathematics required for this task is rather
small, so that only the most violent skeptic would seriously question the validity of
our analysis. There is, however, another reason to be specific as to the mathematical
framework for this analysis, which we will illustrate presently.§ 1.1.16

The desiderata for our metatheory are as follows. We want to be able to talk
about linguistic expressions and how they may be combined. We want to be able
to talk about finite collections and finite sequences of expressions, as well as finite
collections and sequences of these collections and sequences, finite collections and
sequences of these, etc., up to some level. We want to be able to define ‘finite’. We
want to be able to use natural numbers. We want to be able to talk about functions
and relations. We want to be able to carry out common-sense deductions regarding
these objects. In particular, we want to be able to use definition by recursion and
proof by induction.

There are several ways to formulate a suitable metatheory. All of these are equi-
valent in a sense to be made precise—as long as we restrict ourselves to “natural”
theories that are simply described and are not excessively strong. The theory PA
of natural numbers known as Peano arithmetic is a popular choice of metatheory,
but it suffers from the drawback of artificiality. A much more natural theory is
the basic theory of membership developed in Section 3.2. Specifically, we will use
the theory C0,3.17 which is the theory of membership that allows proper classes and
allows, but does not mandate, the existence of infinite sets. Note that C0 omits the
Foundation axiom, which is not required for the utilitarian purposes of this chapter
and the next, and we prefer it for this reason over C “ C0 ` Foundation, whose use
would convey the erroneous impression that Foundation is essential.18 In the inter-
est of simplicity, we exclude consideration of proper elements (urelements, atoms).
Thus, our analysis does not apply directly to typographical languages, for exam-
ple, whose expressions are arrangements of graphical symbols; but via appropriate
coding conventions, these are obviously equivalent to pure sets. We treat C0 as a

18It is perhaps another shortcoming of PA as a metatheory that it cannot conveniently omit its
equivalent of Foundation, which is the schema of induction.
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unisorted theory with a predicate that specifies that an object is an element (i.e.,
a set).

We regard C0 as the ideal theory for these introductory chapters for three rea-
sons:

1. The ability of C0 to deal with infinite classes is sufficient to treat the essential
elements of the semantics of countable languages; most importantly, it suffices
to prove the fundamental theorem of semantics: the completeness theorem.

2. C0 is a conservative extension of pure set theory S0 without an axiom of
infinity, i.e., anything that C0 can prove that refers only to sets can be proved
in S0. Thus, any theorem of C0 concerning logic that is purely syntactical is
a theorem of S0. In this regard C0 is only a convenience, but it is a great
convenience.

3. Confronting the salient shortcoming of C0 vis-à-vis a theory with an axiom of
infinity in the present context, which is its inability to prove that satisfaction
relations exist for all structures of interest (countable structures, for example),
provides an early insight into the expressive and deductive limitations that
characterize the foundations of mathematics.

It should be noted that at no point do we deny the existence of the infinite, we
simply do not always assume it. We examine some of the implications of infinitarity
in the later part of Chapter 3, and in Chapter 5 we commence our investigation of
infinitarity in earnest, which will occupy us for the remainder of the book.

1.1.16 A tantalizing example

We conclude this introduction with an example of the sort of revelation we may
expect from a close examination of language and logic. This is not a rigorous
demonstration—we don’t yet have the tools for one—so don’t be discouraged if you
are not quite able to follow the argument, much less “fill in the details”. Its purpose
is to entice rather than convince. Consider it an hors d’oeuvre to the coming feast.

In our examination of the foundations of mathematics we will present an ax-
iomatic theory of natural numbers (the “counting numbers”: 0, 1, 2, . . . ) known
as Peano arithmetic (PA). The question will arise whether these axioms are suffi-
cient to prove all true sentences in the language of arithmetic. The answer is ‘no’.
How do we show this? We will describe a sentence σ in the language of arithmetic
whose “meaning” is ‘σ is not provable from Peano’s axioms’. We enclose ‘mean-
ing’ in double quotes in the preceding sentence according to the convention (1.6)
to draw attention to the fact that the ordinary meaning of a sentence in the lan-
guage of arithmetic is something about numbers, whereas we are now saying that
the meaning of σ is that a particular sentence in the language of arithmetic is not
provable.

In order that we be able to interpret σ—which is a statement in the language of
arithmetic—as meaning ‘σ is not provable’ we must be able to regard numbers as
linguistic expressions. Since we have left the identity of linguistic entities unspeci-
fied, this is not a problem: all we have to do is define relations among numbers that
have the structure of a language. (This language is of course not a typographical
language, as typographical symbols are not numbers in any ordinary sense. Even
numerals are not numbers.) We now show that σ is indeed not provable and is
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therefore true (since it says it’s not provable). The proof is by reductio ad absur-
dum. Suppose toward a contradiction that σ is provable, i.e., there exists a PA-proof
π of σ. Then in PA we can prove

1. that π is a proof of σ (simply by checking that all premises of π are axioms
of PA, each step in π is justified by one of the rules of our standard deductive
system, and the conclusion of π is σ);

2. that therefore there exists a proof of σ; so that therefore

3. it is not the case that that there is no proof of σ.

In other words, if PA proves σ, then PA proves ␣␣␣σ, the negation of σ, so PA is
inconsistent.19 As this is absurd, the hypothesis that PA proves σ is false; in other
words, σ is not provable and is by that token true.

Thus we have the following theorem of Gödel:

(1.26) First incompleteness theorem There exists a true arithmetical sentence
that is not provable in PA.

The argument just sketched has a delightful corollary. By way of preparation,
let us acknowledge that, while the example of σ is interesting as far as it goes, in
that it is an arithmetical truth that cannot be proved (not in PA, that is; we have,
of course, just proved σ, but evidently in a stronger theory), we otherwise have no
reason to be interested in σ. But what about the “stronger theory” just alluded
to? What did we just use over and above PA to prove σ? An analysis of the above
argument shows that it can be formulated in the language of arithmetic and every
step can be justified (i.e., proved) in PA except possibly the one where we say that
the notion that PA is inconsistent is absurd—where we say, in other words, that PA
is consistent. Leaving aside for an instant the question whether that step can also
be justified in PA, we are content to note that in any event

(1.27) First incompleteness theorem

PA` ConpPAq$σ,

where ConpPAq is the the sentence in the language of arithmetic that “says” that
PA is consistent, and ‘$’ means ‘proves’, i.e., what’s on the right follows logically
from what’s on the left.

(1.27) is a sharp form of (1.26) in that it lays out the hypotheses we have used to
derive σ, viz., PA` ConpPAq. It is also entirely syntactic, inasmuch as it does not
employ the semantic concept of meaning, as (1.26) does in saying that σ is true.

Now suppose for a moment that PA$ConpPAq. Then, by virtue of (1.27),
PA$σ. As we have just shown, if PA is consistent, this is false, so the supposition
that PA proves that ConpPAq is false. We therefore have Gödel’s

Second incompleteness theorem If PA is consistent then PA & ConpPAq.

19A theory is consistent just in case it cannot derive any contradiction, i.e., for any sentence ϕ,
it cannot prove both ϕ and ␣␣␣ϕ. Note that any sentence follows by simple logic from any pair of
the form tϕ,␣␣␣ϕu, so an inconsistent theory can prove any sentence that can be formulated in its
language.
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Unlike σ, ConpPAq is an arithmetical assertion that is intrinsically interesting, at
least to logicians.20 It is, however, not at all “number-theoretical” in nature and not
of interest to number theorists or to mathematicians in general, except insofar as
they are interested in the logical foundations of their subject. There are statements
about numbers that are not overtly “logical” that have been shown to be true but
not provable in PA, although even these are not mainstream number theory. When
we turn our attention to more powerful theories, however, such as set theory, we find
a profusion of mathematically interesting statements—such as the axiom of choice
and the continuum hypothesis—that are neither provable nor disprovable (assuming
in this case, of course, that set theory is consistent). In fact, most of set theory
as it exists today consists of things not provable in the standard axiomatization,
and much of set theory deals with various extensions of the axioms. What näıvely
seems extraordinary, viz., being neither provable nor disprovable, turns out to be
ordinary.

1.2 Structure

1.2.1 Introduction

In Section 1.1 we have introduced all the elements of formal languages, and we have
described how we are going to write about them in our metalanguage. We have
also given an indication of the sort of structure to which formal language applies.
We may now give adequate definitions of both language and structure. We begin
with structure.

As discussed in Section 1.1.3 these definitions and analysis are carried out in
the basic theory of membership, which is our metatheory. This theory is defined
and developed in Chapter 3. That treatment depends in part on the material in the
present chapter, so there is a certain circularity to the overall discussion. Some such
circularity or self-dependence is unavoidable in an explication of the foundations of
formal discourse (i.e., mathematics), and it does not undermine the logical cogency
of the discussion.

1.2.2 Eine kleine Mengentheorie

We will make use of some membership-theoretic ideas, all of which are covered in
Chapter 3. For convenience, we will present most of the relevant concepts briefly
here. The reader is nevertheless advised at least to peruse Chapter 3, paying
particular attention to the concepts of proper classes and proper elements.
px, yq is the ordered pair ttxu, tx, yuu.21 We also call this a 2-tuple. n-tuples are

also defined3.58 for any n ą 0, but in this chapter—indeed, throughout this book—
we will make limited use of this notion for n ‰ 2. A prefunction is a class of ordered

20Although we have shown that (assuming ConpPAq) PA is incomplete in the semantic sense
that there are true statements that it does not prove (e.g., ConpPAq and the Gödel sentence σ),
we have not shown that PA is incomplete in the purely syntactic sense that there is a sentence
ϕ such that PA proves neither ϕ nor ␣␣␣ϕ. We can show this for ϕ “ σ if we also assume the
ω-consistency PA, of which need just the instance ‘if PA proves ␣␣␣σ—i.e., PA proves that there is
a proof of σ—then it is not the case that, for every proof π, PA proves that π is not a proof of σ’.
If we replace σ by the Rosser sentence ρ, which says that for every proof of ρ there is a shorter
proof of ␣␣␣ ρ, then the unprovability of both ρ and ␣␣␣ ρ is provable (in PA) from ConpPAq.

21This is, for us, an unusual use of round brackets with a specific meaning; ordinarily they are
generic grouping symbols. Angle, square, and curly brackets, on the other hand, usually have
specific defined meanings.
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pairs. As discussed after (3.25), what we are defining here as a prefunction is often
called a relation, but we define relation to mean a class of finite sequences.3.62

For R a prefunction, domR
def
“ tx | Dy px, yq P Ru. imR

def
“ ty | Dx px, yq P

Ru. For R a prefunction and X a class, RÑX
def
“ ty | Dx P X px, yq P Ru, and

RÐX
def
“ ty | Dx P X py, xq P Ru. A function F is a prefunction such that for all

x P domF there is a unique y such that px, yq P F , and F x
def
“ F pxq

def
“ y.

Given a class X and a set Y , YX is the class of functions f such that dom f “ Y
and im f Ď X, i.e., f : Y Ñ X.

Definition [C0] A is a family3.37 (of classes)
def
ðñ A is a prefunction and

@i P domA
`

pi, 0q P A_@c
`

pi, cq P AÑDd c “ tdu
˘˘

.

If A is a family and i P domA, then the class indexed by i in A
def
“

Aris
def
“

#

0 if pi, 0q P A
td | pi, tduq P Au otherwise.

We use von Neumann ordinal notation. In particular, 0 def
“ the empty set, 1 def

“ t0u,
2 “ t0, 1u, etc. In general n “ t0, 1, . . . , n´1u, and ω def

“ t0, 1, . . .u.22 We frequently
have occasion to indicate the enumeration of a finite ordinal, and the following
notation is useful in this context.

(1.28) Definition [C0] Suppose α is a successor ordinal. α- def
“ α ´ 1 def

“ the pre-
decessor of α.

A finite sequence is a function with domain n for some n P ω. We call n the length
of the sequence and refer to the sequence as an n-sequence. We often use subscript
notation for finite sequences, so that if σ is an n-sequence, σm

def
“ σpmq for m P n

(i.e., for m ă n). We also use the notation ‘xσ0, σ1, . . . , σn-y’ for an n-sequence
σ.1.28 There is only one 0-sequence, viz., 0, the empty set.

For n P ω, an n-ary relation is a class of n-sequences. ‘Nulary’ means 0-ary,
‘unary’ means ‘1-ary’, ‘binary’ means ‘2-ary’, etc. Note that if an n-ary relation is
nonempty then it is not an m-ary relation for any m ‰ n. The arity of a nonempty
multivariate relation is therefore well defined. The empty class t u “ 0 is an n-ary
relation for all n P ω, and its arity is undefined. There is only one 0-sequence, viz.,
0, so a nulary relation is a subclass of t0u, of which there are exactly two, viz., the
empty subclass, t u “ 0, and the full subclass, t0u “ 1.23

We define two versions of cartesian products:

A0 ˆ ¨ ¨ ¨ˆAn-
def
“

9ą

mPn
Am

def
“

9ą
n-

m“0
Am

def
“

#

tpa0, . . . , an-q | ai P Ai, i “ 0, . . . , n´ 1u if n ą 0
0 if n “ 0.

22The existence of ω cannot be proved in the basic theory of membership, which does not have
an axiom of infinity. In general, therefore, we regard a formula of the form ‘n P ω’ as standing for
‘n is a finite ordinal’, i.e., a natural number.

23This will serve as the rationale for defining trueness as 1 and falseness as 0.
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A0 ˆ ¨ ¨ ¨ ˆAn-
def
“

ą

mPn

Am

def
“

#

txa0, . . . , an-y | ai P Ai, i “ 0, . . . , n´ 1u if n ą 0
t0u if n “ 0.

Note that
nA “

ą

mPn

Am,

where Am “ A for all m P n.
For n P ω, an n-ary function is a function F such that domF consists entirely

of n-sequences. If F ‰ 0 then F is an n-ary function for at most one n, and we call
n the arity of F . The nulary functions are the empty function, which is the empty
set 0, and the functions tp0, equ for elements e.

The composition of prefunctions R and S
def
“

R ˝ S
def
“ tpx, yq | Dz ppx, zq P S^pz, yq P Rqu.

In the event that R and S are functions, R ˝ S is the composition in the familiar
sense that

pR ˝ Sqx “ RpSxq.

Suppose F is a function and R is a family. Then R ˝ F is a family, and for any
x P domF

pR ˝ F qrxs “ RrF xs

We use ‘tF˝u’ to name the map that sends any function G with imG Ď domF to
the function xF pGxq | x P domGy, i.e., x ÞÑ F pGxq. We use this most often in the
combination ‘tF˝uÑ’, as in

tF˝uÑF “ tF ˝ f | f P Fu,

where F is a class of functions such that for all f P F , im f Ď domF .

1.2.3 Signatures

A language is determined for all practical purposes by its domain, relation, and
operation indices. This information is summarized in its signature, and this signa-
ture is likewise an attribute of the structures to which the language applies. As
discussed above,§ 1.1.11 domains and operations are a convenience, not a necessity,
and the essential principles are adequately illustrated by consideration of languages
that refer only to relations. We will use ‘unisorted’ to refer to the absence of explicit
domains (or sorts), and ‘relational’ to indicate the omission of both domains and
operations.1.17 We will give the following definitions first in a restricted context and
then in full generality.

For the purpose of orientation, Π and Φ are classes of predicate and function
indices, respectively; and T is the arity function. Note that a signature may be
a proper class. This allows us to have infinite signatures even when there are no
infinite sets.

As we are now operating in the framework of precise mathematical definition
and proof, we initiate the practice which we will follow henceforth of indicating the
theory within the context of which a definition is made or a proof is constructed.

(1.29) Definition [C0]
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1. A relational signature def
“ a 2-indexed family rΠ, T s such that

1. Π is nonempty;
2. V zΠ is infinite, where V is the class of all elements;
3. T : Π Ñ ω; and
4. T p0q “ 2 if 0 P Π.24

2. A unisorted signature def
“ a 3-indexed family rΠ,Φ, T s such that

1. ΠY Φ is nonempty;
2. V zpΠY Φq is infinite;
3. ΠX Φ “ 0;
4. 0 R Φ;
5. T : ΠY Φ Ñ ω; and
6. T p0q “ 2 if 0 P Π.

3. Suppose ρ “ rΠ,Φ, T s and ρ1 “ rΠ1,Φ1, T 1s are signatures.

1. ρ1 expands ρ
def
ðñ Π Ď Π1, Φ Ď Φ1, and T Ď T 1.25 We also say that ρ1 is

an expansion of ρ and that ρ is a contraction of ρ1.

2. ρ and ρ1 are compatible
def
ðñ they have a common expansion (iff rΠ Y

Π1,ΦYΦ1, TYT 1s is a signature, in which case it is the minimum common
expansion of ρ and ρ1).

The requirement (1.29.1.2) (likewise (1.29.2.2)) is to allow expansion of signatures.
This sort of expandability is used routinely in mathematical discourse, as new
predicates and operations are introduced by definition, and as new constants are
introduced in the process of manipulating formulas involving quantification. We
could get along without this requirement, but we would have to take special pains
when it did not apply. This will be first become relevant in Chapter 2 when we
define a system of deduction that depends on the introduction of new constant
indices. Note that if we restricted Π and Φ to be sets (not proper classes), then this
requirement would be fulfilled automatically (as V is not a set), but this is unduly
restrictive for our purposes.

Definition [C0] For ρ “ rΠ,Φ, T s as in (1.29),

1. Πρ def
“ ρr0s “ Π, Φρ def

“ ρr1s “ Φ, and T ρ def
“ ρr2s “ T ; and

2. for each X P ΠY Φ, we define the arity of X in ρ to be T ρpXq.

Corresponding definitions are made mutatis mutandis for the case of relational
signatures.

We refer to the members of Π as predicate or relation indices, and to the members
of Φ as function or operation indices. Recall that we follow the convention that if
0 is an index then it indexes the identity relation, which is binary.

The definition of a general signature is given in Note 10.1. Briefly, a general
signature is a 4-indexed family r∆,Π,Φ, T s, where ∆, Π, and Φ are the classes of
domain, relation, and operation indices, respectively. T indicates not only the arity
of each relation or operation index X but also the domains to which its arguments—
and, in the case of an operation index, its value—may belong.

24This reflects the fact that 0 is reserved as an index for the identity predicate, which is binary.
25We leave unstated the analogous definitions for purely relational and for multisorted signa-

tures. Note that if f and f 1 are functions then f Ď f 1 iff dom f Ď dom f 1 and @x P dom f f 1x “ fx.
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1.2.4 Structures

(1.30) Definition [C0] Given a relational signature ρ “ rΠ, T s, a ρ-structure S
def
“ a 3-indexed family rρ, U, πs with the following properties:

1. U is a nonempty class.

2. π is Π-indexed family.

3. For each P P Π, πrP s Ď T pP qU . If 0 P Π then πr0s “ txx, xy | x P Uu.

Given a unisorted signature ρ “ rΠ,Φ, T s, a ρ-structure def
“ 4-indexed family rρ, U, π, ϕs

with properties 1–3 above, together with

4. For each F P Φ, ϕrF s is a function from T pF qU into U .

Note that a structure incorporates its signature.

If P P Π and T pP q “ 0 then1.30.3 πrP s Ď
0U “ t0u. Hence, if P is nulary then πrP s

is t0u “ 1 or t u “ 0. In the former case ‘s P πrP s’ is true for all 0-sequences s,
i.e., for s “ 0; while in the latter case ‘s P πrP s’ is false for all s. We accordingly
define trueness ( truth, verity, . . . ) to be (the nulary relation) 1, and falseness
( falsehood, fallacy, . . . ) to be (the nulary relation) 0.

If F P Φ and T pF q “ 0 then1.30.4 domϕrF s “ t0u. With only one element in its
domain, ϕrF s is necessarily constant. Accordingly, we refer to nulary operation
indices as constant operation indices, or as constant indices, or often simply as
constants. Nulary predicate indices may also be referred to as constant predicate
indices.

Note that we have required U to be nonempty. If U were empty then it would
not be possible to assign a value to ϕrF s for a nulary operation index F , i.e., a
constant. There is also good reason to exclude even purely relational structures
with empty domain, as will become clear when we discuss the semantic and logical
aspects of structure.

Definition [C0] For S as in (1.30) we define

1. ρS def
“ ρ, |S| def

“ U , πS def
“ π, and ϕS def

“ ϕ;

2. ΠS def
“ ΠρS

, ΦS def
“ Φρ

S

, and TS def
“ T ρ

S

; and

3. for all P P Π, PS def
“ πrP s, and for all F P Φ, FS def

“ ϕrF s.

The corresponding definitions in the general case are similar.10.3 Briefly, a structure
for a signature ρ “ r∆,Π,Φ, T s is a 4-indexed family rρ, δ, π, ϕs, where δ, π, ϕ
interpret the respective classes of indices. For example, for each F P Φ, ϕrF s is a
function with the appropriate domain and range (defined by TrF s).

We will usually use ‘D’ and related symbols to denote domain indices; ‘P ’, ‘R’,
and related symbols to denote predicate (relation) indices; ‘F ’, ‘O’, and related
symbols to denote function(operation) indices; and ‘X’, ‘Y ’, and related symbols
to denote relation or operation indices without prejudice.
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1.2.5 A simpler notation

Suppose ρ “ rΠ,Φ, T s is a unisorted signature with identity and A “ rρ, U, π, ϕs is
a ρ-structure. All or nearly all of the information in A is contained in the relation
A defined by the conditions

1. domA “ ΠY Φ (so 0 P domA, since ρ is with identity);

2. Ar0s “ U ;26

3. Aris “ πris if i P Πzt0u; and

4. Aris “ ϕris if i P Φ.

Suppose ρ1 “ rΠ1,Φ1, T 1s is another unisorted signature and A1 “ rρ1, U 1, π1, ϕ1s is
a ρ1-structure, and suppose the above construction from A1 yields the same class
A. It is straightforward to show that Π1 “ Π, Φ1 “ Φ, U 1 “ U , π1 “ π, ϕ1 “ ϕ,
@i P ΦT 1piq “ T piq, and @i P Π

`

πris ‰ 0ÑT 1piq “ T piq
˘

. In other words, the only
way that ρ and ρ1 may differ is in the arity they assign to a predicate index that
is interpreted as the empty relation (i.e., the empty set, which is an n-ary relation
for every n P ω.)

As a concession to simplicity of notation, at a tolerable cost in lost precision,
we will use indexed families like A as surrogates for the corresponding unisorted
structures. If the index class happens to be an ordinal then A “ rU,R, S, . . . s.

1. To emphasize the informality of this representation of a structure, instead
of square brackets indicating an indexed family, we will typically use round
brackets in their generic capacity as grouping symbols, and—to emphasize its
distinctive role—we separate the universe U from the predicates and operations
by a semicolon: ‘pU ;R,S, . . . q’.

2. In this notation, we do not presume that the index class is an ordinal; we
simply omit to mention indices, showing only the relations and operations
they index. If we want to indicate indices, we may represent a structure A as
‘p|A|; iA, jA, . . . q’, where i, j, . . . are indices.

3. We may also indicate classes of indices in a subscript. For example, if A is a
structure in a signature with a constant cn for every n P ω, we may represent
A by ‘p|A|; cAn, . . . qnPω’, where ‘. . . ’ stands for other relations and operations.

4. We use a similar informal notation for multisorted structures, with the do-
mains listed first, followed by a semicolon, and then the predicates and opera-
tions.

For example, a vector space might be indicated by ‘pV, F ;`V , ¨V ,`F , ¨F q’, where V
and F are respectively the domains of vectors and scalars, and ¨V , ¨V , `F and ¨F are
respectively vector addition, scalar multiplication, and addition and multiplication
of scalars. Note that the universal domain has been omitted here. Many variations
may be played on this theme, in the expectation of the reader’s cooperation.

26Note the dual use of 0 as the index of the identity predicate in the structure A and as the
index of U in the family A. This is just a happy accident.
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1.2.6 Isomorphism and homology

As discussed in Section 1.1.14, we are usually not interested in the identity of the
individuals of a structure but rather in the “structure” of the structure, i.e., that
aspect of it that is not altered when we replace its individuals by other elements
without changing their relationships. Since the individuals of a structure are in-
trinsic to its relations and operations, any discussion of these relationships per se
is indirect to a degree. The basic notion in this regard is that of isomorphism.

(1.31) Definition [C0] ι is an isomorphism of A to B
def
ðñ

1. A and B are structures with the same signature, say ρ “ r∆,Π,Φ, T s;

2. ι : |A| bij
Ñ |B|, and for all D P ∆, ιÑDA “ DB;

3. for every P P Π, PB “ tι˝uÑPA
` def
“

␣

ι ˝ σ
ˇ

ˇ σ P PA
(˘

;27 and

4. for every O P Φ, OB ˝ tι˝u “ ι˝OA, i.e. p@σ P domOAqOBpι˝σq “ ιpOApσqq.

If an isomorphism exists we say that A and B are isomorphic and that each is an
isomorph of the other.

Clearly,

1. the identity map is an isomorphism of a structure with itself;

2. if ι : A Ñ B is an isomorphism, then ι´1 : BÑ A is an isomorphism, and

3. if ι : A Ñ B and ι1 : B Ñ C are isomorphisms, then ι1 ˝ ι : A Ñ C is an
isomorphism.

Hence, isomorphic is an equivalence relation.
Note that any structure has many isomorphs. All we have to do to create

an isomorph of A is to take an injective function ι with domain |A| and define a
structure B with the same signature so as to make (1.31) true.

Isomorphic structures clearly have the same “structure”, just different individ-
uals. The simplest embodiment of “pure structure” would be an isomorphism type,
i.e., a collection consisting of all the structures isomorphic to a given structure. We
say ‘would’ because such a “collection” is too large to be usefully regarded as an
individual. If A is a set, its isomorphs constitute a proper class; if A is a proper
class, its isomorphs constitute a collection of proper classes too large to be repre-
sented as an indexed family. We prefer to regard ‘isomorphism type’—insofar as
we use the expression at all—as une façon de parler, which may be systematically
eliminated from the discussion.

Note that by definition1.31.1 isomorphic structures have the same signature, so
that corresponding domains, relations, and operations in isomorphic structures are
called by the same name, as it were. It is natural to extend the notion of isomor-
phism to structures that have signatures that are not identical but are homologous
in an appropriate sense. For example, it should not matter whether we index the
multiplication operation of a ring, say, by ‘ˆ’ or ‘¨’, or for that matter by 1 or 2
or ‘Australia’, or even by Australia itself. To relate structures that differ in this

27Remember that an n-sequence σ “ xa0, . . . , an-y is the function with domain n such that
p@m P nqσm “ am, so ι ˝ σ is a function with domain n, and p@m P nq pι ˝ σqm “ ιpamq, i.e.,
ι ˝ σ “ xιa0, . . . , ιan-y.
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way requires that we have a correspondence between the indices of their respec-
tive similarity types. In effect, we require that their signatures be “isomorphic”,
but since a signature is not technically a structure28 we use ‘homologous’ in place
of ‘isomorphic’. The definition is the obvious one. We give it here for relational
structures.

Definition [C0] Suppose ρ “ rΠ, T s and ρ̄ “ rΠ̄, T̄ s are relational signatures. h is

a homology of ρ to ρ̄
def
ðñ h : Π bij

Ñ Π̄ and p@P P Πq T̄ phpP qq “ T pP q.

Homologous signatures are equivalent in every relevant way. It is obvious that if
a signature did not satisfy (1.29.1.2) (or (1.29.2.2)), we could replace it by an
homologous type that does, so this condition is merely a convenience.

The following definition is also given specifically for relational structures; its gen-
eralization to arbitrary structures is obvious.

(1.32) Definition [C0] Suppose A and B are respectively a ρ- and a ρ̄-structure,
with ρ “ rΠ, T s and ρ̄ “ rΠ̄, T̄ s. xh, ιy is a homology of A to B iff

1. h is a homology of ρ to ρ̄;

2. ι : |A| bij
Ñ |B|;

3. for every P P Π, hpP qB “ tι˝uÑPA.

In this case we say that A and B are homologous and that each is a homolog of
the other.

We use homology type to refer to the collection of all structures homologous to a
given structure with the same provisos as for ‘isomorphism type’ above.

1.2.7 Standard signatures

We have defined signature broadly so as to permit arbitrary objects as indices. For
some purposes, however, it is convenient to be able to refer to a fixed standard
signature and its subsignatures, all of which will be referred to as standard. In the
interest of simplicity, we will define a standard unisorted signature. An extension
to a multisorted signature is straightforward.

(1.33) Definition [C0] The standard unisorted signature has the binary predicate
index 0 (for identity), and for each m,n P ω it has an m-ary predicate index
x0,m, ny and an m-ary operation index x1,m, ny.

Thus there are infinitely many predicate and operation indices of each arity. Note
that the standard signature is included in HF and any finite standard signature is
in HF.

28We could define a signature in such a way as to be a structure, but this would generate more
confusion than clarity.
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1.3 The structure of language

A structure as defined in Section 1.2 is explicitly designed to be the subject of
a language—to be “what the language is talking about”. There are a number of
ways to talk about a structure or structures, several of which we will discuss, but
there is one way that it is tailor-made to the “structure” of a structure—neither
too weak nor too strong—viz., its first-order predicate language.1.19 It is languages
of this type that we have been considering in our informal remarks above. The
qualifier ‘predicate’ in ‘first-order predicate language’ refers to the whole apparatus
of predicates, variables, and quantifiers, (also operations and domains, if these are
present) and serves to distinguish these from propositional languages, in which
propositions, i.e., sentences, are the primitive elements, from which expressions are
formed by the action of propositional connectives. Propositional logic is essentially
trivial. The qualifier ‘first-order’ indicates that predicates (and operations and
domains, if present) are fixed. If instead we allow these to be variable, and we
quantify over them and apply second-order predicates to them, then we have a
second-order predicate language, and we can move up this hierarchy as far as we
wish. A theory of membership (regarding predicates as sets, predicates applicable
to predicates as sets of sets, and so on) can largely substitute for higher-order
predication.

Thus, ‘formal language’ and ‘logic’ most naturally refer to first-order predicate
language and logic, and for the duration of this section we will use ‘language’ to
mean ‘first-order predicate language’. A language L appropriate to a structure
S consists of expressions interpretable in S, along with relationships among these
expressions that determine relationships among their interpretations. The signature
ρ of a structure determines the languages appropriate to it, and we say that these
languages implement ρ and that they are ρ-languages.

The reader is warned that there are necessarily quite a few definitions in this
section, and we will be rather compulsive in our attention to detail. Since this is
the foundation of the rest of the work, it is best that it be perfectly sound, but it
is not necessary that the reader attend compulsively to the details.

1.3.1 Language defined

As noted above, the interpretation of an expression ϵ of a language L for a signature
ρ is determined by the interpretation of its domain, relation, and operation indices
in conjunction with the structure of ϵ, which is in turn a component of the structure
of L. A language is therefore naturally itself a structure, and we will treat it as
such.

For a given ρ, the ρ-languages constitute an homology type, and the simplest way
to define this type is by paradigm. We therefore define the standard ρ-language Lρ
below.

The important principles are adequately illustrated by the example of unisorted
languages.

(1.34) Suppose ρ “ rΠ,Φ, T s is a unisorted signature.29 We define the standard
ρ-language Lρ as follows.

29Recall that the elements of Π are the predicate or relation indices, and those of Φ are the
operation or function indices. Π X Φ “ 0. For each index X P Π Y Φ, T pXq is its arity, i.e., the
number of arguments it takes.
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1. iv
def
“ 0. vn

def
“ xiv, ny if n P ω; otherwise 0. V “ tvn | n P ωu. These are the

variables, which we regard as ordered according to their ordinal components:
v0 ă v1 ă ¨ ¨ ¨ .

2. ipred
def
“ 1. For each P P Π, P̆ def

“ xipred, P y. Pρ def
“ tP̆ | P P Πu. These are

the predicate symbols.

3. iop
def
“ 2. For each O P Φ, Ŏ def

“ xiop, Oy. Oρ def
“ tŎ | O P Φu. These are the

operation symbols.

4. i␣
def
“ 3, i^

def
“ 4, i_

def
“ 5, iÑ

def
“ 6, iØ

def
“ 7. C def

“ ti␣, i_, i^, iÑ, iØu. These
are the propositional connectives.

5. iD
def
“ 8, i@

def
“ 9. Q def

“ txq, vy | q P tiD, i@u^ v P Vu. These are the quantifier
phrases.

6. Sρ def
“ V Y Pρ YOρ Y C YQ. These are the syntactical elements or signs.

(1.35) Definition [C0]

1. Let Sρ : Sρ Ñ ω be given by

Sρς
def
“

$

’

’

’

&

’

’

’

%

0 if ς P V
1 if ς “ i␣ or ς P Q
2 if ς “ i^, i_, iÑ, or iØ
T pXq if ς “ X̆ for some X P ΠY Φ.

Sρ extends the arity function T to the full class of syntactical elements. We
will also refer to Sρς as the arity of a sign ς.

2. For ς P Sρ, we define the n-ary operation ς̂ by

ς̂xx0, . . . , xn-y
def
“ xς, x0, . . . , xn-y,

where n “ Sρς.

In the above definitions we have distinguished those classes Pρ, Oρ, Sρ, and Sρ

that are ρ-specific by the superscript ‘ρ’. Many of the definitions that follow are
also ρ-specific, but we will generally omit a distinguishing superscript when this
will occasion no confusion. Keep in mind that everything we define is germane to
the standard language Lρ but has a homolog vis-à-vis any other ρ-language, as
these are all homologous to Lρ.

If Sρpςq “ 0, then dom ς̂ “ t0u, i.e., the domain of ς̂ has just one member—
the empty sequence, which is the empty set, 0—and ς̂0 “ xςy.1.35.2 In particular,
Sρpvq “ 0 for any variable v, and v̂0 “ xvy. The only other nulary grammatical
elements are those corresponding to nulary predicate and operation indices, which
are called constants. We do not use constant predicates very much, but we use
constant operations frequently.

Definition [C0] The following definitions simplify the notation.

1. For X P ΠY Φ, X̃s def
“

ˆ̆
Xs, for any T ρpXq-sequence s of ρ-terms.

2. For v P V, v̄ def
“ v̂0.

3. For X P ΠY Φ, if T ρX “ 0, X̄ def
“ X̃0 p“ ˆ̆

X0q.

We also use these for the homologous notions in an arbitrary ρ-language.
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Figure 1.1: The expression (1.36) visualized as a tree growing downward.

1.3.1.1 Example

By way of illustration, suppose ρ has, in addition to the binary predicate index 0 for
identity, a nulary and a unary operation index. Let i“ “ xipred, 0y be the standard
sign for the index 0, and let i0 and iS be the standard signs for the additional
operation indices.30 Let 0 and S be respectively the constant term and the unary
term-building function defined by

0 def
“ ī0 “ î00 “ xi0y

Sxτy def
“ îSxτy “ xiS , τy.

For example, suppose31

ϵ “ v̄0 ‰‰‰ 0ÑÑÑDDDv1 v̄0“““Spv̄1q,

where we have used boldface symbols as in (1.21) and (1.22) to name expression-
building operations. Then

(1.36) ϵ “ xiÑ, xi␣, xi“, xv0y, xi0yyy, xxiD, v1y, xi“, xv0y, xiS , xv1yyyyy.

The data comprised by (1.36) may be visualized as a tree growing downward, as in
Figure 1.1. To define how expressions are built from signs (syntactical elements),
we must define, for each category of sign, the type of expressions that the sign acts
on (if any), and the type of expression it produces.

Definition [C0]

1. TermType def
“ 1.

2. FormulaType def
“ 2.

3. The in-type of a sign ς
def
“

InType ς def
“

$

’

&

’

%

0 if ς P V
TermType if ς P Pρ YOρ

FormulaType if ς P C YQ.
30Note that in the case of the operation indices and signs, we have simply introduced names for

the signs. We have not specified the indices and therefore have not specified the signs; and there
is no reason to do so.

31If we interpret i0 as 0 and iS as the successor operation in Peano arithmetic, then ϵ says that
if the number assigned to v0 is not 0 then it is the successor of a number.



1.3. THE STRUCTURE OF LANGUAGE 37

4. The out-type of a sign ς
def
“

OutType ς def
“

#

TermType if ς P V YOρ

FormulaType if ς P Pρ Y C YQ.

The class Eρ of expressions of Lρ is the closure of 0—the empty set—under the
operations ς̂, for ς P Sρ. Note that Eρ contains v̄ p“ v̂0 “ xvyq for every variable
v. Likewise, Eρ contains c̄ p“ ĉ0 “ xcyq for any constant predicate or operation
symbol c. All other expressions are built from these by operations ς̂, for ς P Sρ with
Sρpςq ą 0, operating on sequences of expressions. In the following discussion, the
superscript ρ may be omitted to reduce notational clutter; it is to be understood
to be present where appropriate.

The following is a formal definition of E . In the interest of efficiency we will
simultaneously define the notions of subexpression and height of expressions.

(1.37) Definition [C0] Suppose ρ is a signature.

1. Define classes Eρn and binary relations ďρ
n by recursion on n P ω so that

1. Eρ0 “ď
ρ
0“ 0; and

2. for each n P ω,
1. Eρn`1 consists of the sets ς̂t, where ς P Sρ and t is an Sρpςq-sequence

from Eρn; and
2. ď

ρ
n`1 consists of the 2-sequences xϵ, ς̂ty where ς P Sρ, and t is an

Sρpςq-sequence from Eρn and
1. ϵ “ ς̂t; or
2. ϵ ďρ

n tm for some m P dom t.

2. Eρ def
“

Ť

nPω Eρn. x is a ρ-expression
def
ðñ x P Eρ. The height of a ρ-expression

ϵ is the least n P ω such that ϵ P Eρn.

3. ďρ def
“

Ť

nPω ďρ
n. x is a subexpression of y

def
ðñ x ďρ y.

(1.38) Theorem [C0]

1. E is closed under the operations ς̂ for ς P S.

2. If E 1 is closed under the operations ς̂ for ς P S, then E Ď E 1.

Remark In other words, E is the Ď-least class closed under the operations ς̂ for
ς P S, i.e., it is the closure (of the empty class 0) under the expression-forming
operations ς̂.

Proof 1 Suppose ς P S and t is an Sρpςq-sequence from Eρ. Since Sρpςq is finite,
for some n P ω, im t Ď Eρn, so ς̂t P Eρn`1 Ď Eρ.

2 Suppose E 1 is closed under the operations ς̂ for ς P S. It is straightforward to
show by induction on n P ω that Eρn Ď E 1. 1.38

(1.39) Theorem: Unique readability [C0] For any ϵ P Eρ there exist a unique
ς P Sρ and t such that ϵ “ ς̂t.

Remark This is the unique readability property, which is required of any language.
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Proof The existence of ς and t follow directly from (1.37), and the uniqueness
follows immediately from the definition of ς̂. 1.39

(1.40)

1. Theorem 1.38 is the basis for the very useful method of proof by induction on
complexity of expressions: Suppose Θ is a property of sets that is definable by
a formula (of our metalanguage C0) in which all quantified variables are set
variables, so that we may infer that there is a class T that consists of exactly
the sets satisfying Θ. Note that Θ may involve proper classes as constants
or unquantified variables. If we show that ς̂t P T for any ς P Sρ and any
t : Sρpςq Ñ T , then we may conclude that E Ď T , i.e., Θ holds for all ρ-
expressions.

2. Similarly, a function F may be defined for all expressions by recursion on
complexity by giving F pς̂tq in terms of xFη | η P im ty.

(1.41) Definition [C0]

1. Suppose ϵ “ ς̂t is an expression. ImSubexpr ϵ def
“ im t. The members of

ImSubexpr ϵ are the immediate subexpressions of ϵ.

2. We define the function Subexpr : E Ñ P E by recursion on complexity of
expressions so that

Subexpr ϵ “ tϵu Y
ď

ηPImSubexpr ϵ

Subexpr η.

The members of Subexpr ϵ are the subexpressions of ϵ.

3. Note that ϵ is a subexpression of ϵ. The proper subexpressions of ϵ are the
subexpressions of ϵ other than ϵ.

Note that if ϵ “ ς̂t then1.41.2

Subexpr ϵ “ tϵu Y
ď

ηPim t

Subexpr η,

from which we see that (1.41.2) is indeed a definition by recursion on complexity
as described in (1.40.2).

(1.40) reflects the wellfoundedness3.76 of ď. (1.41) takes advantage of this to give
another definition of subexpression, already defined in (1.37). It has the advantage
of allowing an easy inductive proof that the subexpressions of given expression
constitute a finite set. Note that (1.41) does not render (1.37) superfluous, as the
latter is the primary definition of Eρ and also provides a direct definition of the
height of an expression. The following theorem summarizes these observations.

(1.42) Theorem [C0] For all ϵ P Eρ

1. ImSubexpr ϵ and Subexpr ϵ are finite sets.

2. Subexpr ϵ “ tϵ1 P Eρ | ϵ1 ďρ ϵu.1.37.3

3. ďρ is a wellfounded partial order on Eρ.

Proof 1, 2 Induction on complexity.
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3 As noted above, this is inherent in (1.40). To see it directly, note that any class
of expressions contains a member with minimum height (using the fact that pω;ăq
is wellordered), which must be ďρ-minimal. 1.42

Definition [C0]

1. A ρ-expression ϵ is a ρ-term
def
ðñ ϵ “ ς̂t, where OutType ς “ TermType.

1. T ρ def
“ the class of ρ-terms.

2. A ρ-term τ is a variable-term
def
ðñ τ “ v̄ p“ v̂0q, where v P V.32

2. A ρ-expression ϵ is a ρ-formula
def
ðñ ϵ “ ς̂t, where OutType ς “ FormulaType.

1. Fρ def
“ the class of ρ-formulas.

2. A ρ-formula ϕ is atomic or simple
def
ðñ ϕ “ ς̂t, where ς P Pρ, i.e., ς is a

predicate sign.

3. A formula ϕ is complex or compound
def
ðñ it is not simple.

3. An expression is quantifier-free
def
ðñ it has no subexpression ς̂s, where ς is a

quantifier phrase.

(1.43) Theorem [C0]

1. Every subexpression of a term is a term.
2. Every proper subexpression of an atomic formula is a term.
3. Every term and every atomic formula is quantifier-free.

Proof A straightforward induction on complexity of expressions.1.40 1.43

(1.44) Definition C0 We now formally define Lρ to be a multisorted structure with
the following features:

1. The domains are V, T ρ, Fρ, and Eρ; the last being the universal domain for
this structure, i.e., everything is an expression.

2. The operations are as follows.
1. ς̂ for each sign ς P V Y Pρ YOρ Y C.
2. q̃ for each q P tiD, i@u, where

q̃xv, ϕy def
“ xxq, vy, ϕy,

for any v P V and ϕ P Fρ, i.e., q̃xv, ϕy “ Q̂ϕ, where Q “ xq, vy.
3. There is just one predicate, viz., identity.

Note that (1.44) specifies Lρ only up to homologic equivalence, inasmuch as
it does not specify a signature, and indeed there is no real need to be any more
specific than this. Nevertheless, for some purposes it is convenient to presume
the specification of a signature to facilitate reference to expressions in the corre-
sponding (meta)language. We will return to this after we present some convenient
typographical conventions that also serve this purpose.

32Note that all standard languages have the same variable-terms, independent of the signature
ρ.
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1.3.2 Metalanguage conventions

Definition [C0] A ρ-translation (or simply translation if ρ is understood) is a
homology of Lρ.1.32

A ρ-translation establishes a connection between Lρ and a structure S by virtue of
which S may be considered a language appropriate to ρ.

Definition [C0] We define a ρ-language to be any structure S related to Lρ by a
translation, together with such a translation.

There is often no need to specify a ρ-language in much detail. It is much more useful
to have a natural system of metalanguage names for the domains and expression-
building operations, and we have already indicated the elements of such a system.
These names may be regarded as applying to any ρ-language.

(1.45)

1. We adopt ‘V’, ‘T ’, ‘F ’, and ‘E’ as metalanguage names for the various do-
mains.

2. A systematic nomenclature for argument-specification operations has been pre-
sented above.1.20 In this system, if ‘X’, for example, is used in the metalanguage
to refer to a predicate or operation index, then ‘X̃’ may be used to refer to the
corresponding argument-specification operation.

3. The operations that form complex (i.e., nonatomic) formulas we often repre-
sent by the bold versions—‘␣␣␣’, ‘^̂̂’, ‘___’, ‘ÑÑÑ’, ‘ØØØ’, ‘@@@’, and ‘DDD’—of the usual
symbols for these logical notions.1.21,1.22

4. We may extend this practice to (some) predicate and operation symbols in
a typographical object language. To give a nearly universal example, ‘“““’ re-
presents the operation of forming the formula that relates two terms by the
identity predicate. When we discuss the language of membership we often use
‘PPP’ in this way.

5. Binary propositional connectives and binary object-language predicates and op-
erations lead to binary expression-building operations, and for these we rou-
tinely use the convention of placing the corresponding metalanguage sym-
bol between the arguments, as we do with binary operation symbols in typo-
graphical languages generally. The object-language quantifiers also correspond
to binary expression-building operations—taking a variable and a formula as
arguments—but for these we retain in the metalanguage the same order that
is standard for quantifier expressions themselves in typographical languages.

6. To reduce notational clutter, we will often conflate a variable v with the cor-
responding term v̄ p“ v̂0q.1.35.3 Similarly, we may conflate a constant (nulary)
predicate or operation index X with the corresponding formula or term X̄.
For the duration of this chapter, however, for the sake of consistency we will
adhere to precise usage.

Definition [C0]

1. A language L is a standard language
def
ðñ L is the standard ρ-language for a

standard1.33 signature ρ.
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2. L is the standard language
def
ðñ L is the standard ρ-language for the (full)

standard signature ρ.

3. A standard expression def
“ an expression of the standard language.

Note that any countable language is homologous to a sublanguage of the standard
language, and we could restrict our attention to the standard language if we wished.

1.3.3 Diagrams, occurrences, and binding

As we have previously observed, the definition we have given of expression is ob-
viously only one of many that would serve our purpose. For some purposes it is
convenient to use an alternative construct that renders more explicit the relation-
ships among subexpressions and signs within an expression. We call these objects
diagrams. By way of illustration, consider the expression ϵ of (1.36) written in
an “exploded” format, with each sign on a separate line and its place within ϵ
represented numerically in the obvious way.

xiÑ, xi␣, xi“, xv0y, xi0yyy, xxiD, v1y, xi“, xv0y, xiS , xv1yyyyy

xiÑ,
0 xi␣,
00 xi“,
000 xv0y,

001 xi0yyy,
1 xxiD, v1y,

10 xi“,
100 xv0y,

101 xiS ,
1010 xv1yyyyy

Note that all the relevant information is contained in the function

tpx y, iÑq,
px0y, i␣q,
px0, 0y, i“q,
px0, 0, 0y, v0q,

px0, 0, 1y, i0q,
px1y, xiD, v1yq,

px1, 0y, i“q,
px1, 0, 0y, v0q,

px1, 0, 1y, iSq,
px1, 0, 1, 0y, v1qu,

(1.46)

where we have used ‘x y’ to denote the empty sequence—which is also the empty
set—to emphasize the regularity of the construction. This is the diagram of ϵ.

Figure 1.2 illustrates the domain of the diagram (1.46) as a tree growing down-
ward, as is conventional for sequence trees. This figure may be overlaid on Figure 1.1
to represent the diagram per se.
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x y
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x1, 0y

yyy
y IIII

x0, 0, 0y x0, 0, 1y x1, 0, 0y x1, 0, 1y

x1, 0, 1, 0y

Figure 1.2: The domain of the diagram (1.46) visualized as a tree growing down-
ward.

Definition [C0] We define the diagram of an expression by recursion on complexity
as follows.

∆pς̂sq def
“ tp0, ςqu Y

␣`

xmy ⌢ p, p∆ smqppq
˘ ˇ

ˇm P |s| ^ p P domp∆ smq
(

.

It is clear that the diagram of a ρ-expression is a ρ-diagram as defined below. It is
also clear that for each ρ-diagram δ in this sense, there is a unique ρ-expression ϵ
such that ∆ ϵ “ δ.

Definition [C0]

1. A ρ-diagram is a finite function δ such that

1. dom δ Ď ăωω is a nonempty sequence tree;33

2. im δ Ď Sρ;
3. for every p P dom δ

1. tm | p ⌢xmy P dom δu “ Sρpδpq;34

2. @m P Sρpδpq OutType δpp ⌢xmyq “ InType δppq.

2. Given a ρ-diagram δ, Eδ def
“ the (unique) ρ-expression ϵ such that ∆ ϵ “ δ.

Definition [C0]

1. If δ is a diagram, we call the elements of dom δ places in δ.

2. A place in an expression ϵ is a place in ∆ ϵ.

3. Suppose p is a place in a diagram δ.

1. The subdiagram of δ at p def
“ ∆δ,p def

“

tpp1, ςq | pp ⌢ p1, ςq P δu.

2. ∆δ,p occurs at p in δ.

4. Suppose p is a place in an expression ϵ.
33T Ď ăωω is a sequence tree iff for every s P T and m P |s|, s æm P T . Sequence trees are

conventionally visualized as “growing downward” as in Figure 1.2.
34Note that tm | p ⌢xmy P dom δu is required to be the ordinal Sρpδppqq, i.e., the set

t0, 1, . . . , Sρpδppqq ´ 1y.
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1. The subexpression of ϵ at p def
“ Eϵ,p

def
“ E

`

∆∆ ϵ,p
˘

.
2. Eϵ,p occurs at p in ϵ.

5. An expression ϵ1 occurs in ϵ
def
ðñ for some place p in ϵ, ϵ1 occurs at p in ϵ.

If ϵ1 “ Q̂ϕ, where Q P Q is a quantifier phrase, we will also refer to Q as
occurring at p in ϵ.

6. An occurrence in ϵ is a 2-sequence xp, xy such that p is a place in ϵ and x
is the expression—or quantifier phrase—that occurs at p in ϵ. We will refer
to an occurrence of a quantifier phrase as a ‘quantifier phrase occurrence’ or
simply as a ‘quantifier occurrence’.

(1.47) In practice, we use ‘diagram’ and ‘expression’ interchangeably, so that we
may refer to a diagram occurring in an expression, for example.

Using the example (1.46), the diagram

tpx y, i“q,
px0y, v0q,

px1y, iSq,
px1, 0y, v1qu

occurs at x1, 0y in ϵ and the corresponding subexpression is

v̄0“““Spv̄1q p“ xi“, xv0y, xiS , xv1yyyq.

A simple proof by induction on complexity of expressions,1.40 shows that the subex-
pressions of ϵ are exactly those expressions that occur in ϵ; a given expression may
occur at more than one place in ϵ.

Employing the convention (1.45.6) we may refer to an occurrence of a variable term
v̄ as an occurrence of the corresponding variable v.

Definition [C0] Suppose ϵ is an expression.

1. Suppose ϖ “ xp, v̄y, is an occurrence of a variable v at p in ϵ.

1. ϖ is bound by a quantifier phrase occurrence ϖ1 “ xp1, Qy
def
ðñ

1. Q is xiD, vy or xi@, vy;
2. p1 Ď p; and
3. there does not exist a quantifier occurrence ϖ2 “ xp2, Q1y, such that
Q1 is xiD, vy or xi@, vy, and p1 ⫋ p2 Ď p.

In other words, a variable occurrence is bound by the first corresponding
quantifier phrase occurrence encountered moving up the diagram tree (as
in Figure 1.1), if any.

2. ϖ is bound in ϵ
def
ðñ it is bound by some quantifier occurrence in ϵ.

3. ϖ is free in ϵ
def
ðñ it is not bound in ϵ.

2. Suppose v is a variable. v is free in ϵ
def
ðñ there is an free occurrence of v in

ϵ.

3. Free ϵ def
“ the set of variables free in ϵ.
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If ϵ2 is a subexpression of ϵ1, which is a subexpression of ϵ, then ϵ2 is also a subex-
pression of ϵ, and we informally conflate any occurrence of ϵ2 in ϵ1 with the cor-
responding occurrence in ϵ—i.e., if xp1, ϵ1y is an occurrence in ϵ, and xp2, ϵ2y is an
occurrence in ϵ1, then, letting p “ p1 ⌢ p2, we refer to xp, ϵ2y as the “same occur-
rence” of ϵ2 (in ϵ) as xp2, ϵ2y (in ϵ1).

With this notion of an occurrence “maintaining its identity” as a complex expression
is “built” from simpler expressions, we may state the critical observation that if a
variable occurrence is bound by a quantifier occurrence in an expression ϵ, it remains
bound by that occurrence in any expression ϵ1 of which ϵ is a subexpression.

1.3.4 Substitution

(1.48) Definition [C0] The result of substituting a diagram η at a place p in a
diagram δ

def
“

δ
␣

p
η

( def
“ tpp1, ςq P δ | p Ę p1u Y tpp ⌢ q, ςq | pq, ςq P ηu.

We use the same terminology and notation with reference to expressions.1.47

In effect, δ
␣

p
η

(

is the result of excising ∆δ,p from δ and replacing it with η. Letting

η1 “ ∆δ,p, we therefore also refer to the substitution of η at p as substitution of η
for the occurrence of η1 at p in δ. Note that δ

␣

p
η

(

is a diagram iff OutTypepη0q “
OutTypepδpq. In other words, we may substitute any term for any occurrence of a
term and any formula for any occurrence of a formula, but we may not substitute
a term for an occurrence of a formula or vice versa.35

1.3.4.1 Simultaneous substitutions

Multiple substitutions may be performed sequentially; if the respective places of
substitution are incomparable, i.e., none is an initial segment (i.e., subset) of any
other, then the order of substitution is irrelevant, and the substitutions may be
regarded as simultaneous.

(1.49) Definition [C0] We indicate the result of the simultaneous substitution of
expressions ϵ0, . . . , ϵn- at incomparable places p0, . . . , pn- in an expression ϵ as36

ϵ
␣

p0 ¨ ¨ ¨ pn-

ϵ0 ¨ ¨ ¨ ϵn-

(

.

The commonest substitutions are of terms for variables.1.11, 1.15 It usually only makes
sense to substitute a given term for all free occurrences of a variable in a given for-
mula or term—i.e., we typically do not want to substitute for bound occurrences
of variables, and we typically do not want to substitute for some, but not all, free
occurrences. We frequently want to describe multiple simultaneous such substitu-
tions. Since variables are nulary signs, the respective places of distinct occurrences
of variables are automatically incomparable.

35For a multisorted language, terms must also be of the correct sorts.
36Note that this is a variation on the notation (3.56) for finite functions. We can also indicate

this substitution as ϵtSu, where S “
@p0 ¨ ¨ ¨ pn-

ϵ0 ¨ ¨ ¨ ϵn-

D

. The use of curly brackets simply indicates that

this is a substitution of expressions at places.
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(1.50) Definition [C0] Suppose ϵ is an expression, v0, . . . , vn- are distinct variables,
and τ0, . . . , τn- are terms. Then ϵ

`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘ def
“ the result of substituting τm for all

the free occurrences of vm, for all m P n.37

Note that this notation is specific to substitution for variables, and as a way of
emphasizing this specificity we show variables v rather than their terms v̄ as the
destinations of the substitutions. To compare this notation to (1.49), note that if
p0
m, . . . , p

km
-

m are the places where vm occurs free in ϵ, then

ϵ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

“ ϵ
␣

p
0
0 ¨ ¨ ¨ p

k0
-

0 ¨ ¨ ¨ p
0
n- ¨ ¨ ¨ p

kn- -

n-
τ0 ¨ ¨ ¨ τ0 ¨ ¨ ¨ τn- ¨ ¨ ¨ τn-

(

.

It is not always necessary to be specific as to the identity of the variables involved
in a substitution.

(1.51) Definition [C0] Suppose ϵ is an expression with exactly one free variable u,
and τ is a term. Then

ϵpτq
def
“ ϵ

`

u
τ

˘

.

If ϵ has more than one free variable we may use a similar notation, with the un-
derstanding that the same variables occur in the same order in all substitutions so
indicated in a given expression in a given discussion. Ordinarily in such a case the
substitutions involve all the free variables of ϵ, so it is only the order of variables
that is left unstated. As a convenience, if ϵ has no free variables, ϵpτq def

“ ϵ.

1.3.5 A useful quotation convention

(1.52)

1. When an informal expression is flanked by corner quotes, the result is a meta-
language term that refers to a formal expression of Ls that is equivalent to the
quoted expression over whatever theory is in force at the time. For example,

xno set is a member of itself y

refers to an expression such as

@@@v ␣␣␣ v PPP v,

where v is a variable, which need not be specified.38

2. We extend this notation to construct metalanguage terms for object-language
expressions, with (often implicit) variables for which metalanguage terms de-
noting object-language expressions may be substituted.39 For example,

(1.53) xif pϕØØØψq then pθqy

37This is again a variation on the notation (3.56) for finite functions. We can also indicate this

substitution as ϵpSq, where S “
@v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

D

. The use of round brackets simply indicates that this

is a substitution of terms for free variables.
38The critical difference between this sort of quotation and previous quotation conventions, viz.,

(1.4) and (1.8), is that a name formed by quotation in this way does not denote a specific formal
expression: any instance of it may be replaced by any equivalent expression. Its purpose is to
promote readability by extending the informal style of our metalanguage to descriptions of object
language expressions.

39Such a metalanguage expression is therefore a “pattern” for constructing object-language
expressions, often referred to as a ‘schema’.
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may be understood to refer to

pϕØØØψqÑÑÑ θ.

(1.53) would look more conventional if we used metalanguage variables, say ‘u’ and
‘v’, and let τ be the metalanguage term if u then v.1.8 Then (1.53) is

τ
`

u v
ϕØØØψ θ

˘

,

with the customary use of round brackets to indicate substitution.1.50 The use of
round brackets as in (1.53) to indicate substitution “in stream” is therefore appro-
priate; we use a light typeface for the brackets in this situation both to distinguish
them from round brackets that may otherwise be part of the quoted text, and to
be relatively unobtrusive. They are usually omitted altogether in discussion of this
sort, so that (1.53) is rendered as

xif ϕØØØψ then θy.

The quotation marks are also frequently omitted, leaving

if ϕØØØψ then θ.

These conventional notations—while ultimately harmless—are technically mean-
ingless, and misleading to the extent that they are meaningful, and require more
interpretive effort from the reader than a precise notation. When clarity is not at
risk, however, we may indulge in notational abuses of this sort.

1.3.6 Change of variables

(1.54) Definition [C0] Suppose ϵ is an expression and ι is a function that assigns
a variable to each quantifier occurrence in ϵ. Let δ “ ∆ϵ and let δ1 be the diagram
such that dom δ1 “ dom δ and for every p P dom δ, letting ς “ δp, ϖ “ xp, ςy, and
ς 1 “ δ1p,

1. if ς P Q then, letting ς “ xq, vy, where q P tiD, i@u and v P V, ς 1 “ xq, ιϖy;

2. if ς P V and ϖ is bound by a quantifier occurrence ϖ0 in ϵ then ς 1 “ ιϖ0;

3. otherwise ς 1 “ ς.

Note that δ1 is indeed a diagram. A change of variables§ 1.1.8.3 for ϵ is a function ι
as above such that the binding structure of δ1 is the same as that of δ, i.e., for any
p, p0 P dom δ, xp0, δp0y binds xp, δpy in δ iff xp0, δ

1p0y binds xp, δ1py in δ1. Letting
ϵ1 “ Eδ1, we say that ϵ1 is the result of applying the change of variables ι to ϵ. Note
that free variable occurrences are not affected by a change of variables.

For example, let
ϵ “ @@@u@@@v pR̃xu,wyÑÑÑ@@@u R̃xv, uyq.

Let ϖ0, ϖ1, ϖ2 be the quantifier occurrences in ϵ in the order shown above, i.e.,

ϖ0 “ x0, xi@, uyy
ϖ1 “ xx0y, xi@, vyy
ϖ2 “ xx0, 0, 1y, xi@, uyy.
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Let ι be given by

ϖ0 ÞÑ v

ϖ1 ÞÑ u

ϖ2 ÞÑ w.

Then
ϵ1 “ @@@v @@@u pR̃xv, wyÑÑÑ@@@w R̃xu,wyq.

Since ϵ1 has the same binding structure as ϵ, ι is a change of variables for ϵ.
Suppose instead that ι is given by

ϖ0 ÞÑ v

ϖ1 ÞÑ u

ϖ2 ÞÑ u.

Then
ϵ1 “ @@@v @@@u pR̃xv, wyÑÑÑ@@@u R̃xu, uyq,

which does not have the same binding structure as ϵ (the first argument of the
second occurrence of R is bound too soon), so ι is not a change of variables for ϵ.

Now suppose ι is given by

ϖ0 ÞÑ u

ϖ1 ÞÑ w

ϖ2 ÞÑ u.

Then
ϵ1 “ @@@u@@@w pR̃xu,wyÑÑÑ@@@u R̃xw, uyq,

which also does not have the same binding structure as ϵ (the second argument of
the first occurrence of R is bound), so ι is not a change of variables for ϵ.

(1.55) Suppose ϵ is an expression, B and F are the sets of variables that occur
respectively bound and free in ϵ,40 i : B inj

Ñ V, and F X im i “ 0. Let ι be a function
that assigns to each quantifier occurrence ϖ “ xp, xq, vyy in ϵ the variable iv. Then
(it is easy to see that) ι is a change of variables for ϵ.

This is useful if we want to substitute a term τ (for a free variable) in ϵ, and we
don’t want a variable in τ to be accidentally bound by a quantifier in ϵ. Of course,
in this case we would impose the additional condition that im iX Free τ “ 0.

1.4 Interpretation

Suppose L and S are respectively a language and a structure with the same sig-
nature ρ. Then it makes sense to interpret the expressions of L in the context of
S—indeed, that is the whole point of L. Here, as in most of what follows, we
restrict our comments to unisorted signatures. It is not difficult to work out the
general theory.

40Note that B and F need not be disjoint.
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1.4.1 Assignments to variables

As we have already noted, an interpretation does not give a specific denotation
to variables. Nevertheless, in order to give a formal definition of when a formula
containing quantifiers is true in a given interpretation, we must have a notion of
assigning specific values to variables.

It is clear that in a formula such as @@@v ϕ or DDDv ϕ it would not make sense to
assign a specific value to v. On the other hand, if v occurs free in ϕ then it does
make sense to assign v a specific denotation, and the meaning of ϕ depends on the
assignment.

Definition [C0] Suppose S is a ρ-structure and ϵ is a ρ-expression. An S-
assignment for ϵ is a finite function from a subset of V into |S| whose domain
includes Free ϵ.

Note that—being a finite class—an assignment is necessarily a set.
It will be convenient to be able to form chains of assignments, with later assign-

ments taking precedence over earlier assignments in case of disagreement, i.e., if A
and B are assignments, then AB is the assignment with domain domA Y domB
and

pABqv “

#

Bv if v P domB

Av otherwise.

For assignments, as for substitutions, we frequently use the notation (3.56) for finite
functions. Note that if

A “
@

u0 . . . um-

x0 . . . xm-

D

B “
@

v0 . . . vn-

y0 . . . yn-

D

,

then
AB “

@

u0 . . . um- v0 . . . vn-

x0 . . . xm- y0 . . . yn-

D

.

(See the comment following Definition 3.56.) To indicate the role of such a finite
function as an assignment, we use square brackets in a manner analogous to the
use of round brackets for substitutions, e.g., ‘

“

v
a

‰

’ for ‘
@

v
a

D

’.

1.4.2 Interpretation in structures

1.4.2.1 Evaluation of terms

We define the value of a ρ-term τ in the ρ-structure S at an S-assignment A for
τ by recursion on xτ, Ay. In the terminology of our basic theorem on recursive
definition,3.80

1. let X be the class of 2-sequences xτ, Ay, where τ is a ρ-term and A is an
S-assignment A for τ ;

2. let R be the binary relation X defined by the condition that

(1.56) xτ 1, A1yR xτ, Ay iff τ 1 P ImSubexpr τ and A1 Ď A;

3. let G be the function whose domain consists of all 2-sequences xx, fy such
that x P X and f is a function with dom f “ RÐtxu, such that for all
xx, fy P domG,
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1. if x “ xv̄, Ay, where v P V (so RÐtxu “ 0), then Gxx, 0y “ Av; and

2. if x “
@

F̃ xτ0, . . . , τn-y, A
D

, where F is an n-ary operation index (so
@m P n xτm, Ay P dom f), then

Gxx, fy “ FS
@

fxτ0, Ay, . . . , fxτn- , Ay
D

.

R is obviously wellfounded. By virtue of (1.56), since assignments are finite by
definition, for any xτ, Ay P X, RÐtxτ, Ayu is finite and is therefore a set; hence, R
is setlike. Theorem 3.80 therefore applies, and the following definition is justified.

(1.57) Definition [C0] Suppose S is a ρ-structure. We define ValS τ rAs by R-
recursion on xτ, Ay so that for any ρ-term τ and S-assignment A for τ ,

1. if τ “ v̄ then ValS τ rAs “ Av; and

2. if τ “ F̃ xτ0, . . . , τn-y then

ValS τ rAs “ FSxValS τ0rAs, . . . ,ValS τn-rAsy.

1.4.2.2 Evaluation of formulas

We may describe the evaluation of a formula ϕ under a given interpretation as the
assignment of a truth-value, and we have previously argued that the sets 1 and 0
naturally correspond to true and false, respectively.

A valuation function for formulas for a structure S is naturally regarded as an
extension of the valuation function ValS for terms. As will become clear, when S
is a proper class it is not possible to formulate this definition as a recursion as in
(1.57), and we must deal with partial valuation functions. As always, we require
that the domain of an assignment contain all the free variables of the formula under
consideration, but it may be larger than that.

(1.58) Definition [C0] Suppose S is a ρ-structure.

1. Suppose E Ď Eρ, i.e., E is a class of ρ-expressions. Let E be the class of
subexpressions of members of E. An E-valuation function for S

def
“ a function

F such that domF consists of all 2-sequences xϵ, Ay such that ϵ P E and A is
an S-assignment for ϵ, and for any xϵ, Ay P domF

1. if ϵ “ v̄ then F xϵ, Ay “ Av;
2. if ϵ “ X̃xτ0, . . . , τn-y, where X is an n-ary operation index, then

F xϵ, Ay “ XSxF xτ0, Ay, . . . , F xτn- , Ayy;

3. if ϵ P Fρ then F xϵ, Ay P 2 p“ t0, 1uq;
4. if ϵ “ X̃xτ0, . . . , τn-y, where X is an n-ary predicate index, then

F xϵ, Ay “ 1Ø
@

F xτ0, Ay, . . . , F xτn- , Ay
D

P XS;

5. if ϵ “ ␣␣␣ψ then F xϵ, Ay “ 1ØF xψ,Ay “ 0;
6. if ϵ “ ψ0___ψ1 then F xϵ, Ay “ 1ØF xψ0, Ay “ 1_F xψ1, Ay “ 1;
7. if ϵ “ ψ0 ^̂̂ψ1 then F xϵ, Ay “ 1ØF xψ0, Ay “ 1^F xψ1, Ay “ 1;
8. if ϵ “ ψ0ÑÑÑψ1 then F xϵ, Ay “ 1ØpF xψ0, Ay “ 1ÑF xψ1, Ay “ 1q;
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9. if ϵ “ ψ0ØØØψ1 then F xϵ, Ay “ 1ØpF xψ0, Ay “ 1ØF xψ1, Ay “ 1q;
10. if ϵ “ DDDv ψ then F xϵ, Ay “ 1ØDa P |S| F

@

ψ,A
@

v
a

DD

“ 1; and

11. if ϵ “ @@@v ψ then F xϵ, Ay “ 1Ø@a P |S| F
@

ψ,A
@

v
a

DD

“ 1.

2. A partial valuation function for S
def
“ a E-valuation function for S for some

E Ď Eρ.

3. A partial valuation function F for S covers E
def
ðñ F includes a E-valuation

function for S.

4. A valuation function for S
def
“ an Eρ-valuation function for S.

(1.59) Theorem [C0] Suppose ρ is a signature, E Ď Eρ, and S is a ρ-structure. If
there exists an E-valuation function for S then it is unique.

Proof This is a straightforward induction on the complexity of expressions occur-
ring in the 2-sequences xϵ, Ay, using the wellfoundedness of ďρ.1.42.3 1.59

It is somewhat more natural and parsimonious to refer to ϕ as true or false under
an interpretation pS, Aq rather than having the value trueness or falseness. We may
also say that a structure S satisfies a formula ϕ at an assignment A. A satisfaction
relation for S is the class of 2-sequences xϕ,Ay such that A is an S-assignment for
ϕ and S satisfies ϕ at A. We define satisfaction in terms of valuation for formulas
as follows.

Definition [C0] Suppose ρ is a signature and E Ď Eρ.

1. If F is a E-valuation function for S then the corresponding E-satisfaction
relation for S

def
“ the class of xϕ,Ay such that ϕ P Fρ, xϕ,Ay P domF , and

F xϕ,Ay “ 1.

2. S is an E-satisfaction relation for S
def
ðñ S corresponds to an E-valuation

function for S.

3. We define partial satisfaction relation, etc., correspondingly.

4. A partial satisfaction relation S covers E
def
ðñ S is an E1-satisfaction relation

for some E1 Ď Eρ such that E Ď E1.

Obviously, a valuation function and a satisfaction relation for formulas are inter-
changeable entities, and we will use one or the other as suits our convenience.

In view of Theorem 1.59 we often refer to the satisfaction relation in a given
context, even if we have not shown (or cannot show) that one exists. This is
reasonable in that only in exceptional and rather artificial circumstances can it be
shown that a satisfaction relation does not exist.

(1.60) Definition [C0] Suppose S is a ρ-structure.

1. S is weakly satisfactory
def
ðñ for every finite set Φ of ρ-formulas there is a

Φ-satisfaction relation for S.

2. S is strongly satisfactory or simply satisfactory
def
ðñ there is a satisfaction

relation for S.



1.4. INTERPRETATION 51

(1.61) Definition [C0] Suppose S is a ρ-structure.

1. Suppose ϕ is a ρ-formula and A is an S-assignment for ϕ. Then S satisfies ϕ
at A

def
ðñ S |ù ϕrAs

def
ðñ for every tϕu-satisfaction relation S for S, xϕ,Ay P

S.

2. If ϕ is a sentence, i.e., Freeϕ “ 0, then S |ù ϕ
def
ðñ S |ù ϕr0s.

3. If Θ is a class of ρ-sentences then S |ù Θ
def
ðñ @θ P Θ S |ù θ. We also say

that S models or is a model of Θ.

4. As a convenience, given a ρ-formula ϕ, a partial satisfaction relation S for
some ρ-structure S, and an S-assignment A for ϕ, |ùS ϕrAs

def
ðñ S is a par-

tial satisfaction relation that covers tϕu, and xϕ,Ay P S (in terms of valuation
functions, xϕ,Ay P domS and Sxϕ,Ay “ 1).

Following a convention similar to that for substitutions1.51 we may omit explicit
mention of variables in the indication of assignments. Thus, ‘ϵras’ may be used for
‘ϵ
“

u
a

‰

’ if Free ϵ “ tuu. Expressions like ‘ϵra1, . . . , ans’ may also be used.

(1.62) Assignment to variables may be indicated “in stream” in a manner analogous
to substitution.1.52.2

1. Thus, for example,
ValS x . . . rxs . . . rys . . . y

and
S |ù x . . . rxs . . . rys . . . y

indicate the assignment of individuals x, y P |S| to variables implicitly present
in the expressions—nominative and declarative, respectively—flanked by cor-
ner quotes.

2. We may also indicate the structure as a superscript, so

x . . . rxs . . . rys . . . y
S def
“ ValS x . . . rxs . . . rys . . . y

for nominative expressions, and

x . . . rxs . . . rys . . . y
S def
ðñ S |ù x . . . rxs . . . rys . . . y

for declarative expressions.41

Definition 1.61 is a little peculiar in that it does not require the existence of a tϕu-
satisfaction relation in order that S |ù ϕrAs—indeed, if there is no tϕu-satisfaction
relation then S |ù ϕrAs by default! It might seem more reasonable to substitute
existential quantification over satisfaction relations for the universal quantification
in (1.61.1). Note that by virtue of the uniqueness of satisfaction relations,1.59 sat-
isfaction in the latter sense would imply satisfaction in the sense we have defined.
The two notions are equivalent to the extent that the existence of satisfaction re-
lations is demonstrable. As we will see, this existence question, for proper class
structures, is just at the boundary of provability, and the definition we have given
is precisely calibrated to serve in this setting.

41The last form should only be used when a suitable partial satisfaction relation exists.
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The following theorem shows that the fussiness of (1.61) is unnecessary for
structures that are sets. The reader should be aware that the extension of the theory
of satisfaction to proper class structures as defined above and used throughout this
book is not standard in the literature. Its status and purpose are described at some
length in the summary of this chapter and in the article [27].

(1.63) Theorem [C0] Every set structure is satisfactory.

Proof This follows from our general theorem on definition by recursion.3.80 It is
convenient to frame the argument in terms of valuation functions. Suppose S is a
ρ-structure that is a set. We must exercise a little caution in view of the fact that
without the axiom of infinity, the class of variables may be proper. Thus, we initially
let X be the class of 2-sequences xϕ,Ay where ϕ P Fρ and domA : Freeϕ Ñ |S|.
Define the relation R on X so that xψ,ByRxϕ,Ay iff ψ P ImSubexprϕ and @u P
FreeψXFreeϕ Bu “ Au. Note that Freeψ Ď Freeϕ unless ϕ “ ς̂t where ς “ xq, uy
is a quantifier phrase,1.34.5 in which case Freeψ Ď FreeϕY tuu. In the former case,
if xψ,ByRxϕ,Ay then B “ A æFreeψ, whereas in the latter case, B “ AY tpu, aqu
for some a P |S| if u P Freeψ, otherwise B “ A. In any event, since ϕ has only
finitely many (0, 1 or 2) immediate subexpressions, RÐxϕ,Ay is a set.

R is wellfounded because ď is wellfounded,1.42.3 and it is clearly irreflexive, so
Theorem 3.80 applies, and it is straightforward to rework the definition1.58 of the
satisfaction relation on X to refer instead to a valuation function F : X Ñ 2.

Now we simply eliminate the restriction that domA “ Freeϕ for xϕ,Ay P X by
letting F xϕ,Ay “ F xϕ,A æFreeϕy, where A is any S-assignment for ϕ. 1.63

Since languages are infinite, satisfaction relations are infinite, even for finite
structures. If all sets are finite, therefore, satisfaction relations are proper classes.
For this reason, (1.63) is not a theorem of S0. Note, however, that if S is an infinite
set structure (and infinite sets therefore exist) then its satisfaction relation is also
a set. We therefore have the following version of (1.63).

(1.64) Theorem [ZF] Every structure is satisfactory.

Given (1.64) and the well established adequacy of ZF as a metatheory, one may
well ask whether our emphasis on proper class structures and the attendant issues
of satisfactoriness is warranted. Rest assured, the small additional effort that is
required to treat this topic now will be amply compensated in the chapters that
follow.

(1.65) Theorem [C0] Suppose S is a ρ-structure.

1. Suppose ϕ is an atomic ρ-formula. Then the tϕu-satisfaction relation for S
exists.

2. Suppose ψ0, ψ1, ϕ are ρ-formulas, v is a variable, and the tψ0u- and tψ1u-
satisfaction relations for S exist. Then the tϕu-satisfaction relation for S
exists if

1. ϕ is a subformula of ψ0;
2. ϕ “ ψ0pT q, where T is a substitution for (some or all) free variables of
ψ0;

3. ϕ “ ␣␣␣ψ0, ψ0___ψ1, ψ0 ^̂̂ψ1, ψ0ÑÑÑψ1, ψ0ØØØψ1, DDDv ψ0, or @@@v ϕ0.

Proof Straightforward. 1.65
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We use (1.65) to show that the satisfaction predicate as defined in (1.61.1)
has the expected dependence on syntax even for proper class structures, with the
exception of the negation operation.

(1.66) Theorem [C0] Suppose S is a ρ-structure and ϕ is a ρ-formula.

1. Suppose ϕ “ P̃ xτ0, . . . , τn-y, where P is an n-ary ρ-predicate index and τ0, . . . , τn-

are ρ-terms. Then

S |ù ϕrAsØ
@

ValS τ0rAs, . . . ,ValS τn-rAs
D

P PS.

2. Suppose ϕ “ ␣␣␣ψ. If there exists a tϕu-satisfaction relation for S then there
exists a tψu-satisfaction relation for S , and

S |ù ϕrAsØS*ψrAs;

but if there does not exist a tϕu-satisfaction relation for S then there does not
exist a tψu-satisfaction relation, and

S |ù ϕrAs^S |ù ψrAs.

3. Suppose ϕ “ ψ0 ^̂̂ψ1. Then

S |ù ϕrAsØ
`

S |ù ψ0rAs^S |ù ψ1rAs
˘

.

4. Suppose ϕ “ ψ0___ψ1. Then

S |ù ϕrAsØ
`

S |ù ψ0rAs_S |ù ψ1rAs
˘

.

5. Suppose ϕ “ ψ0ÑÑÑψ1. Then

S |ù ϕrAsØ
`

S |ù ψ0rAsÑS |ù ψ1rAs
˘

.

6. Suppose ϕ “ ψ0ØØØψ1. Then

S |ù ϕrAsØ
`

S |ù ψ0rAsØS |ù ψ1rAs
˘

.

7. Suppose ϕ “ DDDv ψ. Then

S |ù ϕrAsØDa P |S| S |ù ψ
“

A
@

v
a

D‰

.

8. Suppose ϕ “ @@@v ψ. Then

S |ù ϕrAsØ@a P |S| S |ù ψ
“

A
@

v
a

D‰

.

Proof 1 The tϕu-satisfaction relation for S exists1.65.1 and is defined1.58.1.1 so as
to make the conclusion true.
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2–8 Using (1.65.2) to move up or down in the diagram of ϕ, we can show that
partial satisfaction relations for S either exist for all or exist for none of the relevant
formulas. In the former case, these relations are defined1.58.1 so as to make the
conclusion true. In the latter case, all the satisfaction statements are true by default,
which also makes the conclusion true. Note that only in the case of negation does
the conclusion differ when satisfaction relations do not exist. 1.66

For any particular explicitly given formula, (1.65) can be used repeatedly to
show in C0 that the corresponding partial satisfaction relation exists for any appro-
priate structure. The same can be done for the entire class of formulas with some
particular bound on their complexity. To formulate such a theorem it is useful to
have a numerical definition of complexity, for which we will use the classification
(1.37), where Eρn is the class of expressions of height ă n. Let Fρ

n “ Fρ X Eρn.

(1.67) Theorem [C0] Suppose S is a ρ-structure.

1. There exists an Eρ0 -valuation function for S.

2. For any n P ω, if there exists an Eρn-valuation function for S then there exists
an Eρn`1-valuation function for S.

Proof 1 Trivial, as Eρ0 is empty.

2 Suppose n P ω and F is an Eρn-valuation function for S. Let F 1 be the function
such that domF 1 consists of all xϵ, Ay such that ϵ P Eρn`1 and A is an S-assignment
for ϵ, and for any xϵ, Ay P domF 1,1.58

1. if ϵ “ v̄ then F 1xϵ, Ay “ Av;

2. if ϵ “ X̃xτ0, . . . , τn-y, where X is an n-ary operation index, then

F 1xϵ, Ay “ XSxF xτ0, Ay, . . . , F xτn- , Ayy;

3. if ϵ P Fρ then F xϵ, Ay P 2;

4. if ϵ “ X̃xτ0, . . . , τn-y, where X is an n-ary predicate index, then

F 1xϕ,Ay “ 1Ø
@

F xτ0, Ay, . . . , F xτn- , Ay
D

P XS;

5. if ϵ “ ␣␣␣ψ then F 1xϵ, Ay “ 1ØF xψ,Ay “ 0;

6. if ϵ “ ψ0 ^̂̂ψ1 then F 1xϵ, Ay “ 1ØF xψ0, Ay “ 1^F xψ1, Ay “ 1;

7. if ϵ “ ψ0___ψ1 then xϵ, Ay P F 1Øxψ0, Ay P F _xψ1, Ay P F ;

8. if ϵ “ ψ0ÑÑÑψ1 then xϵ, Ay P F 1Øpxψ0, Ay P F Ñxψ1, Ay P F q;

9. if ϵ “ ψ0ØØØψ1 then xϵ, Ay P F 1Øpxψ0, Ay P F Øxψ1, Ay P F q;

10. if ϵ “ DDDv ψ then xϵ, Ay P F 1ØDa P |S|
@

ψ,A
@

v
a

DD

P F ; and

11. if ϵ “ @@@v ψ then xϵ, Ay P F 1Ø@a P |S|
@

ψ,A
@

v
a

DD

P F .
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Clearly, F 1 is an Eρn`1-valuation function for S. 1.67

One might think to use (1.67) to prove xfor any signature ρ, ρ-structure S,
and n P ω, there exists an Eρn-valuation function for Sy, using induction. For this
we would have to show that there exists a class C Ď ω such that n P C iff there
exists an Eρn-valuation function for S. If S is a proper class, then partial valuation
functions for S are proper classes, so the comprehension axiom schema of C0—
which is restricted to formulas involving quantification over sets—does not permit
us to conclude the existence of C.

1.4.3 Semantics of substitution and change of variables

The proofs of the following two theorems are entirely straightforward.

(1.68) Theorem [C0] Suppose ϵ is a ρ-expression and τ is a ρ-term. Suppose
Free τ Ď Free ϵ

`

v
τ

˘

.42 Suppose S is a ρ-structure and A is an S-assignment for

ϵ
`

v
τ

˘

. Let t “ ValS τ rAs. Then

1. if ϵ is a term,
ValS ϵ

`

v
τ

˘

rAs “ ValS ϵrAs
“

v
t

‰

;

2. if ϵ is a formula,
S |ù ϵ

`

v
τ

˘

rAsÑS |ù ϵrAs
“

v
t

‰

.43

Theorem [C0] Suppose ϕ is a ρ-formula and ϕ1 results from ϕ by a change of
variables. Suppose S is a ρ-structure and A is an S-assignment for ϕ. Then44

S |ù ϕ1rAsØS |ù ϕrAs.

1.4.4 Theories, satisfiability, and entailment

Recall the definition1.29.3 of expansion and compatibility of signatures.

Definition [C0] Suppose S is a ρ-structure. An expansion of S is a ρ1-structure
S1 such that

1. ρ1 is an expansion of ρ;

2. |S1| “ |S|; and

3. for every ρ-index X, XS1
“ XS.

Definition [C0] Suppose ρ is a signature.

1. A ρ-theory is a class of ρ-sentences.

42I.e., no variable occurrence in τ is bound in ϵ
`v
τ

˘

.1.55

43We do not assert a bi-implication in (1.68.2) because the existence of a
␣

ϵ
`v
τ

˘(

-satisfaction

relation does not directly imply the existence of a tϵu-satisfaction relation. On the assumption
that S is weakly satisfactory,1.60.1 of course, the bi-implication is demonstrable.

44Recall1.54 that ϕ and ϕ1 have the same free variables.
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2. Suppose S is a satisfactory ρ-structure. Th S
def
“ the class of ρ-sentences σ

such that S |ù σ.

Note that if S is only weakly satisfactory, one would have to quantify over partial
satisfaction relations to define Th S, which is not permitted in C0 (since S is
necessarily a proper class in this case).

Suppose ρ is a signature and ϵ is a ρ-expression. Then ϵ is also a ρ1-expression
for any compatible signature ρ1 that contains the indices that occur in ϵ. Similarly,
a theory Θ is a ρ-theory for any signature ρ that has the indices that occur in Θ.
We will say that a signature that has the indices that occur in an expression or class
of expressions is appropriate to it. The question naturally arises whether a theory
Θ that has a weakly satisfactory or satisfactory ρ-model for some appropriate ρ
has a respectively weakly satisfactory or satisfactory ρ-model for every appropriate
ρ.45 The following rather prosaic theorem answers this question in the affirmative
and generally clarifies semantic issues having to do with multiple or unspecified
signatures.

(1.69) Theorem [C0] Suppose S is a (weakly) satisfactory ρ-structure and ρ1 is
an expansion of ρ. Then there is a (weakly) satisfactory ρ1-structure S1 that is an
expansion of S.

Remark We will call a ρ1-index new iff it is not a ρ-index. To expand S to a
ρ1-structure one simply assigns relations and operations on |S| to the new indices
X of ρ1. We have to show that the structure S1 so defined is (weakly) satisfactory.
If |S| is a proper class this does not follow for an arbitrary choice of denotations,
but by choosing carefully we can arrange that the Φ1-satisfaction relation for S1 for
any Φ1 Ď Fρ1

is definable from the Φ-satisfaction relation for S for an appropriate
Φ Ď Fρ.

Proof See Note 10.2. 1.69

Given a theory Θ in some signature, let ρ be the subtype that has just the indices
occurring in Θ. It follows from Theorem 1.69 that a theory Θ has a (weakly)
satisfactory ρ-model iff it has a (weakly) satisfactory ρ1-model, where ρ1 is any
expansion of ρ. Hence

(1.70) if ρ1 and ρ2 are signatures appropriate to Θ then there is a (weakly) satis-
factory ρ1-model of Θ iff there is a (weakly) satisfactory ρ-model of Θ iff there is a
(weakly) satisfactory ρ2-model of Θ.

Keeping this in mind we make the following definition.

(1.71) Definition [C0]

1. A theory Θ is satisfiable
def
ðñ some satisfactory structure satisfies Θ.

2. A theory Θ entails a sentence σ
def
ðñ every for every satisfactory structure S,

if S |ù Θ then S |ù σ.

Note that Θ entails σ iff Θ Y t␣␣␣σu is not satisfiable. Note also that Θ is not
satisfiable iff Θ entails every sentence.

45The corresponding question without the qualification of (weak) satisfactoriness is trivially
answered in the affirmative.
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(1.72) By virtue of (1.70) the notions of satisfiability and entailment may be
defined—as we have done—without reference to a specific signature.

Note that we have not defined a notion of “weak satisfiability” by substituting
weak satisfactoriness for satisfactoriness in (1.71). We will see2.37 that this notion
is equivalent to satisfiability.

1.4.4.1 Empty models

Our decision1.30.1 to exclude empty structures from consideration now becomes per-
tinent. It is instructive to consider how the inclusion of empty structures changes
the meaning of satisfiability and entailment. Let us therefore, temporarily, permit
structures to be empty. The signature ρ of an empty structure S can have no
nulary operation indices, and for each n-ary ρ-predicate index R, RS “ 0 if n ą 0,
since n0 “ 0 in this case. If R is a nulary predicate symbol then RS may be 0 or 1,
since 0x “ t0u for any class x. It is easy to show in C0 that a satisfaction relation
S exists for any empty ρ-structure S (since |S| is a set; that ρ may be a proper
class is irrelevant).

Suppose Θ is a ρ-theory and Θ has exactly one model, which is empty. For
example, Θ “ t@@@v p␣␣␣pϕÑÑÑϕqqu, where ϕ is a ρ-formula with Freeϕ Ď tvu. Then
if we allow structures to be empty, Θ is satisfiable; otherwise it is not. There are
corresponding effects on the relation of entailment. We will address the issue of
empty structures again when we develop the syntactical equivalent of entailment,
i.e., deducibility, as we prove the completeness theorem.

1.4.4.2 Decidability

The most fundamental problem of logic is to decide when a given sentence is entailed
by a given theory. In Chapter 2 we will show that a theory Θ entails a sentence
σ iff there exists a proof of σ from Θ. We have yet to define ‘proof’, but once
we have, we will see that the class of proofs is effectively enumerable. As long as
Θ is also effectively enumerable, the class of sentences entailed by Θ is effectively
enumerable—given an unbounded memory capacity, we could program a computer
to generate all proofs from Θ, and we would thereby generate a list of exactly the
sentences entailed by Θ.

If we could similarly generate a list of exactly the sentences not entailed by
Θ, then then the decision problem for Θ would be solved. To determine whether
a given sentence σ is entailed by Θ, we could just generate both lists. σ would
have to appear on exactly one of them, and as soon as it appeared we would
know whether it was entailed by Θ. Alas!—or, if you prefer, Whew!—there is in
general no algorithm, i.e., effective procedure, for generating the list of sentences
not entailed by a theory Θ, in particular the empty theory 0. Hence there is no
algorithm for deciding in general whether a sentence is entailed by a theory. This
is the undecidability of predicate logic, which is proved in Chapter 4.

1.5 Undefinability of satisfaction

What is truth?

Pontius Pilate, in The Gospel according to John 18:38
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NB: In this section, as in other discussions of undefinability, unprovability, etc.,
what is meant is un¨ in particular systems, not absolute un¨. An exception is un-
computability, as there is only one system of computation (up to equivalence).

As mentioned following the proof of Theorem 1.67, if S is a proper class the
proof of Theorem 1.63 breaks down because the dependency relation R for formula-
assignment pairs as defined there is not setlike, inasmuch as one needs to know
F
@

ψ,A
@

u
a

DD

for all a P |S| to determine F xDDDuψ,Ay (or F x@@@uψ,Ay), where F is the
valuation function for S.

In the absence of an axiom of infinity this is a significant limitation, as infinite
structures are an essential part of the semantics of predicate logic, and these are
proper classes if there are no infinite sets. In the presence of an axiom of infinity
the problem is much less severe, as set structures are sufficient for most purposes.46

One may wonder whether by some other means we might demonstrate the ex-
istence of satisfaction relations for proper class structures, but we will show that
there are limitations on the demonstrability of the existence of satisfaction rela-
tions, which are related to limitations on the definability of satisfaction—on the
definability of truth, if you will. In general, in the case of a ρ-structure S within
which language can be modeled, the satisfaction relation for S is not definable by
a ρ-formula interpreted in S. The following theorem states this for the paradig-
matic case of the structure within which we have modeled language in this chapter,
viz., Vω “ pVω; Pq, the hereditarily finite sets with the membership relation. The
signature of Vω is s, with two predicate indices, for identity and membership. The
following theorem is due to Kurt Gödel and to Alfred Tarski independently. The
first published statement and proof were given by Tarski in 1936[25].

(1.73) Theorem [C0] There does not exist a satisfaction relation for Vω that is
definable over Vω. That is to say, it is not the case that there exists a satisfaction
relation S for Vω and an s-formula φ with two free variables, u and v, such that
for every s-formula ψ with one free variable w and every a P Vω, letting A “

@

w
a

D

,

(1.74) Vω |ù φ
“

u v
ψ A

‰

ØVω |ù ψ
“

w
a

‰

.47

Proof Suppose toward a contradiction that there is a satisfaction relation for Vω

and an s-formula φ such that (1.74) holds. By a simple modification of φ we obtain
an s-formula φ1 with free variables u and v such that for every s-formula ψ with
one free variable w and every a P Vω,

(1.75) Vω |ù φ1
“

u v
ψ a

‰

ØVω |ù ψ
“

w
a

‰

.48

46Inner models of set theory, which are by definition proper classes, are an exception, and it is
mainly in this context that the comment following (1.62) is significant.

47Recall that by definition,1.61.1

for every s-formula θ and Vω-assignment B for θ, Vω |ù θrBs iff for every tθu-satisfaction
relation S for Vω, xθ,By P S.

Since we are assuming that a full satisfaction relation S exists for Vω ,

for every s-formula θ and Vω-assignment B for θ, Vω |ù θrBs iff xθ,By P S.

so all occurrences of ‘|ù’ in this context are interpretable with reference to the single relation S.
In particular,

Vω |ù ␣␣␣ θrBsØ␣Vω |ù θrBs,

which we use to establish (1.76).
48Where φ refers to an assignment

@w
a

D

, φ1 refers to a directly.
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Let ψ “ ␣␣␣φ1
`

u v
w̄ w̄

˘

. Then

(1.76) Vω |ù φ1
“

u v
ψ ψ

‰

ØVω |ù ψ
“

w
ψ

‰

ØVω |ù ␣␣␣φ
1
“

u v
ψ ψ

‰

Ø␣Vω |ù φ1
“

u v
ψ ψ

‰

,

a contradiction. 1.73

This proof is our first use of a so-called diagonal argument. If we think of u and
v as “coordinates” in a 2-dimensional space, then ϕ1 is a (t0, 1u-valued) function on
this space, and ψ is, in effect, the complement of this function along the “diagonal”
of this space, since ψpwq “ ␣ϕ1pw,wq (using informal notation).

1.6 Summary

Formal language and structure are the obverse and reverse of the coin of the realm
of mathematics. We began this chapter with a relatively informal description of
the sort of formal language that has been found by experience to be both neces-
sary and sufficient for the discussion of all things mathematical.1.2 The formality of
language required to achieve the rigor and certainty that characterize mathematics
also defines formal language as a suitable object of mathematical analysis. Most
concretely conceived, a formal language consists of expressions that have a precise
form, constructed according to rules that constitute its grammar or syntax. The
purpose of these expressions is to convey meaning via interpretations. The depen-
dence of the meaning of expressions on their form is the semantics of the language.
First-order predicate language is the simplest syntactical/semantical system that is
sufficiently expressive for general use, and it is the system we have described in this
chapter.

The first-order predicate system is characterized by fixed rules of propositional
connection, quantification over variables, and specification of arguments. A lan-
guage in this system is characterized by its signature, which consists of one or more
predicate or operation indices, together with information as to the (finite) number
of arguments each takes. An inessential generalization allows for domain indices as
well. In a typographical realization of a language these indices are represented by
symbols, and ‘symbol’ is used synonymously with ‘index’ for this reason.

The use of ‘predicate’ to refer to this system is a convenience that does not
indicate any prejudice against operations. The use of ‘first-order’ is an historical
convention, and it would be quite reasonable to replace ‘first-order predicate’ by
‘predicate’, as we often will.49

Although ‘interpretation’ may be understood in an informal way, for all prac-
tical purposes it is synonymous with ‘structure’, which has a specific membership-
theoretical definition. A structure consists of a class of things—its universe of
individuals—together with relations and functions on individuals corresponding re-
spectively to the predicate and operation indices of its signature.50 Note that a
structure interprets a language just in case they have the same signature.

49If we omit quantification we have the propositional system, which may be regarded as having
order 0, but it also has no predicates, operations, or domains. The predicates of a first-order
language have a fixed meaning under a given interpretation. Higher-order predicate systems may
be obtained by allowing variable predicates that may serve as arguments of higher-order predicates
and are themselves subject to quantification; but these are only secondarily of interest. Indeed,
the discussion of such systems, like all mathematical discussions, is done in the usual way: using
first-order predicate language.

50‘predicate’ and ‘operation’ are often used synonymously with ‘relation’ and ‘function’, respec-
tively, but for clarity we preferentially restrict the former to their use in reference to language.
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An expression is either a term or a formula. Given a signature ρ and a ρ-
structure S, an S-assignment for ϵ assigns an individual in |S| to each of its free
variables, whereupon the expression acquires a value. This map is the valuation
function for S. In the case of a term τ with an assignment A, the value ValS τ rAs
is a member of |S|. A formula ϕ, on the other hand, is either satisfied or not at an
assignment A, i.e., it is either true or false, and we regard ValS ϕrAs as either 1 or 0,
respectively. A valuation operation Val for formulas is equivalent to a satisfaction
predicate |ù, and we define S |ù ϕrAs

def
ðñ ValS ϕrAs “ 1.

The definition1.61 of |ù used in this book necessarily deviates from standard
practice because of our decision to permit the universe of a structure to be an
arbitrary class, rather than requiring it to be a set. At this point this decision
appears to do nothing more than introduce a gratuitous complication in the interest
of a trivial generality, but it is actually motivated by the desire to render the rest of
the story significantly more accessible to the general reader, who is not necessarily
expected to become a specialist in this field.

By way of explanation, we note that, as discussed in Chapter 3, there are
various theories of membership, which differ in their treatment of elements, classes,
and sets. By definition, an element is anything that is a member of a class, a class
is anything that is a collection of elements (possibly empty), and set is something
that is both an element and a class, i.e., a class that is a member of a class. A
proper element is an element that is not a class, and a proper class is a class that
is not an element. Although it is quite reasonable to allow the individuals of a
structure to be proper elements—indeed, it would appear to be quite unnatural to
disallow this—in practice, nothing essential is lost by excluding proper elements
from the discussion, and we typically do so. In fact, all of mathematics may be
formalized in the theory of membership with proper elements excluded.

It is also common practice to exclude proper classes, but this exclusion comes
at a cost. Certain essential ideas that are easy to state in the terminology of
a class theory require ad hoc arrangements for their formal statement in a pure
set theory. As a result, proper classes are often referred to informally with the
understanding that they can be eliminated from the discussion. This is acceptable
to the specialist, who will either perform the requisite elimination or rest easy in the
knowledge gained from experience that it could be done if desired. In our opinion,
this is too great a burden to place on someone who does not wish to gain this level
of mastery.

The advantage of our approach can be seen already in this chapter, for which
our metatheory is C0, which asserts the existence of any class whose membership
is defined by a formula in which all quantified variables range over elements. The
corresponding pure set theory is S0. Neither theory posits the existence of infinite
sets, but C0 allows proper classes, which are necessarily infinite. Theorem 2.183
asserts that any statement about sets that is provable in C0 is provable in S0:
essentially, any C0-proof of a sentence of pure set theory may be replaced by a
S0-proof in which all references to proper classes have been replaced by purely
set-theoretical statements involving their defining formulas. Thus, C0 provides a
convenient framework in which to refer to infinite objects such as languages and
other definable structures in an essentially finitary way.

This is not a sterile exercise in minimality: for example, it renders Gödel’s
celebrated second incompleteness theorem an easy corollary of (the existence of the
proof of) the first incompleteness theorem in Chapter 4. As will become apparent
in later chapters, the use of proper class structures with the definition (1.61) of the
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satisfaction predicate has additional benefits that significantly outweigh its initial
cost. Specialists in the field should also find it advantageous.

Apart from this, the concept of infinitarity, by which we mean the attitude that
infinite objects may be supposed to exist in the fullest sense, as constituents of other
objects—as elements, in short—is the great ontological threshold of mathematics;
and it is essential to an understanding of the foundations of mathematics to know
when this threshold must be crossed.

The definition of |ù for structures that may not be sets is done in terms of partial
satisfaction relations. We prove an S0-theorem asserting the existence of a C0-proof
of the existence of partial satisfaction relations for all structures for any explicitly
given formula. We also define satisfactory and weakly satisfactory structures in
terms of the existence of partial satisfaction relations for arbitrary formulas. The
reader who takes the time to fully understand these distinctions will be well on
the way to an appreciation of the subtleties that distinguish the mathematics of
mathematics (metamathematics) from the mathematics of everything else.

We define entailment: a theory Θ entails a sentence σ iff every satisfactory
structure that satisfies Θ satisfies σ. This is the heart of the mathematical enter-
prise: does Θ entail σ? The standard way to a positive answer is of course to prove
σ from Θ, and it is easy to see that this is a legitimate method. But entailment is
a semantic notion, having to do with the meaning of sentences in structures, and
it refers to all (satisfactory) structures, whereas proof is a syntactical notion, hav-
ing to do with manipulation of expressions according to formal rules of deduction.
Is it possible that all sentences entailed by a theory are provable from it? This
fundamental question is answered in Chapter 2, along with many others.

We conclude with the first of the celebrated “negative” results that make the
formal theory of logic so intriguing to the general public:1.73 Suppose S is a structure
that is capable of defining the basic notions of syntax and operations on expressions.
Then S is not capable of defining its own satisfaction relation. Put simply, we
demonstrate the undefinability of truth. Again, it is critical that the reader fully
appreciate the meaning and significance of this result; there will be many more such
to follow.
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I was at the mathematical school, where the master taught his
pupils after a method scarce imaginable to us in Europe. The
proposition, and demonstration, were fairly written on a thin
wafer, with ink composed of a cephalic tincture. This, the student
was to swallow upon a fasting stomach, and for three days fol-
lowing, eat nothing but bread and water. As the wafer digested,
the tincture mounted to his brain, bearing the proposition along
with it. But the success has not hitherto been answerable, partly
by some error in the quantum or composition, and partly by the
perverseness of lads, to whom this bolus is so nauseous, that they
generally steal aside, and discharge it upwards, before it can op-
erate; neither have they been yet persuaded to use so long an
abstinence, as the prescription requires.

Gulliver’s Travels by Jonathan Swift

2.1 Deduction, soundness and completeness

Our primary goal in this chapter is to define a system of deduction so that any
sentence that is entailed by a theory Θ is provable from Θ. Remember1.71 that
a sentence σ is said to be entailed by Θ iff for every satisfactory structure S, if
S |ù Θ then S |ù σ. s On the other hand, σ is said to be provable from Θ just in
case there exists a proof of σ all of whose premises are in Θ. We represent this
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by ‘Θ$σ’, keeping in mind that the notion of proof, and with it the relation $, is
yet to be defined.

Definition [C0] A system of deduction is complete
def
ðñ any sentence entailed by

a theory Θ is provable from Θ.

A system of deduction is just a set of rules for generating conclusions from premises.
Thus, the notions of proof and provability depend on the particular system of
deduction we choose. An easy way to achieve completeness of a deductive system
would be to design it so that anything could be proven. Such a system would be
of no value and of no interest, because it lacks the property of soundness, i.e., the
property that any sentence provable from a theory Θ is entailed by Θ. We state
this formally as the first of several conditions that a suitable deductive system must
satisfy.

(2.1) Condition 0: Soundness For any theory Θ and sentence σ, if Θ$σ then
Θ entails σ.1

Now suppose we have two systems of deduction that are both sound and complete.
Then for any theory Θ, the sentences provable from Θ are exactly those entailed
by Θ, whichever notion of provability (i.e., whichever system of deduction) we
use. Thus, once we come up with one system of deduction that is both sound
and complete, we know that any other such system is equivalent to it. From that
point on, we are justified in using the notion of provability without reference to any
specific system of deduction.

Another way to view the completeness theorem is from the standpoint of con-
sistency.

Definition [C0] A theory Θ is consistent ( vis-à-vis a given system of deduction)
def
ðñ for every sentence σ, one does not have both Θ$σ and Θ$␣␣␣σ.

(2.2) Theorem [C0] If a given system of deduction is complete then

(2.3) every consistent theory is satisfiable.

Proof Suppose a theory Θ is not satisfiable. Then vacuously every satisfactory
model of Θ satisfies every sentence. By completeness, every sentence is provable
from Θ, so Θ is inconsistent. 2.2

Property (2.3) of a deductive system does not, however, imply that the system
is complete. For example, let $1 be defined as follows.

Θ$1 σ
def
ðñ Θ is not satisfiable.

$1 is sound and satisfies (2.3), but it is not complete. The proof is left as an
exercise.

What’s lacking is the following.

(2.4) Condition 1: Reductio ad absurdum If Θ Y t␣␣␣σu is inconsistent then
Θ$σ.

1Recall1.72 that the notion of entailment is independent of signature, so we already have here
an indication that the notion of provability is also absolute in this sense.
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(2.5) A deductive system satisfying Condition 12.4 that also satisfies (2.3) is com-
plete.

The proof is left as an exercise.
Since we are ultimately going to show that ‘proves’ and ‘entails’ are equivalent,

each of the conditions we impose on our deductive system must be satisfied by the
entailment relation. In fact the final proof of soundness of the deductive system
amounts to demonstrating that this is so. It is a useful exercise to check this for each
condition we impose. For Condition 0,2.1 of course, replacing ‘$’ by ‘entails’ yields a
tautology. We note that replacing ‘$’ by ‘entails’ in the definition of ‘inconsistent’
yields ‘unsatisfiable’, so Condition 12.4 becomes

(2.6) ‘if ΘY t␣␣␣σu is unsatisfiable then every satisfactory model of Θ satisfies σ’.

A satisfactory model S of Θ, by definition, has a satisfaction relation S, and neces-
sarily either xσ, 0y P S or x␣␣␣σ, 0y P S. If ΘYt␣␣␣σu is unsatisfiable, then x␣␣␣σ, 0y R S,
so xσ, 0y P S. Hence (2.6) is true.

We will now suppose that we have a deductive system satisfying Conditions 0
and 1 and a theory Θ that is consistent according to this system, and attempt to
construct a model of Θ. In the process we will discover several additional conditions
our system must satisfy in order to guarantee the success of this endeavor. Once we
have a sufficient set of conditions, we will define a deductive system based on rules
that guarantee these conditions. As discussed above, the conditions we impose on
deducibility will be true for entailment, and the rules we posit will not permit any
inferences beyond those required by completeness, so that the system they define
has Condition 0 also, i.e., it is sound. This system will, in fact, be the natural
system that we use in daily mathematical practice. The completeness theorem will
then be the assertion that this system of deduction is complete, and we will already
have given the proof.

2.2 The completeness theorem

(2.7) In the interest of simplicity we will prove the completeness theorem first for
languages that have only countably many indices, with no domain indices, that do
not contain identity, that have only the logical connectives ‘␣’ and ‘Ñ’, and that
have only the existential quantifier.

All the important ideas are illustrated by this case. As noted above,§ 1.1.11 it is
straightforward to formulate any theory in such a reduced language, with the excep-
tion that the elimination of operations can only be accomplished in languages with
identity. We will extend our results to languages with identity in due course.§ 2.3.11

As described above, we assume our deductive system satisfies Conditions 0
(soundness) and 1 (reductio ad absurdum), and given a consistent theory Θ0, we
wish to construct a countable satisfactory structure M such that M |ù Θ0. To
see where we’re heading, suppose that M |ù Θ0, and let Θ1 “ Th M, the class of
sentences satisfied by M. We first observe that Θ1 is consistent. This is because we
have assumed that our system of deduction is sound, so any sentence it can prove
from Θ1 is true in M; hence, we cannot prove both σ and ␣␣␣σ from Θ1 for any σ.

Θ1 is also maximal :

Definition [C0] A consistent ρ-theory Θ is maximal iff for any ρ-sentence σ, either
σ P Θ or ␣␣␣σ P Θ.
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Maximal consistent theories are called ‘maximal’ because they are not included in
any larger consistent theory. Any larger theory would contain both σ and ␣␣␣σ for
some σ and would therefore be inconsistent. Actually, in making this assertion
we’re assuming something about our system of deduction, viz., that every sentence
of a theory Θ is provable from Θ. This seems so obvious that it might be overlooked,
but it has to be stated explicitly as a condition on our deductive system, and we
will state it in due course as Condition 6.2.18

So in constructing a model of a consistent theory Θ0, we are necessarily also
constructing a maximal consistent extension of Θ0. This suggests that—as a step
toward the construction of a model of Θ0—we first generate a maximal consistent
extension.

2.2.1 The Henkin procedure

The following procedure is a general outline for obtaining a maximal consistent
extension of a theory Θ0. We will modify it in due course.

(2.8) Suppose ρ is a countable signature, Θ0 is a ρ-theory, and ρ has infinitely many
constants, i.e., nulary operation indices, that do not occur in Θ0. Let xσ0, σ1, . . . y be
an enumeration of the ρ-sentences. Let xθn | n P ωy be the sequence of ρ-sentences
defined by the condition that for each n P ω, letting Θn “ Θ0 Y tθ0, . . . , θn-u,

θn “

#

σn if Θn Y tσnu is consistent
␣␣␣σn otherwise.

Let Θω “
Ť

nPω Θn.

It will follow from the definition of our system of deduction that Θn Y tσnu “
Θ0 Y tθ0, . . . , θn- , σnu is consistent iff there does not exist a proof of inconsistency
from it, and that a proof is a set. Thus, the map xθn | n P Ny ÞÑ θN is definable
from Θ0, xσ0, σ1, . . . y, and N P ω by a formula with quantification restricted to
sets, so in C0 we may infer that this function exists. Theorem 3.80 (definition by
recursion) then implies that xθn | n P ωy exists as described.

If we assume our system satisfies the following condition then we can derive the
consistency of Θn`1 from the consistency of Θn and show by induction on n P ω
that Θn is consistent for all n P ω.

(2.9) Condition 2 If Θ$σ and ΘY tσu$ θ, then Θ$ θ.

For suppose Θn is consistent. If ΘnYtσnu is inconsistent then for some ρ-sentence
θ, Θn Y tσnu$ θ and Θn Y tσnu$␣␣␣ θ. If Θn Y t␣␣␣σnu is also inconsistent then
Condition 12.4 implies that Θn$σn, and Condition 22.9 then implies that Θn$ θ
and Θn$␣␣␣ θ, contradicting the consistency of Θn.

Clearly Condition 2 holds for entailment in place of deducibility.
To conclude that Θω is consistent we need to know that the union of an in-

creasing sequence of consistent theories is consistent. This is guaranteed by the
following condition.

(2.10) Condition 3 If every finite subset of a theory Θ is consistent then Θ is
consistent.

Θω is therefore a maximal consistent extension of Θ.
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As discussed above, each condition we impose on our deductive system must
mutatis mutandis apply to the entailment relation, and for the most part the proof
of the latter is straightforward. Condition 32.10 is an exception to this general
rule. As a statement about structures, it asserts the compactness of a certain
topology in which structures play the role of points, and it is not particularly easy
to prove.2 Given the completeness theorem, of course, it follows from the fact that
the provability relation satisfies Condition 3; there does not appear to be any proof
much more direct than this, so the compactness property may be regarded as one
of the important consequences of the completeness theorem.

How to define a model of Θω? In general, there is no straightforward way to do
this. But if Θω has a full class of witnesses in the following sense, it is easy.

Definition [C0] Suppose Θ is a theory and ϕ P Θ is existential, i.e., ϕ “ DDDv ψ for
some formula ψ. If c is a constant and ψ

`

v
c̄

˘

3 is in Θ, then we say that c witnesses

ϕ in Θ. Θ has witnesses
def
ðñ every existential sentence in Θ is witnessed in Θ by

some constant.

Thus we are led to

(2.11) Condition 4 If Θ is a consistent theory, DDDv ψ P Θ, and c is a constant that
does not occur in any sentence in Θ, then ΘY

␣

ψ
`

v
c̄

˘(

is consistent.

Clearly this is true for entailment in place of deducibility (satisfiability in place of
consistency).

With the addition of this condition we can extend any consistent theory Θ0 to
a maximal consistent theory with witnesses, provided that there is an ω-sequence
of distinct constants that do not occur in Θ0.

(2.12) Thus, we suppose there is an ω-sequence of distinct constants that do not
occur in Θ0, and we carry out the construction2.8 used above to generate a maximal
extension, but at each step, if σn happens to be an existential sentence and σn P
Θn`1, we also add a sentence that designates the first as yet unused constant as a
witness of σn.4 This is the Henkin construction.5

We have assumed that ρ has infinitely many constant indices not occurring in
Θ0 and that ρ is countable, so there is bijection of ω with the constants of ρ,
and this construction may be carried out. In general, for a given theory Θ0 in a
given signature ρ, we will expand ρ if necessary to satisfy this condition.1.29.2.2 After
carrying out the preceding construction and using the resulting theory to define a
model, we discard the added constant indices and we are left with a model of Θ0

of the original type. To ensure that the addition of constants does not affect the
consistency of Θ0 we require the following condition.

2Our proof of the soundness of our deductive system will not require us to have previously
proved this result.

3Recall1.35.3.2 that c̄ is the term corresponding to the nulary operation index c, and1.11 ψ
`v
c̄

˘

is

the result of substituting c̄ for every free occurrence of v in ψ.
4Repetitions are permissible in the sequence σ0, . . . . If σn has already occurred and been

witnessed, it simply receives another witness at this stage.
5The completeness theorem was first proved by Gödel in his doctoral dissertation[6] of 1929,

and was subsequently published in a more succinct form in 1930[7]. Henkin published his more
transparent proof in 1949[8].
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(2.13) Condition 5 Suppose Θ is a ρ-theory, σ is a ρ-sentence, and ρ1 is an
expansion of ρ by the addition of a countable class of constants. Then Θ$σ in the
context of ρ iff Θ$σ in the context of ρ1.

We have already shown1.72 that the entailment relation satisfies this condition.

2.2.2 The model

In the preceding section we have shown how to extend a consistent theory Θ0 to
a maximal consistent theory Θ with witnesses, with consistency defined in terms
of a deductive system satisfying Conditions 0–5. We will now define a structure
H “ HΘ such that H |ù Θ.

2.2.2.1 The universe

The universe |H| of our model is the class K of variable-free terms. The operation
and predicate indices are interpreted as follows.

2.2.2.2 Operation indices

If F is an n-ary operation index, we let FH be given by

(2.14) FHxτ0, . . . , τn-y “ F̃ xτ0, . . . , τn-y.

2.2.2.3 Predicate indices

If P is an n-ary predicate index, we let

(2.15) PH “ txτ0, . . . , τn-y | P̃ xτ0, . . . , τn-y P Θu.

2.2.3 Validation of the model

Having defined H “ HΘ, we must now show that H is satisfactory and H |ù Θ.
Recall that we are working in the theory C0, which does not have an axiom of
infinity, so we cannot show in general that a structure has a satisfaction relation,
although we can show that there is at most one satisfaction relation.1.4.2.2 We may,
however, define a satisfaction relation for H from Θ if we impose certain additional
conditions on our system of deduction. These conditions will be stated as they arise
in the validation of the model.

(2.16) Theorem [C0] Suppose Θ is a maximal consistent ρ-theory with witnesses.
Let H “ HΘ be defined as above.§ 2.2.2 Let H be the class of xϕ,Ay such that

1. ϕ is a ρ-formula;

2. A is an H-assignment for ϕ; and

3. ϕpAq P Θ.6

Assuming the system of deduction, in terms of which ‘consistent’ is defined, satisfies—
in addition to Conditions 0–5 already stated—also Conditions 6–10, to be stated
below, H is a (the) satisfaction relation for H.

6Since |H| consists of ρ-terms, an H-assignment, i.e., a function from variables to elements of
|H|, is also a ρ-substitution, i.e., a function from variables to ρ-terms.
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Proof We proceed by induction on the complexity of formulas, i.e., we let Γ be
the class of formulas ϕ such that H satisfies the definition of a satisfaction relation
for every subformula ϕ1 of ϕ with every H-assignment for ϕ1. We will show that Γ
contains all atomic formulas and is closed under the formula-building operations;
hence, Γ contains all formulas.1.38 We give the essence of the proof, leaving it to the
reader to formulate it precisely in these terms.

Atomic sentences Suppose ϕ “ P̃ xv0, . . . , vn-y (where there may be repetitions
in the sequence xv0, . . . , vn-y), and suppose A is an H-assignment for ϕ. Then

xϕ,Ay P HØϕpAq P ΘØ P̃ xAv0, . . . , Avn-y P Θ

ØxAv0, . . . , Avn-y P PH,

so ϕ P Γ.

Negation Suppose ϕ “ ␣␣␣ψ and ψ P Γ. Then Freeψ “ Freeϕ. Let A be an
H-assignment for ϕ. Then A is also an H-assignment for ψ, and

xψ,Ay P HØψpAq P Θ.

We now wish to assert that since Θ is maximal and consistent,

(2.17) ␣␣␣ψpAq P ΘØψpAq R Θ,

from which it will follow that

xϕ,Ay P HØϕpAq P ΘØψpAq R ΘØxψ,Ay R H.

To obtain (2.17) we impose the following condition on our system of deduction.

(2.18) Condition 6 If Θ is a theory and σ P Θ, then Θ$σ.

Thus, if Θ is consistent, ψpAq and␣␣␣ψpAq are not both in Θ, and since Θ is maximal,
one of them is.

2.2.3.1 Implication

Next suppose that ϕ “ ψÑÑÑ η, with ψ, η P Γ. Then Freeψ,Free η Ď Freeϕ. Let A
be an H-assignment for ϕ. Then A is also an H-assignment for ψ and η, and

xψ,Ay P HØψpAq P Θ
xη,Ay P HØ ηpAq P Θ.

We now wish to assert that since Θ is maximal and consistent,

(2.19) ψpAqÑÑÑ ηpAq P ΘØ
`

ψpAq P ΘÑ ηpAq P Θ
˘

,

from which it will follow that

xϕ,Ay P HØϕpAq P Θ
ØpψpAqÑÑÑ ηpAqq P Θ
ØpψpAq P ΘÑ ηpAq P Θq
Øpxψ,Ay P HÑxη,Ay P Hq.
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Since
`

ψpAq P ΘÑ ηpAq P Θ
˘

Ø
`

ψpAq R Θ_ ηpAq P Θ
˘

,

to obtain (2.19) it suffices that our system of deduction allow us to infer ζ from
θÑÑÑ ζ and θ and to infer θÑÑÑ ζ from either ␣␣␣ θ or ζ (since θ R ΘÑ␣␣␣ θ P Θ by
maximality).

Thus, for any sentences ζ and θ, we impose

(2.20) Condition 7 tθ, θÑÑÑ ζu$ ζ,

(2.21) Condition 8 t␣␣␣ θu$ θÑÑÑ ζ,

and

(2.22) Condition 9 tζu$ θÑÑÑ ζ

2.2.3.2 Quantification

Lastly, suppose ϕ “ DDDv ψ, with ψ P Γ. Then Freeψ Ď Freeϕ Y tvu. Let A be an
H-assignment for ϕ. Then for any variable-free term τ

@

ψ,A
@

v
τ

DD

P HØψ
`

A
@

v
τ

D˘

P Θ,

where A
@

v
τ

D

“ tpu,Auq | u P FreeψztvuuYtpv, τqu, i.e., the assignment (also substi-

tution) A followed by the assignment
@

v
τ

D

(a reassignment, if domA superfluously
contains v). We now wish to assert that since Θ is maximal and consistent,

(2.23) pDDDv ψqpAq P ΘØDτ P |H| ψ
`

A
@

v
τ

D˘

P Θ,

from which it will follow that

xϕ,Ay P HØϕpAq P ΘØpDDDv ψqpAq P ΘØDτ P |H| ψ
`

A
@

v
τ

D˘

P Θ

ØDτ P |H|
@

ψ,A
@

v
τ

DD

P H.

The ÑÑÑ direction of (2.23) follows from the fact that Θ has witnesses. The ÐÐÐ
direction requires that another condition be imposed, viz.,

(2.24) Condition 10 If Freeψ Ď tvu and τ is a variable-free term, then
␣

ψ
`

v
τ

˘(

$DDDv ψ.7

2.16

This completes the outline of the proof. Now it only remains to define a system of
deduction that satisfies the conditions set forth above. ‘proof’ and ‘consistency’ will
then be defined in terms of that system, and we shall have proved the completeness
theorem.

7The limitation on Freeψ is required to ensure that DDDv ψ is a sentence, as our deductive system
will be based on sentences.



72 CHAPTER 2. LOGIC

2.2.4 A system of deduction

In the previous section we have shown that if a suitable system of deduction can
be devised, and we define ‘proof’ in terms of that system, then we can prove the
completeness theorem, which states that any sentence that is entailed by a theory
can be proved from that theory. We imposed certain conditions on the deductive
system that allowed the argument to go through. These conditions are recapitu-
lated below. The conditions lead us directly to a system of deduction, one that
corresponds precisely to the natural system with which you are no doubt already
familiar, the one we have been using since the beginning of this book and will use
through to the end.

2.2.4.1 The conditions summarized

0. For any theory Θ and sentence σ, if Θ$σ then Θ entails σ.2.1

1. If ΘY t␣␣␣σu is inconsistent then Θ$σ.2.4

2. If Θ$σ and ΘY tσu$ θ, then Θ$ θ.2.9

3. If every finite subset of a theory Θ is consistent then Θ is consistent.2.10

4. If Θ is a consistent theory, DDDv ψ P Θ, and c is a constant that does not occur
in any sentence in Θ, then ΘY

␣

ψ
`

v
c̄

˘(

is consistent.2.11

5. Suppose Θ is a ρ-theory and σ a ρ-sentence, and suppose ρ1 is an expansion
of ρ by the addition of new constant indices. Then Θ$σ in the context of ρ
iff Θ$σ in the context of ρ1.2.13

6. If Θ is a theory and σ P Θ, then Θ$σ.2.18

7. For all sentences θ and ζ, tθ, θÑÑÑ ζu$ ζ.2.20

8. For all sentences θ and ζ, t␣␣␣ θu$ θÑÑÑ ζ.2.21

9. For all sentences θ and ζ, tζu$ θÑÑÑ ζ.2.22

10. If ψ has no free variables other than v, and τ is a variable-free term, then
␣

ψ
`

v
τ

˘(

$DDDv ψ.2.24

2.2.4.2 The system

The system of deduction is based on the concepts of sequent and inference rule.

(2.25) Definition [C0] Suppose ρ is a signature. A c-expansion of ρ is a signature
that expands ρ with all the added indices being constants, i.e., nulary operation
indices.

1. A ρ-sequent is a 2-sequence xΣ, σy, where Σ is a finite set of ρ1-sentences and
σ is a single ρ1-sentence for some c-expansion ρ1 of ρ. For its mnemonic value,
we use the special notation:

Σñσ
def
“ xΣ, σy

for sequents.
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2. Σ is the antecedent and σ the succedent of Σñσ.

3. We may also refer to the elements of Σ as the premises and to σ as the
conclusion of the sequent.

4. A sequent is valid
def
ðñ Σ entails σ.8

5. A ρ-proof is a finite sequence of ρ-sequents, each item of which is justified
(within the sequence) by one of the rules to be listed presently.

6. A sequent is ρ-provable
def
ðñ it is a ρ-sequent and it occurs in some ρ-proof.

(2.26) Note that if ρ1 is a c-expansion of ρ then any ρ1-proof is also a ρ-proof.

Sequent derives from the German Sequenz used by Gerhard Gentzen to describe his
logischer klassischer Kalkül LK (sequent being an English neologism to replace the
direct translation sequence, already in widespread use with the modern definition).
A sequent in the original sense is an ordered pair of finite sequences of formulas,
rather than a finite set of formulas and a single formula, as defined above. Systems
of deduction based on sequents in the original sense are elegant and useful, and
we will present Gentzen’s system in Section 2.6.2. For the present, we restrict our
attention to so-called natural systems of deduction, for which the present notion of
sequent is appropriate.

In the following rules, Σ and Σ1 refer to arbitrary finite sets of sentences. σ,
θ, and ζ are arbitrary sentences. ψ is an arbitrary formula with at most one free
variable, v. c is an arbitrary constant, and τ is an arbitrary variable-free term.
Some of the rules justify the appearance of a sequent by virtue of the antecedent
appearance of one or two related sequents. Others state that sequents of a particular
form may appear anywhere in a proof. In the representation of the rules, the sequent
below the line is inferred from the sequent(s) above the line. Note that there may
be 0, 1, or 2 sequents above the line.

(2.27) Inference rules for the natural deduction system ND

0. Σñσ
Σ1ñσ

if Σ1 Ě Σ.

1. Σñσ
if σ P Σ.

2.
ΣY t␣␣␣σuñ θ ΣY t␣␣␣σuñ␣␣␣ θ

Σñσ

3.
Σñσ ΣY tσuñ θ

Σñ θ

4.
ΣY

␣

ψ
`

v
c̄

˘(

ñσ

ΣY tDDDv ψuñσ
if c does not occur in the lower sequent.

5.
tθ, θÑÑÑ ζuñ ζ

6.
ΣY tθuñ ζ

Σñ θÑÑÑ ζ

7. ␣

ψ
`

v
τ

˘(

ñDDDv ψ

8Recall1.72 that the notion of entailment is independent of signature.
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2.2.5 Conclusion

2.2.5.1 Statement and proof of the theorem

We can now provide a formal definition of the provability relation, with which we
can state the completeness theorem, the proof of which is now straightforward. It is
no more difficult to prove the following useful sharp version, which makes reference
to a signature ρ. It will be easy to show that the ρ-dependence may be dropped.2.34

(2.28) Definition [C0] Suppose Θ is a ρ-theory and σ is a ρ-sentence.

1. Θ ρ-proves σ
def
ðñ Θ$ρ σ

def
ðñ there is a ρ-provable sequent Σñσ with Σ Ď

Θ.

2. A ρ-proof of σ from Θ is a ρ-proof of any such sequent.

3. We also say that σ is deducible or inferable from Θ.

4. Θ is ρ-consistent
def
ðñ for all ρ-sentences θ it is not the case that Θ$ρ θ and

Θ$ρ␣␣␣ θ.

(2.29) Theorem [C0] Suppose Θ is a ρ-theory. Θ is ρ-consistent iff Θ is satisfiable.

Remark Recall1.70 that, in general, a theory Θ has a satisfactory ρ-model iff it
has a satisfactory ρ1-model, where ρ, ρ1 are any signatures appropriate to Θ, so we
may say that Θ is satisfiable without troubling to specify a signature.1.71

Proof We first note that given a theory Θ0 in a countable signature ρ with infinitely
many constant operation indices that do not occur in Θ0, the theory Θω generated
by the Henkin construction2.8 is definable from Θ0 and an enumeration of ρ without
the use of class quantification. This follows from the fact that proofs are finite and
are therefore sets, and consistency is defined in terms of the existence of proofs.

We have already shown—on the assumption that $ρ satisfies Conditions 0–
102.2.4.1—that the structure H defined from Θω is satisfactory and that H |ù Θ.

The only thing left is to check that $ρ meets all the conditions we have imposed.
All expressions are presumed to be ρ-expressions or, as appropriate, ρ1-expressions,
where ρ1 is a c-expansion of ρ.

Condition 0 We need to check that the rules generate only valid sequents. Since
we are working in C0, a straightforward induction on the length of proofs cannot be
carried out, as the validity property involves quantification over structures, which
may be proper classes. We proceed instead as follows.

(2.30) Suppose toward a contradiction that Θ is a ρ-theory, σ is a ρ-sentence,
Θ$ρ σ, and Θ does not entail σ.

Let π be a ρ-proof of a sequent Σñσ with Σ Ď Θ. Let ρ1 be a c-expansion of ρ
such that all the sentences in π are ρ1-sentences. Since Θ does not entail σ, neither
does Σ, so there is a satisfactory model of Σ Y t␣␣␣σu, and this is independent of
signature, so

(2.31) let S be a satisfactory ρ1-model of Σ and ␣␣␣σ.
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Let π “ xπ0 . . . , πn-y, and let πm “ Σmñσm for m P n. Let Γ be the set of
constant indices that occur in π, and for each c P Γ let vc be a distinct variable that
does not occur in π. Let Γ̂ “ tvc | c P Γu. For every expression ϵ that occurs in π,
let ϵ̂ be the result of substituting v̄c for every occurrence of c̄, for every constant
index c in ϵ. If S is a set of expressions, let Ŝ “ tϵ̂ | ϵ P Su. Let A range over
S-assignments to Γ̂.

(2.32) Claim For every m P n

@A
`

S |ù Σ̂mrAsÑS |ù σ̂mrAs
˘

.

Proof By induction onm, which is a legitimate C0-proof because only set-quantification
is involved, with the satisfaction relation for S as a parameter. Given m P n,
Σmñσm is justified by one of the rules (2.27) with reference to 0, 1, or 2 preceding
sequents. Our induction hypothesis is that

@m1 P m@A
`

S |ù Σ̂m1rAsÑS |ù σ̂m1rAs
˘

.

For convenience of reference we will generally use the notation of the rules. We give
the argument for Rule 0 in detail. For the rest we give the heart of the argument
with the understanding that the expressions that arise are assumed to occur in π
as appropriate.

Rule 0 Suppose πm “ Σ1ñσ and Σ Ď Σ1 and for some m1 ă m, πm1 “

Σñσ. Then by induction hypothesis, @A
`

S |ù Σ̂rAsÑS |ù σ̂rAs
˘

. It follows
that @A

`

S |ù Σ̂1rAsÑS |ù σ̂rAs
˘

.

Rule 1 If σ P Σ then @A
`

S |ù Σ̂rAsÑS |ù σ̂rAs
˘

.

Rule 2 If @A
`

S |ù pΣ̂Yty␣␣␣σuqrAsÑS |ù θ̂rAs
˘

and @A
`

S |ù pΣ̂Yty␣␣␣σuqrAsÑS |ù

x␣␣␣ θrAs
˘

then @A
`

S |ù Σ̂rAsÑS |ù σ̂rAs
˘

, using the fact that y␣␣␣σ “ ␣␣␣ σ̂ and
x␣␣␣ θ “ ␣␣␣ θ̂.

Rule 3 If @A
`

S |ù Σ̂rAsÑS |ù σ̂rAs
˘

and @A
`

S |ù pΣ̂ Y tσ̂uqrAsÑS |ù

θ̂rAs
˘

then @A
`

S |ù Σ̂rAsÑS |ù θ̂rAs
˘

.

Rule 4 Suppose c P Γ and c does not occur in ψ, in σ, or in Σ. Suppose
@A

´

S |ù

´

Σ̂Y
!

ψ
`

v
c̄

˘ˆ
)¯

rAsÑS |ù σ̂rAs
¯

, i.e.

(2.33) @A
`

S |ù
`

Σ̂Y
␣

ψ̂
`

v
v̄c

˘(˘

rAsÑS |ù σ̂rAs
˘

,

since ψ
`

v
c̄

˘ˆ“ ψ̂
`

v
v̄c

˘

. We want to show that @A
`

S |ù
`

Σ̂Y
␣

yDDDv ψ
(˘

rAsÑS |ù σ̂rAs
˘

,
i.e.,

@A
`

S |ù
`

Σ̂Y
␣

DDDv ψ̂
(˘

rAsÑS |ù σ̂rAs
˘

,

since yDDDv ψ “ DDDv ψ̂. To this end, suppose A is an S-assignment to Γ, and suppose
S |ù

`

Σ̂Y
␣

DDDv ψ̂
(˘

rAs. Then for some a P |S|,

S |ù ψ̂rAs
“

v
a

‰

,
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which is to say
S |ù ψ̂

`

v
v̄c

˘

rAs
“

vc

a

‰

,

since vc does not occur in ψ̂; whence

S |ù
`

Σ̂Y
␣

ψ̂
`

v
v̄c

˘(˘

rAs
“

vc

a

‰

,

since vc does not occur in Σ̂. Hence2.33

S |ù σ̂rAs
“

vc

a

‰

.

Since vc does not occur in σ̂,
S |ù σ̂rAs,

as claimed.

Rule 5 @A
`

S |ù
␣

θ̂rAs,{θÑÑÑ ζrAs
(

ÑÑÑS |ù ζ̂rAs
˘

, using the fact that {θÑÑÑ ζ “

θ̂ÑÑÑ ζ̂.

Rule 6 If @A
`

S |ù pΣ̂ Y tθ̂uqrAsÑS |ù ζ̂rAs
˘

then @A
`

S |ù Σ̂rAsÑS |ù

{θÑÑÑ ζrAs
˘

, using again the fact that {θÑÑÑ ζ “ θ̂ÑÑÑ ζ̂.

Rule 7 @A
´

S |ù
z

ψ
`

v
τ

˘

rAsÑÑÑS |ù yDDDv ψrAs
¯

, using the fact that z

ψ
`

v
τ

˘

“ ψ̂
`

v
τ̂

˘

and, as above, yDDDv ψ “ DDDv ψ̂.
This completes the proof of the claim. 2.32

By hypothesis, the sequent of interest, Σñσ, is πm for some m ă n, so2.32 for
any A : Γ̂ Ñ |S|

S |ù Σ̂rAsÑS |ù σ̂rAs,

in particular for A “ tpvc, cSq | c P Γu, where we indulge in the usual mild abuse
of notation to let cS “ cS0 for a constant (i.e., nulary operation index) c. For this
assignment, for any sentence θ that occurs in π,

S |ù θ̂rAsØS |ù θ,

so
S |ù ΣÑS |ù σ,

which contradicts (2.31) and therefore invalidates the supposition (2.30), so Θ does
entail σ, and this completes the proof that ND meets Condition 0. Condition 0

Condition 1 is met by virtue of Rule 2, as the following argument shows. Sup-
pose ΘYt␣␣␣σu is ρ-inconsistent, i.e., for some sentence θ, ΘYt␣␣␣σu ρ-proves both
θ and ␣␣␣ θ. Specifically, suppose there are ρ-proofs that contain the sequents Σñ θ
and Σ1ñ␣␣␣ θ, where Σ and Σ1 are finite subsets of Θ Y t␣␣␣σu. Let Σ2 “ Σ Y Σ1.
Using Rule 0, we can construct a ρ-proof contains both Σ2 Y t␣␣␣σuñ θ and
Σ2 Y t␣␣␣σuñ␣␣␣ θ. By virtue of Rule 2, this ρ-proves Σ2ñσ. Since Σ2 Ď Θ,
Θ$ρ σ, as claimed. Condition 1
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Condition 2 follows from Rule 3.

Condition 3 follows from the definition2.28 of $ρ in terms of ρ-provable sequents,
since the set of premises of a sequent is finite.

Condition 4 is met by virtue of Rule 4, as the following argument shows. Sup-
pose Θ is a ρ-consistent theory, DDDv ψ P Θ, and c is a constant index that does not
occur in any sentence in Θ; and suppose toward a contradiction that ΘY

␣

ψ
`

v
c̄

˘(

is

ρ-inconsistent—say ΘY
␣

ψ
`

v
c̄

˘(

ρ-proves both θ and ␣␣␣ θ for some θ. Rule 2 implies

that ΘY
␣

ψ
`

v
c̄

˘(

$ρ σ for any ρ-sentence σ. Let σ be some sentence that does not
involve the index c, and—as in the proof of Condition 1—let Σ Ď Θ be finite such
that ΣY

␣

ψ
`

v
c̄

˘(

ñσ and ΣY
␣

ψ
`

v
c̄

˘(

ñ␣␣␣σ are both ρ-provable sequents. Since c
does not occur in any sentence in Σ or in ψ (since ΣYtDDDv ψu Ď Θ), Rule 4 applies,
and ΣYtDDDv ψuñσ and ΣYtDDDv ψuñ␣␣␣σ are ρ-provable. Since ΣYtDDDv ψu Ď Θ, Θ
is ρ-inconsistent, contrary to hypothesis. Condition 4

Condition 5 follows from the observation (2.26).

Condition 6 follows from Rule 1.

Condition 7 follows from Rule 5.

Condition 8 follows from Rule 6 with Σ “ t␣␣␣ θu (using Rule 2 with Σ “

tθ,␣␣␣ θu and σ “ ζ, and Rule 1).

Condition 9 follows from Rule 6 with Σ “ tζu (and Rule 1).

Condition 10 follows from Rule 7.
Together with the discussion in Section 2.2 this concludes the proof. 2.29

Now suppose Θ is a theory and ρ, ρ1 are signatures appropriate to Θ, i.e., Θ is
both a ρ-theory and a ρ1-theory. Then by Theorem 2.29

Θ is ρ-consistentØΘ is satisfiable
ØΘ is ρ1-consistent,

so the following definition is reasonable. Note that there is no dependence on
signature (cf., (2.28)).

(2.34) Definition [C0] Suppose Θ is a theory and σ is a sentence.

1. Θ proves σ
def
ðñ there is a provable sequent xΣ, σy with Σ Ď Θ.

2. A proof of σ from Θ is a proof of any such sequent.

3. We also say that σ is deducible or inferable from Θ.

4. Θ is consistent
def
ðñ for all sentences θ it is not the case that Θ$ θ and

Θ$␣␣␣ θ.

We can now state Gödel’s completeness theorem in its final form.
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Theorem: Completeness [C0] Suppose Θ is a theory. Θ is consistent iff Θ is
satisfiable.

Using the previous form2.29 of the completeness theorem we have

Theorem [C0] If Θ$σ then there is a ρ-proof of σ from Θ, where ρ is any signature
appropriate to ΘY tσu. In particular, there is a proof that involves no indices that
do not occur in Θ or σ other than constant indices.

As a simple corollary we have the important compactness property of predicate
logic, mentioned above following the statement of Condition 3.2.10

(2.35) Theorem: Compactness [C0] Suppose Θ is a theory. Θ is satisfiable iff
every finite subset of Θ is satisfiable.

Proof Θ is unsatisfiable iff Θ is inconsistent iff there is a proof of inconsistency
from Θ iff there is a proof of inconsistency from a finite subset of Θ iff a finite
subset of Θ is inconsistent iff a finite subset of Θ is unsatisfiable. 2.35

Note that according to Definition 2.34, by virtue of Rule 0, if Σ is a finite set of
sentences and σ is a sentence, then Σ$σ iff Σñσ is provable.

Rules 0–72.27 defining a justified sequence of sequents therefore have the following
immediate consequences for the provability relation.

(2.36) Theorem [C0] Suppose Θ is a class of sentences.

0. If Θ$σ then Θ1$σ for any Θ1 Ě Θ.

1. If σ P Θ, then Θ$σ.

2. If ΘY t␣␣␣σu$ θ and ΘY t␣␣␣σu$␣␣␣ θ then Θ$σ.

3. If Θ$σ and ΘY tσu$ θ then Θ$ θ.

4. If c does not occur in ψ, in σ, or in any of the sentences of Θ, and Θ Y
␣

ψ
`

v
c̄

˘(

$σ, then ΘY tDDDv ψu$σ.

5. tθ, θÑÑÑ ζu$ ζ.

6. If ΘY tθu$ ζ then Θ$ θÑÑÑ ζ.

7.
␣

ψ
`

v
τ

˘(

$DDDv ψ.

Proof Immediate. 2.36

2.2.5.2 Significance of the theorem

The notion of interpretation we have considered so far in this chapter is that of a
satisfactory structure, but we may consider generalizations of this. Note that en-
largement of the category of allowed interpretations potentially weakens the notion
of satisfiability and strengthens the corresponding notion of entailment. With the
completeness theorem, however, it is easy to show that any reasonable notion of
interpretation leads to the same notion of satisfiability (and entailment).

For the purpose of this discussion, we will say that a notion of interpretation
has the soundness property iff any theory that is true in some interpretation is
consistent. Consider a notion of interpretation that is reasonable in the sense that
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it has the soundness property and includes all satisfactory structures. Suppose Θ
is a theory. If Θ is true in some interpretation then by soundness it is consistent.
On the other hand, if Θ is consistent then by the completeness theorem it is true
in some interpretation (in some satisfactory structure, in fact).

Thus, satisfiability is a more stable concept than might at first appear, as it is
equivalent to consistency for any reasonable notion of interpretation; consequently,
a theory is satisfiable in any reasonable sense iff it is satisfiable in any other. In
particular, we have the following theorem equating weak satisfiability with satisfi-
ability.

(2.37) Theorem [C0] Suppose Θ is a ρ-theory.

1. Suppose S is a weakly satisfactory ρ-structure and S |ù Θ. Then Θ is consis-
tent.

2. Hence, Θ has a weakly satisfactory model iff it has a satisfactory model.

Proof 1 Suppose toward a contradiction that Θ is inconsistent. Let θ be a ρ-
sentence such that Θ$ θ and Θ$␣␣␣ θ. Let π` and π´ be proofs of θ and ␣␣␣ θ,
respectively, from Θ. Let Σ` and Σ´ be finite subsets of Θ such that Σ`ñ θ
occurs in π` and Σ´ñ␣␣␣ θ occurs in π´. Let Φ be the set of sentences that occur
in either π` or π´, and let S be a Φ-satisfaction relation for S. It is easily shown
by induction on the position of sequents in any proof π that for every sequent Σñσ
in π, if |ùS Σ1.61.4 then |ùS σ. Since |ùS Σ` and |ùS Σ´, it follows that |ùS θ and
|ùS ␣␣␣ θ, which is impossible.

2 Immediate. 2.37

One of the fascinating aspects of the completeness theorem is that it equates
provability—which, as we have seen, is a very concrete concept—with entailment—
which, in the general sense of interpretation, is perhaps the most abstract concept in
mathematics. We have restricted our attention to countable languages, so there are
only countably many expressions in a given language, countably many sequents,
and countably many proofs. By enumerating proofs we can enumerate all valid
sequents. If a theory Θ is effectively enumerable, to determine whether a sentence
σ follows from Θ, we can simply enumerate valid sequents looking for one of the
form Σñσ for some finite Σ Ď Θ. If Θ$σ we will find a proof in a finite time.9

Contrast this with the notion of entailment. To verify directly that Θ entails
σ would require a search over all interpretations; for each interpretation we would
have to ascertain whether it satisfied Θ, and—if it did—whether it satisfied σ.
This is obviously a highly infinitary undertaking, the more so as the notion of
interpretation, as discussed above, is quite open-ended.10

9If Θ&σ, we may continue enumerating valid sequents forever without a conclusion. More to
come on this.

10

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

The Tragedy of Hamlet, Prince of Denmark
Act I, Scene V

William Shakespeare
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Given a consistent theory Θ in a countable language such as we have been
considering,2.7 our proof of the completeness theorem constructs a countable satis-
factory model of Θ, so we succeed in proving the ostensibly stronger statement:

If Θ is consistent, then Θ has a countable satisfactory model.

This is the foundation for the Skolem paradox in the metatheory of membership.
In ZF we can prove the existence of uncountably many sets. If ZF is consistent then
there exists a countable model M of ZF. How can this countable model satisfy the
sentence ‘there exist uncountably many sets’? The resolution of the paradox lies
in realizing that while we in the “outside world” realize that M is countable—i.e.,
we have a function that maps ω onto |M|—there is no such function in M.

2.3 Logic

Up to now our working theory has been primarily C0. For the definition of language
and the development of basic syntactical ideas, the use of the class theory C0 instead
of the pure set theory S0 has been a mere convenience, allowing us to refer to
definable but infinite collections of finitary objects (such as variables, expressions,
etc.) as objects in their own right, and in some cases providing simpler definitions or
proofs than S0 could do. Semantical concepts, on the other hand, cannot reasonably
be discussed without reference to infinite structures, and S0 is not adequate for this
purpose.

The completeness theorem, in particular, requires the admission of infinite
classes for its statement and proof; and we have used the completeness theorem
to define a deductive system ND that precisely captures the semantic notion of
entailment. With this accomplished, much of the subsequent development and
investigation of systems of deduction may be undertaken without regard to their
semantic derivation. This sort of discussion is often referred to as proof-theoretic, in
contrast to the model-theoretic approach, in which—as the name implies—notions
of structure and satisfaction are employed. Some model-theoretic arguments can
be carried out in C0, but often the model-theoretic approach relies not just on the
existence of satisfactory models of syntactically consistent theories (i.e., the com-
pleteness theorem, provable in C0) but also on the existence of satisfaction relations
for arbitrary structures, for which the Infinity axiom is required. The natural theory
for a typical model-theoretic argument is therefore S0 ` Infinity. From the founda-
tional point of view, the admission of Infinity is a giant step, and one of our main
concerns in these early chapters is to understand its import. We will therefore
provide proof-theoretic proofs for syntactical theorems where possible.

By virtue of Theorem 2.183, C0 is a conservative extension of S0, i.e., any
statement in the language of pure set theory that is provable in C0 is provable in
S0, and we have used this to justify the position that C0 has not crossed the ontologic
threshold of infinitarity. From a practical standpoint, we have used (2.183) to justify
the practice of accepting a presentation of a C0 proof of a purely set-theoretical
statement as proof that an S0-proof exists. We note that the proof of (2.183)
provides a method for constructing an S0-proof from a C0-proof, so this is really
just a sophisticated variation on the usual practice, which is to provide a sketch of
a proof in a given theory T as “proof” that a T-proof exists. Only in the simplest
cases, such as (2.41.1), do we actually present a proof per se.

Any individual application of (2.183) for this purpose could of course be obviated
by simply sketching the S0-proof whose existence it asserts. If the proof of (2.183)
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required a powerful theory such as S0 ` Infinity we might be reluctant to use it for
this purpose and might prefer to do the tedious work of presenting all S0-proofs
directly. In other words, even though we might believe (2.183) to be true, we might
be reluctant to rely on it.

In fact, Infinity is not required, and we will present a finitary proof of (2.183)
later in this chapter. To avoid any appearance of impropriety we will take the
trouble to present an S0-proof of (2.183) directly, in preference to presenting a C0-
proof of the theorem and then invoking the theorem to infer the existence of an
S0-proof of itself.

(2.38) To do this, it is of course necessary not just to present the proof of (2.183)
in S0; we must also have presented the proofs of any results referenced in that proof
in S0. In the remainder of this chapter, therefore, we will take care to show how to
treat syntactical concepts in the context of S0. It is easy to check that any relevant
syntactical theorems presented prior to this point can be formulated and proved in
S0, and we will presume that this has been done.

We should point out that S0 does not have a unique status as a theory of the finitary.
It is, in fact, much more powerful than is necessary for most proof-theoretical
purposes. The term finitistic has historically been used to characterize a minimal
set of proof-theoretic methods. In the modern view, this methodology is identified
with primitive recursive arithmetic PRA. The proof-theoretic results of this chapter
are actually all provable in PRA.

2.3.1 Inference, implication, validity

We now derive some important properties of the provability relation. These are for
the most part familiar proof techniques, and—once derived—they will subsequently
often be used without explicit recognition.

(2.39) Theorem [S0] Θ$ θÑÑÑ ζ iff ΘY tθu$ ζ.

Remark In other words ζ may be inferred from θ and Θ iff the implication θÑÑÑ ζ
may be inferred from Θ.

Proof Suppose Θ$ θÑÑÑ ζ. Then Θ Y tθu$ θÑÑÑ ζ. (This follows from the fact
that by definition Θ$σ iff Σ$σ for some finite Σ Ď Θ. We typically only need
to invoke Rule 0 explicitly when describing an actual proof sequence.) Also,
ΘY tθ, θÑÑÑ ζu$ ζ (from Rule 5). So from Rule 3 we conclude that ΘY tθu$ ζ.
The converse direction follows from Rule 6. 2.39

(2.40) Definition

1. [S0] A validity is a sentence that is derivable from the empty set (of premises).
It is a theorem of pure logic.

2. [C0] Equivalently, (by virtue of the completeness theorem) a validity is a sen-
tence that is true under any interpretation.

Thus, θ is a validity iff 0$ θ, or, as we usually write it, $ θ.

(2.41) Theorem [S0] Suppose σ, θ, and ζ are sentences.

1. t␣␣␣␣␣␣σu$σ.
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2. tσu$␣␣␣␣␣␣σ.

3. tσ,␣␣␣σu$ θ.

4. tσÑÑÑ␣␣␣σqu$␣␣␣σ.

5. tζu$ θÑÑÑ ζ.

6. t␣␣␣ θu$ θÑÑÑ ζ.

Proof 1 The sequence

t␣␣␣␣␣␣σ,␣␣␣σuñ␣␣␣σ

t␣␣␣␣␣␣σ,␣␣␣σuñ␣␣␣␣␣␣σ

t␣␣␣␣␣␣σuñσ

of sequents is justified by virtue of Rules 1, 1, and 2 (with t␣␣␣␣␣␣σu for Σ and ␣␣␣σ
for θ). Hence

(2.42) t␣␣␣␣␣␣σu$σ.

2 Replacing σ by ␣␣␣σ in (2.42), we have t␣␣␣␣␣␣␣␣␣σu$␣␣␣σ. Hence

tσ,␣␣␣␣␣␣␣␣␣σu$␣␣␣σ,

and since tσ,␣␣␣␣␣␣␣␣␣σu$σ as well, Rule 2 yields tσu$␣␣␣␣␣␣σ.

3 In (2.27.2) let Σ be tσ,␣␣␣σu, let σ be θ, and let θ be σ.

4 It suffices to show that tσÑÑÑ␣␣␣σu$␣␣␣σ. By Rule 5, tσÑÑÑ␣␣␣σ, σu$␣␣␣σ. By
(2.42), tσÑÑÑ␣␣␣σ,␣␣␣␣␣␣σu$σ, so by Rule 3, tσÑÑÑ␣␣␣σ,␣␣␣␣␣␣σu$␣␣␣σ. Now Rule 2
gives the desired result.

5 The sequence

tθ, ζuñ ζ

tζuñ θÑÑÑ ζ

is justified as a proof by Rule 1 and Rule 6.

6 By (2.41.3) tθ,␣␣␣ θu$ ζ, so by Rule 6 t␣␣␣ θu$ θÑÑÑ ζ. 2.41

Theorem 2.41 essentially provides the following set of inference rules, which may
be added to (2.27) without altering the set of derivable sequents.

(2.43) Some derived inference rules for ND

1.
t␣␣␣␣␣␣σuñσ

2.
tσuñ␣␣␣␣␣␣σ

3.
tσ,␣␣␣σuñ θ

4.
tσÑÑÑ␣␣␣σquñ␣␣␣σ
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5.
tζuñ θÑÑÑ ζ

6.
t␣␣␣ θuñ θÑÑÑ ζ

The use of one of these derived inference rules in a proof π should be understood
as the insertion into π of a proof of the final sequent.

The following theorem gives provides additional derived inference rules, which
differ from the preceding in having sequents above the line.

(2.44) Theorem [S0]

1. Suppose Θ is a set of sentences, and σ and θ are sentences.

1. Suppose
ΘY t␣␣␣σu$ θ.

Then
ΘY t␣␣␣ θu$σ.

2. Suppose
ΘY tσu$ θ.

Then
ΘY t␣␣␣ θu$␣␣␣σ.

3. Suppose

ΘY tσu$ θ
and ΘY t␣␣␣σu$ θ.

Then
Θ$ θ.

2. Equivalently, the following inference rules are valid for any finite set Σ of
sentences.

1.
ΣY t␣␣␣σuñ θ

ΣY t␣␣␣ θuñσ

2.
ΣY tσuñ θ

ΣY t␣␣␣ θuñ␣␣␣σ

3.
ΣY tσuñ θ ΣY t␣␣␣σuñ θ

Σñ θ

Proof 1.1 Let π be a proof of ΣYt␣␣␣σuñ θ, where Σ is a finite subset of Θ. Let
π1 be π extended by the following sequence:

ΣY t␣␣␣σ,␣␣␣ θuñ θ

ΣY t␣␣␣σ,␣␣␣ θuñ␣␣␣ θ
ΣY t␣␣␣ θuñσ

Then π1 is a proof by virtue of Rules 0, 1, and 2.
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1.2 Let π be a proof of ΣYtσuñ θ, where Σ is a finite subset of Θ. Use Rule 0
to extend π to a proof of Σ Y t␣␣␣␣␣␣σ, σuñ θ; append a proof of t␣␣␣␣␣␣σuñσ;2.43.1

and then append

ΣY t␣␣␣␣␣␣σuñσ

ΣY t␣␣␣␣␣␣σuñ θ

The result is a proof π1 of Σ Y t␣␣␣␣␣␣σuñ θ. Now apply (2.44.1.1) with ␣␣␣σ for σ
to conclude that there is a proof of ΣY t␣␣␣ θuñ␣␣␣σ.

1.3 By virtue of (2.44.1, 2), there exist finite Σ0,Σ1 Ď Θ and proofs π0 and π1 of

Σ0 Y t␣␣␣ θuñσ

and Σ0 Y t␣␣␣ θuñ␣␣␣σ.

Let Σ “ Σ0 Y Σ1. Let π be π0
⌢ π1 extended by the sequence

ΣY t␣␣␣ θuñσ

ΣY t␣␣␣ θuñ␣␣␣σ
Σñ θ

Then π is justified as a proof by Rules 0, 0, and 2. 2.44

2.3.2 Proof trees

Our definition2.255 of a proof in the system ND of natural deduction as a linear
sequence of sequents corresponds to the way proofs are traditionally presented, but
it should be recognized that this mode of presentation is natural only in the context
of the ubiquitous linearity of printed text. Just as we have chosen to represent
linguistic expressions as tree structures, rather than as linear strings of symbols, so
it is often useful to represent proofs as trees that reveal their logical structure.

The purpose of a proof tree is to keep track of the justification history of sequents
within a proof according to the inference rules (2.27), and a proof tree may be
represented graphically as a concatenation of inference rules, for example:

t␣␣␣␣␣␣σ,␣␣␣σuñ␣␣␣σ t␣␣␣␣␣␣σ,␣␣␣σuñ␣␣␣␣␣␣σ

t␣␣␣␣␣␣σuñσ

tσÑÑÑ␣␣␣σ,␣␣␣␣␣␣σuñσ

t␣␣␣␣␣␣σ,␣␣␣σuñ␣␣␣σ t␣␣␣␣␣␣σ,␣␣␣σuñ␣␣␣␣␣␣σ

t␣␣␣␣␣␣σuñσ

tσÑÑÑ␣␣␣σ,␣␣␣␣␣␣σuñσ

tσÑÑÑ␣␣␣σ, σuñ␣␣␣σ

tσÑÑÑ␣␣␣σ,␣␣␣␣␣␣σ, σuñ␣␣␣σ

tσÑÑÑ␣␣␣σ,␣␣␣␣␣␣σuñ␣␣␣σ

tσÑÑÑ␣␣␣σuñ␣␣␣σ

Note that every time a given sequent is used in a proof tree its proof must be
included as well. Thus, the subtree

t␣␣␣␣␣␣σ,␣␣␣σuñ␣␣␣σ t␣␣␣␣␣␣σ,␣␣␣σuñ␣␣␣␣␣␣σ

t␣␣␣␣␣␣σuñσ

tσÑÑÑ␣␣␣σ,␣␣␣␣␣␣σuñσ
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occurs twice in the above tree. In a linear proof we avoid this duplication, but
proof-theoretic manipulations are often more difficult as a result.

In order to distinguish multiple occurrences of sequents we regard the domain
of a proof tree not as the set of its sequents but rather as the set of sequences
leading from the base of the tree up to each occurrence of each sequent. A proof
tree is therefore a finite tree of sequences in the sense of (3.180.2). For convenience,
we stipulate that there be only one sequent “at the bottom”, which we call the
root of the tree, and which may be regarded as the sequent that the tree proves,
although the tree actually proves every sequent in it, just as a linear proof does. It
is convenient to replace Rules 5 and 7 by the following rules, which are equivalent
in light of Rule 0.

51.
ΣY tθ, θÑÑÑ ζuñ ζ

71.
ΣY

␣

ψ
`

v
τ

˘(

ñDDDv ψ

We therefore have the following definition:

(2.45) Definition [S0] π is an ND-proof tree
def
ðñ π is a finite tree of sequences

of sequents such that there is a unique S P π of length 1, and for every nonzero
S P π, letting s be the last item in S, either

1. S has no proper extension in π, and either

1. s “ Σñσ and σ P Σ,
2. s “ ΣY tθ, θÑÑÑ ζuñ ζ, or
3. s “ ΣY

␣

ψ
`

v
τ

˘(

ñDDDv ψ; or

2. S has exactly one immediate extension S ⌢xs1y in π, and either

1. s1
s

= Σñσ
Σ1ñσ

and Σ1 Ě Σ,

2. s1
s

=
ΣY

␣

ψ
`

v
c̄

˘(

ñσ

ΣY tDDDv ψuñσ
and c does not occur in the lower sequent, or

3. s1
s

=
ΣY tθuñ ζ

Σñ θÑÑÑ ζ
; or

3. S has exactly two immediate extensions S ⌢xs1y and S ⌢xs2y in π, and ei-
ther

1. s1 s2
s

=
ΣY t␣␣␣σuñ θ ΣY t␣␣␣σuñ␣␣␣ θ

Σñσ
, or

2. s1 s2
s

=
Σñσ ΣY tσuñ θ

Σñ θ
.

Given a linear proof π, of which s is the final sequent, it is easy to construct a proof
tree π1 with root s, consisting of sequences in π in reverse order. In general, there
is more than one way to do this. Conversely, given a proof tree π with root s, we
may construct a linear proof of s as a single sequence of which each member of π
is a subsequence in reverse order. We therefore have the following theorem.

(2.46) Theorem [S0] A sequent is ND-provable iff it occurs in a proof tree iff it is
the root sequent of a proof tree.



86 CHAPTER 2. LOGIC

2.3.3 Propositional logic

For certain purposes it is convenient to delineate that portion of logic that deals
with the propositional connectives only, omitting quantification. This is proposi-
tional logic, and it operates in the context of propositional languages. A proposi-
tional language is a unisorted operational structure. Its individuals are referred to
as expressions or more particularly as propositions to emphasize the context. Its op-
erations correspond to propositional connectives, which may be taken to be any suf-
ficient subset of negation, disjunction, conjunction, implication and bi-implication
(or whatever else one wishes to use). The operations satisfy the unique readability
condition1.39 whereby any proposition p is the value of an operation in at most one
way, i.e., if p “ Ft for some operation F and argument sequence t, then F and t are
uniquely determined by p. The propositions that are not the value of any operation
are prime.

The class Π of prime propositions of a propositional language is analogous to
the signature of a predicate language, but it contains much less information, as
prime propositions have no distinguishing characteristics from the point of view
of propositional logic. A propositional language is determined up to homologic
equivalence (suitably defined) by the cardinality of its class of prime propositions.
We use ‘LΠ’ loosely to refer to a propositional language of which Π is the class of
prime propositions, acknowledging that the precise identity of LΠ depends on the
expression-building operations. We could, of course, define a standard propositional
language built from Π, but we have no use for such a notion, as the propositional
languages we will be concerned with will be derived from predicate languages,2.47.1

and we will interpret expressions like ‘LΠ’ in this context.

(2.47) Definition [C0] Suppose L is predicate language.

1. The propositional part of L def
“ LP is that structure whose domain is the class

of sentences of L and whose operations are the expression-building operations
of L corresponding to propositional connectives.

2. A formula of L is prime
def
ðñ it is the result of an argument specification or

quantification operation.

The prime propositions of LP are therefore the prime sentences of L.
Suppose Π is a class of prime propositions. A Π-interpretation is a function

I : Π Ñ 2, where 2 is the set t0, 1u of truth values (1 for true and 0 for false). We
let pI def

“ Ip so that our notation for the interpretation of propositions corresponds
to our notation for interpretations of predicate and operation indices. Given such
a function I, we define the truth value ValI p P 2 of any proposition p P LΠ by
recursion on complexity in the expected way:

1. if p P Π then ValI p “ pI;

2. if p “ ␣␣␣ q then
ValI p “ 1ØValI q “ 0;

3. etc.

We define satisfaction as the relational equivalent of the valuation operation, as for
predicate logic:

I satisfies p
def
ðñ I |ù p

def
ðñ ValI p “ 1.
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Note that—just as for valuation of terms of a predicate language—the existence of
a (unique) valuation function extending any interpretation of the class Π of prime
propositions of a propositional language can be demonstrated in C0 even if Π is
a proper class—it is only the quantification step in the corresponding definition
for predicate formulas that requires that the domain of the relevant structure be
a set. Hence, we will not always differentiate between an interpretation of the
prime propositions of a propositional language and the entire valuation operation
it induces.

The propositional analog of Theorem 1.69 is easily seen to be true.

(2.48) Theorem [C0] Suppose Π Ď Π1 are classes of propositions and I is a Π-
interpretation. Then there is a Π1-interpretation that is an expansion of I.

We will say that a class Π of prime propositions (in whatever context) is appropriate

to a class Θ of propositions
def
ðñ Π contains every prime proposition that occurs in

Θ. The propositional analog of (1.70) is easily seen to follow from Theorem 2.48:

(2.49) If Π and Π1 are classes of prime propositions appropriate to a class Θ
of propositions, then there is a Π-interpretation that satisfies Θ iff there is a Π1-
interpretation that satisfies Θ.

(2.50) Definition [C0]

1. A propositional expression is tautological
def
ðñ it is true in every interpreta-

tion.

2. A tautology is a tautological propositional expression.

3. A class Θ of sentences is propositionally satisfiable
def
ðñ there is an interpre-

tation that makes all the propositions in Θ true.

Clearly, if ϕ is a sentence of a predicate language L, and ϕ is tautological, then ϕ
is valid. The converse is not true. For example, @@@u pϕÑÑÑϕq is valid, but it is not
a tautology, because as an expression of the propositional part LP2.47.1 of L, it is a
prime proposition, which may be false in an interpretation of LP.

The goal of a propositional deductive system is to be able to derive exactly the
tautologies of any propositional language, and we may obtain such a system by the
method we used for predicate languages. Given the observation in the previous
paragraph, this system must be (equivalent to) a fragment of the deductive system
for predicate logic.

To carry out the the Henkin procedure for propositional systems, there are of
course no constants and no steps having to do with quantification. Otherwise the
construction is essentially unaltered, and we obtain the following system.

(2.51) Natural deductive system for propositional logic NDP The notions
of sequent, justification, and proof for propositional logic are just as for predicate
logic, except that the inference rules are limited to Rules 0, 1, 2, 3, 5, 6.

Definition [C0] Suppose Θ is a class of propositions.

1. Suppose σ is a proposition. Θ propositionally proves σ
def
ðñ Θ$P σ

def
ðñ there

exists a finite Σ Ď Θ and a proof π using the deductive system NDP2.51 such
that Σñσ occurs in π.
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2. Θ is propositionally consistent
def
ðñ it is not the case that Θ$P σ and Θ$P␣␣␣σ

for any proposition σ.

It follows easily that

(2.52) Θ is propositionally inconsistent iff there exists a finite Σ Ď Θ, a proposition
σ, and a propositional proof π such that Σñσ and Σñ␣␣␣σ both occur in π.

With this definition we have the completeness theorem for propositional logic:

(2.53) Theorem [C0] A countable theory Θ is propositionally consistent iff it is
propositionally satisfiable.

Proof The proof is just a simplified version of the proof of the completeness theo-
rem for predicate logic. 2.53

As for predicate logic,2.35 the compactness property of propositional logic follows
directly:

(2.54) Theorem [C0] A countable theory Θ is propositionally consistent iff ev-
ery finite subset of Θ is propositionally consistent; hence,2.53 Θ is propositionally
satisfiable iff every finite subset of Θ is propositionally satisfiable.

2.3.4 Truth tables

A critical difference between propositional and predicate logic is that in the case
of a proposition there is an algorithm for ascertaining whether it is valid (which is
to say, tautological), whereas, in general, in the case of a predicate formula there
is no such algorithm, as we will see.4.65 A simple method for propositional logic is
that of truth tables. Given a propositional expression E, built from a (necessarily
finite) set Π of prime expressions, a truth table for E is basically a list of all possible
interpretations for Π, of which there are 2|Π|, together with the value of E under
each interpretation. The terminology derives from the natural presentation of such
a list in tabular form, which we illustrate by example. Suppose

E “ pP ^̂̂QqØØØpPÑÑÑQq.

We can make a truth table for E as follows:

P Q P ^̂̂Q PÑÑÑQ pP ^̂̂QqØØØpPÑÑÑQq
1 1 1 1 1
1 0 0 0 1
0 1 0 1 0
0 0 0 1 0

Clearly E is not tautological.
On the other hand, if

E “ pP ___RqÑÑÑp␣␣␣PÑÑÑp␣␣␣QÑÑÑRqq

then the truth table
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P Q R P ___R ␣␣␣Q ␣␣␣QÑÑÑR ␣␣␣P ␣␣␣PÑÑÑp␣␣␣QÑÑÑRq E
1 1 1 1 0 1 0 1 1
1 1 0 1 0 1 0 1 1
1 0 1 1 1 1 0 1 1
1 0 0 1 1 0 0 1 1
0 1 1 1 0 1 1 1 1
0 1 0 0 0 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 0 0 1 0 1 0 1

demonstrates that E is a tautology.

2.3.5 Propositional logic in S0

Unlike predicate logic—in which the syntax can be treated in the framework of S0,
but the semantics requires the admission of infinite classes, which are available in
C0, but not necessarily in S0—both the syntax and the semantics of propositional
logic may be treated within the context of S0. We are primarily interested proof-
theoretical issues, and proofs are finitary objects, so we will focus on finite sets of
propositions, but much of what we say is true for infinite sets as well.

Given a proposition p, if p is not prime then p is derived from one or two propo-
sitions by the action of a propositional connective: ␣␣␣, ÑÑÑ, . . . . This proposition or
propositions are the immediate subpropositions of p. By iteration of this process,
we obtain all the subpropositions of p. Note that if p is an expression of a predicate
language, p may have subexpressions that are not subpropositions in this sense.
Thus, for example, the subpropositions of

@@@u pϕ ^̂̂ψq___pDDDu θ ^̂̂ DDDuσq

are

1. @@@u pϕ ^̂̂ψq___pDDDu θ ^̂̂ DDDuσq,

2. @@@u pϕ ^̂̂ψq,

3. DDDu θ ^̂̂ DDDuσ,

4. DDDu θ, and

5. DDDuσ,

regardless of the syntactical structure of ϕ, ψ, θ, and σ. Of these, the prime
propositions are @@@u pϕ ^̂̂ψq, DDDu θ, and DDDuσ.

It is easy to show in S0 by induction on complexity that for every proposition
p there is a finite set of propositions that consists of exactly the subpropositions
of p. It follows that for every finite set Π of propositions there is a finite set Π of
propositions consisting of exactly the subpropositions of members of Π.

For the purpose of the program (2.38) we note that

(2.55) it is straightforward to show in S0 that any interpretation of the prime
propositions in a set Π of propositions may be extended uniquely to an interpretation
of Π. (2.48) and (2.49) also hold in the context of S0. Definition 2.50 is also
applicable; and (2.53) is also a theorem of S0.



90 CHAPTER 2. LOGIC

2.3.6 Another deductive system

We can use the notion of the propositional part2.47 of a predicate language to isolate
what are in effect the propositional and quantificational parts of our deductive
system. Suppose ρ is a countable signature, Θ0 is a ρ-theory, and ρ has infinitely
many constant operation indices that do not occur in Θ0. Recall that the Henkin
procedure uses a fixed list xσn | n P ωy of the ρ-sentences to construct a sequence of
consistent ρ-theories Θ0 Ď ¨ ¨ ¨ Ď Θn Ď ¨ ¨ ¨ (n P ω). At the nth stage, after Θn has
been defined, we consider σn for inclusion. If ΘnYtσnu is inconsistent we let Θn`1 “

Θn Y t␣␣␣σnu; whereas if Θn Y tσnu is consistent we let Θn`1 “ Θn Y tσnu unless
σ “ DDDv ψ for some v and ψ, in which case we let Θn`1 “ Θn Y

␣

σn, ψ
`

v
c̄

˘(

, where c
is the first constant operation index of ρ (with respect to some fixed enumeration)
that does not occur in Θn Y tσu.

Note that in forming Θn`1 when σn “ DDDv ψ for some v and ψ, instead of adding
ψ
`

v
c̄

˘

just in case σn is added, we can achieve the same effect by adding

(2.56) σnÑÑÑψ
`

v
c̄

˘

regardless of whether ␣␣␣σn or σn is added. Let Ξ0 be the class of sentences of the
form (2.56) that would be added in this way. These sentences are a propositional
embodiment of Rule 4 of our deduction system, and we may reasonably expect that
any sentence deducible from Θ0 is deducible from Θ0 Y Ξ0 without using Rule 4.
If we let Ξ1 be the class of all sentences

ψ
`

v
τ

˘

ÑÑÑDDDv ψ,

where DDDv ψ is an existential ρ-sentence and τ is a variable-free ρ-term, then any
sentence deducible from Θ0 should be deducible from Θ0 Y Ξ0 Y Ξ1 without using
Rule 4 or Rule 7, i.e., using only the propositional rules.

The following definition and theorem state this result proof-theoretically. A
sufficiently inclusive signature is to be understood.

(2.57) Definition [S0]

1. A witness sequence for a set Σ of sentences is a sequence W “ xξn | n P Ny
such that N ď ω and for each n ă N ,

ξn “ DDDvn ψnÑÑÑψn
`

vn

c̄n

˘

,

where cn is a constant that does not occur in Σ or in tξm | m P nu.

2. An instance class is a class of sentences of the form

ψ
`

v
τ

˘

ÑÑÑDDDv ψ.

(2.58) To state the notion of inconsistency proof-theoretically we make use of some
fixed sentence F that is tautologically false, e.g., F “ ␣␣␣pσÑÑÑσq for some sentence
σ in the relevant signature. Then a theory Θ is inconsistent iff Θ$F, and Θ is
propositionally inconsistent iff Θ$P F.

(2.59) Theorem [S0] A theory Θ is inconsistent iff there exist a finite Σ Ď Θ,
finite witness sequence W for Σ, and finite instance set I such that ΣY imW Y I
is propositionally inconsistent.
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The preceding description of a modified Henkin procedure constitutes a proof of
this theorem in C0. An S0-proof is given in Note 10.3.

In view of Theorem 2.59 we have the following definition.

(2.60) Definition [S0] Suppose Θ is a theory.

1. A proof of inconsistency of Θ in the sense of Definition 2.60 def
“ a 3-sequence

xΣ,W, Iy such that

1. Σ is a finite subset of Θ;
2. W is a finite witness sequence for Σ;
3. I is a finite instance set; and
4. ΣY imW Y I is propositionally inconsistent.

2. A proof of σ from Θ def
“ a proof of inconsistency of ΘY t␣␣␣σu.

2.3.7 Universal quantification

We now extend our languages and deductive system to incorporate the rest of the
standard connectives and quantifiers, beginning with the universal quantifier.

(2.61) Inference rules for universal quantification

1.
t@@@v ψuñ␣␣␣DDDv ␣␣␣ψ

,

2.
t␣␣␣DDDv ␣␣␣ψuñ@@@v ψ

,

where ψ is an arbitrary formula with at most one free variable v. We extend $
accordingly.

(2.62) Theorem [C0] The completeness theorem extends to universal quantification
with the rules (2.61).

Proof In keeping with the program outlined above2.38 we will present the essence of
the argument proof-theoretically in S0, although the theorem itself—since it refers
to the existence of models—is necessarily stated and proved in C0.

(2.63) By recursion on complexity, define ϕ ÞÑ ϕ˚ for formulas ϕ so that

1. if ϕ is atomic then ϕ˚ “ ϕ;

2. if ϕ “ ␣␣␣ψ then ϕ˚ “ ␣␣␣ψ˚;

3. if ϕ “ ψ0ÑÑÑψ1 then ϕ˚ “ ψ˚0 ÑÑÑψ˚1 ;

4. if ϕ “ DDDv ψ then ϕ˚ “ DDDv ψ˚; and

5. if ϕ “ @@@v ψ then ϕ˚ “ ␣␣␣DDDv ␣␣␣ψ˚.

Thus, ϕ˚ is the result of eliminating universal quantification from ϕ.

(2.64) Claim For any formula ϕ,

1. tϕu$ϕ˚; and

2. tϕ˚u$ϕ.
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Proof By induction on the complexity of formulas, where we use a notion of com-
plexity that does not distinguish among formulas related by substitution of terms;
e.g., we could use the number of quantifier phrases and propositional connectives as
the measure of complexity. The induction steps for ␣␣␣ and ÑÑÑ are entirely straight-
forward. It is also easily shown by induction on complexity that for any formula ψ,
variable v and term τ ,

(2.65) ψ
`

v
τ

˘˚
“ ψ˚

`

v
τ

˘

.

Suppose ϕ “ DDDv ψ and the claim holds for all formulas of lower complexity, in
particular for ψ

`

v
c̄

˘

for any constant c. Thus,

␣

ψ
`

v
c̄

˘(

ñψ
`

v
c̄

˘˚

is a provable sequent. Hence,2.65

␣

ψ
`

v
c̄

˘(

ñψ˚
`

v
c̄

˘

is a provable sequent.
Let π be a proof of it. Let c be a constant that does not occur in ψ. If we

append the sequence
␣

ψ˚
`

v
c̄

˘(

ñDDDv ψ˚

␣

ψ
`

v
c̄

˘

, ψ˚
`

v
c̄

˘(

ñDDDv ψ˚

␣

ψ
`

v
c̄

˘(

ñDDDv ψ˚

DDDv ψñDDDv ψ˚

to π we have a proof of
DDDv ψñDDDv ψ˚,

which proves (2.64.1) for this case. To prove (2.64.2) we reverse the roles of ψ and
ψ˚.

Suppose ϕ “ @@@v ψ and the claim holds for ψ and its substituents. Let θ “
␣␣␣DDDv ␣␣␣ψ. We use the inductive steps for ␣␣␣ and DDD to show that tθu$ θ˚ and
tθ˚u$ θ. By definition2.63.5 θ˚ “ ϕ˚, so tθu$ϕ˚ and tϕ˚u$ θ. By virtue of the
inference rules (2.61), tϕu$ θ and tθu$ϕ, so tϕu$ϕ˚ and tϕ˚u$ϕ. 2.64

Suppose Θ is a consistent class of sentences. Let Θ˚ “ tθ˚ | θ P Θu. It is easy
to use the claim2.64 to show that Θ˚ is consistent. Let S be a satisfactory structure
such that S |ù Θ˚. It is straightforward to show by induction on complexity that
for any θ, S |ù θ iff S |ù θ˚, from which it follows that S |ù Θ. 2.62

The following theorem states what amount to inference rules for universal quan-
tification that are dual to Rules 7 and 4. Their derivation is left to the reader.

(2.66) Theorem [S0] Suppose ψ is a formula with Freeψ Ď tvu.

1. For any term τ , t@v ψu$ψ
`

v
τ

˘

.

2. Suppose Θ is a set of sentences, c is a constant that does not occur in ψ or in
any of the sentences of Θ, and Θ$ψ

`

v
c̄

˘

, then Θ$@@@v ψ.
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Clearly, we could have developed our deductive system with universal instead of
existential quantification using the rules embodied in Theorem 2.66. In this formu-
lation, in the proof of the completeness theorem using the Henkin construction, in
forming Θn`1 when σn “ @@@v ψ, if σn is not added to Θn`1 and ␣␣␣σn therefore is
added, then we also add ␣␣␣ψ

`

v
c̄

˘

for some new constant c.
Equivalently, we could add

ψ
`

v
c̄

˘

ÑÑÑ@@@v ψ

to Θn`1 regardless of the status of @@@v ψ, this being propositionally equivalent to

␣␣␣@@@v ψÑÑÑ␣␣␣ψ
`

v
c̄

˘

.

This observation leads to variations on the notion of proof described in Defini-
tion 2.60, suitable for languages in that use only the universal quantifier or both
quantifiers:

(2.67) Theorem [S0] We obtain an equivalent notion of provability for languages
with only the universal quantifier if in Definition 2.60 we use witness sentences
ψ
`

vn

c̄n

˘

ÑÑÑ@@@v ψ and instance sentences @@@v ψÑÑÑψ
`

v
τ

˘

.
For languages with both quantifiers, we allow both forms for witnesses and instances.

Proof Straightforward. 2.67

We will make use of the convention that a symbol with the overarrow accent
represents a finite sequence whose elements we represent by the corresponding un-
accented symbol with subscripts, e.g., v⃗ “ xv0, . . . , vn-y. An expression such as ‘@v⃗’
or ‘Dv⃗’ is understood to abbreviate the corresponding sequence of quantifier phrases:
‘@v0 . . .@vn- ’ or ‘Dv0 ¨ ¨ ¨ @vn- ’, respectively; while @@@v⃗ and DDDv⃗’ are the corresponding
formula-generating operations. If v⃗ is the empty sequence, then @@@v⃗ and DDDv⃗ are the
identity operation on formulas.

(2.68) Theorem [S0] Suppose ψ is a formula and Freeψ Ď tv0, . . . , vn-u. Let

π : n bij
Ñ n be a permutation. (We often use ‘permutation’ to refer to a bijection of

a finite ordinal or, more generally, any set, with itself.) Let v⃗ “ xv0, . . . , vn-y and
v⃗1 “ xvπp0q, . . . , vπpn-qy. Then

1. @@@v⃗ ψ$@@@v⃗1 ψ.

2. DDDv⃗ ψ$DDDv⃗1 ψ.

Proof 1 Let c⃗ “ xc0, . . . , cn-y be an n-tuple of distinct constants, and let ⃗̄c “
xc̄0, . . . , c̄n-y. By induction onm P t1, . . . , nu we show that @@@v⃗ ψ$@@@vm ¨ ¨ ¨ @@@vn-ψ

`

v0 ¨ ¨ ¨ vm-

c̄0 ¨ ¨ ¨ c̄m-

˘

.
Letting m “ n we have, in particular

@@@v⃗ ψ$ψ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘

.

Now suppose cm does not occur in ψ for any m P n. Let ⃗̄c1 “ xc̄πp0q, . . . , c̄πpn-qy.
Note that

ψ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘

“ ψ
`

v
1
0 ¨ ¨ ¨ v

1
n-

c̄
1
0 ¨ ¨ ¨ c̄

1
n-

˘

.

By induction on m P t1, . . . , nu, using (2.66), we now show that

@@@v⃗ ψ$@@@v1m1 ¨ ¨ ¨ @@@v1n-ψpv
1
0 ¨ ¨ ¨ v

1
m1-

c̄
1
0 ¨ ¨ ¨ c̄

1
m1-

˘

,
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where m1 “ n´m. In particular, for m “ n (so m1 “ 0),

@@@v⃗ ψ$@@@v10 ¨ ¨ ¨ @@@v
1
n-ψ,

i.e.,
@@@v⃗ ψ$@@@v⃗1 ψ,

as claimed.

2 Homologous. 2.68

2.3.8 Universal closure

Definition [S0]

1. A universal closure of a formula ϕ is a formula @@@v⃗ ϕ, where v⃗ is any enumer-
ation of the free variables of ϕ. By Theorem 2.68 if ϕ1 and ϕ2 are universal
closures of ϕ, then ϕ1$ϕ2, so all universal closures of a given formula are
equivalent, and we may speak loosely of the universal closure of a formula
ϕ. For definiteness, we may specify that the free variables be quantified in
their natural order, with vm before vn if m ă n, and we define @̄̄@̄@ϕ to be this
universal closure.

2. We extend the definition of validity by defining any formula ϕ as a valid-
ity

def
ðñ its universal closures are validities, and we accordingly define $ϕ

def
ðñ $ϕ1 for any (equivalently, every) universal closure ϕ1 of ϕ.

Theorem [S0] For any formula ϕ, variable v, and term τ ,

$@@@v ϕÑÑÑϕ
`

v
τ

˘

.

2.3.9 Logical equivalence

We now extend our notion of language to include bi-implication with the following
inference rules.

(2.69) Inference rules for bi-implication Suppose σ and θ are sentences.

1.
tσÑÑÑ θ, θÑÑÑσuñσØØØ θ

2.
tσØØØ θuñσÑÑÑ θ

3.
tσØØØ θuñ θÑÑÑσ

It follows that a complete consistent theory Θ contains σØØØ θ iff it contains σÑÑÑ θ
and θÑÑÑσ, whence it follows that the completeness theorem holds.

(2.70) Theorem [S0] Suppose ϕ and ψ are formulas. Then

1. $pϕÑÑÑψqÑÑÑppψÑÑÑϕqÑÑÑpϕØØØψqq;
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2. $pϕØØØψqÑÑÑpϕÑÑÑψq; and

3. $pϕØØØψqÑÑÑpψÑÑÑϕq.

Remark Remember that these statements assert that the universal closure of the
formula following ‘$’ is provable.

Proof In general, to derive the universal closure of a formula χ, with distinct free
variables v0, . . . , vn- , it suffices to derive

(2.71) χ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘

,

where c1, . . . , cn- are distinct constants that do not occur in χ, and then use (2.66.2).
In the present case, the corresponding sentences (2.71) follow fairly directly from
the rules 2.69. 2.70

Definition [S0] Formulas ϕ and ψ are equivalent
def
ðñ they have the same free

variables and
$ϕØØØψ.

We relativize this notion in two ways:

1. Suppose A is a structure that interprets ϕ and ψ. Then ϕ and ψ are equivalent
for or over A

def
ðñ ϕ

A
” ψ

def
ðñ they have the same free variables and

A |ù @̄̄@̄@ pϕØØØψq.

2. ϕ and ψ are equivalent modulo or over a theory Θ
def
ðñ ϕ

Θ
” ψ

def
ðñ they have

the same free variables and

Θ$ @̄̄@̄@ pϕØØØψq.

Clearly, ϕ and ϕ1 are equivalent iff they are equivalent over every structure that
interprets them (by the completeness theorem) iff they are equivalent modulo 0;
however, formulas may be equivalent over some structures or theories and not
others.

(2.72) Theorem [S0] Suppose ϕ is a formula and ϕ1 is the result of applying a
change of variables to ϕ.11 Then

$ϕØØØϕ1.

Proof Straightforward. 2.72

2.3.10 Disjunction and conjunction

Incorporation of the final two standard logical connectives into our deductive system
may now be effected by adding the following two inference rules.

Inference rules for disjunction and conjunction Suppose σ and θ are sen-
tences.

11Remember that a change of variables changes only bound variables.
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1.
0ñpσ___ θqØØØpp␣␣␣σqÑÑÑ θq

2.
0ñpσ ^̂̂ θqØØØ␣␣␣pσÑÑÑ␣␣␣ θq

It follows that a complete consistent theory Θ contains σ___ θ iff it contains σ or
θ; and Θ contains σ ^̂̂ θ iff it contains σ and θ. From this it follows that the
completeness theorem holds.

(2.73) Theorem [S0]

1. $pϕ___ψqØØØpp␣␣␣ϕqÑÑÑψq.

2. $pϕ ^̂̂ψqØØØ␣␣␣pϕÑÑÑ␣␣␣ψq.

Proofs of the following useful propositions are left to the reader.

Theorem [S0] Suppose ϕ and ψ are formulas, σ and θ are sentences.

1. $ϕÑÑÑpϕ___ψq.

2. $ψÑÑÑpϕ___ψq.

3. $pϕ ^̂̂ψqÑÑÑϕ.

4. $pϕ ^̂̂ψqÑÑÑψ.

5. tσ, θu$σ ^̂̂ θ.

(2.74) Theorem [S0] For any formulas ϕ, ψ, and η,

1. $pϕ___ψqØØØpψ___ϕq.

2. $pϕ ^̂̂ψqØØØpψ ^̂̂ ϕq.

3. $ppϕ___ψq___ ηqØØØpϕ___pψ___ ηqq.

4. $ppϕ ^̂̂ψq ^̂̂ ηqØØØpϕ ^̂̂pψ ^̂̂ ηqq.

The proof is straightforward.

(2.75) Definition [S0] We define
ŽŽŽ

nPN ϕn and
ŹŹŹ

nPN ϕn by recursion on N “

1, 2, . . . :

1.
ŽŽŽ

nP1 ϕn “
ŹŹŹ

nP1 ϕn “ ϕ0.

2.
ŽŽŽ

nPN`1 ϕn “ p
ŽŽŽ

nPN ϕnq___ϕN .

3.
ŹŹŹ

nPN`1 ϕn “ p
ŹŹŹ

nPN ϕnq ^̂̂ ϕN .

We define

1. ϕ0_ ¨ ¨ ¨_ϕN -
def
“

ŽŽŽ

nPN ϕn and

2. ϕ0^ ¨ ¨ ¨^ϕN -
def
“

ŹŹŹ

nPN ϕn.

By virtue of Theorem 2.74, if π : N bij
Ñ N is a permutation, then

Theorem [S0]

1. $
ŽŽŽ

nPN ϕnØØØ
ŽŽŽ

nPN ϕπpnq.

2. $
ŹŹŹ

nPN ϕnØØØ
ŹŹŹ

nPN ϕπpnq.
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The proof is a straightforward induction.
If Φ is a finite set of formulas then ‘

ŽŽŽ

Φ’ and ‘
ŹŹŹ

Φ’, while they do not have
a definite syntactical meaning, nevertheless have a definite semantical meaning,
as all of the syntactical interpretations arising from the various orderings of Φ
are logically equivalent. We will freely make use of these equivalences without
explicit recognition. We will also regard

ŽŽŽ

0 and
ŹŹŹ

0 (where 0 is the empty set) as
meaningful. The former is always false, while the latter is always true. Note that
with these values we could have begun the recursion in Definition 2.75 at N “ 0.

With these conventions, we have the following validities.

Theorem [S0] For any finite set Φ of formulas and any ϕ P Φ,

1. $ϕÑÑÑ
ŽŽŽ

Φ.
2. $

ŹŹŹ

ΦÑÑÑϕ.

Theorem [S0] If σ is a sentence and Σ is a finite set of sentences then Σ$σ iff
$
ŹŹŹ

ΣÑÑÑσ.

2.3.11 Identity

To incorporate identity we again look ahead to the proof of the completeness theo-
rem. Given a maximal consistent theory Θ with witnesses, we must now construct
a model A so that for any terms τ0, τ1, if τ0“““ τ1 P Θ, then τA

0 “ τA
1 . The simplest

way to effect this is to let the elements of |A| be equivalence classes of terms modulo
the relation

(2.76) τ0 ”
Θ τ1

def
ðñ pτ0“““ τ1q P Θ.

The first issue is that if we do not have an axiom of infinity, these equivalence
classes may be proper classes, and they are technically unsuitable as elements of a
structure. Since we are dealing with countable languages, there exists an enumera-
tion xϵ0, ϵ1, . . . y of the expressions, and a simple solution is to use the first term in
each equivalence class of terms as the representative of the class. In the following
discussion we will use the nomenclature of equivalence classes for convenience.

The more substantive issue is that we must ensure that (2.76) defines an equi-
valence relation, and that (2.14) and (2.15) may be modified so as to apply to
equivalence classes. The following rules suffice.

(2.77) Inference rules for identity Suppose c0, . . . , cn- , c10, . . . , c
1
n- are constant

indices (not necessarily distinct), and F and P are n-ary operation and predicate
indices, respectively.

1.
tc̄m“““ c̄

1
m | m P nuñ F̃ xc̄0, . . . , c̄n-y“““ F̃ xc̄10, . . . , c̄

1
n-y

2.
tc̄m“““ c̄

1
m | m P nuñ P̃ xc̄0, . . . , c̄n-yØØØ P̃ xc̄10, . . . , c̄

1
n-y

(2.78) Definition [S0] When we wish to draw attention to the distinction, we use
‘$“’ to denote the provability relation for languages with identity using the inference
rules 2.77 in addition to the rules previously set forth.

We will soon see§ 2.4.4 that it is not necessary to be specific on this point, since if
Θ$“ θ, where Θ and θ do not involve the identity predicate, then Θ$ θ.

Another way to treat identity is with axioms instead of inference rules.
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(2.79) Axioms of identity

1.
ľľľ

mPn
v̄m“““ v̄

1
mÑÑÑ F̃ xv̄0, . . . , v̄n-y“““ F̃ xv̄10, . . . , v̄

1
n-y,

for each n-ary operation index F , and

2.
ľľľ

mPn
v̄m“““ v̄

1
mÑÑÑ P̃ xv̄0, . . . , v̄n-yØØØ P̃ xv̄10, . . . , v̄

1
n-y,

for each n-ary predicate index P ,

where v0, . . . , vn- , v10, . . . , v
1
n- are any distinct variables.

It is straightforward to show that the inference rules (2.77) may be eliminated if
the axioms (2.79) are available.

(2.80) Theorem [S0] Suppose u, v, w are variables.

1. $u“““u.

2. $u“““ vÑÑÑ v“““u.

3. $u“““ v ^̂̂ v“““wÑÑÑu“““w.

Proof 1 Let c be an arbitrary constant. Then by (2.77.1) with n “ 0 and F “ c,
since c̄ “ c̃0,

$ c̄“““ c̄.

By (2.66.2)

$@@@uu“““u,

i.e.,

$u“““u.

2 Let c, c1 be distinct constants. By (2.80.1)

$ c̄“““ c̄.

By (2.77.2) with n “ 2, P “ 0 (the standard index for identity), xc0, c1y “ xc, cy
and xc10, c

1
1y “ xc

1, cy,

tc̄“““ c̄1, c̄“““ c̄u$ c̄“““ c̄ØØØ c̄1“““ c̄,

so (omitting a few steps)

$ c̄“““ c̄1ÑÑÑ c̄1“““ c̄,

so

$u“““ vÑÑÑ v“““u.
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3 The proof is left to the reader. 2.80

(2.81) Theorem [S0]

1. Suppose τ is a term, and v0, . . . , vn- are distinct variables in Free τ . Suppose
τ0, . . . τn- , τ 10 . . . , τ

1
n- are terms. Then

$

´

ľľľ

mPn
τm“““ τ

1
m

¯

ÑÑÑ τ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

“““ τ
`

v0 ¨ ¨ ¨ vn-

τ
1
0 ¨ ¨ ¨ τ

1
n-

˘

.

2. Suppose ϕ is a formula, and v0, . . . , vn- are distinct variables in Freeϕ. Sup-
pose τ0, . . . τn- , τ 10 . . . , τ

1
n- are terms, and for each m P n, τm and τ 1m are free

for vm in ϕ.1.16 Then

$

´

ľľľ

mPn
τm“““ τ

1
m

¯

ÑÑÑ

´

ϕ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

ØØØϕ
`

v0 ¨ ¨ ¨ vn-

τ
1
0 ¨ ¨ ¨ τ

1
n-

˘

¯

.

Proof 1 A straightforward induction on the complexity of terms.

2 A straightforward induction on the complexity of formulas. The condition on
variable binding enters into the quantifier steps of the induction. Suppose ϕ “ DDDv ψ,
for example. Then v R tv0, . . . , vn-u, so

ϕ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

“ pDDDv ψq
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

“ DDDv
`

ψ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘˘

.

If τm and τ 1m are free for vm in ϕ then v R
Ť

mPn Free τm Y
Ť

mPn Free τ 1m. τm and
τ 1m are also free for vm in ψ, so by induction hypothesis,

$

´

ľľľ

mPn
τm“““ τ

1
m

¯

ÑÑÑ

´

ψ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

ØØØψ
`

v0 ¨ ¨ ¨ vn-

τ
1
0 ¨ ¨ ¨ τ

1
n-

˘

¯

.

Since v R
Ť

mPn Free τm Y
Ť

mPn Free τ 1m, v does not occur in the antecedent, so

(2.82) $

´

ľľľ

mPn
τm“““ τ

1
m

¯

ÑÑÑ@@@v
´

ψ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

ØØØψ
`

v0 ¨ ¨ ¨ vn-

τ
1
0 ¨ ¨ ¨ τ

1
n-

˘

¯

.12

Hence
$

´

ľľľ

mPn
τm“““ τ

1
m

¯

ÑÑÑ

´

DDDv ψ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

ØØØDDDv ψ
`

v0 ¨ ¨ ¨ vn-

τ
1
0 ¨ ¨ ¨ τ

1
n-

˘

¯

,

i.e.,
$

´

ľľľ

mPn
τm“““ τ

1
m

¯

ÑÑÑ

´

ϕ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

ØØØϕ
`

v0 ¨ ¨ ¨ vn-

τ
1
0 ¨ ¨ ¨ τ

1
n-

˘

¯

.

2.81

The following theorem summarizes our deductive system.

(2.83) Theorem [S0]

1. The following properties of the provability relation define a complete system of
deduction for first-order predicate logic without identity, with operations, and
with the full set of logical connectives and quantifiers: ␣,Ñ,Ø,^,_, D,@. σ,
θ, and ζ are arbitrary sentences. Σ and Σ1 are arbitrary finite sets of sentences;
ψ is an arbitrary formula with at most one free variable, v; c is an arbitrary
constant; and τ is an arbitrary variable-free term.

12Recall that $ θ
def
ðñ $@̄̄@̄@θ, where @̄̄@̄@θ is the universal closure of θ. Thus, (2.82) is of the form

$@@@u, v pApuqÑÑÑBpu, vqq, which implies $@@@u pApuqÑÑÑ@@@v Bpu, vqq.
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0. If Σ$σ then Σ1$σ for any Σ1 Ě Σ.
1. If σ P Σ, then Σ$σ.
2. If ΣY t␣␣␣σu$ θ and ΣY t␣␣␣σu$␣␣␣ θ then Σ$σ.
3. If Σ$σ and ΣY tσu$ θ then Σ$ θ.
4. If c does not occur in ψ, in σ, or in any of the sentences of Σ, and

ΣY
␣

ψ
`

v
c̄

˘(

$σ, then ΣY tDDDv ψu$σ.

5. tθ, θÑÑÑ ζu$ ζ.
6. If ΣY tθu$ ζ then Σ$ θÑÑÑ ζ.

7.
␣

ψ
`

v
τ

˘(

$DDDv ψ.

8. t@v ψu$ψ
`

v
τ

˘

.

9. If c is a constant that does not occur in ψ or in any of the sentences of
Σ, and Σ$ψ

`

v
c̄

˘

, then Σ$@@@v ψ.

10. $pσÑÑÑ θqÑÑÑppθÑÑÑσqÑÑÑpσØØØ θqq.
11. $pσØØØ θqÑÑÑpσÑÑÑ θq.
12. $pσØØØ θqÑÑÑpθÑÑÑσq.
13. $pσ___ θqØØØpp␣␣␣σqÑÑÑ θq.
14. $pσ ^̂̂ θqØØØ␣␣␣pσÑÑÑ␣␣␣ θq.

2. For logic with identity, the following additional properties suffice. v0, . . . , vn-

are distinct variables, τ is a term, and ϕ is a formula, with Free τ “ Freeϕ “
tv0, . . . , vn-u. τ0, . . . , τn- , τ 10, . . . , τ

1
n- are terms, and for each m P n, τm and τ 1m

are free for vm in ϕ.13

1. tτm“““ τ 1m | m P nu$ τ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

“““ τ
`

v0 ¨ ¨ ¨ vn-

τ 1
0 ¨ ¨ ¨ τ

1
n-

˘

.

2. tτm“““ τ 1m | m P nu$ϕ
`

v0 ¨ ¨ ¨ vn-

τ0 ¨ ¨ ¨ τn-

˘

ØØØϕ
`

v0 ¨ ¨ ¨ vn-

τ 1
0 ¨ ¨ ¨ τ

1
n-

˘

.

Remark This list comprises the original set of seven rules2.27 and the addi-
tional rules to handle universal quantification,2.61 bi-implication,2.69 conjunction and
disjunction,2.73 and identity.2.77

Proof In proving the original completeness theorem we have shown that (2.83.1.0–
7) suffice to handle ␣, Ñ, and D; and we have essentially proved the rest in our
discussion of the various extensions. We leave it to the interested reader to supply
any omitted details. 2.83

2.3.12 Substitution of equivalents

(2.84) Theorem [S0] Suppose ϕ is a formula and η is the expression that occurs
at a place p in ϕ. Let v⃗ “ xv0, . . . , vn-y be an enumeration of those variables v for
which there is an occurrence of v in η that is free in η but bound in ϕ.14 Suppose
η1 is an expression of the same type (term or formula) as η with the same free
variables. Let ϕ1 “ ϕ

␣

p
η1

(

.1.48

13As it is no harder to state these properties in a general form than it is in the original specific
form,2.77 we have chosen to do so here. Note that (2.77) was already more general than it had to
be: it would have sufficed to state it for a single substitution.

14Note that if any occurrence of v that is free in η is bound in ϕ, then all occurrences of v that
are free in η are bound (by the same quantifier occurrence) in ϕ.
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1. Suppose η is a term. Then

$@@@v⃗ η“““ η1ÑÑÑpϕØØØϕ1q.

2. Suppose η is a formula. Then

$@@@v⃗ pηØØØ η1qÑÑÑpϕØØØϕ1q.

Remark η and η1 may have free variables not in tv0, . . . , vn-u, which may also
occur free in ϕ. These are universally quantified in the process of forming the
universal closures of the expressions shown, which are the implicit arguments of ‘$’
above.

If we let ϕ be a term then η and η1 are necessarily terms, and all variable occurrences
are free, so n “ 0, and the analog of (2.84.1) is

$ η“““ η1ÑÑÑϕ“““ϕ1,

which is an instance of (2.81).

Proof This is easily proved by induction on the complexity of expressions in which
η occurs. 2.84

Note that this theorem does not require that η and η1 be equivalent expressions,
i.e., that $ η“““ η1, if η, η1 are terms, or $ ηØØØ η1, if η, η1 are formulas. Of course, if
η and η1 are logically equivalent, then ϕ and ϕ1 are logically equivalent.

2.3.13 Normal forms

We began this chapter by limiting the set of propositional connectives for technical
reasons to negation and implication. Another useful set of propositional connectives
consists of negation, disjunction, and conjunction. Unlike the previous set, this
set is not minimal, as we could obviously omit either disjunction or conjunction;
however, the symmetry of including both members of this dual pair of operations
more than compensates for the lack of parsimony.

2.3.13.1 Disjunctive and conjunctive normal forms

Recall that a prime formula is one that does not occur as the value of an expression-
building operation corresponding to a propositional connective, i.e., it is either
atomic, existential, or universal. In the following definition and discussion, disjunc-
tions and conjunctions are assumed to be of non-empty finite sets of formulas.

Definition [S0]

1. A formula is in conjunctive normal form
def
ðñ it is a conjunction of disjunc-

tions of prime formulas and their negations.

2. A formula is in disjunctive normal form
def
ðñ it is a disjunction of conjunc-

tions of prime formulas and their negations.

(2.85) Theorem [S0] Every formula is propositionally equivalent to a formula in
disjunctive normal form and to a formula in conjunctive normal form.

Proof See Note 10.4.
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2.3.13.2 Prenex form

(2.86) Definition [S0] A formula ϕ is prenex
def
ðñ ϕ “ QQQ0v0 ¨ ¨ ¨QQQn-vn- ψ, where

v0, . . . , vn- are distinct variables, Qm “ DDD or @@@ for each m P n, and ψ is quantifier-
free. ψ is the matrix of ϕ.

(2.87) Theorem [S0] Any formula ϕ is logically equivalent to a prenex formula.

Proof By induction on complexity making use of the following validities:

1. ␣␣␣DDDv ϕØØØ@@@v ␣␣␣ϕ;

2. ␣␣␣@@@v ϕØØØDDDv ␣␣␣ϕ;

3. pDDDv ψ___ψ1qØØØDDDu
`

ψ
`

v
ū

˘

___ψ1
˘

, if u does not occur free in ψ or ψ1;

4. pDDDv ψ ^̂̂ψ1qØØØDDDu
`

ψ
`

v
ū

˘

^̂̂ψ1
˘

, if u does not occur free in ψ or ψ1;

5. p@@@v ψ___ψ1qØØØ@@@u
`

ψ
`

v
ū

˘

___ψ1
˘

, if u does not occur free in ψ or ψ1;

6. p@@@v ψ ^̂̂ψ1qØØØ@@@u
`

ψ
`

v
ū

˘

^̂̂ψ1
˘

, if u does not occur free in ψ or ψ1.

The point in (2.87.3–6) is that if u does not occur free in ψ1, then ψ1ØØØDDDuψ1 is
valid.15

If we wish, we may extend this list to cover implication and bi-implication, or we
may suppose we have first converted to a form involving only negation, disjunction,
and conjunction. 2.87

(2.88) Definition [S0] A formula is purely existential ( purely universal)
def
ðñ it

is prenex with only existential (universal) quantifiers.

2.4 Theories

Suppose ρ is a signature.16 Recall that a ρ-theory is a class of ρ-sentences. A theory
Θ is consistent iff Θ&pσ ^̂̂ ␣␣␣σq for some (equivalently, for all) ρ-sentences σ. By
the completeness theorem, Θ is consistent iff Θ has a satisfactory model.

Definition [C0] Given a theory Θ in a signature ρ, ρΘ def
“ the smallest contraction

ρ1 of ρ such that Θ is a ρ1-theory, i.e., ρ1 has just the ρ-indices that occur in Θ.

Definition [C0]

1. A theory Θ is complete
def
ðñ for every ρΘ-sentence σ, Θ$σ or Θ$␣␣␣σ.

2. A complete ρ-theory is a theory Θ such that ρΘ “ ρ and Θ is complete.

Clearly, a complete consistent ρ-theory is maximal among consistent theories Θ
such that ρΘ “ ρ. It is also true that if Θ is maximal among theories Θ such that
ρΘ “ ρ, Θ is complete. For suppose σ is a ρ-sentence. If Θ&σ then Θ Y t␣␣␣σu is
consistent, and since Θ is maximal, ␣␣␣σ P Θ, so Θ$␣␣␣σ.

15It is worth noting that the validity of this equivalence depends in general on our having
excluded empty structures. For example, if ψ1 is, say, σ___␣␣␣σ for some sentence σ, which is true
in any structure, then in the empty structure, since all existential formulas are false, DDDuψ1 is false,
while ψ1 is true.

16We continue to restrict our attention to countable signatures.
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2.4.1 Extensions of theories

Definition [C0]

1. The deductive closure or simply the closure of a theory Θ def
“ Θ def

“ the class of
ρΘ-sentences σ such that Θ$σ. The ρ-closure of Θ is the class of ρ-sentences
σ such that Θ$σ.

2. Θ is deductively closed or simply closed
def
ðñ Θ “ Θ.17

3. Suppose ρ is a signature, and ρ1 expands ρ.

1. Suppose Θ1 is a ρ1-theory. The restriction of Θ1 to ρ def
“ Θ1|ρ def

“ Θ
1
XFρ.18

2. Suppose Θ is a ρ-theory, ρ1 expands ρ, and Θ1 is a ρ1-theory.

1. Θ1 extends or is an extension of Θ
def
ðñ Θ Ď Θ1|ρ pØΘ Ď Θ1ØΘ Ď

Θ1q.

2. Θ1 is a conservative extension of Θ
def
ðñ Θ1 extends Θ and Θ1|ρ “ Θ.

(2.89) Theorem [C0]

1. If Θ1 is a conservative extension of Θ then, in particular, if Θ is consistent
then Θ1 is consistent.

2. Suppose Θ is a theory and ρ is an expansion of ρΘ. Then the ρ-closure of Θ
is a conservative extension of Θ.

Proof 1 Suppose Θ1 is inconsistent. Let σ be a ρΘ-sentence. Then Θ1$pσ ^̂̂ ␣␣␣σq.
If Θ1 is a conservative extension of Θ then Θ$pσ ^̂̂ ␣␣␣σq, so Θ is inconsistent.

2 See (2.13). 2.89

(2.90) Theorem [S0] Suppose Θ is a set of sentences, ψ is a formula, v0, . . . , vn-

are distinct variables, Freeψ Ď tv0, . . . , vn-u, and c0, . . . , cn- are distinct constants
that do not occur in Θ or in ψ.

1. If Θ is consistent then

1. ΘY
␣

DDDv0, . . . , vn-ψuÑÑÑψ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘(

is consistent; and

2. ΘY
␣

ψ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘

ÑÑÑ@@@v0, . . . , vn- ψ
(

is consistent.

2. If ΘY tDDDv0, . . . , vn-ψu is consistent then ΘY
␣

ψ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘(

is consistent.

3. If ΘY
␣

ψ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘(

is consistent then ΘY t@@@v0, . . . , vn-ψu is consistent.

17Theories with the same deductive closure are equivalent for all practical purposes, and in
the following definitions we avoid awkward and superfluous circumlocutions by dealing essentially
with the closures of the relevant theories.

18Note that Θ1|ρ is deductively closed (as a ρ-theory), since any ρ-deduction from Θ1 is also a
ρ1-deduction.
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Proof We will prove (2.90.1.2); (2.90.1.1) is dual to (2.90.1.2) and therefore has a
dual proof, and it also follows directly from it. Let

σ “ ψ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘

ÑÑÑ@@@v0, . . . , vn- ψ.

We will prove the contrapositive. Thus, suppose ΘY tσu is inconsistent. Then for
some finite Σ Ď Θ, some finite witness sequence W for Σ Y tσu, and some finite
instance set I as in (2.67),

(2.91) ΣY tσu Y imW Y I

is propositionally inconsistent.
Let

W 1 “ xξ10, . . . , ξ
1
n-y

⌢W,

where for each m P n

ξ1m “ @@@vm`1 ¨ ¨ ¨ @@@vn- ψ
`

v0 ¨ ¨ ¨ vm

c̄0 ¨ ¨ ¨ c̄m

˘

ÑÑÑ@@@vm @@@vm`1 ¨ ¨ ¨ @@@vn- ψ
`

v0 ¨ ¨ ¨ vm-

c̄0 ¨ ¨ ¨ c̄m-

˘

.

Since the new constants inW are necessarily distinct from c0, . . . , cn- , and c0, . . . , cn-

do not occur in Σ, W 1 is a witness sequence for Σ. Note that tξ1m | m P nu$P σ, so
imW 1$P σ. Hence2.91

ΣY imW 1 Y I

is propositionally inconsistent. Thus, Θ is inconsistent.
(2.90.2) and (2.90.3) are direct consequences of (2.90.1). 2.90

We have presented (2.90) as a theorem of S0 in line with the program (2.38),
but it extends directly to the setting of C0, as in the following theorem, which
formulates the result in terms of conservative extension.

(2.92) Theorem [C0] Suppose Θ is a theory, ψ is a formula, v0, . . . , vn- are distinct
variables, Freeψ Ď tv0, . . . , vn-u, and c0, . . . , cn- are distinct constants that do not
occur in Θ or in ψ. Then

ΘY
␣

DDDv0, . . . , vn- ψÑÑÑψ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘(

and
ΘY

␣

ψ
`

v0 ¨ ¨ ¨ vn-

c̄0 ¨ ¨ ¨ c̄n-

˘

ÑÑÑ@@@v0, . . . , vn- ψ
(

are conservative extensions of Θ.

2.4.2 Herbrand’s theorem

(2.93) Theorem [S0] [9] Suppose ρ is a signature with at least one constant (nulary
operation index), and σ is a purely universal ρ-sentence.2.88 Let σ “ @@@v0 ¨ ¨ ¨ @@@vN -µ,
where µ is quantifier-free. Then tσu is inconsistent iff there exists M P ω and
variable-free ρ-terms τmn , m PM , n P N , such that

␣

µ
`

v0 ¨ ¨ ¨ vN-

τ
m
0 ¨ ¨ ¨ τ

m
N-

˘ ˇ

ˇm PM
(

is propositionally inconsistent.
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Remark The ‘if’ direction is trivial. The ‘only if’ direction is a good example of
a theorem concerning finitary objects which has an easy infinitary proof, but whose
proof by finitary methods is substantially more involved. To prove it infinitarily we
proceed as follows.

Suppose the theorem is false for σ. Let Θ be the set of all ρ-sentences of the
form µ

`

v0 ¨ ¨ ¨ vN-

τ0 ¨ ¨ ¨ τN-

˘

. Then (by compactness), Θ is propositionally consistent. Let I

be a propositional interpretation such that I |ù Θ. Extend I to an interpretation I1

such that dom I1 contains every atomic ρ-sentence. This can be done by assigning
some definite value, say 1 (true), to each new sentence of the form P̃ xτ0, . . . , τn-y,
and then defining I1 to extend I by recursion on complexity. Define a structure S
as follows.

1. |S| is the class of variable-free ρ-terms.

2. If F is an n-ary ρ-operation index then FS is the function that assigns to each
n-sequence xτ0, . . . , τn-y of variable-free ρ-terms the term F̃ xτ0, . . . , τn-y.

3. If P is an n-ary ρ-predicate index then PS is the class of n-sequences xτ0, . . . , τn-y

of variable-free ρ-terms such that

I1 |ù P̃ xτ0, . . . , τn-y.

Assuming the axiom of infinity, S is a set, so it has a satisfaction relation. By
construction S |ù Θ, so Θ is consistent.

Proof For a finitary proof see Note 10.5.

The following generalization of (2.93) is a useful corollary.

(2.94) Theorem [S0] Suppose ρ is a signature with at least one constant and Σ
is an inconsistent finite set of universal ρ-sentences. Then there is a finite set of
constant instances of members of Σ in the sense of (2.93) that is propositionally
inconsistent.

Proof We may assume without loss of generality that variables occurring in distinct
members of Σ are distinct from one another. Let Σ “ tσk | k P Ku, and let
σk “ @@@vk,0 ¨ ¨ ¨ @@@vk,Nk

- µk. Let

µ “ µ0 ^̂̂ ¨ ¨ ¨ ^̂̂ µK- ,

and let
σ “ @@@v0,0 ¨ ¨ ¨ @@@v0,N0- ¨ ¨ ¨ @@@vK-,0 ¨ ¨ ¨ @@@vK-,NK- - µ.

Then tσu$tσk | k P Ku, so tσu is inconsistent, so2.93 there exist M P ω and ρ-terms
τmk,n, with m PM , k P K, and n P Nk such that

␣

µ
`v0,0 ¨ ¨ ¨ v0,N0- ¨ ¨ ¨ vK-,0 ¨ ¨ ¨ vK-,NK- -

τ
m
0,0 ¨ ¨ ¨ τ

m
0,N0- ¨ ¨ ¨ τ

m
K-,0 ¨ ¨ ¨ τ

m
K-,NK- -

˘ ˇ

ˇm PM
(

is propositionally inconsistent. It follows that

␣

µk
`vk,0 ¨ ¨ ¨ vk,Nk

-

τ
m
k,0 ¨ ¨ ¨ τ

m
k,Nk

-

˘ ˇ

ˇm PM,k P K
(

is propositionally inconsistent. 2.94
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2.4.3 Skolemization

Recall that a witness for an existential sentence DDDv ψ is a nulary operation index F
that does not occur in ψ, whose intended use is to form the sentence DDDv ψÑÑÑψ

`

v
F̄

˘

,
i.e.

(2.95) ψ
`

v

F̃0

˘

.

The analogous concept for an existential formula DDDv ψ, that is not necessarily a
sentence, is a Skolem operation. Suppose xv0, . . . , vn-y enumerates FreeDDDv ψ and F
is an n-ary operation index that does not occur in ψ. Then

(2.96) ψ
´

v

F̃ xv̄0, . . . , v̄n-y

¯

is the general formula of which (2.95) is the instance corresponding to n “ 0.
(2.96) is an example of skolemization, and this process may be iterated. In

general, to skolemize a formula we first put it in prenex form2.86, 2.87 and then proceed
as follows.

(2.97) Definition [S0]

1. Suppose ϕ is prenex and ϕ “ QQQ0v0 ¨ ¨ ¨QQQn-vn- DDDv ψ, where the Qm, m P n, are
individually existential or universal quantifiers.19 A simple skolemization of ϕ
at ψ is a formula

(2.98) ϕ1 “ QQQ0v0 ¨ ¨ ¨QQQn-vn- ψ
´

v

F̃ xv̄0, . . . , v̄n- y

¯

,

where F is an n-ary operation index that does not occur in ϕ. Note that ϕ1 is
prenex.

2. A partial skolemization of a prenex formula ϕ is a formula resulting from
successive simple skolemizations.

3. A complete skolemization of a prenex formula ϕ is a partial skolemization of ϕ
with no existential quantifiers (which therefore cannot be further skolemized).

4. A standard skolemization of a prenex formula ϕ is a complete skolemization in
which the existential subformulas are skolemized in decreasing order of logical
complexity (i.e., “from the outside in”).

5. A skolemization of an arbitrary formula ϕ is a complete skolemization of any
prenex formula logically equivalent to ϕ.

6. Suppose Θ is a set of formulas.

1. A skolemization is over Θ
def
ðñ the introduced operation indices do not

occur in Θ.
2. A skolemization of Θ is a set Θ1 such that there exists f : Θ bij

Ñ Θ1 such
that for all ϕ P Θ, fϕ is a complete skolemization of ϕ over Θ1ztfϕu.20

19Note that ψ is necessarily prenex, but it need not be quantifier-free. Note also that since by
definition2.86 each variable in the quantifier prefix of a prenex formula occurs there just once, vm

is free for v in ψ for each m P n.
20Prenexification and skolemization can be done in a canonical way, so no choice axiom is

necessary to infer the existence of skolemizations for infinite classes.
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Note that a simple skolemization of ϕ has one fewer existential quantifier than ϕ,
so repeated (simple) skolemization of a prenex formula eventually yields a complete
skolemization.

Recall2.90.1 that for any theory Θ and sentence DDDv ψ, if F is a nulary operation
index that does not occur in Θ or ψ, then if Θ is consistent, so is ΘY

␣

DDDv ψÑÑÑψ
`

v

F̃0

˘(

.
The general theorem is as follows.

(2.99) Theorem [S0] Suppose Θ is a set of sentences, ψ is a formula, xv, v0, . . . , vn-y

is an enumeration of Freeψ, and v̄m is free for v in ψ for all m P n. Let F be
an n-ary operation index that does not appear in Θ or ψ. Suppose Θ is consistent.
Then

ΘY
!

@@@v0 ¨ ¨ ¨ @@@vn-

´

DDDv ψÑÑÑψ
´

v

F̃ xv̄0, . . . , v̄n- y

¯¯)

is consistent.

Remark As we have done in (2.90), we emphasize that this is a theorem of S0. As
in the case of Herbrand’s theorem,2.93 there is an infinitary proof that is considerably
simpler: If Θ is consistent it has a countable satisfactory model S. Supposing a
fixed enumeration of |S|, and letting a1 be some fixed member of |S|, we define a
function f : n|S| Ñ |S| by letting fxa0, . . . , an-y “ a, where a is the first member
of |S| such that

S |ù ψ
“

v v0 ¨ ¨ ¨ vn-

a a0 ¨ ¨ ¨ an-

‰

,

if there is any; otherwise fxa0, . . . , an-y “ a1. Let S1 be the expansion of S for
which FS1

“ f . Given the axiom of infinity, we know there is a satisfaction relation
for S1, and clearly

S1 |ù ΘY
!

@@@v0 ¨ ¨ ¨ @@@vn-

´

DDDv ψÑÑÑψ
´

v

F̃ xv̄0, . . . , v̄n-y

¯¯)

,

so the latter theory is consistent.

Proof An S0-proof of Theorem 2.99 is given in Note 10.6.

The full skolemization theorem is as follows.

(2.100) Theorem [S0] Suppose Θ is a theory, ϕ is a prenex sentence, and ϕ1 is
a partial skolemization of ϕ over Θ. Then $ϕ1ÑÑÑϕ, and Θ Y tϕu is consistent iff
ΘY tϕ1u is consistent.

Proof We have the general result by induction once we have proved it for simple
skolemization. We operate in the setting of (2.98). To show that $ϕ1ÑÑÑϕ in
(2.97.1) we note that

ψ
`

v
τ

˘

ÑÑÑDDDv ψ

is valid for any term τ that is free for v in ψ, in particular for τ “ F̃ xv̄0, . . . , v̄n-y.21

It follows that if ΘY tϕ1u is consistent then ΘY tϕu is consistent.
To prove the converse, suppose ΘY tϕu is consistent. By Theorem 2.99

(2.101) ΘY
!

ϕ,@@@v0 ¨ ¨ ¨ @@@vn-

´

DDDv ψÑÑÑψ
´

v

F̃ xv̄0, . . . , v̄n-y

¯)

21See the footnote to (2.98).
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is consistent. The (universal closures of the) following are easily shown to be valid:

@@@u pηÑÑÑ θqÑÑÑpDDDu ηÑÑÑDDDu θq

@@@u pηÑÑÑ θqÑÑÑp@@@u ηÑÑÑ@@@u θq.

Using these repeatedly, we see that

@@@v0 ¨ ¨ ¨ @@@vn- pηÑÑÑ θqÑÑÑ
`

QQQ0v0 ¨ ¨ ¨QQQn-vn- ηÑÑÑQQQ0v0 ¨ ¨ ¨QQQn-vn- θ
˘

is valid for any quantifier string QQQ0v0 ¨ ¨ ¨QQQn-vn- . Hence2.101

ΘY
!

ϕ,QQQ0v0 ¨ ¨ ¨QQQn-vn- DDDv ψÑÑÑQQQ0v0 ¨ ¨ ¨QQQn-vn- ψ
´

v

F̃ xv̄0, . . . , v̄n-y

¯)

is consistent, so
ΘY

!

QQQ0v0 ¨ ¨ ¨QQQn-vn- ψ
´

v

F̃ xv̄0, . . . , v̄n-y

¯)

is consistent. 2.100

Example By way of illustration, suppose Θ is a theory, ϕ “ DDDv0 @@@v1 DDDv2 @@@v3 DDDv4 ψ
is a prenex sentence, and ΘYtϕu is consistent. By definition2.86 v0, v1, v2, v3, v4 are
distinct variables. We can skolemize the existential quantifications in any order.
We’ll begin with v2. Let F1 be a binary operation index not mentioned in Θ or ϕ,
and let

ϕ1 “ DDDv0 @@@v1 p@@@v3 DDDv4 ψq
´

v2
F̃1xv̄0, v̄1y

¯

“ DDDv0 @@@v1 @@@v3 DDDv4 ψ
´

v2
F̃1xv̄0, v̄1y

¯

.

Then2.100 ΘY tϕ1u is consistent. We now skolemize, say, v0, letting F0 be a nulary
operation index not mentioned in Θ or ϕ1, and letting

ϕ2 “

´

@@@v1 @@@v3 DDDv4 ψ
´

v2
F̃1xv̄0, v̄1y

¯¯´

v0
F̃00

¯

“ @@@v1 @@@v3 DDDv4 ψ
´

v0 v2
F̃00 F̃1xF̃00, v̄1y

¯

.

Then ΘY tϕ2u is consistent. Finally we skolemize v4, letting F2 be a binary oper-
ation index not mentioned in Θ or ϕ2, and letting

ϕ3 “ @@@v1 @@@v3

´

ψ
´

v0 v2
F̃00 F̃1xF̃00, v̄1y

¯¯´

v4
F̃2xv̄1, v̄3y

¯

“ @@@v1 @@@v3 ψ
´

v0 v2 v4
F̃00 F̃1xF̃00, v̄1y F̃2xv̄1, v̄3y

¯

.
(2.102)

Then ΘY tϕ3u is consistent.
Skolemizing in a different order gives slightly different final forms. For example,

the order v0, v2, v4 yields

(2.103) @@@v1 @@@v3 ψ
´

v0 v2 v4
F̃

1
00 F̃

1
1xv̄1y F̃

1
2xv̄1, v̄3y

¯

,

which is most efficient, while the order v4, v2, v0 yields

(2.104) @@@v1 @@@v3 ψ
´

v0 v2 v4
F̃

2
0 0 F̃

2
1 xF̃

2
0 0, v̄1y F̃

2
2 xF̃

2
0 0, v̄1, F̃

2
1 xF̃

2
0 0, v̄1y, v̄3y

¯

,

which is least efficient. These are all equiconsistent over any theory that does not
mention any of the F s.
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2.4.4 Logic with identity conservatively extends logic with-
out

To interpret the statement that forms the title of this section as it stands, we
must treat logic with identity as a theory in logic without identity. This is entirely
straightforward. Recall that 0 is reserved as the predicate index for identity. Sup-
pose ρ is a signature and 0 R Πρ. Let ρ“ be the expansion of ρ by the addition of
0 as a binary predicate index.

(2.105) Let Θρ,“ be the ρ“-theory that consists of the following sentences:2.77

1. For each n P ω, n-ary ρ-operation index F , and distinct variables v0, . . . , vn- ,
v10, . . . , v1n- ,

@@@v0, . . . , vn- , v10, . . . , v
1
n-

`

ľľľ

mPn
v̄m“““ v̄

1
mÑÑÑ F̃ xv̄0, . . . , v̄n-y“““ F̃ xv̄10, . . . , v̄

1
n-y

˘

.

2. For each n P ω, n-ary ρ-predicate index P , and distinct variables v0, . . . , vn- ,
v10, . . . , v1n- ,

@@@v0, . . . , vn- , v10, . . . , v
1
n-

`

ľľľ

mPn
v̄m“““ v̄

1
mÑÑÑpP̃ xv̄0, . . . , v̄n-yØØØ P̃ xv̄10, . . . , v̄

1
n-yq

˘

.

Recall2.78 that $“ is provability in logic with identity. It is easy to see that for any
ρ“-theory Θ and ρ“-sentence σ,

Θ$“ σØΘYΘρ,“$σ.

We therefore wish to show that if Θ is a ρ-theory and σ is a ρ-sentence then

ΘYΘρ,“$σÑΘ$σ.

Since Θ$σ iff Θ Y t␣␣␣σu is inconsistent, and the same is true for $“, the result
may be stated as follows.

(2.106) Theorem [S0] If Θ is a ρ-theory and Θ is consistent then Θ Y Θρ,“ is
consistent.22

Remark Once again, the infinitary proof is quite easy. Suppose S is a countable
satisfactory ρ-structure and S |ù Θ. Let S“ be the expansion of S to a ρ“-
structure with the identity predicate interpreted as the identity relation on |S|,
i.e., 0S“

“ txa, ay | a P |S|u. Given the axiom of infinity, we know that S“

has a satisfaction relation, and by construction S“ |ù Θρ,“. By the definition of
expansion, all operation and predicate indices other than identity have the same
interpretation in S“ as in S, so S“ |ù Θ. Hence ΘYΘρ,“ is consistent.

Proof For a finitary proof see Note 10.7.

Note that Theorem 2.106 confirms the remark following Definition 2.78 that
there is no need to distinguish between the provability relations $ and $“ for
sentences that do not involve the identity predicate. In the interest of notational
simplicity, in the context of logic with identity, we will use ‘$’ to mean ‘$“’.

22Clearly, ‘consistent’ in the statement and proof of Theorem 2.106 refers to the provability
relation $, as opposed to $“.
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2.4.5 Extension by definition

In our proof of the completeness theorem and in the deductive system derived from
it, the introduction of new constants is an intrinsic element. This is not necessary,
and if we had been willing to consider sequents involving formulas other than sen-
tences, we could have replaced additional constants by new variables. Indeed, in
practice, when one says, for example, ‘let a be an arbitrary thing’, one typically
does not trouble to state whether ‘a’ is a constant or a variable, nor can this always
be inferred from the argument.

The advantage of using variables instead of constants for this purpose is that
deductions from a theory Θ are then conducted entirely within the original signature
of Θ.23 One reason we have not taken any trouble to gain this advantage is that
in practice deductions are almost never carried out in the original signature of a
theory. Instead, as a way of organizing the work, the signature is routinely extended
by the addition of predicate and operation symbols to the language (with ‘symbols’
broadly understood to include words or phrases, etc.), while their definitions are
simultaneously added to the theory.

(2.107) Definition [S0] Suppose ρ is a signature, and ρ1 is an extension of ρ. We
will refer to a ρ1-index that is not a ρ-index as a new index.

1. Suppose P is new predicate index. A definition of P over ρ is a sentence

@@@v1, . . . , vn
`

P̃ xv1, . . . , vnyØØØϕ
˘

,

where ϕ is a ρ-formula and Freeϕ Ď tv1, . . . , vnu.

2. Suppose F is a new operation index and Θ is a ρ-theory. A definition of F
over Θ is a sentence

@@@v0, . . . , vn
`

v0“““ F̃ xv1, . . . , vnyØØØϕ
˘

,

where ϕ is a ρ-formula, Freeϕ Ď tv0, . . . , vnu, and Θ$@@@v1, . . . , vn DDD!v0 ϕ.

The fundamental theorem of definition is

(2.108) Theorem [S0] Suppose ρ is a signature and Θ is a ρ-theory.

1. Suppose ϕ is a ρ-formula with Freeϕ Ď tv1, . . . , vnu, and suppose P is an
n-ary predicate index not in ρ. Let

Θ1 “ ΘY
␣

@@@v1, . . . , vn
`

P̃ xv1, . . . , vnyØØØϕ
˘(

.

Then Θ1 is a conservative extension of Θ.

2. Suppose ϕ is a ρ-formula with Freeϕ Ď tv0, . . . , vnu and

Θ$@@@v1, . . . , vn DDD!v0 ϕ,

and suppose F is an n-ary operation index not in ρ. Let

Θ1 “ ΘY
␣

@@@v0, . . . , vn
`

v0“““ F̃ xv1, . . . , vnyØØØϕ
˘(

.

Then Θ1 is a conservative extension of Θ.
23The disadvantage is that when substituting a term τ for a variable v in a formula ϕ one

generally has to specify that τ is free for v in ϕ.
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Proof Again, it is sufficient to show (for every Θ) that if Θ is consistent then Θ1 is
consistent, and the infinitary proof is trivial: Given a satisfactory ρ-model S of Θ,
expand it to a ρ1-model S1 (with the same domain), where ρ1 is the expansion of
ρ by the new index, interpreting the new index according to its definition. To use
this method to prove the theorem in C0, we must show that S1 has a satisfaction
relation, which we can accomplish by defining the satisfaction relation S1 for S1 in
terms of the satisfaction relation S for S using only set quantification. The idea
is that, given a ρ1-formula η and an S1-assignment for η, we put xη,Ay P S1 iff
xζ, Ay P S, where ζ is obtained from η by elimination of the new index in favor of
its definition. This is quite easy for (2.108.1), somewhat more difficult for (2.108.2).

Note, however, that we have set ourselves the task of proving the theorem in S0,
so model-theoretic methods are not available. We have done this to conform with
the program outlined above,2.38 the goal of which is to provide a S0-proof of Theo-
rem 2.183, which states that C0 is a conservative extension of S0. Actually, it is only
(2.108.1) that is used in the proof of (2.183), but it turns out that a proof-theoretic
proof of (2.108.2) is—in the context of our previous work on skolemization—easier
than a model-theoretic proof in C0.

1 Let ρ1 be the expansion of ρ by the addition of P as a predicate index. Suppose
Θ1$σ, where σ is a ρ-sentence. Then there exists a ρ1-proof π of a sequent Σ Y
␣

@@@v1, . . . , vn
`

P̃ xv1, . . . , vnyØØØϕ
˘(

ñσ, where Σ Ď Θ. Let ϕ̃ be obtained from ϕ be
a change of (bound) variables so no variable that occurs in π occurs bound in ϕ̃.
For each formula η that occurs in π, let T η be the formula obtained by substituting
for each occurrence in η of a subformula P̃ xτ1, . . . , τny the formula ϕ̃

`

v1 ¨ ¨ ¨ vn

τ1 ¨ ¨ ¨ τn

˘

. Let
T π be the result of replacing each sentence θ in each sequent in π by T θ. It is easy
to see that T π is a ρ-proof. Obviously, if θ is a ρ-sentence then T θ “ θ, and

T
`

@@@v1, . . . , vn pP̃ xv1, . . . , vnyØØØϕq
˘

“ @@@v1, . . . , vn pϕ̃ØØØϕq.

Hence, T π is a ρ-proof of ΣYt@@@v1, . . . , vn pϕ̃ØØØϕquñσ. But @@@v1, . . . , vn pϕ̃ØØØϕq is
a logical validity, which may therefore be eliminated as a premise (by inserting a
proof of it), yielding a ρ-proof of Σñσ.

2 Let ρ1 be the expansion of ρ by the addition of F as an operation index. It
suffices to show (for all Θ) that if Θ is consistent and

(2.109) Θ$@@@v1, . . . , vn DDD!v0 ϕ,

then

(2.110) ΘY
␣

@@@v0, . . . , vn
`

v0“““ F̃ xv1, . . . , vnyØØØϕ
˘(

is consistent. Suppose, therefore, that Θ is consistent and (2.109). By (2.99)

ΘY
␣

@@@v1, . . . , vn
`

DDDv0 ϕÑÑÑϕ
`

v0
F̃ xv̄1, . . . , v̄ny

˘˘(

is consistent. Given (2.109),

ΘY
␣

@@@v1, . . . , vn
`

DDDv0 ϕÑÑÑϕ
`

v0
F̃ xv̄1, . . . , v̄ny

˘˘(

$@@@v0, . . . , vn
`

v0“““ F̃ xv1, . . . , vnyØØØϕ
˘

,

so (2.110) is consistent. 2.108
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(2.111) We will often indicate extension by definition by means of the superscript
‘`’. Thus, if Θ is a ρ-theory, then Θ` is a ρ`-theory that extends Θ by the inclusion
of definitions of new predicate and/or operation indices that when added to ρ yield
ρ`. Note that such extensions are often sequential, with subsequent definitions
formulated in terms of previously defined indices.

2.4.6 Relativization

(2.112) Definition [S0] Suppose ρ is a signature.

1. Suppose P is a unary ρ-predicate index. For ρ-formulas ψ we define the relativ-
ization of ψ to P def

“ ψP by recursion on the complexity of ψ as follows.

1. If ψ is atomic then ψP “ ψ.
2. p␣␣␣ψqP “ ␣␣␣ψP , pψ0___ψ1q

P “ ψP0 ___ψ
P
1 , etc.

3. pDDDv ψqP “ DDDv pP̃ xv̄y ^̂̂ψP q and p@@@v ψqP “ @@@v pP̃ xv̄yÑÑÑψP q.

2. We may define relativization to an arbitrary ρ-formula ϕ with one free variable
u by positing a definition

@@@u P̃ xūyØØØϕ,

where P is a new unary predicate index, and letting ψϕ be ψP .

3. We may also define ψϕ directly by substituting ϕ for P in (2.112.1.1–3) and
replacing P̃ xv̄y by ϕ

`

u
v̄

˘

in (2.112.1.3), but we must take care that v̄ is free
for u in ϕ in this case. This can be done by replacing ϕ by an equivalent
formula ϕ1 obtained by a suitable change of variables. Note that (2.112.1) may
be regarded as a special case of this construction with ϕ “ P̃ xūy.

2.4.7 Substructure

(2.113) Definition [C0] Suppose A and B are structures. B is a substructure of

A
def
ðñ

1. A and B have the same signature, say ρ;

2. |B| Ď |A|;

3. for every ρ-predicate index P with arity n and any x0, . . . , xn- P |B|

xx0, . . . , xn-y P PBØxx0, . . . , xn-y P PA;

4. and for every ρ-operation index F with arity n and any x0, . . . , xn- P |B|

FBxx0, . . . , xn-y “ FAxx0, . . . , xn-y.

Substructure and relativization are related in the following obvious way.

(2.114) Theorem [C0] Suppose ρ is a signature and ρ1 is the extension of ρ with one
additional unary predicate index P . Suppose A is a ρ1-structure with the property
that for every operation index F of ρ, PA is closed under the function FA, i.e., for
all x0, . . . , xn- P PA, FAxx0, . . . , xn-y P PA, assuming F is n-ary.

1. There is a unique substructure B1 of A with |B1| “ PA. (Note that PB1
“

|B1|.)
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2. Let B be the restriction of B1 to ρ. Then for any ρ-formula ψ and B-
assignment A for ψ,

B |ù ψrAsØA |ù ψP rAs.

Proof Straightforward. 2.114

Note that any substructure B of a given ρ-structure A may be obtained in this
way from the expansion A1 of A by the addition of a predicate index P to ρ such that
PA1

“ |B|. Thus the syntactical operation of relativization corresponds precisely
to the semantical relationship of substructure.

2.4.8 Interpretations in languages and theories

(2.115) Definition [C0] An interpretation ι of a language Lρ in a language Lρ1
is

determined by an isomorphism σ of ρ with a subsignature of ρ1,24 which we regard
as extending in the obvious way to an isomorphism of Lρ with a sublanguage of
Lρ1

, and a ρ1-formula ϕ with one free variable, such that for any ρ-formula ψ,
ιψ “ pσψqϕ.

Definition [C0] Suppose Θ and Θ1 are respectively a ρ- and a ρ1-theory.

1. An interpretation of Θ in Θ1 is an interpretation ι of Lρ in Lρ1
such that for

each sentence θ P Θ, Θ1$ ιθ.

2. Θ is interpretable in Θ1
def
ðñ there is an extension-by-definition Θ2 of Θ1 and

an interpretation of Θ in Θ2.

3. Θ and Θ1 are equi-interpretable
def
ðñ each is interpretable in the other.

2.5 Example: theories and models of geometry

[This is a rather long digression that is not required for anything that follows. Its
purpose is to illustrate metamathematical principles in the context of a body of
mathematics that is of interest in its own right, viz., projective geometry. The
main thread is picked up again in Section 2.6. W. T. Fishback’s Projective and
Euclidean Geometry [4] and Alfred North Whitehead’s The Axioms of Projective
Geometry [28] are recommended sources for conventional treatments of projective
geometry.]

The axiomatic method has a long and illustrious history in mathematics; for
millennia Euclid’s Elements served as the paradigm of deductive inference. From
the standpoint of formal logic as presented in this chapter, however, the Elements
is not entirely satisfactory. In the first place, it relies on unstated assumptions
that often make their way into proofs by way of diagrams, which—by their physical
nature—incorporate such notions as betweenness and continuity that Euclid does
not address explicitly. In the second place, the Elements posits the existence of
higher-order objects, such as sets of points, without stating axioms governing these
entities. Defects of the first sort were identified by a number of authors in the
nineteenth century, and David Hilbert famously presented an adequate system of
axioms in his Grundlagen der Geometrie[10]. Hilbert’s system, however, failed to

24In other words, σ is injective, the domain of σ is the class of ρ-predicate and -operation indices,
and for each ρ-index X, σX is a ρ1-index of the same type (predicate or operation) and arity.
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address the second sort of defect: specifically, Hilbert expressed the notion of con-
tinuity by saying—in effect—that any set of points on a line with an upper bound
has a least upper bound, without explicitly acknowledging such sets as individuals
governed by axioms. Alfred Tarski gave the first satisfactory first-order axiomati-
zation of euclidean geometry[26], expressing the continuity principle as a schema
of axioms, one for each formula that—interpreted in a model of the theory—would
define a set of points on a line, in the same manner that the separation principle, for
example, is expressed by an axiom schema in the Zermelo-Fraenkel axiomatization
of set theory.

Hilbert’s second-order formulation of the continuity principle has the advan-
tage of uniquely specifying the structure of interest, viz., R2 in the case of plane
geometry. As we will see, this is not possible with a first-order theory: by the
downward Löwenheim-Skolem theorem2.159 there are countable models of Tarski’s
axioms, and by the upward Löwenheim-Skolem theorem there are models of every
infinite cardinality. On the other hand, since the first-order predicate logic we have
developed does not apply to second-order axioms, if we wish to use them for the
purpose of deduction we must either extend our logic to higher order, or we must
expand the universe of discourse so that higher-order objects, such as sets of points,
may be regarded as individuals in a larger structure, i.e., we must employ a theory
of membership.

The precise delineation of first-order vs. higher-order methods, and the recog-
nition of the necessity of a formal theory of membership to deal with higher-order
objects, only came in the late nineteenth and early twentieth centuries. Along with
these developments came an interest in the scope of first-order methods in various
branches of mathematics. In this connection we recall that in our initial remarks
concerning the notion of structure§ 1.1.14 we noted that axioms are not always used—
as in Euclid’s Elements—to formalize our understanding of a specific structure, but
are often used in the converse way, to define a class of structures.

(2.116) An elementary class is a class C of structures of a given signature ρ, such
that for some ρ-theory Θ (a set of axioms), C is the class of ρ-structures S such
that S |ù Θ. In this context elementary is essentially synonymous with first-order:
membership of a structure S in an elementary class is determined entirely by its
first-order theory.

The classes of groups, rings, fields, and many other classes of structures are ele-
mentary, but many classes of mathematical interest are not, e.g., the class of finite
groups. Even in the case of an elementary class, its first-order theory is usually
of greater metamathematical than primarily mathematical interest. For example,
while we may define a group as a structure with a binary (multiplication) opera-
tion having certain first-order properties—viz., associativity and the existence of
an identity and of inverses—the first-order theory of groups is only a tiny part of
group theory as we know it: we are mostly interested in subgroups, homomorphisms
of groups, etc. The same is true of many other branches of mathematics, as the
notions of sequence, set, function and the like are almost always pertinent to the
subject.

A major development in the foundations of mathematics in the late nineteenth
and early twentieth centuries was the definition of the role of these ubiquitous
“higher-order” notions and the recognition that they too must be dealt with ax-
iomatically. As noted above, the standard approach today is to regard these as
individuals in the context of a theory of membership, in which the notion of the
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order of an object (as in first- and second-order, etc.) has no relevance: everything
is a set.25

Given its relatively rich elementary theory—which nevertheless falls short of its
full higher-order theory—together with its historical familiarity, geometry is well
suited to the purpose of illustrating some of the concepts developed in this chapter in
the context of mathematics as it is usually practiced; and for this purpose projective
geometry is particularly well suited.

Projective geometry originated as the study of geometric properties invariant
under projective transformations. It is apparent that the euclidean plane is itself
not invariant under such transformations. For example, suppose we project the
horizontal plane σ “ txx, y,´1y | x, y P Ru onto the vertical plane π “ tx1, y, zy |
y, z P Ru, using the point O “ x0, 0, 0y as the center of perspectivity—as we would
in painting a landscape arrayed in σ on a canvas at π with the observer’s eye at O.
Let T be this transformation. Then T xx, y,´1y “ x1, y{x,´1{xy for x ‰ 0, because
these points, in σ and π, respectively, are collinear with O. It follows that domT
omits the line tx0, y,´1y | y P Ru in σ, and imT omits the line h “ tx1, y, 0y | y P Ru
in π, which represents the “horizon” in the parlance of perspective drawing. Parallel
lines in σ project to lines in π that meet at a point on h. It is customary in projective
geometry to define the projective plane as an extension of the euclidean (or affine)
plane by the addition of points at infinity or ideal points, together with a line at
infinity, or ideal line, containing them. All lines parallel to a given affine line are
regarded as meeting at a single ideal point.

The incidence properties of the plane so extended are particularly simple.

1. Any two distinct lines are incident with a unique point—“parallel lines meet
at infinity”.

2. Any two distinct points are incident with a unique line.

2.5.1 Analytic projective geometry: modules over division
rings

An elegant model of the projective plane is obtained by taking the points to be
1-dimensional subspaces of R3, regarded as a vector space of dimension 3 over the
field R, and taking the lines to be the 2-dimensional subspaces of R3. A point and
line are incident

def
ðñ the former is a subspace of the latter. This model is RP2.

Thus, a point of RP2 is a line through the origin in R3, and a line in RP2 is a plane
through the origin in R3.

The same construction yields the real projective space RPn for each n ą 0:
the points are 1-dimensional subspaces of Rn`1, and the lines, planes, etc., are
respectively subspaces of dimension 2, 3, etc. We will confine our remarks to n “
1, 2, 3. Importantly, the same construction can be performed with any division ring
K in place of R. As a reminder, a division ring is a ring with (multiplicative) identity
1 such that @a ‰ 0 Db pab “ ba “ 1q. Multiplication need not be commutative; if it
is, the division ring is a field.

A right- or left-module over a division ring is analogous to a vector space over
a field. A right-module M over a ring K is a structure with an addition operation,
with respect to which it is an abelian group, and a scalar multiplication operation

25One might say that in the theory of membership, sets are of first order and classes of second
order, but one may just as well regard all classes as first-order, with a set just being a special sort
of class.
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a, u ÞÑ ua, where a P |K| and u P |M|, with the properties familiar from linear
algebra. In particular, puaqb “ upabq, writing the scalar to the right of the vector so
that the rule has the appearance of an associative law. Alternatively, we may define
a left-module over K by writing the scalar multiplication operation as a, u ÞÑ au,
where a P |K| and u P |M|, and specifying that apbuq “ pabqu.

Clearly, any general statement about right-modules over division rings applies
mutatis mutandis to left-modules, and vice versa.

The notions of linear combination, linearly independent, subspace, span, and
basis (linearly independent spanning set) have the familiar meaning. M is finite-

dimensional
def
ðñ it has a finite subset whose span is |M|. In this case, it can be

shown that any linearly independent set is extendible to a basis, any spanning set
has a subset that is a basis, and all bases have the same number of elements, which
is the dimension of M.

As in the case of vector spaces over fields, for each n P ω, n|K| has a natural
structure as a right-module over a ring K. Writing the elements of n|K| as column
vectors (i.e., nˆ 1 matrices), we have

»

—

–

u1

...
un

fi

ffi

fl

a “

»

—

–

u1a
...

una

fi

ffi

fl

.

We call this module Kn, or Kn
r to emphasize that it is a right-module. The corre-

sponding left-module is Kn
l , consisting of row vectors with

a
“

u1 ¨ ¨ ¨ un
‰

“
“

au1 ¨ ¨ ¨ aun
‰

.

Via a basis, any n-dimensional right-module over a division ring K is isomorphic to
Kn
r ; and any n-dimensional left-module over a division ring K is isomorphic to Kn

l

Linear transformation has the usual meaning, and a linear transformation T :
Kn
r Ñ Km

r is represented by an mˆ n matrix so that

T

»

—

–

u1

...
un

fi

ffi

fl

“

»

—

–

t1,1 ¨ ¨ ¨ t1,n
...

. . .
...

tm,1 ¨ ¨ ¨ tm,n

fi

ffi

fl

»

—

–

u1

...
un

fi

ffi

fl

.

Note the order of matrix factors. Be aware that scalar multiplication, i.e., the map
»

—

–

u1

...
un

fi

ffi

fl

ÞÑ

»

—

–

u1

...
un

fi

ffi

fl

a,

is not generally linear; whereas

»

—

–

u1

...
un

fi

ffi

fl

ÞÑ a

»

—

–

u1

...
un

fi

ffi

fl

“

»

—

—

—

–

a 0 ¨ ¨ ¨ 0
0 a ¨ ¨ ¨ 0

. . .
0 0 ¨ ¨ ¨ a

fi

ffi

ffi

ffi

fl

»

—

–

u1

...
un

fi

ffi

fl

is.
Similarly, a linear transformation T : Kn

l Ñ Km
l is represented by an n ˆ m

matrix operating on row matrices by right multiplication.
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Given a right-module M over K of dimension n ` 1, we define PM to be the
set of subspaces A of M such that 0 ă dimA ď n. We confer on PM an incidence
structure as follows. Let pgn be an n-sorted signature with a single binary relation
of incidence in addition to identity. The individuals of sort k are the elements of
PM of dimension k (as subspaces of M) for k “ 1, . . . , n. A and B are incident

def
ðñ A is on B

def
ðñ A l B

def
ðñ either A Ď B or B Ď A (as subspaces of M).

We refer to this pgn-structure as the incidence structure of PM, or of M itself, and
we call it a projective space. Colloquially, the 1-, 2-, and 3-dimensional subspaces
of M are the points, lines, and planes of PM. If M is a right-module then, given a
nonzero u P |M|, rus def

“ tua | a P Ku, which is the “point” of PM “represented by”
u. If M is a left-module then rus def

“ tau | a P Ku.
We define KPnr to be PM, where M “ Kn`1

r . As in the original case of RPn,
the points of the projective space KPnr are the 1-dimensional subspaces of Kn`1

r ,
the lines of KPnr are the 2-dimensional subspaces of Kn`1

r , etc. To demonstrate the
correspondence between, say, the projective K-plane KP2

r and the affine K-plane
K2
r extended by the addition of ideal points and an ideal line, it is convenient to let

K2
r be represented by the set A “

$

&

%

»

–

x
y
1

fi

fl | x, y P K

,

.

-

, which is the plane through

the point

»

–

0
0
1

fi

fl parallel to the “x, y-plane”. For each point

»

–

x
y
1

fi

fl of A there is a

unique 1-dimensional subspace

$

&

%

»

–

xa
ya
a

fi

fl | a P K

,

.

-

of K3
r that contains it, which is

by definition a point of KP2
r. The remaining points of KP2

r are the 1-dimensional

subspaces

$

&

%

»

–

xa
ya
0

fi

fl | a P K

,

.

-

, where
„

x
y

ȷ

P K2
r. These do not intersect A, and they

correspond to points at infinity for A. Similarly, for each line of A, there is a unique
2-dimensional subspace of K3

r that includes it, which is by definition a line of KP2
r.

The 2-dimensional space

$

&

%

»

–

x
y
0

fi

fl | x, y P K

,

.

-

does not intersect A, and corresponds

to the line at infinity for A.
The preceding discussion naturally applies mutatis mutandis to left-modules.

2.5.2 Synthetic projective geometry: axiomatic systems

The treatment of euclidean geometry via the representation of the plane as R2 is
the analytic approach, pioneered by René Descartes, in contrast to the synthetic or
axiomatic approach exemplified by Euclid’s Elements. The study of the projective
spaces KPn is likewise termed the analytic approach to projective geometry. For
the axiomatic approach, we will focus on two theories, PG2 and PG3, of projective
geometry in 2 and 3 dimensions, respectively, also known as plane and solid pro-
jective geometry. These are theories in the respective signatures pg2 and pg3. In
PG2 we refer to the domains as points and lines; in PG3, we have the additional
domain of planes. In the following formal presentation of the axioms we will use
subscripts ‘0’, ‘1’, and ‘2’ on quantifiers to indicate these respective domains. We
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generally follow the convention of using upper case Roman, lower case Roman, and
lower case Greek letters for points, lines, and planes, respectively. We use the bold
‘“““’ and ‘lll’ as usual to denote the formula-building operations corresponding to
these predicate symbols (identity and incidence).

As noted above for the special case of structures KPn, the incidence relation
may hold between individuals of any respective domains, and it is symmetric; thus,
for example, a point A is incident with a line a iff a is incident with A. Intuitively, A
is incident with a iff A is in a, if the latter is regarded as a set of points, but we wish
to de-emphasize this point of view for reasons that will become apparent. Instead,
we will say that A is on a, and we will also say that a is on A. Symbolically,
A l aØ a l A. (Incidentally, objects of the same sort are incident iff they are
identical, although we will not emphasize this equivalence.)

In the following axioms, all variables are presumed to be distinct. As we present
the axioms, we will verify that they hold for KP2 for any division ring K. Note that
this should not be taken to suggest that these are the only models of the axioms.
By convention, in a ring with identity, 0 ‰ 1, so K has at least two elements.

Axioms of PG2

PG2.0
@@@0A@@@1a pAlll aØØØ alllAq

This establishes the symmetry of the incidence relation. We could do without this
axiom if we restricted the order of arguments of l to point-line or line-point.

PG2.1a
DDD1a a“““ a

i.e., xthere exists a liney. This obviously holds for KP2.

PG2.1b
@@@1aDDD0A Ammm a

i.e., xgiven any line there is a point not on ity. Suppose l is a line of KP2, i.e.,
a 2-dimensional subspace of K3. Let u be an element of K3 not in l (necessarily
nonzero), and let A “ tua | a P Ku be the 1-dimensional space containing u. Then
A is a point of KP2 not on l.

PG2.1c

@@@1aDDD0A1, A2, A3 pA1 lll a ^̂̂A2 lll a ^̂̂A3 lll a ^̂̂A1 ‰‰‰ A2 ^̂̂A1 ‰‰‰ A3 ^̂̂A2 ‰‰‰ A3q

i.e., xon any line are at least three distinct pointsy. As a subspace of K3, a line l of
KP2 is of the form tua` vb | a, b P Ku for linearly independent u, v P K3. u, v, and
u` v are distinct points on l (because 0 ‰ 1 in K).

PG2.2a
@@@1a, b

`

a ‰‰‰ bÑÑÑDDD0!A pAlll a ^̂̂Alll bq
˘

i.e., xgiven any two distinct lines there is a unique point that is on both of themy.
The intersection of distinct 2-dimensional subspaces of K3 is a 1-dimensional sub-
space.

PG2.2b
@@@0A,B

`

A ‰‰‰ BÑÑÑDDD1!a palllA ^̂̂ alllBq
˘

i.e., xgiven any two distinct points there is a unique line that is on both of themy.
The span of two distinct 1-dimensional subspaces is a 2-dimensional subspace.
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We now extend the basic signature by defining a binary operation that takes as
arguments either two distinct points or two distinct lines, and returns the unique
line or point respectively that is on both of them. Axioms PG2.2 allow the following
definition.

(2.117) Definition [PG2]

1. Suppose A,B are distinct points. pA,Bq def
“ the unique line a such that Al a

and B l a.

2. Suppose a, b are distinct lines. pa, bq def
“ the unique point A such that a l A

and blA.26

The following theorems establish the duality principle.

(2.118) Theorem [PG2] D0A A“““A, i.e., there exists a point.

Proof This follows trivially from the fact that there exists a line and there is a
point on it. 2.118

(2.119) Theorem [PG2] Given any point there is a line not on it.

Proof Let A be a point. By PG2.1a there exists a line a. If Am a we are finished.
If Al a then let B be a point on a other than A (by PG2.1c) and let C be a point
not on a (by PG2.1b). Then B ‰ C. Let b “ pB,Cq. Then b ‰ a, since C l b and
C m a. Hence, Am b; otherwise both a and b would be on both A and B, contrary
to PG2.2b. 2.119

(2.120) Theorem [PG2] On any point are at least three distinct lines.

Proof Suppose A is a point. Let a be a line not incident with A, and let B1, B2, B3

be distinct points on a. Then pA,B1q, pA,B2q, pA,B3q are distinct lines on A. 2.120

2.5.3 Duality

Note that (2.118), (2.119), and (2.120) become PG2.1a, PG2.1b, and PG2.1c, respec-
tively, if we substitute ‘point’ for ‘line’ and ‘line’ for ‘point’ throughout. We say
that the former and the latter are respectively dual to each other. Clearly, PG2.0
is selfdual in this sense, and PG2.2a and PG2.2b are each dual to the other. We
refer to the transformation of a formula by swapping the point- and line-domains
as dualization, and we call the result the dual of the original. Given a formula ϕ in
the signature of PG2 we let ϕ˚ def

“ its dual. Note that ϕ˚˚ “ ϕ.
Dualization is therefore an interpretation of Lpg2

in itself. It has the very useful
consequence that the set of theorems of PG2 is closed under dualization, i.e.,

(2.121) if PG2$σ then PG2$σ˚.

We call a pg2-theory selfdual
def
ðñ it is closed under dualization. We therefore have

the theorem:
26For completeness, since operations must be defined for all arguments (of specified types), we

stipulate that pA,Aq “ A and pa, aq “ a for any point A and line a. This never arises in practice.
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(2.122) Theorem [S0] PG2 is selfdual.

Note that this is a theorem about PG2, not of PG2; and we may refer to it as a
metatheorem. We have shown it as a theorem of S0, which we have adopted as
our standard theory of finitary objects, and which is suitable for a discussion of
languages, axiom systems, and proofs.

Note that in saying that a pg2-theory Θ is selfdual we only mean that for any
pg2-sentence σ,

Θ$σÑΘ$σ˚, 2.121

not that
Θ$σÑÑÑσ˚.

2.5.4 Solid projective geometry

We now enlarge the system to three dimensions. There are three domains: points,
lines, and planes. The incidence relation takes as arguments any two distinct sorts,
and it is symmetric. This theory exhibits duality under the interchange of ‘point’
and ‘plane’. At the cost of some redundancy, we will present a selfdual axiomati-
zation.

As we present the axioms, you may wish to verify that they hold for KP3 for
any division ring K. As we will see, in this case, these are the only models of the
axioms.

Axioms of PG3

PG3.0a

@@@0A@@@1a pAlll aØØØ alllAq

@@@0A@@@2α pAlll αØØØαlllAq

@@@1a@@@2α palll αØØØαlll aq

PG3.0b xGiven a point A, a line a, and a plane α, if Al a and al α then Al α.y

PG3.1a xThere exists a line.y

PG3.1b xGiven a line a on a
"

point A
plane α

*

there is a
"

plane on A
point on α

*

not on a.y

PG3.1c xOn any line are at least three distinct
"

points
planes

*

y.

PG3.2a xAny two distinct
"

points
planes

*

are on a unique line.y

PG3.2b xAny nonincident
"

point
plane

*

and line are incident with a unique
"

plane
point

*

.y

PG3.2c xIf two distinct
"

points
planes

*

on a line a are on a
"

plane α
point A

*

then a is on
"

α
A

*

.y

Axioms PG3.0 correspond to the “housekeeping” axiom PG2.0; axioms PG3.1 to the
“existence” axioms PG2.1; and axioms PG3.2 to the “incidence” axioms PG2.2.

Definition [PG3] We adapt the operation p¨, ¨q2.117 for the 3-dimensional setting.
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1. Suppose A,B are distinct points. pA,Bq def
“ the unique line on both A and B.

2. Suppose α, β are distinct planes. pα, βq def
“ the unique line on both α and β.

3. Suppose A and a are a nonincident point and line. pA, aq def
“ pa,Aq

def
“ the

unique plane on both A and a.

4. Suppose α and a are a nonincident plane and line. pα, aq
def
“ pa, αq

def
“ the

unique point on both α and a.

The following existence and incidence principles could naturally have been listed
as axioms, but they are easily derived from the axioms given.

(2.123) Theorem [PG3]

1. Given any
"

plane
point

*

there is a
"

point
plane

*

not on it.

2. Any three distinct
"

points
planes

*

not all on a line are on a unique
"

plane
point

*

.

3. Distinct lines on a
"

plane α
point A

*

are on a unique
"

point
plane

*

, which is also on
"

α
A

*

.

Proof 1 We will prove the top version. The dual of this proof is a proof of the
bottom version. Suppose α is a plane. Let a be a line. If there is a point on a not
on α we are finished; if not, a is on α. Let β be another plane on a, and let A be
a point on β not on a. Then β “ pA, aq, i.e., β is the only plane on both A and a.
Since al α and α ‰ β, it follows that Am α.

2 Again, we will just prove the top version. Suppose A,B,C are distinct points.
Let a “ pB,Cq and α “ pA, aq. Then A l α, and a l α, so B,C l α. Suppose α1

is another plane on A,B,C. Then Al α1 and al α1, so α1 “ α.

3 Again, we will just prove the top version. Suppose b and c are distinct lines on
a plane α. Let A be a point not on α. Let β “ pA, bq and γ “ pA, cq. Since A is
on β and γ, α ‰ β and α ‰ γ. Hence, b “ pα, βq and c “ pα, γq. It follows that
β ‰ γ. Thus, α, β, and γ are distinct planes. They are not all on a line, because
that line would have to be both b and c, which are distinct. Let2.123.2 D be the
unique point on α, β, and γ. Then D l b; otherwise, since D and b are both on α
and β, α “ pD, bq “ β. Likewise, D l c. 2.123

Clearly, if π is a plane, then PG3.0a (top line), PG3.1a, PG3.1b (lower), PG3.1c
(upper), PG3.2a (upper), and Theorem 2.123.3 (upper) yield axioms PG2.0–2 for the
structure consisting of the points and lines on π. In other words, PG2 is interpretable
in the theory obtained from PG3 by adding a constant to its signature with the
“axiom” that this constant denotes a plane, so PG2 is—in this slightly extended
sense—interpretable in PG3.

We have remarked above that the historically original models of PG2 and PG3 are
the projective spaces RP2 and RP3, and we can replace R by any division ring. We
have also mentioned—but not yet proved—that every model of PG3 is isomorphic
to KP3 for some division ring K. This is shown by providing geometrical definitions
of the algebraic operations of addition and multiplication on the points of a line
with one point removed, which—when interpreted in a model S of PG3—constitute
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a division ring K, and using this to establish an isomorphism of S with KP3 by
assigning homogeneous coordinates to the points, lines, and planes of S. We defer
this for the moment.

For each n ą 1, let Dn be the class of pgn-structures of the form KPn, where K
is a division ring. It follows from the preceding remarks that D3 is elementary in the
sense introduced above.2.116 Let Θn be the theory of Dn, i.e., the set of sentences true
in all members of Dn. As we have stated above (but still not proved), Θ3 “ PG3.
As we will see shortly, the class of models of PG2 properly includes D2. Note that
this does not imply that Θ2 properly includes PG2: it could conceivably happen
that every sentence true in all structures in D2 is derivable from PG2. If this were
so then D2 would not be elementary. We will see, however, that D2 is elementary,
so Θ2 properly includes PG2.

2.5.5 Desargues’s principle

In this section we begin to justify the assertions made above concerning the theories
PG2 and PG3. We have already noted that for any σ P PG2, PG3$σΠ, where Π
is a constant denoting a plane, and the relativization σ ÞÑ σΠ is accomplished
by restricting quantified variables to points and lines on Π. The key question is
whether the converse holds, i.e., if σ is a pg2-sentence and PG3$σΠ, does it follow
that PG2$σ; and, if not, can we simply axiomatize the theory tσ | PG3$σΠu.
The answers are respectively ‘no’ and ‘yes’, and one fundamental theorem of PG3

is central to the discussion. We begin with a definition.

Definition [PG3]

1. Lines or planes are concurrent
def
ðñ they are all on a single point.

2. Points or planes are collinear
def
ðñ they are all on a single line.

3. Lines or points are coplanar
def
ðñ they are all on a single plane.

4. A triangle is a sequence A,B,C, a, b, c of points and lines such that
1. A,B,C are noncollinear;
2. a, b, c are nonconcurrent;
3. a “ pB,Cq, b “ pC,Aq, and c “ pA,Bq; equivalently, A “ pb, cq, B “

pc, aq, and C “ pa, bq.
We regard different orderings of given set of points and lines as different tri-
angles. We may refer to the triangle A,B,C, a, b, c as ‘ABC’ or as ‘abc’.

5. Triangles A,B,C, a, b, c and A1, B1, C 1, a1, b1, c1 are

1. perspective from a point D
def
ðñ D is collinear with A and A1, with B

and B1, and with C and C 1;

2. perspective from a line d
def
ðñ d is concurrent with a and a1, with b b1,

and with c and c1.

Note that since the points of a triangle are noncollinear they are on a unique plane,
and the lines of the triangle are on the same plane.

Figure 2.1 shows perspectivity of a triangle from a point D and from a line d. It
is no accident that a single triangle serves to illustrate both forms of perspectivity,
as they are equivalent for RP2. In fact, they are equivalent for KPn for any division
ring K, and their equivalence is a theorem of PG3: Desargues’s theorem. It is not,
however, a theorem of PG2.
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D

C2

A2

B2

A

A1

B

B1

c

c1

C

C 1

a

a1

b

b1

d

Figure 2.1: The triangles ABC and A1B1C 1 are perspective from the point D and
from the line d.

1. For the purpose of this discussion we define Desargues’s principle DP to be
the statement that any triangles perspective from a point are perspective from
a line.

2. Note that the dual DP˚ of DP in plane projective geometry is also the converse
of DP: Any triangles perspective from a line are perspective from a point.

(2.124) Theorem (Desargues) [PG3] Two triangles perspective from a point are
perspective from a line.

Proof Suppose A,B,C, a, b, c and A1, B1, C 1, a1, b1, c1 are triangles perspective from
a point D. Suppose first that they are on distinct planes π and π1, respectively. Let
d “ pπ, π1q. By hypothesis there is a line a2 on D,A,A1, and a line b2 on D,B,B1.
Since a2 and b2 are both on D, there is a plane γ such that a2, b2 are on γ. Thus,
A,A1, B,B1 are on γ, so pA,Bq and pA1, B1q are on γ. There is therefore a point C2

on both c “ pA,Bq and c1 “ pA1, B1q. C2 is on both π and π1, so it is on d. Hence,
c, c1, d are concurrent. Similarly, a, a1, d and b, b1, d are concurrent, so the triangles
are perspective from d.

Now suppose π “ π1. Let e be a line on D not on π, and let E and E1 be
distinct points on e distinct from D. By the hypothesis of perspectivity, there exist
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planes α, β, γ such that A,A1 are on α; B,B1 are on β; C,C 1 are on γ; and e and
hence also D,E,E1 are on all three of them. E and E1 are both distinct from
A,B,C,A1, B1, C 1. Since E,E1, A,A1 are on α there is a point A2 on α that is on
pE,Aq and pE1, A1q. Similarly, there exist points B2 on pE,Bq and pE1, B1q, and
C2 on pE,Cq and pE1, C 1q.
pE,Aq is not pE,Bq; otherwise, A “ ppE,Aq, πq “ ppE,Bq, πq “ B. Thus,

if A2 “ B2 then, since A2 is on the distinct lines pE,Aq and pE,Bq, A2 “ E.
Likewise, if A2 “ B2 then A2 “ E1. Since E ‰ E1, it follows that A2 ‰ B2.

C2 cannot be identical with both E and E1, since the latter are distinct. Suppose
without loss of generality that C2 ‰ E. pA2, B2q is on the plane pE, cq. If C2 is
on pA2, B2q then C2 is also on pE, cq. Since E is on pE, cq and is distinct from C2,
pE,C2q is on pE, cq. Since C is on pE,C2q, C is on pE, cq. But the only points on
both π and pE, cq (which are distinct, since E is not on π) are on the common line
c “ pA,Bq. This is impossible, since by the definition of triangle, C is not collinear
with A,B. It follows that A2, B2, C2 are not collinear, so they form a triangle. Let
a2 “ pB2, C2q, b2 “ pC2, A2q, and c2 “ pA2, b2q.

Let π2 be the plane on A2, B2, C2. It is easy to see that if A2 is on π then
A “ A2 “ A1; likewise for B2 and C2. Thus, if π2 “ π, then the triangles are
identical. In this case they are perspective from any line in π. Suppose therefore
that π2 ‰ π. ABC and A2B2C2 are perspective from E, so by the theorem for
the noncoplanar case, they are perspective from the line f “ pπ, π2q; likewise for
A1B1C 1 and A2B2C2. a2 has only one point in common with f , so this point must
be on both a and a1; hence, they are concurrent with f . Similarly, b, b1 and c, c1 are
concurrent with f ; hence, ABC and A1B1C 1 are perspective from f . 2.124

The first metamathematical point to make about Desargues’s theorem is that it
does not follow from PG2. To show this it suffices to exhibit a model of PG2 in which
it fails. A simple such model is due to Moulton. A finite, or affine, Moulton plane
has the same points as the euclidean plane R2. The lines of the Moulton plane
include the vertical euclidean lines and those of negative slope. The remaining
Moulton lines consist of a segment in the left halfplane of positive slope together
with a segment in the right halfplane with half the slope, as illustrated in Figure 2.2.
This plane has the same incidence properties as the ordinary euclidean plane. Note
particularly that is has parallel—i.e., nonintersecting—lines of arbitrary slope. We
form the corresponding projective Moulton plane by adjoining a point at infinity
for each equivalence class of parallel lines, and a line at infinity containing all the
points at infinity. It is easy to see that this is a model of PG2. Figure 2.3, which is
just Figure 2.1 “moultonized”, shows that it does not satisfy Desargues’s theorem.
Likewise, DP˚ is not a theorem of PG2: its failure in the Moulton plane may be
demonstrated by a simple modification of Figure 2.3.

Not surprisingly, DP˚ is a theorem of PG3. It is tempting to use the duality
principle to infer this from the fact that PG3$DP, and there are multiple instances
in the expository literature on this subject of erroneous “proofs” of DP˚ based on
duality. Recall, however, that DP˚ is the plane dual of DP. The duality principle
for PG3 only yields the solid dual of DP, in which ‘point’ is replaced by ‘plane’
throughout, and the conclusion is still a statement about perspectivity from a line.
The duality principle for PG2 is irrelevant to the matter at hand.

The reason this error is so seductive is that the theory PG2 ` DP is, in fact,
selfdual, but this has to be proved:

(2.125) Theorem [PG2] DPÑDP˚.
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Figure 2.2: A Moulton plane.

Proof See Note 10.8.

Note that xDP˚ÑDPy is dual to xDPÑDP˚y, so the duality principle for PG2

allows us to infer the existence of a PG2-proof of xDP˚ÑDPy from the existence of
a PG2-proof of xDPÑDP˚y:

Theorem [PG2] DP˚ÑDP.

Putting (2.124) together with (2.125) and the fact that PG3$ xfor every plane π,
PG2πy, we know that PG3 proves that any coplanar triangles perspective from a
line are perspective from a point. If we want the full converse—for noncoplanar
triangles as well—an additional argument is required: neither plane nor solid duality
is applicable. We omit the proof.

2.5.6 Models of the axioms

It is of interest that, although the 3-dimensional converse of DP is not obtainable
via duality, a different metamathematical device exists for showing that it is a
theorem of PG3 without actually sketching a proof, viz., the completeness theorem.
This is a corollary of the above-mentioned characterization of the models of PG3 as
the projective spaces KP3, where K is a division ring. Desargues’s theorem is the
key to this, and we have the analogous result that the models of PG2 `DP are the
projective spaces KP2, K a division ring.

Let us briefly indicate how this is done. Given a model M of PG2`DP or PG3 we
obtain the ring K by providing geometric definitions of addition and multiplication
operations on the points of any line with one point (which may be thought of as
the “point at infinity”) deleted. Figures 2.4 and 2.5 illustrate these definitions. In
Figure 2.4, k is an arbitrary line, and I is an arbitrary point on k, which we regard
as the point at infinity on k. Let k̃ be the set of points on k other than I. O is an
arbitrary point distinct from I that will be the 0 element of K. Given points A and
B on k other than I, to construct A ` B let m and m1 be arbitrary distinct lines
on I distinct from k, and let X be an arbitrary point on m distinct from I. Let X 1

on m1 be collinear with X and A, let Y 1 on m1 be collinear with X and O, and let
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A

A1

B

B1

c

c1

C

C 1

a

a1

b

d

B2

b1

Figure 2.3: The triangles ABC and A1B1C 1 in this Moulton plane are perspective
from the point D, but the points of intersection of corresponding lines are not
collinear, as the line d on A2 and C2 is not on B2. (This is Figure 2.1 modified as
in Figure 2.2.)
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A B

k

O I

m

m1

X

Y 1
X 1

Y

A`B

Figure 2.4: Geometrical construction of the sum of points A and B on an arbitrary
line k with a point I omitted. O is the 0 element.

Y on m be collinear with Y 1 and B. We define A ` B as the point on k collinear
with X 1 and Y . To validate this as a definition we must first show that if k, I, O,
X, A, and B be given then X 1, Y 1, Y , and A`B are uniquely determined; then we
must show that A ` B so constructed is independent of the choice of m, m1, and
X, for which Desargues’s principle is required. We must then show that pk̃;O,`q
is an abelian group. We omit the proofs.

In Figure 2.5 we continue the construction by choosing an arbitrary point U on
k distinct from I and O, which will be the multiplicative identity. Given points A
and B on k other than I, to construct A ¨ B let m and n be arbitrary lines on I
and O, respectively, distinct from k, and let Um and Un be arbitrary points on m
and n, respectively, collinear with U . Let X on m be collinear with Un and A, and
let Y on n be collinear with Um and B. We define A ¨B as the point on k collinear
with X and Y . As before, we must show that this construction yields a definite
point A ¨ B, and that this is independent of the choice of m, n, Um and Un. We
must then verify that pk̃;O,U,`, ¨q is a division ring. We omit the proofs.

It is fairly straightforward to show that the above constructions applied to any
l, I, O, U in KP2

r do in fact yield an isomorph of K. Perhaps unsurprisingly, applied
to KP2

l , the construction in Figure 2.5 defines B ¨A, rather than A ¨B.
Still working in PG2 ` DP, we can now define a structure isomorphic to KP2,

where K is the division ring just defined. This is equivalent to the definition of
homogeneous coordinates, as follows. Suppose ι is an isomorphism of a projective
plane P with KP2, and suppose A is a point of P. Let W “ ιA. W is a 1-
dimensional subspace KP3, and the components of any nonzero element of W serve
as coordinates of A. They are homogeneous inasmuch as coordinate tuples that are
proportional to each other (by right multiplication by a nonzero scalar) represent
the same point. We naturally represent these coordinate tuples as column matrices.
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U A B

k

O I

m

n

Um

Un

X

Y

A ¨B

Figure 2.5: Geometrical construction of the product of points A and B on an
arbitrary line k with a point I omitted. O is the 0 element, U the 1 element.

Now suppose l is a line of P. Let W “ ιl. W is a 2-dimensional subspace of K3

and is therefore the nullspace (kernel) of a linear transformation T : K3
r Ñ K. Note

that T is represented by a nonzero row matrix, and any transformation proportional
to T (by left multiplication) has the same nullspace. Thus, the components of (the
matrix representation of) T are homogeneous coordinates of l. A line and a point
are incident iff the product of their coordinate (row and column) matrices is 0.

To define homogeneous coordinates for a projective plane synthetically, we pro-
ceed as illustrated in Figures 2.6. We define a division ring K by choosing a line a
and points O, U , and I on a as above. Thus, |K| consists of the points of a other
than I, which is the “point at infinity in the direction of” a. All coordinates will
be obtained by reference to a. We establish an isomorphism of K with the ring
structure on another line a1 with the same origin O by a perspectivity through a
point J not on a or a1. Note that I 1 ‰ I. i “ pI, I 1q is the “line at infinity” for this
coordinatization of the plane. Given a point P not on pI, I 1q (a point of the finite
or affine plane, if you will), we obtain an “x” coordinate by projecting P through
I 1 to a, and a “y” coordinate by projecting first through I to a1 and then through
J to a. These are the affine coordinates of P , and the corresponding homogeneous
coordinate triple is xX,Y, 1y, i.e., xX,Y, Uy. Any other homogeneous coordinate
triple is xX ¨ A, Y ¨ A,Ay, where A on a is not O or I. (To save space, we are
representing column matrices by 3-sequences.)

To obtain coordinates for a point Q on i, let P be any point on pO,Qq other
than O and Q, and let xX,Y y be the affine coordinates of P . Then xX,Y, 0y, i.e.,
xX,Y,Oy is a homogeneous coordinate triple for Q, as of course is any nonzero
(right) multiple thereof; indeed, any such multiple arises from another choice of P
on pO,Qq.

We omit the somewhat complicated proof that this assignment of coordinates
establishes an isomorphism of P with KP2, the essential facts being that the points
and lines of P do indeed correspond to the 1- and 2-dimensional subspaces of K3

l ,
respectively. The same can be done for solid projective geometry. Note that in
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O U I

I 1

a

a1

J

i

U 1

P

X

Y 1

Y

Q

Figure 2.6: The homogeneous coordinates of a point P not on pI, I 1q are xX,Y, Uy
and all nonzero multiples thereof, i.e., xX ¨A, Y ¨A,Ay, where A is a point on pO, Iq
other than O, I.
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Figure 2.7: Pappus’s principle

this case, Desargues’s principle does not have to be separately posited, as it is a
theorem of PG3. The following theorem sums it up.

(2.126) Theorem [ZF]

1. The models of PG2`DP are exactly the isomorphs of the structures KP2, K a
division ring.

2. The models of PG3 are exactly the isomorphs of the structures KP3, K a divi-
sion ring.

2.5.7 Pappus’s principle

The following principle derives from a theorem of Pappus.

(2.127) Definition Pappus
def
ðñ for any two distinct coplanar lines l, l1, and six

distinct points A,B,C,A1, B1, C 1, such that A,B,C are on l and A1, B1, C 1 are on l1,
the points ppA,B1q, pA1, Bqq, ppA,C 1q, pA1, Cqq, and ppB,C 1q, pB1, Cqq are collinear.
See Figure 2.7.

It is easy to show that pA,B1q and pA1, Bq are distinct lines, so ppA,B1q, pA1, Bqq is
well defined; and the same is true of the other two pairs of pairs of points.

The following theorem is not required for our purposes. It merely allows us to
shorten the description of the theory PG2 ` DP ` Pappus to ‘PG2 ` Pappus’. We
omit its proof.

Theorem [PG2 ` Pappus] DP.

The following theorem gives the model theoretic equivalent of Pappus.

(2.128) Theorem [ZF] The models of PG2 ` Pappus are exactly the isomorphs of
the structures KP2, K a field.
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A ¨B
B ¨A

Figure 2.8: Geometrical construction of the products A ¨B and B ¨A.

Proof In the forward direction the theorem says that Pappus implies that the
multiplication operation A,B ÞÑ A ¨B defined by Figure 2.5 is commutative. To see
that this is so, consider the diagram in Figure 2.8, where we have additionally shown
the construction defining B ¨ A, letting Z “ pm, pB,Unqq, W “ pn, pA,Umqq, and
B ¨ A “ pk, pZ,W qq. Ignoring, in the interest of brevity, possible degeneracies, we
show that B ¨A “ A¨B by showing that A¨B is collinear with Z and W . This follows
from Pappus applied to the points A,Un, X, Y, Um, B in that order; i.e., we note that
W “ ppA,Umq, pUn, Y qq, Z “ ppUn, Bq, pX,Umqq, and A ¨ B “ ppX,Y q, pA,Bqq,
which are collinear by Pappus.

The reverse direction is the statement that if K is a field then KP2
|ù Pappus.27

Using the notation of Definition 2.127 and Figure 2.7, we first observe that at most
one of the points A,B,C,A1, B1, C 1 can lie on both l and l1, and by renaming, we
may suppose that any such point is either C or C 1. Thus, no three of the points
in tA,A1, B,B1u are collinear. Recall that a point D of KP2 is a 1-dimensional
subspace of K3. Any nonzero δ P D is a representative of D, its components (as a
3-sequence) are homogeneous coordinates of D, and rδs “ D. Collinearity of three
points in KP2 is equivalent to linear dependence of their representatives in K3. Let
α, α1, β, β1 be representatives of A,A1, B,B1, respectively. Then any three vectors
in tα, α1, β, β1u are linearly independent, while tα, α1, β, β1u is linearly dependent
(being a set of four vectors in a 3-dimensional vector space). Thus there exist
a, a1, b, b1 such that

aα` a1α1 ` bβ ` b1β1 “ 0,

and these coefficients are necessarily nonzero. By renaming the representative vec-
tors, we may suppose that

(2.129) α` α1 ` β ` β1 “ 0
27For K “ R, which is of course what is actually illustrated by Figure 2.7, this is Pappus’s

theorem.
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By the same sort of reasoning, there exist representatives γ, γ1 of C,C 1, respectively,
and c, c1 P K, such that

γ “ α` cβ, γ1 “ α1 ´ c1β1.

Let
γ2 “ α1 ` β.

Then2.129

´α´ β1 “ γ2 “ α1 ` β,

so rγ2s is on both pA,B1q and pA1, Bq; hence, rγ2s “ ppA,B1q, pA1, Bqq. Let

β2 “ c1α` cp1` c1qα1 ` cc1β.

Then
c1p1´ cqα` cγ1 “ β2 “ cp1` c1qα1 ` c1γ,

so rβ2s “ ppA,C 1q, pA1, Cqq. Let

α2 “ c1α` p1` c1qα1 ` p1´ c` c1qβ.

Then
p1´ cqβ ` γ1 “ α2 “ ´p1` c1qβ1 ´ γ,

so rα2s “ ppB,C 1q, pB1, Cqq.
Since

α2 ´ β2 ´ p1´ cqp1` c1qγ2 “ 0,

trα2s, rβ2s, rγ2su is linearly dependent. 2.128

2.5.8 Duality: synthetic and analytic

We can now use the completeness theorem to relate analytic to synthetic ideas in
projective geometry. Consider first the duality principle. Recall that we established
the synthetic version of this for the theories PG2 and PG3 by proving the dual of
each of the axioms from the axioms. The analytic version of duality is formulated
as follows. Suppose K is a division ring and n P ω. Recall that Kn

r and Kn
l

are the right- and left-K-modules whose elements are n-sequences from K. We
conventionally represent the elements of Kn

r and Kn
l respectively as column and

row matrices, with either right- or left-multiplication of vectors by scalars. Kn
r

and Kn
l are dual in the usual linear algebraic sense that there exists an evaluation

tensor, which by our conventions is matrix multiplication. Thus, given

»

—

–

u1

...
un

fi

ffi

fl

P Kn
r

and
“

v1 ¨ ¨ ¨ vn
‰

P Kn
l , the value of the pair is

“

v1 ¨ ¨ ¨ vn
‰

»

—

–

u1

...
un

fi

ffi

fl

P K.

Given a subspace A of Kn
r , the annihilator of A def

“ AK
def
“ the set of v P Kn

l such
that vu “ 0 for all u P A. AK is a subspace of Kn

l , and dimA ` dimAK “ n.
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Similarly, the annihilator of a subspace of Kn
l is a subspace of Kn

r of complementary
dimension. AKK “ A.

The elements of the projective spaces KPnr and KPnl are the subspaces of dimen-
sion m “ 1, . . . , n´ 1, so the annihilator operation determines a bijection of these
spaces. It is easy to see that A Ď BØBK Ď AK. Since, by definition, elements
of KPn are incident iff one is included in the other, the annihilator operation is
an isomorphism of the incidence structures of KPnr and KPnl . (Since it takes an
element of sort m to an element of the dual sort n ´m, it is not an isomorphism
per se.)

The transpose operation, which converts a row to a column matrix and vice
versa, clearly induces an isomorphism of KPn with KopPn, where Kop is the opposite
of K, which is the ring with the same domain and addition operation, but with the
order of multiplication reversed: u ¨op v “ v ¨ u.

We define the dual operation A ÞÑ A˚ on KPn as the composition of the anni-
hilator and transpose operations. It is therefore an automorphism of the incidence
structure of KPn that maps objects of sort m to objects of sort n ´m. If n “ 2,
the dual operation swaps points and lines; if n “ 3, it swaps points and planes, and
it takes each line to a (typically different) line.

The duality operation on sentences clearly transforms the theory of KPn to the
theory of KopPn. To obtain a more useful result, let Θn be the theory of the class
of structures KPn, where K is an arbitrary division ring, i.e., the set of sentences
true in all structures KPn. Then Θn is closed under dualization, since the class
of division rings is closed under the map K ÞÑ Kop. Thus we have the following
corollary of (2.126).

(2.130) Theorem [ZF]

1. PG2 ` DP is selfdual.

2. PG3 is selfdual.

By virtue of (2.130.1), since PG2 ` DP$DP, it follows that PG2 ` DP$DP˚, i.e.,
PG2$DPÑÑÑDP˚. If we believe that ZF would not tell us that a PG2-proof of
DPÑÑÑDP˚ exists when a proof does not actually exist, then we need not actu-
ally exhibit PG2-proof of DPÑÑÑDP˚ to know that one exists. In effect, (2.130.1)
justifies the authors mentioned in the remarks preceding (2.125)—who have used
“duality” to infer DP˚ from DP. This is, of course, far more elaborate than the
direct argument given in Note 10.8. It is also less than satisfactory in that it uses
the infinitary theory ZF28 to infer the existence of a finitary object (a proof), just
the sort of thing we have taken pains elsewhere in this chapter to avoid.

2.5.9 Projectivity and the fundamental theorem

The notion of projectivity, which is central to projective geometry, is easily defined
analytically, and it is of interest to see how metatheoretical considerations bear on
its synthetic definition.

Suppose M and N are right-modules of the same finite dimension over a division
ring K. Let PM and PN be their corresponding projective spaces. Suppose T :
M Ñ N is a nonsingular linear transformation. We define PT : PM Ñ PN to be

28We do not need the full power of ZF to prove (2.126), but the avoidance of the Infinity axiom
altogether would be awkward at best.
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the induced map on the projective spaces: Given A P |PM|, A is by definition a
subspace of M, and we let PT pAq “ TÑA.

Clearly, PT is an isomorphism of the incidence structures of PM and PN. A
projectivity

def
ðñ any isomorphism of incidence structures of projective spaces PM

and PN obtained from a linear transformation from M to N in this way. Note that
in general there are isomorphisms of incidence structures that are not projectivities.
For example, any automorphism of the division ring K induces an automorphism
of the incidence structure of any module over K, which is in general not projective.
We will limit our remarks to projectivities.

Note that the following theorem is specific to the case of commutative division
rings, i.e., fields.

(2.131) Theorem: Fundamental theorem of projective geometry [ZF] Sup-
pose M and M1 are 2-dimensional vector spaces over a field K, A,B,C are distinct
points in PM, and A1, B1, C 1 are distinct points in PM1. Then there exists a unique
projective map P : PMÑ PM1 such that PA “ A1, PB “ B1, and PC “ C 1.

Proof There is a simple heuristic dimensional argument. The space of linear maps
T : M Ñ M1 is 4-dimensional. The conditions that PTA “ A1, etc., independently
reduce the dimension of the solution space by 1, leaving a space of dimension
1. The nonzero transformations in this space all generate the same projective
transformation.29

For a rigorous argument, choose bases so that A, B, C are represented respec-
tively by

„

1
0

ȷ

,

„

0
1

ȷ

,

„

r
s

ȷ

,

and A1, B1, C 1 are represented respectively by
„

1
0

ȷ

,

„

0
1

ȷ

,

„

r1

s1

ȷ

.

Note that r, s, r1, s1 ‰ 0. A projective map as stipulated in the theorem is repre-
sented by a 2 ˆ 2 matrix T acting by left multiplication on column vectors, such
that there exist nonzero a, b, c P K such that

T

„

1
0

ȷ

“ a

„

1
0

ȷ

, T

„

0
1

ȷ

“ b

„

0
1

ȷ

, T

„

r
s

ȷ

“ c

„

r1

s1

ȷ

,

i.e.,

T “

„

a 0
0 b

ȷ

, ar “ cr1, bs “ cs1.

The suitable matrices T are therefore the nonzero scalar multiples of
„

r1{r 0
0 s1{s

ȷ

.30

29The author thanks Tim Penttila for pointing out that the intuition behind this argument is
specific to vector spaces and is not applicable to modules over noncommutative division rings.

30In the case of a noncommutative division ring we must be particular about the fact that
scalars act by right multiplication, so we must satisfy

T

„

1
0

ȷ

“

„

1
0

ȷ

a, T

„

0
1

ȷ

“

„

0
1

ȷ

b, T

„

r
s

ȷ

“

„

r1

s1

ȷ

c,
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2.131

The issue to be addressed now is whether and how the notion of projectivity
and the fundamental theorem pertaining to it can be formulated synthetically, i.e.,
in the elementary theory of points, lines, and incidence. In light of Theorem 2.131
and the footnote accompanying its proof, we will restrict our attention to models
of the form KP2 where K is a field, and in light of Theorem 2.128, we will focus on
the theory PG2 ` Pappus.

We begin with the notion of perspectivity. The essential case is that of a per-
spectivity from a line to a line. Suppose therefore that l and l1 lines on a plane, and
O is a point on the plane that is not on either l or l1. Given a point A on l, A is
not O, so the line pO,Aq is well defined and is not l1, so ppO,Aq, l1q is well defined.

The perspectivity from l to l1 through O
def
ðñ the map A ÞÑ ppO,Aq, l1q. Note that

if A1 “ ppO,Aq, l1q then A “ ppO,A1q, lq, so the inverse map is the perspectivity
from l1 to l through O, and a perspectivity is a bijection.

For the remainder of this section we will confine our attention to commutative
division

(2.132) Theorem [ZF] Suppose K is a field, l and l1 are distinct lines in KP2, and
O is a point in KP2 not on l or l1. Then the perspectivity from l to l1 through O is
a projectivity.

Proof Let M “ K3. As a point of PM, O is a 1-dimensional subspace of M. Let
e be a nonzero element of O, so O “ res. l1 is a 2-dimensional subspace of M that
does not contain e. Let e0, e1 P l1 be such that te0, e1, eu is a basis for M. Define
T : MÑ l1 as the unique linear map such that

T e0 “ e0

T e1 “ e1

T e “ 0.

Since e R l, T æ l is injective, and its nullspace is t0u. Let P be the map from the
points on l to the points on l1 induced by T æ l. Thus, given a point A on l (i.e., a
1-dimensional subspace of l), let u be a nonzero element of A, and let A1 “ rT us.
Then A1 is independent of the choice of u, and P pAq “ A1. Let a0, a1, a P K be
such that

u “ e0a0 ` e1a1 ` ea.

Then
T u “ e0a0 ` e1a1.

Thus
ea´ u` T u “ 0.

Since res “ O, this shows thatO, A, and P pAq are collinear, so P is the perspectivity
from l to l1 through O. As P is induced by T , it is by definition a projectivity. 2.132

i.e.,

T “

„

a 0
0 b

ȷ

, ar “ r1c, bs “ s1c,

for which the solutions are

T “

„

r1cr´1 0
0 s1cs´1

ȷ

,

with c an arbitrary nonzero scalar. In general, different choices of c yield different projective maps,
so we have existence, but not uniqueness.
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By virtue of (2.132) any perspectivity is a projectivity, so—since any (finite)
product (i.e., composition) of projectivities is a projectivity—any product of per-
spectivities is a projectivity. As we will see, every projectivity of lines in KP2 is
a product of perspectivities. This result suggests a geometric definition of projec-
tivity as a (finite) product of perspectivities. This makes sense in any model of
PG2 (including nonpappian and even nonarguesian planes), and this is indeed often
taken as the definition of projectivity in the synthetic theory. Note, however, that
while the notion of perspectivity can be formulated in PG2—by identifying the op-
eration with the point and lines that determine it (O, l, and l1 in the theorem)—as
can the notion of the product of two, or of three, or of any specified finite number of
perspectivities, the notion of an arbitrary finite product of perspectivities is beyond
the expressive capability of the elementary language of projective geometry, which
can only talk about points, lines and incidence.

The following theorem provides the key to the elementary definition of projec-
tivity.

(2.133) Theorem [ZF] Suppose K is a field, and l, l1 are lines in KP2. Any pro-
jective transformation from l to l1 is a product of 3 perspectivities.

Proof

(2.134) Claim Suppose A,B,C are distinct points on l, and A1, B1, C 1 are distinct
points on l1. Then there is a product of three perspectivities that takes A,B,C to
A1, B1, C 1, respectively. If l ‰ l1 then two perspectivities suffices.

Proof Suppose first that l ‰ l1. It is easy to show (as a theorem of PG2, so it
must hold in KP2) that there is a product of two perspectivities that takes A,B,C
respectively to A1, B1, C 1. (Let the first perspectivity P0 be to a line l2 distinct from
l1, such that A1 is on l2 and P0A “ A1. There is then a unique perspectivity from
l2 to l1 that accomplishes required transformation.)

Now suppose l “ l1. Let l2 be any other line, and let Q be any perspectivity
from l to l2. Let P 1 be a product of two perspectivities that takes QA,QB,QC
respectively to A1, B1, C 1. Then P 1Q is a product of three perspectivities that takes
A,B,C respectively to A1, B1, C 1. 2.134

Suppose P is a projectivity from l to l1. Let A,B,C be any distinct points on
l, and let A1 “ PA, B1 “ PB and C 1 “ PC. Let2.134 P 1 be a product of three
perspectivities that takes A,B,C to A1, B1, C 1. By (2.132) P 1 is a projectivity, so
by the uniqueness statement of (2.131) P “ P 1; hence, P is a product of three per-
spectivities. If l ‰ l1 then we may take P 1 to be a product of two perspectivities,2.134

so P is a product of two perspectivities. 2.133

For the purpose of this discussion we formulate the following elementary per-
spectivity principle.

Definition [PG2] The perspectivity principle holds
def
ðñ PP

def
ðñ any product of

four perspectivities is a product of three perspectivities.

As indicated, this definition is formulated in the language of PG2, i.e., in terms
of the existence of points and lines satisfying certain incidence conditions. The
following theorem is key to the synthetic definition of projectivity:

(2.135) Theorem [PG2 ` Pappus] PP.
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We will not prove (2.135) directly. Instead, we will prove the following metatheo-
rem.

(2.136) Theorem [ZF] PG2 ` Pappus$PP

Proof By the completeness theorem, it suffices to show that PP holds in every
model of PG2`Pappus, i.e.,2.128 in KP2 for every field K. This follows from the fact
that any perspectivity is a projectivity,2.132 so any product of four perspectivities is
a projectivity, and any projectivity is a product of three perspectivities.2.133 2.136

Note that (2.136) is not precisely (2.135). When we wrote (2.135) we were
asserting that there exists a proof of PP in the theory PG2 ` Pappus. Ordinarily
we justify such a statement by exhibiting a proof—which is to say we provide a
sketch of a proof that satisfies the reader that a formal proof exists in the indicated
theory. When we wrote (2.136) we were asserting that there exists a proof in ZF
that there exists a proof of in PG2 ` Pappus of PP. In this case, we did provide (a
sketch of) a proof in the usual way. As discussed following (2.130), if we believe
that all theorems of ZF of this simple form (i.e., that there exists a finitary object
with a finitarily verifiable property) are true then we are confident that there is a
proof of PP in PG2 ` Pappus. In a fully elementary treatment we must actually
exhibit a proof, but it is nice to know ahead of time that one exists.

Although we cannot refer to mappings per se in the context of a pure incidence
theory, we may nevertheless define the perspectivity operation. We will use ‘Per’
to name the composition of any finite number of perspectivity operations, relying
on the argument list to indicate how many operations are being composed. As the
preceding discussion makes clear, the composition of three simple perspectivities is
the key to the synthetic definition of projectivity.

(2.137) Definition [PG2]

1. Suppose A is a point, O is a point distinct from A, and l is a line not on O. The
image of A via the perspectivity through O to l def

“ PerpA,O, lq def
“ ppA,Oq, lq.

2. Suppose A is a point, O1, O2, O3 are points, l1, l2, l3 are lines, such that A ‰
O1, l1 is not on O1 or O2, l2 is not on O2 or O3, and l3 is not on O3.
The image of A on l3 via the perspectivities through O1, O2, O3 to l1, l2, l3
def
“ PerpA,O1, l1, O2, l2, O3, l3q

def
“ PerpPerpPerpA,O1, l1q, O2, l2q, O3, l3q.

The existence assertion of (2.131) may now be stated as follows:

(2.138) Theorem [PG2 ` Pappus] Suppose l and l1 are lines, A,B,C are dis-
tinct points on l, and A1, B1, C 1 are distinct points on l1. Then there exist points
O1, O2, O3, and lines l1, l2, such that O1 is not on l, and O1, O2, O3, l1, l2, l

1 are as
in (2.137.2) with l1 for l3, such that

PerpA,O1, l1, O2, l2, O3,mq “ A1,

PerpB,O1, l1, O2, l2, O3,mq “ B1,

and PerpC,O1, l1, O2, l2, O3,mq “ C 1.

We will not supply a proof of this theorem, but we will show that a proof exists:

(2.139) Theorem [ZF] PG2 ` Pappus$ (2.138).
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Proof Arguing as in the proof of (2.136), we need only show that theorem holds
in KP2 for any field K. This is the existence assertion of (2.131) combined with
(2.133). 2.139

Of course, O1, O2, O3, l1, l2 are not uniquely determined in (2.138). The unique-
ness assertion of (2.131) may, however, be stated as follows:

(2.140) Theorem [PG2 ` Pappus] Suppose l and l1 are lines, and suppose O1, O2,
O3, l1, l2, and O11, O

1
2, O

1
3, l
1
1, l
1
2 are each as in (2.138) vis-à-vis l and l1. Suppose

A,B,C are distinct points on l, and D is on l. If

PerpA,O1, l1, O2, l2, O3, l
1q “ PerpA,O11, l

1
1, O

1
2, l
1
2, O

1
3, l
1q,

PerpB,O1, l1, O2, l2, O3, l
1q “ PerpB,O11, l

1
1, O

1
2, l
1
2, O

1
3, l
1q,

and PerpC,O1, l1, O2, l2, O3, l
1q “ PerpC,O11, l

1
1, O

1
2, l
1
2, O

1
3, l
1q,

then PerpD,O1, l1, O2, l2, O3, l
1q “ PerpD,O11, l

1
1, O

1
2, l
1
2, O

1
3, l
1q.

Once again, we will only show that a proof exists:

(2.141) Theorem [ZF] PG2 ` Pappus$ (2.140).

Proof Working in any model KP2 of PG2 ` Pappus, the maps

D ÞÑ PerpD,O1, l1, O2, l2, O3, l
1q

and
D ÞÑ PerpD,O11, l

1
1, O

1
2, l
1
2, O

1
3, l
1q

are projectivities from l to l1 that agree on the three distinct points A,B,C, so they
are identical.2.131 2.141

With (2.138) and (2.140) in hand we may now formulate an elementary definition
of projectivity:

Definition [PG2 ` Pappus] Suppose l, l1 are lines.

1. For each n ě 4, we formulate the following definition: Distinct points A1, . . . , An

on l are projectively related to points A11, . . . , A
1
n on l1

def
ðñ there is a product

of three perspectivities that takes A1 to A11, A2 to A12, . . . , and An to A1n.

2. Suppose A,B,C are distinct points on l, A1, B1, C 1 are distinct points on l1,
and D is a point on l. PA,B,C,A1,B1,C1pDq

def
“ the unique point D1 on l1 such

that A,B,C,D are projectively related to A1, B1, C 1, D1.

In the elementary theory we may informally refer to PA,B,C,A1,B1,C1p¨q as the “pro-
jectivity” determined by A,B,C and A1, B1, C 1, but (not being either a point or a
line) it does not actually exist.

2.6 Other deductive systems

The natural deductive system ND is only one of several reasonable systems of
deduction. One way to modify ND to conform even more closely to standard
mathematical practice is to define entailment for formulas with free variables as
well as those without (sentences).
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Definition [C0] A class Θ of formulas entails a formula ϕ iff for every structure
A of the signature of Θ and ϕ, for every assignment A of elements of A to the free
variables occurring in ϕ or in any member of Θ, if A |ù ΘrAs (i.e., A |ù θrAs for
all θ P Θ) then A |ù ϕrAs.

Clearly, if S is a bijection of the free variables occurring in ΘY tϕu with a class of
constants not occurring in ΘY tϕu, then Θ entails ϕ iff ΘpSq entails ϕpSq.

To adapt our system of deduction to this notion of entailment, we permit ar-
bitrary formulas, rather than just sentences, in proofs. The role of constants in
the system ND2.27 is now more or less taken over by free variables. In Rule 72.27.7

we must allow for substitution terms containing variables, but the variables must
behave syntactically like constants—in particular, they must not be bound by the
substitution. Thus, Rule 7 becomes

Modified inference rule for ND with free variables

71. ␣

ψ
`

v
τ

˘(

ñDDDv ψ
if τ is free for v in ψ.1.16

We may construct proofs without the introduction of new constants if we also
replace Rule 4 by

Modified inference rule for ND with free variables

41.
ΣY

␣

ψuñσ

ΣY tDDDv ψuñσ
if v does not occur free in Σ or σ.

2.6.1 Hilbert systems

An alternate system of deduction may be based on an appropriate class T of val-
idities and the rule modus ponens, which states that σ may be inferred from ζ and
ζÑÑÑσ. In such a system, a proof from a class Θ of premises is a sequence of formu-
las such that for each formula σ in the sequence, either σ P ΘY T or there exists a
formula ζ such that ζ and ζÑÑÑσ precede σ in the sequence.31

It is easy to show if T is the class of all validities then this system is complete,
but this is, of course, not a very useful system as it is hard to know whether a
formula is a member of T (we will see in the next chapter just how hard). It is
not difficult, however, to define a manageable class of validities that is sufficient for
completeness. Such a system—with only one or two inference rules—is often called
a Hilbert system.

2.6.2 Gentzen systems

For fine analysis of the structure of proofs and the strengths of theories, Gentzen
systems are particularly useful. These are elegant, highly symmetrical systems, in-
troduced by Gerhard Gentzen originally for the purpose of proving the consistency
of Peano arithmetic (PA) in PA with a minimal strengthening of the induction
schema. We will present this theory in some detail, because of its intrinsic interest
and its prominent position in proof theory, and because it is a good way of introduc-
ing a deductive system with the subformula property, which we introduce below§ 2.6.3

and later use to give a finitary proof of an important theorem about satisfaction of
31Often the term ‘inference rule’ is restricted to rules other than validities, in which case a

system of this type has just one inference rule: modus ponens.
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logical validities. As this is the only use we make of this theory, however, it may
be omitted without much harm, and reading may be resumed with Section 2.7. In
the other direction, Takeuti’s Proof Theory [24] is a good source for further reading
in this subject.

To obtain a Gentzen system we generalize the notion of sequent given in Defin-
ition 2.25 as follows.

(2.142) Definition [C0] Suppose ρ is a signature.

1. A ρ-sequent in the Gentzen sense is a 2-sequence xΓ,∆y of finite sets of ρ-
formulas. We let

Γñ∆ def
“ xΓ,∆y,

as in (2.25).

2. Γ is the antecedent and ∆ the succedent of Γñ∆.

3. A sequent is valid
def
ðñ

Ź

Γ entails
Ž

∆, i.e., under any interpretation of all
formulas in Γ and ∆, if all the members of Γ are true then at least one of the
members of ∆ is true.

Note that we allow arbitrary formulas, not just sentences. As a consequence, there
is no need to permit expansion of the original signature by additional constants as
in (2.25).

For the purpose of comparison with the natural deductive system ND,2.27 we will
define a Gentzen system with propositional connectives ␣␣␣ and ÑÑÑ, and quantifier DDD.
This is, for all practical purposes, Gentzen’s system LK: the logischer klassischer
Kalkül. It should be noted that this system is often described with finite sequences
instead of finite sets of formulas for the antecedent and succedent of a sequent.
This requires inference rules to establish the equivalence of sequences with the
same image.

For the time being, we restrict our attention to logic without identity.

(2.143) The system LK The inference rules are as follows, where u, v are vari-
ables, ϕ, ψ are formulas, τ is a term, and Γ,∆,Π,Λ are finite sets of formulas,
subject only to the indicated restrictions.

1. Γñ∆
Γ1ñ∆

, if Γ Ď Γ1.

2. Γñ∆
Γñ∆1

, if ∆ Ď ∆1.

3.
Γñ∆Y tϕu

ΓY t␣␣␣ϕuñ∆
.

4.
ΓY tϕuñ∆

Γñ∆Y t␣␣␣ϕu
.

5.
Γñ∆Y tϕu ΓY tψuñ∆

ΓY tϕÑÑÑψuñ∆
.

6.
ΓY tϕuñ∆Y tψu

Γñ∆Y tϕÑÑÑψu
.

7.
ΓY

␣

ϕ
`

v
ū

˘(

ñ∆

ΓY tDDDv ϕuñ∆
, if u does not occur free in the lower sequent and ū is free

for v in ϕ.1.16
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8.
Γñ∆Y

␣

ϕ
`

v
τ

˘(

Γñ∆Y tDDDv ϕu
, if τ is free for v in ϕ.

9.
Γñ∆Y tϕu ΓY tϕuñ∆

Γñ∆
.

Rules 1 and 2 are structural rules, specifically weakening rules. Rules 3–9 are
logical rules. In Rules 3–8 the principal formulas are those “created” in the lower
sequent, i.e., ␣␣␣ϕ, ϕÑÑÑψ, and DDDv ϕ, respectively. Rule 9 is the cut rule; ϕ is the
cut formula. An axiom def

“ a sequent of the form tϕuñtϕu.

These rules are linked to form proofs in the same way as for the natural system.
For example:

tϕuñtϕu

tϕuñtϕ, ψu

tψuñtψu

tϕ, ψuñtψu

tϕ, ϕÑÑÑψuñtψu

tϕ, ϕÑÑÑψ,␣␣␣ψuñ 0
tϕÑÑÑψ,␣␣␣ψuñt␣␣␣ϕu

is a proof of the final sequent tϕÑÑÑψ,␣␣␣ψuñt␣␣␣ϕu. To construct this proof tree we
have used (starting from the bottom) Rules 4; 3; 5; and 2 and 1; and each branch
(of this tree growing upward) terminates in an axiom.

In general, a proof is a finite tree that grows upward, starting from the sequent
to be proved, branching with each application of Rule 5 or 9, with each branch
terminating in an axiom. Since a given sequent may occur in more than one place
in such a tree, formally we must regard each node of the tree as the sequence of
sequents leading up to it.

(2.144) Definition [C0] A proof (in any sequent calculus) is a nonempty tree T of
finite sequences of sequents, ordered by inclusion, i.e., S ď S1ØS Ď S1, with the
following properties:

1. T has exactly one member, say xIy, of length 1. T is a proof of I.

2. Suppose S P T and |S| “ n ą 0. Let s “ Sn- , the last (top) item of S. Then
exactly one of the following must obtain.

1. S has no extension in T , and s is an axiom.

2. S has exactly one immediate extension S ⌢xs1y in T , and s1
s

is an in-
stance of Rule 1, 2, 3, 4, 6, 7, or 8.

3. S has exactly two immediate extensions S ⌢xs1y, S ⌢xs2y in T , and s1 s2
s

is an instance of Rule 5 or 9.

Given a theory Θ and a sentence σ, T $LK σ
def
ðñ there is a proof of Σñtσu for

some finite Σ Ď Θ.

It is not difficult to show that $LK is equivalent to $ND, where ‘$ND’ denotes
the natural deduction predicate previously referred to simply as ‘$’.2.27 This may
be done directly by justifying each inference rule of either system in terms of the
rules of the other system. Recall that ND uses only sentences, whereas LK uses
arbitrary formulas, but the introduction of a new constant c in the rule (2.27.4) is
formally equivalent to the introduction of a new free variable u in the rule (2.143.7).
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It is perhaps more natural, however, to establish the equivalence of these sys-
tems via the equivalence of each to the semantic notion of entailment, i.e. the
completeness theorem, which is, after all, the raison d’être of each of them. Since
the completeness theorem for either system is provable in C0, and the conclusion
that the systems are equivalent is a purely set-theoretical statement, it follows that
this equivalence can be proved in S0.32

2.6.3 Cut-elimination and the subformula property

An important feature of the inference rules 2.143 is that, with the exception of
(2.143.9), every formula occurring in the upper sequent(s) is a subformula of a
formula in the lower sequent or is obtained by substitution of a term in a subformula
of a formula in the lower sequent. This is the subformula property.

(2.143.9) is the cut rule, and it is a remarkable fact that it is not essential to
the system. In other words, any LK-proof may be replaced by a proof that makes
no use of the cut rule. This is the cut elimination property of LK. The presence
or absence of cut elimination in various related deductive systems—for logics other
than classical first-order predicate logic—is an important consideration in proof
theory. The cut-elimination theorem for LK, Gentzen’s Hauptsatz, has a simple
infinitary proof and a more complicated finitary proof, both of which are of interest
to us.

(2.145) Definition [C0] LK´ def
“ LK without the cut rule.

By extension of the comment made above, LK´ has the subformula property, viz.,
every formula occurring in a proof of a sequent I is obtained by substitution of
terms in a subformula of a formula occurring in I (where a substitution of terms
may be the null substitution, which does not alter a formula).

2.6.4 Completeness of LK and LK´

We now adapt the Henkin construction to provide finitary proofs of a limited version
of the completeness theorem for LK´ and the full completeness theorem for LK.
From the former it is easy to obtain the full completeness theorem for LK´ using
Infinity. This immediately yields the cut-elimination theorem for LK, albeit by the
infinitary route. We then give a finitary proof of cut elimination, which provides a
finitary proof of the full completeness theorem for LK´. As noted above, for our
purposes, this is important because LK´ has the subformula property.

The completeness theorem for a sequent calculus is easily seen to be equivalent
to the statement that any valid2.142.3 sequent is provable; equivalently, if a sequent
I “ pΓñ∆q is not provable then there is an interpretation that falsifies it, i.e., a
structure S, an S-assignment A to the free variables of I, and a valuation function
S for S such that

1. for every ϕ P Γ, Sxϕ,Ay “ 1; and

2. for every ϕ P ∆, Sxϕ,Ay “ 0.

Note that we have left ‘valuation function’ unqualified; we will use a very particular
sort of valuation function in our first proof of completeness for LK´, which we call

32This material is not used in the proof of Theorem 2.183, so it is not within the scope of the
program (2.38).
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for the nonce a subvaluation function, defined by a modification of the definition1.58

of valuation function. The salient difference is that in order that xϕ,Ay be in the
domain of a subvaluation function S with a given value Sxϕ,Ay, it is not necessary
that xϕ1, A1y be in domS for all subformulas ϕ1 of ϕ and appropriate extensions
A1 of the assignment A; instead we only require that enough of these be in domS
(with appropriate values) to uniquely determine Sxϕ,Ay.

(2.146) Definition [C0] Suppose S is a ρ-structure. A subvaluation function for
S

def
“ a function S such that domS consists of 2-sequences xϵ, Ay such that ϵ is a

ρ-expression and A is an S-assignment for ϵ; if ϵ is a formula (as opposed to a
term) then imS Ď 2 p“ t0, 1uq; and for any xϵ, Ay P domS

1. if ϵ “ v̄ then Sxϵ, Ay “ Av;

2. if ϵ “ X̃xτ0, . . . , τn-y, where X is an n-ary operation index (so τ0, . . . , τn- are
terms), then xτm, Ay P domS for all m P n, and

Sxϵ, Ay “ XSxSxτ0, Ay, . . . , Sxτn- , Ayy;

3. if ϵ “ X̃xτ0, . . . , τn-y, where X is an n-ary predicate index, then xτm, Ay P
domS for all m P n, and

Sxϕ,Ay “ 1Ø
@

Sxτ0, Ay, . . . , Sxτn- , Ay
D

P XS;

4. if ϵ “ ␣␣␣ψ then xψ,Ay P domS and Sxϵ, Ay “ 1ØSxψ,Ay “ 0;

5. if ϵ “ ψ0___ψ1 then

1. if Sxϵ, Ay “ 1 then either
1. xψ0, Ay P domS and Sxψ0, Ay “ 1; or
2. xψ1, Ay P domS and Sxψ1, Ay “ 1; and

2. if Sxϵ, Ay “ 0 then xψ0, Ay, xψ1, Ay P domS and Sxψ0, Ay “ Sxψ1, Ay “ 0;

6. if ϵ “ ψ0 ^̂̂ψ1 then

1. if Sxϵ, Ay “ 1 then xψ0, Ay, xψ1, Ay P domS and Sxψ0, Ay “ Sxψ1, Ay “ 1;
and

2. if Sxϵ, Ay “ 0 then either
1. xψ0, Ay P domS and Sxψ0, Ay “ 0; or
2. xψ1, Ay P domS and Sxψ1, Ay “ 0;

7. if ϵ “ ψ0ÑÑÑψ1 then

1. if Sxϵ, Ay “ 1 then either
1. xψ0, Ay P domS and Sxψ0, Ay “ 0; or
2. xψ1, Ay P domS and Sxψ1, Ay “ 1; and

2. if Sxϵ, Ay “ 0 then xψ0, Ay, xψ1, Ay P domS, Sxψ0, Ay “ 1 and Sxψ1, Ay “
0;

8. if ϵ “ ψ0ØØØψ1 then xψ0, Ay, xψ1, Ay P domS and Sxϵ, Ay “ 1ØpSxψ0, Ay “
1ØSxψ1, Ay “ 1q;

9. if ϵ “ DDDv ψ then

1. if Sxϵ, Ay “ 1 then for some a P |S|, letting A1 “ A
@

v
a

D

, xψ,A1y P domS

and Sxψ,A1y “ 1; and
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2. if Sxϵ, Ay “ 0 then for all a P |S|, letting A1 “ A
@

v
a

D

, xψ,A1y P domS and
Sxψ,A1y “ 0; and

10. if ϵ “ @@@v ψ then

1. if Sxϵ, Ay “ 1 then for all a P |S|, letting A1 “ A
@

v
a

D

, xψ,A1y P domS and
Sxψ,A1y “ 1; and

2. if Sxϵ, Ay “ 0 then for some a P |S|, letting A1 “ A
@

v
a

D

, xψ,A1y P domS

and Sxψ,A1y “ 0.

In the following discussion, for simplicity we will restrict our attention to languages
with just the negation and implication propositional connectives and the existential
quantifier.

(2.147) Theorem [C0] Suppose I “ pΓñ∆q is a sequent in a signature ρ with-
out identity that is not LK´-provable. Then there exists a ρ-structure S, an S-
assignment A to the free variables of I, and a subvaluation S for S such that for
each ϕ P ΓY∆,

1. xϕ,Ay P domS;

2. ϕ P ΓÑSxϕ,Ay “ 1; and

3. ϕ P ∆ÑSxϕ,Ay “ 0.

Proof The proof is a straightforward adaptation of the Henkin construction and
is relegated to Note 10.9.

(2.148) Theorem: Completeness of LK [C0] Suppose I “ pΓñ∆q is a sequent
in a signature ρ without identity that is not LK-provable. Then there exists a
satisfactory ρ-structure S and an S-assignment A to the free variables of I such
that for each ϕ P ΓY∆,

1. if ϕ P Γ then S |ù ϕrAs; and

2. if ϕ P ∆ then S |ù ␣␣␣ϕrAs.

Proof See Note 10.10.

(2.149) Theorem: Cut elimination [C0] Suppose I “ pΓñ∆q is a sequent in a
signature ρ without identity. If I is LK-provable then I is LK´-provable.

Remark An infinitary proof is easy. Suppose I is not LK´-provable. Then2.147

there exist a ρ-structure S, an S-assignment A to the free variables of I, and a
subvaluation S for S such that for each ϕ P ΓY∆,

1. xϕ,Ay P domS;

2. ϕ P ΓÑSxϕ,Ay “ 1; and

3. ϕ P ∆ÑSxϕ,Ay “ 0.

Since we have Infinity, we know that S is satisfactory. By induction on logical
complexity, it is easily shown that the full valuation function for S includes any
subvaluation, so for each ϕ P ΓY∆,

1. if ϕ P Γ then S |ù ϕrAs; and
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2. if ϕ P ∆ then S |ù ␣␣␣ϕrAs.

Thus, S and A falsify Γñ∆. Since LK is a sound system of deduction, Γñ∆ is
not LK-provable.

Proof See Note 10.11 for a finitary (C0-)proof.

As noted above, (2.149) and (2.148) together provide a finitary proof of the
completeness theorem for LK´.

2.7 Model theory

In this section we present some basic elements of the theory of models. The axiom
of infinity is essential for any reasonable theory of models, and with the axiom of
infinity, the universe of sets is large enough that proper classes are not as important
as in the finitary theory, so the language of pure set theory is sufficiently expres-
sive for most of our purposes. The axiom of choice is required for many natural
constructions involving uncountable sets, and we usually assume it.

For the purpose of this section, unless otherwise indicated,

1. our theory of membership is ZFC; and

2. languages and structures are sets.

Note that all structures are therefore satisfactory.

Heretofore in this chapter we have assumed as a convenience that the signatures
under consideration are countable, so the corresponding languages and theories
are countable, and countable structures suffice as models. Nevertheless, essentially
everything we have done applies to signatures of any size.

Suppose κ is an infinite cardinal. It follows from the definition of indexed
families and the definition of signatures as indexed families that a signature ρ has
cardinality κ iff it has κ indices. It is an easy exercise in cardinal arithmetic to
show that |Lρ| “ maxtω, |ρ|u. The cardinality of a structure S is understood to be
||S||, i.e., the cardinality of |S|.33

2.7.1 Completeness

The definitions of proof and consistency are the same for uncountable as for count-
able theories. Clearly, if Θ is a theory and Θ has a model then Θ is consistent. The
converse, i.e., the completeness theorem, also holds in this setting.

(2.150) Theorem [ZFC] Suppose Θ is a consistent theory. Then there is a model
of Θ.

Proof We use the Henkin procedure§ 2.12 as we did for countable theories. Let ρ be
the signature of Θ, and κ ě |ρ| be an infinite cardinal. Let xcα | α ă κy be distinct
sets that are not ρ-indices, and let ρ1 be the extension of ρ by the addition of the
cαs as constant indices. Then |Lρ1

| “ |ρ1| “ κ. Let xσα | α P κy be an enumeration
of the ρ1-sentences. Let xΘα | α ď κy be the sequence of consistent ρ1-theories such
that

33Apology for the dual use of ‘| ¨ |’.
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1. Θ0 “ Θ;

2. for any α ă κ, letting Θ1 “ Θα Y tσαu,

1. if Θ1 is inconsistent then Θα`1 “ Θα Y t␣␣␣σαu; and

2. if Θ1 is consistent then

1. if σα is not an existential sentence then Θα`1 “ Θ1; and
2. if σα “ DDDu θ then Θα`1 “ Θ1 Y

␣

θ
`

u
c̄

˘(

, where c is the first item in
xcα | α ă κy that does not occur in Θ1; and

3. for any limit α ď κ, Θα “
Ť

βăα Θβ .

The existence of this sequence is proved as in Section 2.2.1, which is really just the
case κ “ ω. Note that at each successor step in the construction, we introduce only
finitely many of the new constants: those that occur in σα and one more if σα is
existential. Since the union of fewer than κ finite sets is smaller than κ (κ being
infinite), at any stage in the construction we have used fewer than κ new constants,
which allows Step 2.2.2 to be taken, if it is called for.

Θκ is a maximal consistent extension of Θ with witnesses, and we construct the
model HΘκ as before.§ 2.2.2 Recall that |HΘκ | is the set K of variable-free ρ1-terms.
If ρ has the identity predicate, we let S “ HΘκ{ ”, where ” is the equivalence
relation on K given by

τ0 ” τ1Øpτ0“““ τ1q P Θκ.

Otherwise we just let S “ HΘκ .
It is straightforward to show that S |ù Θ. 2.150

2.7.2 Elementary substructures and embeddings

In this section we will work in GB and allow languages and structures to be proper
classes. Recall1.58 that if Φ is a class of ρ-formulas then Φ is the class of subformulas
of members of Φ.

(2.151) Definition [GB] Suppose A and A1 are structures.

1. Suppose Φ is a class of ρ-formulas. Then A1 is a Φ-elementary substructure
or simply Φ-substructure of A

def
ðñ A1 ăΦ A

def
ðñ

1. A1 is a substructure2.113 of A; and
2. for every ϕ P Φ and every tϕu-satisfaction relation S for A,

txψ,Ay P S | imA Ď |A1|u

is the tϕu-satisfaction relation for A1.

2. A1 is an elementary substructure of A
def
ðñ A1 ă A

def
ðñ A1 ăFρ

A.

3. j is a Φ-elementary embedding of a structure B in a structure A
def
ðñ j :

B ăΦ A
def
ðñ j is an isomorphism of B with a Φ-elementary substructure of

A.

Elementary in this definition refers to the fact that it deals with the elementary,
i.e., first-order, theories of the structures.
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Note that if Φ consists of quantifier-free formulas then A1 ăΦ A iff A1 is a substruc-
ture of A1. In particular, if Φ “ 0 this is the case, and we will use‘ă0’ to represent
the substructure relation.

(2.152) Note that if ϕ is a ρ-formula then2.151.2 A1 ătϕu A iff

1. A1 is a substructure of A; and

2. for every tϕu-satisfaction relation S for A,

txψ,Ay P S | imA Ď |A1|u

is the tϕu-satisfaction relation for A1.

Hence, if there is no tϕu-satisfaction relation for A then every substructure of A is
trivially a tϕu-elementary substructure.

Note that to assert elementarity there is no need to state a condition on values of
terms like the condition (2.151.2.2) on the values of formulas, as it would automat-
ically be satisfied for substructures. Indeed, the essence of elementarity is what is
says about quantification over |A| vs |A1|, as indicated by the following theorem,
known as the Tarski-Vaught criterion.

(2.153) Theorem [GB] Suppose A is a ρ-structure and A1 is a substructure of
A.

1. Suppose the satisfaction relation for A exists (as it does, for example, if A
is a set). Then A1 ă A iff for every ρ-formula ϕ and variable u, and every
A1-assignment A for DDDuϕ,

Dx P |A| A |ù ϕ
“

A
@

u
x

D‰

ÑDx P |A1| A |ù ϕ
“

A
@

u
x

D‰

.

2. More generally, suppose Φ is a class of ρ-formulas. Then A1 ăΦ A iff for every
formula ϕ P Φ and variable u,

1. if DDDuϕ P Φ, then for every tϕu-satisfaction relation S for A and A1-
assignment A for DDDuϕ,

Dx P |A|
@

ϕ,A
@

u
x

DD

P SÑDx P |A1|
@

ϕ,A
@

u
x

DD

P S;

2. and if @@@uϕ P Φ then for every tϕu-satisfaction relation S for A and A1-
assignment A for @@@uϕ,

@x P |A1|
@

ϕ,A
@

u
x

DD

P SÑ@x P |A|
@

ϕ,A
@

u
x

DD

P S.

Remark (2.153.1) is the standard form of the criterion. We use the general form
when dealing with proper classes.

Proof Suppose A1 ăΦ A. Suppose DDDuϕ P Φ, S is a tϕu-satisfaction relation for A,
A is an A1-assignment for DDDuϕ, and Dx P |A|

@

ϕ,A
@

u
x

DD

P S.

We must show that Dx P |A1|
@

ϕ,A
@

u
x

DD

P S. Let S1 be the extension of S

to the tDDDuϕu-satisfaction relation for A
`

by adding xDDDuϕ,A1y to S just in case
Dx P |A|

@

ϕ,A1
@

u
x

DD

P S
˘

. Then

xDDDuϕ,Ay P S1.
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Let

S1 “ txψ,A1y P S | imA1 Ď |A1|u

S11 “ txψ,A
1y P S1 | imA1 Ď |A1|u.

Then2.151.2.2 S1 is the tϕu-satisfaction relation for A1, and S11 is the tDDDuϕu-satisfaction
relation for A1.

Since xDDDuϕ,Ay P S1, xDDDuϕ,Ay P S11, so for some x P |A1|,
@

ϕ,A
@

u
x

DD

P S11. By

the uniqueness of satisfaction,
@

ϕ,A
@

u
x

DD

P S; hence Dx P |A1|
@

ϕ,A
@

u
x

DD

P S, as
claimed.

The universal quantifier is handled analogously.
Conversely, suppose for every ϕ P Φ and variable u, (2.153.2.1, 2) hold.

(2.154) Claim Suppose ϕ P Φ, and S is the tϕu-satisfaction relation for A. Then

txψ,Ay P S | imA Ď |A1|u

is the tϕu-satisfaction relation for A1.

Proof By induction on the logical complexity of ϕ P Φ. For atomic formulas,
this follows from the fact that A1 ă0 A. The induction steps corresponding to
propositional connectives are trivial. Suppose now that the claim holds for ϕ;
DDDuϕ P Φ; and S is the tDDDuϕu-satisfaction relation for A. Let

S1 “ txψ,Ay P S | ψ P tϕuu.

Then S1 is the tϕu-satisfaction relation for A, so by induction hypothesis

S11 “ txψ,Ay P S1 | imA Ď |A1|u

is the tϕu-satisfaction relation for A1. Let S1 be the extension of S11 to the tDDDuϕu-
satisfaction relation for A1

`

by adding xDDDuϕ,Ay to S11 just in case Dx P |A1|
@

ϕ,A
@

u
x

DD

P

S11, as before
˘

. Using the hypothesis (2.153.2.1), it is easy to check that

S1 “ txψ,Ay P S | imA Ď |A1|u,

as claimed.
The induction step for universal quantification is analogous. 2.154

This completes the proof of (2.153.2). (2.153.1) is the special case when Φ
consists of all ρ-formulas. There is no need to deal explicitly with both quantifiers
when Φ is closed under both quantification operations and negation. 2.153

2.7.3 Elementary directed families

It is easy to see that for any signature ρ and class Φ of ρ-formulas, the relation ăΦ

is transitive.

(2.155) Theorem [GB] Suppose D is a set of ρ-structures, Φ is some class of
ρ-formulas, and the relation ăΦ on D, which is necessarily a partial order, is
directed,3.208.1 i.e.,

@A,B P D DC P D pA ăΦ C^B ăΦ Cq.
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1. There exists a unique ρ-structure D such that

1. |D| “
Ť

APD |A|; and
2. for every ρ-index X, XD “

Ť

APDX
A.

2. @A P D A ăΦ D.

Remark We refer to D loosely as the union of D.

Proof 1 It is easy to check that (2.155.1.1) and (2.155.1.2) define a ρ-structure.

2 It is also easy to check that (2.155.2) holds using the Tarski-Vaught criterion.2.153
2.155

A more flexible version of this construction deals with directed systems of ele-
mentary embeddings.

(2.156) Definition [GB] Suppose pD;ďq is a directed partial order, rMa | a P Ds
is a D-indexed family of ρ-structures, and riab | a, b P D^ a ď bs is a system of
Φ-elementary embeddings iab : Ma ăΦ Mb. Let Ma “ |Ma| for each a P D, and
let M , together with the maps ia : Ma

inj
ÑM be the direct limit of the corresponding

system.3.209 Clearly there is a unique ρ-structure M with universe M such that each
ia is a ρ-embedding of Ma in M . We define the direct limit of rrMa | a P Ds, riab |

a, b P D^ a ď bss to be M together with ia : Ma
inj
ÑM .

(2.157) Theorem [GB] Under the conditions of Definition 2.156, the maps ia are
Φ-elementary.

Proof This is nothing more than Theorem 2.155 applied to rim ia | a P Ds, which
by hypothesis is a directed partial order under the relation ăΦ with union M. 2.157

2.7.4 Löwenheim-Skolem theorems

(2.158) In this section, to avoid gratuitous complications, we will suppose that all
signatures are with identity.

(2.159) Theorem: Löwenheim-Skolem [ZFC] Suppose A is a ρ-structure and
κ ě |ρ| is an infinite cardinal.

1. Downward Suppose X Ď |A| with |X| ď κ. Then there exists B ă A with
||B|| ď κ such that X Ď |B| and

2. Upward Suppose ω ď ||A|| ď κ. Then there exists B ą A with ||B|| “ κ.

Proof 1 Let ă be a wellordering of |A|. Define xXn | n P ωy as follows. Let
X0 “ X. Given Xn, let Xn`1 consist of all x P |A| such that for some ρ-formula ϕ,
variable u, and Xn-assignment A for Freeϕztuu,

A |ù ϕ
“

A
@

u
x

D‰

and x is the ă-least member of |A| for which this is true. Let Xω “
Ť

nPωXn.
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Given a ρ-formula ϕ, variable u, and Xω-assignment A for Freeϕztuu, let n P ω
be such that imA Ď Xn. By construction,

Dx P |A| A |ù ϕ
“

A
@

u
x

D‰

ÑDx P Xn`1 A |ù ϕ
“

A
@

u
x

D‰

ÑDx P Xω A |ù ϕ
“

A
@

u
x

D‰

.

Note that, in particular, that if τ is a ρ-term, u is a variable not in Free τ , and A
is an Xω-assignment for τ , then, letting x0 “ ValA τ rAs,

A |ù pu“““ τq
“

A
@

u
x0

D‰

,

so
Dx P Xω A |ù ϕ

“

A
@

u
x

D‰

,

so x0 P Xω.34

Since Xω is closed under all operations of A, it defines a substructure B, i.e.,
|B| “ Xω. By construction, B satisfies the Tarski-Vaught criterion,2.153.1 so B ă A.

Since |ρ| ď κ, |X| ď κ, and κ is infinite, it follows by a straightforward induction
that for each n P ω, |Xn| ď κ.35 It follows that |Xω| ď κ, as desired.

2 Given a ρ-structure A with ω ď ||A|| ď κ, let ρ1 be an expansion of ρ by the
addition of a distinct constant ca for each a P |A|. Then |ρ1| ď κ. Let A1 be the
expansion of A to a ρ1-structure obtained by letting cA

1

a “ a for each a P |A|. Let
Θ1 “ Th A1, which is called the diagram of A (the diagram because it is unique up
to homologic equivalence). Recall2.158 that ρ is assumed to be with identity, and
note that for a, b P |A|, if a ‰ b then ␣␣␣ c̄a“““ c̄b P Θ1. Now let ρ2 be the expansion of
ρ1 by the addition of new constants d P D, with |D| “ κ. Let Θ2 be the extension
of Θ1 by the addition of ␣␣␣ d̄“““ d̄1 for all d, d1 P D with d ‰ d1. Note that |ρ2| “ κ.

If Σ Ď Θ2 is finite, then A1 may be expanded to a model of Σ by letting the
distinct members of D that occur in Σ have arbitrary distinct denotations in |A|.
This is possible, as we have assumed that |A| is infinite. Thus, Θ2 is consistent,
and by the completeness theorem2.150 it has a model C2. By taking an isomorph
if necessary, we may assume that |A| Ď |C2| and moreover that for every a P |A|,
cC

2

a “ a.
Using Part 1 of the theorem, let B2 ă C2 be such that ||B2|| ď κ and |A| Ď |B2|.

For any d, d1 P D, if d ‰ d1 then dB2
‰ d1B

2
, so ||B2|| ě κ. Hence ||B2|| “ κ. Note

that Th B2 “ Th C2 Ě Θ2. Let B1 be the contraction of B2 to ρ1 (dropping the
constants d P D). Then Th B1 “ Θ1 “ Th A1. It follows directly that A1 ă B1. Let
B be the contraction of B1 to ρ. Then A ă B, and ||B|| “ κ, as desired. 2.159

It is often useful to formalize the above construction for the downward Löwenheim-
Skolem theorem in terms of Skolem functions, which are the model-theoretic analog
of the Skolem operations discussed§ 2.4.3 above.

(2.160) Definition [ZF] Suppose A is a ρ-structure.

34We could have avoided assuming2.158 that ρ is with identity by directly arranging that Xn`1

contain the values of all terms with arguments in Xn.
35Note that this calculation relies on the fact that for each ρ-formula ϕ, variable u, and Xn-

assignment A for Freeϕztuu, we have added at most one element to Xn`1. We used the axiom of
choice, via the wellordering principle, to achieve this.



2.7. MODEL THEORY 151

1. Suppose ϕ “ Du ψ is an existential ρ-formula with n free variables. f is a
Skolem function for ϕ for A

def
ðñ f : n|A| Ñ |A| and for all x0, . . . , xn- P |A|,

letting x “ fxx0, . . . , xn-y,

A |ù ϕ
“

u0 ¨ ¨ ¨ un-

x0 ¨ ¨ ¨ xn-

‰

ÑA |ù ψ
“

u u0 ¨ ¨ ¨ un-

x x0 ¨ ¨ ¨ xn-

‰

,

where xu0, . . . , un-y is the enumeration of Freeϕ in increasing standard order.

2. F is a complete set of Skolem functions for A
def
ðñ

1. for each f P F there exists n P ω such that f : n|A| Ñ |A|;
2. F contains a Skolem function for each existential ρ-formula for A;
3. F contains XA for every operation index X of ρ;
4. F contains the quasi-identity function tpxxy, xq | x P |A|u; and
5. F is closed under composition, i.e., F contains every function g : n|A| Ñ
|A| such that for all x0, . . . , xn- P |A|,

gxx0, . . . , xn-y

“ f
@

f0xxi00 , . . . , xi0l0-
y, . . . , fm-xxim-

0
, . . . , xim-

plm- q-
y
D

,

where f, f0, . . . , fm- P F and n “ tijk | j P m^ k P lju.

(2.161)

1. Note that if ρ is a signature with identity then (2.160.2.3) and (2.160.2.4)
follow from (2.160.2.2), since XA is the only Skolem function for DDDu ū“““
X̃xū0, . . . , ūm-y, where m is the arity of X; and the quasi-identity is the only
Skolem function for DDDu ū“““ v̄.

2. Note also that by virtue of (2.160.2.5), F is closed under substitution, i.e.,
for any m-ary f P F and π : m Ñ n, the n-ary function g such that for all
x0, . . . , xn- P |A|,

gxx0, . . . , xn-y “ fxxπ0, . . . , xπpm-qy,

is in F .

A complete set of Skolem functions may be constructed (from a suitable choice
function or wellordering) by the same sort of ω-sequence of closure operations as
used in the proof of (2.159.1), and the construction of elementary substructures is
correspondingly more direct:

(2.162) Theorem [ZFC] Suppose A is a ρ-structure, X Ď |A|, and F is a complete
set of Skolem functions for A. For each f P F , let kf be the arity of f , i.e.,
dom f “ kf |A|. Let B “ tfxx0, . . . , xkf

-y | f P F ^x0, . . . , xkf
- P Xu, and let B be

the corresponding substructure of A.36 Then

1. X Ď B;
2. |B| ď maxtω, |X|u; and
3. B ă A.

Proof Straightforward. 2.162

36I.e., |B| “ B. Note that this does define a substructure, since every ρ-operation symbol has
a corresponding Skolem function.2.160.2.3
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2.7.5 Ultraproducts

(2.163) Definition [ZF] Suppose X is a nonempty set, U is an ultrafilter on PX,
ρ is a relational signature, and for each x P X, Ax is a ρ-structure that is a
set. Recall that

ś

xPX |Ax| is the set of functions f such that dom f “ X and
@x P X fx P |Ax|. Let ”U be the equivalence relation on

ś

xPX |Ax| such that
f ”U f 1Øtx | fx “ f 1xu P U . Let A “

ś

xPX |Ax|{ ”
U be the set ”U -equivalence

classes. The ultraproduct of xAx | x P Xy mod U def
“

ź

xPX

Ax{U

def
“ the structure A with signature ρ defined by:

1. |A| “ A;
2. for each n P ω, n-ary ρ-predicate index R, and a0, . . . , an- P A,

RAxa0, . . . , an-yØ
␣

x P X | RAxxf0x, . . . , fn-xy
(

P U,

for some (equivalently for all) f0, . . . , fn- such that @m P n fm P am.37

(2.164)  Loś’s theorem [ZFC] In the setting of Definition 2.163, letting A “
ś

xAx | x P Xy{U , suppose ϕ is a ρ-formula, xv0, . . . , vn-y enumerates Freeϕ, and
a0, . . . , an- P A. Then

A |ù ϕ
“

v0 ¨ ¨ ¨ vn-

a0 ¨ ¨ ¨ an-

‰

ØDf0 P a0 ¨ ¨ ¨ Dfn- P an-

␣

x P X | Ax |ù ϕ
“

v0 ¨ ¨ ¨ vn-

f0x ¨ ¨ ¨ fn-x

‰(

P U

Ø@f0 P a0 ¨ ¨ ¨ @fn- P an-

␣

x P X | Ax |ù ϕ
“

v0 ¨ ¨ ¨ vn-

f0x ¨ ¨ ¨ fn-x

‰(

P U.

In particular, if ϕ is a sentence then

A |ù ϕØtx P X | Ax |ù ϕu P U.

Proof By induction on the complexity of formulas. AC is invoked in the induction
step corresponding to quantification. Suppose ϕ has free variables v, v0, . . . , vn- and
␣

x P X | Ax |ù pDDDv ϕq
“

v0 ¨ ¨ ¨ vn-

f0x ¨ ¨ ¨ fn-x

‰(

P U . By AC there is a function f such that
␣

x P

X | Ax |ù ϕ
“

v v0 ¨ ¨ ¨ vn-

fx f0x ¨ ¨ ¨ fn-x

‰(

P U , so by induction hypothesis A |ù ϕ
“

v v0 ¨ ¨ ¨ vn-

rfs rf0s ¨ ¨ ¨ rfn- s

‰

,

and therefore A |ù pDDDv ϕq
“

v0 ¨ ¨ ¨ vn-

rf0s ¨ ¨ ¨ rfn- s

‰

.

(2.165) Definition [ZF] Suppose A is a ρ-structure, X is a nonempty set, and U
is an ultrafilter on X. Then the ultrapower of A mod U is

XA
L

U
def
“

ź

xAx | x P Xy
L

U,

where Ax “ A for every x P X.

(2.166) Theorem [ZFC] For a P |A|, let ā be the constant function with domain X
and value a. The map a ÞÑ ā is an elementary embedding2.151.4 of A into XA{U .

Proof Immediate from (2.164). 2.166

37If fm, f 1
m P am for each m P n then tx P X | fmx “ f 1

mxu P U for each m P n, so
tx P X | @m P n fmx “ f 1

mxu P U ; hence, when working “mod U”, it doesn’t matter which
representatives we use from any finite set of U -equivalence classes.
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2.7.5.1 Example: Compactness theorem via ultraproducts

The ultrafilter construction will become extremely important in Chapter 9. The
following proof of the compactness theorem of first-order predicate logic (in ZFC)
is a foreshadowing.9.50 We first observe that, assuming AC, any filter on a set X
may be extended to an ultrafilter. For suppose F is a filter on X. Posit a fixed
wellordering of PX. Construct an ordinal sequence xFα | α ď δy of filters Fα on
X, such that

1. F0 “ F ;

2. for all β ă α ď δ, Fβ ⫋ Fα;

3. for all limit α ď δ, Fα “
Ť

βăα Fβ ; and

4. @Y Ď X pY P Fδ _pXzY q P Fδq, i.e., Fδ is an ultrafilter on X.

To obtain Fα for α a successor ordinal, say α “ β ` 1, assuming Fβ is not an
ultrafilter, let Y be the first subset of X (in the sense of the fixed wellordering of
PX posited above) such that Y R Fβ and XzY R Fβ . Let

Fα “ tZ Ď X | DW P Fβ W X Y Ď Zu.

Clearly Fα is a filter on X that contains Y , so Fα Ľ Fβ .
To obtain Fα for limit α, let Fα “

Ť

βăα Fβ . The construction eventually ends
with an ultrafilter extending F .

Now suppose Θ is a ρ-theory. Assume for simplicity that ρ is purely relational,
so (2.164) applies as written. Suppose every finite subset of Θ has a model. We
wish to obtain a model of Θ. For each finite t Ď Θ, let At be a ρ-model of t
(using AC). Let X “ rΘsăω, the set of finite subsets of Θ. For each t P X, let
Xt “ tt

1 P X | t1 Ě tu. Let

F “ tY Ď X | Dt P X Y Ě Xtu.

Note that if Y0 Ě Xt0 and Y1 Ě Xt1 , then Y0 X Y1 Ě Xt0Yt1 , so F is a filter. Let
U Ě F be an ultrafilter on X. Let

A “
ź

tPX

At{U.

We claim that A |ù Θ. For suppose θ P Θ. Then38

A |ù θØtt P X | At |ù θu P U.

By construction, Xtθu P F , so Xtθu P U . Since

tt P X | At |ù θu Ě tt P X | θ P tu “ Xtθu,

A |ù θ.

38We use AC also here, as Theorem 2.164, which we are invoking, depends on AC.
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2.7.6 Ultrapowers of proper classes

Suppose X is a nonempty set, U is an ultrafilter on PX, and A is a class. If A is
a proper class the canonical representative (mod U) of f P XA for the purpose of
the ultrapower construction cannot be taken to be the U -equivalence class rf sU of
f , because this is also a proper class. Instead we use

(2.167) rf s˚U
def
“ tf 1 P rf sU | @f

2 P rf sU rk f 1 ď rk f2u.

By virtue of the restriction on rank, rf s˚U is a set. When U is understood we may
omit the subscript.

When A is a proper class,

(2.168) XA{U
def
“ trf s˚U | f P

XAu.

(2.169) Definition [GB] Suppose X is a nonempty set, U is an ultrafilter on PX,
ρ is a relational signature, and A is a ρ-structure, which may be a proper class.
Let A1 “ X|A|{U . We define XA{U to be the structure A1 with signature ρ defined
by:

1. |A1| “ A1;

2. for each n P ω, n-ary ρ-predicate index R, and a0, . . . , an- P A1,

RA1
xa0, . . . , an-yØ

␣

x P X | RAxf0x, . . . , fn-xy
(

P U,

for some (equivalently for all) f0, . . . , fn- such that @m P n rfms
˚ “ am.

In generalizing (2.164) we labor under the usual limitations on the demonstrability
of the existence of satisfaction relations for proper class structures.

(2.170) Theorem [GBC] In the setting of Definition 2.169, letting A1 “ XA{U ,
suppose ϕ is a ρ-formula and the tϕuA-satisfaction relation exists. Then the tϕuA

1
-

satisfaction relation exists, and if xv0, . . . , vn-y enumerates Freeϕ and a0, . . . , an- P

|A1| then
A1 |ù ϕ

“

v0 ¨ ¨ ¨ vn-

a0 ¨ ¨ ¨ an-

‰

Ø
␣

x P X | A |ù ϕ
“

v0 ¨ ¨ ¨ vn-

f0x ¨ ¨ ¨ fn-x

‰(

P U

for some (equivalently for all) f0, . . . , fn- such that @m P n rfms
˚ “ am.

Proof Note that we allow A to be a proper class. As previously discussed, nei-
ther the assumption nor the conclusion regarding the existence of tϕu-satisfaction
relations for A and A1 can therefore be established independently by induction in
GBC.

Suppose, therefore, that ϕ is ρ-formula and S is the tϕuA-satisfaction relation.

(2.171) Let S1 be the class of xψ,Ay such that ψ is a subformula of ϕ, A “
@

v0 ¨ ¨ ¨ vn-

a0 ¨ ¨ ¨ an-

D

is an A1-assignment for ψ, and

(2.172)
␣

x P X |
@

ψ,
@

v0 ¨ ¨ ¨ vn-

f0x ¨ ¨ ¨ fn-x

DD

P S
(

P U

for some f0, . . . , fn- such that @m P n rfms
˚ “ am.
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Since U is an ultrafilter, (2.172) holds for some f0, . . . , fn- such that @m P n rfms
˚ “

am iff it holds for all such f0, . . . , fn- .
It is straightforward to show that S1 is the tϕuA

1
-satisfaction relation. This is

just a matter of verifying that for each subformula ψ of ϕ the appropriate clause
in the recursive definition of satisfaction is satisfied. The proof is analogous to the
proof of (2.164). For example, suppose ψ has free variables v, v0, . . . , vn- and DDDv ψ
is a subformula of ϕ. Then

@

DDDv ψ,
@

v0 ¨ ¨ ¨ vn-

a0 ¨ ¨ ¨ an-

D

P S1ØDf0, . . . , fn-

`

rf0s
˚ “ a0^ ¨ ¨ ¨^rfn-s˚ “ an-

^
␣

x P X |
@

DDDv ψ,
@

v0 ¨ ¨ ¨ vn-

f0x ¨ ¨ ¨ fn-x

DD

P S
(

P U
˘

ØDf, f0, . . . , fn-

`

rf0s
˚ “ a0^ ¨ ¨ ¨^rfn-s˚ “ an-

^
␣

x P X |
@

ψ,
@

v v0 ¨ ¨ ¨ vn-

fx f0x ¨ ¨ ¨ fn-x

DD

P S
(

P U
˘

ØDa P |A1|
@

ψ,
@

v v0 ¨ ¨ ¨ vn-

a a0 ¨ ¨ ¨ an-

DD

P S1.

Now that we know that the tϕuA
1
-satisfaction relation exists and is given by (2.171),

the conclusion of the theorem follows immediately. 2.170

Theorem 2.166 also holds for proper class structures:

(2.173) Theorem [GBC] Letting ā be the constant function with domain X and
value a, the map a ÞÑ ā is an elementary embedding of A into XA{U .

2.8 Satisfactoriness and logic

The principal theorem relating satisfactoriness and logic is the completeness theo-
rem, which states that a consistent ρ-theory Θ has a satisfactory model, i.e., there
is a satisfactory ρ-structure S such that S |ù Θ. For the converse weak satisfac-
toriness suffices.

(2.174) Theorem [C0] Suppose S is a weakly satisfactory ρ-structure, Θ is a ρ-
theory, and S |ù Θ.

1. Θ is consistent.

2. If θ is a ρ-sentence and Θ$ θ then S |ù θ.

Proof 1 Suppose toward a contradiction that Θ is inconsistent. Let π be a proof
of θ ^̂̂ ␣␣␣ θ from Θ, for some ρ-sentence θ, using the natural deduction system ND.
Let Φ be the set of formulas in π, and let S be the Φ-satisfaction relation for S. It
is easy to show by induction on position in π that for every sequent Σñσ in π,

`

@η P Σ |ùS η
˘

Ñ |ùS σ.

Since the sequent Σñtθ ^̂̂ ␣␣␣ θu occurs in π for some Σ Ď Θ, |ùS θ ^̂̂ ␣␣␣ θ, which is
impossible.

2 Suppose S* θ. Since S is weakly satisfactory, there is a t␣␣␣ θu-satisfaction
relation S for S, and |ùS ␣␣␣ θ. Thus, S |ù ΘY t␣␣␣ θu. But if Θ$ θ then ΘY t␣␣␣ θu
is inconsistent, contradicting (2.174.1). 2.174
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2.8.1 Satisfaction of logical validities

Recall that a ρ-sentence σ is valid
def
ðñ for every satisfactory ρ-structure S, S |ù σ.

By the completeness theorem, σ is valid iff $σ, i.e., σ is provable from the empty
set of premises. The following theorem shows that the condition of satisfactoriness
may be dropped. We prove the theorem first in GB and then in C0, to highlight the
issues involved in the finitary proof.

(2.175) Theorem [GB] Suppose S is a ρ-structure, σ is a ρ-sentence, and $σ,
i.e., σ is valid. Then S |ù σ.

Proof If S is a set then the theorem is just the soundness property of the system
of deduction in terms of which $ is defined.39 Suppose therefore that S is a proper
class, and suppose toward a contradiction that S is a tσu-satisfaction relation for
S and *S σ. In a variation on the construction used in the proof of the downward
Löwenheim-Skolem theorem,2.159.1 define xαn | n P ωy as follows.

Let α0 be the least ordinal α such that |S|XVα ‰ 0. Given αn, let αn`1 be the
least ordinal α such that

1. for every ρ-operation index F , lettingm be the arity of F , for any x0, . . . , xm- P

|S| X Vαn , FSxx0, . . . , xm-y P Vα; and

2. for every subformula ϕ of σ and p|S| X Vαnq-assignment A for ϕ,

1. if ϕ “ DDDuψ and Dx P |S| |ùS ψ
“

A
@

u
x

D‰

then

Dx P
`

|S| X Vα
˘

|ùS ψ
“

A
@

u
x

D‰

;

and

2. if ϕ “ @@@uψ and @x P
`

|S| X Vα
˘

|ùS ψ
“

A
@

u
x

D‰

then

@x P |S| |ùS ψ
“

A
@

u
x

D‰

.

Let α “
Ť

nPω αn.40 Let S1 be the substructure of S with |S1| “ |S|XVα. Clearly,
S1 ătσu S. Let S1 be the (full) satisfaction relation for S1, which exists because
S1 is a set.

Since S1 ătσu S, *S
1
σ, which contradicts the fact that, as noted above, any

set structure satisfies all logical validities. 2.175

(2.176) Theorem [C0] Suppose S is a ρ-structure, σ is a ρ-sentence, and $σ, i.e.,
σ is valid. Then S |ù σ.

Proof Suppose first that ρ is without identity. Let π be a proof of σ in the system
LK´2.145 (from the empty set of premises). Recall that π is a finite tree of sequents
with 0ñtσu as the final sequent. Suppose S is the tσu-satisfaction relation for S.
Recall that LK´ has the subformula property, i.e., all formulas occurring in π are
obtained from subformulas of σ by substitution of terms for free variables. It is

39The essential property of a set structure for this purpose is the fact that its full satisfaction
relation exists.

40This is where we use the fact that we are working in GB, as opposed to C0, for example.
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straightforward to show by induction on the position of sequents in π that for every
Γñ∆ in π and S-assignment A for ΓY∆,

`

@γ P Γ |ùS γrAs
˘

Ñ
`

Dδ P ∆ |ùS δrAs
˘

.

Since 0ñtσu is the final sequent in π, |ùS σ. Hence, S |ù σ.
Now suppose ρ is with identity. The deductive system LK´ for ρ does not

have the subformula property, inasmuch as identity axioms may occur in a proof
that do not derive from subformulas of the final sequent. To put it another way, a
sentence σ is valid in logic with identity iff it is provable from identity axioms in
logic without identity. Either way, suppose as before that π is a proof of σ and S is
the tσu-satisfaction relation for S. Let E be the set of axioms of identity that occur
in π. Note that the deductive system LK´ does not allow for the introduction of
new constants, so the proof of (2.80) from Axioms 2.79 is not available, and we
therefore posit the following additional axioms of identity.

(2.177)

1. @@@v0 v̄0“““ v̄0.

2. @@@v0, v1 pv̄0“““ v̄1ÑÑÑ v̄1“““ v̄0q.

3. @@@v0, v1, v2 pv̄0“““ v̄1 ^̂̂ v̄1“““ v̄2ÑÑÑ v̄1“““ v̄2q.

Let S1 be the extension of S to the ptσu Y Eq-satisfaction relation for S (with
the identity predicate interpreted as the identity relation on |S|, of course). (The
existence of S1 follows by a simple argument in C0.) Then |ùS

1
E and for every

Γñ∆ in π,
`

@γ P Γ |ùS
1
γ
˘

Ñ
`

Dδ P ∆ |ùS
1
δ
˘

,

so |ùS
1
σ, whence S |ù σ. 2.176

2.9 A comparison of metatheories

We have been using the theory C0 as our working theory for the discussion of
language, structure, and logic. In C0 one has infinite classes but not necessarily
infinite sets. Since linguistic expressions are finitary objects, they are representable
as sets in this theory. Any reasonable definition of interpretation, on the other hand,
must allow for the existence of infinite structures, which may be proper classes
(i.e., not sets). The ability of C0 to demonstrate the existence of structures and
satisfaction relations is sufficient to prove the completeness theorem, which is the
basis for our definition of first-order predicate logic. Obviously the corresponding
pure set theory S0 is insufficient for this purpose, as it lacks an axiom of infinity, so it
cannot prove the existence of infinite structures and cannot prove the completeness
theorem. Nevertheless, taking first-order predicate logic as given, proofs are finitary
objects, and S0 is sufficient to serve as a metatheory for the syntactical aspects of
language and logic.

In Section 2.9.1 we will show that S0 is in fact just as good as C0 for this
purpose, inasmuch as it is capable of proving every theorem of C0 that refers only
to hereditarily finitary (HF) sets. In particular, everything we can prove in C0

about provability in S0 is provable in S0. The usefulness of a theory that can act as
its own metatheory has been indicated in Section 1.1.16 in connection with Gödel’s
famous incompleteness theorems.
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We do not need to have the above-mentioned conservative extension result to
carry out Gödel’s program for S0, but it makes the work considerably easier by
virtue of the greater expressivity of C0. It is similarly useful in the development of
the theory of membership per se.

Traditionally, as indicated in Section 1.1.16, it is some version of arithmetic that
is the favored metatheory for Gödel’s theorems and related work in proof theory.
We show in Section 2.9.2 that Peano arithmetic is equi-interpretable with S0, which
allows us to transfer essentially any metatheorem about S0 to PA. Again, this saves
work, and allows a more intuitive development, but it is not essential: we could
work exclusively in PA.

We should mention that the weaker theory primitive recursive arithmetic (PRA)
is sufficient for this purpose and is the proper base theory for a fine analysis of
provability in the finitary context, but we do not pursue this line of inquiry in this
book. PRA essentially comprises the methodology known as finitistic. We have
effectively defined finitary to refer to the methodology embodied in PA, S0, and C0

(all equivalent for this purpose).

2.9.1 Predicative class theory conservatively extends pure
set theory

As noted above, we have so far been using the theory C0 as a surrogate for the
finitary theory of membership, despite the fact that it is not entirely finitary, inas-
much as it asserts the existence of infinite classes as long as they are definable with
quantification restricted to sets. The strictly finitary theory of membership is the
theory S0.41 In this section we justify our use of C0 by showing that C0 is a conser-
vative extension of S0. It follows easily from this that C is a conservative extension
of S, GB of ZF, etc.

To express this conservative extension result we have to say how a sentence σ of
the language Ls of pure set theory is to be understood as a sentence of the language
Lc of the theory of classes. As we have formulated C0, S’ is the predicate symbol
for “setness”. Thus, σS is σ with all quantification restricted to sets, and it is the
c-sentence corresponding to an s-sentence σ. When we say that C0 conservatively
extends S0 we therefore mean that if σ is an s-sentence and C0$σS , then S0$σ.
This is Theorem 2.183.

As we will see below, this theorem is easily proved in a fully infinitary theory
like ZF. If all we are interested in is the endpoint and we believe that ZF is true—at
least in what it says about hereditarily finite sets—then we may be satisfied with
this, but it is epistemologically more satisfying to prove it finitarily, and by this we
do not mean to prove it in C0, because it is only by virtue of Theorem 2.183 that
we know that C0 is essentially finitary. We will therefore prove the theorem in S0.

It is convenient for this purpose to reformulate C0 as multisorted theory C1

without identity. Recall§ 10.1 that a multisorted signature has a class ∆ of sort or
domain indices. Any variable or term is of a particular sort. The signature c1

of C1 has two domain indices, iC and iS , for classes and sets. We may indicate
typographically that a variable is of set sort by affixing the subscript ‘S ’ to a
quantifier introducing the variable. Similarly, we may indicate that a variable is of
class sort by affixing the subscript ‘C ’ to a quantifier. When no such subscript is

41The fact that S0 allows the the existence of infinite sets is immaterial. If we add an axiom
of finiteness, we obtain a stronger theory, but it does not prove anything more about hereditarily
finite sets.
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used we allow for the possibility that the quantified variable is of either set or class
sort. Thus, in the formula

(2.178) @@@Su@@@Cv @@@w ϕ,

u is of set sort and v is of class sort. w must be of one sort or the other, but we
have not specified which it is. As a schema, therefore, (2.178) comprises

@@@Su@@@Cv @@@Sw ϕ

and
@@@Su@@@Cv @@@Cw ϕ.

There is one binary predicate index, for membership. Its type is

txiS , iSy, xiS , iCyu,

which is to say, a formula τ PPP τ 1 is well formed just in case τ is of set sort; τ 1 may
be of either set or class sort.

The defining feature of the membership relation—embodied in the axiom of
extension—is that classes with the same members are identical:

(2.179) @@@Cu0, u1

`

@@@Sv pv̄ PPP ū0ØØØ v̄ PPP ū1qÑÑÑ ū0“““ ū1

˘

.

To eliminate the identity predicate from a theory of membership T, we suppose
that identity has been incorporated in T axiomatically2.79 rather than via inference
rules. The following axioms suffice:

(2.180)

1. τ “““ τ , for any term τ of class or set sort.

2. pτ0“““ τ 10 ^̂̂ τ1“““ τ
1
1qÑÑÑpτ0“““ τ1ØØØ τ 10“““ τ

1
1q, for any terms τ0, τ 10, τ1, τ

1
1 independently

of either class or set sort.

3. pτ0“““ τ 10 ^̂̂ τ1“““ τ
1
1qÑÑÑpτ0 PPP τ1ØØØ τ 10 PPP τ

1
1q, for any terms τ0, τ 10 of set sort and τ1, τ 11

of either class or set sort.

Note that a term here is either a variable or a constant introduced in the course of
a proof.

Now replace any occurrence of γ0“““ γ1, where γ0 and γ1 may be independently
of either class or set sort, by

(2.181) @@@v pv̄ PPP γ0ØØØ v̄ PPP γ1q,

where v is any set variable that does not occur in γ0 or γ1.42

Note that this substitution makes the axiom of extension a logical validity, so
a theory of membership formulated without the identity predicate does not have
an axiom of extension per se. Similarly, the first two axioms of identity2.180 become
validities. (2.180.3) follows from

(2.182) @@@CV @@@Su, u
1
`

@@@Sv pv̄ PPP ūØØØ v̄ PPP ū1qÑÑÑpūPPP V̄ ØØØ ū1 PPP V̄ q
˘

.

Note that the comprehension schema of C0 contains

@@@Sv DDDCV @@@Sw pw̄ PPP v̄ØØØ w̄ PPP V̄ q,

42In signatures such as ρ and ρ1, which are without operations, v occurs in a term γ iff γ “ v̄.
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so (2.182) implies

@@@Su, u
1
`

@@@Sv pv̄ PPP ūØØØ v̄ PPP ū1qÑÑÑpūPPP τØØØ ū1 PPP τq
˘

,

where τ is a variable or constant of either class or set sort. The semantic content
of (2.179) in the setting of (2.180) is therefore transferred to (2.182), and we may
regard this as the axiom of extension for theories of membership without an identity
predicate.

(2.183) Theorem [S0] C0 is a conservative extension of S0.

Remark As noted at the beginning of this section, this is easily proved infinitarily
(in ZF, for example). Suppose C0$σ, where σ is a ρ1-sentence, i.e., with the
identification established above, a ρ-sentence with no class variables. To show that
S0$σ, we suppose that S is a set model of S0, and we show that S |ù σ.

(2.184) To avoid trivial complications, we will suppose that for any b P |S|, if
b Ď |S| then b is coextensive with some c P |S|, i.e., for all a P |S|

a P bØxa, cy P iSP .
43

Let S1 be the ρ-structure defined as follows.

1. iS
1

S “ |S|;

2. |S1| “ |S| Y PCS, where PCS def
“ the set of X Ď |S| such that

1. for some ρ1-formula ϕ, variables v, v0, . . . , vn- with

Freeϕ Ď tv, v0, . . . , vn-u,

and a0, . . . , an- P |S|, for all a P |S|,

a P XØS |ù ϕ
“

v v0 ¨ ¨ ¨ vn-

a a0 ¨ ¨ ¨ an-

‰

;

2. X is not coextensive with any element of |S|, i.e., for all b P |S|, X ‰
␣

a P |S|
ˇ

ˇ xa, by P iSP
(

;

3. iS
1

P “ iSP Y txa, by | b P PCS^ a P bu.

Note that (2.184) guarantees that PCSX|S| “ 0. The members of PCS are the
proper classes of S1.

It is straightforward to verify that S1 |ù C0. Since C0$σ, it follows that S1 |ù σ.
By construction, therefore, S |ù σ, as claimed.

As in previous examples, an axiom of infinity is required to show that we may sup-
pose that S is a set, from which it follows that S1 is a set structure and therefore
has a satisfaction relation. In C0, all we may suppose is that S is satisfactory, and
it may be a proper class, in which case S1 cannot be defined simply by adjoining
definable subclasses of |S|, as these may be proper classes and therefore not suitable
candidates to be members of anything. We can get around this by coding these
classes in terms of their defining formulas and parameters, but we would still have

43c may well be b itself, as it is for every b P |S| in the case that |S| is a transitive set and
iSP “ txa, by | a, b P |S| ^ a P bu. Note that in this case every b P |S| is a subset of |S| (by the
definition of transitivity).
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the problem of showing that the satisfaction relation exists for the resulting struc-
ture. In S0 we cannot refer to models at all, and we must argue proof-theoretically;
for all practical purposes, this is the case in C0 as well.

The first finitary proof of (2.183) was given by Joseph Shoenfield[22]. Like Shoen-
field’s proof, the proof to be given here is constructive in that it provides a natural
effective procedure to convert a C0-proof of a ρ1-sentence to an S0-proof.44 It does
not require the axiom of infinity and can be carried out in S0.

Proof See Note 10.12.

Theorem 2.183 generalizes readily to show that for any s-sentence θ, C0` θ is a
conservative extension of S0 ` θ, since for any s-sentence σ,

C0 ` θ$σØC0$ θÑÑÑσ

Ø S0$ θÑÑÑσ

Ø S0 ` θ$σ.

(2.185)

This simple observation does not apply directly to the case of C vs S, which are
not primarily defined from C0 and S0 respectively by the addition of identical s-
sentences. Instead, to obtain C from C0 we add the Foundation axiom

@@@v0 pDDDv1 PPP v̄0ÑÑÑDDDv1 PPP v̄0 @@@v2 PPP v̄1 v̄2 RRR v̄0q,

in which v0, being unconstrained, ranges over classes; whereas to obtain S from S0

we add the Foundation schema consisting of the axioms3.8

@@@v0, . . . , vn-

`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uPPP v̄ ␣␣␣ϕ
`

v
ū

˘˘˘

,

where ϕ is any s-formula, and u, v, v0, . . . , vn- are distinct variables such that Freeϕ Ď
tv, v0, . . . , vn-u, and ū is free for v in ϕ.

There are two ways to deal with this. One is to examine the proof of Theo-
rem 2.183 and show that it generalizes to incorporate Foundation. This is straight-
forward for both the infinitary proof given above and the finitary proof given in
Note 10.12.

It is simpler, however, to use the fact that S may be axiomatized over S0 by the
addition of the Foundation instances (3.111) and (3.112). The argument used in
the proof of Theorem 3.116 also shows that C is axiomatized over C0 by the same
two sentences, interpreted as s-expressions, i.e., with all variables restricted to sets;
i.e., we get the existence of an P-minimal element in an arbitrary class from the
existence of an P-minimal element in an arbitrary set and the existence of transitive
closures. Thus, the general argument (2.185) is applicable.

Either way, we have the following theorem.

Theorem [S0] C is a conservative extension of S.

2.9.2 Peano arithmetic is equi-interpretable with S0

The standard model A of arithmetic is the natural numbers with the constant 0, the
(unary) successor operation S, and the (binary) operations of addition and multi-
plication. The signature a of arithmetic accordingly has, in addition to the identity

44Naturally, there is always an unnatural effective procedure, which is to enumerate S0-proofs
until one comes across a proof of the sentence under consideration.
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predicate, a nulary, a unary, and two binary operation indices. The corresponding
operations on a-expressions are 0, S, `̀̀, and ¨̈̈. We use the usual grouping priority
conventions governing addition and multiplication, e.g., k ¨m` n “ pk ¨mq ` n.

Axioms of PA

PA1 Succession and zero

@@@v0

`

S v̄0 ‰‰‰ 0 ^̂̂ @@@v1 pS v̄0“““S v̄1ÑÑÑ v̄0“““ v̄1q
˘

.

PA2 Addition

@@@v0

`

v̄0 `̀̀ 000“““ v̄0 ^̂̂ @@@v1 pv̄0 `̀̀S v̄1“““Spv̄0 `̀̀ v̄1qq
˘

.

PA3 Multiplication

@@@v0

`

v̄0 ¨̈̈ 000“““000 ^̂̂ @@@v1 pv̄0 ¨̈̈S v̄1“““ v̄0 ¨̈̈ v̄1 `̀̀ v̄0q
˘

.

PA4 Induction

@@@v0, . . . , vn-

`

ϕ
`

v
0

˘

^̂̂ @@@v
`

ϕÑÑÑϕ
`

v
S v̄

˘˘

ÑÑÑ@@@v ϕ
˘

,

where ϕ is any a-formula, and v, v0, . . . , vn- are distinct variables such that Freeϕ Ď
tv, v0, . . . , vn-u.

Note that PA4 corresponds to the Foundation schema of S, which is omitted from S0.
Given the central role played by PA4 in PA, it may appear surprising that it can be
omitted in S0 without sacrificing interpretability. The explanation lies in the fact
that the interpretation of PA in S0 involves the association of numbers in the sense
of PA with numbers in the sense of S0, i.e., finite ordinals, which by the definition
of ordinal are wellordered by P (individually and collectively). S0 conveniently
supplies all the machinery required to define number and the order relation on
numbers, and to show that it is a wellorder—without assuming Foundation. The
corresponding constructions in a theory of arithmetic would involve a predicate true
of just those numbers whose predecessors are wellordered, which essentially requires
an interpretation of all this machinery in PA—pretty much an interpretation of S0

in PA in the formal sense that we are about to define. It is hard enough to do this
with PA4, and it is all the harder to do it without.

We will define in PA a predicate E such that

EA “ txm,ny | B⃗ m P B⃗ nu,

where B⃗ : ω sur
Ñ HF45 is the canonical enumeration of the hereditarily finite sets,3.211

and showing that each axiom of S0 becomes a theorem of PA when xPy is replaced
by xEy.

Recall that B⃗ m P B⃗ n just in case 2m is a summand in the (unique) represent-
ation of n as a sum of distinct powers of 2. To represent this in arithmetic we first
provide an arithmetical definition of xis a power of 2y. To do this we observe that
n is a power of a prime p iff every factor of n other than 1 is divisible by p. Next
we provide an arithmetical definition of xpmq is a summand in the representation
of pnq as a sum of distinct powers of 2y. To do this we observe that, assuming

45Note that HF is defined in S0 by (3.95), rather than, in effect, (3.96.3).
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m is a power of 2, this is equivalent to n{m being odd, where ‘n{m’ denotes in-
teger division, the fractional part being discarded.46 Then we have to provide an
arithmetical definition of the relation xpmq “ 2pkqy.

The details of this are not relevant to the remainder of our discussion, and we
simply state the result here and relegate its proof to a note.

(2.186) Theorem rS0] S0 and PA are equi-interpretable.

Proof See Note 10.13.

As pointed out at the end of Note 10.13, the interpretation given there of S0

in PA also interprets S in PA, and also F in PA. Since F is stronger than S0, of
course, the interpretation given of PA in S0 is also an interpretation of PA in F.
These interpretations are conservative in the sense that a set-theoretical sentence
θ is provable in F iff its interpretation in PA is provable in PA, and vice versa, so
PA and F are for all practical purposes equivalent theories.

It is worth noting that we could spare ourselves quite a bit of work if we de-
fined PA to include an additional binary operation Ò with an axiom defining it as
exponentiation:

PA5 Exponentiation

@@@v0

`

v̄0 ÒÒÒ0“““S 0 ^̂̂ @@@v1 pv̄0 ÒÒÒpS v̄1q“““pv̄0 ÒÒÒ v̄1q ¨̈̈ v̄0q
˘

.

PA is, however, traditionally defined without exponentiation.
It is also worth noting that the development given here is itself not traditional.

Gödel’s original demonstration of the interpretability of S0 in PA (which was not
stated quite this way) relied on the representation of finite sequences of numbers
by individual numbers via the Chinese remainder theorem of arithmetic.

2.10 Summary

In the previous chapter we presented language and structure as the essence of
mathematics, to which it is natural to reply that surely logic is just as fundamental.
In the present chapter, however, we show that logic is actually a derivative concept,
the syntactic equivalent of the semantic notion of entailment, as established by the
completeness theorem of Gödel. Indeed, our proof of the completeness theorem
consists of positing rules of deduction with the explicit goal of defining a model
for any deductively consistent theory. Proofs being finitary objects, we obtain the
compactness theorem as a corollary of the completeness theorem.

We preface our discussion of logic per se with remarks concerning the role of
infinitary objects: infinite classes being essential to the statement of the complete-
ness theorem but not to the analysis of the deductive system that follows from it.
We reiterate that the real threshold of infinitarity is the Infinity axiom, and that the
class theory C0, which is sufficient to prove the completeness theorem, is essentially
a finitary theory. Pending our proof of this fact, however, we take pains to present
our discussion of logic in the framework of the pure set theory S0.2.38

The rules of deduction can be formulated in many ways. To describe one al-
ternative we first define propositional languages and prove the corresponding com-
pleteness and compactness theorems; and we then define a system of deduction for

46This follows from the fact that the sum of the powers of 2 less than m is less than m (
řj-

i“0 2i “

2j ´ 1), m{m “ 1, and every power of 2 greater than m is divisible by m with even divisor.
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first-order logic based on the application of propositional logic to theories extended
by witness sequences and instance classes.

Up to this point we have restricted our attention to languages with just the
two propositional connectives of negation and implication, and only the existential
quantifier. The remaining common propositional connectives and the universal
quantifier are now introduced with appropriate extensions to the deductive system
to achieve completeness.

We define logical equivalence of formulas, both absolutely and relative to a
theory, as well as equivalence of formulas over a structure; and we show that a
change of (bound) variables maintains logical equivalence.

We then expand our scope to languages with identity and the interpretation
convention peculiar to that predicate. Again, the deductive system is extended
appropriately to achieve completeness. We define equivalence of terms analogously
to equivalence of formulas, and we prove that the substitution of equivalent expres-
sions in an expression leads to an equivalent expression. We also demonstrate the
existence of various useful normal representatives within these equivalence classes.

We then turn our attention to properties of classes of sentences, i.e., theories,
defining deductive closure, extension, and conservative extension, and introducing
the operation of skolemization. We then prove Herbrand’s theorem on the consis-
tency of universal sentences. We present the easy infinitary proof, but resist the
temptation to leave it at that for several reasons. First, from the standpoint of the
foundations of mathematics it is important to know whether infinitarity is required.
Second, it is important that the novice learn (how) to attend to this sort of issue,
particularly inasmuch as once we have crossed the infinitarity threshold, beginning
in Chapter 5, the same issues will arise, and there will be no option of assuming
some sort of “superinfinitarity” to bail us out. Third, in proving Gödel’s second
incompleteness theorem we are going to make use of the fact that we have used
only finitary methods up to that point. In line with the program (2.38), we present
the finitary proof explicitly in S0 (as opposed to C0).

We then use Herbrand’s theorem and the theorem on skolemization to show that
logic with identity conservatively extends logic without. This fundamental theorem
also has a simple infinitary proof, but we provide an S0-proof, for reasons already
given.

We then define the extension of a theory by definition, which is—from a practical
standpoint—essential to the mathematical enterprise. There is an easy infinitary
proof that such extensions are conservative; we provide a finitary proof.

We define the notion of substructure, the related syntactical operation of rela-
tivization, and the notion of interpretation of a language or theory in a theory.

At this point we digress to illustrate the foregoing ideas in the setting of ge-
ometry. We clarify the role of the axiomatic method in euclidean geometry, and
we spend a fair amount of time examining metatheoretical aspects of projective
geometry, which is particularly suitable for this purpose.

We have so far concentrated on the natural deduction system that we obtained
from the proof of the completeness theorem. Other systems are useful for certain
purposes. We briefly describe Hilbert systems and then focus our attention on
Gentzen systems, which have a pleasing symmetry and which are particularly useful
for the fine analysis of the structure of proofs. In particular, we prove the cut
elimination theorem, which validates the use of the cut-free Gentzen system LK´

(i.e., establishes the completeness of this system), which has the key subformula
property.
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We then present some model-theoretic ideas, particularly the notion of elemen-
tary substructure, the method of directed elementary systems for obtaining such
structures, and the celebrated Löwenheim-Skolem theorems. For this purpose we
assume the Infinity axiom, so we work in the theory GB, which stands in the same
relation to ZF as C0 does to S0. We also make use of axioms of choice as necessary,
particularly the full axiom of choice AC. We introduce the method of ultrapowers,
which will be particularly important in Chapter 9.

The completeness theorem asserts that every consistent theory has a satisfactory
model. We now present the basic theorems relating the logical notions of provability
and validity to satisfaction in structures that may not be satisfactory or even weakly
satisfactory.

We conclude the chapter with a comparison of several theories that we either
have used or may use as metatheories. First, we show that C0 is a conservative
extension of S0. Again there is a simple infinitary proof, but here there is more
reason than ever to provide a bona fide finitary proof, i.e., an S0-proof, and we
do this. Finally, we prove the equi-interpretability of S0 and Peano arithmetic
PA. We do this, not out of necessity, but rather because PA is the traditional
finitary metatheory for mathematical logic—for historical reasons, not because it
is particularly well suited to the task.
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Classes and concepts may, however, also be conceived as real ob-
jects, namely classes as ‘pluralities of things’ or as structures con-
sisting of a plurality of things and concepts as the properties and
relations of things existing independently of our definitions and
constructions. It seems to me that the assumption of such objects
is quite as legitimate as the assumption of physical bodies and
there is quite as much reason to believe in their existence. They
are in the same sense necessary to obtain a satisfactory system
of mathematics as physical bodies are necessary for a satisfactory
theory of our sense perceptions...

Kurt Gödel
Russell’s Mathematical Logic in The Philosophy of Bertrand

Russell (1944), Vol. 1, 137, P. A. Schilpp (ed.)

After we came out of the church, we stood talking for some time
together of Bishop Berkeley’s ingenious sophistry to prove the
non-existence of matter, and that every thing in the universe is
merely ideal. I observed, that though we are satisfied his doc-
trine is not true, it is impossible to refute it. I never shall forget
the alacrity with which Johnson answered, striking his foot with
mighty force against a large stone, till he rebounded from it, ‘I
refute it thus.’

Life of Samuel Johnson
by James Boswell

[Thomas Jech’s Set Theory [12] is an excellent source for all aspects of the modern
theory of membership.]

3.1 Introduction

Mathematics talks about many different sorts of entities—e.g., curves, transforma-
tion groups, fiber bundles, you name it. Many a branch of mathematics is defined
by the objects it discusses: the theory of groups, the theory of polynomials, etc.
Certain sorts of objects, however, occur in almost every mathematical discussion.
Among these are natural numbers, sequences, functions, relations, and sets, to
name several. For quite a while, these objects were used uncritically, even in areas
of mathematics like geometry, whose logical structure had been a object of scrutiny
for millennia.§ 2.5 This approach worked well enough as long as the applications of
these ideas were relatively simple. It was only after Cantor’s analysis of Fourier
series led him to consider iterative constructions that continued ad infinitum and
then kept on going that the necessity of a formal development of the theory of mem-
bership was recognized. This development eventually showed, among other things,
that all of the basic constructions alluded to above, such as natural numbers, se-
quences, etc., can be defined in terms of membership. The theory of membership is
thus the lingua franca of mathematics, and any branch of mathematics implicitly
includes some part of this theory.1

Our goal in this book is a critical examination of language, logic, and the foun-
dations of mathematics. The objects of our interest are therefore such linguistic
entities as symbols, terms, sentences; such logical entities as proofs and theories;

1Other very general mathematical theories, such as the theory of categories and functors, may
be used instead of the theory of membership as a universal framework for mathematics. Each has
its merits, but the concept of membership is so simple that it has emerged as the consensus choice
for this purpose.
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and such mathematical entities as groups, rings, manifolds, etc., all of which we
treat generically as structures. Our approach to this task is the same as that of
any mathematician dealing with any other subject, and we have the same need for
membership-theoretic concepts.

Our present concerns, however, go to the heart of the mathematical enterprise:
the meaning of mathematical statements, the validity of mathematical deduction,
the consistency of mathematical theories, etc. If we are to have faith in our
conclusions—indeed, if we are to understand the logical status of our analysis—
we must make the framework of that analysis explicit.

The basic relations of the theory of membership are those of membership and
identity. In typographical languages we use the symbol ‘P’ to indicate membership:
‘x P y’ means ‘x is a member of y’ or, equivalently, ‘x belongs to y’ or ‘y contains
x’. As for any theory, in typographical languages we use the symbol ‘“’ to indicate
identity: ‘x “ y’ means ‘x is y’. Note that identity is a more fundamental notion
than membership, one that is often regarded as belonging to logic and which is
essentially ubiquitous, not only in mathematics but also in ordinary discourse.

3.1.1 Notational conventions

We will tolerate a somewhat greater degree of notational imprecision in this chapter
than in the previous chapters. For example, we may use the name of a variable, say
‘v’ to denote the term formed from the variable, i.e., v̄ p“ ṽ0q, as in the following
paragraph, which introduces another convention.

In general, substitution of terms for variables in a formula ϕ may be indicated as
follows. An occurrence of ‘ϕ’ followed by a series of terms flanked by round brackets
is understood to stand for the formula ϕ with the displayed terms substituted for its
free variables in some fixed order. The free variables are typically listed in order
when the name, ‘ϕ’ in this case, is first introduced. For example, if we say that ϕ
is ϕpv, a, v0, . . . , vn-q,1.28 then

ϕpx, y, z0, . . . , zn-q “ ϕ
`

v a v0 ¨ ¨ ¨ vn-

x y z0 ¨ ¨ ¨ zn-

˘

.

The following abbreviations are frequently useful.

(3.1)

1. If τ is a term, u is a variable that does not occur in τ , and ϕ is a formula,

1. DDDuPPP τ ϕ def
“ DDDu puPPP τ ^̂̂ ϕq

2. @@@uPPP τ ϕ def
“ @@@u puPPP τÑÑÑϕq

2. Similarly, the use of a unary predicate symbol as a subscript on a quantifier
indicates restriction to entities satisfying the predicate. For example, xDPx . . . y

means xDx pPx^ . . . qy, and x@Px . . . y means x@x pPxÑ . . . qy.
3. For any terms τ0, τ1, τ2,

τ0 PPP τ1 PPP τ2
def
“ pτ0 PPP τ1 ^̂̂ τ1 PPP τ2q.

4. Generalizations of (3) to chains of any length of any binary relation.

5. 1. τ0 ‰‰‰ τ1
def
“ ␣␣␣ τ0“““ τ1.

2. τ0 RRR τ1
def
“ ␣␣␣ τ0 PPP τ1.

3. Strikeout may be used similarly to negate any binary relation.
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3.1.2 Elements, classes, and sets

In a theory of membership we distinguish several sorts of entities.

(3.2) Definition Something is an element
def
ðñ it is a member of something.

(3.3) If something has a member we say it is a class.

(3.4) A defining feature of the notions of membership and class is that a class
is uniquely determined by its members, i.e., if x and y are classes, and if, for all
elements z, z P x ðñ z P y, then x “ y.

Note that the converse is a theorem of pure logic: if x “ y, i.e., if x is y, then
anything is true of x iff it is true of y, in particular, for any z, z P x iff z P y.

Note that (3.3) does not say that every class has a member. On the contrary,
in a theory of membership it is very handy and natural to require the existence of
at least one class that has no members; to do otherwise simply entails a great deal
of circumlocution that serves no purpose. Note that by virtue of (3.4) there is only
one empty class.

Definition A proper class is a class that is not an element. A proper element or
urelement or atom is an element that is not a class. A set is something that is both
an element and a class.

In a theory of membership we may disregard any entity that has no members and
is not a member of anything, as the existence of such an object does not imply
anything about the membership relation other than the simple fact that something
exists that does not participate in it.

In a theory of membership we therefore suppose that everything is either an element3.2

or a class3.3 (or both, i.e., a set). We use ‘E’, ‘C’, and ‘S’ as necessary to refer
to elements, classes, and sets, respectively. In particular, we use these symbols as
subscripts on quantifiers and as predicates. For example, ‘@E’ means ‘for every
element’, and ‘Cpxq’ means ‘x is a class’.

In any reasonable theory of membership, sets exist; indeed, in any reasonable theory
of membership, the membership relation has a rich structure when restricted to sets,
and in general sets (as opposed to proper elements and proper classes) are the most
useful objects in a theory of membership.

By pure set theory we mean a theory in which everything is a set. Pure set theory
is a mathematical subject in its own right. Pure set theory may also be regarded
as subsuming all of mathematics, inasmuch as all mathematical constructions may
be regarded set-theoretically, and there is no need to suppose that there exists
anything that is not a set.

Alternatively, one may allow for the existence of things other than sets. There is
no a priori restriction on what the “other things” might be. Apropos the discussion
of the preceding chapters, they might be typographical expressions; in physics, they
might be physical systems, states of systems, operations on states, etc.; in sociology,
they might be people.

On the other hand, at first blush it is hard to see why we should ever have a
need for proper classes. Given a class C, can’t we always form a class that contains
C? Not necessarily. One of the early discoveries in the history of the theory of
membership is that there must be some restriction on the formation of classes. The
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simplest example is that of Russell. Suppose there is a class A whose members are
exactly the classes x such that x R x, i.e., x is not a member of x. If A P A, then,
by the definition of A, A R A. On the other hand, if A R A, then, again by the
definition of A, A P A. This is a logical contradiction.

Thus, any theory of membership that implies the existence of a class whose
members are exactly those classes that are not members of themselves is inconsistent
and useless for any purpose. There are several responses to this realization. One
is to throw up ones hands in despair and forget about constructing any consistent
theory of membership. This is not acceptable.

To arrive at a satisfactory theory of membership we must impose some restric-
tion on the comprehension operation, which forms the class consisting of all sets
satisfying a given condition: the class comprehended by the condition (in the Rus-
sell paradox the condition is uRRRu). In general, a comprehension axiom asserts that
there exists a class whose members are the elements satisfying a given condition,
and it may also assert that this class is an element, in which case it is a set. In a pure
set theory, every class is a set, so the burden of avoiding paradox falls entirely on
limiting class comprehension. The Zermelo-Fraenkel theory ZF accomplishes this
by using comprehension only to assert the existence of classes that are included
in sets. Alternatively, Quine’s New Foundation theory NF imposes the restriction
that a membership condition must be stratifiable, i.e., each of its variables u can be
assigned a rank fu P ω such that in any subformula uPPP v, f v “ fu` 1, and in any
subformula u“““ v, f v “ fu[19]. Note that ūPPP ū cannot be stratified, so the Russell
paradox is avoided. The Zermelo-Fraenkel approach is standard, and we will not
consider NF any further in this book.

In a class theory, we may be more generous with class comprehension, as long as
we are sufficiently restrictive as to when a class may be asserted to be a set. In such
a theory, if we define A as the class of sets x such that x R x, then if we suppose A
is a set we can derive a contradiction as before. We may therefore conclude that A
is a proper class. In standard theories of membership—including all those in which
the membership relation is wellfounded in a sense to be made precise—A as just
defined consists of all sets. In theories of this type, classes like A exist, but they
are “too big” to be sets.

(3.5) In light of the preceding discussion we have four types of theories of member-
ship:

1. Everything is a set, i.e., there are no proper elements or proper classes. This
is pure set theory, of which we take ZF as the paradigm, as remarked above.

2. There are proper elements, but no proper classes. This is standard set theory
with atoms (urelements), e.g., ZFA.

3. There are proper classes, but no proper elements. The Gödel-Bernays and
Morse-Kelly theories are of this type.

4. There are proper elements and proper classes.

‘Set theory’ is used loosely to refer to any theory of membership.

3.2 Basic theories of membership

In the following discussion of theories of membership we will use the concepts and
conventions of Chapters 1 and 2. As discussed there, this chapter and those are
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interdependent, inasmuch as those chapters employ the basic theory of membership,
while this chapter requires some understanding of the nature of language and logic.

A language appropriate to a theory of membership has a binary predicate symbol
‘P’, in addition to the identity symbol ‘“’. We could naturally define the language
of an all-purpose theory of membership as multi-sorted, with domains of elements,
sets, and classes (together with a universal domain encompassing those), but in the
interest of simplicity (and, in the long run, flexibility), we will instead posit three
unary predicates with the symbols ‘E’, ‘S’, and ‘C’, respectively.

(3.6) Definition For the sake of definiteness, and for future reference, we define the
core similarity type for theories of membership to be s “ rΠs,Φs, T ss,1.29 where

1. Πs “ t0, 1u;

2. Φs “ 0; and

3. T sp0q “ T sp1q “ 2.

0 indexes the identity relation, as always, and 1 indexes the membership relation.

The standard s-language Ls is defined as in Section 1.3.1. We grant ourselves the
privilege of introducing additional predicates and operations ad libitum in the usual
way of mathematics. To allow the introduction of operations by definition we have
not defined s as a purely relational similarity type.1.29 The class Φ of operation
indices is empty now, but it is allowed to grow.

Ls, with the provision of urelements and the axioms to be given, is capable of
discussing virtually anything mathematicians discuss. For example, we might let
the urelements be the real numbers. We could let the sets be all collections of real
numbers, collections of collections of real numbers, etc. To explain what we mean
by ‘etc.’ here, suppose we assign rank 0 to any collection of real numbers, rank 1
to any collection of collections of real numbers, and, in general, rank α` 1 to any
collection of collections of rank α. Then ‘etc.’ could comprehend all collections
of finite rank. These, we have said, would be the sets. The elements would be
the real numbers and the sets. As for the classes, we could simply stipulate that
all classes are sets. Alternatively, we could posit the existence of proper classes,
which would be collections (of elements) other than the sets as just defined. The
collection consisting of all the sets is one example of such a collection.

3.2.1 Cumulative hierarchies

The preceding example indicates the general sort of structure that set theory is
intended to describe. We begin with a collection of urelements (proper elements,
i.e., things that are not sets), which may be empty. Let V0 be this collection. Let
V1 consist of all elements of V0 and all subcollections of V0 that are sets. It may be
that all subcollections of V0 are sets, or it may be that only some are. For example,
we may wish to require that sets be finite, whereas V0 may be infinite. We will use
the phrase ‘subset’ (of a collection) to refer to a subcollection that happens to be a
set. Thus, V1 is V0 together with all subsets of V0. Let V2 be V1 together with all
subsets of V1. Similarly, let V3 be V2 together with all subsets of V2, and so on.

The result of this construction is a cumulative hierarchy—specifically, the von
Neumann hierarchy : V0 Ď V1 Ď V2 Ď ¨ ¨ ¨ , where Vα`1 consists of all sets included
in Vα, along with the urelements if there are any. ‘Cumulative’ is used to indicate
that each level (or stage) of the hierarchy includes each of the preceding levels.
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Often, each level also contains3.7 each of the preceding levels, but not always, e.g.,
when there are infinitely many atoms and sets are all finite. We define the rank of
a set to be α if it first appears in level Vα`1. Note that this is also the least α such
that Vα includes the set.2

(3.7) This is a good place to establish the following convention:

1. a contains b iff a is a class and b is a member of a.

2. a includes b iff a and b are classes and every member of b is a member of a.

The reader is warned that many authors use ‘contain’ for both ‘contain’ and ‘in-
clude’, with the expected attendant confusion, which is addressed by saying ‘contains
as a member’ when ‘contain’ is intended and the context does not permit the reader
to immediately infer this.

We have indicated how the levels Vα are generated for natural numbers α, but
the hierarchy may continue beyond this. For example, we may have a set with
members of arbitrarily high (finite) rank. We assign such a set rank ω, where ω is
the order type of the natural numbers. (We will make all this official in due course.
The purpose of this discussion is to provide a conceptual framework for the formal
presentation of the theory.) We define Vω to be the union of the Vα’s for finite
indices α, and Vω`1 to be Vω together with the collection of subsets of Vω. Note
that no set first appears in Vω, because any set in Vω is in Vα for some finite α. As
above, the sets of rank ω are those in Vω`1zVω.

We may continue in this way as long as we wish—up to ω ¨2 def
“ ω`ω, ω ¨3, ω ¨ω,

ωω, . . . . You might wish to take a moment to try to imagine how long this could
go on. The limit of human imagination is puny compared to the theoretical limit
of any sentient being’s imagination, which is in turn puny compared to the limit
of just the countable stages of this process, which is called ‘ω1’, ω being called for
this purpose ‘ω0’. Far beyond this is ω2, then ω3, . . . , ωω, . . . , ωω1 , . . . . Beginning
to get the picture?3

We will refer to the order type of the entire hierarchy as ‘Ω’,4 and to the collec-
tion consisting of all the elements (proper elements and sets) as ‘VΩ’ or simply as
‘V ’. The only subcollections of V that we regard as sets are those that are in some
Vα, with α ă Ω. There are therefore no sets of rank Ω and there is no level VΩ`1.
If we wish to admit proper classes, they are subcollections of V that are not in V .

If we admit only finite sets, Ω “ ω, the order type of the natural numbers. In the
standard axiomatization of set theory with infinite sets, however, Ω is stupendously
large, as we indicated above. Note that in set theory without proper classes, ‘Ω’
and ‘V ’ are not terms of the theory: they don’t denote sets (or urelements), so

2An alternative to the von Neumann hierarchy is to construct an object of type α ` 1 for
each collection of objects of type α. Objects of different types are regarded as different even if
they have the same members. This approach has no advantage, and it has the disadvantage of
distinguishing entities that are better identified—for example, there is no utility in distinguishing
the empty collection of objects of one type from the empty collection of objects of any other type.
This method was used by Russell and Whitehead in their Principia Mathematica[21] as a way of
developing a theory of set-like objects that avoided the inconsistency of early set theories, but it
is now a cumbrous historical artifact.

3Note, however, that if, as suggested above, we wish to restrict our attention to finite sets,
then the cumulative hierarchy consists of just the finite levels—any finite subset of Vω is included
in Vα for some finite α and is therefore in Vα`1. Thus we cannot obtain any new sets by taking
finite subsets of what we already have in Vω .

4After we have defined ‘ordinal’, we will refer to Ω as ‘Ord’, freeing ‘Ω’ for other, less specific,
uses.
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they don’t denote anything. In this case they are to be viewed as figures of speech,
i.e., expressions containing them are interpreted as standing for expressions without
them.

We are thus presented with the following all-purpose picture of a model of set
theory (by which we mean a theory of membership generally3.5). At the bottom is
a collection V0, consisting of urelements. If there are no urelements, then V0 is the
empty collection, and we will impose axioms to ensure that this is a set, i.e., that
there exists a set with no members. Including V0 and extending “above” it is a
collection V1. The additional elements are the subsets of V0. Note that if there are
no urelements, then V0 is the empty set, and V1zV0 “ V1 contains just one thing—
the empty set. Next we have V2 Ď V3 Ď ¨ ¨ ¨ , as described above. This goes on for Ω
steps. Finally, if we wish, we may have a stratum at the very top consisting of the
proper classes, which are subclasses of V def

“ VΩ. By definition, proper classes are
not elements, and they cannot be members of anything, so the hierarchy does not
continue beyond this point, and there is in particular no VΩ`1. All proper classes
are included in VΩ but in no smaller Vα, so they naturally may be considered to
have rank Ω.

3.2.2 Basic (pure) set theory

In the interest of simplicity, we will begin with a theory S that does not have
proper elements or proper classes, i.e., everything is a set. The axioms asserting
the existence of sets are only those that are essential for a useful theory.5

(3.8) Axioms of S

S1. Extension
@@@v0, v1 p@@@v2 pv2 PPP v0ØØØ v2 PPP v1qÑÑÑ v0“““ v1q

S2. Comprehension This is actually an infinite collection of axioms, all of the same
form, i.e., an axiom schema.

@@@v0, . . . , vn- @@@uDDDw @@@v pv PPP wØØØpv PPP u ^̂̂ ϕqq,

where ϕ is any s-formula, and u, v, w, v0, . . . , vn- are distinct variables such Freeϕ Ď
tv, v0, . . . , vn-u.6

S3. Existence
DDDv0 @@@v1 v1 RRR v0

S4. Pair
@@@v0, v1 DDDv2 pv0 PPP v2 ^̂̂ v1 PPP v2q

S5. Collection This is also an axiom schema.

@@@v0, . . . , vn- @@@u
`

@@@v PPPuDDDw @@@a pϕÑÑÑ aPPPwqÑÑÑDDDw @@@v PPPu@@@a pϕÑÑÑ aPPPwq
˘

,

where ϕ is any s-formula, and a, u, v, w, v0, . . . , vn- are distinct variables such that
Freeϕ Ď ta, v, v0, . . . , vn-u.

5S is the standard Zermelo-Fraenkel theory ZF with the axioms of powerset and infinity omit-
ted.

6If n “ 0, the initial quantifier string indicated by ‘@@@v0, . . . , vn- ’ is the empty string, so it is—in
effect—not there.
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S6. Foundation Another schema.

@@@v0, . . . , vn-

`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uPPP v ␣␣␣ϕ
`

v
u

˘˘˘

,

where ϕ is any s-formula, u, v, v0, . . . , vn- are distinct variables such that Freeϕ Ď
tv, v0, . . . , vn-u, and u is free for v in ϕ.

We have included Foundation among the basic axioms of the theory of membership,
but it is of a different character, inasmuch as it is restrictive, rather than expansive,
and for the time being we will develop the theory without it.

(3.9) Definition S0 is the theory with axioms S1–5, i.e., omitting Foundation.

Let’s examine these axioms with particular attention to our intuitive image of a
cumulative hierarchy.

S1 expresses the essential nature of the membership relation, viz., that the
identity of a set depends exclusively on what is “in” it.7 There is no possibility of
distinct sets with the same members. Note that the converse of S1, by which we
mean the statement x@x, y px “ y Ñ @z pz P xØ z P yqqqy, is a validity of predicate
logic with identity.

S2, also known as the Aussonderungsaxiom (selection axiom) or the axiom of
subsets, says that for any formula ϕ and distinct variables u and v, for any values
of u and the remaining free variables of ϕ other than v, the collection denoted
by the abstraction term xtpvq P puq | pϕquy, is a set.8 In a cumulative hierarchy,
it is reasonable to require that whenever a set x is created, all subcollections of
x are also created as sets. We have, however, no way of saying directly that all
subcollections of x are sets. If we try to do so with a statement like ‘for all y, if y
is a subcollection of x then there exists z such that z “ y’, we have merely uttered
a tautology: clearly, for all y, no matter what condition we put on y, there exists
z such that z “ y, viz., y. The problem is that in set theory we cannot “quantify”
over all “collections”, only over all sets.9 The expressive constraints of our language
allow us to say only that all definable subcollections of x are sets, and this is what
S2 does (or rather, as the British would say, ‘what S2 do’;10 remember that S2 is
a schema—a collection of sentences with a common form).

Note that the justification of S2 by means of the cumulative hierarchy picture
requires the presence of the condition v PPPu, i.e., we do not say that any definable
collection is a set, only that any definable subcollection of a set is a set. Leaving
aside the issue of justification in terms of cumulative hierarchies, why should we
not omit this condition and simply posit that any abstraction term defines a set?
There are two reasons. The first is that we may wish to specialize the theory to sets
with some characteristic, e.g., finiteness. The second reason is more fundamental.
As we have already seen, the abstraction term xtx | x R xuy cannot denote a set.

S3 gets the cumulative hierarchy started. This is the only axiom that is not a
universal sentence, and is therefore the only axiom that requires that something
exist. We have written it so that it mandates the existence of specific set, viz., the

7This is true of classes in general. Remember that for the present, we are supposing that all
classes are sets.

8The use of abstraction terms is probably familiar to the reader. We will treat them formally
in Section 3.3.1.

9This is true for pure set theory, which is the present context. In an appropriate theory of
classes, we can replace all the instances of S2 by a single sentence involving quantification over
classes. We don’t necessarily get a stronger axiom in this way.

10Cf., ‘the royal family do their best to preserve the dignity of the monarchy’.
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empty set, and it is also called the Empty set axiom; but we could have made it less
specific—for example, DDDv0 v0“““ v0. Note that the existence of an empty set follows
by S2 from the existence of any set. The empty set has rank 0.

By virtue of S1, there is only one empty set so the following definition is legiti-
mate.

(3.10) Definition [S0] 0 def
“ the empty set.

This is an example of extension by definition,2.107.2 i.e., we add a new constant
symbol ‘0’ and a new axiom

x@a a R 0y

to our language and theory, respectively. The new theory is a conservative extension
of the original.2.108.2

Another way to regard the definition of ‘0’ is to view any formula involving
‘0’ as an abbreviation for a formula without ‘0’. Specifically, we would regard a
formula ϕ containing one or more occurrences of ‘0’ to be an abbreviation for a
formula DDDup@@@vpv R uq ^̂̂ψq, where u is a variable that does not occur in ϕ, and ψ
is the result of replacing ‘0’ everywhere by u.11 For metatheoretical purposes this
approach to definitions is sometimes preferable, so that we may consider S0—or
any other theory—as a fixed theory in a fixed language. There is, however, no need
to maintain this stance throughout: the general theory of definition§ 2.4.5 provides
an effective procedure to eliminate defined symbols from any theory.

S4 says that, given any sets x and y, there is a set that contains x and y. S2
allows us to show that there is a set that contains x and y and nothing else, i.e.,

(3.11) @a, b Dc@xpx P cØ px “ a_ x “ bqq.

Another way to put it is: ‘for any a and b, tx | x “ a_x “ bu exists (i.e., is a set)’.
By S1, c is uniquely determined in (3.11), so the following definition is well made.

(3.12) Definition [S0] ta, bu def
“ the pair of a and b def

“ the set that contains a and
b and nothing else.

The following special case is useful:

Definition [S0] tau def
“ ta, au. We call this the singleton of a or just singleton a.

In terms of a cumulative hierarchy, tx, yu will appear in the next level after both
x and y have appeared. Again, we have control over which collections to admit as
sets, and no higher law compels us to accept all pairs of sets as sets, but we don’t
get a very useful concept of set if we don’t. Hence we adopt S4.

S5 is a schema, like S2. It says the following: xLet pv0, . . . , vn- , uq be given.
Suppose that for every pvq P puq there is a set that includes the collection tpaq |
pϕqu.12 Then there is a set that includes the collection tpaq | pϕqu for every pvq P
puq.y

Let us say for the nonce that any collection included in a set is set-sized. For
fixed v0, . . . , vn- , the collections ta | ϕpv, a, v0, . . . , vn-qu form a family indexed by v.
Thus, under the hypothesis of S5, as v ranges over the set u, we have—if you will—
set-many set-sized collections defined by ϕ, and each instance of S5 says that the

11It does not matter what variables we choose for u and v, but if we wanted to provide an
explicit rule we could.

12Note that this is only interesting if a and v occur free in ϕ.
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union of a certain definable family of set-many set-sized collections is set-sized. As
in the case of S2, the expressive limitations of our language restrict us to definable
families. We cannot talk about arbitrary families of collections of sets.

Foundation, also known as the axiom of regularity, is the best we can do to
ensure that the universe of sets that we’re talking about really is a hierarchy such
as we’ve described. First let’s persuade ourselves that it’s true of such a universe
of sets. Suppose ϕpv, v0, . . . , vn-q is a formula with the free variables shown. Let
v0, . . . , vn- have fixed values, and let X be the collection of sets x such that ϕ holds
with v “ x. Suppose X is nonempty. Let α0 be the least index α such that Vα
contains a member of X. Let x be any member of X in Vα0 . Then for any y P x,
y is in some Vα with α ă α0, so y cannot be in X. This justifies the axiom. Note
that this “proof” depends on the levels being wellordered, i.e., in any nonempty
collection of levels there is a least, or first, one.

Note that axioms of S0 make sense in the absence of Foundation, and we may
imagine a universe V of sets larger than that of the cumulative hierarchy in which
S0 holds but Foundation may fail. Within V we may define VΩ and show that S0

and Foundation hold within it. In the context of S0, we refer to VΩ as an inner
model of S, i.e., S0 ` Foundation. We will use this relatively easy exercise later in
this chapter3.103 as our introduction to the metatheory of membership.

3.2.2.1 Ordered pairs

Before moving on to the consideration of proper classes, we pause to define another
useful operation.

(3.13) Definition [S0] For sets x and y, the ordered pair of x and y
def
“ px, yq

def
“ ttxu, tx, yuu.

(3.14) Theorem [S0] px, yq “ px1, y1q Ø px “ x1 ^ y “ y1q.

Proof TheÐÐÐ direction is a validity of logic with identity. To prove theÑÑÑ direction,
suppose px, yq “ px1, y1q, i.e.,

ttxu, tx, yuu “ ttx1u, tx1, y1uu

We first observe that tx1u “ txu or tx1u “ tx, yu. In the first case x1 “ x, and in the
second case x1 “ x “ y; in either event, x1 “ x. Next we note that tx1, y1u “ txu or
tx1, y1u “ tx, yu. Since x1 “ x, either tx, y1u “ txu or tx, y1u “ tx, yu. In the second
case, y1 “ y, and we are finished. In the first case, y1 “ x, so now, since x1 “ x,

ttxu, tx, yuu “ ttx1u, tx1, y1uu “ ttxu, tx, xuu “ ttxuu,

from which it follows that tx, yu “ txu, so y “ x, so y “ y1. 3.14

3.2.3 Basic theory of membership with (possibly proper)
classes

We next define a theory C that extends S by permitting the existence of proper
classes.13 Proper elements are still excluded; thus, everything is a class. A class is
a set iff it is a member of something.

13C is the Gödel-Bernays theory GB with the axioms of powerset and infinity omitted.
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(3.15) Definition We define c to be s with one additional unary predicate, repre-
sented typographically by ‘S’ and signifying that its argument is a set (as opposed
to a proper class).

Definition Quantification restricted to sets or to S is frequently used.

DDDSv ϕ
def
“ DDDv pSv ^̂̂ ϕq

@@@Sv ϕ
def
“ @@@v pSvÑÑÑϕq.

Axiom C0 states that the predicate S is true of exactly the sets.

(3.16) Axioms of C

C0.
@@@v0 pSv0ØDDDv1 v0 PPP v1q

C1. Extension

@@@v0, v1 p@@@v2 pv2 PPP v0ØØØ v2 PPP v1qqÑÑÑ v0“““ v1q

C2a. (Predicative) Comprehension

@@@v0 ¨ ¨ ¨ @@@vn- DDDw @@@Sv pv PPPwØØØϕq,

where ϕ is any c-formula with all quantifiers restricted to S, and v, w, v0, . . . , vn-

are distinct variables such that Freeϕ Ď tv, v0, . . . , vn-u.

C2b. Separation

@@@Sv0 @@@v1

`

@@@v2 pv2 PPP v1ÑÑÑ v2 PPP v0qÑÑÑSv1

˘

C3. Existence

DDDSv0 @@@v1 v1 RRR v0

C4. Pair

@@@Sv0, v1 DDDSv2 pv0 PPP v2 ^̂̂ v1 PPP v2q

C5. Collection

@@@v0 @@@Sv1

`

@@@v2 PPP v1 DDDSv3 @@@v4

`

pv2, v4q P v0ÑÑÑ v4 PPP v3

˘

ÑÑÑDDDSv3 @@@v2 PPP v1 @@@v4

`

pv2, v4q P v0ÑÑÑ v4 PPP v3

˘˘

.

C6. Foundation

@@@v0 pDDDv1 PPP v0ÑÑÑDDDv1 PPP v0 @@@v2 PPP v1 v2 RRR v0q

As already noted, C0 is the definition of ‘S’. Indeed, c could be regarded as an
extension-by-definition of s, with C0 treated as a definition, rather than an axiom.

(3.17) We will proceed for the time being on the basis of the theory C0, which we
define as C0–5,3.9 deferring the incorporation of C6 until we have formally defined
the inner model VΩ.
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C1 is the same extension axiom as for sets: a class is uniquely determined by its
members.

C2a is similar to S2 in that it says that formulas define classes with certain
restrictions. In the case of S2 the restriction was that the elements satisfying the
formula all had to be members of some pre-existing set. This prevented us from
asserting the existence of the Russell set tx | x R xu, for example. In C2a we remove
this restriction without risk of resurrecting the Russell paradox, as C2a only says
that tx | x R xu is a class, the class of all sets that are not members of themselves
(which happens to be the class of all sets if we assume Foundation, but no matter).
It is not a set, so the fact that it is not a member of itself does not imply that it is
in tx | x R xu, and there is no contradiction.

The Gödel-Bernays version of the class comprehension schema is predicative in
that it imposes the restriction on ϕ that its quantified variables are restricted to S.
(Note that this does not apply to the “parameters” v0, . . . , vn- .) This version is
sufficient for our purposes and has the advantage that it gives a theory of classes
that is a conservative extension of S0.2.183 If we drop this restriction we have the
Morse-Kelly theory of classes.

(3.18) We call a theory of membership a class theory
def
ðñ it admits proper classes.

A class theory is predicative
def
ðñ its class comprehension axiom is C2a.

Given C2a, abstraction terms§ 3.3.1 become even more useful: as long as ϕ has only
set-restricted quantification,

C0$ x@Spvq ppvq P tpvq | pϕquØ pϕqqy.

Note that there is a class that contains all sets.

(3.19) Definition [C0] The set-theoretical universe def
“ V

def
“ the class of all sets.

The use of ‘V ’ for this purpose is traditional. In a class theory we often use the
same symbol for a unary predicate applicable to sets and for the class of sets that
satisfy it. By this convention, we would use ‘S’ for the universe of sets, or we would
use ‘V ’ as the predicate symbol for setness, but in the interest of clarity we choose
to keep these notations distinct.

Given that C2a only asserts the existence of classes, we need another axiom to
obtain the set-existence content of S2. C2b suffices for this.14 C2a and C2b together
subsume S2, as the following proof schema shows:

xGiven a set u, to show that DSw @v pv P wØpv P u^pϕqqq, let w “ tv | v P
u^pϕqu (using C2a), and then use C2b to conclude that since the class w is included
in the set u, w is a set.y

C2a is the only axiom (schema) of C0 that asserts the existence of a class with-
out also asserting that it is a set. Note that C4 and C5 would have no force if
they omitted the requirement that the class whose existence is asserted be a set;
otherwise V , the class of all sets,3.19 would trivially satisfy the condition.

14We have called C2b the Separation axiom, but it is really only in conjunction with C2a that
it is this, as it then says that any collection “separated” from a set by means of a formula (with
quantification restricted to S) is a set. Standing alone, C2b could be called the Setness axiom, as
it simply says that a class that is “small enough to fit in a set” is a set. S2 could also be called
(and often is called) the Separation schema: in pure set theory, one cannot make the assertion of
comprehension except in the context of separation.
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Note that C5 is a single axiom. The direct translation of the Collection schema
of S0 would consist of the sentences

@@@v0 ¨ ¨ ¨ @@@vn- @@@Su
`

@@@v PPPuDDDSw @@@a pϕÑÑÑ aPPPwqq

ÑÑÑDDDSw @@@v PPPu@@@a pϕÑÑÑ aPPPwq
˘

,

where ϕ is any c-formula with all quantifiers restricted to S, and a, u, v, w, v0, . . . ,
vn- are distinct variables such that Freeϕ Ď ta, v, v0, . . . , vn-u. Any instance of this
schema can be obtained from C5 by the following argument, where R is a variable
distinct from all the others:

xLet pv0q, . . . , pvn-q, puq be given, and suppose p@@@v PPPuDDDSw @@@a pϕÑÑÑ aPPPwqq. Using
C2a, let pRq “ tppvq, paqq | pϕqu.15 Then

p@@@v PPPuDDDSw @@@a ppv, aq P RÑÑÑ aPPPwqq.

Hence using C5, pDDDSw @@@v PPPu@@@a ppv, aq P RÑÑÑ aPPPwqq. Thus,

pDDDSw @@@v PPPu@@@a pϕÑÑÑ aPPPwqq.y

Note that Foundation is also a single axiom in C replacing a schema in S. The
direct translation of the Foundation schema of S would consist of sentences

@@@v0, . . . , vn-

`

DDDSv ϕÑÑÑDDDSv
`

ϕ ^̂̂ @@@uPPP v ␣␣␣ϕ
`

v
u

˘˘

.

Any instance of this schema can be obtained from C6 by an argument similar to the
preceding, using C2a to infer the existence of a class defined from ϕ in a suitable
way.

C0 is a conservative extension2.183 of S0 in the sense that if σ is an s-sentence then
S0$σ iff C0$σS , where σS is the relativization2.112 of σ to the predicate S. (C is
also a conservative extension of S.) In developing pure set theory, we may therefore
innocently refer to proper classes defined by formulas as though they actually exist.

3.2.4 Basic theory of membership with (possibly proper)
elements and classes

For the sake of completeness we give here a system of axioms for the basic theory
of membership with the possibility of proper elements as well as proper classes.

Definition We define ec to be s with three additional unary predicates, represented
typographically by ‘E’, ‘C’, and ‘S’, signifying that their arguments are respectively
elements, classes, or sets (the last being equivalent to the conjunction of the first
and second).

We will not at this point separately define a theory allowing proper elements but
no proper classes, i.e., a set theory with atoms; the reader can easily supply such a
definition.

Axioms of CA

CA0.

@@@v0 @@@v1 pv0 PPP v1ÑÑÑpEv0 ^̂̂Cv1qq

^̂̂ @@@v0

``

Ev0 _Cv0

˘

^̂̂
`

Sv0ØØØpEv0 ^̂̂Cv0q
˘˘

^̂̂ DDDv0 pSv0 ^̂̂ @@@v1 pEv1 ^̂̂ ␣␣␣Cv1ÑÑÑ v1 PPP v0qq

15To use C2a directly, we let pRq “ tx | Dpvq, paq x “ ppvq, paqq^ pϕqu.
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CA1. Extension

@@@Cv0 @@@Cv1 p@@@Ev2 pv2 PPP v0ØØØ v2 PPP v1qqÑÑÑ v0“““ v1q

CA2a. (Predicative) Comprehension

@@@v0 ¨ ¨ ¨ @@@vn- DDDCw @@@Ev pv PPPwØØØϕq,

where ϕ is any ec-formula with all quantifiers restricted to E, and v, w, v0, . . . , vn-

are distinct variables such that Freeϕ Ď tv, v0, . . . , vn-u.

CA2b. Separation

@@@Sv0 @@@Cv1

`

@@@v2 pv2 PPP v1ÑÑÑ v2 PPP v0qÑÑÑSv1

˘

CA3. Existence

DDDSv0 @@@v1 v1 RRR v0

CA4. Pair

@@@Ev0, v1 DDDSv2 pv0 PPP v2 ^̂̂ v1 PPP v2q

CA5. Collection

@@@v0 ¨ ¨ ¨ @@@vn- @@@Su
`

@@@v PPPuDDDSw @@@a pϕÑÑÑ aPPPwq

ÑÑÑDDDSw @@@v PPPu@@@a pϕÑÑÑ aPPPwq
˘

,

where ϕ is any sec-formula with all quantifiers restricted to E, and a, u, v, w, v0,
. . . , vn- are distinct variables such that Freeϕ Ď ta, v, v0, . . . , vn-u.

CA6. Foundation

@@@Cv0 pDDDv1 PPP v0ÑÑÑDDDv1 PPP v0 @@@v2 PPP v1 v2 RRR v0q

CA0 largely defines E, C, and S. It states that everything that is a member of
something is an element, but it leaves open whether every element is a member of
something. This is settled in the affirmative by CA4. It also states that everything
that contains something is a class, but it leaves open the possibility that a class
might contain nothing, and CA3 states that there is indeed such a class (and that
it is in fact a set, i.e., an element as well as a class). The empty set differs from
an urelement in only one respect: it is declared to be a class. There is nothing
deep about this: it would just require a lot of annoying circumlocution to maintain
the position that every class must have a member. Finally, CA0 states that there
is a set that contains every proper element. Since CA2a tells us that the proper
elements form a class, CA2b permits us to infer that the proper elements form a
set. With this restriction, CA is still sufficiently general for all our purposes.

Note that CA2a implies that there is a class that contains all elements and one
that contains exactly the sets. As is customary in class theories, we press the unary
predicate symbols ‘E’ and ‘S’ into service as constant symbols to denote these
classes.
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3.3 Basic membership-theoretic constructs

This section is given over mainly to simple definitions of useful objects, with proofs
of their basic properties, which go a long way toward demonstrating how set the-
ory16 may be regarded as subsuming all of mathematics. The basic principles are
adequately demonstrated without consideration of proper elements. Proper classes,
on the other hand, are quite convenient, particularly in the setting of a predicative
theory.3.18 Thus, we will work primarily in C0.

3.3.1 Abstraction terms

A very useful construction is the following. Suppose ϕ is a formula; v, u0, . . . , un-

are distinct variables; and

(3.20) Freeϕ Ď tv, u0, . . . , un-u.

Then
C0$@@@u0, . . . , un- DDD!w @@@Sv pv PPPwØØØϕq,

where w is a variable not in tv, u0, . . . , un-u, so the following sentence is a legitimate
definition in C0 of a new n-ary operation index F :

(3.21) w“““ F̃ xu0, . . . , un-yØØØ@@@Sv pv PPPwØØØϕq.

In a typographical language, for mnemonic purposes, we incorporate ϕ into the
terms of the form F̃ xτ0, . . . , τn-y. In the simplest case we let

F̃ xu0, . . . , un-y “ t v |ϕ u.

We call these abstraction terms.
Note that abstraction in this sense is a form of quantification, which may be

seen most easily if define Γv ϕ to be the term t v |ϕ u. The value of Γv ϕ is the
class of v such that ϕ. Any other quantifier may be defined in terms of Γ. For
example, DDDv ϕ is true iff Γv ϕ is nonempty; @@@v ϕ is true iff Γv ϕ is the entire universe
of elements; DDD!v ϕ is true iff Γv ϕ has exactly one member; etc. The variable v is
bound by the abstraction operation, just as it is bound by the other quantification
operations.

Note that in order that the substitution of a term τ for a variable um in t v |ϕ u
have the desired meaning, with ϕ as above,3.20 τ must be free for um in t v |ϕ u,
i.e.,1.16.1 no variable free in τ may bound in t v |ϕ u; thus, τ must be free for um
in ϕ, and v must not occur free in τ . All of this is quite obvious and intuitive in
practice.

In a theory such as S0 without proper classes we must qualify abstraction terms
to make sure they denote sets. We may use our standard rule (in a theory of
membership) that a term that is otherwise “undefined” has the value 0. In other
words, we replace (3.21) by

w“““ F̃ xu0, . . . , un-yØØØ
`

DDDw @@@v pv P wØØØϕq ^̂̂ @@@v pv PPPwØØØϕq
˘

___
`

␣␣␣DDDw @@@v pv P wØØØϕq ^̂̂w “ 0
˘

.

16Remember that we use ‘set theory’ loosely to refer to all theories of membership.
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We may also use the following variation:

t v P τ |ϕ u,

where τ is a term in which v does not occur. In the context of a pure set theory, τ
is necessarily a set, so S2 applies.

Another variation on the notation is

t τ |ϕ u,

where τ is a term (with the proviso, in theory with proper classes, that its value is
always a set). Unless otherwise stated, the corresponding definition3.21 is

w“ t τ |ϕ uØØØ@@@Sv pv PPPwØØØDDDv0, . . . , vk- pv“““ τ ^̂̂ ϕqq,

where Free τ “ tv0, . . . , vk-u. Thus, all the variables in Free τ are typically bound
in the abstraction term, but this need not be so. For example, tpx, yq | x P yu
ordinarily is the entire membership relation regarded as a class of ordered pairs,
but we might also say ‘for any given y, the class tpx, yq | x P yu’, by which we would
mean the same as if we said ‘for any given y, the class tpx, y1q | x P y1^ y1 “ yu’, in
which x and y1 are bound, but y remains free. Again, rest assured, all this is quite
obvious in practice.

3.3.2 Union, intersection, and difference

Definition [C0]

1. The union of x and y def
“ xY y

def
“ tz | z P x_ z P yu.

2. The intersection of x and y def
“ xX y

def
“ tz | z P x^ z P yu.

3. The union of x def
“

Ť

x
def
“ ty | Dz P x y P zu.

4. The intersection of x def
“

Ş

x
def
“ ty | @z P x y P zu.

Y and X are obviously associative operations, so grouping is immaterial in expres-
sions like xxY y Y zy. Indeed, xY y Y z “

Ť

tx, y, zu.
x
Ť

y and x
Ş

y are also used similarly to x
ř

y(and x
ś

y). Thus,
Ť

yPx F y “
Ť

tF y |
y P xu.

(3.22) Theorem [C0] Suppose x is a set. then
Ť

x is a set.

Proof Let R “ tpz, yq | z P x^ y P zu. Then for all z P x there exists a set w
such that @y

`

pz, yq P RÑ y P w
˘

. For example, let w “ z. Hence, by Collection

there exists a set w such that @z P x@y
`

pz, yq P RÑ y P w
˘

. Then
Ť

x Ď w, so by
Separation

Ť

x is a set. 3.22

(3.23) (3.22) is often stated as the Union axiom. Note that in C0, Union states that
the union of a set is a set, whereas in S0, Union simply states that

Ť

x exists.
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3.3.3 The power operation

(3.24) Definition [C0] Suppose x is a class. The powerclass of x def
“ P x def

“ ty |
y Ď xu.

Thus, P x consists of all subsets of x. If x is a set, then P x consists of all subclasses
of x, because any subclass of a set is a set. If x is a proper class, of course, it has
subclasses that are not sets, e.g., x itself, and these are not in P x (by definition,
being proper classes, they are not in any class).

It is easy to show that if x is a proper class then P x is also a proper class. The
interesting question is whether for every set x, P x is a set. As we will see, this
question is not settled by C.

The Power axiom, as formulated in C0, states that for any set x, P x is a set. In
S0, Power simply states, in effect, that P x exists, i.e., that for every x there exists
y such that for all z, z Ď xØ z P y.

Although we do not at this time adopt Power as an axiom, the power operation is
still useful in the context of C0.

3.3.4 Functions

(3.25) Definition [C0]

1. F is prefunction
def
ðñ F is a class of ordered pairs.

2. F is function
def
ðñ FcnF

def
ðñ F is a prefunction such that for all x there

exists at most one y such that px, yq P F .

What we have called a prefunction, viz., a class of ordered pairs, is often referred to
as a relation, but we will define relation to mean a class of finite sequences.3.62 Our
use of prefunction is unorthodox, but it is justified in the context of this book, as
we make little use of classes of ordered pairs other than as functions or precursors
thereof.

(3.26) Definition [C0] Suppose R is a prefunction and X,Y are classes.

1. The domain of R def
“ domR

def
“ tx | Dy px, yq P Ru.

2. The image of R def
“ imR

def
“ ty | Dx px, yq P Ru.

3. R æX def
“ tpx, yq P R | x P Xu.

4. The image of X by R def
“ RÑX

def
“ ty | Dx P X px, yq P Ru

`

“ impR æXq
˘

.

5. The inverse of R def
“ R´1 def

“ tpx, yq | py, xq P Ru.

6. The inverse image or preimage of Y by R def
“ RÐY

def
“ tx | Dy P Y px, yq P Ru.

Definition [C0]
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1. If F is a function and x P domF then the value of F at x def
“ Fx

def
“ F pxq

def
“ Fx

def
“ that (unique) element y such that px, yq P F .17

2. Note that we may indicate the argument of a function by simple juxtaposition;
round brackets are only necessary to resolve ambiguity.18

(3.27) Theorem [C0] Suppose F is a function and domF is a set.

1. imF is a set.

2. F is a set.

Proof With an appropriate change of variables, instantiating to v0 “ F and v1 “

domF (which is justified, because domF is assumed to be a set), C5 says that if

(3.28) @x P domF DSy @z
`

px, zq P F Ñ z P y
˘

,

then

(3.29) DSy @x P domF @z
`

px, zq P F Ñ z P y
˘

.

Clearly, (3.28) holds, because we can let y “ tF xu. Hence (3.29) holds, i.e., there
is a set y such that imF Ď y. By C2b, therefore, imF is a set.

To show that F is a set, let R “ tpx, px, yqq | x P domF ^px, yq P F u.19 R is a
function, so by (3.27.1) imR is a set. Since F “ imR, F is a set. 3.27

(3.30) (3.27.1) is often stated as the Replacement axiom. Clearly it may be stated
as a schema in an axiomatization of S0.

The theory C0 may be formulated with Union and Replacement in place of Col-
lection. We have already established one direction of this equivalence with (3.22)
and (3.27). The following theorem establishes the converse.

Theorem [C0–4]

(3.31) Suppose

1. (Union) for every set x,
Ť

x is a set; and
2. (Replacement) for every function F , if domF is a set then imF is a set.

Suppose x0 is a class, x1 is a set, and

@x2 P x1 DSx3 @x4

`

px2, x4q P x0Ñx4 P x3

˘

.

Then
DSx3 @x2 P x1 @x4

`

px2, x4q P x0Ñx4 P x3

˘

.

Proof Let F consist of all ordered pairs px2, yq such that

17Note that xthe value of ¨ at ¨y is a binary operation symbol. As always, because every term
must have a value, if the arguments are not appropriate—i.e., if it is not the case that the first
argument is a function and the second is in its domain—then it is given the default value 0. In
practice, we don’t allow this to happen, so the choice of default value is immaterial.

18Like most of our notations, these perform multiple services—in particular, subscripts are often
used in other ways than to indicate an argument of a function.

19R “ tw | DSx, y, z pz “ px, yq^w “ px, zq^x P domF ^ z P F qu, which is a definition
involving only quantification restricted to S, so R exists by C2a.
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1. x2 P x1; and

2. @x4 px4 P yØpx2, x4q P x0q.

(3.32) Claim F is a function with domain x2.

Proof We must show that, given x2 P x1, there exists a unique y such that px2, yq P
F . Given x2 P x1, by hypothesis there exists x3 such that @x4

`

px2, x4q P x0Ñx4 P

x3

˘

. Let y “ tx4 | px2, x4q P x0u. Since y Ď x3, by Separation, y is a set. Thus,
px2, yq P F . The uniqueness of y follows from Extension. 3.32

Since domF “ x2 is a set, imF is a set,3.31.1 so
Ť

imF is a set.3.31.2 Let x3 “
Ť

imF “ tx4 | Dx2 P x1 px2, x4q P x0u. Then clearly @x2 P x1 @x4

`

px2, x4q P

x0Ñx4 P x3

˘

, as desired. 3.31

(3.33) Definition [C0]

1. F is a function from X to Y
def
ðñ F : X Ñ Y

def
ðñ F is a function, domF “

X, and imF Ď Y .

2. F is a partial function from X to Y
def
ðñ F : X á Y

def
ðñ F is a function,

domF Ď X, and imF Ď Y .20 Note that if F : X Ñ Y then F : X á Y . In a
discussion of partial functions from a fixed class X, total functions are those
whose domain is X.

3. A function F is injective (or one-one or 1-1)
def
ðñ @a, b P domF pa ‰ b Ñ

F a ‰ F bq. We write F : X inj
Ñ Y or F : X inj

á Y in this case.

4. A function F is surjective to Y (or is onto Y )
def
ðñ imF “ Y . When the

target class Y is clearly understood, we simply say that F is surjective or onto.
We write F : X sur

Ñ Y or F : X sur
á Y in this case.

5. A function F is bijective from X to Y
def
ðñ F : X bij

Ñ Y
def
ðñ F : X inj

Ñ Y and
F : X sur

Ñ Y . A bijection from X to Y is also called a 1-1 correspondence of
X with Y . Note that x bij

á y is not defined.

(3.34) Theorem [C0] Suppose F : X inj
á Y . Then F´13.63.1 is a function. More-

over,

1. F´1 : Y inj
á X;

2. if F : X sur
á Y then F´1 : Y inj

Ñ X;

3. if F : X inj
Ñ Y then F´1 : Y sur

á X; and

4. if F : X bij
Ñ Y then F´1 : Y bij

Ñ X.21

Proof Straightforward. 3.34

20It would be more proper to say ‘F is a function from a part of X to Y ’ rather than ‘F is a
partial function from X to Y ’, as ‘partial’ really characterizes domF vis-à-vis X, not F itself.

21Recall3.33.5 that in order that F be a bijection from X to Y it is not enough that F : X
inj
á Y

and F : X
sur
á Y—it must also be the case that F : X Ñ Y , i.e., F must be “total” on X, so that

F´1 is surjective.
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(3.35) Definition [C0] Suppose X is a class and Y is a set. X pre Y def
“ YX

def
“ tf |

f : Y Ñ Xu.

Given that Y is a set, every f : Y Ñ X is a set, so YX contains all (and only) the
functions from Y to X.

3.3.4.1 Functional abstraction terms

The notation of abstraction terms§ 3.3.1 has a specific adaptation to functions. Sup-
pose τ is a term, ϕ is a formula, and u is a variable.

(3.36) x τ |ϕ y
u

is synonymous with tpu, τq |ϕ u and denotes a function f whose
domain is tu | ϕu and whose value at any x in its domain is the value of τ with x
for u.

Obviously, in order that this be useful it is necessary that u P Free τ X Freeϕ.
When it is clear from the context (or immaterial to the discussion) which of the free
variables of τ and ϕ is to be taken for u, the specifying subscript may be omitted.
Often Free τ X Freeϕ consists of a single variable. For example,

xtxu | x P X X Y y

is clearly intended to denote the function

tpx, txuq | x P X X Y u.

3.3.4.2 Indexed families of classes

Note that—although a function f may be a proper class—the value fx of f at
some x P dom f is necessarily a set. The following definition describes function-like
objects whose values may be proper classes.

(3.37) Definition [C0]

1. A is a family
def
ðñ A is a class of ordered pairs and for all pi, aq P A, either

1. a “ 0; or
2. @c

`

pi, cq P AÑDd c “ tdu
˘

.

2. Suppose A is a family and i P domA. The class indexed by i in A
def
“

Aris
def
“

#

0 if pi, 0q P A
td | pi, tduq P Au otherwise.22

This notation corresponds to the use of xfxy in the case of a function f .

Analogously to (3.36), r τ |ϕ s
u

denotes the family A whose domain is the class of
u such that ϕ and whose value Arus, for any u in its domain, is τ . The subscript
is usually superfluous.

22It would not do to simply let a family A be a class of ordered pairs, and to let Aris “ td |
pi, dq P Au, because then Aris “ 0Ø@a pi, aq R A, which is an awkward and inflexible convention.
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3.3.5 Ordinals

(3.38) Definition [C0] x is transitive
def
ðñ Tranx

def
ðñ @y, z pz P y P xÑ z P xq.

(3.39) Definition [C0] X is an ordinal
def
ðñ OrdX

def
ðñ X is a transitive set that

is wellordered by P, i.e.,

1. @x, y P X px P y _ x “ y _ y P xq; and

2. every nonempty Y Ď X has an P-minimal member, i.e., @Y Ď X pY ‰

0ÑDx P Y @y P x y R Y q.23

Ord def
“ tx | Ordxu.

(3.40) Theorem [C0]

1. Ord 0.

2. Suppose Ordx and y P x. Then Ord y.

3. Suppose Ordx, Ord y, and x Ď y. Then x “ y or x P y.

Proof 1, 2 Straightforward. 3.40.1, 2

3 Suppose x ‰ y. Then y Ę x, so A “ ty1 P y | y1 R xu is nonempty. Let3.39.2 z
be an P-minimal member of A, i.e., z P A and @w P z w R A. Since z P y and y is
transitive, @w P z w P y. Hence, @w P z w P x, i.e., z Ď x. Since z P A, z R x, i.e.,
@w P x z ‰ w. Since x is transitive, @w P x z R w. Since y is totally ordered by
P,3.39.1 @w P x w P z, i.e., x Ď z. Thus, z “ x. Therefore, x P y. 3.40

We will generally follow the common practice of using lowercase Greek letters
for ordinals.

(3.41) Theorem [C0] @Ordα, β pα P β _ α “ β _ β P αq.

Proof Suppose α, β P Ord. Clearly γ “ α X β is transitive and wellordered by P,
so it is an ordinal. Since γ Ď α, β, by (3.40.3) γ “ α or γ P α, and also γ “ β or
γ P β. If γ P α and γ P β then γ P α X β “ γ, in which case tγu is a nonempty
subset of γ that does not have an P-minimal member, contradicting (3.39.2). So
γ “ α or γ “ β. Therefore, either α “ γ “ β or α “ γ P β or β “ γ P α. 3.41

(3.42) Theorem [C0] Ord is transitive and is wellordered by P, i.e., @X Ď Ord pX ‰

0ÑDx P X @y P x y R Xq.

Proof We have already shown that Ord is transitive3.40.2 and is totally ordered by
P.3.41 To show that it is wellordered by P, suppose X Ď Ord is nonempty. Suppose
α P X. If α is P-minimal in X we are finished; otherwise, let Y “ X Xα, and let β
be P-minimal in Y . Then β is P-minimal in X. 3.42

Ord would therefore be an ordinal but for the fact that it is not a set:

(3.43) Theorem [C0] Ord is not a set.

23Note that (3.39.2) is an instance of Foundation.3.16 Since we are working in C0 this must be
separately stipulated. Note also that by virtue of (3.39.2), the disjuncts in (3.39.1) are mutually
exclusive.
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Proof Suppose Ord is a set. Then Ord is an ordinal, so Ord P Ord, in which case
tOrdu is a nonempty subset of Ord that does not have an P-minimal member. 3.43

Since3.41 Ord is totally ordered by membership, it is a common practice, which
we often follow, to use ‘ă’ for ‘P’ when dealing with ordinals; likewise,3.40.3 we use
‘ď’ for ‘Ď’.

(3.44) Theorem [C0] Suppose x is a set of ordinals. Then
Ť

x is an ordinal and
is the least upper bound of x.

Proof Straightforward. 3.44

The following definition simply emphasizes the role of
Ť

x as the least upper
bound (supremum) of a set of ordinals x.

Definition [C0] Suppose x is a set of ordinals. supx def
“

Ť

x.

The following definition is most useful as applied to ordinals, but it is meaningful
in general.

(3.45) Definition [C0]

1. For any set x, x` def
“ xY txu.

2. For any ordinal α, α` 1 def
“ α`.

The following theorem is the rationale behind (3.45.2).

(3.46) Theorem [C0] Suppose α is an ordinal. Then α` is an ordinal and is the
(immediate) successor of α in Ord, i.e., @Ordβ

`

α ă βØpα`q ď β
˘

.

Proof Straightforward. 3.46

Since 0 is included in any set and 0 is an ordinal, 0 ď α for any ordinal α, i.e.,
0 is the least ordinal. The immediate successor of 0 is 0` “ t0u, and every other
ordinal is greater than this. We call this ordinal ‘1’. Similarly, 1 has a successor,
viz., 1` “ t0, 1u “ t0, t0uu, which we call ‘2’. Every natural number may in this
way be identified with an ordinal, and we use some of the terminology normally
associated with numbers. In particular, we use xpτq ` 1y to mean xpτq Y tpτquy, for
terms τ regarded as denoting ordinals.

To summarize, the following sequence is an initial segment of the ordinals

(3.47) Definition [C0]

0

1 def
“ 0` 1 “ 0Y t0u “ t0u

2 def
“ 1` 1 “ 1Y t1u “ t0, 1u “ t0, t0uu

3 def
“ 2` 1 “ 2Y t2u “ t0, 1, 2u “ t0, t0u, t0, t0uuu
...

Note that every ordinal n in this list other than 0 has an immediate predecessor,
which we denote by xn ´ 1yor xn-y,1.28 but this is not necessarily true for every
ordinal.
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(3.48) Definition [C0]

1. α is a successor ordinal
def
ðñ Sucα

def
ðñ Ordα^Dβ α “ β ` 1. Note that β

is uniquely determined by α, and in this case α´ 1 def
“ α- def

“ β.

2. α is a limit ordinal
def
ðñ Limα

def
ðñ Ordα^α ‰ 0^␣ Sucα.

3. α is a natural number or simply number
def
ðñ Numα

def
ðñ Ordα^@β ď

α pβ “ 0_Sucβq.

4. ω def
“ tα | Numαu.

In keeping with our convention that any predicate symbol applicable to sets may
be used to represent the corresponding class, we could use ‘Num’ instead of ‘ω’,3.48.4

but the latter notation is standard.

(3.49) Theorem [C0] ω is transitive and wellordered by P. Hence, either ω “ Ord
or ω P Ord.

Proof Straightforward. 3.49

3.3.5.1 Induction on ordinals

(3.50) Theorem: Induction on ordinals [C0] Suppose X Ď Ord and @Ordα pα Ď
XÑα P Xq. Then X “ Ord.

Proof Suppose toward a contradiction that there exists something in Ord zX, and
let α be the least such.3.42 Then any β P α is in X, i.e., α Ď X, so α P X. 3.50

(3.50) establishes the principle of induction on ordinals. In the typical applica-
tion, one has an ordinal-indexed family rxrαs | α P Ords of which it has been shown
that for every α P Ord, if xrβs has a certain property for every β ă α then xrαs
has the property. Let X be the class of ordinals α for which xrαs has the property
under consideration (assuming set quantification is adequate to describe X). Then
(3.50) implies that X “ Ord, i.e., xrαs has the property for all α.

(3.78) is the general statement of this principle. The following theorem is a
variation that exploits the fact that by definition every nonzero ordinal in ω (i.e.,
every number n ą 0) has an immediate predecessor. It is a basic principle of
arithmetic and goes by the name of mathematical induction.

(3.51) Theorem: Mathematical induction [C0] Suppose X is a class, 0 P X
and @n P ω pn P XÑn` 1 P Xq. Then ω Ď X.

Remark In theories, such as S0, in which ω may not exist, we state this as a
metatheorem:

S0$ϕ
`

n
0

˘

^̂̂ @@@Numm
`

ϕ
`

n
m

˘

ÑÑÑϕ
`

n
m `̀̀ 1

˘˘

ÑÑÑ@@@Numn ϕ,

for any s-formula ϕ with m R Freeϕ.

Proof If ω Ę X, let n be the least member of ωzX. Since 0 P X, n ‰ 0, so n is a
successor, say n “ m` 1. Then m P X, so n P X. 3.51
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3.3.6 Finiteness

(3.52) Definition [C0] x is finite
def
ðñ there exist a number n and a function f

such that f : n bij
Ñ x; otherwise, x is infinite.

Note that a finite class is necessarily a set.3.27.1

Since every finite class is a set, for the sake of emphasis we present the following
theorem, summarizing some of the basic properties of finiteness, in S0.

(3.53) Theorem [S0] Suppose x is finite.

1. Suppose f : x inj
Ñ x. Then im f “ x.

2. Suppose y Ď x. Then y is finite.

3. Suppose every member of x is finite. Then
Ť

x is finite.

Proof 1 Since any finite set is bijective with a number, it suffices to prove this
for the case that x is a number. We do this by induction. Since we are working in
S0, we cannot quote (3.51), which would otherwise apply; instead, we proceed as
follows. Suppose toward a contradiction that there exist a number n and f : n inj

Ñ n

such that im f ‰ n. Let n be the least such number, and suppose f : n inj
Ñ n and

im f ‰ n. Clearly, n is not 0. n is therefore a successor ordinal, say n “ m` 1, and

(3.54) for every h : m inj
Ñ m, imh “ m.

Let g “ f æm, and let l “ fm. If l “ m then g maps m injectively to a proper
subset of m, contradicting (3.54). Hence, l P m. If m R im f then g : m inj

Ñ mztlu,
again contradicting (3.54). Hence, we may let k be such that f k “ m. Note that
k ‰ m, so k P m and gk “ m; also, since im f ‰ n and m and l are both in im f ,
there exists p P m other than l such that p R im f . Let

h “ tpi, jq P g | i ‰ ku Y tpk, lqu.

In other words, h is g redefined at k to have the value l. Then h : m inj
Ñ m, and

p R imh, contradicting (3.54).

2 Again, it suffices to prove this for the case that x is a number, and we may use
induction. It is enough to show that if every subset of a number m is finite then
every subset of m ` 1 is finite. Thus, suppose y Ă m ` 1, and every subset of m
is finite. Let y1 “ y X m. Then y1 is finite. If m R y then y “ y1, so y is finite;
otherwise, let f : N bij

Ñ y1, where N is a number, and let g “ f Y tpN,mqu. Then

g : N ` 1 bij
Ñ y.

3 First show that the union of a finite set and a 1-element set is finite, which we
have essentially just done. Then show by induction on m that the union of a finite
set and an m-element set is finite; hence the union of two finite sets is finite. Then
show by induction on m that the union of m finite sets is finite; hence, the union
of a finite set of finite sets is finite. 3.53
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3.3.7 Finite sets and sequences

As noted previously, finite sequences are ubiquitous constructions in mathematics.
There are multiple ways to represent a sequence—specifically a finite sequence—as
a set. In this book we preferentially use the following.

(3.55) Definition [C0]

1. s is a finite sequence, or simply a sequence,
def
ðñ Seq s

def
ðñ s is a function

and dom s is a number, i.e., dom s P ω.

2. Suppose n P ω. s is an n-sequence
def
ðñ s is a function with domain n.

The use of angle brackets for functions§ 3.3.4.1 may be adapted to the finite case
as follows.

(3.56) Definition [C0]

@

a0 ¨ ¨ ¨ an-

b0 ¨ ¨ ¨ bn-

D def
“ tpam, bmq | m P n^@m1 P nzm am1 ‰ amu.

Note that if a “ am for more than one m P n, then the value assigned to a by
@

a0 ¨ ¨ ¨ an-

b0 ¨ ¨ ¨ bn-

D

is bm, where m is the greatest m1 P n such that am1 “ a.

An n-sequence s is
@

0 ¨ ¨ ¨ n-

s0 ¨ ¨ ¨ sn-

D

in this notation, where we have followed the
common practice of indicating the argument of a sequence as a subscript.

(3.57) Definition [C0]

1. Omitting the top line, we have the handy notation

xs0, . . . , sn-y

for any n-sequence s.

2. We use a similar notation for families of (possibly proper) classes indexed by
a number n, so that rA0, . . . , An-s is the family A such that domA “ n and
Arms “ Am for each m P n.

3.3.7.1 Ordered n-tuples

The following is another approach to the representation of finite sequences. Recall3.13

that px, yq “ ttxu, tx, yuu.

(3.58) Definition [C0]

1. For any set x, pxq def
“ x.

2. Note that with this definition, for any sets x, y, px, yq “ ppxq, yq.

3. For any sets x, y, z, px, y, zq def
“ ppx, yq, zq.

4. For any sets x, y, z, w, px, y, z, wq def
“ ppx, y, zq, wq.

5. In general, px0, . . . , xnq
def
“ ppx0, . . . , xn-q, xnq.
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Note that an n-tuple is also an m-tuple for any nonzero m ă n. Note also that any
set is a 1-tuple, because x “ pxq. There are no 0-tuples. Note also that (3.58.5) is
really a schema, since we have not defined xn-tupley.

For these and other reasons, the n-tuple construction is awkward in comparison
with the n-sequence construction. In fact, the simplest way to say that a set x is
an n-tuple, where n ą 0 is a number, is to say that there exist n-sequences s, t such
that

1. t0 “ s0;

2. for each m ă n´ 1, tm`1 “ ptm, sm`1q; and

3. x “ tn- .

Note that

t0 “ s0 “ ps0q

t1 “ pt0, s1q “ ps0, s1q

t2 “ pt1, s2q “ pps0, s1q, s2q “ ps0, s1, s2q

...
x “ tn- “ ps0, s1, . . . , sn-q.

t is uniquely determined by s, so this construction establishes the bijection

xs0, . . . , sn-y ÞÑ ps0, . . . , sn-q

between n-sequences and n-tuples for any n ą 0.24

n-sequences have additional advantages over n-tuples, including the ease with
which substitution, truncation and concatenation operations are specified, and their
generalizability to infinite (wellordered) sequences.

(3.59) Theorem [C0] Suppose X is a set and Y is finite. Then YX3.35 is a set.

Proof Let X be given. Since Y is finite, there exist n P ω and f : n bij
Ñ Y . It is

easy to use f to define a bijection between YX and nX. By Replacement3.30 YX is
a set if nX is a set. It is therefore sufficient to show that nX is a set for each n P ω.

(3.60) Suppose toward a contradiction that this is not the case. Let3.49 n be P-
minimal such that n P ω and nX is not a set.

Since 0X “ t0u, n ‰ 0. Let m be such that n “ m ` 1.3.48.3 Since m P ω3.49 and
m P n, mX is a set.3.60

Given s “ xs0, . . . , sm-y P mX, the function tpx, xs0, . . . , sm- , xyq | x P Xu has
domain X, which is a set by hypothesis, so its image is a set. This is tt P nX |

t æm “ su. Let
a “ tps, tq | s P mX ^ t P nX ^ s “ t æmu.

Then, as we have just shown,

@s P mX DSb@t
`

ps, tq P aÑ t P b
˘

,

24Remember that there are no 0-tuples. There is, on the other hand, a (unique) 0-sequence,
viz., 0.
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so Collection applies to show that there exists a set b such that

@s P mX @t
`

ps, tq P aÑ t P b
˘

.

Clearly nX Ď b, so nX is a set, contrary to (3.60). 3.59

nX may be regarded as a special case of the following product operation.

(3.61) Definition [C0]

1. Suppose n P ω, and X0, . . . , Xn- are classes.

X0 ˆ ¨ ¨ ¨ ˆXn-
def
“ tf | Fcn f ^ dom f “ n^@m P n fm P Xmu.

2. More generally, suppose I is a set and for each i P I, Xi is a class.

ą

iPI

Xi
def
“ tf | Fcn f ^ dom f “ I ^@i P I fi P Xiu.

(Thus, X0 ˆ ¨ ¨ ¨ ˆXn- “
Ś

iPnXi.)

We may define homologous constructs using n-tuples. Thus

Definition [C0]

1. X0 ˆ ¨ ¨ ¨ˆXn-
def
“ tpx0, . . . , xn-q | @i P n xi P Xiu.

2. Xn def
“ X ˆ ¨ ¨ ¨ˆX

loooooomoooooon

n factors

.

3.3.8 Relations

(3.62) Definition [C0]

1. R is an n-ary relation
def
ðñ n P ω and R is a class of n-sequences.

2. R is a relation
def
ðñ R is an n-ary relation for some n.

3. F is an n-ary function
def
ðñ F is a function and domF is an n-ary relation.

We use nulary, unary, binary, ternary, . . . , for 0-ary, 1-ary, 2-ary, 3-ary, . . . . (Since
the only 0-sequence is 0, the only nulary relations are 0 and t0u “ 1.)

relation is often defined in terms of tuples instead of sequences. This has the
virtue of simplicity in the binary case, as it makes use of the primary notion of
ordered pair in place of the more elaborate notion of 2-sequence, but it is otherwise
disadvantageous.

Recall that the interpretation of an n-ary predicate or operation index in a
structure is respectively an n-ary relation or function in the above sense, and the
same notation may be used:

1. If R is an n-ary relation then for any x0, . . . , xn-

Rpx0, . . . , xn-q
def
ðñ xx0, . . . , xn-y P R.



196 CHAPTER 3. THE THEORY OF MEMBERSHIP

2. If F is an n-ary function then

F px0, . . . , xn-q
def
“ F xx0, . . . , xn-y

`

“ F pxx0, . . . , xn-yq
˘

.25

Binary relations are of particular importance, and many definitions are partic-
ular to this case. We extend to binary relations the familiar practice of placing a
binary predicate symbol between its arguments.

Definition [C0] Suppose R is a binary relation. Then for any x, y, xR y
def
ðñ xx, yy P

R.

Some of the definitions given above3.26 for prefunctions are applicable to binary
relations.

(3.63) Definition [C0] Suppose R is a binary relation and X,Y are classes.

1. The domain of R def
“ domR

def
“ tx | Dy xR yu.

2. The image of R def
“ imR

def
“ ty | Dx xR yu.

3. R æX def
“ txx, yy P R | x P Xu.

4. The image of X by R def
“ RÑX

def
“ ty | Dx P X xRyu.

5. The inverse of R def
“ R´1 def

“ txx, yy | y Rxu.

6. The inverse image or preimage of Y by R
def
“ RÐY

def
“ tx | Dy P Y xR yu.

Thus, RÐY “ pR´1qÑY .

7. The field of R def
“ fldR def

“ domRY imR.

8. R is a relation on X
def
ðñ fldR Ď X.

(3.64) Theorem [C0] Suppose R is a prefunction or binary relation and R is a set.
Then domR, imR, fldR, and R´1 are sets; and for any class X, R æX, RÑX,
and RÐX are sets.

Proof Straightforward. 3.64

3.3.9 Equivalence relations

(3.65) Definition [C0] Suppose R is a binary relation.

1. R is reflexive
def
ðñ @x P fldR pxRxq.

2. R is irreflexive
def
ðñ @x ␣xRx.

3. R is symmetric
def
ðñ @x, y pxR yÑ y Rxq.

4. R is asymmetric
def
ðñ @x, y pxR yÑ␣ y Rxq.26

25In Chapters 1 and 2 we were careful to use the latter notation in keeping with the greater
level of formality of those chapters. Note that round brackets are used here as generic grouping
symbols. If we used tuples instead of sequences to define n-arity, we could interpret the round
brackets in their specific sense3.58 without any further explanation.

26Note that ‘asymmetric’ does not mean ‘not symmetric’. A relation is asymmetric iff it is both
antisymmetric and irreflexive. ‘asymmetric’ in this sense is not as well entrenched in the literature
as ‘antisymmetric’, but it is useful for our purposes.
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5. R is antisymmetric
def
ðñ @x, y pxR y^ y RxÑx “ yq.

6. R is transitive
def
ðñ @x, y, z pxR y^ y R zÑxR zq.

Definition [C0]

1. R is an equivalence relation
def
ðñ R is a reflexive, symmetric, transitive binary

relation.

2. R is an equivalence relation on X
def
ðñ R is an equivalence relation and X “

domR (equivalently, X “ imR or X “ fldR, since R is reflexive).27

3. If R is an equivalence relation on X and x P X, the R-equivalence class of x
def
“ rxsR

def
“ ty | y Rxu.28

(3.66) Theorem [C0] Suppose E is an equivalence relation on X. The E-equivalence
classes are disjoint, and their union is X.

Proof Straightforward. 3.66

(3.67) Definition [C0]

1. Suppose E is an equivalence relation on X, and R is an n-ary relation on
X. R is E-invariant

def
ðñ for all x0, . . . , xn- , y0, . . . , yn- P X, if xiE yi for all

i P n, then
Rpx0, . . . , xn-qØRpy0, . . . , yn-q.

2. Suppose R is an n-ary relation on X. Define the binary relation ”R on X

by the condition that for all x, y P X, x ”R y
def
ðñ for any m P n and any

xx0, . . . , xn-y and xy0, . . . , yn-y in nX, if xi “ yi for all i ‰ m, xm “ x, and
ym “ y, then

Rpx0, . . . , xn-qØRpy0, . . . , yn-q.

Clearly ”R is the largest equivalence relation E on X such that R is E-invariant.
Various notions of E-invariance are useful for functions, and it is best to provide

ad hoc definitions of these as circumstances arise.

(3.68) Definition [C0] Suppose the equivalence classes of an equivalence relation
E on a class X are all sets (as they are if X is a set, for example). Let rxs “ rxsE
for x P X.

1. X modulo or mod E def
“ X{E

def
“ trxs | x P Xu. This is also called the quotient

of X mod E.

2. Suppose S is an n-ary relation on X that is E-invariant.3.67 Then S mod E
def
“ S{E

def
“

txrx0s, . . . , rxn-sy | Spx0, . . . , xn-qu.

27It is not enough that R be an equivalence relation and be a relation on X in the sense of
(3.63.8).

28The subscript ‘R’ is often omitted when there is only one relevant equivalence relation.
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3. Similarly, if F : nX á Y is E-invariant in the sense that for all xx0, . . . , xn-y

and xy0, . . . , yn-y in domF , if xiE yi for i “ 1, . . . , n, then

F px0, . . . , xn-q “ F py0, . . . , yn-q,

then we may define F {E as the function with domain

txrx0s, . . . , rxn-sy | xx0, . . . , xn-y P domF u

such that
pF {Eqprx0s, . . . , rxn-sq “ F px0, . . . , xn-q

for any xx0, . . . , xn-y P domF .

4. If Y “ X, then we may proceed differently. If we suppose F is E-invariant
in the weaker sense that for all xx0, . . . , xn-y and xy0, . . . , yn-y in domF , if
xiE yi for i “ 1, . . . , n, then

F px0, . . . , xn-qE F py0, . . . , yn-q,

then we may define F {E as the function with domain

txrx0s, . . . , rxn-sy | xx0, . . . , xn-y P domF u

such that
pF {Eqprx0s, . . . , rxn-sq “ rF px0, . . . , xn-qs

for any xx0, . . . , xn-y P domF .

Definition [C0] Suppose X is a class. “““X def
“ txx, xy | x P Xu, i.e., “““X is the

identity relation on X.29

The following observation is trivial.

Suppose E is an equivalence relation on a class X. Then E is E-invariant. If the
equivalence classes of E are sets then E{E “ “““X{E.

3.3.10 Order relations

(3.69) Definition [C0] Suppose R is a relation and X is a class.

1. R preorders X
def
ðñ R is transitive and reflexive and X “ fldR.

2. R totally preorders X
def
ðñ R preorders X and @x, y P X pxR y_ y Rxq. We

use ‘linear’ interchangeably with ‘total’ in describing orders.

(3.70) Note that if R is a preorder then ”R“ RXR´1.3.67.2

These notions of order can be modified by adding the condition of antisymmetry.

(3.71) Definition [C0] Suppose R is a relation and X is a class.

1. R partially orders X
def
ðñ R preorders X and R is antisymmetric.

29The use of the bold symbol ‘“““’ here is not mandated by our notational conventions; its purpose
is merely to avoid confusion with the more general use of ‘“’.
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2. R totally orders X
def
ðñ R totally preorders X and R is antisymmetric.

The use of the prefix ‘pre’ is explained as follows. Suppose R preorders X. Let ”
be ”R p“ RXR´1q.3.70 Suppose for each x P X, the ”-equivalence class rxs “ rxs”
of x is a set. Then R{ ”3.68 partially orders X{ ”. If R totally preorders X then
R{ ” totally orders X{ ”.

Note also that a preorder R on X is a partial order iff ”R“ “““X .

(3.69.1) and (3.71) may also be modified by imposing the condition of irreflex-
ivity in lieu of reflexivity and hence asymmetry in addition to antisymmetry.3.65.4

Keep in mind that a relation R is asymmetric iff it is both antisymmetric and
irreflexive; and if R is transitive and irreflexive then it is asymmetric.

Definition [C0] R strongly preorders X
def
ðñ R is transitive and irreflexive and

X “ fldR. We use ‘irreflexive’ and ‘strict’ interchangeably with ‘strong’ in de-
scribing orders. We use ‘weak’ and ‘reflexive’ to describe the previous notions of
order3.69, 3.71 by way of distinction or emphasis.

(3.72) Theorem [C0] Suppose R and S are respectively a (weak) preorder and a
strong preorder on a class X.

1. Rz ”R p“ RzR´1q3.70 is a strong preorder on X.
2. SY ”S is a (weak) preorder on X.
3. The following are equivalent:

1. S “ Rz ”R

2. R “ SY ”S

Proof Straightforward. 3.72

Definition [C0] Suppose R and S are respectively a (weak) preorder and a strong

preorder on a class X. R and S correspond
def
ðñ S “ Rz ”R (iff R “ SY ”S).3.72.3

Note that if R and S correspond, then R uniquely determines S and vice versa.

Definition [C0] Suppose S is a strong preorder. Then S is a strong total preorder,
strong partial order, or strong total order, according as the corresponding weak
preorder is a total preorder, partial order, or total order, respectively.

(3.73)

1. It is commonplace to use ‘ă’ and related symbols, such as ‘ă’, to represent a
strong order and ‘ď’, etc., to represent the corresponding weak order.

2. For specificity, we refer to the order relation in conjunction with its field as a
structure, often using the informal convention that pX;ăq, for example, is the
structure with domain X and predicate ă.30 If the predicate ă is understood
from context, we may refer to the structure by the name of its domain.

The symbol ‘ď’ is intended to represent the disjunction of ă and “, as indicated
by the usual reading ‘less than or equal’. If ď and ă are corresponding weak and
strong partial orders on X, then ”ď“”ă“ “““X , so this reading is appropriate.3.72.3

In the more general case of preorders, the reading ‘less than or equivalent’ would
be more appropriate.

30Thus, pX;ăq and pY ;ăq may have order relations that are completely unrelated.
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3.4 Wellfoundedness

3.4.1 Wellfounded relations and wellorders

(3.74) Definition [C0] Suppose R is a binary relation on a class X, X 1 Ď X, and
x P X 1.

1. x is R-minimal in X 1
def
ðñ @x1 P X 1 px1RxÑx ”R x1q.

2. x is R-maximal in X 1
def
ðñ @x1 P X 1 pxRx1Ñx ”R x1q.

3. x is R-minimum in X 1
def
ðñ @x1 P X 1 px1 ‰ xÑxRx1^␣x1Rxq.

4. x is R-maximum in X 1
def
ðñ @x1 P X 1 px1 ‰ xÑx1Rx^␣xRx1q.

If X 1 “ X we may omit the phrase ‘in X 1’.

Note that a class X 1 Ď X can have at most one R-minimum and at most one
R-maximum. (3.74) is most often useful when R has some order-like features, but
it does not have to be transitive.

(3.75) Note that if R is irreflexive and x is R-minimal in X 1 then @x1 P X 1 ␣px1Rxq.
(If x1Rx implies x1 ”R x then by the definition of ”R, x1Rx implies xRx,
contradicting the irreflexivity of R.) Similarly, if x is R-maximal in X 1 then
@x1 P X 1 ␣pxRx1q.

(3.76) Definition [C0] Suppose R is a binary relation on a class X.

1. R is wellfounded
def
ðñ

@X 1 Ď X pX 1 ‰ 0ÑDx P X 1 @x1 P X 1 px1RxÑx1 ”R xqq,

i.e., x is R-minimal in X 1.

2. R is a strong or weak prewellorder
def
ðñ R is a respectively strong or weak

wellfounded total preorder.

3. R is a strong or weak wellorder
def
ðñ R is a respectively strong or weak well-

founded total order.

(3.76.1) is a variation on the more common definition:

(3.77) @X 1 Ď X pX 1 ‰ 0ÑDx P X 1 @x1 P X 1 ␣px1Rxqq.

Note that by this definition a reflexive relation (on a nonempty class) is not well-
founded. The definition we have given3.76 is, however, still substantive in this case.
Note also that (3.76.1) and (3.77) coincide for irreflexive relations.3.75

The following theorem is just a restatement of wellfoundedness in the form of
an induction principle. (3.50) is a special case.

(3.78) Theorem: Induction [C0] Suppose R is a wellfounded irreflexive relation
on a class X, and suppose Y Ď X is such that @x P X pRÐtxu Ď Y Ñx P Y q.
Then Y “ X.

Proof Let X 1 “ XzY , and suppose toward a contradiction that X 1 ‰ 0. Us-
ing the wellfoundedness and irreflexivity of R,3.75 let x P X 1 be such that @x1 P
X 1 ␣px1Rxq. Then RÐtxu Ď Y , so x P Y by hypothesis, so x R X 1. 3.78

Note that Foundation3.16 essentially states that P is wellfounded and irreflexive.
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3.4.2 Recursion

(3.79) Definition [C0] A relation R is setlike
def
ðñ for all sets x, RÐtxu is a set.

This use of ‘setlike’ derives from the fact that P has this property.

(3.80) Theorem: Definition by recursion [C0] Suppose R is an irreflexive
wellfounded setlike relation on a class X, and suppose G is a function such that
domG consists of all xx, fy such that x P X, f is a function, and dom f “ RÐtxu.
Then there exists a unique function F such that

1. domF “ X; and

2. @x P X Fx “ Gxx, F æpRÐtxuqy.

Proof

(3.81) For the nonce, say that f is acceptable iff

1. f is a nonempty set that is a function;

2. dom f Ď X;

3. RÐ dom f Ď dom f , i.e., if x P dom f and y Rx then y P dom f ; and

4. @x P dom f fx “ Gxx, f æpRÐtxuy.

(3.82) Claim If f and f 1 are acceptable and x P dom f X dom f 1, then fx “ f 1x.

Proof Let X 1 “ tx P dom f Xdom f 1 | fx ‰ fx1u. We claim that X 1 “ 0. Suppose
toward a contradiction that X 1 ‰ 0. Since R is wellfounded, let x P X 1 be R-
minimal in X 1, so that, since R is irreflexive,3.75 for all y, if y Rx then y R X 1.
Since x P dom f X dom f 1 and f, f 1 are acceptable,3.81.3 for any y, y RxÑ y P
dom f X dom f 1, so if y R X 1 then fy “ f 1y; hence,

f æpRÐtxuq “ f 1 æpRÐtxuq,

so fx “ f 1x, which is inconsistent with the membership of x in X 1. 3.82

(3.83) Claim Suppose x P X and there exists an acceptable f with x P dom f . Then
there exists a Ď-minimum such f .

Proof Let f0 be the class of py, aq such that for every acceptable f , if x P dom f
then fy “ a, i.e., f0 is the intersection of all acceptable f with x P dom f . Such
a class exists because acceptability implies set-ness and is defined using only set-
restricted quantifiers. f0 is a set because it is included in a set, viz., any acceptable
f with x P dom f , of which at least one exists by hypothesis. f0 is nonempty
because all acceptable functions agree on their common domain, so, letting a be
the common value at x of all acceptable functions defined at x, px, aq P f0. Thus
f0 satisfies (3.81.1). It is easy to check that it also satisfies (3.81.2–4), so it is
acceptable and it is therefore the Ď-minimum acceptable f with x P dom f . 3.83

Let H be the class of px, fq such that x P X and f is the Ď-minimum acceptable
f with x P dom f . Note that H is a function, and we will use functional notation,
writing xHx “ f y for xpx, fq P Hy.

(3.84) By (3.83) domH is the class of x P X such that there exists an acceptable
f with x P dom f .
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(3.85) Claim domH “ X.

Proof Let X 1 “ XzdomH. The claim is that X 1 “ 0, so suppose toward a
contradiction that X 1 ‰ 0. Let x be R-minimal in X 1. Then RÐtxu Ď domH.
SinceR is setlike by hypothesis, RÐtxu is a set, and by Replacement3.30 and Union,3.23

f “
Ť
`

HÑpRÐtxuq
˘

is a set. By (3.82) f is a function, so it satisfies (3.81.1). It is
easy to check that it also satisfies (3.81.2–4), so f is acceptable. Since x P dom f ,
x P domH,3.84 contrary to our supposition. 3.85

Let F “
Ť

imH. It is readily shown that F has properties 3.80.1–2. The proof
of Claim 3.82 is readily adapted to show that F is unique with these properties.

3.80

Before we leave the topic of recursion we point out that we may say that x P X
and a is the value at x of the function defined recursively from R, X, and G as in
Theorem 3.80, using only set-restricted quantification.

For example, we may say xx P X and there exists an f that is acceptable vis-à-vis
R, X, and G, such that px, aq P f y or xx P X and for every f that is acceptable
vis-à-vis R, X, and G, px, aq P f y. In the next chapter we will have occasion to
examine more closely the definability of functions defined by recursion, and the
existence of the two forms just given will be seen to be critical; but for now, it
suffices to note that they employ only set-restricted quantification.

As we have noted above, Foundation implies that P is wellfounded and irreflexive,
and, as also noted, P is setlike, so Foundation justifies the use of definition by P-
recursion, as well as the method of proof by P-induction, which is essentially the
content of Theorem 3.78.

3.4.3 Rank and the cumulative hierarchy

(3.86) Definition [C0] Suppose R is an irreflexive wellfounded setlike relation.
The R-rank function def

“ rkR def
“ the function on fldR defined recursively3.80 by the

condition that
rkR x “

ď

y Rx

prkR yq`.3.45

Note that it follows from the definition of z` as z Y tzu that y Rx implies rkR y P
rkR x.

(3.87) Theorem [C0] Suppose R is an irreflexive wellfounded setlike relation. Then
im rkR is an initial segment of Ord (therefore either an ordinal or Ord).

Proof Let X “ fldR and let F “ rkR. We use R-induction3.78 to show that @x P
X rkR x P Ord. It suffices3.78 to show that for every x P X, if @y P RÐtxu rkR y P
Ord then rkR x P Ord. This follows immediately from the definition of rkR x as
Ť

y Rxprk
R yq`.3.46 3.44

Thus, im rkR Ď Ord. If im rkR “ Ord we are finished; otherwise, let α be
the least ordinal not in im rkR. We will show that im rkR “ α, and then we
will be finished. Suppose toward a contradiction that this is not the case. Let
Y “ tx P X | rkR x ě αu. Then Y ‰ 0. Let x be an R-minimal element of Y .
As noted above, for any y P RÐtxu, rkR y ă rkR x (since ă is P for ordinals). By
the R-minimality of x in Y , for any y P RÐtxu, rkR y ă α, whence prkR yq` ď α.
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Thus, rkR x ď α. Since rkR x ě α, rkR x “ α. Thus, α P im rkR; contradiction.
3.87

(3.88) Definition [C0] Suppose R is an irreflexive wellfounded setlike relation. The
rank of R def

“ rkR def
“ im rkR.

Of particular interest are rank functions for the membership relation when it is
wellfounded.

Definition [C0] Suppose X is a class. PX def
“ txx, yy P X ˆX | x P yu.

It is easy to see that if α is an ordinal then rkP
α

is the identity function on α and
rk Pα“ α.

(3.89) Theorem [C0]

1. Suppose x and y are transitive classes, x Ď y, and Py is wellfounded. Then Py

is irreflexive (and of course setlike) and rkP
x

“ rkP
y

æx.

2. Suppose x and y are transitive classes and Px and Py are wellfounded. Let
z “ xX y. Then z is transitive and rkP

x

æ z “ rkP
z

“ rkP
y

æ z.

Proof Straightforward P-inductions. 3.89

(3.90) Definition [C0] Suppose x is a set.

1. x is subtransitive
def
ðñ there exists a transitive set y Ě x.

2. Suppose x is subtransitive. Then the transitive closure of x def
“ tcx def

“ the
intersection of all transitive sets y Ě x. Note that if x is subtransitive then
tcx is transitive and is the Ď-least transitive set y Ě x.

3. x is ranked
def
ðñ x is subtransitive and Ptcx is wellfounded.

4. If x is ranked the rank of x def
“ rk Ptc x.

We are now in a position to define the cumulative hierarchy.

Definition [C0]

1. Suppose α P Ord. Vα
def
“ tx | x is ranked^ rkx ă αu.

2. VΩ
def
“ the class of all ranked sets.

NB: The classes Vα are not necessarily sets.

(3.91) Theorem [C0]

1. VΩ is transitive.

2. PVΩ is wellfounded.

3. Any subset of VΩ is in VΩ.

Proof Obviously, if x P y then

1. if y is subtransitive then x is subtransitive; and
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2. if y is ranked then x is ranked.

Hence, VΩ is transitive. Similarly, the wellfoundedness of PVΩ follows from the
wellfoundedness of Ptcx for every x P VΩ.

Now suppose x is a set and x Ď VΩ. Let y “
Ť

zPx tctzu. Then y is transitive
and includes x; in fact, y “ tcx. For all z P x, z P VΩ, so Ptc z is wellfounded, from
which it is easy to see that Ptctzu is wellfounded, from which it is easy to see that
Py is wellfounded, so x P VΩ. 3.91

The following theorem summarizes the main features of the classes Vα (α P Ord).

(3.92) Theorem [C0]

1. For any ordinal α, Vα is transitive.

2. If β ď α then Vβ Ď Vα.

3. V0 “ 0.

4. For any α P Ord, Vα`1 “ P Vα.3.24

5. For any limit ordinal α, Vα “
Ť

βăα Vβ.

6. VΩ “
Ť

αPOrd Vα.

Proof 1, 2, 3, 5, 6 Straightforward.

4 Suppose x P Vα`1. Then rkx ď α, so @y P x rk y ă α. Hence x Ď Vα, i.e.,
x P P Vα. On the other hand, suppose x P P Vα. Then for any y P x, y P Vα, so
rk y ă α. Hence, rkx ď α ă α` 1, so x P Vα`1. 3.92

(3.93) Thus, the classes Vα correspond precisely to the cumulative hierarchy as
defined informally at the beginning of this chapter.§ 3.2.1

3.4.3.1 Hereditarity

(3.94) For any property of sets, we say that a set x has that property hereditarily
def
ðñ x is ranked and every set in tctxu3.90.2 has the property.

Of particular interest is the notion of hereditary finiteness, and we make the fol-
lowing definition.

(3.95) Definition [S0] A set x is hereditarily finite
def
ðñ HFx

def
ðñ x is ranked

and for all y P tctxu, y is finite.

As usual, in a class theory, the class HF def
“ tx | HFxu.

(3.96) Theorem [C0]

1. Suppose x is a finite set. Then P x is a finite set.

2. Every set in Vω is finite.

3. Vω “ HF.
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Proof 1 It suffices to show that for each m P ω, Pm is a finite set. This we
do by induction on m P ω. It is trivially true for m “ 0, since P 0 “ 1. Suppose
therefore that m P ω and Pm is finite. We will show that Ppm ` 1q is finite. To

this end f : Pm bij
Ñ N , where N P ω. Let g : N ` 1 Ñ ω be defined recursively by

the conditions

gp0q “ N

gpn` 1q “ gpnq ` 1.

It follows easily by induction on n P N ` 1 that gpnq P ω. In particular, gpNq P ω.
(In other words, if N is finite then twice N is finite.)

Let h : Ppm` 1q Ñ ω be such that

hpXq “

#

fpXq if m R X

gpfpXztmuqq if m P X.

Then h : Ppm` 1q bij
Ñ gpNq.

2 Since every set in Vω is included in Vn for some n P ω, it is enough to show that
each Vn is finite.3.53.2 Since Vn`1 “ P Vn,3.92.4 this follows from (3.96.1) by induction
on n P ω.

3 If x P Vω then tctxu Ď Vω,3.92.1 so3.96.2 x is hereditarily finite. On the other
hand, if x is HF then it is easy to show by P-induction that rk y is finite for every
y P tctxu (since by (3.53.3) the supremum (i.e.,3.44 union) of a finite set of finite
ordinals is finite); hence, in particular, rkx is finite, i.e., x P Vω. 3.96

In view of (3.96.3) we will use ‘HF’ and ‘Vω’ more or less interchangeably.

3.5 Relativization

We now consider a specialization of the notion of relativization,2.112 defined in Chap-
ter 2, that is particularly useful in the theory of membership. Recall2.111 the use of
the superscript ‘`’ to indicate extension by definition. In the case at hand, s` is an
expansion of the basic signature s of pure set theory by the addition of predicate
and operation indices whose definitions are added to S0 to create the extension S0`.
C0` is corresponding extension of C0. These are conservative extensions of their
base theories, and are conventionally not explicitly recognized. In the interest of
notational brevity, in our development of the theory of membership we generally
follow this convention, but it is sometimes advantageous to use the more precise
notation; and this is one of those times.

(3.97) Definition [S0] Suppose ϕ is an s-formula, τ is an s`-term, and no variable
occurs in both ϕ and τ . The relativization of ϕ to τ def

“ ϕτ
def
“ the result of restricting

each quantification in ϕ to τ .31

Note that ϕ is required to be an s-formula, employing only the membership and
identity predicates, whereas τ is permitted to have additional defined predicates
and operations.

31Technically this is defined for a given term τ by recursion on complexity of formulas ϕ.
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Theorem 3.98 states the obvious relationship between an s-formula ϕ relativized
to a class M32 To set this in the framework of (3.97) and the statement that ϕ holds
in M , i.e., in the structure pM ; Pq. (3.98) states that for any s-formula ϕ, a certain
sentence is a theorem of C0`. This sentence both uses and mentions ϕ, i.e., it uses
both ϕ and a name for ϕ. Since (3.98) refers to an arbitrary s-formula ϕ, it is
advantageous to be able to refer to a particular name for any given formula. In
our general discussion of language in Chapter 1 we have defined specific expression-
building operations, viz., ␣␣␣, ___, etc., applicable to any language. We have also
defined the operation “““, applicable to any language with identity; and we have
defined PPP, applicable to Ls and any of its expansions, such as Lc, Ls`

, etc. For the
present purpose, the signatures s` and c` are presumed to have indices for these
operations, and the theories S0` and C0` are presumed to contain their definitions.

It follows from the unique readability theorem1.39 that for any model M of
C0` and any ϕ P |M| such that M |ù xrϕs is an s-formulay, there is a unique s`-
term τ formed from the standard expression-building operations such that M |ù

xpτq “ rϕsy. We call this the standard s`-term for ϕ, and we define ϕ̂ to be this
term.

Note that (3.98) is formulated and proved in the pure set theory S0`, which is
appropriate since it deals only with linguistic expressions and proofs, all of which
are hereditarily finite sets. The reference to the theory C0`, which is infinite and
therefore potentially a proper class, is only a convenience of notation: the notion
of a C0`-proof may be formuated in terms of the definition of C0`.

(3.98) Theorem [S0] Suppose ϕ is an s-formula, xv0, . . . , vn-y enumerates Freeϕ,
and C, c0, . . . , cn- are distinct constants (presumed to be in the signature c`).

1. Let S be the substitution
@

v0 ¨ ¨ ¨ vn-

c0 ¨ ¨ ¨ cn-

D

. Then C0`$ xSuppose pc0q, . . . , pcn-q P

pCq, and A is the assignment
@

pv̂0q ¨ ¨ ¨ pv̂n- q
pc0q ¨ ¨ ¨ pcn- q

D

. Then

pϕCpSqqØ pCq |ù pϕ̂qrAs.y.33

2. In particular, if ϕ is a sentence then

C0`$ xpϕCqØ pCq |ù pϕ̂qy.

Equivalently,
C0`$ xpϕCqØ pCq |ù xpϕqyy.34

Remark This theorem is a good example of a simple fact that stubbornly resists
a simple statement. The following example will serve to illuminate its meaning.
Suppose ϕ “ DDDv ūPPP v̄ (so that n “ 1 and v0 “ xuy), C “ xM y, c0 “ xxy, and
v “ xyy. Then (3.98) yields the following theorem, where we have substituted the
typographical terms ‘DDDv ūPPP v̄’ and ‘u’ for the standard terms ϕ̂ and v̂0 that denote
the same respective objects.

32ϕ is, of course, not relativized to a class M per se, but rather to a term regarded as defining
M .

33As is customary, when there is no opportunity for confusion, if C denotes a class then C is
also regarded as denoting the structure pC; Pq.

34The inner pair of corner quotes around ϕ may be taken to indicate either the standard name
ϕ̂ for ϕ or any term that, within the prevailing context, refers unambiguously to ϕ.
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(3.99) [C0`] Suppose x PM . Then

pDy PM x P yqØM |ù pDDDv ūPPP v̄q
“

u
x

‰

.

Using “in-stream assignment”,1.62 we may state this as follows.

(3.100) [C0`] Suppose x PM . Then

pDy PM x P yqØM |ù xDy rxs P yy.

Proof The theorem is proved by a straightforward argument by induction on the
complexity of ϕ. This is legitimate because the assertion of the theorem vis-à-vis
ϕ is that for any appropriate C, c0, . . . , cn- , there exists a C0`-proof of a particular
sentence, say θϕ,..., so it is expressible using only set quantification. It doesn’t
matter that if C denotes a proper class then θϕ,... involves proper class quantification
(given that xM |ù ψrAsy means that for every partial valuation function S for pM ; Pq
that is adequate for ψ, Sxψ,Ay “ 1.) 3.98

(3.98) may be regarded as a theorem schema or “metatheorem”—a description
of an infinite class of C0-theorems.35 When we invoke (3.98) in the course of a
C0-proof, we mean that a proof of the relevant instance of (3.98) is to be supposed
inserted at that point. As we have previously discussed, practically every proof
presented in mathematics is really just a sketch of a proof, and theorem schemas
may be used in this context. To flesh out a proof sketch to a formal proof would in
general require

1. presenting a formal version of each statement in the sketch;

2. filling in the gaps left by the author (which any sufficiently sophisticated
reader is expected to be able to fill);

3. inserting proofs of the previously published theorems that are quoted; and

4. inserting proofs asserted to exist by theorems such as (3.98).

Note that the inductive proof of (3.98) provides an effective procedure to create the
C0-proof whose existence is asserted.

3.5.1 Inner models

Definition [C0] Suppose Θ is an s-theory. M is an inner model of Θ
def
ðñM is a

transitive proper class and pM ; Pq |ù Θ.

We will show that VΩ is an inner model of S, i.e., S0 (“ S1–5) plus S6, the Foundation
schema.

(3.101) Definition [C0] A class M is almost universal
def
ðñ @Sx ĎM Dy PM x Ď

y.

Note that an almost universal class is necessarily nonempty.

(3.102) Theorem [C0] Suppose M is transitive and almost universal. Then M
satisfies axioms S1, S4, and S5 of S as listed in (3.8).

35The theorem having been precisely stated, we now relax our standards and revert to the
practice of using ‘C0’ for ‘C0`’.
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Proof We will make use of the fact that since M is transitive, for any y P M ,
xDx P y p. . . qy, i.e., xDx px P y^ . . . qy is equivalent to xDx P M px P y^ . . . qy; and
likewise for bounded universal quantification. Remember that to show that M |ù σ
we must show that for every tσu-valuation function (or satisfaction relation) S for
pM ; Pq, |ùS σ.

S1. Extension Suppose

σ “ @@@v0, v1 p@@@v2 pv2 PPP v0ØØØ v2 PPP v1qÑÑÑ v0“““ v1q,

and suppose S is a tσu-valuation function for pM ; Pq. We must show that |ùS σ,
i.e., Sxσ, 0y “ 1. Remember that a tσu-valuation function is also a ϵ-valuation
function for any subexpression ϵ of σ.

By the definition of valuation,

S
@

v2 PPP v0,
@

v2 v0
y2 y0

DD

“ 1Ø y2 P y0,

S
@

v2 PPP v1,
@

v2 v1
y2 y1

DD

“ 1Ø y2 P y1,

S
@

v0“““ v1,
@

v0 v1
y0 y1

DD

“ 1Ø y0 “ y1,

so we must show that

@y0, y1 PM p@y2 PM py2 P y0Ø y2 P y1qÑ y0 “ y1q.

This follows from the fact that M is transitive.
Before continuing, we note that the above argument may be abbreviated by

invoking Theorem 3.98, which informs us that

C0$ xpM |ù σqØ@y0, y1 PM p@y2 PM py2 P y0Ø y2 P y1qÑ y0 “ y1qy.

In effect, (3.98) provides us with an infinite collection of C0-theorems, of which this
is one. Since these theorems and their individual proofs are so obvious, we will
often invoke them without explicit recognition, starting now.

S4. Pair Suppose
σ “ @@@v0, v1 DDDv2 pv0 PPP v2 ^̂̂ v1 PPP v2q.

Suppose x, y PM . Then tx, yu ĎM , so by almost universality Dz PM px P z^ y P
zq.

S5. Collection Suppose

σ “ @@@v0, . . . , vn- @@@u
`

@@@v PPPuDDDw @@@a pϕÑÑÑ aPPPwq

ÑÑÑDDDw @@@v PPPu@@@a pϕÑÑÑ aPPPwq
˘

,

where ϕ is an s-formula, and a, u, v, w, v0, . . . , vn- are distinct variables such that
Freeϕ Ď ta, v, v0, . . . , vn-u.

σ is not a specific sentence, so we cannot conveniently invoke (3.98). Suppose
therefore that S is a tσu-valuation function for pM ; Pq. We must show that |ùS σ.
Suppose y0, . . . , yn- , x PM and

@y P x Dz PM @r PM
`

S
@

ϕ,
@

v0 ¨ ¨ ¨ vn- v a
y0 ¨ ¨ ¨ yn- y r

DD

“ 1Ñ r P z
˘

.
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By the collection axiom of C0, there is a set z such that

@y P x@r PM
`

S
@

ϕ,
@

v0 ¨ ¨ ¨ vn- v a
y0 ¨ ¨ ¨ yn- y r

DD

“ 1Ñ r P z
˘

.

z XM is a set, so by almost universality there exists z1 PM such that z XM Ď z1,
so

@y P x@r PM
`

S
@

ϕ,
@

v0 ¨ ¨ ¨ vn- v a
y0 ¨ ¨ ¨ yn- y r

DD

“ 1Ñ r P z1
˘

.36

3.102

(3.103) Theorem [C0] VΩ |ù S.

Proof Refer to (3.8) for a listing of S. VΩ is transitive3.91.1 and any subset of VΩ

is in VΩ
3.91.3 so VΩ is almost universal.3.101 Hence, by Theorem 3.102 VΩ |ù S1, S4,

and S5. Clearly 0 P VΩ, so VΩ |ù S3. Only S2 and S6 remain.

S2. Comprehension Suppose θ is

@@@v0, . . . , vn- @@@uDDDw @@@v pv PPP wØØØpv PPP u ^̂̂ ϕqq,

where ϕ is an s-formula, and u, v, w, v0, . . . , vn- are distinct variables such Freeϕ Ď
tv, v0, . . . , vn-u; and suppose S is a tθu-satisfaction relation for VΩ. It follows from
the definition of satisfaction that we must show that

@y0, . . . , yn- P VΩ @x P VΩ Dz P VΩ @y P VΩ
`

y P zØ
`

y P x^ |ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

‰˘˘

.

Suppose y0, . . . , yn- , x P VΩ. It follows from C237 (Comprehension for C0) that there
exists a set z1 such that

@y P VΩ

`

y P z1Ø
`

y P x^ |ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

‰˘˘

.

Let z “ z1 X VΩ. Then3.91 z P VΩ, and

@y P VΩ

`

y P zØ
`

y P x^ |ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

‰˘˘

.

S6. Foundation Suppose θ is

@@@v0, . . . , vn-

`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uPPP v ␣␣␣ϕ
`

v
u

˘˘˘

,

where ϕ is an s-formula, u, v, v0, . . . , vn- are distinct variables such that Freeϕ Ď
tv, v0, . . . , vn-u, and u is free for v in ϕ; and suppose S is a tθu-satisfaction relation
for VΩ. We must show that

@y0, . . . , yn- P VΩ

`

Dy P VΩ |ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

‰

ÑDy P VΩ

`

|ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

‰

^@x P y ␣ |ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

x y0 ¨ ¨ ¨ yn-

‰˘˘

.38

36Note that this is not a proof schema, with one proof for each formula ϕ. It is a single proof
of a single theorem, in which ‘ϕ’ occurs as a variable.

37Note that a single instance of C2 suffices, taking ϕ, y0, . . . , yn- , x as parameters. We do not
use a separate instance of C2 for each ϕ.
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Suppose y0, . . . , yn- P VΩ and Dy P VΩ |ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

‰

. Let

Y “
␣

y P VΩ

ˇ

ˇ |ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

‰(

.

Since Y is nonempty and PVΩ is wellfounded, there exists y P Y such that @x P
y x R Y . Since VΩ is transitive, y P VΩ and

|ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

‰

^@x P y ␣ |ùS ϕ
“

v v0 ¨ ¨ ¨ vn-

x y0 ¨ ¨ ¨ yn-

‰˘

,

as desired. 3.103

Theorem 3.103 is often formulated in the following way.

(3.104) Theorem [S0] Suppose θ is an axiom of S. Let θVΩ be the relativization2.112

of θ to (an s-formula defining) VΩ. Then S0$ θVΩ .

Proof We will show that C0$ θVΩ . Since C0 is a conservative extension of S0, it
follows that S0$ θVΩ . We know3.103 that C0$ xfor all x, if x is an axiom of S then
VΩ |ù xy. Let θ̂ be the standard s`-term for θ. Then C0$ xpθ̂q is an axiom of Sy,
so C0$VΩ |ù pθ̂q. Hence,3.98.2 C0$ θVΩ . 3.104

(3.104) states that each θVΩ is a theorem of S0, so although (3.104) is itself a
single theorem, it may also be viewed as a theorem schema, and a proof of it may
be given as a proof schema, i.e., as a recipe for constructing an S0-proof of xpθVΩqy

for any axiom θ of S. Of course, the proof just given is a proof schema of sorts,
but its description of an S0-proof of xpθVΩqy for a given θ is rather indirect. It is
not difficult to remodel it as a schema dealing exclusively with S0-proofs—without
the detour through C0—but nothing is gained thereby, except perhaps a little more
confidence in the conclusion. Do it if you must.39

Having ascertained the status of Foundation in the axiomatic framework of the
theory of membership, we henceforward proceed on the basis of the systems S “
S0 ` Foundation and C “ C0 ` Foundation.40 This is not to say that everything
to follow depends on Foundation; we simply choose not to distinguish what does
from what doesn’t, as we have no further interest in its omission. In particular,
S0 suffices for the entire elementary theory of structure, language, and logic, since
all the relevant definitions are by recursion on ω, which is explicitly defined as
wellfounded. Thus, S0 suffices as a metatheory; nevertheless, in the interest of
notational simplicity, we will generally state metatheorems as theorems of S.

Some of the early material that follows is repetitive of work already done, but
is re-presented for the sake of continuity or to illustrate a difference of approach.

3.5.2 P-induction and P-recursion

(3.105) Theorem [S]

1. Every set is ranked; hence,

2. [C] V “ VΩ.

38We have made use of the fact that VΩ is transitive.
39Oh, ye of little faith.
40Recall that we have formulated Foundation somewhat differently for the pure set theory3.8 and

the class theory.3.16
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Proof We now have Foundation, so if there is a set that is not ranked then there
exists an P-minimal such set x. Every y P x is ranked and is a fortiori subtransitive,
so it has a transitive closure tc y. Clearly, xY

Ť

yPx tc y is the transitive closure of
x. Given that Ptc y is by hypothesis wellfounded for each y P x, it is easy to show
that Ptc x is wellfounded, so x is ranked.

In C we may state the same thing in terms of the proper classes V and VΩ. 3.105

Thus, in the presence of Foundation the cumulative hierarchy VΩ comprises the
entire set-theoretical universe. P is now the paradigm of an irreflexive wellfounded
setlike relation, and proof by induction on the membership relation or P-induction
is an important special case of the general method of proof by induction on a
wellfounded relation:3.78

(3.106) Theorem: P-induction [S] Suppose ϕ is an s-formula, u and v are vari-
ables with v P Freeϕ and u R Freeϕ, and u free for v in ϕ. Then

S$@@@v
`

@@@uPPP v ϕ
`

v
u

˘

ÑÑÑϕ
˘

ÑÑÑ@@@v ϕ.

Remark Like (3.104), this is a metatheorem stating that certain sentences are
theorems of S. As in that case, it is naturally a theorem of S0. As discussed above,
since we have, in effect, adopted Foundation into the canon, we simply state it as
a theorem of S. That the “metatheory” S is also the “object theory” here has
no particular significance. S is a suitable theory for proving many metatheorems,
often dealing with provability in theories that have nothing to do with the theory
of membership.

Proof This is just the schema of contrapositives of the Foundation axioms of S,3.9

with ϕ replaced by ␣␣␣ϕ. 3.106

The contrapositive of the class Foundation axiom3.16 is the principle of P-induction
for C. Since we have the class comprehension axiom C2a, we do not need to state
this as a schema.

(3.107) Theorem: P-induction [C] Suppose @Sx px Ď XÑx P Xq. Then @Sx x P
X.

Proof Suppose toward a contradiction that @x P X px Ď XÑx P Xq, and DSx x R
X. Then by Foundation3.16 (with V zX for v0), there exists x1 such that x1 R X and
@x2 P x1 x2 P X, contrary to hypothesis. 3.107

Similarly, definition by P-recursion is an important special case of recursion on
a wellfounded relation:

(3.108) Theorem: P-recursion [C] Suppose G is a function such that domG
contains every function in V ,3.19 and suppose X is a class. Then there exists a
unique function F such that

1. domF “ X;
2. @x P X Fx “ GpF æxq.

The definition3.86, 3.90.4 of rank is simply formulated:

(3.109) Definition [C] The rank of a set x def
“ rkx, is defined recursively by:

rkx “
ď

yPx

prk yq`.3.45
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The following is essentially (3.87) for P.

Theorem [C] The rank of any set is an ordinal and it is the least ordinal greater
than the ranks of all the sets in it.

3.5.3 Transitivity

(3.110) Theorem [C]

1. Suppose x is a set. Then there exists a unique set y such that

1. Tran y,
2. x Ď y, and
3. @z

`

pTran z^x Ď zqÑ y Ď zq
˘

.

2. For any class x there exists a unique class y satisfying 1.1–3 vis-à-vis x.

Proof See the proof of (3.105). 3.110

Given Theorem 3.110 the following definition is legitimate.

Definition [C] Suppose x is a class. The transitive closure of x
def
ðñ tcx

def
ðñ the

Ď-minimum transitive class including x.

3.5.3.1 A finite axiomatization of Foundation in S

Recall that we have stated Foundation as an infinite schema in S. Making use of tran-
sitivity, we can replace it by two of its instances. Let ϕ “ xx is not subtransitivey.3.90.1

Consider the following two instances of Foundation:

(3.111) xDx px is not subtransitiveq

ÑDx
`

x is not subtransitive^@y P x py is subtransitiveq
˘

y

and

(3.112) x@x pDy P xÑDy P x@z P y z R xqy.

In S0 we can show that if a set y is subtransitive then tc y exists.3.90.2 We can also
show that if tc y exists for every y P x, then xY

Ť

yPx tc y is transitive and includes
x, so x is subtransitive. Thus, S0 ` (3.111)$

(3.113) x@x Dy pTran y^x Ď yqy.

Now consider an arbitrary instance of Foundation:

(3.114) @@@v0, . . . , vn-

`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uPPP v ␣␣␣ϕ
`

v
u

˘˘˘

,

where ϕ is an s-formula, u, v, v0, . . . , vn- are distinct variables such that Freeϕ Ď
tv, v0, . . . , vn-u and u is free for v in ϕ. Let v1, w, w1 be distinct variables not in
tu, v, v0, . . . , vn-u. The following is a (sketch of a) proof of (3.114) from (3.113)
and (3.112). (Uses of theorems of pure logic asserting the equivalence of sentences
related by a change of variables are among the omitted steps.)

xSuppose pv0, . . . , vn-q are given, and suppose pDDDv ϕq. We wish to show that
`

DDDv
`

ϕ ^̂̂ @@@uPPP v ␣␣␣ϕ
`

v
u

˘˘˘

.
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To this end, let pvq be such that pϕq. Using (3.113), let pwq be transitive such that
tpvqu Ď pwq, i.e. pvq P pwq. Let

(3.115) pw1q “
␣

puq P pwq
ˇ

ˇ

`

ϕ
`

v
u

˘˘(

.

Note that pvq P pw1q; hence,3.112 there exists pv1q such that

pv1q P pw1q^@puq P pv1q puq R pw1q.

Since pwq is transitive and pv1q P pw1q Ď pwq, any puq P pv1q is in pwq. Thus,

pv1q P pw1q^@puq P pv1q
`

␣␣␣ϕ
`

v
u

˘˘

.

Since3.115
`

ϕ
`

v
v1

˘˘

, it follows that

Dpv1q
``

ϕ
`

v
v

1

˘˘

^@puq P pv1q
`

␣␣␣ϕ
`

v
u

˘˘˘

,

equivalently,
Dpvq

`

pϕq^@puq P pvq
`

␣␣␣ϕ
`

v
u

˘˘˘

,

as claimed.41y

Thus we have the following theorem of S (or, for that matter, of S0, but no
matter).

(3.116) Theorem [S] S0 ` (3.111)` (3.112)$S.

3.5.3.2 Transitive collapse

We have noted above that a wellfounded irreflexive setlike relation R resembles
P in that it permits inductive proofs and recursive constructions. The following
theorem extends the analogy by showing that such a relation R on a class X is
actually homomorphic to P on a transitive class M . R is isomorphic to P just in
case R resembles P is one more particular:

Definition [C] A relation R on a class X is extensional
def
ðñ @x, x1 P X

`

@y P

X py RxØ y Rx1qÑx “ x1
˘

.

(3.117) Theorem [C] Suppose R is wellfounded irreflexive setlike relation on a
class X. There is a unique transitive class M and F : X sur

Ñ M such that @x, y P
X py RxØF y P F xq. F is injective (hence, bijective) iff R is extensional.

Proof Define F recursively3.79 so that

1. domF “ X; and

2. @x P X Fx “ FÑpRÐtxuq.

Let M “ imF . Then F : X sur
Ñ M . To show that M is transitive, suppose

a P M and b P a. Let x P X be such that F x “ a. Then a “ FÑpRÐtxuq, so
Dy P RÐtxu F y “ b; hence, b P imF “M . Given x, y P X,

y RxØ y P RÐtxuØF y P FÑpRÐtxuq “ F x.

41
`

DDDv
`

ϕ ^̂̂ @@@uPPP v ␣␣␣ϕ
`v
u

˘˘˘

is certainly a suitable value for xDpvq
`

pϕq^@puq P pvq
`

␣␣␣ϕ
`v
u

˘˘˘

y.
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So there exist M and F as specified. We now show that they are unique. To this
end, suppose M 1 is transitive, F 1 : X sur

Ñ M 1, and @x, y P X py RxØF 1y P F 1xq.
Then for any x P X

F 1x “ tb PM 1 | b P F 1xu “ tF 1y | F 1y P F 1xu

“ tF 1y | y Rxu “ tF 1y | y P RÐtxuu

“ F 1ÑpRÐtxuq,

so F 1 satisfies the same recursive definition as F and therefore F 1 “ F ,3.80 so
M 1 “ imF 1 “ imF “M , as well.

It is clear that F is injective iff R is extensional. 3.117

Definition [C] Suppose R, X, M , and F are as in (3.117). The transitive collapse
of R (i.e., of the structure pX;Rq) def

“ M (i.e., pM ; Pq), and the transitive collapsing
map def

“ F .42

(3.118) Theorem [C] Suppose R is a strict wellordering of a set X. Then there is

a unique ordinal α and f : α bij
Ñ X such that @β, γ P α

`

β P γØpf βqR pf γq
˘

.

Proof R is wellfounded by definition, it is setlike because X is a set, and it is easily
seen to be extensional, so Theorem 3.117 applies to yield the existence of a unique
transitive class α and function g : X bij

Ñ α such that @x, y P X py RxØ y P xq.
Since X is a set, by Replacement, α is a set. Since R is a (strong) total order by
definition, P totally orders α, so P wellorders α, so α is an ordinal.3.39 Let f “ g´1.

3.118

(3.119) Definition [C] Suppose R and α are as in Theorem 3.118. The order type
of R def

“ α.43

Note that the order type of a wellorder is just its rank as a wellfounded relation.3.88

It is tempting to suppose that if we drop the requirement that X be a set,
Theorem 3.118 would hold it we allowed α to be either an ordinal or the class
Ord of all ordinals, but this is true only if R is setlike, which it need not be. For
example, let X “ Ord and let R be such that for distinct α, β P X, αRβ iff

β “ 0_pα ‰ 0^α P βq.

Note that we have taken 0 from the first position and made it the last, so the order
type of R is—if you will—Ord`1.

3.5.4 Ordinal arithmetic

(3.120) Definition [C] Lower case Greek letters represent ordinals. The usual
grouping precedence rules apply.

42The transitive collapse is also called the Mostowski collapse after Andrzej Mostowski.
43In the general sense, an order type is an isomorphism type of orders. As discussed following

(1.31), this notion is difficult to manage rigorously. It is nevertheless so useful in the case of
wellorders that in early versions of set theory, wellorder types were sometimes introduced as a
distinct sort of entity. The von Neumann ordinals now elegantly provide this service.
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1. α` β is defined for any α by recursion on β as follows.

1. α` 0 def
“ α.

2. α` pβ ` 1q def
“ pα` βq ` 1.

3. α` η def
“

Ť

βPηpα` βq for limit η.

2. α ¨ β is defined for any α by recursion on β as follows.44

1. α ¨ 0 def
“ 0.

2. α ¨ pβ ` 1q def
“ α ¨ β ` α.

3. α ¨ η def
“

Ť

βPη α ¨ β for limit η.

3. αβ is defined for any α by recursion on β as follows.

1. α0 def
“ 1.

2. αβ`1 def
“ αβ ¨ α.

3. αη def
“

Ť

βPη α
β for limit η.

The separate treatment of 0, successor ordinals, and limit ordinals is very common
in ordinal recursion.

3.5.5 Ordinal sequences

Definition [C] Suppose Ordα. An α-sequence is a function with domain α.

We often use an expression such as xxcβ | β P αyy, or, equivalently, xxcβ | β ă αyy for
an α-sequence. Finite sequences3.55 are, of course, examples of ordinal sequences.

Definition [C] Suppose c “ xcβ | β ă αy and d “ xdβ | β ă α1y are ordinal
sequences. Then c concatenate d

def
“ the result of concatenating d to c

def
“ c ⌢ d

def
“ the sequence e “ xeβ | β ă α` α1y, where

1. for all β ă α, eβ “ cβ; and

2. for all β ă α1, eα`β “ dβ.

3.5.6 Choice functions and wellorderability

Definition [C]

1. f is a choice function
def
ðñ f is a function and @y P dom f py ‰ 0Ñ f y P yq.

2. f is choice function for x
def
ðñ f is a choice function and xzt0u Ď dom f .

In other words, a choice function chooses a member of each nonempty member of its
domain, and a choice function for x chooses a member of each nonempty member
of x. For convenience, we permit the domain of a choice function to contain 0, but
we do not require that the domain of a choice function for x contain 0, even if x
contains 0.

Definition [C] x can be wellordered or is wellorderable
def
ðñ there exists a well-

ordering of x, i.e., a wellorder R such that fldR “ x.
44This is read ‘α times β’ but it clearly means ‘α [repeated] β times’.
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The existence of wellorderings is closely tied to the existence of choice functions.

(3.121) Theorem [C] Suppose x is a set. x is wellorderable iff there exists a choice
function for P x.

Proof ÑÑÑ Suppose R is a wellordering of x. Let f be the class of py, zq such that
y is a nonempty subset of x and z is the R-least member of y. Then f is a choice
function for P x.

ÐÐÐ Suppose f is a choice function for P x. Let G be the function such that

1. domG consists of all functions in V ; and

2. for each g P domG,

Gg “

#

fpxz im gq if x Ę im g

0 otherwise.45

Let3.108 F be the function with domain Ord such that @α P Ord Fα “ GpF æαq.
Let

(3.122) A “ tα P Ord | x Ę pFÑαqu.

By construction, for any α P A, Fα P xzpFÑαq. Let F 1 “ F æA. Then F 1 : A inj
Ñ x.

imF 1 is a subclass of the set x, so it is a set. Hence F 1´1 maps a set onto A, so
by Replacement A is a set. Since A is obviously an initial segment of Ord, A is an
ordinal.

Since A R A, x Ď pFÑAq,3.122 so F 1 : A bij
Ñ x. Thus, txFα, F βy | α P β P Au is a

wellordering of x. 3.121

The axiom of choice, AC, states that every set has a choice function.

We may use ‘Choice’ to refer specifically to AC or generically to choice principles
possibly weaker than AC. The status of AC as a membership-theoretic axiom is one
of the most important issues to be dealt with in the foundations of mathematics.

3.6 Size

3.6.1 Cardinality

Perhaps the most basic attribute of a set is its size—this is, at any rate, a very
important and interesting concept in set theory. There seems to be only one rea-
sonable way to formalize the fundamental notion of sets having the same size.

(3.123) Definition [C] Sets x and y have the same size or cardinality
def
ðñ x and

y are equipollent (have the same power)
def
ðñ x „ y

def
ðñ there exists f : x bij

Ñ y.

45The choice of 0 for the fallback value of G is arbitrary.
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Clearly:

Theorem [C] „ is an equivalence relation.

Note that (3.123) only defines the predicate x¨ and ¨ have the same sizey; it does not
define an operation xthe size of ¨y. The most straightforward way to define the size
of a set x is to let it be the equivalence class rxs„ of x vis-à-vis „. The problem
with this is that, unless x “ 0, rxs„ is a proper class. A simple way to repair this
defect is to take the subset of rxs„ consisting of its members with minimum rank.46

If x is wellorderable then it is equipollent with an ordinal,3.118 and in this case
we can let the size of x be the least ordinal equipollent with x. The axiom of choice
implies that every set can be wellordered,3.121 and in theories with AC, this is the
preferred definition. The following definition is written so as to be applicable in the
absence of choice but to reduce to the latter definition in the presence of choice.

(3.124) Definition [C]

1. Suppose x is a set. The size or cardinality of x def
“ |x|

def
“

1. the least ordinal equipollent with x if there is one;
2. otherwise, the set of all sets y such that y „ x and @y1 py1 „ xÑ rk y1 ě

rk yq.

2. c is a cardinality
def
ðñ c “ |x| for some set x.

3. c is a cardinal
def
ðñ c is a cardinality and an ordinal. A cardinal in this sense

may also be called an initial ordinal by way of emphasis.

4. Card def
“ the class of cardinals.

Note that the cardinality of an ordinal is always a cardinal, and no ordinal is a
cardinality in the sense (3.124.1.2): 1 is the only nonempty ordinal all of whose
members have the same size (viz., 0), so it would be a cardinality in the sense
(3.124.1.2), but for the fact that there is an ordinal equipollent with 0, viz., 0.

Obviously,

(3.125) κ is a cardinal iff κ is an ordinal that is not equipollent with any ordinal
α ă κ.

There at least two ways to formalize the concept of a set y being at least as large
as a set x. We may say that there exists f : y sur

Ñ x (y is big enough to “cover” x),
or, alternatively, that there exists f : x inj

Ñ y (y is big enough to “hold” x).3.33 The
latter implies the former,3.127 and we will take it as our definition.47

(3.126) Definition [C]

1. For sets x and y, x ď y
def
ðñ x is equipollent with a subset of y, i.e., Df : x inj

Ñ

y.

2. Correspondingly, if a and b are cardinalities, a ď b
def
ðñ A ď B for some

(equivalently, for all) sets A,B such that |A| “ a and |B| “ b.

46This is, in fact, a general method of defining the quotient of a class by an equivalence relation
whose equivalence classes are not all sets. Notice that we rely on Foundation for this.

47In the absence of the axiom of choice, it is consistent that the converse fails.
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3. As usual, ă and ă are the strong order relations corresponding to ď and ď,
respectively.

(3.127) Theorem [C] Suppose x ď y and x ‰ 0. Then there exists g : y sur
Ñ x.

Proof Since x ď y, by definition there exists f : x inj
Ñ y. Since x ‰ 0, there exists

z P x. Let g be the function with domain y such that for all w P y

gw “

#

f´1w if w P im f

z otherwise.

Clearly g : y sur
Ñ x. 3.127

The following two theorems were among the earliest indications that there might
be a substantive theory of sets per se. The first is due to Cantor.

(3.128) Theorem [C] Suppose x is a set and P x is a set. Then x ă P x. Hence
|x| ă |P x|.

Proof Clearly x ď P x, as witnessed by the function tpy, tyuq | y P xu. Thus, we
only have to show that P x ę x.

(3.129) It suffices3.127 to show that there does not exist f : x sur
Ñ P x. Suppose toward

a contradiction that f : x sur
Ñ P x.

Let Y “ ty P x | y R f yu. Let y P x be such that f y “ Y . Then

y P Y Ø y R f yØ y R Y.

3.128

The proof of (3.128) is often referred to as a diagonal argument, and it is a device
that would later be adapted by Gödel and others to prove fundamental results in
logic. The “diagonality” of the argument can be seen as follows. Identify P x with
x2 in the usual way with characteristic functions, i.e., given x1 Ď x, let χx

1
: xÑ 2

be given by

χx
1
y “

#

1 if y P x1

0 if y R x1.

Imagine the set x to be linearly ordered,48 and imagine xˆ x as a two-dimensional
array. Suppose f : x Ñ x2. For each y P x, let the yth row of this array be the
characteristic function of f y. In effect, letting g represent the array,

gpy, y1q “ pf yqy1

Define h : xÑ 2 as the complement of the diagonal of this array:

hy “ 1´ gpy, yq.

Then for every y P x, hy ‰ pf yqy, so h ‰ f y. f is therefore not surjective. Thus,
x cannot be mapped onto P x, so3.127 P x ę x.

48It is not essential to the argument that x be linearly ordered—this is just to motivate the use
of ‘diagonal’ to describe the method.
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(3.130) Schröder-Bernstein theorem [C] For any sets x and y, px ď y ^ y ď

xq Ñ x „ y.

Proof Suppose f : x inj
Ñ y and g : y inj

Ñ x. Define by recursion a sequence xxn | n P
ωy as follows:

x0 “ x

xn`1 “ gÑpfÑxnq.

Similarly, let xyn | n P ωy be such that

y0 “ y

yn`1 “ fÑpgÑynq.

By induction on n, for any n P ω,

xn Ě gÑyn Ě xn`1(3.131)
yn Ě fÑxn Ě yn`1.

For n P ω, let

x1n “ xnzg
Ñyn y1n “ ynzf

Ñxn

x2n “ gÑynzxn`1 y2n “ fÑxnzyn`1

x3 “
č

nPω

xn y3 “
č

nPω

yn.

Clearly,3.131 the sets x3, x10, x
2
0, x

1
1, x

2
1, . . . , are pairwise disjoint and their union is x;

likewise, mutatis mutandis, for y. Since f is injective,

f æx1n : x1n
bij
Ñ y2n.

Since g is injective,
g æ y1n : y1n

bij
Ñ x2n,

so
g´1 æx2n

bij
Ñ y1n.

Finally,
f æx3 : x3 bij

Ñ y3.

Let
h “

ď

nPω

f æx1n Y
ď

nPω

g´1 æx2n Y f æx
3.

Then h : x bij
Ñ y, so x „ y. 3.130

(3.132) Theorem [C]

1. ď is a preorder.
2. „ is ”ď.
3. ď is a partial order.

Proof Trivially, for any sets x, y, z, x ď x and px ď y^ y ď zqÑx ď z, so ď

is a preorder. As for any preorder, ”ď is ď X ď´1, which by (3.130) is „. The
corresponding relation on cardinalities is identity, so ď is a partial order. 3.132
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3.6.2 Infinity

Näıvely one might think that if a set x is a proper subset of a set y—i.e., x Ď
y ^ x ‰ y—then x is smaller than y—i.e., x ď y ^ ␣x „ y—but this is not true
in general. The parable of the Hotel of Many Rooms illustrates this. The Hotel of
Many Rooms has a room for each natural number. A traveler arrives one evening
and is informed that the hotel is full. She is surprised when the desk clerk tells her
that there is nevertheless no difficulty in accommodating her. He will simply ask
the occupant of Room 0 to move into Room 1, the occupant of Room 1 to move
into Room 2, ad infinitum. Room 0 is thus freed up for the newcomer.

The critical property of the Hotel of Many Rooms is of course that it has in-
finitely many rooms; specifically, for the purpose of the parable, the set of rooms is
Dedekind-infinite, i.e., not Dedekind-finite. Dedekind-finiteness is just one of several
reasonable notions of finiteness.

(3.133)

1. A set x is Dedekind-finite
def
ðñ it is not equipollent with a proper subset of

itself.49

2. Alternatively, we may say that x is finite
def
ðñ it is not the image of a proper

subset of itself via some function.

3. Finally, we may say that a set x is finite
def
ðñ it is equipollent with a number.

In the absence of Choice, these characterizations of finiteness are not equivalent.
The last is the strongest, and we have already taken it our official definition of
finiteness.3.52 Note that by this definition, a finite set is equipollent with a number,
so its cardinality is a cardinal.3.124

(3.134) Theorem [C] Suppose x is a set.

1. Suppose x is finite,3.52 i.e., finite in sense (3.133.3). Then x is finite in sense
(3.133.2).

2. Suppose x is finite in sense (3.133.2). Then x is finite in sense (3.133.1), i.e.,
Dedekind-finite.

Remark This is a refinement of (3.53.1), which states that any finite set is
Dedekind-finite.

Proof 1 If x is finite there exists n P ω and h : x bij
Ñ n. Any counterexample to

(3.133.2) for x may be transferred to n by h, so it is enough to show that for any
n P ω, y ⫋ n and f : y Ñ n, f is not surjective. This we do by induction.3.51 It is
clearly true for n “ 0, for then there exists no y ⫋ n. Suppose it is true for n. We
will show that it is true for n` 1.

To this end, suppose toward a contradiction that y ⫋ n` 1 and f : y sur
Ñ n` 1.

Construct y1 ⫋ n and f 1 : y1 sur
Ñ n as follows.

1. If pn, nq P f , let y1 “ yztnu and f 1 “ fztpn, nqu.

2. Otherwise, there exists m P n such that pm,nq P f .

1. If n R y, let y1 “ yztmu and f 1 “ fztpm,nqu.
49In the parable, we use the fact that t0, 1, 2, . . .u is equipollent with t1, 2, . . .u via n ÞÑ n` 1.
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2. Otherwise, let y1 “ yztnu and f 1 “ fztpm,nq, pn, fnqu Y tpm, fnqu.

3.134.1

2 Suppose there do not exist y ⫋ x and f : y sur
Ñ x, and suppose toward a

contradiction that y1 ⫋ x and g : x inj
Ñ y1. Let y “ gÑx and f “ g´1. Then y ⫋ x

and f : y sur
Ñ x, contrary to hypothesis. 3.134.2 3.134

(3.135) Theorem [C]

1. Suppose m,n P ω. Then m ă n iff m P n. In particular, n is a cardinal.

2. ω is not a finite set. If ω is a set, it is a cardinal.

Proof 1 Suppose m,n P ω, and suppose m P n. Then m ď n (via idm3.126).
Since m ⫋ n and n is finite by definition, either (3.134.1) or (3.134.2) implies that

there does not exist f : m bij
Ñ n, so m ȷ n. Hence m ă n. In particular, n is not

equipollent with any preceding ordinal so n is a cardinal.3.125

Conversely, suppose m ă n. Then m ȷ n, so m ‰ n; and there exists f : m inj
Ñ n,

so n R m (otherwise n ⫋ m, so m is Dedekind-infinite,3.133.1 hence infinite3.134).
Thus, m P n. 3.135.1

2 Suppose ω is a set (i.e., not a proper class). Suppose toward a contradiction

that f : ω bij
Ñ n for some f and n P ω. Then f æpn ` 1q : n ` 1 inj

Ñ n, contradicting
the fact that n ` 1 is a number and is therefore finite. Since ω is not equipollent
with an preceding ordinal, it is a cardinal. 3.135

(3.136) Theorem [C] If there exists an infinite set then ω is a set.

Proof Suppose x is an infinite set. Let α P Ord be such that x P Vα. By (3.135.5)
α ą ω, so ω P α, so ω is a set. 3.136

(3.137) The Infinity axiom states that there exists an infinite set, i.e., there exists a
set that is not equipollent with a number. In C this is equivalent3.136 to the statement
that ω is a set. In S it is equivalent to the statement that ω exists.

We have previously shown3.116 how to derive the entire Foundation schema of S
from two of its instances, viz., (3.111) and (3.112). Assuming Infinity we may elimi-
nate the former by providing an alternative derivation of the existence of transitive
closures. Recall that ordinals are by definition wellordered by P, so Foundation is
not required to justify definition by ordinal recursion. Thus, we may argue from S0

+ Infinity as follows.
Suppose x is an arbitrary set. Let f be the function with domain ω such that

fp0q “ x and for any n P ω, fpn ` 1q “
Ť

fpnq “ ty | Dz P fpnq y P zu. Let
X “

Ť

nPω fpnq. Then X is clearly the smallest transitive set that includes x.
Thus, every instance of Foundation is derivable from S0, Infinity, and the single

instance (3.112), which we state here in the fashion of (3.8).
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Foundation’
@@@v0 pDDDv1 PPP v0ÑÑÑDDDv1 PPP v0 @@@v2 PPP v1 v2 RRR v0q.

Foundation’ is the usual form of the axiom of foundation for a pure set theory in
the presence of Infinity.

3.7 Extended theories of membership

As we will soon see, the basic theories S and C do not mandate the existence
of an infinite set. As we will also see, without infinite sets, it is impossible to
model even so basic a mathematical concept as that of a geometrical point, or real
number. Indeed, the theory S is bi-interpretable with Peano arithmetic, which is a
very meager portion of mathematics as we know it. Infinity is therefore a standard
axiom of membership.

In this setting, two other statements that we have presented above as potential
axioms of membership become vitally important: Power and AC. As we will show
presently, these are not important axioms in an explicitly finitary theory, as3.210

S`␣␣␣ Infinity$Power ^̂̂AC,

but in the theory S` Infinity they are powerful set existence principles.
Power is often regarded as an axiom in the traditional sense that it is clearly

true—like Euclid’s axioms of plane geometry with the possible exception of the
parallel postulate. The standard axiomatizations of the theory of membership
therefore include it. AC is often regarded as not quite as obviously true—very like
the parallel postulate in geometry.

Definition

1. ZF
def
“ S` Infinity ` Power. This is the Zermelo-Fraenkel theory.

2. GB
def
“ C` Infinity ` Power. This is the Gödel-Bernays theory, also called the

von Neumann-Bernays-Gödel theory.

3. ZF´
def
“ S` Infinity.

4. GB´
def
“ C` Infinity.

5. ZFC
def
“ ZF` AC.

6. GBC
def
“ GB` AC.

7. ZFC´
def
“ ZF´ ` AC.

8. GBC´
def
“ GB´ ` AC.

Since C is a conservative extension of S, each of the above GB-type theories is a
conservative extension of the corresponding ZF-type theory. For the convenience of
reference to proper classes, we will continue to prefer to work in GB-type theories.

Just as ‘set theory’ is traditionally used to refer to theories of membership in
general, ‘ZF’ is often used to refer loosely to any any of the above theories in
statements that apply to all of them.

For ease of reference, we present here a standard list of axioms for ZF. In
anticipation of certain uses, we list Union explicitly, even though it follows from
Collection and Comprehension.
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(3.138) Axioms of ZF

1. Extension
@@@v0, v1 p@@@v2 pv2 PPP v0ØØØ v2 PPP v1qÑÑÑ v0“““ v1q

2. Comprehension

@@@v0, . . . , vn- @@@uDDDw @@@v pv PPP wØØØpv PPP u ^̂̂ ϕqq,

where ϕ is any s-formula, and u, v, w, v0, . . . , vn- are distinct variables such
Freeϕ Ď tv, v0, . . . , vn-u.

3. Existence
DDDv0 @@@v1 v1 RRR v0

4. Pair
@@@v0, v1 DDDv2 pv0 PPP v2 ^̂̂ v1 PPP v2q

5. Collection

@@@v0, . . . , vn- @@@u
`

@@@v PPPuDDDw @@@a pϕÑÑÑ aPPPwqÑÑÑDDDw @@@v PPPu@@@a pϕÑÑÑ aPPPwq
˘

,

where ϕ is any s-formula, a, u, v, w, v0, . . . , vn- are distinct variables such that
Freeϕ Ď ta, v, v0, . . . , vn-u, and u is free for v in ϕ.

6. Foundation
@@@v0, . . . , vn-

`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uPPP v ␣␣␣ϕ
`

v
u

˘˘˘

,

where ϕ is any s-formula, u, v, v0, . . . , vn- are distinct variables such that Freeϕ Ď
tv, v0, . . . , vn-u, and u is free for v in ϕ.

7. Union
@@@v0 DDDv1 @@@v2, v3 pv2 PPP v3 PPP v0ÑÑÑ v2 PPP v1q

8. Power
@@@v0 DDDv1 @@@v2

`

@@@v1 pv1 PPP v2ÑÑÑ v1 PPP v0qÑÑÑ v2 PPP v1

˘

9. Infinity
DDDv0 pDDDv1 v1 PPP v0 ^̂̂ @@@v1 PPP v0 DDDv2 PPP v0 v1 PPP v2q

In the presence of (3.138.1–6), (3.138.9) is easily seen to be equivalent to the state-
ment that an infinite set exists.

3.8 Principles of choice and wellordering

The axiom of choice is obviously true, the well-ordering principle
obviously false, and who can tell about Zorn’s lemma?

Jerry Lloyd Bona

AC differs from the other set existence axioms in that it does not say that a set
exists that satisfies a certain definition, but rather that a set exists that has a certain
property, viz., that of being a choice function for a given set.50 AC nevertheless
resembles the other existence axioms in that it contributes to the expression of the

50If x is a set and there is a rule by which we can choose a member of each nonempty set y P x,
then we do not need Choice to show that a choice function exists—we can use Replacement instead.
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idea that each level of the cumulative hierarchy should consist of all subsets of the
previous level.

As noted above,3.121 AC is equivalent modulo ZF (or GB) to the principle that
every set can be wellordered. Historically, in diverse branches of mathematics, a
number of similar principles were formulated, which seemed plausible and were
useful in proofs, but which were themselves resistant to all attempts at formal
justification. Essentially all of these have been shown to follow from AC, and many
are equivalent to AC. We will mention here just one of these, perhaps the best
known: Zorn’s lemma.

Definition [C] Suppose ă is a partial order on a set P , X Ď P , and p P P .

1. X is a chain
def
ðñ ă totally orders X.

2. p is an upper bound for X
def
ðñ @x P X x ď p.

(3.139) Theorem [ZF] The following are equivalent:

1. (Axiom of choice) Every set has a choice function.
2. (Wellordering principle) Every set can be wellordered.
3. (Zorn’s lemma) Suppose ă is a partial order on a nonempty set P , and suppose

every chain in P has an upper bound. Then there is a maximal element in P .

Proof 1Ø2 See (3.121). Note that Power is used for this, as to wellorder a set x
we use a choice function for P x.

2Ñ3 Assume the wellordering principle. Suppose ă is a partial order on a non-
empty set P , and suppose every chain in P has an upper bound. Let R be a
wellordering of P . By recursion on ordinals, define a function F with domain Ord
such that imF Ď P , and for every α P Ord

1. if there exists p P P such that F β ă p for all β ă α, then Fα is the R-least
such p;

2. otherwise, Fα “ P .51

Let A “ tα P Ord | Fα ‰ P u. It is easy to show by P-induction that A is an initial
segment of Ord and that F æA is an order-preserving map of A into P . Hence, FÑA
is a chain in pP ;ăq. Also, since P is a set, A is a set and is therefore an ordinal.
So A P domF . By the definition of A, fA “ P . By hypothesis, FÑA has an upper
bound, say p, but no strict upper bound (with which it could be extended), so p is
ă-maximal.

3Ñ1 Assume Zorn’s lemma. Suppose x is a set. Let P be the set of partial choice
functions for x, i.e., dom f Ď x and for all y P x if y ‰ 0 then fy P y. P is partially
ordered by the inclusion relation. Suppose C Ď P is ⫋-chain. Then

Ť

C is an
upper bound for C. Thus pP ; ⫋q satisfies the condition of Zorn’s lemma. Therefore
let f be a maximal element. Then f is a choice function for x, i.e., dom f “ x. For
if not, suppose y P xz dom f . If y ‰ 0, let z be any element of y; if y “ 0, let z be
any element. Then f ⫋ f Y tpy, zqu P P . 3.139

51P is chosen simply as a fixed set not in P .
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3.8.1 Restricted axioms of choice

(3.140) Definition [ZF´]

1. ACA
def
ðñ for every function f with domain A, there exists g such that dom g “

ta P A | f a ‰ 0u and @a P dom g ga P f a. g is a choice function for f .

2. ACApBq
def
ðñ for every function f with domain A such that @a P A fa Ď B,

there exists a choice function for f .

3. DC
def
ðñ for any binary relation R on a nonempty set A, if @a P A Db aR b,

then for any a P A, there exists a function g with domain ω such that g0 “ a
and @n P ω gpnqRgpn` 1q. g is a dependent choice function for R; and this
is the Dependent Choice axiom.

3.8.2 Countability

Definition [ZF´] x is countable or denumerable
def
ðñ x „ ω.

Countable sets are of interest for several reasons. In the first place, they are partic-
ularly amenable to recursive constructions and inductive proofs, as these can often
be performed on enumerations in order type ω, obviating consideration of limit
cases. Second, countable sets are—to the average mathematician, at least—easily
grasped as completed infinitudes. Third, class theories like C, while they do not
mandate the existence of infinite sets, do mandate the existence of countably infi-
nite classes, viz., Vω and its infinite subclasses, and any countable structure has an
isomorph of this type.

Recall3.94 that a set x is said to have a property hereditarily just in case every set
in tctxu has the property. For countability we make the following special definition.
It is equivalent to the generic definition in the presence of AC.

(3.141) Definition [ZF´]

1. x is hereditarily countable
def
ðñ HCpxq

def
ðñ tctxu is countable.

2. [GB´] HC def
“ the class of HC sets.

Note that if tcx is countable then tctxu, which is just txu Y tcx, is also countable.
Using AC it is easy to show that any countable set of HC sets is HC, and that HC
is in fact the smallest class that contains all its countable subsets.52 It is not hard
to show that ACωpP ωq suffices for this.53

52Remember that finite sets, and 0 in particular, are countable, so any class that contains all
its countable subsets includes Vω`1.

53In GB´ we define ω1 as the class of countable ordinals.3.147 The smallest class C that contains
all its countable subsets may be defined as

Ť

αPω1
Cα, where

1. C0 “ 0;

2. for each α P ω1, Cα`1 is the set of countable subsets of Cα; and

3. for each limit α P ω1, Cα “
Ť

βPα Cβ .

Note that Cα Ď Vα. Without Choice we can show that HC Ď Vω1 and that for each α P ω1,
HCXVα Ď Cα. To show the reverse inclusion, we observe that if A is a countable transitive set
then pA; Pq is isomorphic to a binary relation on ω; and given the relation on ω, the isomorphism
with pA; Pq is unique. Given a sequence xAn | n P ωy of countable transitive sets, ACωpP ωq
therefore implies the existence of a sequence xfn | n P ωy such that for each n P ω, fn : ω

sur
Ñ An,

which allows us to enumerate
Ť

nPω An.



226 CHAPTER 3. THE THEORY OF MEMBERSHIP

3.8.3 Cardinals and cofinality

(3.142) Definition [C] Suppose X P Ord or X “ Ord, and suppose Y Ď X.

1. Y is unbounded in X
def
ðñ @α P X Dβ P Y β ą α. Note that X cannot be a

successor ordinal.

2. Y is closed in X
def
ðñ for all α P X, if Y X α is unbounded in α then α P Y .

3. Y is club in X
def
ðñ Y is closed unbounded in X

def
ðñ Y is closed in X and

unbounded in X.

4. Suppose f : X Ñ Ord.

1. f is increasing
def
ðñ @α, β P X pα ă βÑ fα ă fβq.

2. Suppose f is increasing. Then f is continuous
def
ðñ for all α P X, if

α P Lim then fÑα is unbounded in fα.
3. The standard topology3.185 on Ord is generated from the intervals

pα, βq
def
“ tγ | α ă γ ă βu

as a base.§ 3.11.2 The use of the terms ‘limit’, ‘closed’, and ‘continuous’ in
the context of ordinals derives from this topology.

We may omit explicit reference to X when X “ Ord or when its identity may be
inferred from the context.

(3.143) Theorem [C] Suppose α, β P Ord, f : α sur
Ñ β, and f is increasing.3.142.4.1

Then α “ β and f “ idα, the identity function on α.

Proof We show by induction on γ P α that f γ “ γ, i.e., we suppose toward a
contradiction that γ P α is least such that f γ ‰ γ. Then @γ1 ă γ f γ1 “ γ1. Since
f is increasing, f γ ě γ, so f γ ą γ and β ą f γ ą γ. Since f is order-preserving,
@γ1 P α pγ1 ě γÑ f γ1 ě f γ ą γq, so γ R im f , contradicting the fact that β ą γ
and the assumption that f maps onto β.

Since f “ idα and f is surjective to β, β “ α. 3.143

We have noted above3.135.1 that if α and β are distinct finite ordinals, then α ȷ β.
This is not true in general for infinite ordinals. For example ω ` 1 „ ω, as shown
by the function f : ω ` 1 bij

Ñ ω, given by

fα “

#

0 if α “ ω

α` 1 if α P ω.

With a little ingenuity it is possible to define bijections between ω and ordinals
considerably beyond ω. Nevertheless, there are ordinals larger than ω. Indeed, for
any ordinal α there is a larger ordinal.

These assertions are a consequence of the Power axiom, which we now begin to
use regularly.

(3.144) Theorem [ZF] Suppose X is a set. Then there exists an ordinal α such
that α ę X.
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Proof A binary relation on a subset of X is a subset of X ˆ X and hence is in
PpXˆXq. Let W be the subset of PpXˆXq consisting of the wellorders of subsets
of X. Let F : W Ñ Ord be the order-type map, i.e., FR is the order type3.119 of R
for R PW .

Suppose α is an ordinal and α ď X, say f : α inj
Ñ X. Let R “ txfα1, f α2y | α1 ă

α2 ă αu. Then R PW , and α “ FR, so α P imF .
Since F is a function and domF “ W is a set, imF is a set of ordinals, so

Ť

imF is an ordinal, say α. Clearly, α R imF , so α ę X. 3.144

(3.145) Theorem [GB] Card3.124.4 is closed and unbounded.

Proof Theorem 3.144 shows that Card is unbounded. To show that Card is closed,
suppose α P Ord and CardXα is unbounded in α. Then for any β P α, there exists
κ P Card X α such that β ă κ; and since κ P Card, β ă κ, so β ă α. Hence,
α P Card. 3.145

(3.146) Definition [ZF] Suppose α is an ordinal. Recall3.124.1.1 that |α| is the least
cardinal κ such that α „ κ. Note that |α| is the greatest cardinal ď α.

1. α` def
“ the least cardinal greater than α. Note that if κ “ α` then κ “ |α|`.54

2. Suppose κ is a cardinal.

1. κ is a successor cardinal
def
ðñ κ “ λ` for some λ (the predecessor of κ

as a cardinal).

2. κ is a limit cardinal
def
ðñ the cardinals in κ form an unbounded subset of

κ.

Note that every cardinal other than 0 is either a successor or a limit cardinal, but
not both. Note also that every infinite cardinal is a limit ordinal.55

(3.147) Definition [ZF]

1. We define ωα by recursion on ordinals α as follows.

1. ω0
def
“ ω.

2. ωα`1
def
“ ω`α .

3. If η is a limit ordinal, ωη
def
“

Ť

αPη ωα.

2. ℵα (read: ‘aleph-α’) def
“ ωα.

ωα ÞÑ α is evidently the transitive collapsing map for the class of infinite cardinals,
and any infinite cardinal is ωα for some α P Ord. As a matter of usage, the ‘ℵ’
notation is often used to name a cardinal when only its size is of interest—i.e., when
any other set of the same size would do as well—whereas the ‘ω’ notation is used
when the order type is also of interest; nevertheless, the two notations are strictly
synonymous, and we will generally use the latter.

54Context should prevent confusion of the successor operation on cardinals with the successor
operation on ordinals.3.45

55‘limit’ as an adjective applied to ordinals has multiple meanings. When the ordinal in question
is a cardinal, it is usually the sense (3.146.2.2) that is intended. The construction used above to
show that ω ` 1 „ ω is easily adapted to show that α ` 1 „ α for any infinite ordinal α, so no
infinite successor ordinal is a cardinal.
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Definition [ZF] Suppose R is a total order on a set X that has no maximum
element, and α is an ordinal.

1. f : α cof
Ñ X

def
ðñ f is cofinal in X (with respect to R)

def
ðñ f : α Ñ X and

im f is R-unbounded.

2. The cofinality of R def
“ cf R def

“ the least ordinal α such that there exists f :
α

cof
Ñ X (with respect to R).

3. The terms ‘cofinal’ and ‘cofinality’ as applied to ordinals X refer to the P-
ordering. We are primarily interested in this setting.

Definition [ZF] Suppose κ is a cardinal.

1. κ is regular
def
ðñ κ is infinite and cf κ “ κ.

2. κ is singular
def
ðñ κ is infinite and cf κ ă κ.

(3.148) Theorem [ZF] Suppose R is a total order on a set X with no maximum.
Then cf R is a regular cardinal.

Proof Straightforward. 3.148

Theorem [ZFC] Every successor cardinal is regular.

Remark Choice is necessary for this. It is consistent with ZF that ω1 is singular.

Proof Suppose κ “ λ`, and suppose toward a contradiction that κ is singular.
Then cf κ ď λ, so there exists f : λ cof

Ñ κ. Using AC, for each α ă λ, let gα :
λ

sur
Ñ fα. Let g “ tppα, βq, gαβq | α, β P λu. Then g : λ ˆ λ

sur
Ñ

Ť

αPλ fα “ κ. So
|κ| ď |λˆ λ| “ λ, contrary to the assumption that κ is a cardinal. 3.152

3.9 Cardinal arithmetic

We have previously defined operations of addition, multiplication, and exponenti-
ation on ordinals, which generalize these operations as applied to numbers. There
are also versions of these operations applicable to cardinalities, which generalize the
number operations in a different way. We will use the same symbols for these as for
the ordinal-specific operations; unless otherwise stated, it is usually the cardinality-
specific operations that we have in mind.

We first note that AC implies the equivalence of the various definitions of finite-
ness (3.133).

(3.149) Theorem [ZFC] If x is Dedekind-finite then x is finite. Hence,3.134 (3.133.1,
2, 3) are equivalent.

Proof We will prove the contrapositive. Suppose x is infinite. Let F be a choice
function for P x. Define xn by recursion on n P ω so that xn “ F pxztxm | m P nuq.
For each n P ω, since x is not equipollent with n, x ‰ tx0, . . . , xn-u, so xztxm |

m P nu is nonempty, and xn P xztxm | m P nu. n ÞÑ xn is therefore injective. Let
y “ xztxn | n P ωu, and let

g “ tpa, aq | a P yu Y tpxn, xn`1q | n P ωu.
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Then g is a bijection of x with a proper subset of x (viz., xztx0u), so x is Dedekind-
infinite. 3.149

(3.150) Definition [ZF] Suppose a and b are cardinalities.

1. a ` b
def
“ |A Y B|, where A,B are any disjoint sets such that |A| “ a and

|B| “ b.

2. a ¨ b def
“ |AˆB|, where A,B are any sets such that |A| “ a and |B| “ b.

3. ab def
“ |BA|, where A,B are any sets such that |A| “ a and |B| “ b.

To validate this definition, of course, we must show that for any sets A,A1, B,B1,
if A „ A1, B „ B1, then

1. if AXB “ A1 XB1 “ 0 then AYB „ A1 YB1;

2. AˆB „ A1 ˆB1; and

3. BA „ B1
A1.

This is straightforward.
The power of AC quickly becomes apparent when we try to analyze these and

other operations and relations that are invariant under equipollence, and we hence-
forth in this section assume this axiom unless otherwise stated.

It follows immediately from the wellordering principle that every set x is equipol-
lent with a cardinal, viz., the least ordinal that is the order type of a wellordering
of x, so every cardinality is a cardinal, and the arithmetical operations defined
previously for cardinalities3.150 are operations on the cardinals.

With AC we can define sums and products of arbitrary sets of cardinals (i.e.,
not just pairs of cardinals, as in (3.150)):

Definition [ZFC] Suppose I is a set and xκi | i P Iy is a cardinal-valued function
on I.

1.
ř

iPI κi
def
“ |

Ť

iPI Ai|, where xAi | i P Iy is any function on I such that @i P
I |Ai| “ κi and @i, j P I pi ‰ jÑAi XAj “ 0q.

2.
ś

iPI κi
def
“ |

Ś

iPI Ai|,
3.61.2 where xAi | i P Iy is any function on I such that

@i P I |Ai| “ κi.

To show that this definition is valid we must show that for any xAi | i P Iy and
xA1i | i P Iy, if @i P I Ai „ A1i then

Ś

iPI Ai „
Ś

iPI A
1
i; and if @i, j P I pi ‰

jÑAi X Aj “ A1i X A1j “ 0q then
Ť

iPI Ai „
Ť

iPI A
1
i. To do so we first invoke AC

to obtain xfi | i P Iy such that @i P I f : Ai
bij
Ñ A1i. The desired equivalences easily

follow.
It is easy to see that cardinal addition and multiplication are commutative

(unlike ordinal addition and multiplication) in the most general sense: Cardinal-
valued functions xκi | i P Iy and xλj | j P Jy have the same sum and product if

there exists f : I bij
Ñ J such that @i P I λf i “ κi. It is also easy to see that cardinal

multiplication and cardinal exponentiation are special cases of generalized addition
and multiplication, respectively.
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Note that λκ is by definition the set of functions f : λ Ñ κ, whereas κλ is an
ordinal, viz., the cardinality of λκ. The reader is warned that the ‘κλ’ often appears
in the literature meaning ‘λκ’. Note that the ordinary exponential notation also
does double duty in this book, in that for n P ω, we have used ‘κn’ to denote the set
κˆ ¨ ¨ ¨ˆ κ
looooomooooon

n times

of n-tuples (as opposed to the set nκ of n-sequences). The cardinality

of this set is of course the same as that of nκ, viz., κn in the cardinal-arithmetic
sense.

(3.151)

1. We have already mentioned that cardinal addition and multiplication are com-
mutative.

2. They are obviously also associative: If xIj | j P Jy is a partition of I, i.e., the
Ijs are pairwise disjoint and

Ť

jPJ Ij “ I, then

ÿ

iPI

κi “
ÿ

jPJ

ÿ

iPIj

κi

ź

iPI

κi “
ź

jPJ

ź

iPIj

κi.

3. Familiar distributive laws also hold:

λ ¨
ÿ

iPI

κi “
ÿ

iPI

pλ ¨ κiq

`

ź

iPI

κi
˘λ
“
ź

iPI

κλi

µκ`λ “ µκ ¨ µλ

µκ¨λ “
`

µκ
˘λ
.

Addition and multiplication of infinite cardinals are easily characterized.

(3.152) Theorem [ZFC] Suppose κ and λ are cardinals. If either κ or λ is infinite
then κ` λ “ κ ¨ λ “ maxtκ, λu.

Proof It is enough to show that if κ is an infinite cardinal then κ ¨ κ “ κ. To this
end let R be the binary relation on OrdˆOrd such that xα, βyR xα1, β1y iff

1. maxtα, βu ă maxtα1, β1u; or

2. maxtα, βu “ maxtα1, β1u and α ă α1; or

3. maxtα, βu “ maxtα1, β1u and α “ α1 and β ă β1.

Clearly, R is a strict wellordering. Let Γ : OrdˆOrd Ñ Ord be such that for
any α, β P Ord, Γxα, βy is the order type of txα1, β1y | xα1, β1yR xα, βyu. Γ is the

transitive collapsing map for pOrdˆOrd;Rq, so Γ : OrdˆOrd bij
Ñ Ord. Clearly,

(3.153)

1. Γ is injective;

2. for any ordinal α, ΓÑpαˆ αq is an initial segment of Ord, i.e., an ordinal;
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3. ΓÑpαˆ αq ě α; and

4. for any limit ordinal α, ΓÑpαˆ αq “ supβăα ΓÑpβ ˆ βq.

(3.154) Claim For every infinite cardinal κ, ΓÑpκˆκq “ κ; hence,3.153.1 |κˆκ| “ κ.

Proof For each n ă ω, nˆ n is finite, so ΓÑpnˆ nq ă ω. Thus,3.153.4

ΓÑpω ˆ ωq “ sup
năω

ΓÑpnˆ nq “ ω.

Now suppose toward a contradiction that the theorem fails, and let κ be the least
cardinal for which it fails. Then κ ą ω, and κ ă Γxκ, κy.3.153.3 Hence,3.153 for some
α ă κ, κ ď Γxα, αy, so κ Ď ΓÑpα ˆ αq. Hence, κ “ |κ| ď |α ˆ α| ď |λˆ λ|, where
λ “ |α| ă κ. Since λ is necessarily infinite, by the minimality of κ, |λˆ λ| “ λ, so
κ ď λ, a contradiction. 3.154

Hence κ ¨ κ “ |κ ˆ κ| “ κ for all infinite cardinals κ, which, as noted above,
suffices to prove the theorem. 3.152

3.9.1 Cardinal exponentiation

(3.152) neatly characterizes (infinite) cardinal addition and multiplication.3.152 Car-
dinal exponentiation, on the other hand, has been a major theme of fundamental
research in set theory. We have already essentially proved the following theorem.

(3.155) Theorem [ZFC] For any cardinal κ, κ ă 2κ.

Proof Considering characteristic functions, we see that 2κ “ |κ2| “ |P κ|.3.128 3.155

The following theorem generalizes Cantor’s diagonal argument and may be used
to prove Theorem 3.157, which states two of the few simple general properties of
cardinal exponentiation in addition to (3.155) that are provable in ZFC.

(3.156) Theorem [ZFC] König’s lemma Suppose xκi | i P Iy and xλi | i P Iy are
cardinal-valued functions, and suppose @β P α κβ ă λβ. Then

ÿ

iPI

κi ă
ź

iPI

λi.

Proof Trivially,
ř

iPI κi ď
ś

iPI λi. We have to show that
ś

iPI λi ď
ř

iPI κi. Let

A “ tpi, αq | i P I ^α P κiu

B “ tf | Fcn f ^dom f “ I ^@i P I fi P λiu.

Then
ř

iPI κi “ |A|, and
ś

iPI λi “ |B|. Suppose f : AÑ B.
We must show that f is not surjective. Let g P B be such that for each i P I, gi

is the least member of λi not in tfpi, αqpiq | α P κiu. Since κi ă λi for each i P I,
gi is well defined, and g ‰ fpi, αq for any i P I and α P κi, so g R im f . 3.128

Note that (3.155) follows from (3.157) by letting κα “ 1 and λα “ 2 for α ă κ.

(3.157) Theorem [ZFC] Suppose κ is an infinite cardinal.

1. κ ă cf 2κ.

2. κ ă κcf κ.
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Proof 1 Suppose f : κ Ñ 2κ. We must show that f is not cofinal in 2κ. For
this it suffices to show that

ř

αăκ κα ă 2κ, where κα “ |fα| for each α ă κ.
This follows from (3.156) by letting λα “ 2κ for every α ă κ, using the fact that
ś

αăκ λα “ p2
κqκ “ 2κ¨κ “ 2κ. 3.157.1

2 By the definition of cofinality, there is a sequence xκα | α ă cf κy such that κα ă
κ for all α ă κ, and

ř

αăcf κ κα “ κ. By (3.156) κ “
ř

αăcf κ κα ă
ś

αăcf κ κ “ κcf κ.
3.157.2 3.157

The following theorem completely characterizes κλ for infinite cardinals in terms
of κcf κ and µλ for µ ă κ.

(3.158) Theorem [ZFC] Suppose κ, λ are infinite cardinals.

1. If κ ď λ then κλ “ 2λ.

2. If µ ă κ and µλ ě κ then κλ “ µλ.

3. If κ ą λ and @µ ă κ µλ ă κ then

1. if cf κ ą λ then κλ “ κ; and

2. if cf κ ď λ then κλ “ κcf κ.

Proof 1 2λ ď κλ ď p2κqλ “ 2κ¨λ “ 2λ.

2 µλ ď κλ ď pµλqλ “ µλ¨λ “ µλ.

3.1 Every function from λ to κ is bounded below κ, so κλ ď
ř

αăκ |α|
λ ď κ¨κ “ κ.

3.2 κ is singular, so there exists a strictly increasing sequence xµα | α ă cf κy of
cardinalsă κ such that κ “

ř

αăcf κ µα. Thus3.156 κ “
ř

αăcf κ µα ă
ś

αăcf κ µα`1 “
ś

αăcf κ µα. Hence, κλ ď
ś

αăcf κ µ
λ
α ď

ś

αăcf κ κ “ κcf κ ď κλ. 3.158

3.9.1.1 The continuum hypothesis

Given (3.155), it is natural to wonder just how big 2κ is relative to κ. The following
is a statement of the simplest possibility.

1. Continuum hypothesis (CH) 2ω “ ω1.

2. Generalized continuum hypothesis(GCH): For every infinite cardinal κ,
2κ “ κ`.

The origin of the name ‘continuum hypothesis’ is Cantor’s observation that 2ω is the
cardinality of the set of real numbers, also known as the continuum. The function
κ ÞÑ 2κ is also known as the continuum function; however, in the generalized
continuum hypothesis it is the hypothesis that is generalized, not the continuum.
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3.9.2 The singular cardinals problem

(3.158) demonstrates the central role played by the function κ ÞÑ κcf κ in the char-
acterization of cardinal exponentiation. Note that if κ is regular then cf κ “ κ,
so κcf κ “ κκ “ 2κ.3.158.1 We will show8.9 7.4 in later chapters that ZFC provides no
information about the size of 2κ for regular infinite cardinals κ beyond that given
by (3.157) and the obvious fact of monotonicity: κ ď λÑ 2κ ď 2λ. These results
have the form of relative consistency statements. Specifically, working in the fini-
tary theory S, we show that if ZF is consistent (which is not provable in ZF if ZF
is consistent) then so is ZFC plus essentially any statement as to the sizes of the
cardinals 2κ for regular cardinals κ, compatible with (3.157) and the monotonicity
condition.

Thus, the investigation of cardinal exponentiation reduces largely to the ex-
amination of the behavior of κcf κ at singular cardinals κ. The singular cardinal
hypothesis is in effect what remains of the generalized continuum hypothesis if its
restriction on the size of 2κ for regular cardinals κ is deleted.

Singular cardinals hypothesis (SCH) For every singular cardinal κ, if 2cf κ ă κ
then κcf κ “ κ`.

Note that SCH follows easily from GCH. Note also that if 2cf κ ě κ then κcf κ “ 2cf κ,
whereas if 2cf κ ă κ then by (3.157.2) κcf κ ě κ`, so SCH simply states that κcf κ

has the least possible value for singular κ.
The consistency of ZFC`␣␣␣ SCH—unlike that of ZFC`␣␣␣GCH—does not follow

from Con ZF. In fact, ConpZFC`␣␣␣ SCHq is equivalent (over S) to the consistency
of the existence of a particular sort of large cardinal (viz., a measurable cardinal κ
of Mitchell order κ``).

On the other hand, the singular cardinals problem also differs from the regular
cardinals (non-)problem inasmuch as in some instances the size of 2κ for a singular
cardinal κ may be inferred from the behavior of the continuum function below
κ. The first theorem along this line was the celebrated result of Silver, which we
state and prove as Theorem 8.216, that if κ is a singular cardinal of uncountable
cofinality, and tλ ă κ | 2λ “ λ`u is stationary in κ, then 2κ “ κ`. (Silver proved
more than this, but this statement gives the spirit of it.) Note that this is a theorem
of ZFC. Prior to Silver’s work it was widely supposed that no such theorem could
be proved in ZFC. Soon after it, Galvin and Hajnal proved (in ZFC) that if ωα
is a strong limit singular cardinal of uncountable cofinality then 2ωα ă ωp2|α|q` .
More is now known about the arithmetic of singular cardinals and related issues.
Countable cofinality remains rather stubborn, but we have the remarkable theorem
of Shelah that if ωω is a strong limit then 2ωω ă ωω4 .

3.10 More basic constructs

3.10.1 Lattices

Definition [C] Suppose pX;ďq is a partial order, Y Ď X, and x P X.

1. x is a lower (upper) bound of Y
def
ðñ for all y P Y , x ď y (x ě y).

2. x is the greatest lower (least upper) bound of Y
def
ðñ x is a lower (upper)

bound of Y and is an upper (lower) bound of the lower (upper) bounds of Y .
In this context, join (meet) and supremum (infimum) are synonyms for least
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upper (greatest lower) bound. Note that since ď is antisymmetric,3.71.1, 3.65.5 if
a join (meet) exists, it is unique, so the definite article is justified.

Definition [C] Suppose ď is a binary relation on a class X.

1. pX;ďq is an upper (lower) semilattice def
“ ď is a partial order and for all

x, x1 P X, the join (meet) of tx, x1u exists.

2. pX;ďq is a lattice def
“ it is both an upper and lower semilattice.

Definition [C] Suppose pX;ďq is an upper (lower) semilattice, and x, x1 P X.
x_ x1 px^ x1q

def
“ the join (meet) of tx, x1u.

It is easy to show that in an upper (lower) semilattice, joins (meets) of finite sets
exist, and they are definable in terms of _ (^). For example, the join of tx, y, zu is
both x_py_ zq and px_ yq_ z. Note that this implies the associative law for join.
The commutative law obviously also holds. The following theorem lists these along
with a third key identity, idempotence; and for lattices the remaining key identity,
absorption.

(3.159) Theorem [C]

1. Suppose pX,ďq is an upper semilattice and x, y, z P X.

1. x_ py _ zq “ px_ yq _ z.
2. x_ y “ y _ x.
3. x_ x “ x.

2. The same holds for ^ when pX;ďq is a lower semilattice.

3. If pX;ďq is a lattice then for any x, y P X, x_ px^ yq “ x^ px_ yq “ x.

Proof Straightforward. 3.159

We may use join and/or meet to define (semi)lattices as algebraic structures.

(3.160) Definition [C] Suppose X is a class.

1. Suppose ¨ is a binary operation on X. pX; ¨q is a semilattice
def
ðñ for all

x, y, z P X

1. x ¨ py ¨ zq “ px ¨ yq ¨ z;
2. x ¨ y “ y ¨ x; and
3. x ¨ x “ x.

2. Suppose _ and ^ are binary operations on X. pX;_,^q is a lattice
def
ðñ pX;_q

and pX;^q are semilattices and the absorption law3.159.3 holds, i.e., for all
x, y P X

x_ px^ yq “ x^ px_ yq “ x.

(3.161) Theorem [C]

1. Suppose pX; ¨q is a semilattice (in the sense of (3.160)).
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1. Let
ď“ txx, yy P 2X | x ¨ y “ yu.

Then pX;ďq is an upper semilattice.
2. Let

ď“ txx, yy P 2X | x ¨ y “ xu.

Then pX;ďq is a lower semilattice.

2. Suppose pX;_,^q is a lattice.

1. @x, y P X x_ y “ yØx^ y “ x.
2. Let

ď“ txx, yy P 2X | x_ y “ yu “ txx, yy P 2X | x^ y “ xu.

Then pX;ďq is a lattice.

Proof Straightforward. 3.161

3.10.2 Boolean algebras

Definition [C] Suppose X “ pX;_,^q is a lattice.

1. X is distributive
def
ðñ for all x, y, z P X

x^ py _ zq “ px^ yq _ px^ zq;

equivalently,56 for all x, y, z P X

x_ py ^ zq “ px_ yq ^ px_ zq.

2. X is bounded
def
ðñ it has both a greatest and a least element. In this case 1

def
“ the greatest and 0 def

“ the least element.

3. Suppose X is bounded. Elements x, y P X are complementary
def
ðñ x_ y “ 1

and x^ y “ 0. We also say that each is complementary to, complements, or
is a complement of the other.

4. X is complemented
def
ðñ X is bounded and for all x there exists a unique y

that complements x.

5. Suppose X is complemented. Then for each x P X, the complement of x def
“ ␣x

def
“ the (unique) element complementary to x.

6. X is a boolean algebra
def
ðñ X is distributive and complemented.

56Suppose for all x, y, z P X

x^ py _ zq “ px^ yq _ px^ zq,

and suppose x, y, z P X. Then

x_ py ^ zq “
`

x_ px^ zq
˘

_ py ^ zq

“ x_
`

px^ zq _ py ^ zq
˘

“
`

px_ yq ^ x
˘

_
`

px_ yq ^ z
˘

“ px_ yq ^ px_ zq.
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The following definition summarizes the features of a boolean algebra as an opera-
tional structure.

Definition [C] A boolean algebra is a structure A “ pA;_,^,1,0q with the fol-
lowing properties:

1. For all x, y, z P A

x_x “ x, x^x “ x,

x_ y “ y_x, x^ y “ y^x,

x_py_ zq “ px_ yq_ z, x^py^ zq “ px^ yq^ z,

px_ yq^ z “ px^ zq_py^ zq, px^ yq_ z “ px_ zq^py_ zq.

2. For each x P A there exists a unique element ␣x P A such that

x_␣x “ 1 and x^␣x “ 0 .

(3.162) Theorem [C] Suppose A is a boolean algebra and x, y P |A|.

1. ␣1 “ 0 and ␣0 “ 1;

2. ␣px_ yq “ ␣x^␣ y and ␣px^ yq “ ␣x_␣ y; and

3. ␣␣x “ x.

Proof Straightforward. 3.162

(3.162) shows that ␣ is an isomorphism of A with the structure p|A|;^,_,0,1q,
which is therefore also a boolean algebra.

(3.163) We say that _ and ^ are dual to each other, as are 1 and 0. ␣ is dual to
itself. We refer to such correspondences in general as duality.

The corresponding partial order3.161.2.2 is given by

x ď yØx_ y “ yØx^ y “ x.

The combination rules for boolean algebras were originally propounded as applying
to logical operations. This was extensively developed by George Boole, hence the
name given these structures. It was Boole’s intention that the individuals of an
algebra A be properties regarded extensionally, i.e., each property being identified
with the collection of all things with that property (as opposed to intentionally,
i.e., with reference to the inherent meaning of the property—the meaning of the
assertion that a thing has that property).

From this extensional viewpoint the paradigm of a boolean algebra is an algebra
of subclasses of a given class.

Definition [C]

1. A boolean algebra pX;ďq is a set-algebra
def
ðñ ď is the relation Ď.

2. Suppose U is a set. The set-algebra of U def
“ pPU ;Ďq. Note that in this

case,

1. 1 “ U ;
2. 0 “ 0;
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3. for any x Ď U , ␣x “ Uzx; and
4. for any x, y Ď U , x_ y “ xY y and x^ y “ xX y.

In fact,3.167 this paradigm is general: every boolean algebra is isomorphic to a set-
algebra.

(3.164) Definition [C] Suppose A is a boolean algebra. An ideal57 on A is a subset
I of A such that

1. @x P I @y P A px^ y P Iq, i.e., @x P I @y ď x y P I,

2. @x, y P I x_ y P I, and

3. 1 R I.

Definition [C] Suppose A is a boolean algebra and 1 ‰ x P A. The principal ideal
of x def

“

rxs
def
“ ty P A | y ď xu.

The dual3.163 notion to ideal is filter.

Definition [C] Suppose A is a boolean algebra. A filter on A is a subclass F of |A|
such that

1. @x P F @y ě x y P F ,

2. @x, y P F x^ y P F , and

3. 0 R F .

Definition [C] Suppose X Ď |A| is an ideal (a filter) on a boolean algebra A. The
dual filter (dual ideal) of X def

“ X˚
def
“ t␣x | x P Xu.

57The notion of an ideal was first introduced by Ernst Kummer in the theory of rings, and he
used them to prove certain special cases of Fermat’s last theorem. An ideal in a ring R is a subset
I of R such that

1. @x P I @y P |R| x ¨ y P I, and

2. @x, y P I x` y P I.

For any nonzero x P R the set rxs of multiples of x is clearly an ideal. An ideal formed in this
way is principal.

Suppose R1 is a ring extension of R and let x1 be a any nonzero element of R1. The set rx1sXR
of multiples of x1 that lie in R is clearly an ideal in R, which may or may not be principal. The
multiplicative properties of R1 are reflected in the properties of these ideals. In particular, we can
define operations on ideals in R that correspond to the operations of multiplication and greatest
common divisor in R1.58The utility of ideals, of course, does not lie in this trivial circumlocution,
but rather in the fact that ideals in a ring R behave in general as though they were formed
from elements of an extension of R, even when no such extension exists. Ideals, in other words,
correspond to “ideal” elements of (an extension of) R, whence the name.

58We define the product IJ of ideals I and J by

IJ
def
“ tx ¨ y | x P I ^ y P Ju;

and we define the greatest common divisor of I and J by

gcdpI, Jq
def
“ tx` y | x P I ^ y P Ju.
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For x P |A|zt0u, the principal filter of x def
“

txu
def
“ tx P A | x ě au.

Definition [GB] An ideal (filter) on a boolean algebra A is maximal
def
ðñ it is not

included in any larger ideal (filter). A maximal filter is also called an ultrafilter.

(3.165) Theorem [GB] A filter F on a boolean algebra A is an ultrafilter iff for
every a P |A|, either a P F or ␣ a P F .

Proof Straightforward. 3.165

(3.166) Definition [GB] Suppose A is a boolean algebra.

1. A is complete
def
ðñ every class X Ď |A| has a least upper bound, denoted

Ž

X,
which is also called the join of X. Clearly this is equivalent to the existence of
greatest lower bounds, also called meets.

2. Suppose B is a subalgebra of A. B is a complete subalgebra of A
def
ðñ for

every X Ď |B|,
Ž

X as computed in A is in B. (Note that it is not enough
that B be a complete algebra in its own right.)

(3.167) Theorem: Stone representation theorem [C] Suppose A is a boolean
algebra and A is a set. A is isomorphic to an algebra of sets of ultrafilters via the
correspondence a ÞÑ the set of ultrafilters F on A such that a P F .

Proof This is a straightforward exercise in boolean algebra. 3.167

3.10.3 Stationarity

(3.168) Definition [ZF]

1. A function f from ordinals to ordinals is regressive
def
ðñ

@α P dom f pα ą 0Ñ fα ă αq.

We also say that f presses down in this case.59

2. A subset S of a limit ordinal α is stationary
def
ðñ it intersects every closed

unbounded3.142.3 subset of α.

3. Suppose γ P Ord and @α P γ Aα Ď γ. The diagonal intersection of xAα | α P γy
def
“ ∆xAα | α P γy

def
“ tβ P γ | @α P β β P Aαu.

Note that if cf α “ ω, a subset A of α is stationary iff αzA is bounded below α, so
the notion of stationarity is interesting only for (subsets of) ordinals of uncountable
cofinality.

We should point out that there are important variations on the definitions of
closed unbounded and stationary. The definitions given above are historically pri-
mary.

59Note that regressive function is just a synonym of choice function specific to this application.
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(3.169) Theorem [ZF] Suppose α is a limit ordinal of uncountable cofinality.

1. Suppose C,C 1 are closed unbounded in α. Then C X C 1 is closed unbounded
in α.

2. Suppose C is closed unbounded and S is stationary in α. Then S X C is
stationary in α.

Proof 1 C X C 1 is obviously closed, so it suffices to show that it is unbounded.
Suppose β0 ă α. We must show that there exists β P C XC 1 such that β ą β0. To
this end define a sequence β0 ă β1 ă ¨ ¨ ¨ , such that for each n P ω,

1. β2n`1 is the least member of C above β2n; and

2. β2n`2 is the least member of C 1 above β2n`1.

That these exist follows from the fact that C and C 1 are unbounded. Let β “
supnPω βn. Since cf α is uncountable, β P α. Since C and C 1 are closed in α,
β P C X C 1. 3.169.1

2 This follows immediately from (3.169.1). 3.169.2 3.169

Theorem 3.169.2 justifies the following definition.

(3.170) Definition [ZF] Suppose α is a limit ordinal of uncountable cofinality. The
closed unbounded filter over α is the set of X Ď α such that X includes a closed
unbounded subset of α.

The dual of the closed unbounded filter over α is the nonstationary ideal over α,
i.e., the set of nonstationary subsets of α.

The closed unbounded filter and nonstationary ideal over α are respectively a
filter and an ideal on P α. This reflects the following terminological convention.

(3.171) We generally refer to an ideal or filter or other similar object as being on
a boolean algebra A. If the algebra is the full subset algebra of a set S then we will
also refer to the object as being over S.

Suppose κ is an uncountable regular cardinal and α is a limit ordinal of cofinality
κ. Then there is a closed unbounded subset C of α of order type κ. By (3.169)
every closed unbounded subset of α includes a closed unbounded subset of C, and
every stationary subset of α includes a stationary subset of C; and these correspond
respectively to closed unbounded and stationary subsets of κ. It follows that for
all practical purposes the discussion of closed unbounded and stationary subsets of
ordinals of cofinality κ may be restricted to subsets of κ per se. We will therefore
henceforth focus particularly on this case.

(3.172) Theorem [ZF] Suppose κ is an uncountable regular cardinal.

1. Suppose β ă κ and for each α ă β, Cα is closed unbounded in κ. Then
Ş

αăβ Cα is closed unbounded in κ.

2. Suppose for each α ă κ, Cα is closed unbounded in κ. Then ∆αăκCα is closed
unbounded in κ.
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Proof 1 Obviously
Ş

αăβ Cα is closed, so we have only to show that it is un-
bounded. Let γ0,0 be an arbitrary element of κ. For n P ω and α ă β, define γn,α
as follows:

1. If α ą 0 then γn,α is the least member of Cα that exceeds γn,δ for all δ ă α.

2. If n ą 0 then γn,0 is the least member of C0 that exceeds γm,δ for every m ă n
and δ ă β.

Since κ is regular, β ă κ, and every Cα is unbounded, this construction is legitimate.
Let γ “ supnPω,αăβ γn,α. Note that γ “ supnPω γn,α for every α ă β. Since cf κ “ κ
is uncountable, γ P κ, and since each Cα is closed, γ P Cα for each α ă β.

2 Let C “ ∆αăκCα. We first show that C is closed. Suppose β ă κ and C X β
is unbounded in β. We will show that β P C, i.e., for all α ă β, β P Cα. To this
end, suppose α ă β. By definition, for any γ P Czpα` 1q, γ P Cα. Thus, Cα X β is
unbounded in β, hence β P Cα.

Next we show that C is unbounded. Suppose γ0 ă κ. For n P ω, let γn`1 be the
least element of

Ş

αăγn
Cα above γn. Let γ “ supnPω γn. Then γ P Cα for every

α ă γ, so γ P C. 3.172

(3.173) Theorem: Fodor’s lemma [ZFC] Suppose κ is a limit ordinal of uncount-
able cofinality, S is a stationary subset of κ, and f : S Ñ κ is regressive. Then f
is constant on a stationary subset of κ, i.e., for some α P κ, fÐtαu is stationary
in κ.

Proof Suppose toward a contradiction that f is not constant on any stationary
set. For each α P κ, let Cα be a closed unbounded subset of κ such that @β P
pS X Cαq fβ ‰ α. Let C “ ∆αăκCα. Then C is closed unbounded, so there exists
β P SXCzt0u. Let α “ fβ. Then α ă β, since f is assumed to be regressive. Since
β P C and α ă β, β P Cα, so fβ ‰ α; contradiction. 3.173

3.10.4 Normality

The closed unbounded filter and the nonstationary ideal over a cardinal κ, together
with Fodor’s lemma, are instances of the important phenomenon of normality.

(3.174) Definition [ZF] Suppose H is an ideal (filter) over a set S.

1. The dual filter (ideal) to H def
“ H˚

def
“ tX Ď S | SzX P Hu.

2. H` def
“ pP SqzH

`

pP SqzH˚
˘

.

3. The following terminology is used, often with a prefix such as ‘H-’ for speci-
ficity.

1. The sets in an ideal H are said to be small.
2. The sets in a filter H are said to be large.
3. The sets in H` are said to be nonsmall or stationary.
4. We also use almost in the expected way, e.g., subsets of S are almost

equal iff their symmetric difference is small.
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(3.175) Definition [ZFC] Suppose F is a filter over a cardinal κ (i.e., a filter on
P κ).

1. F is principal
def
ðñ there exists x P S such that @X P F x P X.

2. Suppose λ is a cardinal. F is λ-complete
def
ðñ for every γ ă λ and f : γ Ñ

F ,
Ş

αăγ fα P F . (F is closed under intersections of fewer than λ of its
elements.)

3. F is normal
def
ðñ F is nonprincipal, κ-complete, and closed under diagonal

intersections of κ sequences.

Suppose I is an ideal over κ. Then I is principal, λ-complete, or normal according
as its dual filter I˚ is.

(3.176) Theorem [ZF] Suppose F is a filter over a cardinal κ.

1. If F is nonprincipal then every set in F is infinite. Hence, κ is infinite.

2. If F is nonprincipal and κ-complete then κ is regular.

3. If F is normal then κ is uncountable (and regular).

Proof 1 For every α P κ, κztαu P F . If X P F and X is finite then 0 “
X X

Ş

αPXpκztαuq P F ; contradiction.

2 By (3.176.1) κ is infinite. For each α ă κ, κzα “
Ş

βăα κztβu P F , since F is
nonprincipal and κ-complete. Suppose κ “

Ť

tλα | α ă µu for some µ ă κ. As we
have just shown, @α ă µ pκzλαq P F , so by κ-completeness, 0 “

Ş

αăµpκzλαq P F ;
contradiction.

3 It suffices to show that κ ‰ ω. Suppose the contrary. For each n P ω let
Xn “ ωzpn ` 2q. Since F is nonprincipal, each Xn P F . Let X “ ∆nPωXn. Then
m P X iff @k ă m m P Xk. But if m ą 0 then m R Xm- , so X “ t0u, which is not
in F because F is nonprincipal. 3.176

(3.177) Theorem [ZFC] Suppose I is a nonprincipal κ-complete ideal over a car-
dinal κ. Then I is normal iff for every X P I` and f : X Ñ κ, if f is regressive
then Dα P κ fÐtαu P I` (i.e., if f is regressive on an I-stationary set then f is
constant on an I-stationary set.)

Proof Let F “ I˚, the filter dual to I.

ÑÑÑ Suppose I is normal and f is regressive on X P I`. Suppose toward a con-
tradiction that @α P κ fÐtαu P I. As in the proof of (3.173) for each α ă κ let
Yα “ κzfÐtαu P F . Let Y “ ∆αăκYα and let Y 1 “ Y zt0u. By normality, Y 1 P F ,
so Y 1 XX ‰ 0. Suppose α P Y 1 XX. Let β “ fα ă α. Then α P Yβ “ κzfÐtβu,
so β ‰ fα; contradiction.
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ÐÐÐ Suppose for every X P I` and f : X Ñ κ, if f is regressive then Dα P κ fÐtαu P
I`. To show that I is normal, suppose for each α ă κ, Xα P F , let X “ ∆αăκXα,
and suppose toward a contradiction that X R F , i.e., Y “ κzX P I`. For each
α P Y let fα be the least β such that α R Xβ . Then f is regressive on Y , so by
hypothesis there exists β P κ and Y 1 P I` such that Y 1 Ď Y and @α P Y 1 fα “ β.
Then Y 1XXβ “ 0. Since Xβ P F , Y 1 P I, contradicting the fact that Y 1 P I`. 3.177

(3.178) Theorem [ZFC] A normal filter (over an uncountable regular cardinal)
contains only stationary sets.

Proof Suppose is F is a normal filter on the uncountable cardinal κ. Suppose
toward a contradiction that A P F is nonstationary. Let C Ď κ be closed unbounded
in κ and disjoint from A, so C P F˚. For α P κ let

fpαq “

#

0 if α P C
suptαX Cu if α R C.

Since C is closed, if α R C then C X α is bounded below α, so suptα X Cu ă α,
and f is therefore regressive. Since F is normal, f is constant on a set B P F`.
The constant value of f on B cannot be any β ą 0, because for all α ă κ, fpαq “
βÑα ă infpCzpβ ` 1qq. Since | infpCzpβ ` 1qq| ă κ, and F is nonprincipal and
κ-complete, this set is not in F` (because its complement is in F ). So the constant
value of f on B is 0; whence, B Ď C Y inf C. In other words, Bz inf C Ď C. Since
F is nonprincipal and κ-complete, inf C P F˚, so Bz inf C P F`; hence, C P F`,
contradicting the fact that C P F˚. 3.178

3.10.5 Trees

In the interest of efficiency, we collect here some basic definitions and theorems
relating to trees, which are structures that arise naturally in several contexts in the
remainder of this book. We will restrict our attention to sets for convenience.

(3.179) Definition [C]

1. A tree def
“ a partial order pT ;ăq3.73 such that T is a set, and for each a P T ,

the set tb P T | b ă au of ă-predecessors of a is wellordered by ă.

2. Suppose pT ;ăq is a tree.

1. For a P T , the order of a
`

in pT ;ăq
˘ def
“ o a def

“ the order type of tb P T |
b ă au with respect to ă.

2. The height of pT ;ăq def
“ htpT ;ăq def

“ to a | a P T u. Note that htpT ;ăq is
an ordinal.

3. A branch of pT ;ăq is a subset of pT ;ăq that is linearly ordered by ă and
is maximal with respect to this condition.

4. The members of T are often referred to as nodes.

Since any wellordered set is uniquely bijective with an ordinal, we may identify
a P T with the unique order-preserving bijection s : o a bij

Ñ tb P T | b ă au. The
following definition describes trees from this point of view.

(3.180) Definition [C]
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1. Suppose s is an ordinal sequence and α ď dom s (i.e., α P dom s or α “ dom s,
since dom s is an ordinal). Then the initial segment of s of length α def

“ s æα.

s æα is a proper initial segment of s
def
ðñ it is a proper subset of s, i.e.,

α ă dom s.

2. T is a tree
def
ðñ T is a set of ordinal sequences and @t P T @α P dom s s æα P

T , i.e., T is closed under the formation of initial segments.

3. Suppose T is a tree.

1. T is a tree on M
def
ðñ @s P T im s ĎM .

2. b is a branch of T
def
ðñ b is an ordinal sequence all of whose proper initial

segments are in T , but b R T .

3. The height of T def
“ htT def

“
Ť

sPT dom s.

Given a tree in the second sense,3.180 we obtain a tree in the first sense,3.179 by letting
s ď tØ s Ď t. (As always, ‘ă’ and ‘ď’ refer respectively to corresponding strong
and weak order relations.)

Trees occur in a variety of contexts, in which special conventions may be apply.
The following definition is such a case.

(3.181) Definition [C] pT ;ďq is a sequence tree on a set M def
“ T is a tree of finite

sequences on M in the sense of (3.180), and ď is the relation of reverse inclusion,
i.e., s ďT tØ t Ď s.

We may describe the order relation on a sequence tree pT ;ďq by saying that T
grows downward. The rationale for this choice is given by the following theorem.

(3.182) Theorem [ZF]

1. Suppose M is a wellordered set and pT ;ăq is a sequence tree on M . Then T
has an infinite branch iff ă is not wellfounded.

2. [DC] Suppose M is an arbitrary set and pT ;ăq is a sequence tree on M . Then
T has an infinite branch iff ă is not wellfounded.

Proof 1 Let W be a wellordering of M . Suppose b is an infinite branch of T .
Let B “ tb æn | n P ωu. Then B Ď T , and B has no ă-minimal member, so ă
is not wellfounded. Conversely, suppose ă is not wellfounded, and let X Ď T be
nonempty with no ă-minimal member. Let s0 P X be arbitrary, and use recursion
to define a sequence xsn | n P ωy such that for each n P ω, sn P X and sn`1 is the
W -least element of the set ts P X | s ă sny. Then

Ť

nPω s
n is an infinite branch of

T . 3.182.1

2 We modify the preceding proof to use DC.3.140.4 Suppose X Ď T is nonempty
and has no ă-minimal member. Let s0 P X be arbitrary. By DC there exists a
function xsn | n P ωy such that for each n P ω, sn P X and sn`1 ă sn.

Ť

nPω s
n is

an infinite branch of T . 3.182.2 3.182

Theorem 3.182.2, equating wellfoundedness to the nonexistence of infinite de-
scending sequences, is the most important consequence of DC and the reason for
its frequent inclusion as an axiom in situations where AC is not available.



244 CHAPTER 3. THE THEORY OF MEMBERSHIP

(3.183) Definition [ZF]

1. Suppose s, t P Seq.

1. t extends s
def
ðñ s Ď t.

2. Suppose t extends s.

1. t properly extends s
def
ðñ |t| ą |s|.

2. t immediately extends s
def
ðñ |t| “ |s| ` 1.

2. Suppose T is a sequence tree.

1. Suppose s P T .

1. Ts
def
“ tt P Seq | s ⌢ t P T u.

2. Tpsq
def
“ tt P T | t Ď s_ s Ď tu “ tt P T | t Ď su Y ps ⌢ Tsq.

2. Suppose n P ω. T |n
def
“ ts P T | |s| ď nu. If T is a set of trees then

T |n def
“ tT |n | T P T u.

3. rT s def
“ the set of infinite branches of T .

3. We extend the definition of the concatenation operation on sequences to apply
to a sequence s and a set S of sequences:

s ⌢ S
def
“ ts ⌢ t | t P Su.

(3.184) Theorem [ZF] Suppose S and T are sequence trees on a wellordered set
M .

1. If S and T are wellfounded then there exists an order-preserving function f :
S Ñ T iff rkS ď rkT .60

2. If S is wellfounded and T is not wellfounded then there exists an order-
preserving function f : S Ñ T .

3. If S is not wellfounded and T is wellfounded then there does not exist an
order-preserving function f : S Ñ T .

Proof In general for a sequence tree R on a set M , define the rank of s in R
to be rkRs if Rs is wellfounded. R is wellfounded iff Rxmy is wellfounded for
every xmy P R, in which case, by definition, rkR “

Ť

trkRxmy ` 1 | xmy P Ru,
which is the least ordinal greater than rkRxmy for every xmy P R. Therefore also,
rkRs “

Ť

trkRs ⌢xmy ` 1 | s ⌢xmy P Ru.

1 Suppose S and T are wellfounded. Suppose f : S Ñ T is order-preserving.
Then it is easy to show by Ě-induction (from the bottom up on these trees that
“grow downward”) that for all s P S, rkSs ď rkTfs, so rkS ď rkT .

Conversely, suppose rkS ď rkT . We will define an order-preserving f : S Ñ T
be by Ď-recursion (from the top down) so that @s P S rkSs ď rkTfs. Let f0 “ 0 (0
being the highest node of any sequence tree). Now suppose fs has been generated.
Let t “ fs. By construction,

Ť

trkSs ⌢xmy ` 1 | xs ⌢xmy P Su “ rkSs ď rkTt “
Ť

trkTt ⌢xmy ` 1 | t ⌢xmy P T u. Hence, for every s ⌢xmy P S there exists t ⌢xny P T

such that rkSs ⌢xmy ď rkTt ⌢xny, and we let fps ⌢xmyq “ t ⌢xny, where n is the first
such n PM . 3.184.1

60f is order-preserving
def
ðñ for any s ⫋ t P S, fs ⫋ ft.
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2 We will define an order-preserving f : S Ñ T by Ď-recursion so that @s P S, Tfs
is not wellfounded. Again we let f0 “ 0. Now supposing fs has been generated
such that Tfs is not wellfounded, we let n be the first element of M such that
Tpfsq ⌢xny is not wellfounded, and let fps ⌢xmyq “ pfsq ⌢xny for all s ⌢xmy P S.

3.184.2

3 Note that what we have just done is to map S order-preservingly into a single
infinite branch of T—the canonical infinite branch, if you will, as defined by the
fixed wellordering of M . If S is not wellfounded, let x P ωM be the similarly defined
infinite branch of S. If f : S Ñ T is order-preserving, then

Ť

tfpx ænq | n P ωu is
an infinite branch of T , which contradicts the wellfoundedness of T . 3.184

3.11 Topology

(3.185) Definition [ZF] A topology is a set T of sets that is closed under finite
intersections and arbitrary unions.

Note that
Ť

T is necessarily a member of T , because T is closed under arbitrary
unions. Similarly, 0 P T , because

Ť

0 “ 0. If X is a set and T is a topology and
X “

Ť

T , we say that T is a topology for or on X. The pair X “ xX, T y is said
to be a topological space. Since X and X are definable from T , they are essentially
superfluous entities. We accord them independent recognition primarily because
a given set X may be given different topologies; indeed, it may be a constituent
of other sorts of mathematical structures as well. We routinely substitute ‘X’ for
‘X ’ when it is clear which topology is intended. In the context of a particular
topological space xX, T y, we refer to the elements of X as points, ans to subsets of
X as pointsets, or simply sets.

Definition [ZF] Suppose X “ xX, T y is a topological space. Then

1. A pointset A is open
def
ðñ A P T .

2. A pointset A is closed
def
ðñ XzA is open.

3. If x P X and A Ď X, then A is a neighborhood of x
def
ðñ there is an open set

B such that x P B Ď A.

The following theorem gives a good feeling for the meaning of openness.

(3.186) Theorem [ZF] Suppose xX, T y is a topological space, and A Ď X. A is
open iff A includes a neighborhood of each of its points iff A is a neighborhood of
each of its points.

Proof Straightforward. 3.186

Intuitively, an open set is one that “surrounds” each of its points, or—to put it
another way—one that contains every point “sufficiently close to” each of its points,
or—to put it yet another way—one that does not “end abruptly”. The following
theorem is in effect a restatement of the definition3.185 of ‘topology’ in terms of
closedness as opposed to openness:

(3.187) Theorem [ZF] The set of closed sets in a topological space is closed under
finite unions and arbitrary intersections.
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Proof Straightforward. 3.187

Definition [ZF] Suppose xX, T y is a topological space, x P X, and A Ď X. x is a

limit point (also accumulation or cluster point) of A
def
ðñ every neighborhood of x

contains a point of A other than x.

Intuitively, x is a limit point of A iff there are points in A, other than x, that are
“arbitrarily close to” x. The following theorem, whose proof is straightforward,
gives an intuitively useful characterization of closedness in terms of limit points.

(3.188) Theorem [ZF] A pointset is closed iff it contains all of its limit points.

Proof Straightforward. 3.188

Definition [ZF] Suppose xX, T y is a topological space and A Ď X.

1. The interior A def
“ Ao

def
“

Ť

tG Ď A | G is openu.

2. The closure of A def
“ Ac

def
“

Ş

tF Ě A | F is closedu.

3. The boundary of A def
“ BA

def
“ AczAo.

Note that Ao and Ac are respectively open and closed by virtue of Definition 3.185
and Theorem 3.187, respectively. BA may also be characterized as the intersection
of Ac and pXzAqc. Ac is also denoted by ‘Ā’.

Definition [ZF] Suppose xX, T y is a topological space and A Ď X. A is dense
def
ðñ every nonempty open set intersects A, i.e., @G P T pG ‰ 0ÑGXA ‰ 0q.

For example, the set Q of rational numbers is dense in R.

3.11.1 Subspaces and relative topologies

(3.189) Definition [ZF]

1. Suppose xX, T y is a topological space and Y Ď X. The relative topology on
Y

def
“ tAX Y | A P T u. (It is trivial to verify that this is a topology.)

2. If U is any topology on Y , then xY,Uy is a subspace of xX, T y def
ðñ U is the

relative topology on Y .

3.11.2 Generating topologies

Definition [ZF]

1. A base for a topological space xX, T y def
“ a set B of open sets such that every

open set is a union of sets in B.61

2. A neighborhood base for a point x P X is a collection B of neighborhoods of
x such that every neighborhood of x includes a member of B.

61By definition the union of 0 is 0, so the empty subset of X is the union of the empty subset
of B, and need not be a member of B.
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(3.190) Theorem [ZF] A collection B of open sets is a base for xX, T y iff for every
x P X, tB P B | x P Bu is a neighborhood base for x.

Proof Straightforward. 3.190

Note that not every collection B of subsets of a set X is the base for a topology
on X. The following fact is obvious:

(3.191) Theorem [ZF] In order that a topology be generated by closing B under
unions, it is necessary and sufficient that the intersection of any two members of B
be a union of members of B, and for this it is necessary and sufficient that for any
A,B P B, for any x P AXB, there is a set C P B such that x P C Ď AXB.

Proof Straightforward. 3.191

On the other hand, given any collection B of subsets of X, if we close B under the
operations of finite intersection and arbitrary union, we always obtain a topology
on X. This motivate the following definition:

Definition [ZF] Suppose xX, T y is a topological space.

1. A subbase for xX, T y is a collection of open sets such that every set in T is a
union of finite intersections of sets in B.

2. A neighborhood subbase for xX, T y is a collection B of open sets such that the
collection of finite intersections of sets in B constitutes a neighborhood base
for T .

Clearly, if B is a subbase for T , then T is the minimum topology that includes B.
That is to say, any topology that includes B includes T . We also say that T is the
smallest, weakest, or coarsest topology that includes B. This observation is worth
stating as a theorem:

(3.192) Theorem [ZF] Suppose B is a collection of subsets of a set X. Then there
is a minimum (smallest, weakest, coarsest) topology on X that includes B, and B
is a subbase for this topology.

3.11.3 Separation and countability properties

A separation property is a principle of the form: If A1 and A2 are disjoint sets in
the classes Γ1 and Γ2, respectively, then there exist disjoint sets B1 and B2 in the
classes Σ1 and Σ2, respectively, such that A1 Ď B1 and A2 Ď B2. Obviously, many
variations may be played on this theme. The most important of these in topology
is the Hausdorff property :

Definition [ZF] A topological space is Hausdorff
def
ðñ for any distinct points x and

y there are disjoint open sets X and Y such that x P X and y P Y .

Non-Hausdorff topologies are uncommon in most applications, so much so that
some authors make the Hausdorff property part of the definition of a topology.
Note that any subspace of a Hausdorff space is Hausdorff.

Most interesting topological spaces are uncountable, but these often have cer-
tain important aspects of countability. The following definition singles out some
important classes of topologies in terms of countability:

(3.193) Definition [ZF] A topology is:
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1. first countable
def
ðñ every point has a countable neighborhood base;

2. second countable
def
ðñ there is a countable base for the topology;

3. separable
def
ðñ there is a countable dense set.

3.11.4 Continuity

Definition [ZF] Suppose xX,Sy and xY, T y are topological spaces and f : X Ñ Y .
Then f is continuous iff for every B P T , fÐB P S. f is continuous at a point
x P X iff for every neighborhood B of fx, there is a neighborhood A of x such that
fÑA Ď B.

The following theorem shows that these definitions of ‘continuous’ and ‘continuous
at a point’ have the appropriate relationship:

(3.194) Theorem [ZF] A function f : X Ñ Y is continuous iff for all x P X, f is
continuous at x.

Proof Suppose f : X Ñ Y is continuous. Let x P X be given. We claim that f is
continuous at x. Suppose therefore that B is a neighborhood of fx. Let B1 be an
open subneighborhood of fx, and let A “ fÐB1. Then x P A, and A is open by
virtue of the continuity of f . By construction, fÑA Ď B1 Ď B as desired.

Now suppose that f is continuous at every point in X. Suppose H Ď Y is an
arbitrary open set, and let G “ fÐH. We claim that G is open. It is enough
to show that for any x P G there is a neighborhood of x included in G. Suppose
therefore that x P G. Then H is a neighborhood of fx, so by the continuity of f
at x there is a neighborhood A of x such that x1 P AÑ fx1 P H. But this means
that x1 P AÑx1 P fÐH “ G, so A Ď G, as desired. 3.194

3.11.5 Homeomorphism

Definition [ZF] A homeomorphism of topological spaces xX, T y and xY,Uy def
“ a

bijection f : X Ñ Y such that both f and f´1 are continuous. We say that such
an f is bicontinuous. xX, T y and xY,Uy are homeomorphic

def
ðñ there exists a

homeomorphism of them.

3.11.6 Product topology

We have previously discussed one way to create a new topology from a given one,
viz., the process of relativization.3.189 We now introduce another powerful such
technique: the formation of a product topology. Suppose xX, T y and xY,Uy are
topological spaces. There is a natural topology on the product X ˆ Y “ txx, yy |
x P X ^ y P Y u, known as the product topology. We will presently give a direct
definition of the product topology, but an understanding of its true significance
depends on an analysis in terms of the projection mappings, which we now define.

Definition [ZF] Suppose X and Y are sets. The projection mappings πX : XˆY Ñ
X and πY : X ˆ Y Ñ Y are defined by:

πXxx, yy “ x and πY xx, yy “ y.
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The product topology on X ˆ Y is designed so that these projection mappings
are continuous. Specifically, it is the minimum topology on X ˆ Y with respect
to which the projection mappings are continuous, and we may take this as the
definition of the product topology; but if we do so it is incumbent upon us to show
that there is a minimum such topology. For this, Theorem 3.192 is useful. Let’s
see how this is done. πX is continuous iff for any open set A Ď X, πXÐA is open.
In other words,

(3.195) txx, yy | x P Au is open.

Similarly, πY is continuous iff for every open B Ď Y ,

(3.196) txx, yy | y P Bu is open.

The minimum topology on X ˆ Y that contains all sets of the form (3.195) and
(3.196) consists of arbitrary unions of finite intersections of these sets.3.192 A little
reflection reveals that this topology consists of arbitrary unions of sets A ˆ B
pA P T , B P Uq. Intuitively, these are (greatly) generalized “open rectangles” in
X ˆ Y . We therefore make the definition:

(3.197) Definition [ZF] The product of topological spaces xX, T y and xY,Uy def
“ the

space xXˆY,Vy, where the product topology V has as a base tAˆB | A P T ^B P
Uu.

According to the discussion leading up to this definition, we have the equivalent
definition in terms of the continuity of the projection mappings:

(3.198) Theorem [ZF] The product topology is the weakest topology on the cartesian
product with respect to which the projection mappings are continuous.

By iteration of the product operation applied to pairs of spaces we can form the
product of any finite set of spaces. A little work shows that any arrangement of the
factor spaces leads to the same product space up to homeomorphic equivalence. We
can also form the product of infinitely many spaces. The universe of the product
space is the cartesian product

ź

iPI

Xi
def
“

␣

xxi | i P Iy
ˇ

ˇ@i P I xi P Xi

(

.

The projection mappings πi are defined by:

πix “ xi,

where x “ xxi | i P Iy. The product topology is the minimum topology with respect
to which the projections are continuous, i.e., the minimum topology containing the
sets

(3.199)
␣

xxi | i P Iy
ˇ

ˇxi0 P A
(

,

with i0 P I and A P Ti0 .
In other words, the sets (3.199) constitute a subbase for the product topology.

We therefore have:

Definition [ZF] Suppose xXi, Tiy pi P Iq are topological spaces. The product
ś

iPIxXi, Tiy
def
“ the topological space xX, T y, where X “

ś

iPI Xi and a base for T
consists of the sets

␣

xxi | i P Iy
ˇ

ˇ@k P n xik P Ak
(

,

where n P ω, @k P n ik P I, and @k P n Ak P Tik .
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In other words, the product topology is generated by basic open sets that are
cartesian products of open subsets of the factor spaces all but finitely many of
whose factors are the entire respective factor space.

(3.200) Theorem [ZF] A product of two (and therefore of finitely many) Hausdorff
spaces is Hausdorff. A product of countably many first-countable spaces is first-
countable.

Proof Straightforward. 3.200

3.11.7 Convergence

Any topology may be characterized in terms of convergence, if the latter notion is
understood in a suitably general sense. For us it will suffice to consider convergence
in the usual sense of ω-sequences. This works well for first-countable Hausdorff
spaces, and we will limit our consideration to this case.

(3.201) Theorem [ZF] If x is a point in a first-countable space,3.193.1 then there is
a sequence xAn | n P ωy of neighborhoods of x that constitutes a neighborhood base
for x such that A0 Ě A1 Ě . . . .

Proof Let xBn | n P ωy be an enumeration of a countable neighborhood base for
x. Define An “

Ş

mďnBm. Then xAn | n P ωy is as desired. 3.201

Definition [ZF] A sequence s “ xsn | n P ωy converges to a point x
def
ðñ for every

neighborhood A of x, s is eventually in A, i.e., DN P ω @n ą N sn P A.

(3.202) Theorem [ZFC] Suppose A is a set in a first-countable topological space.
The following are equivalent:

1. A is open.

2. Every sequence that converges to a point in A is eventually in A.

3. Every sequence that converges to a point in A is sometime in A.

Proof 1 Ñ 2 Let A be an open set. Suppose s is a sequence that converges to a
point x P A. Then, by the definition of convergence, since A is a neighborhood of
x, s is eventually in A, as claimed.

2 Ñ 3 This is immediate.

3 Ñ 1 We prove the contrapositive. Suppose A is not open. Let x P A be such
that no neighborhood of x is included in A. We will define a sequence that converges
to x that is never in A. Let tAn | n P ωu be a neighborhood base for x as in (3.201),
so that A0 Ě A1 Ě . . . . Using AC, for each n P ω let sn be a point in AnzA. Let
s “ xsn | n P ωy. By construction, s is never in A. We need only show that s
converges to x, i.e., for any neighborhood B of x, s is eventually in B. So let B
be a neighborhood of x. Let N P ω be such that AN Ď B. Then for all n ě N ,
sn P An Ď AN Ď B, so s is eventually in B, as claimed. 3.202

In terms of closed sets we have the dual statement:
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Theorem [ZFC] Suppose A is a set in a first-countable space. The following are
equivalent:

1. A is closed.

2. If a sequence that is frequently in A (i.e., is not eventually not in A) converges
to a point x, then x P A.

3. If a sequence in A converges to a point x, then x P A.

(3.203) Theorem [ZF] In a Hausdorff space no sequence converges to more than
one point.

Proof Suppose toward a contradiction that s is a sequence that converges to both
x and y, with x ‰ y. Let A and B be disjoint neighborhoods of x and y, respectively.
Then s is eventually in A and eventually in B, which is impossible, since A and B
are disjoint. 3.203

Definition [ZF] Suppose xxn | n P ωy is a convergent sequence in a Hausdorff space
xX, T y. Then limnÑ8 xn

def
“ that unique x P X such that xxn | n P ωy converges to

x.

3.11.8 Compactness

Definition [ZF] Suppose xX, T y is a topological space and A Ď X.

1. An open cover of A def
“ a set Γ Ď T such that A Ď

Ť

Γ.

2. A is compact
def
ðñ every open cover of A has a finite subcover, i.e., for every

Γ Ď T , if A Ď
Ť

Γ then there exists a finite Γ1 Ď Γ such that A Ď
Ť

Γ1.

(3.204) Theorem [ZF] Suppose xX, T y is a Hausdorff space and A Ď X is compact.
Then A is closed.

Proof Suppose toward a contradiction that A is not closed. We will show that
A is not compact. Since A is not closed, XzA is not open. Thus3.186 there exists
x P XzA, such that XzA does not include a neighborhood of x, that is:

(3.205) Every neighborhood of x intersects A.

Let Γ consist of all open sets that are disjoint from a neighborhood of x. Since T
is Hausdorff, A Ď

Ť

Γ, i.e., Γ is an open cover of A.
We claim that Γ has no finite subcover of A. Suppose toward a contradiction

that Γ1 Ď Γ is finite and A Ď
Ť

Γ1. For each G P Γ1 let BG be an open neighborhood
of x disjoint from G.62 Then

Ş

GPΓ1 BG is an open neighborhood of x that is disjoint
from

Ť

Γ1 and therefore from A, since Γ1 covers A, contradicting (3.205).
Thus, Γ is an open cover of A with no finite subcover, so A is not compact,

contrary to hypothesis. 3.204

(3.206) Theorem [ZF] A closed subset of a compact set is compact.

62Choice is not required because Γ1 is finite, and we can prove by induction on n P ω that choice
functions exist for n-element sets of sets.
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Proof Suppose A is compact and B Ď A is closed. Suppose Γ is an open cover
of B. Then Γ Y tXzBu is an open cover of A. Let ∆ Ď pΓ Y tXzBuq be a finite
subcover of A. Clearly, ∆ X Γ covers B. Thus, every open cover of B has a finite
subcover, and B is compact, as claimed. 3.206

(3.207) Theorem [ZF] The image of a compact set under a continuous function is
compact.

Proof Straightforward. 3.207

3.11.9 Directed sets and direct limits

(3.208) Definition [GB]

1. A partial order ď on a set D is directed
def
ðñ @a, b P D Dc P D pa ď c^ b ď cq.

We say that pD;ďq is a directed set.

2. Suppose pD;ďq is a directed set. A pD;ďq-system, or simply a D-system if
ď is understood, def

“ a family rMa | a P Ds of classes together with a family
riab | a ď bs, such that for all a ď b ď c,

1. iab : Ma
inj
ÑMb;

2. iac “ ibc ˝ iab.

A directed system def
“ a pD;ďq-system for some directed set pD;ďq.

Suppose M “ pM ; iabqaďbPD is a directed system. Let S “ txa, xy | a P D^x P
Mrasu. For xa, xy, xb, yy P S, let

xa, xy ” xb, yyØDc P D pa, b ď c^ iacx “ ibcyq.

” is an equivalence relation on S. For each xa, xy P S let rxa, xys be its”-equivalence
class (which is a set, sinceD is a set). Let M̃ be the class of these equivalence classes.
For each a P D and x PMa, let iax “ rxa, xys.

(3.209)

1. @a P D pia : Ma
inj
Ñ M̃q;

2. @a, b P D pa ď bÑ ia “ ib ˝ iabq; and

3. M̃ “
Ť

aPD ia
ÑMa.

Note that for any system pM 1; i1aqaPD, where i1a : Ma
inj
Ñ M 1 for each a P D, and

(3.209.1, 2) holds, there exists a unique j : M̃ inj
ÑM 1 such that @a P D pi1a “ j ˝ iaq.

The system M̃ “ pM̃ ; iaqaPD is therefore universal among such systems and is a
direct limit in the categorical sense, which is specified up to isomorphic equivalence.

Let

1. D` “ D Y tDu;

2. let ď`“ď Ytxa,Dy | a P D`u;

3. let M` be the family with domain D` such that M`
ras “Mras for a P D and

M`
rDs “ M̃ ; and
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4. let iaD “ ia, for every a P D, and let iDD be the identity on M̃ .

Then pD`;ď`q is a directed set that extends pD;ďq with one additional element at
the top, and M` def

“ pM`; iabqaďbPD` is the canonical extension of pM ; iabqaďbPD
to a pD`;ď`q-system.

3.12 Finitary set theory

1. F is the theory S`␣␣␣ Infinity.

2. G is the theory C`␣␣␣ Infinity.

Recall that Infinity states that there exists an infinite set; hence, ␣␣␣ Infinity states
that every set is finite, i.e., equipollent with a number.

F and G both say that all sets are finite. F is a pure set theory, i.e., all things are
sets. G is the corresponding theory that admits proper classes with the predicative
comprehension axiom. In particular, G recognizes the existence of ω and Vω.

The following theorem is an adaptation of (3.135) to F.

(3.210) Theorem [F]

1. Every ordinal is a number.

2. Power.

3. For every ordinal n, Vn exists, i.e., there exists a set containing exactly the
sets of rank ă n.

4. @x DNumn x P Vn.

5. AC.

Proof 1 Suppose α is an ordinal that is not a number. Then @Numn n P α. As
in the proof of (3.135.2), suppose f : α bij

Ñ n for some number n. Then n` 1 Ď α,
and f æpn` 1q : n` 1 inj

Ñ n, contradicting the finiteness of n.

2 Since every set is equipollent with a number, it suffices to show that for each
number m, Pm exists. This we do by induction on m, essentially as in the proof
of (3.135.4).

3 This follows by induction on n, since Vn`1 “ P Vn.

4 Given x, let n “ rkx. x P Vn`1.

5 The wellordering principle follows immediately from the fact that any set is
equipollent with an ordinal. 3.210



254 CHAPTER 3. THE THEORY OF MEMBERSHIP

3.12.1 A canonical enumeration of HF

We begin by describing an effective enumeration of all hereditarily finite3.95 sets. A
standard such enumeration is as follows:

x0 “ t u

x1 “ tx0u

x2 “ tx1u

x3 “ tx1, x0u

x4 “ tx2u

x5 “ tx2, x0u

x6 “ tx2, x1u

x7 “ tx2, x1, x0u

x8 “ tx3u

...

Note that xn “ txm | there is a ‘1’ in the mth position in the binary representation
of nu, numbering from the right, starting with m “ 0.

To formally define this enumeration we first note that the binary representation
of a number63 may be identified with the set of numbers indexing the positions of
the ‘1’s, e.g., 25 has the binary representation ‘11001’, which corresponds to the
set t4, 3, 0u. We therefore first define the operation bin, which enumerates all finite
sets of numbers; we then define the operation Bin, which enumerates all hereditarily
finite sets.

(3.211) Definition [S]

1. The operation bin on numbers is defined recursively as follows.

1. bin 0 “ 0.
2. binpn` 1q def

“ pbinnY tmuqzm, where m is the least number not in binn
(equivalently, the largest number included in binn).

2. The operation Bin on numbers is defined recursively as follows.

Binn def
“ tBinm | m P binnu.

3. x precedes y (in the canonical enumeration of hereditarily finite sets)
def
ðñ x ă

y
def
ðñ DNumm,n px “ Binm^ y “ Binn^m ă nq.

We leave the proof of the following theorem as a pleasant exercise.

(3.212) Theorem [S]

1. @HFx
`

p@y P x Num yqÑD!Numnx “ binn
˘

.

2. @HFx D!Numn x “ Binn.

3. @HFx, y prkx ă rk yÑx ă yq.

4. For each number n, Vn is an initial segment of ă.

63Recall that a number is a finite ordinal.
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Note in particular that Bin : ω bij
Ñ HF.3.212.2 Thus Bin´1 is well defined, and

Bin´1 : HF bij
Ñ ω. Not surprisingly, Bin´1 is useful just as often as Bin, and for the

sake of notational efficiency we make the following definition.

(3.213) Definition [S]

1. Suppose Numn. B⃗ n
def
“ Binn.

2. Suppose HFx. ⃗B x
def
“ Bin´1 x.

3.13 Inner models

The method of inner models was introduced in Section 3.5.1 in connection with the
class VΩ of ranked sets, which C0 proves is an inner model of S. There we used
the theorem (3.102) of C0 on almost universal classes. We now establish a slight
variant of this theorem in the setting of C.

(3.214) Theorem [C] Suppose M is transitive and almost universal. Then M
satisfies axioms all the axioms of S3.8 with the possible exception of Comprehension.
Assuming Power we may conclude that M |ù Power. Assuming Infinity we may
conclude that M |ù Infinity.

Proof S1, S4, S5 These follow from Theorem 3.102.

S3 Since we are now working in C, we know that since M is nonempty and transi-
tive, 0 PM . (0 is the unique P-minimal element of any nonempty transitive class.)
So M |ù S3.

Foundation Suppose

σ “ @@@v0, . . . , vn-

`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uPPP v ␣␣␣ϕ
`

v
u

˘˘˘

,

where ϕ is an s-formula, u, v, v0, . . . , vn- are distinct variables such that Freeϕ Ď
tv, v0, . . . , vn-u, and u is free for v in ϕ. Suppose S is a tϕu-valuation function for
pM ; Pq. We must show that

@y0, . . . , yn- PM
`

Dy PM S
@

ϕ,
@

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

DD

“ 1

ÑDy PM
`

S
@

ϕ,
@

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

DD

“ 1^@x P y S
@

ϕ,
@

v v0 ¨ ¨ ¨ vn-

x y0 ¨ ¨ ¨ yn-

DD

“ 0
˘˘

.

Let y0, . . . , yn- PM be given. Let

X “
␣

y PM
ˇ

ˇS
@

ϕ,
@

v v0 ¨ ¨ ¨ vn-

y y0 ¨ ¨ ¨ yn-

DD

“ 1
(

.

We must show that
Dy P XÑDy P X @x P y x R X,

which is just the Foundation axiom of C.
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Power Assume Power. Suppose

σ “ @@@v0 DDDv1 @@@v2

`

@@@v1 pv1 PPP v2ÑÑÑ v1 PPP v0qÑÑÑ v2 PPP v1

˘

.

Suppose x P M . P x is a set, and tz PM | z Ď xu is included in P x, so it is a set,
and by almost universality Dy PM @z PM pz Ď xÑ z P yq.

Infinity If M is a set then by the definition of almost universality, since M Ď M ,
there exists x P M such that M Ď x, so x P x, which violates Foundation. Hence
M is a proper class.

It is a general fact that for any transitive class M , rk ÑM is a transitive class
of ordinals. For otherwise, let α be the least ordinal such that α P rk ÑM and
Dβ ă α β R rk ÑM , and suppose x PM and rkx “ α. Since Dβ β ă α, α ‰ 0. If α
is a successor then there exists y P x such that rk y “ α´ 1. Since M is transitive,
y P M , so this contradicts the minimality of α. Hence, α is a limit ordinal. But
then rk Ñx is cofinal in α, which again leads to a contradiction with the minimality
of α.

Thus, rk ÑM is a transitive class of ordinals, which must be Ord, since otherwise
M Ď Vα for some α. In particular, ω P rk ÑM . Let x P M be such that rkx “ ω.
The rank of any finite set is a successor ordinal, so x is infinite. It follows that
M |ù Infinity.3.137 3.214

(3.215) Theorem [C]

1. V |ù S.

2. If Infinity then V |ù ZF´.

3. If Infinity and Power then V |ù ZF.

4. Vω |ù S.

Proof 1–3 Since V is almost universal, Theorem 3.214 gives us everything except
Comprehension.

Suppose therefore that

σ “ @@@v0, . . . , vn- @@@uDDDw @@@v pv PPP wØØØpv PPP u ^̂̂ ϕqq,

where ϕ is an s-formula, and u, v, w, v0, . . . , vn- are distinct variables such that
Freeϕ Ď tu, v, v0, . . . , vn-u. Suppose S is a tσu-valuation function for V .

We must show that

@y0, . . . , yn- P V @x P V Dz P V @y P V
`

y P zØ
`

y P x^S
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1
˘˘

.

Let x, y0, . . . , yn- P V be given, and let

X “
␣

y P V
ˇ

ˇS
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1
(

.

Then the separation axiom of C implies that

Dz P V @y P V py P zØpy P x^ y P Xq,

as claimed.
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4 A straightforward modification of the proof of (3.214) and (3.215.1). 3.215

3.13.1 The incompleteness of S, etc.

In Section 1.5 we showed that the satisfaction relation for pVω; Pq is not definable
over pVω; Pq (i.e., not the extension of an s-formula interpreted in pVω; Pq). We now
use that result to show that the existence of a satisfaction relation for pVω; Pq is
not provable in C. The version of this result given here is not the sharpest, since
it is obtained as a theorem of GB´, which is C extended by the axiom of infinity.
It would be more satisfying to use C itself, but note that the result—that C does
not imply something—implies that C is consistent. As we will see, if C is consistent
then C does not imply that C is consistent, so the result does not follow from C
alone—assuming C is consistent—but we will see that it does follow from C plus
the assumption that C is consistent.

(3.216) Theorem [GB´] C does not imply the existence of a satisfaction relation
for pVω; Pq.

Remark Let Vω “ pVω; Pq. As noted above, we work in GB´, which allows us to
show that satisfaction relations exist for the infinite structures Vω and V1 used in
the proof, since they are sets.

Proof Let F be the set of s-formulas with one free variable. For ϕ P F , let

ϕ̂ “
␣

x P Vω
ˇ

ˇVω |ù ϕ
“

v
x

‰

u,

where Freeϕ “ tvu. Let V 1 “ tϕ̂ | ϕ P F u. Let V1 be the c-structure with domain
V 1 and the usual membership relation. Note that Vω Ď V 1 Ď Vω`1. It is easy
to see that V1 is a model of C (the minimum model, in fact).64 Suppose A is a
member of V 1. It is easy to show that if V1 says A satisfies the definition of the
satisfaction relation for Vω, then it actually does satisfy the definition, so it is the
satisfaction relation. Since A is by construction definable over Vω by an s-formula,
by Theorem 1.73 it is not the satisfaction relation for Vω. Therefore, V1 says there
is no satisfaction relation for Vω. Since V1 |ù C, C does not imply the existence of
a satisfaction relation for Vω. 3.216

The following theorem states the semantic incompleteness of S. The proof is
carried out in C with the additional hypothesis of the weak satisfactoriness of pV ; Pq.
Note that V is the full universe of sets—if there are no infinite sets, it is Vω.

(3.217) Gödel’s first incompleteness theorem [C]

1. Suppose pV ; Pq is weakly satisfactory. Then there is a true s-sentence σ that
is not S-provable, i.e., there exists an s-sentence σ such that pV ; Pq |ù σ and
S&σ.65

2. Similarly, if pVω; Pq is weakly satisfactory then there is an s-sentence σ such
that pVω; Pq |ù σ and S&σ.

64It is not necessary to allow for parameters from Vω in the formulas defining the elements of
V 1, as any element of Vω is definable within it.

65Keep in mind that pV ; Pq |ù S.3.215
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Remark The theorem asserts the semantic incompleteness of S, in that there is
an s-sentence σ that is true in the standard model pV ; Pq (or the finitary model
pVω; Pq) of S, such that S&σ. Note that this does not contradict the completeness
theorem, which states that for any s-sentence σ, if σ is true in every model M of S
then S$σ. If σ is an s-sentence as in (3.217) then σ is false in some nonstandard
model of S.

Proof 1 Let Pbl be an s-formula with one free variable u that expresses S-
provability, so that for any s-sentence σ, pV ; Pq |ù Pbl

“

u
σ

‰

ØS$σ.

Suppose toward a contradiction that every true s-sentence σ is S-provable, i.e.,

(3.218) pV ; Pq |ù σÑS$σ.

Since pV ; Pq |ù S3.215 and pV ; Pq is assumed weakly satisfactory, it follows2.174.2 that
for every s sentence σ,

S$σÑpV ; Pq |ù σ.

Hence,3.218 for every s-sentence σ,

(3.219) S$σØpV ; Pq |ù σ.

Define by ă-recursion3.211 for a P Vω, the canonical s-definition of a def
“ Defa so

that

1. Def0 “ @@@v1 ␣␣␣ v1 PPP v0;

2. if a ‰ 0, let xb0, . . . , bky be the enumeration of a in increasing ă-order (or
decreasing order—it doesn’t matter, but the former choice is closer to a de-
finition we will make subsequently4.51), and let

Defa “ @@@v1

`

v1 PPP v0ØØØ
`

Def b0pv1q___
`

Def b1pv1q___

¨ ¨ ¨___
`

Def bk- pv1q___Def bk
pv1q

˘

¨ ¨ ¨
˘˘˘

.

It is straightforward to show that for all a, b P Vω, pV ; Pq |ù Defa
“

v0
b

‰

iff pVω; Pq |ù

Def b
“

v0
a

‰

iff b “ a.
Let T be the class of 2-sequences xψ, ay such that ψ is an s-formula with the

single free variable v0 and
S$DDDv0

`

Defa ^̂̂ψ
˘

.

Then3.219 for any s-formula ψ with the single free variable v0, and any a P Vω,

xψ, ay P T Ø S$DDDv0 pDefa ^̂̂ψq

ØpV ; Pq |ù DDDv0 pDefa ^̂̂ψq

ØpV ; Pq |ù ψ
“

v0
a

‰

ØpVω; Pq |ù ψ
“

v0
a

‰

.

(3.220)

Let ϕ be an s-formula with two free variables v0, v1 that expresses the definition of
T , so for all ψ, a P Vω,

xψ, ay P T ØpVω; Pq |ù ϕ
“

v0 v1
ψ a

‰

.
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Then3.220 for any s-formula ψ with the single free variable v0, and any a P Vω,

pVω; Pq |ù ϕ
“

v0 v1
ψ a

‰

ØpVω; Pq |ù ψ
“

v0
a

‰

.

According to Theorem 1.73 (see (1.75)), this is impossible. 3.217.1

2 Entirely analogous. 3.217

3.14 Summary

The notion of membership is nearly ubiquitous in mathematics, and the theory
of membership must inform any discussion of the foundations of mathematics. In
this regard, the present chapter plays two roles. On the one hand, it provides
tools necessary for the definition and analysis of basic concepts having to do with
structure, language, and logic. On the other hand, it begins the development of
the theory of membership per se, which is to say it begins the development of
mathematics itself, and formulates some of the major issues in the foundations of
mathematics, such as infinitarity and choice principles.

In the theory of membership we distinguish several sorts of objects. A class is
an object that is nothing but the collection of its members. Thus, for classes we
posit the Extension axiom: classes with the same members are identical. In the
interest of clarity, and without any loss of utility, we stipulate that only classes
have members. We define an element as something that is a member of a some
class. We allow for the possibility of classes that are not elements and elements
that are not classes, but we ignore objects that are not either elements or classes
as irrelevant to a theory of membership. An object that is both an element and a
class is a set. An element is proper iff it is not a class, and a class is proper iff it
is not an element. Sets are present in any theory of membership; proper elements
and classes may be included or not (independently).

The basic axioms of membership follow from our intuitive understanding of the
meaning of ‘membership’. If we exclude proper elements and classes we have basic
pure set theory S0. Allowing proper classes we obtain the theory C0. The essen-
tials of the theory of membership do not require consideration of proper elements,
although it is useful for special purposes to admit them. That said, in the appli-
cation of the theory of membership to anything outside of itself, like the physical
world, proper elements are precisely the objects of primary interest: classes are
merely tools. The theory of membership is often called ‘set theory’, and it is often
presented as a pure set theory, with proper elements and classes excluded. In this
book we generally allow for proper classes, and we distinguish the pure theory of
sets from the general theory of membership.

We begin with the basic set theory S0. This includes Extension, which—as noted
above—essentially states that P is the membership relation and not something else,
and that proper elements are excluded. Then there are several axioms that assert
the existence of sets relating in some way to given sets. Note that Pair, for example,
implies that everything is a member of something, so there are no proper classes.

We define a few basic constructs in the context of S0 and then move to the
corresponding class theory C0. An essential feature of C0 is that its Comprehension
axiom asserts the existence of a class (of sets) that is coextensive with any property
of sets that may be expressed by a formula in which all quantification is over
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sets, although it may have proper classes as parameters. This is the predicative
Comprehension schema. By virtue of the restriction to predicative comprehension,
C0 is a conservative extension of S0.

We continue with the definition of a quite a few constructs of general utility.
We devote considerable attention to wellfounded relations and wellorders; and we
define the von Neumann ordinals as sets that are wellordered by the membership
relation. S0 and, more conveniently, C0 are sufficient to handle the “mathematics”
of the first two chapters, dealing with structure, language and logic. In the other
direction, some of the ideas developed in those chapters are used in this chapter.
For example, it is necessary to have a theory of language in order to define an axiom
schema, or the notion of an abstraction term.66

By this time we have more than enough tools to define the class VΩ of ranked
sets, and we show that these constitute a cumulative hierarchy of the form with
which we began the discussion. We show that the Foundation axiom is equivalent
to the assertion that all sets are ranked, and that VΩ |ù S0 ` Foundation. With
this result in hand, we formally add Foundation to S0 and C0 to obtain the theories
S and C. After a few results giving the lay of the land under the new regime, we
define the axiom of choice AC and the equivalent wellordering principle and Zorn’s
lemma. We then introduce the subject of size of sets. We analyze various notions
of finiteness and point out that with AC they are all equivalent, but promise to
show that without AC they may not be. We define the axiom of Infinity.

Up to this point, although we have used the power operation P, we have not
posited the Power axiom, which now begins to be quite useful. In particular, in con-
junction with Infinity it implies the existence of a vast universe of sets of increasing
size. As we will see in the sequel, this is not a puerile indulgence in megalomania:
these sets are useful. To keep track of the possibilities we define a number of set and
class theories that incorporate Foundation and Infinity, but differ in their inclusion
of Power and AC. All are important.

We develop the theory of cardinals and cofinality, and we derive some basic
properties of cardinal exponentiation and present the (generalized) continuum hy-
pothesis and the singular cardinals hypothesis (or problem), which have informed
some of the major advances in set theory.

After developing some more mathematics, including boolean algebras and topo-
logical spaces, we turn our attention to metatheoretical topics, finishing with several
metatheorems building on the undefinability of the satisfaction relation for pVω; Pq
by a formula interpreted in pVω; Pq, which is a theorem of C.1.73. We show that C
does not imply the existence of a satisfaction relation for pVω; Pq; and we show the
semantic incompleteness of S as a theory of either pV ; Pq or pVω; Pq.

66Although this carries the risk of introducing an invalid circularity of argument—of “begging
the question”, in the proper meaning of that phrase—it is pretty clear that this has not happened.
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The above statement is often presented as an ancient example of a logical para-
dox, known as the Liar Paradox. A more self-contained and genuinely problematic
version is the sentence ‘I am lying’, or simply:

(4.1) This sentence is false.

Clearly, if Sentence 4.1 is true, then it is false; and if it is false, then it is true. So
it can be neither true nor false. We can twist ourselves into pretzels trying to make
sense of this sentence or we can conclude that it is meaningless. As logicians (I
hope you’re starting to feel like a logician by now), we should be very reluctant to
take the latter step. After all, we have expended a lot of energy and ink defining
the predicates ‘. . . is true’ and ‘. . . is false’. To accept now that it is meaningless
to apply them to a particular sentence would seem to imperil all our hard work.
Nevertheless, it is meaningless, and I encourage you to try to formalize Sentence 4.1
using the apparatus of Chapter 1 to see where the breakdown occurs.

We will return to the liar paradox in a moment, But first, some other paradoxes
to delight and mystify. Consider the Richard paradox. This purports to prove:

(4.2) Every natural number is definable by an English phrase consisting of no more
than thirty-three syllables.

The proof goes as follows. Suppose that the claim is false. Then there is a smallest
natural number, say N , that is not definable by an English phrase consisting of no
more than thirty-three syllables. But then the following is a definition of N : ‘the
smallest natural number that is not definable by an English phrase consisting of no
more than thirty-three syllables’. This is an English phrase consisting of no more
than thirty-three syllables, whose existence contradicts the definition of N . Thus,
the assumption that the claim is false has led to a contradiction, and we are forced
to conclude that every natural number is definable by an English phrase consisting
of no more than thirty-three syllables. Since the English language has only finitely
many syllables, only finitely many numbers can be defined by phrases of any fixed
length, and the natural numbers constitute an infinite collection. So (4.2) is a
genuine paradox. Again, you are encouraged to try to resolve this paradox. The
proof must be invalid . . . mustn’t it? Where is the error?

Our final example is the Russell paradox.

Suppose we allow that any definable collection of sets is a set. Then there is a set
A that consists of all sets that are not members of themselves.

Is A a member of A? By the definition of A, A belongs to A if and only if A is
not a member of A, so ‘A P A’ can be neither true nor false, and this is the Russell
paradox.1

4.2 Decidability

One of the great achievements of 19th and early 20th century mathematics was to
establish the adequacy of the formal framework of Chapters 1–3 for the pursuit of
mathematics. From the narrowly formal point of view, mathematics is the business
of listing the axioms of a theory and then finding out what those axioms entail.

1Russell’s paradox is actually a simplification of Cantor’s paradox, which followed from his
proof that the powerset PA of a set A is not a surjective image of A. Letting A be the universe
of all sets, PA “ A, so the identity map is a surjection.
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Of course, an arbitrary set of axioms is not likely to be worth studying, nor is
an arbitrary deduction from a set of axioms likely to be worth deducing, even
if the axioms themselves describe an important class of structures. Of the vast
terrain that is accessible to mathematical formalism, only a minuscule portion is
ever visited by mathematicians, but this does not diminish the importance of the
formal framework. It does not comprehend the soul of mathematics, but it does
constrain its body: by current standards, an idea is mathematical only if it can be
expressed formally, and an argument is mathematical only if it can be carried out
in the system of deduction described in Chapter 2.

As previously discussed,§ 2.2.5.2 the completeness theorem provides us with a me-
chanical method of generating all the sentences that are entailed by a given theory.
A mathematician of course applies this mechanism very selectively in creating a
proof of a particular theorem, but, in principle, one could program a computer to
generate all the theorems of a given theory. It now becomes very important to know
whether there also exists a mechanical method of generating all the sentences that
are not entailed by a given theory, because, if there is, then there is a mechanical
method for determining whether any given sentence σ is entailed by a given theory
T : simply start generating all the theorems of T while simultaneously generating all
the sentences that are not theorems of T . The given sentence σ will eventually ap-
pear on one list or the other, and then we know whether σ is a theorem. Let us call
such a procedure a decision procedure for T . A decision procedure would not have
to operate in precisely the above fashion—i.e., by generating the lists of theorems
and non-theorems simultaneously—which we know would be very time-consuming,
and, indeed, when decision procedures do exist, they can often be made much more
efficient than this. The only requirement we impose on a decision procedure for a
theory T is that it be effective—by which we mean that it is the deterministic ex-
ecution of a finite program—and that it always terminate after finitely many steps
with the correct answer to the question: ‘Is σ a theorem of T?’. We say that T is
decidable if and only if there is an effective decision procedure for T .

An efficient (as well as effective) decision procedure for a theory such as ZF,
which is capable of formalizing all of mathematics, would revolutionize the practice
of mathematics. There would still be room for creativity in the definition of new
entities and the formulation of conjectures, but the proofs could all be left to the
procedure. Note that ‘efficient’ is a key word here—an inefficient procedure might
be of no use at all.

4.3 The science of computation

To show that there exists a decision procedure for a theory T one may describe
an effective procedure and show by any satisfactory means that it is a decision
procedure for T . We do not need to say what an effective procedure is in general in
order to be satisfied that a particular process is one, nor do we necessarily require a
formal theory of procedures in order to be satisfied that a particular one performs
as claimed.

To show that there does not exist a decision procedure for T , on the other
hand, we must say—if not what an effective procedure is—at least what an effective
procedure does. That is, we have to have a characterization of the class of operations
that can be effected by effective procedures, and a body of knowledge relating to
this class, sufficient to show that the operation in question is not in it. We need—in
short—a science of computation.
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We refer here to the science of computation much as we refer to (euclidean)
geometry as the science of mensuration or to arithmetic as the science of numer-
ation. In all these cases the objects of study are regarded as having an existence
sufficiently objective that their properties are to be discovered, not defined.

In the case of geometry, this attitude applies to the subject as it was originally
conceived, as the science of physical space. Although we now know that physical
space is not euclidean, we have a common intuitive concept of euclidean space,
which may be taken as the source of the axioms of the mathematical theory of
geometry. The science of numeration is an even better model for the science of
computation: It is really a rather fierce nihilist who would deny the objectivity of
natural numbers with the operations of addition and multiplication, or the objective
truth value of sentences in the first-order predicate language of this structure.

The notion of computation is similarly robust. Theories of computation have
been developed in diverse frameworks, and all have been shown to be equivalent.
For our purposes the most convenient framework is that of hereditarily finite (HF)
sets3.95 with the membership predicate. For example, the expressions of standard
languages with HF signatures are HF sets, and we have convenient set-theoretical
constructs for such basic combinatorial concepts as number, ordered pair, finite
sequence, etc.; so a theory of computation on HF sets is immediately applicable to
decision problems for mathematical theories.

We should point out that the notion of computability is relevant not just to the
question of decidability of theories. The word problem for finitely presented groups
and the solvability of diophantine equations are examples.

4.4 Set-theoretic complexity

We will present the theory of computation as part of a more general theory of
set-theoretic complexity, which is of interest in its own right. In this endeavor, the
object of our attention is set theory, where ‘set theory’ is construed as referring
generically to theories of membership. Set theory is also—as always—our metathe-
ory. Given the opportunities for confusion afforded by this conjunction, it behoves
us to pay close attention to the distinction between use and mention of set-theoretic
expressions. To this end we recapitulate our discussion so far of language, logic,
and theories of membership.

In Chapter 1 we presented the basic concepts of structure and language—
including the structure of language, i.e., syntax, and the meaning of language,
i.e., semantics. Meaning is formalized by the notion of valuation of terms and for-
mulas, with the attendant notions of satisfaction, satisfiability, and entailment. In
Chapter 2 we obtained syntactic equivalents of satisfiability and entailment, viz.,
consistency and provability, respectively. In Chapter 3 we developed the theory of
membership enough to formalize Chapters 1 and 2. We defined several theories
that may be used for this purpose, including S and C, that differ in their admission
of proper classes. Of these, S is the simpler, and as it is sufficient for the purpose, it
would be the theory of choice, but it is much easier if we allow proper classes. We
have shown§ 2.9.1 that C is a conservative extension of S, so we may be comfortable
that everything of a finitary nature that we prove in C may be proved finitarily,
i.e., in S.2

In the setting of C, HF exists as a (potentially proper) class, and HF “ Vω.

2Of note, our proof of the conservative extension result was done in S.
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We regard linguistic expressions and proofs as hereditarily finite sets, i.e., members
of Vω. Theories are subclasses of Vω. The models that arise in the proof of the
completeness theorem are also subclasses of Vω, as are the satisfaction relations
for these models, which are complete extensions of the initial theories. These are
definable by formulas with set-restricted quantification, so predicative comprehen-
sion axioms (as in C) suffice to prove their existence. To address more subtle issues,
such as decidability, we need to look more closely at the complexity of these defining
formulas, as this determines the complexity of the corresponding classes.

For reasons that will become clear in Section 4.11 we will keep unusually close
track of the languages and theories involved. Recall3.15 that s is the signature of
pure set theory, with two predicate indices, for membership and identity. c has an
additional unary predicate for “setness”. The extension of a language and theory by
the addition of defined predicates and operations will be indicated by the superscript
‘`’.2.111 Any such theory is a conservative extension of the base theory.2.108

In particular, S` is an extension by definition of S, with signature s`. Likewise,
C` is an extension by definition of C, with signature c`. In any particular instance
we will suppose that C` is the result of adding the predicative class comprehension
axiom to S`. Thus, since C is, in effect, a conservative extension of S, C` is in the
same sense a conservative extension of S`. Our use of these extended theories is
merely a convenience, as is our use of C. The entire discussion could be formulated
in s and carried out in S.

Nevertheless, for this chapter, unless otherwise noted, we regard C` as our
metatheory—the theory in which the discussion is taking place. Theories S` are
typically object theories. We begin with a classification of s-formulas in terms of
logical complexity in an appropriate sense. In the context of any signature s` and
theory S` that extends S by definition, any s`-formula is S`-provably equivalent
to an s-formula, so we can apply the s-classification to s`-formulas, and in an
appropriate sense to s`-terms as well.

(4.3) To facilitate discussing the defined constructs as features of an object lan-
guage, we extend the conventions (1.45.3, 4) whereby a bold version of a symbol of
our typographical realization of S` is used to name the corresponding operation on
s`-expressions. For example, given Definition 3.12, for any s`-terms τ, τ 1, tttτ, τ 1uuu
is the corresponding s`-term.3 If the bolding convention is impractical, we may use
an underline for the same purpose.

In the interest of clarity we will adhere rather strictly to the rules for representing
s`-expressions. For example, we observe the distinction between a variable v and
the corresponding term v̄, which we often ignored in Chapter 3.

The following very useful classification of set-theoretic formulas is known as the
Levy hierarchy after Azriel Levy.

3Formally,

1. we expand s` by the addition of a 2-ary operation index O;

2. we define tttτ, τ 1uuu
def
“ Õxτ, τ 1y for any s`-terms τ, τ 1; and

3. for some distinct variables a, b, x, y, we extend S` by the addition of the sentence

@@@a, b, x
´

x̄“““tttā, b̄uuuØØØ
`

āPPP x̄ ^̂̂ b̄PPP x̄ ^̂̂ @@@y PPP x̄ pȳ“““ ā___ ȳ“““ b̄q
˘

¯

.

Note that once we have introduced the operation τ, τ 1 ÞÑ tttτ, τ 1uuu, we need never mention O again,
and we typically never mention it at all.
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(4.4) Definition [C`] Recall the definition3.1.1 of the operations of bounded quan-
tification. Suppose ρ is a signature that expands the signature s of pure set the-
ory.

1. ϕ is ∆ρ
0

def
ðñ ∆ρ

0 ϕ
def
ðñ ϕ is a ρ-formula, and for every subformula ψ of

ϕ:
1. if ψ “ DDDu θ for some variable u and formula θ, then ψ “ DDDuPPP τ σ for some

formula σ and some term τ not containing u, i.e., θ “ uPPP τ ^̂̂ σ;
2. if ψ “ @@@u θ for some variable u and formula θ, then ψ “ @@@uPPP τ σ for some

formula σ and some term τ not containing u, i.e., θ “ uPPP τÑÑÑσ.
2. We also refer to ∆ρ

0 formulas as bounded.

3. Σρ0ϕ
def
“ Πρ

0ϕ
def
“ ∆ρ

0ϕ. The reason for this notational redundancy will become
clear presently.

4. ∆0ϕ
def
ðñ ∆s

0ϕ.

We follow the usual practice of using the same notation for a defined predicate
applicable to sets and the class defined by the predicate, as long as the definition
employs only set-restricted quantification. For example, ∆ρ

0
def
“ the class of ∆ρ

0

formulas. In general, when ‘∆’, ‘Σ’, and ‘Π’ are used as above without a superscript
indicating signature, the implicit signature is s.

(4.5) Definition [C`] Suppose ρ is a signature that expands s. We define Σρn and
Πρ
n for numbers n ą 0 recursively by stipulating that for any number n:

1. ϕ is Σρn`1

def
ðñ Σρn`1ϕ

def
ðñ ϕ “ DDDu1, . . . , um ψ for some m, where ψ is Πρ

n.

2. ϕ is Πρ
n`1

def
ðñ Πρ

n`1ϕ
def
ðñ ϕ “ @@@u1, . . . , um ψ for some m, where ψ is Σρn.

3. In particular,

1. ϕ is Σρ1
def
ðñ Σρ1ϕ

def
ðñ ϕ “ DDDu1, . . . , um ψ for some m, where ψ is ∆ρ

0.

2. ϕ is Πρ
1

def
ðñ Πρ

1ϕ
def
ðñ ϕ “ @@@u1, . . . , um ψ for some m, where ψ is ∆ρ

0.

Here we have used the standard conventions that QQQu1, . . . , um is QQQu1 ¨ ¨ ¨ QQQum,
where Q is D or @. m may be 0, in which case the initial quantifier sequence is
empty, and ϕ “ ψ. Note that for each n P ω, Σρn and Πρ

n include ∆ρ
0, Σρm, and Πρ

m

for each m ă n.

(4.6) In the following discussion, we suppose that T, T1, etc., are s`-theories that
extend S` (not necessarily conservatively).

Recall that for any theory Θ,

ϕ
Θ
” ψ

def
ðñ Θ$ϕØØØψ.

Note that if T1 Ě T and ϕ
T
” ψ, then ϕ

T1

” ψ.

(4.7) Definition [C`] An s`-formula ϕ is Σn (Πn) relative to T
def
ðñ ϕ is ΣT

n

(ΠT
n)

def
ðñ there exists a Σn pΠnq formula ϕ1 such that ϕ

T
” ϕ1. ϕ is ∆T

n

def
ðñ ϕ is

both ΣT
n and ΠT

n.4

4Note that for n ą 0, ∆n is strictly a semantical notion, and we do not define syntactical
∆n-classes. Trivially, a formula that is both Σρ

1 and Πρ
1 is ∆ρ

0, since these are defined in terms of
grammatical structure, rather than (T-provable) semantic equivalence. Similarly, a formula that
is both Σρ

2 and Πρ
2 is either Σρ

1 or Πρ
1.
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(4.8) It is important to note that the superscript to ‘∆’, etc., in (4.7) denotes
a theory extending S, rather than a signature expanding s as in (4.4). By way
of clarification we observe that the typical scenario involves one or more of the
following elements:

1. a theory S` that is an extension by definition of the pure set theory S with
signature s`;

2. a theory T with signature s` that extends S`;

3. a signature ρ that includes s and is included in s`.

Using ∆0 as a typical example:

1. ∆0 “ ∆s
0 is the class of bounded s-formulas.

2. ∆ρ
0 is the class of bounded ρ-formulas.

3. ∆T
0 is the class of s`-formulas that are T-equivalent to a ∆0 formula.5

(4.9) Theorem [C`] Suppose ϕ is ΣT
1 pΠ

T
1 q. Then there exists a ∆0 formula ψ

with a free variable u such that ϕ
T
” DDDuψ

`

ϕ
T
” @@@uψ

˘

.4.6

Proof Suppose ϕ is ΣT
1 . By definition, ϕ

T
” DDDu1 ¨ ¨ ¨ DDDun θ for some ∆0 formula θ

and variables u1, . . . , un. Let ψ “ DDDu1 PPP ū ¨ ¨ ¨ DDDun PPP ū θ, where u is a variable that is
not in tu1, . . . , unu and does not occur free in θ. Notice that ψ is ∆0. T Ě S,4.6 so

it is straightforward to show that DDDu1 ¨ ¨ ¨ DDDun θ
T
” DDDuψ. Since

T
” is an equivalence

relation, ϕ
T
” DDDuψ.

Similarly, if ϕ is T-equivalent to @@@u1 ¨ ¨ ¨ @@@un θ, then it is T-equivalent to @@@uψ,
where ψ “ @@@u1 PPP ū ¨ ¨ ¨ @@@un PPP ū θ, if u R tu1, . . . , unu Y Free θ. 4.9

(4.10) Theorem [C`]

1. Suppose ϕ and ψ are both ΣT
1 pΠ

T
1 q. Then ϕ ^̂̂ψ and ϕ___ψ are ΣT

1 pΠ
T
1 q.

2. Suppose ϕ is ΣT
1 . Then

1. ␣␣␣ϕ is ΠT
1 ;

2. for any variable u, DDDuϕ is ΣT
1 ;

3. for any variables u, v, DDDuPPP v̄ ϕ and @@@uPPP v̄ ϕ are ΣT
1 .

3. Suppose ϕ is ΠT
1 . Then

1. ␣␣␣ϕ is ΣT
1 ;

2. for any variable u, @@@uϕ is ΠT
1 ;

3. for any variables u, v, DDDuPPP v̄ ϕ and @@@uPPP v̄ ϕ are ΠT
1 .

Proof 1 Suppose ϕ and ψ are ΣT
1 ; specifically, suppose they are respectively T-

equivalent to DDDuϕ1 and DDDv ψ1, where ϕ1 and ψ1 are ∆0.4.9 By a change of bound
variables, if necessary, we may arrange that u is not free in ψ1 and v is not free in
ϕ1. Then pϕ ^̂̂ψq

T
” DDDuDDDv pϕ1 ^̂̂ψ1q. The proof is straightforward. Since ϕ1 ^̂̂ψ1 is

∆0, we are done. The proofs for the cases of ___ with Σ1 and of ^̂̂ and ___ with Π1

are similar. 4.10.1

5Recall that when ‘∆’ is used without a superscript, it is ‘∆s’ that is intended; likewise for ‘Σ’
and ‘Π’.
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2 Suppose ϕ is ΣT
1 and u, v are variables. Specifically, suppose ϕ

T
” DDDwϕ1, where

ϕ1 is ∆0 and w R tu, vu, which we may arrange by a change of bound variables in
DDDwϕ1.

2.1 Then ␣␣␣ϕ
T
” ␣␣␣DDDwϕ1

T
” @@@w ␣␣␣ϕ1. ␣␣␣ϕ1 is ∆0, so ␣␣␣ϕ is ΠT

1 .

2.2 DDDuϕ
T
” DDDuDDDwϕ1, which is Σ1.

2.3 By definition, DDDuPPP v̄ ϕ is DDDu pūPPP v̄ ^̂̂ ϕq. ūPPP v̄ is ΣT
1 , so by (4.10.1), ūPPP v̄ ^̂̂ ϕ

is ΣT
1 , say ūPPP v̄ ^̂̂ ϕ

T
” DDDw θ for some ∆0 formula θ. Then DDDuPPP v̄ ϕ

T
” DDDuDDDw θ, which

is Σ1, so DDDuPPP v̄ ϕ is ΣT
1 .

Let W be a variable not in tu, v, wu Y Freeϕ1. Then

@@@uPPP v̄ DDDwϕ1ÑÑÑDDDW @@@uPPP v̄ DDDw PPP W̄ ϕ1

is an instance of the collection schema of S (so it is in T), and

DDDW @@@uPPP v̄ DDDw PPP W̄ ϕ1ÑÑÑ@@@uPPP v̄ DDDwϕ1

is a theorem of pure logic, so

@@@uPPP v̄ DDDwϕ1
T
” DDDW @@@uPPP v̄ DDDw PPP W̄ ϕ1.

Since @@@uPPP v̄ DDDw PPP W̄ ϕ1 is ∆0, @@@uPPP v̄ ϕ is ΣT
1 . 4.10.2

3 The proof of (4.10.2) applies mutatis mutandis. 4.10.3 4.10

(4.11) Theorem [C`] Suppose ϕ and ψ are ∆T
1 . Then ␣␣␣ϕ, ϕ ^̂̂ψ, ϕ___ψ, ϕÑÑÑψ,

ϕØØØψ, DDDuPPP v̄ ϕ, and @@@uPPP v̄ ϕ are ∆T
1 . DDDuϕ and @@@uϕ are respectively ΣT

1 and ΠT
1 .

Proof This is a straightforward application of Theorem 4.10. 4.11

Definition [C`]

1. An s`- term τ is ΣT
1 , ΠT

1 , or ∆T
1 according as the formula ū“““ τ is respectively

ΣT
1 , ΠT

1 , or ∆T
1 , where u is any variable not occurring in τ .

2. An n-ary predicate index P of s` is ΣT
1 , ΠT

1 , or ∆T
1 according as the formula

P̃ xv̄0, . . . , v̄n-y is respectively ΣT
1 , ΠT

1 , or ∆T
1 .

3. An n-ary operation index O of s` is ΣT
1 , ΠT

1 , or ∆T
1 according as the term

Õxv̄0, . . . , v̄n-y is respectively ΣT
1 , ΠT

1 , or ∆T
1 .

(4.12) Theorem [C`] Suppose τ is a ΣT
1 term. Then τ is also ΠT

1 and therefore
∆T

1 .

Proof Let u, v be distinct variables not occurring in τ . Clearly,

ū“““ τ
T
” @@@v pv̄ ‰‰‰ ūÑÑÑ v̄ ‰‰‰ τq,

and the latter formula is easily seen to be ΠT
1 . 4.12
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(4.13) Theorem [C`]

1. Suppose u is a variable. Then ū is ∆T
0 .

2. Suppose τ, τ 1 are ∆T
1 terms, and and τ 1 is free for u in τ . Then τ

`

u
τ 1

˘

is ∆T
1 .

Proof The first assertion is obvious. For the second, let v, w be variables not
occurring in τ or τ 1. Then

v̄“““ τ
`

u
τ

1

˘ T
” DDDw

`

w̄“““ τ 1 ^̂̂ v̄“““ τ
`

u
w̄

˘˘

,

so τ
`

u
τ 1

˘

is ΣT
1 ; hence,4.12 it is ∆T

1 . 4.13

(4.14) Theorem [C`] Suppose ϕ and ψ are ∆T
1 formulas, τ is a ∆T

1 term, and u
is a variable not occurring in τ . Then ␣␣␣ϕ, ϕ ^̂̂ψ, ϕ___ψ, ϕÑÑÑψ, ϕØØØψ, DDDuPPP τ ϕ,
and @@@uPPP τ ϕ are ∆T

1 .

Proof The only new thing here4.11 is quantification bounded by a ∆T
1 term. It is

easy to see that DDDuPPP τ ϕ is T-equivalent to DDDv pv̄“““ τ ^̂̂ DDDuPPP v̄ ϕq and to @@@v pv̄“““ τÑÑÑDDDuPPP v̄ ϕq,
so it is ∆T

1 ; and @@@uPPP τ ϕ is handled analogously. 4.14

(4.15) Theorem [C`] In the scenario (4.8) suppose all the predicate and operation
indices of ρ are ∆T

1 .

1. Every ρ-term is ∆T
1 .

2. Every ∆ρ
0 formula is ∆T

1 .

Proof It follows easily from (4.13) by induction on complexity that every ρ-term
is ∆T

1 .
Suppose P is an n-ary predicate index of ρ.6 By hypothesis, P̃ xv̄0, . . . , v̄n-y is

∆T
1 . Suppose τ0, . . . , τn- are ∆T

1 terms. Then

P̃ xτ0, . . . , τn-y
T
” DDDv0, . . . , vn-

´´

ľľľ

măn
pv̄m“““ τmq

¯

^̂̂ P̃ xv0, . . . , vn-y

¯

T
” @@@v0, . . . , vn-

´´

ľľľ

măn
pv̄m“““ τmq

¯

ÑÑÑ P̃ xv0, . . . , vn-y

¯

,

so every atomic ρ-formula is ∆T
1 .

Now we use (4.14) to show by induction on complexity that every ∆ρ
0-formula

is ∆T
1 . 4.15

The following theorem provides a few complexity classifications, looking forward
to Theorem 4.17. We remind the reader of the conventions regarding metalanguage
names for operations (including 0-ary, or constant, operations) on object-language
expressions.4.3 In the case of expressions defined originally in the context of theories
of membership with proper classes or proper elements, it is an equivalent definition
in the context of pure set theory that is intended here.

(4.16) Theorem [C`] The following s`-expressions are ∆S`

1 . Distinct (metalan-
guage) names for variables are presumed to denote distinct variables.

6P may be the binary index 0, which by our convention is interpreted as identity.
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1. 0.
2.

ŤŤŤ

ū,
ŞŞŞ

ū, ūYYY v̄, ūXXX v̄, ūYYY v̄YYY w̄, etc.

3. tttūuuu, tttū, v̄uuu, etc.

4. pppū, v̄qqq.

5. xpūq is an ordered pairy, which we take to be DDDv, w ū“““pppv̄, w̄qqq, or any S`-
equivalent formula.

6. Fcn ū.

7. dom ū.
8. im ū.

9. ūpppv̄qqq, regarded as a term with variables u and v and the definition

w̄“““ ūpppv̄qqqØØØpFcn ū ^̂̂ v̄ PPPdom ū ^̂̂ pppv̄, w̄qqq PPP ūq

___p␣␣␣pFcn ū ^̂̂ v̄ PPPdom ūq ^̂̂ w̄“““0q.

10. ūæææv̄.

Proof We provide only a few proofs by way of illustration. As in the statement of
the theorem, distinct names for variables are presumed to denote distinct variables
unless otherwise stated.

1 ū“““0
T
” @@@v PPP ū v̄ ‰ v̄.

2 v̄“““
ŤŤŤ

ū
T
” @@@w PPP v̄ DDDv0 PPP ū w̄ PPP v̄0 ^̂̂ @@@v0 PPP ū@@@w PPP v̄0 w̄ PPP v̄, etc.

3 w̄“““tttūuuu
T
” pūPPP w̄ ^̂̂ @@@v PPP w̄ v̄“““ ūq, etc.

4 w̄“““pppū, v̄qqq
T
” w̄“““ttttttūuuu, tttū, v̄uuuuuu, which is ∆T

1 by (3) and (4.15.1).

5 DDDv, w ū“““pppv̄, w̄qqq
T
” DDDv, w PPP

ŤŤŤŤŤŤ

ū ū“““pppv̄, w̄qqq, which is ∆T
1 by (2), (4) and (4.11).

6 Fcn ū
T
” x@x P pūq px is an ordered pairq^@y, z, z1 P

ŤŤ

pūq
`

py, zq P pūq^py, z1q P

pūqqÑ z “ z1
˘

y. 4.16

Theorem 4.16 gives some indication of the abundance of ∆T
1 , but this is only fully

revealed in the following theorem, which states that ∆T
1 is closed under recursive

definitions.

(4.17) Theorem [C`] Suppose τ and η are ∆T
1 terms, and u, v, w, f are distinct

variables not occurring in τ or η. (See the following remark for explanation.) Let

ψ “ @@@u
`

DDDv v̄ PPP ūÑÑÑDDDv PPP ū@@@w PPP ū w̄ RRR τ
`

u0
v̄

˘˘

,

let

θ “ Fcn f̄ ^̂̂ ūPPPdom f̄ ^̂̂ @@@v PPPdom f̄ @@@w PPP τ
`

u0
v̄

˘

w̄ PPPdom f̄

^̂̂ @@@v PPPdom f̄ f̄pppv̄qqq“““ η
´ v0

f̄æææτ
`u0
v̄

˘

¯

,
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let

ζ “ ψÑÑÑDDD!v DDDf
`

θ ^̂̂ v̄“““ f̄pppūqqq
˘

ϕΣ “ DDDf
`

θ ^̂̂ v̄“““ f̄pppūqqq
˘

ϕΠ “ @@@f
`

θÑÑÑ v̄“““ f̄pppūqqq
˘

.

Then

1. ϕΣ is ΣT
1 ;

2. ϕΠ is ΠT
1 ; and

3. T$ ζ; hence,

4. if T$ψ then T$ϕΣØØØϕΠ, so ϕΣ and ϕΠ are ∆T
1 .

Remark Speaking informally, τ is regarded as a function of one of its variables,
u0; the remaining variables of τ are “parameters”. Similarly, η is regarded as a
function of v0. Let ă be a binary predicate with the definition w̄ ă v̄ØØØ w̄ PPP τ

`

u0
v̄

˘

,
where v̄ is free for u0 in τ , i.e, τpxq “ ty | y ă xu. ψ says that that ă is irreflexive
and wellfounded. Since T is a pure set theory, τpxq is a set, so ă is setlike. ă is
therefore a suitable substrate for definition by recursion.3.80 η defines the value of a
function f at x recursively in terms of f æ τpxq, i.e., in terms of the ă-predecessors
of x. θ says that f is a function satisfying the recursive definition and u is in its
domain. ζ says that if ă is irreflexive and wellfounded then there is a function f
satisfying the recursive definition given by η, with u P dom f , and fpuq is the same
for all such functions. ϕΣ and ϕΠ are respectively ΣT

1 and ΠT
1 ways of saying that

v is the (unique) value assigned at u by the recursion.

Proof 1, 2 The complexity calculations leading to (1) and (2) are straightfor-
ward.

3 Theorem 3.80 tells us that CA`$ ζ. We could use conservative extension results
to show that S`$ ζ, but it is more direct to display an S`-proof of ζ by simple
modification of the proof of (3.80).

4 Straightforward. 4.17

The following theorem provides some more useful complexity classifications.

(4.18) Theorem [C`]

1. The following are ∆S`

1 .

1. Tran ū.
2. Ord ū.
3. Suc ū.
4. Lim ū.
5. Num ū.
6. ū`1`1`1. Recall that x` 1 def

“ x`
def
“ xY txu, the successor of x if Ordx.

7. ū´1´1´1. Recall that x ´ 1 def
“ x- def

“ the predecessor of x if Sucx; otherwise
0.

8. x 1 y, x 2 y, x 3 y, etc..3.47
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9. Seq ū. Recall that Seqx
def
ðñ Fcnx^Numpdomxq.

10. xxx yyy, xxxūyyy, xxxū, v̄yyy, etc.
11. xx Ď yy.
12. xA is a familyy.3.377

13. xArisy.3.37

14. xr sy, xrxsy, xrx, ysy, etc.3.57

15. xrkxy.3.109

16. xtcxy. [Use recursive definition.]
17. xHFxy.

2. The following are ΣS`

1 .
1. xx „ yy.3.123

3. The following are ΠS`

1 .
1. xP xy.
2. xYXy.3.35

3. xR is wellfoundedy.3.76

4.5 Evaluation and satisfaction

(4.19) Definition

1. A transitive interpretation of s` is an interpretation I for which the domain
of individuals is a transitive collection of sets, x P y is interpreted as the mem-
bership relation, and any other symbols of s` are interpreted according to their
S`-definitions.

2. The standard interpretation of s` is the transitive interpretation whose domain
of individuals contains every set.

3. The finitary interpretation of s` is the transitive interpretation whose domain
of individuals contains exactly the sets of finite rank.

We use ‘interpretation’ rather than ‘structure’ here so that we do not have to
suppose that the domain of individuals exists. When working in C`, this distinction
is not important, and we may reasonably require that the domain of a transitive
interpretation be a class; when working in set theories without proper classes,
however, this requirement would be excessively restrictive, as it would exclude, for
example, the standard interpretation. Note that S` admits the possibility that
all sets have finite rank, in which case the finitary interpretation is the standard
interpretation.8

The value of a term (in a transitive interpretation, for an assignment of its
variables) is simply the set it denotes in the ordinary sense. We regard the value
of a formula to be either true(ness) or false(ness). We let 1 (“ t0u) be the value of
a true formula and 0 the value of a false formula (for a given assignment), and we
will use the following defined constants and operations:

7Recall that a family is in effect a class-valued function, and the concept of a family is only
necessary in the presence of proper classes; otherwise an ordinary function will serve. Thus the
notion of a family is not needed in the context of S`; nevertheless, as we have made this and
related notions integral to our definitions of signatures and structures, which we wish to discuss
in S`, we need to analyze their set-theoretic complexity.

8To allow for its use in diverse contexts, we do not formulate Definition 4.19 within a particular
theory.
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(4.20) Definition [C`] T def
“ 1 and F def

“ 0. We define operations on truth values
corresponding to the propositional connectives in the expected way: 9␣T “ F, 9␣F “
T, T 9̂ T “ T, etc.

Since a ∆0 formula ϕ is an s-formula involving only bounded quantification, the
truth value of ϕ at an assignment A of its free variables is the same for any transitive
interpretation whose domain of individuals includes imA. Hence the following
definition makes no reference to interpretation.

(4.21) Definition [C`] F is a ∆0-valuation function
def
ðñ

1. F is a set and is a function whose domain consists of sequences xη,Ay, where
η is a ∆0 expression and A is an assignment for η, i.e., A is a finite function
and Free η Ď domA; and

2. for all xη,Ay P domF ,

1. if η “ v̄ for some variable v, then F xη,Ay “ Av;
2. if η “ τ “““ τ 1 for some terms τ, τ 19 then, letting B “ A æFree τ and B1 “
A æFree τ 1,
1. xτ,By P domF and xτ 1, B1y P domF , and

2. F xη,Ay “

#

T if F xτ,By “ F xτ 1, B1y

F if F xτ,By ‰ F xτ 1, B1y;

3. if η “ τ PPP τ 1 for some terms τ, τ 1 then, letting B “ A æFree τ and B1 “
A æFree τ 1,
1. xτ,By P domF and xτ 1, B1y P domF , and

2. F xη,Ay “

#

T if F xτ,By P F xτ 1, B1y
F if F xτ,By R F xτ 1, B1y;

4. if η “ ␣␣␣ϕ for some formula ϕ, then xϕ,Ay P domF and

F xη,Ay “ 9␣F xϕ,Ay;

5. if η “ ϕ___ϕ1, ϕ ^̂̂ ϕ1, ϕÑÑÑϕ1, or ϕØØØϕ1 for some formulas ϕ, ϕ1 then,
letting B “ A æFreeϕ and B1 “ A æFreeϕ1,
1. xϕ,By P domF and xϕ1, B1y P domF , and

2. F xη,Ay “

$

’

’

’

&

’

’

’

%

F xϕ,By 9_F xϕ1, B1y if η “ ϕ___ϕ1

F xϕ,By 9̂ F xϕ1, B1y if η “ ϕ ^̂̂ ϕ1

F xϕ,By 9ÑF xϕ1, B1y if η “ ϕÑÑÑϕ1

F xϕ,By 9ØF xϕ1, B1y if η “ ϕØØØϕ1;
6. if η “ DDDv PPP τ ϕ for some variable v, term τ with v R Free τ , and formula
ϕ, then, letting A1 “ A æFree τ and B “ A æFreeϕ,
1. xτ,A1y P domF ,
2. @x P F xτ, A1y

@

ϕ,B
@

v
x

DD

P domF , and

3. F xη,Ay “

$

&

%

T if Dx P F xτ, A1yF
@

ϕ,B
@

v

x

DD

“ T

F if @x P F xτ,A1yF
@

ϕ,B
@

v

x

DD

“ F;

9In the case of s, of course, any term τ is v̄ for some variable v, as there are no operation
indices in s, and Free τ “ tvu. The definition given here is designed to be readily adaptable to
languages with operation indices.
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7. if η “ @@@v PPP τ ϕ for some variable v, term τ with v R Free τ , and formula
ϕ, then, letting A1 “ A æFree τ and B “ A æFreeϕ,
1. xτ, A1y P domF ,

2. @x P F xτ, A1y
@

ϕ,B
@

v
x

DD

P domF , and

3. F xη,Ay “

$

&

%

T if @x P F xτ,A1yF
@

ϕ,B
@

v

x

DD

“ T

F if Dx P F xτ, A1yF
@

ϕ,B
@

v

x

DD

“ F.

Note that the restriction to ∆0 is essential to the existence of valuation functions:
if η were, say, DDDv ϕ, then the condition corresponding to (4.21.2.6) would require
@

ϕ,B
@

v
x

DD

P domF for all x, not just for x in the value of some term (i.e., the
value assigned to some variable, as we are dealing with the signature s, which has
no operation indices). F could not then be a set, as the definition mandates.4.21.1

(4.22) Theorem [C`] Suppose ϵ is a ∆0 expression and A is an assignment for ϵ.
Then there is a unique set x such that there exists a ∆0-valuation function F such
that pxϵ, Ay, xq P F .

Proof We do not choose to apply our general theorem3.80 on recursive definition,
as that would require us to work with the relation xϵ is a subexpression of ϵ1 and A
is an assignment for ϵ that occurs in the evaluation of ϵ1rA1sy, which is more trouble
than it’s worth. It’s easier instead to use the subexpression relation per se, with
appropriate modifications of the proof of (3.80) by insertions of quantification over
assignments.

(4.23) Claim Any two ∆0-valuation functions F, F 1 agree on their common domain.

Proof Suppose toward a contradiction that this is not true for F, F 1. Let η have
minimal complexity such that for some assignment B for η, xη,By P domF X
domF 1 and F pη,Bq ‰ F 1pη,Bq. It is straightforward to derive a contradiction by
examining the pertinent case in Definition 4.21. 4.23

(4.24) Claim The union of any set of ∆0-valuation functions is a ∆0-valuation
function.

Proof The union is a function by virtue of (4.23), and it is straightforward to show
that it is a ∆0-valuation function. 4.24

(4.25) Claim Suppose ϵ is a ∆0 expression and A is an assignment for ϵ. Then
there is a ∆0-valuation function F such that xϵ, Ay P domF .

Proof Suppose toward a contradiction that this is not true. Let ϵ have minimal
complexity such that for some assignment A for ϵ, there is no ∆0-valuation function
F such that xϵ, Ay P domF . (Since ∆0-valuation functions are by definition sets,
only set quantification is involved.) It is straightforward to derive a contradiction
by forming the union G of ∆0-valuation functions for the immediate subexpressions
of ϵ paired with the relevant assignment(s) derived from A, and then extending G
to xϵ, Ay with the value given by the definition. 4.25

Given ϵ and A as in the statement of the theorem, we invoke Claim 4.25 to
conclude that there exists a ∆0-valuation function F with xϵ, Ay P domF and
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Claim 4.23 to conclude that any two such functions have the same value at xϵ, Ay,
i.e., there is a unique set x such that pxϵ, Ay, xq P F , as claimed, 4.22

Note that the proof of Claim 4.25 depends on the fact that one takes the union of
a set (not a proper class) of valuation functions “below” xϵ, Ay to obtain a valuation
function “at” xϵ, Ay, which follows from the fact that only bounded quantification
is allowed.

We now define Val0, which is the valuation operation restricted to ∆0 expres-
sions.

(4.26) Definition [C`] Suppose ϵ is a ∆0 expression and A is an assignment for
ϵ. Val0 ϵrAs

def
“ the unique set x such that there is a ∆0-valuation function F such

that xϵ, Ay P domF and F xϵ, Ay “ x. If ϵ is a term, which is automatically ∆0, we
may omit the subscript, and we define Val ϵrAs def

“ Val0 ϵrAs.10

By Theorem 4.22 this is a legitimate C`-definition.

(4.27) Theorem [C`] xVal0y is ∆S`

1 .

Proof Straightforward using (4.11), (4.14), and previous classification results such
as (4.16) and (4.18). First show that xF is a ∆0-valuation functiony is ∆S`

1 . 4.27

4.6 Satisfaction in the finitary interpretation

Recall4.19.3 that the finitary interpretation of s` is the transitive interpretation
whose individuals are the hereditarily finite sets.3.95 Recall3.135.6 that the class HF
of hereditarily finite sets is the class Vω of sets of finite rank.

(4.28) For the duration of this chapter, as a convenience we impose the condition
on signatures that they be hereditarily finite. Note that this applies to the generic
signatures s` extending s.

Thus, s`-expressions are HF sets, just like the objects assigned to their variables
in the finitary interpretation, which is to say, among the things that s`-expressions
“talk about” are s`-expressions. In this situation use and mention are easily con-
flated, and the interest of clarity necessitates a notation that may at first appear
excessively elaborate, but which will stand us in good stead.

(4.29) Theorem [C`]

1. xHFxy is ∆S`

1 .

2. xbinαy, xBinαy, xx ă yy are ∆S`

1 .3.211

3. The predicates and operations relating to signatures defined in Section 1.2.3
are ∆S`

1 . Given that we have restricted our attention to HF signatures4.28

the references to V , the class of all sets, in (1.29.1.2) and (1.29.2.2) may be
omitted. Keep in mind also that in the context of S`, ‘class’ and ‘set’ are
synonymous.

4. The predicates and operations relating to structures in Section 1.2.4 are ∆S`

1 .

10The preceding footnote is applicable here: The s-terms are just the variables, and the valuation
function is trivial for these; we are looking ahead to languages with operation indices.
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5. The predicates and operations relating to standard languages in Section 1.3.1,
i.e., the languages Lρ for an HF signature ρ, are ∆S`

1 . For this purpose, we
replace the classes V, Q, etc., by predicates, and we replace statements like
xx P Vy, expressing membership in such a class, by xVxy, i.e., asserting of x
that it has the property V. Arguments for some of these predicates are written
as superscripts, as in xEρxy, which has two free variables, x ρ y and xx y.

6. The predicates and operations relating to interpretation of ρ-expressions in
ρ-structures in Section 1.4 are ∆S`

1 .

Proof These computations are fairly straightforward using (4.18). For example,
S`$ x HFxØNumprkxqy. 4.29

Since xHFy is ∆S`

1 , if ϕ is ΣS`

1 then DDDHF u ϕ is ΣS`

1 ; if ϕ is ΠS`

1 then @@@HF u ϕ is
ΠS`

1 .
It is customary to describe the valuation operation for formulas in terms of the

satisfaction relation. As already noted, there is no s`-formula that S`-provably
defines the satisfaction relation for the full universe of sets. Since it is consistent
with S` that all sets are HF, there is also no s`-formula that S`-provably defines
the satisfaction relation for the finitary interpretation. We can, however, define
satisfaction for limited classes of formulas in any transitive interpretation.

(4.30) Definition [C`]

1. Sat0 ϵrAs
def
ðñ

1. ϵ is a ∆0 formula,
2. A is an HF-assignment for ϵ, and
3. Val0 ϵrAs “ T.

2. SatΣ1 ϵrAs
def
ðñ

1. ϵ is a Σ1 formula, say ϵ “ DDDv0 ¨ ¨ ¨ DDDvk- ϵ1, where ϵ1 is ∆0,
2. A is an HF-assignment for ϵ, and
3. there exists xx0, . . . , xk-y P k HF such that

Sat0 ϵ1
“

A
@

v0 ¨ ¨ ¨ vk-

x0 ¨ ¨ ¨ xk-

D‰

.

3. SatΠ1 pϵ, Aq
def
ðñ

1. ϵ is a Π1 formula, say ϵ “ @@@v0 ¨ ¨ ¨ @@@vk- ϵ1, where ϵ1 is ∆0,
2. A is an HF-assignment for ϵ, and
3. for every xx0, . . . , xk-y P k HF

Sat0 ϵ1
“

A
@

v0 ¨ ¨ ¨ vk-

x0 ¨ ¨ ¨ xk-

D‰

.

Nothing prevents us from defining similar satisfaction predicates for the standard
(not necessarily finitary) interpretation or any other transitive interpretation with
a defined domain; nevertheless, the symbols just defined are specific to the finitary
interpretation.

(4.31) Theorem [C`]

1. x Sat0 y is ∆S`

1 .
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2. x SatΣ1 y is ΣS`

1 .

3. x SatΠ1 y is ΠS`

1 .

Proof Straightforward. 4.31

Note that SatΣ1 and SatΠ1 give essentially the same information, as for any Σ1

formula ϕ and HF-assignment A for ϕ, SatΣ1 pϕ,AqØ SatΠ1 pϕ
1, Aq, where ϕ1 is the

standard Π1 formula that is S-equivalent to ␣␣␣ϕ (obtained by bringing the negation
sign inside the existential quantifiers while changing them to universal quantifiers).
It is for this reason that we have split the indicators ‘Σ’ and ‘Π’ from the subscript ‘1’
to suggest that SatΣ1 and SatΠ1 are respectively Σ and Π versions of the satisfaction
relation at level 1. We could, of course, define similar satisfaction predicates for
higher levels of the set-theoretic complexity hierarchy,4.5 but we do not need these.

Note that Sat0, SatΣ1 and SatΠ1 agree on ∆0 formulas, and we often omit the
qualifying sub- and superscripts in this context.

(4.32) Theorem [C`] Suppose ϕ and ψ are ∆0 formulas and A is an HF-assignment
to FreeϕY Freeψ. Then

1. Satp␣␣␣ϕ,AqØ␣ Satpϕ,Aq.

2. Satpϕ___ψ,AqØ
`

Satpϕ,Aq_ Satpψ,Aq
˘

.

3. Satpϕ ^̂̂ψ,AqØ
`

Satpϕ,Aq^ Satpψ,Aq
˘

.

4. SatpϕÑÑÑψ,AqØ
`

Satpϕ,AqÑ Satpψ,Aq
˘

.

5. SatpϕØØØψ,AqØ
`

Satpϕ,AqØ Satpψ,Aq
˘

.

Proof Essentially immediate. 4.32

(4.33) Definition [C`] x add y
def
“ xðy

def
“ xY tyu.

In other words, xðy is obtained from x by adding y (as a member). ð is the
adjunction operation. The special case x ÞÑ xðx is the successor operation, which
agrees with the definition we have already made for ordinals.3.46

Any HF set can be obtained by a composition of the 0-ary operation ÞÑ 0 and
the binary operation x, y ÞÑ xðy “ x Y tyu, working “from the ground up”; and
all sets obtained in this way are HF. We will combine these operations to create
canonical names for hereditarily finite sets in much the same way as we use the zero
and successor operations in arithmetic to name numbers (using the terms 0, Sp0q,
SpSp0qq, . . . ).

By stating Definition 4.33 we have implicitly declared that s` has an index for
xðy, and that C` contains its definition; and we have previously3.10 declared the
same for the 0 operation. We now formalize this by assigning specific HF sets as the
indices and specific formulas as the definitions for these operations, and we define s1,
c1, S1, and C1 to be the resulting signatures and theories. Recall the definition1.29.2

of ‘unisorted signature’, and recall3.6 that s has been defined with 1 as the index
for the membership predicate.11

110, as always, is the index for the identity predicate.
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(4.34) Definition [C`]

s1 “ sY tp1, t2uq, p1, t3uqu
Y tp2, tp2, 0quq, p2, tp3, 2ququ

c1 “ cY tp1, t2uq, p1, t3uqu
Y tp2, tp2, 0quq, p2, tp3, 2ququ

In other words, we have defined s1 to be rΠ1,Φ1, T 1s, where

1. Π1 “ t0, 1u, the set of predicate indices, already in s;

2. Φ1 “ t2, 3u, the set of operation indices; and

3. T 1 “ tp0, 2q, p1, 2q, p2, 0q, p3, 2qu, the arity function.

In the interest of clarity we will typically refer to the indices 0,1,2,3 by the (meta-
language) names ‘i“’, ‘iP’, ‘i0’, ‘ið’, respectively.

(4.35) Definition [C`]

1. ∆10, Σ1n, and Π1n
def
“ ∆s1

0 , Σs1

n, and Πs1

n, respectively.

2. Val1, Val10, Sat10, SatΣ
1

1 , and SatΠ
1

1 are defined for s1-expressions by the obvious
modifications of the definitions4.21, 4.26, 4.30 of the unprimed symbols. In partic-
ular, we require of a ∆10-valuation function F that if xη,Ay P domF then, in
addition to (4.21),

1. if η “ 0 then F xη,Ay “ 0; and
2. if η “ τ ððð τ 1 for some terms τ, τ 1 then, letting B “ A æFree τ and B1 “
A æFree τ 1, xτ,By, xτ 1, B1y P domF , and

F xη,Ay “ pF xτ,ByqðpF xτ 1, B1yq.

As we now have operation symbols, for future reference we explicitly list the defi-
nitional properties relating to Val1 below.

(4.36) Theorem [C`] Suppose u is a variable and A is an appropriate HF-
assignment.

1. Val1 ūrAs “ Au.

2. Val1 0rAs “ 0.

3. Val1pτ ððð τ 1qrAs “ pVal1 τ rAsqðpVal1 τ 1rAsq.

4. Sat10pūPPP τqrAsØAu P Val1 τ rAs.

5. Sat10pū“““ τqrAsØAu “ Val1 τ rAs.

Proof Straightforward. 4.36

(4.37) Theorem [C`]

1. x Sat10 y is ∆S`

1 .

2. x SatΣ
1

1
y is ΣS`

1 .

3. x SatΠ
1

1
y is ΠS`

1 .
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Proof Straightforward. 4.37

For convenience we combine x SatΣ1 y and x SatΠ1 y in a single predicate x Sat1 y.

Definition [C`] Suppose ϕ is an s1-formula and A is an HF-assignment for ϕ.
Then

1. Sat11 ϕrAs
def
ðñ

1. ϕ is Σ11 and SatΣ
1

1 ϕrAs, or

2. ϕ is Π11 and SatΠ
1

1 ϕrAs.

2. SatϕrAs
def
ðñ ϕ is an s-formula and Sat11 ϕrAs.

Note that SatΣ
1

1 , SatΠ
1

1 , and Sat11 extend SatΣ1 , SatΠ1 , and Sat1, respectively, i.e., if
ϕ is an s-formula and A is an HF-assignment for ϕ, then Sat1 ϕrAsØ Sat11 ϕrAs.

4.6.1 Complexity of classes

Having defined satisfaction predicates, we can now define the the complexity of
definable classes in terms of the complexity of definitions.

(4.38) Definition [C`] Suppose X Ď HF.

1. X is ∆0
def
“ there is a ∆0 formula ϕ with one free variable u such that @HF x

`

x P

XØSat0 ϕ
“

u
x

‰˘

.

2. X is Σ1
def
“ there is a Σ1 formula ϕ with one free variable u such that @HF x

`

x P

XØSatΣ1 ϕ
“

u
x

‰˘

.

3. X is Π1
def
“ there is a Π1 formula ϕ with one free variable u such that @HF x

`

x P

XØSatΠ1 ϕ
“

u
x

‰˘

.

4. X is ∆1
def
“ X is Σ1 and Π1.

Definition [C`] Suppose ϕ and ψ are s1-formulas that are individually either Σ11
or Π11. Then ϕ and ψ are HF-equivalent

def
ðñ Freeϕ “ Freeψ and for all HF-

assignments A for ϕ and ψ, Sat11 ϕrAsØ Sat11 ψrAs.

(4.39) Theorem [C`]

1. Suppose ϕ is ∆10. Then are Σ1 and Π1 formulas that are HF-equivalent to ϕ.

2. Suppose ϕ is Σ11 (Π11). Then there is a Σ1 (Π1) formula that is HF-equivalent
to ϕ.

Remark Note the similarity of this theorem to (4.15), which applied here would
say that for any ∆10 formula ϕ there are T-equivalent Σ1 and Π1 formulas. The
present theorem asserts that these equivalences are true (in the finitary interpre-
tation, to which Sat and Sat1 refer), as opposed to provable. In general, asserting
that a sentence σ is provable (in a given theory) is not the same as asserting that σ
is true (in a given interpretation).12 The proof is of course organized along similar
inductive lines.

12And neither of these is the same as asserting σ.
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Proof We will show by induction on complexity that for any ∆10 formula ϕ there
exist ∆0 formulas σ, π, and variables u, v, such that DDDuσ and @@@v π are HF-equivalent
to ϕ. This obviously implies the theorem. As usual, variables are assumed through-
out to be chosen so as to be distinct from one another and from variables already
present unless otherwise indicated.

(4.40) Claim Suppose τ is an s1-term and ϕ “ ū“““ τ . Then there exists a ∆0

formula σ and a variable v such that DDDv σ is HF-equivalent to ϕ.

Remark Note that for this special case, it is sufficient to establish HF-equivalence
with a Σ1 formula.

Proof By induction on the complexity of τ . The case of τ “ v̄, for a variable v, is
trivial.

Suppose ϕ “ ū“““0. Let σ “ @@@v PPP ū ␣␣␣ v̄“““ v̄. Then DDDwσ is HF-equivalent to ϕ,
where w is any variable other than u.

Next suppose ϕ “ ū“““ τ0
ððð τ1, and σ0, σ1 are ∆0 such that DDDu0 σ0 and DDDu1 σ1

are HF-equivalent to v̄0“““ τ0 and v̄1“““ τ1, respectively. Let

σ “ DDDv0, v1, u0, u1 PPP w̄
`

σ0 ^̂̂ σ1

^̂̂ v̄1 PPP ū ^̂̂ @@@v PPP v̄0 v̄ PPP ū ^̂̂ @@@v PPP ū pv̄ PPP v̄0___ v̄“““ v̄1q
˘

.

Then DDDwσ is clearly HF-equivalent to ϕ. The claim follows by induction. 4.40

Now suppose τ0, τ1 are s1-terms, and σ0, σ1 are ∆0 such that DDDv0 σ0 and DDDv1 σ1

are HF-equivalent to ū0“““ τ0 and ū1“““ τ1, respectively.
Suppose ϕ “ τ0“““ τ1. Let σ “ DDDu0, u1, v0, v1 PPP v̄ pσ0 ^̂̂ σ1 ^̂̂ ū0“““ ū1q. Then DDDv σ

is HF-equivalent to ϕ. Let π “ ␣␣␣DDDu0, u1, v0, v1 PPP v̄ pσ0 ^̂̂ σ1 ^̂̂ ␣␣␣pū0“““ ū1qq. Then
@@@v π is HF-equivalent to ϕ.

Now suppose ϕ “ τ0 PPP τ1. Let σ “ DDDu0, u1, v0, v1 PPP v̄ pσ0 ^̂̂ σ1 ^̂̂ ū0 PPP ū1q. Then
DDDv σ is HF-equivalent to ϕ. Let π “ ␣␣␣DDDu0, u1, v0, v1 PPP v̄ pσ0 ^̂̂ σ1 ^̂̂

␣␣␣pū0 PPP ū1qq. Then @@@v π is HF-equivalent to ϕ.
Thus, the theorem holds for all atomic s1-formulas. The induction steps corre-

sponding to propositional connectives are straightforward.
Lastly, we deal with bounded quantification. Suppose ψ is ∆10; σ and π are ∆0

such that ψ is HF-equivalent to DDDuσ and to @@@uπ; and σ0 is ∆0 such that ū1“““ τ is
HF-equivalent to DDDu0 σ0.

Suppose ϕ “ DDDv PPP τ ψ. Let σ1 “ DDDu0, u1 PPP w̄ pσ0 ^̂̂ DDDv PPP ū1 DDDuPPP w̄ σq. Then ϕ is
HF-equivalent to DDDwσ1.

Suppose ϕ “ @@@v PPP τ ψ. Let σ1 “ DDDu0, u1 PPP w̄ pσ0 ^̂̂ @@@v PPP ū1 DDDuPPP w̄ σq. Then ϕ is
HF-equivalent to DDDwσ1. Note that this uses the Collection property of HF, i.e., for
any x1 P HF,

@y P x1 DHFx Sat0 σ
“

A
@

u
x

D‰

ØDHFz @y P x1 Dx P z Sat0 σ
“

A
@

u
x

D‰

.

We can DeMorgan the preceding constructions to obtain Π1 equivalents. Thus,
DDDv PPP τ ψ is HF-equivalent to @@@w @@@u0, u1 PPP w̄ pσ0ÑÑÑDDDv PPP ū1 @@@uPPP w̄ πq. And @@@v PPP τ ψ is
HF-equivalent to @@@w @@@u0, u1 P w̄ pσ0ÑÑÑ@@@v PPP ū1@@@uPPP w̄ πq. 4.39

The assertions we have previously made concerning the complexity of formulas
and terms (vis-à-vis a theory), as in (4.16), (4.17), and (4.18), are of course appli-
cable to the classes they define—usually with some degree of simplification, as it
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is not necessary to deal with linguistic expressions per se and their provable equi-
valence. We will not give a long list of these and similar complexity assessments,
as the calculations are for the most part quite straightforward; however, several
warrant particular attention.

The following theorem on recursive definition is essentially (4.17) expressed in
terms of definable classes. It is also a refinement of (3.80), taking complexity
considerations into account, and we will present it in this format.

(4.41) Theorem [C`] Suppose R is an irreflexive wellfounded relation on a ∆1

class X Ď HF, which is setlike in the sense of HF, i.e., for all x P X, RÐtxu P HF.
Suppose further that x ÞÑ RÐtxu is ∆1. Suppose G is a ∆1 function such that
domG consists of all xx, fy such that x P X, f is a function, and dom f “ RÐtxu.
Let F be the (unique) function such that

1. domF “ X, and

2. @x P X Fx “ Gxx, F æpRÐtxuqy,

as guaranteed by (3.80). Then F is ∆1.

Proof Referring to the proof of (3.80), we first show that the class of acceptable
sets f is ∆1. This is a somewhat lengthy but straightforward exercise, left to the
reader. The proofs of Claims 3.82, 3.83, and 3.85 do not change. These allow us to
define F in two ways: either as the class of ordered pairs px, yq such that x P X and
there exists an acceptable f such that px, yq P f , or as the class of ordered pairs
px, yq such that x P X and for all acceptable f such that x P dom f , px, yq P f . The
former shows that F is Σ1 and the latter shows that F is Π1, so F is ∆1. 4.41

The following definition provides ∆0 formulas θx and νx, for each x P HF, that
define respectively the classes txu and x.

(4.42) Definition [C`] For each x P HF,

1. let xaxm | m P |x|y enumerate x in decreasing ă-order;3.211.3

2. let ux “ vn`2, where n “ ⃗B x; and

3. let θx
def
“ the ∆0 formula with Free θx “ tv0u given recursively by

1. θ0 “ @@@v1 PPP v̄0 v̄1 ‰‰‰ v̄1; and
2. for x ‰ 0,

θx “ DDDuax
0
PPP v̄0 ¨ ¨ ¨ DDDuax

|x|-
PPP v̄0

`

θax
0

` v0
ūax

0

˘

^̂̂ ¨ ¨ ¨ ^̂̂ θax
|x|-

` v0
ūax

|x|-

˘

^̂̂ @@@v1 PPP v̄0 pv̄1“““ ūax
0
___ ¨ ¨ ¨___ v̄1“““ ūax

|x|-
q
˘

.

Now define νx for x P HF as follows. ν0
def
“ v̄0 ‰ v̄0; if x ‰ 0, let νx

def
“ θax

0
___ ¨ ¨ ¨

___ θax
|x|-

. (In particular, νtxu “ θx.)

(4.43) Theorem [C`] Suppose x, y P HF.

1. y “ x iff Sat0 θx
“

v0
y

‰

.

2. y P x iff Sat0 νx
“

v0
y

‰

.

Hence, x is ∆0.
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Proof It is straightforward to show by P-induction that for all x P HF,

@HF y
`

Sat0 θx
“

v0
y

‰

Ø y “ x
˘

,

and from this it follows that for all y P HF, y P x iff Sat0 νx
“

v0
y

‰

. 4.43

The following theorem is the principal application of the θxs.

(4.44) Theorem [C`] Suppose A Ď HFˆHF is Σ1 pΠ1q, and a P HF. Then
tb | xa, by P Au is Σ1 pΠ1q.

Proof Let B “ tb | xa, by P Au. Suppose A is Σ1. Then there exists a Σ1 formula
ϕ with Freeϕ “ tv0, v1u, such that

A “
␣

xx, yy
ˇ

ˇ Sat1 ϕ
“

v0 v1
x y

‰(

,

as can easily be verified using previous complexity computations (for x¨, ¨y, etc.).
Without loss of generality, suppose ϕ “ DDDv2 ϕ

1, where ϕ1 is ∆0. Let ψ “ DDDv0 DDDv2 pθa ^̂̂ ϕ
1q.

Then ψ is Σ1, Freeψ “ tv1u, and

B “
␣

b
ˇ

ˇ Sat1 ψ
“

v1
b

‰(

.

Similarly, suppose A is Π1 and suppose

A “
␣

xx, yy
ˇ

ˇ Sat1 ϕ
“

v0 v1
x y

‰(

,

where ϕ “ @@@v2 ϕ
1, ϕ1 is ∆0, and Freeϕ1 “ tv0, v1, v2u. Let ψ “ @@@v0 @@@v2 pθaÑÑÑϕ1q.

Then ψ is Π1, Freeψ “ tv1u, and

B “
␣

b
ˇ

ˇ Sat1 ψ
“

v1
b

‰(

.

4.44

(4.44) is more general than it appears at first. For example, suppose we have a
Σ1 set A of objects of the form pxa, by, cq. Then for fixed b P HF, txa, cy | pxa, by, cq P
Au is Σ1. To show this, let A1 “ txb, xa, cyy | pxa, by, cq P Au. Then apply (4.44)
with A1 for A and b for a. Thus, argument specification rather generally preserves
membership in Σ1 pΠ1q.

(4.45) Theorem [C`] The functions x ÞÑ θx and x ÞÑ νx are ∆1.

Remark This has nothing to do with the fact that θx and νx are ∆s
0 formulas (for

each x P HF). Here we are talking about the two functions x ÞÑ θx and x ÞÑ νx,
and the theorem states that these are ∆1 as subclasses of HF, i.e., each is defined
by a Σs

1 and by a Πs
1 formula (in the finitary interpretation).

Proof The proof is straightforward. Note that we use (4.41) to show that the
recursive definition of θx leads to a ∆1 function. 4.45
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4.6.2 The complexity of satisfaction

By convention, we use ‘SatΣ1 ’ and ‘SatΠ1 ’ to denote the subclasses of HF defined by
the corresponding s`-formulas. These are partial satisfaction relations for pHF; Pq,
and by Theorem 4.31 they are respectively Σ1 and Π1. We can similarly define
SatΣ2 , SatΠ2 , SatΣ3 , SatΠ3 , etc.; and we can show that these are respectively Σ2,
Π2, Σ3, Π3, etc. By Theorem 1.73 the full satisfaction relation for pHF; Pq is not
definable over pHF; Pq, so it is not Σn (or Πn) for any n. It is natural to inquire
whether the above complexity classifications are the best possible.

(4.46) Theorem [C`] SatΣ1 is not Π1. Likewise, SatΠ1 is not Σ1.

Proof Suppose toward a contradiction that SatΣ1 is Π1, so its complement is Σ1.
In other words txψ,Ay | ␣ SatΣ1 ψrAsu is Σ1, so there is a Σ1 formula ϕ with two
free variables, u and v, such that for every Σ1 formula ψ and HF-assignment A for
ψ,

SatΣ1 ϕ
“

u v
ψ A

‰

Ø␣SatΣ1 ψrAs.

Specializing to the case of formulas ψ with one free variable, by a simple modifica-
tion of ϕ we obtain a Σ1 formula ϕ1 such that for every Σ1 formula ψ with one free
variable w and every a P HF,

SatΣ1 ϕ
1
“

u v
ψ a

‰

Ø␣SatΣ1 ψ
“

w
a

‰

.

Let ψ “ ϕ1
`

u v
w̄ w̄

˘

. Then

SatΣ1 ϕ
1
“

u v
ψ ψ

‰

Ø␣ SatΣ1 ψ
“

w
ψ

‰

Ø␣SatΣ1 ϕ
1
“

u v
ψ ψ

‰

,

a contradiction.
Hence, SatΣ1 is not Π1, and it follows immediately that SatΠ1 is not Σ1. 4.46

Clearly, we can easily show also that SatΣ2 is not Π2, etc. With the axiom of
infinity, we can prove the general theorem that for every n ą 0, SatΣn is not Πn.
Without it we can show that for every n ą 0, if SatΣn exists, it is not Πn. Note that
for any numeral n, C`$ xSatΣpnq existsy. For example, C`$ xSatΣ365 existsy.

4.7 Computability

As discussed in Section 4.3, our attitude toward computability is that it is an
intrinsic property of functions, and that the science of computation begins with a
useful characterization of this property. We have chosen to do this in the framework
of HF. We will first show that any ∆1 function f : HF Ñ HF is computable, by the
direct method of exhibiting an effective procedure. We then claim that any effective
procedure can be naturally modeled as a ∆1 function. This claim is buttressed by
the fact that all notions of computability that have ever been defined have been
shown to be equivalent (to one another and therefore to ∆1). We will therefore
define computable to mean ∆1, and proceed from there.

We call a class X Ď HF computable iff its characteristic function tpx, 1q | x P
Xu Y tpx, 0q | x P HF zXu is computable.

(4.47) Sat10 is computable; i.e., there is an effective procedure that will determine,
for any ∆10 sentence σ, whether Sat10 σ.
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Remark Since s1-expressions are HF and Sat10 is ∆1, we are showing that a par-
ticular ∆1 class is computable. We will later use this to show that any ∆1 class is
computable.

Demonstration Let s2 be s1 with one additional binary predicate index, with
the intended interpretation as the inclusion relation. Let τ, τ 1 ÞÑ τ ĎĎĎ τ 1 be the
corresponding operation on s1-terms. Let Val20 be the valuation operation for ∆s2

0 .
Then13

Val20pτ “““ τ
1q “ Val20pτ ĎĎĎ τ

1q 9̂ Val20pτ
1ĎĎĎ τq

Val20pτ PPP0q “ 0
Val20pτ PPP τ0

ððð τ1q “ Val20pτ PPP τ0q 9_ Val20pτ “““ τ1q

Val20p0ĎĎĎ τq “ 1

Val20pτ0
ððð τ1ĎĎĎ τq “ Val20pτ0ĎĎĎ τq 9̂ Val20pτ1 PPP τq

Val20p␣␣␣ϕq “ 9␣ Val20pϕq

Val20pϕ___ϕ
1q “ Val20pϕq 9_ Val20pϕ

1q

Val20pϕ ^̂̂ ϕ
1q “ Val20pϕq 9̂ Val20pϕ

1q

Val20pϕÑÑÑϕ1q “ Val20pϕq 9Ñ Val20pϕ
1q

Val20pϕØØØϕ1q “ Val20pϕq 9Ø Val20pϕ
1q

Val20pDDDuPPP0 ϕq “ 0

Val20pDDDuPPP τ0
ððð τ1 ϕq “ Val20pDDDuPPP τ0 ϕq 9_ Val20

`

ϕ
`

u
τ1

˘˘

Val20p@@@uPPP0 ϕq “ 1

Val20p@@@uPPP τ0
ððð τ1 ϕq “ Val20p@@@uPPP τ0 ϕq 9̂ Val20

`

ϕ
`

u
τ1

˘˘

.

(4.48)

Any ∆s2

0 formula is uniquely of one of the forms occurring on the left side in (4.48)
and may be evaluated using the right side of the corresponding equation. The
second, fourth, eleventh and thirteenth of these provide the value directly; the
remainder require evaluation of one or two ∆s2

0 formulas. We therefore have a
recursive (self-calling) procedure for computing Val20. Since every ∆s1

0 formula is
∆s2

0 , we have the desired procedure, as long as we can show that it always halts,
i.e., terminates.

(4.49) Definition To do so, we define for the nonce the complexity of an s2-formula
ϕ to be the 3-sequence xa, b, cy, where a is the number of occurrences of a quantifier
or propositional connective sign in ϕ, b is the number of occurrences of ið in ϕ,
and c is the number of occurrences of i“ in ϕ. Say that a formula ϕ with complexity
xa, b, cy is simpler than a formula ϕ1 with complexity xa1, b1, c1y

def
ðñ

1. a ă a1, or

2. a “ a1 and b ă b1, or

3. a “ a1 and b “ b1 and c ă c1.

By this definition, any formula on the right side in (4.48) is simpler than the formula
on the left. Since the order just defined is a wellorder, the procedure halts for any
input.

13Recall4.20 the use of ‘ 9̂ ’, etc., to denote operations on truth values. Here we’ll just use 1 and
0 for T and F, respectively.
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Since we are presenting this demonstration as an exercise in common sense, as
opposed to a formal proof, we need not invoke any abstract set-theoretic principles,
and we may argue directly as follows: By the construction of our procedure the
evaluation of any s2-sentence σ is accomplished by evaluating either zero, one, or
two simpler sentences. If the procedure fails to halt for σ then it fails to halt for
one of the latter sentences. We may define σ˚ in this case to be the first of these
in the order given in (4.48). Now

(4.50) suppose toward a contradiction that the procedure fails to halt for some
s2-sentence σ0.

Let σ1 “ σ˚0 , σ2 “ σ˚1 , . . . . Let xan, bncny be the complexity of σn. Since the
complexity is strictly decreasing, an cannot increase, so for some n0, for all n ě n0,
an “ an0 . For n ě n0, bn cannot increase, so for some n1 ě n0, for all n ě n1,
xan, bny “ xan1 , bn1y. Finally, for n ě n1, cn cannot increase, so for some n2 ě

n1, for all n ě n2, xan, bn, cny “ xan2 , bn2 , cn2y. Since the complexity is strictly
decreasing, this is a contradiction, and the supposition (4.50) is untenable. 4.47

We have described the procedure as a manipulation of s2-expressions without
specifying exactly what these expressions are. They may be sequences of symbols,
handwritten or imprinted on a tape as in a Turing machine; sequences of memory
bits in an electronic computer; hereditarily finite sets; . . . . The essential thing is to
recognize that any general model of computation must allow the implementation
of the foregoing procedure.

To apply (4.47) to HF sets in general, we use the fact that every HF set is
Val1 τ for some constant (variable-free) s1-term τ , so operations on HF sets may be
represented by operations on constant s1-terms. It is useful to have a unique name
for each HF set, and for this purpose we use the operation B⃗ : ω bij

Ñ HF and the
associated ordering ă of HF in order type ω.3.211 3.213

Recall that any s1-term s0 is either 0 or is uniquely of the form s1
ððð t0, where

s1, t0 are s1-terms. s1 in turn is either 0 or s2 ððð t1, s2 is either 0 or s3 ððð t2, etc.
Decomposing a term in this way we eventually arrive at sn “ 0. For each m P n,
Val1 sm “ Val1 sm`1 Y tVal1 tmu, so

Val1 s0 “ Val1 s1 Y tVal1 t0u

“ Val1 s2 Y tVal1 t1,Val1 t0u
...

“ Val1 sn Y tVal1 tn- , . . . ,Val1 t0u

“ 0Y tVal1 tn- , . . . ,Val1 t0u

“ tVal1 tn- , . . . ,Val1 t0u.

The following definition is therefore legitimate.

Definition [S`] Suppose τ is a constant s1-term. sτ and tτ def
“ the (unique) finite

sequences such that, letting n “ |tτ |,

1. |sτ | “ n` 1;

2. sτ0 “ τ ;

3. @m P n psτm “ sτm`1
ððð tτmq; and
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4. sτn “ 0.

(4.51) Definition [S`] An s1-term τ is canonical
def
ðñ τ is constant and for every

subterm τ 1 of τ , letting n1 “ |tτ
1
|,

Val1 tτ
1

0 ă Val1 tτ
1

1 ă ¨ ¨ ¨ ă Val1 tτ
1

n1- .

(4.52) Theorem [S`] For every HF set x there is a unique canonical s1-term τ
such that Val1 τ “ x.

Proof By P-induction. If x “ 0, then 0 is the unique constant s1-term τ such that
Val1 τ “ x, and 0 is trivially canonical.

Suppose now that x is HF and for every y P x there is a unique canonical
term τy such that Val1 τy “ y. Let n “ |x|, and let y0, . . . , yn- be such that
y0 ă y1 ă ¨ ¨ ¨ ă yn- and x “ tym | m P nu. For each m P n, let tm be the (unique)
canonical s1-term such that Val1 tm “ ym. Let

sn “ 0

sn- “ sn
ððð tn-

...
s1 “ s2

ððð t1

s0 “ s1
ððð t0.

(4.53) Claim For each k ď n, sk is canonical.

Proof By reverse induction on k, i.e., we start with k “ n and work down to
k “ 0. If k “ n then sk “ sn “ 0, which is canonical. Suppose k ă n and sk`1 is
canonical. Then

tsk “ xtk, tk`1, . . . , tn-y,

and Val1 tk ă Val1 tk`1 ă ¨ ¨ ¨ ă Val1 tn- , so sk is canonical iff every proper subterm
of sk is canonical. The proper subterms of sk are sk`1, tk, and proper subterms of
these, all of which are canonical by hypothesis. 4.53

In particular, s0 is canonical,4.53 and Val1 s0 “ x, which establishes existence.
To establish uniqueness, suppose τ is a canonical s1-term with Val1 τ “ x. Then
|tτ | “ n and for each m P n, Val1 tτm “ ym. By induction hypothesis, for each m P n,
tτm “ tm, so τ “ s0. Thus, there is a unique canonical s1-term τ with Val1 τ “ x.

4.52

By Theorem 4.52 the following definition is legitimate

(4.54) Definition [S`] Suppose x is an HF set. The canonical name of x def
“ x̂

def
“ Nmx

def
“ the (unique) canonical s1-term τ such that Val1 τ “ x.

In this chapter it will be convenient to use the form ‘Nmx’; later we will use the
more efficient ‘x̂’.

(4.55) Let S be the function that assigns to each canonical s1-term τ the canonical
s1-term τ 1 such that Val1 τ 1 is the ă-successor of Val1 τ , i.e., ⃗BVal1 τ 1 “ p ⃗BVal1 τq`
1.3.213 S is computable.
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Demonstration For the purpose of describing the procedure, let τn be the canon-
ical term for B⃗ n. The first few τns are these:

τ0 “ 0

τ1 “ 0 ððð τ0

τ2 “ 0 ððð τ1

τ3 “ p0 ððð τ1q
ððð τ0

τ4 “ 0 ððð τ2

τ5 “ p0 ððð τ2q
ððð τ0

τ6 “ p0 ððð τ2q
ððð τ1

τ7 “ pp0 ððð τ2q
ððð τ1q

ððð τ0

τ8 “ 0 ððð τ3

τ9 “ p0 ððð τ3q
ððð τ0

τ10 “ p0 ððð τ3q
ððð τ1.

(4.56)

Observe that
τn “ p¨ ¨ ¨ pp0 ððð τkl´1q

ððð τkl´2q
ððð ¨ ¨ ¨ qððð τk0

where k0 ă ¨ ¨ ¨ ă kl- , and n “
ř

mPl 2
km . In other words, k0, . . . , kl- are the

positions where ‘1’ occurs in the binary representation of n, where positions are
numbered from the right starting with 0.

Thus, an effective procedure for S may be obtained from an effective procedure
for generating the next binary numeral. It is convenient for this purpose to imagine
an ω-sequence of bins extending to the left (i.e., bin 0 is the rightmost bin). A bin
may be full or empty. The full bins correspond to ‘1’s in a binary numeral, the
empty bins to ‘0’. Given a numeral in this way, the next numeral is obtained by
finding the rightmost empty bin, filling it, and emptying all bins to its right.

Explicitly in terms of canonical terms, this procedure may be described as fol-
lows. As is familiar from computer programming, we start with the first line, after
executing a line go to the next line unless instructed otherwise, and proceed until
instructed to halt.

1. let ζ “ 0;

2. if τ “ 0 output 0 ððð ζ and halt;

3. let τ 1, ζ 1 be such that τ “ τ 1 ððð ζ 1;

4. if ζ 1 ‰ ζ then output τ ððð ζ and halt;

5. let τ “ τ 1 and ζ “ Sζ 1 and go to line 2.

Note that, like the program described by (4.48), the current program is recursive
in that it calls itself (in line 5). It is easy to show by induction on the complexity
of terms that it halts for any input s1-term.

Applied to canonical terms, the procedure successively removes the last-added
term (i.e. removes ζ 1 from τ “ τ 1 ððð ζ 1, leaving a reduced core τ 1), compares it first
to 0 and thereafter to the canonical term for the successor of the term previously
removed until it finds a gap in the sequence (an empty bin) or it has removed all
the added terms and the core has been reduced to 0. At this point it adds the
successor of the last-removed term to the remaining core, producing the canonical
term for the ă-successor of the set denoted by the term with which it began. 4.55
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(4.57) Suppose X Ď HF is Σ1. Then X is computably enumerable, i.e., there is
an effective procedure that creates a list x0, x1, . . . , of HF sets such that X “ txn |
n P ωu.

Remark To put a set on the list the procedure must describe it somehow, and we
will suppose that this procedure—like the previous ones—manipulates expressions
and that the output of the procedure is a list of canonical s1-terms. In general,
we will suppose that all effective procedures dealing with HF sets do so via their
canonical names in some implementation of s1.

Demonstration To describe such a procedure, let4.38.1 ϕ be Σ1 with one free vari-
able u such that @HF x

`

x P XØSatΣ1 ϕ
“

u
x

‰˘

. For simplicity, suppose ϕ “ DDDv ψ,

where ψ is ∆0.14 Note that if Val1 τ “ x and Val1 η “ y, then15

Sat0 ψ
“

u v
x y

‰

ØSat10 ψ
`

u v
τ η

˘

.

We therefore want to enumerate the canonical terms τ such that for some canonical
term η, Sat10 ψ

`

u v
τ η

˘

. We use the procedure described for (4.55) to generate all pairs
of canonical terms in some simple order, e.g.4.56 xτ0, τ0y, xτ1, τ0y, xτ1, τ1y, xτ2, τ0y,
xτ2, τ1y, xτ2, τ2y, . . . , xτm, τny, . . . . For each of these we use the procedure for (4.47)
to check whether Sat10 ψ

`

u v
τm τn

˘

. If this is the case we output τm. 4.57

(4.58) Definition Notice that we have described two sorts of effective procedures,
which we will call terminable and interminable.

1. A terminable procedure accepts a finitary input and then either computes for a
while and halts, producing a finitary output; or computes forever, never halting
and never producing any output.

2. An interminable procedure accepts no input. It simply starts and never stops.
From time to time it outputs a finitary object. Note that the sequence of outputs
may have infinite length or finite length, possibly 0.

Note that a terminable procedure might not terminate, i.e., halt; it is simply a
member of the class of procedures that by design may halt. The output of an
interminable procedure may be considered in the singular, viz., as the entire se-
quence finitary objects that it generates. Generally it will be evident from context
which sort of procedure is meant, and we simply say ‘effective procedure’ or just
‘procedure’.

(4.59) Suppose X Ď HF is ∆1. Then X is computable.

Remark By this, of course, we mean that the characteristic function of X is a
computable function.

14Any Σ1 formula is HF-equivalent to such a formula, since for any ∆0 formula ψ,

SatΣ1 DDDv1, . . . , vn ψ
“u
x

‰

Ø SatΣ1 DDDv DDDv1 PPP v̄, . . . ,DDDvn PPP v̄ ψ
“u
x

‰

.

15Note that the expression on the left refers to an assignment of sets to variables, whereas the
expression on the right refers to a substitution of terms for variables.
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Demonstration Since bothX and HF zX are Σ1, both are computably enumerable.4.57

To ascertain whether x P X, we run procedures that enumerate X and HF zX con-
currently; keeping with the notion of a computation as a linear sequence of steps,
we can dovetail the computations, doing first a step for X, then a step for HF zX,
then another step for X, etc. Eventually x (actually Nmx, the canonical term for
x) will appear in one of the lists, and then we have the answer to our question. 4.59

(4.60) Definition

1. We say that f : HF Ñ HF is computable iff there is an effective (terminable)
procedure that for any HF input x halts with output fx.

2. We say that f : HF á HF is partial computable iff there is an effective
procedure that for any input x P HF zdom f fails to halt, and for any input
x P dom f halts with output fx.

Note that the computable functions are exactly the partial computable functions f
with dom f “ HF. For emphasis in the setting of partial computable functions, we
may refer to a computable function as total computable.

(4.61) Suppose f : HF á HF is Σ1. Then f is partial computable.

Demonstration To compute fx in the sense of (4.60.2) we may computably enu-
merate f ;4.57 if and when this enumeration produces a pair px, yq, we output y and
halt. If x R dom f , this procedure with input x does not halt. 4.61

4.7.1 The Church-Turing thesis

We now assert that any model of computation that corresponds to the conventional
understanding of that concept involves a finitary entity accepting a finitary input,
undergoing a programmed sequence of changes of (finitary) state, and either halt-
ing with a finitary output or continuing forever without halting. For any given
effective procedure, any completed computation (i.e., one that has halted) may be
represented by an HF set, and we may reasonably state that the class of HF sets
that represent completed computations is ∆1. If the given procedure computes a
function f : HF á HF in the sense (4.60.2), then x P dom f ^ fx “ y iff there is
an HF set z that represents a completed computation with input x and output y.
Hence f is Σ1.

Conversely, as we have shown,4.61 any Σ1 function f : HF á HF is computable
in a reasonable sense, viz., the sense we have developed in (4.47), (4.55), (4.57),
(4.59), and finally (4.61).

We conclude that any reasonable definition of computability is equivalent to the
one we have developed here and therefore all such definitions are equivalent to one
another. As noted above, for many definitions these equivalences have been rig-
orously proved, which lends support to the general thesis, which is known as the
Church-Turing thesis.

It is important to note that we do not use the Church-Turing thesis. Any time
we claim that a function f is Σ1 because it is computable, it will be a straight-
forward exercise to exhibit a Σ1 definition of f . To eliminate any possibility of
misunderstanding we now simply define computable to mean Σ1.
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Definition [C`] f : HF á HF is computable
def
ðñ f is Σ1.

Of course, this essentially renders the Church-Turing thesis tautological, which is
the intention.

4.7.2 Undecidability of predicate logic

We now address the question that was our original motivation for the development
of the theory of computability: that of the decidability of predicate logic.

Definition [C`] Let R be the fragment of S consisting of the following sentences:

@@@v0, v1 p@@@v2 pv2 PPP v0ØØØ v2 PPP v1qÑÑÑ v0“““ v1q

DDDv0 @@@v1 ␣␣␣ v1 PPP v0

@@@v0, v1 DDDv2 @@@v3 pv3 PPP v2ØØØ v3 PPP v0___ v3“““ v1q.

Recall4.42 that for x P HF, θx is a ∆0 formula with free variable v0 such that for
all y P HF, Sat0 θx

“

v0
y

‰

Ø y “ x. It is easy to show by P-induction on x that for all
x P HF

R$DDD!v0 θx.

Suppose ψ is ∆0, xw0, . . . , wn-y enumerates Freeψ, x0, . . . , xn- P HF, and u0, . . . , un-

are distinct variables not occurring in ψ or in θxm for any m P n. It is straightfor-
ward to show by induction on the complexity of ψ that if

Sat0 ψ
“

w0 ¨ ¨ ¨ wn-

x0 ¨ ¨ ¨ xn-

‰

then
R$ θx0pu0q ^̂̂ ¨ ¨ ¨ ^̂̂ θxn- pun-qÑÑÑψ

`

w0 ¨ ¨ ¨ wn-

u0 ¨ ¨ ¨ un-

˘

.

Suppose l ď n and let ϕ “ DDDw0, . . . , wl- ψ. Then for any xl, . . . , xn- P HF, if

SatΣ1 ϕ
“

wl ¨ ¨ ¨ wn-

xl ¨ ¨ ¨ xn-

‰

then there exist x0, . . . , xl- P HF such that

Sat0 ψ
“

w0 ¨ ¨ ¨ wn-

x0 ¨ ¨ ¨ xn-

‰

,

whence
R$ θx0pu0q ^̂̂ ¨ ¨ ¨ ^̂̂ θxn- pun-qÑÑÑψ

`

w0 ¨ ¨ ¨ wn-

u0 ¨ ¨ ¨ un-

˘

;

hence, since R$DDDv0 θxm for each m P l,

R$ θxl
pulq ^̂̂ ¨ ¨ ¨ ^̂̂ θxn- pun-qÑÑÑDDDw0, . . . , wl- ψ

`

wl ¨ ¨ ¨ wn-

ul ¨ ¨ ¨ un-

˘

,

i.e.,
R$ θxl

pulq ^̂̂ ¨ ¨ ¨ ^̂̂ θxn- pun-qÑÑÑϕ
`

wl ¨ ¨ ¨ wn-

ul ¨ ¨ ¨ un-

˘

.

In summary:

(4.62) Theorem [C`] If ϕ is Σ1, xv0, . . . , vn-y enumerates Freeϕ, x0, . . . , xn- P HF,
and u0, . . . , un- are distinct variables not occurring in ϕ or in θxm for any m P n
then

SatΣ1 ϕ
“

v0 ¨ ¨ ¨ vn-

x0 ¨ ¨ ¨ xn-

‰

ÑR$ θx0pu0q ^̂̂ ¨ ¨ ¨ ^̂̂ θxn- pun-qÑÑÑϕ
`

v0 ¨ ¨ ¨ vn-

u0 ¨ ¨ ¨ un-

˘

.
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In this sense, R proves every true Σ1 (true in the sense of Sat, i.e., true in the
finitary interpretation). Now suppose that—in the same sense—R does not prove
any false Σ1:

(4.63) If ϕ is Σ1, xv0, . . . , vn-y enumerates Freeϕ, x0, . . . , xn- P HF, and u0, . . . , un-

are distinct variables not occurring in ϕ or in θxm for any m P n then

␣SatΣ1 ϕ
“

v0 ¨ ¨ ¨ vn-

x0 ¨ ¨ ¨ xn-

‰

ÑR& θx0pu0q ^̂̂ ¨ ¨ ¨ ^̂̂ θxn- pun-qÑÑÑϕ
`

v0 ¨ ¨ ¨ vn-

u0 ¨ ¨ ¨ un-

˘

.

(4.64) This sort of condition is referred to generically as ω-consistency.16

(4.63) clearly follows from the existence of the satisfaction relation for pHF; Pq,
because in this case,

pHF; Pq |ù R,

i.e., R is true, so
pHF; Pq |ù σ

for every σ such that R$σ.

(4.65) Theorem [C`] Suppose (4.63). Then first-order predicate logic is undecid-
able.

Proof Specifically, we will show that the class of s-validities is not recursive. Sup-
pose toward a contradiction that it is recursive. We will show that every Σ1 class
is ∆1.

For suppose X Ď HF is Σ1. Let ϕ be a Σ1 formula with Freeϕ “ tv0u such that
X “

␣

x P HF
ˇ

ˇ SatΣ1 ϕ
“

v0
x

‰(

. Let ρ be a conjunction of the (three) axioms of R. Let
x P HF be given. If x P X then4.62

$ ρ ^̂̂ θxÑÑÑϕ,

whereas if x R X then4.63

& ρ ^̂̂ θxÑÑÑϕ.

We apply the putative decision procedure for $ to ascertain which of these is the
case, and then we know whether x P X. X is therefore decidable, i.e., ∆1.

Since we know4.46 that not every Σ1 is ∆1, this is a contradiction. 4.65

A few remarks are in order. We have shown that predicate logic with identity
and one other binary predicate is undecidable. Since logic with identity is a con-
servative extension of logic without, we could modify the proof to work for logic
with one binary predicate, without identity. Since our proof of the conservative
extension result was finitary (carried out in C`) we can simply invoke this result
and still have a proof of the undecidability result from C` plus the assumption of
ω-consistency of (the theory corresponding to) R.

It is worth noting that propositional logic and predicate logic with only unary
predicates (and no operations) are decidable.

16In the context of theories of arithmetic, with the intended interpretation pω;`, ¨q, a theory
T is ω-consistent iff it is not the case that there is a formula ϕ with Freeϕ “ tuu, such that

T$DDDu ϕ, but for every n P ω, T$␣␣␣ϕ
` u
τn

˘

, where τn denotes n in the intended interpretation.

‘HF-consistency’ would be more appropriate than ‘ω-consistency’ in our setting, but the essential
idea is the same. Note that ω-consistency trivially implies consistency, because if T is inconsistent
then T proves everything. The converse need not hold.
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As to the assumption of ω-consistency of R, there really can be no serious doubt
as to its correctness; as noted above, it follows from the existence of a satisfaction
relation for pHF; Pq (which in turn follows from the Infinity axiom). Our purpose
here is not to obtain the undecidability result with minimal assumptions, but sim-
ply to obtain the undecidability result (as a significant discovery in the science of
computation—if you will). Surely no one who understands the above argument will
be tempted to try to design a decision procedure for predicate logic.

4.8 Recursive functions

We regard the discussion of the preceding section as establishing the foundation
of the science of computation, and from now on we may refer to the theory of
computation, which is the theory of Σ1pHFq.

We are primarily interested in using this theory to address metamathematical
issues such as decidability of theories, but its value extends well beyond this. It is
also a rich and beautiful theory in its own right, and we will provide a glimpse of
this.

The reader will have noticed that many of the procedures we have described
have been recursive (self-calling). The science of computability may be developed
with the notion of algorithmic recursion having a central role, and ‘recursive’ is
often used synonymously with ‘computable’.

The theory of computation is therefore also referred to as the theory of recursive
functions.

Although the terms are synonymous, to emphasize the change in point of view,
we will use ‘recursive’ preferentially from this point on. Thus, ‘computable’ is for
us an intuitive concept, for which we have succeeded in giving a precise mathe-
matical definition; whereas ‘recursive’ is a term introduced into the discussion by
mathematical definition.

The following definition contains no essentially new ideas, but it reflects the
conventional terminology as just described.

(4.66) Definition [C`]

1. Suppose f : HF á HF.

1. f is partial recursive
def
ðñ f is p.r.

def
ðñ f is Σ1.4.60.2

2. f is total recursive or simply recursive
def
ðñ f is rec

def
ðñ f is p.r. and

dom f “ HF.4.60.1

2. Suppose X Ď HF.

1. X is semirecursive
def
ðñ X is recursively enumerable

def
ðñ X is r.e.

def
ðñ X

is Σ1.4.57

2. X is recursive
def
ðñ X is ∆1.4.59

We have used HF as a convenient domain over which to develop the science of
computation. Using the ∆1 bijection B⃗ : ω bij

Ñ HF, all the relevant notions may
also be defined over the domain of natural numbers, i.e., in terms of subsets of
ω and functions from ω to ω. This is often conceptually advantageous, and it is
how the theory is usually presented, often in conjunction with other convenient
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domains, principally nω (n P ω). The various domains used for this purpose are
always infinite ∆1 subsets of HF. When we thus restrict our attention to functions
with domain included in a set D, the partial recursive functions f are those such
that f is Σ1 and f : D á HF; such a function f is (total) recursive iff dom f “ D.

In this connection the following theorem is relevant.

(4.67) Theorem [C`] Suppose f : HF á HF is Σ1. Then dom f is Σ1. If dom f
is ∆1 then f is ∆1.

Proof Straightforward. 4.67

In light of this theorem, and in keeping with the preceding discussion, we will
often refer to any partial recursive function with a recursive domain as recursive
(on its domain).

4.8.1 Σ1-uniformization

Definition [C`] Suppose R is a prefunction3.25 and F is a function. F uniformizes

R
def
ðñ F Ď R and domF “ domR.

Note that F is a choice function for the function G “ tpx,RÑtxuq | x P domRu,
assuming RÑtxu is a set for every x P domR.

A key property of Σ1 is that any Σ1 prefunction on HF is uniformized by some
Σ1 function. We refer to this as Σ1-uniformization, and we say that Σ1 has the
uniformization property.

If we wanted to define a uniformizing function for R and did not care about its
complexity, we could use H “ tpx, yq P R | @y1 ă y px, y1q R Ru, but this is not in
general Σ1 for a Σ1 prefunction R because the complement of R is not in general
Σ1. So instead of using the ă-least y such that px, yq P R, we use the ă-least pair
xy, zy such that z witnesses that px, yq P R.

(4.68) Theorem [C`] Suppose R is a Σ1 prefunction on HF. Then there is a Σ1

function F that uniformizes R.

Proof Since R is Σ1 there is a ∆0 class S Ď 3 HF such that

R “ tpx, yq | DHF z xx, y, zy P Su.

Let F be the class of ordered pairs px, yq such that there exists s P 2 HF such
that

1. xx, s0, s1y P S;

2. for every HF 2-sequence s1 ă s, xx, s10, s
1
1y R S; and

3. y “ s0.

Clearly F uniformizes R. To show that F is Σ1, we just have to show that Clause 2
in its definition may be expressed in a Σ1 way. To do this, note that x@s1 ă s . . . y is
equivalent to xDX,n pOrdn^X “ Vn^ s P X ^@s

1 P X ps1 ă sÑ . . . qqy.3.212.4 4.29.2

4.68
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4.8.2 Complete and universal sets

(4.69) Theorem [C`] Suppose f : HF Ñ HF is recursive and A Ď HF. If A is Σ1

or Π1 then fÐA is respectively Σ1 or Π1.

Proof Straightforward. 4.69

(4.70) Definition [C`] A set A Ď HF is a complete Σ1 pΠ1q set
def
ðñ A is Σ1

pΠ1q and for any Σ1 pΠ1q set B Ď HF there exists a recursive f : HF Ñ HF such
that B “ fÐA.

Obviously, if A is a complete Σ1 set then ␣A is a complete Π1 set, and vice versa.
The question of the existence of complete sets is of interest.

(4.44) may be viewed as a special case of (4.69), since b ÞÑ xa, by is a recursive
function for any fixed a P HF.17 The following definition is to (4.44) as (4.70) is to
(4.69).

Definition [C`] B Ď HFˆHF is a universal Σ1 set
def
ðñ

1. B is Σ1; and

2. for every Σ1 A Ď HF, DHF a @HF b pb P AØxa, by P Bq.

Clearly, a universal set is a special sort of complete set. We now settle the question
of existence.

(4.71) Let U def
“ the set of xa, by P HFˆHF such that

1. a is a Σ1 formula and Free a “ tv0u; and

2. SatΣ1 a
“

v0
b

‰

.

(4.72) Theorem [C`] U is universal Σ1 set.

Proof It is straightforward to verify that U is Σ1; and it is clearly universal, as
any Σ1 set A Ď HF is defined by some Σ1 formula with the single free variable v0.

4.72

If we let Ua “ tb | xa, by P Uu then a may be regarded as an index of the Σ1 set Ua,
specifically, a is said to be a Turing index.

The corresponding indexing of Σ1 subsets of ω, i.e., r.e. sets, is traditionally repre-
sented by ‘W ’. Thus,

(4.73) Definition [C`] For n P ω, Wn
def
“ tm P ω | x B⃗ n, B⃗ my P Uu.

17That b ÞÑ xa, by is recursive seems so obvious as hardly to require proof, but we should
recognize that in stating this so casually we are actually invoking the Church-Turing thesis. It is
a good exercise to construct a formal proof, essentially recapitulating the proof of (4.44)—nothing
is free.
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4.8.3 A universal partial recursive function

To name Σ1 functions in a similarly effective way is not as straightforward, because
the class of Σ1 formulas ϕ with two free variables, say v0 and v1, that define
a function, i.e., @x P HF D!y P HF SatΣ1 ϕ

“

v0 v1
x y

‰

, is not Σ1.18 Recall, however,
the Σ1-uniformization principle,4.68 which states that every Σ1 prefunction R is
uniformized by a Σ1 function F . A glance at the proof of Theorem 4.68 makes it
clear that a Σ1 formula for F may be obtained computably from a Σ1 formula for
R.

The following definition gives a specific way of doing this modeled on the proof
of Theorem 4.68.

(4.74) Definition [C`]

1. Let Φ def
“ the set of pxa, by, cq P HF such that

1. a is a ∆0 formula with Free a “ tv0, v1, v2u; and
2. there exists d P HF such that

1. Sat0 a
“

v0 v1 v2
b c d

‰

; and

2. for every xc1, d1y P HFˆHF, if xc1, d1y ă xc, dy then ␣ Sat0 a
“

v0 v1 v2
b c1 d1

‰

.

2. Suppose a P HF. The p.r. function with index a def
“ φa

def
“ tpb, cq | pxa, by, cq P

Φu.

As in the proof of (4.68), Φ is Σ1, and Φ : HFˆHF á HF. It is therefore a p.r.
function. Each φa is likewise partial recursive.

To see that Φ is in fact universal, suppose φ : HF á HF is partial recursive. Let
a be a ∆0 formula with Free a “ tv0, v1, v2u such that for all b, c P HF, pb, cq P φ
iff

(4.75) DHF d Sat0 a
“

v0 v1 v2
b c d

‰

.

φ is a function, so for all b P HF there exists at most one c P HF such that (4.75)
holds, from which it follows that for all b, c P HF, pb, cq P φ iff pxa, by, cq P Φ.

As above, a is said to be a Turing index for φa. Also as discussed above,
a universal p.r. function Φ and corresponding indexed functions φa are usually
defined primarily over the domain ω and secondarily over the domains nω; and
Turing indices are also taken to be numbers.

The following definition expresses an important feature of the universal objects
we have defined above.

(4.76) Definition [C`]

1. U Ď HFˆHF is a good universal Σ1 set
def
ðñ

1. U is a universal Σ1 set; and
2. there is a recursive s : HFˆHF Ñ HF such that for all a, b, c P HF

xa, xb, cyy P UØxsxa, by, cy P U.

18It is easily seen to be Π1: @HF x, y, y
1
`

␣ SatΣ1 ϕ
“v0 v1
x y

‰

_␣ SatΣ1 ϕ
“v0 v1
x y1

‰

_ y “ y1
˘

. We will

soon have the tools to show that it is not Σ1.
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2. Φ : HFˆHF á HF is a good universal p.r. function
def
ðñ

1. Φ is a universal p.r. function; and
2. there is a recursive s : HFˆHF Ñ HF such that for all a, b, c, d P HF

pxa, xb, cyy, dq P ΦØpxsxa, by, cy, dq P Φ.

The common name of the following theorem derives from the particular state-
ment of it in Kleene’s original presentation, where, mutatis mutandis, smn : m`1 HF Ñ
HF is recursive such that for all e, a1, . . . , am, b1, . . . , bn P HF

xe, a1, . . . , am, b1, . . . , bny P U
m`nØxsmn xe, a1, . . . , amy, b1, . . . , bny P U

n,

Um`n and Un being universal for Σ1 subsets of m`nω and nω, respectively, in the
obvious sense.

(4.77) Theorem: s-m-n [C`]

1. The set U defined above4.71 is a good universal Σ1 set.

2. The function Φ4.74 is a good universal p.r. function.

Proof 1 Since U is Σ1, txa, b, cy | xa, xb, cyy P Uu is Σ1. Let θ be a Σ1 formula
with free variables v0, v1, v2 such that for all a, b, c P HF,

xa, xb, cyy P UØSatΣ1 θ
“

v0 v1 v2
c a b

‰

.

Recall the definition4.42.3 of the ∆0 formula θx that defines txu, and recall4.45 that
x ÞÑ θx is recursive. Define s : HFˆHF Ñ HF so that for all a, b P HF

sxa, by “ DDDu1 DDDu2

`

θapū1q ^̂̂ θbpū2q ^̂̂ θ
`

v1 v2
ū1 ū2

˘˘

,

where u1 and u2 are the first two variables that do not occur in θa, θb or θ. Then
s is recursive, and for all a, b, c P HF

xa, xb, cyy P UØSatΣ1 θ
“

v0 v1 v2
c a b

‰

ØSatΣ1 sxa, by
“

v0
c

‰

Øxsxa, by, cy P U.

2 Since Φ is Σ1, txa, b, c, dy | pxa, xb, cyy, dq P Φu is Σ1. Let θ be a ∆0 formula with
free variables v0, v1, v3, v4, v5 such that for all a, b, c, d P HF,

pxa, xb, cyy, dq P ΦØDHF f Sat0 θ
“

v0 v1 v3 v4 v5
c d a b f

‰

.

Let
θ1 “ v̄3 PPP v̄2 ^̂̂ v̄4 PPP v̄2 ^̂̂ DDDv5 PPP v̄2 θ.

Then for all a, b, c, d P HF,

pxa, xb, cyy, dq P ΦØDHF e Sat0 θ1
“

v0 v1 v2 v3 v4
c d e a b

‰

.

Since Φ is a function, pxa, xb, cyy, dq P Φ iff there exists e P HF such that Sat0 θ1
“

v0 v1 v2 v3 v4
c d e a b

‰

and xd, ey is the ă-least pair with this property.
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Now define s : HFˆHF Ñ HF so that for all a, b P HF

sxa, by “ DDDu0 PPP v̄2 DDDu1 PPP v̄2

`

θapū0q ^̂̂ θbpū1q ^̂̂ θ
1
`

v3 v4
ū0 ū1

˘˘

,

where u0 and u1 are the first two variables that do not occur in θa, θb or θ1. Then
s is recursive, and for all a, b, c, d, e P HF

Sat0 θ1
“

v0 v1 v2 v3 v4
c d e a b

‰

ØSat0 sxa, by
“

v0 v1 v2
c d e

‰

It follows that for any a, b, c, d P HF, pxa, xb, cyy, dq P Φ iff there exists e P HF such
that Sat0 sxa, by

“

v0 v1 v2
c d e

‰

and xd, ey is the ă-least pair with this property.
By the definition of Φ, therefore, pxa, xb, cyy, dq P Φ iff pxsxa, by, cy, dq P Φ, as

desired. 4.77

The following corollary of the s-m-n theorem shows its versatility.

Theorem [C`] Suppose U Ď HFˆHF is a good universal Σ1 set. Then U is
effectively universal in the sense that there is a recursive t : HFˆHF Ñ HF such
that

@HF a, b, c
`

xb, φacy P UØxtxa, by, cy P Uq.

Remark In other words, φaÐUb “ Utxa,by. Thus, the operation of forming a recur-
sive preimage φÐA of a Σ1 set A may be represented effectively (i.e., recursively)
in terms of U -codes (Turing indices). The reason to state this in terms of recursive
preimages is that this is a very general way of deriving one Σ1 set from another. Φ
is similarly effectively universal.

Proof For all a, b, c P HF,

xb, φacy P UØDHF d
`

pc, dq P φa^pb, dq P U
˘

ØDHF d
`

pxa, cy, dq P Φ^pb, dq P U
˘

Thus, txxb, ay, cy | xb, φacy P Uu is Σ1, so it is Ud for some d, and for all a, b, c P HF

xd, xxb, ay, cyy P UØxb, φacy P U.

Let t : HFˆHF Ñ HF be such that

txa, by “ sxd, xb, ayy,

with s as in (4.76.2). t is Σ1 by virtue of (4.44) and the subsequent remarks. As it
is a total function, it is recursive. Then

xb, φacy P UØxd, xxb, ay, cyy P UØxsxd, xb, ayy, cy P UØxtxa, by, cy P U,

as required. 4.8.3

4.9 The unsolvability of the halting problem

A major issue in the early development of the theory of computability was the
problem of determining whether a given effective procedure with a given input halts;
in particular, the question is whether there is an effective procedure that will make
this determination—i.e., is the so-called halting problem solvable, or decidable?

In our terminology, this becomes:
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Let H “ txa, by | b P domφau. Is H ∆1?

H is easily seen to be Σ1, so the question is whether H is Π1. If it is, then for every
a P HF, domφa is Π1. But every Σ1 set X is the domain of a p.r. function, e.g.,
tpa, 0q | a P Xu, so every Σ1 set would be Π1. This we have shown not to be the
case.4.46 Thus, we have proved the following theorem.

(4.78) Theorem [C`] The halting problem is unsolvable.

4.10 The recursion theorem

If an effective procedure P calls an effective procedure P 1, then a Turing index for
P is computable from a Turing index for P 1, i.e., there is a total recursive function
f such that for any a P HF, if P 1 “ φa then P “ φfpaq. In the special case that
P 1 and P are the same procedure—i.e., P calls itself—and n is a Turing index for
P, then φn “ φfpnq. In this case, the nature of f—which is in effect a description
of P with an indication of where P 1 is to be inserted—makes it obvious that there
exists n such that φn “ φfpnq. What is not so obvious is that a fixed point in this
sense exists for every total recursive f . The statement that it does is known as the
recursion theorem of Kleene.

(4.79) Theorem [C`] Suppose f : HF Ñ HF is recursive. Then there exists n P HF
such that φfpnq “ φn.

Proof Given a P HF, let ga : HF á HF be the p.r. function with the following
description: To compute gam, first compute φaa. If and when this computation
halts, say with output b, let c “ fpbq. Then compute φcm. If and when this
computation halts, gam is the output.

Note that if a R domφa then ga “ 0, the empty function. If a P domφa then
ga “ φfpφaaq. Either way, ga is a p.r. function, and a Turing index for ga is easily
obtained from a. Let h be a total recursive function such that for any a P HF, hpaq
is a Turing index for ga. Let b be a Turing index for h. Then

φφba “

#

φfpφaaq if a P domφa

0 otherwise.

In particular, letting a “ b, since φb “ h is total,

φφbb “ φfpφbbq.

Let n “ φbb. Then φfpnq “ φn, as desired.
The above argument is typical in its implicit invocation of the Church-Turing

thesis. More formally, we may proceed as follows. The function xa,my ÞÑ φfpφaaqm
is clearly Σ1. Let e be a Turing index for it, so that φexa,my “ φfpφaaqm. Using
the recursive function s from (4.76.2.2), φsxe,aym “ φfpφaaqm. Let b be such that
φba “ sxe, ay for any a (e being fixed).4.44 Then φφbam “ φfpφaaqm. Letting
n “ φbb, φnm “ φfpnqm. 4.79

We now state the recursion theorem in a form more convenient for later gener-
alization.

(4.80) Theorem [C`] Suppose A Ď HFˆHF is Σ1. Then there exists a P HF
such that Aa “ Ua.
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Proof Let s be as in (4.76.1.2). txb, cy | xsxb, by, cy P Au is Σ1, so there exists
d P HF such that for all b, c P HF

xd, xb, cyy P UØxsxb, by, cy P A.

Let a “ sxd, dy. Then for all c P HF

xa, cy P UØxsxd, dy, cy P UØxd, xd, cyy P U

Øxsxd, dy, cy P A

Øxa, cy P A,

i.e., Aa “ Ua. 4.80

4.11 Consistency and incompleteness

We have previously shown3.217 in C, on the hypothesis that pHF; Pq is weakly sat-
isfactory, that S is semantically incomplete, i.e., there is an s-sentence σ such that
pHF; Pq |ù σ but S&σ. The proof was indirect, in that it did not specify any
such sentence: It simply argued that since pHF; Pq |ù S, no pHF; Pq-false sentence
is S-provable, so if every pHF; Pq-true sentence is S-provable then pHF; Pq-truth is
equivalent to S-provability; since S-provability is definable over pHF; Pq, this implies
that pHF; Pq-satisfaction is definable over pHF; Pq, which we know1.73 is not the case.

In this section we present a direct argument that a specific sentence σ is true
but not provable. σ is designed to say that σ is not S-provable. To show that
σ is not S-provable, it suffices to assume that S is consistent. To express that
σ is pHF; Pq-true, we only need a tσu-satisfaction relation for pHF; Pq, and this is
achievable in C. We therefore have the semantic incompleteness of S derived in C
from the consistency of S, a weaker hypothesis than that of (3.217).

Note that the expressive power of C is only required to formulate the statement
that σ is true. Considerations of provability may be discussed in S. Since C is
a conservative extension of S, part of what we have done in the proof sketched
in the preceding paragraph is to prove in S that if S is consistent then σ is not
S-provable. Since σ “says” that σ is not S-provable, we have in fact proved σ itself
from the same hypothesis, i.e., the consistency of S. It follows that if S proves the
consistency of S, then S proves σ. But, as described in the preceding paragraph,
if S is consistent then S does not prove σ. It follows that if S is consistent then S
does not prove the consistency of S. This is the celebrated second incompleteness
theorem of Gödel.

Recall Theorem 4.62, which says, in effect, that any true Σ1 statement about
HF sets is R-provable, where R is a finite fragment of S. The following theorem and
the next extend this to s1-formulas.

(4.81) Theorem [C`] Suppose ϕ is a ∆10 sentence and Sat10 ϕ. Then S1$ϕ.

Proof We adapt the argument by which we established (4.47). We temporarily
extend S1 by definition of the predicate xis included iny to the theory S2 in the
signature s2. We now use the identities represented in (4.48) to show by induction
on an appropriate notion of complexity4.49 that for any ∆20-sentence ϕ, if Sat20 ϕ
then S2$ϕ, and if Sat20␣␣␣ϕ then S2$␣␣␣ϕ.

For example, suppose ϕ “ τ “““ τ 1 and the claim is true for τ ĎĎĎ τ 1 and τ 1ĎĎĎ τ . Sup-
pose Sat20 ϕ. Then Sat20 τ ĎĎĎ τ

1 and Sat20 τ
1ĎĎĎ τ , so S2$ τ ĎĎĎ τ 1 and S2$ τ 1ĎĎĎ τ , whence
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S2$ϕ. On the other hand, if Sat20␣␣␣ϕ then either Sat20␣␣␣ τ ĎĎĎ τ
1 or Sat20␣␣␣ τ

1ĎĎĎ τ , so
S2$␣␣␣ τ ĎĎĎ τ 1 or S2$␣␣␣ τ 1ĎĎĎ τ , whence S2$␣␣␣ϕ.

The remaining identities in (4.48) are adapted similarly. Now we can use the
fact that S2 is a conservative extension of S1 to reach the conclusion of the theorem.
Alternatively, we could have arranged the preceding argument to take place in S1.

4.81

(4.82) Theorem [C`] Suppose ϕ is a Σ11 s1-formula, A is an HF-assignment for
ϕ, S is a substitution of constant s1-terms for its free variables such that @v P
Freeϕ Val1 Spvq “ Apvq, and SatΣ

1

1 ϕrAs. Then S1$ϕpSq.

Proof Suppose ϕ “ DDDu1, . . . , un ψ, where ψ is ∆10, suppose A and S are as specified,
and suppose SatΣ

1

1 ϕrAs. Then for some x1, . . . , xn P HF, Sat10 ψrA
1s, where A1 “

A
@

u1 ¨ ¨ ¨ un

x1 ¨ ¨ ¨ xn

D

. Let τ1, . . . , τn be constant s1-terms such that Val1 τm “ xm, m “

1, . . . , n, and let S1 “ S
@

u1 ¨ ¨ ¨ un

τ1 ¨ ¨ ¨ τn

D

. Then Sat10 ψpS
1q, so, by (4.81), S1$ψpS1q.

Therefore S1$DDDu1, . . . , un ψpSq, i.e., S1$ϕpSq, as claimed. 4.82

4.11.1 The first incompleteness theorem

The following definability results are easily derived.

1. The class of s1-sentences that are S1-provable, i.e. for which there exists an
S1-proof, is Σ1.

2. The class of s1-formulas with one free variable v0 is ∆1.

3. The class of xx0, x1y P HF such that x0 “ Nmx1 is Σ1.

4. The class of xx0, x1, x2y P HF such that

1. if x1 is an s1-formula with one free variable and x2 is an s1-term then x0

is the result of substituting x2 for the free variable in x1;
2. otherwise, x0 “ 0,

is Σ1.

For the present purpose, we are not interested in these results per se but rather in
certain s-formulas whose existence they implicitly assert. The formulas in question
are Σ1 and Π1, and we need to know that they have the correct meaning, as defined
by SatΣ1 and SatΠ1 , and also that certain sentences derived from them are provable
in S. The following theorem is an exact statement of what we need. Note that the
formulas whose existence is asserted are s-formulas that talk about s1-formulas and
S1-proofs.

(4.83) Theorem [C`]

1. There exists a Σ1 formula Pbl1 with one free variable v0 that expresses S1-
provability, i.e., for every x P HF, SatΣ1 Pbl1

“

v0
x

‰

iff x is an S1-provable sen-
tence.

2. There exist a Σ1 formula
Σ

Form11 and a Π1 formula
Π

Form11, each with one free
variable v0, such that
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1. for every x P HF, SatΣ1
Σ

Form11
“

v0
x

‰

iff SatΠ1
Π

Form11
“

v0
x

‰

iff x is an s1-formula

with one free variable.19

2. S$@@@HF v0 p
Σ

Form11ØØØ
Π

Form11q.

3. There exists a Σ1 formula
Σ

Nm1 with two free variables, v0 and v1, such that

1. for every x0, x1 P HF, SatΣ1
Σ

Nm1
“

v0 v1
x0 x1

‰

iff x0 “ Nmx1, i.e., x0 is the
canonical s1-term for x1; and

2. S$@@@HF v1 DDDHF!v0

Σ

Nm1.

4. There exists a Σ1 formula
Σ

Sub11 with three free variables, v0, v1, and v2, such
that

1. for every x0, x1, x2 P HF, SatΣ1
Σ

Sub11
“

v0 v1 v2
x0 x1 x2

‰

iff

1. if x1 is an s1-formula with one free variable and x2 is an s1-term then
x0 is the result of substituting x2 for the free variable in x1,

2. otherwise, x0 “ 0;
and

2. S$@@@HF v1, v2 DDDHF!v0

Σ

Sub11.

Proof Straightforward. 4.83

(4.84)

1. Let Pbl1,
Σ

Form11,
Π

Form11,
Σ

Nm1, and
Σ

Sub11 be as in (4.83).

2. Let δ “
Π

Form11 ^̂̂ ␣␣␣DDDHF v1, v2

`

Σ

Nm1
`

v0 v1
v̄1 v̄0

˘

^̂̂
Σ

Sub11
`

v0 v1 v2
v̄2 v̄0 v̄1

˘

^̂̂Pbl1
`

v0
v̄2

˘˘

.

3. Let δ “ Nm δ. Note that SatΣ1
Σ

Nm1
“

v0 v1
δ δ

‰

.4.83.3.1

4. Let σ “ δ
`

v0
δ

˘

.

5. Let σ “ Nmσ.

(4.85) Theorem [C`] S1$
`

σØØØ␣␣␣Pbl1
`

v0
σ

˘˘

.

Remark In other words, σ S1-provably says ‘I am not S1-provable’.

To make sure we understand (4.85), note that

1. σ is an s1-sentence;

2. σ is the canonical s1-term such that Val1 σ “ σ;

3. Pbl1 is an s-formula with one free variable v0;

4. Pbl1
`

v0
σ

˘

is the s1-sentence obtained by substituting the s1-term σ for v0 in

Pbl1;

5. σØØØ␣␣␣Pbl1
`

v0
σ

˘

is an s1-sentence;

19When naming a formula that defines a ∆1 class we may use an overset ‘Σ’ or ‘Π’ to indicate
that it is Σ1 or Π1, respectively.



302 CHAPTER 4. DEFINABILITY, COMPUTABILITY, PROVABILITY

6. xσØØØ␣␣␣Pbl1
`

v0
σ

˘

y is an s`-term that denotes σØØØ␣␣␣Pbl1
`

v0
σ

˘

;

7. xS1$
`

σØØØ␣␣␣Pbl1
`

v0
σ

˘˘

y is an s`-sentence that asserts that σØØØ␣␣␣Pbl1
`

v0
σ

˘

is
an S1-theorem; and

8. xTheorem [C`] S1$
`

σØØØ␣␣␣Pbl1
`

v0
σ

˘˘

.y is an s`-sentence that asserts that

xS1$
`

σØØØ␣␣␣Pbl1
`

v0
σ

˘˘

y is a C`-theorem.

The proof that follows justifies xTheorem [C`] S1$
`

σØØØ␣␣␣Pbl1
`

v0
σ

˘˘

.y, as it is a

C`-proof of xS1$
`

σØØØ␣␣␣Pbl1
`

v0
σ

˘˘

y, which is to say, a C`-proof that there is an

S1-proof of σØØØ␣␣␣Pbl1
`

v0
σ

˘

.

Proof Let δ̂ “ Nm δ. Then Val1 δ “ δ, Val1 δ̂ “ δ, and SatΣ
1

1

Σ

Nm1
“

v0 v1
δ δ

‰

,4.84.3 so4.82

SatΣ
1

1

Σ

Nm1
`

v0 v1

δ̂ δ

˘

,

and hence4.82

(4.86) S1$
Σ

Nm1
`

v0 v1

δ̂ δ

˘

.

Since S1$@@@HF v1 DDDHF!v0

Σ

Nm1,4.83.3.2

(4.87) S1$@@@HF v0

`

Σ

Nm1
`

v1
δ

˘

ÑÑÑ v0“““ δ̂
˘

.

Since SatΣ
1

1

Σ

Sub11
“

v0 v1 v2
σ δ δ

‰

and Val1 σ “ σ, SatΣ
1

1

Σ

Sub11
`

v0 v1 v2

σ δ δ̂

˘

, and hence

(4.88) S1$
Σ

Sub11
`

v0 v1 v2

σ δ δ̂

˘

.

Since S1$@@@HF v1, v2 DDDHF!v0

Σ

Sub11,4.83.4.2

(4.89) S1$@@@HF v0

`

Σ

Sub11
`

v1 v2

δ δ̂

˘

ÑÑÑ v0“““σ
˘

.

Observe that4.84.4, 2

(4.90) σ “
Π

Form11
`

v0
δ

˘

^̂̂ ␣␣␣DDDHF v1, v2

`

Σ

Nm1
`

v0 v1
v̄1 δ

˘

^̂̂
Σ

Sub11
`

v0 v1 v2
v̄2 δ v̄1

˘

^̂̂Pbl1
`

v0
v̄2

˘˘

.

Since SatΣ
1

1

Σ

Form1
“

v0
δ

‰

and Val1 δ “ δ,

SatΣ
1

1

Σ

Form1
`

v0
δ

˘

,

so

S1$
Σ

Form1
`

v0
δ

˘

.
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Since S1$@@@HF v0

`

Π

Form1ØØØ
Σ

Form1
˘

,4.83.2.2

S1$
Π

Form1
`

v0
δ

˘

.

Hence

S1$
´

σØØØ␣␣␣DDDHF v1, v2

`

Σ

Nm1
`

v0 v1
v̄1 δ

˘

^̂̂
Σ

Sub11
`

v0 v1 v2
v̄2 δ v̄1

˘

^̂̂Pbl1
`

v0
v̄2

˘˘

¯

.

Using (4.86) and (4.87), we see that

S1$
´

σØØØ␣␣␣DDDHF v2

`

Σ

Sub11
`

v0 v1 v2

v̄2 δ δ̂

˘

^̂̂Pbl1
`

v0
v̄2

˘˘

¯

.

Using (4.88) and (4.89), we see that

S1$σØØØ␣␣␣Pbl1
`

v0
σ

˘

,

as claimed. 4.85

(4.91) Theorem [C`] Suppose S1 is consistent. Then

1. S1&σ.

2. σ is true in the sense that there is a tσu-satisfaction relation Sattσu for pHF; Pq,
and Sattσu σ.

Proof 1 Suppose S1 is consistent, and

(4.92) suppose toward a contradiction that S1$σ.

Then4.83.1 SatΣ1 Pbl1
“

v0
σ

‰

, so SatΣ1 Pbl1
`

v0
σ

˘

, and therefore

(4.93) S1$Pbl1
`

v0
σ

˘

.

But S1$
`

σÑÑÑ␣␣␣Pbl1
`

v0
σ

˘˘

.4.85 Hence4.92 S1$␣␣␣Pbl1
`

v0
σ

˘

. Hence4.93 S1 is inconsistent.
4.91.1

2 Since σ is a specific s1-expression one can define a tσu-satisfaction relation Sattσu

by extending Definitions 4.30 and 4.35, so as to cover all subformulas of σ.4.90

Sattσu of course extends SatΣ
1

1 and SatΠ
1

1 . Since SatΠ
1

1

Π

Form11
“

v0
δ

‰

and Val1 δ “ δ,

SatΠ
1

1

Π

Form11
`

v0
δ

˘

, so

(4.94) Sattσu
Π

Form11
`

v0
δ

˘

.

Since

1. δ is the unique x such that SatΣ
1

1

`

Σ

Nm1
`

v1
δ

˘˘“

v0
x

‰

,
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2. σ is the unique x such that SatΣ
1

1

`

Σ

Sub11
`

v1
δ

˘˘“

v0 v2
x δ

‰

, and

3. S1&σ,4.91.1 so ␣ SatΣ
1

1

Σ

Pbl1
“

v0
σ

‰

,4.83.1

it follows that

␣DHF x1, x2

´

Sattσu
`

Σ

Nm1
`

v1
δ

˘˘“

v0
x1

‰

^ Sattσu
`

Σ

Sub11
`

v1
δ

˘˘“

v0 v2
x2 x1

‰

^Sattσu
“

v0
x2

‰

¯

,

so

Sattσu
´

␣␣␣DDDHF v1, v2

`

Σ

Nm1
`

v0 v1
v̄1 δ

˘

^̂̂
Σ

Sub11
`

v0 v1 v2
v̄2 δ v̄1

˘

^̂̂Pbl1
`

v0
v̄2

˘˘

¯

.

Thus,4.94

Sattσu
´ Π

Form11
`

v0
δ

˘

^̂̂ ␣␣␣DDDHF v1, v2

`

Σ

Nm1
`

v0 v1
v̄1 δ

˘

^̂̂
Σ

Sub11
`

v0 v1 v2
v̄2 δ v̄1

˘

^̂̂Pbl1
`

v0
v̄2

˘˘

¯

.

i.e.,4.90 Sattσu σ. 4.91

(4.91) is the promised sharp form of Gödel’s first incompleteness theorem. It
improves on (3.217) in two ways. First, it provides a specific s1-sentence σ that
is true in pHF; P, 0,ðq but is not provable in S. Second, it proves this result in
C` on the assumption that S is consistent, whereas (3.217) assumes pHF; Pq is
weakly satisfactory. Recall that this means that for every s-sentence θ there is a
tθu-satisfaction relation for pHF; Pq.20 For (4.91) we only need a tσu-satisfaction
relation, and the existence of this is provable in C` (by explicit definition). Not
only is the consistency of S1 a weaker assumption than the weak satisfactoriness of
pHF; Pq, it is a purely syntactical statement, which may be formulated in a pure set
theory without Infinity, such as S; whereas to say anything about models of S we
must allow either infinite sets or proper classes.

Let Con1 be a natural Π11 formula that expresses the consistency of S1: xfor every π,
π is not an S1-proof of a sentence of the form θ ^̂̂ ␣␣␣ θy.

s` is an expansion of s1, so Pbl1, Con1, and σ are s`-expressions, and the C`-proofs
of (4.85) and (4.91.1), which we have sketched, witness that C`$

`

σØØØ␣␣␣Pbl1
`

v0
σ

˘˘

and C`$
`

Con1ÑÑÑ␣␣␣Pbl1
`

v0
σ

˘˘

, so

(4.95) C`$pCon1ÑÑÑσq.

Since C` is a conservative extension of S1,

(4.96) S1$pCon1ÑÑÑσq.

As usual, the entire preceding discussion has been carried out in C`, so we have
the following version of the first incompleteness theorem.

(4.97) Gödel’s first incompleteness theorem [C`]

S1$
`

Con1ÑÑÑ
`

σ ^̂̂ ␣␣␣Pbl1
`

v0
σ

˘˘˘

.

Note that the semantic element has been eliminated in this version.
20S and S1 are interchangeable for this discussion, as are pHF; Pq and pHF; P, 0,ðq. The weak

satisfactoriness of pHF; Pq implies the consistency of S (as a theorem of C). The completeness
theorem tells us that if S is consistent then it has a (strongly) satisfactory model, but we cannot
infer from this that pHF; Pq is a model of S.
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4.11.2 The second incompleteness theorem

The sentence σ that we have exhibited to witness the incompleteness of S1 is clearly
constructed for this purpose and is not otherwise of any interest. The presence of
Con1 as a hypothesis in the proof whose existence is asserted in (4.97), however,
points the way to a sentence whose demonstrable unprovability is of great interest.

We have just shown4.96 that S1$pCon1ÑÑÑσq. If, therefore, S1$Con1 then S1$σ.
But we have also shown that if S1 is consistent then S1&σ.4.91.1 We therefore have

(4.98) Gödel’s second incompleteness theorem [C`] If S1 is consistent then

S1&Con1 .

In other words, if S1 is consistent, its consistency cannot be demonstrated in S1.

Since C` and S1 are conservative extensions of S, the incompleteness theorems are
also true mutatis mutandis with C` and S1 replaced by S. The only difficulty is
the technical one that we do not have s-terms other than variables, so we cannot
substitute anything for xσy, xσy, or xCon1y, and we must resort to circumlocution.
It is nevertheless straightforward to express the sense of xif there is no S-proof of
an inconsistency then the natural s-sentence that expresses this is not S-provabley

as an s-sentence; and this sentence is a theorem of S. Alternatively, we could take
the expansive view that defined predicates and operations are an intrinsic part of
any theory, so that (4.98) is Gödel’s second incompleteness theorem for S; but
the austerity of S, with its single binary relation of membership (even the identity
predicate may be eliminated by virtue of the comprehension axiom) has a certain
appeal. We will often use S as a stand-in for S1 or S` or any other conservative
extension of S, relying on the reader to make the necessary adjustments.

The key features of S that permit the statement and proof of the incomplete-
ness theorems are that the notion of S-provability is Σ1 and that S is capable of
formulating and proving the pertinent facts surrounding this notion. Suppose T is
a recursively enumerable theory (in the standard language for a recursively enu-
merable signature ρ Ď HF) in which S is interpretable. Then T has both of the
features just named, and the arguments just applied to S are applicable to T. Thus
we have the following general theorem.

(4.99) Theorem [C`] Suppose T is a recursively enumerable ρ-theory in which S
is interpretable. Let Con T be a ρ-sentence that naturally expresses the consistency
of T. If T is consistent then T&Con T.

4.11.3 The first incompleteness theorem, Rosser’s improve-
ment

Note that the first incompleteness theorem3.217 4.97 does not state the syntactic in-
completeness of S1, which is the assertion that there is an s1-sentence θ such that
neither θ nor ␣␣␣ θ is S1-provable. In other words, the possibility is left open that S1

is consistent but that nevertheless S1$␣␣␣σ, i.e., S1$DDDHF v0 Prf 1
`

v1
σ

˘

, where Prf 1 is
a Σ11 formula with free variables v0, v1 that says v0 is an S1-proof of v1. By the
first incompleteness theorem, assuming S is consistent, for every x P HF, x is not
an S1-proof of σ, and in fact, S1$␣␣␣Prf 1

`

v0 v1
Nmx σ

˘

.

Definition [C`] Recall4.64 that a theory T that extends S1 is ω-consistent
def
ðñ T is

consistent and for any s1-formula ϕ with one free variable v, it is not the case that
T$DDDHF v ϕ and for all HF sets x, T$␣␣␣ϕ

`

v
Nmx

˘

.
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Given the preceding remarks, it is clear that if we assume (working in C`) that S1

is ω-consistent, then we may conclude that it is syntactically incomplete, as it can
prove neither σ nor ␣␣␣σ.

Note that the preceding remarks do not bear on the second incompleteness
theorem. Its hypothesis is the simple consistency of S.

We can prove the syntactic incompleteness of S from the hypothesis of consistency—
as opposed to ω-consistency—if we substitute for σ the Rosser sentence ρ, which
says ‘for any proof of me, there is a shorter proof of my negation’, where, for the
nonce, we say that the length of a proof π is the number of occurrences of 0 and ð

in Nmπ. The essential thing is that there are only finitely many proofs of any given
length. Let Sh1 be an s1-formula with two free variables, v0 and v1, that says that
v0 is shorter than v1. ρ is designed so that, letting τ “ Nmpρq and τ 1 “ Nmp␣␣␣ ρq,

(4.100) S1$ ρØØØ@@@HF v2

´

Prf 1
`

v0 v1
v̄2 τ

˘

ÑÑÑDDDHF v3

`

Prf 1
`

v0 v1

v̄3 τ
1

˘

^̂̂ Sh1
`

v0 v1
v̄3 v̄2

˘˘

¯

.

We have the following slight improvement of (4.91).

(4.101) First incompleteness theorem, Rosser’s improvement [C`] If S is
consistent, then S1 neither proves nor disproves ρ, so S is syntactically incomplete.

Proof See Note 10.14.

4.12 Relative definability over HF

[In this section we will work in ZF unless otherwise noted.]
Suppose A Ď HF. We characterize definability relative to A by supposing that

information regarding membership in A is available. Let ρ be an expansion of s by
the addition of one unary predicate index. The A-interpretation of ρ is the standard
interpretation of the membership and identity predicates in pHF; Pq, with the new
unary predicate interpreted as A. The classes ∆0, Σn, and Πn of ρ-formulas are
defined as for s-formulas, and the classes ΣAn , ΠA

n , and ∆A
n are defined with respect

to the A-interpretation of these formulas.
Of particular interest is the case of ΣA1 . We have shown in (4.47), (4.60), and

(4.61) how to construct an effective procedure to evaluate a Σ1 formula. We may
model the evaluation of a ΣA1 formula the same way, with one additional feature:
Given an s1-term τ , we may obtain the answer to the question whether (the set
denoted by) τ is in A. We refer to this as consulting an oracle for A, and we
may also refer to A itself as an oracle. We naturally use the same terminology in
connection with ΠA

1 and ∆A
1 .

For the rest of this section we will adopt the traditional point of view described
in Section 4.8, using primarily ω in place of HF, and subsets of ω or functions
f : ω á ω in place of subsets of HF.

(4.102) Definition [ZF] Suppose A,B Ď ω.

1. A is Turing reducible to B
def
ðñ A is recursive in B

def
ðñ A is recursive

relative to B
def
ðñ AďTB

def
ðñ A is ∆B

1 .

2. AăTB
def
ðñ pAďTB^B ďTAq.

3. A”TB
def
ðñ pAďTB^BďTAq.
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4. A Turing degree is an equivalence class of ”T.

5. D def
“ the set of Turing degrees.

6. Suppose d0, d
1
1 P D. d0 ď d1

def
ðñ for some (equivalently, for any) A0 P d0

and A1 P d1, A0ďTA1.

Clearly, ďT is a preordering of P ω, and ď is a partial ordering of D.
The structure pD;ďq fascinates in much the same way as does pω;ďq. Both

evoke a sense of inevitability and simplicity that lends a peculiar appeal to their
study. In both cases, many questions that are simple to state are very difficult—but
not impossible—to answer.

Definition [ZF] Suppose A Ď ω. The partial recursive function relative to A with
index n

def
“ φAn

def
“ the function defined as in (4.74) with A allowed as a predicate

( B⃗ n is required to be a ∆0 formula in a signature with one additional unary pred-
icate, interpreted as A).

The halting problem for computations relative to any given oracle A is unsolvable
relative to A by the same argument as in the absolute case.4.78 This leads to the
following jump operation on D, which is critical element of its structure.

(4.103) Definition [C`] Suppose d P D is a Turing degree. The jump of d def
“ d1

def
“ the degree of the halting problem for computations relative to A, where A is any

member of d, i.e., d1 is the degree of the set txm,ny | m P domφAn u.

Since there are only countably many effective procedures, each Turing degree is
countable. Since P ω is uncountable, D is uncountable. A closer analogy to pω;ďq
is the structure pR;ďq, where R is the set of recursively enumerable degrees, i.e.,
the degrees of Σ1 sets.21 Since there are only countably many effective procedures,
Σ1 is countable, so R is countable.

Of course, in stating that R is countable, we leave open the possibility that it
is finite, or even that its cardinality is 2. Its cardinality cannot be 1, because, as
we have shown,4.78 the set H corresponding to the halting problem is r.e. but not
recursive. It turns out that R is infinite, and pR;ďq is in fact a very rich structure.

Since H is Σ1-complete, its degree, 01,4.103 is the maximum member of R. We
will content ourselves with a proof just one property of pR;ďq that gives a hint of
the richness of its theory, viz., the existence of recursively incomparable degrees in
R.4.104 It is worth noting that the relative difficulty of the proof derives from the
requirement that the degrees contain r.e. sets. If we merely require that they be
recursive in 01 a simpler argument will serve,22 and if we impose no requirement on
their absolute complexity, there is an even simpler proof.

It is convenient to formalize the notion of relative recursiveness in terms of
characteristic functions as follows.23 Given e P ω and F : ω Ñ 2 we let φFe : ω á 2

21Note that the sets in a recursively enumerable degree are not necessarily all recursively enu-
merable. In fact, if A Ď ω is Σ1 but not ∆1, then ωzA is in the same Turing degree as A, but it
is not Σ1 (otherwise A would be ∆1).

22It is worth pointing out that there exist degrees d ď 01 such that d R R, i.e. there is no r.e.
set in d. (The proof is not trivial.)

23Recall that the characteristic function χA : ω Ñ 2 of A Ď ω is defined by the condition that

χApnq “

#

1 if n P A

0 if n R A.
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be the function computed by the effective procedure with Turing index e using F
as an oracle in the sense that φe may ask from time to time for the value of F at
some number k P ω. If the computation of φFe pnq halts with an output other than
0 or 1, we regard it as not halting. Thus, AďTB iff for some e P ω, φχA

e “ χB.
We now expand on this notion to define φFe , where F : ω á 2 may not be total.

In this case, if the computation of φFe pnq ever asks for the value of F at some number
not in domF , we regard the computation as not halting. Since computations are
finitary, for any e P ω, F : ω á 2, and n P ω, if the computation φFe pnq halts then
φF

1

e pnq halts for some finite F 1 Ď F ; and if φF
1

e pnq halts for some F 1 Ď F then
φFe pnq halts with the same output.

(4.104) Theorem [ZF] Friedberg-Muchnik There exist incomparable r.e. de-
grees.

Proof We will describe an effective procedure P that enumerates sets A0, A1 Ď ω
such that for every e P ω, φχA0

e ‰ χA1 and φ
χA1
e ‰ χA0 . Let C be a process that

generates all sequences xe, F, ny such that e, n P ω, F : ω á 2 is finite, and φFe pnq
halts with output 0: we simply dovetail all computations of the above sort, and
whenever one halts with value 0 we append the appropriate item to the list. The
list is clearly infinite, and we let xCk | k P ωy be the list in order of enumeration.

We will generate recursive sequences

Ai0 Ď Ai1 Ď ¨ ¨ ¨ pi P 2q

of finite subsets of ω, ultimately letting Ai “
Ť

sPω A
i
s. For each xe, iy P ω ˆ 2, we

must satisfy the requirement Ri
e that χAi ‰ φ

χAı̄
e , i.e., for some w P ω, φχAı̄

e pwq
either fails to halt or it halts with output other than χAipwq. We say that w is
a witness that Ri

e is satisfied. At each stage s of the construction we will have
a proposed witness wiepsq P ω for each requirement Ri

e such that e ă s. Thus,
domwie “ ts P ω | s ą eu. To avoid interference, we arrange that for any i P 2 and
s P ω, xwiepsq | e ă sy is injective.

As the construction proceeds, the satisfaction of one requirement may disrupt
the satisfaction of other requirements. To manage this we prioritize requirements
as follows.

Let ă be the lexicographic ordering of ω ˆ 2:

xe, iy ă xe1, i1yØ e ă e1_pe “ e1^ i ă i1q.

We say that Ri
e has higher priority than Ri1

e1
def
ðñ xe, iy ă xe1, i1y.

For i P 2, let

ı̄
def
“

#

1 if i “ 0
0 if i “ 1.

At each stage s we will have a restriction riepsq P ω for each i P 2 and e ă s, whose
purpose is to protect Ri

e from injury due to the addition of something to Aı̄ below
riepsq after stage s in the course of satisfying a requirement of lower priority.

Initially, we let A0
0 “ A1

0 “ 0, and we begin the construction at stage 0.

(4.105) At stage s, we have defined Ais pi P 2q, and we have defined wiepsq and riepsq
for e ă s and i P 2. For each i P 2, xwiepsq | e ă sy is injective. For each i P 2, let
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bi be the least b P ω that exceeds every element of Ais and every wiepsq and rı̄epsq for
e ă s.24 Let C “ tCk | k ă su, and proceed as follows.25

1. If there exists xe, iy P s ˆ 2 such that wiepsq R A
i
s and for some F Ď χAı̄

s
,

xe, F,wiepsqy P C, then let xe, iy be the lexicographically least such. We would
like to satisfy Ri

e by putting wiepsq into Ai, but we first check whether this
would violate any restriction of higher priority.

1. Suppose for some xe1, ı̄y ă xe, iy, wiepsq ă rı̄e1psq (so that the addition of
wiepsq to Ai would violate the restriction imposed by Ri1

e1 at this stage).
Then we say that Ri

e is injured (by Rı̄
e1 , for every such xe1, ı̄y).

1. Let Ai
1

s`1 “ Ai
1

s (i1 P 2).
2. Let wieps` 1q “ bi; and let rieps` 1q “ 0.

2. Suppose the condition of (4.105.1.1) does not apply. Then we let Ri
e act

(by enumerating wiepsq into Ai).
1. Thus, we let Ais`1 “ Ais Y tw

i
epsqu, and we let Aı̄ps` 1q “ Aı̄s.

2. Let wieps ` 1q “ wiepsq; and let rieps ` 1q be the least r P ω such that
domF Ď r for some F such that xe, F,wiepsqy P C (which will protect
Ri
e against injury by requirements of lower priority).

3. Suppose for some xe1, ı̄y ą xe, iy, wiepsq ă rı̄e1psq. Then we say that Ri
e

has injured each such xe1, ı̄y. For simplicity, we will treat all require-
ments of lower priority as though they have been injured in this way.
Let e0 be least e1 ď s such that xe1, ı̄y ą xe, iy. For each e1 P sze0, let
wı̄e1ps` 1q “ bı̄ ` e1 ´ e0; and let rı̄e1ps` 1q “ 0.

2. For each e ă s and i P 2 such that wieps`1q or rieps`1q has not been assigned
a value thus far, let wieps` 1q “ wiepsq and rieps` 1q “ riepsq.

3. For each i P 2 let wisps` 1q be the least w R Ais`1 such that w ‰ wieps` 1q for
any e ă s, and let risps` 1q “ 0.

Several points should be emphasized.

1. When a witness for Ri
e is either first proposed4.105.3 (at stage s “ e) or changed

due to injury4.105.1.1.2 or .1.2.3 (at stage s), we require that wieps` 1q R Ais`1. At
this point rie is set to 0, so it imposes no restriction on the addition of members
to Aı̄.

2. If we later find that there is a computation xe, F, wiey that indicates that
φ
χAı̄
e pwieq “ 0, we enumerate wie into Ai,4.105.1.2.1 to foil φe as a reduction

of Ai to Aı̄, thus meeting the requirement Ri
e. At such time we impose a

restriction rie to prevent any change to Aı̄ that would spoil this computation
(and thus injure Ri

e). (Note that if we permitted the placement of wie in Ai

to be reversed, the process would not be a recursive enumeration of Ai.)

3. There are two ways a requirement may be injured:

1. Ri
e may be injured directly when wie P A

i and rie ą 0, and a witness
wı̄e1 is added to Aı̄ to satisfy a requirement Rı̄

e1 of higher priority, where
wı̄e1 ă rie, thus potentially spoiling the computation on the basis of which
we put wie into Ai.

24bi just provides us with a convenient way of defining a set of numbers for consideration as
members of Ai that are not hindered by any condition imposed prior to stage s.

25Note that at stage 0, only (4.105.3) is effective, with the result that for each i P 2, Ai
1 “ 0,

wi
0p1q “ 0, and ri

0p1q “ 0.
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2. Ri
e may be injured indirectly when wie R A

i, and a requirement Rı̄
e1 of

higher priority prevents the addition of wie to Ai (because wie ă rı̄e1)
when it is necessary to foil the reduction of Ai to Aı̄ by φe.

4. Note that requirements Ri
e and Ri

e1 in the same direction cannot injure each
other because we have required that their witnesses wiepsq and wie1psq at any
stage s are different.

It is fairly easy to show that each requirement acts and is injured only finitely often,
so there is always a stage beyond which it neither acts nor is injured. We reason as
follows. Let s0 ă s1 ă ¨ ¨ ¨ be the stages at which Ri

e acts (adds its current witness
to Ai). A requirement Rı̄

e1 of lower priority cannot be injured by Ri
e in the interval

r0, s0q, and it can be injured at most once by Ri
e in each of the intervals rsn, sn`1q.

On the other hand, Ri
e must be injured at least once between any two consecutive

stages at which it acts. Since there are only finitely many requirements of higher
priority than any given requirement, it follows by induction that any requirement
can be injured only finitely often and can act only finitely often.

To show that A0 and A1 are ďT -incomparable, suppose toward a contradiction
that χAi “ φ

χAı̄
e . Let w be the eventual value of wiepsq. Suppose first that w P Ai,

so φχAı̄
e pwq “ 1. At some stage s after the last stage at which Ri

e was injured, Ri
e

acted to put w in Ai. Thus

1. wiepsq “ w;

2. there exists F Ď χAı̄
s

and k ă s such that Ck “ xe, F,wy; and

3. domF Ď rieps` 1q.

Since Ri
e is not injured after stage s, Aı̄ receives no new additions below rieps` 1q

after stage s, so Aı̄X domF “ Aı̄sX domF . Hence, F Ď χAı̄ , from which it follows
that φχAı̄

e pwq “ 0; contradiction.
Suppose, on the other hand, that w R Ai, so φχAı̄

e pwq “ 0. Let k P ω be such that
Ck “ xe, F,wy, with F Ď χAı̄ . Let s ą k be such that Aı̄s X domF “ Aı̄ X domF ,
and neither Ri

e nor any requirement of higher priority either acts or is injured after
stage s ´ 1. Then F Ď χAı̄

s
, so the condition of (4.105.1) is satisfied at xe, iy. It

follows that the least xe1, i1y satisfying this condition is ď xe, iy. By construction,
requirement Ri1

e1 either acts or is injured at this stage, contrary to assumption. 4.104

The structure pR;ďq of the r.e. degrees is now known to be quite complicated.
We content ourselves with listing a few facts. As noted above, pR;ďq is a partial
order with least element 0 and greatest element 01. It is easily seen to be an upper
semilattice in the sense that any two elements a, b have a least upper bound a_ b.
Given A P a and B P b, let C “ A‘B “ t2n | n P AuYt2n`1 | n P Bu. Then a_b
is the degree of C. Meets do not exist in general, so pR;ďq is not a lattice.

1. Any countable partial order can be embedded in pR;ďq.

2. Any countable upper semilattice can be embedded in pR;ď,_q. (The addi-
tional requirement here is that the embedding must commute with the join
operation.)

3. pR;ďq is dense, i.e., @Ra, b pa ă bÑDRc a ă c ă bq.

4. Let S0 and S1 be respectively the sets of sentences of the language of pω;`, ¨q
(two binary operations) and the language of pR;ďq (one binary relation).
There exist recursive maps t0 : S0 Ñ S1 and t1 : S1 Ñ S0 such that
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1. for σ P S0, pω;`, ¨q |ù σ ðñ pR;ďq |ù t0pσq; and

2. for σ P S1, pR;ďq |ù σ ðñ pω;`, ¨q |ù t1pσq.

Hence the first-order theory of pR;ďq is essentially equivalent to that of the
standard model of arithmetic. The same applies to pD;ďq vis-à-vis the stan-
dard model of second-order arithmetic, i.e., pω,P ω;`, ¨, Pq, or, equivalently,
pVω`1; Pq.

4.13 Summary

We begin with some well known paradoxes, all of which signal the presence of some
limitation on definability—of numbers in Richard’s paradox; of sets in Russell’s
paradox; of truth in Epimenides’ paradox. We also mention the issue of decidability :
there is an effective procedure for generating all the theorems of a finite (indeed,
any recursively enumerable) theory, e.g., mindlessly generating them all by the
application of the methods of logic; is there also an effective procedure for generating
all the nontheorems? If there is, then there is a decision procedure for the theory.
The existence of such a procedure for set theory—or even for pure logic—would have
profound significance for the foundations of mathematics. This is the question of
decidability of theories.

The resolution of the paradoxes lies in making precise the notion of definability.
Taking advantage of the universality of the theory of membership for the discus-
sion of structure, we define definability in terms of the complexity of set-theoretic
formulas. The precise formulation of decidability questions requires a definition of
effective procedure or computation, and we discover (as part of our investigation of
the science of computation) that the intuitive notion of computation is coextensive
with that of a Σ1 partial function f : Vω á Vω.

We precisely evaluate the complexity of the notion of satisfaction in the structure
pVω; Pq and show that the notion of satisfaction for Σ1 formulas is Σ1 but not Π1.
This leads to the celebrated undecidability results for first-order predicate logic
(with at least one non-unary predicate other than identity) and for the halting
problem.

We then apply these methods to provability and consistency. Using S as a
suitable theory of finitary objects, we define the famous Gödel s-sentence σ that
says ‘I am not S-provable’, i.e., we show that S$

`

σØØØ␣␣␣Pbl σ
˘

. We then show,
as a theorem of C, that if S is consistent then S&σ and pVω; Pq |ù σ. From this
we show that S$

`

Con SÑÑÑpσ ^̂̂ ␣␣␣Pbl σq
˘

. From this it follows, as a theorem of S,
that if S is consistent then S&Con S.

We conclude with a brief introduction to the theory of relative definability,
specifically relative computability, and prove the celebrated Friedberg-Muchnik
theorem, illustrating the important priority technique.
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Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk.1

Leopold Kronecker

It is well known that the man [Hippasus of Metapontum] who first
made public the theory of the irrationals perished in a shipwreck
in order that the inexpressible and unimaginable should ever re-
main veiled. . . and so the guilty man, who fortuitously touched on
and revealed this aspect of living things, was taken to the place
where he began and there is forever beaten by the waves.

Scholium to Euclid, Elementa, X, 1
Anonymous

[Yiannis Moschovakis’s Descriptive Set Theory [17] is an excellent reference for the
material in this chapter, as is Alexander Kechris’s Classical Descriptive Set The-
ory [15], particularly for the classical theory, which begins in Section 5.3.]

5.1 Introduction

Chapter 4 is essentially a discussion of the theory of the finitary objects, which
are conveniently represented in various (equivalent) ways, e.g., as hereditarily finite
sets, with the natural theory F (the basic theory S of pure sets with an added
axiom of finiteness), or as natural numbers, with the natural theory PA (Peano
arithmetic). The important foundational issues that arise in this theory are those
of definability, computability, and provability relating to the elementary theory of
the structures, such as pHF; Pq and pω;`, ¨q, consisting of finitary objects with the
basic relations and operations that essentially define them. The objects themselves,
although they are abstract, are generally regarded as existing in an absolute sense:
We wonder whether Goldbach’s conjecture is true or false, but we don’t question
whether it is meaningful or wonder what it means.2

The infinite enters into this discussion only in that there are infinitely many
objects under consideration. Basic theories like F and PA do not recognize the
existence of infinitary objects, and the use of theories like C, that recognize the
existence of infinite classes but do not mandate the existence of infinite sets is, in
this context, largely a convenience—simply a way of talking about attributes of

1God created the integers, all else is the work of Man.
2Well, if you are wondering what it means, it is this: Every even number greater than 2 is the

sum of two prime numbers.
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finitary objects in terms of the classes of objects they define. When we use such a
theory to discuss finitary things, any classes that arise may be eliminated in favor
of their definitions. As a conservative extension of S,2.183 C does not prove any
additional theorems about sets.

In declining to assert the existence of a “completed infinitude”, C is quite in
line with the attitude expressed by Kronecker in the headnote to this chapter.
Kronecker’s point was well taken, as later investigations into the nature of logic,
meaning, truth, provability, decidability, etc.,§ 4 have made abundantly clear. Never-
theless, it strikes the typical modern reader as a bit fussy. The problem is that much
of mathematics is difficult or impossible to formulate without allowing infinitary
objects as members of collections, arguments and values of functions, etc. For ex-
ample, even so humble and primitive-appearing an object as a geometrical point
is—as we will see—essentially infinitary, and the ancient concept of a curve as a
“locus of points” calls upon us to accept points a members of classes.

The admission of infinite classes is of course essential for certain purposes. For
example, it is not reasonable to discuss structures without allowing them to be
infinite, and the completeness theorem is true only if infinite structures are allowed.
Nevertheless, since a proper class, by definition, is not a member of anything, it
does not exist in the same sense as a set. A full embrace of infinitarity requires
the admission of infinite sets. This is accomplished by the addition of Infinity to S,
resulting in the theory ZF´, i.e., ZF with the Power axiom removed.3 The addition
of Infinity to C yields GB´, i.e., GB´Power. Ontologically, C is intermediate between
S and ZF´, and GB´ goes a little beyond ZF´.

It is consistent with ZF´ that all sets be countable. Likewise, it is consistent
with GB´ that all sets be countable; however, it is not consistent that all classes
be countable. In particular, just as—in the context of C—the universe V of sets is
infinite, so—in the context of GB´—V is uncountable.

It is a theorem of S that if the powerset P x of a set x exists, then P x is larger
than x. Thus—in the context of ZF´—if P ω exists then it is uncountable. If PP ω
exists, it is larger than P ω, and so on. The same is true in the context of GB´, and
the corresponding theories in this sequence are interleaved between those of the ZF
sequence. In the theories ZF and GB, as we have seen in Chapter 3, the full Power
axiom combines with Replacement to generate very large sets.

The purpose of this chapter is to study the fundamental significance of Infinity,
and our focus is the countably infinitary. We adopt ZF as our basic theory for the
convenience it affords, although we do not make much use of Power.

5.1.1 Countable infinitarity

The simplest sort of infinitary object is countably infinitary, in the sense that a
countable amount of information is required to specify it. In the membership-
theoretic context, this requires of a set not just that it have only countably many
members, but that its members be countable, likewise its members’ members, etc.
The most general countably infinitary object in this context is therefore an hered-
itarily countable (HC) set.3.141 Recall that a set x is hereditarily countable iff its

transitive closure tcx is countable, i.e., there is a bijection f : ω bij
Ñ tcx. The

structure px; Pq is therefore isomorphic to the structure pω;Eq, where E is the bi-
nary relation on ω such that @m,n P ω pxm,ny P EØ fm P fnq. E encodes all

3In the present context it would be more natural to call this theory ‘S with Infinity added’, but
the use of ‘ZF´’ is conventional.
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the information in x and is for the present purpose interchangeable with x. Note
that E P Vω`1, so Vω`1 is a sufficiently large domain for the investigation of the
countably infinitary.

(5.1) Finitary and countably infinitary objects are referred to generically as type-0
and type-1, respectively.

As the preceding discussion makes clear, type-0 objects may be taken to be members
of Vω, and type-1 objects may be taken to be members of Vω`1.

Our focus in this chapter on the countably infinitary is not as limiting as it
might appear. According to the (downward) Löwenheim-Skolem theorem2.159.1 any
structure has a countable elementary substructure, so to some extent HC reflects the
structure of the entire set-theoretical universe—no elementary theory can require
its models to be uncountable. More interestingly, one of the fascinating aspects
of the theory of the countably infinitary is how the assumption of the existence of
large sets can answer many natural questions that are unresolvable in the natural
theory appropriate to the context of the question, which is typically ZF´ or the
extension of ZF´ by a limited Power axiom. In a rare instance, most notably the
determinacy of Borel sets,5.177 ZF suffices where ZF´ fails; more typically, ZF is also
inadequate to the task, but so-called large-cardinal hypotheses suffice.

5.1.2 Complexity over type 1

The classification of sets by type may be extended beyond types 0 and 1. In general,
we may say that a set x has type n or less iff ptcx; Pq is isomorphic to a structure
py;Eq with y P Vω`n. In general, a set of type-n objects is of type-pn`1q; however,
a definable set of type-n objects is typically regarded as having more to do with
type-n than type-pn ` 1q. Indeed, the “theory of type-n” is largely the theory of
definable subsets of type n.

Thus, just as the set-theoretic complexity of relations over type-0 is important
to the study of foundational questions regarding finitary objects, the definability
of relations on type-1 objects is central to their foundational study. Indeed, the
subject of this chapter is commonly known as descriptive set theory.

Recall the Levy classification of s-formulas,§ 4.4 where s is the signature of set
theory:

1. A formula with only bounded quantification is ∆0, and we define Σ0 “ Π0 “

∆0.

2. If ϕ is Πn (Σn) then DDDu0 ¨ ¨ ¨ DDDum- ϕ (@@@u0 ¨ ¨ ¨ @@@um- ϕ) is Σn`1 (Πn`1).

Given a transitive set M , we may define a Σn (Πn) relation on M to be a set
X Ă mM such that for some Σn (Πn) s-formula ϕ with xu0, . . . , um-y an enumeration
of its free variables, for all x “ xx0, . . . , xm-y P mM , x P X iff pM, Pq |ù ϕ

“

u0 ¨ ¨ ¨ um-

x0 ¨ ¨ ¨ xm-

‰

.
We define ∆n to be Σn XΠn.

For the discussion of classes of finitary objects, this classification is quite useful
when specialized to M “ Vω. To deal with countably infinitary objects we may let
M “ Vω`1, but now the distinction between bounded and unbounded quantification
is insufficiently discriminating, and we must distinguish three sorts of quantification,
based on degree of restriction.

1. Bounded quantification: The quantified variable is restricted to membership
in an hereditarily finite set.



5.1. INTRODUCTION 317

2. Type-0 quantification: The quantified variable is restricted to Vω or some
other suitable set of type-0 objects.

3. Type-1 quantification: The quantified variable is restricted to Vω`1 or some
other suitable set of type-1 objects.

We will ultimately settle on ω and ωω as canonical type-0 and type-1 domains,
respectively, but for the purpose of this introduction, we will use D0

def
“ Vω and

D1
def
“ D02. Note that a set f P D1 is a function from D0 into 2 “ t0, 1u. It is

therefore the characteristic function of a subset of D0, and we have the bijection
f ÞÑ fÐt1u “ ta P D0 | fpaq “ 1u between D1 and PD0 “ P Vω “ Vω`1.

For the purpose of sketching the outlines of the theory of complexity of relations
among type-1 objects with these domains, we will use the two-sorted structure D “

pD0, D1;E0, E1q, where E0 is the usual membership relation restricted to D0, and
E1 is the relation of membership of a type-0 object in (the set whose characteristic
function is) a type-1 object: aE1 fØ f a “ 1. We use characteristic functions with
domain D0 instead of subsets of D0 solely for the purpose of rendering D1 disjoint
from D0 in the interest of clarity.

The discussion in this section should be regarded as introductory. Formal de-
finitions and theorems will follow in Section 5.2 based on the principles arrived at
here.

(5.2) Let s1 be a fixed signature appropriate to D that expands the standard signature
s of pure set theory. Thus, if all the variables occurring in ϕ are type-0 then ϕ is
an s-formula.

Suppose ϕ is an s1-formula with free variables v0, . . . , vm- . Then the extension of ϕ
def
“ ϕ̂

def
“ the relation R Ď Di0ˆ¨ ¨ ¨Dim- , where for each k P m, ik is the type (0 or 1)

of the variable vk, and for every xa0, . . . , am-y P Di0 ˆ ¨ ¨ ¨ˆDim- , xa0, . . . , am-y P R
iff

D |ù ϕ
“

v0 ¨ ¨ ¨ vm-

a0 ¨ ¨ ¨ am-

‰

.4

(5.3) Note that if all the variables occurring in ϕ are type-0 then ϕ̂ is the relation
on D0 “ Vω defined by ϕ regarded as an s-formula.5.2

(5.4) Here, ‘ϕ’ and ‘ψ’ refer to s1-formulas.

1. ϕ is ∆0
0

def
ðñ every quantification in ϕ is bounded, i.e., xDuE0 vy or x@uE0 vy,

where u and v are (by grammatical necessity) type-0 variables. ϕ is Σ0
0 or Π0

0
def
ðñ ϕ is ∆0

0.

2. For all n P ω, ϕ is respectively Σ0
n`1 or Π0

n`1

def
ðñ ϕ is respectively DDDu0 ¨ ¨ ¨ DDDum- ψ

or @@@u0 ¨ ¨ ¨ @@@um- ψ, where u0, . . . , um- are type-0 variables and ψ is respectively
Π0
n or Σ0

n.

Suppose n P ω.

4Obviously, ϕ̂ depends on the chosen order of the variables v0, . . . , vm- , and we have also
implicitly supposed that these have been listed without repetition. Properly we should define the
extension of ϕ as the set of D-assignments A for ϕ such that domA “ Freeϕ and D |ù ϕrAs. ϕ̂
is then a set of functions with domain Freeϕ “ tv0, . . . , vm-u, rather than a set of functions with
domain m “ t0, . . . ,m-u. In the interest of convenience, we are going to tolerate this little bit of
ambiguity.
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1. R is respectively Σ0
n or Π0

n

def
ðñ R “ ϕ̂ for a formula ϕ that is respectively Σ0

n

or Π0
n.

2. R is ∆0
n

def
ðñ R is both Σ0

n and Π0
n.5

For the purpose of this introduction we are interested in ∆0
1, Σ0

1, and Π0
1. Recall

that the corresponding classes ∆1, Σ1, and Π1 of relations on Vω were characterized
in Chapter 4 in terms of effective procedures. Briefly, X Ď Vω is Σ1 iff there is an
effective procedure P such that for all x P Vω, x P X iff Px halts. The Σ1 subsets of
Vω are exactly the semirecursive sets.6 Accordingly, X is Π1 iff there is an effective
procedure that halts exactly on its complement. X is ∆1 iff there is an effective
procedure P that always halts, such that for all x P Vω, Px halts with output 1 if
x P X and 0 if x R X. We say that P computes X in this case.

As noted above5.3 these characterizations apply directly to Σ0
1, Π0

1, and ∆0
1

relations (on D0 “ Vω) defined by s1-formulas that do not contain any type-1
variables. The procedural point of view is just as useful in the general case of
type-1 relations.

Suppose ϕ is ∆0
0 with free variables v0, . . . , vm- , and suppose for simplicity that

v0, . . . , vm1- are type-0, and vm1 , . . . , vm- are type-1. Suppose a0, . . . , am1- P D0 and
a P D0 is transitive such that ta0, . . . , am1-u Ď a. Then for any am1 , . . . , am- P D1,
in the interpretation of

ϕ
“

v0 ¨ ¨ ¨ vm1- vm1 ¨ ¨ ¨ vm-

a0 ¨ ¨ ¨ am1- am1 ¨ ¨ ¨ am-

‰

in D, every quantification is bounded by a member of a,7 so for each type-1 variable
ak (k “ m1, . . . ,m´ 1), the interpretation depends only on ak æ a.

For a P D0 and c P D1, let c ä a def
“ pc æ aqÐt1u. Then for any b P a, bE1 ak

iff b P pak ä aq. Let ϕ1 be obtained from ϕ by replacing each type-1 variable vk
by a type-0 variable v1k, and each subformula xuE1 vky by xuE0 v

1
k
y. Then for any

am1 , . . . , am- P D1,

D |ù ϕ
“

v0 ¨ ¨ ¨ vm1- vm1 ¨ ¨ ¨ vm-

a0 ¨ ¨ ¨ am1- am1 ¨ ¨ ¨ am-

‰

ØD |ù ϕ1
“

v0 ¨ ¨ ¨ vm1- v
1
m1 ¨ ¨ ¨ v

1
m-

a0 ¨ ¨ ¨ am1- pam1 ä aq ¨ ¨ ¨ pam- ä aq

‰

.

Thus, xa0, . . . , am-y P ϕ̂ iff

(5.5) Da P D0

`

Tran a^ta0, . . . , am1-u Ď a

^xa0, . . . , am1- , am1 ä a, . . . , am- ä ay P ϕ̂1
˘

.

Also, xa0, . . . , am-y P ϕ̂ iff

(5.6) @a P D0

`

pTran a^ta0, . . . , am1-u Ď aq

Ñxa0, . . . , am1- , am1 ä a, . . . , am- ä ay P ϕ̂1
˘

.

ϕ1 is ∆0
0, so ϕ̂1 is a recursive relation on D0. Likewise,

xbÐt1u | b P D0y,

tb P D0 | b is transitiveu,

5Of course, this is redundant5.4.1 when n “ 0.
6A set X Ď Vω is semirecursive iff there is an effective procedure that enumerates X, so

semirecursive subsets of Vω are also called recursively enumerable,4.66.2.1 but this is not the best
terminology to use for the extension of this notion to type-1.

7Since a is transitive, members of members of a are members of a, etc.
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and

txb0, . . . , bm1- , ay P m
1`1D0 | ta0, . . . , am1-u Ď au

are recursive, so there is a recursive relation R Ď m`1D0 such that5.5

(5.7) xa0, . . . , am-y P ϕ̂ØDa P D0 xa0, . . . , am1- , a, am1 æ a, . . . , am- æ ay P R.

Likewise, there is a recursive relation R1 Ď m`1D0 such that5.6

(5.8) xa0, . . . , am-y P ϕ̂Ø@a P D0 xa0, . . . , am1- , a, am1 æ a, . . . , am- æ ay P R1.8

It is not surprising that the ∆0
0 relation ϕ̂ should be representable in terms of a

recursive relation on D0. The essential insight afforded by (5.7) and (5.8) is that
this relation only looks at a finite part of the type-1 arguments.

In the terminology of Section 4.12 we may view (5.7) and (5.8) as describing
effective procedures P and P 1 that take a0, . . . , am1- as input and use am1 , . . . , am-

as oracles. In the present context, rather than giving the type-1 objects the special
status of oracles, it is natural to regard them as inputs per se. The essential thing,
as noted above, is that at any stage in a computation only a finite amount of
information about the type-1 inputs has been accessed.

P and P 1 look successively at type-0 objects a, ordered in some effective way in
an ω-sequence, say as B⃗ 0, B⃗ 1, . . . . P halts if and when it finds that xa0, . . . , am1- , a, am1 æ a, . . . , am- æ ay P
R, whereas P 1 halts if and when it finds that xa0, . . . , am1- , a, am1 æ a, . . . , am- æ ay R
R1.

Clearly, P halts just in case xa0, . . . , am-y P ϕ̂, and P 1 halts just in case xa0, . . . , am-y R

ϕ̂. We may dovetail these computations to obtain a single effective procedure P2
that always halts with the answer to the question ‘is xa0, . . . , am-y in ϕ̂?’.

In general, we call a relation on type-0 and type-1 objects semirecursive
def
ðñ it

is the set of inputs on which an effective procedure halts. A relation is recursive
def
ðñ both it and its complement are semirecursive. Clearly, as in the case just

presented, X is recursive just in case there is an effective procedure that halts for
every input xa0, . . . , am-y with the answer to the question ‘is xa0, . . . , am-y in X?’.

Thus, we have shown that ∆0
0 relations are recursive. We now turn to Σ0

1

and Π0
1. Suppose ϕ is Σ0

1, say ϕ “ DDDu0, ¨ ¨ ¨ DDDuk- ψ, where u0, . . . , uk- are type-0
variables, and ψ is ∆0

0.5.4.2 Suppose without loss of generality that u0, . . . , uk- are
free in ψ, and let Freeψ be ordered as u0, . . . , uk- , v0, . . . , vm- , with v0, . . . , vm1- of
type-0 and vm1 , . . . , vm- of type-1 as before. Then for any a0, . . . , am1- P D0 and
am1 , . . . , am- P D1,

xa0, . . . , am-y P ϕ̂

ØDb0, . . . , bk- P D0 xb0, . . . , bk- , a0, . . . , am-y P ψ̂

ØDb P D0 Db0, . . . , bk- P b xb0, . . . , bk- , a0, . . . , am-y P ψ̂

ØDb P D0 xb, a0, . . . , am-y P ψ̂1,

where ψ1 “ DDDu0, . . . , uk- P v ψ, where v is a type-0 variable. Note that ψ1 is ∆0
0.

The point is that we may condense the string xDu0, ¨ ¨ ¨ Duk-y of existential type-0
quantifiers into the single existential type-0 quantifier xDuy. Hence, without loss of

8The easy way to get this, of course, is to let R1 be the complement of a relation R chosen to
satisfy (5.7) with ␣␣␣ϕ for ϕ.
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generality, we may suppose that ϕ “ DDDu ψ. Using the normal form (5.7) (with ψ
for ϕ) there is a recursive S Ď m`2D0 such that

xa0, . . . , am-y P ϕ̂

ØDb P D0 Dc P D0 xb, a0, . . . , am1- , c, am1 æ c, . . . , am- æ cy P S.

Let R be the set of sequences xa0, . . . , am1- , a, cm1 , . . . , cm-y P m`1D0 such that a is
transitive and there exist b, c P a such that

1. a is transitive,

2. cm1 , . . . , cm- P a2, and

3. there exist b, c P a such that xb, a0, . . . , am1- , c, cm1 æ c, . . . , cm- æ cy P S.

Then R is recursive and

(5.9) xa0, . . . , am-y P ϕ̂ØDa P D0 xa0, . . . , am1- , a, am1 æ a, . . . , am- æ ay P R.

Thus the normal form (5.7) which we derived for ∆0
0 is applicable to Σ0

1. In proce-
dural terms, therefore, any Σ0

1 relation T is semirecursive, i.e., there is an effective
procedure P that halts exactly for those inputs that are in T .

Similarly, if ϕ is Π0
1 with the same variable type sequence as above, there is a

recursive R Ď m`1D0 such that

(5.10) xa0, . . . , am-y P ϕ̂Ø@a P D0 xa0, . . . , am1- , a, am1 æ a, . . . , am- æ ay P R.

Thus, if T is a ∆0
1 relation there is an effective procedure that halts for all inputs

xa0, . . . , am-y (of the appropriate sequence of types) and answers the question ‘is
xa0, . . . , am-y in T?’, i.e., ∆0

1 relations are recursive.

5.2 Definability of pointsets

Based on the informal remarks of the preceding section, we now begin the rigorous
development of the theory of definability of pointsets. The use of D0 “ Vω and D1 “
D02 respectively as domains of type-0 and type-1 objects in the preceding discussion
was a temporary choice facilitating the adaptation of the Levy hierarchy of set-
theoretic complexity to define the classes Σ0

1, Π0
1, and ∆0

1 and identify their principal
structural properties: the normal forms (5.9) and (5.10), and the characterization of
∆0

1 relations as recursive and Σ0
1 as semirecursive.9 With this accomplished we may

proceed to develop the theory of classes derived from these by type-0 and type-1
quantification without explicit reference to the grammatical structure of formulas,
although logical notation for set-theoretic operations will be natural and useful.

As noted above, ω and ωω are the conventional paradigms for the classes of
type-0 and type-1 objects, for reasons both historical and practical.

(5.11) Definition [ZF]

1. U0
def
“ ω.

2. U1
def
“ ωω.

9The class ∆0
0 has served its purpose and is no longer of any particular interest.
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(5.12) Definition [ZF]

1. s is a type
def
ðñ s P ăω2 and s ‰ 0.10

1. s is a 0-type
def
ðñ s P ăω1, i.e., s “ x0, 0, . . . , 0y.

2. s is a 1-type
def
ðñ it is not a 0-type.

3. s is a pure 1-type
def
ðñ s P ăωt1u, i.e., s “ x1, 1, . . . , 1y.

2. Given a type s of length m, Us
def
“

Ś

kPm Usk
.11

3. x is a point12
def
ðñ x P Us for some type s.

4. Suppose x is a point and k ă |x|. Then the kth coordinate of x def
“ xk.

5. U is a pointspace
def
ðñ U “ Us for some type s.

6. The type of a point x def
“ the (unique13) type s such that x P Us.

7. X is a pointset
def
ðñ X Ď U for some pointspace U .

8. The type of a nonempty pointset X is the (unique) type s such that X Ď Us.
The empty set is a pointset of every type.

9. Suppose U is a pointspace and X Ď U . Then ␣X def
“ UzX.14

10. Γ is a pointclass
def
ðñ Γ is a set of pointsets.

Note that we do not define the type of a pointclass. The important pointclasses
contain pointsets of all types.

For i P 2, there is a natural correspondence x ÞÑ xxy between Ui and Uxiy, and
we will not always maintain this distinction scrupulously.

To indicate the type of a quantified variable we may use the following convention:
‘D0’ and ‘@0’ introduce variables of type-0, while ‘D1’ and ‘@1’ introduce variables
of type-1.

5.2.1 Recursive and semirecursive pointsets

We will model the definition of Σ0
1 for pointsets on (5.9). For this purpose we make

the following definition.

Definition [ZF] Suppose s is a type of length m, and n P ω.

1. Suppose x is a point of type s. Then the pointwise restriction of x to n def
“ x |n

def
“ the sequence x1 of length m such that for all k P m,

1. if sk “ 0 then x1k “ xk; and
2. if sk “ 1 then x1k “ xk æn.

10Recall that 2 “ t0, 1u, and ăω2 is the set of finite sequences of 0s and 1s.
11For example, if s “ x0, 0, 1y then Us “ U0 ˆ U0 ˆ U1. Note that s ‰ s1ÑUs X Us1 “ 0.
12The appropriateness of the word ‘point’ for this notion will become obvious. For now let it

be said that a member of m-dimensional euclidean space is essentially a point of type s, where s
is a pure 1 type of length m (and we take U1 for the sake of illustration to be the set R of real
numbers).

13See the previous footnote but one.
14If X is a nonempty pointset then it is a subset of only one pointspace, so the identity of U

may be inferred from X, and this definition of ␣X is unambiguous. Obviously ␣0 could be any
pointspace. In practice the relevant pointspace is clear from the context.
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Thus, pointwise restriction of the point x to n restricts the type-1 coordinates
of x to n and leaves the type-0 coordinates alone.

2. Uns
def
“

␣

x |n
ˇ

ˇx P Us

(

.

3. Uăωs “
Ť

nPω U
n
s .

4. For x P Uns and n1 P ω we define x |n1 in the obvious way so that px |nq |n1 “
x |n2, where n2 “ minpn, n1q.

Note that Uăωs is a recursive subset of Vω.

(5.13) Definition [ZF] Suppose s is a type and X Ď Us.

1. X is Σ0
1

def
ðñ there is a recursive R Ď Uăωs such that for all x P Us,

x P XØDa P ω x | a P R.

2. X is Π0
1

def
ðñ ␣X is Σ0

1, i.e., there is a recursive R Ď Uăωs such that for all
x P Us,

x P XØ@a P ω x | a P R.

3. x is ∆0
1

def
ðñ x is both Σ0

1 and Π0
1.

4. X is recursive
def
ðñ X is ∆0

1, and X is semirecursive
def
ðñ X is Σ0

1.

5.2.2 Recursive functions

Note the double use of ‘recursive’ in (5.13). First we refer to recursive subsets
of Vω in order to define Σ0

1 and Π0
1 as applied to pointsets; then we use these to

define ‘recursive’ and ‘semirecursive’ as applied to pointsets. The rationale for the
first definition has been supplied in the introduction to this chapter. Underlying
that discussion was the intuitive understanding of effective procedures embodied in
the Church-Turing thesis—that the halting sets of effective procedures with type-0
inputs are exactly the sets that are Σ1-definable over pVω; Pq. In that discussion
we also had occasion to discuss effective procedures with type-1 inputs—a concept
with which we were already familiar as computation with oracles. Specifically, we
were concerned with procedures P that—in the present setting—accept points of
any given type as input and produce a type-0 output. If P is used to define a
semirecursive set, its output may be regarded as the mere fact of halting. If it is
used to define a recursive set, it always halts, and its output is 0 or 1.

In Chapter 4 we also had occasion to discuss interminable procedures,4.58 whose
output is a sequence (of type-0 objects) of finite length or of length ω, thus poten-
tially a type-1 object. We may also allows such a procedure to accept points of any
given type as input, and we will refer to this as a type-1 procedure.

A function F : Us Ñ U1 may reasonably be said to be recursive if there is an
effective type-1 procedure P that, given input x P Us, enumerates F x,15 and we
may say that P computes F . Note that F is assumed to be total, so for any x P Us,
Px enumerates a function, i.e., for all a P ω there is a unique b P ω such that Px
outputs pa, bq at some point.

15F x is a function from ω to ω, so it is a set of ordered pairs from ω, and to enumerate F x is
to list all pa, bq P F x, i.e., all pa, bq such that pF xqa “ b.
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Suppose F is a recursive function in this sense, and let F˚ “ tx ⌢xa, by | x P
Us^pF xqa “ bu. Then F˚ is Σ0

1. To see this let P 1 be a procedure with input
from Us ⌢x0,0y that simulates P and halts for input x ⌢xa, by if and when Px outputs
pa, bq. Then P 1px ⌢xa, byq halts iff x ⌢xa, by P F˚, so F˚ is Σ0

1.
F˚ is also Π0

1. To see this, let P2 be a procedure with input from Us ⌢x1,1y that
simulates P and halts for input x ⌢xa, by if and when Px outputs pa, b1q for some
b1 ‰ b. Since F is total and F x P ωω, for any a P ω, Px outputs pa, b1q for exactly
one b1; hence, P2px ⌢xa, byq halts iff x ⌢xa, by R F˚, so F˚ is Π0

1.
Thus, if F is recursive in the above sense then F˚ is ∆0

1, i.e., recursive as a
subset of Us ⌢x0,0y.5.13.4 Conversely, if F˚ is recursive then a procedure that decides
it is easily adapted to a procedure that computes F . This analysis justifies the
following definition.

(5.14) Definition [ZF]

1. Suppose s is a type and F : Us Ñ U0. F is recursive
def
ðñ the relation tx ⌢xay |

F x “ au is recursive.

2. Suppose s is a type and F : Us Ñ U1. F is recursive
def
ðñ the relation

tx ⌢xa, by | pF xqa “ bu is recursive.

3. Suppose s, t are types and F : Us Ñ Ut. F is recursive
def
ðñ for each k ă |t|,

the function x ÞÑ pF xqk is recursive.16

We emphasize that in the consideration of recursive functions F from Us to Ut,
where t is a 1-type, we require that F be total. Note that we do not define ‘semire-
cursive’ in this case.

The following theorem lists some handy properties of recursive functions.

(5.15) Theorem [ZF] Suppose s, t, u are types.

1. Suppose F : Us Ñ Ut. Then F is recursive iff for each k ă |t|, the function Fk
defined by the condition that for each x P Us, Fkx “ pF xqk, is recursive.

2. (Projection) Suppose m ď |s|. Then the function F : Us Ñ Us æm defined by
the condition that for all x P Us, F x “ x æm, is recursive.

3. (Composition) Suppose F : Us Ñ Ut and G : Ut Ñ Uu are recursive. Then
G ˝ F is recursive.

4. (Permutation of coordinates) Suppose s is a type and π : |s| bij
Ñ |s|. Then

s1 “ s ˝ π is also a type, and x ÞÑ x ˝ π is a recursive function from Us to Us1 .

5. (Recursive constant) Suppose y P Ut is such that for every k ă |t|, if tk “ 1
then yk is recursive (i.e., a total recursive function). Then the function F :
Us Ñ Ut defined by the condition that for all x P Us, F x “ y, is recursive.

Proof Straightforward. 5.15

16We are invoking (5.14.1) or (5.14.2) according as tk “ 0 or 1.
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5.2.3 Recursive substitution

Suppose s, t are types, Y Ď Ut, and F : Us Ñ Ut is recursive. Let X “ FÐY .
Then X is in a natural sense no more complicated than Y (assuming a measure of
complexity such that all recursive relations have minimum complexity). We may
say that X is derived from Y by recursive substitution, in that if we think of X and
Y as predicates then XpxqØY pF xq, i.e., X derives from the substitution of the
“term” ‘F x’ for the “free variable of Y ”.

Definition [ZF] Suppose Γ is a pointclass. Γ is recursively closed
def
ðñ Γ is closed

under recursive substitution, i.e., for any types s and t, any Y P Γ of type t, and
any recursive F : Us Ñ Ut, FÐY P Γ.

Note that the condition that Γ be recursively closed does not just impose a condition
on Γ X PUs for each type s individually; it also relates Γ X PUs and Γ X PUt for
distinct types s and t via recursive functions from Us to Ut and vice versa. It will
be useful to have standard recursive isomorphisms of the Uss, which the following
definition provides.

Definition [ZF]

1. Suppose m ą 0. Fm
def
“ the ă-increasing enumeration of mω, where ă is the

canonical ω-ordering of Vω.3.211.3 Thus, F : ω bij
Ñ mω. Suppose s is a 0-type.

Then Fs
def
“ F|s|. Note that if s is a 0-type, then Us “

|s|ω, so F|s| : ω bij
Ñ Us.

2. Suppose s is a 1-type. For any x P Us let x0 be the sequence of type-0 coordi-
nates of x in the order in which they occur in x, and let x1 be the sequence of
the type-1 coordinates of x in the order in which they occur in x. Let m0 and
m1 be the respective lengths of x0 and x1. Thus, x0 P m

0
ω and x1 P m

1
pωωq.

(Note that m0 may be 0, but m1 ą 0.) Let x̂ P ωω be defined by the condition
that for any n P ω, Fm1 x̂n “ xpx

1
kqn | k ă m1y. Let G : Us Ñ

ωω be such that
for any x P Us, Gx “ x0 ⌢ x̂. Clearly, G is a bijection. Fs

def
“ G´1.

(5.16) Theorem [ZF] For any type s, Fs and Fs
´1 are recursive; and, as noted in

the definition,

1. if s is a 0-type then Fs : ω bij
Ñ Us; and

2. if s is a 1-type then Fs : ωω bij
Ñ Us.

Proof Straightforward. 5.16

(5.17) Theorem [ZF] A recursively closed pointclass Γ is uniquely determined by
ΓX PU1.

Proof Since Γ is recursively closed, for any 1-type s, @X Ď Us pX P ΓØFs
ÐX P

Γq, so Γ X PU1 uniquely determines Γ X PUs. By a similar argument using the

recursive bijections Fs : ω bij
Ñ Us for 0-types s, ΓXPU0 uniquely determines ΓXPUs

for any 0-type s.
It remains to be shown that Γ X PU1 uniquely determines Γ X PU0. For this

the recursive maps n ÞÑ xn, 0, 0, . . . y from ω into ωω and x ÞÑ x0 from ωω to ω may
be used to show that @X Ď ω pX P ΓØtx P ωω | x0 P Xu P Γq. 5.17
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It is certainly not the case that ΓXPU0 (“ ΓXP ω) uniquely determines a recur-
sively closed pointclass Γ. Indeed, classical descriptive set theory deals exclusively
with pointclasses Γ for which ΓX P ω “ P ω.

Recursively closed pointclasses are particularly amenable to the definition of
operations corresponding to various logical operations.

(5.18) Definition [ZF] Suppose Γ is a recursively closed pointclass, QQQ is either DDD
or @@@, and i P 2.

1. ␣␣␣Γ def
“ the class of pointsets X such that for some Y P Γ of type s, X “ UszY .

2. The dual of Γ def
“ ␣␣␣Γ. In the interest of notational compression, Γ̆ def

“ ␣␣␣Γ.

3. ___Γ def
“ the class of pointsets X such that for some Y, Y 1 P Γ of type s, X “

Y Y Y 1.

4. ^̂̂Γ def
“ the class of pointsets X such that for some Y, Y 1 P Γ of type s, X “

Y X Y 1.

5. QQQăΓ def
“ the class of pointsets X such that for some type s and X 1 P Γ of type

x0y ⌢ s, X “ txay ⌢ x P Ux0y ⌢ s | Qb ă a pxby ⌢ xq P X 1u.

6. QQQiΓ def
“ the class of pointsets X such that for some type s and X 1 P Γ of type

xiy ⌢ s, X “ tx P Us | Q
ia pxay ⌢ xq P X 1u.

It is not important that we have defined QQQă and QQQi by quantification over first
coordinates, as we can use a permutation operation to bring any coordinate to the
first position.5.15.4

(5.19) Theorem [ZF] Suppose Γ is a recursively closed pointclass. Then ␣␣␣Γ and
QQQiΓ are recursively closed for QQQ “ DDD or @@@ and i P 2. Σ0

1 is recursively closed; hence,
Π0

1 and ∆0
1 are recursively closed.

Proof Suppose X P ␣␣␣Γ, say X “ UszX
1 for some X 1 P Γ. Suppose Ut is a

pointspace and F : Ut Ñ Us is recursive. Let Y “ FÐX. Then for all y P Ut

y P Y ØF y P XØF y R X 1

Ø y R FÐX 1.

Since Γ is recursively closed, FÐX 1 P Γ, so Y P ␣␣␣Γ. Hence ␣␣␣Γ is recursively
closed.

Now suppose X P QQQiΓ, say X “ tx P Us | Qia pxay ⌢ xq P X 1u, where X 1 P Γ.
Suppose Ut is a pointspace and F : Ut Ñ Us is recursive, and let F 1 : Uxiy ⌢ t Ñ Uxiy ⌢ s

be defined by the condition that for any xay ⌢ y P Uxiy ⌢ t, F 1pxay ⌢ yq “ xay ⌢pF yq.
Note that F 1 is recursive, so F 1ÐX 1 P Γ. Let Y “ FÐX. Then for all y P Ut

y P Y ØFy P XØQia pxay ⌢pF yqq P X 1ØQia F 1pxay ⌢ yq P X 1

ØQia pxay ⌢ yq P F 1ÐX 1,

so Y P QQQiΓ. Hence QQQiΓ is recursively closed.
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Finally, suppose X is Σ0
1, say5.13.1 X “ tx P Us | D

0a x | a P Ru, where R Ď Uăωs

is recursive. Suppose Ut is a pointspace and F : Ut Ñ Us is recursive. Let Y “

FÐX. Then for all y P Ut

y P Y ØF y P XØD0a pF yq | a P R.

Let P be an effective procedure that, given input y P Ut, enumerates F y. Let S
consist of all sequences of the form y | b with y P Ut and b P ω, such that P, using
only the information contained in y | b, computes an initial segment pF yq | a of F y in
fewer than b steps, such that pF yq | a P R. S is recursive (because of the limitation
on the number of steps), and

y P Y ØD0a pF yq | a P RØD0b y | b P S,

so Y is Σ0
1. Hence Σ0

1 is recursively closed.
It follows that Π0

1 “ ␣␣␣Σ0
1 is recursively closed, and therefore ∆0

1 “ Σ0
1 X Π0

1 is
as well. 5.19

5.2.4 The Kleene pointclasses

With (5.13) as the foundation, we now extend the type-1 definability hierarchy
by quantification operations. The classes so defined are the Kleene pointclasses,
named after Stephen C. Kleene, who laid the foundations and developed much of
the original theory of recursion in higher types. We take the classes Σ0

1 and Π0
1

already defined5.13 as a foundation.

(5.20) Definition: The Kleene pointclasses [ZF] Suppose n ą 0.

1. Σ0
n`1

def
“ DDD0 Π0

n.

2. Π0
n`1

def
“ @@@0 Σ0

n.

3. Arithmetical def
“

Ť

nPω Σ0
n.

4. Σ1
1

def
“ DDD1 Arithmetical.

5. Π1
1

def
“ @@@1 Arithmetical.

6. Σ1
n`1

def
“ DDD1 Π1

n.

7. Π1
n`1

def
“ @@@1 Σ1

n.

8. Analytical def
“

Ť

nPω Σ1
n.

9. For i P 2, ∆i
n

def
“ Σin XΠi

n.

(5.21) Theorem [ZF] The Kleene pointclasses are recursively closed.

Proof We use Theorem 5.19 to prove this by induction, simultaneously showing
that (5.20) is legitimate, the quantification operations only being defined for recur-
sively closed pointclasses.5.18 5.21

(5.22) Theorem [ZF] Suppose n ą 0.



5.2. DEFINABILITY OF POINTSETS 327

1. Σ0
n “ ␣␣␣Π0

n.

2. Σ0
n and Π0

n are closed under the operations DDDă and @@@ă.

3. Σ0
n is closed under DDD0 and Π0

n is closed under @@@0.

4. Σ0
n and Π0

n are closed under disjunction and conjunction.

Proof We proceed by induction on n, so in the following discussion we suppose
that either n “ 1 or that n ą 1 and the theorem holds for n´ 1.

1 This follows immediately from the definition (5.13.2) if n “ 1, and from De
Morgan’s laws and the induction hypothesis if n ą 1. 5.22.1

2

(5.23) Claim DăΣ0
n Ď Σ0

n.

Proof It suffices to show that for any type s “ t ⌢x0y, and any Σ0
n set X Ď Us,

letting Y “ tx ⌢xay P Us | Db ă a x ⌢xby P Xu, Y is Σ0
n.

If n “ 1 then by definition5.13.1 there is a recursive R Ď Uăωs such that for all
x P Us,

x P XØD0c x | c P R.

Thus,

x ⌢xay P Y ØDb ă a x ⌢xby P XØDb ă a D0c px | cq ⌢xby P R

ØD0c Db ă a px | cq ⌢xby P RØD0c px | cq ⌢xay P R1,

where R1 “ ty ⌢xay P Uăω
s ⌢x0y | Db ă a y ⌢xby P Ru. R1 is recursive, so Y is Σ0

1.
If n ą 1 then by definition5.20.1

x P XØD0c x ⌢xcy P S,

where S Ď Us ⌢x0y is Π0
n- .

Thus,

x ⌢xay P Y ØDb ă a x ⌢xby P XØDb ă a D0c x ⌢xb, cy P S

ØD0c Db ă a x ⌢xb, cy P SØD0c x ⌢xa, cy P S1,

where S1 “ tx ⌢xa, cy P Us ⌢x0,0y | Db ă a x ⌢xb, cy P Su. Since S is Π0
n- , by induction

hypothesis, S1 is Π0
n- , so Y is Σ0

n. 5.23

(5.24) Claim @ăΣ0
n Ď Σ0

n.

Proof It suffices to show that for any type s “ t ⌢x0y, and any Σ0
n set X Ď Us,

letting Y “ tx ⌢xay P Us | @b ă a x ⌢xby P Xu, Y is Σ0
n.

We proceed largely as in the proof of (5.23), with the additional feature that
we use the collection principle: For any S Ď 2ω, @a ă b D0c xa, cy P SÑD0c1 @a ă
b Dc ă c1 xa, cy P S.

Thus, if n “ 1, with R as above,

x ⌢xay P Y Ø@b ă a D0c px | cq ⌢xby P RØD0c1 @b ă a Dc ă c1 px | cq ⌢xby P R

ØD0c1 px | c1q ⌢xay P R1,
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where R1 is the set of y ⌢xay P Uăω
s ⌢x0y such that, letting c1 be such that y ⌢xay P

U c
1

s ⌢x0y, for all b ă a there exists c ă c1 such that py | cq ⌢xby P R. R1 is recursive, so
Y is Σ0

1.
The case that n ą 1 employs the collection principle in a similar way. 5.24

The corresponding results for Π0
n are obtained mutatis mutandis, or directly by

applying (5.22.1) and De Morgan’s laws. 5.22.2

3 Suppose t is a type, s “ t ⌢x0y, X Ď Us is Σ0
1 and Y “ ty P Ut | Da y

⌢xay P Xu.
Suppose first that X is Σ0

1, and let R Ď Uăωs be recursive such that for all x P Ut

x P XØD0b x | b P R.

Then

y P Y ØD0a y ⌢xay P XØD0a D0b py | bq ⌢xay P R

ØD0c Da ă c Db ă c py | bq ⌢xay P RØD0c py | cq P R1,

for some appropriate recursive R1 Ď Uăωs , so Y is Σ0
1.

The same sort of computation works for Σ0
n with n ą 0, using the fact that

DDDăΠ0
n- Ď Π0

n- . The result for Π0
n may be derived analogously or by a De Morgan

argument from the Σ0
n case. 5.22.3

4 For Σ0
n, use the equivalences

D0a xay ⌢ x P S_D0a xay ⌢ x P T ØD0a pxay ⌢ x P S_xay ⌢ x P T q

D0a xay ⌢ x P S^D0a xay ⌢ x P T ØD0a, b pxay ⌢ x P S^xby ⌢ x P T q

together with the induction hypothesis for Π0
n- (or the corresponding closure prop-

erty of the recursive sets if n “ 1), the definition (5.20.1), and (5.22.3) in the case
of conjunction.

For Π0
n use the dual argument or apply De Morgan’s rules to the Σ case. 5.22.4

5.22

Note that (5.22.4) is more general than closure under union and intersection.
For suppose s is a type of length m, j1 : m1

inj
Ñ m, and j2 : m2

inj
Ñ m, where

m1,m2 ď m. Let s1 “ s ˝ j1 and s2 “ s ˝ j2. Likewise, for x P Us let x1 “ x ˝ j1
and x2 “ x ˝ j2. In other words, x1 and x2 are “extracts” of x.

We may define a disjunction operation specific to this situation by stipulating
that for X Ď Us1 and Y Ď Us2 , X _Y Ď Us and

x P pX _Y qØpx1 P X _x2 P Y q.

(5.22.4) is to be understood as stating that Σ0
n and Π0

n are closed under such
disjunction operations and the analogous conjunction operations.

Note that if we let Xi “ tx P Us | x
i P Xu for X Ď Usi , i “ 0, 1, then

X _Y “ X1 Y Y 2, so we could obtain the general result from the special case of
union and intersection using the fact that an extraction operation as above is a
permutation followed by a projection and is recursive by (5.15), and the Kleene
classes are closed under recursive substitution.
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(5.25) Theorem [ZF] Suppose n ą 0. ∆0
n is closed under ␣␣␣, DDDă, and @@@ă. DDD0 ∆0

n Ď

Σ0
n`1 and @@@0 ∆0

n Ď Π0
n`1.

Proof Immediate from (5.22). 5.25

It is obvious that Σin Ď Πi
n`1 and Πi

n Ď Σin`1. It is easily shown by induction on
n that Σin Ď Σin`1 and Πi

n Ď Πi
n`1. Thus we have the following inclusion diagram:

Σ0
1 Σ0

2

Ď Ď Ď Ď

∆0
1 ∆0

2 ¨ ¨ ¨Arithmetical
Ď Ď Ď Ď

Π0
1 Π0

2

(5.25)

Σ1
1 Σ1

2

Ď Ď Ď Ď

Ď ∆1
1 ∆1

2 ¨ ¨ ¨Analytical
Ď Ď Ď Ď

Π1
1 Π1

2

(5.26) Note in particular that Arithmetical “
Ť8
n“1 Σ0

n “
Ť8
n“1 Π0

n.

The obvious questions are whether these inclusions are strict. The first of these—
whether Σ0

1 is ∆0
1—is the type-1 version of the halting problem, and we answer it in

the next section in the same way: in the negative by demonstrating the existence
of universal sets.

This technique also allows us to deal with all the other questions with one excep-
tion: whether ∆1

1 is Arithmetical. In fact, it is easy to see that it is not; the more
interesting question is whether there is a natural extension of the arithmetical hier-
archy that does exhaust ∆1

1, and the answer is that there is: the hyperarithmetical
hierarchy. Unfortunately, this topic is beyond the scope of this book; fortunately,
the analogous object in classical descriptive set theory, viz., the Borel hierarchy, is
significantly easier to handle, and we will develop its theory beginning in Section 5.3.

5.2.5 Universal and complete pointsets

(5.27) Definition [ZF] Suppose Γ is a recursively closed pointclass, s is a type, and
X Ď Us.

1. X is 0-universal for ΓXPUt
def
ðñ s “ x0y ⌢ t and for every Y P ΓXPUt there

exists n P ω such that Y “ ty P Ut | xny
⌢ y P Xu.

2. X is recursively Γ-complete
def
ðñ X P Γ and for any type t and Y Ď Ut, if

Y P Γ then there is a recursive F : Ut Ñ Us such that Y “ FÐX.

3. X is recursively Γ-0-complete
def
ðñ X P Γ, s is a 0-type, and for any 0-type

t and Y Ď Ut, if Y P Γ then there is a recursive F : Ut Ñ Us such that
Y “ FÐX.

(5.28) Theorem [ZF] Suppose Γ is a recursively closed pointclass.
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1. Suppose s, t are both 1-types or both 0-types. Then there is a 0-universal set
for ΓX PUs iff there is a 0-universal set for ΓX PUt.

2. Suppose X Ď Ux0,1y is 0-universal for Γ X PUx1y. Then X is recursively Γ-
complete, as is txny ⌢ x | xn, xy P Xu Ď ωω.

3. Suppose X Ď Ux0,0y is 0-universal for ΓX PUx0y. Then X is recursively Γ-0-
complete, as is Bin ÐX Ď ω.

Proof 1 Suppose X Ď Ux0y ⌢ s is 0-universal for ΓXPUs. Let F “ Fs ˝F
´1
t . Let

Y “ txny ⌢ y | xny ⌢ Fy P Xu. Then Y P ΓX PUx0y ⌢ t. Suppose Y 1 P ΓX PUt. Let
X 1 “ FÑY 1. Then X 1 P Γ X PUs. Since X is universal, for some n P ω, for all
y P Ut,

y P Y 1ØFy P X 1Øxny ⌢ Fy P XØxny ⌢ y P Y.

Hence Y is 0-universal for ΓX Ut. 5.28.1

2 This follows pretty directly from the proof of Theorem 5.17. Given a 1-type t
and Y P Γ X PUt, let Y 1 “ Ft

ÐY Ď ωω. Since Γ is recursively closed, Y 1 P Γ, so
there exists n P ω such that Y 1 “ tx P ωω | xn, xy P Xu. Let F : Ut Ñ Ux0,1y be
defined by the condition that Fy “ xn, F´1

t yy. Then F is recursive and Y “ FÐX.
Given a 0-type t and Y P Γ X PUt, let Y 1 “ ty P ωω | y æ |t| P Y u. Clearly,

Y 1 P Γ. Let n P ω be such that Y 1 “ tx P ωω | xn, xy P Xu. Let F : Ut Ñ Ux0,1y
be defined by the condition that Fy “ xn, y ⌢x0, 0, . . . yy. Then F is recursive and
Y “ FÐX.

HenceX is recursively Γ-complete. Since xn, xy ÞÑ xay ⌢ x is birecursive, txny ⌢ x |
xn, xy P Xu is also recursively Γ-complete. 5.28.2

3 Given a 0-type t and Y P ΓXPUt, let Y 1 “ Bin ÐY . Clearly, Y 1 P Γ. Let n P ω
be such that Y 1 “ ta P ω | xn, ay P Xu. Let F : Ut Ñ Ux0,0y be defined by the
condition that Fy “ xn, ⃗B yy. Then F is recursive and Y “ FÐX.

Hence X is recursively Γ-0-complete. Since Bin is birecursive, Bin ÐX is also
recursively Γ-0-complete. 5.28.3 5.28

(5.29) Definition [ZF] Suppose Γ is a recursively closed pointclass.

1. Γ has 0-0-universal sets
def
ðñ there is a 0-universal set for Γ X Us for some

(equivalently, for any) 0-type s.5.28.1

2. Γ has 0-1-universal sets
def
ðñ there is a 0-universal set for Γ X Us for some

(equivalently, for any) 1-type s.5.28.1

3. Γ has 0-universal sets
def
ðñ Γ has 0-0- and 0-1-universal sets.

(5.30) Theorem [ZF] Suppose Γ is recursively closed and S is 0-i-universal for Γ,
i “ 0 or 1. Then S R ␣␣␣Γ.

Proof Suppose without loss of generality that S Ď Ux0,0y ⌢ s. Let T “ txay ⌢ x |

xa, ay ⌢ x R Su. If S P ␣␣␣Γ then T P Γ, so for some b P ω, T “ txay ⌢ x | xb, ay ⌢ x P
Su. But then for any x P Us,

xby ⌢ x P T Øxb, by ⌢ x P SØxby ⌢ x R T,
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which contradiction establishes the theorem. 5.30

(5.31) Theorem [ZF] Σ0
1 has 0-universal sets.

Proof We have already seen an example of 0-universality in our discussion of
semirecursive subsets of ω, where we defined the sets Wn, n P ω,4.73 such that

1. every semirecursive subset of ω is Wn for some n; and

2. the set S0 “ txn,my | n P ω^m PWnu is semirecursive.

S0 is therefore 0-0-universal for Σ0
1.

Now let S1 Ď ω ˆ ωω be such that for all n P ω and x P ωω,

xn, xy P SØD0a ⃗Bpx æ aq PWn.

Clearly, S1 is Σ0
1, as it is the halting set for a procedure that, given n and x, looks

successively at each initial segment x æ a of x, computes its numerical code ⃗Bpx æ aq
and checks whether it occurs in the listing of Wn, which it is concurrently creating.

Now suppose X Ď ωω is Σ0
1. Let5.13.1 R Ď ăωω be recursive such that

x P XØD0a x æ a P R.

Let n P ω be such that Wn “ Bin ÐR. Then for each x P ωω,

x P XØD0a x æ a P RØD0a ⃗Bpx æ aq PWn

Øxn, xy P S1.

Thus S1 is 0-1-universal for Σ0
1. 5.31

(5.32) Theorem [ZF] Σ0
n and Π0

n have 0-universal sets, for all n ą 0.

Proof Obviously, if S is 0-i-universal for a recursively closed pointclass Γ then ␣S
is 0-i-universal for ␣␣␣Γ. In the interest of uniformity we will generally deal primarily
with Σ pointclasses.

(5.31) provides 0-i-universal sets Si Ď Ux0,iy for Σ0
1.

We now proceed by induction. Suppose n ą 0 and there is an 0-i-universal set
for Σ0

n (in any i-type5.29). Let S Ď Ux0,0,iy be 0-universal for Σ0
n X PUx0,iy. Let

T “ txay ⌢ x | D0b xa, by ⌢ x R Su.

(5.33) Claim T is 0-universal for Σ0
n`1 X PUxiy.

Proof T is clearly Σ0
n`1. Now suppose X Ď Uxiy is Σ0

n`1. Let Y Ď Ux0,iy be Π0
n

such that X “ tx P Uxiy | D
0b xby ⌢ x P Y u. Let a P ω be such that Y “ ty P Ux0,iy |

xay ⌢ y R Su. Then X “ tx P Uxiy | D
0b xa, by ⌢ x R Su “ tx P Uxiy | xay

⌢ x P T u.
5.33

By induction, therefore, 0-i-universal sets exist for Σ0
n and Π0

n for all n ą 0,
i “ 0, 1. 5.32

(5.34) It follows5.30 from (5.32) that for every n ą 0, Σ0
n ‰ Π0

n, so ∆0
n Ł Σ0

n

and ∆0
n Ł Π0

n. Also, since Σ0
n,Π

0
n Ď ∆0

n`1, Σ0
n Ł ∆0

n`1 and Π0
n Ł ∆0

n`1. These
inequalities also hold individually for every type s.
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5.2.6 A normal form for Σ1
1/Π1

1

The following theorem illustrates the usefulness of functions as canonical type-1
objects. Recall that U0 “ ω and U1 “

ωω.

(5.35) Theorem [ZF] Suppose X Ď Us is Σ1
1. Then there is a Π0

1 set S Ď Ux1y ⌢ s

such that for all z P Us,
z P XØD1f xfy ⌢ z P S.

Obviously, therefore, if X is Π1
1 then there is a Σ0

1 set S Ď Ux1y ⌢ s such that for all
z P Us,

z P XØ@1f xfy ⌢ z P S.

Proof The following claim is the crux of the matter.

(5.36) Claim Suppose S Ď Ux0,0y ⌢ s is Π0
n, where n ą 0. Then there exists a Π0

n

set T Ď Ux1y ⌢ s such that for all z P Us

(5.37) @0a D0a1 xa, a1y ⌢ z P SØD1f xfy ⌢ z P T.

Proof Let
T “ txfy ⌢ z P Ux1y ⌢ s | @

0a xa, f ay ⌢ z P Su.

T is Π0
n because xa, fy ⌢ z ÞÑ xa, fay ⌢ z is recursive, and Π0

n is closed under recursive
substitution and @@@0.

To prove (5.37), we first observe that for any f P U1, if @0a xa, f ay ⌢ z P S then
@0a D0a1 xa, a1y ⌢ z P S, which establishes the ÐÐÐ direction.

To prove the ÑÑÑ direction, suppose @0a D0a1 xa, a1y ⌢ z P S. Let f P U1 be
defined by the condition that for each a P U0, f a is the least a1 in U0 p“ ωq such
that xa, a1y ⌢ z P S. 5.36

(5.38) Claim Suppose X Ď Us is arithmetical. Then there is a Π0
1 set S Ď Ux1y ⌢ s

such that for all z P Us,
z P XØD1f xfy ⌢ z P S.

Proof Every arithmetical set is Π0
n for some n ą 0.5.26 We will prove the claim for

Π0
n pointsets (simultaneously for all types s) by induction on n ą 0. For n “ 1 the

result is trivial. Suppose it is true for some n ą 0 (for all types s), and suppose
X Ď Us is Π0

n`1. Then there exists a ∆0
n set Y Ď Ux0,0y ⌢ s such that for all z P Us

z P XØ@0a D0a1 xa, a1y ⌢ z P Y.17

Let5.36 T Ď Ux1y ⌢ s be Π0
n such that for all z P Us

z P XØD1f xfy ⌢ z P T.

By the induction hypothesis (for Π0
n subsets of Ux1y ⌢ s) there is a Π0

1 set T 1 Ď
Ux1,1y ⌢ s such that for all xfy ⌢ z P Ux1y ⌢ s

xfy ⌢ z P T ØD1g xg, fy ⌢ z P T 1.

17If n ą 1 we could take Y to be Π0
n- . Our use of ∆0

n permits a uniform treatment of all cases,
including n “ 1.
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For all z P Us, then,
z P XØD1f D1g xg, fy ⌢ z P T 1.

For h P ωω, let h0, h1 be defined as follows. Given a P ω, if ha “ ⃗Bxb, cy for
some b, c P ω, then h0a “ b and h1a “ c; otherwise h0a “ h1a “ 0. Clearly,
xhy ÞÑ xh0, h1y is recursive. Let

S “ txhy ⌢ z P Ux1y ⌢ s | xh
0, h1y ⌢ z P T 1u.

Then S is Π0
1, and for all z P Us

z P XØD1h xhy ⌢ z P S,

as desired. 5.38

To complete the proof of the theorem, suppose X Ď Us is Σ1
1. Let5.4.4 W Ď

Ux1y ⌢ s be arithmetical such that for all z P Us

z P XØD1f xfy ⌢ z PW.

Let5.38 S1 Ď Ux1,1y ⌢ s be Π0
1 such that for all xfy ⌢ z P Ux1y ⌢ s

xfy ⌢ z PW ØD1g xg, fy ⌢ z P S1.

Then for all z P Us

z P XØD1f D1g xg, fy ⌢ z P S1,

and by the argument used in the proof of (5.38) there exists a Π0
1 set S Ď Ux1y ⌢ s

such that for all z P Us

z P XØD1h xhy ⌢ z P S,

as desired. 5.35

(5.39) Theorem [ZF] Σ1
n and Π1

n have 0-universal sets for all n ą 0.

Proof Let5.32 S Ď Ux0,1y ⌢ s be 0-universal for Π0
1 X PUx1y ⌢ s. Let

T “ txay ⌢ x P Ux0y ⌢ s | D
1f xa, fy ⌢ x P Su.

T is Σ1
1.

Suppose X Ď Us is Σ1
1. Then5.35 for some Π0

1 Y Ď Ux1y ⌢ s, X “ tx | D1f xfy ⌢ x P

Y u, and for some a P ω, Y “ txfy ⌢ x | xa, fy ⌢ x P Su, so

X “ tx | xay ⌢ x P T u.

Hence T is 0-i-universal for Σ1
1 (assuming s is an i-type).

It is now easy to show by induction on n ą 0 that 0-universal sets exist for Σ1
n

and Π1
n. 5.39

It follows from (5.39) that for every n ą 0, Σ1
n ‰ Π1

n, so ∆1
n Ł Σ1

n, ∆1
n Ł Π1

n,
Σ1
n Ł ∆1

n`1 and Π1
n Ł ∆1

n`1. These inequalities also hold individually for every
type s.
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Together with (5.34) we therefore have the following inclusion diagram.

Σ0
1 Σ0

2

Ł Ł Ł Ł

∆0
1 ∆0

2 ¨ ¨ ¨Arithmetical
Ł Ł Ł Ł

Π0
1 Π0

2

(5.39)

Σ1
1 Σ1

2

Ł Ł Ł Ł

Ď ∆1
1 ∆1

2 ¨ ¨ ¨Analytical
Ł Ł Ł Ł

Π1
1 Π1

2

5.2.7 Closure properties of analytical classes

The following theorem states closure properties for Σ1
n and Π1

n, n ą 0, analogous
to those stated for Σ0

n and Π0
n in (5.22). The arrangement of these results in (5.22)

was chosen to conform to the order of their derivation. Here we arrange the results
according to content, with the order motivated by the following observations.

1. Closure under binary disjunction (conjunction) implies closure under n-ary
disjunction (conjunction) for any fixed n P ω.

2. Bounded existential (universal) quantification may be regarded as finitary
disjunction (conjunction) with a variable finite bound.

3. Type-0 existential (universal) quantification may be regarded as ω-ary dis-
junction (conjunction).

4. Type-1 existential (universal) quantification may be regarded as ωω-ary dis-
junction (conjunction).

The proof of the following theorem is the first point in this chapter where a Choice
principle is used. We require only a minimal such principle. Specifically, we require
choice functions for countable sets of nonempty subsets of P Vω. In naming this
axiom we look a little bit ahead to the following section, where we define real
numbers as members of P Vω. Thus, the axiom we need may be described as choice
for countable sets of subsets of R, i.e., ACωpRq.3.140

(5.40) Theorem [ZF` ACωpRq] Suppose n ą 0 and Γ is Σ1
n pΠ

1
nq.

1. ␣␣␣Γ is Π1
n pΣ

1
nq.

2. Γ is closed under disjunction, conjunction, and type-0 quantification.

3. Γ is closed under type-1 existential (universal) quantification.

Proof The proof is a fairly straightforward application of principles and techniques
already presented. ACωpRq is used in the proof of closure of Σ1

n (Π1
n) under uni-

versal (existential) type-0 quantification, to show that if @0a D1f xa, fy P R then
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D1f @0a xa, fay P R, where fa P U1 is defined for each a P U0 by the condition that
for all b P U0,

fab “

#

c if B⃗ pf bq “ xa, cy for some c
0 otherwise.

5.40

5.2.8 Relative definability

It is often useful to consider pointclasses defined by complexity relative to a type-1
object.

(5.41) Definition [ZF] Suppose Γ is a recursively closed pointclass.

1. Suppose z P U1. Γ relativized to z
def
“ Γpzq def

“ the class Γ1 defined by the

condition that for any pointset X Ď Us, X P Γ1
def
ðñ there exists Y Ď Ux1y ⌢ s

such that Y P Γ and X “ tx P Us | xzy
⌢ x P Y u.18

2. The full relativization of Γ or simply the relativization of Γ def
“

Γ
r

def
“

ď

zPU1

Γpzq.

(5.42) Theorem [ZF] Suppose Γ is a recursively closed pointclass. Let Γ1 “ Γ
r

.
Then Γ

r

1 “ Γ1.

Proof Straightforward. 5.42

Suppose Γ is a recursively closed pointclass. Γ is relativized
def
ðñ Γ

r

“ Γ.

In print, we usually use boldface symbols for the classes Σ
r

i
n, etc. For example,

Σ0
1 “ Σ

r

0
1. As we will see, these classes may be defined directly in a natural way,

without reference to the relativization operation. The use of the wavy underline
as a component of the name of a pointclass is usually restricted to handwriting,
where it may be regarded as indicating boldface. It is common to use ‘boldface’ as
an adjective applicable to relativized classes and their theory.

Note that any relativized pointclass, other than the trivial class all of whose
pointsets are empty, contains every type-0 pointset.19

(5.43) Keeping in mind that type-0 pointsets are type-1 objects, and type-1 pointsets
are type-2 objects, we see that relativized classes serve the useful purpose of isolating
that part of type-2 complexity that is specific to type-2 by ignoring any distinction
among type-1 objects: in effect, treating type-1 objects as structureless individuals,
like real numbers in analysis or points in geometry.

18Note that if we similarly defined Γpzq for some z P U0, then Γpzq “ Γ. The same is true if
z P U1 is recursive (as a subset of Vω , or, equivalently, as a (total) function from ω to ω).

19Recall that a pointset X is of type-0 iff X Ď Us, where s is a 0-type, i.e., @k ă |s| sk “ 0.
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Based on (5.41.1) we have complexity pointclasses Σinpzq, Πi
npzq, and ∆i

npzq,
relative to a given type-1 object z. Essentially all of the preceding discussion may
be carried out relative to a fixed type-1 object z. We may also relativize the various
notions of recursiveness to an arbitrary object z by consideration of procedures using
z as an oracle.

Based on (5.41.2) we have (fully) relativized—i.e., boldface—complexity point-
classes Σi

n, Πi
n, and ∆i

n, and most of the preceding discussion applies to them as
well. As noted above, these are only of interest for type-1 pointsets: every type-0
pointset trivially belongs to all these classes.

5.2.9 Topological aspects

We alluded above5.43 to the role played by relativized pointclasses in isolating struc-
tural features intrinsic to type-2. We will see that these fall under the rubric
‘pointset topology’: this is, in fact, the rationale for our use of ‘pointset’ in this
discussion.

We begin by recalling that for any Σ0
1 set X Ď ωω, there is an effective procedure

P such that for any f P ωω, f P X iff Pf halts. Recall that the computation Pf
uses f as an oracle, and if it halts, it does so after only finitely many consultations
of the oracle. For technical reasons it is convenient to suppose that P always asks
for an initial segment of f , so at any stage in the computation it knows a finite
initial segment of f . Then for some finite initial segment s of f , P concludes that
f P X based on the fact that s Ď f . Thus, for every f 1 P ωω, if s Ď f 1 then f 1 P X.
Note that s itself is a suitable oracle for P, inasmuch as P, acting on the values
supplied by s, halts without asking for any information not contained in s. For
each s P ωω, let Is “ tf P ωω | s Ď fu. Let A be the set of s P ăωω such that
P halts with s as an oracle, without asking for any information not in s. Then
X “

Ť

sPA Is. Obviously, A is Σ0
1.20

Conversely, suppose A is a Σ0
1 subset of ăωω. Let P be an effective procedure

that, with input f P ωω, dovetails an enumeration of A with an enumeration of
f and halts if and when it finds an initial segment of f in A. Then Pf halts iff
f P

Ť

sPA Is, so
Ť

sPA Is is by definition a Σ0
1 subset of ωω.

Thus, we have the following normal form for Σ0
1 subsets of ωω.

(5.44) Theorem [ZF] Suppose X Ă ωω. Then X is Σ0
1 iff there exists a Σ0

1 set
A Ď ăωω such that X “

Ť

sPA Is.

Proof The preceding remarks may be fashioned into a rigorous proof, but we may
proceed more directly as follows. Suppose X is Σ0

1. By definition5.13.1 there exists
a recursive (i.e., ∆0

1) A Ď ăωω such that for all x P ωω, x P X iff Da P ω x æ a P A.
Then A is as desired.

Conversely, suppose A Ď ăωω is Σ0
1. Let X “

Ť

sPA Is. Let S Ď ωˆăωω be ∆0
1

such that for all s P ăωω, s P AØDn P ω xn, sy P S. Let R “ ts P ăωω | Dm,n ă
|s| xn, s æmy P Su. R is ∆0

1, and for any x P ωω

x P XØDm P ω x æm P A

ØDm,n P ω xn, x æmy P S

ØDa P ω Dm,n ă a xn, px æ aq æmy P S

ØDa P ω x æ a P R,

20We make free use of birecursive bijections such as Bin : ω
bij
Ñ Vω to transfer complexity

classifications to spaces that are not Us for some type s.
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so R is as desired. 5.44

The preceding discussion may be carried out relative to any z P ωω to show that
a set X Ď ωω is Σ0

1pzq iff there exists a Σ0
1pzq set A Ď ăωω such that X “

Ť

sPA Is.
And we may aggregate these for all z P ωω to show that a set X Ď ωω is Σ0

1 iff
there exists a Σ0

1 set A Ď ăωω such that X “
Ť

sPA Is.

(5.45) We use the obvious extension of notions of definability and relative defin-
ability to subsets of Vω (as opposed to subsets of Us). The simplest way to carry

the entire theory over is to use a birecursive bijection such as Bin : ω bij
Ñ Vω. Any

infinite recursive subset of Vω is interchangeable with ω for the present purpose.

But every set A Ď ăωω is Σ0
1 (since A is Σ0

1pAq), so we have the following normal
form for Σ0

1.

(5.46) Theorem [ZF] Suppose X Ď ωω. Then X is Σ0
1 iff there exists a set

A Ď ăωω such that X “
Ť

sPA Is.

Proof Just given. 5.46

Note that in keeping with the comment 5.43 there is no restriction on A in
(5.46).

This suggest that we adopt the following standard topologies on pointspaces.21

(5.47) Definition [ZF]

1. Suppose A is a type-0 pointspace, broadly understood, e.g., ω or Vω.5.45 The
standard topology on A

def
“ the discrete topology, i.e., the topology in which

every subset of A is open.

2. Suppose B is a type-1 pointspace of the form CA—of which ωω is our paradigm,
but also broadly understood. The standard topology on B def

“ the product topo-
logy, where CA is regarded as the product of copies of A, one for each member
of C, and A is given the discrete topology.

By definition3.197 the product topology on CA, assuming the discrete topology on
A, is generated by taking the sets Is

def
“ tf P CA | s Ď fu as a base, where s ranges

over finite partial functions from C to A. That is, the open sets in the product
topology are arbitrary unions of sets Is. In the case of particular interest, viz., ωω,
rather than allowing s : ω á ω to have any finite domain, we may and do specify
that dom s be a finite ordinal, i.e., s P ăωω.

We now have the following topological characterization of Σ0
1.

(5.48) Theorem [ZF] Suppose X Ď ωω. Then X is Σ0
1 iff X is open (in the

standard topology).

Proof This is just a restatement of (5.46). 5.48

It is useful to adapt the procedural point of view for specific application to
relativized pointsets. Recall that an effective procedure is a finitary thing in that
it manipulates finitary objects according to a program that is itself finitary. We
may also consider procedures P that manipulate finitary objects according to an

21Recall3.185 that a topology on a set A is a set T of subsets of A—called the open sets—such
that 0, A P T , T is closed under finite intersections, and T is closed under arbitrary unions.
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arbitrary program. Such a program is essentially a function P that operates on
the state Sn of the computation at stage n P ω to produce the state Sn`1 of the
computation at the next stage, taking into account the finitary input, which may be
regarded as determining S0. P is therefore representable as an arbitrary function
from Vω to Vω—a type-1 object.

If we wish, we may model P as a fixed effective procedure P0, with access to
P as an oracle. The oracle in this case is intrinsic to P—is P, if you will—but
the procedure may still be thought of as effective relative to the oracle. We call
this a relative procedure. As in the case of effective procedures, there are two sorts
of relative procedures P. A terminable procedure either halts after finitely many
steps with a type-0 output, or never halts. An interminable procedure produces a
sequence of type-0 objects as output, which may have any finite length, including
0, or length ω. Also as in the case of effective procedures, a relative procedure P
of either sort acts on a type-1 input f by consulting f as an oracle.

Clearly, any function F : ω Ñ ω and any F : ω Ñ ωω is computable by a relative
procedure, because F is a type-1 object that may be used to define a procedure
that computes it. So the only interesting case is that of relative procedures acting
on type-1 inputs. The essential feature of such a procedure P is that its state at
any stage is determined by a finite amount of information about the input f , which
may be taken to be an initial segment of f in the canonical case of f P ωω.

(5.49) To avoid irrelevant complications, we will restrict our attention to relative
procedures that compute total functions, i.e., to terminable procedures that always
halt, and to interminable procedures that always produce an ω-sequence.4.58

Let F : ωω Ñ ω be the function computed by a relative procedure P of the
terminable sort. Suppose Ff “ n. Then for some finite initial segment s Ď f , P
halts with output n having obtained from f only the information contained in s.
Thus, for any f 1 P ωω, if s Ď f 1 then Ff 1 “ n, i.e., Is Ď FÐtnu. It follows that
FÐtnu “

Ť

tIs | s P
ăωω^ Is Ď FÐtnuu, so FÐtnu is open. Since the union of

open sets is open, FÐX is open for any X Ď ω. F is therefore continuous.22

Conversely, suppose F : ωω Ñ ω is continuous. For each n P ω, let An “ ts P
ăωω | Is Ď FÐtnuu. Since tnu is open in the discrete topology, and F is continuous,
FÐtnu is open, so FÐtnu “

Ť

An. Note that n ‰ n1ÑAn X An1 “ 0. Since F
is total, for any f P ωω there exists n P ω and a finite initial segment s Ď f such
that s P An. Let P be the procedure that, given input f P ωω, obtains successively
longer finite initial segments s Ď f until it finds one that is in An for some n, and
then halts with output n. Clearly, for all f P ωω, Pf halts with output Ff .

(5.50) Thus the continuous functions F : ωω Ñ ω are exactly those that are
computable by a relative procedure.

Now let F : ωω Ñ ωω be the function computed by a relative procedure P
of the interminable sort. Conceptually, P, with input f P ωω, acting finitarily,
proceeds through an ω-sequence of steps, consulting f as an oracle and producing
an ω-sequence Ff of numbers,5.49 as its output. For each t P ăωω, let At be the
set of s P ăωω such that P, with input s, computes t, i.e., f P IsÑFf P It. Then
f P

Ť

tIs | s P AtuÑFf P It, and clearly also Ff P ItÑ f P
Ť

tIs | s P Atu
(because at some point in the computation Pf , P has acquired enough information

22Recall that by definition, for any topological spaces A and B, a function F : A Ñ B is
continuous iff for every open X Ď B, fÐX is open.
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from f to compute t). Thus FÐIt “
Ť

tIs | s P Atu, which is open. Since every
open set is a union of basic sets, it follows that FÐY is open for all open Y Ď ωω.
Hence F is continuous.

Conversely, suppose F : ωω Ñ ωω is continuous. For each t P ăωω, let At “ ts P
ăωω | Is Ď FÐItu. Since F is continuous, FÐIt is open, so FÐIt “

Ť

tIs | s P Atu.
Note that if It X It1 “ 0 then At X At1 “ 0. Since F is total, for any f P ωω
there exists g P ωω such that Ff “ g, so for any k P ω there is a unique tk P kω
(viz., g æ k) such that there exists a finite initial segment s of f such that s P Atk .
Let P be the procedure that—using txs, ty | s P Atu as an internal oracle—given
input f P ωω, obtains successively longer finite initial segments s of f , successively
identifying, for each k P ω, tk as above. Since tk “ g æ k, Pf computes g.

(5.51) Thus the continuous functions F : ωω Ñ ωω are exactly those that are
computable by a relative procedure.

Continuous functions on pointspaces are therefore5.50, 5.51 the boldface (relativized)
analog of recursive functions.

Topological continuity may also be characterized in terms of limits. In the case
of first countable spaces such as pointspaces, it suffices to consider limits of ω-
sequences. Recall that limnÑ8 xn “ x iff for any open G with x P G DN P ω @n ą
N xn P G. Specializing to ωω for simplicity, limnÑ8 fn “ f iff @k P ω DN P ω @n ą
N fn æ k “ f æ k.

It is natural in this setting to think of finite initial segments s P ăωω of f P ωω
as approximations to f , and to think of f, g P ωω as close to each other if they have
a long initial segment in common, and the standard topology on any pointspace
may be obtained from a metric in the topological sense. In fact, virtually all of the
boldface theory of pointspaces applies to arbitrary separable completely metrizable
topological spaces.

To most mathematicians the most important separable completely metrizable
topological space by far is that of the real numbers, and it was in this formulation
that the subject was originally studied. In Section 5.3 we will take a topological,
rather than an explicitly logical, approach to the description of pointsets. This is
the framework in which the study of properties of pointsets classified according to
the manner of their description was first undertaken, under the name descriptive set
theory. One should keep in mind that this is strictly a “boldface” theory. It is often
referred to as classical descriptive set theory by way of contrast with the theory
based on logical complexity without relativization, as presented above, which may
be called effective descriptive set theory.

5.2.10 Boldface universality and completeness

The essentially “lightface” notions5.27 of recursive closure, 0-universality, and recur-
sive completeness have the following “boldface” counterparts.

(5.52) Definition [ZF] Suppose Γ is a pointclass.

1. Γ is continuously closed
def
ðñ Γ is closed under continuous substitution, i.e.,

for any types s and t, any Y P Γ of type t, and any continuous F : Us Ñ Ut,
FÐY P Γ.

2. Suppose Γ is continuously closed, s is a type, and X Ď Us.
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1. X is 1-universal for ΓX PUt
def
ðñ s “ x1y ⌢ t and for every Y P ΓX PUt

there exists x P ωω such that Y “ ty P Ut | xxy
⌢ y P Xu.

2. X is continuously Γ-complete
def
ðñ X P Γ and for any type t and Y Ď Ut,

if Y P Γ then there is a continuous F : Ut Ñ Us such that Y “ FÐX.

5.2.11 Tree representations

The use of ω-sequences as standard type-1 objects leads naturally to the use of
trees in the description of pointsets. Recall3.181 that a sequence tree pT ;ăq on a
set M is a set T Ď ăωM of finite sequences from M , closed under initial segment,
ordered by reverse inclusion: s ď tØ t Ď s. Recall3.183 that rT s is the set of infinite
branches of of a sequence tree T . The following definitions and theorem establish
the relevance of sequence trees to the present topic.

Definition [ZF] Suppose M is a set. The sequence topology or standard topology
on ωM is defined as follows.5.47.2 For s P ăωM , Is

def
“ tx P ωM | s Ď xu. These are

the basic open sets or intervals. The open sets are unions of these.

(5.53) Definition [ZF] Suppose M is a set and ωM is given the standard topology.
Suppose X Ď ωM . The tree from X

def
“ TX

def
“ tx æn | x P X ^n P ωu.

(5.54) Theorem [ZF] Suppose M is a set and ωM is given the standard topo-
logy.

1. Suppose X Ď ωM . Then X “ rTX s, i.e., the closure of X is the set of branches
of the tree from X.

2. In particular, X is closed iff X “ rTX s.

Proof 1 Let G “
Ť

sPpăωMzTXq Is. G is open by definition, and Is Ď G iff s R TX

iff X X Is “ 0, so G is the largest open set disjoint from X, so X “ ωMzG. Given
x P ωM ,

x P GØDs P păωMzTXq s Ď xØx R rTX s,

so rTX s “ X.

2 Immediate. 5.54

Note that, as far as pointspaces Us are concerned, Definition 5.53 applies di-
rectly only to Ux1y. (Actually, not even directly here, as we have to interpolate
the correspondence xØxxy, as we have agreed to do as necessary without explicit
recognition.) To apply it more generally, we make use of pointwise operations on
sequences in the following sense.

(5.55) Definition [ZF] Suppose X,Y,R are sets and u P XpYRq. Then u¨
def
“ the

element of Y pXRq given by the condition that for all x P X and y P Y ,

pu¨yqx “ puxqy.

Note that pu¨q¨ “ u. In the particular case of interest, X “ n P ω and Y “ ω, so
that u “ xu0, . . . , un-y with um “ xpumqk | k P ωy, and

(5.56) xu0, . . . , un-y¨ “
@

xpu0qk, . . . , pun-qky
ˇ

ˇ k P ω
D

.



5.2. DEFINABILITY OF POINTSETS 341

Note that this is a recursive homeomorphism of npωωq with ωpnωq, each endowed
with the standard topology.

We use the same notation to indicate the corresponding correspondence between
subsets of XpYRq and Y pXRq. Thus, given A Ď XpYRq,

A¨ “ tu¨ | u P Au.

The primordial application of trees in descriptive set theory is to Σ1
1 and Π1

1

pointsets. Suppose X Ď ωω is Σ1
1. By (5.35) there is a Π0

1 set S Ď ωωˆωω such that
for all x P ωω, x P XØDw P ωω xx,wy P S.23 Thus, x P XØDw P ωω xx,wy¨ P S¨.
Let5.13.1 R Ď ăωpω ˆ ωq be recursive such that S¨ “ ty P ωpω ˆ ωq | @0n y æn P Ru.
Let T “ ts P ăωpω ˆ ωq | @n ď |s| | s æn P Ru. Then T is a recursive tree, and
S¨ “ rT s “ ty P ωpω ˆ ωq | @0n y æn P T u, so

X “ tx P ωω | D1w @0n xx,wy¨ æn P T u

“ tx P ωω | D1w xx,wy¨ P rT su.

Conversely, for any recursive tree T Ď ăωpω ˆ ωq the set

tx P ωω | D1w xx,wy¨ P rT su

is Σ1
1.
Dually, for any X Ď ωω, X is Π1

1 iff there is a recursive tree T Ď ăωpωˆωq such
that

X “ tx P ωω | @1w xx,wy¨ R rT su.

This relativizes immediately to any z P ωω.

(5.57) Theorem [ZF] Suppose X Ď ωω.

1. For any z P ωω, X is Σ1
1pzq iff there is a ∆0

1pzq tree T on ω ˆ ω such that

X “ tx P ωω | D1w xx,wy¨ P rT su.

2. X is Σ1
1 iff there is a tree T on ω ˆ ω such that

X “ tx P ωω | D1w xx,wy¨ P rT su.

3. Dually, X is Π1
1pzq iff there is a ∆0

1pzq tree T on ω ˆ ω such that

X “ tx P ωω | @1w xx,wy¨ R rT su.

4. X is Π1
1 iff there is a tree T on ω ˆ ω such that

X “ tx P ωω | @1w xx,wy¨ R rT su.

Note that in the boldface case there is no restriction on the definability of T , since
it is a subset Vω and is therefore recursive relative to some parameter, e.g., itself.

This normal form prompts the following definition.

(5.58) Definition [ZF] Suppose T is a tree on M ˆN .

23In this sort of situation it is conventional to quantify over the second argument, rather than
the first, as in (5.35).
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1. For any s P ăωM ,

1. Trss
def
“ tt P ăωN | |t| ď |s| ^xs æ |t|, ty¨ P T u; and

2. Ts
def
“ tt P |s|N | xs, ty¨ P T u.24

2. For any x P ωM , the companion tree of x (vis-à-vis T ) def
“ Trxs

def
“ tt P ăωN |

xx æ |t|, ty¨ P T u
`

“
Ť

nPω Trx æns
˘

.

3. p¨rT s
def
“ prT s¨ “ tx P ωM | Dy P ωN xx, yy¨ P rT su “ tx P ωM | rTrxss ‰ 0u.

(5.59) Recall3.182 that if a tree T Ď ăωN is wellfounded then rT s “ 0; and con-
versely, assuming either DC or the wellorderability of N , if rT s “ 0 then T is
wellfounded. This is a crucial insight into the nature of sequence trees and may be
regarded as the fundamental theorem of descriptive set theory.

For the present application, N “ ω, so DC is not required. We therefore have the
following very promising consequence of (5.57.3).

(5.60) Theorem [ZF] Suppose X Ď ωω and z P ωω. Then X is Π1
1pzq iff there is

a ∆0
1pzq tree T Ď ăωpω ˆ ωq such that for all x P ωω, x P X iff Trxs is wellfounded.

This characterization of Π1
1 prompts the following definition of an important Π1

1

subset of ωω that is recursively Π1
1-complete.

(5.61) Definition [ZF]

1. Given x P ωω, let Rx for the nonce be txa, by P 2pVωq | xp ⃗Bxa, byq “ 1u. Thus,
Rx is a binary relation on Vω “coded by” x.

2. LO def
“ the set of x P ωω such that Rx is a reflexive linear order. For x P LO,

we let ďx
def
“ Rx, and we let ăx be the corresponding irreflexive order.25

3. WO def
“ the set of x P LO such that ďx is a wellorder.

In some applications, e.g., to sequence trees on ω, it would be more direct to work
with (codes of) partial orders and wellfounded relations generally, instead of linear
orders and wellorders specifically. There are, however, situations in which linearity
is critical. The Brouwer-Kleene ordering26 ďBK of ăωω allows us to substitute the
latter for the former when dealing with sequence trees on ω.

(5.62) Definition [ZF] Suppose s, t P ăωω. Then s ďBK t
def
ðñ either

1. Dn P dom sX dom t ps æn “ t æn^ spnq ă tpnqq; or

2. s Ě t.

In other words, to compare s, t P ăωω in the ďBK ordering we find the first n for
which spnq ‰ tpnq, if there is any such n, and rank s and t according to their values
at n; if there is no such n then one sequence is an initial segment of the other, and
we rank the longer one as lower.

24Note that only in quite artificial examples is there any conflict between this definition and
(3.183.2.1.1).

25The choice of reflexive, as opposed to irreflexive, order as the primary notion in the definition
of LO is arbitrary.

26Also known as the Lusin-Sierpiński ordering.
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(5.63) Theorem [ZF]

1. ďBK linearly orders ăωω.

2. Suppose T Ď ăωω is a sequence tree on ω. Then pT ;Ěq is wellfounded iff
pT ;ďBKq is wellordered.

Proof 1 Straightforward.

2 Suppose pT ;Ěq is not wellfounded. We may define a descending ω-sequence
s0 Ł s1 Ł ¨ ¨ ¨ in T by letting, for each n P ω, sn be the first s P T , according to the
some fixed definable wellordering of ăωω, such that s properly extends all sm,m ă

n, and pT ;Ěq is not wellfounded below s. By definition, s0 ąBK s1 ąBK ¨ ¨ ¨ , so
pT ;ďBKq is not wellordered.

Conversely, suppose pT ;ďBKq is not wellordered. We may define a descending
ω-sequence s0 ąBK s1 ąBK ¨ ¨ ¨ in T as above. First note that for n ą 0, sn ‰ 0, so
0 P dom sn, and s1p0q ě s2p0q ě ¨ ¨ ¨ . This nonincreasing sequence in ω is eventually
constant. a0 be the eventual value, and let n0 be the least n such that snp0q “ a0.
Since T is a tree, xa0y P T .

For every n ą n0, snp0q “ a0 and 1 P dom sn, so xsnp1q | n ą n0y is a
nonincreasing sequence in ω, which is eventually constant. Let a1 be the eventual
value, and let n1 be the least n ą n0 such that snp1q “ a1. Note that xa0, a1y P T .

Proceeding in this fashion, we define xam | m P ωy such that @n P ω xam | m ă

ny P T ; hence, pT ;Ěq is not wellfounded. 5.63

(5.64) Theorem [ZF] WO is recursively Π1
1-complete and continuously Π1

1-complete.

Proof It is easy to see that LO is arithmetical. WO is characterized within LO
by the condition that for every X Ď Vω, if there is an element of X in the field
of ďx, then there is a ďx-minimal such element. The universal quantification over
X Ď Vω makes this characterization Π1

1. Thus, WO is Π1
1.

Now suppose X Ď ωω is Π1
1. Let T Ď ăωpω ˆ ωq be a recursive tree such that

for all x P ωω, x P X iff Trxs is wellfounded.5.60 Define F : ωω Ñ ω2 by the condition
that for every x P ωω, for every n P ω, pFxqn “ 1 iff B⃗ n “ xs, ty for some s, t P Trxs
such that s ďBK t. In the terminology of (5.61),

RFx “ďBK XpTrxs ˆ Trxsq,

so5.63 x P X iff Trxs is wellfounded iff Fx P WO.
F is computed by the following procedure. Given x P ωω, to obtain pFxqn for

some n P ω, we first apply the recursive function B⃗ to n. If that turns out to
be a 2-sequence xs, ty, with s, t P ăωω, we check whether s ďBK t. If this is the
case, we consult the oracle for x to obtain x æ |s| and x æ |t|, and check whether
xx æ |s|, sy¨ and xx æ |t|, ty¨ are in T (which is recursive by hypothesis). If they are
then pFxqn “ 1; otherwise, pFxqn “ 0. Thus, F is recursive.

Since X was an arbitrary Π1
1 set, WO is recursively Π1

1-complete. The proof
that WO is continuously Π1

1-complete is essentially the same. Given a Π1
1 set

X Ď ωω. Let Let T Ď ăωpωˆωq be a tree such that for all x P ωω, x P X iff Trxs is
wellfounded. Define F : ωω Ñ ω2 as before. Since T is not typically recursive, R is
not recursive, but it is recursive relative to T , and it is therefore continuous. 5.64
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For the present we are content to harvest one theorem to sustain us as we
return to housekeeping chores. The proof provides a glimpse of the utility of the
“fundamental theorem”,5.59, 5.60 of which we will see much more in the sequel.

(5.65) Theorem [ZF] Suppose X,Y Ď ωω are Π1
1pzq. Then there exist Π1

1pzq sets
X 1, Y 1 Ď ωω such that

1. X 1 Ď X;

2. Y 1 Ď Y ;

3. X 1 Y Y 1 “ X Y Y ; and

4. X 1 X Y 1 “ 0.

Proof Let S, T be ∆0
1pzq sequence trees on ω ˆ ω such that for all x P ωω,

1. x P X iff Srxs is wellfounded; and

2. x P Y iff Trxs is wellfounded.

Let X 1 be the set of x P X such that either

1. x R Y ; or

2. x P Y and rkSrxs ă rkTrxs.

Let Y 1 be the set of x P Y such that either

1. x R X; or

2. x P X and rkTrxs ď rkSrxs.

Clearly, X 1, Y 1 satisfy conditions (5.65).1–4. We must now show that they are
Π1

1pzq.

(5.66) Claim Suppose x P X. Then x P X 1 iff there does not exist an order-
preserving f : Trxs Ñ Srxs.

Proof Since x P X, Srxs is wellfounded. Suppose x P X 1. Then by design either
Trxs is not wellfounded or Trxs is wellfounded and rkSrxs ă rkTrxs. By (3.184.3)
in the former case and by (3.184.1) in the latter case, there does not exist an
order-preserving f : Trxs Ñ Srxs.

Conversely, suppose there does not exist an order-preserving f : Trxs Ñ Srxs.
Then either Trxs is not wellfounded or3.184.1 rkTrxs ą rkSrxs, so x P X 1. 5.66

(5.67) Claim Suppose x P Y . Then x P Y 1 iff there does not exist an order-
preserving f : Srxs Ñ pTrxszt0uq.27

Proof Since x P Y , Trxs is wellfounded. Suppose x P Y 1. Then either Srxs is not
wellfounded or Srxs is wellfounded and rkTrxs ď rkSrxs, in which case rkpTrxszt0uq ă
rkSrxs. By (3.184.3)28 in the former case and by (3.184.1) in the latter case, there
does not exist an order-preserving f : Srxs Ñ pTrxszt0uq.

Conversely, suppose there does not exist an order-preserving f : Srxs Ñ pTrxszt0uq.
Then either Srxs is not wellfounded or3.184.1 rkSrxs ą rkpTrxszt0uq, in which case
rkSrxs ě rkTrxs, so x P Y 1. 5.67

27The empty sequence 0 is the highest member of any sequence tree.
28We’re using an obvious extension of Theorem 3.184 to Trxszt0u.
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Claims 5.66 and 5.67 provide Π1
1pzq descriptions of X 1 and Y 1, respectively. 5.65

Theorem 5.65 asserts the reduction property for Π1
1pzq subsets of ωω, which may

be extended by recursive substitution to Π1
1 subsets of Us for any 1-type s. A similar

argument applies to Π1
1pzq subsets of Us for 0-types s. Universally quantifying over

the parameter z, we have the reduction property for Π1
1. (Of course, this is only of

interest for 1-types.)

5.3 Classical descriptive set theory

. . . usually he sat in a comfortable attitude, looking down, slightly
stooped, with hands folded above his lap. He spoke quite freely,
very clearly, simply and plainly: but when he wanted to empha-
size a new viewpoint. . . then he lifted his head, turned to one
of those sitting next to him, and gazed at him with his beau-
tiful, penetrating blue eyes during the emphatic speech. . . . If
he proceeded from an explanation of principles to the develop-
ment of mathematical formulas, then he got up, and in a stately
very upright posture he wrote on a blackboard beside him in his
peculiarly beautiful handwriting: he always succeeded through
economy and deliberate arrangement in making do with a rather
small space. For numerical examples, on whose careful comple-
tion he placed special value, he brought along the requisite data
on little slips of paper.

Richard Dedekind describing his doctoral supervisor, Carl
Friedrich Gauss

5.3.1 Introduction

As discussed above, the study of the Kleene pointclasses is often referred to as
effective descriptive set theory, in contrast to the study of their fully relativized
counterparts, which constitutes the classical theory. The classical theory actually
has historical priority (hence the name) and it was developed originally as a theory
of sets and functions of real numbers and pointset topology, arising naturally as an
outgrowth of analysis. In this section we will develop the classical theory with only
an occasional reference to the effective theory, tolerating a certain redundancy in
the interest of a self-contained and historically representative (albeit not strictly
chronologically accurate) presentation.

5.3.2 Real numbers

As noted above, there are multiple useful paradigms of the countably infinitary,
ranging from P ω to HC (hereditarily countable). The most familiar countably
infinitary objects in mathematical practice, however, are geometrical points and
their analytical counterparts: real numbers. Much of the early study of the foun-
dations of the theory of the countably infinitary was undertaken in this context,
and the relevant terminology has been adopted in foundational studies to describe
corresponding notions in any appropriate setting.

As originally conceived, a geometrical point was regarded as a primitive struc-
tureless object, hardly a candidate for nomination as a paradigm of any notion of
infinitarity. The usefulness of identifying points with numbers was made abundantly
clear in the work of Descartes on analytic geometry, but numbers were themselves
regarded as primitive and structureless. These numbers came to be called real to
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distinguish them from the imaginary and more generally complex numbers that
were subsequently introduced to facilitate the discussion of polynomials and other
functions. In this sense a real number is a special sort of number, but the term also
came to be used with emphasis on its generality relative to such number types as
natural numbers, integers, rational numbers, and algebraic numbers, for example.
It was not until the nineteenth century that the requirements of mathematical rigor
mandated that one provide a representation of these objects as part of an axiomatic
theory.

A paradigm of the issues that stimulated this development is the problem of
solutions of functional equations such as xfpxq “ 0y, where f is a continuous function
and x is a variable over the real numbers. For example, suppose fpaq ă 0 and
fpbq ą 0. Obviously, for some x between a and b, fpxq “ 0, but how to prove it?

A natural approach is to proceed as follows. In the interest of simplicity and
without any loss of generality, suppose a ă b. Let a0 “ a and b0 “ b and let c
be the point midway between a0 and b0, i.e., c “ pa0 ` b0q{2. If fpcq “ 0 we are
finished. Otherwise, fpcq is either ă 0 or ą 0. In the former case, let

a1 “ c

b1 “ b0;

in the latter case, let

a1 “ a0

b1 “ c.

In either case fpa1q ă 0 and fpb1q ą 0. Now let c “ pa1 ` b1q{2. Again, if
fpcq “ 0 we are finished. Otherwise, we repeat the above construction, defining a2

and b2, and continue as long as necessary, generating sequences xan | n P Ny and
xbn | n P Ny, where 0 ă N ď ω and for every n P N

1. letting c “ pan- ` bn-q{2,

1. if fpcq ă 0 then

an “ c

bn “ bn- ;

2. if fpcq ą 0 then

an “ an-

bn “ c;

2. N “ n` 1 iff fppan ` bnq{2q “ 0.

If N “ n ` 1 then fppan ` bnq{2q “ 0, and we are finished. If N “ ω we have
infinite sequences xan | n P ωy and xbn | n P ωy such that

(5.68)

1. @n ă ω fpanq ă 0;

2. @n ă ω fpbnq ą 0;

3. @n ă ω |an ´ bn| “ |a´ b|{2n; and
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4. @m ď n ă ω am ď an ă bn ď bm.

We now wish to claim that there exists a real number x such that

(5.69) x “ lim
nÑ8

an “ lim
nÑ8

bn.

If there is, then since f is continuous,

fpxq “ lim
nÑ8

fpanq “ lim
nÑ8

fpbnq.

Since @n fpanq ă 0, fpxq ď 0, and since @n fpbnq ą 0, fpxq ě 0, so fpxq “ 0.
Note that if both the limits in (5.69) exist then they are equal by virtue of

(5.68.3). One approach to showing their existence is due to Cauchy and goes as
follows. The sequence xan | n P ωy has the property that

(5.70) @ε ą 0 Dn@m,m1 ą n |am ´ am1 | ă ε.

Such a sequence is called a Cauchy sequence, and Cauchy posited that any such
sequence of real numbers has a limit.

Another approach, due to Dedekind, considers the set

L “ tan | n P ωu.

Clearly L has an upper bound, e.g., b. Dedekind posited that any set of real
numbers with an upper bound has a least upper bound. With this assumption, L
has a least upper bound, say x. We claim that x “ limnÑ8 an, i.e., @ε ą 0 Dn@m ą

n |am ´ x| ă ε. To show this, suppose ε ą 0. Let n be such that5.70

@m,m1 ą n |am ´ am1 | ă ε{2.

We claim that @m ą n |am ´ x| ă ε. To show this, suppose toward a contradiction
that for some m ą n, |am ´ x| ě ε. Then am ď x ´ ε, so for all m1 ą n,
am1 ă am`ε{2 ď x´ε{2. Since xax | k P ωy is nondecreasing, @k P ω ak ă x´ε{2,
so x´ ε{2 is an upper bound for L that is less than x, contrary to the choice of x
as the least upper bound for L.

Clearly Cauchy’s approach is more direct than Dedekind’s in this case, but they
are equivalent. Both Cauchy’s and Dedekind’s principles are said to assert the
completeness of the real numbers. Cauchy’s approach generalizes readily to metric
topological spaces, while Dedekind’s generalizes to structures, like boolean algebras,
that have an order relation.

We can implement Cauchy’s or Dedekind’s principle by simply declaring that the
real numbers are the individuals of a structure R “ pR; 0, 1,`, ¨,ďq,29 which is an
ordered field in the algebraic sense, with the additional property of completeness;
but we still have to show that such a structure exists. The most direct way is
to construct real numbers from some simpler precursor, and the rational number
field Q is well suited to this purpose. Q is itself constructible from the ring Z of
integers, which is in turn constructible from the monoid N of natural numbers,
which Kronecker took as gottgemacht, but which von Neumann constructed as
hereditarily finite sets.

Starting with N “ pω; 0, 1,`.¨q, we construct integers as pairs x0, ny pn P ωq and
x1, ny pn P ωzt0uq, defining the operations of addition and multiplication so that

29it is customary to use the symbol xRy for both the structure and for its set of individuals.
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the x0, nys are the non-negative integers, and the x1, nys are the negative integers.
We embed N in Z by the map n ÞÑ x0, ny.

We then construct rational numbers as pairs xa, by of integers with b ą 0 and
a, b having no factor in common other than 1, defining the operations of addition
and multiplication so that xa, by corresponds to a{b. We embed Z in Q by the map
a ÞÑ xa, 1y.

So far the “numbers” we have constructed are hereditarily finite sets. To con-
struct real numbers, however, we must leave HF.

(5.71) Definition Using the Dedekind approach, we define a Dedekind cut in Q to
be a nonempty x Ď Q that is bounded above, closed downward (or to the left), and
has no greatest member:

1. Dq P Q@q1 P x q1 ă q;

2. @q P x@q1 ă q q1 P x; and

3. @q P x Dq1 P x q1 ą q.

Note that a Dedekind cut is an infinite subset of HF, which is the simplest sort
of infinitary object. We define R as the set of Dedekind cuts. For specificity,
we will call these Dedekind reals. A rational number q is identified with the cut
q̄

def
“ tq1 P Q | q1 ă qu. Before defining ď, `, and ¨ on R, it is convenient to first

define the negation and absolute value operations.

Definition

1. ´x def
“ t´q | q P Q^Dq1 ă q q1 R xu.30

2. |x| def
“

#

x if 0 P x
´x if 0 R x.

3. x ď y
def
ðñ x Ď y.

4. x` y def
“ tq ` r | q P x^ r P yu.

5. Multiplication is defined by cases.

1. If x, y ą 0, x ¨ y def
“ tq ¨ r | q P x^ r P y^ q, r ě 0u Y tq P Q | q ă 0u.

2. If either x “ 0 or y “ 0 then x ¨ y
def
“ 0.

3. Otherwise

x ¨ y “

#

|x| ¨ |y| if x, y ă 0
´p|x| ¨ |y|q if px ă 0^ y ą 0q_px ą 0^ y ă 0q.

(These definitions may be made somewhat more elegant if we regard a Dedekind
real as a pair consisting of a lower cut, which is a cut as we have defined it above,
and an upper cut, which is the same, but closed upward, and which together contain
all rationals except perhaps one.)

It is straightforward to show that with these definitions R is an ordered field.
If X is a set of Dedekind reals with an upper bound then

Ť

X is a Dedekind real
that is clearly the least upper bound of X, so R is complete.

30 Note that ´0 “ 0. We cannot define ´x as t´q | q R xu, because if x has a least upper bound
q, then ´q would be the greatest member of ´x, and we have defined Dedekind cuts as having no
greatest member.
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We have been careful to define Dedekind cuts in the rationals so that distinct
cuts are distinct real numbers. We may also define real numbers via Cauchy se-
quences, but it is awkward (albeit feasible) to define a class of Cauchy sequences so
that any given real number is represented by only one sequence in the class. The
usual method is therefore to define a real number as an equivalence class of Cauchy
sequences of rationals, where two sequences a0, a1, . . . and b0, b1, . . . are equivalent
iff a0, b0, a1, b1, . . . is a Cauchy sequence. From our present standpoint, this is un-
desirable in that a real number is now an infinite set (in fact an uncountable set)
of infinite subsets of HF: it is more infinitary than it should be.

5.3.3 Dedekind completion

The Dedekind construction is generally applicable to linear orders, and for future
reference we pause here to make a few general remarks.

Recall3.71.2 that pX;ăq is a linear (i.e., total) order iff ă is a binary relation on
X and for all x, y, z P X

1. x ă y^ y ă zÑx ă z;

2. x ă y_x “ y_ y ă x; and

3. x ă x.

We use ‘ď’ for the corresponding reflexive relation: x ď yØx ă y_x “ y, and we
refer to ď also as a linear order.

Definition [ZF] Suppose pX;ăq is a linear order. We may refer to pX;ăq as
‘X’.

1. x P X is an endpoint
def
ðñ x is the least or greatest member of X.

2. Suppose x, y P X.

px, yq
def
“ tz P X | x ă z ă yu

rx, ys
def
“ tz P X | x ď z ď yu

px, ys
def
“ tz P X | x ă z ď yu

rx, yq
def
“ tz P X | x ď z ă yu.

3. X is dense
def
ðñ @x, y P X px ă yÑDz P px, yqq.

4. Suppose Y Ď X. Y is dense in X
def
ðñ @x, y P X px ă yÑDz P Y z P px, yqq.

5. X is separable
def
ðñ X has a countable dense subset.

6. Suppose Y Ď X. x P X is an upper (lower) bound of Y
def
ðñ for all y P Y ,

y ď x py ě xq.

7. X is complete
def
ðñ for every nonempty Y Ď X, if Y has an upper bound then

Y has a least upper bound.

(5.72) Theorem [ZF] Suppose pX;ăq is a linear order. X is complete iff for every
nonempty Y Ď X, if Y has a lower bound then Y has a greatest lower bound.
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Proof Suppose Y Ď X is nonempty. Clearly, if Y has a lower bound and y is the
least upper bound of the set of lower bounds of Y , then y is the greatest lower
bound of Y . Similarly, if Y has an upper bound and y is the greatest lower bound
of the set of upper bounds of Y , then y is the least upper bound of Y . 5.72

To avoid irrelevant complications, the following discussion will be limited to
dense linear orders without endpoints.

Definition [ZF] Suppose pX;ăXq is a dense linear order without endpoints.

1. A Dedekind cut in X def
“ a nonempty subset of X that is bounded above, closed

downward, and has no greatest member.5.71

2. The Dedekind completion of pX;ăXq def
“ the structure pY ;ăY q, where

1. Y is the set of Dedekind cuts in X; and
2. ăY is the strict inclusion relation on Y , i.e., Z ăY Z 1ØZ Ł Z 1. Equi-

valently, Z ďY Z 1ØZ Ď Z 1.

3. The canonical embedding of pX;ăXq in pY ;ăY q def
“ ιX

def
“ the function ι :

X Ñ Y defined by the condition that for any x P X, ιXx “ ty P X | y ăX xu.

ιX is clearly an embedding of pX;ăXq in its Dedekind completion pY ;ăY q, i.e., an
isomorphism of pX;ăXq with a substructure of pY ;ăY q. We will find it convenient
to identify X with ιXÑX, and x with ιXx for each x P X.

(5.73) Theorem [ZF` ACωpRq]

1. Suppose pX;ăXq is a complete dense linear order without endpoints. Let
pY ;ăY q be its Dedekind completion.

1. pY ;ăY q is a complete dense linear order without endpoints.
2. X (i.e., ιXÑX) is dense in pY ;ăY q.

2. Suppose pY ;ăY q is a complete dense linear order without endpoints and X Ď

Y is dense. Let ăX“ ăY X pX ˆXq.

1. pX;ăXq is a dense linear order without endpoints.
2. pY ;ăY q is isomorphic to the Dedekind completion of pX;ăXq.
3. pY ;ăY q is separable iff pX;ăXq is separable.

Proof 1 Straightforward. Note that for any Z Ď Y , if Z is nonempty and has an
upper bound in pY ;ăY q, then

Ť

Z is the least upper bound of Z in pY ;ăY q. 5.73.1

2 Also straightforward, given the following observations. y ÞÑ tx P X | x ăY yu is
the canonical embedding of pY ;ăY q in the Dedekind completion of pX;ăXq. Any
dense subset of pX;ăXq is dense in pY ;ăY q, so if pX;ăXq is separable, so is pY ;ăY

q. On the other hand, suppose Y 1 Ď Y is countable and dense. Note that any y P Y
is uniquely determined by the set ty1 P Y 1 | y1 ă yu, and members of Y are in this
way indexed by subsets of ω. Hence ACωpRq (i.e., ACωpP ωq) implies the existence
of a countable X 1 Ď X such that @y, y1 P Y 1 py ăY y1ÑDx P X 1 x P py, y1qq. X 1 is
dense in X, so pX;ăXq is separable. 5.73.2 5.73
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(5.74) Definition [ZF`ACωpRq] By virtue of (5.73) the Dedekind completion of a
dense linear order pX;ăq without endpoints is—up to isomorphism—the minimum
complete extension of pX;ăq, and the unique complete extension in which X is
dense, so we often refer to it as the completion of pX;ăq.

(5.75) Theorem [ZF` ACωpRq]

1. pQ;ăq is, up to isomorphism, the unique countable dense linear order without
endpoints.

2. The Dedekind completion pR;ăq of pQ;ăq is, up to isomorphism, the unique
complete separable dense linear order without endpoints.

Proof 1 Suppose pA;ăAq and pB;ăBq are countable dense linear orders without
endpoints. Let xan | n P ωy and xbn | n P ωy be enumerations of A and B,
respectively. Let xιn | n P ωy be the sequence of partial isomorphisms of pA;ăAq
and pB;ăBq defined by the following recursion.

1. Let ι0 “ 0.

2. Suppose n P ω is even. Let k P ω be least such that ak R dom ιn, and let
l P ω be least such that for all a1 P dom ιn, a1 ăA akØ ιna

1 ăB bl. Let
ιn`1 “ ιn Y tpak, blqu.

3. Suppose n P ω is odd. Let l P ω be least such that bl R im ιn, and let
k P ω be least such that for all b1 P im ιn, b1 ăB blØ ι´1

n b1 ăA ak. Let
ιn`1 “ ιn Y tpak, blqu.

Since pA;ăAq and pB;ăBq are dense linear orders without endpoints, the extension
steps are always feasible. Let ι “

Ť

nPω ιn. Clearly, ι is an isomorphism of pA;ăAq
with pB;ăBq. 5.75.1

2 It follows from (5.73.1) that pR;ăq is complete separable dense linear order
without endpoints. Now suppose pY ;ăY q is a complete separable dense linear
order without endpoints. Let X Ď Y be countable and dense, and let ăX“ăY

XpX ˆXq. Then pX;ăXq is a countable dense linear order without endpoints, so
it is isomorphic to pQ;ăq.5.75.1 By (5.73.2), pY ;ăY q is isomorphic to the Dedekind
completion of pX;ăXq, which is pR;ăq by definition. 5.75.2 5.75

5.3.4 Topology of reals

In the preceding discussion we have seen how a close examination of the concept of
real number leads to the realization that these objects are intrinsically infinitary,
and the centrality of R as a mathematical concept makes it a natural introduction
to infinitarity. From the standpoint of the set-theoretical study of the countably
infinite, however, much of the structure of R is irrelevant. This includes addition,
multiplication and the order relation. The most important feature of R for the
study of the foundations of mathematics is its topology. This may be defined by
taking the open intervals in R, i.e., sets pa, bq “ tx P R | a ă x ă bu, as a base, so
an open set is a union of open intervals.

There are other topological spaces whose points are countably infinitary ob-
jects that are for foundational purposes essentially equivalent to R but are more
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easily managed. Two spaces are particularly important in this respect, viz., ω2
and ωω, with topologies defined as products of the discrete topologies on 2 and ω,
respectively.

From the foundational standpoint the spaces R, ω2, and ωω are essentially equival-
ent, and the members of any of these spaces are customarily referred to as reals.

To define these topologies directly we proceed as follows. The definition is given
for an arbitrary nonempty set A with the discrete topology.

(5.76) Definition [ZF] Suppose σ P ăωA, i.e., σ : nÑ A, where n ă ω.

1. IAσ
def
“ tf P ωA | σ Ď fu.31

2. The sets IAσ , σ P ăωA are the basic open intervals of the standard topology on
ωA.

3. Hence, X Ď ωA is open
def
ðñ X is a union of basic open intervals.

If the set A is known from the context, we may omit the superscript in xIAy. Un-
qualified references to the topology of ωA refer to the standard topology.

Definition [ZF]

1. ω2 is the Cantor space.

2. ωω is the Baire space.

(5.77) Theorem [ZF]

1. ω2 is homeomorphic to the Cantor set in R.32

2. ωω is homeomorphic to RzQ, i.e., to the irrational real numbers with the rel-
ative topology.

Proof See Note 10.15.

5.3.5 Metric spaces

R, ω2, and ωω are separable completely metrizable topological spaces as defined
presently, and we will see that descriptive set theory is naturally regarded as the
theory of definable subsets of such spaces.

The notion of metrizability derives from Cauchy’s approach to the definition of
completeness, mentioned above5.70 in connection with R. For reasons given there,
we elected to use the alternative method of Dedekind to define the real number
system R as the completion of Q. We now pursue the notion of completeness in
Cauchy’s sense.

Definition [ZF] A metric on a set X is a function d : X ˆX Ñ R such that

31Note that if σ P nA then σ “ tpm,σmq | m P nu, so the cardinality of σ “ |σ| “ n and
σ “ tpm,σmq | n P |σ|u. Similarly, f “ tpm, fmq | m P ωu, and f æ |σ| “ tpm, fmq | m P |σ|u, so
σ Ď fØ@m P |σ| fm “ σm, i.e., considered as sequences, σ is the initial segment of f of length
|σ|.

32The Cantor set is obtained as follows. Begin with r0, 1s. Remove the open middle third p 1
3
, 2
3
q

to obtain r0, 1
3
s Y r 2

3
, 1s. Then remove the open middle third from each of the remaining closed

intervals. Continue ad infinitum. What is left is the Cantor set.
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1. dpx, yq ě 0.

2. dpx, yq “ 0 iff x “ y.

3. dpx, yq “ dpy, xq.

4. dpx, zq ď dpx, yq ` dpy, zq [Triangle inequality].

The pair xX, dy is a metric space.

Definition [ZF] Suppose xX, dy is a metric space.

1. For x P X and r ą 0, the open ball at x of radius r def
“ Bpx, rq

def
“ ty P X |

dpx, yq ă ru.

2. The metric topology on X (for the metric d) def
“ the topology generated by the

open balls as a base.

The ε-δ definition of continuity is meaningful and correct for metric spaces:

(5.78) Theorem [ZF] Suppose xX1, d1y and xX2, d2y are metric spaces. Then a
function f : X1 Ñ X2 is continuous at x P X1 iff for every ε ą 0 there exists δ ą 0
such that for all y P X1,

d1px, yq ă δÑ d2

`

fx, f y
˘

ă ε.

Proof Immediate from the definitions. 5.78

Two metric functions d1, d2 : XˆX Ñ r0,8q generate the same topology iff for
all x P X and ε ą 0 there is δ ą 0 such that for all y P X, d1px, yq ă δÑ d2px, yq ă ε
and d2px, yq ă δÑ d1px, yq ă ε. We are usually concerned with the metric topology,
not with a particular metric that produces it. Indeed, the mere fact that a topology
is derived from a metric has consequences that may be stated without any reference
to a metric. It is therefore useful to have the following definition:

Definition [ZF] A topological space is metrizable iff its topology is generated by
some metric function.

Definition [ZF] A sequence xxn | n P ωy in a metric space xX, dp¨, ¨qy is a Cauchy
sequence iff for any ε ą 0, there is N P N, such that for all m,n ą N , dpxm, xnq ă
ε.

It is worth noting that cauchyness is not a purely topological notion. That is, one
may have two metrics generating the same topology and a sequence that is Cauchy
with respect to one metric but not the other.

5.3.6 Completeness

It is easy to see that every convergent sequence is Cauchy. The converse is not true
in general. For example, the open interval p0, 1q Ď R with the usual topology is
a metric space with the usual metric: dpx, yq “ |x ´ y|. The sequence x1{n | n P
ωy is a Cauchy sequence, but it does not converge (because 0 R p0, 1q). A more
subtle example is the space of rational real numbers Q with the usual metric. If
xxn | n P ωy is any sequence in Q that converges in R to an irrational number,
then xxn | n P ωy is Cauchy, but it has no limit in Q. p0, 1q and Q are in a sense
“incomplete”. We codify this notion:
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Definition [ZF]

1. A metric space xX, dy is complete
def
ðñ every Cauchy sequence converges.

2. A topological space is completely metrizable
def
ðñ its topology is generated by

a metric with respect to which it is complete.

A metrizable space may be complete with respect to one metric and incomplete with
respect to another. For example, the relative topology on the interval p0, 1s Ď R is
generated by either of the metrics

1. ρ0px, yq “ |x´ y|;

2. ρ1px, yq “ |
1
x ´

1
y |.

p0, 1s is incomplete with respect to ρ0: x 1
n`1 | n P ωy is ρ0-Cauchy and does not

converge in p0, 1s. On the other hand, p0, 1s with the metric ρ1 is isomorphic to
r1,8q with the metric ρ0 and is therefore clearly complete.

For this reason the adjective ‘complete’ applies only to metric spaces per se, not
to purely topological spaces, even if they are completely metrizable. Accordingly, it
would be inappropriate to refer to a completely metrizable space X as a complete
metrizable space: it is not X itself that is complete, but rather X in conjunction
with an appropriate metric.

(5.79) Theorem [ZF]

1. R, with the interval topology, is separable and completely metrizable.

2. Suppose A ‰ 0.

1. ωA, with the standard topology,5.76 is completely metrizable.
2. If A is countable, ωA is separable.

Proof 1 x, y ÞÑ |x ´ y| is clearly a metric on R, and it clearly generates the
interval topology. We will show that R is complete with respect to this metric. To
this end suppose xxn | n P ωy is a Cauchy sequence. Let X “ tx P R | DN P ω @n ą
N x ă xnu. By virtue of the Cauchy property, txn | n P ωu has an upper bound,
so X has an upper bound. Let a be its least upper bound. X is clearly closed
downward, so X “ p´8, aq or X “ p´8, as. Given ε ą 0, let N be such that
@m,n ą N |xm ´ xn| ă ε{2. We claim that @n ą N |xn ´ a| ă ε. Suppose toward
a contradiction that n ą N and |xn´a| ě ε. Then either xn ď a´ ε or xn ě a` ε.
In the former case, @m ą N xm ă a ´ ε{2, so a ´ ε{2 R X; contradiction. In the
latter case, @m ą N xm ą a` ε{2, so a` ε{2 P X; also a contradiction. Hence, R
is completely metrizable.

Q is a countable dense subset of R, so R is separable. 5.79.1

2.1 For f, g P ωA with f ‰ g, let dpf, gq def
“ 1{pn` 1q, where n is least such that

fn ‰ gn. This generates the standard topology on ωA, and ωA is clearly complete
with respect to it.
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2.2 Let a be a fixed member of A. For each σ P ăωA, let fσ P ωA be such that
for all n P ω

fσpnq “

#

σpnq if n ă |σ|
a otherwise.

tfσ | σ P ăωAu is a countable dense subset of ωA. 5.79.2 5.79

Note that the natural metric on Q is Q-valued, so we could have used the Cauchy
machinery to define R from Q. In general, however, a metric is necessarily R-valued,
so the definition of R must precede a full discussion of Cauchy’s method, and this
is another reason to use Dedekind’s method for the initial definition of R.

5.3.7 Polish spaces

As previously noted, for the purposes of descriptive set theory, R, ω2, and ωω are
largely interchangeable; and, indeed, any separable completely metrizable space
will serve as well. Spaces of this type were first extensively studied by Polish
mathematicians and logicians, including notably Wac lav Sierpiński, Kazimierz Ku-
ratowski, and Alfred Tarski; hence:

(5.80) Definition [ZF] A topological space X is Polish
def
ðñ X is separable and

completely metrizable.

The Baire space ωω is universal among Polish spaces in the following sense.

(5.81) Theorem [ZF] Suppose X is a Polish space. Then there exists a continuous
ι : ωω sur

Ñ X.

Proof Let d be a metric that generates the topology of X and with respect to
which it is complete. Let xsn | n P ωy enumerate a dense subset S of X. For each
σ P ăωω let xσ P S and Bσ Ď X be such that

(5.82)

1. x0 P X and B0 “ X;

2. |σ| ą 0ÑBσ “ Bpxσ, 1{|σ|q (the open ball at xσ of radius 1{|σ|);

3. for each σ P ăωω, txσ ⌢xny | n P ωu “ S X
Ş

mď|σ|Bσ æm.33

By induction on length of sequences it is easy to show that this construction can
be carried out by showing that

(5.83) @σ P ăωω xσ P S X
č

mă|σ|

Bσ æm,

so Bσ has at least one point in common with S X
Ş

mă|σ|Bσ æm, viz., xσ.
Suppose f P ωω. For each n P ω, let yn “ xf æn. Suppose n, n1 ą N ą 0. Then

yn, yn1 P Bf æN ,5.83 so dpn, n1q ă 2{N . Hence xyn | n P ωy is a Cauchy sequence.
Define ιf to be its limit.

It is straightforward to show that ι is continuous. To show that ι is surjective,
suppose x P X. We will define f P ωω so that

(5.84) @n P ω x P Bf æn.

33Note that by using the fixed enumeration xsn | n P ωy of S, there is no need to use a choice
axiom to choose xσ ⌢xny for n P ω. The xσ ⌢xnys need not be distinct.
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Note that x P B0 “ X. To define f recursively it therefore suffices to show that
for any σ P ăωω, if x P

Ş

mď|σ|Bσ æm then there exists n P ω such that, x P
Bσ ⌢xny. Suppose therefore that x P

Ş

mď|σ|Bσ æm. Let B “ Bpx, 1{p|σ| ` 1qq.
Then B X

Ş

mď|σ|Bσ æm is open and nonempty, as it contains x. It therefore
contains a point y in the dense set S.34 Let5.82.3 n P ω be such that xσ ⌢xny “ y. Let
σ1 “ σ ⌢xny. Then dpx, xσ1q ă 1{p|σ| ` 1q “ 1{|σ1|, so x P Bσ1 , as desired.

As noted above, this suffices to show that there exists f P ωω satisfying (5.84).
Clearly, ιf “ limnÑ8 xf æn “ x. 5.81

(5.85) Theorem [ZF]

1. A countable discrete topological space is Polish.

2. [ACωpRq] A nonempty closed subset of a Polish space is Polish with the relative
topology.

3. A Polish space is second countable,3.193.2 i.e., its topology has a countable base.

Proof 1 Let dpx, yq “ 1 if x ‰ y. 5.85.1

2 Suppose X is Polish and C Ď X is closed. Let d be a metric on X that generates
its topology and with respect to which it is complete. Let d1 “ d æpC ˆ Cq. Then
d1 is a metric on C that generates the relative topology. Suppose xcn | n P ωy is
a d1-Cauchy sequence in C. Then xcn | n P ωy is a d-Cauchy sequence in X and
therefore has a limit, say c, in X. Since C is closed, c P C. Hence, C is d1-complete.

To show that C is separable, suppose S is a countable dense set in X. Let
ι : ωω sur

Ñ X.5.81 For each s P S and n P ωzt0u, if Bps, 1{nq X C ‰ 0, let cs,n be
a member of Bps, 1{nq X C (using ACωpRq to choose zs,n P ωω such that ιzs,n P
Bps, 1{nq X C and letting cs,n “ ιzs,n). Let S1 be the set of all these elements
of C. S1 is clearly countable. To see that it is dense, suppose c P C and ε ą 0.
We must show that there is a member of S1 in Bpc, εq. Take n ą 1{ε. Since S is
dense in X, let s P S XBpc, 1{p2nqq. Note that c P Bps, 1{p2nqq, so cs,2n is defined,
cs,2n P Bps, 1{p2nqq, and cs,2n P S

1. By the triangle inequality,

dpc, cs,2nq ď dpc, sq ` dps, cs,2nq ă 1{p2nq ` 1{p2nq “ 1{n ă ε,

i.e., cs,2n P Bpc, εq, as desired. 5.85.2

3 Suppose X is a separable metric space. Let S be a countable dense subset X.
Then tBps, 1{nq | s P S^n P ωzt0uu is a countable base for the metric topology.

5.85.3 5.85

The following theorem, which applies to topological spaces generally, is useful
in manipulations of Polish function spaces.

(5.86) Theorem [ZF] In the following, products of topological spaces are assumed
to have product topologies. Suppose X,Y are topological spaces, and A,B are non-
empty sets.

1. AX ˆ AY and ApX ˆ Y q are homeomorphic.
34Again, using the fixed enumeration of S, we avoid an axiom of choice.



5.3. CLASSICAL DESCRIPTIVE SET THEORY 357

2. Suppose A and B are equipollent. Then AX and BX are homeomorphic.

3. ApBXq and AˆBX are homeomorphic.

Proof 1 Let j : AX ˆ AY Ñ ApX ˆ Y q be such that

pjxf, gyqpaq “ xfpaq, gpaqy,

for all f P AX, g P AY , and a P A. j is a homeomorphism.

2 Let π : A bij
Ñ B. Let j : AX Ñ BX be such that

pjfqpπaq “ fpaq

for all f P AX and all a P A. j is a homeomorphism.

3 Let j : ApBXq Ñ AˆBX be such that

pjfqxa, by “ pf aqpbq

for all f P ApBXq, a P A, and b P B. j is a homeomorphism. 5.86

As examples of the use of (5.86) we note that the following spaces are homeo-
morphic to ωω: ωω ˆ ω2,35 ωω ˆ ωω, ωpωωq. These and similar equivalences are
another illustration (in addition to (5.81)) of the universality of ωω among Polish
spaces.

The equivalence of ωpωωq with ωω is so frequently useful that it is worth positing
a particular homeomorphism for future reference.

(5.87) Let p : 2ω
bij
Ñ ω (a pairing function for ω). For each n P ω, let jn : ωω Ñ ωω

be given by
pjnaqpmq “ appxn,myq.

For a P ωω, let ja “ xjna | n P ωy. Note that a ÞÑ jna is continuous. j is a
homeomorphism of ωω with ωpωωq.

5.3.8 The Borel hierarchy

(5.88) Definition [ZF] Suppose X is a topological space. For 0 ă α ă ω1 define
Σ0
α and Π0

α as follows.

1. Σ0
1

def
“ the set of open subsets of X.

2. Π0
1

def
“ the set of closed subsets of X.

3. For α ą 1, Σ0
α

def
“ the set of countable unions

Ť

nPω An, where for each n P ω,
An P Π0

β for some β ă α.

4. For α ą 1, Π0
α

def
“ the set of countable intersections

Ş

nPω An, where for each
n P ω, An P Σ0

β for some β ă α.

Borel def
“

Ť

0ăαăω1
Σ0
α.

35This uses (5.86.1) together with the fact that ω ˆ 2 and ω are equipollent, so as topological
spaces with the discrete topology, they are homeomorphic.
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For n P ωzt0u and X “ Us a pointspace, Σ0
n and Π0

n are of course just the fully
relativized Kleene arithmetical classes, e.g., Σ0

n “ Σ
r

0
n. For α ě ω, the Borel

classes correspond to the Kleene hyperarithmetical classes, to which we alluded
above. The complications surrounding the definition of effective countable union
and intersection—corresponding to type-0 quantification in the effective (“light-
face”) theory and intrinsic to the definition of the hyperarithmetical hierarchy—do
not arise in the “boldface” theory.

We are primarily interested in the case that X is a Polish space, but Definition 5.88
is appropriate for any topological space X. Note that we have omitted any reference
to X in naming these classes, and we use these nonspecific names variously to refer
to subsets of

1. an arbitrary topological space;
2. a specific space under discussion; or
3. the canonical Polish space ωω.

If necessary we indicate the relevant space with a superscript. As usual, we also use
these class names as adjectives.

The following definition gives a useful way of coding Borel sets by reals.

(5.89) Definition: Borel codes [ZF]

1. Sα, Pα, Cα Ď ωω are defined by recursion for 0 ă α ă ω1 as follows.
1. Cα “

Ť

0ăβăαpSβ Y Pβq.

2. S1 “ txny
⌢ x | 1 ă n ă ω^x P ωωu.

3. Pα “ Cα Y tx0y ⌢ x | x P Sαu.
4. If α ą 1 then Sα “ Cα Y tx1y ⌢ x | x P ωω^@n P ω jnx P Cαu.5.87

2. BC def
“

Ť

0ăαăω1
Cα.

3. For codes c P BC we define Borel sets Bc recursively as follows. We say that
c codes Bc.

1. If c P S1 and c “ xny ⌢ x, then Bc “
Ť

tIs | s P
ăωω^xp ⃗B sq “ 1u.

2. If c P Pα and c “ x0y ⌢ x, then Bc “
ωωzBx.

3. If α ą 1, c P Sα, and c “ x1y ⌢ x, then Bc “
Ť

nPω Bjnx.

To justify the recursive definition of Bc we reason as follows. Suppose c P BC. It is
easy to see that there exists α ą 0 such that c P Cα`1zCα. c is therefore in SαzCα
or PαzCα, but not both. For the nonce, define the rank of c to be α ¨ 2 if c P SαzCα
and α ¨ 2` 1 if c P PαzCα. Note that for any α ą 1, if c P Cα then the rank of c is
ă α ¨ 2. (C1 “ 0, C2 “ S1 Y P1, etc.)

If c has the least rank, viz., 2, the c P S1, and Bc is defined directly by (5.89.3.1).
If c has rank α ¨ 2 ` 1 for any α, then Bc is defined by (5.89.3.2) in terms of Bc1

for some c1 of lower rank (viz., α ¨ 2). If c has rank α ¨ 2 for some α ą 1 then
Bc is defined by (5.89.3.3) in terms of Bc1 for various c1s which are in Cα and are
therefore of lower rank.

(5.90) Theorem [ZF] Suppose 0 ă α ă ω1.

1. Suppose c P Sα pPαq. Then Bc P Σ0
α pΠ

0
αq.

2. [ACωpRq] Suppose X Ď ωω is Σ0
α pΠ

0
αq. Then there exists c P Sα pPαq such

that X “ Bc.
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Proof 1 Straightforward induction on α. 5.90.1

2 Also by induction on α. ACωpRq is used to show that if for each n P ω there
exists c P BC such that Xn “ Bc then there exists xcn | n P ωy such that for each
n P ω, cn P BC and Xn “ Bcn . 5.90.2 5.90

(5.91) The system (5.89) may be used to define codes for Borel subsets of any
second-countable space X by redefining Bc for c P S1 so as to represent all the open
subsets of X via an enumeration of countable base for the topology.

One rather pedestrian application of Borel codes is to allow the use of ACωpRq to
assert the existence of choice functions f : ω Ñ Borel. Similar coding by reals is
widely available in descriptive set theory.

(5.92) For example, suppose X and Y are Polish spaces. Let X0 “ Y0 “ 0, and let
xXn | 0 ă n ă ωy and xYn | 0 ă n ă ωy be enumerations of bases for the X- and
Y -topologies. Given a continuous function f : X Ñ Y , let Sf “ txm,ny P ω ˆ ω |
fÑXm Ď Ynu. Clearly, if f, g : X Ñ Y are continuous then f “ g iff Sf “ Sg, so
f ÞÑ Sf is a coding of continuous functions by reals.

(5.93) Theorem [ZF] Suppose X and Y are Polish spaces.

1. If 0 ă α ă ω1 then Σ0
α “ tA Ď X | xzA P Π0

αu.

2. Σ0
1 Ď Σ0

2.

3. If 0 ă α ă β ă ω1 then

1. Σ0
α Ď Σ0

β;

2. Σ0
α Ď Π0

β;

3. Π0
α Ď Π0

β;

4. Π0
α Ď Σ0

β.

4. Σ0
α and Π0

α are continuously closed, i.e., if f : X Ñ Y is continuous and
A Ď Y is in Σ0

α
Y or Π0

α
Y then fÐA is in Σ0

α
X or Π0

α
X , respectively.

5. Σ0
α and Π0

α are closed under finite union and finite intersection.

6. [ACωpRq] Σ0
α pΠ

0
αq is closed under countable union (intersection).

7. [ACωpRq] BorelX is the smallest class that contains all open sets and is closed
under complementation (relative to X), and countable unions (equivalently, in-
tersections). Equivalently, BorelX is the smallest class that contains all open
sets and all closed sets and is closed under countable unions and intersections.

Proof 1 By induction on α, starting with the fact that closed sets are the com-
plements of open sets. 5.93.1

2 Suppose a metric for X to have been chosen. Suppose A Ď X is Σ0
1, i.e., open.

For each x P A, let rx “ suptr P R | r ď 1^Bpx, rq Ď Au, i.e. the supremum (least
upper bound) of the set of r ď 1 such that the open ball of radius r at x is included
in A. Since A is open, rx ą 0.
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Let S Ď A be countable and dense in A. We claim that A “
Ť

sPS Cps, rs{2q.
Clearly, @s P S Cps, rs{2q Ď A, so

Ť

sPS Cps, rs{2q Ď A. Suppose x P A. Since S
is dense in A, there exists s P S X Bpx, rx{3q. It is easy to show that rs ą 2rx{3
(triangle inequality), so x P Cps, rs{2q, so x P

Ť

sPS Cps, rs{2q.
Since each Cps, rs{2q is Π0

1, i.e., closed, A is Σ0
2. 5.93.2

3 Left to the reader. Use (5.93.2) to get things started. 5.93.3

4 Straightforward induction on α, given that the classes of open and closed sets
are closed under continuous preimage. 5.93.4

5 Straightforward by induction on α, starting with the fact that the classes of
open and closed sets are closed under finite union and intersection, and using the
identity

ď

nPω

An X
ď

nPω

Bn “
ď

m,nPω

pAm XBnq

and its dual. 5.93.5

6 Suppose for each n P ω, Xn P Σ0
α. Thus, for each n P ω, there exists xYm |

m P ωy such that @m P ω Dβ ă α Ym P Π0
β and Xn “

Ť

mPω Ym. We wish to
infer that there exists xXm

n | m,n P ωy such that @m,n P ω Dβ ă α Xm
n P Π0

β

and @n P ω Xn “
Ť

mPωX
m
n , from which it follows that X “

Ť

m,nPωX
m
n is in Σ0

α

(because ω ˆ ω is equipollent with ω).
This inference is straightforward using ACω. To achieve it with ACωpRq, we use

the fact that ωpωωq is equipollent with ωω to show that there exists xcmn | m,n P ωy
such that @m,n P ω Dβ ă α Bcm

n
P Π0

β and @n P ω Xn “
Ť

mPω Bcm
n

, where Bc is
the Borel set coded by the Borel code c.5.89. 5.93.6

7 Suppose X Ď PX contains all open sets and is closed under complementation
(relative to X), and countable unions. By induction on α, Σ0

α Y Π0
α Ď X , so

BorelX Ď X .
By (5.93.1) BorelX is closed under complementation. To show it is closed

under countable union, suppose An, n P ω, are Borel sets. Let αn be least such
that An P Π0

αn
. Use ACωpRq to choose a wellordering of ω of order type αn for each

n P ω. Use these to define a composite wellordering of ω whose order type exceeds
αn for each n P ω. (In other words, ACωpRq implies ω1 is regular.) It follows that
α “ supn αn ă ω1, so

Ť

An P Σ0
α, so it is Borel. 5.93.7 5.93

Definition [ZF] The following terminology is often applied to the lower levels of
the Borel hierarchy:

1. ‘G’, from the German Gebiet (region, domain) indicates open sets.

2. ‘F’, from the French fermé (closed) indicates closed sets.

3. ‘δ’, from the German Durchschnitt (intersection) indicates countable inter-
section.
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4. ‘σ’, from the French somme (sum, union) indicates countable union.

Hence, G “ Σ0
1, F “ Π0

1, Gδ “ Π0
2, Fσ “ Σ0

2, Gδσ “ Σ0
3, etc.

In the context of boolean set algebras, ‘σ’ is used to indicate closure under countable
union (and intersection); hence a σ-algebra in PX is a countably closed subalgebra
of PX . In the case of a topological space X, BorelX is therefore the smallest
σ-algebra containing all open sets.5.93.7

(5.94) Theorem [ZF ` ACωpRq] Suppose X is a Polish space and 0 ă α ă ω1.
There exists a Σ0

α set U Ď ωω ˆX that is universal in the sense that for any Σ0
α

A Ď X there exists a P ωω such that

A “ tx P X | xa, xy P Uu.

Remark This is just the notion of 1-universality5.52.2.1 applied to an arbitrary
Polish space. Note that pωω ˆXqzU is correspondingly universal for Π0

α.

Proof By induction on α. For α “ 1, i.e., for open sets, we proceed as follows.
Let G0 “ 0, and let G1, G2, . . . be an enumeration of a countable base for the
X-topology.5.85.4 For each n P ω, let

Un “ txa, xy | a P
ωω^x P Gapnqu,

and let U “
Ť

nPω Un. Clearly, each Un is open,36 so U is also open. Given an open
A Ď X, there exists a P ωω such that A “

Ť

nPω Gapnq. For any x P X,

x P AØDn P ω x P GapnqØxa, xy P U.

Hence, U is universal for Σ0
1.

Now suppose U is universal for Σ0
α. We will construct a universal Σ0

α`1 set U 1.
Let p, jn, j be as in (5.87), let

U 1n “ txa, xy P
ωω ˆX | xjna, xy R Uu,

and let U 1 “
Ť

nPω U
1
n. Since xa, xy ÞÑ xjna, xy is continuous, U 1n is Π0

α, so U 1 is
Σ0
α`1. Given an arbitrary Σ0

α`1 A Ď X, suppose A “
Ť

nPω An, where each An is
Π0
α, and for each n P ω (using ACωpRq) let an P ωω be such that

An “ tx P X | xan, xy R Uu.

Let a P ωω be such that @n,m P ω apppn,mqq “ anpmq, so @n P ω jna “ an. For
each n P ω

An “ tx P X | xjna, xy R Uu “ tx P X | xa, xy P U 1nu,

so
A “

ď

nPω

An “ tx P X | xa, xy P U 1u.

Hence, U 1 is universal for Σ0
α`1.

Lastly, suppose α ă ω1 is a limit ordinal. Let 0 ă α0 ă α1 ă . . . be an
ω-sequence cofinal in α, and for each n P ω, let Un be universal for Σ0

αn
(using

ACωpRq to choose Borel codes for these). With p, jn, j as above, let

U 1n “ txa, xy P X ˆ
ωω | xjna, xy R Unu,

36tIs ˆGm | s P ăωω^m P ωzt0uu is a base for the (product) topology on ωω ˆX.
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and let U 1 “
Ť

nPω U
1
n. The rest of the argument is essentially the same as before.

5.94

The proof of the following theorem is another example of a diagonal argument.

(5.95) Theorem [ZF ` ACωpRq] Suppose 0 ă α ă ω1. Then there exists a Π0
α

subset of ωω that is not Σ0
α.

Remark Taking complements, it follows that there is a Σ0
α subset of ωω that is

not Π0
α.

Proof Let U Ď ωω ˆ ωω be Σ0
α-universal. Let A “ tx P ωω | xx, xy R Uu. Since

x ÞÑ xx, xy is continuous, A is Π0
α. If A is Σ0

α then there exists a P ωω such that
for all x P X, x P AØxa, xy P U , from which it follows that xa, ay P UØ a P
AØxa, ay R U . From this contradiction it follows that A is not Σ0

α. 5.95

5.3.9 The projective hierarchy

Definition [ZF] Suppose X is a Polish space and A Ď X. A is analytic
def
ðñ there

is a continuous f : ωω Ñ X and a closed C Ď ωω such that fÑC “ A. A is
coanalytic

def
ðñ XzA is analytic. AnalyticX def

“ the set of analytic subsets of X.37

‘Analytic’ without a superscript may refer to the analytic subsets of an arbitrary
Polish space or specifically to Analytic

ωω.

(5.96) Definition [ZF] Suppose S is a set of 2-sequences. The projection of S
def
“ pS

def
“ tx | Dy xx, yy P Su.38

Recall3.198 that if X and Y are topological spaces and X ˆ Y is given the product
topology, then the projection map xx, yy ÞÑ x is continuous.

(5.97) Theorem [ZF` ACωpRq]

1. Suppose X is a Polish space. Then 0 and X are analytic (as subsets of X).
2. Analytic is closed under continuous image, i.e., if X and Y are Polish, A Ď
X is analytic, and g : X Ñ Y is continuous, then gÑA is analytic.39

3. Suppose X is a Polish space and A Ď X. A is analytic iff A is the projection
of a closed subset of X ˆ ωω.

4. Analytic is closed under continuous preimage, i.e., if X and Y are Polish,
A Ď X is analytic, and g : Y Ñ X is continuous, then gÐA is analytic.

5. Analytic is closed under countable union and intersection.
6. Borel Ď Analytic.

Proof
37The adjective ‘analytic’ in classical descriptive set theory has an unfortunate similarity to the

adjective ‘analytical’ in the effective theory. As we will see Analytic “ Σ1
1, which only adds to

the confusion. Both terms are fixed in the literature, and one must simply observe the distinction
scrupulously.

38We already have the notation ‘domS’ for this notion, but ‘p’ is more common in the current
context.

39Note that dom g “ X. Given that g is continuous on X, g æZ is continuous in the relative
topology on Z for any Z Ď X. It is not, however, true in general that any continuous function on
Z can be extended to a continuous function on X, so we have to be specific as to domains.
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1 Let5.81 f : ωω sur
Ñ X be continuous. Then fÑ0 “ 0 and fÑpωωq “ X. 5.97.1

2 Let f : ωω Ñ X be continuous and C Ď ωω be closed such that A “ fÑC.
Then g ˝ f is continuous and gÑA “ pg ˝ fqÑC, so gÑA is analytic. 5.97.2

3 Suppose X is a Polish space. Let π : X ˆ ωω Ñ X be the projection map
xx, yy ÞÑ x. Suppose C Ď X ˆ ωω is closed. If C “ 0 then pC “ 0 and is therefore
analytic.5.97.1 If C ‰ 0 then5.85 C (with the relative topology) is a Polish space,
and it is analytic (as a subset of itself).5.97.1 π æC is continuous, so pC “ πÑC is
analytic.5.97.2

Conversely, suppose A Ď X is analytic. Suppose f : ωω Ñ X is continuous,
C Ď ωω is closed, and A “ fÑC. Let B “ txfx, xy | x P Cu.

(5.98) Claim B is closed.

Proof Suppose xxyn, xny | n P ωy is a sequence in B that converges in X ˆ ωω.
Then @n P ω yn “ fpxnq, and xxn | n P ωy is convergent. Let x “ limnÑ8 xn,
which is in C since C is closed. Then limnÑ8 yn “ limnÑ8 fpxnq “ fpxq, so
limnÑ8xyn, xny “ xfx, xy, which is in B. 5.98

A “ pB. 5.97.3

4 Let f : ωω Ñ X be continuous and C Ď ωω be closed such that A “ fÑC, and
let Z “ txb, cy P Y ˆ C | f c “ gbu.

(5.99) Claim Z is closed.

Proof Suppose xxbn, cny | n P ωy is a sequence in Z that converges to xb, cy. Then
b “ limnÑ8 bn P Y , c “ limnÑ8 cn P C, and

f c “ lim
nÑ8

f cn “ lim
nÑ8

gbn “ gb,

so xb, cy P Z. 5.99

Since

pZ “ tb P Y | Dc P ωω f c “ gbu “ tb P Y | Da P A a “ gbu

“ gÐA,

gÐA is analytic.5.97.3 5.97.4

5 Suppose X is a Polish space. Suppose for each n P ω, An Ď X is analytic.
Using ACωpRq with a coding of continuous functions from ωω to X by reals,5.92 for
each n P ω, let fn : ωω Ñ X be continuous such that im fn “ An.

To show that
Ť

nPω An is analytic, let Z “ txfnx, xny ⌢ xy | n P ω^x P ωωu. Z
is closed and

pZ “
ď

nPω

im fn “
ď

nPω

An,

so5.97.3
Ť

nPω An is analytic.
To show that

Ş

nPω An is analytic, let p, jn, j be as in (5.87). For n P ω let
Zn “ txfnpjnxq, xy | x P

ωωu. Since jn and fn are continuous, Zn is closed, and
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clearly pZn “ An. Let Z “
Ş

nPω Zn. As an intersection of closed sets, Z is closed.
Note that for y P X and x P ωω,

xy, xy P ZØ@n P ω xy, xy P Zn

Ø@n P ω y “ fnpjnxq,

and for y P X,

y P
č

nPω

AnØ@n P ω Dz P
ωω y “ fnpzq

ØDh P ωpωωq @n P ω y “ fnphnq

ØDx P ωω @n P ω y “ fnpjnxq

Ø y P pZ,

so5.97.3
Ş

nPω An is analytic. 5.97.5

6 By (5.97.5) it is enough to show that all closed and all open sets are analytic.
If A Ď X is closed, then either A “ 0 or A with the relative topology is Polish,

so5.81 there exists a continuous map f from ωω onto A. f is clearly also continuous
from ωω into X, and im f “ A, so A is analytic.

If A Ď X is open, it is enough to show that A is a countable union of closed
sets. To this end let S Ď X be countable and dense. Then S XA is countable and
dense in A. It is easy to show that A is the union of the countable set tCps, 1{nq |
s P S XA^n ą 0^Cps, 1{nq Ď Au of closed balls. 5.97.6 5.97

Definition [ZF` ACωpRq] Suppose X is a Polish space. For n P ωzt0u, we define
the classes Σ1

n, Π1
n, and ∆1

n recursively as follows. (A is an arbitrary subset of X,
and n ą 0.)

1. A P Σ1
1

def
ðñ A is analytic.

2. A P Π1
n

def
ðñ XzA P Σ1

n.

3. A P Σ1
n`1

def
ðñ for some Π1

n set B Ď X ˆ ωω, A “ pB.

4. A P ∆1
n

def
ðñ A P Σ1

n and A P Π1
n.

Projective “
Ť8
n“1 Σ1

n.

As the notation implies, the projective pointclasses are the “boldface” versions of
the Kleene analytical pointclasses.

(5.100) Theorem [ZF` ACωpRq] Suppose 0 ă n ă ω.

1. Σ1
n, Π1

n, and ∆1
n are continuously closed, i.e., closed under continuous preim-

age.

2. Σ1
n YΠ1

n Ď ∆1
n`1.
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Proof 1 Σ1
1 is continuously closed by (5.97.4).

If Σ1
n is continuously closed, then so is Π1

n, since for any f : X Ñ Y and A Ď Y ,
fÐpY zAq “ XzpfÐAq. If Σ1

n and Π1
n are continuously closed, then so is ∆1

n.
To complete the proof it suffices by induction to show that if Π1

n is continuously
closed then so is Σ1

n`1. To this end, assume Π1
n is continuously closed, and suppose

X and Y are Polish spaces, A Ď Y is Σ1
n`1, and f : X Ñ Y is continuous. Let

B Ď Y ˆ ωω be Π1
n such that A “ pB. Then for any x P X

x P fÐAØ fx P AØDz P ωω xfx, zy P B

ØDz P ωω xx, zy P B1,

where B1 “ txx, zy | xfx, zy P Bu. Since xx, zy ÞÑ xfx, zy is continuous, B1 is Π1
n,

so fÐA is Σ1
n`1. 5.100.1

2 To show that Σ1
1 Ď Σ1

2, suppose X is Polish and A Ď X is Σ1
1. Let B Ď Xˆωω

be closed such that A “ pB. B is Π1
1,5.97.6 so A is Σ1

2.
To show that Π1

1 Ď Σ1
2, suppose X is Polish and A Ď X is Π1

1. Let B “

txx, zy P X ˆ ωω | x P Au. xx, zy ÞÑ x is continuous, so B is Π1
1.5.100.1 A “ pB, so

A is Σ1
2.

Taking complements, it follows that Σ1
1,Π

1
1 Ď Π1

2. By an easy induction, for
all n ą 0, Σ1

n YΠ1
n Ď Π1

n`1 XΣ1
n`1 “ ∆1

n`1. 5.100.2 5.100

(5.100.2) says that the projective hierarchy is cumulative. To show that it is
a strict hierarchy, we first show that universal sets exist, as we did for the Borel
hierarchy in (5.94).

(5.101) Theorem [ZF ` ACωpRq] Suppose X is a Polish space and 0 ă n ă ω.
There exists a Σ1

n set U Ď ωω ˆX that is universal in the sense that for any Σ1
n

A Ď X there exists a P ωω such that

A “ tx P X | xa, xy P Uu.

Proof We prove this for all Polish spaces at once by induction on n. Given n ą 0
and a Polish space X, let X 1 “ X ˆ ωω, and let V Ď ωω ˆ X 1 be a universal
Σ0

1pX
1q5.94 if n “ 1, or a universal Σ1

n-pX 1q, by induction hypothesis, if n ą 1. Let
h : 2pωωq Ñ ωω be a homeomorphism,5.86, 5.87 and let

U “ txa, xy P ωω ˆX | Dz P ωω xa, xx, zyy R V u

“ txa, xy P ωω ˆX | Dz P ωω xxa, xy, zy P V 1u

“ pV 1,

where
V 1 “ txxa, xy, zy | xa, xx, zyy R V u.

Since xxa, xy, zy ÞÑ xa, xx, zyy is continuous, V 1 is Π0
1 (i.e., closed) if n “ 15.93.4 and

Π1
n- if n ą 1,5.100.1 so U is Σ1

n.
Now suppose A Ď X is Σ1

n. Let B Ď X 1 “ X ˆ ωω be Π0
1 if n “ 1, and Π1

n-

if n ą 1, such that A “ pB. Let a P ωω be such that B “ txx, zy P X ˆ ωω |
xa, xx, zyy R V u. For any x P X

x P AØDz P ωω xx, zy P BØDz P ωω xa, xx, zyy R V

Øxa, xy P U.
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So U is universal. 5.101

(5.102) Theorem [ZF` ACωpRq] Suppose 0 ă n ă ω. There is A Ď ωω such that
A is Σ1

n and not Π1
n (and vice versa).

Proof Let U be universal for Σ1
n subsets of ωω, and let A “ tx P ωω | xx, xy P Uu.

5.102

Hence the projective hierarchy is strict.

5.4 Structural properties of pointclasses

We have developed effective descriptive set theory in Section 5.2 in the relatively
narrow context of pointsets and pointclasses as defined in (5.11) and (5.12), whereas
we have developed the classical theory in the relatively broad context of Polish
spaces.5.80 We have noted the universality of ωω among Polish spaces,5.81 and the
homeomorphic equivalence of ωω with various products via (5.86). Thus, for ex-
ample, the spaces ω ˆ ωω, ωω ˆ ω2, pωω ˆ ωωq ˆ ωω, ωω ˆ ωω ˆ ωω, ωpωωq, etc.,
are all homeomorphic to ωω. With these considerations in mind, from now on we
will—on the one hand—largely restrict our attention to homeomorphs of ωω, with
occasional special consideration of ω2 and related spaces. As always, ω is ubiquitous
in multiple roles.

(5.103) On the other hand, we will generalize our use of pointspace, pointset
and pointclass to the broader context of spaces obtained from ωω, ω2, and ω as
above. When appropriate, we may state a definition or theorem for ωω with the
understanding that it is applicable mutatis mutandis to any pointspace in this sense.

We begin this section with the celebrated 1917 theorem of Suslin5.106 that ∆1
1 “

Borel. This theorem alone justifies the effort we have put into the descriptive clas-
sification of pointsets, and it is an excellent illustration of the sort of understanding
we may expect to gain of infinitarity from the study of descriptive set theory. We
will actually present Suslin’s theorem as a corollary of the later analytic separation
theorem5.104 of Lusin, which generalizes Suslin’s result, and more clearly introduces
some of the important structural properties of pointclasses that are the subject of
this section.

(5.104) Theorem: Analytic separation [ZF] Suppose X is a Polish space, and
A0 and A1 are disjoint analytic subsets of X. Then there exists a Borel set B such
that A0 Ď B and B XA1 “ 0.

Remark We say that B separates A0 and A1, and A0, A1 are Borel separable.

Note that we have stated the result as a theorem of ZF, which it is. The proof we
give, however, uses ACωpRq. We will presently provide a proof that does not rely
on any choice principle.

Proof [ACωpRq] If either A0 or A1 is empty the theorem is trivial, so suppose
neither is. There there exist continuous f0, f1 : ωω Ñ X such that im f0 “ A0 and
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im f1 “ A1.40 For σ P ăωω, let

Aσ0 “ f0
ÑIσ

Aσ1 “ f1
ÑIσ,

where Iσ “ tz P ωω | σ Ď zu.

(5.105) Claim Suppose Aσ0
0 and Aσ1

1 are not Borel separable. Then for some

n0, n1 P ω, Aσ0
⌢xn0y

0 and Aσ1
⌢xn1y

1 are not Borel separable.

Proof Suppose toward a contradiction that for each n0, n1 P ω, Aσ0
⌢xn0y

0 and

A
σ1

⌢xn1y
1 are Borel separable, and let Bn0,n1 be Borel such that Aσ0

⌢xn0y
0 Ď Bn0,n1

and Bn0,n1 X A
σ1

⌢xn1y
1 “ 0 (using ACωpRq to obtain suitable Borel codes). Note

that

Aσ0
0 “

ď

n0Pω

A
σ0

⌢xn0y
0

Aσ1
1 “

ď

n1Pω

A
σ1

⌢xn1y
1 .

Let
B “

ď

n0Pω

č

n1Pω

Bn0,n1 .
41

For each n0 P ω, Aσ0
⌢xn0y

0 Ď Bn0,n1 for all n1 P ω, so

A
σ0

⌢xn0y
0 Ď

č

n1Pω

Bn0,n1 .

Hence
Aσ0

0 Ď B.

For each n0 P ω, Aσ1
⌢xn1y

1 XBn0,n1 “ 0 for all n1 P ω, so

Aσ1
1 X

č

n1Pω

Bn0,n1 “ 0.

Hence
Aσ1

1 XB “ 0.

Since B is Borel, this contradicts the assumed Borel inseparability of Aσ0
0 and Aσ1

1 .
5.105

Now suppose toward a contradiction that A0 and A1 are Borel inseparable.
Note that A0 “ A0

0 and A1 “ A0
1, where 0 is the empty sequence. Use the claim to

generate z0, z1 P ωω such that for all n P ω, Az0 æn0 and Az1 æn1 are Borel inseparable.
Let a0 “ f0pz0q and a1 “ f1pz1q. Then a0 P A0 and a1 P A1, so a0 ‰ a1. Let D0, D1

be disjoint open subsets of X with a0 P D0 and a1 P D1.42 Let E0 “ f0
ÐD0 and

40A nonempty analytic set A Ă X is gÑC for some continuous g : ωω Ñ X and nonempty
closed C Ď ωω. C (with the relative topology) is a Polish space, so there exists a continuous

h : ωω
sur
Ñ C. Let f “ g ˝ h. Then A “ im f .

41Alternatively, we could let B “
Ş

n1Pω

Ť

n0Pω Bn0,n1 .
42Every metric space is Hausdorff. For example, let D0 and D1 be the respective open balls at

a0 and a1 with radius dpa0, a1q{2.
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E1 “ f1
ÐD1. Then E0, E1 are open subsets of ωω with z0 P E0 and z1 P E1. Let

n P ω be such that Iz0 æn Ď E0 and Iz1 æn Ď E1. Then

Az0 æn0 “ f0
ÑIz0 æn Ď D0

Az1 æn1 “ f1
ÑIz1 æn Ď D1.

Since D0 and D1 are disjoint, D0 (likewise, XzD1) is a Borel set that separates
Az0 æn0 and Az1 æn1 ; contradiction. 5.104

(5.106) Theorem: Suslin’s [ZF ` ACωpRq] Suppose X is a Polish space and
A Ď X. Then A is Borel iff A is ∆1

1.

Proof TheÑÑÑ direction follows from (5.97.6). TheÐÐÐ direction follows from (5.104),
since A is the only set that separates A and XzA. 5.106

5.4.1 Norms and the prewellordering property

Note that (5.104) has the corollary that disjoint Σ1
1 pointsets A0 and A1 are sep-

arable by a set B that is ∆1
1, i.e., both B and ␣B are Σ1

1. This is the important
separation property of Σ1

1, which follows from the important reduction property of
Π1

1, which in turn follows from the (yes, also important) prewellordering property
of Π1

1.
The latter two of these properties will be familiar from Theorem 5.65 and its

proof. We begin by defining norms and their associated prewellorderings

(5.107) Definition [ZF]

1. A norm on a set A def
“ a function φ : AÑ Ord.

2. A norm φ : AÑ Ord is regular
def
ðñ imφ is an ordinal.

3. Suppose φ : AÑ Ord is a norm.

1. ďφ def
“ the prewellordering of A defined by the condition that for all x, y P

A

x ďφ y
def
ðñ φx ď φy.

ăφ is of course the strict prewellordering associated with ďφ:

x ăφ y
def
ðñ φx ă φy.

2. Suppose A Ď X for some pointspace X.

1. ď˚φ
def
“ txx, yy P X ˆX | x P A^py R A_φx ď φyqu.

2. ă˚φ
def
“ txx, yy P X ˆX | x P A^py R A_φx ă φyqu.

Note that (unless A “ X) ď˚φ is not a (weak) preorder because it omits the com-
ponent txx, yy | x, y P XzAu; thus the use of ‘ď’ to denote this relation is a little
abusive of the notation. ă˚φ, on the other hand, is a bona fide (strict) preorder.

The starred relations associated with a norm φ may be also be described in
terms of the associated function φ˚ defined by the condition that for any x P X,

φ˚x “

#

φx if x P A
8 x R A,
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where 8 is an arbitrary non-ordinal understood to be greater than any ordinal for
this purpose. Then

x ď˚φ yØx P A^φ˚x ď φ˚y

x ă˚φ yØφ˚x ă φ˚y.

Recall that Γ̆ is ␣␣␣Γ.5.18.2

(5.108) Definition [ZF] Suppose Γ is a recursively closed pointclass, X is a pointspace,

A Ď X, and ď is a prewellordering of A. ď is a Γ-prewellordering
def
ðñ there exist

relations ďΓ and ďΓ̆ in Γ and Γ̆ respectively such that for all y P X

y P AÑ@1x
`

px P A^x ď yqØx ďΓ yØx ďΓ̆ y
˘

.

A norm φ on A is a Γ-norm
def
ðñ the associated prewellorder ďφ is a Γ-prewellordering.

Note that if ďφP ΓX Γ̆ then φ is a Γ-norm, because we can let ďφΓ“ď
φ

Γ̆
“ďφ. On

the other hand, if φ is a Γ-norm, A P Γ, and Γ is closed under ^̂̂, then ďφP Γ. As in
this instance, it is often desirable that a pointclass have certain closure properties
summarized by the notion of adequacy. As defined here, this is a stronger condition
than is immediately necessary, but it is not so strong as to be unduly restrictive.

(5.109) Definition [ZF] A pointclass Γ is adequate
def
ðñ Γ includes ∆0

1 and is
closed under recursive substitution, ___, ^̂̂, DDDă and @@@ă (i.e., bounded quantification).

(5.110) Theorem [ZF] Suppose Γ is an adequate pointclass, A P Γ, and φ is a
norm on A. Then φ is a Γ-norm iff ď˚φ and ă˚φ are in Γ.

Proof The proof is straightforward, but it is worth examining for the insight it
provides into the relationships among the various orders involved. Suppose first
that ď˚φ and ă˚φ are in Γ. Let

x ďφΓ yØx ď˚φ y

and x ďφ
Γ̆
yØ␣py ă˚φ xq.

These witness that φ is a Γ-norm.
Now suppose ďφΓP Γ and ďφ

Γ̆
P Γ̆ witness that φ is a Γ-norm. Then

x ď˚φ yØx P A^px ďφΓ y_␣y ď
φ

Γ̆
xq

and x ă˚φ yØx P A^␣y ďφ
Γ̆
x,

so ď˚φ and ă˚φ are in Γ. 5.110

(5.111) Definition [ZF] Suppose Γ is a recursively closed pointclass. Let ∆ “ ΓXΓ̆.
In the following definitions, unless otherwise stated, pointsets are presumed to be
subsets of some fixed pointspace X, the specific identity of which is irrelevant.

1. Γ has the separation property
def
ðñ for any pointsets A,B P Γ, if A X B “ 0

then there is a set C P ∆ that separates A and B, i.e., A Ď C and B Ď ␣C.

2. Γ has the reduction property
def
ðñ for any pointsets A,B P Γ there exist

A1, B1 P Γ such that xA1, B1y reduces xA,By, i.e.,
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1. A1 Ď A and B1 Ď B;
2. A1 YB1 “ AYB; and
3. A1 XB1 “ 0.

3. Γ is normed or has the prewellordering property
def
ðñ for any A P Γ, A has a

Γ-norm.

4. Γ has the uniformization property
def
ðñ for every A Ď ωω ˆ ωω, if A P Γ then

there exists B Ď A such that B P Γ and for all xx, yy P A there is a unique y1

such that xx, y1y P B. We say that B uniformizes A.

(5.112) Theorem [ZF] Suppose Γ is an adequate pointclass.

1. If Γ has the prewellordering property then Γ has the reduction property.

2. If Γ has the reduction property then Γ̆ has the separation property.

Proof 1 Suppose Γ has the prewellordering property and A,B P ΓXUs for some
type s. Let

C “ tx ⌢x0y | x P Au Y tx ⌢x1y | x P Bu.

Since Γ is adequate, C P Γ. Let ď be a Γ-prewellordering of C, and let ď˚ and
ă˚ be the corresponding relations on Us ⌢x0y,5.107.3.2 so that ď˚ and ă˚ are both in
Γ.5.112

Let

1. A1 “ tx P Us | x
⌢x0y ď˚ x ⌢x1yu; and

2. B1 “ tx P Us | x
⌢x1y ă˚ x ⌢x0yu.

It is straightforward to show that xA1, B1y reduces xA,By. 5.112.1

2 Suppose Γ has the reduction property, A,B P Γ̆, and AXB “ 0. Then ␣A,␣B P
Γ and ␣AY␣B “ X. Let A1, B1 P Γ reduce ␣A,␣B. Thus,

1. A1 Ď ␣A;

2. B1 Ď ␣B;

3. A1 YB1 “ ␣AY␣B “ X; and

4. A1 XB1 “ 0.

Note that A Ď ␣A1, B Ď ␣B1, and A1 “ ␣B1. Let C “ B1. Then C separates
A,B, and C P ∆. 5.112.2 5.112

(5.113) Theorem [ZF] For any z P ωω, Π1
1pzq has the prewellordering property.

Hence Π1
1 does too.

Proof We will treat Π1
1. The proof obviously relativizes to any z P ωω. Suppose

A Ď ωω is Π1
1. Then5.60 there is a recursive tree T Ď ăωpω ˆ ωq such that for all

x P ωω, x P A iff Trxs is wellfounded. Let φ : AÑ Ord be the norm on A given by
the condition that φx “ rkTrxs.

For x, y P ωω, let

1. x ďφ
Π1

1
y iff there does not exist an order-preserving f : Trys Ñ Trxszt0u; and
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2. x ďφ
Σ1

1
y iff there exists an order-preserving f : Trxs Ñ Trys.

Then ďφ
Π1

1
and ďφ

Σ1
1

are respectively Π1
1 and Σ1

1 and satisfy3.184 (5.108), thus wit-
nessing that φ is a Π1

1-norm on A. 5.113

(5.114) Theorem [ZF] Suppose Γ is an adequate pointclass.

1. Suppose A P Γ X PUs ⌢x1y admits a Γ-norm. Let B “ tx P Us | D
1x1 x ⌢xx1y P

Au. Then B admits an DDD1@@@1Γ-norm.

2. Thus, if @@@1Γ Ď Γ and Γ has the prewellordering property, then DDD1Γ has the
prewellordering property.

Proof The second assertion follows trivially from the first. Let φ be a Γ-norm on
A, and for x P B let

ψx “ inftφxx, x1y | xx, x1y P Au.

Let ď˚ψ and ă˚ψ be the corresponding starred relations.5.107.3.2 It is easily checked
that

x ď˚ψ yØD
1x1 @1y1 pxx, x1y ď˚φ xy, y

1yq

and x ă˚ψ yØD
1x1 @1y1 pxx, x1y ă˚φ xy, y

1yq,

so ψ is an DDD1@@@1Γ-norm. 5.114

As an immediate corollary we have the following result.

(5.115) Theorem [ZF] Σ1
2pzq and Σ1

2 have the prewellordering property.

Applying (5.112.2, 3) with (5.113) and (5.115) we have the following.

(5.116) Theorem [ZF]

1. Π1
1pzq, Π1

1, Σ1
2pzq, and Σ1

2 have the reduction property.

2. Σ1
1pzq, Σ1

1, Π1
2pzq and Π1

2 have the separation property.

5.4.2 Analytic boundedness

Recall5.61 the set WO Ď ωω of (codes of) countable wellorders. The following
theorem should come as no surprise.

(5.117) Theorem [ZF] Let φ : WO Ñ Ord be defined by the condition that for each
x P WO, φx is the order type of the relation Rx as defined in (5.61.1) (which is a
wellorder iff x P WO). φ is a Π1

1-norm on WO.

Proof Define ďΠ1
1

and ďΣ1
1

as follows.

1. x ďΠ1
1
y iff x, y P WO and there does not exist an order-preserving map from

Ry into a proper initial segment of Rx.

2. x ďΣ1
1
y iff x, y P LO and there exists an order-preserving map from Rx into

Ry.

Clearly, ďΠ1
1

and ďΣ1
1

are respectively Π1
1 and Σ1

1 and satisfy (5.108). 5.117
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(5.118) Theorem: Σ1
1 boundedness [ZF] Suppose X Ď WO is Σ1

1. Then
suptotx | x P Xu ă ω1.

Proof Suppose to the contrary that suptotx | x P Xu “ ω1. Then for any x P ωω,

x P WOØDy P X x ďΣ1
1
y,

where ďΣ1
1

is the Σ1
1 relation from the proof of (5.117). Thus, WO is Σ1

1. Since WO
is (continuously) Π1

1-complete,5.64 and Π1
1 Ę Σ1

1,5.102 this is a contradiction. 5.118

As noted above, the method used in this section to prove the reduction property
for Π1

1 is essentially the method used in our initial proof5.65 of this result. The only
new element is that we have isolated and defined the prewellordering property as
a feature of independent interest. (A typical illustration of the value of this is the
easy transfer to Σ1

2.5.116)
From the Π1

1-reduction property we directly obtain the Σ1
1-separation property,5.112.2

as we could have done after (5.65). It is instructive to compare this with (5.104),
which we have designated the analytic separation theorem. (5.104) states that dis-
joint Σ1

1 (i.e., analytic) sets are separable by a Borel set. Since Borel Ď ∆1
1, this

implies that Σ1
1 has the separation property,5.111.1 but (5.104) supplies the additional

information that ∆1
1 “ Borel.5.106

Our proofs of Π1
1-prewellordering and Π1

1-reduction contain a suggestion of this
stronger result inasmuch as we may imagine building a Π1

1 set in a wellordered
sequence of stages, and reducing a pair xA,By of Π1

1 sets by putting a point x P AYB
in A1 or B1 according to whether and when it gets into A or B. Perhaps we can
build a separating Borel set for disjoint Σ1

1 sets in a similar wellordered sequence of
stages and thereby improve on the proof given of (5.104) by supplying a description
of a separating set rather than simply deriving a contradiction from the hypothesis
of its nonexistence.

Indeed, we can construct such a proof, and it has the advantage vis-à-vis (5.104)
of not requiring a choice axiom. We present the proof also for the practice it gives
in the use of trees, and as a way of lingering over the Suslin theorem, which is the
gateway to descriptive set theory. In our defense, there is precedent for this sort
of redundancy: more than 200 proofs have been published of the law of quadratic
reciprocity, 8 by Gauss alone, who provided the first. Gauss also published four
proofs of the fundamental theorem of algebra.

Actually, we will prove a more general result concerning κ-Suslin and κ-Borel
sets, as defined in the next section.

5.4.3 κ-Borel and κ-Suslin

(5.119) Definition [ZF] Suppose X is a topological space, and κ is an ordi-
nal.

1. A set A Ď PX is a κ-algebra
def
ðñ 0 P A and A is closed under complemen-

tation and unions of length less than κ, i.e., if η ă κ and tAα | α ă ηu Ď A,
then

Ť

αăη Aα P A.

2. A set A Ď X is κ-Borel (as a subset of X)
def
ðñ it is in the smallest κ-algebra

over X that contains all open sets.

Obviously, the Borel sets in the original sense are just the κ-Borel sets for any
ω ă κ ď ω1. (Note that we have not required that κ be a cardinal.)
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(5.120) Definition [ZF] Suppose N is a set and κ is an ordinal. A set A Ď ωN

is κ-Suslin
def
ðñ there is a tree T on N ˆ κ such that A “ p¨rT s “ tx P ωN | Dy P

ωκ xx, yy¨ P rT su.5.58.3 An arbitrary pointset is κ-Suslin
def
ðñ it is the continuous

preimage of a κ-Suslin subset of ωω.43

The analytic (Σ1
1) pointsets are the ω-Suslin sets.

‘κ-Suslin’ is conventionally defined in terms of trees as we have just done, but
it is a purely topological concept. Recall the definition5.53 of the tree TX from a
set X Ď ωM and the fact5.54 that rTX s “ X, i.e., the set of branches of TX is the
closure of X in the standard topology. Also recall5.55 the operation u ÞÑ u¨ relating
XpYRq to Y pXRq. Clearly, A Ď ωN is κ-Suslin iff there exists a closed C Ď ωNˆωκ
such that A “ pC.

We will make repeated use of the following definition and simple fact.

Definition [ZF] Suppose η is an ordinal and pX; ăq is a wellorder. The lexico-
graphic order on ηX is the binary relation ă˚ defined by the following condition.
Given f, g P ηX, f ă˚ g

def
ðñ

1. f ‰ g; and

2. letting α be the least α P η such that fα ‰ gα, fα ă gα.

It is easy to see that if η is finite, ă˚ is a wellorder; whereas if η is infinite, it clearly
is not. If η “ ω, however, any closed subset of ηX has a ă˚-least member.

(5.121) Theorem [ZF] Suppose pX; ăq is a wellorder and C Ď ωX is closed. Then
C has a lexicographically least member. Equivalently, any sequence tree on X has
a lexicographically least branch.

Proof As always with closed subsets of spaces of the form ωX, it is convenient to
think in terms of trees. Let T “ TC .5.53 We will define a sequence xtn | n P ωy of
nodes of T by recursion on n so that for all n P ω,

1. |tn| “ n;

2. tn Ď tn`1; and

3. there exists z P rT s such that tn Ď z.

Clearly, the first two conditions imply that ttn | n P ωu is a branch of T . The third
condition is imposed to permit the recursion to continue. t0 is necessarily 0. Given
tn satisfying the conditions, let x P X be ă-least such that there exists z P rT s such
that tn ⌢xxy Ď z, and let tn`1 “ tn

⌢xxy. Clearly,
Ť

nPω tn is the lexicographically
least branch of rT s; hence, the lexicographically least member of C. 5.121

Note that Definitions 5.119 and 5.120 are given for ordinals κ. (5.120) could
reasonably be stated for an arbitrary set K in place of κ. In the presence of AC, of
course, the K-Suslin sets are exactly the |K|-Suslin sets, but it is the wellordering
of κ (as a set of ordinals) that gives the notion its significance. Trivially, any subset
of ωω is pωωq-Suslin.44

43This is an example of the convention stated above.5.103 We will not take the trouble in every
case to point out how to generalize a definition or theorem stated for one pointspace, usually ωω,
to an arbitrary pointspace.

44Given A Ď ωω, let T be the set of sequences of the form xxs0, xy, xs1, xy, . . . , xsn- , xyy, such
that x P A and xs0, . . . , sn-y Ď x. Clearly, p¨rT s “ A.
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(5.122) Theorem [ZF]

1. The Σ1
1 pointsets are exactly the ω-Suslin pointsets.

2. Every Σ1
2 pointset is ω1-Suslin.

Proof We proved the first assertion some time ago.5.57.2 It is included here for
completeness. To prove the second assertion, first suppose A Ď ωω is Π1

1. Let
T Ď ăωpω ˆ ωq be a tree such that x P A iff Trxs is wellfounded.

(5.123) Let s “ xs0, s1, . . . y be a recursive enumeration of ăωω such that

(5.124) @m,m1 P ω psm Ď sm1 Ñm ď m1q.

Note that |sm| ď m, which is all we actually need for this application, but the
stronger condition will be used later.

Let T 1 be the set of xt, uy¨ such that for some n P ω,

1. t “ xt0, . . . , tn-y P nω;

2. u “ xu0, . . . , un-y P nω1;

3. for all m,m1 ă n, if sm Ď sm1 P Trts
5.58.1 then um ě um1 .

In other words, the assignment of ordinals um to sequences sm for m ă n and
sm P Trts is order-preserving.45

T 1 is a tree.
Suppose xx, yy¨ P rT 1s. Then tpsm, ymq | m P ω^ sm P Trxsu is an order-

preserving assignment of ordinals to Trxs, from which it follows that Trxs is well-
founded. Conversely, if Trxs is wellfounded, let f : Trxs Ñ ω1 be an order-preserving
assignment of ordinals. (Since T is countable, countable ordinals suffice for this.)
Let y : ω Ñ ω1 be such that for all m P ω, if sm P Trxs then ym “ fsm. (If
sm R Trxs then ym may have any value, say 0, to be definite.) Then xx, yy¨ P rT 1s.
Thus x P A iff Trxs is wellfounded iff x P p¨rT 1s, so A is ω1-Suslin.

Now suppose B Ď ωω is Σ1
2. Then for some Π1

1 set A Ď ωω ˆ ωω, B “ tx P
ωω | Dx1 P ωω xx, x1y P Au. As we have just shown (essentially), there is a tree T
on ω ˆ ω ˆ ω1 such that A “ txx, x1y P ωω ˆ ωω | Dy P ωω1 xx, x

1, yy¨ P rT su. Thus
B “ tx P ωω | Dx1 P ωω Dy P ωω1 xx, x

1, yy¨ P rT su. Using a definable bijection of
ωˆω1 with ω1, such as xn, αy ÞÑ ω ¨α` n, we may define a tree T 1 on ωˆω1 such
that B “ tx P ωω | Dy P ωω1 xx, yy

¨ P rT 1su “ p¨rT 1s, so B is ω1-Suslin. 5.122

(5.125) Theorem [ZF] Suppose κ is an infinite cardinal. Suppose A,A1 are disjoint
κ-Suslin pointsets. Then A,A1 are separable by a pκ` 1q-Borel set.

Proof Let T, T 1 be sequence trees on ω ˆ κ such that A “ p¨rT s and A1 “ p¨rT 1s.
Let S be the tree on ωˆ κˆ κ defined by the condition that for each n P ω, s P nω
and t, t1 P nκ,

xs, t, t1y¨ P SØxs, ty¨ P T ^xs, t1y¨ P T 1.

Note that if xx, y, y1y¨ P rSs then xx, yy¨ P rT s and xx, y1y¨ P rT 1s, so x P p¨rT s “ A
and x P p¨rT 1s “ A1, which is impossible, as A and A1 are assumed to be disjoint.
Hence S is wellfounded. We will define by Ě-recursion on S a function xs, t, t1y¨ ÞÑ

45Remember that sequence trees grow downward, so that if t Ď t1 then t is higher than t1.
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Bxs,t,t1y such that for each xs, t, t1y¨ P S, Bxs,t,t1y is pκ ` 1q-Borel and separates
@

p¨rTpxs,ty¨qs, p
¨rT 1
pxs,t1y¨qs

D

.46 This suffices, as Tp0q “ T and T 1
p0q “ T 1, so Bx0,0,0y is

pκ` 1q-Borel and separates xA,A1y.
Suppose, therefore, that xs, t, t1y¨ P S, and suppose that for each immediate

extension xs1, t1, t
1
1y
¨ of xs, t, t1y¨ in S, Bxs1,t1,t1

1y
is pκ ` 1q-Borel and separates

@

p¨rTpxs1,t1y¨qs, p
¨rT 1
pxs1,t1

1y
¨qs
D

. Let E and E1 be the respective sets of immediate
extensions of xs, ty and xs, t1y. For xs1, t1y P E and xs11, t

1
1y P E

1, let Cxs1,t1,s1
1,t

1
1y

be
defined as follows.

1. Suppose s1 “ s11.

1. Suppose xs1, t1, t11y
¨ P S. Then

Cxs1,t1,s1
1,t

1
1y
“ Bxs1,t1,t1

1y
.

2. Suppose xs1, t1, t11y
¨ R S.

1. Suppose xs1, t1y¨ R T . Then

Cxs1,t1,s1
1,t

1
1y
“ 0.

2. Suppose xs1, t11y
¨ R T 1. Then

Cxs1,t1,s1
1,t

1
1y
“ ωω.

2. Suppose s1 ‰ s11. Then

Cxs1,t1,s1
1,t

1
1y
“ tx P ωω | s1 Ď xu.

Note that in every case, Cxs1,t1,s1
1,t

1
1y

is pκ` 1q-Borel and separates
@

p¨rTpxs1,t1y¨qs, p
¨rT 1pxs1

1,t
1
1y

¨qs
D

.

Let
Bxs,t,t1y “

ď

xs1,t1yPE

č

xs1
1,t

1
1yPE

1

Cxs1,t1,s1
1,t

1
1y
.

Then Bxs,t,t1y is pκ ` 1q-Borel and separates
@

p¨rTpxs,ty¨qs, p
¨rT 1
pxs,t1y¨qs

D

, as desired.
5.125

The following theorem was proved independently by Kunen and Martin.

(5.126) Theorem [ZF] Suppose κ is an infinite cardinal and ă is a κ-Suslin ir-
reflexive wellfounded relation on A Ď ωω. Then rkpăq ă κ`.

Proof Let S be a sequence tree on ω ˆ ω ˆ κ such that

ă“ txx, yy | Dz P ωκ xx, y, zy¨ P rSsu

T be the sequence tree on A consisting of all finite ă-decreasing sequences in A.
Clearly, for n ą 0, the rank of xa0, . . . , an-y P T is just the rank of an- in ă, so
rkpT zt0uq “ rkpăq.

Let U be the set of finite sequences
@

xs1, s0, u0y, . . . , xsn, sn- , un-y
D

such that n P ω and
46Recall3.183 that for any sequence tree T on a setM and s P ăωM , Tpsq “ tt P T | t Ď s_ s Ď tu.



376 CHAPTER 5. INFINITARITY

1. @m ď n sm P
nω,

2. @m ă n um P
nκ; and

3. @m ă n xsm`1, sm, umy
¨ P S.

Let ă˚ be the binary relation on U such that

@

xs11, s
1
0, u

1
0y, . . . , xs

1
n1 , s1n1- , u1n1-y

D

ă˚
@

xs1, s0, u0y, . . . , xsn, sn- , un-y
D

Øn1 ą n^@m ď n s1m Ě sm^@m ă n u1m Ě um.

Suppose toward a contradiction that ă˚ is not wellfounded. Since U is wellorder-
able, there is an infinite ă˚-descending sequence xwk | k P ωy. Let

wk “
@

xsk1 , s
k
0 , u

k
0y, . . . , xs

k
nk
, sknk

- , uknk
-y
D

.

Note that

1. n0 ă n1 ă ¨ ¨ ¨ ;

2. @m ď nk |s
k
m| “ nk and @m ă nk |u

k
m| “ nk; and

3. if k ď k1 then @m ď nk s
k
m Ď sk

1

m and @m ă nk u
k
m Ď uk

1

m.

Let xm “
Ť

nkěm
skm and zm “

Ť

nkąm
ukm. Then for each m P ω

1. xm P ωω;

2. zm P ωκ; and

3. xxm ` 1, xm, zmy¨ P rSs; so

4. xm`1 ă xm.

This contradicts the wellfoundedness of ă. Hence ă˚ is wellfounded.
Since ă˚ is a wellfounded relation on a set of size κ, its rank is ă κ`, so it suffices

to show that there is an order-preserving π : pT zt0u;Ľq into pU ; ă˚q. For each
xx, yy P ă let zx,y be the lexicographically least z P ωκ such that xx, y, zy¨ P rSs.5.121

Given w “ xx0, . . . , xny P T zt0u,

1. if n “ 0 then let πw “ 0 (the empty sequence); and

2. if n ą 0 then let

πw “
@

xx1 æn, x0 æn, zx1,x0 æny, . . . , xxn æn, xn- æn, zxn,xn- æny
D

.

5.126

Using (5.126) together with (5.122.2) we have the following theorem first proved
by Martin using a forcing argument.

Theorem [ZF] Every Σ1
2 irreflexive wellfounded relation on a subset of ωω has

rank ă ω2.

Note that we also have another proof of (a somewhat more general statement of)
(5.118) by applying (5.126) to (5.122.1).
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5.4.4 Scales and uniformization

Another way to represent the sort of information about a pointset that is embodied
in a Suslin representation is in terms of semiscales and scales.

(5.127) We will specialize these definitions to subsets of ωω, but they are funda-
mentally topological and apply to pointsets generally.

Definition [ZF]

1. In general, if f is a prefunction47 the graph of f def
“ gr f

def
“ txx, yy | px, yq P

fu.

2. For the purposes of this discussion, given a prefunction f Ď ωX ˆ ωY , the
pointwise graph of f def

“ gr¨ f
def
“ txx, yy¨ | xx, yy P gr fu p“ txx, yy¨ | px, yq P

fuq, where xx, yy¨ “
@

xxpnq, ypnqy
ˇ

ˇn P ω
D

.5.55

Recall that for a binary relation R, pR “ tx | Dy xx, yy P Ru.48

Definition [ZF] Suppose A Ď ωω and κ P Ord. A semiscale on A to κ def
“ a function

φ̄ : AÑ ωκ such that p gr φ̄ “ A, where X is the topological closure of a set X. φ̄
is a semiscale

def
ðñ it is a semiscale to some ordinal.

Since dom φ̄ “ A, p gr φ̄ “ A, so p gr φ̄ Ě A. Thus the essential characteristic of φ̄
as a semiscale is that p gr φ̄ Ď A.

It is customary to identify a semiscale φ̄ on A to κ with the sequence xφn | n P ωy
of norms on A to κ given by:

φnx “ pφ̄xqn.

(5.128) Theorem [ZF` ACωpRq] Suppose φ̄ : AÑ ωκ. φ̄ is a semiscale iff

(5.129) for any sequence xxn | n P ωy of members of A, if

1. limnÑ8 xn “ x, and
2. for all m P ω, limnÑ8 φmxn exists,

then x P A.

Proof ÑÑÑ Suppose φ̄ is a semiscale and Conditions 5.129 apply. Let z P ωκ be
defined by the condition that zpmq “ limnÑ8 φmxn. Then z “ limnÑ8 φ̄xn.
Hence, xx, zy P gr φ̄, so x P A.

ÐÐÐ Suppose xx, zy P gr φ̄. Using ACωpRq, for each n P ω let xn be such that
xn æn “ x æn and φ̄pxnq æn “ z æn. Then xxn | n P ωy satisfies (5.129.1,2), so
x P A. 5.128

The definition of scale imposes a key additional condition.

47Recall that a prefunction is just a class of ordered pairs. We seldom consider prefunctions
that are not actually functions. The point of the gr operation is simply to change ordered pairs
to 2-sequences.

48‘p’ stands for ‘projection’, in this case projection along the first coordinate of a subset of
the plane. We may also use ‘domR’ to denote this, but we generally reserve dom for use with
(pre)functions, which are classes of ordered pairs, rather than 2-sequences.
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Definition [ZF] Suppose A Ď ωω, κ P Ord, and φ̄ : AÑ ωκ is a semiscale. φ̄ is a

scale on A Ď ωω to κ
def
ðñ

(5.130) @xx, zy P gr φ̄ @m P ω pφ̄xqpmq ď zpmq.

In other words, letting z0 “ φ̄x, for each m P ω, z0pmq is the least member of the
set tzpmq | xx, zy P gr φ̄u. We also say that z0 is the pointwise least member of
tz | xx, zy P gr φ̄u.

In terms of the norms φm pm P ωq, as above, on the assumption of ACωpRq, the
scale condition5.130 is

for any sequence xxn | n P ωy, if

1. limnÑ8 xn “ x and

2. for each m P ω, limnÑ8 φmxn exists

then @m P ω φmx ď limnÑ8 φmxn. This is termed the lower semicontinuity prop-
erty of scales.

The following enhancements of the notion of (semi)scale are sometimes useful.

Definition [ZF] Suppose φ̄ “ xφm | m P ωy is a (semi)scale.

1. φ̄ is good
def
ðñ for every xxn | n P ωy P ωA, if xφ̄xn | n P ωy converges then

xxn | n P ωy converges.

2. φ̄ is very good
def
ðñ φ̄ is good and for all x, y P A and m P ω, if φmx ď φmy

then @m1 ă m φm1x ď φm1 y.

3. φ̄ is excellent
def
ðñ φ̄ is very good and for all x, y P A and m P ω, if φmx “

φmy then x æm “ y æm.49

As indicated at the beginning of this section, scales are closely related to Suslin
trees. We have noted above that if A Ď ωω is α-Suslin then A is |α|-Suslin. Thus,
for the most part, we may restrict our attention to cardinals, and only infinite
cardinals are interesting. Suppose κ is an infinite cardinal. It is easy to use a
κ-semiscale on A to define a κ-Suslin tree for A, and vice versa. It is also easy to
use a κ-semiscale on A to define an excellent α-scale on A for some α such that
|α| “ κ. With a little more effort, we can show that α may be taken to be κ. Thus
we have the following theorem.

(5.131) Theorem [ZF] Suppose κ is an uncountable cardinal and A Ď ωω. Then
A is κ-Suslin iff A admits an excellent κ-scale.

Proof ÐÐÐ Since an excellent scale is a fortiori a semiscale, it suffices to define a
κ-Suslin tree from a κ-semiscale φ̄ on A. Let5.53

T “ T gr¨ φ̄ “ txx, φ̄xy¨ æm | x P A^m P ωu.

Then rT s “ gr¨ φ̄, so rT s¨ “ gr φ̄. Since φ̄ is a semiscale on A, p¨rT s “ prT s¨ “ A,
so T is a Suslin tree for A.

49This notion obviously does not generalize immediately to an arbitrary pointspace in place of
ωω.
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ÑÑÑ Suppose T is a sequence tree on ω ˆ κ such that A “ p¨rT s “ prT s¨.5.58.3 For
each x P A let fpxq be the lexicographically least branch of Trxs.5.121 It is easy to
show that f is a semiscale on A to κ; indeed, for this it suffices that fpxq be some
branch of Trxs, not necessarily the lexicographically least. (Since rT s is closed (in
ωpω ˆ κq), rT s¨ is closed (in ωω ˆ ωκ). Since gr f Ď rT s¨, gr f Ď rT s¨, so f is a
semiscale on A.)

To define an excellent scale on A we will make use of lexicographic orderings of
products of products of ordinals, in particular, of sets of the form mpκˆ ωq. Thus,
@

xαk, βky | k ă m
D

ă
@

xα1k, β
1
ky | k ă m

D

iff

1.
@

xαk, βky | k ă m
D

‰
@

xα1k, β
1
ky | k ă m

D

, and

2. letting k be least such that xαk, βky ‰ xα1k, β
1
ky, αk ă α1k or (αk “ α1k and

βk ă β1k).

The lexicographic ordering of finite products of wellordered sets is a wellorder. For
each m P ω, let Tm “ T X mpκ ˆ ωq, the mth level of T . Let λm : Tm

bij
Ñ αm be

the isomorphism of Tm, lexicographically ordered, with the ordinal αm which is the
length of this order. Let λ “

Ť

mPω λm.
To define an excellent scale φ̄ “ xφm | m P ωy on A, let

φmx “ λpxfpxq, xy¨ æmq.

Thus, φ̄ “ λ ˝
@

xfpxq, xy¨ æm
ˇ

ˇm P ω
D

.
Suppose xx, zy P gr φ̄. Then there exists w P ωκ such that z “ λ˝

@

xw, xy¨ æm
ˇ

ˇm P

ω
D

and xx,wy P gr f . Since f is a semiscale, x P A, so φ̄ is a semiscale. Also,
w P Trxs, so fpxq is lexicographically ď w, which implies that for each m P ω

φmx “ λpxfpxq, xy¨ æmq ď λpxw, xy¨ æmq

“ zpmq,

so φ̄ is a scale.
To show that φ̄ is a good scale, suppose xxn | n P ωy P ωA, and suppose

xφ̄xn | n P ωy converges. Then obviously xxn | n P ωy converges, so φ̄ is good. It is
also trivial to show that φ̄ is very good and excellent.

The only thing left to show is that T may be chosen so that imλ Ď κ, for then φ̄
is a κ-scale. Let S be a sequence tree on ωˆκ such that A “ p¨rSs, and suppose first
that cf κ ą ω. Let D be the set of xx,wy¨ such that x P A and w “ xαy ⌢ z, where
z P Srxs and @m P ω zpmq ă α. Let T “ TD “ txx,wy¨ æm | xx,wy¨ P D^m P ωu
be the corresponding sequence tree on ω ˆ κ. Since cf κ ą ω, A “ p¨rSs “ p¨rT s.
Since cf κ ą ω it is also true that for each α ă κ and m ą 0, |txs, uy¨ P Tm | up0q “
αu| ă κ, so its order type is ă κ, and the order type of Tm is κ. Thus, for each
m P ω, λm : Tm Ñ κ, so φ̄ is a κ-scale.

If cf κ “ ω a different trick must be used. Let xκn | n P ωy be an increasing
sequence of infinite cardinals ă κ that is cofinal in κ. Given z P ωκ, for each m P ω
let kzm be the least k P ω such that zpmq ă κk, and let uzm “ xk

z
m, 0, . . . , 0, zpmqy

be the pkm ` 2q-sequence beginning with kzm and ending with zpmq, with zeros in
between. Let wz “ uz0

⌢ uz1
⌢ ¨ ¨ ¨ . Now let D “ txx,wzy¨ | xx, zy¨ P rSsu, and let

T “ TD “ txx,wy¨ æm | xx,wy¨ P D^m P ωu. Clearly, for any x P ωω, any w P Trxs
is wz for some z P Srxs, so A “ p¨rSs “ p¨rT s. For any m P ω the cardinality of Tm
is ă κm, so its order type is ă κm. Thus, for each m P ω, λm : Tm Ñ κ, so φ̄ is a
κ-scale. 5.131
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The definability of scales is an important issue in descriptive set theory, closely
related to the definability of prewellorderings.5.108 We use the notation previously
established for norms,5.107.3 so that if φ : A Ñ Ord then ďφ and ăφ are the
corresponding prewellordering relations on A. As above, we may dispense with
norms in favor of their associated prewellorderings. Thus, by scale we may refer
directly to a sequence ď̄ “ xďn| n P ωy of prewellorders. (We could also refer to
ă̄ “ xăn| n P ωy, but keep in mind that the definability classifications of the weak
and strong orders typically differ.)

Definition [ZF] Suppose Γ is a recursively closed pointclass, A Ď ωω, and ď̄ “

xďn| n P ωy is a scale on A. ď̄ is a Γ-scale
def
ðñ there exist SΓ and SΓ̆ Ď ωˆωωˆωω

in Γ and Γ̆, respectively, such that for all x P A, x1 P ωω, and m P ω

x1 ďm xØxm,x1, xy P SΓØxm,x
1, xy P SΓ̆.

Definition [ZF] Suppose Γ is a recursively closed pointclass. Γ has the scale prop-

erty
def
ðñ for every A Ď ωω, if A P Γ then there exists a Γ-scale on A.

(5.132) Theorem [ZF] Suppose Γ is a recursively closed pointclass that is also
closed under ___, ^̂̂, DDD0, @@@0, and @@@1. If Γ has the scale property then Γ has the
uniformization property.5.111.4

Proof Suppose A Ď ωω ˆ ωω is in Γ and let φ̄ be a Γ-scale on A.5.127 Suppose φ̄ is
to κ, and for each m P ω let λm be the order-preserving bijection between mpκˆωq
and some ordinal ηm. Let ψm : AÑ ηm be such that

ψmxx, yy “ λm
`@

φ̄xx, yy, y
D¨
æm

˘

,

and let ψ̄ “ xψm | m P ωy.
Since φ̄ is a scale, ψ̄ is a scale, with sufficient “goodness” for the present purpose.

Let ďφm and ďψm be the respective prewellorderings of A associated with φm and
ψm, and let ď lexicographically order κ ˆ ω. Then for any xx, yy P A and any
xx1, y1y P ωω ˆ ωω,

xx1, y1y ďψm xx, yy

Ø@i ă m
`@

φ̄xx1, y1y, y1
D¨
æ i “

@

φ̄xx, yy, y
D¨
æ i

Ñ
@

φixx
1, y1y, y1piq

D

ď
@

φixx, yy, ypiq
D˘

Ø@i ă m
´

@j ă i
`

xx1, y1y ďφj xx, yy^xx, yy ď
φ
j xx

1, y1y^ y1pjq “ ypjq
˘

Ñ
`

xx1, y1y ďφi xx, yy^pxx, yy ď
φ
i xx

1, y1yÑ y1piq ď ypiqq
˘

¯

φ̄ is a Γ-scale on A, so let SΓ and SΓ̆ in Γ and Γ̆, respectively, be such that for all
xx, yy P A, xx1, y1y P ωω ˆ ωω, and m P ω

xx1, y1y ďφm xx, yyØxm,x
1, y1, x, yy P SΓØxm,x

1, y1, x, yy P SΓ̆.

Accordingly, let TΓ be the set of xm,x, y, x1, y1y such that

@i ă m
´

@j ă i
`

xj, x1, y1, x, yy P SΓ̆^xj, x, y, x
1, y1y P SΓ̆^ y

1pjq “ ypjq
˘

Ñ
`

xi, x1, y1, x, yy P SΓ^pxi, x, y, x
1, y1y P SΓ̆Ñ y1piq ď ypiqq

˘

¯

,
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and let TΓ̆ be the set of xm,x, y, x1, y1y such that

@i ă m
´

@j ă i
`

xj, x1, y1, x, yy P SΓ^xj, x, y, x
1, y1y P SΓ^ y

1pjq “ ypjq
˘

Ñ
`

xi, x1, y1, x, yy P SΓ̆^pxi, x, y, x
1, y1y P SΓÑ y1piq ď ypiqq

˘

¯

,

Then for all xx, yy P A, xx1, y1y P ωω ˆ ωω, and m P ω

xx1, y1y ďψm xx, yyØxm,x
1, y1, x, yy P TΓØxm,x

1, y1, x, yy P TΓ̆.

Since TΓ and TΓ̆ are in Γ and Γ̆, respectively, ψ̄ is a Γ-scale.
Let D “ txx, y, ψ̄xx, yyy¨ | xx, yy P Au, and let

U “ TD “ txx, y, ψ̄xx, yyy¨ æm | xx, yy P A^m P ωu.

For x P pA, let Cx “ txz, yy¨ | xx, y, zy¨ P rU su. Then Cx is closed. Let xzx, yxy¨ be
its lexicographically least member. Then xx, yx, zxy¨ P rU s “ D. Since ψ̄ is a scale,
xx, yxy P A and @m P ω ψmxx, y

xy ď zxpmq.
But zx is also the lexicographically least element of Cx,yx “ tz | xx, yx, zy¨ P

rU su. Since ψ̄xx, yxy is also in Cx,yx , zx “ ψ̄xx, yxy. Thus, xψ̄xx, yxy, yxy¨ is the lex-
icographically least element of Cx. In particular, if xx, yy P A then xψ̄xx, yxy, yxy¨ ď
xψ̄xx, yy, yy¨ lexicographically, which by the design of ψ̄ implies that @m P ω xx, yxy ďψm
xx, yy. Also by the design of ψ̄, this minimization property uniquely specifies yx in
ty | xx, yy P Au.

For each m P ω let ď˚m be derived from ďψm as in (5.107.3.2.1), i.e.,

xx, yy ď˚m xx
1, y1yØxx, yy P A^

`

xx1, y1y R A_xx, yy ďψm xx
1, y1y

˘

.

Then5.110

(5.133)
xx, yy ď˚m xx1, y1yØxx, yy P A^

`

xm,x, y, x1, y1y P TΓ_xm,x
1, y1, x, yy R TΓ̆

˘

.

Let B “ txx, yy | @y1 P ωω @m P ω xx, yy ď˚m xx, y
1yu. Then

1. B is in Γ;5.133

2. B Ď A; and

3. for all x P pA, yx is the unique y P ωω such that xx, yy P B.

Thus B uniformizes A. 5.132

(5.134) Theorem (Novikov-Kondo-Addison) [ZF ` ACωpRq] For any z P ωω,
Π1

1pzq has the scale property. Hence, Π1
1pzq has the uniformization property. It

follows that Π1
1 has the scale and uniformization properties.

Proof We will prove the theorem for Π1
1. The proof generalizes immediately to

Π1
1pzq for any z P ωω, and accordingly to Π1

1. We have already seen how to define a
Π1

1-prewellordering for a Π1
1 set A Ď ωω, using a recursive sequence tree T on ωˆω

such that A “ ␣ p¨rT s “ tx P ωω | Trxs is wellfoundedu. For the nonce, for x P ωω
and s P ăωω, let3.183.2.1.1

Tx,s
def
“ pTrxsqs “ tt P

ăωω | s ⌢ t P Trxsu.
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Thus, Tx,s is Trxs below s if s P Trxs; otherwise 0. If x P A then Tx,s is a wellfounded
tree—possibly empty, and certainly empty if s R Trxs. If s P Trxs then the rank
rkTx,s of Tx,s is the rank rkTrxs s of s in Trxs.

Recall5.123 the fixed recursive enumeration s of ăωω. Given x P A and m P ω,
let

φmx “ rkTx,spmq,

and let φ̄ “ xφm | m P ωy. For each m P ω, φm : A Ñ ω1. The proof of the
prewellordering property of Π1

1 shows that the norms φm are uniformly Π1
1, so if φ̄

is a scale it is a Π1
1-scale.

Let S “ T gr¨ φ̄ “ txx, φ̄xy¨ æm | x P A^m P ωu. Then rSs¨ “ gr φ̄, the closure
of the graph of φ̄. Suppose xx, zy¨ P rSs. To show that φ̄ is a scale we must show
that

1. x P A; and

2. @m P ω φmx ď zpmq.

Let f “ z ˝ s´1 æTrxs. Then f : Trxs Ñ ω1, and for each m P ω

sm P TrxsÑ fpsmq “ zpmq.

(5.135) Claim f is order-preserving.

Proof Suppose sm Ď sm1 P Trxs. Then5.124 m ď m1. Let n “ |sm1 | ` 1, and let
x1 P A be such that x1 æn “ x æn and pφ̄x1q æn “ z æn. Then

fpsmq “ zpmq “ φmx
1 “ rkTrx1s sm ě rkTrx1s sm1 “ φm1x1 “ zpm1q “ fpsm1q.

5.135

Since f is order-preserving,5.135 Trxs is wellfounded, so x P A. For any s P Trxs

fpsq ě rkTrxs s “ rkTx,s,

so for any m P ω

1. if sm P Trxs then zpmq “ fpsmq ě rkTx,sm
“ φmx; and

2. if sm R Trxs then zpmq ě 0 “ rkTx,sm “ φmx.

We have shown, therefore, that φ̄ is a scale on A, and—as noted above—it is
a Π1

1-scale. Thus, Π1
1 has the scale property. Since Π1

1 has the closure properties
required by (5.132), Π1

1 has the uniformization property. 5.134

5.5 Perfect sets

Definition [ZF] Suppose X is a topological space and A Ď X.

1. Suppose a P X. a is an isolated point of A
def
ðñ a P A and a R pAztauq. In

other words, a P A and there is a neighborhood N of a such that N XA “ tau.

2. A is perfect
def
ðñ A is nonempty and closed and has no isolated points.
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(5.136) Theorem [ZF] Suppose X is a Polish space and A Ď X is perfect. Then
there exists B Ď A such that B is homeomorphic to ω2.

Proof Let ρ be a metric for X. Let xdn | n P ωy enumerate a dense set D Ď X.
We will define f : ăω2 Ñ D and g : ăω2 Ñ p0,8q such that for all s P ăω2,

1. gs ď 1{p|s| ` 1q;

2. Bpf s, gsq XA ‰ 0; and

3. Cpf s1, gs1q, Cpf s2, gs2q Ď Cpf s, gsq and Cpf s1, gs1qXCpf s2, gs2q “ 0, where
s1 “ s ⌢x0y and s2 “ s ⌢x1y.

To begin, let g0 “ 1. Let a be an arbitrary point in A. Let n P ω be least such
that dn P Bpa, 1qXD, and let f 0 “ dn. Now suppose f s and gs have been defined.
Since A is perfect, for any a P A X Bpf s, gsq there exists a1 P A X Bpf s, gsqztau.
Thus, since AXBpf s, gsq ‰ 0, there exist a, a1 P AXBpf s, gsq with a ‰ a1.

There exists N P ω such that N ą 1{pgsq, N ą 1{ρpa, a1q, and Cpa, 1{Nq,
Cpa1, 1{Nq Ď Cpf s, gsq. For any such N , there exist d, d1 P D such that d P
Bpa, 1{4Nq and d1 P Bpa1, 1{4Nq. For any such d and d1, a P Bpd, 1{4Nq and a1 P
Bpd1, 1{4Nq, so Bpd, 1{4Nq and Bpd1, 1{4Nq both meet A, Cpd, 1{4Nq Ď Cpfs, gsq,
Cpd1, 1{4Nq Ď Cpfs, gsq, and Cpd, 1{4Nq X Cpd1, 1{4Nq “ 0.

Thus there exist N,n, n1 P ω such that

(5.137) N ą 1{gs; Bpdn, 1{Nq and Bpdn1 , 1{Nq both meet A; Cpdn, 1{Nq Ď
Cpfs, gsq; Cpdn1 , 1{Nq Ď Cpfs, gsq; and Cpdn, 1{Nq X Cpdn1 , 1{Nq “ 0.

Let N P ω be least such that there exist n, n1 P ω such that (5.137) holds; then let
n P ω be least such that there exists n1 P ω such that (5.137) holds; and then let
n1 P ω be least such that (5.137) holds. Let fps ⌢x0yq “ dn, fps ⌢x1yq “ dn1 , and
gps ⌢x0yq “ gps ⌢x1yq “ 1{N . This completes the definition of f and g.

Given x P ω2, xfpx ænq | n P ωy is a Cauchy sequence. Let fx “ limnÑ8 fpx ænq.
Note that

Ş

nPω Cpfpx ænq, gpx ænqq “ tfxu. It is easy to see that fx P A, for if
it is not, then since A is closed, there is a neighborhood N of fx disjoint from A;
however, for sufficiently large n P ω, Bpfpx ænq, gpx ænqq Ď N , which contradicts
the fact that Bpfpx ænq, gpx ænqq meets A.

f is clearly injective and continuous. Let B “ im f . It is easy to see that f´1

is continuous on B, so f is a homeomorphism of ω2 with B.50 5.136

(5.138) Theorem (Cantor-Bendixson) [ZF] Suppose X is a Polish space, and
F Ď X is closed and uncountable. Then F “ P Y C, where P is perfect and C is
countable.

Proof For any A Ď X, let Ai be the set of isolated points of A. For each x P Ai

there exists n P ω such that Bpx, 1{nqXA “ txu. Let nx be the least such n. Then
AzAi “ Az

Ť

xPAi Bpx, 1{nxq, so if A is closed then AzAi is also closed. Define an
ordinal-indexed sequence xFα | α ď ηy as follows.

1. F0 “ F .

2. If F iα ‰ 0, let Fα`1 “ FαzF
i
α; otherwise the construction terminates, and

η “ α.
50Note that we have avoided any use of Choice.
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3. If α is a limit ordinal, let Fα “
Ş

βPα Fβ .

By induction on α, Fα is closed for all α. This is a strictly decreasing sequence of
sets, so the construction must eventually terminate. This can only happen by virtue
of Clause 2, at which point Fα is a closed set with no isolated points (F iα “ 0), and
we have set η “ α. Let P “ Fη and let C “

Ť

αăη F
i
α.

F “ P Y C, and F is assumed to be uncountable, so if C is countable, then
P is nonempty, hence perfect, and we have the desired decomposition. To show
that C is countable, let D Ď X be a countable dense set. Let xBn | n P ωy
enumerate the (countable) set B of open balls tBpd, 1{mq | d P D^m P ωzt0uu.
Given a set A Ď X and x P Ai, there exists m P ω such that Bpx, 1{mq XA “ txu.
Since D is dense, there exists d P D X Bpx, 1{2mq. Note that Bpd, 1{2mq P B and
Bpd, 1{2mq X A “ txu. For any set A and x P Ai, let BAx “ Bn, where n is least
such that Bn XA “ txu. Note that if x, x1 P Ai and x ‰ x1 then BAx ‰ BAx1 .

We now define f : C Ñ B as follows. Given x P C there is a unique α ă η such
that x P F iα. Let fpxq “ BFα

x . It is straightforward to check that f is injective.
Since B is countable, C is countable. 5.138

If we are willing to use a little bit of Choice, a simpler proof of (5.138) may be
formulated by defining C to be the set of x P F such that some neighborhood of x
has countable intersection with F . Since X is second countable, C is a countable
union of countable sets. Assuming ACω, C is countable; and F zC is now easily seen
to be perfect.

By (5.136) and (5.81) a perfect subset of a Polish space has cardinality 2ω, so
Theorem 5.138 implies that a closed subset of a Polish space either is countable
or has cardinality 2ω. Thus, any counterexample to the continuum hypothesis,
i.e., any subset of R with cardinality strictly intermediate between that of N and
that of R, cannot be a closed set. This result offered some encouragement that a
proof along these lines might be found of the continuum hypothesis. The following
theorem shows that this will not work.

(5.139) Theorem [ZFC] Suppose X is an uncountable Polish space. There exists
an uncountable A Ď X such that A does not have a perfect subset.

Proof By the preceding remarks, |X| “ 2ω. Let C be the set of closed subsets of
X. We will show that |C| “ 2ω. Since every singleton txu is closed, |C| ě 2ω, so it
suffices to show that |C| ď 2ω. Let D be a countable dense subset of X. The set B
of open balls Bpd, 1{nq, with d P D and n P ωzt0u, is countable, and is a base for
the topology on X. The map that takes a closed set F to the set of members of B
that are included in XzF (which is open) is an injection of C into PB, so |C| ď 2ω.

Let xCα | α P 2ωy enumerate C. (Note that 2ω is the cardinal, i.e., initial
ordinal,3.124.3 equipollent with ω2.) Let ă be a wellordering of X with length 2ω.
Note that the set of ă-predecessors of any x P X has cardinality less than 2ω. For
α ă 2ω, define xα and yα recursively as follows. Let xα be the ă-least x P X such
that @β ă α px ‰ xβ ^x ‰ yβq. Let yα be the ă-least y P X such that if Cα is
perfect then y P Cαztxβ | β ď αu. Since every perfect set has cardinality 2ω, this
construction can be carried out for 2ω steps.

Let A “ txα | α P ηu and B “ tyα | α P ηu. Then |A| “ 2ω and AX B “ 0, so
A does not include any perfect set. 5.139

Note that the wellorderings of X and the class C of closed sets in the proof
of (5.139) are not defined ; they are simply asserted to exist by AC, so the set A
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is likewise not defined. The extent to which (5.138) holds for definable sets is an
important topic in descriptive set theory.

In this context the following definition is convenient.

Definition [ZF] Suppose X is a Polish space and A Ď X. A has the perfect set

property
def
ðñ A is countable or includes a perfect set.

In Theorem 5.183 we show that every analytic set has the perfect set property.

5.6 Category

Definition [ZF] Suppose X is a topological space and A,B Ď X. Recall that A is
dense iff every nonempty open G Ď X meets A.

1. A is dense in B
def
ðñ AXB is a dense subset of B in the sense of the relative

topology on B, i.e., for every open set G Ď X, if GXB ‰ 0 then GXBXA ‰ 0.

2. A is nowhere dense
def
ðñ it is not dense in any nonempty open set, i.e., every

nonempty open G has a nonempty open subset G1 such that G1 XA “ 0.

We make frequent use of the obvious facts that if A is dense and B Ě A then B is
dense, and if A is nowhere dense and B Ď A, then B is nowhere dense.

(5.140) Theorem [ZF] Suppose X is a topological space and A Ď X.

1. If A is nowhere dense then A is nowhere dense.

2. Suppose A is closed. Then A is nowhere dense iff XzA is dense.

3. A is nowhere dense iff XzA includes an open dense set.

Proof 1 Suppose A is nowhere dense. To show that A is nowhere dense, suppose
G Ď X is nonempty and open. Then there exists a nonempty open G1 Ď G such
that G1 X A “ 0, whence G1 X A “ 0, since A is (by one version of its definition)
the complement of the union of all open sets disjoint from A.

2 Straightforward.

3 Straightforward combining (1) and (2). 5.140

Note that the complementary notion to ‘nowhere dense’ is ‘includes an open
dense’, while the complementary notion to ‘open dense’ is ‘closed and nowhere
dense’.

A subset of X that is both open and dense comprises—in a sense—almost all of
X. For example, the intersection of finitely many open dense sets is itself open and
dense. The same cannot be said for arbitrary intersections of open dense sets. For
suppose X is such that Ax “ Xztxu is open and dense for any x P X, which is true
for any perfect Polish space (e.g., ωω or ω2). Then for any A Ď X, A “

Ş

xRAAx,
so A is an intersection of open dense sets.

Note that this typically represents A as an intersection of uncountably many
open dense sets. The interesting question is therefore: What about countable
intersections of open dense sets? For starters we observe that we should not expect
such an intersection to be open. The class of open sets is required by definition to
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be closed under finite intersections, but it is not generally closed under countable
intersections. The important question is: Must every countable intersection of open
dense sets be dense? As it happens, the answer is affirmative for certain important
classes of topological spaces, which include many of those with which we will have
to do. In particular, we have the following theorem proved by René Baire in his
doctoral thesis[1].

(5.141) Baire category theorem (for Polish spaces) [ZF] Suppose X is Polish
space. Then the intersection of a countable set of open dense sets is dense. Equi-
valently, the complement of the union of a countable set of nowhere dense sets is
dense; or, a nonempty open set is not the union of a countable set of nowhere dense
sets.

Remark The Baire category theorem per se assumes that the space X is either
a complete metric space (not necessarily separable) or a locally compact Hausdorff
space. Its proof uses AC. In this section we are concerned primarily with Polish
spaces, i.e., separable completely metrizable spaces. For these the Baire category
theorem does not require any Choice, and ACωpRq suffices for the rest of this section,
with the notable exception of Vitali’s theorem.5.150

Proof Suppose X is a separable complete metric space. Let

(5.142) xam | m P ωy

enumerate a dense subset S of X. Suppose xGn | n P ωy is sequence of open dense
sets in X, and let G be a non-empty open set. We must show that GX

Ş

nPω Gn ‰ 0.
To this end we generate recursively sequences xxn | n P ωy and xNn | n P ωy, such
that

1. for each n P ω,

1. xn P S;

2. n ă Nn ă ω; and

3. Cpxn`1, 1{Nn`1q Ď Bpxn, 1{Nnq XGn; and

2. Bpx0, 1{N0q Ď G.

Since G is open and nonempty, and S is dense, we may let x0 be the first member
of SXG in the given enumeration5.142 of S, and let N0 be the least positive integer
N such that Bpx0, 1{Nq Ď G.

Now suppose xn and Nn have been generated. Since Gn is open and dense,
Bpxn, 1{Nnq X Gn is open and non-empty. Let xn`1 be the first member of S X
Bpxn, 1{NnqXGn in the given enumeration of S, and let Nn`1 be the least integer
N ą n` 1 such that Cpxn`1, 1{Nq Ď Bpxn, 1{Nnq XGn.

By construction, if m ă n ă ω then xn P Bpxm, 1{Nmq, so dpxm, xnq ă 1{Nm ă
1{pm` 1q. xxn | n P ωy is therefore a Cauchy sequence. Let x “ limnÑ8 xn. Since
the Cpxn, 1{Nnq’s are nested and closed, x is in all of them, so x P G X

Ş

nPω Gn.
5.141

Baire’s theorem5.141 suggests the following definition.

(5.143) Definition [ZF] Suppose X is a topological space.
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1. X has the Baire property or is Baire
def
ðñ the intersection of any countable

set of open dense subsets of X is dense, i.e., X satisfies Baire’s theorem.5.141

2. Suppose A Ď X.

1. A is of first category or meager
def
ðñ A is a union of countable many

nowhere dense sets; equivalently, XzA includes an intersection of count-
ably many open dense sets.

2. A is of second category or nonmeager
def
ðñ A is not meager.

3. A is residual or comeager
def
ðñ XzA is meager, i.e., A includes an inter-

section of countably many open dense sets.

4. mX def
“ the set of meager subsets of X.

The notion of category is of interest mainly for Baire spaces.

(5.144) Theorem [ZF] Suppose X is a Baire space. mX is an ideal in the boolean
algebra PX of subsets of X.

Proof Clearly 0 P mX , and for any A,B P PX,

1. A P mX ^B Ď AÑB P mX ; and

2. A,B P mXÑAYB P mX .

Since X is Baire, a comeager set cannot be empty, so a comeager set cannot be
meager; hence, X R mX , so mX is an ideal in PX. 5.144

The following terminology is useful.

Definition [ZF] In the context of Baire category we use almost all or almost every
to refer to the elements of a comeager set.

Thus, for example, when we say that something is true for almost all x P X, we
mean that the set of x for which it is true is comeager. We may also say that the
statement is true almost everywhere.

Definition [ZF] Sets A,B Ď X are almost equal iff for almost all x, x P A ðñ

x P B, i.e., the symmetric difference A△B “ pAzBq Y pBzAq is meager. We also
say that such sets are categorically equivalent.

Since A△C Ď pA△BqYpB△Cq, categorical equivalence is an equivalence relation.

(5.145) Theorem [ZF] Suppose X is a topological space and A Ď X.

1. If A is open then pAqzA is nowhere dense.

2. Complementarily, if A is closed then Az intA is nowhere dense.

Hence, any open (closed) set is categorically equivalent to its closure (interior).

Proof Straightforward. 5.145

It follows from (5.145) that any subset of X that is categorically equivalent to
an open set is categorically equivalent to a closed set, and vice versa.
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Definition [ZF] Suppose X is a topological space and A Ď X. A has the Baire

property or is Baire
def
ðñ A is categorically equivalent to an open set. BaireX

def
“ the set of Baire subsets of X.

As stated in the remark following Theorem 5.141 we largely restrict our attention
to Polish spaces in this chapter, in which setting we may usually restrict our use of
Choice to ACωpRq. Some of the theorems that follow are provable for larger classes
of spaces, with correspondingly stronger choice principles.

(5.146) Theorem [ZF` ACωpRq] Suppose X is a Polish space. A countable union
of meager sets is meager.

Proof Given meager sets An Ď X (n P ω), we use ACωpRq with Borel codes5.91 to
choose for each n P ω a countable set Sn of nowhere dense closed sets such that
An Ď

Ť

Sn. Let S “
Ť

tSn | n P ωu, and use ACωpRq again to show that S is
countable.51 Since

Ť

tAn | n P ωu Ď
Ť

S,
Ť

tAn | n P ωu is meager. 5.146

(5.147) Theorem [ZF` ACωpRq] Suppose X is a Polish space.

1. X is Baire.

2. BaireX contains all open and all closed subsets of X.

3. BaireX is closed under complementation, countable union, and countable in-
tersection.

4. Hence BorelX Ď BaireX .

Proof 1 The Baire category theorem for Polish spaces.5.141 5.147.1

2 By definition every open set is Baire. By (5.145) every closed set is Baire. 5.147.2

3 Since categorical equivalence is an equivalence relation, it follows that if A is
Baire then XzA is Baire.

Suppose for each n P ω, An is Baire. Using ACωpRq with a coding of open
sets by reals, for each n P ω, let Gn be open such that An △ Gn is meager. Then
p
Ť

nPω Anq△ p
Ť

nPω Gnq Ď
Ť

nPωpAn △Gnq is meager,5.146 so
Ť

nPω An is Baire.
Similarly,

Ş

nPω An is Baire. We can prove this directly by using closed sets Fn
in place of the open sets Gn above, or we can use the closure of the set of Baire
sets under complementation. 5.147.3

4 Immediate. 5.147.4 5.147

Like BorelX , therefore, BaireX is a σ-algebra. Note that modulo the ideal of
meager sets, Baire and Borel coincide, because every element of Baire is categor-
ically equivalent to an open set.

51Borel codes are reals. Countable sets of closed sets are coded by reals using a bijection of
ωpωωq with ωω. The union of a countable set of countable sets Sn (n P ω) of closed sets is shown
to be countable by using ACωpRq to choose an enumeration of each Sn (via codes) and combining
these into an enumeration of

Ť

tSn | n P ωu using a bijection of 2ω with ω.
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(5.148) Theorem [ZF`ACωpRq] Suppose X is a Polish space. Let Borel “ BorelX

and m “ mX XBorelX , the ideal of meager sets in Borel.

1. Borel{m is countably complete.

2. Borel{m has a countable dense subset.

3. Borel{m is countably saturated.

4. Borel{m is complete.

Proof For each B P Borel, rBs def
“ rBsm

def
“ B ` m

def
“ the m-equivalence class of

B.

1 We must show that every countable subset of Borel{m has a least upper bound
in Borel{m. Suppose xbn | n P ωy P ωpBorel{mq. Use ACωpRq to infer the existence
of a sequence xcn | n P ωy of Borel codes5.91 such that @n P ω rBcn

s “ bn.52

For each n P ω, let Bn “ Bcn . Let B “
Ť

nPω Bn, and let b “ rBs. Clearly,
@n P ω bn ď b. Suppose b1 P Borel{m is such that @n P ω bn ď b1. We must show
that b ď b1. To this end, let B1 be Borel such that rB1s “ b1. Then for each n P ω,
BnzB

1 is meager. Hence, BzB1 “
`
Ť

nPω Bn
˘

zB1 “
Ť

nPωpBnzB
1q is meager,5.146 so

b “ rBs ď rB1s “ b1. 5.148.1

2 To obtain a countable dense subset of Borel{m, let G be a countable base for
the X-topology.5.85.4 Let D “ trGs | G P Gu. D is countable. By convention, 0 R G,
so 0 R D. Suppose b P Borel{m and b ‰ 0. Let B be an open set in b. Then B ‰ 0,
so for some G P G, G Ď B. Let d “ rGs. Then d P D and d ď b. So D is dense.

5.148.2

3 Any boolean algebra B with a countable dense set D is countably saturated.
To prove this, note that any enumeration xdα | α ă κy of D, where κ is either a
finite ordinal or ω, yields a wellordering ă of D. Suppose B Ď B is an antichain
(of nonzero elements). For each b P B let db be the ă-first d P D such that d ď b.
Note that b ‰ b1Ñ db ‰ db1 . Hence b ÞÑ db is an injection of B into D. Hence B is
countable. 5.148.3

4 This follows from (5.148.1, 2). Suppose B is a countably complete boolean
algebra with a countable dense subset D. Suppose B Ď B. Let D1 “ td P D | Db P
B d ď bu. Let c “

Ž

D1, which exists since D1 is countable and B is countably
complete. It is straightforward to show that c is the supremum of B. 5.148

5.6.1 Category in product spaces

Suppose X and Y are topological spaces. It is natural to inquire as to the relation-
ship between category-theoretical properties of subsets of the product space XˆY
and related subsets of X and Y . The following theorem is fundamental in this
regard.

52Of course, we do not need the full machinery of Borel codes, since every element of Borel{m
has an open (also a closed) representative.
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(5.149) Theorem: Kuratowski-Ulam (for Polish spaces) [ZF`ACωpRq] Sup-
pose X and Y are Polish spaces. Let X ˆY be given the product topology. Suppose
A Ď X ˆ Y . For x P X, let Ax

def
“ ty P Y | xx, yy P Au.

1. If A is meager then Ax is meager for almost every x P X.

2. If A has the Baire property then Ax has the Baire property for almost every
x P X.

3. If A has the Baire property and Ax is meager for almost every x P X then A
is meager.

Thus, if A has the Baire property then Ax has the Baire property for almost every
x P X and A is meager iff Ax is meager for almost every x P X.

Proof 1 First suppose G Ď X ˆY is open and dense. Let S be a countable base
for the topology on Y , and for each D P S, let GD “ tx P X | Dy P D xx, yy P Gu.
Clearly, each GD is open and dense. Let H “

Ş

DPS G
D. Then H is comeager, and

for any x P H, Gx is an open dense subset of Y .
Now supposeA Ď XˆY is meager, and let xGn | n P ωy be such thatGn Ď XˆY

is open and dense for each n P ω, and AX
Ş

nPω G
n “ 0. For each n P ω, let Hn be

defined for Gn as H was defined for G in the preceding paragraph. Thus, each Hn

is comeager, and for all x P Hn, Gnx is open dense. Let H “
Ş

nPωH
n. Then H is

comeager,53 and for any x P H,
`
Ş

nPω G
n
˘

x
is comeager, so Ax is meager. 5.149.1

2 Suppose A Ď XˆY has the Baire property, and letG,D Ď XˆY be respectively
open and meager such that A△ G “ D. For every x P X, Ax △ Gx “ Dx. For
every x P X, Gx is open, and for almost every x P X, Dx is meager;5.149.1 hence, for
almost every x P X, Ax has the Baire property. 5.149.2

3 Suppose A Ď X ˆ Y has the Baire property and Ax is meager for almost every
x P X. Let G,D Ď X ˆ Y be respectively open and meager such that A△G “ D.
For any x P X, Ax △ Gx “ Dx and Gx is open. By hypothesis, for almost every
x P X, Ax is meager, and by (5.149.1), for almost every x P X, Dx is meager.
Hence, for almost every x P X, Gx “ 0. Since the set of x P X such that Gx ‰ 0 is
open, it is empty, so G is empty, and A is therefore meager. 5.149

(5.150) Theorem [ZFC] There is a set V Ď R that does not have the Baire property.

Remark The construction in this proof is due to Vitali, and the set V constructed
in this way is referred to as a (or, informally, the) Vitali set.

Since the set Q of rational numbers is countable, it is meager as a subset of R.
Hence, V zQ is a subset of RzQ that is not Baire. Since ωω is homeomorphic to
RzQ, there is a subset of ωω that does not have the Baire property.

Proof Let M Ď R be maximal such that for every pair x, y of distinct members of
M , x ´ y R Q. (Use AC in the form of Zorn’s lemma, for example.) For a P R, let
Ma “ tx ` a | x P Mu, the translate of M by a. Note that if a, a1 P Q and a ‰ a1

53Recall5.146 that ACωpRq implies that the set of comeager sets is closed under countable inter-
section.
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then Ma XMa1 “ 0, and R “
Ť

aPQ Ma. Since Q is countable, for some a P Q, Ma

is not meager. Let V “Ma.
Suppose V has the Baire property. Let G be open such that G△ V is meager.

Then G is nonempty and GzV is meager. Let b ă c P R be such that pb, cq Ď G.
Let q ă c ´ b be a positive rational. Let G1 “ tx ` q | x P Gu, and V 1 “
tx ` q | x P V u “ Ma`q. As noted above, V X V 1 “ 0. Since the translation map
x ÞÑ x` q is a homeomorphism, G1zV 1 is meager. Note that pb` q, c` qq Ď G1, and
b ă b` q ă c ă c` q, so I “ pb` q, cq is a nonempty open interval and I Ď GXG1.
Thus, IzV and IzV 1 are meager. But since V X V 1 “ 0, pIzV q Y pIzV 1q “ I, which
violates Baire’s theorem. Hence V does not have the Baire property. 5.150

Like (5.139), Theorem 5.150 does not provide a definition of a non-Baire set,
it simply shows that if the axiom of choice is true, then one exists. The extent to
which definable sets have the Baire property is an important issue in descriptive set
theory. In Theorem 5.181 we show that every analytic set has the Baire property.

5.7 Measure

As originally defined by Lebesgue, measure applied to subsets of Rn, and this
context is most important for our present purpose. For notational uniformity, we
will deal with nR, the set of n-sequences of reals, rather than Rn, the set of n-tuples
of reals. We are also interested in measure theory on the Cantor space ω2. Hence,
we will give a treatment of measure that is sufficiently general to encompass both
these examples, and we will use these as examples to illustrate the general theory.

We are not here interested in the use of measure to define a general notion of
integration as in analysis. Indeed, for the purpose of descriptive set theory we are
primarily interested in the mere fact of measurability of sets of reals as it relates to
their definability, and that will be the focus of this discussion.

The reader is probably familiar with the informal use of ‘8’ to indicate a quasi-
number that is greater than all ordinary numbers. For the purposes of measure
theory, we use 8 as an extension to the set of nonnegative real numbers. This
leads to the familiar notation ‘r0,8q’ for the set of nonnegative real numbers, and
to the notation ‘r0,8s’ for the extended system. For the purposes of measure
theory, we are concerned with the topology, the order relation, and the addition
operation on r0,8s. We are not concerned with multiplication. The rules relevant
to 8 in this context are as follows:

(5.151) Suppose a is a nonnegative real number.

1. a ă 8. Hence

1. pa,8q “ tb P R | a ă bu;
2. ra,8q “ tb P R | a ď bu;
3. pa,8s “ pa,8q Y t8u; and
4. ra,8s “ ra,8q Y t8u.

2. a`8 “ 8` a “ 8`8 “ 8.

3. tpa,8s | a P r0,8qu is a neighborhood base for 8. Hence, ‘limxÑ8’ has the
familiar meaning.

4. Consequently, if I is an arbitrary index set, @i P I xi P r0,8s, and y P r0,8s,
then

ř

iPI xi “ y iff
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1. for every finite I 1 Ď I,
ř

iPI1 xi ď y, and
2. for every y1 ă y there exists a finite I 1 Ď I such that

ř

iPI1 xi ą y1.

In the context of (5.151.4) it is easy to see that if xi “ 8 for some i P I, or ti P I |
xi ą 0u is uncountable, then

ř

iPI xi “ 8. Clearly, if xi “ 0 then it may be omitted
without altering the sum. The interesting sums are therefore of the form

ř

iPω xi,
where xi P r0,8q, and for these the usual rule applies:

ř

iPω xi “ supnPω
řn
i“0 xi.

In the following discussion Ω is an arbitrary nonempty set, of which nR and ω2
are our standard examples. We will be concerned with subsets of Ω, i.e., elements
of the powerset PΩ. Note that PΩ is a complete boolean algebra with the usual
identifications:

1. A_B “ AYB;

2. A^B “ AXB;

3. ␣A “ ΩzA.

(5.152) Definition [ZF]

1. Suppose A,B P PΩ, and A Ď PΩ.

1. A\B def
“ AYB if AXB “ 0; otherwise it is undefined.

2. Similarly,
Ů

A def
“

Ť

A if the members of A are pairwise disjoint; other-
wise it is undefined.

We regard any assertion in which ‘\’ or ‘
Ů

’ occurs as including the assertion
of pairwise disjointness involved in its definition.

2. S Ď PΩ is a semiring on Ω
def
ðñ

1. 0 P S; and
2. for all A,B P S

1. AXB P S; and
2. there exists a finite A Ď S such that AzB “

Ů

A.

3. R Ď PΩ is a ring on Ω
def
ðñ

1. 0 P R; and
2. for all A,B P R

1. AYB P R; and
2. AzB P R.

Note that AXB “ AzpAzBq, so a ring is closed under intersection.

4. A Ď PΩ is an algebra on Ω iff A is a ring and Ω P A, so A is closed under
complementation (relative to Ω).

5. We use ‘σ’ as a general indicator of countability. A σ-ring def
“ a ring closed

under countable unions, and a σ-algebra def
“ an algebra closed under count-

able unions. Note that a σ-ring is also closed under countable intersections:
Ş

nPω An “ A0z
Ť

nPωpA0zAnq.

6. Suppose A Ď PΩ and 0 P A. µ is a measure on A def
ðñ
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1. µ : AÑ r0,8s;
2. µ0 “ 0; and
3. (Additivity) If An, n P ω are disjoint members of A and

Ť

nPω An P A,
then µ

Ť

nPω An “
ř

nPω µAn.

7. µ is an outer measure on Ω
def
ðñ

1. µ0 “ 0;
2. (Monotonicity) If A,B P PΩ and A Ď B then µA ď µB;
3. (Subadditivity) If An P PΩ for each n P ω then µ

Ť

nPω An ď
ř

nPω µAn.

(5.153) Examples

1 The set of intervals txx0, . . . , xn-y P nR | @m P n am ď x ă bmu, where xam |

m P ny, xbm | m P ny P nR, is a semiring on nR.54

Lebesgue measure is obtained by setting µtxx0, . . . , xn-y P nR | @m P n am ď x ă
bmu “

ś

mPnpbm ´ amq, assuming @m P n am ď bm.

2 The set of intervals Is “ tx P ω2 | s Ď xu, where s P ăω2, is a semiring on ω2.55

The uniform measure on ω2 is obtained by setting µIs “ 2´|s|.

5.7.1 Extending a measure to a σ-algebra

The next two theorems show how to extend a measure µ on a semiring S to a
measure on a σ-algebra that includes S. There are several ways to do this. In the
approach given here we first define µ2 as the unique extension of µ to the set C
of disjoint unions of members of S by the prescription (5.152.6.3). Although C is
not a σ-algebra, we show that µ2 has certain properties, viz., (5.154.5.1, 2, 3), that
are common to all measures on σ-algebras. We then define the outer measure µ˚

determined by µ, which may also be characterized in terms of µ2, and the set M
of sets to which µ˚ naturally assigns a measure (i.e., a measure per se, not just an
outer measure). As a convenience, we make the assumption of σ-finiteness, which
holds in all cases of interest to us, and this implies that M is not empty, and in
fact M Ě S. We conclude by using the properties (5.154.5.1, 2, 3) to show that M
is a σ-algebra.

(5.154) Theorem [ZF] Suppose S is a semiring on Ω and ACωp
ωSq. Let R be the

set of finite disjoint unions of members of S. Let C be the set of countable disjoint
unions of members of S. Suppose µ is a measure on S.

1. R is the smallest ring that includes S, i.e., the ring generated by S.

2. µ extends uniquely to a measure µ1 on R.

3. C is the smallest set that includes S and is closed under countable union.
54The essential observation is that ra, bq is the disjoint union of ra, cq and rc, bq for a ă c ă b,

so if am ă c ă bm, then txx0, . . . , xn-y P nR | @m P n am ď x ă bmu is the disjoint union of
txx0, . . . , xn-y P nR | @m P n am ď x ă b1

mu and txx0, . . . , xn-y P nR | @m P n a1
m ď x ă bmu,

where for m1 ‰ m, a1
m1 “ am1 and b1

m1 “ bm1 , whereas a1
m “ b1

m “ c. The difference of
two intervals may clearly be represented as the disjoint union of subintervals of the first interval
obtained by iteration of the above dissection with appropriate intermediate points.

55The essential observation here is that Is is the disjoint union of Is ⌢x0y and Is ⌢x1y.
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4. C is closed under (finite) intersection.56

5. µ extends uniquely to a measure µ2 on C. µ2 has the following properties.

1. (Monotonicity) For any C,D P C, if C Ď D then µ2C ď µ2D.
2. (Subadditivity) For any C P C, if C “

Ť

nPω Cn with Cn P C for each
n P ω, then µ2C ď

ř

nPω µ2Cn.
3. (Downward continuity) Suppose C,C0, C1, . . . are members of C, @n P
ω Cn Ě Cn`1, µ2C0 ă 8, and

Ş

nPω Cn Ď C. Then limnÑ8 µ2Cn ď µ2C.

Proof See Note 10.16.

(5.155) Definition [ZF] Suppose S is a semiring on Ω and µ is a measure on
S.

1. For any A Ď Ω, µ˚A def
“ the infimum of sums

ř

nPω µSn, where Sn P S for all
n P ω, and A Ď

Ť

nPω Sn.

2. A Ď Ω is µ-null
def
ðñ µ˚A “ 0, i.e., for all ε ą 0 there exist Sn P S, n P ω,

such that A Ď
Ť

nPω Sn and
ř

nPω µSn ă ε.

3. A Ď Ω is µ-measurable
def
ðñ for all ε ą 0, there exist Sn, Tn P S pn P ωq such

that

1. A Ď
Ť

nPω Sn;
2. ΩzA Ď

Ť

nPω Tn; and
3.

ř

m,nPω µpSm X Tnq ă ε.

4. Mµ def
“ the set of µ-measurable sets.

5. For A P Mµ, µ̄A def
“ µ˚A.

6. µ is σ-finite
def
ðñ there exist Sn P S pn P ωq such that @n P ω µSn ă 8 and

Ω “
Ť

nPω Sn.

For any X Ď r0,8s, inf X is by definition the largest x P r0,8s such that @x1 P
X x ď x1. Hence, the infimum of the empty set exists and is 8. µ˚A is therefore
defined5.155.1 for all A Ď Ω, and µ˚ is clearly an outer measure.5.152.7 Note, however,
that if µ is not σ-finite,5.155.6 then no subset of Ω is µ-measurable.5.155.3

We will henceforth assume that measures are σ-finite unless otherwise stated.

(5.156) Theorem [ZF] Suppose S is a semiring on Ω and ACωp
ωSq. Suppose µ is

a σ-finite measure on S. Then

1. S ĎMµ;

2. Mµ is a σ-algebra; and

3. µ̄ is the unique extension of µ to a measure on Mµ.

Proof See Note 10.17.
56C is not in general closed under difference or countable intersection.
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5.7.2 Product measures

(5.157) Definition [ZF ` ACω] Suppose I is a finite set, and for each i P I, µi is
a σ-finite measure on a σ-algebra Mi on a set Ωi. Let Ω “

Ś

iPI Ωi, i.e., Ω is the
set of functions xxi | i P Iy such that @i P I xi P Ωi. Let S be the set of rectangles
in Ω, i.e., product sets of the form

Ś

iPI Ai, where Ai P Mi for all i P I.

1. The product of the measures µi
def
“

Ś

iPI µi is defined on S by the condition
that for all A “ xAi | i P Iy P S, µA “

ś

iPI µiAi. Multiplication with an
infinite factor is defined as follows.57

8 ¨ a “ a ¨ 8
def
“

#

8 if a P p0,8s
0 if a “ 0.

2. The product of the measure algebras Mi
def
“

Ś

iPI Mi
def
“ the algebra Mµ of

µ-measurable subsets of Ω.

To show that this definition is legitimate we need only show that S is a semiring on
Ω and that µ as defined above is a measure on S. This is entirely straightforward.
It is also clear that µ is σ-finite.

The main property of product measures for our purposes is Fubini’s theorem
for nullsets.58

(5.158) Theorem [ZF ` ACω] Suppose, for i “ 0, 1, that µi is a σ-finite measure
on a σ-algebra Mi on a set Ωi. Let µ “ µ0 ˆ µ1 be the product measure on the
product algebra M “ M0 ˆM1 on Ω “ Ω0 ˆ Ω1.5.157 Suppose A P M. For x P Ω0,
let Ax “ ty P Ω1 | xx, yy P Au. Let E “ tx P Ω0 | µ1Ax ą 0u. Then µA “ 0 iff
µ0E “ 0.

Proof See Note 10.18.

5.7.3 Measurability

Suppose Ω “ nR and µ is Lebesgue measure.5.153.1 Clearly any open interval is in
Mµ, so any open set—being a countable union of open intervals—is in Mµ. Hence,
any Borel set is in Mµ, since Mµ is a σ-algebra. Note also that we may define
the outer measure µ˚ in terms of coverings by open intervals, since any interval
txx0, . . . , xn-y P nR | @m P n am ď x ă bmu may be covered arbitrarily closely by
an open interval. Let L “ Mµ, the algebra of Lebesgue measurable sets, and let
λ “ µ̄, Lebesgue measure.

Suppose Ω “ ω2 and µ is the uniform measure.5.153.2 The basic intervals Is are
open (as well as closed), so the remarks of the preceding paragraph apply.

Note that R may be mapped definably onto the set of ω-sequences of intervals in
nR and onto the set of ω-sequences of basic intervals in ω2, so ACωpRq is a sufficient
choice principle for the development of the theory of Lebesgue measure and of the
uniform measure on ω2.

57Note that this definition maintains the commutativity and associativity of multiplication, as
well as distributivity over addition for infinite as well as finite sums. If we wished, we could
obviate the consideration of infinite factors by letting S be the set of rectangles that are products
of factors with finite measure in their respective spaces.

58Fubini’s theorem states the equality of integrals over product spaces to iterated integrals over
the factor spaces. The theorem we state here is, in effect, the special case of functions that vanish
almost everywhere.
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(5.159) Theorem [ZF` ACωpRq] Suppose Ω “ nR and µ is Lebesgue measure, or
Ω “ ω2 and µ is the uniform measure. The following are equivalent.

1. A is µ-null.5.155.2

2. For any ε ą 0 there exists an open set G such that A Ď G and µG ă ε.
3. There exists a Gδ set G such that A Ď G and µG “ 0.
4. There exists a Borel set B such that A Ď B and µB “ 0.

Proof Straightforward. For (2) let G “
Ş

nPω Gn, where Gn is open, A Ď Gn, and
µGn ă 1{pn` 1q. 5.159

(5.160) Theorem [ZF` ACωpRq] Suppose Ω “ nR and µ is Lebesgue measure, or
Ω “ ω2 and µ is the uniform measure. The following are equivalent.

1. A is measurable.
2. For any ε ą 0 there exist an open set G and a closed set F such that F Ď A Ď
G and µpGzF q ă ε.

3. There exist a Gδ set G and an Fσ set F such that F Ď A Ď G and µpGzF q “ 0.
4. There exists a Borel set B such that A△B is µ-null.

Proof Straightforward. 5.160

In measure theory the ideal n of null sets plays an analogous role to the meager
ideal m5.143 in category theory, and the boolean algebra of Borel sets mod n is a
similarly natural construct, and we have the following analog of Theorem 5.148.
We state the theorem for Lebesgue measure on R, but it is obviously more general
than that.

(5.161) Theorem [ZF`ACωpRq] Let Borel be the boolean algebra of Borel subsets
of R, let µ be Lebesgue measure, and let n be the ideal of null sets in Borel. Let
L “ Borel{n.

1. L is countably saturated.
2. L is complete.

Proof An element a of L is an equivalence class of Borel sets that differ by a
null set, so every X P a has the same µ-measure. We define µpaq to be this
common value. We can use ACωpRq to choose Borel (codes of) representatives of
countably many elements of L at once, which allows us to show that µ is a countably
additive measure on L. Given m P Z (the integers—positive, negative, and zero),
let im “ rpm,m ` 1qs, i.e., the set of Borel sets µ-equivalent to the open interval
pm,m ` 1q in R. Note that tim | m P Zu is a maximal antichain in L, so for
any a P |L|, a “

Ž

mPZ a X im. In particular, if µpaq ą 0 then for some m P Z,
µpa^ imq ą 0.

1 Suppose A is an antichain in L, and suppose toward a contradiction that A is
uncountable. For each m P Z and each n P ωzt0u, let Am,n “ ta P A | µpa^ imq ą
1{nu. Then A “

Ť

m,nAm,n, so for some m,n, Am,n is uncountable; otherwise, we
can use ACωpRq to obtain a choice function assigning to each xm,ny an enumeration
of (Borel codes of representatives of members of) Am,n, and we can dovetail these
to obtain an enumeration of A. But by the additivity of µ, there can be at most n
elements a of the antichain A such that µpa^ imq ą 1{n.
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2 Suppose A Ď |L|. We will show that A has a least upper bound in L. Let
B “ tb P |L| | @a P A b ě au be the set of all upper bounds of A, and let
µ0 “ inftµb | b P Bu. If there exists b P B such that µb “ µ0, we are finished, as b
is the supremum of A in L. If not, use ACωpRq (via Borel codes) to obtain a function
n ÞÑ bn, for n P ω, such that µpbnq ´ µ0 ă 1{pn` 1q. Let b “

Ź

nPω bn (again using
ACωpRq, and the fact that Borel is countably closed and n is countably complete).
Then µb “ µ0, and b P B, so b “

Ž

A. 5.161

(5.162) Theorem [ZFC] There exists V Ď R such that V R L, i.e., V is not
Lebesgue-measurable.

Proof We construct a Vitali set as in the proof of (5.150). Let V Ď r0, 1q be
maximal such that for all x, y P V , x ´ y R Q. For a P r0, 1q X Q, let Va “ tx P
r0, 1q | x ´ a P V _x ´ a ` 1 P V u.59 Note that if a, b P r0, 1q X Q and a ‰ b then
Va X Vb “ 0, because if x ´ a “ x ´ b ˘ 1 then x ´ y P Q. On the other hand, by
the maximality of V , for any x P r0, 1q, there exists y P V such that x´ y P Q. Let

a “

#

x´ y if x´ y ě 0
x´ y ` 1 if x´ y ă 0.

Then a P r0, 1q and x P Va. So

(5.163) r0, 1q “
ğ

aPr0,1qXQ

Va.

Suppose toward a contradiction that V is Lebesgue measurable. It is easy to show
that Lebesgue measure is translation-invariant, because the measure of basic in-
tervals is translation-invariant. Thus λVa “ λV for all a P r0, 1q X Q. Hence,5.163

if λV “ 0 then λr0, 1q “ 0, and if λV ą 0 then λr0, 1q “ 8, neither of which is
consistent with the fact that λr0, 1q “ 1. 5.162

This proof is easily modified to show that there is a subset of ω2 that is not
µ-measurable, where µ is the uniform measure. Of course, we assume the axiom of
choice for this also.

Relying as it does on the axiom of choice, the proof of (5.162) is nonconstructive
and does not give a definition of a nonmeasurable set. As in the case of the perfect
set and Baire properties, the extent to which Lebesgue measurability obtains for
definable sets is important question in descriptive set theory. In Theorem 5.181 we
show that all analytic sets are Lebesgue measurable.

5.8 Determinacy

One of the greatest revelations concerning countably infinitary objects comes from
a surprising source—the theory of games. Consider a two-person game of complete
information in which the players alternate moves. A good example is the game of
chess, although the games we will consider differ from chess in that there are no
draws. Just for the sake of example, let us consider the game of chess modified so
that a draw is counted as a win for, say, Black.

An important feature of chess is that there is a limit on the number of moves
that can be played—if fifty moves have passed without a pawn being advanced or a

59We are in effect working with the quotient group pR,`q{Z, which is a circle group.
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piece being captured then a draw is declared. Because of this it is easy to show that
either White or Black possesses a strategy that will guarantee it a win regardless
of its opponent’s play. By a strategy, of course, we refer not to a fixed sequence of
moves, but rather to a table of responses that prescribes a player’s move in every
conceivable situation. Thus a strategy for White would prescribe its first move,
then would prescribe its second move as a function of Black’s first move, then its
third move as a function of Black’s first and second moves taken together, etc.

Now suppose White does not have a winning strategy. We will describe a
winning strategy for Black. Black’s strategy is to play in such a way that White
never has a winning strategy from that point on. (It is understood that a position
in which White has won is considered to be a position from which point on White
has a winning strategy.) Can Black do this? Certainly. Since by assumption White
does not have a winning strategy at the outset, then it does not have a winning
strategy after its first move. Now Black can find some move after which White still
does not have a winning strategy, for if not, then by piecing together a winning
strategy for the remainder of the game in response to each possible choice of Black,
White could construct a winning strategy for the whole game. The same argument
works throughout the game, and Black can always find a move after which White
still does not have a winning strategy.

Clearly, White cannot win if Black plays by this strategy because the game has
finite length. If the game ends with a win for White, then that is a position from
which White has a winning strategy, which is just what Black’s strategy always
avoids. So this is a winning strategy for Black. To summarize, if White does not
have a winning strategy, then Black does.

Clearly, White and Black cannot both have a winning strategy. Nobody knows
which player in chess has a winning strategy (with the above proviso of draws being
counted as wins for Black), but we may be sure that one of them does; and for our
purposes that is the only important thing.60 We say that a game in which one or
the other player has a winning strategy is determined.

The essential character of the question does not change if we allow the set of
possible moves to be infinite, although in general we must then use a choice principle
to show that any game of finite length is determined.61 If we consider games of
infinite length, however, the situation is radically altered. The most general such
game is defined by a set M of moves; an ordinal λ, which is the length of the game;
and a subset A of λM , which is the win set.

We use ‘Player I’ and ‘Player II’, or simply ‘I’ and ‘II’, as labels for the hy-
pothetical “players” of this game. Of course, these “players” do not exist, even
in the weak sense attributed to mathematical entities; rather it is “their” plays
and strategies that exist. We may avoid reference to players altogether by using
‘I-play’, ‘II-play’, ‘I-strategy’, and ‘II-strategy’ for sequences and functions of the
appropriate types. Similarly, although we may refer to a “game” GA corresponding
to a set A Ď λM to emphasize the context in which A is being considered, GA is

60Although not important, it is perhaps interesting that the similar, but much simpler (with
5ˆ 1020 positions), game of checkers has been solved: either player can force a draw.

61The necessity of choice is easy to see. Suppose S is a set of nonempty sets. Consider the
following game. The first player picks a member S of S. The second player picks a member s of
Ť

S. The second player wins iff s P S. A strategy for the first player is essentially a member S of
S, and the second player can foil this by playing a member of S; so the first player does not have a
winning strategy. If the game is determined, therefore, the second player has a winning strategy,
and a winning strategy for the second player is a choice function for S. Thus the statement that
every game consisting of one move for each player is determined implies the axiom of choice.
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not something different from A.
The most important class of games in this sense consists of those for which

λ “ ω. The following definitions are specific to this class, but it is obvious how
they should be modified for the general case.

(5.164) Definition [ZF]

1. Composition/decomposition of plays

1. Suppose x P κM and y P κ1
M , where κ, κ1 P ω and κ1 ď κ ď κ1 ` 1, or

κ “ κ1 “ ω.

x ˚ y
def
“ tp2m, kq | pm, kq P xu Y tp2m` 1, kq | pm, kq P yu,

as illustrated below:

x : x0 x1 x2 . . .
y : y0 y1 . . .

x ˚ y : x0 y0 x1 y1 x2 . . .

2. Suppose z P κM , where κ ď ω.

zI def
“ tpm, kq | p2m, kq P zu

zII def
“ tpm, kq | p2m` 1, kq P zu,

as illustrated below:

z : z0 z1 z2 z3 z4 . . .
zI : z0 z2 z4 . . .
zII : z1 z3 . . .

Clearly, z “ zI ˚ zII.

2. Strategies

1. A I-strategy is a function σ : ăωM áM such that for each n P ω, domσ
contains every z P 2nM such that @m ă n z2m “ σpz æ 2mq.

2. A II-strategy is a function τ : ăωM áM such that for each n P ω, dom τ
contains every z P 2n`1M such that @m ă n z2m`1 “ τpz æp2m` 1qq.

3. Composition of strategies and plays

1. Suppose σ is a I-strategy and y P κM where κ ď ω.

1. σ ˚ y def
“ x ˚ y, where x P 1`κM is given recursively by

xm “ σ
`

px æmq ˚ py æmq
˘

“ σxx0, y0, x1, y1, . . . , xm- , ym-y,

as illustrated below.

x0 x1 x2

x : σx y σxx0, y0y σxx0, y0, x1, y1y . . .
y : y0 y1 . . .

σ ˚ y : σx y y0 σxx0, y0y y1 σxx0, y0, x1, y1y . . .

2. σ⃗y def
“ pσ ˚ yqI.62

62Thus, dom σ⃗ “ ďωM and σ⃗ÑpκMq Ď 1`κM . In the above definition of σ ˚ y, x “ σ⃗y.
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2. Suppose τ is a II-strategy and x P κM where κ ď ω.

1. x ˚ τ def
“ x ˚ y, where y P κM is given recursively by

ym “ τ
`

px æpm` 1qq ˚ py æmq
˘

“ τxx0, y0, . . . , xm- , ym- , xmy,

as illustrated below.

x : x0 x1 x2 . . .
y0 y1 y2

y : τxx0y τxx0, y0, x1y τxx0, y0, x1, y1, x2y . . .
x ˚ τ : x0 τxx0y x1 τxx0, y0, x1y x2 τxx0, y0, x1, y1, x2y . . .

2. τ⃗ x def
“ px ˚ τqII.

4. Composition of strategies: Suppose σ is a I-strategy and τ is a II-strategy.
Then σ ˚ τ

def
“ x ˚ y, where

1. x, y P ωM ;
2. x “ σ⃗y; and
3. y “ τ⃗ x.

The circularity of (5.164.4) is only apparent. x and y are defined recursively:

xn “ σ
`

px ænq ˚ py ænq
˘

yn “ τ
`

px æpn` 1qq ˚ py ænq
˘

.

In the interest of clarity, we preferentially use ‘σ’ and ‘τ ’ for I- and II-strategies,
respectively.

The game GA is defined by the stipulation that Player I wins iff x˚y P A, where
x and y are the respective sequences in ωM played by I and II.

(5.165) Definition [ZF] Suppose A Ď ωM .

1. A I-strategy σ is winning for A
def
ðñ @y P ωM σ ˚ y P A.

2. A II-strategy τ is winning for A
def
ðñ @x P ωM x ˚ τ R A.

A is determined or determinate
def
ðñ there exists a winning I- or II-strategy for A.

Note that there cannot exist both a winning I-strategy σ and a winning II-strategy
τ , because in that case, letting x “ pσ ˚ τqI and y “ pσ ˚ τqII, σ ˚ τ “ σ ˚ y P A and
σ ˚ τ “ x ˚ τ R A.

5.8.1 Borel determinacy

Unless otherwise stated, ωM is given the standard topology, which is the product
topology derived from the discrete topology on M , i.e., the topology for which the
intervals Is “ tz P ωM | s Ď zu (s P ăωM) constitute a base. If M is uncount-
able, this is not a Polish space, but the definition (5.88) of the Borel hierarchy is
nonetheless appropriate and useful. The main result of this section is the theorem
of ZFC that for any set M , any Borel subset of ωM is determined; but equally im-
portant to our understanding of the countably infinitary are the metamathematical
considerations surrounding this result, and we will mention some of these along the
way.
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For the purpose of discussing the determinacy of Borel subsets of a sequence
space, it is convenient to use the following terminology. Recall that for any s, Seqpsq
iff s is a finite sequence, i.e., s is a function and dom s is a finite ordinal. Remember
that even in the context of a pure set theory such as ZF, we sometimes informally
refer to predicate such as ‘Seq’ in terms of the class of objects satisfying it.

Recall3.181 that a sequence tree T on a set M is a subset of ăωM closed under
initial segment, i.e., @s P T @m ă |s| s æm P T .63 Recall3.183 the following definitions
for a sequence tree T .

1. Suppose s P T .

1. Ts
def
“ tt P Seq | s ⌢ t P T u.

2. Tpsq
def
“ tt P T | t Ď s_ s Ď tu “ tt P T | t Ď su Y ps ⌢ Tsq.

2. Suppose n P ω. T |n
def
“ ts P T | |s| ď nu. If T is a set of trees then

T |n def
“ tT |n | T P T u.

3. rT s def
“ the set of infinite branches of T .

(5.166) Definition [ZF]

1. A sequence tree T is good
def
ðñ every s P T has a proper extension in T .64

Note that every branch of a good tree is infinite.

2. Suppose T is a good tree.

1. The standard topology on rT s is the topology for which trTpsqs | s P T u is
a base. Hence, for X Ď rT s,

1. X is open (relative to rT s)
def
ðñ X “

Ť

trTpsqs | rTpsqs Ď Xu.

2. X is closed (relative to rT s)
def
ðñ rT szX is open.

3. X is clopen (relative to rT s)
def
ðñ X is open and closed.

2. Suppose X Ď rT s is closed in the standard topology. Then TX
def
“ ts P T |

Dx P X s Ď xu. Note that TX is a good tree, and rTX s “ X.

3. Suppose T, T 1 are trees and T 1 Ď T .

1. T 1 is a I-imposed subtree of T
def
ðñ for all s P T 1

1. if s has a proper extension in T then s has a proper extension in T 1.
2. if |s| is odd then every immediate extension of s in T is in T 1.

2. T 1 is a II-imposed subtree of T
def
ðñ for all s P T 1

1. if s has a proper extension in T then s has a proper extension in T 1.
2. if |s| is even then every immediate extension of s in T is in T 1.

4. Suppose T is a tree and σ is a subtree of T .
63Note that 0 is in every nonempty sequence tree.
64Good trees are also called pruned, suggesting that all nodes without proper extensions have

been lopped off. We feel this terminology is grammatically misleading in that in practice a good
tree is not usually the result of such a pruning operation. Given that a tree with the property
that every node has incompatible extensions is called perfect, it seems reasonable to use good in
the sense defined here.
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1. σ is a I-strategy
def
ðñ σ is a minimal I-imposed subtree of T , i.e., every

s P σ of even length that has a proper extension in T has exactly one
immediate extension in σ.

2. σ is a II-strategy
def
ðñ σ is a minimal II-imposed subtree of T , i.e., every

s P σ of odd length that has a proper extension in T has exactly one
immediate extension in σ.

3. Suppose σ and τ are respectively a I- and a II-strategy in a nonempty good
tree T . Clearly, σX τ is a nonempty good tree with a single branch. σ ˚ τ
def
“ the unique branch of σ X τ . Note that rσs X rτ s “ tσ ˚ τu.

4. Suppose T is a sequence tree. Let P be I or II.
1. STP is the set of P-strategies in T .

2. S̄TP
def
“

Ť

nPω S
T |n
P .

3. ST def
“ STI Y STII and S̄T def

“ S̄TI Y S̄TII .

5. A game def
“ a 2-sequence xT,Xy, where T is a nonempty good tree. Often

X Ď rT s, or X Ď ωM if T is a tree on M , but we do not require this.

6. σ is a winning strategy in a game xT,Xy
def
ðñ

1. σ is a I-strategy in T and rσs Ď X; or
2. σ is a II-strategy in T and rσs XX “ 0.

xT,Xy is a win for I (II)
def
ðñ there is a winning I- (II-)strategy in xT,Xy.

Similarly, xT,Xy is a loss for I (II)
def
ðñ there is a winning II- (I-)strategy in

xT,Xy.

7. Suppose T is a good tree. The I- (II-)nonlosing subtree of T for X is the set
of p P T such that for every sequence q Ď p, xTpqq, Xy is not a loss for I (II).

Suppose T is a good tree. Clearly, if σ is a winning I-strategy in G “ xT,Xy then
for every II-strategy τ in T , σ ˚ τ P X; similarly, if τ is a winning II-strategy in
G then for every I-strategy σ in T , σ ˚ τ R X. Hence, there cannot exist both a
winning I- and a winning II-strategy in G.

(5.167) Theorem [ZFC´] Suppose T is a good tree and xT,Xy is not a loss for I
(II). Let T 1 be the I- (II-)nonlosing subtree of T for X.

1. T 1 is a I- (II-)imposed subtree of T .

2. xT 1, Xy is not a loss for I (II).

Proof We will treat the case of I. The case of II is homologous.

1 Suppose p P T 1 and |p| is odd (i.e., it is II’s turn to move). We must show that
for every immediate extension p1 of p in T , p1 P T 1. For this it suffices to show that
xTpp1q, Xy is not a loss for I. Suppose toward a contradiction that this is not the
case for some such p1. Let σ be a winning II-strategy in xTpp1q, Xy. Then σ is a
winning II-strategy in Tppq; contradiction.

Now suppose p P T 1 and |p| is even (I’s turn to move). We must show that for
some immediate extension p1 of p in T , p1 P T 1. Let P be the set of immediate
extensions p in T , and suppose toward a contradiction that for each p1 P P there
is a winning II-strategy in Tpp1q. By AC there is a function f such that for every
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such p1 P P , f p1 is a winning II-strategy in Tpp1q. Let σ “
Ť

p1PP f p
1.65 Since,

by hypothesis, for each p1 P P , rf p1s X X “ 0, rσs X X “ 0, i.e., σ is a winning
II-strategy in xT,Xy; contradiction.

2 Suppose toward a contradiction that xT 1, Xy is a loss for I. Let σ1 be a winning
II-strategy in xT 1, Xy. We will describe a winning II-strategy σ in xT,Xy, the
existence of which contradicts the assumption that xT,Xy is not a loss for I. Let
II play as follows: II plays according to σ1 unless and until it is confronted with a
position p R T 1. The first time this happens (if ever) II chooses a winning strategy
in xTppq, Xy and follows it for the rest of the game. Note that AC is used to show
that an overall strategy σ as described here exists. It is easy to show that σ is a
winning II-strategy in xT,Xy. 5.167

Note that I has a winning strategy in xT,Xy iff for some p P T of length 1, II
has a winning strategy in xTp, rTpszXpy, where Xp is the set of ω-sequences x such
that p ⌢ x P X.5.166.6.1 Similarly, assuming ACω, II has a winning strategy in xT,Xy
iff for every p P T of length 1, I has a winning strategy in xTp, rTpszXpy.

(5.168) Thus, if Γ is a class of subsets of ωM closed under the operations X ÞÑ Xp,
p P 1M—as is the case for any of the complexity classes we consider—and Γ̆ “ tX Ď
ωM | ωMzX P Γu is the dual class, then—assuming ACω—Γ-determinacy implies
Γ̆-determinacy.

The following theorem was proven by Gale and Stewart in their seminal 1953
article introducing games of the sort under consideration here.

(5.169) Theorem [ZFC´] Suppose T is a good tree and AX rT s is open or closed
(in the standard topology on rT s). Then xT,Ay is determined.

Proof Suppose AXrT s is open, and suppose xT,Ay is not a win for I. Let T 1 be the
II-nonlosing subtree of T for A. Let σ Ď T 1 be any minimal II-imposed subtree of
T 1.66 Note that σ is a II-strategy for T as well as for T 1. We claim that σ is a winning
strategy for II in xT,Ay. Suppose toward a contradiction that it is not. Let x be
such that z “ x ˚ σ P A. Then for some sequence p Ď z, @y P rT s py Ě pÑ y P Aq.
Hence, xTppq, Ay is a win for I, so p R T 1, which contradicts the fact that p P σ Ď T 1.

Thus, if xT,Ay is not a win for I then it is a win for II, so it is determined. To
handle the case that S X rT s is closed we may reverse the roles of I and II, or we
may invoke the general principle (5.168). 5.169

The Gale-Stewart theorem was extended to Σ0
2 by Philip Wolfe in 1955.

(5.170) Theorem [ZFC´] Suppose T is a good tree and AXrT s is Σ0
2 or Π0

2. Then
xT,Ay is determined.

Proof It suffices to treat the case that A is Σ0
2.5.168 Suppose A “

Ť

nPω An, where
each An Ď rT s is Π0

1, i.e., closed. Let Tn “ tp P T | Da P An p Ď au be the (good)
tree associated with An in the usual way, so that An “ rTns.

65Remember that we are regarding strategies as trees, and each f p1 is a minimal II-imposed
subtree of Tpp1q. Since P contains every immediate extension of p, σ is a II-imposed subtree of
Tppq and it is clearly minimal, so it is a II-strategy. ‘

Ť

p1PP f p1’ is the set-theoretical formulation

of the ludological description: II responds to the move of I creating the position p1 by playing
according to f p1 for the rest of the game.

66Choice is required in general, although not if T is a tree on ω or any other naturally wellordered
set.
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Suppose xT,Ay is not a win for I. We will describe a winning II-strategy in
xT,Ay. Let T 1 be the II-nonlosing subtree of T for A.

(5.171) Claim Suppose p P T 1 and n P ω. xT 1p, Any is a win for II.

Proof By (5.169) it suffices to show that xT 1p, Any is not a win for I. Suppose
toward a contradiction that σ1 is a I-strategy in T 1p and rσ1s Ď An (viewing a
strategy as a tree). Then σ1 Ď Tn. Let σ be the following I-strategy in Tp:

I plays according to σ1 as long as II plays on T 1. If and when II plays to a position
q R T 1, I plays a winning strategy in xTq, Ay, which exists because T 1 is the II-nonlosing
subtree of T for A.67

Let z P rσs be a result of I following this strategy. If II never played off T 1, then
z P rσ1s, so z P An Ď A. Otherwise, z P rτ s, where τ is the strategy followed by I
after II strayed off T 1, so z P A.

Thus, σ is a winning I-strategy in xTp, Ay, contrary to the assumption that
p P T 1. 5.171

Using the claim, let σ be a II-strategy in T 1 with the following features:

By hypothesis, xT,Ay is not a win for I, so 0 P T 1. Let p0 “ 0, let σ0 be a winning II-
strategy in xT 1

pp0q, A0y, and let II follow σ0 for at least one move until a position p1 P σ
0

is reached such that p1 R T
0, which must happen, as rσ0s X rT 0s “ rσ0s X A0 “ 0.

Now let σ1 be a winning II-strategy in xT 1
pp1q, A1y and let II follow σ1 for at least one

move until a position p2 P σ
1 is reached such that p2 R T

1. Continue in this fashion
ad infinitum.68

Clearly, σ is a winning II-strategy in xT 1, Ay. Since T 1 is a II-imposed subtree of T ,
σ is also a II-strategy in T and therefore a winning II-strategy in xT,Ay, as desired.

5.170

In 1964, Morton Davis proved Σ0
3-determinacy. We will use the following lemma.

(5.172) Theorem [ZFC´] Suppose T is a good tree, B Ď A Ď rT s, B is Π0
2, and

xT,Ay is not a loss for II. Then there is a II-imposed T˚ Ď T such that

1. rT˚s XB “ 0; and

2. xT˚, Ay is not a loss for II.

Proof Let T 1 be the II-nonlosing subtree of T for A.

(5.173)

1. For p P T 1, say that p is good iff there is a II-imposed T˚ Ď T 1
ppq such that

1. rT˚s XB “ 0; and
2. xT˚, Ay is not a loss for II.

2. Let G be the set of good positions in T 1.

3. Let T be a function such that dom T “ G and for each p P G, T p is a tree T˚

witnessing that p is good according to (5.173.1).

67Note that AC is used to show that such a σ exists.
68Note the implicit use of AC to provide the function pn ÞÑ σn.
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Note that the the theorem is the statement that 0 is good.
Suppose B “

Ş

nPω Bn, where each Bn is open. For each n P ω and p P T 1, let

(5.174) Cpn “ tz P rT
1s | DSeqq pp Ď q Ď z, rT 1pqqs Ď Bn, and q is not goodqu.

(5.175) Claim Suppose p P T 1, n P ω, and xT 1
ppq, AY C

p
ny is not a win for I. Then

p is good.

Proof Let T 2 be the II-nonlosing subtree of T 1
ppq for AY Cpn. Let

S “ tq P T 2 | q Ď p_rT 1pqqs Ę Bnu.

Note that S is a tree, not necessarily good. Let R be the set of q P T 2zS such that
the immediate predecessor of q is in S. The members of R are pairwise incompatible,
and for each q P R, rT 1

pqqs Ď Bn, so q is good (otherwise xT 1
pqq, C

p
ny is already lost

for II at q, so q R T 2), and T q is a II-imposed subtree of T 1
pqq witnessing that q is

good.5.173.3 Let
T˚ “ S Y

ď

qPR

T q.

Since T 2 is a II-imposed subtree of T 1
ppq, and for every q P S, every immediate

successor of q in T 2 is in S Y R, and @q P R p Ď q, T˚ is a II-imposed subtree of
T 1
ppq.

We claim that T˚ witnesses that p is good. To verify (5.173.1.1) suppose toward
a contradiction that z P rT˚sXB. Then z P Bn. Since Bn is open, for some sequence
q Ď z, rT 1

pqqs Ď Bn. Let q0 be the Ď-least q Ď z such that q properly extends p and
rT 1
pqqs Ď Bn. Then q0 P R and z P rT q0s, so z R B.5.173.3

To verify (5.173.1.2) suppose toward a contradiction that σ is a winning I-
strategy in xT˚, Ay. Note that for any q P σ, rT 1

pqqs Ę Bn, because otherwise there
is a minimal q P σ such that q properly extends p and rT 1

pqqs Ď Bn, and by definition
T˚
pqq “ T q, so σpqq is a I-strategy in T q that witnesses that xT q, Ay is a loss for II,

since rσpqqs Ď rσs Ď A, contradicting (5.173.3). 5.175

Now suppose toward a contradiction that the conclusion of the theorem is false,
i.e., 0 is not good. Let σ be a I-strategy in T 1 with the following features:

Let p0 “ 0. By hypothesis, p0 is not good. Let5.175 σ0 be a winning I-strategy in
xT 1

pp0q, A Y Cp0
0 y. I follows σ0 unless and until a position p1 is reached such that

rT 1
pp1qs Ď B0 and p1 is not good. If and when this first occurs, let σ1 be a winning I-

strategy in xT 1
pp1q, AYC

p1
1 y. I now follows σ1 unless and until a position p2 is reached

such that rT 1
pp2qs Ď B1 and p2 is not good. Continue ad infinitum.69

Note that if, for some n P ω, while I is following σn, a position p is never reached
such that rT 1

ppqs Ď Bn and p is not good, then I follows σn for the rest of the game.
The resulting play z P rσs is in A Y Cpn

n , since σn is a winning I-strategy for this
game, but z R Cpn

n . Hence z P A.
On the other hand, if, for every n P ω, while I is following σn, a position p is

eventually reached such that rT 1
ppqs Ď Bn and p is not good, then the resulting play

z P rσs is in Bn for every n, so z P
Ş

nPω Bn “ B Ď A.
Hence, σ is a winning I-strategy in xT 1, Ay, contrary to hypothesis. 5.172

69AC is of course used to provide a function pn ÞÑ σn.
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(5.176) Theorem [ZFC´] Suppose T is a good tree and AXrT s is Σ0
3 or Π0

3. Then
xT,Ay is determined.

Proof Each case implies the other,5.168 so suppose A is Σ0
3, say A “

Ť

nPω An,
where each An Ď rT s is Π0

2. Suppose xT,Ay is not a win for I; hence, not a loss for
II. Let T Ě T 0 Ě T 1 Ě ¨ ¨ ¨ be a sequence of good trees with the following features:

Let5.172 T˚ be a II-imposed subtree of T such that

1. rT˚s XA0 “ 0; and

2. xT˚, Ay is not a loss for II.

For each p P T˚ of length 1 there exists an immediate extension p1 of p such that
xT˚

pp1q, Ay is not a loss for II. Let S Ď T˚ be a set of positions of length 2 containing

exactly one such immediate extension of each position in T˚ of length 1. Let T 0 “
Ť

pPS T
˚
ppq. Then T 0 is a II-imposed subtree of T˚ that is minimal as regards its

members of length 2, and is therefore a strategy for II’s first move; and

xT 0, Ay is not a loss for II.

Now let5.172 T˚ be a II-imposed subtree of T 0 such that

1. rT˚s XA1 “ 0; and

2. xT˚, Ay is not a loss for II.

Let S Ď T˚ be a set of positions of length 4 containing exactly one immediate exten-
sion of each position in T˚ of length 3, such that for each p P S, xT˚

ppq, Ay is not a loss

for II, and let T 1 “
Ť

pPS T
˚
ppq. Continue ad infinitum.

Let σ “
Ş

nPω T
n. Then σ is a II-strategy in T , and rσs Ď rTns for each n P ω, so

rσs X An “ 0 for each n, and rσs X A “ rσs X
Ť

nPω An “ 0, i.e., σ is a winning
II-strategy in xT,Ay, as desired. 5.176

In 1972, Jeffrey Paris proved Σ0
4-determinacy. Paris’s proof had a new element:

it used the Power axiom. As noted above,5.176 Σ0
3-determinacy is a theorem of ZFC´,

and it was natural to wonder whether Σ0
4-determinacy could be proved in ZFC´.

Harvey Friedman soon showed that the determinacy of certain simple combinations
of Σ0

5 sets could not be proved in ZFC´, and this was improved by D. A. (Tony)
Martin to show that ZFC´& xΣ0

4-determinacyy.
This result was greeted with great enthusiasm by the set theory community,

because it represented the first instance of a straightforward proposition about
countably infinitary objects, viz., Σ0

4-determinacy, interesting in the ordinary math-
ematical way (not because of an overt logical connotation), provable in ZFC but
not provable in ZFC´.

The Friedman-Martin method also applied to show that Σ0
5-determinacy cannot

be proved in ZFC´` xP ω existsy, Σ0
6-determinacy cannot be proved in ZFC´`

xP2 ω existsy, etc. For each step up the Borel hierarchy, one more iteration of
the powerset operation is needed to prove determinacy. This was shown to hold
through all the levels of the Borel hierarchy. In 1975, Martin succeeded in proving
Borel determinacy using ZFC´ plus the assumption of the existence of Pα ω for
all countable ordinals α. Within the proof, of course, each level of the hierarchy
required one more iteration of P.

(5.177) Theorem [ZFC] Suppose T is a good tree and X Ď rT s is Borel. Then
xT,Xy is determined.
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The proof of this theorem, even with Martin’s subsequent simplification of the
original version, is rather involved and is relegated to Note 10.19, so as not to
impede the flow of the narrative.

The analysis of the use of the powerset operation in Martin’s proof is given in
Note 10.20, in terms of the operation Q, defined in (10.135) so that

QM “ FM Y F PFM,

where F is the finitary closure operation (definable in ZF´). The conclusion is as
follows.

(5.178) Theorem [ZFC´] Suppose M is a set, ρ ă ω1, QρM exists, and X Ď ωM
is Σ0

1`ρ`2. Then X is determined.

The negative result of Friedman (with Martin’s refinement) is given in Section 7.6.2.

(5.179) Theorem [ZFC] There exists A Ď ωω such that A is not determinate.

Proof Using AC, let κ “ 2ω, and let xσα | α P κy and xτα | α P κy enumerate the
I- and II-strategies, respectively. Let xa1

α | α P κy and xa2
α | α P κy be such that for

each α P κ,

1. a1
α “ σα ˚ y for some y P ωω and a1

α ‰ α2
β for any β ă α.

2. a2
α “ x ˚ τα for some x P ωω and a2

α ‰ α1
β for any β ď α.

Such sequences exist by virtue of AC and the fact that the maps y ÞÑ σ ˚ y and
x ÞÑ x ˚ τ are injective, so Card tσ ˚ y | y P ωωu “ Card tx ˚ τ | x P ωωu “ κ. Let
A1 “ ta1

α | α P κu and A2 “ ta2
α | α P κu. Then A1 X A2 “ 0. Let A be

any subset of ωω that includes A2 and is disjoint from A1, e.g., A2. Suppose σ
is a I-strategy. Then σ “ σα for some α P κ, so there exists y P ωω such that
σ ˚ y “ σα ˚ y “ a1

α P A
1. Hence σ ˚ y R A, and σ is not a winning I-strategy for A.

Similarly, there is no winning II-strategy for A. 5.179

5.9 Suslin’s operation and analytic sets

Definition [ZF] Suppose A “ xAs | s P
ăωωy is an ăωω-indexed family of sets.

operation A or Suslin’s operation applied to A def
“

AA def
“

ď

xPωω

č

nPω

Ax æn.

Note that if we let Bs “
Ş

tAs æn | n P |s|u, then @s, t P ăωω ps Ď tÑBs Ě Btq,
and AxBs | s P ăωωy “ AA.

(5.180) Theorem [ZF ` ACωpRq] Suppose X is a Polish space and A Ď X. The
following are equivalent.

1. A is analytic.

2. A “ AxBs | s P ăωωy, where each Bs is a closed subset of X.

3. A “ AxBs | s P ăωωy, where each Bs is a Borel subset of X.
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Proof 1 ÑÑÑ 2 Suppose A Ď X is analytic. Let f : ωω Ñ X be continuous such
that A “ im f . Suppose x P ωω, b P X, and fx ‰ b. Let M and N be disjoint open
neighborhoods of fx and b, respectively. Then fÐM is open and contains x. Let s
be an initial segment of x such that Is Ď fÐM . Then fÑIsXN “ 0, so b R pfÑIsq.
It follows that for any x P ωω

č

nPω

pfÑIx ænq Ď tfxu Ď
č

nPω

fÑIx æn Ď
č

nPω

pfÑIx ænq,

so A “ AxpfÑIsq | s P
ăωωy.

2 ÑÑÑ 3 Trivial.

3 ÑÑÑ 1 Suppose Bs is Borel for each s P ăωω and A “ AxBs | s P ăωωy. Then

a P AØDx P ωω a P
č

nPω

Bx ænØDx P
ωω xa, xy P B,

where B “ txa, xy | a P
Ş

nPω Bx ænu. Clearly B is a Borel subset of X ˆ ωω, so A
is analytic. 5.180

(5.181) Theorem [ZF` ACω]

1. Suppose X is a separable Baire space ( e.g., a Polish space). The set BaireX

of Baire subsets of X is closed under Suslin’s operation A.

2. Suppose µ is a σ-finite measure on a semiring S in PΩ. Then the algebra
Mµ of µ-measurable sets is closed under operation A.

Proof We will give the proofs both assertions simultaneously, placing text specific
to assertion 1 and assertion 2 between round and square brackets respectively. Let
(A “ BaireX .) [A “ Mµ, and let µ̄ be the canonical extension of µ to A.]. Recall
that A is a σ-algebra. Suppose for each s P ăωω, As P A. Let A “ AxAs | s P ăωωy.
Without loss of generality, suppose that s Ď tÑAs Ě At. Define by recursion Aαs
so that

A0
s “ As

Aα`1
s “

#

Ť

nPω A
α
s ⌢xny if Aαs z

Ť

nPω A
α
s ⌢xny is (nonmeager) [non-null]

Aαs otherwise

Aαs “
č

βPα

Aβs if α is a limit ordinal.

Note that for any α P Ord

1. A “ AxAαs | s P ăωωy;

2. for all s, t P ăωω, s Ď tÑAαs Ě Aαt ; and

3. for all s P ăωω

1. Aα`1
s Ď Aαs ; and

2. Aαs zA
α`1
s is either empty or (nonmeager) [non-null].
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4. if @s P ăωω Aαs zA
α`1
s “ 0 then @β ą α @s P ăωω Aβs “ Aαs .

(5.182) Claim For some α0 ă ω1, for all s P ăωω, Aα0
s “ Aα0`1

s .

Proof If not, then for some s P ăωω, for uncountably many α ă ω1, Aαs zA
α`1
s is

(nonmeager) [non-null]. Since the sequence xAαs |α P Ordy is monotone decreasing,
this constitutes an uncountable set N of pairwise disjoint (nonmeager) [non-null]
subsets of X. Since A is a σ-algebra, N Ď A.

(Suppose

1. B,B1 P N ;

2. B ‰ B1;

3. G Ě B and G1 Ě B1 are open; and

4. GzB and G1zB1 are meager.

Since BXB1 “ 0, GXB1 is meager, so GXG1 is meager. Since X is a Baire space,
GXG1 “ 0 (as any comeager set is dense). Let S be a countable dense subset of X.
Suppose x P S. Then there is at most one B P N such that for some open G Ě B,
GzB is meager and x P G. On the other hand, for any B P N there exists an open
G Ě B such that GzB is meager, and since B is nonmeager, G is nonempty, so
for some x P S, x P G. There is thus a function f : S sur

á N , and N is countable;
contradiction.)

[For some ϵ ą 0, tB P N | µ̄B ą ϵu is uncountable. This is easily seen to
contradict the σ-finiteness of µ.] 5.182

Let5.182 α0 ă ω1 be such that @s P ăωω Aα0
s “ Aα0`1

s . By construction, for all s P
ăωω, Aα0

s z
Ť

nPω A
α0
s ⌢xny is (meager) [null]. Hence M “

Ť

sPăωω

`

Aα0
s z

Ť

nPω A
α0
s ⌢xny

˘

is (meager) [null].
Suppose x P Aα0

0 zM . Define f : ω Ñ ω as follows. Let f 0 be the least m
such that x P Aα0

xmy. Now let f 1 be the least m P ω such that x P Aα0
xf 0,my. In

general, fn is the least m such that x P Aα0
f æn ⌢xmy. Then x P

Ş

nPω A
α0
f æn, so

x P AxAα0
s | s P ăωωy “ AxAs | s P ăωωy “ A.

Conversely, if x P A then x P Aα0
0 . Thus, Aα0

0 zM Ď A Ď Aα0
0 . Since α0 is

countable, Aα0
0 P A, so A differs from a member of A by a (meager) [null] set, and

A is therefore in A. 5.181

It follows from (5.181) and (5.180) that every analytic set has the Baire property
and is Lebesgue measurable (along with every coanalytic set and every set obtained
from these by repeated applications of complementation, countable union, and op-
eration A). The following theorem shows that analytic sets have the perfect set
property. Note that—unlike the Baire property and Lebesgue measurability—the
fact that a set A Ă X has the perfect set property does not necessarily imply that
XzA has the perfect set property.

(5.183) Theorem [ZF`ACω] Suppose X is a Polish space and A Ď X is analytic.
A has the perfect set property.

Proof The proof is similar to the proof of the Cantor-Bendixson theorem (5.138).
Let f : ωω Ñ X be continuous such that im f “ A. For α P Ord, let Tα Ď ωω be
defined recursively as follows.
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1. T 0 “ ăωω.

2. Tα`1 “ ts P Tα | |fÑrTα
psqs| ą 1u.

3. If α is a limit ordinal then Tα “
Ş

βăα T
β .

Since ăωω is countable, for some α0 ă ω1, Tα0`1 “ Tα0 . If Tα0 “ 0 then A “

fÑωω “ fÑrT 0s Ď
Ť

αăα0

Ť

sPTαzTα`1 fÑrTα
psqs, which is countable, since @s P

pTαzTα`1q |fÑrTpsqs| ď 1.
Hence, if A is uncountable, Tα0 is nonempty. We will obtain a perfect subset of

A. For each s P Tα0 , there exist x0, x1 P rT
α0
psqs such that fx0 ‰ fx1. Let N0 and

N1 be disjoint neighborhoods of fx0 and fx1. Since f is continuous, there exist
extensions s0 and s1 of s in Tα0 such that fÑTα0

ps0q
Ď N0 and fÑTα0

ps1q
Ď N1. Note

that fÑrTα0
ps0q
s X fÑrTα0

ps1q
s “ 0. For each s P Tα0 , let xe0s, e1sy be the first pair of

extensions of s with this property in some fixed enumeration of ăωω ˆ ăωω.
Define r : ăω2 Ñ Tα0 so that

1. r0 “ 0; and

2. for each t P ăω2, rpt ⌢x0yq “ e0prtq and rpt ⌢x1yq “ e1prtq.

Let g : ω2 Ñ rTα0s be such that gx “
Ť

nPω rpx ænq. Let h “ f ˝g. h is a continuous
injection of ω2 into A.

For convenience, let C “ ăω2, regarded as a sequence tree, so rCs “ ω2.

(5.184) Claim hÑrCs is closed.

Proof Suppose y P phÑrCsq. Define x P ω2 so that for each n P ω, if y P
phÑrCpx æn ⌢x0yqsq then xn “ 0; otherwise xn “ 1. In any topological space, if
a point a is in the closure of a set D and D “ D1 YD2, then a is in the closure of
D1 or D2. It therefore follows by induction on n P ω that y P phÑrCpx ænqsq for all
n. If hx ‰ y then there are disjoint neighborhoods N of hx and N 1 of y, and for
some n P ω, hÑrCpx ænqs Ď N , which contradicts the fact that y P phÑrCpx ænqsq.
Hence, y “ hx P hÑrCs. 5.184

To show that hÑrCs is perfect, suppose x P C. For each n P ω, let xn P ω2 be
given by

xnpmq “

#

xpmq if m ‰ n

1´ xpmq if m “ n.

Since h is injective, hxn ‰ hx, and since h is continuous, hx “ limnÑ8 hxn, so hx
is a limit point of hÑrCszthxu. 5.183

5.10 Suslin’s hypothesis

Although it is not strictly necessary, to avoid trivial complications we will restrict
our discussion of linear orders in this section to dense linear orders without end-
points, as previously discussed in Section 5.3.3. Recall5.75.2 the characterization
of pR;ăq as the unique (up to isomorphism) complete separable dense linear or-
der without endpoints. Consider now the following proposal5.186 of an alternative
characterization.

Definition [ZFC] Suppose pX;ăq is a dense linear order without endpoints.
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1. An antichain in pX;ăq is set of disjoint nonempty open intervals.

2. Suppose κ is a cardinal. pX;ăq satisfies the κ-chain condition
def
ðñ pX;ăq is

κ-cc
def
ðñ there is no antichain in X of cardinality κ.

3. The countable chain condition or ccc is the ω1-cc.

(5.185) Theorem [ZFC] Suppose pX;ăq is a separable dense linear order without
endpoints. Then X satisfies the countable chain condition.

Proof Let Y Ď X be countable and dense. Suppose C is a set of disjoint nonempty
open intervals in X. For each I P C, let yI P Y X I. Then the yIs are distinct
members of Y , so C is countable. 5.185

Note that the separability condition (i.e., the existence of a countable dense
set) is critical to the unique characterization of the order type of R among complete
dense linear orders without endpoints. It is natural to inquire whether the ostensibly
weaker countable chain condition (ccc)5.185 may be substituted for separability in
(5.75.2).

(5.186) Suslin’s hypothesis: pR;ăq is, up to isomorphism, the unique complete
ccc dense linear order without endpoints. SH

def
“ Suslin’s hypothesis.

A counterexample to Suslin’s hypothesis is called a Suslin line:

(5.187) Definition [ZFC] A Suslin line is a complete ccc dense linear order without
endpoints that is not separable (and is therefore not isomorphic to pR;ăq).

Thus Suslin’s hypothesis is—somewhat inconveniently—that there is no Suslin line.
The definition of Suslin line is sometimes relaxed by omission of the condition

of completeness. This is not a significant alteration.

(5.188) Theorem [ZFC] Suppose pX;ăXq is a dense linear order without endpoints.
Let pY ;ăY q be its completion.5.74 pX;ăXq is ccc iff pY ;ăY q is ccc.

Proof Clearly, an antichain in X is an antichain in Y . Conversely, suppose C is
an antichain in Y . X is dense in Y .5.74 Using AC, for each px, yq P C, let x1 P X be
such that x1 P px, yq, and let y1 P X be such that y1 P px1, yq. Then px1, y1q Ď px, yq,
and the set of all such intervals px1, y1q is an antichain in X. 5.188

Thus a Suslin line in the more general sense may be completed to a Suslin line
in the restricted sense of (5.187).

5.11 Limitations of ZF

In this section we will review what we have deduced in ZF, with or without AC,
about the countably infinitary, and we will pose some natural questions concerning
the possibility of extending these results.

1. Regularity properties of pointsets

1. Perfect set property

1. ZF proves that Σ1
1 pointsets have the perfect set property.

2. Does ZFC prove that Π1
1 pointsets have the perfect set property?
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2. Baire property and Lebesgue measurability

1. ZF proves these for the closure of Σ1
1 under complementation and

operation A. Note that all these pointsets are in ∆1
2.

2. Does ZFC prove the Baire property or Lebesgue measurability for
all ∆1

2 pointsets?

3. Determinacy

1. ZFC proves determinacy for ∆1
1.

2. Does ZFC prove determinacy for Σ1
1?

4. For each of these regularity properties, ZFC proves the existence of
pointset that does not have it, but the standard proofs do not define
any such set. Does ZFC prove there is a definable such set? Does ZF
(without AC) prove there exists such a set?

2. Structural properties of pointclasses

1. ZF proves that Σ1
2pzq has the prewellordering property (indeed, the scale

property). Hence Σ1
2pzq and Σ1

2 have the reduction property, and Π1
2pzq

and Π1
2 have the separation property.

2. Does ZFC prove the separation property for either Σ1
3 or Π1

3?

3. Other

1. Does ZF prove the axiom of choice or its negation?

2. Does ZFC prove the continuum hypothesis or its negation?

3. Does ZFC prove Suslin’s hypothesis5.186 or its negation?

In general, what are the limits of the ability of ZF, with or without choice
axioms, to explicate the countably infinitary? These questions inform much of the
rest of our discussion of the foundations of mathematics.

5.12 Summary

Prior to this chapter, except for a few special topics that we could have omitted,
we have not had occasion to invoke the axiom of Infinity. The essentially finitary
theories S, C, and their congeners, have been sufficient to develop the general theory
of structure, language, logic, definability, computability, and provability. We have
not therefore supposed the existence of any element that is not an hereditarily finite
set. The only necessarily infinite objects have been classes that are not required to
be sets, and at no point have we supposed them to be members of any higher order
object.

In this chapter we begin to investigate the implications of the admission of
infinitary objects as elements. As we have come to see, such apparently simple
objects as geometrical points and real numbers are intrinsically infinitary, so the
study of infinitarity is essential to the foundations of mathematics.

In a sense, the subject matter of this chapter is that of the preceding chapter
raised one level in the hierarchy of types as described here: type-0 objects being
hereditarily finite, and type-pn ` 1q objects being sets of type-n objects. The
analysis of definability now takes separate account of quantification over each type.
We refer to type-1 objects as points or reals, and focus our attention on type-2
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objects, specifically pointsets, definable by formulas employing quantification over
type 0 and type 1. From this standpoint, the present chapter is to type 1 as the
preceding chapter is to type 0. There the focus was on definability of type-1 objects,
here it is on definability of type-2 objects.

It is often useful to isolate that part of type-2 complexity that is specific to type 2
by allowing arbitrary type-1 objects as parameters in definitions. For example, a
function f : ωω Ñ ωω is recursive relative to a real iff it is continuous. In general,
relativization in this sense transforms logical operations into topological operations,
and the result is called descriptive set theory.

From this standpoint, the essential characteristic of standard type-1 pointspaces
like ωω is that they are Polish spaces: separable, completely metrizable topological
spaces. Countable union and intersection correspond to type-0 existential and uni-
versal quantification, and the Borel hierarchy corresponds to the hierarchy of type-0
quantification, but it is easily extended into the transfinite, whereas the transfinite
extension of type-0 quantification in the unrelativized (“effective”) theory is rel-
atively complicated. Projection corresponds to existential type-1 quantification,
and alternation of this operation with complementation generates the projective
hierarchy.

Our first indication of something intrinsically new and deeply significant hap-
pening at this level is the theorem of Suslin that ∆1

1 “ Borel. This serves as an
introduction to the topic of structural properties of pointclasses, including separa-
tion, reduction, prewellordering, and the scale and uniformization properties, and
we carry these as high in the projective hierarchy as we can in ZFC (although we
don’t know that yet). Their extension to more complex pointsets is an important
consideration in mathematics beyond ZFC.

Another motivation for the study of descriptive set theory is the investigation
of the extent to which various regularity properties hold. We focus on four such
properties: the perfect set property, the Baire property, Lebesgue measurability,
and determinacy. Again, we carry the proofs of these properties as high as we can,
and again we note that their extension (or not) to more complex pointsets is an
important metamathematical issue.

We conclude with an outline of what we have done and some of the major
questions left open by our development up to this point.
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6.1 Introduction

We have shown that the standard axiomatization of set theory, i.e., the theory ZF,
implies that the set-theoretical universe is the union of the von Neumann hierarchy
xVα | α P Ordy of sets, where

1. V0 “ 0;

2. for each α P Ord, Vα`1 “ P Vα; and

3. for each limit ordinal α, Vα “
Ť

tVβ | β ă αu.

Ord is the class of all ordinals. Additionally, ZF mandates that any criterion that
may be formulated in the language of set theory, applied to the members of a given
set, defines a set.

We have seen that this simple intuition is a sufficient foundation for most of
mathematics, including all of mathematics as it applies to the physical world—
and with the axiom of choice, nearly all the rest. As Cantor soon discovered,
however, no sooner do we expose the axiomatic basis for our intuitive understanding
of the membership relation than we confront fundamental questions about this
relation which are palpably different from “ordinary mathematics”, and which defy

415
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all attempts at resolution in the conventional sense. Chief among these are the
axiom of choice, AC, and the continuum hypothesis, CH. The importance of these
issues for the foundations of mathematics is reflected in their appearance as the
first of “Hilbert’s questions” for mathematicians of the twentieth century.

Like the parallel postulate vis-à-vis the other axioms of euclidean geometry, AC
is not as “obviously true” of the set-theoretical universe as the axioms of ZF, but it
is a powerful tool for proving theorems that assert the “orderliness” of that universe;
in fact, without AC there are multiple formulations of the continuum hypothesis
that are not provably equivalent.

In Chapters 7 and 8 we will show that AC cannot be proved or disproved in ZF,
and that CH cannot be proved or disproved in ZF`AC. These results belong to the
metatheory of membership, and like the metatheorems we have already seen, such as
Gödel’s incompleteness theorems, they are provable in basic set theory, S (without
the axiom of infinity), or, equivalently, in Peano arithmetic, PA. A constituent of
these finitary proofs is the demonstration that certain statements are provable in ZF.
These statements are part of both the theory and the metatheory of membership.
We encountered the same situation in the proofs of the incompleteness theorems,
where we presented proofs in S partly in order to show that those proofs exist.

An important new element in the metatheory of ZF (which includes Infinity)
compared to that of S is that many of the sentences that have been shown to be
unprovable in ZF are—like AC and CH—natural statements in the development of
the theory for its own sake, unlike, say, xCon Sy, which is clearly a statement that
is of greater interest for what it says about the theory of sets than for what it says
about sets per se.1

In fact, the modern theory of membership is inextricably linked to its own
metatheory. In large parts of the theory, most theorems are of the form ZFYtσu$ θ,
where σ is (provably in S ` x Con ZFy) not provable in ZF. Moreover, proofs of
statements without explicit metatheoretical content often contain metatheoretical
arguments. To paraphrase Alexander Pope: The proper study of set theory is (to
a great extent and unavoidably) set theory.

The principal theories for us are

1. S;2

2. C, essentially the same theory as S, but admitting proper classes;

3. ZF´ “ S` Infinity;

4. GB´ “ C` Infinity, essentially the same theory as ZF´, but admitting proper
classes;

5. ZF “ ZF´ ` Power; and

6. GB “ GB´ ` Power, essentially the same theory as ZF, but admitting proper
classes.

1There are sentences in the theory of hereditarily finite sets with a less “logical” flavor than
xCon Sy or xI am not provable in Sy that have been shown to be true but not provable in S, but
even these are not mainstream mathematics.

2S permits, but does not mandate, the existence of infinite sets. We use S usually to discuss
hereditarily finite sets, and we could add an axiom of finiteness to restrict it to this setting, but
this generally serves no useful purpose; on the contrary, it is sometimes convenient that S is a
subtheory of ZF.
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In this chapter we are primarily concerned with the metatheory of membership
with the axiom of infinity (we have dealt with the metatheory of finitary set theory
already), so ZF is the object theory of greatest interest.

We will be relatively informal in our dealings with variables, not always distin-
guishing between a variable v and the corresponding term v̄, or between a metaname
for variable and the variable itself in a typographic object language.

We will not necessarily distinguish notationally between theories and their ex-
tensions by definition; hence, ‘S’ refers not just to the original theory S, but to
any extension of it by definition, for which we have previously used ‘S`’. We will,
however, continue to be specific as to signatures. Recall that s is the signature of
pure set theory with two binary predicate indices, for identity and membership. s`

is an unspecified expansion that incorporates all the definitions made in the course
of this work (and, if we wish, all definitions made by all sentient beings anywhere
at any time past or future). Similarly, ‘C’ refers to any extension by definition of
C, with signature c`.

In a class theory such as C or GB, we may deal with structures S that are proper
classes. Recall the definitions of valuation,1.58 satisfactoriness,1.60 and satisfaction,1.61

for structures in general, including proper classes, and of satisfiability.1.71

(6.1) The following list of theorems will be a useful reference.

1. (1.63) [C] Every set structure is satisfactory.
(1.64) [ZF´] Every structure is satisfactory.

2. (1.65) [C] Given a formula ϕ, the tϕu-satisfaction relation exists if the ψ-
satisfaction relation exists for each immediate subformula of ϕ.
(1.67) [C] The Eρ0 -valuation function exists, and for any n P ω, if the Eρn-
valuation function exists then the Eρn`1-valuation function exists.

3. (1.73) [C] There does not exist a satisfaction relation for pVω; Pq that is defin-
able over pVω; Pq.

4. (2.29) [C] Suppose Θ is a consistent theory. Then Θ is satisfiable, i.e., there
exists a satisfactory structure S such that S |ù Θ.

5. (2.174) [C] Suppose S is weakly satisfactory and S |ù Θ. If Θ$ θ then S |ù θ;
in particular, Θ is consistent.

6. (2.176) [C] Suppose $σ. Then S |ù σ.

7. (2.183) [S] C is a conservative extension of S.

8. (3.217) [C] Suppose pV ; Pq is weakly satisfactory. Then there is an s-sentence
σ such that pV ; Pq |ù σ and S&σ.

9. (4.99) [C] Suppose T is a recursively enumerable ρ-theory in which S is inter-
pretable. Let Con T be a ρ-sentence that naturally expresses the consistency of
T. If T is consistent then T&Con T.

10. (3.215) [C] pV ; Pq |ù S. Similarly: [C] pVω; Pq |ù S; [GB´] pV ; Pq |ù ZF´; [GB]
pV ; Pq |ù ZF.

11. [S] Suppose S is consistent.

1. C& xVω is weakly satisfactoryy.3

2. Similarly, GB& xV is weakly satisfactoryy.

3Since6.1.10 C$ xpVω ; Pq |ù Sy, if C$ xVω is weakly satisfactoryy, then6.1.5 C$ xS is consistenty,
contradicting Gödel’s second incompleteness theorem.
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6.2 Satisfaction predicates

It is in the nature of the membership relation that every class M is a set-theoretical
world unto itself, viz., the structure M “ rs,M, πs, where πr0s “ txx, xy | x P Mu,
and πr1s “ txx, yy | x, y P M ^x P yu. In customary shorthand fashion we use
‘pM ; Pq’, or simply ‘M ’, to refer to M in the appropriate context. The paradigm of
these structures is of course pV ; Pq.

The category of bounded quantification and the corresponding classification of
formulas is particularly relevant to these structures. Suppose M is a class. For any
ordinal α, let Mα “ M X Vα. Let SMα be the ∆0-satisfaction relation for pMα; Pq.
Clearly, if α ď β, pMα; Pq ď∆0 pMβ ; Pq. Therefore2.155 SatM0 “

Ť

αPOrd S
M
α is the

∆0-satisfaction relation for pM ; Pq. It is easily verified that SatM0 is ∆1, i.e., SatM0
has both a Σ1 and a Π1 definition (with M as a parameter).

We have the following analog of (1.67).

(6.2) Theorem [GB] For any class M and any n P ω, if there exists a Σn-
satisfaction relation for pM ; Pq then there exists a Σn`1-satisfaction relation for
pM ; Pq. (Of course, we could also state this for Π instead of Σ.)

Proof Straightforward. 6.2

Recall4.54 that for any HF set x, x̂ is the canonical s1-term that denotes x, where
s1 is the expansion of s by the addition of the zero and adjunction operations.

(6.3) Theorem [S] Suppose n P ω. Then GB$ xfor any class M , the Σpn̂q-
satisfaction relation exists for pM ; Pqy.4

Proof By induction on n, using the fact of the existence of a proof of (1.67) in GB.
6.3

These two theorems may be added to the list (6.1).

6.3 Absoluteness

(6.4) Definition [GB] Suppose ϕpv0, . . . , vn-q is an s-formula with the free variables
shown, and M Ď N .

1. ϕ is absolute between M and N
def
ðñ

(6.5) @x0, . . . , xn- PM
`

M |ù ϕ
“

v0 ¨ ¨ ¨ vn-

x0 ¨ ¨ ¨ xn-

‰

ØN |ù ϕ
“

v0 ¨ ¨ ¨ vn-

x0 ¨ ¨ ¨ xn-

‰˘

.

2. ϕ is absolute upward or downward
def
ðñ (6.5) holds with ‘Ø’ replaced by ‘Ñ’

or ‘Ð’, respectively.

3. ϕ is absolute for M
def
ðñ ϕ is absolute between M and V .

(6.6) Theorem [GB] Suppose ϕ is an s-formula.

1. If ϕ is ∆0 then ϕ is absolute between transitive classes.

2. If ϕ is Σ1 pΠ1q then ϕ is absolute upward (downward) between transitive
classes.

4It is not important that the canonical term be used; we just need a name for n.
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3. Suppose ϕΣ and ϕΠ are respectively Σ1 and Π1. Then ϕ is absolute between
transitive models of ϕØØØϕΣØØØϕΠ.

4. Suppose T is an s-theory and ϕ is ∆T
1 . Then ϕ is absolute between weakly

satisfactory transitive models of T.

Proof 1 Straightforward induction on the complexity of ϕ.

2 Immediate from (6.6.1).

3 Also immediate.

4 Use (6.1.5). 6.6

(6.6.4) is not very useful, since we cannot even show (in GB) that V , for example,
is weakly satisfactory. In practice, to deal with a specific formula ϕ, (6.6.3) may be
used. We will not take the time now to formulate a general metatheorem to this
effect; in Chapter 9 we will return to this topic in the context of an elementary
embedding of the universe V into a transitive class.9.25

For sets M and N , Definition 6.4 makes sense in the context of ZF, but for the
more important case of proper classes, we cannot define absoluteness for formulas
in general in the context of a pure set theory. At best, we can define absoluteness
for a class of formulas of bounded complexity, e.g., Σ1.

Since we generally work in a class theory, we will not take the trouble to do
this formally, but we note that for a single formula we may express absoluteness in
purely set-theoretical terms using relativization2.112 as follows.

Suppose ϕ is an s-formula with free variables u0, . . . , un- , M and N are unary
predicates (typically in an extension-by-definition s` of s), and @@@x pMpxqÑÑÑNpxqq
has been asserted. The assertion of absoluteness of ϕ between M and N is the
s`-sentence

@@@u0, . . . , un- PPPM pϕMØØØϕN q.5

This is generally adequate to deal with absoluteness in the context of a pure set
theory. Obviously, it also serves in the context of a class theory, in which case we
also have an equivalent formulation with M and N treated as classes.

6.3.1 Σ1
1- and Σ1

2-absoluteness

The following theorem is due to Mostowski (Part 1) and Shoenfield (Part 2).

(6.7) Theorem [GB´] There is a finite fragment Θ Ď ZF´ such that for any
transitive classes M Ď N , if M,N |ù Θ then for any s1-formula5.2 ϕ with one free
variable u, of type 1,

1. if ϕ is Σ1
1, then for any x P ωω XM , M |ù ϕrxs iff N |ù ϕrxs; and

2. if ϕ is Σ1
2 and ωN1 ĎM , then for any x P ωω XM , M |ù ϕrxs iff N |ù ϕrxs.

5We are using the convenient notation by which ‘u PM ’ means ‘Mpuq’, which is not to imply
that M exists as a class.
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Proof Recall that for any Σ1
1 set X Ď ωω there exists a recursive sequence tree

T on ω ˆ ω, canonically defined from a formula for X, such that for all x P ωω,
x P XØDy P ωω xx, yy¨ P rT s, the set of infinite branches of T . In other words
x P X iff Trxs is nonwellfounded, where Trxs is ty P ωω | xx, yy¨ P rT su. Thus, for any
Π1

1 set X Ď ωω there exists a tree T on ω ˆ ω, canonically defined from a formula
for X, such that for all x P ωω, x P X iff Trxs is wellfounded. In the proof of (5.122)
we used this characterization of Π1

1 to show that for any Σ1
2 set X Ď ωω, there

exists a tree T on ω ˆ ω1, canonically defined from a formula for X, such that for
all x P ωω, x P X iff Trxs is nonwellfounded. Replacing ω1 by an arbitrary ordinal
α or by Ord in the definition of T , we obtain trees Tα (and a definition of a tree
TOrd, which is a proper class) such that T “ Tω1 . In general,

(6.8)

1. for any α ď β ď Ord, Tα Ď T β; and

2. for any α ě ω1, for all x P ωω, x P X iff Trxs is not wellfounded.

Let Θ be a finite fragment of ZF´ large enough that any transitive model of
Θ contains every recursive subset of Vω, and Θ establishes the equivalences just
described along with the theorem that any wellfounded relation may be mapped
order-preserving into the ordinals.6 By virtue of the last condition, wellfoundedness
is absolute for transitive models of Θ.7

Suppose ϕ is Σ1
1 with one free variable u, of type 1. Let T be the canonical tree

on ω ˆ ω such that for all x P ωω, V |ù ϕrxs iff Trxs is nonwellfounded. Suppose
M is a transitive model of Θ. Then T P M , and for any x P ωω XM , Trxs P M
and M |ù ϕrxs iff M |ù xrTrxss is wellfoundedy. Since wellfoundedness is absolute
for transitive models of Θ, M |ù ϕrxs iff V |ù ϕrxs. The same is true of any other
transitive model N of Θ. Thus, given M Ď N as in the statement of the theorem,
for any x P ωω XM , M |ù ϕrxs iff N |ù ϕrxs.

Now suppose ϕ is Σ1
2. For each α ď ω1, let Tα be as described above,6.8 so

that for all x P ωω, V |ù ϕrxs iff Tω1
rxs is nonwellfounded. Suppose M is a transitive

model of Θ and ω1 Ď M . The definition of Tα is absolute between M and V . If
ω1 PM then Tω1 PM ; otherwise, since ω1 ĎM , Tω1 is a definable proper class in
the sense of M . Since M |ù Θ, for any x P ωω XM , M |ù ϕrxs iff M |ù xTω1

rrxss is

nonwellfoundedy iff M |ù xT
rω1s

rrxss is nonwellfoundedy.8 Since wellfoundedness is abso-
lute, as is the formation of Tα

rxs from Tα and x, M |ù ϕrxs iff Tω1
rxs is nonwellfounded

iff V |ù ϕrxs.
Thus, for any x P ωω XM , M |ù ϕrxs iff V |ù ϕrxs. To obtain (6.7.2) as stated,

we replace V by an arbitrary transitive N ĚM such that N |ù Θ. 6.7

6Since we have established the above equivalences in the theory ZF, we know at once that there
exists such a Θ Ď ZF. A little reflection shows that Power is not required for this purpose: We
can talk about the relevant trees on HF sets and countable ordinals without having to posit the
existence of a set that contains all subsets of HF or all countable ordinals. Thus, there exists a
finite Θ Ď ZF´ that serves the purpose.

7Suppose M is transitive and M |ù Θ. Suppose R P M is a binary relation on X P M , and
V |ù xrRs is wellfoundedy, in the sense that every nonempty subset of X has an R-least member.
Then clearly, M |ù xrRs is wellfoundedy in the same sense. On the other hand, if M |ù xrRs is
wellfoundedy and M |ù Θ, then there exists f PM such that M |ù xrfs is an order-preserving map
of rpX;Rqs into the ordinalsy. Therefore, V |ù xrf s is an order-preserving map of rpX,Rqs into the
ordinalsy, so V |ù xrRs is wellfoundedy.

8If ω1 RM , so that ω1 “ OrdXM , then ‘T
rω1s

rrxss
’ is understood to mean ‘TOrd

rrxss
’.
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6.4 Reflection

(6.9) Theorem: Reflection principle [GB´] Suppose xMα | α P Ordy is a
monotone increasing continuous sequence of nonempty sets, i.e.

1. @α ă β P Ord, Mα ĎMβ; and

2. for any limit ordinal β, Mβ “
Ť

αăβMα.

Let M “
Ť

αPOrdMα. Suppose ϕ is an s-formula. Then

@Ordα DOrdβ ě α Mβ ătϕu M,

i.e., Mβ is a tϕu-elementary substructure of M .

Proof If there does not exist a tϕu-valuation function for M then2.152 Mβ ătϕu M
for all β, so suppose S is a tϕu-valuation function for M .

(6.10) Claim Suppose α P Ord. There exists β ą α such that for every ψ P tϕu
and variable u,

1. if DDDuψ P tϕu, then for every Mα-assignment A for DDDuψ,

Dx PM S
@

ψ,A
@

u
x

DD

“ 1ÑDx PMβ S
@

ψ,A
@

u
x

DD

“ 1; and

2. if @@@uψ P tϕu then for every Mα-assignment A for DDDuψ,

@x PMβ S
@

ψ,A
@

u
x

DD

“ 1Ñ@x PM S
@

ψ,A
@

u
x

DD

“ 1.

Proof This follows by Collection, since the class of objects xθ,Ay with θ P tϕu and
A an Mα-assignment for θ is a set. 6.10

Let α P Ord be given. Let α0 “ α and define αn for n ą 0 recursively by letting
αn`1 be the least ordinal β witnessing Claim 6.10 with αn for α. Let β “

Ť

nPω αn.
Then β ě α and every Mβ-assignment is an Mαn-assignment for some n, so for
every ψ P tϕu and variable u,

1. if DDDuψ P tϕu, then for every Mβ-assignment A for DDDuψ,

Dx PM S
@

ψ,A
@

u
x

DD

“ 1ÑDx PMβ S
@

ψ,A
@

u
x

DD

“ 1; and

2. if @@@uψ P tϕu then for every Mβ-assignment A for DDDuψ,

@x PMβ S
@

ψ,A
@

u
x

DD

“ 1Ñ@x PM S
@

ψ,A
@

u
x

DD

“ 1.

By the Tarski-Vaught criterion2.153 Mβ ătϕu M . 6.9

In (6.9) we say that ϕ reflects from M to Mβ , and (6.9) is the reflection principle.
This term is also applied specifically to the case that Mα “ Vα for α ą 0, where
the Power axiom is now presumed, so that we may infer that the Vαs are sets.

(6.11) Theorem [GB] Suppose ϕ is an s-formula. Then

@Ordα DOrdβ ě α Vβ ătϕu V.
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As a corollary, we have:

(6.12) Theorem [GB] Suppose ϕ is an s-formula. Then tα P Ord | Vα ătϕu V u is
closed unbounded in Ord.

Proof The unboundedness is (6.11). Closure follows from the fact that, given
α ă β, if Vα ătϕu V and Vβ ătϕu V then Vα ătϕu Vβ . Thus, letting C “ tα P
Ord | Vα ătϕu V u, if γ is a limit point of C then Vγ is the union of a directed
set of tϕu-elementary substructures, viz., tVα | α P C X γu, so for any α P C X γ,
Vα ătϕu Vγ . Hence Vγ ătϕu V , i.e., γ P C. 6.12

(6.13) Theorem [S] If ZF is consistent, it is not finitely axiomatizable.

Proof Suppose ZF is finitely axiomatizable. We can form a conjunction of any
finite set of sentences, so for some s-sentence θ, ZF$ θ and tθu$σ for all σ P ZF.
Let θ̂ be the canonical s1-term for θ. Then

GB$ xV |ù pθ̂qy,

so6.11

GB$ xDOrdα Vα |ù pθ̂qy,

so3.98

GB$ xDOrdα pθ
Vαqy.

Since GB is a conservative extension of ZF,

ZF$ xDOrdα pθ
Vαqy,

so
tθu$ xDOrdα pθ

Vαqy,

so3.98

(6.14) tθu$ xDOrdα Vα |ù pθ̂qy.

Note that for set structures like pVα; Pq, the existence of full valuation functions is
demonstrable in S, so Vα |ù σ iff Sxσ, 0y “ 1, where S is the full valuation function
for Vα.

Working in ZF we may reason as follows:

Let α be the least ordinal such that Vα |ù θ.9 Since6.14

Vα |ù xDOrdα Vα |ù pθ̂qy,

for some α1 ă α,
Vα |ù xVrα1s |ù pθ̂qy,

i.e. for some S P Vα, Vα |ù xrSs is the valuation function for Vrα1s, and rSsxpθ̂q, 0y “ 1y.
It is easy to see that S must indeed be the valuation function for Vα1 , and Sxθ, 0y “ 1,
so

Vα1 |ù θ.

But α is the least ordinal such that Vα |ù θ.

9Since valuation functions for set structures are sets, the property of α that Vα |ù θ is express-
ible with only set quantification, so by Foundation, if there exists α such that Vα |ù θ then there
exists a least such α.
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ZF is therefore inconsistent. 6.13

On the other hand:

(6.15) Theorem [S] C is finitely axiomatizable. Hence, any extension of C by
finitely many axioms, e.g., GB´ or GB, is finitely axiomatizable.

Proof The only axiom schema in our formulation of C is Comprehension, and this
may be replaced by a finite set of its instances. The following list is sufficient. As a
convenience, we formulate the axioms in an extension C` by definition of the pair
and ordered pair operations, whose definitions and basic properties do not depend
on Comprehension. To obtain an axiomatization of C per se, we could substitute
the definitions of these operations.

(6.16)

1. DDDv0 @@@v1

`

v1 PPP v0ØØØDDDv2, v3 pv2 PPP v3 ^̂̂ v1“““pv2, v3qq
˘

2. @@@v0 DDDv1 @@@v2 pv2 PPP v1ØØØ␣␣␣ v2 PPP v0q

3. @@@v0, v1 DDDv2 @@@v3 pv3 PPP v2ØØØ v3 PPP v0 ^̂̂ v3 PPP v1q

4. @@@v0, v1 DDDv2 @@@v3

`

v3 PPP v2ØØØDDDv4, v5 pv4 PPP v0 ^̂̂ v5 PPP v1 ^̂̂ v3“““pv4, v5qq
˘

5. @@@v0 DDDv1 @@@v2 pv2 PPP v1ØØØDDDv3 pv2, v3q PPP v0q

6. @@@v0 DDDv1 @@@v2

`

v2 PPP v1ØØØDDDv3, v4 pv2“““pv4, v3q ^̂̂pv3, v4q PPP v0q
˘

7. @@@v0 DDDv1 @@@v2

`

v2 PPP v1ØØØDDDv3, v4, v5 pv2“““ppv3, v4q, v5q ^̂̂pv3, pv4, v5qq PPP v0q
˘

8. @@@v0 DDDv1 @@@v2

`

v2 PPP v1ØØØDDDv3, v4, v5 pv2“““ppv3, v5q, v4q ^̂̂ppv3, v4q, v5q PPP v0q
˘

Let Θ be the theory obtained from C by replacing Comprehension by these instances.
Let Θ` be the extension by definition of the pair and ordered pair operations. We
will use the ordered n-tuple notation.3.58 Thus xpa, b, cqy means xppa, bq, cqy, etc.

(6.16.1–8) may be paraphrased as follows. Informally, we use lower case symbols
for set variables. Universal closure is assumed. We also assume that the implicit
quantification in the abstraction term is over all free variables unless otherwise
stated.

(6.17)

1. tpx, yq | x P yu exists

2. tx | x R Xu exists

3. tz | z P X ^ z P Y u exists

4. tpx, yq | x P X ^ y P Y u exists

5. ty | Dz py, zq P Xu exists

6. tpz, yq | py, zq P Xu exists

7. tppx, yq, zq | px, py, zqq P Xu exists

8. tppx, zq, yq | ppx, yq, zq P Xu exists

(6.18) Claim Suppose v0, . . . , vn- are distinct variables and ϕ is a c-formula with
Freeϕ Ď tv0, . . . , vn-u. Then

Θ`$DDDu@w
´

w PPPuØØØDDDv0, . . . , vn-

`

w“““pv0, . . . , vn-q ^̂̂ ϕ
˘

¯

,

i.e., Θ`$ xptpv0, . . . , vn-q | ϕuq existsy.
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Proof By induction on the complexity of ϕ. It suffices to work with formulas
constructed using only PPP, ␣␣␣, ^̂̂, and DDD, as any formula is Θ-equivalent to such a
formula.

We first observe that Θ` proves the existence of 0 by Existence. Θ` proves the
existence of V by applying (6.17.2) with 0 for v0. For uniformity of notation we
adopt the convention that an abstraction term xtpτq |uy, with an empty condition,
imposes no restriction on the variable in the term τ . Thus, for example, tpx, yq | u
is the class of all ordered pairs. Remember that the 1-tuple pxq “ x by definition.

(6.19) Claim Θ` proves the existence of

V “ tpx0q | u,

V ˆ V “ tpx0, x1q | u,

V ˆ V ˆ V “ tpx0, x1, x2q | u

“ tppx0, x1q, x2q | u

“ pV ˆ V qˆ V,

...

Proof Repeated applications of (6.17.4). 6.19

(6.20) Claim

1. For any number k, Θ`$ xtpx0, . . . , xk`1q | xk P xk`1u existsy.

2. For any numbers k ă l, Θ`$ xtpx0, . . . , xlq | xk P xlu existsy.

3. For any numbers k ă l ď m, Θ`$ xtpx0, . . . , xmq | xk P xlu existsy.

4. For any numbers k, l ă n, Θ`$ xtpx0, . . . , xn-q | xk P xlu existsy.

Proof 1 If k “ 0, this follows from (6.17.1). If k ą 0, we use the fact that Θ`$
xtpx0, . . . , xk-q | u existsy and Θ`$ xtpxk, xk`1q | xk P xk`1u existsy to conclude,
using (6.17.4), that Θ`$ xtppx0, . . . , xk-q, pxk, xk`1qq | xk P xk`1 existsy. Now use
(6.17.7) to show that Θ` proves the existence of

tpx0, . . . , xk`1q | xk P xk`1u “ tpppx0, . . . , xk-q, xkq, xk`1q | xk P xk`1u.

2 By induction on l ą k for any fixed k. For l “ k`1 this is (6.20.1). Now assume
Θ` proves tpx0, . . . , xlq | xk P xlu exists. Then Θ` proves tppx0, . . . , xlq, xl`1q | xk P
xlu exists by (6.17.4) with V for Y , i.e.,

tpppx0, . . . , xl-q, xlq, xl`1q | xk P xlu

exists, so tpppx0, . . . , xl-q, xl`1q, xlq | xk P xlu exists by (6.17.8). By a change of
variables, tpx0, . . . , xl`1q | xk P xl`1u “ tpppx0, . . . , xl-q, xlq, xl`1q | xk P xl`1u

exists.

3 By induction on m ě l for fixed k, l. For m “ l this is (6.20.2). Now assume
Θ` proves tpx0, . . . , xmq | xk P xlu exists. Use (6.17.4) to show that Θ` proves
tpx0, . . . , xm`1q | xk P xlu “ tppx0, . . . , xmq, xm`1q | xk P xlu exists.
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4 Θ` proves tpx0, x1q | x1 P x0u exists by virtue of (6.17.1) and (6.17.6). With this
starting point, the preceding arguments show that for any numbers l ă k ď m, Θ`

proves tpx0, . . . , xmq | xk P xlu exists. If k ď m then tpx0, . . . , xmq | xk P xku “ 0,
so it exists. Thus for any k, l ď m, tpx0, . . . , xmq | xk P xlu exists. In the statement
of the claim, we have just let n “ m` 1. 6.20

Since we have limited our consideration to formulas ϕ using only the membership
predicate, if ϕ is atomic it is uPPP v for some set variables u, v, or it is uPPPU for some
set variable u and class variable U . (6.20) is Claim 6.18 for all atomic formulas
ϕ of the first type. For atomic formulas of the second type, we observe that for
numbers k ă n, Θ` proves that tpx0, . . . , xn-q | xk P Xu exists by same argument
as for (6.19) with one copy of V replaced by X.

Given that we have also restricted our attention to formulas generated by nega-
tion, conjunction, and existential quantification, (6.17.2), (6.17.3), and (6.17.5)
suffice to prove (6.18) for all ϕ by induction on complexity. 6.18

It is fairly straightforward to show that any instance of the Comprehension
schema of C is derivable from a suitable instance of (6.18). Details are left to
the reader. 6.15

6.5 Ordinal-definability

(6.21) Definition [GB] A set x is ordinal-definable
def
ðñ ODx

def
ðñ there exists an

s-formula ϕ, a tϕu-valuation function for V , distinct variables u, v0, . . . , vn- , and
ordinals α0, . . . , αn- , such that x is the unique set y such that V |ù ϕ

“

u v0 ¨ ¨ ¨ vn-

y α0 ¨ ¨ ¨ αn-

‰

.

Note that since this definition involves quantification over a class variable (a valu-
ation function for V being a proper class), we cannot assert in GB that there is a
class OD; nor can this definition be translated directly into the language Ls of pure
set theory. The reflection principle, however, allows us to prove its equivalence to
the following definition, which is legitimate in ZF and which may be used in GB to
define a class.

(6.22) Definition [ZF] A set x is ordinal-definable
def
ðñ ODx

def
ðñ for some

s-formula ϕ, distinct variables u, v0, . . . , vn- , and ordinals α0, . . . , αn, such that
α0, . . . , αn- P αn, and x is the unique y P Vαn such that Vαn |ù ϕ

“

u v0 ¨ ¨ ¨ vn-

y α0 ¨ ¨ ¨ αn-

‰

.

(6.23) Theorem [GB] A set is ordinal-definable in the sense of (6.21) iff it is
ordinal-definable in the sense of (6.22).

Proof Suppose there exists a tϕu-valuation function for V , and x is the unique set
y such that V |ù ϕ

“

u v0 ¨ ¨ ¨ vn-

y α0 ¨ ¨ ¨ αn-

‰

. Let6.11 αn be such that tx, α0, . . . , αn-u Ď Vαn , and

Vαn ătϕu V . Then x is the unique set y P Vαn such that Vαn |ù ϕ
“

u v0 ¨ ¨ ¨ vn-

y α0 ¨ ¨ ¨ αn-

‰

.

Conversely, suppose x is the unique y P Vαn such that Vαn |ù ψ
“

u v0 ¨ ¨ ¨ vn-

y α0 ¨ ¨ ¨ αn-

‰

. The

s-formula xα0, . . . , αn are ordinals, ty, α0, . . . , αn-u Ď Vαn , and Vαn |ù ϕ
“

u v0 ¨ ¨ ¨ vn-

y α0 ¨ ¨ ¨ αn-

‰

y

is ∆ZF
1 . There are therefore a Σ1 s-formula ϕ and distinct variables u, v0, . . . , vn,

such that for all sets y,

V |ù ϕ
“

u v0 ¨ ¨ ¨ vn

y α0 ¨ ¨ ¨ αn

‰

Ø
`

y P Vαn ^Vαn |ù ψ
“

u v0 ¨ ¨ ¨ vn-

y α0 ¨ ¨ ¨ αn-

‰˘

Ø y “ x.
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Since there exists a Σ1-valuation function for V , there exists a tϕu-valuation func-
tion for V . Hence x is ordinal-definable in the sense of (6.21). 6.23

When we use ‘ordinal-definable’ in the context of ZF we have (6.22) in mind.
In the context of GB we may of course use the characterizations (6.21) and (6.22)
interchangeably. As noted above, it is the existence of the latter form that allows
us to conclude that the ordinal-definable sets form a class.

Definition [GB] OD def
“ tx P V | ODxu.

6.6 Consistency of the axiom of choice

It is easy to define a wellordering of OD. Let us say that an OD-code is a sequence
xβ, ϕ, α0, . . . , αn-y, where β is an ordinal, n is a number, ϕ is an s-formula with n`1
free variables, and α0, . . . , αn- are ordinals ă β (with the usual convention that if
n “ 0 then xα0, . . . , αn-y is the empty sequence 0). An OD-code xβ, ϕ, α0, . . . , αn-y

corresponds to an OD set x iff x is the unique y P Vβ such that Vβ |ù ϕ
“

u v0 ¨ ¨ ¨ vn-

y α0 ¨ ¨ ¨ αn-

‰

,
when xu, v0, . . . , vn-y is the enumeration of Freeϕ in increasing order. The lexico-

graphic ordering of OD codes is a wellorder.10 Now we say that x ăOD y
def
ðñ the

first code for x strictly precedes the first code for y.

Definition [ZF] x is hereditarily ordinal-definable
def
ðñ HODx

def
ðñ every member

of the transitive closure tctxu is OD.

Of course, in GB we define HOD as the class of HOD sets. By design, HOD is
transitive, and all its members are OD.

(6.24) Theorem (Gödel) [GB] HOD |ù ZFC.

Proof

(6.25) Claim For any ordinal α, Vα XHOD is HOD.

Proof VαXHOD is OD according to (6.21), as it is definable over V from α by an
s-formula ϕ obtained from the definitions we have just given of xODy and xHODy.
Of course, in the formulation of ϕ we have to use Definition 6.22 of xODy, rather
than Definition 6.21, to avoid class quantification. If we want to work completely
in ZF, we may observe that ϕ works equally well to define Vα X HOD from α in
Vα`ω.

Since Vα X HOD is transitive, tctVα X HODu “ Vα X HOD, so Vα X HOD is
hereditarily OD. 6.25

It follows easily from the claim that HOD is almost universal. By (3.214) all
that remains to be shown is that HOD models Separation and Choice. The argument
for Separation parallels the corresponding argument showing that V |ù ZF.3.215

10Recall that the lexicographic ordering of sequences puts s ď t iff, letting i be least such that
it is not the case that i P dom s^ i P dom t^ si “ ti, either

1. i R dom s (in which case s Ď t), or

2. i P dom s^ i P dom t^ si ă ti,

where some wellordering of the class from which the sequences are drawn is presumed. In the
present case, formulas are ordered according to the canonical ω-ordering of Vω , i.e., ϕ ă ψØ ⃗B ϕ ă
⃗B ψ; and ordinals have the usual order.
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Suppose
σ “ @@@v0, . . . , vn- @@@uDDDw @@@v pv PPP wØØØpv PPP u ^̂̂ ϕqq,

where ϕ is an s-formula, and u, v, w, v0, . . . , vn- are distinct variables such that
Freeϕ Ď tu, v, v0, . . . , vn-u. Suppose S is a tσu-valuation function for HOD.

We must show that

@y0, . . . , yn- P HOD @x P HOD Dz P HOD @y P HOD
`

y P zØ
`

y P x^S
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1
˘˘

.

Suppose x, y0, . . . , yn- P HOD, and let

z “
␣

y P HOD
ˇ

ˇ y P x^S
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1
(

.

Let F be a finite set of ordinals such that x, y0, . . . , yn- are definable from ordinals
in F as in (6.22). By the reflection principle6.9 there exists γ P Ord such that
tx, y0, . . . , yn-u Y F Ď Vγ and Vγ XHOD ătϕu HOD. Let Sγ be the (full) valuation
function for Vγ XHOD. Then for any y P x,

S
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1ØSγ
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1.

Note that Sγ has a uniform definition in terms of γ in any Vγ1 such that γ`ω ď γ1

(being generous). It follows that z is definable in Vγ`ω from ordinals in F Y tγu.
Hence z is OD, so, since x is HOD and z Ď x, z is HOD. Hence,

Dz P HOD @y P HOD
`

y P zØ
`

y P x^S
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1
˘˘

,

as claimed.
The definable wellordering ăOD of OD may be used to give a uniform definition

of wellorderings ăOD
α of each Vα X HOD, which are therefore ordinal-definable,

indeed, hereditarily ordinal-definable. So HOD |ù xfor every ordinal α, there is a
wellordering of Vαy, which is a version of AC in the context of ZF. 6.24

(6.24) can be formulated without mention of proper classes only as a metathe-
orem, i.e., a theorem of S that states the ZF-provability of the axioms of ZFC
relativized to the predicate HOD.

(6.26) Theorem [S] Suppose σ is an axiom of ZFC. Then

ZF$σHOD,

where σHOD is σ relativized to a unary predicate symbol defined as HOD.

Proof The short proof goes as follows. In the interest of clarity, let P be a unary
predicate symbol in the extension s` of s defined as HOD; hence, σHOD in the
statement of the theorem is σP . Let C be a constant symbol in the extension c`

of c defined as the class HOD. Suppose σ is an axiom of ZFC. Let σP be the s`-
formula obtained by relativizing σ to the predicate P , and let σC be the c`-formula
obtained by relativizing σ to the class C. Clearly,

GB$ xpσP qØ pσCqy.

By (3.98)
GB$ xpσCqØ pCq |ù pσqy.
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By (6.24)
GB$ xpCq |ù pσqy,

so
GB$σC ,

so
GB$σP .

Since GB is a conservative extension of ZF,

ZF$σP ,

i.e., ZF$σHOD. 6.26

We may avoid all reference to (theories that allow) proper classes by refashioning
the arguments up to and including the proof of (6.26) as metatheorems concerning
ZF-provability; but this is—as indicated above—the long way ’round, and it’s less
appealing intuitively.

(6.27) Theorem [S] If ZF is consistent then ZFC is consistent.

Remark We will provide two proofs illustrating slightly different approaches.

Proof Method 1 Suppose ZFC is not consistent. Let π be a ZFC-proof of a
contradiction σ ^̂̂ ␣␣␣σ. Let Φ be the set of formulas occurring in π. Since Φ is
finite, there exists a GB-proof π1 of the existence of a Φ-valuation function for
HOD.11 Let π2 be a GB-proof of (6.24). Let π3 be a GB-proof that begins with π1

to show the existence of a Φ-valuation function S for HOD; then uses π2 to show
that Sxθ, 0y “ 1 for each θ P Φ that is an axiom of ZFC used as a premise in π; then
uses the sequence π of inferences to show that Sxσ ^̂̂ ␣␣␣σ, 0y “ 1, which contradicts
the fact that, since Sxσ, 0y “ 1 iff Sx␣␣␣σ, 0y “ 0, Sxσ ^̂̂ ␣␣␣σ, 0y “ 0. π3 is therefore
a GB-proof of a contradiction. Hence GB is inconsistent. Since GB is a conservative
extension of ZF (provably in S), ZF is inconsistent.

Method 2 Suppose π is a ZFC-proof of a contradiction σ ^̂̂ ␣␣␣σ. Let πHOD be
obtained by relativizing every formula in π to (the predicate) HOD. πHOD is easily
seen to be a ZFHOD-proof of σHOD ^̂̂ ␣␣␣σHOD. For each axiom θ of ZFC occurring
as a premise of π, θHOD is the corresponding premise of πHOD, and ZF$ θHOD.6.26

Hence, ZF$σHOD ^̂̂ ␣␣␣σHOD, so ZF is inconsistent. 6.27

6.7 Consistency of ZFA`␣␣␣AC

The inspiration for Cohen’s proof of the independence of the axiom of choice came
from previous work of Fraenkel and Mostowski showing the independence of the
axiom of choice from the theory ZFA of set theory with atoms. In the simplest

11Of course, what π1 proves is xthere exists a pΦ̂q-valuation function for HODy, where x̂ is in
general the canonical s1-term for an hereditarily finite set x. The proof that is asserted to exist
could go as follows. First prove xEvery formula in pΦ̂q is in Es

pn̂q
.y for some number n. Then prove

(1.67). Conclude with xTherefore there exists an Es
0̂
-valuation function for HOD; hence, there

exists an Es
1̂
-valuation function for HOD; hence, there exists an Es

2̂
-valuation function for HOD;

. . . ; hence, there exists an Es
n̂-valuation function for HOD.y.
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case there is a set A of atoms, or urelements, which are elements that are not sets
and have no members. The universe is built from A by iteration of the powerset
operation. In general, for any set X:

P0X
def
“ X

Pα`1X
def
“ PPαX

PαX def
“

ď

βăα

Pβ X if α is limit

V pXq
def
“ P8X def

“
ď

αPOrd

PαX.

6.7.1 Consistency of ZFA

The consistency of ZFA ` xA is nonemptyy relative to that of ZF is easy to prove.
Working in GB, suppose A is a set. Define xMα | α P Ordy recursively as fol-
lows:

1. M0 “ tx0, ay | a P Au;

2. Mα`1 “ tx1, xy | x ĎMαu;

3. if α is a limit ordinal, Mα “
Ť

βPαMβ .

Let M “
Ť

αPOrdMα. Let M be the structure with domain M ; two unary predicate
symbols, xAy for atoms and xSy for sets; and a binary predicate symbol xEy for
membership:

1. AM “ txxy | x PM0u;

2. SM “ txxy | x PMzM0u;

3. EM “ txx, x1, yyy | x, y PM ^x P yu.

(6.28) Theorem [GB] Given any structure M defined from a set A as above,
M |ù ZFA, i.e., for every axiom σ of ZFA, for every tσu-valuation function S for
M, Sxσ, 0y “ 1.

Proof The proof is entirely straightforward. 6.28

(6.29) Using the above method we can obtain models of ZFA with various additional
conditions on the set A of atoms, which can be used to derive consistency results
from Con ZF.

The general approach is as follows. Suppose Θ is a recursively enumerable
theory, σ is an s-sentence, and C ` σ proves that there is a structure M that
satisfies Θ.12 We know6.1 that this does not necessarily imply that C ` σ proves
that Θ is consistent, as we have the counterexample where Θ “ ZF, σ is arbitrary,
and M “ pV ; Pq. We do, however, have the following theorem.

(6.30) Theorem [S] Under the conditions just stated, if ZF` σ is consistent then
Θ is consistent.

12xM |ù Θy is formulated in terms of a Σ1 definition of Θ.
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Proof Suppose toward a contradiction that Θ is inconsistent, and let θ be a con-
junction of a finite set of sentences in Θ such that ␣␣␣ θ is a logical validity. Then
C`σ proves that there is a structure M such that M |ù Θ, and also that M |ù ␣␣␣ θ.
Each conjunct of θ can be shown in C to satisfy the postulated Σ1 definition of Θ,
so C ` σ proves that M |ù θ. Thus C ` σ is inconsistent, contrary to hypothesis.

6.30

Note that this is the approach we have used in the proof of the relative con-
sistency of ZFC using HOD. As in that case, we often simply recapitulate the
argument in the proof of (6.30), rather than quoting the theorem.

In the particular case of interest, σ is the conjunction of the Infinity and Power
axioms, so C` σ is GB. Working in GB, the set A used in the construction of the
model M as above for Theorem 6.28 may be taken to be infinite, in which case
M |ù ZFA` xA is infinitey.

6.7.2 Symmetric models

Working in ZFA, if π : A bij
Ñ A is a permutation of A, π naturally extends to an

automorphism π̂ of V pAq defined by P-recursion:

π̂x “

#

πx x P A

tπ̂y | y P xu x R A.

Definition [ZF] Suppose Γ is a group.

1. SΓ
def
“ the set of subgroups of Γ.

2. F is a filter on Γ, or Γ-filter
def
ðñ

1. F is a nonempty subset of SΓ;
2. for any F, F 1 P SΓ, if F P F and F 1 Ě F then F 1 P F (so, in particular,

Γ P F); and
3. for any F, F 1 P F , F X F 1 P F .

A Γ-filter F is normal
def
ðñ @F P F @π P Γ π´1Fπ P F , where π´1Fπ “

tπ´1ρπ | ρ P F u.

Definition [ZFA] Suppose Γ is a group of permutations of A.

1. For x P V pAq, symΓ x
def
“ tπ P Γ | π̂x “ xu. Note that symΓ x P SΓ.

2. Suppose F is a normal filter on Γ.

1. An element x P V pAq is F-symmetric
def
ðñ symΓ x P F .

2. The class of hereditarily F-symmetric elements of V pAq def
“ V pA,Fq def

“ tx P
V pAq | @y P tctxu symΓ y P Fu.

Note that for every x P V “ V p0q, the class of pure sets, symΓ x “ Γ P F , so
V Ď V pA,Fq.

Without loss of generality we suppose that all atoms are F-symmetric (as we
may ignore those that aren’t), so all are in V pA,Fq.

(6.31) Theorem [GBA] Suppose F is a normal filter on a group Γ of permutations
of the set A of atoms. For any π P Γ, π̂ æV pA,Fq is an automorphism of V pA,Fq.
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Proof Straightforward. 6.31

(6.32) Theorem [GBA] Suppose F is a normal filter on a group Γ of permutations
of the set A of atoms. Then V pA,Fq |ù ZF, i.e., for every axiom σ of ZF and every
tσu-valuation function S for V pA,Fq, Sxσ, 0y “ 1.

Remark Alternatively, we have the metatheorem

Theorem [S] Suppose σ is an axiom of ZF. Let M be a new unary predicate
symbol, and let σM be σ relativized to M . Let u be a variable that does not occur
except where explicitly indicated. Then ZFA$ xSuppose F is a normal filter on a
group Γ of permutations of the set A of atoms, and suppose for all puq, pM̃xuyq iff
puq is hereditarily F-symmetric. Then pσM q.y.

Proof For notational simplicity, let M “ V pA,Fq. By construction, M is tran-
sitive. Let Mα

def
“ ty P M | rk y ă αu. Since automorphisms of M preserve rank,

symΓMα “ Γ P F , so Mα is F-symmetric, and therefore Mα P M . For any set
x Ď M , letting α “ rkx, x Ď Mα P M , so M is almost universal. Hence,3.214 M
satisfies all axioms of ZF with the possible exception of Comprehension.

It therefore remains only to show that M satisfies Comprehension. Suppose

σ “ @@@v0, . . . , vn- @@@uDDDw @@@v pv PPPwØØØpv PPPu ^̂̂ ϕqq,

where ϕ is an s-formula, and u, v, w, v0, . . . , vn- are distinct variables such that
Freeϕ Ď tu, v, v0, . . . , vn-u. Suppose S is a tσu-valuation function for M . Given
y0, . . . , yn- , x P M , we must show that there exists z P M such that for all y P M ,
y P zØ y P x^S

@

ϕ,
@

v0 ¨ ¨ ¨ vn- u v
y0 ¨ ¨ ¨ yn- x y

DD

“ 1. In other words, letting

z “
␣

y P x
ˇ

ˇS
@

ϕ,
@

v0 ¨ ¨ ¨ vn- u v
y0 ¨ ¨ ¨ yn- x y

DD

“ 1
(

,

we must show that z PM .
Since z Ď M , it is enough to show that z is F-symmetric. Let F “ symΓ x X

Ş

mPn symΓ ym. Then for any π P F , π̂x “ x and for all m P n, π̂ym “ ym. Since
π̂ æM is an automorphism of M , for any y P x,

S
@

ϕ,
@

v0 ¨ ¨ ¨ vn- u v
y0 ¨ ¨ ¨ yn- x y

DD

“ 1ØS
@

ϕ,
@

v0 ¨ ¨ ¨ vn- u v
y0 ¨ ¨ ¨ yn- x π̂y

DD

“ 1,

so y P zØ π̂y P z, whence π̂z “ z. Thus, z is F-symmetric. 6.32

A model of the form V pA,Fq is called a symmetric inner model. By a judicious
choice of Γ and F , we can arrange that such a model satisfies various sentences in
addition to ZF.

(6.33) Theorem (Fraenkel-Mostowski) [S] If ZF is consistent then so is ZFA`
␣␣␣AC.

Proof As discussed above, it suffices to work in GBA`xA is infinitey6.29 to construct
a symmetric inner model of ZFA`␣␣␣AC, which we now do.

Let Γ be the full permutation group of A. For each s P rAsăω (the set of finite
subsets of A) let Fs “ tπ P Γ | @a P s πa “ au. Let F be the filter generated by
these groups, i.e., a subgroup F of Γ is in F iff for some s P rAsăω, Fs Ď F . Let
M “ V pA,Fq. Note that for any permutation π of A, π´1Fsπ “ FπÐs, so F is a
normal filter.
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By the definition3.52 of ‘infinite’, A is not equipollent with a number, i.e., A is
infinite in sense (3.133.3), and M also clearly believes this to be the case. We will
show that as far as M is concerned, however, A is finite in sense (3.133.2) (and
therefore also in sense (3.133.1)3.134.2). Since AC implies3.149 that any set that is
infinite in sense (3.133.3) is infinite in senses (3.133.1, 2) as well, M |ù ␣␣␣AC.

Suppose toward a contradiction that f P M and f : B sur
Ñ A where B ⫋ A.

By recursion on n P ω, define A0 “ A, and An`1 “ fÐAn. We will show by
induction on n P ω that An`1 ⫋ An. For n “ 0 this is true because A1 “ B ⫋ A.
Suppose An`1 ⫋ An. Then An`2 “ fÐAn`1 Ď fÐAn “ An`1, and An`1zAn`2 “

fÐpAnzAn`1q. Since AnzAn`1 is a nonempty subset of A and f is surjective to A,
An`1zAn`2 ‰ 0.

LetBn “ AnzAn`1. TheBns are disjoint nonempty sets of atoms, and f æBn`1 :
Bn`1

sur
Ñ Bn. Since f P M , symΓ f Ě Fs for some finite s Ď A. Let n ą 0

be such that Bn X s “ 0. Let a be a member of Bn`1. Then f a P Bn, and
f a is therefore not in s. Let π P Fs be such that πa “ a and πpf aq ‰ f a.
Then pπ̂fqa “ pπ̂fqpπaq “ πpf aq ‰ f a, so π̂f ‰ f , contradicting the fact that
symΓ f Ě Fs. 6.33

6.8 Summary

The principal foundational questions having to do with finitary objects have been
dealt with in Chapters 1–4. In Chapter 5 we have begun the study of infinitary
objects, where we have found a plethora of questions in search of answers. Given the
fundamental position of the theory of membership in this regard, these questions
essentially belong to the metatheory of membership.

If M is a transitive class then pM ; Pq is a model of Extension and Foundation, and
the remaining axioms of ZF correspond to closure properties of M . On the other
hand, every wellfounded setlike extensive relation is isomorphic to a transitive class.
Hence, transitive class models loom large in the metatheory of membership. The
paradigm of such a model is of course pV ; Pq itself.

The absoluteness of formulas between transitive models is a generally useful
concept, and the absoluteness of Σ1

1 and Σ1
2 formulas between pV ; Pq and appropriate

transitive models of a sufficient finite fragment of ZF´ is of particular importance
for descriptive set theory.

The reflection principle is frequently useful in the setting of a hierarchy of sets
wellordered by inclusion (such as xVα | α P Ordy). We use it to show (in S) that if
ZF is consistent then it is not finitely axiomatizable. It follows that S is not finitely
axiomatizable (on the same hypothesis, although it is known that Con S suffices)
On the other hand, we show that C is finitely axiomatizable.

We introduce the important notion of ordinal definability and show (in GB) that
the class HOD of hereditarily ordinal-definable sets is an inner model of ZFC. We
state this also in the form of a metatheorem (of S) that for any axiom θ of ZFC,
ZF$ θHOD. Either way, we have derived the consistency of ZFC from that of ZF.

We finish with the symmetric inner model construction invented by Fraenkel
and Mostowski to prove the consistency of the negation of AC in the context of the
Zermelo-Fraenkel set theory with atoms, ZFA.
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[Thomas Jech’s Set Theory [12] is an excellent source for all aspects of the modern
theory of membership, including constructibility.]

7.1 The constructible universe

As noted in the introduction to Chapter 6, there are fundamental questions about
the membership relation that are not settled by the natural axiom system ZF, e.g.,
the axiom of choice and the continuum hypothesis. It was the critical insight of Kurt
Gödel that the difficulty of bringing the axioms and intuition of ZF—as embodied
in the concept of the von Neumann hierarchy—to bear on these questions springs
from the indefinite nature of the successor step Vα ÞÑ Vα`1, i.e., the formation of
the powerset P Vα: there is nothing in this construction that suggests a means by
which we might well-order the powerset PA of an arbitrary set A, nor is there any
obvious way of defining (or otherwise demonstrating the existence of) a subset of
PA of cardinality intermediate between that of A and PA (again for arbitrary A)
or of showing that there is no such set.

Gödel asked whether one might achieve a resolution of these—and perhaps a
good many other—questions by means of a more controlled process of admitting
sets to V . In particular, suppose we admit only those sets that ZF requires us to
admit. To this end we define a new hierarchy xLα | α P Ordy as follows. We will
carry out the construction and the initial discussion in ZF´, i.e., ZF without Power.
This is not much extra work, and it will be important for certain applications.

433
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(7.1) Definition [ZF´]

1. L0 “ 0;
2. for each ordinal α, Lα`1 consists of all subsets of Lα definable over pLα; Pq

from parameters in Lα;
3. for each limit ordinal α, Lα “

Ť

tLβ | β ă αu.

Since we are working in ZF´, we cannot justify (7.1.2) by defining Lα`1 as a subset
of PLα. Instead, we proceed as follows. Let S be a valuation function for Lα. For
each n P ω, each n` 1-sequence xv0, . . . , vny of distinct variables, each s-formula ϕ
with Freeϕ Ď tv0, . . . , vnu, and each pn ´ 1q-sequence xx1, . . . , xny from Lα, there
is a unique set x such that

x “
␣

y P Lα
ˇ

ˇS
@

ϕ,
@

v0 v1 ¨ ¨ ¨ vn

y x1 ¨ ¨ ¨ xn

DD

“ 1
(

.

This defines a function f such that dom f consists of all suitable sequences
@

xv0, . . . , vny, ϕ, xx1, . . . , xny
D

,
which is easily shown to be a set (without using Power). By Replacement,3.30 im f
is a set.1 We define Lα`1 to be im f .

(7.2) Definition [ZF´]

1. x is constructible
def
ðñ Lx

def
ðñ DOrdα x P Lα.

2. [GB´] The constructible universe def
“ L

def
“ tx | Lxu.

Note that (7.2.1) defines a unary predicate symbol xLy in ZF´, while (7.2.2)
defines the corresponding nulary operation symbol xLy in GB´.2

(7.3) Theorem [GB´]

1. For every α P ω ` 1, Lα “ Vα.
2. For every α P Ord

1. Lα is transitive;
2. Lα XOrd “ α;
3. Lα P Lα`1;
4. for every β ě α, Lα Ď Lβ.

3. Likewise
1. L is transitive;
2. LXOrd “ Ord, i.e., Ord Ď L;
3. @α P Ord Lα P L;
4. @α P Ord Lα Ď L.

Proof Straightforward. 7.3

For the remainder of this discussion we will generally state metatheorems in terms
of ZF and GB, keeping in mind that ZF´ and GB´ may be substituted whenever
the power operation is not intrinsic to the matter at hand. We will occasionally
emphasize this point.

1As we have stated Replacement, it deals with classes that are functions. In ZF´, Replacement
is a schema that states for each formula, that if it defines a functional relationship, its “image”
on a set is a set.

2As usual, in the context of ZF´ we may use x¨ P Ly informally to mean xL¨y.
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Definition [S] The axiom of constructibility is the s`-sentence @@@v0 Lv̄0.3 In the
context of GB, we may use ‘V “““L’.4 It is convenient and conventional to use
‘V “““L’ (or ‘xV “ Ly’) also in the context of ZF, with the understanding that it
stands for @@@v0 Lv̄0.

It is important to note that in calling this sentence an axiom we do not mean to
imply that we add it to the canon of ZF, i.e., we do not assert that all sets are
constructible—indeed, constructibility is widely viewed as an unjustifiable restric-
tion on the notion of a set. As a hypothesis, however, its study is central to the
metatheory of membership.

To say that ZF requires us to admit all sets in L is not quite accurate. It is
conceivable that for some α P Ord, Lα |ù ZF, in which case of course, we are not
obligated (by ZF) to add any more. As we will see, however, if M is a transitive
set and M |ù ZF, then Lα Ď M , where α “ M XOrd. Moreover, Lα |ù ZF in this
event.

We will show that

GB$ xL |ù ZFy

GB$ xL |ù ACy

GB$ xL |ù GCHy.

Hence,

for any σ P ZF, GB$σL

GB$ACL

GB$GCHL.

With ‘L’ understood as the predicate7.2.1 (as opposed to the class name7.2.2), these
are s`-sentences, and

for any σ P ZF, ZF$σL

ZF$ACL

ZF$GCHL.

Thus, any proof of an s`-sentence θ from ZF`AC`GCH can be converted to a proof
of θL from ZF. Letting θ be, say, 0“““1, we see that if ZF`AC`GCH is inconsistent
then ZF ` AC ` GCH$ θ, so ZF$ θL, so ZF$0“““1, so ZF is inconsistent. We
therefore will have proved (in S) that if ZF is consistent then so is ZF`AC`GCH.

(7.4) Theorem [GB´] L |ù ZF´. Assuming Power, L also satisfies Power, so
L |ù ZF.

Proof

(7.5) Claim L is almost universal.3.101

3We follow our convention of using bold symbols to represent expression-building operations,
in this case ‘L’ for the unary formula-building operation corresponding to the constructibility
predicate.

4Here ‘L’ denotes the c`-term xLy. Technically, we should write ‘L0’, ‘L’ denoting a nulary
term-building operation.
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Proof Suppose x is a subset of L. Since L “
Ť

αPOrd Lα, by Collection there exists
α P Ord such that x Ď Lα. Since7.3.3.3 Lα P L, the definition of almost universality
is satisfied. 7.5

Thus3.214 L satisfies all the axioms of ZF´ with the possible exception of Compre-
hension, and, assuming Power, L also satisfies Power. The following claim therefore
suffices to complete the proof.

(7.6) Claim L |ù Comprehension.

Proof Suppose

σ “ @@@v0, . . . , vn- @@@uDDDw @@@v pv PPP wØØØpv PPP u ^̂̂ ϕqq,

where ϕ is an s-formula, and u, v, w, v0, . . . , vn- are distinct variables such Freeϕ Ď
tu, v, v0, . . . , vn-u. Suppose S is a tσu-valuation function for L.5 We must show
that

(7.7) @y0, . . . , yn- P L@x P L Dz P L@y P L
`

y P zØ
`

y P x^S
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1
˘˘

.

Let x, y0, . . . , yn- P L be given, and let

z “
␣

y P x
ˇ

ˇS
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1
(

,

using (a single instance of) the class comprehension axiom together with the sepa-
ration axiom of GB. Let β P Ord be such that x, y0, . . . , yn- P Lβ and Lβ ătϕu L.6.9

Then
z “

␣

y P x
ˇ

ˇLβ |ù ϕ
“

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

‰(

,

so z P Lβ`1. Hence, z P L, and

@y P L
`

y P zØ
`

y P x^S
@

ϕ,
@

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

DD

“ 1
˘˘

,

as desired.7.7 7.6 7.4

(7.8) Theorem [S] For every σ P ZF, ZF$σL.

Remark The same holds for ZF´ in place of ZF.

Proof Suppose σ is an axiom of ZF. Then7.4 GB$ xL |ù xpσqyy. Therefore3.98.2

GB$ xpσLqy, i.e., GB$σL. Since σL is an s`-sentence, and GB is a conservative
extension of ZF, ZF$σL, as claimed. 7.8

The proof just given of Theorem 7.8 has the virtue of brevity and makes use of
several important general principles, but we do not have to be this sophisticated
about it. We can prove the theorem directly (in ZF, without invoking GB and
satisfaction for proper classes). We leave this as a (recommended) exercise for the
reader.

5Note that we are not asserting that there is a tσu-valuation function for L. If there is not,
then the supposition is vacuous, and L |ù σ trivially.1.61.1
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7.1.1 Absoluteness of constructibility

Assume ZF´.
Suppose β ą ω is a limit ordinal. Let α ă β be given. It is easy to see that for

every sufficiently large γ ă β, Lγ contains every finite subset of Lα, every ordered
pair px, yq with x, y P Lα, every finite function f : Lα á Lα (including every
finite sequence from Lα), and every xϕ,Ay, where ϕ is an s-formula and A is an
Lα-assignment for ϕ.6

Let γ be as above. Then for any s-formula ϕ, SϕLα
Ď Lγ , where SϕLα

“ txψ,Ay |

ψ P tϕu^Lα |ù ψrAsu is the tϕu-satisfaction relation for Lα. It is straightforward
to show by induction on the complexity of ϕ that SϕLα

P Lγ`1, using at each
stage the fact that SϕLα

is definable over Lγ from Lα and SψLα
for the immediate

subformula(s) ψ of ϕ. It follows that the full satisfaction relation SLα for Lα is in
Lγ`2 and therefore in Lβ .

For a given limit ordinal β ą ω, this is true for every α ă β. It follows that
the function tpLα, Lα`1q | α ă βu is definable over Lβ . By induction we can
show that for every γ ă β, the sequence xLα | α ă γy is in Lβ , and the function
tpγ, xLα | α ă γyq | γ ă βu is definable over Lβ . Hence, xLα | α ă βy is definable
over Lβ .

Note that the same definition works for any Lβ with β ą ω a limit ordinal, and
it also works for L. In fact, the definition is essentially the definition (7.1) of the
L-hierarchy (the only difference being that we have specified that it be formulated
in Ls, rather than in Ls`

, for technical reasons).
For later use we note that the definition may be given in Σ1 form: x “ Lα iff α

is an ordinal and there exists a function xxxγ , Sγy | γ ď αy such that

1. x0 “ 0;

2. for every limit γ P α, xγ “
Ť

ηPγ xη;

3. for every γ P αzt0u, Sγ is the satisfaction relation for xγ ; and

4. for every γ P α, xγ`1 consists of exactly those subsets of xγ definable over xγ
from parameters in xγ ;7 and

5. x “ xα.

(7.9) Based on the preceding discussion, we let Λ be a fixed Σ1 formula with
Free Λ “ tv0, v1u, such that for any limit ordinal β ą ω for any x, y P Lβ,

Lβ |ù Λ
“

v0 v1
x y

‰

ØOrd y^x “ Ly.

(7.10) Theorem [S]

1. GB´$ xL |ù V “““Ly.

2. ZF´$pV “““LqL.

6Recall that s-expressions (including variables) are by definition in Vω , hence in Lω .7.3.1

7To keep this Σ1, we cannot quantify over subsets of xγ . Instead, we use quantification bounded
by txγ`1, Sγu to say that each formula and xγ -assignment for all but one of its free variables yields
a member of xγ`1 when interpreted via Sγ , and each member of xγ`1 is obtainable in this way.
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Proof These follow directly from the preceding discussion. Note that since V “““L
is a single sentence, GB´ proves the existence of the tV “““Lu-satisfaction relation
for L. 7.10

(7.11) Theorem [S] Suppose θ is an s-sentence.

ZF$ θLØpZF` V “““Lq$ θ.

Remark Also with ZF´ for ZF.

Proof Suppose ZF$ θL. If V “ L the restriction of quantifiers to L is no restriction
at all, i.e., pZF` V “““Lq$ θLØØØ θ, so pZF` V “““Lq$ θ.

Conversely, suppose pZF` V “““Lq$ θ. Let π be a proof of θ from ZF together
with V “““L. Let πL be the same proof with every quantifier restricted to L. Since
ZF$σL for every axiom σ of ZF,7.8 and ZF$pV “““LqL,7.10.2 ZF proves all the hy-
potheses of πL and therefore also the conclusion, viz., θL. 7.11

(7.12) Theorem [S] If Con ZF then ConpZF` V “““Lq.

Proof Given a proof π of, say, 0“““1, in ZF`V “““L, let πL be the same proof with
every quantifier relativized to L. The premises of πL are theorems of ZF, and the
conclusion is p0“““1qL, which is equivalent (over ZF) to 0“““1.8 7.12

7.2 A definable wellordering of L

The constructible hierarchy defines a prewellordering of L, with x preceding y if for
some ordinal α, x P Lα and y R Lα. Note that the levels of this prewellordering, i.e.,
the levels of L, are the sets Lα`1zLα. We now wish to refine this to a wellordering
ăL of L by wellordering each of these levels. We do this for each α by comparing
the s-formulas and parameters from Lα used in the definitions of the members of
Lα`1. The formulas—being members of Vω—are ordered in type ω by the relation
ă,3.211.3 which is ∆1 over Vω “ Lω. The parameters used in a definition form a
finite sequence into Lα, and these sequences are wellordered lexicographically using
the ordering ăL restricted to Lα.

Definition [ZF´] We define the binary relation ăLα for α P Ord by recursion on
α, in such a way that for each ordinal α, ăLα is a wellordering of Lα, and for each
β ă α, ăLα is an end extension of ăLβ . Recall that by definition a binary relation R
is a class of 2-sequences with xRx1Øxx, x1y P R.

1. ăL0“ 0.

2. If α is a limit ordinal then ăLα“
Ť

βăα ă
L
β .

3. If α “ β ` 1 then ăLα is the set of 2-sequences xx, x1y such that x, x1 P Lα and
either

1. x, x1 P Lβ and x ăLβ x
1; or

2. x P Lβ and x1 R Lβ; or

8It might be thought that p0“““ 1qL is not just ZF-equivalent to 0“““ 1, but actually is 0“““ 1,
since there are no quantifiers to relativize; however, 0“““ 1 is an s`-sentence. When formulated as
an s-sentence, it has quantifiers, but it is absolute for L.
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3. x, x1 R Lβ and there exists an s-formula ϕ with free variables v0, . . . , vn
for some n P ω and z “ xz0, . . . , zn-y P nLβ such that9

x “
␣

y P Lβ
ˇ

ˇLβ |ù ϕ
“

vn v0 ¨ ¨ ¨ vn-

y z0 ¨ ¨ ¨ zn-

‰(

,

and for every s-formula ϕ1 with free variables v0, . . . , vn1 for some n1 P ω
and z1 “ xz10, . . . , z

1
n1-y P

n1
Lβ such that

x1 “
␣

y P Lβ
ˇ

ˇLβ |ù ϕ1
“

vn v0 ¨ ¨ ¨ vn1-
y

1
z

1
0 ¨ ¨ ¨ z

1
n1-

‰(

,

either
1. z ⫋ z1; or
2. z Ę z1 and z1 Ę z and, letting m be the least ordinal such that zm ‰ z1m,
zm ă

L
β z

1
m (lexicographic order); or

3. z “ z1 and ϕ ă ϕ1.

Definition [ZF´]

1. For x, x1 P L, x ăL x1
def
ðñ for any (equivalently, for all) α such that x, x1 P

Lα, x ăLα x
1.

2. [GB´] ăL def
“

Ť

αPOrd ă
L
α.

It is straightforward to show that ăL is a wellordering of L.

(7.13) Theorem [ZF´] If α ą ω is a limit ordinal, Lα satisfies all the axioms of
ZF except possibly Comprehension, Power, and Collection.10

Proof Straightforward. 7.13

(7.14) Theorem [ZF] Suppose α is a limit ordinal. Then the definitions of Lβ and
ăL are absolute for Lα, i.e., letting x¨ P L¨y and x¨ ăL ¨y be the natural s-formulas
defining these relations, for all x, y P Lα and β P α,

x P LβØ xrxs P Lrβsy
Lα

x ăL yØ xrxs ăL rysy
Lα
.

(7.15)

Proof The first of these equivalences was proved in Section 7.1.1, and the second
is a straightforward exercise. 7.14

(7.15) also hold for α “ Ord, i.e., for all x, y P L and β P Ord,

x P LβØpx P Lβq
L

x ăL yØpx ăL yqL.

Thus,

(7.16) Theorem [ZF´]

9If n “ 0 then z “ 0.
10In particular, as discussed previously,§ 7.1.1 all pairs, ordered pairs, and finite sequences of

members of Lα are in Lα.
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1. If V “ L then xăLy wellorders the universe; a fortiori, every set is wellorder-
able, i.e., AC.

2. [GB´] L |ù AC.

(7.17) Theorem [S] If Con ZF then ConpZF` ACq.

Proof Use (7.12) and (7.16.1). 7.17

We have, of course, already proved (7.17) using the inner model HOD of hered-
itarily ordinal-definable sets. Historically, however, the above proof using L came
earlier. It was proved by Gödel in 1949; HOD was defined (by Gödel) in 1965.

7.3 The condensation lemma

A key feature of the structure of L is its regularity, or repetitiveness, in the sense
that there are many pairs β ă α such that Lβ is elementarily embeddable in Lα.
The following theorem expresses this in a strong and useful way.

(7.18) Theorem [ZF´] Suppose B ăΣ1 Lα, where α is a limit ordinal. Let π :
B

sur
Ñ M be the transitive collapse of B. Then for some β ď α, M “ Lβ.

Remark An alternative proof of this theorem proceeds by formulating a Π2 sen-
tence Θ such that the transitive models of Θ are exactly the sets Lα, where α is
a limit ordinal.11 That this is possible is not surprising, since the key condition
xV “ Ly may be taken to be @@@v2 DDDv0, v1 pv2 PPP v0 ^̂̂Λq.7.9 There is nevertheless some
work to be done to show that a sufficient theory of language, satisfaction, etc., can
be developed in a Π2 fragment of ZF´.

The proof given below relieves us of this routine but tedious work, by using Λ itself,
for which it is sufficient that it have the correct meaning when interpreted in struc-
tures Lα, α a limit ordinal. The proof has the additional advantages of bringing out
some of the regularity alluded to above in the form of constructibility relationships
preserved in Σ1 substructures and their transitive collapses, and providing some
practice in working with the constructible hierarchy.

Proof By Σ1-elementarity, pB, Pq satisfies the extension axiom, so π is injective.
If α “ ω then B “ Lω, so the result is trivial. Suppose therefore that α ą ω. Let
Λ be the Σ1 formula referred to above7.9 that says xpv0q “ Lpv1q

y. Suppose β P B
and Ordβ. Then Lα |ù DDDv0 Λ

“

v1
β

‰

, so B |ù DDDv0 Λ
“

v1
β

‰

. Let x P B be such that

B |ù Λ
“

v0 v1
x β

‰

. Then Lα |ù Λ
“

v0 v1
x β

‰

, so x “ Lβ . Hence

(7.19) Ordβ^β P BÑLβ P B.

Now suppose b P B. Then

Lα |ù
`

DDDv0, v1 pv2 PPP v0 ^̂̂Λq
˘“

v2
b

‰

,

11One argues that Lα |ù ΘÑB |ù ΘÑM |ù ΘÑM “ Lβ for some (limit) β. The first
implication follows from Σ1-elementarity: Since Θ is Π2, Θ “ @@@u0, . . . , un- Θ1 for some Σ1 Θ1.

Hence B |ù Θ iff @x0, . . . , xn- P B B |ù Θ1
“u0 ¨ ¨ ¨ un-

x0 ¨ ¨ ¨ xn-

‰

. But since Lα |ù Θ, for any x0, . . . , xn- P B,

Lα |ù Θ1
“u0 ¨ ¨ ¨ un-

x0 ¨ ¨ ¨ xn-

‰

, so B |ù Θ1
“u0 ¨ ¨ ¨ un-

x0 ¨ ¨ ¨ xn-

‰

by Σ1-elementarity.
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so
B |ù

`

DDDv0, v1 pv2 PPP v0 ^̂̂Λq
˘“

v2
b

‰

.

(7.20) Let β be the least ordinal in B such that

B |ù
`

DDDv0 pv2 PPP v0 ^̂̂Λq
˘“

v1 v2
β b

‰

.

Let x P B be such that
B |ù pv2 PPP v0 ^̂̂Λq

“

v0 v1 v2
x β b

‰

.

Then b P x, and
Lα |ù Λ

“

v0 v1
x β

‰

,

so x “ Lβ , b P Lβ and Lβ P B.

(7.21) Claim β is the least ordinal such that b P Lβ.

Proof Suppose not. Then

Lα |ù
`

DDDv0, v1 pv1 PPP v3 ^̂̂ v2 PPP v0 ^̂̂Λq
˘“

v2 v3
b β

‰

,

so
B |ù

`

DDDv0, v1 pv1 PPP v3 ^̂̂ v2 PPP v0 ^̂̂Λq
˘“

v2 v3
b β

‰

,

from which it follows as above that there exists β1 P β XB such that

B |ù
`

DDDv0 pv2 PPP v0 ^̂̂Λq
˘“

v1 v2

β
1
b

‰

,

contradicting the minimality of β.7.20 7.21

Hence,
b P BÑ the least β such that b P Lβ is in B.

It follows that for any ordinal γ,

(7.22)
´

ď

βPγ

Lβ

¯

XB “
´

ď

βPγXB

Lβ

¯

XB.

Claim Suppose β P B is an ordinal. Then πLβ “ Lπβ.12

Proof By induction on β. In other words, suppose the claim is false, and let β0 be
the least ordinal in B for which it fails. Clearly, β0 ‰ 0.

If β0 is a limit ordinal then

(7.23) Lβ0 “
ď

βPβ0

Lβ .

By (induction) hypothesis, for any β P β0 XB,

(7.24) πLβ “ Lπβ .

Recall that by definition of the transitive collapse, for any b P B,

(7.25) πb “ πÑb.

12We know from (7.19) that Lβ P B.
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Hence,

πLβ0 “ πÑLβ0 “ πÑ
ď

βPβ0

Lβ “
ď

βPβ0

πÑLβ

“
ď

βPβ0XB

πÑLβ “
ď

βPβ0XB

πLβ

“
ď

βPβ0XB

Lπβ “
ď

ηPπβ0

Lη

“ Lπβ0 ,

where, in addition to (7.23), (7.24), and (7.25), we have used (7.22) and the fact
that since β0 is a limit ordinal, β0 X B has limit order type,13 so πβ0 is a limit
ordinal.

Finally, suppose β0 is a successor ordinal. Then its immediate predecessor is in
B, i.e., β0 “ η`1 and η P B. Therefore7.19 Lη P B, and, by hypothesis, πLη “ Lπη.

Suppose x P Lη`1 XB. Then for some n P ω, some s-formula ϕ with n` 1 free
variables, say v, w0, . . . , wn- , and some z0, . . . , zn- P Lη,

x “
␣

y P Lη
ˇ

ˇLη |ù ϕ
“

v w0 ¨ ¨ ¨ wn-

y z0 ¨ ¨ ¨ zn-

‰(

.

Let d be a variable not in tv, w0, . . . , wn-u. Then ϕd is ∆0, and for any transitive
D and b, c0, . . . , cn- P D,

D |ù ϕ
“

v w0 ¨ ¨ ¨ wn-

b c0 ¨ ¨ ¨ cn-

‰

ØSat0 ϕd
“

d v w0 ¨ ¨ ¨ wn-

D b c0 ¨ ¨ ¨ cn-

‰

ØD1 |ù ϕd
“

d v w0 ¨ ¨ ¨ wn-

D b c0 ¨ ¨ ¨ cn-

‰

,

for any transitive D1 containing D. In particular, letting u be a variable not in
td, v, w0, . . . , wn-u, and letting ψ “ @@@v PPP d pv PPPuØØØϕdq, ψ is ∆0, and

Lα |ù ψ
“

d u w0 ¨ ¨ ¨ wn-

Lη x z0 ¨ ¨ ¨ zn-

‰

.

It follows that
Lα |ù pDDDw0, . . . , wn- PPP d ψq

“

d u
Lη x

‰

,

so
B |ù pDDDw0, . . . , wn- PPP d ψq

“

d u
Lη x

‰

.

Let z10, . . . , z
1
n- P Lη XB be such that

B |ù ψ
“

d u w0 ¨ ¨ ¨ wn-

Lη x z
1
0 ¨ ¨ ¨ z

1
n-

‰

.

Then
M |ù ψ

“

d u w0 ¨ ¨ ¨ wn-

πLη πx πz
1
0 ¨ ¨ ¨ πz

1
n-

‰

,

and πLη “ Lπη, so

πx “
␣

y P Lπη
ˇ

ˇLπη |ù ϕ
“

v w0 ¨ ¨ ¨ wn-

y πz
1
0 ¨ ¨ ¨ πz

1
n-

‰(

,

whence πx P Lpπηq`1 “ Lπpη`1q “ Lπβ0 . Thus,

πÑLβ0 Ď Lπβ0 .

13By Σ1-elementarity, B is closed under the successor operation on ordinals.
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Conversely, if x̂ P Lπβ0 “ Lπη`1 then for some n P ω, some s-formula ϕ with
n` 1 free variables, say v, w0, . . . , wn- , and some ẑ0, . . . , ẑn- P Lπη,

x̂ “
␣

y P Lπη
ˇ

ˇLπη |ù ϕ
“

v w0 ¨ ¨ ¨ wn-

y ẑ0 ¨ ¨ ¨ ẑn-

‰(

.

Since Lπη “ πLη “ πÑLη, let zm “ π´1ẑm for m P n, and let

x “
␣

y P Lη
ˇ

ˇLη |ù ϕ
“

v w0 ¨ ¨ ¨ wn-

y z0 ¨ ¨ ¨ zn-

‰(

.

Then x P Lβ0 and the argument just given shows that πx “ x̂. Thus

πÑLβ0 Ě Lπβ0 .

Hence πLβ0 “ πÑLβ0 “ Lπβ0 . 7.18

7.4 The continuum hypothesis in L

Definition [S] The generalized continuum hypothesis def
“ GCH

def
“ xfor every infi-

nite cardinal κ, |P κ| “ κ`y.14

We will show that GCH holds in L. We begin with a simple cardinality compu-
tation.

(7.26) Theorem [ZFC] Suppose α is an infinite ordinal. Then

|Lα| “ |α|.

Proof By induction on α ě ω. Note that since α Ď Lα, |Lα| ě |α|. As we have
previously noted, Lω “ Vω, which is countable, i.e., |Lω| “ ω “ |ω|.

Suppose α ě ω and |Lα| “ |α|. We wish to show that |Lα`1| “ |α ` 1|. Let
κ “ |α|. Then |α ` 1| “ κ, so we wish to show that |Lα`1| “ κ. Each member of
Lα`1 is defined by a formula ϕ and an Lα-assignment for all but one of the free
variables of ϕ. There are ω formulas and κ assignments, so there are κ such pairs,
and therefore |Lα`1| ď κ. Since |Lα`1| ě |α|, |Lα`1| “ κ.

Suppose now that α is a limit ordinal and @β ă α |Lβ | “ |β|. Then Lα “
Ť

βăα Lβ , so

|Lα| ď
ÿ

βăα

|β| ď |α| ¨ |α| “ |α|.

Hence, |Lα| “ |α|. 7.26

(7.27) Theorem [ZF] Assume V “ L. Then for every infinite cardinal κ, P κ Ď
Lκ` . Hence,7.26 GCH.

Proof Assume V “ L. Note that we therefore have AC. Suppose κ is an infinite
cardinal, and suppose X Ď κ. Let α ą κ be a limit ordinal such that X P Lα. Let
M be an elementary substructure of Lα of cardinality κ that includes κ`1 “ κYtκu
and contains X.2.159.1 Let π : M Ñ Lβ be the transitive collapse.7.18 Then |Lβ | “ κ,

14Note that as formulated here GCH implies the wellorderability of Pα for any ordinal α, and
GCH is typically only considered in the context of AC. Obviously, GCH is also typically only
considered in the context of Power, so the theories ZF´ and GB´ are not relevant.
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so β ă κ`. Let Y “ πX. Since κ ` 1 is transitive, π is the identity on κ ` 1 and
πκ “ κ. Since Lα |ù rXs Ď rκs, M |ù rXs Ď rκs, so Lβ |ù rY s Ď rκs. For each
γ P κ,

γ P XØLα |ù rγs PPP rXsØM |ù rγs PPP rXs

ØLβ |ù rπγs PPP rπXsØLβ |ù rγs PPP rY s

Ø γ P Y.

Hence X “ Y , so X P Lβ . So every subset of κ is constructed before κ`, as claimed.
Since |Lκ` | “ κ`, |P κ| “ κ`. 7.27

7.5 Relative constructibility

We have up to now considered constructibility in the absolute sense, but there are
also relative notions of constructibility. These can be formulated in two principal
ways. The first permits the use of an arbitrary set A as a predicate in structures
analogous to pLα; Pq in the fundamental definition (7.1). The second starts with
tctAu as the base structure (in place of 0, in effect) and proceeds with the definition
(7.1) otherwise unaltered. In both cases the resulting class is an inner model of ZF.
In the former case it is also a model of AC, whereas in the latter case it may not
be.

The following definitions may also be formulated in fragments of ZF, such as
ZF´.

Definition [ZF] Suppose A is a set.

1. L0rAs “ 0;

2. for each ordinal α, Lα`1rAs consists of all subsets of LαrAs definable over
pLαrAs; P, AX LαrAsq from parameters in LαrAs; and

3. for each limit ordinal α, LαrAs “
Ť

tLβrAs | β ă αu.

In this definition, pLαrAs; P, AX LαrAsq is a ρ-structure, where ρ is s expanded by
the addition of a unary predicate whose denotation is AX LαrAs.

In the context of GB we define LrAs as
Ť

αPOrd LαrAs. Note that AX LαrAs is
an element of Lα`1rAs. Since A is a set, there exists an ordinal α such that for all
β ą α, AXLβrAs “ AXLαrAs, from which it follows that AXLrAs “ AXLαrAs.
Hence, A X LrAs is an element of LrAs, but A in general is not. In the context of
ZF, LrAs is definable from A as a parameter. LrAs is a rather gentle modification
of L, and the basic properties of L hold for LrAs as well.

(7.28) Theorem [GBC] Suppose A is a set.

1. LrAs |ù ZFC.

2. As noted above, A X LrAs P LrAs. In general, suppose M is an inner model
of ZF and AXM PM . Let A1 “ AXM . Then xLrrA1ssy

M
“ LrA1s “ LrAs.

3. In particular, letting M “ LrAs, xLrrA1ssy
LrAs

“ LrAs, so LrAs |ù xV “

LrrA1ssy.
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In the context of ZF, in general, ‘LrAs |ù σ’ may be replaced by ‘σLrAs’, and (7.28)
may be formulated as a theorem schema.

Note that in some important cases, A P LrAs. For example, if A Ď Ord then
AXLrAs “ A, so A P LrAs. The following definition, on the other hand, guarantees
that A is in the resulting class by putting it in at the beginning.

Definition [ZF] Suppose A is a set.

1. L0pAq “ tctAu;
2. for each ordinal α, Lα`1pAq consists of all subsets of LαpAq definable over
pLαpAq; Pq from parameters in LαpAq; and

3. for each limit ordinal α, LαpAq “
Ť

tLβpAq | β ă αu.

As mentioned above, LpAq |ù ZF, but LpAq may not model AC.
In the preceding discussion of constructibility we have made implicit use of

formulas that describe key features of constructible hierarchies, often indicating
them by means of the corner-bracket notation. For ease of future reference we now
posit a choice of several specific such formulas, to which we assign names.

(7.29) [GB] Let ρ be the expansion of s by the addition of a unary predicate. Let
σ0 and σ1 be respectively an s and a ρ-sentence, and let ϕ0 and ϕ1 be respectively
an s and a ρ-formula with free variables v0, v1, such that the following hold for any
transitive class M and set A.

1. pM ; Pq |ù σ0 iff either M “ L or M “ Lα for some limit ordinal α.
2. pM ; P, AXMq |ù σ1 iff either M “ LrAs or M “ LαrAs for some limit ordinal
α.

3. For any limit ordinal α, any y P Lα, and any x, pLα; Pq |ù ϕ0rx, ys iff x ăL y.
4. For any limit ordinal α, any y P LαrAs, and any x, pLαrAs; P, A X LαrAsq |ù
ϕ1rx, ys iff x ăLrAs y.

7.6 R in L

The axiom of constructibility provides much more information about the continuum
than merely its size. In fact, there are very few interesting questions about R that
are not settled by ZF`V “““L. Many of these results follow from the existence of a
definable, specifically a ∆1

2, wellordering of R in L. As usual, we will address these
issues using ωω, rather than R per se.

The wellordering we refer to is the canonical wellordering of L restricted to ωω.
To compute its complexity we consider structures M Ď Vω with signature l—which
expands s by the addition of a unary operation symbol L̂ intended to represent
the constructible hierarchy. For this discussion, let Lα be the obvious structure
with signature l such that |Lα| “ Lα. As we know from the proof of (7.27), every
member of ωω is in Lα for some α ă ω1. Since Lα is countable in this case,7.26 Lα
is isomorphic to a structure M as above.

Definition [ZF] S def
“ the set of l-structures M Ď Vω such that M – Lα for some

α.

We will say an element x of ωω is represented in M P S def
ðñ there exists x1 P |M|

such that πx1 “ x, where π : |M| Ñ Lα is the canonical isomorphism of M with
Lα.
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(7.30) Theorem [ZF] S is Π1
1.

Proof In this discussion, ‘structure’ will be taken to mean ‘l-structure included in
Vω’. The set S of structures M such that PM is extensional, is clearly arithmetical.
The set S1 of structures M P S such that PM is wellfounded, is clearly Π1

1, well-
foundedness being the property that every nonempty X Ď |M| has an P-minimal
member. Since satisfaction relations exist and are unique, we have access to sat-
isfaction in M in a Π1

1 way via constructions of the form xfor every satisfaction
relation R for M . . . y. In this way we obtain a Π1

1 characterization of the set S2 of
extensional wellfounded structures M such that L̂M satisfies the definition of the
constructible hierarchy.

Thus, S2 consists of the extensional wellfounded structures isomorphic to tran-
sitive sets N such that LOrdXN Ď N . Now it is easy to obtain a Π1

1 characterization
of S. 7.30

(7.31) Theorem [ZF` V “““L] ăL Xpωω ˆ ωωq is a ∆1
2 wellordering of ωω.

Proof Using (7.30) we see that ăL Xpωω ˆ ωωq is Σ1
2 because x ăL y iff there

exists a structure M such that M P S, x, y are represented in M, say by x1, y1, and
(for every satisfaction relation for M) M |ù rx1s ăL ry1s.

On the other hand, ăL Xpωωˆ ωωq is Π1
2 because x ăL y iff for every structure

M, if M P S and x, y are represented in M, say by x1, y1, then (there exists a
satisfaction relation for M such that) M |ù rx1s ăL ry1s. 7.31

(7.32) Theorem [ZF ` V “““L] There exists an uncountable Σ1
2 set A Ď ωω that

has no uncountable Σ1
1 subset. A fortiori A has no nonempty perfect closed subset.

Proof Let A be the set of x P WO5.61 such that for all y P WO, if Dα P ω1 py P
Lα^x R Lαq then ot y ‰ otx. Thus, if x P A then no member of WO constructed
before x has the same rank, and for each α ă ω1 there are only countably many
x P A such that otx “ α.

Note that x P A iff x P WO and there exists M P S such that x is represented
in M, say by x1 P |M|, and for all y1 P |M|, if xDOrdα pry

1s P L̂α^rx
1s R L̂αqy

M
then

ot y ‰ otx. Since S is Π1
1,7.30 A is Σ1

2.
|A| “ ω1, so A is uncountable. Suppose B Ď A is an uncountable Σ1

1 set. Then
since each “level” of A is countable, B is unbounded in A, violating (5.118). 7.32

(7.33) Theorem [ZF ` V “““L] There exists an uncountable Π1
1 set A Ď ωω that

has no uncountable Σ1
1 subset. A fortiori A has no nonempty perfect closed subset.

Proof Let B Ď ωω be an uncountable Σ1
2 set that has no uncountable Σ1

1 subset.7.32

Let A1 Ď ωω ˆ ωω be Π1
1 such that B “ tx P ωω | D1y xx, yy P A1u. Let A2 be a Π1

1

set that uniformizes A1.5.134 Thus, for all x P ωω,

1. D1y xx, yy P A1ØD1y xx, yy P A2; and

2. @1y, y1 pxx, yy P A2^xx, y1y P A2Ñ y “ y1q.

It follows that B “ tx P ωω | D1y xx, yy P A2u. Since B is uncountable, A2 is
uncountable. We claim that A2 has no uncountable Σ1

1 subset. Suppose to the
contrary that X Ď A2 is Σ1

1 and uncountable. Let Y “ tx P ωω | D1y xx, yy P Xu.
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Then Y is Σ1
1. Since the projection from A2 to B is injective, Y is uncountable,

contradicting our choice of B as a set with no uncountable Σ1
1 subset.

Let A “ txx, yy¨ | xx, yy P A2u.5.56 Thus, A Ď ωω, and A is essentially equivalent
to A2. In particular, A is an uncountable Π1

1 set with no uncountable Σ1
1 subset.

7.33

Using the definable wellordering ăL of ωω, we can define a Vitali set A as the
set of x P ωω such that for all y P ωω, if y ăL x then x´y R Q. A does not have the
Baire property and is not Lebesgue measurable.5.150 5.162 A is easily seen to be Π1

2.
Hence, there exists a Π1

2 subset of ωω that is not Baire or Lebesgue measurable.
The following argument that shows that ăL Xpωω ˆ ωωq itself is not Baire or

measurable, which is an improvement on the above result inasmuch as ăL Xpωωˆ
ωωq is not just Π1

2 but ∆1
2.

(7.34) Theorem [ZF ` V “““L] ăL Xpωω ˆ ωωq does not have the Baire property
and is not Lebesgue measurable.

Proof Given C Ď ωω ˆ ωω and z P ωω, let Cz “ tw P ωω | xz, wy P Cu, and let
Cz “ tw P ωω | xw, zy P Cu. Let A “ăL Xpωωˆ ωωq “ txx, yy P ωωˆ ωω | x ăL yu
and let B “ pωωˆωωqzA “ txx, yy P ωωˆωω | y ďL xu. Note that for every z P ωω,
Az and Bz are countable and are therefore meager and Lebesgue-null.

Suppose A has the Baire property; then B does also. Since Az is meager for all
z P ωω, A is meager;5.149 and since Bz is meager for all z P ωω, B is meager. Thus
ωω “ AYB is meager—which it is not. So A does not have the Baire property.

Similarly, (5.158) shows that A is not Lebesgue measurable. 7.34

7.6.1 Suslin’s hypothesis

Recall Suslin’s hypothesis,5.186 which asserts that there does not exist a Suslin
line.5.187 In this section we will show that Suslin lines exist in L, i.e., pZF`V “““Lq$␣␣␣ SH.
It will be convenient to frame the question in terms of trees in the sense of (3.179).

(7.35) Definition [ZF] A tree pT,ăq is a Suslin tree
def
ðñ

1. the height of T is ω1;

2. T has no uncountable antichain; and

3. T has no uncountable branch.

We will show that there exists a Suslin line iff there exists a Suslin tree.

(7.36) Definition [ZF] Suppose pT ;ăq is a tree of height µ. pT ;ăq is normal
def
ðñ

1. for every α ă µ, if α is not a successor ordinal then for every x, y P T of order
α, if tz P T | z ă xu “ tz P T | z ă yu then x “ y; and

2. for every x P T , there are infinitely many elements of T above x at every level
above ox.

Suppose T is normal. Specializing to α “ 0 in (7.36.1) we see that T has a unique
element of order 0, which we call the root of T . Now suppose α is a limit ordinal
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and B is a branch of T |α def
“ tx P T | ox ă αu. Then B has at most one extension

in T of length α` 1.
Note that if pT ;ăq is a tree and T 1 Ď T is nonempty, then pT 1;ă1q is a tree,

where ă1“ă XpT 1ˆT 1q is the inherited order relation, and we may refer to subsets
of T as subtrees of pT ;ăq without explicit mention of this order relation.

(7.37) Theorem [ZFC] If there exists a Suslin tree then there exists a normal Suslin
tree.

Proof Suppose pT ;ăq is a Suslin tree. Since T has no uncountable antichain,
each level of T is countable. Since htT “ ω1, |T | “ ω1. For any x P T , let
Tx “ ty P T | y ě xu. Let T 1 “ tx P T | |Tx| “ ω1u. Since each level of T
is countable, at each level of T there is an element of T 1. Hence, in particular,
T 1 is nonempty. By the same token, for each x P T 1, at each level of Tx there
is an element of T 1. Hence, every element of T 1 has a successor in T 1 at every
higher level. We now construct an extension of T 1 as follows. Let B be the set of
B Ď T 1 such that for some nonsuccessor ordinal α and distinct x, y P T 1 of order
α, B “ tz P T 1 | z ă xu “ tz P T 1 | z ă yu. Let B ÞÑ xB be an injection of B into
V zT 1. Let T 2 “ T 1 Y txB | B P Bu, and expand the order relation on T 1 to T 2 by
adding the following:

1. xx, xBy, for all B P B and x P B;

2. xxB , yy, for all B P B and y P T 1 such that @x P B x ă y; and

3. xxB , xB1y, for all B,B1 P B such that B ⫋ B1.

In other words, we insert into T 1 a single new element immediately above each
B P B. Note that T 2 is a Suslin tree that satisfies (7.36.1), and each member of T 2

has a successor at every higher level.
Note that every x P T 2 has incomparable successors in T 2; otherwise the ele-

ments of T 2 comparable with x constitute an uncountable branch of T 2, and xXT
is an uncountable branch of T . Since T 2 satisfies (7.36.1), every element of T 2 has a
successor with at least two immediate successors. Let T3 consist of those members
of T 2 that have at least two immediate successors in T 2. T3 (with the inherited
order) is a Suslin tree satisfying (7.36.1), and every member of T3 has at least two
immediate successors.

Finally, let T4 be the set of elements of T3 of nonsuccessor order. T4 is a
normal Suslin tree. 7.37

(7.38) Theorem [ZFC] There exists a Suslin line iff there exists a Suslin tree.

Proof ÑÑÑ Suppose pX;ăq is a Suslin line, i.e., a complete dense linear order
without endpoints that is ccc but not separable. Let C be the set of nondegenerate
closed intervals in X, i.e., intervals rx, ys such that x ă y. Invoking AC we posit a
fixed wellordering ă of C. Using this wellordering, we will define xrxα, yαs | α ă
ω1y P

ω1C such that for each β ă α ă ω1,

(7.39) either rxα, yαs Ď pxβ , yβq or rxα, yαs X rxβ , yβs “ 0.

To do this, let rx0, y0s be the ă-first member of C. Now suppose 0 ă γ ă ω1, and
xrxα, yαs | α ă γy satisfies (7.39) for all β ă α ă γ.

Ť

αăγtxα, yαu is a countable
subset of X, so it is not dense in X, since X is not separable. Let px, yq be a
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nonempty open interval in X that does not intersect it, and let rxγ , yγs be the ă-
first member of C included in px, yq. Clearly, (7.39) is satisfied for all β ă α ă γ`1.

Let xrxα, yαs | α ă ω1y be the sequence so constructed. Let T “ trxα, yαs | α ă
ω1u, and let ă be the binary relation on T defined by the condition that I ă J iff
I Ľ J . It is easy to check that pT ;ăq is a tree.

(7.40) Claim pT ;ăq is a Suslin tree.

Proof Clearly, an antichain C in T yields an antichain in X by replacing each
rx, ys P C by px, yq. Since X is ccc, T is ccc. In particular, each level of T is
countable. Since |T | “ ω1, htT “ ω1.

Now suppose B Ď T is a branch of length α. Then B “ tIβ | β ă αu, where
xIβ | β ă αy is a decreasing sequence of closed intervals such that for each β ă α,
Iβ`1 is included in the interior int Iβ of Iβ . Thus, tpint Iβ`1qzIβ | β ă αu is a set
of disjoint nonempty open subsets of X (each one the union of two nonempty open
intervals). Since X is ccc, α ă ω1. Hence, T has no uncountable branch. 7.40

ÐÐÐ Conversely, suppose pT ;ăq is a Suslin tree. By (7.37) we may assume T is
normal. Note that the immediate successors of any x P T constitute a countably
infinite set (else they would constitute an uncountable antichain). Use AC, for each
x P T , let ăx be a fixed dense linear ordering without endpoints of this set—in other
words, order it like Q. Now order the set B of branches of T as follows. Suppose
B and B1 are distinct branches. Let α be the order type of their longest common
initial segment. By construction, α cannot be a limit ordinal. Thus, α “ β ` 1.
Let x be the common member of B and B1 at level β and let y and y1 be their
respective members at level β ` 1. Let B ă B1 iff y ăx y

1. It is easy to show that
pB; ăq is a dense linear order without endpoints.

Note that for B ă B1 as above, there exists z such that y ăx z ăx y1. Note
that every branch C containing z lies in the interval pB,B1q. Suppose toward a
contradiction that I is an uncountable set of disjoint open intervals in pB; ăq. Using
AC, for each I P I, let zI be such that every branch containing zI is in I. Then
for distinct I, I 1 P I, zI and zI1 are incomparable, i.e., they form an uncountable
antichain, which is impossible, since T is Suslin. Thus pB; ăq satisfies the countable
chain condition.

Now suppose toward a contradiction that C is a countable dense set in pB; ăq.
Let α ă ω1 be greater than the lengths of all B P C, and let x be any member
of T at level α. Let y, y1 be distinct immediate successors of x with y ăx y

1, and
let B,B1 be branches containing y and y1, respectively. Then pB,B1q is an open
interval in pB; ăq that does not contain any C P C. Thus pB; ăq is not separable.

The completion of ă is a therefore a Suslin line.5.188 7.38

We will now construct a Suslin tree in L, making use of the following combina-
torial principle, which was isolated by Ronald Jensen in 1972 in the course of this
construction, and is of great importance in its own right[13]. It is represented by
the symbol ‘♢’ and is called the diamond principle for this reason.

(7.41) Definition [ZFC] ♢ def
ðñ there exists a sequence xSα | α P ω1y such that

1. @α P ω1 Sα Ď α; and

2. for all X Ď ω1, tα P ω1 | X X α “ Sαu is stationary in ω1.

Such a sequence xSα | α P ω1y is called a ♢-sequence or diamond-sequence.
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(7.42) Theorem [ZF` V “““L] ♢.

Proof Let xSα | α P ω1y be defined by recursion as follows. Suppose α P ω1 and
Sβ has been defined for β ă α. If α is 0 or a successor ordinal, let Sα “ 0. Suppose
α is a limit ordinal. To define Sα, we consider sets C,X such that

(7.43)

1. X Ď α;

2. C Ď α is closed and unbounded in α; and

3. @β P C X X β ‰ Sβ.

It is easy to see that there exist such pairs. Indeed, for any unbounded C Ď α of
order type ω, there exists X Ď α so that X X β ‰ Sβ for each β P Czt0u.

Let xC,Xy be the ăL-first 2-sequence satisfying (7.43), and let Sα “ X.

Claim xSα | α P ω1y is a ♢-sequence.

Proof

(7.44) Suppose toward a contradiction that xSα | α P ω1y is not a ♢-sequence, and
let xC,Xy be the ăL-first 2-sequence such that

1. X Ď ω1;

2. C Ď ω1 is closed and unbounded in ω1; and

3. @α P C X X α ‰ Sα.

Let M be a countable elementary substructure of Lω2 . For every α P M X ω1,
Lω2 |ù xrαs is countabley, so M |ù xrαs is countabley, so there exists f P M such
that M |ù xrf s : ω sur

Ñ rαsy. It follows that Lω2 |ù xrf s : ω sur
Ñ rαsy, so f : ω sur

Ñ α;
hence, α Ď M . Thus, every ordinal in M X ω1 is included in M , so M X ω1 is an
ordinal, say µ, which is countable, since M is countable.

By the condensation lemma, the transitive collapse of M is Lγ for some γ P ω1.
Let π : M Ñ Lγ be the collapsing isomorphism. Note that ω1, xSα | α P ω1y, C,
X, and xC,Xy are in Lω2 and are definable in Lω2 , so they are in every M ă Lω2 .
Since M X ω1 “ µ, πω1 “ µ, so µ “ xω1y

Lγ . For each α ă µ, πSα “ Sα,
so πxSα | α ă ω1y “ xSα | α ă µy. Also, πC “ C X µ, πX “ X X µ, and
πxC,Xy “ xC X µ,X X µy.

Thus, Lγ |ù xrxC X µ,X X µys is the ăL-first 2-sequence xC 1, X 1y such that C 1

is closed unbounded in ω1, X 1 Ď ω1, and @α ă ω1 X
1 X α ‰ Sαy. It is easy to

check that x ăL y
Lγ
“ăL XpLγ ˆLγq, so xC Xµ,X Xµy is the ăL-first 2-sequence

xC 1, X 1y such that C 1 is closed unbounded in µ, X 1 Ď µ, and @α ă µ X 1 X α ‰ Sα.
Sµ is therefore by definition X X µ. Since Lγ |ù xrC X µs is unbounded in rµsy,

C X µ is indeed unbounded in µ, so since C is closed, µ P C. This contradicts
(7.44.3). 7.42

(7.45) Theorem [ZFC] If ♢ then there exists a Suslin tree, i.e., ␣SH—Suslin’s
hypothesis is false. Thus,7.42 if V “ L then ␣SH.
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Proof We will construct a sequence xTα | 0 ă α ă ω1y of trees Tα “ pτα; ăαq,
where xτα | 0 ă α ă ω1y is a continuous increasing sequence of countable ordinals
with τ1 “ 1 and τα`1zτα p“ rτα, τα`1qq is infinite for all α P r1, ω1q, e.g.

τα “

#

1 if α “ 1
ω ¨ α if α ą 1.

(We use ordinals as the domains of these trees to facilitate the use of a ♢-sequence
in their construction.) The following conditions will be satisfied.

1. For 0 ă α ă ω1, Tα is a normal tree of height α.

2. For 0 ă β ă α ă ω1, the Tβ is the initial segment of Tα consisting of its
elements of order ă β.

Note that
Ť

0ăαăω1
τα “ ω1. Let ă“

Ť

0ăαăω1
ăα, and let T “ pω1; ăq. Since

each Tα is a normal tree, T is a normal tree. The αth level of T is the interval
rτα, τα`1q of ordinals.

Clearly, T has height ω1. Since T is normal, if it has an uncountable branch
B, it has an uncountable antichain, which may be obtained by choosing for each
x P B an immediate successor cx of x other than the one that is in B. Clearly,
for x, x1 P B, if x ‰ x1 then cx and cx1 are incomparable, so tcx | x P Bu is an
uncountable antichain. Thus, in order that T be a Suslin tree, it is sufficient that it
have no uncountable antichain. We will use a ♢-sequence xSα | α P ω1y to arrange
this.

Note that the above description requires pτ1; ă1q “ p1; 0q, and if α is a limit or-
dinal, τα “

Ť

βăα τβ and ăα“
Ť

βăα ăβ . The construction is therefore determined
by the following rules for generating ăα`1 from ăα. Note that τα`1zτα “ rτα, τα`1q

is countably infinite.
If α is a successor ordinal, let ăα`1 be such as to give each element of τα of

order α´ 1 in Tα a (countably) infinite set of immediate successors in Tα`1.
If α is a limit ordinal we must decide which branches of Tα to extend to level

α. For each x P τα there is a branch B of Tα that contains x, as shown by the
following argument. Given x P τα, let xαn | n P ωy be a strictly increasing sequence
of ordinals in α that is cofinal in α, with α0 “ ox. Let xxn | n P ωy be an increasing
sequence in Tα with x0 “ x, such that oxn “ αn. This can be done because Tα is
normal. Let B “ ty P τα | Dn P ω y ă xnu.

If Sα is a maximal antichain in Tα, let S “ tx P τα | Dx
1 P Sα x

1 ďα xu;
otherwise, let S “ τα. Note that S is necessarily infinite. For each x P S let Bx
be a branch of Tα such that x P Bx, and let B “ tBx | x P Su. Let xyB | B P By
be a bijection of B with rτα, τα`1q (both of which are countably infinite), and let
ăα`1“ăα Y

Ť

BPBpB ˆ tyBuq. In other words, each B P B is extended uniquely to
level α, and all other branches of Tα are terminated at this stage.

(7.46) Claim For every x P τα there exists z P S such that x P Bz.

Proof If Sα is not a maximal antichain in Tα then S “ τα we may let z “ x. If
Sα is a maximal antichain in Tα, then S “ tx P τα | Dx

1 P Sα x
1 ďα xu. Given

x P τα, since Sα is a maximal antichain there exists w P Sα such that either w ďα x
or x ďα w. In the former case, x P S, and we may let z “ x. In the latter case,
x P Bw, so we may let z “ w. 7.46
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It follows that Tα`1 is normal. Our construction guarantees that if α is a limit
ordinal and Sα is a maximal antichain in Tα, then every element of order α in T
is above some member of Sα, hence every element of any order ě α in T is above
some member of Sα.

Hence, if Limα and Sα is a maximal antichain in Tα then Sα is a maximal antichain
in T .

We now show that every antichain in T is countable. Note that any antichain may
be extended to a maximal antichain, so we may suppose without loss of generality
that X Ď ω1 is a maximal antichain in T . We will show that X is countable.

(7.47) Let C Ď ω1 be the set of α P ω1 such that

1. α is a limit ordinal;
2. τα “ α; and
3. X X α is a maximal antichain in Tα.

C is clearly closed. We now show that C is unbounded. Suppose α P ω1. Let
xαn | n P ωy be a strictly increasing sequence in ω1 such that

1. α0 “ α; and

2. for each n P ω,

1. αn`1 ě ταn ; and
2. every member of ταn is comparable with some member of X X ταn`1 .

Then
Ť

nPω αn is in C.
Since xSα | α P ω1y is a ♢-sequence, tα P ω1 | XXα “ Sαu is stationary, so there

exists α P C such that X X α “ Sα. Then Sα is a maximal antichain in Tα,7.47.3

which our construction has guaranteed is a maximal antichain in T , so X “ XXα,
and X is therefore countable. 7.45

7.6.2 Borel determinacy

In this section we prove the celebrated theorem of Harvey Friedman (as sharpened
by D. A. Martin) stating that ZF´&Σ0

4-determinacy, and, in general, for any count-
able ordinal ρ, ZF´` xthe power operation may be applied ρ times in succession to
ωy &Σ0

1`ρ`3-determinacy. Hence, the number of iterations of the power operation
used in Martin’s proof of Borel determinacy5.178 is—level by level—the minimum
number that suffices.

Specifically, Σ0
4-determinacy fails in the minimum transitive model of ZF´, i.e.,

in Lβ0 , where β0
def
“ the least ordinal β such that Lβ |ù ZF´. The general result

uses a similarly minimum model that contains a ρ-sequence of successor cardinals.
The proof is rather long and relatively complicated, and it does not introduce

any ideas needed elsewhere, so this is one that could reasonably be skipped at first
reading. It does, however, demonstrate an ingenious linkage of disparate ideas that
are individually fundamental, and it is well worth studying at one’s leisure.

In the following discussion, recall that if α ą ω is a limit ordinal then Lα
satisfies all the axioms of ZF´ except possibly Comprehension and Collection,7.13

and that Lα contains and correctly identifies pairs, ordered pairs, finite sequences,
and satisfaction relations of objects in Lα.7.14 We will make use of these and other
absoluteness properties of Lα often without explicit mention.
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Definition [ZF´]

1. c : Ord bij
Ñ L

def
“ the canonical enumeration of L, defined by the condition that

α ă β iff cα ăL cβ.

2. Suppose M is a transitive set. DM
def
“ the set of subsets of M definable over

pM ; Pq from parameters in M .

Thus, Lα`1 “ DLα. As noted in the discussion following (7.1), the existence of
DM is demonstrable without the use of Power.

(7.48)

1. It is clear from our definition of ăL that for each ordinal α, c ÐLα is an initial
segment of the ordinals, i.e., is an ordinal. In other words, c enumerates
everything in Lα before anything in LzLα.

2. Also clearly, c Ñα Ď Lα.

(7.49) Theorem [ZF´] Suppose xrαs is regulary
Lα`1 . Then c Ñα “ Lα.

Remark Since c Ñα Ď Lα,7.48.2 the import of the theorem is that Lα Ď c Ñα.

Proof Assume the hypothesis, which is that α is a limit ordinal and for every β ă α
and f P Lα`1 such that f : β Ñ α, sup im f ă α. If α “ ω then the conclusion is
immediate, so suppose α ą ω.

(7.50) Claim Suppose f P Lα`1 p“ DLαq.

1. If f : β á α for some β ă α, then sup im f ă α.

2. If f : Vω á α, then sup im f ă α.

3. If f : nβ á α for some n P ω and β ă α, then sup im f ă α.

4. If f : ăωβ á α for some β ă α, then sup im f ă α.

5. If f : Vω ˆ ăωβ á α for some β ă α, then sup im f ă α.

Proof 1 Let g : β Ñ α be such that g Ě f and gγ “ 0 if γ P βzdom f . Then
im f Ď im g, and by hypothesis, sup im g ă α.

2 The canonical enumeration B⃗ : ω bij
Ñ Vω is in Lα, so g “ f ˝ B⃗ : ω á α is in

Lα`1. sup im g ă α by hypothesis, and im f “ im g.

3 By induction on n. The case that n “ 0 is trivial. Suppose the claim is
true for n. Suppose f : n`1β á α. Let g : β Ñ α be such that for every γ P β,
gγ “ supsPnβ fps

⌢xγyq. By hypothesis, @γ P β gγ P α. Clearly sup im f ď sup im g,
and since sup im g ă α, sup im f ă α.

4 Let g : ω Ñ α be such that for each n P ω, gn “ suptf s | s P dom f ^ |s| “ nu.
Then @n P ω gn P α and sup im f “ sup im g ă α.
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5 Similar to previous arguments. 7.50

Now suppose toward a contradiction that c Ñα ‰ Lα. Then7.48.2 c Ñα ⫋ Lα.
Since α is limit there exists β ă α such that c Ñα Ď Lβ .7.48.1 Let β0 be the least
such β.

If β0 is a limit ordinal then define f : β0 Ñ α so that for each β ă β0, fβ is
the least ordinal γ such that cγ R Lβ . Then sup im f ă α and csup im f R Lβ0 ;7.48.1

contradiction.
Hence β0 is a successor ordinal. Let β1 “ β0 ´ 1. Let γ1 “ c ÐLβ1 . Note that

γ1 P α. Let S be the satisfaction relation for pLβ1 ; Pq. Recall that S P Lα. Let
f : Vω ˆăωγ1 Ñ α be such that for any ϕ P Vω and s P ăωLβ1 , letting n “ |s|,

1. if it is not the case that ϕ is an s-formula with n ` 1 free variables then
fxϕ, sy “ 0; otherwise

2. letting xv0, . . . , vny be the enumeration of Freeϕ in increasing canonical order,
and letting

x “
␣

y P Lβ1

ˇ

ˇ

@

ϕ,
@

vn v0 ¨ ¨ ¨ vn-

y cs0 ¨ ¨ ¨ csn-

DD

P S
(

,

1. if c´1 x ă α then fxϕ, sy “ c´1 x; otherwise

2. fxϕ, sy “ 0.

Note that im f “ pc ÐpDLβ1qq X α “ pc ÐLβ0q X α “ α. But f P DLα, so7.50.5

sup im f ă α; contradiction. 7.49

(7.51) Theorem [ZF´] Suppose xrαs is regulary
Lα`1 . Then for every x P Lα and

f P Lα`1 such that f : xÑ α, sup im f ă α.

Proof Let7.49 γ ă α be such that x Ď c Ñγ, and let g “ tpβ, fpcβqq | cβ P xu. Then
g P Lα`1, g : γ á α, and im f “ im g, so7.50.1 sup im f “ sup im g ă α. 7.51

(7.52) Theorem [ZF´] Suppose α ą ω and xrαs is regulary
Lα`1 . Then Lα |ù ZF´.

Proof It follows from the assumption that α ą ω and α is a limit ordinal that
Lα models all the axioms of ZF´ with the possible exception of Collection and
Comprehension.7.13 We therefore have only to verify the latter two schemata.

We begin with Collection. Suppose ϕ is an s-formula and a, v, v0, . . . , vn- are
distinct variables such that Freeϕ Ď ta, v, v0, . . . , vn-u. Suppose y0, . . . , yn- , x P Lα
and

@y P x Dz P Lα @r P Lα
``

Lα |ù ϕ
“

v0 ¨ ¨ ¨ vn- v a
y0 ¨ ¨ ¨ yn- y r

‰˘

Ñ r P z
˘

.

Then
@y P x Dβ ă α @r P Lα

``

Lα |ù ϕ
“

v0 ¨ ¨ ¨ vn- v a
y0 ¨ ¨ ¨ yn- y r

‰˘

Ñ r P Lβ
˘

.

Let f : x Ñ α be such that for each y P x, f y is the least β such that @r P
Lα

``

Lα |ù ϕ
“

v0 ¨ ¨ ¨ vn- v a
y0 ¨ ¨ ¨ yn- y r

‰˘

Ñ r P Lβ
˘

. Then f P Lα`1, so sup im f ă α.15 It
follows that there exists β ă α such that

@y P x@r P Lα
``

Lα |ù ϕ
“

v0 ¨ ¨ ¨ vn- v a
y0 ¨ ¨ ¨ yn- y r

‰˘

Ñ r P Lβ
˘

.

15The definition of f uses only the tϕu-satisfaction relation for Lα, which is definable over Lα,
unlike the full satisfaction relation for Lα.
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Hence, Collection holds in Lα.
To prove Comprehension, we use a reflection argument as in the proof of (7.6).

(7.53) Claim Suppose ϕ is an s-formula. The set tβ ă α | Lβ ătϕu Lαu is closed
unbounded in α.

Proof This is a variation on the downward Löwenheim-Skolem theorem.2.159.1 Let S
be the tϕu-satisfaction relation for Lα. Note that S is definable over Lα. Using the
Tarski-Vaught criterion2.153, the canonical enumeration c, and bounding arguments
similar to those used above, it is straightforward to show that tβ ă α | Lβ ătϕu

Lαu is unbounded in α. That it is closed follows from (2.155), keeping in mind
the general principle that if A ăΦ C, B ăΦ C, and A ă0 B, then A ăΦ B, so
tLβ | Lβ ătϕu Lαu is a directed set under the relation ătϕu, and (2.155) applies.

7.53

Suppose ϕ is an s-formula, and u, v, v0, . . . , vn- are distinct variables such Freeϕ Ď
tu, v, v0, . . . , vn-u. Suppose y0, . . . , yn- , x P Lα. We must show that there exists
z P Lα such that

(7.54) @y P Lα
`

y P zØ
`

y P x^Lα |ù ϕ
“

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

‰˘˘

.

To this end, let7.53 β ă α be such that y0, . . . , yn- , x P Lβ and Lβ ătϕu Lα. Then
there exists z P Lβ`1 such that

@y P Lβ
`

y P zØ
`

y P x^Lβ |ù ϕ
“

u v v0 ¨ ¨ ¨ vn-

x y y0 ¨ ¨ ¨ yn-

‰˘˘

.

Since Lβ ătϕu Lα, (7.54) holds for z. 7.52

(7.55) Definition [C]

1. r
def
“ the signature s with additional constants xRy and xρy.

2. TR def
“ the r-theory consisting of

1. ZF´;
2. xR is a wellorder of a subset of ω, and ρ “ otRy;16

3. xV “ LrRsy; and
4. xthere exists an increasing ρ-sequence of infinite successor cardinalsy.

3. TR0
def
“ TR ` x@Ordβ LβrRs*T

Ry.

(7.56) Theorem [TR]

1. ρ is a countable ordinal.

2. ωρ exists.

3. Vω`ρ exists, i.e., the power operation may be applied ρ times in succession to
Vω.

Proof 1 ρ is the order type of R, which is a wellorder of a countable set.
16We allow for the possibility that R “ 0, so otR “ 0; or |R| “ 1, so otR “ 1. The latter

requires that R be a weak order relation. For order types ą 1, we may use either weak or strong
order relations.
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2 If ρ “ 0 then ωρ exists.
Suppose ρ is a limit ordinal. By (7.55.2.4) there is an increasing ρ-sequence of

infinite cardinals, i.e., ωα exists for all α ă ρ. Let λ “
Ť

αăρ ωα. λ is ωρ.
Suppose ρ is a successor ordinal. By (7.55.2.4) there is an increasing sequence

xσα | α ă ρy of successor cardinals, and we may arrange that is an initial segment of
the class of successor cardinals. Then clearly, for each α ă ρ, σα “ ωα`1. Letting
α be the immediate predecessor of ρ, σα “ ωα`1 “ ωρ, so ωρ exists.

3 In the proof of (7.27) we showed, in the context of ZF ` V “““L, that every
subset of an infinite cardinal κ is in Lκ` , and that therefore |P κ| “ |Lκ` | “ κ`.
The same reasoning in the present context allows us to show by induction on α ă ρ
that

(7.57)

1. Vω`α exists;

2. |Vω`α| “ ωα;

3. every subset of Vω`α is in Lωα`1rRs; and therefore

4. Vω`α`1 exists; and

5. |Vω`α`1| “ ωα`1.

If ρ is a successor ordinal, then (7.57.4) with α ` 1 “ ρ is the conclusion of the
theorem. If ρ is a limit ordinal, we use the fact that Vω`ρ “

Ť

αăρ Vω`α. 7.56

(7.58) Theorem [TR0 ]

1. ωρ is the largest cardinal, i.e., the order type of the class of infinite cardinals
is ρ` 1.

2. Suppose ζ ą ω. Let M “ LζrRs. Suppose α ă ζ. If ωMα exists then α ď ρ.
In other words, the order type of the infinite M -cardinals is not greater than
ρ` 1.

Proof 1 To show that ωρ is the largest cardinal, suppose toward a contradiction
that λ “ ωρ`1 exists. Since λ is a successor cardinal, it is regular, so LλrRs |ù ZF´.
(The proof is essentially that of (7.52) but simpler, since λ is actually regular,
not just regular in Lλ`1rRs.) But for each α ď ρ, ωρ is a cardinal in LλrRs, so
LλrRs |ù TR, contradicting the clause x@Ordβ LβrRs*T

Ry in (7.55.3).

2 Suppose toward a contradiction that α ą ρ. Let σ “ ωMρ`1. Let N “ LσrRs.
Since σ P M , Lσ`1rRs Ď M . Since σ is a regular cardinal in M , it is a regular
cardinal in Lσ`1rRs, so N |ù ZF´ (by (7.52) generalized to LrRs). Since every
cardinal of M is a cardinal of N , N |ù TR. This violates Axiom 7.55.3 of our
working theory TR0 . 7.58

We will have use for a method of coding ordered pairs that does not increase
the rank when applied to sets at least one of which is of infinite rank.

(7.59) Theorem [ZF´] Suppose X is a transitive set. There exists a unique function
f such that dom f “ X ˆX and for all x, y P X,

1. if x, y P Vω then fxx, yy “ xx, yy and
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2. if either x or y is not in Vω then

fxx, yy “ tfx0, ay | a P xu Y tfx1, ay | a P yu.

Proof Show that any two such functions agree on their common domain. Use this
with Replacement to show that there exists a unique such function on Vω Y tctx, yu
for any x, y. 7.59

(7.60) Definition [ZF´] P px, yq def
“ the unique set z such that there exists f as in

(7.59) with X “ tctx, yu such that fxx, yy “ z.

(7.61) Theorem [ZF´] P is injective and does not increase rank above ω.

Proof First we show that P is injective.

(7.62) Claim Suppose α is an infinite ordinal and rkx, rk y ă α

1. If it is not the case that x, y P Vω then P px, yq R Vω.

2. If rkx1, rk y1 ă α and x ‰ x1 or y ‰ y1, then P px, yq ‰ P px1, y1q.

Proof By induction on α ě ω. Suppose α is least where it fails, and let x, y
exemplify this failure. Clearly, α is not a limit ordinal (including ω). Let α “ β`1.
Assume the result for β. To prove (1), note that either x or y has rank α ě ω, so
P px, yq “ tP p0, aq | a P xu Y tP p1, aq | a P yu. If either x or y is infinite, then by
induction hypothesis, P px, yq is infinite, hence not in Vω. If x and y are both finite
then one of them contains a set a that is not in Vω. It follows that either P p0, aq
or P p1, aq is in P px, yq. Since rk a ă maxtrkx, rk yu ď β, by induction hypothesis,
neither P p0, aq nor P p1, aq is in Vω, so P px, yq R Vω.

To prove (2), suppose P px, yq “ P px1, y1q, but either x ‰ x1 or y ‰ y1. If x and
y are both in Vω then clearly x1 and y1 are not both in Vω, so by (1), which we have
just proved for α, P px1, y1q R Vω. Since P px, yq P Vω, P px, yq ‰ P px1, y1q. Similarly,
x1 and y1 are not both in Vω. Hence

tP p0, aq | a P xu Y tP p1, aq | a P yu
“ P px, yq “ P px1, y1q

“ tP p0, aq | a P x1u Y tP p1, aq | a P y1u

It follows by induction hypothesis that x “ x1 and y “ y1. 7.62

Now we show by induction on α ě ω that if rkx, rk y ă α then rkP px, yq ă α.
For α “ ω this is straightforward. Suppose α is least where it fails. Clearly, α is
not a limit. Let α “ β ` 1. Suppose rkx, rk y ă α. Since x and y are not both in
Vω, P px, yq “ tP p0, aq | a P xu Y tP p1, aq | a P yu. For all a P xY y, rk a ă β, so by
induction hypothesis, rkP p0, aq, rkP p1, aq ă β. Hence, rkP px, yq ď β ă α. 7.61

(7.63) Definition [ZF´] A set x codes a binary relation s
def
ðñ s “ txa, by |

P pa, bq P xu.

We are chiefly interested in the use of this coding system to represent ordinals. Any
ordinal in ω1 is the order type of a binary relation on ω, which may be coded by a
set in Vω`1. Any ordinal in ω2 is the order type of a binary relation on ω1, which
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is isomorphic to a binary relation on Vω1 via the coding just mentioned, which is in
turn coded by a set in Vω`2. This needs AC, but this will be available, as we will
deal exclusively with models of V “““L. In general, any ordinal in ωα has a code in
Vω`α.

In the consideration of models M of the form LζrRs, it is often convenient to
restrict one’s attention to limit ordinals ζ. For this discussion we choose not to do
this, and as a consequence we have to take care to define certain notions so as to be
reasonable in this general context. For example, we might näıvely say that α ă ζ is
a cardinal in M iff there is no function f : β sur

Ñ α in M with β ă α. Note, however,
that if α is not a limit ordinal, say α “ θ ` 1, and f : β sur

Ñ α, then f contains
pγ, θq “ ttγu, tγ, θuu for some γ, so rk f ě rk θ ` 3 “ rkα ` 2 “ α ` 2. Of course,
f P MÑ rk f ă ζ, so if α ă ζ but α ` 2 ě ζ then there is no f : β sur

Ñ α in M . If
ζ is a limit ordinal then this cannot happen, but if ζ is a successor ordinal, it does
happen.

We will therefore say that α ă ζ is a cardinal in LζrRs iff α is finite or α is a limit
ordinal and there is no function f : β sur

Ñ α in LζrRs with β ă α.17

(7.64) Definition [TR] Suppose α ď ρ. As a notational convenience, let Uα
def
“ Vω`α.

This definition is legitimate by virtue of (7.56). It is a notational convenience for
two reasons. One is obviously that it allows us to use α where otherwise we would
have to use ω ` α. The other is that we never really have to use the fact that Uα
exists, as we will not refer to its being a member of anything. We only refer to
membership of sets in Uα, which we could state in terms of rank. That said, since
they are available as sets, we will avail ourselves of their availability.

Definition [TR] Define Wα by recursion on α ď ρ as follows.

1. W0
def
“ Vω.

2. If α “ β ` 1 then Wα
def
“ the set of w such that w P Wβ or w codes7.63 a

wellorder of a subset of Wβ.
3. If α is a limit ordinal then Wα “

Ť

βăαWβ.

Note that since we are using the “flat” pairing operation P ,7.60

@α ď ρ Wα Ď Uα p“ Vω`αq,

so Wα is legitimately defined as a set. As just discussed in connection with (7.64)
this is merely a convenience. At the expense of some circumlocution, we could
define a predicate W so that W pα, xqØx PWα.

(7.65) Theorem [TR0 ] Suppose η is an infinite ordinal. Then |η| “ ωα for some
α ď ρ,7.58.1 and there exists w such that w codes a wellorder of a subset of Wα with
otw “ η.

Proof Since |η| “ ωα, η is the order type of a binary relation S on a subset of ωα.
We now proceed by induction on α.

If α “ 0 then S is a relation on a subset of ω so it is coded by w Ď Vω “W0.
Suppose α ą 0 and the theorem holds for all β ă α. For each ξ P ωα let wξ be

a representative of ξ in the following sense.
17Alternatively, we could solve this problem by using functional relations defined using the

pairing function P , which does not increase rank.
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1. If ξ is finite, let wξ “ ξ.

2. If ξ is infinite, let β be such that |ξ| “ ωβ . Since ξ ă ωα, β ă α, so by
induction hypothesis there exists w that codes a wellorder of a subset of Wβ

with otw “ ξ. Let wξ be such a code. Note that wξ PWβ`1 ĎWα.

Since V “““L is in TR, we have AC, so there exists a function ξ ÞÑ wξ as above. Let
S1 “ txwξ, wξ1y | xξ, ξ1y P Su. Then S1 is a wellorder of a subset of Wα with order
type η. Let w code S1. 7.65

(7.66) Theorem [TR0 ] Suppose ζ is an ordinal, and let M “ LζrRs. Then for
every η ă ζ there exists w P M such that w codes a wellorder of a subset of Wρ

with otw “ η.

Proof Suppose δ ă ζ and δ is a successor cardinal in the sense of M . Let Mδ “

LδrRs. Then Mδ |ù ZF´.18 Let σ be the order type of the infinite successor
cardinals in Mδ. Since Mδ *T

R,7.55.3 σ ă ρ.7.55.2.4 Mδ is a model of TR with clause
(7.55.2.4) omitted. The proof of (7.65) is readily adapted to show that for every
η ă δ there exists w P Mδ such that w codes a wellorder of a subset of Wσ with
otw “ η. Note that w PM and w codes a subset of Wρ.

Let λ be the union of the successor cardinals in the sense of M . If η ă λ then
there is an M -successor cardinal δ ą η, and we have just shown that in this case
there exists w PM such that w codes a subset of Wσ for some σ ă ρ, and otw “ η.
Note that by definition, w PWρ.

Suppose, on the other hand, that η ě λ. It is easy to see that λ is the largest
M -cardinal, so there is a wellorder of λ of order type η. As in the proof of (7.65),
this may be replaced by wellorder of codes for ordinals ă λ, which we have just
shown may be taken to be in Wρ. Thus, in this case as well, there exists w P M
such that w codes a wellorder of a subset of Wρ with otw “ η. 7.66

Definition [ZF] Suppose r is a wellorder of a subset of ω. βr
def
“ the least β such

that Lβrrs |ù TR0 .

We will show that Lβr rrs* xΣ0
1`rρs`3-determinacyy. The big idea behind Fried-

man’s proof is to show that if M “ Lβr rrs satisfies Σ0
1`ρ`3-determinacy, then the

theory Th M of M is definable over M. The proof then invokes the fact that Th M
is not definable over M. We have previously proved results similar to this, but not
this result exactly, so we supply a proof now.

(7.67) Theorem [C] Suppose M is any satisfactory s1-structure extending pVω; P
,0,ðððq. Then Th M is not definable over M.

Proof Suppose to the contrary that ϕ is an s-formula with one free variable v0

such that for every s1-sentence θ,

(7.68) M |ù ϕ
“

v0
θ

‰

ØM |ù θ.

Let ψ be a formula with one free variable v0 that says of its argument that it is an
s1-formula with one free variable v0 and that ␣␣␣ϕ holds for the sentence that results

18Remember7.52 that it suffices that δ is regular in the sense of Lδ`1rRs, which it is because it
is a successor cardinal in the sense of LζrRs and ζ ą δ.
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from substituting the canonical name of this formula for its free variable. Thus, for
any s1-formula χ with one free variable v0, letting τ “ Nmχ, the canonical s1-name
for χ (as a member of Vω), letting σ “ χ

`

v0
τ

˘

, and using (7.68),

(7.69) M |ù ψ
“

v0
χ

‰

ØM |ù ␣␣␣ϕ
“

v0
σ

‰

ØM*σ.

Now let χ “ ψ, so τ “ Nmψ and σ “ ψ
`

v0
τ

˘

. Then, since τM “ ψ, using (7.69),

M |ù σØM |ù ψ
“

v0
ψ

‰

ØM*σ.

This contradiction establishes the theorem. 7.67

Definition [TR] An r-structure M is good
def
ðñ

1. |M| Ď Vω;
2. M |ù TR0 ;

3. the relation txa, by | xras P rbs P ωy
M
u is isomorphic to txa, by | a P b P ωu; and

4. RM – r.

Suppose M is good. Then the individuals of M are hereditarily finite sets, and
the order type of the finite ordinals in the sense of M is ω. Although M is not
in general wellfounded, it resembles L in certain important respects. First note
that since ωM has order type ω, V M

ω is isomorphic to Vω and M correctly identifies
the language Lr. (Statements of this sort, here and below, are of course to be
understood modulo isomorphic equivalence.) M also satisfies all of the theory of
constructibility that does not depend on the Power axiom. As it is generally easy to
supply appropriate absoluteness arguments en passant, we will often not explicitly
state them.

(7.70) Definition [TR] Suppose M is a good structure.

1. ΩM def
“ the set tw | x Ord rwsy

M
u of M-ordinals, with the corresponding order.

Note that ΩM is linearly ordered, but is not necessarily wellordered.

2. Ω̄M def
“ the maximum wellordered initial segment of ΩM (which is the union of

wellordered initial segments of ΩM).

3. V̄ M def
“

Ť

aPΩ̄M
xVrasy

M
, which is the maximum wellfounded initial segment of

M.
4. πM

def
“ the transitive collapse of V̄ M, i.e., the (unique) isomorphism of pV̄ M; PM

q with a transitive set. ĉ def
“ πMc, when the identity of the structure M may be

inferred from the context.

Note that xOrd ρy
M

, so there is a corresponding a P ΩM, in the sense that the set
of M-ordinals below a has order type ρ. Hence, Ω̄M has order type at least ρ` 1.
It is easy to see that the order type of Ω̄M must be a limit ordinal, so it is at least
ρ` ω.19

Note that for any a P Ω̄M, πM
ÑxVrasy

M
Ď Vα, where α “ πM a; and πM æ xVωy

M

is an isomorphism of xVωy
M

with Vω. Note that if N is a transitive substructure of
M, i.e., if @x P |N| @y P |M| pxrys P rxsy

M
Ñ y P |N|q, then πN Ď πM.

19It is also easy to see that it must be at least ρ` ρ, ρ ¨ ρ, etc.
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Definition [TR] Suppose r is a wellorder of a subset of ω, and M is good.

1. Suppose a P ΩM. Ma
def
“ the substructure of M with domain |LarrsM|.

2. Suppose A Ď ΩM is an initial segment. MA
def
“ the substructure of M with

domain
Ť

bPA |Mb|.

3. An initial segment of M
def
“ a substructure of M of the form MA, where A is

an initial segment of ΩM.

4. MA is of limit type
def
ðñ A has no greatest element; otherwise MA is of

successor type.

It is important to recognize that MA “ Ma iff a is the least M-ordinal not in A.
If M is illfounded, there may not be such an element a for a given proper initial
segment A Ď ΩM.

Definition [TR]

1. Suppose S is a satisfaction relation. SS def
“ the corresponding structure.

2. S def
“ the set of S Ď Vω such that S is an r-satisfaction relation.

3. S P S is good
def
ðñ SS is good.

As a notational convenience we may refer to a satisfaction relation when the cor-
responding structure is meant, e.g., CM0 is CSM

0 .

Note that S is Π0
2, the most complex parts of the description being the state-

ment that for every existential formula ϕ “ DDDv ψ and every SS-assignment A for
ϕ, xϕ,Ay P SØDa P |SS |

@

ψ,A
@

v
a

DD

P S; and the corresponding statement for
universal formulas.

Note that if ϕ is a Σs
n (Πs

n) formula then the set of xS, Ay such that S Ď Vω
is an s-structure, A is an S-assignment for ϕ, and S |ù ϕrAs is Σ0

n (Π0
n), but it is

not generally in any smaller complexity class. On the other hand, the set of xS,Ay
such that S Ď Vω is an s-satisfaction relation, A is an SS-assignment for ϕ, and
SS |ù ϕrAs is Π0

2. Moreover, if we condition on S P S then it is ∆0
1, i.e., it is

the intersection of a ∆0
1 set with S. For these reasons we work with satisfaction

relations, rather than with structures per se, in the following discussion.

Definition [TR] Suppose M is a good satisfaction relation, a P |M |, and η ď
ρ.

1. Ma def
“ the set of b P |M | such that xrbs is constructed at an earlier stage than

rasy
M

.

2. Mη
def
“ the set of b P |M | such that b is in the wellfounded part of M and

b̂ Ď Uη.

3. Naturally, Ma
η

def
“ Ma XMη.

(7.71) Definition [TR] Suppose M1,M2 are good satisfaction relations and a P

|M1|. Then M1 ďa M2 def
ðñ
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1. for all b1 P M1a
ρ there exists b2 P M2

ρ such that b̂1 “ b̂2, and if xrb1s codes a

wellordery
M1

then xrb2s codes a wellordery
M2

; and

2. for all b1 P M1a
ρ , b2 P M2

ρ , and c2 P M
2pb2`1q
ρ , if b̂1 “ b̂2 then there exists

c1 PM1a
ρ such that ĉ1 “ ĉ2.20

(7.72) Theorem [TR] The set of xM1,M2, ay such that M1,M2 are good satisfac-
tion relations, a P |M1|, and M1 ďa M2, is Π0

1`ρ`2.

Proof As noted above, the set S of r-satisfaction relations S P Vω`1 such that
S |ù TR0 is Π0

2. The additional condition that RS “ R is Π0
1pRq, hence Π0

1. Hence,
the class of good satisfaction relations is Π0

2. Let F Ď Vω`1 be this class.
Suppose M1,M2 are good satisfaction relations, a1 P M1

0 and a2 P M2
0 . Then

â1 “ â2 iff for all canonical terms τ for a member of V ω, xpτq P ra1sy
M1

iff xpτq P

ra2sy
M2

. Thus there is a Π0
1 relation E0 Ď Vω`1 ˆ Vω`1 ˆ Vω ˆ Vω, such that for

good satisfaction relations M1,M2, a1 PM1
0 , and a2 PM2

0 ,

â1 “ â2ØE0pM
1,M2, a1, a2q,

the universal quantification (equivalently, countable conjunction or intersection)
over terms being the dominant feature, once the restriction to good satisfaction
relations has been imposed.

For each η ď ρ, there is a ∆0
1 relation Iη Ď Vω`1 ˆ Vω ˆ Vω such that for any

good satisfaction relation M , a P |M |, and b P Vω,21

b PMa
η Ø IηpM,a, bq.

Define Eη Ď Vω`1 ˆ Vω`1 ˆ Vω ˆ Vω by recursion on η ď ρ so that

EηpM
1,M2, a1, a2q

Ø
ľ

αăη

ľ

b1,b2PVω

`

IαpM
1, a1, b1q^ IαpM

2, a2, b2q^EαpM
1,M2, b1, b2q

Ñ
`

xrb1s P ra1sy
M1

Ø xrb2s P ra2sy
M2

˘˘

.

(7.73)

Now suppose 0 ă η ď ρ, M1,M2 are good satisfaction relations, a1 P M1
η , and

a2 P M2
η . Then â1 “ â2 iff for all α ă η, b1 P M1a1

α and b2 P M2a2

α , if b̂1 “ b̂2

then b̂1 P â1Ø b̂2 P â2. Hence, by induction on η, for all η ď ρ, good satisfaction
relations M1,M2, a1 PM1

η , and a2 PM2
η ,

â1 “ â2ØEηpM
1,M2, a1, a2q.

Since η is countable in (7.73), if Eα is Π0
1`α for all α ă η, then Eη is Π0

1`η. Hence,
by induction, Eη is Π0

1`η for all η ď ρ.
Using these complexity bounds in (7.71) together with the existence of ∆0

1 re-
lations expressing that a P |M |, xras codes a wellordery

M
, a PMη and b PM

tau
η for

good satisfaction relations M , we obtain the conclusion of the theorem. 7.72

20We interpret xb2 ` 1y literally as b2 Y tb2u, which is constructed at the next stage after b2.

Thus c2 P M
2pb2`1q
ρ iff c2 is constructed at the same stage as b2 or earlier. We could use xtb2uy,

but xb2 ` 1y is preferable for its mnemonic value.
21What makes this relation specific to η is a reference to the element of ω that corresponds to

η in the wellorder r.
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(7.74) Theorem [TR0 ] Suppose, M1 and M2 are good satisfaction relations, a P
|M1|, M1 ďa M2, and M2 is wellfounded. Then M1a is wellfounded and ot ΩM

1a

ď

ot ΩM
2
. Hence, M1a is isomorphic to an initial segment of M2.

Proof M1 |ù TR0 , so (7.66) holds in M1 and for any b P ΩM
1a

there exists c1 P

M1a
ρ such that xrc1s codes a wellorder of order type rbsy

M1

. As noted following
Definition 7.70, the wellfounded initial segment of M1 includes considerably more
than M1

ρ . In particular it contains the element d1 P |M1| such that xrd1s is the

binary relation coded by rc1sy
M1

,7.63 which has only finitely greater rank (to put it
mildly). Note that d̂1 is the binary relation coded by ĉ1. Since M1 ďa M2, there

exists c2 P M2
ρ such that ĉ1 “ ĉ2 and xrc2s codes a wellordery

M2

. Let d2 P |M2|

be the element such that xrd2s is the binary relation coded by rc2sy
M2

. Then d̂2 is
the binary relation coded by ĉ2, so d̂1 “ d̂2. Since M2 is wellfounded, the relation

E2 “ txe20, e
2
1y | xxre20s, re

2
1sy P rd

2sy
M2

u is a wellorder with order type ă ot ΩM
2
.

Hence d̂2, which is txê20, ê
2
1y | xe

2
0, e

2
1y P E

2u, is a wellorder. Since d̂1 “ d̂2, the
relation E1 “ txe10, e

1
1y | xê

1
0, ê

1
1y P d̂

1u is isomorphic with E2. In M1 there is an
isomorphism of d1 with ΩM

1b

, which is therefore also isomorphic to E2.
Every proper initial segment of ΩM

1a

is included in ΩM
1b

for some b P ΩM
1a

,
so ΩM

1a

is wellordered, and ot ΩM
1a

ď ot ΩM
2
. By induction on ΩM

1a

it is easily
shown that M1a – LαrRs, where α “ ot ΩM

1a

. Similarly, M2 is isomorphic to an
initial segment of LrRs, so M1a is isomorphic to an initial segment of M2. 7.74

(7.75) Theorem [ZF] Suppose ρ is a countable ordinal and r Ď ωˆω is a wellorder
of order type ρ. Then Lβr rrs* xΣ0

1`rρs`3-determinacyy.

Proof For each sentence θ in the language of set theory, let Xθ Ď
ăωω be defined

as follows. Note that we regard players I and II as coding subsets of Vω, viz.,
B⃗ Ñpim zIq and B⃗ Ñpim zIIq, which are to be satisfaction relations M1 and M2 as
we have been discussing above.

(7.76) z P Xθ iff, letting M1 “ B⃗ Ñpim zIq and M2 “ B⃗ Ñpim zIIq,

1. M1 is a good satisfaction relation such that M1 |ù θ; and
2. if M2 is a good satisfaction relation then either

1. M1 ď M2, i.e., for all a P |M1|, M1 ďa M2; or
2. there is a least a P ΩM

1
such that M1 ęa M2.

(7.77) Claim If Lβr rrs |ù xII has a winning strategy in xăωω,Xrθsyy then Lβr rrs |ù
␣␣␣ θ.

Proof Suppose σ P Lβr rrs is such that Lβr rrs |ù xrσs is a winning II-strategy in
xăωω,Xrθsyy, i.e., Lβr rrs |ù x@x P ωω x ˚ rσs R Xrθsy. Since Lβr rrs is a transitive
model of ZF´, by Π1

1-absoluteness,6.7 @x P ωω x ˚ σ R Xθ.
Suppose toward a contradiction that Lβr rrs |ù θ, and let x P ωω be such that

B⃗ Ñpimxq is a satisfaction relation M1 for a structure isomorphic to Lβr rrs. Let
z “ x ˚ σ, and let M2 “ B⃗ Ñpim zIIq. Since Lβr rrs |ù TR0 ` θ, (7.76.1) is satisfied.
Since z R Xθ, M2 must be a good satisfaction relation, and both (7.76.2.1) and
(7.76.2.2) must fail. But if (7.76.2.1) fails then, since ΩM

1
is wellordered, (7.76.2.2)

holds. 7.77
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(7.78) Claim If Lβr rrs |ù xI has a winning strategy in xăωω,Xrθsyy then Lβr rrs |ù θ.

Proof Suppose σ P Lβr rrs is such that Lβr rrs |ù xrσs is a winning I-strategy in
xăωω,Xrθsyy, i.e., Lβr rrs |ù x@y P ωω rσs ˚ y P Xrθsy. Again by Π1

1-absoluteness,
@y P ωω σ ˚ y P Xθ.

Suppose toward a contradiction that Lβr rrs |ù ␣␣␣ θ, and let y P ωω be such that
B⃗ Ñpim yq is a satisfaction relation M2 for a structure isomorphic to Lβr rrs. Let
z “ σ ˚ y, and let M1 “ B⃗ Ñpim zIq. Since z P Xθ, M1 is a good satisfaction
relation and M1 |ù θ. Since Lβr rrs* θ, M

1 – Lβr rrs. Since Lβr rrs is the minimum
transitive model M of TR such that RM “ r, M1 is not isomorphic to any initial
segment of M2, so7.74 it is not the case that M1 ď M2. Hence, (7.76.2.1) is not
satisfied, so (7.76.2.2) must hold.

(7.79) Let a P ΩM
1

be least such that M1 ęa M2.

Clearly, a is not a limit element of ΩM
1
. Let a1 be the immediate predecessor of

a in ΩM
1
. Then M1 ďa1

M2, so M1a1
is isomorphic to an initial segment of M2.

Since M2 is wellfounded, this is M2a2
for some a2 P ΩM

2
. Let ι be the isomorphism

(which is unique, as the structures are wellfounded). Note that a is a1 ` 1 in the
sense of M1, and M1pa1`1q is DM1

a1 as computed in M1. Similarly, M2pa2`1q is
DM2a2

as computed in M2.
This allows us to extend ι to an isomorphism of M1pa1`1q (i.e., M1a) with

M2pa2`1q as follows. Recall that xVωy
M1

is isomorphic to Vω, so the language Lr as
construed in M1 is isomorphic to Lr. Hence, if x P |M1pa1`1q| then there exist an r-
formula ϕ, variables v0, . . . , vn, and z1

1 , . . . , z
1
n P |M

1a1
| such that for all y P |M1a1

|,
xrys P rxsy

M1

iff M1a1
|ù ϕ

“

v0 v1 ¨ ¨ ¨ vn

y z1 ¨ ¨ ¨ zn

‰

. Let ι x be the corresponding element of

|M2|.
From this it follows that M1 ďa M2, contradicting (7.79). 7.78

Now suppose toward a contradiction that Lβr rrs |ù xΣ0
1`rρs`3-determinacyy.

It follows from (7.77) and (7.78) that ThLβr rrs is definable over Lβr rrs. This is
impossible by (7.67). Hence Lβr rrs* xΣ0

1`rρs`3-determinacy y. 7.75

7.7 Summary

The constructible universe is a conservative’s utopia, admission to which is granted
only to those sets whose existence is mandated by ZF, and every individual of
which is assigned a unique identifying (ordinal) number. The power of the axiom
is exploited by meticulous examination of the sequence in which sets are entered
into the roster of L.

The almost universality of L is essentially immediate, from which it follows that
L satisfies all of ZF with the possible exception of Comprehension, but this follows
rather easily from the reflection principle and the generative principle of L, which
is specifically designed to yield Comprehension, so L |ù ZF. The definition of the
sequence xLα | α P Ordy is sufficiently local that it is absolute7.9 for structures
pLβ ; Pq for limit ordinals β, from which it follows that L |ù xV “ Ly.

The admission of sets into L is sufficiently methodical that it is easy to produce
a wellordering of L that has a definition that is absolute for L. Hence, L |ù AC.
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The condensation lemma is the simplest example of the structural theorems that
make the axiom of constructibility so powerful. We use it to show that L |ù GCH,
the generalized continuum hypothesis.

Not surprisingly, xV “ Ly answers many additional questions left open by ZF.
In particular, in the sense of L there is a ∆1

2 wellordering of R. This can be used
to define an uncountable Π1

1 set without a perfect subset, and a ∆1
2 set lacking the

Baire property and Lebesgue measurability. In fact, many issues in descriptive set
theory are settled by xV “ Ly via the definable wellordering of R.

In another and far more fruitful direction we have the refutation of Suslin’s
hypothesis in L. This construction of Jensen exploits the repetitive nature of the
construction of L to define the powerful combinatorial principle ♢, which can be
used to construct a Suslin tree.

We conclude with the proof that Σ0
4-determinacy does not hold in the minimum

model of ZF´ (and the generalization of this proof to all Borel sets), which is a good
example of the sort of analysis to which the constructible hierarchy lends itself.
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Cogitor, ergo sum.1

V rGs

[Thomas Jech’s Set Theory [12] is an excellent source for all aspects of the modern
theory of membership. Kenneth Kunen’s Set Theory [16] is also an excellent source,
with particular emphasis on the topic of this chapter.]

8.1 Introduction

Following Gödel’s proof that V “““L, and therefore also its consequences, including
AC and GCH, are consistent relative to ZF, the question remained: do AC, GCH,
etc., follow from ZF? It was strongly suspected that they do not, i.e., that their
negations are consistent with ZF. Starting from Con ZF, the method of inner models
cannot prove ConpZF`␣␣␣ACq or ConpZF`␣␣␣CHq. The reason is that each of these
latter statements implies ConpZF ` V ‰‰‰ Lq, and this cannot be proved by the
method of inner models. For suppose one could prove that any model of ZF has an
inner model of ZF` V ‰‰‰ L. Then in particular, any model of ZF` V “““L has an
inner model of ZF`V ‰‰‰ L. But this is impossible as L has no proper inner models:
it is the minimum model of ZF that includes Ord. Even if we consider shorter, as
well as thinner, models, we cannot falsify V “““L, because any initial segment of L
satisfies V “““L.

Thus, after Gödel had invented (discovered?) L, ConpZF`V ‰‰‰ Lq became the
Holy Grail of set theorists. It would be necessary to prove at least that much if the
independence of the AC and CH were to be proved, and the method of inner models
would not work. The way was found in 1963 by Paul Cohen, a mathematician who
was not primarily a set theorist. His idea was rather simple, but very deep. It set
off an explosion of activity in the field of set theory that has continued unabated
to the present.

This introduction is devoted to arriving at Cohen’s method by a process of
discovery, and it is hoped that it is a useful motivation, but it may be omitted
without loss of continuity, as all the ideas are presented formally beginning in
Section 8.2.

1I am thought, therefore I am.
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Suppose M is a transitive set and M |ù ZF. We make no assumption about the
size of M at the present time. Later we may require that it be countable, or we
may permit it to be a proper class, even the whole universe: M “ V . For now,
however, we simply suppose M is a set.

We will make reference from time to time to “people living in M” as opposed
to people (like ourselves, perhaps?) living in the “real world”. Let us say a little
more about these people. They are actually a most admirable race. They have
complete knowledge of M in the sense that if you specify any s-formula ϕ, with
free variables u0, . . . , un- , and any a0, . . . , an- P M then the M -people can tell you
whether M |ù ϕ

“

u0 ¨ ¨ ¨ un-

a0 ¨ ¨ ¨ an-

‰

. In other words, they know the satisfaction relation of
M , which is a lot more than we know about “our” world. (We wouldn’t even qualify
as M -people if M were taken to be the class HF of hereditarily finite sets.) We also
refer to what M “knows” or “thinks” in the same vein. Any such reference is to
the satisfaction relation for M .

One thing that the M -people cannot do, of course, is see any set outside of M .
For example, if M is countable, they will not realize it. Any function that witnesses
the countability of M , i.e., any f : ω sur

Ñ M , will not be in M—since M |ù ZF—and
so will not be accessible to them. Nevertheless, they can imagine objects outside
of M , and, as we will see, they may be able to say quite a bit about them.

Let A be an infinite set in M . The possibility exists that there is a subset of
A that is not in M . In fact, if M is countable, there will certainly be a subset
of A that is not in M , because A has uncountably many subsets. Let us consider
extending M by the adjunction of an arbitrary non-empty subset G of A. This is
only interesting if G is not in M , but for the time being, we will only assume that
G is not empty (and that only for technical reasons). We want the extension to be
a model of ZF, but we want it to be the smallest model of ZF that includes M and
contains G. We wish, therefore, to define a transitive set M rGs with the following
properties:

(8.1)

1. M ĎM rGs,

2. G PM rGs,

3. M rGs |ù ZF,

4. if N is any other transitive model of ZF with M Y tGu Ď N then M rGs Ď N .

8.1.1 A universe of names

Much of this discussion will express the point of view of the people of M , and it will
be important to be able to talk about M rGs in M . For this we will need names for
everything in M rGs, and these names must be in M . Since G is not in M and is,
in fact, somewhat arbitrary, the denotations of the names cannot be known to (the
people of) M . Only when a definite G is given can the names be said to denote
definite sets.

The denotation convention is such as to make M rGs a transitive set containing
the same ordinals as M . Conditions 8.1.1 and 8.1.2 will also be satisfied.

For any name τ , let τG be the denotation (yet to be defined) of τ in M rGs.
The mapping τ ÞÑ τG will be definable over M rGs. The purpose of τG is to name
something in M rGs, and to motivate its definition we note that if M rGs satisfies
(8.1) and σ P M , then by virtue of the definability of τ ÞÑ τG over M rGs, the set
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tτG | Dg P G xτ, gy P σu is in M rGs. Indeed, we may regard σ P M as a name for
this set, and define σG to be tτG | Dg P G xτ, gy P σu. So we have the following
definition:

(8.2) For any σ PM and any G Ď A,

σG “ tτG | Dg P G xτ, gy P σu.

For a slightly different emphasis, we may use the equivalent statement:

σG “ tτG | σÑtτumeetsGu.2

This definition makes sense if it is interpreted as defining τ ÞÑ τG by recursion on
the rank of τ , because τ P domσÑ rk τ ă rkσ.

Now we define M rGs by means of the system of denotations τ ÞÑ τG.

(8.3) If M is a transitive model of ZF, A is an element of M , and G is a non-empty
subset of A, we define

M rGs “ tτG | τ PMu.

Observe that (8.2) defines each element of M rGs as a subset of M rGs, so M rGs is
transitive.

Let’s see whether M rGs, so defined, satisfies (8.1). Begin with (8.1.1). By
recursion on rank define the map x ÞÑ x̌ so that

(8.4) x̌ “ txy̌, ay | y P x^ a P Au.

Then for any nonempty G Ď A,

x̌G “ ty̌G | y P xu,

so by induction we know that x̌G “ x for all x PM . Hence, M ĎM rGs.
Next, let’s deal with (8.1.2). We need to define a name for G. This is quite

easy. Let
Γ “ txǎ, ay | a P Au,

where x ÞÑ x̌ is the system just defined of standard names for members of M .

ΓG “ tγG | ΓÑtγumeetsGu
(by definition of τ ÞÑ τG)

“ tǎG | a P Gu

(by definition of Γ)
“ ta | a P Gu

(because ǎG “ a)
“ G

(just because).

Hence, G PM rGs.
Now we come to (8.1.3). How do we know that M rGs is a model of ZF? Truth

be told, it sometimes isn’t. But—amazingly enough—it almost always is. What do
we mean here by ‘almost always’? Essentially what is meant in Section 5.6: the

2Recall that X meets Y iff X X Y ‰ 0.)
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set of G for which M rGs is a model of ZF is comeager. There we dealt with reals,
which are essentially subsets of ω. Here we have to do with subsets of an arbitrary
set A. But everything we did there can be carried out in the more general case.

Some of the axioms of ZF hold in M rGs no matter what G we choose. An
example is Pair. If τ and σ are names in M for sets t and s, respectively, in M rGs,
then

Ť

aPAtxτ, ay, xσ, ayu is a name for tt, su. But it is clear that not all the axioms
of ZF hold in M rGs for every G. To provide a simple example, first observe that
M rGs has the same ordinals as M . Suppose M is countable and A “ ω. Let G Ď A
encode a countable well-ordering of length greater than any ordinal in M . G cannot
be in any transitive model of ZF whose ordinals are the same as those of M , because
it is a theorem of ZF that every well-ordering is isomorphic to an ordinal.

This property of coding a large ordinal is obviously a special property of G,
and—employing the intuition gained in Section 5.6—you may be willing to accept
(pending proof, of course) that the set of Gs with this property is meager. But
what about all the other ways that some axiom of ZF could be violated in M rGs?
Well, if each violation only occurs for a meager set of Gs, we might hope to be able
to avoid all of them. Reasoning now very loosely, if M is countable, then there
are only countably many ways in which ZF can fail to be satisfied by M rGs. If
each type of failure occurs for only a meager set of G’s, then (since the union of a
countable collection of meager sets is meager) the set of G’s for which M rGs*ZF
is meager. Hence, M rGs |ù ZF for almost every G.

Continuing to reason in the same vein, it occurs to us that everything about
M rGs might be a good deal more regular (and accessible to people in M) if we
restrict our attention to only those G’s that have no special properties, i.e., to
those that are generic in some sense. This was Cohen’s insight, and—mirabile
dictu—it works.

8.1.2 Category applied

We will illustrate Cohen’s method in the special case that we are adding a real
number to M . In the process all the remaining features of the general method
will arise naturally, and we will indicate as we go along what the general method
is. Some familiarity is presumed with the theory of Baire category as discussed
in Section 5.6, but as noted above, one may skip this introduction altogether and
proceed straight to Section 8.2, which does not use the concept of category explicitly.

To fit the pattern we have developed so far, we should represent a real number
as a subset of some set A. We have already seen that there are various ways to do
this. The most convenient for our present purpose, since notions of category are
going to play a role, is to represent a real as the set of rational open intervals that
contain it. For the nonce, ‘rational open interval’ will be defined as follows:

(8.5) A rational open interval is a 2-sequence xa, by with a, b P Q and 0 ď a ă b ď 1.
Let P be the set of rational open intervals.

Notice that we have not defined a rational open interval to be an actual interval
in the real number line R, but rather the pair of rationals that constitute the
endpoints. This is because we are going to be adding reals to M , and we do not
want the identity of a member of P to change during this process. As defined in
(8.5), P consists of finitary objects. There is therefore a one-to-one correspondence
between P and ω.

For convenience we restrict attention to the reals strictly between 0 and 1, i.e.,
to the open unit interval p0, 1q, which we denote by ‘Ω’. For the rest of this section,
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we will use the lightface ‘Ω’ to denote x0, 1y, which is the element of P corresponding
to Ω.

There is a natural way to order the elements of P . Just say that xa1, b1y ď xa, by
if and only if a ď a1 and b1 ď b. Let P “ pP ;ďq. P is a partial order, and most of
what we have to say about it applies to any partial order.

The raison d’être of P is that real numbers may be identified with subsets of
P . This is done as follows. For any real x, define Fx to be the set of rational open
intervals that contain x. Distinct reals determine different subsets of P in this way.
Of course, not every subset of P is Fx for some real x. Let us now see how the Fxs
can be characterized in terms of P, without reference to the existence of reals that
generate them. This is all part of the program of learning how to say as much as
possible about M rGs while still being comprehensible to the people in M .

The Fxs are examples of filters on P.

Definition [S] Suppose P “ pP ;ďq is a partial order. F is a filter on P def
ðñ

1. F Ď P ;

2. F ‰ 0; and

3. for all p, q P P

1. if p ď q and p P F , then q P F ,
2. if p P F and q P F , then there is r P F such that r ď p and r ď q.

It is clear that for any x P R, Fx is a filter. x can be recovered from Fx by taking
the intersection of all the members of Fx, regarded as actual intervals in R. There
are filters on P other than the Fx’s: for example, txa, by P P | a ă 1

3 ^ b ą
2
3u. The

intersection of all of these intervals is the interval r13 ,
2
3 s, not a single real. Other

filters have empty intersection, for example, tx0, ay | a P p0, 1qu, so they don’t define
reals either.

In the spirit of “almostness” the natural question is: For a filter on P, is it the
rule or the exception that its intersection consists of a single real? In other words,
is the set of Fxs comeager or meager in the space of all filters on P?

To properly formulate and answer this question, we must define an appropriate
topology on F , the set of all filters on P. This can be done for the set F of filters
on any partial order P. In the particular case we are discussing here, the topology
closely parallels the usual topology on R.

The standard topology on F is defined by the basic open sets Op, where for any
p P P , Op is the set of filters that contain p. An arbitrary open set is then any union
of basic open sets. Note that a set X of filters is open iff there is a set X Ď P such
that X is the set of filters that meet X, i.e., for any filter F , F P X ØF XX ‰ 0.

Notice that for any real x, Fx is in Op just in case x is in p (interpreting p as
an interval in R). So the standard topology defined here for F , when restricted to
the set of Fx’s, corresponds exactly to the usual topology on R.

The whole theory of category can be developed for the standard topology on
the set of filters on any partial order. The key concept, as you will recall, is that of
an open dense set. Let O be an open subset of F . O is completely determined by
the basic open sets that it includes. To say that O is dense means that any open
set intersects O. This is the same as saying that any basic open set includes one of
the basic open sets included in O. This prompts the following definition.

Suppose X Ď P .
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1. rXs
def
“ tq P P | Dp P X q ď pu.

2. X is dense
def
ðñ @p P P Dq ď p q P X.

3. X is predense
def
ðñ rXs is dense, i.e., @p P P Dq ď p Dr P X q ď r.

Note that a filter meets X iff it meets rXs. One sees that a set X Ď P is predense
iff the set of filters that meet X is dense in the standard topology. Also, a dense set
is a fortiori predense, so if X is dense then the set of filters that meet X is dense.

Now let us answer the question posed above: Is the set of Fx’s comeager or
meager in the space of all filters on P? In fact, it is comeager. To show this, we
must show that it includes the intersection of a countable family of open dense sets.

Thus, we must exhibit a countable family of dense subsets of P such that if a
filter meets all of them then it is an Fx. For each rational number a P Ω, let Da

be the set of p P P such that there exists q “ xq0, q1y P P such that q0 ă a ă q1

and qK p, where qK p
def
ðñ q and p are incompatible

def
ðñ ␣Dr pr ď q^ r ď pq

(the intervals defined by q and p do not overlap). Each Da is dense, and there are
countably many of them. The interested reader may wish to complete the proof
that if a filter meets every Da then its intersection consists of a single real.

8.1.3 Genericity

The stage is now set to implement the program suggested above. As before, consider
extending M by the adjunction of a subset G of P , but now require that G be a
filter. Let F be the set of filters on P. Consider the set tG P F | Dx G “ Fxu. We
have just seen that this set is comeager. This can be framed in terms of M rGs. We
have

tG P F |M rGs |ù xDx rGs “ Fxyu is comeager.

Now let ϕ, with free variables u0, . . . , un- , be an arbitrary s-formula, and let
τ0, . . . , τn- be names (in M) for elements of M rGs. Consider

␣

G P F
ˇ

ˇM rGs |ù

ϕ
“

u0 ¨ ¨ ¨ un-

τG
0 ¨ ¨ ¨ τG

n-

‰(

. This is a particular set of filters.

(8.6) If M is countable this type of set is Borel.

Proof The proof of this is not difficult, but it involves a welter of detail, so we will
only give the briefest sketch of it. One begins with the observation that if τ, σ PM ,
p P P , and xτ, py P σ, then the set tG P F | τG P σGu includes the basic open set Op.
One is tempted to say that tG P F | τG P σGu “

Ť

pPσÑtτuOp, which is a union of
basic open sets and hence is open; however, τG might be in σG by virtue of being
equal to ρG for some ρ P M such that σÑtρumeetsG. Including all these cases
involves a countable union of sets of the form tG P F | τG “ ρG^σÑtρumeetsGu.
If all these sets are Borel, then so is tG | τG P σGu. The key point is that the
formulas τ “““ ρ that we have to consider are all “simpler” than τ PPPσ because ρ has
lower rank than σ (else ρ could not be in domσ).

Similarly, any set of the form tG | τG “ σGu can be written in terms of countable
unions and intersections and complements of sets of the form tG | ρG P τGu and
tG | ρG P σGu (basically because τG “ σG if and only if @ρ P M pρG P τG Ø

ρG P σGq), where, as before, ρ may be restricted to have lower rank than τ or σ,
respectively. By a careful ordering of the primitive sentences τ PPPσ and τ “““σ by the
ranks of their constituent names one can show by transfinite induction that all the
sets tG | τG P σGu and tG | τG “ σGu are Borel.



474 CHAPTER 8. POSSIBLE WORLDS

Once the primitive sentences have been taken care of, the rest is easy. An
arbitrary sentence is built up from primitive sentences by the use of negation,
conjunction, disjunction, universal quantification, and existential quantification.
In terms of the sets

␣

G
ˇ

ˇM rGs |ù ϕ
“

u0 ¨ ¨ ¨ un-

τG
0 ¨ ¨ ¨ τG

n-

‰(

these logical operations correspond
to the set theoretic operations of complementation, intersection, union, countable
intersection, and countable union, respectively (assuming, as we have been, that M
is countable). Hence they are all Borel. 8.6

8.1.4 Forcing

It’s high time that we explicitly introduce the language that the people of M use
to talk about M rGs, which we have been using implicitly in the previous section.
It is obtained from the language of set theory by adding a term for each name.
As we have defined names above, every element of M is a name, but we could,
and often do, define a restricted class of names by requiring that a name τ be a
binary relation such that im τ Ď |P| and dom τ consists entirely of names. Clearly,
for any τ P M there exists a name σ in this restricted sense, such that σG “ τG.
We construct a language within M from these terms in the usual way. If ϕ is a
sentence of this language, the interpretation of ϕ in M rGs has already been defined.
For reasons that will become clear momentarily, this language is called a forcing
language, specifically the P-forcing language of M if we have used a class of names
restricted for use with P. We will not provide further detail at this time.

We saw in the previous section that for any sentence ϕ of the forcing language,
tG |M rGs |ù ϕu is Borel, assuming M is countable. Recall5.147 that every Borel set
has the Baire property, i.e., it is almost equal to an open set. So

For any sentence ϕ of the forcing language, there is an open set Oϕ Ď F such that
for almost every filter G, G P Oϕ ØM rGs |ù ϕ.

Oϕ is in a sense the truth value of ϕ.
Note that tG | M rGs |ù ϕu Y tG | M rGs |ù ␣␣␣ϕu “ F . Hence, almost every

filter G is in Oϕ Y O␣␣␣ϕ. Given p P P , since Op is not meager, it meets either Oϕ
or O␣␣␣ϕ. (In fact, Oϕ YO␣␣␣ϕ is dense; hence, since Op is nonempty, it meets either
Oϕ or O␣␣␣ϕ.)

Thus, for any formula ϕ of the forcing language, for any p P P , there is a q ď p
such that either for almost every G containing q, M rGs |ù ϕ, or for almost every
G containing q, M rGs |ù ␣␣␣ϕ.

This suggests the following definition.

If p P P and ϕ is a sentence of the forcing language, p forces ϕ
def
ðñ p,ϕ

def
ðñ for

almost every G containing p, M rGs |ù ϕ.

It may seem a bit strong to say that p forces ϕ in this case because there is still
a meager set of filters that may disobey the general rule. But why worry about
them? There are only countably many sentences in the forcing language if M is
countable; hence, we can throw out all the uncooperative filters and still have a
comeager set of them left. While we’re at it, let’s also throw out that meager set
of filters G such that G does not correspond to a real number. Call the remaining
filters generic.
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(8.7) Let gG be the real number determined by a generic filter G, and call such a
real generic. Note that gG uniquely determines G, and we use the inverse notation
as well: If x is a generic real, then Gx is that generic filter F such that gF “ x.

Then we have the following characterization of forcing.

For any rational open interval p, p,ϕ if and only if for every generic real x in the
interval p, M rGxs |ù ϕ.

Can it be that the people in M are aware of which elements p of P force which
sentences ϕ of the forcing language? This hardly seems possible, since we have
defined forcing in terms of all filters on P, and hardly any of them are in M . In
fact, none of the generic ones are in M . Moreover, we have assumed M to be
countable, which is very difficult for the people in M to imagine. Nevertheless,

The forcing relation is definable over M .

This remarkable fact is the very heart of the matter, and with it we will be able to
show that for every generic G, M rGs |ù ZF.

It is straightforward to show that if G is generic then G R M , so M rGs is a
nontrivial extension of M . Since it has the same ordinals as M , the constructible
universe as defined in M rGs is the same as in M , so M rGs |ù xrGs R Ly, whence,
M rGs |ù xV ‰ Ly.

By varying the partial order P, one can similarly obtain models of ZF satisfying
a wide variety of sentences, including ␣␣␣AC and ␣␣␣CH. This was Cohen’s epiphany.
In the following sections we supply the details and develop additional machinery
that facilitates its implementation.

8.2 Genericity and forcing

From this point forward, the development will be detailed and rigorous. There are
three interlocking ideas:

1. a partial order P in a transitive model M of set theory, whose elements are
regarded as conditions on an M -generic filter G on P;

2. a generic extension M rGs, including M and containing G along with all the
other sets named by terms of the appropriate forcing language LM,P; and

3. the forcing relation ,M,P, defined over M in a suitable sense, with the derived
property that if for every p P |P| there is an M -generic filter G with p P G,
then for any p P |P| and sentence ϕ P LM,P, p,M,P ϕ (i.e., p forces ϕ) iff for
every M -generic filter G on P, M rGs |ù ϕ.

Additionally, we have the notions of the regular algebra A “ R P of P, and the
A-valued universe MA, which is another—very intuitive and productive—way of
formulating these ideas.

These themes form an organic whole, and, like the best ideas in mathematics,
they are really a way of thinking. In this chapter we spend more time on their
development than is strictly necessary before proceeding to applications, with the
intention that all the above points of view be fully aired and integrated and available
at the touch of a wand. The proofs in this section are not difficult, but they are given
in detail—either in the main text or in the notes—in the hope that the repetition
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of basic themes will help you to reach more quickly that level of mastery at which
you can say: ‘Yes, the proofs in this section are not difficult’.

While this scheme of presentation has distinct pedagogic advantages and is quite
efficient in its way, it may exceed the reader’s tolerance for delay of gratification,
and it would not be out of order to glance ahead from time to time when the going
gets tedious—to Sections 8.6 and 8.9, for example—to see this machinery at work.

8.2.1 Partial orders and filters

(8.8) Definition [GB] Suppose P “ p|P|;ďq is a partial order,3.71 i.e., ď is transitive,
reflexive, and antisymmetric. Let ă be the corresponding strong order relation:
q ă p

def
ðñ pq ď p^ p ‰ qq.

1. Suppose X Ď |P|.

rXs
def
“ tq P |P| | Dp P X q ď pu

tXu
def
“ tq P |P| | Dp P X q ě pu.

2. p and q are compatible
def
ðñ p ∥ q def

ðñ they have a common extension, i.e.,
Dr pr ď p^ r ď qq. Otherwise, they are incompatible, pK q.

3. Suppose D Ď |P|.

1. D is dense
def
ðñ @p P |P| Dq P D q ď p.

2. D is dense below p
def
ðñ @q ď p Dr P D r ď q.

3. D is predense
def
ðñ rDs is dense.

4. D is predense below p
def
ðñ rDs is dense below p.

4. A filter on P is a nonempty set F Ď |P| such that

1. @p P F @q ě p q P F (i.e., F is “closed upward”, tF u “ F ).
2. @p, q P F Dr P F pr ď p^ r ď qq.3

5. Suppose S is a class. A filter F Ď |P| is S-generic
def
ðñ for every D P S, if D

is a dense subset of |P|, then F meets D, i.e., F XD ‰ 0.4

(8.9) Definition [GB] Suppose P “ p|P|;ďq is a partial order, p, q P |P|, and
X Ď |P|.

1. X is open
def
ðñ @p P X @q ď p q P X (i.e., X is “closed downward”, rXs “

X).

2. The complement of X def
“ XK

def
“

␣

p P |P|
ˇ

ˇ @q P X pK q
(

.

3. The completion of X def
“ X

def
“ XKK.

4. X is regular
def
ðñ X “ X.

3Note that for any p P |P|, ttpuu is a filter; these are the principal filters.
4The common situation is that pS; Pq is a model of ZF, and F is used to extend S as described

above.§ 8.1
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(8.10) Theorem [GB] Suppose P is a partial order and X Ď |P|.

1. XK is open, X XXK “ 0, and X Ď X.

2. If X is regular then X is open.

3. X “ tp P |P| | X is predense below pu.

4. XK “ XKKK “ XK. Hence, XK is regular.

5. rXsYXK is dense.

6. If a filter F is trXsYXKu-generic then F meets X iff F meets X.

7. In particular, if F is trXsYXKu-generic and X is predense below p and p P F ,
then F meets X.

Proof 1, 2 Straightforward.

3 Clearly

tp P |P| | X is predense below pu “ tp P |P| | @q ď p Dr P X q ∥ ru
“ tp P |P| | @q ď p q R XKu.

Suppose p P X “ XKK. Then for any q ď p, since q ∥ p, q R XK. Inversely, suppose
p R XKK. Then p is compatible with something in XK, so for some q ď p, q extends
(i.e., is ď) something in XK, so q P XK, since XK is open.8.9.2

4 Clearly, for any X Ď Y Ď |P|, XK Ě Y K. Clearly, X Ď XKK, so XK Ě

pXKKqK “ XKKK. But also, XK Ď pXKqKK “ XKKK.

5 Suppose p P |P|. Then either p P XK or p is compatible with something in X,
i.e., for some q ď p, q extends something in X, i.e., q P rXs.

6 In the nontrivial direction, suppose F is trXs Y XKu-generic and F meets X.
Since F is a filter, any two members of F are compatible, so F does not meet
X
K
“ XK. By the genericity hypothesis, F therefore meets rXs, and since filters

are closed upward, F meets X.

7 If X is predense below p then p P X,8.10.3 so if p P F then F meets X, so8.10.6

F meetsX. 8.10

(8.11) Theorem [GB] Suppose P is a partial order, |P| is wellorderable, and S is
countable. Then there exists an S-generic filter on P.

Proof Let ă wellorder |P|, and let xXn | n P ωy be an enumeration of S. Without
loss of generality, suppose each Xn is a dense subset of |P|. Let xpn | n P ωy be the
sequence in |P| such that

1. p0 is the ă-first member of X0; and

2. for each n ą 0, pn is the ă-first p P Xn such that p ď pn- .

Let F “ tp P |P| | Dn P ω pn ď pu. Clearly, F is an S-generic filter on P. 8.11
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8.2.2 Generic extensions

As sketched in the introduction,§ 8.1 the concept of forcing arises from that of generic
extension.

(8.12) Specifically, if M is a transitive model of ZF, P P M is a partial or-
der, and ϕ is a sentence in the forcing language LM,P, then—under appropriate
circumstances—we say that p forces ϕ iff for every M -generic filter G on P, if
p P G then M rGs |ù ϕ. We will refer to this as the extrinsic definition of forcing.

Note that we have specified that P is a member of M . Since M is transitive, if
P PM then P ĎM . One may also consider generic extensions of M using a partial
order P that is included in M but is not necessarily a member of M . We will do this
in Section 8.12 under the rubrics class-generic and class forcing. For the present,
we will restrict our attention to the case that P P M , which we may refer to using
the terms set-generic and set forcing by way of specification.

(8.13) For technical reasons, we will generally suppose that a partial order P used
for forcing has a greatest element, which we denote by ‘1’, or more specifically by
‘1P’. This is not significantly restrictive: if we wish to use a partial order that does
not naturally have a greatest element, we simply add an element that is greater than
all the rest. In many cases, 0 is naturally the maximum element of P, and we could
adopt the convention that this is always the case, without any adverse consequence.

We now define the forcing language LM,P, and the structure that we have infor-
mally indicated by ‘M rGs’, which interprets it. First we define the forcing terms,
which are the constant symbols of LM,P. We may, as we did in our introductory
remarks, regard any member of M as a forcing term, but it is conventional and
convenient to restrict our attention to a particular subclass MP Ď M . It will be
clear that these are sufficient to name every element of M rGs.

(8.14) Definition [GB] Suppose M is a transitive model of ZF and P “ p|P|;ďq PM
is a partial order. We define xMP

α | α P OrdXMy by recursion on ordinals α as
follows.

1. MP
0 “ 0;

2. MP
α “

Ť

βPαM
P
β for limit α;

3. MP
α`1 “M X PpMP

α ˆ |P|q, i.e., the powerset of MP
α ˆ |P| in the sense of M .

MP def
“

Ť

αPM MP
α.

(8.15) Definition [GB] Suppose M is a transitive model of ZF and P P M is a
partial order with maximum 1. We define a mapping x ÞÑ x̌ from M into MP by
P-recursion:

x̌
def
“ txy̌,1y | y P xu.5

We define
G

def
“ txp̌, py | p P |P|u.

5This definition differs from (8.4) in a way that will soon be seen to be inessential. The reason
for the present definition is that it is also applicable when P is not in M , but is only included
in M . The opportunity to define x̌ this way is one reason we require that P have a maximum
element.
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Note that G PMP.

(8.16) Definition [S] sV
def
“ the signature obtained from s by the addition of a

unary predicate symbol V. As for other commonly used predicate symbols, such as
‘P’ and ‘“’, we use a bold version of ‘V’, viz., ‘VVV’, to denote the corresponding
formula-building operation.

(8.17) Definition [GB] The forcing language LM,P, or just LP when M is under-
stood, is constructed from the signature sM,P, which is sV extended by the addition
of the members of MP as constants.

Both M and P must be specified to define the forcing language, as above, and the
forcing relation, to be defined presently. If M is unspecified, it is presumed that
M “ V , the class of all sets. Note that from the standpoint of M , V is M , so
setting M “ V is equivalent to “working in M”.

(8.18) Definition [GB] Suppose M is a transitive model of ZF and G is a filter on
P PM .

1. We define τG for τ PMP by recursion:8.2

τG
def
“ tτ 1G | Dp P G xτ 1, py P τu.

2. M rGs def
“ tτG | τ PMPu.8.3

3. MrGs
def
“ the sM,P-structure pM rGs; P,M, τGqτPMP , where VMrGs “ M and

τMrGs “ τG for each τ PMP.

We may use ‘M rGs’ informally to denote MrGs.

The following theorem explains the purpose of x̌ and G.

(8.19) Theorem [GB] Suppose M is a transitive model of ZF and G is a filter on
P PM .

1. @x PM x̌G “ x.

2. GG “ G.

Proof 1 By induction. Since 1 is an element of any filter, x̌G “ ty̌G | xy,1y P
x̌u “ ty̌G | y P xu “ ty | y P xu “ x.

2 GG “ tp̌G | xp̌, py P Gu “ tp | p P Gu “ G. 8.19

We may now implement the extrinsic definition of forcing.8.12 Note that we
state the definition in ZF, so we are necessarily considering only the case that M
is a set. Consequently, the existence of satisfaction relations for M and M rGs is
demonstrable.

(8.20) Definition [ZF] Suppose M is a transitive model of ZF and P P M is a

partial order. Suppose p P |P| and ϕ is a sentence of LM,P. Then p,˚ϕ
def
ðñ for

every M -generic filter G on P, p P GÑM rGs |ù ϕ.
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This definition is most useful per se when for every p P |P| there exists an M -generic
filter G on P with p P G. This condition is met if M is countable,8.11 and we will
have occasion to make use of this fact; but the extrinsic definition of forcing is
useful in another way, viz., as motivation for an intrinsic definition that is actually
more fundamental.

We arrive at the intrinsic definition by observing that when the extrinsic de-
finition is applicable, it implies that ,˚ has attributes that amount to a recursive
definition that yields, for each sV-formula ϕ, with n free variables, an sM,P-formula
ϕ, with n` 1 free variables, such that for p P |P| and τ0, . . . , τn- PMP, if we define

p,ϕpτ0, . . . , τn-q
def
ðñ pM ; P,Pq |ù ϕ,rp, τ0, . . . , τn-s, then ,˚ “ ,. The recursive

definition of , thus arrived at is meaningful quite independently of the existence
of generic filters, and it therefore serves as an intrinsic definition of forcing.

(8.21) Theorem [ZF] Suppose M is a transitive model of ZF and P P M is a
partial order. Suppose for every p P |P| there exists an M -generic filter G on P,6

and define ,˚ as above.8.20 Suppose ϕ is an sM,P-sentence.

1. Suppose p P |P|. Then

1. if ϕ “ τ PPP τ 1 then

p,˚ϕØ@q ď p Dr ď q Dxτ0, r
1y P τ 1 pr ď r1^ r,˚τ0“““ τq;

2. if ϕ “ τ “““ τ 1 then

p,˚ϕØ@q ď p@xτ0, r
1y P τ pq ď r1Ñ q,˚τ0 PPP τ

1q

^@q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q,˚τ0 PPP τq;

3. if ϕ “ VVVpτq then p,˚ϕØ@q ď p Dr ď q Dx PM pr,˚τ “““ x̌q;
4. if ϕ “ ␣␣␣ψ then p,˚ϕØ@q ď p q.˚ψ;
5. if ϕ “ ψ ^̂̂ψ1 then p,˚ϕØpp,˚ψ^ p,˚ψ1q;
6. if ϕ “ ψ___ψ1 then p,˚ϕØ@q ď p Dr ď q pr,˚ψ_ r,˚ψ1q;
7. if ϕ “ ψÑÑÑψ1 then p,˚ϕØ@q ď p pq,˚ψÑ q,˚ψ1q;
8. if ϕ “ ψØØØψ1 then p,˚ϕØ@q ď p pq,˚ψØ q,˚ψ1q;
9. if ϕ “ @@@v ψ then p,˚ϕØ@τ PMP p,˚ψ

`

v
τ

˘

; and

10. if ϕ “ DDDv ψ then p,˚ϕØ@q ď p Dr ď q Dτ PMP r,˚ψ
`

v
τ

˘

.

2. Suppose G is an M -generic filter on P. Then

M rGs |ù ϕØDp P G p,˚ϕ.

Proof Since filters are closed upward, the following fact is obvious, but is stated
here for future reference.

Suppose p,˚ϕ and q ď p. Then q,˚ϕ.

We prove (8.21.1) and (8.21.2) simultaneously by induction, attending first to sen-
tences ϕ of the form τ PPP τ 1 and τ “““ τ 1. We order these by associating to τ PPP τ 1 and
τ “““ τ 1 the pair xrk τ, rk τ 1y and ordering the ordinal pairs by ď, which is defined as
follows

6As discussed above, this supposition is just a way of getting to the intrinsic definition of
forcing; it is not a condition for its use.
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(8.22) Given a 2-sequence s of ordinals, let s̄ be the (unique) 2-sequence of the

form s ˝ π, where π : 2 bij
Ñ 2 is a permutation of t0, 1u, and s̄0 ě s̄1. s ď s1

def
ðñ s̄

precedes s̄1 lexicographically.

Note that ď is a prewellorder, sequences related by a permutation of their domain
(viz., 2) are at the same level of ď, and if s and s1 differ at one coordinate, then
whichever is lower at that coordinate is lower in ď.

The remaining sentences are ordered by logical complexity.
The induction hypothesis for a given sentence ϕ is therefore that (8.21.1) and

(8.21.2) hold for all ϕ1 ă ϕ. When working with this hypothesis, we make use of
the fact that (8.21.1) provides a definition over M of ,˚ by recursion. (In fact, this
recursion is precisely the intrinsic definition of forcing that is the endpoint of this
analysis.) Thus, if X is a bounded subset of M (i.e., X Ď Y PM) defined by refer-
ence to ,˚ applied to sentences ϕ1 that precede ϕ, then, since M |ù Comprehension,
X PM . The typical use of this is to show that if G is M -generic on P, p P G, and
X is a subset of |P| that is dense below p, then G meets X.

(8.23) We use this in particular to show that our induction hypothesis at stage ϕ
implies that for each ϕ1 ă ϕ, tp P |P| | p,˚ϕ1u is regular.

Proof Let S “ tp P |P| | p,˚ϕ1u, and suppose p P |P| is such that S is dense below
p. Then, since S P M , if G is M -generic and p P G then G meets S, i.e, for some
r P G, r,˚ϕ1; hence, M rGs |ù ϕ1. Thus, p,˚ϕ1, i.e., p P S. 8.23

Note that the Ð direction of (8.21.2) follows immediately from the definition of
,˚, so we only have to prove the Ñ direction. We now justify with the induction
step clause by clause.

(ϕ “ τ PPP τ 1) Let

S “ tp | @q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q.˚τ0“““ τqu.

Note that S is open.

SK “ tp | @q ď p Dr ď q Dxτ0, r
1y P τ 1 pr ď r1^ r,˚τ0“““ τqu.

Note that

1. S X SK “ 0;8.10.1 and

2. since S is open, S Y SK is dense.8.10.5

By induction hypothesis, S PM , so every M -generic filter meets S or SK, but not
both.

(8.24) Claim Suppose G is M -generic on P. Then M rGs |ù τ PPP τ 1 iff G meets SK.
Equivalently, M rGs |ù τ RRR τ 1 iff G meets S.

Proof Suppose p P G X SK. Then tr | Dxτ0, r1y P τ 1 pr ď r1^ r,˚τ0“““ τqu is in
M and is dense below p, so there exists r P G and xτ0, r1y P τ 1 such that r ď r1

and r,˚τ0“““ τ . It follows that r1 P G, so τG0 P τ 1G and, by induction hypothesis,
τG0 “ τG, so M rGs |ù τ PPP τ 1.

Conversely, suppose M rGs |ù τ PPP τ 1. Then there exists xτ0, r1y P τ 1 such that
r1 P G and τG0 “ τG. By induction hypothesis, there exists s P G such that
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s,˚τ0“““ τ . Now let p be an arbitrary member of G. Since G is a filter, there exists
q P G such that q ď p, r1, s. But then q ď p, q ď r1, and q,˚τ0“““ τ , so p R S. Thus,
G does not meet S, so G meets SK. 8.24

It follows immediately from the claim that if p P SK then p,˚τ PPP τ 1. Inversely,
if p R SK, then since SK Y S is dense and SK is open, there exists q ď p such that
q P S. Let G be M -generic such that q P G. Then M rGs |ù τ RRR τ 1 and p P G, so
p.˚τ PPP τ 1. This completes the proof of (8.21.1.1).

To prove (8.21.2) for this case, suppose M rGs |ù τ PPP τ 1. By the claim, G meets
SK, say at p. Then p,˚τ PPP τ 1. ϕ“τ PPP τ 1

(ϕ “ τ “““ τ 1) Let

S0 “ ts P |P| | Dxτ0, r1y P τ ps ď r1^@t ď s t.˚τ0 PPP τ
1qu

S1 “ ts P |P| | Dxτ0, r1y P τ 1 ps ď r1^@t ď s t.˚τ0 PPP τqu

S “ S0 Y S1.

Note that S0, S1, and S are open.
By definition,

SK0 “ tp P |P| | @q ď p@xτ0, r
1y P τ pq ď r1ÑDr ď q r,˚τ0 PPP τ

1qu.

Let
S10 “ tp P |P| | @q ď p@xτ0, r

1y P τ pq ď r1Ñ q,˚τ0 PPP τ
1qu.

We claim that SK0 “ S10. Clearly, S10 Ď SK0 . Conversely, suppose p P SK0 . Suppose
q ď p, xτ0, r1y P τ , and q ď r1. Then for all q1 ď q, since q1 ď p and q1 ď r1,
Dr ď q1 r,˚τ0 PPP τ

1. Thus, tr | r,˚τ0 PPP τ 1u is dense below q. Using the induction
hypothesis, we know that tr | r,˚τ0 PPP τ 1u is regular;8.23 hence, q,˚τ0 PPP τ 1, which
proves the claim.

Similarly,

SK1 “ tp P |P| | @q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q,˚τ0 PPP τqu.

Thus,

p P SKØ@q ď p@xτ0, r
1y P τ pq ď r1Ñ q,˚τ0 PPP τ

1q

^@q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q,˚τ0 PPP τq.

(8.25)

By induction hypothesis, S P M , so, as before, any M -generic filter G meets S or
SK, but not both.

(8.26) Claim Suppose G is M -generic on P. Then M rGs |ù τ ‰‰‰ τ 1 iff G meets S.
Equivalently, M rGs |ù τ “““ τ 1 iff G meets SK.

Proof Suppose G meets S, i.e., there exists s P S X G. Suppose s P S0; the
case that s P S1 is handled analogously. Let xτ0, r1y P τ be such that s ď r1 and
@t ď s t.˚τ0 PPP τ

1. Then r1 P G, so τG0 P τG. But τG0 R τ 1G; otherwise, by induction
hypothesis, for some s1 P G, s1,˚τ0 PPP τ 1, and letting t be any common extension of s
and s1, t ď s and t,˚τ0 PPP τ

1, contrary to assumption. Thus, τG0 P τG and τG0 R τ 1G,
so τG ‰ τ 1G.

Now suppose τG ‰ τ 1G. Then either there exists x P τG such that x R τ 1G or vice
versa. Assume the former; the latter case is treated analogously. Let xτ0, r1y P τ
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be such that r1 P G and τG0 “ x, so τG0 R τ 1G. We wish to show that G meets S,
so suppose toward a contradiction that G meets SK. Then G meets the larger set
SK0 , and since r1 P G, G meets SK0 below r1, i.e., there exists p ď r1 such that p P G
and @q ď p q R S0. Since p ď r1, @q ď p Dt ď q t,˚τ0 PPP τ

1. Since G is M -generic
and p P G, there exists t P G such that t,˚τ0 PPP τ 1,7 so τG0 P τ 1G. This contradiction
establishes that G meets S, as claimed. 8.26

As before, it follows immediately from the claim that if p P SK then p,˚τ “““ τ 1.
Inversely, if p R SK, then p is compatible with a member of S; since S is open,
there exists q ď p such that q P S. Let G be M -generic such that q P G. Then8.26

M rGs |ù τ ‰‰‰ τ 1 and p P G, so p.˚τ “““ τ 1. In view of (8.25), this completes the proof
of (8.21.1.2).

To prove (8.21.2) for this case, suppose M rGs |ù τ “““ τ 1. By the claim, G meets
SK, say at p. Then p,˚τ “““ τ 1. ϕ“τ “““ τ 1

(ϕ “ VVVpτq) Let S “ ts P |P| | Dx P M s,˚τ “““ x̌u. By induction hypothesis,
S PM , and S is open, so S Y SK is dense. It is straightforward to show, using the
induction hypothesis, that

1. for any M -generic filter G, G meets S iff τG PM ; and

2. for any p P |P|, p P SKK iff every M -generic filter G containing p meets S.

Since p P SKKØ@q ď p Dr ď q Dx P M pr,˚τ “““ x̌q, these considerations suffice to
prove (8.21) for ϕ “ VVVpτq. ϕ“VVVpτq

(ϕ “ ␣␣␣ψ) Let S “ ts P |P| | s,˚ψu. The induction hypothesis implies that

1. for any M -generic filter G, G meets SK iff M rGs*ψ iff M rGs |ù ␣␣␣ψ; and

2. for any p P |P|, p P SK iff every M -generic filter G containing p meets SK.

p P SKØ@q ď p q.˚ψ, so the theorem holds for ϕ “ ␣␣␣ψ. ϕ“␣␣␣ψ

(ϕ “ ψ ^̂̂ψ1) (8.21.1.5) is immediate. (8.21.2) follows from the fact that if p, p1 P G
are such that p,˚ψ and p1,˚ψ1, there there exists q P G extending both p and p1,
and q,˚ψ ^̂̂ψ1. ϕ“ψ ^̂̂ψ1

(ϕ “ ψ___ψ1) (8.21.1.6) follows from the fact that ψ___ψ1 is equivalent to␣␣␣p␣␣␣ψ ^̂̂ ␣␣␣ψ1q.
A direct argument from the definition of ,˚ is also easy.

To prove (8.21.2) suppose M rGs |ù ψ___ψ1. Then M rGs |ù ψ or M rGs |ù ψ1. In
the former instance, Dp P G p,˚ψ, whereas in the latter, Dp P G p,˚ψ1. In either
event p,˚ψ___ψ1 by virtue of (8.21.1.6). ϕ“ψ___ψ1

7Or we could use (8.23) to conclude that p ,̊ τ0 PPP τ 1.
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(ϕ “ ψÑÑÑψ1) The fact that ψÑÑÑψ1 is equivalent to ␣␣␣ψ___ψ1 yields directly that

p,˚ϕØ@q ď p Dr ď q pr,˚␣␣␣ψ_ r,˚ψ1q.

Suppose @q ď p Dr ď q pr,˚␣␣␣ψ_ r,˚ψ1q. Suppose q ď p and q,˚ψ. Then @q1 ď
q Dr ď q1 r,˚ψ1, so q,˚ψ1, which proves the forward direction.8.23

Conversely, suppose @q ď p pq,˚ψÑ q,˚ψ1q. We will show that @q ď p Dr ď
q pr,˚␣␣␣ψ_ r,˚ψ1q. To this end, suppose q ď p and @r ď q r.˚␣␣␣ψ. It suffices
to show that Dr ď q r,˚ψ1. In fact, we will show that q,˚ψ1. As we have shown
above, r,˚␣␣␣ψ iff @s ď r s.˚ψ, so @r ď q Ds ď r s,˚ψ. Hence8.23 q,˚ψ, so q,˚ψ1.

To prove (8.21.2) suppose M rGs |ù ψÑÑÑψ1. Then either M rGs |ù ␣␣␣ψ or
M rGs |ù ψ1. In the former instance there exists p P G such that p,˚␣␣␣ψ, so
@q ď p q.˚ψ; in the latter, there exists p P G such that p,˚ψ1, so @q ď p q,˚ψ1. In
either case for all q ď p, if q,˚ψ then q,˚ψ1, so p,˚ψÑÑÑψ1 by (8.21.1.6). ϕ“ψÑÑÑψ1

(ϕ “ ψØØØψ1) Straightforward. ϕ“ψØØØψ1

(ϕ “ @@@v ψ) (8.21.1.9) is immediate using the fact that every element of M rGs
is τG for some τ P MP. To prove (8.21.2) we proceed as follows.8 Suppose G is
M -generic and M rGs |ù @@@v ψ. Let S “

␣

p P |P|
ˇ

ˇ Dτ P MP @q ď p q.˚ψ
`

v
τ

˘(

. Then

S Y SK is in M , by induction hypothesis, and is dense, so there exists p P G such
that p P S or p P SK. Suppose p P S. Let τ P MP be such that @q ď p q.˚ψ

`

v
τ

˘

.

By induction hypothesis, there exists p1 P G such that p1,˚ψ
`

v
τ

˘

. Then p and p1 are
both in the filter G, but they can have no common extension.

Thus, p R S; hence, p P SK, so @τ P MP @q ď p Dr ď q r,˚ψ
`

v
τ

˘

. Hence,8.23

@τ PMP p,˚ψ
`

v
τ

˘

, so p,˚@@@v ψ. ϕ“@@@v ψ

(DDDv ψ) DDDv ψ is equivalent to ␣␣␣@@@v ␣␣␣ψ. 8.21

8.2.3 Forcing

It is important to note that (8.21.1) asserts that the relation ,˚, defined extrinsically
in terms of M -generic filters, satisfies the stated equivalences. Clearly, these have
the pattern of a recursive definition, and we used this in the proof to show that the
set txp, ϕy | ϕ P Φ^ p,˚ϕu, where Φ is a set of sM,P-sentences of bounded complexity,
is definable over M and is therefore in M (since |P| PM and M |ù Comprehension).
As explained above, the definition is useful even when generic filters do not exist,
and from this standpoint the primary purpose of Theorem 8.21 is to discover the
appropriate definition of forcing. In this section we will investigate the ramifications
of this definition.

Given a transitive model M of ZF and a partial order P P M , we let ,M,P be
the forcing relation as defined intrinsically, i.e., defined over M by recursion using

8@@@ is a sort of generalized ^̂̂, but the straightforward adaptation of the proof of (8.21.2) for
the latter operation does not work for the former since we cannot conclude, from the fact that for

each τ P MP there exists pτ P G such that pτ ,̊ψ
`v
τ

˘

, that there exists p P G that extends every

pτ ; plus, we don’t have the axiom of choice to pick pτ s.
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the clauses (8.21.1). Of course, to the extent that the extrinsically defined relation
,˚ exists for M,P, it is identical to ,M,P (as shown by induction using (8.21.1). For
notational simplicity, we omit one or both superscripts in ‘,M,P’ when the relevant
class M or partial order P is clear from the context.

(8.27) Definition [GB] Suppose M is a transitive model of ZF and P P M is a
partial order. We define , “ ,M,P for sentences of the form τ PPP τ 1 and τ “““ τ 1

for τ, τ 1 P MP by recursion as follows, with sentences ordered8.22 as in the proof of
(8.21).

1. p, τ PPP τ 1Ø@q ď p Dr ď q Dxτ0, r
1y P τ 1 pr ď r1^ r, τ0“““ τq.

p, τ “““ τ 1Ø@q ď p@xτ0, r
1y P τ pq ď r1Ñ q, τ0 PPP τ

1q

^@q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q, τ0 PPP τq.

2.

As for the remainder of the definition, when M is a proper class the same limitations
apply relating to the presence of unbounded quantification in (8.21.1.9, 10) as in
the definition of satisfaction, and we operate within these constraints in the same
way: by consideration of partial forcing relations.9

(8.28) Definition [GB] Suppose M is a transitive model of ZF, P PM is a partial
order, and Φ is a class of sM,P-formulas. Each ϕ P Φ is derived from an sV-formula
ϕ1 by substitution of forcing terms for (some or all of its) free variables. Let Φ1 be
the class of all such sV-formulas, together with all atomic sV-formulas: uPPPu1, u“““u1,
VVVu. ΦM,P def

“ the class of MP-sentences ϕ
`

u0 ¨ ¨ ¨ un-

τ0 ¨ ¨ ¨ τn-

˘

, where ϕ P Φ1,10 xu0, . . . , un-y

enumerates Freeϕ, and τ0, . . . , τn- PMP.

Recall that the definition of semantic valuation (and satisfaction) of an expression
ϵ in a structure S requires that all the free variables of ϵ be assigned values in
|S|. For an individual t P |S| that is the denotation of a term τ , i.e., τS “ t, the
substitution of τ for a variable v has the same effect as the assignment of t to v.
In the case that for every t P |S| there exists τ such that τS “ t, assignment may
be dispensed with altogether in favor of substitution. This applies in the case of
forcing, since MP is a complete class of terms denoting members of M rGs. Thus, we
have no need here for the notion of assignment—indeed, it would be inappropriate
to use this notion, as until G has been specified, it is not known what the individuals
of M rGs will be.

(8.29) Definition [GB] Suppose M is a transitive model of ZF, P PM is a partial

order, and Φ is a class of sM,P-formulas. F is a ΦM,P-forcing relation
def
ðñ F is

a binary relation such that pF σÑ p P |P| ^σ P ΦM,P, and for all p P |P| and
ϕ P ΦM,P,

1. if ϕ “ τ PPP τ 1 then pF ϕØ p,M,P τ PPP τ 1;11

2. if ϕ “ τ “““ τ 1 then pF ϕØ p,M,P τ “““ τ 1;

3. if ϕ “ VVVpτq then pF ϕØ@q ď p Dr ď q Dx PM rF pτ “““ x̌q.
9Recall that we avoided this issue in (8.21), since in the context of ZF M is necessarily a set.

10Recall that Φ1 is the class of subformulas of members of Φ1.
11Note that we use the forcing relation already defined8.27 for sentences τ PPP τ 1 and τ “““ τ 1.
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4. if ϕ “ ␣␣␣ψ then pF ϕØ@q ď p ␣ q F ψ;

5. if ϕ “ ψ ^̂̂ψ1 then pF ϕØppF ψ^ pF ψ1q.

6. if ϕ “ ψ___ψ1 then pF ϕØ@q ď p Dr ď q pr F ψ_ r F ψ1q.

7. if ϕ “ ψÑÑÑψ1 then pF ϕØ@q ď p pq F ψÑ q F ψ1q.

8. if ϕ “ ψØØØψ1 then pF ϕØ@q ď p pq F ψØ q F ψ1q.

9. if ϕ “ @@@v ψ then pF ϕØ@τ PMP pF ψ
`

v
τ

˘

.

10. if ϕ “ DDDv ψ then pF ϕØ@q ď p Dr ď q Dτ PMP r F ψ
`

v
τ

˘

.

F is a partial MP-forcing relation
def
ðñ it is a ΦM,P-forcing relation for some Φ.

(8.30) Theorem [GB] Suppose M is a transitive model of ZF, P P M is a partial
order, Φ0 and Φ1 are classes of sM,P-formulas, and F0 and F1 are respectively a
ΦM,P

0 - and a ΦM,P
1 -forcing relation. Then

@p P |P| @ϕ P
`

ΦM,P
0 X ΦM,P

1

˘

ppF0 ϕØ pF1 ϕq.

Roughly speaking, partial forcing relations agree on their “common domain”.

Proof By induction on rank8.22 of terms followed by logical complexity, as in the
proof of (8.21). 8.30

(8.31) Theorem [ZF] Suppose M is a transitive model of ZF and P PM is a partial
order. Then there is a unique pF sV

qM,P-forcing relation, where F sV

is the set of all
sV-formulas.

Proof Since we are working in ZF, M is a set, so there is no impediment to the
standard proof of the existence of relations defined by recursion. 8.31

When M is a proper class, we must make do with this analog of (1.65).

(8.32) Theorem [GB] Suppose M is a transitive model of ZF and P P M is a
partial order.

1. Suppose ϕ is an atomic sM,P-formula. Then the tϕuM,P-forcing relation exists.

2. Suppose ψ0, ψ1, ϕ are sM,P-formulas, v is a variable, and the tψ0u
M,P- and

tψ1u
M,P-forcing relations exist. Then the tϕuM,P-forcing relation exists if

1. ϕ is a subformula of ψ0;
2. ϕ “ ψ0pT q, where T is a substitution for (some or all) free variables of
ψ0;

3. ϕ “ ␣␣␣ψ0, ψ0___ψ1, ψ0 ^̂̂ψ1, ψ0ÑÑÑψ1, ψ0ØØØψ1, DDDv ψ0, or @@@v ϕ0.

Proof Straightforward. 8.32

As in the case of satisfaction relations, (8.32) may be used to show that GB
proves the existence of the tϕuM,P-forcing relation for any specific formula ϕ, and
we have the following analog of (1.67). Recall that for any expression ϵ in an HF
signature, ϵ̂ is the standard name of ϵ.

(8.33) Theorem [S] Suppose ϕ is an sV-formula. Then GB$ xfor any transitive
model M of ZF and partial order P PM , there exists a tpϕ̂quM,P-forcing relationy.
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Proof By induction on the grammatical complexity of ϕ. 8.33

(8.34) Definition [GB] Suppose M is a transitive model of ZF, P PM is a partial
order, and p P |P|.

1. Suppose ϕ is an sM,P-sentence. Then p,M,P ϕ
def
ðñ for every tϕuM,P-forcing

relation F , pF ϕ.

2. Suppose Φ is a class of sM,P-sentences. Then p,M,P Φ
def
ðñ

@ϕ P Φ p,M,P ϕ.12

We omit one or both of the superscripts on ‘,’ as circumstances permit.

(8.35) In addition to our use of ‘,’ to represent the predicate just defined, we
may also use it to denote an assumed partial forcing relation. This serves a useful
mnemonic purpose and conforms to conventional usage, which largely ignores the
potential nonexistence of full forcing relations for proper classes. For specificity we
may use ‘,F ’ with reference to a partial forcing relation F , analogously to our use
of ‘|ùS ’ to denote a partial satisfaction relation S.

(8.36) Theorem [GB] For any sM,P-sentence σ, tp P |P| | p,σu is regular.

Proof See Note 10.21.

(8.37) Definition [GB] Suppose σ is an sM,P-sentence and p P |P|. p decides σ
def
ðñ p |σ

def
ðñ p,σ_ p,␣␣␣σ.

(8.38) Theorem [GB] For any sM,P-sentence σ, tp P |P| | p |σu is dense.

Proof If there is no t␣␣␣σuM,P-forcing relation then tp P |P| | p,σu “ tp P |P| |
p,␣␣␣σu “ |P|, which is dense. So suppose , is a ␣␣␣σ-forcing relation.8.35 The
theorem is now immediate from the definition.8.29 8.38

8.2.4 Definability of forcing

Since ,M,P subsumes the satisfaction relation for M (via relativization of s-formulas
to V), the full forcing relation—like the full satisfaction relation for M—is clearly
not definable over M , and (letting M “ V ) ,P is not definable in the context of ZF.
Nevertheless, as we have discussed above, there is a local sense in which ,M,P is
definable in M and ,P is definable in the context of ZF, which we now characterize.

We will define, for each sV-formula ϕ with n free variables, an s-formula ϕ,

with n` 2 free variables, such that for any transitive model M of ZF, partial order
P PM , and p, x0, . . . , xn- PM ,

M |ù ϕ,rP, p, x0, . . . , xn-s

Ø p P |P| ^x0, . . . , xn- PMP^ p,M,P ϕpx0, . . . , xn-q.

We first observe that although (8.27) is formulated in GB, if we specialize to the
case that M “ V , we may regard it as a definition by recursion, formulated in

12Note that this definition does not refer to ΦM,P-forcing relations, but rather to tϕuM,P-forcing
relations for ϕ P Φ.
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ZF, of xp,P τ PPP τ 1yand xp,P τ “““ τ 1y. Like any predicate defined in ZF, it may be
expressed by an s-formula, and we let ϕ, be a fixed such formula, for ϕ of either of
these forms. In short:

pu0 PPPu1q
,pP, p, τ0, τ1q

def
“ xp,P τ0 PPP τ1y

pu0“““u1q
,pP, p, τ0, τ1q

def
“ xp,P τ0“““ τ1y.

(8.39)

Now we define

(8.40) pVVV uq,pP, p, τq def
“ x@q ďP p Dr ďP q Dx pr,P τ “““ x̌qy.

We complete the definition by recursion on the logical complexity of ϕ.

Definition [S] Suppose ϕ is an sV-formula.

1. If ϕ is atomic, ϕ, is defined by (8.39) or (8.40).
2. Suppose ϕ is a complex formula.

1. Suppose ϕ “ ␣␣␣ψ. Then

ϕ,pP, p, . . . q def
“ x@q ďP p ␣pψ,qpP, q, . . . qy.

Analogous definitions apply for ϕ “ ψ___ψ1, ψ ^̂̂ψ1, ψÑÑÑψ1, or ψØØØψ1.
2. Suppose ϕp. . . q “ @@@v ψp. . . , v, . . . q. Then

ϕ,pP, p, . . . q def
“ x@τ P V P pψ,qpP, p, . . . , τ, . . . qy,

where x P V Py is of course shorthand for an s-expression. An analogous
definition applies for ϕ “ DDDv ψ.

(8.41) Theorem [S] Suppose ϕ is an sV-formula with n free variables. Then

GB$ xSuppose M is a transitive model of ZF, P PM is a partial order, and p, x0,
. . . , xn- PM . Then

M |ù pϕ̂,qrP, p, x0, . . . , xn-s

Ø p P |P| ^x0, . . . , xn- PMP^ p,M,P pϕ̂qpx0, . . . , xn-q.y,

where ϕ̂ and ϕ̂, are the standard names of ϕ and ϕ,.

Proof Straightforward. 8.41

Note that the definition of the mapping ϕ ÞÑ ϕ, is formulated in S, as is the
above theorem. They constitute, if you will, a metadefinition and a metatheo-
rem. This “meta” aspect of the forcing predicate is implicit in the traditional
development of forcing in the context of ZF, although it is not always explicitly
recognized.13

In GB we can assert the definability of the forcing relation directly, predicated
on the hypothesis of the existence of the appropriate partial forcing relation, of
course.

13Alternatively, we may extend ZF by the addition of a new predicate symbol x,y, with axioms
that correspond to the usual recursive definition of the forcing relation. Note that these axioms
allow us to generate a definition of xp,P ϕp. . . qy for any given ϕ, but this definition has quantifier
depth that increases with that of ϕ, and the axioms do not yield a definition of ,P in its entirety.
Note also that, since x,y is not introduced by definition, we must explicitly extend the axiom
schemas of ZF to formulas that incorporate the new symbol. This theory is a conservative extension
of ZF, so it is largely immaterial which approach we use to the description of forcing over V in
ZF.
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(8.42) Theorem [GB] Suppose M is a transitive model of ZF, P P M is a partial
order, ϕ is an sV-formula with n free variables, and the tϕuM,P-forcing relation
exists. Then the tϕ,u-satisfaction relation for M exists, and for any p P |P| and
x0, . . . , xn- PMP,

M |ù ϕ,rP, p, x0, . . . , xn-sØ p,M,P ϕpx0, . . . , xn-q.

Proof We derive the conclusion for all subformulas of ϕ (including ϕ itself) by
induction on the logical complexity of the subformulas. 8.42

Whenever we speak of forcing in a purely set-theoretical context—for example,
within a transitive model pM, Pq—forcing relationships are to be understood in this
way, i.e., xrps,rPs pϕqp. . . qy is understood as ϕ,pP, p, . . . q. Thus, if M is a transitive
model of ZF, then

M |ù xrps,rPs pϕqprx0s, . . . , rxn-sqyØM |ù ϕ,rP, p, x0, . . . , xn-s

Ø p,M,P ϕpx0, . . . , xn-q

(as long as the tϕuM,P-forcing relation exists).

(8.43) A typical application of (8.42) is to use ComprehensionM to show that a
subset of M that is defined in terms of ,M,P is a member of M . Similarly, we use
CollectionM to show that a function from a member of M into M that is defined in
terms of ,M,P is bounded in M .

8.2.5 Generic extensions again

In Section 8.2.2 we defined8.20 the relation ,˚ in terms of generic extensions of a
transitive model M of ZF using a partial order P P M , under the restriction that
M be a set, and the assumption that for every p P |P| there is an M -generic filter
G on P with p P G. We obtained an intrinsic characterization8.21.1 of ,˚ in the form
of a recursive definition. In Section 8.2.3 we applied this definition to an arbitrary
transitive model M of ZF, possibly a proper class, without any assumption as to
the existence of M -generic filters.

We now close the loop by showing that to the extent to which M -generic filters
exist, the corresponding extensions of M behave as expected.

Definition [GB] Suppose M is a transitive model of ZF, P PM is a partial order,
and G is an M -generic filter on P. M rGs def

“ tτG | τ P MPu. MrGs
def
“ the sM,P-

structure with domain M rGs in which

1. each constant term τ PMP is interpreted as τG, and

2. V is interpreted as M .

PPP and “““ have their usual meaning. As is customary with transitive classes consid-
ered as structures, we may refer to MrGs as ‘M rGs’.

The following theorem is an initial segment of (8.45), as it were, but it can be
stated without reference to satisfaction relations and is sufficiently distinctive that
it may stand on its own.

(8.44) Theorem [GB] Suppose M is a transitive model of ZF, P P M is a partial
order, and G is an M -generic filter on P. For all τ, τ 1 PMP,
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1. τG P τ 1GØDp P G p, τ PPP τ 1; and

2. τG “ τ 1GØDp P G p, τ “““ τ 1.

Proof See Note 10.22.

(8.45) Theorem [GB] Suppose M is a transitive model of ZF, P P M is a partial
order, G is an M -generic filter on P, and σ is an sM,P-sentence. Suppose there is
a tσuM,P-forcing relation. Then there is a tσuMrGs-satisfaction relation, and

M rGs |ù σØDp P Gp,σ.

Proof See Note 10.23.

8.2.6 “Arguing with generic extensions”

Much of the theory of forcing consists of theorems of the form

(8.46) xif M is a transitive model of ZF, P P M is a partial order, p P |P|,
τ0, . . . , τn- PMP, and pψqpP, p, τ0, . . . , τn-qM , then pϕ,qpP, p, τ0, . . . , τn-qM y.

Formulated in GB, this sort of theorem applies to arbitrary classes M . Formulated
in ZF, it applies strictly only to sets M , but it is easily reformulated to apply to
any definable class M (such as M “ V or L), or to an arbitrary class referred to
by means of a unary predicate symbol. In this case, ZF is extended by enlarging
the axiom schemas to include all formulas in the expanded signature.

Not surprisingly, proofs of theorems of this sort may be simplified—often considerably—
by the additional assumption that M is countable, because in this case we may use
the theorem that for any p P |P| there is an M -generic filter G on P such that p P G,
so that ,M,P is equal to the extrinsically defined relation ,˚M,P, i.e.,

(8.47) ZF$ xif M is a countable transitive model of ZF, P P M is a partial order,
p P |P|, and τ0, . . . , τn- P MP, then pϕ,qpP, p, τ0, . . . , τn-qM iff for every M -generic
filter G on P, p P GÑM rGs |ù pϕqrτG0 , . . . , τ

G
n-sy,

in conjunction with the fact that

ZF$ xif M is a transitive model of ZF, P P M is a partial order, τ0, . . . , τn- P

MP, and G is an M -generic filter G on P, then M rGs |ù pϕqrτG0 , . . . , τ
G
n-s iff Dp P

G pϕ,qpP, p, τ0, . . . , τn-qM y.

Wouldn’t it be nice if we could use the existence of a ZF-proof of

xif M is a countable transitive model of ZF, P P M is a partial order, p P |P|,
τ0, . . . , τn- PMP, and pψqpP, p, τ0, . . . , τn-qM , then pϕ,qpP, p, τ0, . . . , τn-qM y,

in the course of which we could use the lemma (8.47), to prove (8.46), which makes
no assumption regarding the countability of M , and indeed applies in the “absolute”
case that M “ V ?

In other words, wouldn’t it be nice if we could derive (8.46) from the hypothesis

(8.48) ZF$ xif M is a countable transitive model of ZF, P PM is a partial order,
p P |P|, τ0, . . . , τn- PMP, and pψqpP, p, τ0, . . . , τn-qM , then pϕ,qpP, p, τ0, . . . , τn-qM y?
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Yes, it would be; in fact, it is, if we slightly strengthen (8.48) as follows. Let sM be
the expansion of s by the addition of a constant symbol M. Consider the sM-theory

(8.49) Θ “ ZFY txpMq is a countable transitive setyu Y tθM | θ P ZFu

and the hypothesis

(8.50) Θ$ xif P P M is a partial order, p P |P|, τ0, . . . , τn- P MP, and pψqpP, p, τ0, . . . , τn-qM,
then pϕ,qpP, p, τ0, . . . , τn-qMy.

Note that we have replaced the single sentence

(8.51) xM |ù ZFy

by the schema

(8.52) tθM | θ P ZFu

consisting of every axiom of ZF relativized to M . Since (8.51) implies (8.52), but
not vice versa, (8.50) is, at least ostensibly, a stronger hypothesis than (8.48).

In practice (8.52) may indeed replace (8.51) in arguments concerning generic
extensions of a transitive set M, but of course the substitution entails a good bit
of circumlocution if it is observed rigorously, just the sort of thing we’re trying to
avoid in this book, and we will subsequently see how to obviate this inconvenience,
but for now we will proceed on the basis of (8.50), rather than (8.48).

Thus, suppose (8.50). Let σ be the conjunction of the ZF-axioms θ for which
θM occurs as a premise in the proof that is there asserted to exist. Then

(8.53) ZF$xif M is a countable transitive set such that pσqM , P PM is a partial or-
der, p P |P|, τ0, . . . , τn- PMP, and pψqpP, p, τ0, . . . , τn-qM , then pϕ,qpP, p, τ0, . . . , τn-qM y,

We may therefore proceed as follows.14 Suppose π is a ZF-proof whose existence
(8.53) asserts. We have the following GB-proof:

xSuppose M is a transitive model of ZF, P PM is a partial order, p P |P|, τ0, . . . , τn- P

MP, and pψqpP, p, τ0, . . . , τn-qM . Let Φ be a finite set of s-formulas that contains pσq,
pϕ,q and pψq, and any other odds and ends that may be needed, such as x¨ is a partial
ordery. Let S be a countable Φ-elementary substructure of pM ; Pq that contains P, p,
τ0, . . . , τn- . Let ι : S Ñ M 1 be the collapse of S to a transitive set M 1. Let P1 “ ιP,
p1 “ ιp, etc. Since M |ù ZF, pσqM , so pσqM

1
. Also, pψqpP1, p1, τ 1

0, . . . , τ
1
n-qM

1
.y We

now insert the proof π and continue. xThus, since M 1 is countable, pσqM
1
, P1 P M 1

is a partial order, p1 P |P1|, τ 1
0, . . . , τ

1
n- PM 1P1

, and pψqpP1, p1, τ 1
0, . . . , τ

1
n-qM

1
, it follows

that pϕ,qpP1, p1, τ 1
0, . . . , τ

1
n-qM

1
. By elementarity, pϕ,qpP, p, τ0, . . . , τn-qM .y

Thus, we have the following metatheorem.

(8.54) Theorem [S] Suppose ϕ and ψ are s-formulas with n and n`2 free variables,
respectively, and suppose (8.50). Then GB$ (8.46). With an appropriate treatment
of proper classes as discussed above, ZF$ (8.46).

This metatheorem may be used to justify the common practice of using generic
filters in proofs of forcing theorems even in circumstances in which they do not
provably exist. We will return to this topic in Section 8.5.2 under the rubric “argu-
ing in a generic extension” (as opposed to “arguing with generic extensions”) where
we prove a version of (8.54) in which we stipulate that M is an inner model of ZF
and V is a P-generic extension of M.

14We’ll formulate the argument in GB so as to facilitate reference to proper classes M , but it is
easily adapted to ZF for definable classes M , or for arbitrary classes in the extension of ZF to an
expanded signature as discussed above.
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8.3 Boolean-valued structures

We postpone further analysis of the forcing relation and generic extensions for the
moment in order to present a description of these structures in boolean algebraic
terms. Deriving from the description just given and entirely equivalent to it, the
boolean algebraic description offers a natural and valuable perspective that deepens
our understanding of the basic principles while providing useful analytical tools.
Some of the basic definitions and properties of boolean algebras are presented in
Section 3.10.2.

Suppose ρ is a relational signature, and A is a complete boolean algebra. In
an A-valued ρ-structure S, an n-ary predicate index P is interpreted as a function
PS : n|S| Ñ |A|. One may think of PSxa0, . . . , an-y as the truth value of P at
xa0, . . . , an-y, where truth values are elements of |A|. Note that if A is the 2-element
boolean algebra, this reduces to the usual notion of a structure, except that we have
represented each relation R Ď n|S| by its characteristic function R1 : n|S| Ñ 2 given
by

R1xu0, . . . , un-y “

#

1 if xu0, . . . , un-y P R

0 if xu0, . . . , un-y R R.

rrϕrAsss
def
“ the A-value of a ρ-formula ϕ at an S-assignment A of its free variables,

where the A-values of complex formulas are determined by interpreting logical op-
erations by the corresponding algebraic operations, just as Boole had in mind when
he formulated the notion of the algebras that bear his name. Thus,

rr␣␣␣ϕrAsss “ ␣ rrϕrAsss

rrpϕ___ψqrAsss “ rrϕrAsss_ rrψrAsss

rrpϕ ^̂̂ψqrAsss “ rrϕrAsss^ rrψrAsss

rrpϕÑÑÑψqrAsss “ rrϕrAsssÑ rrψrAsss

rrpϕØØØψqrAsss “ rrϕrAsssØ rrψrAsss

rrDDDu ϕrAsss “
ł

xP|S|

““

ϕ
“

A
@

u
x

D‰‰‰

rr@@@u ϕrAsss “
ľ

xP|S|

““

ϕ
“

A
@

u
x

D‰‰‰

.

Note that a product
ś

xPX Sx of ρ-structures Sx is an A-valued structure, where
A is the subset algebra of the index set X.

(8.55) Definition [GB] Suppose S is an A-valued ρ-structure. S is full
def
ðñ for

for every ρ-formula ϕ and S-assignment A for all the free variables of ϕ except u,
there exists x P |S| such that

““

ϕ
“

A
@

u
x

D‰‰‰

“ rrDDDu ϕrAsss.

In general, Choice is required to prove the fullness of a naturally defined boolean-
valued structure. We have already seen this in the proof of  Loś’ theorem (2.164).
Note that if U is an ultrafilter on A then we may define the quotient structure
S{U as in the special case of product structures. If ρ is without identity, |S{U | “
|S|. If ρ is with identity the individuals of S{U are equivalence classes x̂, where
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x̂
def
“ ty P |S| | rr“““rx, ysss P U .15 We state the appropriate generalization of (2.164)

as a ZF-theorem to avoid complications of proper class structures. Note that once
we have assumed S is full, we do not need Choice.

(8.56) Theorem [ZF] Suppose S is a full A-valued ρ-structure and U is an ultra-
filter on A. Then for any ρ-formula ϕ and S-assignment for ϕ,

S{U |ù ϕ
“

x̂0, . . . , x̂n-

‰

Ørrϕrx0, . . . , xn-sss P U.

Proof The proof is by induction on logical complexity, with the quantification
step(s) requiring fullness. 8.56

We now show how the idea of forcing leads naturally to the consideration of
boolean-valued structures.

Throughout this section we restrict our attention to partial orders and boolean al-
gebras that are sets, as opposed to proper classes.

(8.57) Definition [GB] Suppose P “ p|P|;ďq is a partial order.

1. For p, q P |P|, p ď q
def
ðñ @r ď p r ∥ q.8.8.2

2. For p, q P |P|, p « q
def
ðñ pp ď q^ q ď pq.

3. P is separative
def
ðñ @p, q P |P| pp « qÑ p “ qq.

The following equivalences are easily derived:8.9.3

p ď qØ p P tquØtpu Ď tqu

p « qØtpu “ tqu.
(8.58)

The separativity property gets its name from the equivalence

p ę qØDr ď p r K q,

i.e., r “separates” p from q.
Clearly, ď, which is simply Ď for the sets tpu,8.58 is transitive and reflexive.

Hence « (which is “ for the sets tpu) is an equivalence relation. It is clear from
(8.57.3) that P{ « is a separative partial order, and from (8.58) that it is isomorphic
to the structure P defined by:

(8.59) Definition [GB] P “ p|P|;ďq, where |P| “ ttpu | p P |P|u, and ď“Ď.

(8.60) Theorem [GB] P is—up to isomorphism—the unique separative partial
order Q such that there exists a homomorphism h : P sur

Ñ Q such that @p, q P
|P|

`

p ∥ qØhppq ∥hpqq
˘

.

Proof Straightforward. 8.60

15We denote the equivalence class of x by ‘x̂’ instead of the usual ‘rxs’ to avoid confusion with the
notation for assignment; and we place the identity predicate symbol before, rather than between,
its arguments, to permit the indication of assignment in the usual way, as ‘“““rx, ys’ instead of
‘rxs“““rys’.
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Definition [GB] The regular algebra of P def
“ R P def

“ the structure with domain
tX Ď |P| | X is regularu and the following relation and operations, where X,Y P

|R P|.16

1. X ď Y
def
ðñ X Ď Y ;

2. 1 def
“ |P| and 0 def

“ 0;

3. ␣X def
“ XK;

4. X ^Y def
“ X X Y ;

5. X _Y def
“ ␣p␣X ^␣Y q “ X Y Y .

More generally, for X Ď |R P|,

6.
Ź

X def
“

Ş

X ;

7.
Ž

X def
“ ␣p

Ź

XPX ␣Xq “
Ť

X .

We will also find it useful to have the following operations, which can be defined in
any boolean algebra.

8. XÑY
def
“ ␣X _Y ;

9. XØY
def
“ pXÑY q^pY ÑXq.

It is a routine exercise to show that these operations form a boolean algebra. Note
that

Ź

X and
Ž

X exist for all X Ď |R P|, so

Theorem [GB] R P is a complete boolean algebra.

Definition [C] Suppose A is a boolean algebra. A`
def
“ the partial order with domain

|A|zt0u and the order relation of A.

The partial order P is clearly a substructure of the partial order R P`; moreover,
|P| is dense in R P`, and we have the following theorem.

(8.61) Theorem [GB] R P is—up to isomorphism—the unique extension of P to a
complete boolean algebra in which |P| is dense.

Proof Straightforward. 8.61

Definition [GB] Suppose A is a boolean algebra. Then A` is clearly a separative
partial order. We define RA to be R pA`q, and—identifying P P A with rP s P

RA—we call this the regular completion of A.

RA is—up to isomorphism—the unique complete boolean algebra in which A is a
dense subalgebra.8.61

It follows from (8.61) that if A and A1 are complete boolean algebras with dense
subsets P and P 1 that are isomorphic as partial orders, then A – A1. As a simple
application of this we have

16We use bold symbols here for the one and zero elements of R P to distinguish them from the
sets t0u and 0, but we will not maintain this distinction scrupulously.
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(8.62) Theorem [ZF`DC] There is, up to isomorphic equivalence equivalence, just
one atomless complete boolean algebra with a countable dense subset.

Proof Suppose A is an atomless complete boolean algebra and txn | n P ωu is
dense in A. We will construct a dense embedding p ÞÑ ap of P in A, where P is the
partial order such that |P| “ ăω2, and q ďP pØ p Ď q. Thus, A – R P.

We begin by letting a0 “ 1. We now proceed in ω stages. At stage n P ω,
(nonzero) ap will have been chosen for all p P n2; and we will choose nonzero ap ⌢x0y

and ap ⌢x1y in such a way that

ap ⌢x0y^ ap ⌢x1y “ 0

and ap ⌢x0y_ ap ⌢x1y “ ap.

Given that we have proceeded in this fashion up to this point,
Ž

pPn2 ap “ 1, so
there exists q P n2 such that aq ^xn ‰ 0. Since A is atomless, we may choose
nonzero aq ⌢x0y ă aq ^xn and let aq ⌢x1y “ aq ^␣ aq ⌢x0y. For p P n2 other than q,
we choose nonzero ap ⌢x0y and ap ⌢x1y arbitrarily.

Since txn | n P ωu is dense in A, tap | p P ăω2u is dense in A. 8.62

Note that the partial order of nonempty open intervals with rational endpoints,
used in the introduction to this chapter, is countable and atomless, so its regular
algebra is a paradigm of atomless boolean algebras with a countable dense set.

SupposeM is a transitive model of ZF and P PM is a partial order. Let A be R P
in the sense of M , i.e., it consists of the regular subsets of |P| that are in M . Since
P is dense in A, filters on P correspond to filters on A, and generic filters correspond
to generic filters, via the map F ÞÑ ta P |A| | Dp P F tpu Ď au “ ta P |A| | aXF R 0u
taking a filter on P to a filter on A, and the inverse map F ÞÑ tp P |P| | tpu P F u.

Suppose ϕ is a sentence of the forcing language LM,P. The set tp P |P| | p,M,P ϕu
is a regular subset of |P|,8.36 and by virtue of the definability of forcing, it is in A. It is
natural to regard this as the truth value of ϕ in a sense. Indeed, the forcing terms
themselves may be regarded as the individuals of a R P-valued structure, which
interprets a R P-valued language and logic. If we recall that boolean algebra was
originally conceived by George Boole as a representation of the logic of propositions,
the inevitability of this point of view becomes obvious.

The following identities, which are useful in their own right, reinforce the analogy
of forcing with boolean logic when compared with Definition 8.29.

(8.63) Theorem [GB] Suppose P is a partial order; p, q, r P |P|; X,Y P |R P|; and
X Ď |R P|.

1. p P ␣XØ@q ď p q R X.

2. p P X ^Y Øpp P X ^ p P Y q.

3. p P X _Y Ø@q ď p Dr ď q pr P X _ r P Y q.

4. p P XÑY Ø@q ď p pq P XÑ q P Y q.

5. p P XØY Ø p P pXÑY q^ p P pY ÑXq.

6. p P
Ź

X Ø@X P X p P X.

7. p P
Ž

X Ø@q ď p Dr ď q DX P X p P X.

Proof 1 Because X is open.
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2, 3 By definition.

4 Using the fact that X and Y are regular,

p P XÑY Ø p P p␣X _Y q

Ø@q ď p Dr ď q pr P ␣X _ r P Y q

Ø@q ď p pDr ď q r P ␣X _Dr ď q r P Y q

Ø@q ď p pq R X _Dr ď q r P Y q

Ø@q ď p pq P XÑDr ď q r P Y q

Ø@q ď p pq P XÑ@s ď q Dr ď s r P Y q

Ø@q ď p pq P XÑ q P Y q.

5 By definition.

6, 7 Generalizing (2, 3). 8.63

Definition [GB] Suppose M is a transitive model of ZF and A is a boolean algebra
in M . We define MA

α by recursion on ordinals α as follows.

1. MA
0 “ 0.

2. MA
α “

Ť

βPαM
A
β for limit β PM .

3. MA
α`1 is the set of functions f PM such that f : MA

α Ñ |A|.

MA “
Ť

αPM MA
α .

We define a mapping x ÞÑ x̌ from M into MA by P-recursion:

x̌
def
“ tpy̌,1q | y P xu.

We define
G

def
“ tpǎ, aq | a P |A|u.

MA is the corresponding A-valued structure. The universe of MA is MA, and the
language appropriate to MA is LM,A “ LsM,A

, which is the language Ls of pure
set theory extended by the addition of the members of MA as constant terms,8.17

together with a unary predicate V8.16 intended to be interpreted as membership in
M .

We define rrσss “ rrσssA for atomic sentences x“““ y and xPPP y, for x, y P MA
α , by

recursion on α.

(8.64) Definition [GB] Suppose M is a transitive model of ZF and A P M is an
M -complete boolean algebra, which is to say M is a complete boolean algebra in the
sense of M , i.e., for any X Ď |A|, if X P M then

Ž

X and
Ź

X exist in A. We
define rrx“““ yss and rrxPPP yss for x, y PMA by recursion with sentences ordered as in
the proof of (8.21).

1. rrxPPP yss “
ł

zPdom y

`

ypzq^ rrz“““xss
˘

.
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2. rrx“““ yss “
ľ

zPdomx

`

xpzqÑ rrz PPP yss
˘

^
ľ

zPdom y

`

ypzqÑ rrz PPPxss
˘

.

(8.65) Theorem [GB] Suppose x, y PMA.

1. rrx“““ yss “ rry“““xss.

2. rrx“““xss “ 1.

3. y P domxÑxpyq ď rry PPPxss.

Proof 1 This is immediate from Definition 8.64.2 by symmetry.

2 By induction on the rank of x. rrx“““xss “
Ź

zPdom x

`

xpzqÑ rrz PPPxss
˘

,8.64.2 so we
must show that for each z P domx, xpzq ď rrz PPPxss. Since8.64.1

rrz PPPxss “
ł

wPdomx

`

xpwq^ rrw“““ zss
˘

,

rrz PPPxss ě pxpzq^ rrz“““ zssq “ xpzq, given that rrz“““ zss “ 1 by induction hypothesis.

3 Suppose y P domx. Then8.64.1

xpyq “ xpyq^ rry“““ yss ď rry PPPxss,

since rry“““ yss “ 1.8.65.2 8.65

In the following theorem, all variables range over MA.

(8.66) Theorem [GB]

1. rrx“““ yss^ rry“““ zss ď rrx“““ zss.

2. rrxPPP yss^ rrx“““ zss ď rrz PPP yss.

3. rry PPPxss^ rrx“““ zss ď rry PPP zss.

Proof See Note 10.24.
Note that (8.65.1–2) and (8.66.1–3) say that the axioms of identity are A-

validities. For example, (8.66.2) is equivalent to

rrxPPP y ^̂̂ x“““ zÑÑÑ z PPP yss “ 1 .

Next we define rrϕss for all sM,A-sentences ϕ by recursion on the logical complex-
ity of ϕ. It is hoped that by now the reader is well enough acquainted with the
ontologic limitations of the theory of classes to recognize that if M is a proper class,
rr ¨ ss cannot be defined by recursion at one stroke, as this would entail positing the
existence of a class defined by quantification over proper classes, viz., partial valu-
ation functions. Thus, we proceed as we did for satisfaction and forcing relations.

Definition [GB] Suppose M is a transitive model of ZF, A PM is an M -complete
boolean algebra, and Φ is a class of sM,A-formulas. We define ΦM,A analogously to
ΦM,P.

(8.67) Definition [GB] Suppose M is a transitive model of ZF, A P M is an M -
complete boolean algebra, and Φ is a class of s-formulas. F is a ΦM,A-valuation
function

def
ðñ F : ΦM,A Ñ |A|, and for all ϕ, ψ P LM,A,
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1. F pxPPP yq “ rrxPPP yss;17

2. F px“““ yq “ rrx“““ yss;

3. if ϕ “ VVVpxq then F pϕq “
Ž

x1PM rrx“““ x̌
1ss;

4. if ϕ “ ␣␣␣ψ then F pϕq “ ␣F pψq;

5. if ϕ “ ψ ^̂̂ψ1 then F pϕq “ F pψq^F pψ1q;

6. if ϕ “ ψ___ψ1 then F pϕq “ F pψq_F pψ1q.

7. if ϕ “ ψÑÑÑψ1 then F pϕq “ F pψqÑF pψ1q.

8. if ϕ “ ψØØØψ1 then F pϕq “ F pψqØF pψ1q.

9. if ϕ “ @@@v ψ then F pϕq “
Ź

xPMA F
`

ψpxq
˘

.

10. if ϕ “ DDDv ψ then F pϕq “
Ž

xPMA F
`

ψpxq
˘

.

F is a partial MA-valuation function
def
ðñ it is a ΦM,A-valuation function for some

Φ.

We now recapitulate Theorems 8.30, 8.31, and 8.32.

Theorem [GB] Partial MA-valuation functions agree on their common domain.

Theorem [ZF] The full MA-valuation function exists. (M is necessarily a set in
the context of ZF.)

(8.68) Theorem [GB]

1. If ϕ is an atomic sM,A-formula then the tϕuM,A-valuation function exists.

2. If ψ0, ψ1, ϕ are sM,A-formulas, v is a variable, and the tψ0u
M,A- and tψ1u

M,A-
valuation functions exist, then the tϕuM,A-valuation function exists if

1. ϕ is a subformula of ψ0;
2. ϕ “ ψ0pT q, where T is a substitution for (some or all) free variables of
ψ0;

3. ϕ “ ␣␣␣ψ0, ψ0___ψ1, ψ0 ^̂̂ψ1, ψ0ÑÑÑψ1, ψ0ØØØψ1, DDDv ψ0, or @@@v ϕ0.

As in the case of satisfaction relations and forcing relations, (8.68) may be used to
show that GB proves the existence of the tϕuM,A-valuation function for any specific
formula ϕ:

(8.69) Theorem [S] Suppose ϕ is an sV-formula. Then GB$ xfor any transitive
model M of ZF and M -complete boolean algebra A P M , there exists a tpϕ̂quM,A-
valuation functiony.

Proof By induction on the grammatical complexity of ϕ. 8.69

Recall that if P is a partial order in a transitive model M of ZF, and σ is
an sM,P-sentence, then p,M,P σ iff for every tσuM,P-forcing relation F , pF σ.8.34.1

Thus, if there is no tσuM,P-forcing relation, then p,M,P σ for all p P |P|. Clearly,
the existence of MR P-valuation functions parallels that of MP-forcing relations, so
it is appropriate to define the boolean valuation operation to have the value 1 (i.e.,
|P|, in the case of R P) if a partial valuation function does not exist.18 The following
is therefore our formal definition of the boolean valuation operation in GB.

17Note that we use the valuation operation already defined for sentences xPPPx1 and x“““x1.
18As an operation symbol xrr ¨ ss¨,¨y must have a defined value for any arguments.
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(8.70) Definition [GB] Suppose M is a transitive model of ZF and A P M is an
M -complete boolean algebra.

1. Suppose ϕ is an sM,A-sentence. If there exists a tϕuM,A-valuation function F

then rrϕssM,A def
“ F ϕ; otherwise, rrϕssM,A def

“ 1.

2. Suppose Φ is a class of sM,A-sentences. Then rrΦssM,A def
“

Ź

ϕPΦ rrϕss
M,A.19

We omit one or both of the superscripts on ‘rr ss’ as circumstances permit.

The following definitions and theorems place (8.18), (8.19), (8.44), and (8.45)
in the framework of boolean valuation.

(8.71) Definition [GB] Suppose M is a transitive model of ZF, A P M is an M -
complete boolean algebra, and G is an M -generic filter on A. We define xG for
x PMA by P-recursion (equivalently, for x PMA

α by recursion on α):

xG
def
“ tx1G | x1 P domx^xpx1q P Gu.

(8.72) Theorem [GB] Suppose M , A, and G are as in (8.71). For all x, x1 P
MA,

1. xG P x1GØrrxPPPx1ss P G;

2. xG “ x1GØrrx“““x1ss P G;

3. @x PM x̌G “ x; and

4. GG “ G.

Proof Straightforward as a translation of (8.44) into the language of boolean val-
uation. 8.72

Definition [GB] Suppose M , A, and G are as in (8.71). M rGs def
“ txG | x PMAu.

MrGs
def
“ the sM,A-structure with domain M rGs in which

1. each constant term x PMA is interpreted as xG,

2. V is interpreted as M .

PPP and “““ have their usual meaning.

(8.73) Theorem [GB] Suppose M , A, and G are as in (8.71), and σ P LM,A.
Suppose there is a tσuM,A-valuation function. Then there is a tσuMrGs-satisfaction
relation, and

MrGs |ù σØrrσss P G.

Proof Straightforward as a translation of (8.45) into the language of boolean val-
uation. 8.73

(8.74) Theorem [GB] If ϕ is a formula with the single free variable u, then

1. rrx“““ yss^ rrϕpxqss ď rrϕpyqss.20

19Note that this definition does not refer to ΦM,A-valuation functions, but rather to tϕuM,A-
valuation functions for ϕ P Φ.

20Note that (8.66) is a special case.
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2. rrDDDuPPPxϕss “
Ž

yPdomx

`

xpyq^ rrϕpyqss
˘

.

3. rr@@@uPPPxϕss “
Ź

yPdom x

`

xpyqÑ rrϕpyqss
˘

.

Proof See Note 10.25.
We have the following analog of (8.37).

Definition [GB] Suppose σ is an sM,A-sentence and a P |A|. a decides σ
def
ðñ a |σ

def
ðñ a ď rrσss or a ď ␣rrσss p“ rr␣␣␣σssq.

The analog of (8.38) states that ta P |A| | a ď rrσss_ a ď ␣rrσssu is dense in A`.
This is obviously equivalent to the statement for any b P |A`|, ta P |A| | a ď b_ a ď
␣ bu is dense, i.e., that tb,␣ bu is predense. This is a special case of the following
theorem.

(8.75) Theorem [ZF] Suppose A is a complete boolean algebra and S Ď |A|. Then
S is predense below

Ž

S.

Proof Straightforward. 8.75

Note in particular that if M is a transitive model of ZF and A P M is an M -
complete boolean algebra then any M -generic filter G on A is an ultrafilter, i.e.,
@a P |A| pa P G_␣ a P Gq.

8.3.1 Definability of boolean valuation

Our discussion of the definability of forcing§ 8.2.4 applies mutatis mutandis to boolean
valuation. In particular, we may define for each sV-formula ϕ with n free variables,
an s-formula ϕrr ss with n` 2 free variables such that ‘ϕrr sspA, a, . . . q’ says that a “
rrϕp. . . qss

A:

(8.76) Definition [S] Suppose ϕ is an sV-formula.

1. If ϕ “ u0 PPPu1 then ϕrr sspA, a, x0, x1q
def
“ xa “ rrx0 PPPx1ss

Ay.

2. If ϕ “ u0“““u1 then ϕrr sspA, a, x0, x1q
def
“ xa “ rrx0“““x1ss

Ay.

3. If ϕ “ VVVu then ϕrr sspA, a, xq
def
“ xa “

Ž
␣

rrx“““ y̌ss
A
ˇ

ˇ y P V
(

y.

4. If ϕ “ ␣␣␣ψ then ϕrr sspA, a, . . . q
def
“ xpψrr ssqpA,␣ a, . . . qy. Analogous definitions

apply for ϕ “ ψ___ψ1, ψ ^̂̂ψ1, ψÑÑÑψ1, or ψØØØψ1.

5. If ϕp. . . q “ @@@v ψp. . . , v, . . . q then ϕrr sspA, a, . . . q
def
“ xa “

Ź
␣

b P |A|
ˇ

ˇ Dy P

V A pψrr ssqpA, b, . . . , y, . . . q
(

y. An analogous definition applies for ϕ “ DDDv ψ.

We have the following analog of (8.41).

Theorem [S] Suppose ϕ is an sV-formula with n free variables. Then

GB$ xSuppose M is a transitive model of ZF, A P M is an M -complete boolean
algebra, and a, x0, . . . , xn- PM . Then

M |ù p ˆϕrr ssqrA, a, x0, . . . , xn-s

Øx0, . . . , xn- PMA^ a “ rrpϕ̂qpx0, . . . , xn-qss
M,A

.y,

where ϕ̂ and ˆϕrr ss are the standard names of ϕ and ϕrr ss.



8.3. BOOLEAN-VALUED STRUCTURES 501

8.3.2 Forcing vs boolean valuation

By regarding the elements of MA as individuals of the A-valued structure MA

we have to a degree untethered them from their significance as terms denoting
individuals in a generic extension of M . We have recognized this point of view by
using nonspecific symbols such as ‘x’, rather than more “term-specific” symbols like
‘τ ’ that we have typically used for the elements of MP, where P is a partial order.
We now establish the exact correspondence of MP with MR P, and in recognition
of this correspondence we will relax the latter notational convention.

Suppose M is a transitive model of ZF and P P M is a partial order. We will
define a subclass M̄P of MP as follows.

(8.77) Definition [GB] For x P MP, the regularization of x def
“ x̄ is defined by

recursion so that
x̄ “ txȳ, py | y P domx^ p P xÑtyuu.

The regularization of MP def
“ M̄P def

“ tx̄ | x P MPu. The members of M̄P are the
regular terms.

Note that dom x̄ “ tȳ | y P domxu. It is easily shown by induction that ¯̄x “ x̄ for
any x PMP.

Note that for x P M̄P, y P domx, and p P |P|, xÑtyu is a regular subset of |P|,
i.e., an element of R P; hence the following definition.

(8.78) Definition [GB] For x PMP, we define x̂ PMR P by recursion so that

x̂ “ tpŷ, aq | ȳ P dom x̄^ a “ x̄Ñtȳuu.

x ÞÑ x̂ is clearly a bijection of M̄P with MA.

(8.79) Theorem [GB] Suppose M is a transitive model of ZF and P P M is a
partial order. Let A “ R P. Suppose p P |P| and x, y PMP.

1. p,M,P xPPP y iff p,M,P x̄PPP ȳ iff p P rrx̂PPP ŷss
M,A.

2. p,M,P x“““ y iff p,M,P x̄“““ ȳ iff p P rrx̂“““ ŷss
M,A.

Proof We proceed by induction on rank to prove (1) and (2) simultaneously.

1 For the first equivalence:

p, x̄PPP ȳØ@q ď p Dr ď q Dz P dom ȳ Dr1 P ȳÑtzu pr ď r1^ r, z“““ x̄q

Ø@q ď p Dr ď q Dz̄ P dom ȳ Dr1 P yÑtzu pr ď r1^ r, z̄“““ x̄q

Ø@q ď p Dr ď q Dz P dom y pr P yÑtzu^ r, z“““xq

Ø@q ď p Dz P dom y Dr ď q pr P ryÑtzus^ r, z“““xq

Ø@q ď p Dz P dom y Dr1 P yÑtzu Dr ď q pr ď r1^ r, z“““xq

Ø@q ď p Dxz, r1y P y Dr ď q pr ď r1^ r, z“““xq

Ø p,xPPP y.

The second equivalence is also straightforward.
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2 For the first equivalence we use the fact that

@q ď p@z P domx@r1 P xÑtzu pq ď r1Ñ q, z PPP yq

Ø@q ď p@z P domx pq P xÑtzuÑ q, z PPP yq

Ø@q ď p@xz, r1y P x pq ď r1Ñ q, z PPP yq,

where the last equivalence follows from the fact that tq, z PPP yu is regular, and
the corresponding fact with x and y exchanged. Again, the second equivalence is
straightforward. 8.79

Analogously, in terms of M -generic filters G on P, we will show by induction
that for any x P MP, x̄G “ xG. To this end, suppose ȳG “ yG for all y P domx.
Then

x̄G “ tȳG | ȳ P dom x̄^Dp P G xȳ, py P x̄u

“ tyG | ȳ P dom x̄^Dp P G xȳ, py P x̄u

“ tyG | y P domx^Dp P G p P xÑtyuu

“ tyG | y P domx^Dp P G p P xÑtyuu

“ tyG | y P domx^Dp P G xy, py P xu

“ xG,

where we have used the fact that an M -generic filter G meets the regular completion
X of a subset X of |P| in M iff G meets X.

If we let Ĝ be the filter on R P corresponding to G under the map x ÞÑ x̂, then
Ĝ is also M -generic, and it is easy to show that for any x PMP, xG “ x̂Ĝ.

(8.80) We extend the correspondence x ÞÑ x̂ to formulas of the languages LM,P

and LM,R P. Given the above equivalences, we will not always trouble to distinguish
corresponding entities in the two points of view.

(8.81) Theorem [GB] Suppose M is a transitive model of ZF, P P M is a partial
order and A “ R P. For any sentence σ P LM,P,

rrσ̂ss
M,A

“
␣

p P |P|
ˇ

ˇ p,M,P σ
(

.

Proof Straightforward comparison of the definitions of ,M,P and rr ssA. Note that
the case that there is no tσuM,P-forcing relation (equivalently, no tσ̂uM,R P-valuation
function) is properly handled by Definition 8.70 (cf., the discussion preceding the
definition). 8.81

Going the other way, suppose M is a transitive model of ZF, A P M is an M -
complete boolean algebra, and P “ A`, the partial order of nonzero elements of A.
Then p,M,P σ iff p P rrσss

M,A.

The technique described in Section 8.2.6 for deriving forcing results by “argu-
ing with generic extensions” applies equally to boolean valued structures. In this
connection Theorems 8.73 and 8.75 are useful—the latter because it means that for
any generic filter G,

““
Ž

S
‰‰

P GØDa P S rrass P G.
As an illustration of the method, consider Theorem 8.74. Suppose M is a

countable transitive model of ZF and A PM is an M -complete boolean algebra. For
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(8.74.1) we must show that any M -generic filter that contains rrx“““ yss^ rrϕpxqss con-
tains rrϕpyqss. To this end, suppose G is M -generic and contains rrx“““ yss^ rrϕpxqss.
Then M rGs |ù x“““ y ^̂̂ ϕpxq.21 By ordinary logic, M rGs |ù ϕpyq. Hence, rrϕpyqss P
G.

Now consider (8.74.2). Suppose G is M -generic. Then

rrDDDuPPPx ϕss P GØM rGs |ù DDDuPPPxϕ

ØDc P xGM rGs |ù ϕrcs

ØDy P domx
`

xpyq P G^M rGs |ù ϕryGs
˘

ØDy P domx
`

xpyq P G^rrϕpyqss P G
˘

Ø
ł

yPdom x

pxpyq^ rrϕpyqssq P G.

8.4 Logical considerations

Throughout this section we continue to restrict our attention to partial orders and
boolean algebras that are sets, as opposed to proper classes.

The correspondences (8.45), (8.73), and (8.81), form the sides of a triangle whose
vertices are the notions of forcing, boolean valuation, and satisfaction in a generic
extension. Depending on the situation, any of these three points of view may be
superior to the others, and it is standard practice to use them interchangeably.

In this connection two quite different existence questions must be addressed. The
first is that of forcing relations, boolean valuations, and satisfaction relations for
proper class structures. We have already thoroughly discussed this issue and shown
that in practice it may essentially be ignored (as it typically is in the literature).

The second question is that of the existence of generic filters, which we will
address in detail beginning in Section 8.5.2. For the present, suffice it to say at
that for many purposes this issue may be finessed by regarding a statement about
satisfaction of a sentence σ in M rGs as a façon de parler, the meaning of which is
the corresponding statement about tp P |P| | p,σu or rrσss.

The final element to be incorporated into this complex is logic.

Definition [GB] Suppose M is a transitive model of ZF.

1. Suppose A P M is an M -complete boolean algebra. An sM,A-sentence σ is
MA-valid

def
ðñ rrσss

M,A
“ 1.

2. Equivalently, if P PM is a partial order, an sM,P-sentence is MP-valid
def
ðñ ,M,P σ

def
ðñ @p P |P| p,M,P σ (iff 1,M,P σ, where 1 is as usual the maximum element

of P).

3. sM,A- (sM,P-)formulas ϕ and ψ are MA- (MP-)equivalent
def
ðñ @̄̄@̄@pσØØØψq is an

MA- (MP-)validity.22

21Remember that x and y are terms of LM,A. We could also write that MrGs |ù xrxGs “

ryGs^ pϕqrxGsy.
22Recall that @̄̄@̄@ is the operation of universal closure, i.e., universal quantification of all the free

variables in a formula.
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We may omit to mention M , P, or A if we may do so without confusion, and if
M “ V we regularly omit to mention it.

The considerations of Section 2.8 relating satisfactoriness and logic apply mu-
tatis mutandis to forcing and logic. The following theorem corresponds to Theo-
rems 2.175 and 2.176. Recall that these have the same conclusion and differ only
in the premise Infinity, which is present in the statement of the former but not the
latter. The following theorem resembles (2.175) in that it is stated in GB, but its
proof resembles that of (2.176) in that it exploits the subformula property of the
deductive system LK´.

(8.82) Theorem [GB] Suppose M is a transitive model of ZF and A P M is an
M -complete boolean algebra.

1. Suppose an sM,A-sentence σ is a logical validity, i.e., $σ, then rrσss “ 1.

2. Hence, if sM,A-formulas σ and θ are logically equivalent, i.e., σ and θ have the
same free variables and $σØØØ θ, then for any substitution T of forcing terms
for the free variables, rrσpT qss “ rrθpT qss.

Proof See Note 10.26.
For the sake of this discussion we make the following definition.

Definition [GB] Suppose M is a transitive model of ZF and P P M is a partial
order.

1. MP is weakly forceful
def
ðñ for every finite set Φ of sM,P-formulas there is a

ΦM,P-forcing relation.

2. MP is strongly forceful or simply forceful
def
ðñ there is a full M,P-forcing

relation.

We define forceful and weakly forceful analogously for an M -complete boolean al-
gebra A PM .

(8.83) Theorem [GB] Suppose M is a set, M is a transitive model of ZF, and
P P M is a partial order (A P M is an M -complete boolean algebra). Then MP

(MA) is forceful, i.e., the full forcing relation (boolean valuation) exists.

Proof This is essentially (8.31), stated in the terminology of forcefulness, and the
proof is entirely straightforward. 8.83

The following theorem corresponds to (2.174).

(8.84) Theorem [GB] Suppose MA is weakly forceful, Θ is an sM,A-theory, and for
every θ P Θ, rrθssM,A

“ 1.

1. Θ is consistent.

2. If θ is an sM,A-sentence and Θ$ θ then rrθssM,A
“ 1.

Proof Straightforward. 8.84

We have the following “meta” version of (8.84).

(8.85) Theorem [S] Suppose σ is an sV-sentence and $σ.
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1. Let σ̂ be the standard name of σ. GB$ xSuppose M is transitive, A PM is an
M -complete boolean algebra, and M |ù ZF. Then rrpσ̂qssM,A

“ 1. In particular
(letting M “ V ), if A is a complete boolean algebra then rrpσ̂qssA “ 1.y.

2. ZFsV

$ xSuppose A is a complete boolean algebra. Then pσrr ssqpA,1q.y.

Proof Suppose π is a proof of σ in any of the deductive systems we have considered.

1 A GB-proof of the indicated sentence begins with a proof of the existence of
a ΦM,A-partial valuation rr ¨ ss for the set Φ of formulas occurring in π.8.69 This is
followed by the sequential explicit demonstration that the sequents in π are rr ¨ ss-
validities, as in the proof of (8.82.1). There is no need to suppose that π has the
subformula property.

2 Here, rather than showing that a sufficient partial valuation exists—a notion
that cannot be formulated in ZF—we put together a ZFsV

-proof by showing that
the corresponding valuation definitions ϕrr ss behave in such a way as to permit the
transformation of π into ZFsV

-proof of xSuppose A is a complete boolean algebra.
Then pσrr ssqpA,1q.y. 8.85

8.5 The theory of a generic extension

The following technical results are important to an understanding of forcing and
are frequently useful. Our first use of them will be in proving that forcing preserves
the axioms of ZF.

(8.86) Theorem [GB] Suppose M is a transitive model of ZF, A P M is an M -
complete boolean algebra, S PM and S ĎMA. Then Dx PMA @y P S rry PPPxss “ 1.

Proof Let x “ tpy,1q | y P Su. 8.86

(8.87) Theorem [GB] Suppose M is a transitive model of ZF, A is an M -complete
boolean algebra, S P M is a set of pairwise incompatible elements of |A|, and xxs |
s P Sy PM is a function from S to MA. Then there exists x PMA such that

@s P S s ď rrx“““xsss.

Remark It may be helpful to think of this theorem and its proof in terms of
generic extensions. We are looking for a term x PMA such that for any M -generic
filter G on A, if s P G then xG “ xGs . Since the members of S are pairwise
incompatible, only one of them can be in any given filter G, so this project seems
feasible. We will define x in such a way as to guarantee that for each s P S, if s P G
then yG P xGØ yG P xGs for any y in domxs and domx.8.88 This is enough to show
that for any s P S, if s P G then xG “ xGs , as desired.8.89

Proof Let α P OrdXM be such that @s P S xs P M
A
α . For s P S, let x1s P M

A
α`1

be such that domx1s “MA
α and for all y PMA

α

x1spyq “

#

xspyq if y P domxs

0 otherwise.
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Let x PMA
α`1 with domain MA

α be given by

xpyq “
ł

sPS

`

s^x1spyq
˘

.

For any y PMA
α and s P S,

s^xpyq “ s^x1spyq,

and therefore

s^rry PPPxss “ s^
ł

zPdom x

`

xpzq^ rrz“““ yss
˘

“
ł

zPMA
α

`

s^xpzq^ rrz“““ yss
˘

“
ł

zPMA
α

`

s^x1spzq^ rrz“““ yss
˘

“
ł

zPdomxs

`

s^xspzq^ rrz“““ yss
˘

“ s^
ł

zPdom xs

`

xspzq^ rrz“““ yss
˘

“ s^rry PPPxsss.

(8.88)

Also, for any y P domx,
s^␣xpyq “ s^␣x1spyq.

Hence,

s^rrx“““xsss

“ s^
ľ

yPdomx

`

xpyqÑ rry PPPxsss
˘

^
ľ

yPdom xs

`

xspyqÑ rry PPPxss
˘

“
ľ

yPdomx

`

s^p␣xpyq_ rry PPPxsssq
˘

^
ľ

yPMA
α

`

s^p␣x1spyq_ rry PPPxssq
˘

“
ľ

yPdomx

`

s^p␣xpyq_ rry PPPxssq
˘

^
ľ

yPdom x

`

s^p␣xpyq_ rry PPPxssq
˘

“ s,

(8.89)

since @y P domx xpyq ď rry PPPxss. Hence, s ď rrx“““xsss, as claimed. 8.87

We have frequent occasion to consider expressions in forcing languages that are
conveniently described in informal mathematical language. We may create a name
for such an expression in the usual way with corner quotation marks. To denote
the boolean value of such a quoted expression we sometimes omit the quotation
marks—in effect incorporating them into the double brackets of the boolean value
notation. Substitution of terms for (often implicit) variables in such expressions is
indicated as usual by light round brackets, and assignment of values to variables is
indicated as usual by light square brackets. Thus, for example,

rrpxq is a subset of pyqss

is understood as
rrxpxq is a subset of pyqyss,

i.e.,
rr@@@u puPPPxÑÑÑuPPP yqss,
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or some equivalent expression. Similarly for arguments of the forcing or satisfaction
relations, as in

p, xpτq is a subset of pτ 1qy,

or
M |ù xpτq is a subset of rysy,

where in the latter example τ is a term of the language appropriate to M and y is
an element of |M|, and we have substituted (a constant term) τ for one variable
and assigned y to another variable (neither variable being shown explicitly). Note
that since forcing languages have terms for all the elements of the structures in
question, assignment is seldom called for. We will not be scrupulous in the use of
these conventions, and if an expression does not make sense as written, the reader
should not hesitate to supply the proper indicators, or simply ignore the issue (the
usual attitude). For example,

rrx Ď yss

should be understood as
rrxpxq Ď pyqyss.

It is useful to have the notions of A-pairs and A-ordered pairs.

(8.90) Definition [GB] Given x, y PMA,

1. tx, yuA def
“ tpx,1q, py,1qu. txuA def

“ tx, xuA “ tpx,1qu.

2. px, yqA def
“ ttxuA, tx, yuAuA.

It is straightforward to show that the following are A-valid for any x, y P
MA:

1. xptx, yuAq “ tpxq, pyquy, i.e., e.g., @@@u
`

uPPPtx, yuAØØØpu“““x___u“““ yq
˘

.

2. xppx, yqAq “ ppxq, pyqqy.

8.5.1 Generic extension preserves ZF

(8.91) Theorem [GB] Suppose M is transitive, A P M is an M -complete boolean
algebra, and M |ù ZF. Then every axiom of ZFsV

is an MA-validity, where ZFsV

is
ZF with the axiom schemas extended to all sV-formulas.

Remark As a convenience, we will work with the theory ZFsM,A

in the signature
sM,A, which is trivially included in the deductive closure of ZFsV

in LsM,A

and so is
essentially equivalent.

Proof Remember that for any sM,A-sentence σ, if the tσuM,A-valuation function
does not exist then rrσss “ 1,23 so we will assume throughout this proof that the
valuation function exists for the axiom in question. There is no need to invoke the
fact that there is a GB-proof of the existence of the tσu-valuation function for any
specific sentence σ, and this would not work in any event, as there are infinitely
many axioms in ZF, and we cannot insert infinitely many proofs into a single proof.

23We recognize that this is true by fiat, but the choice was not arbitrary.
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Extension The axiom is equivalent to

@@@u@@@v
`

p@@@w PPPu w PPP v ^̂̂ @@@w PPP v w PPPuqÑÑÑu“““ v
˘

,

so by (8.82) it is sufficient to show that this is a validity. Since

rr@@@u@@@v pp@@@w PPPu w PPP v ^̂̂ @@@w PPP v w PPPuqÑÑÑu“““ vqss

“
ľ

x,yPMA

`

prr@@@w PPPx w PPP yss^ rr@@@w PPP y w PPPxssqÑ rrx“““ yss
˘

,

we must show that for any x, y PMA,
`

prr@@@w PPPx w PPP yss^ rr@@@w PPP y w PPPxssqÑ rrx“““ yss
˘

“ 1,

i.e.,
rr@@@w PPPx w PPP yss^ rr@@@w PPP y w PPPxss ď rrx“““ yss.

This follows from (8.74.3) and Definition 8.64.2.
The proof in terms of generic extensions simply amounts to observing that M rGs

is a transitive class and therefore satisfies Extension.

Comprehension We must show that for any sM,A-formula ϕ and distinct variables
u, v, w, v0, . . . , vn- , with all free variables of ϕ in the set tv, v0, . . . , vn-u,

rr@@@v0 ¨ ¨ ¨ @@@vn- @@@uDDDw @@@v pv PPPwØØØpv PPPu ^̂̂ ϕqqss “ 1.

We must therefore show that for any y0, . . . , yn- , x P MA, letting ϕ1 “ ϕ
`

v0 ¨ ¨ ¨ vn-

y0 ¨ ¨ ¨ yn-

˘

and ϕ1pyq “ ϕ1
`

v
y

˘

,

ł

zPMA

ľ

yPMA

rry PPP zØØØpy PPPx ^̂̂ ϕ1pyqqss “ 1.

We will actually show that for some z PMA,
ľ

yPMA

rry PPP zØØØpy PPPx ^̂̂ ϕ1pyqqss “ 1,

i.e., for all y PMA,
rry PPP zss “ rry PPPx ^̂̂ ϕ1pyqss.

Let
z “ xxpyq^ rrϕ1pyqss | y P domxy.

Then for any y PMA, using (8.64.1) and (8.74.2) and, as usual, the fact that logical
equivalents have equal boolean value,

rry PPP zss “
ł

y1Pdom z

pzpy1q^ rry1 “ yssq

“
ł

y1Pdom x

pxpy1q^ rrϕ1py1qss^ rry1 “ yssq

“ rrDDDv1 P xpϕ1pv1q ^̂̂ v1“““ yqss

“ rry PPPx^ϕ1pyqss.
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Existence Since the join of the empty set in a boolean algebra is 0, it follows from
the definition8.64.1 that for any y PMA,

rry PPP 0ss “ 0.24

Hence, rr@@@y y RRR 0ss “ 1, and rrDDDx@@@y y RRRxss “ 1.25

Pair Given x, y PMA, let z “ tpx,1q, py,1qu. Then rrxPPP z ^̂̂ y PPP zss “ 1.

Collection We must show that for any x P MA, distinct variables a, v, w, and
sM,A-formula ϕ with free variables in ta, vu,26

rr@@@v PPPxDDDw @@@a pϕÑÑÑ aPPPwqÑÑÑDDDw @@@v PPPx@@@a pϕÑÑÑ aPPPwqss “ 1,

i.e.,

(8.92) rr@@@v PPPxDDDw @@@a pϕÑÑÑ aPPPwqss ď rrDDDw @@@v PPPx@@@a pϕÑÑÑ aPPPwqss.

For any y P domx, let αy be the least ordinal α such that

ł

zPMA
α

““

@@@a
`

ϕ
`

v
y

˘

ÑÑÑ aPPP z
˘‰‰

“
ł

zPMA

““

@@@a
`

ϕ
`

v
y

˘

ÑÑÑ aPPP z
˘‰‰

.

Using the fact that M |ù ZF, in particular M |ù Collection, and A is in M , not just
included in M , one can show that αy P M . Let α “ supyPdom x αy. The same sort
of argument shows that α PM . For any y P domx,

ł

zPMA
α

““

@@@a
`

ϕ
`

v
y

˘

ÑÑÑ aPPP z
˘‰‰

“
ł

zPMA

““

@@@a
`

ϕ
`

v
y

˘

ÑÑÑ aPPP z
˘‰‰

.

Let z0 “ tpa,1q | a P MA
α u. Then for any z P MA

α , rrz Ď z0ss “ 1, so @a P
MA prraPPP zss ď rraPPP z0ssq. Thus,

rr@@@v PPPxDDDw @@@a pϕÑÑÑ aPPPwqss “
ľ

yPdom x

´

xpyqÑ
ł

zPMA
α

““

@@@a
`

ϕ
`

v
y

˘

ÑÑÑ aPPP z
˘‰‰

¯

ď
ľ

yPdom x

`

xpyqÑ
““

@@@a
`

ϕ
`

v
y

˘

ÑÑÑ aPPP z0
˘‰‰˘

ď
ł

zPMA

ľ

yPdom x

`

xpyqÑ
““

@@@a
`

ϕ
`

v
y

˘

ÑÑÑ aPPP z
˘‰‰˘

“ rrDDDw @@@v PPPx@@@a pϕÑÑÑ aPPPwqss,

as claimed.8.92

24Note that 0 is the empty set, regarded as an element of MA, while 0 is the zero element of A
(which happens to be 0 if A “ R P for some P).

25Any x PMA such that imx Ď t0u also represents the empty set with boolen value 1.
26We have skipped the superfluous step of instantiating parameters v0, . . . , vn- as we did in the

proof of Comprehension. In other words, the role of ϕ1 in that proof is played by ϕ itself in this
proof.
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Infinity DDDu
`

DDDv pv PPPu ^̂̂ @@@w w RRR vq ^̂̂ @@@v PPPuDDDw PPPu v PPPw
˘

is a convenient form of In-
finity for this purpose, and it suffices to show that

rrDDDu pDDDv pv PPPu ^̂̂ @@@w w RRR vq ^̂̂ @@@v PPPuDDDw PPPu v PPPwqss “ 1.

To this end, let x0 “ 0, and for each n P ω, let xn`1 “ tpxn,1qu. Let S “ txn | n P
ωu. Let x “ tpxn,1q | n P ωu. Since InfinityM , x PMA. Then

rrDDDu pDDDv pv PPPu ^̂̂ @@@w w RRR vq ^̂̂ @@@v PPPuDDDw PPPu v PPPwqss

ě rrDDDv pv PPPx ^̂̂ @@@w w RRR vq ^̂̂ @@@v PPPxDDDw PPPx v PPPwss

ě rrp0PPPx ^̂̂ @@@w w RRR 0q ^̂̂ @@@v PPPxDDDw PPPx v PPPwss
“ rr@@@v PPPxDDDw PPPx v PPPwss

“
ľ

yPdom x

´

xpyqÑ
ł

zPdom x

pxpzqÑ rry PPP zssq
¯

“ 1,

as claimed.

Foundation Given Infinity we can show the existence of transitive closures without
the use of Foundation, and this allows us to infer any instance of the Foundation
schema from the single instance that states that every nonempty set has a P-minimal
member. We must therefore show that

rr@@@u pDDDv v PPPuÑÑÑDDDv PPPu@w PPP v w RRRuqss “ 1,

i.e., for all x PMA,

rrDDDv v PPPxÑÑÑDDDv PPPx@w PPP v w RRRxqss “ 1.

Suppose toward a contradiction that this is not true, i.e.,

rrDDDv v PPPx ^̂̂ @v PPPxDDDw PPP v w PPPxqss “ a ą 0.

Then rrDDDv v PPPxss ě a, so rrDDDv v PPPxss^ a “ a ă 0, so there exists y P MA such that
rry PPPxss^ a ą 0. Let y be an P-minimal example. Since

rry PPPxss^ a ď rry PPPxss^ rr@v PPPxDDDw PPP v w PPPxqss

“ rry PPPxss^
ľ

y1PMA

rry1 PPPxÑÑÑDDDw PPP y1 w PPPxqss

ď rry PPPxss^ rry PPPxÑÑÑDDDw PPP y w PPPxqss

“ rry PPPxss^ rrDDDw PPP y w PPPxqss

ď rrDDDw PPP y w PPPxss “
ł

zPdom y

`

ypzq^ rrz PPPxss
˘

ď
ł

zPdom y

rrz PPPxss.

Thus,

0 ă rry PPPxss^ a “ rry PPPxss^ a^ a ď
ł

zPdom y

rrz PPPxss^ a “
ł

zPdom y

prrz PPPxss^ aq

“ 0,

by virtue of the P-minimality of y; contradiction.
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Power Given x PMA, we will show that there is y PMA such that for any z PMA

rrz Ď xÑÑÑ z PPP yss “ 1.

For each z PMA, let wz PMA be such that domwz “ domx and

@u P domx wzpuq “ xpuq^ rruPPP zss.

Let
S “ twz | z PM

Au.

Note that for any z PMA, wz : domxÑ |A|, so S PM . Note that8.74.3

rrwz Ď zss “
ľ

uPdomwz

pwzpuqÑ rruPPP zssq

“
ľ

uPdom x

pxpuq^ rruPPP zssÑ rruPPP zssq

“ 1.

(8.93)

(8.94) Claim rrz Ď xss ď rrz“““wzss.

Proof Since rrz“““wzss “ rrz Ď wzss^ rrwz Ď zss and rrwz Ď zss “ 1,8.93 it suffices to
show that

rrz Ď xss ď rrz Ď wzss.

Since
rrz Ď xss “

ľ

uPdom z

pzpuqÑ rruPPPxssq,

and
rrz Ď wzss “

ľ

uPdom z

pzpuqÑ rruPPPwzssq

it suffices to show that for any u P dom z

zpuqÑ rruPPPxss ď zpuqÑ rruPPPwzss,

or, equivalently,
zpuq^ rruPPPxss ď zpuq^ rruPPPwzss,

i.e.,

zpuq^
ł

vPdom x

pxpvq^ rrv“““ussq

ď zpuq^
ł

vPdom x

pxpvq^ rrv PPP zss^ rrv“““ussq.

For this it suffices to show for any v P domx that

zpuq^xpvq^ rrv“““uss ď zpuq^xpvq^ rrv PPP zss^ rrv“““uss.

Since zpuq ď rruPPP zss, it suffices to show that

rruPPP zss^ rrv“““uss ď rruPPP zss^ rrv PPP zss^ rrv“““uss.
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This follows from the fact8.66.2 that

rruPPP zss^ rrv“““uss ď rrv PPP zss.

8.94

Let8.86 y PMA be such that @w P S rrw PPP yss “ 1. Then for any z PMA

rrz“““wzss “ rrz“““wzss^ rrwz PPP yss ď rrz PPP yss,

so8.94

rrz Ď xss ď rrz“““wzss ď rrz PPP yss,

so y is as desired. 8.91

We have the following “meta” version of (8.91).

(8.95) Theorem [S] Suppose θ P ZFsV

, i.e., θ is an axiom of ZFsV

.

1. As usual, let θ̂ be the standard name for θ. GB$ xSuppose M is transitive,
A P M is an M -complete boolean algebra, and M |ù ZF. Then rrpθ̂qssM,A

“

1. In particular (letting M “ V ), if A is a complete boolean algebra then
rrpθ̂qss

A
“ 1.y.

2. ZF$ xSuppose A is a complete boolean algebra. Then pθrr ssqpA,1q.y.

Proof 1 Since GB$ xpθ̂q is an axiom of ZFsV
y(as GB proves every true Σ0

1 sen-
tence), this follows directly from (8.91).

2 The proof of (8.91) is easily modified to a ZFsV

-proof of xSuppose A is a complete
boolean algebra. Then pθrr ssqpA,1q.y for any given θ P ZFsV

. 8.95

Note that Theorem 8.91 only says that every axiom of ZFsV

is MA-valid, not
that every theorem of ZFsV

—or even of ZF—is MA-valid. On the contrary:

(8.96) Theorem [S] If ZF is consistent then GB& xfor some complete boolean
algebra A, every theorem of ZF is a V A-validityy.

Proof GB$ xfor every complete boolean algebra A, rr0“““1 ssA “ 0y. Thus, if GB$
xfor some complete boolean algebra A, every theorem of ZF is a V A-validityythen
GB$ x0“““1 is not a theorem of ZFy, i.e., GB$ xZF is consistenty, which it does not,
if ZF is consistent. 8.96

On the other hand, we have the following metatheorem that strengthens (8.95)
to say that every theorem of ZFsV

is provably valid.

(8.97) Theorem [S] Suppose ZFsV

$ θ.

1. Let θ̂ be the standard name for θ. GB$ xSuppose M is transitive, A PM is an
M -complete boolean algebra, and M |ù ZF. Then rrpθ̂qssM,A

“ 1. In particular
(letting M “ V ), if A is a complete boolean algebra then rrpθ̂qssA “ 1.y.

2. ZF$ xSuppose A is a complete boolean algebra. Then pθrr ssqpA,1q.y.
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Proof This follows directly from (8.95) and (8.85). 8.97

In practice, metatheorems such as (8.85), (8.95), and (8.97), which state the
GB- or ZF-provability of propositions in the theory of forcing, may be regarded as
descriptions of classes of lemmas. In the course of proving a theorem in GB or ZF
we may invoke one of these lemmas, even though we have not explicitly stated or
proved it. The proof of the metatheorem is accepted as sufficient evidence that a
proof of the lemma exists. From the standpoint of logical rigor, this is perfectly
acceptable—indeed, it is more reliable than the common practice of “leaving the
details to the reader”, which often means “I haven’t really bothered to check all the
details, but I’m confident that a complete formal proof exists”. We have previously
remarked that in practice what passes for a proof is almost always a proof sketch,
which is in effect a proof in S that a proof (in whatever theory we are dealing
with, e.g., GB or ZF) exists. Note that (8.85), etc., are S-theorems, so their use is
epistemologically as sound as anything we do.27

8.5.2 “Arguing in a generic extension”

We now reconsider the method of “arguing with generic extensions”, presented in
Section 8.2.6, from the point of view suggested by (8.91). We call the present
method “arguing in a generic extension”. Suppose M is a transitive model of ZF.
If P P M is a partial order and G is M -generic on P, then, since MrGs |ù ZF, the
theory of partial orders and forcing holds in MrGs. This is true in particular for
forcing with P over M “ VMrGs. For any S P M , S is dense in P iff it is dense in
the sense of MrGs, so

MrGs |ù xrGs is a V-generic filter on rPsy.

Similarly, if A PM is an M -complete boolean algebra then

MrGs |ù xrGs is a V-generic filter on rAsy.

The following theorem expresses these facts without the hypothesis of the existence
of an M -generic filter. In fact, they hold with M “ V , the entire universe of sets.

(8.98) Theorem [GB] Suppose M is a transitive model of ZF and A P M is an
M -complete boolean algebra. The following are A-valid.

1. xV is transitivey, i.e., @@@u@@@v
`

VVVpuq ^̂̂ v PPPuÑÑÑVVVpvq
˘

.28

2. x@x pOrdxÑVpxqqy.

3. xpGq is a V-generic filter on pǍqy.

27Actually, primitive recursive arithmetic may replace S as a metatheory for most purposes,
and this is important for a finer analysis of provability, but for our purposes, S is a satisfactory
base theory.

28One of the functions of the corner-quote convention in the context of a pure set theory is to
indicate that a statement apparently referring to a proper class, such as V, is to be translated into
purely set-theoretical terms, as we have done here.
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Proof 1 Recall that for x P M , x̌ “ tpy̌,1q | y P xu, and that rrVVVpxqss “
Ž

x1PM rrx“““ x̌
1ss.8.67.3 Note also that for any x PM and y PMA,

rry PPP x̌ss “
ł

zPdom x̌

`

x̌pzq^ rrz“““ yss
˘

“
ł

zPx

rrž“““ yss

We need to show that for every x, y PMA,
ł

x1PM

rrx“““ x̌1ss^ rry PPPxss ď
ł

y1PM

rry“““ y̌1ss.

Suppose x1 PM . Then

rrx“““ x̌1ss^ rry PPPxss ď rry PPP x̌1ss

“
ł

y1Px1

rry“““ y̌1ss

ď
ł

y1PM

rry“““ y̌1ss.

2 Suppose toward a contradiction that x@x pOrdxÑVpxqqy is not A-valid, i.e.,

(8.99) rrx@x pOrdxÑVpxqqyss ă 1 .

Then29

(8.100) rrxthere exists x such that every ordinal in V is in xyss ą 0 .

Hence, there exists x PMA such that

rrxevery ordinal in V is in xyss ą 0 .

It is easy to show that for every ordinal α P M , rrOrdpα̌qss “ 1. Thus, for every
α P OrdM , Dy P domx rry“““ α̌ss ą 0. Since M |ù ZFsV

, x and |A| are in M , and
OrdM R M , and since the relevant forcing relations are definable over M , there
exist y P domx and distinct α, β P OrdM such that

rry“““ α̌ss “ rry“““ β̌ss ą 0 .

It follows that rry“““ α̌ss^ rry“““ β̌ss ą 0, so rrα̌“““ β̌ss ą 0; however, it is easy to show
that if α ‰ β then rrα̌“““ β̌ss “ 0.

3 The essential point is that for any a P |A|, rrǎPPPGss “ a. Suppose s P M . Let
A “ |A|. We must show that

““

xif pšq X pǍq is dense then pGq meets pšqy
‰‰

“ 1.

29We are sketching a GB-proof. To convince ourselves that (8.100) follows from (8.99) we note

that ZFsV $ xif there is an ordinal not in V then there exists x such that every ordinal in V is in xy;
and we then use (8.97). From now on, we will typically use this sort of inference without specific
recognition.
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““

xpšq X pǍq is densey
‰‰

is 1 or 0 according as sXA is or is not dense. Thus, we must
show that if sXA is dense then

rrDDDuPPPG uPPP šss “ 1 .

This is true, since

rrDDDuPPPG uPPP šss “
ł

aPA

pa^rrǎ P šssq “
ł

aPAXs

a

“ 1,

since AX s is dense. 8.98

Theorem 8.98 suggests a quite useful method for proving forcing relations. In
practice we typically frame the argument as follows.

To show that p,P ϕ, we show that if we enlarge the universe V to V rGs, where G
is a V -generic filter on P and p P G, then VrGs |ù ϕ.

Informally, suppose we have reached a certain point in a discussion of forcing, and
we wish to prove xp,P ϕy for some partial order P. Let A “ R P.30 We temporarily
transfer the discussion to V A and we regard everything we have said up to this point
as referring to tx̌ | x P V u, which is an image of V in V A (which is itself included
in V ). So translated, every sentence of the preceding discussion has A-value 1 or 0,
and ordinary logic has applied. Every theorem we have proved has of course had
A-value 1. By Theorem 8.98, xpGq is a pVq-generic filter on pǍqy also has A-value
1, so we may continue to reason in the ordinary way with this new hypothesis, and
every conclusion we draw will have A-value 1. Suppose we draw the conclusion
that p P GÑϕ. Then

rrp̌PPPGÑÑÑϕss “ 1,

so
rrp̌PPPGss ď rrϕss.

Since rrp̌PPPGss “ p, p ď rrϕss, i.e.,
p,ϕ.

Formally, we proceed as follows. Let s˚ be a signature that extends the signature
s of set theory by the addition of a unary predicate symbol V and constant symbols
P and G.

(8.101) Let Θ be the s˚-theory consisting of

1. ZFsV

;

2. xV is transitive and contains every ordinaly;

3. ZFV, i.e., all axioms of ZF relativized to V;

4. xVpPq and P is a partial ordery;

5. xG is a V-generic filter on Py;

6. xevery set is xG for some x P VPy.

30In this discussion and elsewhere we will move freely between partial orders and their regular
algebras via the correspondence ˆ̈ without necessarily mentioning the transformation.8.80
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The following theorem is often useful in framing propositions about generic
extensions of inner models of ZF in terms of countable models of finite fragments
of ZF.

(8.102) Theorem [S] For any finite subset T of Θ8.101 there is a finite subset F of
ZF such that ZF$ xfor any transitive (set) model M of pF̂ q, partial order P P M ,
and M -generic filter G on P, M rGs |ù pT̂ q with V,P,G interpreted respectively as
M , P, and Gy, where T̂ and F̂ are, as usual, the standard names for T and F .

Proof Let F0 be a finite fragment of ZF that is sufficient to develop the theory of
forcing within any transitive model M of F0 (e.g., the entire set of axioms we have
specifically used in this book so far to prove ZF-theorems). For each θ P T , let Fθ
be an additional finite fragment of ZF such that if M |ù pF0YFθq then M rGs |ù θ.
Let F “ F0 Y

Ť

θPT Fθ.
8.102

The following theorem formally defines and establishes the method of “arguing
in a generic extension”. The similarity to “arguing with generic extensions”§ 8.2.6 is
evident, and the proof of applicability is similar. The difference is largely a matter
of point of view: extrinsic when arguing with generic extensions, and intrinsic when
arguing in a generic extension.

(8.103) Theorem [S] Suppose ψ and ϕ are s-formulas with n`2 and n free variables,
respectively. Suppose Θ$

(8.104) xfor all p P |P| and x0, . . . , xn- P VP, if pψVqpP, p, x0, . . . , xn-q then p P
GÑpϕqpxG

0 , . . . , x
G
n-qy.

Then ZF$

(8.105) xif P is a partial order, p P |P|, x0, . . . , xn- P V P, and pψqpP, p, x0, . . . ,
xn-q, then pϕ,qpP, p, x0, . . . , xn-qy.

Proof Let ψ and ϕ be given, and let T be a finite subset of Θ such that T proves
(8.104). Let F be a finite subset of ZF as in (8.102). We now show how to construct
a proof of (8.105) in ZF (without being too fussy about use vs. mention). We begin
by supposing toward a contradiction that it is not the case. We use the reflection
principle,6.9 appropriately formulated in ZF, to show that there is an ordinal α
such that Vα |ù F and there exist P1, p1, x10, . . . , x1n- P V P

α such that (8.105) fails.
Take a countable elementary substructure of Vα containing these elements and
collapse it to a transitive set M . Let P, etc., be the images of P1, etc., under
the collapsing map. Then M is a countable transitive model of F , with a partial
order P P M , p P |P|, and x0, . . . , xn- P MP, such that M |ù ψrP, p, x0, . . . , xn-s,
and p.M,P ϕpx0, . . . , xn-q. We let G be an M -generic filter on P such that p P G
and M rGs*ϕrxG0 , . . . , x

G
n-s. Since M |ù F , M rGs |ù T . It follows that M rGs |ù

ϕrxG0 , . . . , x
G
n-s, a contradiction.31 8.105

As in the method of “arguing with generic extensions”, Θ implements the hy-
pothesis that V is a model of ZF by positing each axiom of ZF relativized to V.8.49

In a pure set theory we have no other option, as ZF is not finitely axiomatizable,
and proper classes do not exist. In GB, however, we have generally implemented
the hypothesis that M is a model of ZF as the single sentence xM |ù ZFy, which
leads to the following formulation of the above method.

31In effect, we justify the method of arguing in a hypothetical generic extension of V by arguing
in an actual generic extension of a countable transitive model of a finite fragment of ZF.
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Let c˚ be the signature c with additional constants V, P, and G; we also treat
V as a unary predicate in the usual way.

(8.106) Let Θ1 be the c˚-theory which is Θ with the following changes:

11. GB.

31. xV |ù ZFy.

When “arguing in a generic extension”, we will naturally reason from Θ1 rather
than Θ. The question is whether Theorem 8.103 applies with Θ1 in place of Θ.

In the absence of an affirmative answer to this question, the usefulness of xV |ù
ZFy as a premise in forcing arguments undertaken in GB is much diminished, as
one must maintain a parallel development from xZFVy to use when deriving forcing
relations by “arguing in a generic extension”. Thus, the following theorem is a
great convenience.32

(8.107) Theorem [S] Suppose ψ and ϕ are s-formulas with n`2 and n free variables,
respectively. Suppose Θ1$

xfor all p P |P| and x0, . . . , xn- P VP, if pψVqpP, p, x0, . . . , xn-q then p P GÑpϕqpxG
0 , . . . , x

G
n-qy.

Then ZF$

xif P is a partial order, p P |P|, x0, . . . , xn- P V P, and pψqpP, p, x0, . . . , xn-q, then
pϕ,qpP, p, x0, . . . , xn-qy.

Proof This follows immediately from Theorem 8.103 and (8.108). 8.107

(8.108) Theorem [S] Θ1 is a conservative extension of Θ in the sense that for any
s˚-sentence σ, if Θ1$σ then Θ$σ.

Proof See Note 10.27.

8.5.3 Generic extension preserves AC

(8.109) Theorem [GB] Suppose M is a transitive model of ZFC and A is an M -
complete boolean algebra. Then MA is full,8.55 i.e., for each LM,A-formula ϕ with
the single free variable u, there exists x PMA such that

rrDDDuϕss “ rrϕpxqss.

Remark Note that for the first time we assume M |ù AC.

As in the case of (8.87) it is useful to consider this in terms of generic extensions.
We are looking for a witness for DDDuϕ, i.e., x P MA such that for any generic G,
if M |ù DDDuϕ then M rGs |ù ϕpxq. The first step is to obtain a sufficient set of
local witnesses txα | α ă ηu, so that rrDDDuϕss “

Ž

αăη rrϕpxαqss. We then obtain a
sequence xaα | α ă ηy8.110 of disjoint elements of |A| such that aα ď rrϕpxαqss and
Ž

αăη aα “
Ž

αăη rrϕpxαqss. Thus, if aα P G then M rGs |ù ϕpxαq, and we can use
(8.87) to obtain x P MA such that if aα P G then M rGs |ù x“““xα, so M rGs |ù
ϕpxq. Since G is generic, if

`
Ž

αăη aα
˘

P G then for some α ă η, aα P G. Since

32Like the notion of satisfaction for proper classes used in this book and the other theorems
specific to it, Theorems 8.107 and 8.108 are due to the author.
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rrDDDuϕss “
Ž

αăη rrϕpxαqss “
Ž

αăη aα, if rrDDDuϕss P G then aα P G for some α ă η, so
M rGs |ù ϕpxq. In terms of boolean valuation, rrDDDuϕss ď rrϕpxqss. Conversely (and
this is true for any x) if M rGs |ù ϕpxq then M rGs |ù DDDuϕ, so rrϕpxqss ď rrDDDuϕss.
Hence rrDDDuϕss “ rrϕpxqss. All we do in the following proof is eliminate any reference
to generic extensions.

Proof Using Collection in M , let κ P OrdXM be such that

@a P |A| pDx PMA rrϕpxqss “ aÑDx PMA
κ rrϕpxqss “ aq.

Since M |ù AC, there is a wellordering of MA
κ in M . Use such a well ordering to

construct in M a maximal (i.e., not extendible) sequence xxα | α ă ηy of members
of MA such that for all β P η

rrϕpxβqss ď
ł

αăβ

rrϕpxαqss.

For β ă η let

(8.110) aβ “ rrϕpxβqss ´
ł

αăβ

rrϕpxαqss.

Then

xaβ | β ă ηy is a sequence of nonzero incompatible elements of |A|.

(8.111) Claim
Ž

αăη rrϕpxαqss “ rrDDDuϕss.

Proof Since @x PMA rrϕpxqss ď rrDDDuϕss, if
Ž

αăη rrϕpxαqss ‰ rrDDDuϕss then
Ž

αăη rrϕpxαqss ă

rrDDDuϕss; hence,8.67.10 for some x P MA
κ , rrϕpxqss ď

Ž

αăη rrϕpxαqss, contradicting the
maximality of xxα | α ă ηy. 8.111

Using Theorem 8.87 let x PMA be such that for all β ă η

aβ ď rrxβ “““xss.

Since aβ ď rrϕpxβqss,8.110 for every β ă η,8.74.1

aβ ď rrxβ “““xss^ rrϕpxβqss ď rrϕpxqss.

Hence,8.111, 8.110

rrDDDuϕss “
ł

βăη

rrϕpxβqss “
ł

βăη

aβ ď rrϕpxqss ď rrDDDuϕss,

so rrDDDuϕss “ rrϕpxqss as desired. 8.109

We give two proofs of the following theorem: the first applying the definitions of
forcing/boolean value directly in the manner of the arguments given so far, which
we may call “working in M”, and the second “working in M rGs”.§ 8.5.2 The latter is
much shorter than the former.33

(8.112) Theorem [GB] Suppose M is transitive, A PM is an M -complete boolean
algebra, and M |ù ZF. If M also models AC then AC is an MA-validity.

Proof
33When “working in MrGs” we imagine ourselves in MrGs and construct a proof in the theory

Θ1. Formally, this proof must be set in the framework of the method of “arguing in a generic
extension” in order to draw a conclusion about the forcing relation.
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Working in M We will use the form of AC that states that for any set of non-
empty sets there is a choice function. Suppose x PMA. We must show that

rr@@@v PPPx Dw w PPP vÑÑÑDDDf pFcn f ^̂̂ @@@v PPPx fpvq PPP vqss “ 1,

i.e.,
rr@@@v PPPx Dw w PPP vss ď rrDDDf pFcn f ^̂̂ @@@v PPPx fpvq PPP vqss.

We will show that there exists F PMA such that

(8.113) rr@@@v PPPxDDDw w PPP vss ď rrFcnF ^̂̂ @@@v PPPxDDDw pw PPP v ^̂̂pv, wqA PPPF qss.34

The strategy is to use ACM first to wellorder domx so that we may recursively
redefine xpyq for y P domx so as to ensure that each member of x is (in an A-
valued sense) listed only once. Then we use ACM to show (via (8.109)) that for
each y P domx there exists z whose A-value to be in y is rrDDDv v PPP yss, and we use
ACM to pick such a z for each y P domx. We use these objects to define F .

Using AC in M , let xyα | α ă ηy PM enumerate domx. Define recursively

(8.114) aα “ xpyαq ´
ł

βăα

paβ ^rryα“““ yβssq.

Let x1 PMA be such that domx1 “ domx and for all α ă η

x1pyαq “ aα.

Since x1pyαq “ aα ď xpyαq for all α ă η, rrx1ĎĎĎxss “ 1. Also,

rrxĎĎĎx1ss “
ľ

αăη

pxpyαqÑ rryα PPPx
1ssq

“
ľ

αăη

`

xpyαqÑ
ł

βăη

px1pyβq^ rryβ “““ yαssq
˘

“ 1,

because for any α ă η

ł

βďα

px1pyβq^ rryβ “““ yαssq “ aα_
ł

βăα

paβ ^rryβ “““ yαssq

ě xpyαq.

Thus,

(8.115) rrx“““x1ss “ 1.

Using (8.109) and ACM , we infer that there exists xzα | α ă ηy P M such that for
each α ă η,

rrzα PPP yαss “ rrDDDw w PPP yαss.

Let
F “ tppyα, zαq

A, aαq | α ă ηu.

34Note that by Theorem 8.109 the preceding formula implies the existence of such an F .
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(8.116) Claim rrFcnF ss “ 1.

Proof We first observe that for any s PMA

rrsPPPF ss “
ł

αăη

`

aα^rrs“““pyα, zαq
Ass

˘

ď
ł

αăη

`

aα^
““

xpsq is an ordered pairy
‰‰˘

ď
““

xpsq is an ordered pairy
‰‰

,

so
““

xevery member of pF q is an ordered pairy
‰‰

“ 1. Moreover, for any s, t PMA,
““

xs and t are in pF q and have the same first itemy
‰‰

“
ł

α,βăη

`

aα^ aβ ^rrs“““pyα, zαq
Ass^ rrt“““pyβ , zβq

Ass^ rryα“““ yβss
˘

“
ł

αăη

`

aα^rrs“““pyα, zαq
Ass^ rrt“““pyα, zαq

Ass
˘

ď
ł

αăη

`

aα^rrs“““ tss
˘

ď rrs“““ tss,

since8.114 β ă αÑ aα^ aβ ^rryα“““ yβss “ 0. It follows that rrxevery member of
pF q is an ordered pair, and any members of pF q with the same first item are
identicalyss “ 1, i.e., rrFcnF ss “ 1. 8.116

Since rrx“““x1ss “ 1,8.115 it suffices to show that

rr@@@v PPPx1 DDDw w PPP vss ď rr@@@v PPPx1 DDDw pw PPP v ^̂̂pv, wqA PPPF qss, 8.113

which the following computation does:

rr@@@v PPPx1 DDDw pw PPP v ^̂̂pv, wqA PPPF qss “
ľ

αăη

`

x1pyαqÑ
ł

zPMA

rrz PPP yα ^̂̂pyα, zq
A PPPF qss

˘

ě
ľ

αăη

`

aαÑrrzα PPP yα ^̂̂pyα, zαq
A PPPF ss

˘

ě
ľ

αăη

`

aαÑprrDDDw w PPP yαss^ aαq
˘

“
ľ

αăη

`

aαÑrrDDDw w PPP yαss
˘

“ rr@@@v PPPx1 DDDw w PPP vss.

Working in M rGs For the sake of variety, we will present the argument in terms
of forcing, as opposed to boolean value. Since we know that M rGs |ù ZF, we may
use any of the many equivalent formulations of AC over ZF. We will use xevery set
is the surjective image of an ordinaly.35

Suppose x P M rGs. Let ρ P MP be such that x “ ρG. Using AC in M , let
xσα | α ă ηy PM enumerate dom ρ. Let fpαq “ σGα for α ă η. Then f : η sur

Ñ x.

35If f : η
sur
Ñ x, we may use the fact that η is wellordered to define a bijection of a subset of η

with x, and us this to define a wellordering of x.
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To apply Theorem 8.103 explicitly, we observe that the preceding argument
amounts to a proof of AC in the theory Θ with the added assumption of ACVVV. Thus
it is a theorem of ZFC that for any partial order P and any p P |P|, p,P AC, i.e.,
AC is a P-validity. 8.112

8.5.4 Arguing in a boolean-valued universe

The preceding discussion has illustrated the legitimacy and usefulness of reasoning
as though a generic extension of V exists, even though it doesn’t. We may achieve
the same advantage somewhat differently by working in the corresponding boolean-
valued universe, which does exist. Of course, nothing is free, and when we “argue
in V A”, where A is a (V -)complete boolean algebra, we must use A-valued logic.
For A-validities and their negations, this reduces to ordinary 2-valued logic, and
when V A is full8.55 we also have witnesses in V A for valid existential sentences, so
the correspondence with ordinary logic is even closer. Recall8.109 that if V |ù AC
then V A is full. Clearly, working in V A is really the same as working in V with the
A-value operation,36 which is the same as working in V with the A-forcing relation,
but the point of view is sometimes advantageous.

It is standard in discussions of forcing to use whichever of the above techniques
is best suited to the task at hand, and with practice one can become quite nimble
at jumping from one possible world to another.

8.6 Relative consistency proofs

Suppose σ is an s-sentence and we wish to use forcing to prove ConpZF`σq, which
is the statement that ZF`σ is consistent. We must assume at least the consistency
of ZF, which, according to Gödel’s second incompleteness theorem, is not provable
in ZF (assuming, of course, that ZF is consistent). We therefore typically formulate
the result in terms of relative consistency, i.e., ‘if Con ZF then ConpZF`σq’, which
is a finitary statement, for which we wish to give a finitary proof. More generally,
we wish to prove results of the form ‘if ConpZF ` θq then ConpZF ` σq’. It may
be that ConpZF ` θq follows from Con ZF—this is the case, for example, if θ is
xV “ Ly—but this is exceptional, and in practice most relative consistency results
are between theories that are not provably consistent relative to ZF.

We will describe several methods of establishing such a result, which are really
just different descriptions of a single method. It is worth noting before proceeding
that while relative consistency proofs were the initial motivation for the concept of
forcing, its applications in set theory go far beyond that. In this regard it is in a
similar position to that of the concept of constructibility.

The starting point is always the choice of a suitable partial order or, equival-
ently, complete boolean algebra. The first method described deals directly with the
forcing relation/boolean valuation, while the second and third methods accomplish
the same goal via the techniques described above under the rubrics “arguing with
generic extensions” and “arguing in a generic extension”.

Method 1 The argument can be framed in terms of partial orders or boolean
algebras. We will use boolean algebras here. Suppose ZF ` θ is consistent and
ZF ` θ$ xthere exists a complete boolean algebra A such that pσqrr sspA,1qy. We

36In our first proof of (8.112) we were more or less working in MA.
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will show that ZF ` σ is consistent. Suppose toward a contradiction that ZF ` σ
is inconsistent, i.e., ZF$␣␣␣σ. Then8.97.2 ZF$ xfor every complete boolean algebra
A, pp␣␣␣σqrr ssqpA,1qy. By definition,8.76.4 p␣␣␣σqrr sspA, aq def

“ xpσrr ssqpA,␣ aqy. Hence,
ZF ` θ$ xthere exists a complete boolean algebra A such that pσrr ssqpA,1q and
pσrr ssqpA,0qy, which implies ZF ` θ is inconsistent, since ZF$ xfor any complete
boolean algebra A there exists a unique a P |A| such that pσrr ssqpA, aqy.

Method 2: “Arguing with generic extensions” Suppose ZF ` θ$ xthere
exists a partial order P such that ,P pσqy(by which we mean, of course, xpσ,qpP,1qy,
where we have assumed for convenience that P has maximum element 1). Suppose
there is a transitive set model of ZF`θ. Then there is a countable transitive model
M of ZF`θ. Suppose P PM is a partial order such that ,P σ. Since M is countable,
there exists an M -generic filter G on P, and MrGs |ù pZF ` σq. Hence there is a
model of ZF` σ, so ZF` σ is consistent.

This approach is less than satisfactory, in that it assumes not just that ZF` θ
has a set model, which by the completeness theorem follows from the hypothesis of
consistency of ZF` θ, but that it has a transitive model, which does not follow (in
ZF` θ) from the hypothesis of consistency of ZF` θ, unless ZF` θ is inconsistent,
as can easily be shown. The following improvement uses only the consistency of
ZF` θ.

Suppose ZF ` σ is inconsistent. Then by the compactness theorem, there is a
finite set F of axioms of ZF such that F`σ is inconsistent. Let ζ be the conjunction
of F . Let F 1 be a finite subset of ZF` θ such that F 1$ xthere exists a partial order
P such that ,P pσ ^̂̂ ζqy.

By the reflection principle, ZF ` θ proves that there is a countable transitive
model of F 1. The following is therefore a proof in ZF ` θ: xLet M be a countable
transitive model of F 1. Let P P M be such that ,P σ, and let G be an M -generic
filter on P. Then M rGs |ù pF ` σq. But F ` σ is inconsistent, so M rGs*pF ` σq.y

Hence ZF` θ is inconsistent.

Method 3: “Arguing in a generic extension” We will use the terminology
of Section 8.5.2. V, P, and G are respectively a unary predicate index and two
constant indices. We define extensions of the signature s of pure set theory by
adding V to obtain sV, adding P to obtain sP, and adding V, P and G to obtain s˚.
Suppose θ is an sP-sentence and ZF ` θ$ xP is a partial ordery.37 It is clear from
the discussion in Section 8.5.2—Theorem 8.98 in particular—that every axiom of
the theory Θ8.101 is a P-validity provably in ZF` θ. ZF` θ also proves θV. Thus, if
ZF`θ is consistent then Θ`θV is consistent. It follows from (8.108) that Θ1`θV is
consistent. Suppose Θ1` θV$σ. Then Θ1`σ is consistent. Since GB Ď Θ1, GB`σ
is consistent, so ZF` σ is consistent.

To summarize this method, working in GB from the supposition that the uni-
verse is VrGs, where V is an inner model of ZF` θ, and G is a V-generic filter on P,
we prove σ. It then follows that if ZF` θ is consistent then ZF` σ is consistent.38

37In general, θ says more about P than merely that it is a partial order; often it uniquely defines
P. θ may also say things that have nothing to do with P directly. For example, θ might say that
V “ L or that an inaccessible cardinal exists.

38We have, of course, shown that GB` σ is consistent, but this is not any stronger, since GB is
a conservative extension of ZF.
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8.6.1 ConpZF` V ‰ Lq

For our first relative consistency result using forcing we will settle the question with
which we began this chapter by showing that the axiom of constructibility is not a
theorem of ZF. Suppose M is a transitive model of ZF and P PM is a partial order
with the property that

(8.117) @p P |P| Dq, q1 ď p pq K q1q,

i.e., any element of |P| has incompatible extensions.

Claim Suppose G is M -generic on P. Then G RM .

In other words, if F P M is a filter on P then F is not M -generic. To prove this,
we observe that by virtue of (8.117), any p P |P| has an extension that is not in F
(since members of a filter are compatible by definition). Hence D “ |P|zF is dense.
Since F PM and |P| PM , D PM , and F does not meet D, so F is not M -generic.
Since L is included in any model of ZF that contains all the ordinals, LMrGs ĎM ,
so MrGs |ù xG R Ly.

For the sake of definiteness, we may use the following partial order P “ p|P|;ďq:

(8.118)

1. p P |P| iff

1. p is finite;
2. p is a function;
3. dom p Ď ω;
4. im p Ď 2 p“ t0, 1uq.

2. For p, q P |P|
q ď pØ q Ě p.

Using any of the methods outlined above,§ 8.6 we may construct a finitary proof of
the following theorem.

(8.119) Theorem [S] If ZF is consistent then so is ZF` xV ‰ Ly.

Note that if G is a filter on P and p, p1 P G, then p and p1 are compatible, so
pY p1 P |P|. If fact, since pY p1 is the weakest (i.e., highest, i.e., smallest) condition
that extends both p and p1, p Y p1 P G. Let xG “

Ť

G. Then xG is a function,
domxG Ď ω, and imxG Ď 2. For any n P ω the set tp P |P| | n P dom pu is dense
in P, so n P domxG. Thus domxG “ ω. There is a simple bijection between sets
S Ď ω and functions χS : ω Ñ 2:

χSpnq “ 1Øn P S.

So G is equivalent to a subset of ω.

Because of their inaugural role in the presentation of Cohen’s method of forcing,
P8.118 and its regular algebra R P are often referred to as the Cohen order and Cohen
algebra. Note that by virtue of (8.62) any atomless complete boolean algebra with
a countable dense set is isomorphic to the Cohen algebra.
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8.7 Chain conditions and saturation

Definition [GBC] Suppose P is a partial order. An antichain in P is a set of
pairwise incompatible elements of |P|. Suppose κ is a cardinal. P satisfies (or has)

the κ-chain condition
def
ðñ any antichain in P has size ă κ. We also say that P is

κ-cc. The countable chain condition (ccc) is the ω1-chain condition, and we also
say that a partial order satisfying this condition is ccc.

For boolean algebras A, these notions are defined with respect to the partial order
A` of nonzero elements of A.39

(8.120) Theorem [ZFC] Suppose P is a separative partial order, and A “ R P.
Then for any cardinal κ, P is κ-cc iff A is κ-cc.

Proof P is naturally isomorphic to a dense set in A, so an antichain in P corre-
sponds to an antichain in A, and, given an antichain in A, using AC, there exists
an antichain of the same size in P. 8.120

Chain conditions in boolean algebras are often stated in terms of the equivalent
concept of saturation.

(8.121) Definition [GBC] Suppose B is a boolean algebra and κ is a cardinal.

1. A is κ-saturated
def
ðñ A has the κ-chain condition.

2. sat A
def
“ the least cardinal κ such that A is κ-saturated.

The following theorem shows that for most purposes it suffices to consider κ-chain
conditions for uncountable regular cardinals κ.

(8.122) Theorem [ZFC] Suppose A is an infinite complete boolean algebra. Then
sat A is a regular uncountable cardinal.

Proof Let κ “ sat A. We will first show that κ is uncountable by using a well-
ordering ă of |A| to define a strictly descending ω-sequence xan | n P ωy of elements
of A. The construction will be such that for each n P ω, there are infinitely many
elements of |A| below an. Let a0 “ 1. Given an with infinitely many elements
below it, let a be the ă-first a P |A| such that 0 ă a ă an. If a has infinitely
elements below it, let an`1 “ a; otherwise, an ´ a necessarily has infinitely many
elements below it, and we let an`1 “ an ´ a. tan ´ an`1 | n P ωu is an infinite
antichain in A.

To show that κ is regular, suppose toward a contradiction that it is singular.
For a P |A`|, let Aa be the boolean algebra such that |Aa| “ tb P |A| | b ď au, with
the operations and order relation inherited from A. Let spaq “ sat Aa. Note that if

b P |A`a | then spbq ď spaq. We will say that a is stable
def
ðñ @b P |A`a | spbq “ spaq.

Given a P |A`|, there exists b P |A`a | such that spbq is least, and any such b is stable.
Hence the set S of stable elements of A is dense. Let A Ď S be a maximal antichain

39Note that a chain condition is defined in terms of antichains. In the case of a complete
boolean algebra A, antichains are closely related to chains, as follows. Suppose xaα | α P λy
is a λ-sequence of pairwise incompatible (disjoint) elements of |A|. Let bα “

Ť

βăα aβ . Then

b0 ă b1 ă ¨ ¨ ¨ ă bα ă ¨ ¨ ¨ , so xbα | α P λy is a chain. Conversely, given a chain in A in which
every element has an immediate successor, the set of differences between consecutive elements is
an antichain.
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in S. Since S is dense, A is a maximal antichain in A, so
Ž

A “ 1. We say that A
is a partition of A.

By hypothesis, |A| ă κ. Since all successor cardinals are regular, κ is a limit
cardinal, and for all cardinals λ ă κ there exists an antichain in A of size λ. Suppose
λ is a cardinal and |A| ď λ ă κ. Then λ` ă κ. Let B be an antichain in A of size
λ`. For each a P A let Ba “ tb^ a | b P B and b^ a ‰ 0u. Let B1 “

Ť

aPABa.
Since A and B are antichains, B1 is an antichain. Since

Ž

A “ 1, for each b P B, for
some a P A, b^ a ‰ 0. Thus, there exists an injection of B into B1, and therefore
|B1| ě λ`. It follows that for some a P A, |Ba| ě λ`. Since Ba is an antichain in
Aa, spaq ą λ`.

Thus tspaq | a P Au is unbounded in κ. Let xλα | α ă cf κy be an increasing
sequence of cardinals ă κ with limit κ. For each α ă cf κ let aα P A be such that
spaαq ě λ`α and @β ă α spaαq ą spaβq. Note that the second condition guarantees
that xaα | α ă cf κy is injective. For each α ă cf κ let Xα be an antichain in Aaα

of size λα. Then
Ť

αăcf κXα is an antichain in A of size κ; contradiction. 8.122

The following theorem gives one of the most important consequences of a chain
condition for the theory of forcing.

(8.123) Theorem [GB] Suppose

1. M is a transitive model of ZFC;

2. κ, λ,P PM ;

3. M |ù xrκs and rλs are cardinals, rκs is regular, and rPs is a partial order with
the rκs-chain conditiony;

4. G is an M -generic filter on P;

5. f PM rGs; and

6. f : λÑM .

Then there exists X PM such that im f Ď X and

1. if λ ă κ then |X|M ă κ, and

2. if λ ě κ then |X|M ď λ,

where |X|M is the cardinality of X in the sense of M , i.e., x|rXs|y
M

.

Proof Let 9f P MP be such that f “ 9fG, and let p P G be such that p, x 9f is a
function from λ̌ into Vy.

Working in M , it is straightforward to show that

(8.124) for each α ă λ, the set of conditions r ď p such that for some x P M ,
r, 9fpα̌q“““ x̌, is dense below p.

Suppose α ă λ, and consider sets A such that

(8.125)

1. A is a binary relation;

2. for each xr, xy P A, r, 9fpα̌q“““ x̌;

3. xr, xy P A^xr1, x1y P AÑ r K r1.

Note that by the κ-chain condition for P,
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(8.126) if A satisfies (8.125) then |A| ă κ.

If A is a chain40 of sets A satisfying (8.125) then clearly
Ť

A satisfies (8.125). It
follows by Zorn’s lemma that there is a maximal such set.

Suppose A is maximal satisfying (8.125). Then domA, i.e., tr | Dx xr, xy P Au,
is predense below p. To show this, suppose suppose toward a contradiction that
domA is not predense below p. Let q ď p be incompatible with everything in
domA. Let8.124 r ď q and x be such that r, 9fpα̌q“““ x̌ (still working in M). Then
xr, xy R A and AY txr, xyu satisfies (8.125), a contradiction.

Still supposing A is maximal satisfying (8.125), and stepping into M rGs mo-
mentarily, let x “ fpαq P M . Let q ď p, q P G, q, 9fpα̌q “ x̌. Since domA is
predense below p, and p P G, there exists q1 P G X domA. Let x1 be such that
xq1, x1y P A. Let r P G extend both q and q1. Then r, 9fpα̌q“““ x̌ and r, 9fpα̌q“““ x̌1,
so x “ x1 P imA. We have therefore shown that

fpαq P imA.

Back in M , we now use the axiom of choice again to conclude that there exists
xAα | α ă λy such that for each α ă λ, Aα is maximal satisfying (8.125) for α. Let
X “

Ť

αăλ imAα “ tx | Dα ă λ Dr xr, xy P Aαu.
Since8.126 @α ă λ |Aα| ă κ,

1. if λ ă κ, since κ is regular, |X| ă κ; and

2. if λ ě κ, |X| ď λ.

8.123

As a straightforward corollary, we have:

(8.127) Theorem [GB] Suppose M is a transitive model of ZFC, M |ù xrκs is a
regular cardinal and rPs is a partial order with the rκs-chain conditiony, and G is
an M -generic filter on P. Then

1. M rGs |ù xrκs is a regular cardinaly.

2. If λ ą κ and M |ù xrλs is a cardinaly, then M rGs |ù xrλs is a cardinaly.

In particular, if M |ù xrPs has the countable (i.e., ω1-)chain conditiony, then every
cardinal in the sense of M is a cardinal in the sense of M rGs.

Proof 1 Suppose η ă κ is a cardinal in M rGs, f P M rGs, and f : η Ñ κ. By
Theorem 8.123 there exists X P M such that |X|M ă κ and im f Ď X. Since xrκs

is regulary
M

, X X κ is not cofinal in κ, so im f is not cofinal in κ.

2 Suppose η ă λ is a cardinal in M rGs, f PM rGs, and f : η Ñ λ. Then8.123 there
exists X PM such that |X|M ď maxtη, κu ă λ and im f Ď X. Since λ is a cardinal
in M , λ Ę X, so f is not a surjection. 8.127

The following combinatorial theorem of Shanin is useful.

(8.128) Theorem [ZFC] Suppose X is an uncountable set of finite sets. There
exists an uncountable X 1 Ď X and a set d such that for all distinct x, y P X 1,
xX y “ d.

40Here we use ‘chain’ to mean a set of sets linearly ordered by inclusion, as in Zorn’s lemma.
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Remark A set of finite sets with the property asserted for X 1 is called a ∆-system,
and the present theorem is sometimes referred to as the ∆-lemma.

Proof It is enough to show that for any n P ω, the theorem holds for any uncount-
able set X of sets of size n, because for any uncountable set X of finite sets, for
some n P ω, tx P X | |x| “ nu is uncountable.

The proof is by induction on n. The result is trivial for n “ 1 (in which case
d “ 0). Suppose it holds for n and suppose X is an uncountable set of sets of size
n` 1.

Suppose first that there exists a such that Y “ tx P X | a P xu is uncountable.
Let Y 1 “ txztau | x P Y u. Then Y 1 is an uncountable set of sets of size n, so
by induction hypothesis there is an uncountable Y 1 Ď Y and d1 such that for all
distinct x, y P Y 1, x X y “ d1. Let X 1 “ ty Y tau | y P Y 1u and let d “ d1 Y tau.
Then X 1 is an uncountable subset of X, and for all distinct x, y P X 1, xX y “ d.

If there exists no such element a, we construct a sequence xxα | α P ω1y of
pairwise disjoint members of X, and an increasing sequence xYα | α P ω1y of
countable subsets of X, such that

(8.129) for all α P ω1

1. xα R Yα; and

2. @y P X py X xα ‰ 0Ñ y P Yα`1q.

We do this recursively. At stage α, we first define Yα and then let xα be the first
member of XzYα according to some fixed wellordering of X.

1. If α “ 0 let Yα “ 0. Thus, x0 is simply a member of Xz0 “ X.

2. If Limα let Yα “
Ť

βăα Yβ .

3. If α “ β ` 1 let Yα “ Yβ Y ty P X | y X xβ ‰ 0u.

Note that countability of Yα is preserved at limit stages, and at successor stages,
since xβ is finite and no member of xβ is in uncountably many members of X. Since
X is uncountable, XzYα is nonempty, so xα may be chosen for each α.

Now suppose β ă α ă α1. Then xα X xβ “ 0; otherwise, xα P Yβ`1 Ď

Yα,8.129.2 which it is not.8.129.1 txα | α P ω1u is therefore a ∆-system (with common
intersection 0). 8.128

8.8 Closure and distributivity

(8.130) Definition [ZFC] Suppose κ is a cardinal.

1. A partial order P is κ-closed
def
ðñ for every λ ď κ, for every descending λ-

chain p0 ě p1 ě ¨ ¨ ¨ ě pα ě ¨ ¨ ¨ pα ă λq, there exists p P |P| such that p ď pα
for all α ă λ.

2. A partial order P is κ-distributive
def
ðñ for every set S of open dense subsets

of |P|, with |S| ď κ,
Ş

S ‰ 0. Note that if P is κ-distributive then for every
set S of open dense subsets of |P|, with |S| ď κ,

Ş

S is actually dense (and of
course open).
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3. If A is a complete boolean algebra, these definitions are made with reference
to the partial order A`.

4. A partial order is ă κ-closed (-distributive)
def
ðñ it is λ-closed (-distributive)

for all λ ă κ.

Note 10.28 explains the use of the term ‘distributivity’ for this property in the
context of a more general definition of distributivity for boolean algebras.

(8.131) Theorem [ZFC] Suppose P is a partial order and κ is a cardinal. If P is
κ-closed then P is κ-distributive.

Proof Suppose S “ tsα | α ă κu is a set of open dense subsets of |P|. Using
an appropriate choice function, we will define recursively p0 ě p1 ě ¨ ¨ ¨ ě pα ě
¨ ¨ ¨ pα ă κq, such that @α ă κ pα P sα. For each α ă κ, supposing pβ has been
chosen for every β ă α, since P is κ-closed, there exists p extending every pβ , β ă α.
Since sα is dense, there exists p1 ď p such that p1 P sα, and we choose pα to be
some such p1.

Now let p extend pα for all α ă κ. Since each sα is open, p P sα for every α ă κ.
Hence, P is κ-distributive. 8.131

(8.132) Theorem [GB] Suppose M is a transitive model of ZFC, M |ù xrκs is an
infinite cardinal and rPs is a rκs-distributive partial ordery, and G is M -generic on
P. Suppose f PM rGs is a function from κ into M . Then f PM .

Proof Let 9f PMP be such that 9fG “ f . Let p0 P G be such that

(8.133) p0, 9f : κ̌Ñ V.

For each α ă κ let
Bα “ tp ď p0 | Dx p, 9f α̌“““ x̌u.

Then8.133 each Bα is open and dense below p0, and xBα | α ă κy P M , so B “
Ş

αăκBα is open and dense below p0, and B PM .
Hence, there exists p P G X B. Let g : κ Ñ M be defined by the condition

that @α ă κ p, 9f α̌“““ ǧα. Then g is definable over M , so g P M , and @α ă

κ p, 9f α̌“““ ǧ α̌, so p, 9f “““ ǧ. Hence, f “ 9fG “ ǧG “ g PM . 8.132

(8.134) Theorem [GB] Suppose M is a transitive model of ZFC, M |ù xrκs is an
infinite cardinal and rPs is a ărκs-distributive partial ordery, and G is M -generic
on P. Then for all λ ď κ, if λ is a cardinal in M then λ is a cardinal in M rGs
with the same cofinality.

Proof Straightforward corollary of (8.132). 8.134

Finally we present a combinatorial theorem useful in proving chain conditions.

(8.135) Theorem [ZFC] Suppose κ is a regular cardinal such that 2ăκ “ κ. Let P
consist of functions into κ of size less than κ such that

(8.136) @p, p1 P P
`

p ‰ p1ÑDx px P dom pX dom p1^ ppxq ‰ p1pxqq
˘

.

Then |P | ď κ.
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Proof Let P̄ “ tp | Dp1 P P p Ď p1u. We will construct a κ-sequence 0 “ P0 Ď

P1 Ď ¨ ¨ ¨ of subsets of P such that for all α ă κ, letting Bα “
Ť

pPPα
dom p,

1. |Pα| ď κ;

2. @p P P̄
`

dom p Ď BαÑ
`

Dq P P pp “ q æBαqÑDq P Pα`1 pp “ q æBαq
˘˘

;

3. if α is a limit ordinal then Pα “
Ť

βăα Pβ ;

and P “
Ť

αăκ Pα.
Clearly Property 1 is maintained at limit stages. We will show that it can be

maintained at successor stages. Suppose |Pα| ď κ. Then |Bα| ď κ. For any set
S, let rSsăκ “ tX Ď S | |X| ă κu. Since κ is regular, any member of rκsăκ is a
subset of some λ ă κ, so rκsăκ “

Ť

λăκ P λ. By hypothesis, λ ă κÑ 2λ ď κ, so
ˇ

ˇrκsăκ
ˇ

ˇ ď
ř

λăκ 2λ ď κ ¨ κ “ κ. Since |Bα| ď κ, rBαsăκ ď κ. For any B P rBαsăκ

there are κ|B| functions from B to κ. Since κ is regular, any such function f maps
B into λ for some λ ă κ, and f Ď tpd, αq | d P B^α P λu, so there are at most
2|B|¨λ ď κ such functions. It follows that |tp P P̄ | dom p Ď Bαu| ď κ, so no more
than κ elements have to be added to Pα to form Pα`1 so as to satisfy Property 2.

It remains to show that P “
Ť

αăκ Pα. Suppose p P P . Let B “
Ť

αăκBα.
Since |dom p| ă κ and κ is regular, for some α ă κ, dom pXBα “ dom pXB. Let
p1 “ p æBα. Then p1 P P̄ , so there exists q P Pα`1 such that q æBα “ p1 “ p æBα “
p æB. Since dom q Ď Bα`1 Ď B, p and q agree on their common domain, so8.136

q “ p.
Hence |P | “

ř

αăκ |Pα| ď κ ¨ κ “ κ. 8.135

8.9 Independence of the continuum hypothesis

This section is devoted to questions involving the sizes of powersets, in particular
the size of P ω. Recall that |P ω| “ |R|, the set of real numbers, i.e., the continuum.
The continuum hypothesis, CH is the assertion that 2ω “ ω1, the first uncountable
cardinal. Recall that L |ù CH. Throughout this section we will be working in ZFC.

Suppose M is a transitive model of ZFC. As noted above, an M -generic filter
for the partial order (8.118) produces a subset of ω not in M . To violate CH we
want a partial order that produces a large number of new subsets of ω. Working in
M , suppose κ is an infinite cardinal. Let Pκ be defined as follows.

(8.137)

1. p P |Pκ| iff

1. p is finite;
2. p is a function;
3. dom p Ď ω ˆ κ;
4. im p Ď 2.

2. For p, q P |Pκ|
q ď pØ q Ě p.

For p P |Pκ| and α P κ, let

pα “ tpn, iq | pxn, αy, iq P pu.
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As before,8.118 if G is M -generic on Pκ, then, letting g “
Ť

G, g : ω ˆ κ Ñ 2. For
each α P κ, let gα : ω Ñ 2 be defined by

gαn “ gxn, αy.

A straightforward dense set argument shows that α ‰ α1Ñ gα ‰ gα1 , so in M rGs,
tgα | α P κu is a set of κ distinct functions from ω to 2.

If we begin by taking κ to be, say, ωM2 , and if ωM1 and ωM2 remain cardinals in
M rGs, then M rGs says that there are at least ω2 subsets of ω, so CH fails. In fact,
all cardinals of M remain cardinals in M rGs, as we will now show.

(8.138) Theorem [ZFC] Pκ has the countable chain condition.

Proof Suppose toward a contradiction that there exists an uncountable set of
pairwise incompatible conditions in Pκ. Since conditions are finite, by (8.128) there
exists d Ď ω ˆ κ and an uncountable X 1 Ď X such that for any distinct p, p1 P X 1,
dom pX dom p1 “ d. There are only finitely many functions from d into 2 (2|d|, to
be precise), so for some p2 : d Ñ 2, there is an uncountable X2 Ď X 1 such that
p æ d “ p2 for every p P X2. Let p and p1 be distinct elements of X2. Then since
p, p1 P X 1, dom pX dom p1 “ d, and p æ d “ p2 “ p1 æ d, so pY p1 is a function, hence
a member of Pκ, which is a common extension of p and p1; contradiction. 8.138

(8.139) Theorem [S] If ZFC is consistent then ZFC`␣␣␣CH is consistent.

Proof Suppose M is a transitive model of ZFC. Let P “ xPω2
y
M

. Let G be an
M -generic filter on P. Since xrPs has the countable chain conditiony

M
,8.138 forcing

with P preserves cardinals,8.127 so ωM1 and ωM2 are cardinals in M rGs. Let κ “ ωM2 .
Then κ “ ω

MrGs
2 . As shown above, letting g “

Ť

G, and letting gαpnq “ gxn, αy
for each α ă κ, α ÞÑ gα is an injection of κ into ω2 in M rGs. 8.139

The following theorem generalizes this to an arbitrary regular cardinal κ in
place of ω and also shows how to make 2κ exactly λ with appropriate assumptions
concerning cardinal exponentiation in the ground model:

(8.140) Theorem [ZFC] Suppose κ, λ are cardinals, κ is regular, 2ăκ “ κ, and
λκ “ λ. Then there is a partial order P such that

1. forcing with P preserves cardinals, i.e., for any cardinal η, ,P xpη̌q is a cardinaly;
and

2. ,P x2pκ̌q “ pλ̌qy.

Remark If we assume GCH then the conditions of the theorem are satisfied if κ
is regular and cf λ ą κ.

We could state an equivalent theorem in GB in terms of generic extensions of a
transitive model M of ZF, as we have done above, in (8.127) for example. As we
have stated the theorem, we have, in effect, placed ourselves in M , with ZFC as
our theory. Nevertheless, we will informally refer to V , V -generic filters G on P,
and generic extensions V rGs as things that exist. This practice is quite common
in discussions of forcing and should be understood in the context of “arguing in a
generic extension” as discussed above.§ 8.5.2

Proof Let P “ p|P|;ďq be as follows:
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1. |P| is the set of functions p such that

1. dom p Ď κˆ λ,

2. im p Ď 2, and

3. |p| ă κ.

2. q ď pØ p Ď q.

P is obviously ăκ-closed, hence ăκ-distributive, so8.134 all cardinals ď κ remain
cardinals in V rGs for any V -generic G on P.

It is also easy to show that P has the κ`-chain condition. For suppose P Ď |P| is
an antichain. Then κ and P satisfy the conditions of Theorem 8.135 and therefore
|P | ď κ ă κ`. Hence8.127 every cardinal ą κ remains a cardinal in V rGs.

Working in V rGs we now calculate 2κ “
ˇ

ˇ

κ2
ˇ

ˇ. Let g “
Ť

G. Since G is a filter
on P, any two members of G are compatible, so g is a function—the members of G
are, in effect, approximations to g. For any π P κˆ λ, the set of conditions p such
that π P dom p is dense, so dom g “ κˆ λ. For each α P λ, let gα P κ2 be given by

gαβ “ gxβ, αy,

for all β P κ. For any α, α1 P λ, the set of conditions p such that Dβ P κ
`

xβ, αy, xβ, α1y P

dom p^ pxβ, αy ‰ pxβ, α1q
˘

is dense, so gα ‰ gα1 . It follows that
ˇ

ˇ

κ2
ˇ

ˇ ě λ.
Still working in V rGs, we conclude by showing that

ˇ

ˇ

κ2
ˇ

ˇ ď λ. Suppose f : κÑ 2.
Let τ P V P be any name for f , i.e., f “ τG. Define τ̂ : κÑ |R P| by

τ̂pβq “ rrτpβ̌q“““ 0ss “ tp P |P| | p, τpβ̌q“““ 0u.

Note that for any β P κ,

fpβq “ 0ØGX τ̂pβq ‰ 0.

Now suppose f 1 : κ Ñ 2 and let τ 1 and τ̂ 1 be to f 1 as τ and τ̂ are to f , so for any
β P κ,

f 1pβq “ 0ØGX τ̂ 1pβq ‰ 0.

So if f ‰ f 1 then τ̂ ‰ τ̂ 1.

It is therefore enough to show that
ˇ

ˇ|R P|
ˇ

ˇ

κ
ď λ.

We first observe that for any a P R P, i.e., any regular open subset of P, if X is a
maximal set of incompatible elements of a, then a “ X “ XKK.41 Since P satisfies
the κ`-chain condition, there are at most |P|κ such sets X, so

ˇ

ˇ|R P|
ˇ

ˇ ď
ˇ

ˇ|P|
ˇ

ˇ

κ.
|pκ ˆ λq ˆ 2| “ λ, so

ˇ

ˇ|P|
ˇ

ˇ ď λăκ ď λκ “ λ, so
ˇ

ˇ|R P|
ˇ

ˇ ď λκ “ λ, so
ˇ

ˇ|R P|
ˇ

ˇ

κ
ď

λκ “ λ, as desired.
Therefore, in V rGs, 2κ “ λ. 8.140

41Otherwise some p P a is compatible with something in XK, so some q ď p is incompatible
with everything in X. But since a is open, q P a, so X is not a maximal set of incompatible
elements of a.
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8.10 Independence of the axiom of choice

The inspiration for Cohen’s proof of the unprovability of AC from ZF came from
previous work of Fraenkel and Mostowski showing the unprovability of AC from
the theory ZFA of sets with atoms.§ 6.7 The essential concept is that of a symmetric
extension, which in this case is a submodel of a generic extension.

Assume GBC. Let A be a complete boolean algebra, and let V A be the A-valued
universe. Suppose π is an automorphism of A. Define π̂ : V A Ñ V A by recursion
on rank so that

π̂x “ tpπ̂y, πaq | py, aq P xu.

By induction on α one shows that π̂ : V A
α

bij
Ñ V A

α , so π̂ : V A bij
Ñ V A. Clearly, π̂x̌ “ x̌

for all x.

(8.141) Theorem [GBC] Suppose A is a complete boolean algebra, π is an auto-
morphism of A, and π̂ is as above. Suppose ϕ is an s-formula with n free variables
and x0, . . . , xn- P V A. Then

rrϕpπ̂x0, . . . , π̂xn-qss “ πrrϕpx0, . . . , xn-qss.

Proof Straightforward. 8.141

Definition [GBC] As in Section 6.7 suppose Γ is a group of automorphisms of A.
For each x P V A let

symΓ x
def
“ tπ P Γ | π̂x “ xu.

Suppose F is a normal filter of subgroups of Γ. Then x P V A is F-symmetric
def
ðñ symΓ x P F . V ApFq def

“ the class of hereditarily F-symmetric members of
V A, i.e., the smallest M Ď V A such that for all x P V A, if x is F-symmetric and
domx ĎM , then x PM .

Definition [GBC] Suppose M is a model of ZFC and the above construction has been
carried out relative to M . Suppose G is an M -generic A-filter. Let M rG,Fs def

“ txG |
x PMApFqu.

Note that M Ď M rG,Fs Ď M rGs. We call M rG,Fs a symmetric extension of M .

(8.142) Theorem [GBC] Suppose M is a model of ZFC, A is an M -complete boolean
algebra in M , Γ P M is a group of automorphisms of A, F P M is a normal filter
on Γ, and G is an M -generic filter on A. Then M rG,Fs |ù ZF.

Proof The proof closely parallels that of the corresponding Theorem 6.32 in the
context of ZFA, set theory with atoms. We will “work in M rGs”. Let N “M rG,Fs.
N is a proper class definable from M , A, G, and F . It is transitive by design. For
α P Ord, let Nα “ N XMαrGs. Since for any π P Γ, π̂ : MαrGs Ñ MαrGs, it is
easy to see that symΓNα “ Γ, so Nα P N . It follows that N is almost universal.

Hence,3.214 N models ZF with the possible exception of Comprehension. The
proof that N satisfies each instance of the Comprehension schema is also essentially
the same as for ZFA. 8.142

(8.143) Theorem [S] Suppose ZF is consistent. Then ZF`␣␣␣AC is consistent.
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Proof We will show in particular that it is consistent with ZF that there exist a
set of reals that is infinite, but is finite in the sense (3.133.2). The construction
parallels that of the Fraenkel-Mostowski model used in the proof of Theorem 6.33.
Reals generic over a ground model M play the role of atoms.

It suffices to show in GB that for any transitive model M of ZF there is an
M -complete boolean algebra A P M , a group Γ P M of automorphisms of A,
and a normal filter F P M on Γ, such that for any M -generic filter G on A,
M rG,Fs |ù ␣␣␣AC. The following argument is to be understood in this way.

Working in M , let P “ p|P|;ďq be the following partial order for adding an
ω-sequence of Cohen reals.

1. p P |P| iff

1. p is a finite function;
2. dom p Ď ω ˆ ω; and
3. im p Ď 2.

2. For p, q P |P|
q ď pØ q Ě p.

Let A “ R P. Identify P in the usual way with its canonical embedding in A.
Suppose G is M -generic over P, and work in M rGs. Let g “

Ť

G. For n P ω,
let gn : ω Ñ 2 be given by

gnm “ gxn,my.

Let A “ tgn | ωu.
For n,m P ω and k P 2, let

an,m,k “
““

pxn,my, kq̌ PPPG
‰‰

“ tp P |P| | pxn,my, kq P pu.

For n P ω, let 9gn be the function with domain
␣

pm, kq̌
ˇ

ˇ pm, kq P ω ˆ 2
(

such that
for each pm, kq P ω ˆ 2

9gn
`

pm, kq̌
˘

“ an,m,k,

so 9gGn “ gn. Let
9A “ tp 9gn,1q | n P ωu,

so 9AG “ A.
Suppose ρ is a permutation of ω. Let πPρ be the automorphism of P given by

πPρ p “ tpxρn,my, kq | pxn,my, kq P pu,

and let πρ be the corresponding automorphism of A:

πρa “ tπ
P
ρ p | p P au.

Let Γ be the group of automorphisms of A of the form πρ, ρ a permutation of
ω, and for each π P Γ, let π̂ be the corresponding operation on MA. Clearly, for
n P ω, π̂ρ 9gn “ 9gρn, and π̂ 9A “ 9A.

For s P rωsăω, let Rs be the set of permutations ρ of ω such that ρn “ n for all
n P s, and let Fs “ tπρ | ρ P Rsu. Let F be the filter of subgroups of Γ generated
by the Fss. F is normal.

Clearly 9gn PM
ApFq for each n P ω, and 9A PMApFq. Let N “M rG,Fs. Then

N |ù ZF,8.142 gn P N for each n P ω, and A P N . Clearly, N |ù xrAs is infinitey, i.e.,
not equipollent with any finite ordinal.
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(8.144) Claim N |ù xrAs is finite in the sense (3.133.2).

Proof Suppose toward a contradiction that there exists f P N such that dom f ⫋ A

and im f “ A. Let 9f P MApFq be such that 9fG “ f . Let s P rωsăω be such that
symΓ f Ě Fs. Let S “ tgn | n P su. Since S is a finite subset of N , S P N .

Let A0 “ A, and for each n P ω, let An`1 “ fÐAn. Then, as in the proof of
(6.33), An`1 ⫋ An. Let Bn “ AnzAn`1. Then f æBn`1 : Bn`1

sur
Ñ Bn. Let n0 ą 0

be such that Bn0 X S “ 0, and let g be a member of Bn0`1. Then fpgq P Bn0 , so
fpgq ‰ g and fpgq R S. Let n, n1 be such that g “ gn and fpgq “ gn1 . Note that
n1 ‰ n and n1 R s. Let p P G be such that

p,Fcn 9f ^̂̂p 9gn, 9gn1qA PPP 9f.

dom p is finite, so there exists n2 P ω be such that n2 R s Y tn, n1u and @m P

ω xn2,my R dom p. Let ρ “ tpn1, n2q, pn2, n1qu, and let π “ πρ. Then rho P Rs, so
π P Fs; hence, π̂ 9f “ 9f . Also, π̂ 9gn “ 9gn and π̂ 9gn1 “ 9gn2 . Hence

π̂p,p 9gn, 9gn2qA PPP 9f.

By design, π̂p ∥ p. Let q be a common extension of p and π̂p. Then

q,Fcn 9f ^̂̂p 9gn, 9gn1qA PPP 9f ^̂̂p 9gn, 9gn2qA PPP 9f.

Since , gn1 ‰‰‰ gn2 , this is a contradiction. 8.144 8.143

8.11 Product forcing

Definition [ZF] Suppose P0,P1 are partial orders.

1. P0ˆP1
def
“ the partial order with domain |P0|ˆ|P1| and order relation ď given

by
xp0, p1y ď xp

1
0, p

1
1yØ p0 ď

P0 p10^ p1 ď
P1 p11.

2. Suppose G is a filter on P0 ˆ P1.

G0 def
“ tp0 P |P0| | Dp1 xp0, p1y P Gu

G1 def
“ tp1 P |P1| | Dp0 xp0, p1y P Gu.

(8.145) Theorem [GB] Suppose M is a transitive model of ZF and P0,P1 PM are
partial orders.

1. Suppose G0, G1 are filters on P0,P1, respectively. Let G “ G0 ˆG1. Then G
is a filter on P0 ˆ P1, G0 “ G0, and G1 “ G1.

2. Suppose G is a filter on P0ˆP1. Then G0, G1 are filters on P0,P1, respectively;
and G “ G0 ˆG1.

3. Suppose G0, G1 are filters on P0,P1, respectively. The following are equival-
ent:

1. G0 ˆG1 is M -generic.
2. G0 is M -generic and G1 is M rG0s-generic.
3. G1 is M -generic and G0 is M rG1s-generic.

4. Suppose G0, G1 are filters on P0,P1, respectively, and G0 ˆG1 is M -generic.
Then M rGs “M rG0srG1s “M rG1srG0s.
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Proof 1 Straightforward. 8.145.1

2 Suppose G is a filter on P0 ˆ P1. To show that G0 is a filter, suppose first that
p0 P G

0 and q0 ě p0. We must show that q0 P G0. Let p1 be such that xp0, p1y P G.
Then xq0, p1y P G, so q0 P G0. Next suppose p0, p

1
0 P G

0. We must show that p0, p
1
0

have a common extension in G0. Let p1, p
1
1 be such that xp0, p1y, xp

1
0, p

1
1y P G. Let

xp20, p
2
1y P G extend both xp0, p1y and xp10, p

1
1y. Then p20 P G

0 and extends both p0

and p10. Thus, G0 is a filter.
Similarly, G1 is a filter.
Obviously, G Ď G0 ˆ G1. Conversely, suppose p0 P G0 and p1 P G1. We

must show that xp0, p1y P G. Let p11, p
1
0 be such that xp0, p

1
1y, xp

1
0, p1y P G, and let

xp20, p
2
1y P G be a common extension. Then xp20, p

2
1y extends xp0, p1y, so xp0, p1y P G.

8.145.2

3 (3.2) and (3.3) have essentially the same content, so it suffices to show that
(3.1) is equivalent to (3.2)

3.1Ñ3.2 Suppose G “ G0 ˆG1 is M -generic. Recall8.145.1 that G0 “ G0 and
G1 “ G1. To show that G0 is M -generic, suppose X P M is dense in P0. Then
X ˆ |P1| is dense in P0ˆP1, so there exists xp0, p1y P GXpX ˆ |P1|q. Thus, p0 P X
and p0 P G

0 “ G0.
To show that G1 is M rG0s-generic, suppose X1 P M rG0s is dense in P1. Let

9X1 P M
P0 be such that 9XG0

1 “ X1. Note that M rG0s |ù xrX1s is dense in rP1sy.
Let p0 P G0 be such that p0,

P0 xp 9X1q is dense in pP̌1qy. Let X be the set of
xq0, q1y P |P0| ˆ |P1| such that

1. q0 K p0; or

2. q0 ď p0 and q0,
P0 q̌1 PPP 9X1.

Note that X P M . We claim that X is dense in P0 ˆ P1. To show this, suppose
xr0, r1y P |P0| ˆ |P1|. We must show that xr0, r1y has an extension in X. If r0 K p0

then xr0, r1y P X, so suppose r0 ∥ p0, and let s0 ď r0, p0. Then s0,P0 xp 9X1q is dense
in pP̌1qy, so for some q0 ď s0 and q1 ď r1, q0,P0 q̌1 PPP 9X1. Thus, xq0, q1y ď xr0, r1y
and xq0, q1y P X.

Thus, X P M is dense in |P0| ˆ |P1|. Since G is assumed to be M -generic,
there exists xq0, q1y P G X X. Note that q0 P G0 “ G0 and q1 P G

1 “ G1. Since
p0 P G

0, q0 is compatible with p0, so q0 ď p0 and q0,
P0 q̌1 PPP 9X1. Since q0 P G0,

M rG0s |ù rq1s PPP rX1s, so q1 P X1. Thus G1 meets X1. Since X1 is an arbitrary set
in M rG0s that is dense in P1, G1 is M rG0s-generic.

3.2Ñ3.1 Suppose G0 is M -generic and G1 is M rG0s-generic, and suppose
X PM is a dense subset of |P0| ˆ |P1|. We must show that G meets X.

Let X1 “ tp1 | Dp0 P G0 xp0, p1y P Xu. Note that X1 P M rG0s. We claim that
X1 is dense in P1. To show this, suppose q1 P |P1|. Let X0 be the set of p0 P |P0|

such that there exists p1 ď q1 such that xp0, p1y P X. X0 is dense in P0 because for
any q0 P |P0| there exists xp0, p1y P X that extends xq0, q1y. Hence G0 meets X0,
i.e., there exist p0 P G0 and p1 ď q1 such that xp0, p1y P X, which is to say, there
exists p1 ď q1 such that p1 P X

1. Since q1 is arbitrary, X1 is dense.
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Since G1 is M rG0s-generic there exists p1 P G1 such that p1 P X
1, i.e., for some

p0 P G0, xp0, p1y P X. Since xp0, p1y P G, G meets X. Since X is an arbitrary dense
set in M , G is M -generic. 8.145.3

4 Straightforward. 8.145.4 8.145

Let A0,A1,A be the regular algebras of partial orders P0,P1,P “ P0 ˆ P1. Let
the maps π0 and π1 from |P0|ˆ |P1| to |P0| and |P1|, respectively, be the projection
maps:

π0xp0, p1y “ p0

π1xp0, p1y “ p1.

Then the inverse image maps π0
Ð and π1

Ð are the dual embeddings of A0 and A1,
respectively, in A:

π0
ÐX0 “ X0 ˆ |P1|

π1
ÐX1 “ |P0| ˆX1,

where X0 and X1 are regular subsets of |P0| and |P1|, respectively.

(8.146) Theorem [GB] π0
Ð and π1

Ð are complete embeddings of A0 and A1 in
A.42

Proof Straightforward. 8.146

The following generalization of (8.132) illustrates the interplay of chain condi-
tions and closure properties in product forcing and is used in the next section.

(8.147) Theorem [GB] Suppose M is a transitive model of ZFC; P0,P1 P M are
partial orders; κ is a cardinal in M ; M |ù xrP0s satisfies the rκs`-chain condition
and rP1s is rκs-closedy; G0, G1 are filters on P0,P1, respectively; G “ G0 ˆ G1 is
an M -generic filter on P “ P0 ˆ P1; f PM rGs; and f : κÑM . Then f PM rG0s.

Proof Since M rGs |ù ZF, there exists A P M such that im f Ď A.43 Let 9f P MP

be such that 9fG “ f , and let p “ xp0, p1y P G be such that p,M,P 9f : κ̌Ñ Ǎ.
Arguing in M : For each α ă κ, let Bα be the set of q1 extending p1 in P1 such

that there exists a maximal antichain X below p0 in P0 such that for every q0 P X
there exists a P A such that xq0, q1y,P 9fpα̌q“““ ǎ.

(8.148) Claim In M : For each α ă κ, Bα is open and dense below p1.

Proof In M : Bα is clearly open. Suppose q1 ď p1. We will show that there exists
q11 ď q1 such that q11 P Bα. Using a fixed wellordering of A Y |P0| Y |P1|, we will
define by recursion sequences xqβ1 | β ă ηy and xqβ0 | β ă ηy such that for all
β, β1 ă η,

1. qβ1 ď q1 and qβ0 ď p0;

42A is the sum or coproduct A0‘A1 of A0 and A1 in the category of complete boolean algebras,
as P0 ˆ P1 is the product P0 b P1 of P0 and P1 in category-theoretic terminology. (Of course, to
be formally correct, the morphisms must also be specified in these definitions.)

43For example, let α PM XOrd be such that MrGs |ù xrf s : rκs Ñ Vrαs, and let A “ VM
α .
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2. for some a, xqβ0 , q
β
1 y,

P 9fpα̌q “ ǎ; and

3. if β ă β1 then qβ1 ě qβ
1

1 and qβ0 K qβ
1

0 .

Suppose xqβ1 | β ă γy and xqβ0 | β ă γy are as specified. Since P0 satisfies the
κ`-chain condition, γ ă κ`. If tqβ0 | β ă γu is a maximal incompatible set of
conditions below p0, the recursion is finished, and we let η “ γ. Otherwise, proceed
as follows.

1. Let r1 be the first (in the sense of the fixed wellordering posited at the outset)
member of |P1| that extends qβ1 for all β ă γ, which is possible because P1 is
κ-closed.

2. Let r0 be the first member of |P0| below p0 and incompatible with qβ0 for all
β ă γ.

3. Since xr0, r1y,P 9f : κ̌Ñ Ǎ, there exists xs0, s1y ď xr0, r1y such that for some
a P A, xs0, s1y,P 9fpα̌q “ ǎ. Let xqγ0 , q

γ
1 y be the first such pair xs0, s1y in

lexicographic order (using the fixed wellorderings of |P0| and |P1|).

As previously noted, γ is always ă κ`, so at some point the construction terminates
with η ă κ`. Let X “ tqβ0 | β ă ηu. X is a maximal antichain in P0 below p0.
Let q11 extend qβ1 for all β ă η. For each β ă η there exists a P A such that
xqβ0 , q

β
1 y,

P 9fpα̌q “ ǎ, and xqβ0 , q
1
1y,

P 9fpα̌q “ ǎ, as well. Hence q11 P Bα, as desired.
8.148

Still in M : Using AC again, and using the κ-closure of P1, we will show that
B “

Ş

αăκBα is dense below p1. To this end, suppose q01 ď p1 is given, and
construct a decreasing κ-sequence xqα1 | α ă κy such that for each α ă κ, qα1 P Bα.
Then let q11 be a common extension of every qα1 . q11 is an extension of p1 in B.

Let xXq1
α | q1 P B^α P κy and xaq0,q1α | q0 P X

q1
α ^ q1 P B^α P κy be such

that for each q1 P B and α P κ, Xq1
α is a maximal antichain below p0, and for every

q0 P X
q1
α , xq0, q1y,P 9fpα̌q“““ ǎq0,q1α .

In M rGs: Since G1 is M -generic over P1 and p1 P G1, there exists q1 P G1 XB.
In M rG0s: Define g : κÑ A as follows. Given α ă κ, since p0 P G0 and Xq1

α is
a maximal antichain below p0, G0 contains exactly one condition in Xq1

α , say qα0 .
Let gpαq “ a

qα
0 ,q1
α . Note that g P M rG0s, since that’s our whole universe for this

part of the discussion. Note also that xqα0 , q1y,
P 9fpα̌q“““ ǎ

qα
0 ,q1
α .

In M rGs: For each α ă κ, qα0 P G0, so xqα0 , q1y P G, and fpαq “ a
qα
0 ,q1
α “ gpαq.

I.e., f “ g; hence, f PM rG0s. 8.147

8.11.1 Easton forcing

We will use the notion of product forcing to prove the following theorem, which
shows that the only constraints imposed by ZFC on the function κ ÞÑ 2κ, for
regular cardinals κ, are the obvious condition of monotonicity and the condition
that κ ă cf 2κ.3.157.1 Theorem 8.149 shows how to adjust the sizes of powersets of
the members of a set of regular cardinals and is a limited version of the celebrated
theorem of Easton, which applies the technique to the proper class of all regular
cardinals. Easton’s theorem generalizes a previous result of Solovay dealing with
finite sets of regular cardinals.
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(8.149) Theorem [GBC] Suppose M is a transitive model of ZFC`GCH and F PM
is a function whose domain consists of regular cardinals of M and whose values are
cardinals of M , such that M |ù xfor all κ, λ P dom rF s,

1. if κ ď λ then rF sκ ď rF sλ; and

2. κ ă cf rF sκy.

Then there exists a partial order P PM such that

1. for every κ, λ, if M |ù xrκs is a cardinal with cofinality rλs, then ,M,P xpκ̌q is
a cardinal with cofinality pλ̌qy; and

2. ,M,P x@κ P dom pF̌ q 2κ “ pF̌ qκy.

Remark We could state the conclusion of the theorem informally in terms of
generic extensions thusly:

There exists a generic extension M rGs such that M rGs has the same cardinals
and cofinalities as M and for all κ P domF , M rGs |ù 2rκs “ rF sκ.

Proof Let D “ txκ, β, αy | κ P domF ^β ă κ^α ă F κu, and for any regular
cardinal ν, let

1. Dďν “ txκ, β, αy P D | κ ď νu; and

2. Dąν “ txκ, β, αy P D | κ ą νu.

Let P “ pP ;ďq, where ď“Ě and P is the set of functions p : D á 2 such that

(8.150) for every regular cardinal ν, | dom pXDďν | ă ν.

Given a regular cardinal λ, for each p P P , let

1. pďλ “ p æDďλ; and

2. pąλ “ p æDąλ.

Let

1. Pďλ “ tpďλ | p P P u; and

2. Pąλ “ tpąλ | p P P u.

For κ P domF , let

1. pκ “ tpxβ, αy, iq | pxκ, β, αy, iq P pu;

2. Pκ “ tpκ | p P P u; and

3. Pκ “ pPκ;ďq, where ď“Ě.

Note that the cardinality condition (8.150) implies that |pκ| ă κ, so Pκ is the partial
order used in the proof of Theorem 8.140 with λ “ F κ, and the analysis used there
is applicable.

Suppose G is an M -generic filter on P . Let g “
Ť

G. Then g : D Ñ 2
(dom g “ D). For each κ P domF and α ă F κ we let gκα P κ2 be given by

gκαβ “ gxκ, β, αy.
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As before, for each κ P domF and α, α1 P F κ, if α ‰ α1 then gκα ‰ gκα1 , so

(8.151) M rGs |ù x|rκs2| ě |rF κs|y.

It remains to be shown that

M rGs |ù x|rκs2| ď |rF κs|y

and that the cardinals and cofinalities of M rGs are are exactly those of M . Toward
this end we note that p ÞÑ xpďλ, pąλy is an isomorphism of P with Pďλ ˆ Pąλ

for any regular cardinal λ. Thus, for any regular cardinal λ in the sense of M ,
M rGs “M rGďλsrGąλs.

(8.152) Claim In the sense of M : For any regular λ, Pďλ satisfies the λ`-chain
condition.

Proof Arguing in M : Note that if p, p1 P Pďλ agree on their common domain,
then pY p1 is a common extension of p, p1. Thus, if X Ď Pďλ is an antichain then
for any p, p1 P X, if p ‰ p1 then Dx P dom pXdom p1 ppxq ‰ p1pxq. Since GCH holds,
2ăλ “ λ. The members of X are functions into 2 of size less than λ. Thus, (8.135)
applies with λ for κ, and |X| ď λ. 8.152

(8.153) Claim In the sense of M : For any regular λ, Pąλ is λ-closed.

Proof Arguing in M : Suppose X is a set of pairwise compatible elements of Pąλ

and |X| ď λ. Let p “
Ť

X. Then p : Dąλ á 2. Suppose ν is a regular cardinal. If
ν ď λ then dom pXDďν “ 0, and if ν ą λ then | dom pXDďν | ď

ř

qPX | dom q X

Dďν | ă ν, because |dom q XDďν | ă ν for each q P X,8.150 |X| ď λ, λ ă ν, and ν is
regular. Hence, (8.150) is satisfied, so p P Pąλ, and p ď q for all q P X. 8.153

To show that cardinals and cofinalities are preserved in the extension to M rGs it
suffices to show that every regular cardinal in M is regular in M rGs, i.e., if M |ù xrκs
is a regular cardinaly then M rGs |ù xcf rκs “ rκsy. Suppose toward a contradiction
that κ is regular in M , λ ă κ, f : λ Ñ κ, f P M rGs, and im f is cofinal in κ. We
apply (8.147) with P0 “ Pďλ and P1 “ Pąλ to conclude that f P M rGďλs. But
since Pďλ satisfies the λ`-chain condition, it satisfies the κ-chain condition, so by
(8.127) κ is regular in M rGďλs. Hence im f is not cofinal in κ; contradiction.

As noted above,8.151 for each κ P domF , M rGs |ù x|rκs2| ě |rF κs|y. By virtue of
the preservation of cardinals, it follows that M rGs |ù x2rκs ě rF κsy. We now show
that M rGs |ù x2rκs ď rF κsy. Again we use (8.147), this time with P0 “ Pďκ and
P1 “ Pąκ, to conclude that κ2 XM rGs “ κ2 XM rG0s, where G0 “ Gďκ. We will
show that |κ2|MrG0s ď F κ.

Suppose f P κ2 XM rG0s, and suppose 9f P MP0 is such that 9fG0 “ f . Let
f0 PM be the function on κ defined by the condition that

f0pαq “ tp P |P0| | p,
P0p 9f : κ̌Ñ 2̌ ^̂̂ 9fpα̌q“““ 0̌qu.

Then for any α P κ, fpαq “ 0 iff G0 meets f0pαq. Thus if f, g P κ2 XM rG0s and
f ‰ g then f0 ‰ g0. Note that each f0pαq is a regular open subset of P0, i.e., a
member of the regular algebra R P0. It follows that |κ2|MrG0s ď |κR P0|

M , so we
must show that

(8.154) |κR P0|
M ď F κ.
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In M : Let λ “ F κ. Let P0 “ |P0|. We first compute |P0|. Let D0 “ Dďκ.
Clearly, |D0| “ λ. For size computations, we will refer to a fixed ordering of D0

of length λ, and we will identify subsets of D0 with subsets of λ in this way. In
general, given a set X and a cardinal ν, we let rXsν def

“ the set of subsets of X of
size ν, rXsăν def

“ the set of subsets of X of size ă ν, etc.
Suppose p P P0. Then p : X Ñ 2 for some X P rD0s

ăκ. For a given X, the
number of conditions p with domain X is no greater than 2|X| ď 2κ ď λ, by GCH.
Thus |P0| ď |rD0s

ăκ| ¨ λ “ |rλsăκ| ¨ λ “ |rλsăκ|.
Since cf λ ą κ, any X P rλsăκ is bounded below λ, and is therefore in P ν for

some ν ă λ. By GCH, 2ν ď λ for each ν ă λ, so |rλsăκ| “ λ.
Thus, |P0| “ λ. Next we compute |RP0|. Suppose a P R P0, and suppose

X Ď a is a maximal antichain in a. Then a “ X. Since P0 satisfies the κ`-chain
condition, |X| ď κ. Thus, X ÞÑ X maps rP0s

ďκ onto R P0, so |R P0| ď |rλs
ďκ|.

Since cf λ ą κ, any X P rλsďκ is bounded below λ, so by a similar computation
to the preceding, |rλsďκ| “ λ. Thus, |RP0| “ λ. Similar arguments show that
|κR P0| “ λ.

The foregoing argument in M justifies (8.154) and this completes the proof.
8.149

8.12 Class forcing

As mentioned above, Easton’s theorem per se adjusts the powersets of all regular
cardinals at once. To accomplish this by forcing requires the use of a partial order
P which is a proper class, to which the theory of forcing we have presented does
not immediately apply.

(8.155) An indication of the issues that must be addressed in a general theory of
forcing with proper classes is given by consideration of the following two partial
orders.

1. Let P consist of all finite functions p : ω á Ord. It is easy to see that forcing
with P adds a function g : ω sur

Ñ Ord. Thus, if G is M -generic on P then M rGs
violates an instance of the Collection schema.44

2. Recall the partial order Pκ,8.137 forcing with which adds distinct functions gα :
ω Ñ 2 for α P κ. Let POrd be defined analogously as the class of finite functions
p : ω ˆ Ord á 2. Forcing with POrd adds distinct functions gα : ω Ñ 2 for
α P Ord. If G is M -generic on POrd then M rGs does not satisfy the Power
axiom, as P ω is a proper class in M rGs.

If P is merely included in M but is not in M , it is not sufficient to consider the
structure pM ; Pq as a ground model; rather we must deal with the structure pM ; P
,Pq, with P treated as a unary predicate.

Definition [GB] sP is the signature s of basic set theory expanded by the addition of
the new unary predicate symbol, and ZFP is the extension of ZF in which the axiom
schemas are stated for all sP-formulas, not just for s-formulas, and P is stated to
be a partial order with a maximum element (which we typically denote by ‘1’).45

44Like set forcing, proper class forcing does not add new ordinals.
45The requirement of a maximum element is a convenience. The utility of this will first be

apparent in the definition of x̌ in (8.157). (See (8.13) and the footnote to (8.15).) If we wish to
use a partial order that does not naturally have a maximum element, we simply add one.
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Thus we suppose a transitive class M and partial order P Ď M such that pM ; P
,Pq |ù ZFP. Note that in this case (since pM ; P,Pq |ù ComprehensionP) for every
x P M , x X P P M . Thus, if P R M then P Ę x for any x P M . In particular, P is
not included in any Vα in the sense of M . Thus, P is a proper class in the sense of
M for the “usual” reason: it is “bigger than any set”, or “goes all the way to the
top of the universe” in the sense of M .

Note that if P is an element of M then ZFP is not a significant extension of ZF,
inasmuch as ZF`DDDu@v pv PPPuØØØPvq$ZFP, so we may work directly with ZF in this
case. On the other hand, it should be understood that when P RM , the statement
that M is a model of ZF should generally be taken to mean that pM ; P,Pq |ù ZFP.

Independent of whether P is a set or a proper class in the sense of M , M itself
may be a set or a proper class (in the sense of V , as it were). For some purposes,
e.g., if we wish to be able to prove that M -generic filters exist, it is convenient to
suppose that M is a countable set. Obviously, we are “outside M” when we do
this. On the other hand, the demonstration that the forcing relation and related
objects are definable over M essentially requires their construction “within M”,
i.e., as though M “ V .

(8.156) Theorem [GB] There exists a Σ1 sP-formula θ with two free variables such
that for any transitive model pM ; P,Pq of ZFP, letting

Xα “ tx PM | θpM ;P,Pqpα, xqu

for each α P OrdXM ,

1. X0 “ 0;

2. Xα “
Ť

βPαXβ for limit α; and

3. Xα`1 “M X PpXα ˆ |P|q, i.e., the class of subsets of Xα ˆ |P| in M .

Proof If P is a set in M then (8.156.1–3) describes a recursion of the conventional
type, and txα, xy | x P Xαu is definable over pM ; P,Pq in the usual way, i.e., we take
θ to be xthere exists a sequence xXβ | β ď pαqy satisfying (8.156.1–3) with P for P
and pxq P Xpαqy.46 The reason this works is that for any α PM , xXβ | β ď αy PM .
If P RM , the recursion must be handled differently:

1. If M is itself a proper class then each Xα for α ą 0 is a proper class, and
a different treatment is required simply to show that the indicated sequence
exists.

2. If M is a set, we still have to show that the sequence is definable over M ,
which is essentially the same problem.

We therefore take θ to be xthere exists m P M and a sequence xXβ | β ď pαqy

satisfying (8.156.1–3) with |P| Xm for |P|, and pxq P Xpαqy. Suppose m,m1 P M
and m Ď m1. Let Xm

α and Xm1

α be the sets defined by (8.156.1–3) with m and
m1 respectively for M . It is easy to show by induction that for every α P M ,
Xm
α Ď Xm1

α , and that the classes Xα “
Ť

mPM Xm
α “ tx P M | θpM ;P,Pqpα, xqu

satisfy (8.156.1–3). 8.156

46In this case there is also a Π1 definition of the sequence, viz., xfor every sequence xXβ | β ď pαqy

satisfying (8.156.1–3), pxq P Xpαq
y.
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The following definition is to be understood in light of (8.156), which is impor-
tant, not just because it demonstrates the existence of an indexed family M such
that, letting MP

α “Mrαs, (8.156.1–3) are satisfied, but also because it shows that
M, which is obviously uniquely specified by (8.156.1–3), is definable over pM ; P,Pq.

Definition [GB] Suppose pM ; P,Pq is a transitive model of ZFP. For each α P
OrdXM , let

MP
α “ tx PM | θpM ;P,Pqpα, xqu,

where θ is the formula referred to in (8.156). Thus,

1. MP
0 “ 0;

2. MP
α “

Ť

βPαM
P
β for limit α;

3. MP
α`1 “M X PpMP

α ˆ |P|q.

MP def
“

Ť

αPM MP
α.

(8.157) Definition [GB] Suppose pM ; P,Pq is a transitive model of ZFP. We define
a mapping x ÞÑ x̌ from M into MP by P-recursion:

x̌
def
“ txy̌,1y | y P xu.47

Note that if P is a proper class for M then txp̌, py | p P |P|u—which we would
ordinarily use as a forcing term denoting the generic filter—is also a proper class
and is therefore not a term.

Recall8.16 the definition of sV as the signature obtained from s by the addition of
a unary predicate symbol V. The following definition adds the new symbol P and
a new symbol G to the language LM,P defined previously.8.17

Definition [GB] The forcing language LM,P is constructed from the signature sM,P,
which is sV extended by the addition of the members of MP as constants, and P and
G as predicate symbols.

If M “ pM ; P,Pq is a transitive model of ZFP and G is a filter on P we define τG

for τ PMP, M rGs, and MrGs as before,8.18 with PMrGs “ P and GMrGs
“ G.

A theory of forcing over a transitive model M “ pM ; P,Pq of ZFP requires a
relation ,M,P satisfying (8.29) with the requisite definability over M. Recall that if
P PM we are able to define8.27 ,M,P for sentences τ PPP τ 1 and τ “““ τ 1 by recursion on
rank within M . Thus this relation is ∆1 over M . If P is a proper class in the sense
of M this straightforward approach does not work, because to ascertain whether,
say, p, τ PPP τ 1, we must know whether r, τ0“““ τ for all r ď q ď p, which is generally
a proper class of conditions.

We must impose a condition that guarantees, in effect, that the recursion can be
effected by looking at sets of extensions, rather than all extensions. The following
condition is sufficient, and we will see that it is also necessary if generic extensions
are to satisfy Collection.

47If P is a set we could let x̌
def
“ txy̌, py | y P x^ p P |P|u, but this will clearly not do if P is a

proper class, so it is useful that P has a greatest element.
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Definition [GB] Suppose pM ; P,Pq is a transitive model of ZFP. P is pretame

(vis-à-vis M)
def
ðñ for every m P M , m-indexed family D “ rDris | i P ms Ď M

definable over pM ; P,Pq, and p P |P|, if Dris is predense below p for every i P m,
then there exist q ď p and an m-indexed family d “ rdris | i P ms P M , such that
@i P m pdris Ď Drisq and dris is predense below q.

In other words, in the sense of pM ; P,Pq, every definable set-indexed family of
subclasses of |P| predense below p may be refined to an identically indexed family
of subsets of |P|, predense below some fixed extension of p.

Recall that A Ď |S| is definable over a structure S iff there is a formula ϕ in
the signature of S with free variables u, u0, . . . un- , and a tϕu-satisfaction relation
S for S, such that for some a0, . . . , an- P |S|,

A “
␣

a P |S|
ˇ

ˇ |ùS ϕ
“

u u0 ¨ ¨ ¨ un-

a a0 ¨ ¨ ¨ an-

‰(

.

It is therefore equivalent to say that P is pretame vis-à-vis M iff pM ; P,Pq |ù ZFP,
which is ZFP extended by the following axiom schema:

Pretameness

xSuppose p P |P| and @i P m@q ď p Dr ppϕqpi, r, a0, . . . , an-q^ q ∥ rq. Then there
exist q ď p and d “ xdi | i P my such that for all i P m, @r P di pϕqpi, r, a0, . . . , an-q

and @q1 ď q Dr P di q
1 ∥ r.y, where ϕ is any sP-formula with n` 2 free variables.

Note that any transitive model M of ZF with a partial order P P M is naturally a
model of ZFP, because the pretameness condition for P is trivially satisfied if P is
a set, so the present formulation is not specific to class forcing, but subsumes the
more usual sort of forcing, which we may refer to for specificity as set forcing.

8.12.1 The necessity of pretameness

We have introduced pretameness as a condition on a partial order P Ď M that
renders the recursive definition of ,M,P definable over pM ; P,Pq. We will see that
it also guarantees that the first of the two potential defects of proper class forcing
mentioned at the beginning of this section8.155.1 does not occur. In fact, if pM ; P
,Pq |ù ZFP then ZF´ is P-valid, where ZF´ consists of all the axioms of ZF other
than Power.48

As noted above, pretameness is necessary as well as sufficient for this. For
suppose M “ pM ; P,Pq is a countable transitive model of ZFP and for all M-
generic filters G on P, M rGs |ù ZF´. Suppose toward a contradiction that m PM ,
D “ rDris | i P ms Ď M is definable over M, p P |P|, and Dris is predense below
p for every i P m, but there do not exist q ď p and an m-indexed family d in
M such that for all i P m, dris is included in Dris and is predense below q. Then
in particular for any ordinal α P M , for any q ď p, there exists i P m such that
DrisXMα is not predense below q, i.e. there exists r ď q such that r K pDrisXMαq.
Thus tr P |P| | Di P m pr K pDris XMαqqu is dense below p for each α P M , and it
is clearly M-definable.

Suppose G is M-generic on P and p P G. Working in M rGs, which satisfies ZF´

by assumption, let f : m Ñ Ord be defined by the condition that for each i P m,
fpiq is the least ordinal α such that GXDrisXMα ‰ 0. Since each Dris is predense
below p, G meets each of these, so f is total. By virtue of Collection, f is bounded,

48We will call a partial order P tame iff it is pretame and in addition ,P Power.
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so there exists α P Ord such that for all i P m, G XDris XMα ‰ 0. On the other
hand, by the argument in the preceding paragraph, there exists r P G and i P m
such that r K pDris XMαq, so GXDris XMα “ 0.

8.12.2 Pretame forcing

(8.158) Definition [GB] Suppose pM ; P,Pq is a transitive model of ZFP. AM,P

def
“ the class of sentences of LM,P of the form τ PPP τ 1 or τ “““ τ 1, where τ, τ 1 PMP. In

other words, AM,P consists of the atomic sentences of LMP other than those of the
form VVVpτq.

(8.159) Theorem [GB] There exists a Π1 sP-formula θ with two free variables such
that for any transitive model pM ; P,Pq of ZFP, if we let

p,M,P ϕ
def
ðñ θpM ;P,Pqpp, ϕq

for any p P |P| and ϕ P AM,P, then for all τ, τ 1 PMP

1. p,M,P τ PPP τ 1Ø@q ď p Dr ď q Dxτ0, r
1y P τ 1 pr ď r1^ r,M,P τ0“““ τq,

and

p,M,P τ “““ τ 1Ø@q ď p@xτ0, r
1y P τ pq ď r1Ñ q,M,P τ0 PPP τ

1q

^@q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q,M,P τ0 PPP τq.

2.

Proof See Note 10.29.

(8.160) Theorem 8.159 provides the definition of the forcing relation ,M,P for
sentences in AM,P over an arbitrary transitive model pM ; P,Pq of ZFP. We complete
the definition of ,M,P as for set forcing,8.29 with the added stipulation that

p,M,P GpτqØ@q ď p Dr ď q Dr1 P |P| pr ď r1^ r,M,P τ “““ ř1q.

(8.32), and (8.34) go through essentially unchanged except for this addition. Like-
wise, we have (8.36) and (8.38).

Definability considerations are also the same as before, with the inconsequential
exception that the forcing relation for sentences in AM,P is now only asserted to be
Π1 over M, not ∆1 as in the case of set forcing.

Theorems 8.44 and 8.45 on generic extensions are also valid in the general case.
At this point in the discussion of forcing above we introduced the boolean-

valuation approach and developed the basic theory mostly in that framework. That
approach does not work directly for class forcing, as the “elements” of the regular
algebra R P, when P is a proper class, are themselves proper classes, and thus are
not elements per se, but it is easy to translate it into order-theoretic terms, and we
will use the results of this analysis to the extent that it is applicable when P is a
proper class in M and pM ; P,Pq models ZFP.

For this purpose, rrϕss should be translated as tp | p,ϕu, and xpyq (for x, y in
the imagined structure MRP ) should be translated as xÑtyu “ tp P |P| | @q ď
p Dr ď q Dxy, r1y P x pr ď r1qu. Thus, for example, (8.65.3) becomes

y P domxÑtp | @q ď p Dr ď q Dxy, r1y P x r ď r1u Ď tp | p, y PPPxu,
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i.e.,
y P domx^@q ď p Dr ď q Dxy, r1y P x r ď r1Ñ p, y PPPx,

but it does not have to be this complicated. It is neater simply to show that for all
y PMP and p P |P|,

xy, py P xÑ p, y PPPx.

For suppose this is true and suppose y P domx and @q ď p Dr ď q Dxy, r1y P x r ď r1.
Then @q ď p Dr ď q Dr1 pr ď r1^ r1, y PPPxq. Thus, the class of conditions r such
that r, y PPPx is dense below p, so8.36 p, y PPPx.

The following corresponds to (8.65) and (8.74).

(8.161) Theorem [GB] Suppose pM ; P,Pq is a transitive model of ZFP, x, y, z PMP,
and p P |P|.

1. p,x“““ yØ p, y“““x.

2. ,x“““x.

3. xy, py P xÑ p, y PPPx.

4. If ϕ is a formula with the single free variable u, then

1. p,
`

x“““ y ^̂̂ ϕpxq
˘

Ñ p,ϕpyq.
2. p,DDDuPPPxϕØ@q ď p Dxy, r1y P x Dr ď q pr ď r1^ r,ϕpyqq.
3. p,@@@uPPPxϕØ@q ď p@xy, r1y P x pq ď r1Ñ q,ϕpyqq.

8.12.3 Pretame generic extension preserves ZF´

The following is the analog of (8.90).

Definition [GB] Given x, y PMP,

1. tx, yuP def
“ txx,1y, xy,1yu. txuP def

“ tx, xuP “ txx,1yu.

2. px, yqP def
“ ttxuP, tx, yuPuP.

(8.162) Theorem [GB] Suppose pM ; P,Pq is a transitive model of ZFP. Then every
axiom of ZFsV

with the possible exception of Power is a MP-validity, where ZFsV

is
ZF with the axiom schemas extended to all sV-formulas.

Proof See Note 10.30.

We have now seen that the assumption of pretameness of a partial order P in
the context of a structure M “ pM ; P,Pq allows us to define ,M,P within M, and it
allows us to show that M |ù ZF´. The Power axiom is not valid for every pretame
class forcing, so to obtain M |ù ZF we must explicitly assume it.

Definition [GB] Suppose M “ pM ; P,Pq is a transitive model of ZFP. Then M is

tame
def
ðñ ,M,P Power.

If M is countable then there are only countable many subsets of M definable over
M “ pM ; P,Pq, so for every p P |P| there exists an M-generic filter on P, and we
may “argue with generic extensions” over countable models. Likewise, the method
of “arguing in a generic extension”8.5.2 is applicable in class forcing as in set forcing.
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(8.163) Theorem [GB] Suppose pM ; P,Pq is a transitive model of ZFP`AC. Then
,M,P ZFC´, where it is to be understood that the axiom schemas of ZFC´ are ex-
tended to all sV-formulas.

Proof The proof given of (8.112) by arguing in a generic extension works. 8.163

As a simple and useful application of class forcing we will show how to generically
add a wellordering of the universe to any transitive model of ZFC without adding
any new sets.

(8.164) Theorem [GBC] Suppose pM ; Pq is a transitive model of ZFC. Then there
is a partial order P definable over pM ; Pq such that M “ pM ; P,Pq is tame, and for
any M-generic filter G on P, there is a wellordering of M rGs definable over MrGs.

Specifically (and more formally), ,M,P xV “ V and
Ť

G : Ord bij
Ñ V y.

Proof Let P consist of all injections p PM such that dom p is an ordinal, ordered
by reverse inclusion. To show that P is pretame, suppose p P |P|, κ is a regular
cardinal in M , and rDrγs | γ P κs is a κ-indexed family of subclasses of |P|, each
predense below p, definable over M .

Let f : κÑ OrdM be defined as follows over M .

1. f 0 is the least δ P Ord such that p P Vδ.

2. If Limα then fα “
Ť

βăα fβ.

3. Given fα, fpα` 1q is δ` 1, where δ is the least ordinal greater than fα such
that for all q P VfαX |P| and all γ ă κ, if there exists r ď q and s P Drγs such
that r ď s, then there exist r, s P Vδ such that r ď q, s P Drγs, and r ď s.

Note that f is strictly increasing. Let δ0 “ supαăκ fα, and let X “ Vδ0 X |P|. By
assumption, for each γ ă κ, Drγs is predense below p.

Hence, for any q ď p, if q P X then there exist r, s P X such that r ď q, s P Drγs,
and r ď s.

Since M |ù AC we may posit some fixed wellordering of X, which we use to
define sequences xpα | α ă κy and xsα | α ă κy in X such that

1. xpα | α ă κy is a decreasing sequence below p.

2. For each α P κ, sα P Drαs and pα ď sα.

Suppose α ă κ and we have defined pβ for all β ă α.

1. If α “ 0 let q “ p0.

2. If α “ β ` 1 let q “ pβ .

3. If Limα, let q “
Ť

βăα pβ . Since κ is regular in M and f is strictly increasing,
there exists δ ă δ0 such that tpβ | β ă αu Ď Vδ. It follows that

Ť

βăα pβ P
Vδ`1 Ď Vδ0 , so q P X.

In each case, let pα be the first r P X such that r ď q^Ds P X ps P Drαs^ r ď sq,
and let sα be the first s P X with this property.

Now let q “
Ť

αăκ pα, and let d be the κ-indexed family defined by the condition
that drγs “ tsγu. Note that drγs Ď Drγs. By construction, for each γ P κ, pγ ď sγ ,
so q ď sγ , and drγs is therefore trivially predense below q.
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Since M “ pM ; P,Pq is pretame, ,M,P is well defined, and ,M,P ZFC´. Since
P is α-closed for every α P OrdM , forcing with P adds no new functions from α
into M . Since ,M,P AC, forcing with P adds no new subsets of M , and therefore
adds no new sets whatsoever, because any new set of minimal rank would be a new
subset of M . Thus, ,M,P Power, so ,M,P ZFC (P is tame).

For any α P OrdM and for any x P M , tp P |P| | α P dom pu and tp P |P| | x P
im pu are dense in P. Hence, ,M,P x

Ť

G : Ord bij
Ñ Vy. 8.164

8.12.4 Easton’s theorem

We are now in a position to state and prove Easton’s theorem on adjusting the size
of 2κ for all regular cardinals κ.

(8.165) Theorem [GBC] Suppose pM ; Pq is a transitive model of ZFC ` GCH,
and there is a wellordering of M definable over M . Suppose F Ď M is a function
definable over pM ; Pq, and let F be a defined operation symbol for F , so that FpM ;Pq “

F . Suppose domF consists of regular cardinals of pM ; Pq and imF consists of
cardinals of pM ; Pq, such that pM ; Pq |ù xfor all κ, λ P dom F,

1. if κ ď λ then Fκ ď Fλ; and

2. κ ă cf Fκy.

Then there exists a partial order P ĎM definable over M such that

1. M “ pM ; P,Pq is tame;

2. for every κ, λ, if M |ù xrκs is a cardinal with cofinality rλsy, then ,M,P xpκ̌q is
a cardinal with cofinality pλ̌qy; and

3. ,M,P x@κ P dom F 2κ “ Fκy.

Proof Working in M we define the following classes. As usual, any reference to a
defined proper class is to be interpreted by means of the definition as a statement
about sets. Let D “ txκ, β, αy | κ P domF ^β ă κ^α ă F κu, and for any
cardinal ν, let

1. Dăν “ txκ, β, αy P D | κ ă νu;

2. Dďν “ txκ, β, αy P D | κ ď νu;

3. Děν “ txκ, β, αy P D | κ ě νu; and

4. Dąν “ txκ, β, αy P D | κ ą νu.

Since dom F consists of regular cardinals, if ν is singular then Dďν “ Dăν and
Děν “ Dąν .

Let P “ pP ;ďq, where ď“Ě and P is the set of functions p : D á 2 such that

for every regular cardinal ν, | dom pXDďν | ă ν.

Given a cardinal λ, for each p P P , let păλ “ p æDăλ, etc. Let Păλ “ tpăλ | p P P u,
etc. As before, p ÞÑ xpďλ, pąλy and p ÞÑ xpăλ, pěλy are isomorphisms of P with
Pďλ ˆ Pąλ and Păλ ˆ Pěλ for any cardinal λ.

(8.166) Claim M “ pM ; P,Pq is pretame.
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Proof Suppose p P |P| and rDrγs | γ P κs is a κ-indexed family of subclasses of |P|
predense below p, definable over M (i.e., over M , since P is definable over M).

Let κ0 be a regular cardinal in M such that κ ď κ0 and p P Pďκ0 . For n P ω,
define κn by recursion so that κn`1 is the least regular cardinal in M such that
F pκnq ď κn`1. Note that κ0 ă κ1 ă ¨ ¨ ¨ . Let λ “ supnPω κn. Note that cf λ “ ω.

Let P0 “ Păλ. Note that P0 is also Păλ
1
, where λ1 “ xλ`y

M
. Let P1 “ Pěλ, and

note that P1 is also Pěλ
1
. Since M |ù GCH, |P0| “ λ, and we let

@

xpα, iαy
ˇ

ˇα ă λ
D

be an enumeration in order type λ of the set of pairs xp1, iy such that p1 P P0, p1 ď p,
and i P κ.

P1 is λ-closed, and we define a decreasing sequence xsα | α P λy in P1, and a
sequence xrα | α P λy in P , such that for all α P λ,

1. if α “ 0 then sα “ 0;

2. sα`1 is the first (with respect to the definable wellordering of M posited in
the statement of the theorem) s ď sα in P1 such that there exists r P Driαs
and t ď pα in P0 such that tY s ď r, and let rα be the first such r (for s);

3. if Limα then sα “
Ť

βăα sβ .

Let s “
Ť

αPλ sα, and let R “ trα | α P λu.
Let q “ p Y s. For each i P κ, let dris “ R X Dris. We will show that dris is

predense below q. To this end, suppose q1 ď q. Then q1 “ p1 Y s1, with p1 P P0

and s1 P P1, p1 ď p and s1 ď s. Let α P λ be such that pα “ p1 and iα “ i. Then
rα P dris, and there exists t ď p1 in P0 such that tY sα`1 ď rα. Thus, tY s1 ď rα,
and tY s1 ď p1 Y s1 “ q1. Thus, dris is predense below q, as claimed. 8.166

The proof may now be completed as for (8.149). The computation of the sizes
of powersets also shows that ,M,P Power. 8.165

Note that we have assumed in Theorem 8.165 that there is a wellordering of M
definable over M . This is the case, for example, if M |ù xV “ Ly. We have also
assumed that the function F is definable over M . We obtain a slightly more general
result if we work with transitive models M “ pM ; P, Aq in an expanded signature
with an additional unary predicate represented by A Ď M , where M models ZF
extended so that the axiom schemas are stated for all formulas in the expanded
signature. Note that any collection of such predicates of any arity may be encoded
by a single unary predicate A. Note also that we have essentially subsumed this
level of generality in our consideration of models pM ; P,Pq, where P Ď M is a
partial order, since we may always obtain an isomorphic partial order P1 such that
|P1| “ A. The function F and the supposed wellordering of M mentioned in the
statement of (8.165) may now be regarded as encoded in A.

It is also worth noting that we do not have to assume the existence of a definable
wellordering of M , as we may use Collection as in the proof of (8.164) to obtain a
subset of P that is large enough to permit the construction to go through, and we
may use AC to infer that this set is wellordered. We may also use (8.164) itself to
obtain a generic extension of M with a definable wellordering of its universe, and
then use the construction of (8.165) to adjust the sizes of powersets. This is an
example of iterated forcing, which we discuss in Section 8.13.
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8.12.5 Coding the universe by a real

As another example of proper class forcing we mention the following result of
Jensen. The proof is beyond the scope of this book

(8.167) Theorem [GBC] Suppose pM ; P, Aq is a transitive model of ZFC. Then
there is an pM ; P, Aq-definable partial order P ĎM , such that

1. A “ |P| (just a convenience);

2. M “ pM ; P,Pq is tame;

3. ,M,P xthere exists r Ď ω such that V “ Lrrs and P,G are definable from ry.

Suppose we start with a transitive model of xV “ Ly, extend it by Easton forcing
to a model in which 2κ “ κ`` for every regular cardinal κ, and then extend this
to a model of xV “ Lrrsy. Note that, in general, forcing over a transitive model
M of ZFC with a partial order of cardinality κ (in the sense of M) cannot increase
the size of 2λ for any cardinal λ ě κ. Thus, set forcing over L cannot increase
the powersets of an unbounded class of cardinals; hence, r is not in any set-generic
extension of L.

It follows (as a theorem of S) that if ZF is consistent then so is ZFC` xthere
exists a real that is not set-generic over Ly. Prior to Jensen’s result, the only known
examples of reals r such that Lrrs differs so significantly from L at all levels, were
obtained from powerful hypotheses with consistency strength well beyond that of
ZF.

8.13 Iterated forcing

We have previously mentioned the possibility of iterating forcing constructions. In
the simplest case, we have a partial order P and a term 9Q PMP such that ,P xp 9Qq is
a partial ordery. Suppose G is an M -generic filter on P. Then 9QG is a partial order
in M rGs, and we may consider a generic extension M rGsrHs of M rGs, where H is
a M rGs-generic filter on 9QG. We will now show how to accomplish this extension
in one step.

Recall that we have supposed for technical reasons—which are particularly com-
pelling in the case of iterated forcing—that all partial orders under consideration
have a maximum element, denoted by ‘1’.

(8.168) We will suppose that 91 “ 91Q P MP is such that ,P xp 91q is the maximum
element of p 9Qqy.

(8.169) Definition [GB] Suppose M is a transitive model of ZF, P PM is a partial
order, p P |P|, and x P MP. Let α P OrdM be least such that Dy P MP

α p,
P y“““x.

rxsp
def
“ ty PMP

α | p,
P y“““xu. In this context rxs def

“ rxs1P .

(8.170) Definition [ZF] Suppose M is a transitive model of ZF, P PM is a partial
order, and 9Q P MP is such that ,P xp 9Qq is a partial ordery. We define the partial
order P ˚ 9Q as follows:

1. |P ˚ 9Q| “ txp, r 9qspy | p P |P| ^,P 9q PPP | 9Q|u;
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2. xp1, r 9q1sp1y ď
P˚ 9Q xp0, r 9q0sp0yØ p1 ď

P p0^ p1,
P 9q1 ď

9Q 9q0.

To show that this definition is well made we observe that if r 9q10sp0 “ r 9q0sp0 and
r 9q11sp1 “ r 9q1sp1 then p0, 9q10“““ 9q0 and p1, 9q11“““ 9q1, so

p1 ď
P p0^ p1,

P 9q11 ď
9Q 9q10Ø p1 ď

P p0^ p1,
P 9q1 ď

9Q 9q0.

In the following discussion we will omit the specifying superscripts on ‘ď’ when the
context makes it clear which order is intended, and we will do the same for ‘,’ as
the occasion arises.

Note that P ˚ 9Q is indeed a partial order, since it is antisymmetric. For if
xp1, r 9q1sp1y ď xp0, r 9q0sp0y and xp0, r 9q0sp0y ď xp1, r 9q1sp1y then, letting p “ p0 “ p1,
p, 9q0“““ 9q1, so r 9q0sp0 “ r 9q0sp “ r 9q1sp “ r 9q1sp1 ; hence, xp0, r 9q0sp0y “ xp1, r 9q1sp1y.
This is the purpose of defining P ˚ 9Q in terms of the equivalence classes r 9qsp, rather
than directly in terms of 9q, which would define P ˚ 9Q as a preorder. It should be
noted that preorders serve most forcing purposes just as well as partial orders, and
some authors indeed develop the entire theory of forcing in terms of preorders—also
referred to as quasi-orders. In this case one must nevertheless from time to time pay
attention to the equivalent partial orders, e.g., in cardinality computations when
their size is important. Note also that it would be inadvisable to define P ˚ 9Q as
txp, 9qy | p P |P| ^ 9q P MP^,P 9q PPP | 9Q|u, since this is a proper class over M ; thus,
some restriction on 9q, such as to minimum rank, is necessary in any event.

(8.171) Definition [GB] Under the conditions of (8.170) suppose G is an M -generic
filter on P, Q “ 9QG, and H is an M rGs-generic filter on Q.

G ˚H
def
“ txp, r 9qspy P |P ˚ 9Q| | p P G^ 9qG P Hu.

The following theorem corresponds to the comment justifying (8.170.2).

(8.172) Theorem [GB] Under the conditions of (8.171)

1. for any p, 9q such that xp, r 9qspy P |P ˚ 9Q|,

xp, r 9qspy P G ˚HØ p P G^ 9qG P H;

and

2. G ˚H is a filter on P ˚ 9Q.

Proof The first assertion follows directly from the fact that if r 9q1sp “ r 9qsp and
p P G then 9qG “ 9q1G.

For the second assertion, we first observe that G˚H is nonempty. Next, suppose
xp1, r 9q1sp1y P G ˚ H and xp1, r 9q1sp1y ď xp0, r 9q0sp0y. Then by virtue of (8.172.1),
p1 P G and 9qG1 P H. Since p1, 9q1 ď 9q0, 9qG0 P H, so xp0, r 9q0sp0y P G ˚H. A similar
argument shows that any two elements of G˚H have a common extension in G˚H.

8.172

(8.173) Theorem [GB] Suppose M is a transitive model of ZF, P PM is a partial
order, 9Q P MP is such that ,P xp 9Qq is a partial ordery, and G is an M -generic
filter on P. Then | 9QG| “ t 9qG | ,P 9q PPP | 9Q|u.
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Remark In other words, every member of | 9QG| has a name that denotes a member
of 9Q in every P-generic extension of M .

Proof Suppose q P | 9QG|. Let 9q be such that 9qG “ q. Replacing 91 and 9q by their
regularizations8.77 if necessary, we may assume that they are regular terms, i.e.,
members of M̄P. Let p0 P G be such that p0, 9q PPP | 9Q|. Let

9q1 “ txx, py P 9q | p P tp0uu Y txx, py P 91 | p P tp0u
Ku.

Note that tp0u and tp0u
K are regular sets that are complementary elements of R P.

Note also that for any x PMP, 9qÑtxu and 91Ñtxu are in R P, and

9q1Ñtxu “
`

p 9qÑtxuq X tp0u
˘

Y
`

p 91Ñtxuq X tp0u
K
˘

“
`

p 9qÑtxuq^ tp0u
˘

Y
`

p 91Ñtxuq^tp0u
K
˘

,

using algebraic notation to the extent applicable. 9q1Ñtxu is not necessarily in R P,
but this does not matter.

Thus, for any x, if G meets 9q1Ñtxu then G meets 9qÑtxu, since G does not meet
tp0u

K. Conversely, if G meets 9qÑtxu then, since X “ tp0u Y tp0u
K is dense and

9qÑtxu is open, G meets p 9qÑtxuq X X. So G meets p 9qÑtxuq X tp0u, so G meets
9q1Ñtxu. Hence,

9q1G “ txG | G meets 9q1Ñtxuu

“ txG | G meets 9qÑtxuu

“ 9qG.

It suffices therefore to show that , 9q1 PPP | 9Q|. This can be shown directly, but it is
easier and more intuitive to “argue in a generic extension”. Suppose G1 is any
M -generic filter on P. Since tp0u and tp0u

K are complementary elements of R P,
G1 meets one or the other, but not both. If G1 meets tp0u then 9q1G

1
“ 9qG

1
, as

we have just shown, so M rG1s |ù 9q1 PPP | 9Q|. Likewise, if G1 meets tp0u
K then by

the corresponding argument, 9q1G
1
“ 91

G1

, so M rG1s |ù 9q1 PPP | 9Q|. Thus, , 9q1 PPP | 9Q|, as
claimed. 8.173

(8.174) Theorem [GB] Suppose M is a transitive model of ZF, P PM is a partial
order, and 9Q PMP is such that ,P xp 9Qq is a partial ordery.

1. Suppose G is an M -generic filter on P, Q “ 9QG, and H is an M rGs-generic
filter on Q. Then

1. G ˚H is an M -generic filter on P ˚ 9Q; and
2. M rG ˚Hs “M rGsrHs.

2. Suppose I is an M -generic filter on P ˚ 9Q. Let

G “ tp P |P| | xp, r 91spy P Iu
H “ t 9qG | Dp xp, r 9qspy P Iu.

Then

1. G is an M -generic filter on P;
2. H is an M rGs-generic filter on Q; and
3. I “ G ˚H.
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Proof 1.1 We’ve already shown that G ˚ H is a filter.8.172.2 Suppose Z P M
is dense in P ˚ 9Q. We will show that G ˚ H meets Z. Working in M rGs, let
Y “ t 9qG | Dp P G xp, r 9qspy P Zu.

We will show that Y is dense in Q. To this end, suppose q0 P |Q|. Let 9q0 be
such that 9qG0 “ q0 and , 9q0 PPP | 9Q|.8.173 Working in M , let X “ tp P |P| | D 9q1 pp, 9q1 ď
9q0^xp, r 9q1spy P Zqu.

We will show that X is dense in P. To this end, suppose p0 P |P|. Then
xp0, r 9q0spy P |P ˚ 9Q|. Let xp1, r 9q1sp1y ď xp0, r 9q0sp0y be such that xp1, r 9q1sp1y P Z.
Then p1, 9q1 ď 9q0,8.170.2 so p1 P X and p1 ď p0.

Thus, X is dense in P, and since G is an M -generic filter on P, there exists
p1 P G X X. Let 9q1 be such that p1, 9q1 ď 9q0 and xp1, r 9q1sp1y P Z. Let q1 “ 9qG1 .
Then q1 ď q0, and there exists p P G such that xp, r 9q1spy P Z, viz., p1, so q1 P Y .

Thus, Y is dense in Q, and since H is an M rGs-generic filter on Q, there exists
q P H X Y . Let 9q and p P G be such that 9qG “ q and xp, r 9qspy P Z. Then
xp, r 9qspy P G ˚H,8.171 so G ˚H meets Z.

1.2 Since M rG ˚ Hs and M rGsrHs are models of ZF, it is enough to show that
G,H PM rG ˚Hs and G ˚H PM rGsrHs, which is straightforward.

2.1 Note that if, for some 9q, xp, r 9qspy P I, then xp, r 91spy P I, so p P G. It is easy to
show that G is a filter. Suppose X PM is dense in P. Then Y “ txp, r 9qspy | p P Xu

is dense in P ˚ 9Q. Hence, there exists xp, r 9qspy P I X Y . xp, r 91spy P I, so p P G.
Hence, G is M -generic.

2.2 We first show that H is a filter. It is clearly nonempty. Suppose 9qG0 , 9q10
G P H.

Let p0, p
1
0 be such that xp0, r 9q0sp0y, xp

1
0, r 9q10sp1

0
y P I. Let xp1, r 9q1sp1y be a common

extension of xp0, r 9q0sp0y and xp10, r 9q10sp1
0
y in I. Then 9qG1 P H. Since p1 P G, 9qG1 ď

9qG0 , 9q10
G.

Now suppose q1 P H and q1 ď q0. Let 9q1 and p1 be such that 9qG1 “ q1 and
xp1, r 9q1sp1y P I. Note that p1 P G. Let 9q0 be such that 9qG0 “ q0 and , 9q0 PPP | 9Q|, and
let p P G be such that p, 9q1 ď 9q0. Let p1 be a common extension of p1 and p in
G. Then xp1, r 91sp1y P I. Let xp0, r 9q1sp0y be a common extension of xp1, r 9q1sp1y and
xp1, r 91sp1y in I. Then p0, 9q1 ď 9q1 and p0, 9q1 ď 9q0, so xp0, r 9q1sp0y ď xp0, r 9q0sp0y.
Since I is a filter, xp0, r 9q0sp0y P I, so q0 “ 9qG0 P H.

Finally, suppose X P M rGs is dense in Q. Let 9X P MP be such that 9XG “ X,
and let p0 P G be such that p0, xp 9Xq is dense in p 9Qqy. By an adjustment similar
to that used in the proof of (8.173), involving tp0u and tp0u

K, we obtain a term
9X 1 PMP such that for any M -generic filter G1 on P, if p0 P G

1 then 9X 1G
1
“ 9XG1

, and
if p0 R G

1 then 9X 1G
1
“ | 9QG1

|. Then 9X 1G “ X and ,P xp 9X 1q is dense in p 9Qqy. Thus,
Y “ txp, r 9qspy | p, 9q PPP 9X 1u is dense in P ˚ 9Q,8.173 so there exists xp, r 9qspy P I X Y .
Since xp, r 9qspy P I, p P G and 9qG P H. Since xp, r 9qspy P Y and p P G, 9qG P 9X 1G “ X.
Hence, H meets X.

2.3 Clearly, if xp, r 9qspy P I then xp, r 9qspy P G ˚H. Conversely, suppose xp, r 9qspy P
G ˚H. Then p P G, i.e., xp, r 91spy P I, and 9qG P H. Hence, D 9q1 such that 9q1G “ 9qG

and Dp1 xp1, r 9q1sp1y P I. Let p2 P G be such that p2 ď p and p2, 9q1“““ 9q. Then
xp2, r 91sp2y P I, so there exists xp3, r 9q2sp3y P I such that p3 extends both p1 and
p2, and p3, 9q2 ď 9q1. It follows that p3, 9q2 ď 9q, so xp3, r 9q2sp3y ď xp, r 9qspy; hence,
xp, r 9qspy P I. 8.174
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In the context of Theorem 8.174 we have for each x PM rGs the canonical 9QG-
term x̌ such that x̌H “ x for any M rGs-generic filter H on 9QG. We now define for
each P-term 9x a canonical P ˚ 9Q-term ι 9x such that for any M -generic filter G ˚H
on P ˚ 9Q, pι 9xqG˚H “ 9xG.

(8.175) Definition [GB] Suppose M is a transitive model of ZF, P PM is a partial
order, and 9Q P MP is such that ,P xp 9Qq is a partial ordery. We define ιP, 9Q 9x

recursively for 9x PMP so that

ιP, 9Q 9x “
␣@

ιP, 9Q 9y, xp, r 91spy
D ˇ

ˇ x 9y, py P 9x
(

.

(8.176) Theorem [GB] Suppose M is a transitive model of ZF, P PM is a partial
order, and 9Q PMP is such that ,P xp 9Qq is a partial ordery. Then for any 9x PMP,
pιP, 9Q 9xqG˚H “ 9xG.

Proof By induction, letting ι “ ιP, 9Q:

pι 9xqG˚H “ tzG˚H | Dr P G ˚H xz, ry P ι 9xu

“ tpι 9yqG˚H | Dxp, r 91spy P G ˚H x 9y, py P 9xu

“ t 9yG | Dp P G x 9y, py P 9xu

“ 9xG.

8.176

The treatment of iterated forcing in terms of boolean algebras is particularly
elegant and instructive. Analogously to (8.169) we will make use of canonical
representatives of equivalence classes of elements of V A modulo the identity relation.
The following lemma captures the basic idea.

(8.177) Theorem [GB] Suppose M is a transitive model of ZF and A P M is an
M -complete boolean algebra. Suppose x PMA, X PM , and domx Ď X ĎMA. Let
y PMA be such that dom y “ X and @z P X ypzq “ rrz PPPxss. Then rry“““xss “ 1.

Proof We must show8.64.2 that
ľ

zPdomx

`

xpzqÑ rrz PPP yss
˘

^
ľ

zPdom y

`

ypzqÑ rrz PPPxss
˘

“ 1,

i.e., that
@z P domx

`

xpzq ď rrz PPP yss
˘

and
@z P dom y

`

ypzq ď rrz PPPxss
˘

.

The first follows from the fact that for all z P domx

xpzq ď rrz PPPxss “ ypzq ď rrz PPP yss,

and the second follows from the fact that ypzq “ rrz PPPxss. 8.177

(8.178) Definition [GB] Suppose M is a transitive model of ZF and A P M is an

M -complete boolean algebra. An element x P MA is canonical
def
ðñ there exists

α P OrdM such that
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1. domx “MA
α ;

2. @z PMA
α xpzq “ rrz PPPxss; and

3. @y PMA
α rrx“““ yss ‰ 1.

(8.179) Theorem [GB] Suppose M is a transitive model of ZF and A P M is an
M -complete boolean algebra. Suppose x PMA.

1. Then there exists a unique canonical x1 such that rrx“““x1ss “ 1.

2. Let X be the class of canonical terms y such that rry PPPxss “ 1. Then X is a
set (in M).

Proof 1 Let α P OrdM be least such that there exists y PMA such that rrx“““ yss “
1 and dom y ĎMA

α , let y PMA be such that rrx“““ yss “ 1 and dom y ĎMA
α , and let

x1 be the function with domain MA
α such that @z P MA

α x1pzq “ rrz PPP yss. Then8.177

rrx1“““ yss “ 1, so rrx1“““xss “ 1, and @z P MA
α x1pzq “ rrz PPPx1ss. By virtue of the

minimality of α, x1 is canonical.
To show uniqueness, it is enough to show that if x0 and x1 are canonical and

rrx0“““x1ss “ 1, then x0 “ x1. Suppose domx0 “ MA
α0

and domx1 “ MA
α1

. If
α0 “ α1 then x0 “ x1, so we may suppose without loss of generality that α0 ă α1.
Then (8.178.3) is violated for α “ α1.

2 It is enough to show that an element y of X is uniquely determined by the
function xrry“““ zss | z P domxy, because any such function is in M , and the set of
such functions is an M -definable subset of domx|A| XM “ xdom x|A|y

M
, which is

a set in M . Thus, suppose y0, y1 P X and @z P domx rry0“““ zss “ rry1“““ zss. By
virtue of the uniqueness of canonical representatives8.179.1 it suffices to show that
rry0“““ y1ss “ 1. Arguing with generic extensions, it is enough to show that for any
M -generic G on A, yG0 “ yG1 . Since rry0 PPPxss “ 1, yG0 P xG, so yG0 “ zG for some
z P domx. It follows that rry0“““ zss P G, so rry1“““ zss P G, so yG1 “ zG “ yG0 . 8.179

(8.180) Definition [GB] Suppose M is a transitive model of ZFC, A P M is an
M -complete boolean algebra and 9B PMA is such that

rrp 9Bq is a complete boolean algebrassA “ 1.

We define the boolean algebra A ˚ 9B as follows:

1. |A ˚ 9B| “
␣

9b
ˇ

ˇ 9b P MA^ 9b is canonical^rr9bPPP | 9B|ss
A
“ 1

(

. Note that |A ˚ 9B| is
a set.8.179.2

2. The boolean operations are defined in the natural way. For example, letting
C “ A ˚ 9B, so that |C| consists of canonical A-terms for members of 9B, given
c0, c1 P |C|, c0_C c1 is the unique canonical A-term c that with A-value 1 is
the join of c0 and c1 in 9B.49 The same goes for ^ and ␣, and we also let
c0 ď

C c1 iff rrc0 ď
9B c1ss “ 1.

We will often work with ground models of ZFC so as to have (8.109) available, and
we will often work in GBC, so V models ZFC and is a suitable ground model.

49In terms of generic extensions: c is such that for any M -generic G on A, cG is the join of cG0
and cG1 in 9BG. With a little work we can design such a term from 9B, c0, and c1, and any two
such terms are equal with A-value 1, so there is a unique canonical such term.



8.13. ITERATED FORCING 555

(8.181) Theorem [GBC] In the terminology of (8.180), C “ A ˚ 9B is a complete
boolean algebra, and A is completely embeddable in C, i.e., is isomorphic to a com-
plete subalgebra3.166 of C.

Proof Suppose X Ď |C|. Let 9X “ tp9b,1q | 9b P Xu. Then rr 9X Ď | 9B|ss “ 1. Since
x 9B is a complete boolean algebray is also A-valid, by (8.109) there exists 9b P MA

such that x9b“““
Ž

9Xy is A-valid. Let c be the canonical term such that rrc“““ 9bss “ 1.
Then it is straightforward to show that c is the least upper bound of X in C.

(8.182) We define the canonical embedding j of A in C by letting ja “ c, where c
is the unique canonical A-term such that

rrc“““1 9Bss
A
“ a and rrc“““0 9Bss

A
“ ␣ a.

It is a routine exercise to show that j is a complete embedding of A in C. 8.181

To relate this to the previous definition of iteration in terms of partial orders
P and 9Q, we note that P ˚ 9Q embeds densely in A ˚ 9B, where A “ R P and 9B is
such that x 9B “ R 9Qy is A-valid. (To make this legitimate, we use the canonical
correspondence of V P and V R P.8.78)

(8.181) has an important converse.8.184 The following definition will be used in
its proof.

(8.183) Definition [GB] We suppose Definition 8.90 extended in the natural way
to finite sequences and to structures represented in the informal way we have been
using, according to which pM ;A, . . . q, for example, is a structure with domain M
and predicates/operations A, . . . .50

(8.184) Theorem [GBC] Suppose C is a complete boolean algebra, and A is a
complete subalgebra of C. Then (A is of course complete and) there exists 9B P V A

such that x 9B is a complete boolean algebray is A-valid, and C – A ˚ 9B.

Proof Let 9F P VA be such that dom 9F “ tč | c P |C|u and for all c P |C|,

9F pčq “
ł

ta P |A| | a ď cu.

Since A is a complete subalgebra of C we need not specify whether the join is to be
taken in A or C; and since A is complete, 9F pčq is the greatest element of A below c.

Arguing in a generic extension it is easy to show that xp 9F q is the upward closure
of G in pČqy is A-valid. For suppose G is V -generic on A. Then

9FG “
␣

c P |C|
ˇ

ˇ

Ž

ta P |A| | a ď cu P G
(

“ tc P |C| | Da P G a ď cu.

(8.185) For each c P |C| let c̃ P V A be such that dom c̃ “ tč1 | c1 P |C|u and for all
c1 P |C|

c̃pč1q “
ł

ta P |A| | a ď pcØ c1qu.

50If we are to be complete, we must have a rule for creating a signature and assigning indices
to A, . . . appropriately, but this may safely be left to the reader’s imagination.
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Then for any V -generic G on A,

c̃G “ tc1 P |C| | pcØ c1q P 9FGu,

so xpc̃q is the equivalence class of pčq mod p 9F qy is A-valid. (Strictly speaking, we
refer to the equivalence relation ” 9F that identifies c0, c1 P |Č| iff pc0Ø c1q P 9F .
Note that 9FG X |A| is an ultrafilter (viz., G), so A is reduced to the 2-element
algebra by this quotient operation.)

(8.186)

1. Let 9B P V A be such that dom 9B “ tc̃ | c P |C|u, and for every c P |C|, 9Bpc̃q “ 1.
Then in any A-generic extension V rGs, 9BG “ |C{ 9FG|.

2. Let 9ď P V A be such that dom 9ď “
␣

xc̃, c̃1yA
ˇ

ˇ c, c1 P |C|
(

8.181 and for all c, c1 P |C|

9ď
`

xc̃, c̃1yA
˘

“
ł

ta P |A| | a ď pcÑ c1qu.

Then in any A-generic extension V rGs, 9ď
G is the binary relation on 9BG such

that for any c, c1 P |C|, pc{ 9FGq 9ď
G
pc1{ 9FGq iff pcÑ c1q P 9FG, i.e., c ď c1 mod

9FG.

3. Let 9B “ p 9B; 9ďqA.8.183 Then xp 9Bq “ pČq{p 9F qy is A-valid.

To define 9B we have for convenience treated boolean algebras as structures with an
order predicate and no operations. The corresponding operations are definable from
the order relation, and we have the following identities. Any references to boolean
operations and relations are to be interpreted in A, C, or 9BG, as appropriate, where
G is V -generic on A.

(8.187) Suppose c, c0, c1 P |C|.

1. If c1 “ ␣ c0 then c̃G1 “ ␣ c̃
G
0 .

2. If c “ c0_ c1 then c̃G “ c̃G0 _ c̃
G
1 .

3. If c “ c0^ c1 then c̃G “ c̃G0 ^ c̃
G
1 .

The following identities provide useful alternative formulations of key relations.

(8.188) Suppose c, c0, c1 P |C|.

1. c̃G0 “ c̃G1 iff Da P G c0^ a “ c1^ a.

2. c̃G0 ď c̃G1 iff Da P G c0^ a ď c1^ a.

3. In particular, c̃G “ 0 iff Da P G c^ a “ 0.

Note that
rrc̃0“““ c̃1ss “

ł

ta P |A| | a ď pc0Ø c1qu ď pc0Ø c1q,

since A is a complete subalgebra of C. Thus, rrc̃0“““ c̃1ss “ 1 iff c0 “ c1.

(8.189) It follows that C is isomorphic to A ˚ 9B, with c P |C| corresponding to the
unique canonical A-term equivalent to c̃.
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Let 1 “ 1A “ 1C and 0 “ 0A “ 0C. Then 1̃ and 0̃ represent 1 9B and 0 9B, respectively.
Given a P |A|,

rrã“““1 9Bss
A
“
ł

ta1 P |A| | a1 ď paØ1qu “ a,

and
rrã“““0 9Bss

A
“ ␣ a.

Thus8.182 ã is the image of a under the canonical embedding of A in A ˚ 9B.
To show that x 9B is completey is A-valid, we argue in a generic extension. Sup-

pose G is V -generic on A. Let B “ 9BG. Suppose X Ď |B|. Let 9X P V A be such
that 9XG “ X, and let

(8.190) c0 “
ł

cP|C|

`

rrc̃ P 9Xss^ c
˘

.

(8.191) Claim c̃G0 “
Ž

X.

Proof To show that c̃G0 is an upper bound of X, suppose x P X and let c P |C| be
such that c̃G “ x. Let a “ rrc̃PPP 9Xss. Then c0 ě pa^ cq,8.190 so c0^ a ě pa^ cq^ a “
c^ a. Since a P G, ãG “ 1B, so x “ c̃G ď c̃G0 .8.187

To show that c̃G0 is the least upper bound of X we must show that every c̃G1
that meets c̃G0 (in the sense of B) meets a member of X (in the same sense). To
this end, suppose c1 P |C|, and suppose

(8.192) @a P G pc1^ c0^ aq ‰ 0.8.188.3

For each c P |C| let ac “
Ź

ta P |A| | pc1^rrc̃ P 9Xss^ cq ď au. Since A is a complete
subalgebra of C, it doesn’t matter whether we compute this meet in C or A, and
ac P |A|. Let a0 “

Ž

tac | c P |C|u. Then a0 P |A| and pc1^ c0q ď a0. Since
␣ a0 R G,8.192 a0 P G. Since G is V -generic on A, for some c P |C|, ac P G.

Suppose a P |A| and pc1^rrc̃ P 9Xss^ c^ aq “ 0. Then ac ď ␣ a, so a R G since
ac is in G. Hence

@a P G pc1^rrc̃ P 9Xss^ c^ aq ‰ 0.

Two things follow. First, rrc̃ P 9Xss P G, so c̃G P 9XG “ X. Second, @a P
G pc1^ c^ aq ‰ 0, so8.188.3 c̃G1 ^ c̃

G ‰ 0, as desired. 8.191

Thus, we have shown that x 9B is completey is A-valid and C – A ˚ 9B,8.189 as
desired. 8.184

(8.193) Definition [GB] Suppose C is a complete boolean algebra, and A is a
complete subalgebra of C.

1. We define C : A to be the A-term 9B as defined8.186 in the proof of Theo-
rem 8.184.

2. The canonical projection of C to C : A
def
“ the map c ÞÑ c̃.8.185

(8.194) Theorem [GB] Suppose C is a complete boolean algebra, A is a complete
subalgebra of C, and C Ď C` is dense in C. Let 9B “ C : A, and let 9B “ tpc̃,1q |
c P Cu be the canonical projection8.193.2 of C to 9B. Then xp 9Bqzt0u is dense in p 9Bqy

is A-valid.
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Proof We will argue in an A-generic extension V rGs. Let B “ 9BG and B “ 9BG.
Suppose b P |B| and b ‰ 0. Let c0 P |C| be such that c̃G0 “ b, and let C0 “ tc P C |
c ď c0u. Trivially, for any c ď c0, c̃G ď c̃G0 “ b. Thus it suffices to show that there
exists c P C0 such that c̃G ‰ 0.

By virtue of (8.188.3), since b ‰ 0,

(8.195) every a P G meets c0,

and we must show that for some c P C0, every a P G meets c. For each c P C0, let
ac “

Ž

ta P |A| | a^ c “ 0u. Keep in mind that since A is a complete subalgebra of
C, meets and joins of subsets of |A| are the same whether computed in A or C. Note
that ac^ c “ 0. Suppose toward a contradiction that for every c P C0, there exists
a P G such that a^ c “ 0. Then for every c P C0, ac P G. Since G is V -generic,
Ź

cPC0
ac P G; however, since ac^ c “ 0 for all c P C0,

Ź

cPC0
ac^

Ž

C0 “ 0. Since
C is dense in C, c0 “

Ž

C0, so this contradicts (8.195). 10.183

8.13.1 Generic is not so special

(8.196) Theorem [GB] Suppose M is a transitive model of ZF, A P M is an M -
complete boolean algebra, and G is an M -generic filter on A. Suppose x Ď M and
x P M rGs. Then there is a complete subalgebra B of A (in the sense of M) such
that x P M rG X |B|s and for every transitive model N “ pN ; P,Mq of ZFV (with
VN “M), if x P N then M rGX |B|s Ď N .

Remark Note that GX |B| is M -generic on B, since B is a complete subalgebra
of A3.166 (not just a subalgebra of A that is on its own complete), so that every
dense D Ď |B| is predense in A (since

Ž

D “ 1) . By virtue of this theorem, we
may define M rxs, for any x in M rGs with x Ď M , to be the minimum extension
of M that contains x (with the understanding that structure Mrxs “ pM rxs; P,Mq
is intended, and Mrxs |ù ZFV). The import of (8.196) is that minimum extensions
exist in this setting and that they are generic extensions. Thus, genericity is the
rule, not the exception. Note also that M rGs is a generic extension of M rxs by the
algebra pA : BqGX|B|, i.e., the B-term A : B interpreted via the M -generic filter
GX |B| on B.8.193

Proof Let 9x P MA be such that 9xG “ x. Working in M , let B0 be the set of
elements of |A| of the form rry̌ PPP 9xss or rry̌ RRR 9xss. We extend xB0y to an increasing
sequence xBα | α ď ηy of subsets of |A| by letting Bα for α ą 0 be such that

1. if α “ β ` 1 then

Bα “
␣

ł

X
ˇ

ˇX Ď Bβ
(

Y
␣

ľ

X
ˇ

ˇX Ď Bβ
(

;

and

2. if Limα then Bα “
Ť

βăαBβ .

η is simply the first ordinal such that Bη`1, if it were defined, would be Bη. By
induction, each Bα is closed under complementation. Let B “ Bη, and let B be
the subalgebra of A such that |B| “ B. Then B is a complete subalgebra of A.

Keep in mind that the above construction was carried out in M . Thus, B PM ,
B is M -complete, and GX |B| is an M -generic filter on B. x “ ty PM | rry̌ PPP 9xss P
GX |B|u, so x PM rGX |B|s.
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Now suppose N “ pN ; P,Mq is a transitive model of ZFV and x P N . Then
M Ď N , so B P N . Define in N (from the parameter x) an increasing sequence
xGα | α ď ηy of subsets of |B| by letting G0 “ trry̌ PPP 9xss | y P xu Y trry̌ RRR 9xss | y R xu,
and for all α ď η

1. if α “ β ` 1 then

Gα “
␣

ł

X
ˇ

ˇX PM ^X Ď Bβ ^X XGβ ‰ 0
(

Y
␣

ľ

X
ˇ

ˇX PM ^X Ď Gβ
(

;

and

2. if Limα then Gα “
Ť

βăαGβ .

Since G is M -generic, for all α ď η, Gα “ G X Bα; and Gη “ G X |B|. Thus,
GX |B| P N , so M rGX |B|s Ď N . 8.196

8.13.2 Transfinite iteration

The construction described by (8.170) can obviously be repeated finitely many
times without any additional consideration. To define transfinite iteration we must
specify how limit stages are handled.

As usual, we assume that every partial order P has a maximum element, 1P. We
may use ‘1’ to denote 1P. If 9Q P MP is a forcing term for a partial order then8.168

91 “ 91
Q
PMP is such that ,P xp 91q is the maximum element of p 9Qqy.

We define iteration of length α for ordinals α by recursion on α. It will be
obvious from the definition that an iteration of length α is a partial order whose
elements are α-sequences. In the interest of uniformity of definition, we define P0

as the partial order with the single element 0; we identify V P0
with V and rxs0 with

x; and we regard ‘0,P0
ϕ’ as synonymous with ‘ϕ’.

(8.197) Definition [GBC] Suppose α is an ordinal. A partial order P is an iteration

of length α
def
ðñ there is a sequence xPβ | β ď αy such that P0 “ P0, Pα “ P,51

and for each β ď α,

1. if β “ γ ` 1 then for some 9Q P V Pγ ,52

1. ,Pγ xp 9Qq is a partial ordery;

2. |Pβ | “ tp ⌢xr 9qspy | p P |Pγ | ^,Pγ 9q PPP 9|Q|u; and

3. p1
⌢xr 9q1sp1y ď

Pβ p0
⌢xr 9q0sp0yØ p1 ď

Pγ p0^ p1,
Pγ 9q1 ď

9Q 9q0.

2. if β is a limit ordinal then

1. |Pβ | is a set of β-sequences;
2. the β-sequence x1,1, . . . y is in |Pβ |; and
3. for each γ ă β,

51Note that P0 is the (unique) iteration of length 0. The sole element of |P0| being the 0-sequence
0.

52Note that if β “ 1 then γ “ 0, so for some partial order Q,

1. |P1| “ txqy | q P |Q|u; and

2. xq1y ďP1 xq0yØ q1 ďQ q0.
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1. |Pγ | “ tp æ γ | p P |Pβ |u;
2. for any p P |Pβ | and q P |Pγ |, if q ďPγ p æ γ then r P |Pβ |, where r is

such that for all δ ă β,

rpδq “

#

qpδq if δ ă γ

ppδq if δ ě γ;

and
3. for all p0, p1 P |Pβ |, p1 ď

Pβ p0Ø@γ ă β p1 æ γ ď
Pγ p0 æ γ.

Note that the sequence xPβ | β ď αy that witnesses that Pα is an iteration of
length α is uniquely determined by Pα, inasmuch as |Pβ | “ tp æβ | p P |Pα|u and
p11 ď

Pβ p10Ø p1 ď
Pα p0, where, for each i P 2 and γ ă α,

pipγq “

#

p1ipγq if γ ă β

1 if γ ě β.

Note also that for each β ď α, Pβ is an iteration of length β. In general an
expression such as ‘Pα’ will be taken to refer to an iteration of length α.

Definition [GBC] Suppose P is an iteration of length α and β ď α. Then Pβ
def
“ the

(unique) partial order occurring in position β in a sequence witnessing that P is an
iteration of length α. To simplify the notation we let ďβ“ďPβ , ,β “ ,Pβ , etc.

Clearly, Pα may be specified by giving a sequence x 9Qβ | β ă αy of appropriate
forcing terms53 and, for each limit β ď α, a rule for determining |Pβ | as a subset of
the set of all β-sequences p such that @γ ă β p æ γ P |Pγ |. Useful such rules may be
defined in terms of the notion of the support of a condition in a forcing iteration.

Definition [GBC] Suppose P is an iteration of length α.

1. Suppose p P |P|. The support of p def
“ supp p def

“ tβ ă α | ppβq ‰ 1u.

2. Suppose I Ď P α is a nonprincipal ideal. P is an I-support iteration
def
ðñ for

every limit ordinal β ď α, |Pβ | is the set of β-sequences p such that

1. @γ ă β p æ γ P |Pγ |; and
2. supp p P I.

3. In particular, P is a finite-support or countable-support iteration
def
ðñ P is

an I-support iteration where I is respectively the ideal of finite or countable
(including finite) subsets of α.

Given an ordinal α and a nonprincipal ideal on P α, an I-support iteration of
length α is uniquely determined by a sequence x 9Qβ | β ă αy via the stipulation
that the term 9Q occurring in (8.197.1) is 9Qγ . Of course, in order to permit such a
construction, for each β ă α, xp 9Qβq is a partial ordery must be Pβ-valid.

Given an iteration P of length α and β ă α, let γ be the (unique) ordinal such
that β ` γ “ α. Then P is naturally equivalent to the iteration of length 1 ` γ
defined by the sequence xPβy ⌢x 9Qβ`δ | δ ă γy, with the same rules at limit stages
as for P.

53Note that 9Q0 is a P0-term, i.e., a P0-term, where P0 is the 1-element partial order, for which
forcing is trivial, and 9Q0 is a partial order per se, as described in the remarks preceding (8.197).
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We may also define in a natural way a Pβ-term 9Pβ,α that describes a partial order
(in a hypothetical Pβ-generic extension) related to the sequence x 9Qβ`δ | δ ă γy as
P is related to x 9Qδ | δ ă αy. P is then naturally equivalent to Pβ ˚ 9Pβ,α.54

(8.198) Definition [GB] The operation corresponding to ιPβ , 9Pβ,α

8.175 is ιβ,α, which
is defined recursively so that for any Pβ-term 9x,

ιβ,α 9x “
␣@

ιβ,α 9y, p ⌢ 1⃗
D ˇ

ˇ x 9y, py P 9x
(

,

where 1⃗ is a sequence of 1s of length δ, such that β ` δ “ α.

8.13.3 Martin’s axiom

The first example of transfinite forcing iteration employed finite support and was
used by Solovay and Tennenbaum to show the consistency of ZFC ` SH (Suslin’s
hypothesis) relative to ZF. Martin noted that SH is a consequence of a general
principle whose consistency can be proved by the same method.

Definition [ZFC]

1. Suppose κ is a cardinal. MAκ
def
ðñ for every ccc partial order P and set D of

at most κ dense subsets of P there exists a D-generic filter on P.

2. Martin’s axiom
def
ðñ MA

def
ðñ @κ ă 2ω MAκ.

(8.199) Theorem [ZFC]

1. MAω.

2. For any cardinal κ, MAκÑκ ă 2ω.

Proof (8.199.1) is the familiar and simple observation8.11 that a filter can be con-
structed to meet any countable collection of dense sets. To prove (8.199.2) let
P be the Cohen order.8.118 P is countable, hence, ccc. For any f P ω2, the set
Af “ tp P |P| | p Ę fu is dense. Let A “ tAf | f P

ω2u, and let B “ tBn | n P ωu,
where Bn “ tp P |P| | n P dom pu. The Bns are also dense, and as shown in the
proof of (8.119), if G is an B-generic filter on P then there exists f P ω2 such that
G “ tp P |P| | p Ď fu. It follows that G does not meet Af . Let D “ AY B. Then
|D| “ 2ω and there is no D-generic filter on P. 8.199

Thus, the continuum hypothesis (CH) implies MA, and for any uncountable
cardinal κ, MAκ is incompatible with CH. Many consequences of CH have been
shown to follow from MA without any assumption about the size of the continuum.
Many additional consequences follow from the assumption of MA and ␣␣␣CH. MAω1

is of particular importance. The Solovay-Tennenbaum result is an example.

(8.200) Theorem [ZFC] MAω1 Ñ SH.

Proof Recall that Suslin’s hypothesis5.186 (SH) may be formulated7.38 as the state-
ment that there does not exist a Suslin tree.7.35 Recall also that if there exists a
Suslin tree then there exists a normal Suslin tree.7.37 Suppose T is a normal tree7.36

54Keeping in mind that P0 is the trivial partial order P0, we note that P is 9P0,α and Pβ is
9P0,β , so we may employ a more uniform notation and say that 9P0,α is naturally equivalent to
9P0,β ˚ 9Pβ,α.
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of height ω1 with no uncountable antichain. We will assume MAω1 and show that
T has an uncountable branch. Let P be the partial order such that |P| “ |T| and
ďP“ěT, i.e, P is T turned upside down. Recall that an antichain in a tree is a set of
pairwise incomparable elements. Clearly, elements are compatible in P iff they are
comparable. Thus, P is ccc. For each α ă ω1 let Dα be the set of elements of |P|
(“ |T|) of order ą α. Since T is normal, Dα is dense in P. Let D “ tDα | α ă ω1u.
Clearly, a filter in P is a set of comparable elements, and a D-generic filter is an
uncountable branch of T. Thus, T has an uncountable branch. 8.200

The following theorem may be viewed as an example of the phenomenon men-
tioned above: it states that a certain consequence of CH follows from MA. The con-
sequence is the Baire category theorem—that any countable intersection of open
dense subsets of R has nonempty intersection—reformulated by substituting ‘of
power ă 2ω’ for ‘countable’. Assuming CH, of course, these are equivalent.

(8.201) Theorem [ZFC] Suppose MA, κ ă 2ω, and for each α ă κ, Xα Ď R is
open dense. Then

Ş

αăκXα is nonempty.

Proof Let P be the partial order such that |P| is the set of nonempty open intervals
in R, and ďP“Ď. Note that P is ccc. (This is the observation that led Suslin to
his eponymous hypothesis.) For each α ă κ let Dα consist of the open intervals p
such that the closure p of p is included in Xα. Clearly, each Dα is dense. Let G be
a tDα | α ă κu-generic filter on P. Since G is a filter, tp | p P Gu is closed under
finite intersections, so C “

Ş

pPG p is nonempty. Any element of C is in every p for
p P G, so it is in every Xα. 8.201

The consistency of MA with ␣␣␣CH (which implies MAω1) may be proved by a
finite-support iteration of ccc forcing. The following theorems pave the way by
showing that (for any regular uncountable cardinal κ, in particular for ω1) the
κ-chain condition is preserved by finite-support iteration.

(8.202) Theorem [ZFC] Suppose κ is an uncountable regular cardinal. If P is κ-cc
and ,P xp 9Qq is pκ̌q-ccy then P ˚ 9Q is κ-cc.

Proof Suppose toward a contradiction that
@

xpα, r 9qαspαy
ˇ

ˇα ă κ
D

is an antichain
in P ˚ 9Q. Suppose α, β are distinct elements of κ. Then for any 9q P V P and any
p extending both pα and pβ , p.p 9q ď

9Q 9qα, 9qβq. Thus, for any p ď pα, pβ , and any
9q P V P, p,␣␣␣p 9q ď

9Q 9qα, 9qβq; hence, p,@@@v ␣␣␣pv ď 9Q 9qα, qβq, i.e., p,p 9qα K 9qβq. In
short,

(8.203) p ď pα, pβÑ p,p 9qα K 9qβq.

Let 9X “ txα̌, pαy | α ă κu. Thus, 9X P V P and for all α ă κ, rrα̌PPP 9Xss
P
“ pα.55

Arguing in a generic extension, suppose G is a (V-)generic filter on P. Let
Q “ 9QG and X “ 9XG. Then X “ tα ă κ | pα P Gu. Suppose α and β are distinct
elements of X. Then pα, pβ P G, so there exists p ď pα, pβ , such that p P G.
Since8.203 p,p 9qα K 9qβq, it follows that 9qGα K 9qGβ . Since Q is κ-cc, |X| ă κ.

Thus, ,P | 9X| ă κ̌. Since8.127 ,P xpκ̌q is regulary, there exists8.109 9γ P V P such
that ,P 9γ PPP κ̌ and ,P | 9X| Ď 9γ. Any condition in P has an extension that forces
9γ“““ α̌ for some α P κ. Let Y be a maximal antichain in P such that for every

55This is of course to be understood in terms of R P.
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p P Y , there exists αp such that p, 9γ“““ α̌p. Since P is κ-cc, |Y | ă κ, so there exists
α ă κ such that @p P Y αp ă α. Then , 9X Ď α̌. Thus, , α̌RRR 9X. But pα, α̌PPP 9X;
contradiction. 8.202

(8.204) Theorem [GBC] Suppose κ is an uncountable regular cardinal, α ą 0, Pα
is the finite-support iteration of x 9Qβ | β ă αy, and @β ă α ,β xp 9Qβq is pκ̌q-ccy.
Then Pα is κ-cc.

Proof By induction on α. If α “ β ` 1 then Pα – Pβ ˚ 9Qβ , and the result follows
from (8.202). Thus, suppose Limα, and suppose X is a subset of |Pα| of size κ. We
will show that there are compatible elements in X.

Suppose first that cf α ‰ κ. For each β ă α let Xβ “ tp P X | supp p Ď βu.
Then there exists β ă α such that |Xβ | “ κ; otherwise, if cf α ă κ then κ would be
a union of fewer than κ sets each of which is smaller than κ, which is impossible,
whereas if cf α ą κ then there would be a κ-sequence in cf α cofinal in cf α, which is
also impossible, since cf α is regular. By induction hypothesis, Pβ is κ-cc, so there
exist p, p1 P Xβ such that p æβ and p1 æβ are compatible (in Pβ), whence p and p1

are compatible, since supp p, supp p1 Ď β.
Now suppose cf α “ κ. Let xpβ | β ă κy enumerate X. Let xαβ | β ă κy

be a continuous increasing sequence in α with limit α. Let C “ tγ ă κ | @β ă
γ supp pβ Ď αγu. Then C is closed unbounded in κ. For each limit element γ of C
(i.e., C X γ is unbounded in γ) let δpγq ă γ be such that supp pγ X αγ Ď αδpγq. By
Fodor’s lemma3.173 there exist δ ă κ and a stationary subset S Ď C such that for
all γ P S, δpγq “ δ, so supp pγ X αγ Ď αδ.

Let Y “ tpγ æαδ | γ P Su. Since |S| “ κ and Pαδ
is κ-cc, there exist γ, γ1 P S

such that δ ă γ ă γ1, and pγ æαδ and pγ1 æαδ are compatible. Let p P |Pαδ
| be a

common extension of pγ æαδ and pγ1 æαδ, and let q be the α-sequence such that for
all β ă α

qpβq “

$

’

&

’

%

ppβq if β ă αδ

pγpβq if αδ ď β ă αγ1

pγ1pβq if αγ1 ď β.

Then q P |Pα|. Since supp pγ Ď αγ1 and supp pγ1 Xαγ1 Ď αδ, q extends both pγ and
pγ1 . Hence, pγ and pγ1 are compatible. 8.204

One can easily imagine that MA may be achieved in a generic extension by
repeatedly shooting generic filters through ccc partial orders, but it is necessary to
place a reasonable bound on the number of partial orders that must be attended
to. This is accomplished by the following theorem.

(8.205) Theorem [ZFC] Suppose MA holds for all partial orders smaller than 2ω.
Then MA holds in general.

Proof Suppose P is a ccc partial order and D is a set of dense sets in P of size
κ ă 2ω. For each D P D, let XD be a maximal antichain in D. Since D is dense,
XD is a maximal antichain in P and is therefore predense. Let Y0 “

Ť

DPDXD.
Each XD is countable, so |Y | ď κ. We now let Y0 Ď Y1 Ď ¨ ¨ ¨ Ď Yn Ď ¨ ¨ ¨ (n P ω) be
subsets of |P| of size ď κ such that for any p, q P Yn, if p ∥ q in P then there exists
a common extension of p and q in Yn`1. Let Y “

Ť

nPω Yn. Then |Y | ď κ.
Let Y be the partial order with |Y| “ Y and the order relation inherited from

P. For each D P D, let ED “ tq P Y | Dp P XD q ď pu; and let E “ tED | D P Du.
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Then E is a set of dense sets in Y of size ď κ, so by hypothesis there exists an
E-generic filter G on Y. tp P |P| | Dq P G q ď pu is a D-generic filter on P. 8.205

We will make use of (8.205) by restricting our attention to partial orders Q
such that |Q| “ λ ă 2ω (with ‘|Q|’ here referring to the domain of Q, not to its
cardinality).

(8.206) Theorem [ZFC] Suppose GCH, and suppose κ ą ω1 is a regular cardinal.
Then there exists a ccc partial order P such that xMA ` 2ω “ pκ̌qy is P-valid.

Proof We posit a fixed appropriate choice function. P will be the finite-support
iteration of a sequence x 9Qα | α ă κy. The construction will be such that for all
α ă κ, ,α xp 9Qαq is cccy, so8.204 Pα will be ccc for every α ď κ. We will also arrange
that for each α ă κ, for some cardinal λ ă κ, ,α x|p 9Qαq| “ pλ̌qy, i.e., Qα is a partial
ordering of the ordinals ă λ.

(8.207) Claim Suppose α ď κ. Then ||Pα|| ď κ.

Proof By induction. The argument at limits is easy, given GCH and the fact that
the iteration has finite support. Thus, suppose α ă κ and ||Pα|| ď κ. By design,
for some cardinal λ ă κ, for any 9q such that ,α 9q PPP | 9Qα|, ,α 9q PPP λ̌. Given such a
term 9q, the set of conditions forcing 9q“““ γ̌ for some γ ă λ is dense in Pα. Let X be
a maximal antichain of such conditions, and let f 9q : X Ñ λ be such that for each
p P X, p,α 9q“““ γ̌, where γ “ f 9qp. If 9q and 9q1 are two such terms and f 9q “ f 9q1 then
,α 9q“““ 9q1. Given GCH, since κ is regular and uncountable, and Pα is ccc there are
no more than κω “ κ such sets X and for each X no more than λω ď κ functions
f : X Ñ λ. Thus, there are no more than κ relevant equivalence classes r 9qs1, a
fortiori, no more than κ relevant equivalence classes r 9qsp for any p P |Pα| (these
being larger). Hence, ||Pα`1|| ď κ ¨ κ “ κ. 8.207

By a similar computation as in the proof of (8.140), since P “ Pκ is a ccc partial
order of size ď κ, ,P x2pλ̌q ď pκ̌qy for every λ ă κ, in particular,

(8.208) ,P x2ω ď pκ̌qy.

Now we have to deal with the bookkeeping to ensure that every ccc partial order
on a cardinal λ ă κ in the generic extension by P is dealt with. Let π : κ sur

Ñ κˆ κ
be such that @α ă κ pπαq0 ď α. We will define by recursion on α, the sequence
x 9Qα | α ă κy together with a system x 9Qγ

α | γ, α ă κy.
Suppose α ă κ, and suppose 9Qγ

β and 9Qβ have been defined for β ă α. Pα has
therefore also been defined. By arguments similar to the preceding there are no
more than κ equivalence classes r 9Qs1 of terms 9Q P V Pα such that for some cardinal
λ ă κ, ,α xp 9Qq is a partial order on pλ̌qy. Let x 9Qγ

α | γ ă κy enumerate a set of
representatives of these equivalence classes.

Now suppose πα “ xβ, γy. Let 9Q “ ιβ,α 9Qγ
β be the canonical Pα-term corre-

sponding to the Pβ-term 9Qγ
β ,8.198 and let 9Qα be the canonical Pα-term such that

rr 9Qα“““ 9QssPα “ rrp 9Qq is cccssPα

rr 9Qα“““ P̌0ss
Pα “ rrp 9Qq is not cccssPα ,

suitably framed in terms of partial orders. (Recall that the default value P0 for 9Qα

is the trivial partial order, which has essentially no forcing effect.)
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This completes the description of the forcing iteration. We now argue in a
generic extension to show that MA is P-valid. Thus, we suppose M is a transitive
model of ZFC ` GCH, κ is a regular uncountable cardinal in M , and the above
construction has been carried out in M . Suppose G is M -generic on P. Let Gα “
G æPα for each α ă κ.

The following claim is obviously pertinent.

(8.209) Claim Suppose λ ă κ and X Ď λ is in M rGs. Then X PM rGαs for some
α ă κ.

Proof Let 9X P MP be such that 9XG “ X. For each γ ă λ let Xγ Ď |P| be a
maximal antichain of conditions deciding γ̌ PPP 9X. Since G is M -generic it meets each
Xγ . Each Xγ is countable, so there exists α ă λ such that for all γ ă λ and p P Xγ ,
supp p Ď α. Then for each γ ă λ, γ P X iff Dp P Xγ pp æα P Gα^ p,

P γ̌ PPP 9Xq. Thus,
X PM rGαs. 8.209

(8.210) Claim Suppose Q,D P M rGs, where, in the sense of M rGs, Q is a ccc
partial order, ||Q|| ă κ, and |D| ă κ. Then there exists a D-generic filter on Q in
M rGs.

Proof By virtue of (8.209) there exists β ă κ such that Q,D P M rGβs. Let
γ ă κ be such that p 9Qγ

βq
Gβ “ Q, where x 9Qγ

α | γ, α ă κy is the enumeration
of terms for partial orders used in the construction of P. Let α ă κ be such
that πα “ xβ, γy. Then by construction, 9Qα

Gα “ Q, and Pα`1 – Pα ˚ Q. Let
H “ t 9qGα | Dp p ⌢xr 9qspy P Gα`1u. Then H P M rGs and8.174.2.2 H is an M rGαs-
generic filter on Q. Thus, H is a D-generic filter on Q in M rGs. 8.210

It follows that M rGs satisfies MAλ for each cardinal λ ă κ in M . Hence,8.199.2

2ω ě κ in M rGs. By virtue of (8.208) 2ω “ κ in M rGs. Thus, M rGs |ù MA.
The existence of the above argument in M rGs demonstrates that xMA ` 2ω “

pκ̌qy is P-valid. 8.206

8.14 Some forcing constructions

The purpose of this section is to give some idea of the flexibility and power of the
method of forcing.

8.14.1 A generic Suslin tree

There are a number of ways of forcing to create a Suslin tree. The one presented
here is chronologically the first and is due to Tennenbaum. It is remarkable in
that it was done in the summer of 1963, Cohen having presented the method of
forcing only in the spring of that year. It is also surprising in that the conditions
are exceptionally simple and do not appear to be customized for the purpose.56

(8.211) Let P be the set of finite binary relations p Ď ω1 ˆ ω1 such that

1. p is the reflexive order relation of a tree; and

56Shelah has shown, even more surprisingly, that Cohen forcing (i.e., forcing with a complete
boolean algebra that has a countable dense set) also adds a Suslin tree.
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2. @xα, βy P p α ď β (in the usual ordering of the ordinals).

Let P “ pP ;ďq, where q ď p iff q X pfld pˆ fld pq “ p.

Theorem [GBC] ,P x
Ť

G is (the reflexive order relation of) a Suslin treey.

Proof We “work in a generic extension of V ”. Suppose G is a V-generic filter on
P, and let R “

Ť

G. Clearly, R is a reflexive partial order which is “tree-like” in
that the predecessors of any α P fldR are linearly ordered. But R also satisfies
(8.211.2), so the predecessors of α are actually wellordered, and R is therefore a
tree.

It is easy to see that for any p P P and α P ω1, there exists q ď p such that
α P fld q, so fldR “ ωV

1 . Another simple density argument shows that every node
of R has incomparable extensions. We will show that ωV

1 “ ω1, and that R has no
uncountable antichains. It follows that every level of R is countable, so the height
of R is ω1. It also follows that R has no uncountable branch; otherwise, we could
obtain an uncountable antichain by defining an increasing sequence xαγ | γ ă ω1y

in an uncountable branch B, together with a sequence xβγ | γ ă ω1y, such that
for each γ ă ω1, βγ extends αγ and is incomparable with αγ`1 (since αγ has
incomparable extensions, at least one of which must not be in B). tβγ | γ ă ω1y is
an uncountable antichain. The preservation of ω1 is a consequence of the following
claim.

(8.212) Claim P has the countable chain condition.

Proof Suppose toward a contradiction that X0 Ď P is an uncountable set of pair-
wise incompatible conditions. By the ∆-lemma (8.128) there exist an uncountable
X1 Ď X and a set d such that for all distinct p, p1 P X1, fld pXfld p1 “ d. Let η P ω1

be such that d Ď η. By discarding at most one member of X1 for each α ă η, we
obtain an uncountable X2 Ď X1 such that for all p P X2, fld pX η “ d. Since there
are only finitely many binary relations on d, there exists an uncountable X3 Ď X2

such that for all p, p1 P X3, pX pdˆ dq “ p1 X pdˆ dq.
Suppose p, p1 P X3. Let q “ pY p1. It is easy to check that q P P and q ď p, p1.

This contradicts the assumption that X0 is an antichain. 8.212

(8.213) Claim R has no uncountable antichain.

Proof If it did, some condition would have to force it to. Suppose p0, xp 9Aq is
uncountabley. A simple density argument shows that there exists an uncountable set
X of pairs xp, αpy such that p ď p0 and p, α̌p PPP 9A, such that if xp, αpy and xp1, αp1y

are distinct members of X then αp ‰ αp1 . As noted above, we may suppose that
each p P X has been extended so that αp P fld p. Using the ∆-lemma as before,
there exist an uncountable Y Ď X, η P ω1, d Ď η, r Ď pd ˆ dq, and s Ď d such
that

1. r P P ;

2. for all distinct xp, αpy, xp1, αp1y P Y , fld pX fld p1 “ d; and

3. for all xp, αpy P Y ,

1. fld pX η “ d;

2. p ď r; and
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3. tα P d | xα, αpy P pu “ s.

Now suppose xp1, αp1y and xp2, αp2y are distinct elements of Y . Let q be the smallest
partial order that includes p1, p2, and the set of xα, βy such that α ă β and either
xα, αp1y P p1 and xβ, αp2y P p2 or vice versa.57 It is easy to see that q is a tree
and q ď p1, p2. Since αp1 and αp2 are comparable in q, q, xpα̌p1q and pα̌p2q are
comparable in Ry. Since q ď p0, p0. xp 9Aq is an antichainy. Hence no condition
forces the existence of an uncountable antichain, so R has no uncountable antichain.

8.213

As argued above, these claims suffice to establish that R is a Suslin tree. 8.211

8.14.2 A generic ♢-sequence

We have previously derived the existence of a Suslin tree from the ♢ principle,7.41

which holds in L. The following theorem shows that ♢-sequences may also be
obtained generically.

(8.214) Theorem [ZFC] Let P be the partial order of countable partial functions
from ω1 to 2. Then ♢ is P-valid.

Proof Rather than work directly with P as defined above, we will work with the
isomorphic partial order P “ p|P|;ďq defined as follows.

1. p P |P| iff

1. p is a countable function;
2. dom p Ď txα, βy | β ă α ă ω1u; and
3. im p Ď 2.

2. q ď pØ q Ě p.

As usual we will make free use of the method of arguing in generic extensions. Thus,
suppose M is a transitive model of ZFC and G is an M -generic filter on PM . Note
that M |ù xrPs is ω-closedy, so P-forcing does not add any new functions from ω

into M and therefore does not collapse any cardinals. In particular, ωMrGs1 “ ωM1 .
A simple density argument shows that

Ť

G is a function from txα, βy | β ă α ă
ωM1 u to 2. For any such function F and any α ă ω1, let us define for the nonce, Fα
to be tβ ă α | F xα, βy “ 1u. Thus, for each α ă ωM1 ,

`
Ť

G
˘

α
Ď α.

We claim that in M rGs, x
`
Ť

G
˘

α
| α ă ω1y is a ♢-sequence. Suppose toward

a contradiction that this is not the case. Let X,C P pP ω1q
MrGs be such that C is

closed unbounded (club) in ωM1 , and for all α P C, X X α ‰ p
Ť

Gqα. Let 9X and 9C
be such that 9XG “ X and 9CG “ C, and let p0 P G be such that

(8.215) p0, xp 9Xq Ď ω1^p 9Cq is club in ω1^@α P p 9Cq p 9Xq X α ‰ p
Ť

Gqαy.

In M we construct sequentially, for n P ω, pn P |P|, αn P ω1, and Sn Ď αn, such
that for each n P ω,

57Let p “ p1 Y p2, which is the smallest tree extending p1 and p2. Let s1 and s2 be respectively
the sets of predecessors of αp1 in p1 and of αp2 in p2. We may regard s1 (resp., s2) as the “trunk”
of p1 (resp., p2), with subtrees sprouting from it (as we may do with any initial segment of any
branch of any finite tree). s is the initial segment of both s1 and s2 in d, and the remainders of s1

and s2 are disjoint. q is formed by merging the portions of s1 and s2 above s (with the ordering
mandated by (8.211.2)) and then filling out the relation to satisfy the transitivity condition. The
subtrees formerly sprouting from s1 and s2 above s now sprout from the merged trunk.
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1. dom pn Ď αn ˆOrd;

2. pn`1 ď pn;

3. pn`1, α̌n PPP 9C;

4. pn`1, 9X X α̌n“““ Šn; and

5. αn`1 ą αn.

We accomplish this as follows. Suppose n P ω and we have pn;58; if n ą 0, suppose
we have αn- and Sn- as well; and suppose the above conditions are satisfied up to
this point. Let α P ω1 be such that dom pn Ď αˆ α (and α ą αn- if n ą 0). Since
pn ď pn- ď ¨ ¨ ¨ ď p0 by design, pn, xp 9Cq is unbounded in ω1y, so there exist p ď pn
and α1 ą α such that p, α̌1 PPP 9C. Since P is ω-closed, ,P 9X X α̌1 P V, so there exist
p1 ď p and S Ď α1 such that p1, 9X X α̌1 “ Š. Let αn “ α, Sn “ S, and pn`1 “ p1.

Let p “
Ť

nPω pn, α “
Ť

nPω αn, and S “
Ť

nPω Sn. Then dom p Ď αˆOrd and
S Ď α. Let p1 be the extension of p by the addition of the characteristic function
of S at position α:

p1 “ pY tpxα, βy, 1q | β P Su Y txα, βy, 0q | β P αzSu.

Then p1, 9XXα̌“““ Š. Since p1, xp 9Cq is closedy, p1, α̌PPP 9C. This contradicts (8.215).
8.214

8.14.3 Silver’s singular cardinals theorem

As discussed above§ 3.9.2 the following theorem of Silver was a stunning breakthrough
in the theory of singular cardinal arithmetic. The original proof involves a nonwell-
founded ultrapower of a transitive modelM constructed in a generic extension ofM .
A direct proof of Silver’s theorem—without any model-theoretic considerations—
was soon formulated by Baumgartner and Prikry, but we will present Silver’s proof
here as an instructive example of the incorporation of forcing within a larger con-
text, i.e., not as the centerpiece of a straightforward relative consistency argument.

(8.216) Theorem [ZFC] Suppose κ is a singular cardinal of uncountable cofinality
and the set of cardinals λ ă κ such that 2λ “ λ` is stationary in κ. Then 2κ “ κ`.

Remark As noted above the forcing component of the following proof is not a
straightforward relative consistency argument such as we have seen so far, but it
may nevertheless be formulated in terms of relative consistency. We will show
that if ZFC plus the negation of the theorem is consistent then ZFC ` x0 “ 1y59 is
consistent. Since the latter is false, the former is false, i.e., ZFC proves the theorem.
We will show that ZFC ` x0 “ 1y is consistent by showing that it is P-valid for an
appropriate partial order P, and we will do this by arguing in a P-generic extension
using the theory Θ1,8.106 which incorporates GB and can deal with satisfaction in
proper class structures. We will give the proof in its conventional form. To obtain
a proof that is strictly in the above format, the reader may substitute V, P, and G
for M , P, and G, respectively, and may suppose that V “ VrGs, as in Θ1.

58Note that we have p0 at the outset.8.215

59x0 “ 1y is just a convenient sentence in the language of set theory that is disprovable. Its use
for this purpose is traditional.
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Proof Suppose M is a transitive model of ZFC, and suppose toward a contradiction
that M |ù xrκs is a singular cardinal of uncountable cofinality, the set of cardinals
λ ă rκs such that 2λ “ λ` is stationary in rκs, and 2rκs ‰ rκs`y.

Working in M , let ν “ cf κ. Note that ν is an uncountable regular cardinal.
Let h : ν Ñ κ be a strictly increasing continuous sequence of cardinals cofinal in κ.
Let X “ tα ă ν | 2hα “ phαq`u. Then X is stationary in ν. Let µ “ 2ν , and let
P be the partial order of finite functions from ω to µ ordered by reverse inclusion.
We will argue in a generic extension by P.

Thus, suppose G is M -generic on P. Since M models AC, so does M rGs. Clearly,
Ť

G is a function mapping ω onto µ, so µ is countable in M rGs. Since x2ν “ µy
M

,
it follows that pννqM is countable in M rGs. Let xfn | n P ωy P M rGs be an
enumeration of the regressive functions in pννqM . Since ||P||M “ µ, M |ù xrPs
satisfies the rµs`-chain conditiony, so8.127 cardinals in M above µ remain cardinals
in M rGs.

We now define a decreasing sequence xXn | n P ωy P M rGs, where each Xn

is a stationary subset of ν in M . Let X0 “ X. For each n P ω, given Xn,
let3.173 Xn`1 be a stationary subset of Xn such that fn is constant on Xn`1. Let
U “ tY P P ν XM | Dn P ω Xn Ď Y u. It is easy to see that U is an ultrafilter on
P ν XM .60

Let pA;Eq “
`

νpM ; Pq
˘M
{U be the ultrapower2.168 of pM ; Pq mod U using only

functions from ν to M that are in M . Thus, A “ trf s | f P M ^ f : ν Ñ Mu, and
rf sE rgsØtα ă ν | fα P gαu P U .61

(8.217)  Loś’s theorem2.164 holds for this construction because pM ; Pq |ù AC, so for
any formula ϕ with free variables v, v0, . . . , vn- and any f0, . . . , fn- P νM XM , there
exists f P νM XM such that for all α P ν, if pM ; Pq |ù pDDDv ϕq

“

v0 ¨ ¨ ¨ vn-

f0α ¨ ¨ ¨ fn-α

‰

then

pM ; Pq |ù ϕ
“

v v0 ¨ ¨ ¨ vn-

fα f0α ¨ ¨ ¨ fn-α

‰

.62

For each a P A, let aE “ tb P A | bE au, the E-extension of a. Let j : M Ñ A be
the canonical injection: ja def

“ rfas, where @α ă ν faα “ a. Let e “ ris, where i is
the identity function: @α ă ν iα “ α.

Suppose rf s P A and rf sE e. Then there exists Y P U such that f is regressive
on Y . Let f 1 P νν XM be such that

f 1α “

#

fα if α P Y
0 otherwise.

Then f 1 is regressive and rf 1s “ rf s. Let n P ω be such that fn “ f 1. Then there
exists β P ν such that @α P Xn`1 fnα “ β. Hence rf s “ rf 1s “ rfβs “ jβ. Thus,
ta P A | aE eu “ jÑν.

Let d “ pjhqe, and let D “ dE p“ ta P A | aE duq. Since h is strictly
increasing and continuous, jh is strictly increasing and continuous in pA;Eq, so d

60Suppose Y P P ν XM . If 1 P Y let f : ν Ñ 2 be such that fα “ 0Øα P Y ; otherwise, let
fα “ 1Øα P Y . f is regressive, so f “ fn for some n, and Xn`1 Ď Y or Xn`1 Ď νzY .

61Note that pA;Eq is a proper class structure. This is legitimate because, as noted above, when
“working in MrGs” we are using the theory Θ1, which incorporates GB. As used here, ‘rfs’ denotes
the reduced equivalence class rf s˚U of a function f : ν Ñ M as defined in (2.167). Alternatively,
we could use the ultrapower of Mη for some sufficiently large η, in which case rf s may be taken
to be the full equivalence class rf sU .

62It is perhaps worth pointing out that  Loś’s theorem in general depends on AC holding in “the
real world”, whereas in the present application it depends on AC holding in pM ; Pq, while the “real
world” is pMrGs; Pq.
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is the supremum in pA;Eq of elements pjhqpjαq “ jphαq, α ă ν. Thus, d is the
supremum in pA;Eq of elements jη, where η ă κ is a cardinal in M . For each such
η, let Dη “ pjηqE . The elements of Dη are represented by functions in νη XM .
Since κ is a strong limit cardinal in M , there are fewer than κ such functions in the
sense of M , so there exist θ ă κ and g P M such that g : θ sur

Ñ νη XM . γ ÞÑ rgγs
is in M rGs and maps θ onto Dη. pD;E XD ˆDq is therefore (in M rGs) a linear
order all of whose initial segments have size ă κ. (Recall that cardinals in M above
µ remain cardinals in M rGs, so κ is an uncountable cardinal in M rGs.) It follows
easily that (in M rGs) |D| ď κ, and clearly |D| ě κ, so |D| “ κ.

Recall that we have assumed (toward a contradiction) that M |ù 2rκs ‰ rκs`.
It follows that M |ù xthere exist rκs`` distinct subsets of rκsy. Recall again that
cardinals in M above µ remain cardinals in M rGs, so xrκs``y

M
“ κ``. Thus,

M rGs |ù xthere exist rκs`` distinct subsets of rκs in M y.
In M rGs, for each C P P κ X M , let aC be the (unique) a P A such that

pA;Eq |ù ras “ rds X rjCs. Note that aCE “ pjCq X dE “ pjCq X D. Suppose
C,C 1 are distinct elements of P κ XM . Without loss of generality, suppose there
exists γ P CzC 1. Then pjγqE pjCq, ␣

`

pjγqE pjC 1q
˘

, and pjγqE d, so pjγqE aC

and ␣
`

pjγqE aC
1˘

. Hence, aC and aC
1

are distinct elements of pA;Eq, and their
E-extensions aCE and aC

1

E are distinct subsets of dE “ D.
Thus, M rGs |ù xthere exist rκs`` distinct subsets of rDsy. Since tα ă ν | 2hα “

phαq`u “ X P U , pA;Eq |ù 2rds“““rds`.8.217 Let b “ xrds`y
pA;Eq

, and let B “ bE . In
pA;Eq there exists an injection of the powerset of d into b, which can be used in
M rGs to show that M rGs |ù xthere exist rκs`` distinct elements of rBsy, i.e.,

(8.218) M rGs |ù |rBs| ě rκs``.

However, for every cE b, there is an injection in pA;Eq of cE into dE “ D, and
we have seen that M rGs |ù |rDs| “ rκs, so in M rGs every initial segment of B has
size ď κ. It follows as before, that M rGs |ù |rBs| ď rκs`, contradicting (8.218).

As remarked above, this argument in the generic extension M rGs shows that
the supposition made of M in the first paragraph leads to the existence of a partial
order P such that two contradictory sentences are P-valid. This is the contradiction
that refutes the supposition. Letting M “ V , we have the theorem per se. 8.216

8.14.4 A model in which every set of reals has the Baire
property, is Lebesgue-measurable, and has the per-
fect set property

8.14.4.1 The Levy collapse

(8.219) Definition [ZF] Suppose κ is a regular cardinal.

1. Suppose λ is an ordinal. Then Cpκ, λq def
“ the partial order C such that |C| is

the set of functions p such that

1. dom p Ď κ;
2. im p Ď λ; and
3. |p| ă κ;

and ďC“Ě.
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2. Suppose S is a set of ordinals other than an ordinal. Then Cpκ, Sq def
“ the

partial order C such that |C| is the set of functions p such that

1. dom p Ď S ˆ κ;
2. for each xα, βy P dom p, pxα, βy P α; and
3. |p| ă κ;

and ďC“Ě.

3. Suppose λ is an ordinal. Then Cpκ,ăλq def
“ the partial order defined as in

(8.219.2) for S “ λ.

4. Cpκ, λq
def
“ RpCpκ, λqq, Cpκ, Sq

def
“ RpCpκ, Sqq, Cpκ,ăλq

def
“ RpCpκ,ăλqq.

Note that Cpω, λq as defined in (8.219.1) is isomorphic to Cpω, tλuq as defined in
(8.219.2). The commonest use of (8.219.2) for a set S that is not an ordinal is
when S is an interval, usually of the form rν, λq. Specifically, we have the following
factorization:

(8.220) Cpκ,ăλq – Cpκ,ăνq ˆ Cpκ, rν, λqq.

(8.221) Theorem [ZFC] Suppose κ is a regular cardinal and λ ą κ is a cardi-
nal.

1. Cpκ, λq is ăκ-closed.

2. If λăκ “ λ then ||Cpκ, λq|| “ λ, so Cpκ, λq trivially has the λ`-chain condition.

Proof Straightforward. 8.221

Cpκ, λq (Cpκ, λq) are referred to collectively as collapsing partial orders (alge-
bras), by virtue of the following theorem.

(8.222) Theorem [GB] Suppose M is a transitive model of ZFC, κ is a regu-
lar cardinal in M , λ ą κ is a cardinal in M , and G is an M -generic filter on
Cpκ, λq.

1. Every cardinal in M ď κ is a cardinal in M rGs.

2. |λ|MrGs “ κ.

3. If M |ù xrλsărκs “ rλsy then every cardinal in M ą λ is a cardinal in M rGs.

Proof Clearly,
Ť

G : κ sur
Ñ λ. The cardinal-preservation properties follow from

(8.221) with (8.127) and (8.134). 8.222

The partial orders Cpκ,ăλq clearly collapse all cardinals ă λ to κ. A case of
particular interest is that in which λ is a inaccessible cardinal.

Definition [ZFC] Suppose κ is a regular cardinal and λ is an inaccessible cardinal
ą κ. The Levy collapse of λ to κ` def

“ Cpκ,ăλq.

(8.223) Theorem [ZFC] Suppose κ is a regular cardinal and λ is an inaccessible
cardinal ą κ. Then Cpκ,ăλq satisfies the λ-chain condition.

Proof Given p P Cpκ,ăλq, let p̂ be the function whose domain is tα P λ | Dβ P
κ xα, βy P dom pu, such that for any α P dom p̂, p̂α “ tpβ, γq | pxα, βy, γq P pu. Note
that
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1. | dom p̂| ă κ;

2. @α P dom p̂ p̂α : κá α;

3. |κα| ă λ.

Note also that if p and p1 are incompatible in Cpκ,ăλq then Dα P dom p̂Xdom p̂1 p̂α ‰
p̂1α.

Suppose X is an antichain in Cpκ,ăλq. Let P “ tp̂ | p P Xu. We will carry
out a construction similar to that in the proof of (8.135) to show that |P | ă λ,
so |X| ă λ. Thus, we let P̄ “ tp̂ | p P Cpκ,ă λq^ Dp̂1 P P p̂ Ď p̂1u, and we
construct a κ-sequence 0 “ P0 Ď P1 Ď ¨ ¨ ¨ of subsets of P such that, letting
Bα “

Ť

p̂PPα
dom p̂,

1. |Pα| ă λ;

2. @p̂ P P̄
`

dom p̂ Ď BαÑ
`

Dq̂ P P pp̂ “ q̂ æBαqÑDq̂ P Pα`1 pp̂ “ q̂ æBαq
˘˘

;

3. if α is a limit ordinal then Pα “
Ť

βăα Pβ ;

and P “
Ť

αăκ Pα.
Clearly Property 1 is maintained at limit stages. We will show that it can be

maintained at successor stages. Suppose |Pα| ă λ. Then |Bα| ă λ. It follows that
|A| ă λ, where A “ tp̂ P P̄ | dom p̂ Ď Bαu, and no more than |A| elements have
to be added to Pα to form Pα`1 so as to satisfy Property 2; hence, Pα`1 may be
chosen so that |Pα`1| ă λ, as desired.

It remains to show that P “
Ť

αăκ Pα. Suppose p̂ P P . Let B “
Ť

αăκBα.
Since | dom p̂| ă κ and κ is regular, for some α ă κ, dom p̂XBα “ dom p̂XB. Let
p̂1 “ p̂ æBα. Then p̂1 P P̄ , so there exists q̂ P Pα`1 such that q̂ æBα “ p̂1 “ p̂ æBα “
p̂ æB. Since dom q̂ Ď Bα`1 Ď B, p̂ and q̂ agree on their common domain, so they
are compatible. Since X is an antichain, q̂ “ p̂.

Hence |P | “
ř

αăκ |Pα| ă λ. 8.223

(8.224) Theorem [GB] Suppose M is a transitive model of ZFC, κ is a regular
cardinal in M , λ ą κ is an inaccessible cardinal in M , and G is an M -generic filter
on Cpκ,ăλq. Then

1. every cardinal in M that is ď κ or ě λ remains a cardinal in M rGs; and

2. M rGs |ù xrκs` “ rλsy.

Proof Since M |ù xCprκs,ărλsq is ărκs-closedy, cardinals in M ď κ remain car-
dinals in M rGs. It follows from (8.223) that cardinals in M ě λ remain cardinals
in M rGs. Clearly all cardinals η in M such that κ ă η ă λ are collapsed to κ in
M rGs, so M rGs |ù xrκs` “ rλsy. 8.224

8.14.4.2 Solovay’s theorem

Suppose M is a transitive model of ZFC and M |ù xrκs is inaccessibley. Let C “

Cpω,ăκq, and suppose G is an M -generic filter on C, then ω
MrGs
1 “ κ. Let S be

the class of ω-sequences of ordinals in M rGs and let N be the class HODpSq of sets
hereditarily ordinal-definable from S in the sense of M rGs.

(8.225) Theorem [GBC] Under the above conditions, N |ù xfor every X Ď R
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1. X has the Baire property;

2. X is Lebesgue measurable; and

3. X has the perfect set property.y

The proof of this theorem is a big step forward in the sophistication of its use of
forcing ideas, and it is worth our while to get an overview of the argument before
plunging into the details. In broad strokes the proof goes as follows. We start with a
transitive model M of ZFC with κ P OrdM such that M |ù xrκs is inaccessibley, and
an M -generic filter G on Cpω,ăκqM . We let N be HODpSq in the sense of M rGs,
where S is the class of ω-sequences of ordinals in M rGs. Then10.186 N |ù ZF ` DC
and RN “ RMrGs. Suppose X P N is a set of reals. Then there exists t P S such
that X is definable from t in M rGsα for some α P OrdM . t, α, and the defining
formula (which as an hereditarily finite set is naturally coded as a finite ordinal)
may be incorporated into a single s P S, and

(8.226) X “ tx P RMrGs |M rGs |ù ∆rs, xsu,

where ∆ is a fixed s-formula.
Let M 1 “M rss. We wish to characterize the membership of a real x in X as a

property of x in M 1rxs. For this we use the homogeneity10.180 and the factorization
property10.184 of the Levy algebra Cpω,ăκq, by virtue of which10.200

x P XØM 1rxs |ù ∆,rC, 0, š, x̌s,

where ∆, is the s-formula that expresses the forcing relation for sentences derived
by substitution of forcing terms for the (two) free variables of ∆, 0 is the empty
condition in C, and š, x̌ are the canonical terms for s, x in M 1rxsC. Via Defini-
tion 10.201 we have

x P XØM 1rxs |ù DrC, s, xs.

We now consider the quotient algebras B “ Borel{m and L “ Borel{n constructed
in M 1, where Borel is the boolean algebra of Borel sets5.88 and m and n are the
ideals of meager5.143 and null5.161 Borel sets, respectively. There is a natural bijection
F ÞÑ xF between M 1-generic filters on B (L) and reals such that for any Borel code
ϵ PM 1

“

pBϵqM
1‰
P F ØxF P pBϵq

N .

The reals of the form xF for M 1-generic F are exactly those that are not in any
meager (null) Borel set with a Borel code5.89 in M 1. We call these reals Cohen or
random over M 1, respectively. Let 9x PM 1B

`

M 1L
˘

be the canonical term for xF in
M 1rF s (in effect, 9x is xG).

We now use the fact that RM 1
is countable in N 10.198 to infer that almost every

real in N is Cohen (random) over M 1. If x P N is Cohen (random) over M 1 and F
is such that x “ xF , then

M 1rxs |ù DrC, s, xsØ rrDpČ, š, 9xqss P F

Øx P pBϵqN ,

where ϵ PM 1 is a Borel code such that rrDpČ, š, 9xqss “
“

pBϵqM
1‰

. Thus, for almost
every real x in N , membership in X is equivalent to membership in the Borel set
Bϵ. Hence, X has the Baire property (is Lebesgue measurable).
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Now suppose X is uncountable in N . We must show that X has a perfect
subset in N . It will be convenient to use the Baire space ωω rather than the real
line for this purpose. (Note that if X Ď R is uncountable then XzQ is uncountable,
and we may use the homeomorphism5.77.2 of RzQ with ωω to obtain a topologically
equivalent uncountable subset of ωω.) Let x P XzM 1. There exists ν ă κ such that
x P M 1rGνs, where Gν “ G X |Cν | and Cν “ Cpω,ăνq. Gν is an M 1-generic filter
on Cν . By the factorization and homogeneity properties, again, since x P X,

M 1rGνs |ù ∆,rC, 0, š, x̌s,

so10.201

M 1rGνs |ù DrC, s, xs.

Let 9x PM 1Cν be such that 9xGν “ x, and let p P Cν be such that

p,M
1,Cν DpČ, š, 9xq ^̂̂ ␣␣␣VVVp 9xq.63

pPCνqM
1

is countable in M rGs, and we let xDn | n P ωy be an enumeration in
M rGs of the dense subsets of Cν in M 1. By (10.186.1) xDn | n P ωy P N .

We now define in N for each t P ăω2 a condition pt P |Cν | and a sequence
ξt P

ăωω such that for all t, t1 P ăω2

1. p0 ď p;

2. pt P D|t|;

3. t1 Ě tØ ξt1 Ě ξt;

4. t1 Ě tÑ pt1 ď pt; and

5. pt, xpξ̌tq Ď p 9xqy.

To accomplish this, we first let p0 be any extension of p in D0 and let ξ0 “ 0. Given
pt and ξt we obtain pt ⌢xiy and ξt ⌢xiy for i P 2 as follows. Since pt ď p, pt forces 9x
not to be in M 1, so there must be extensions of pt forcing incompatible information
about 9x. Let n,m0,m1 P ω and q0, q1 ď pt be such that m0 ‰ m1, q0, 9xpňq“““ m̌0,
and q1, 9xpňq“““ m̌1. Let q10, q

1
1 be extensions of q0, q1, respectively, that are in

D|t|`1. For i P 2, let pt ⌢xiy ď q1i and ξt ⌢xiy P
n`1ω be such that ξt ⌢xiypnq “ mi and

pt ⌢xiy, ξ̌t ⌢xiyĎĎĎ 9x.
No Choice axiom is necessary to obtain pt and ξt, as |C| and ăωω have definable

wellorderings; however, we do need a Choice axiom to obtain xDn | n P ωy. This is
why we obtained this enumeration initially in M rGs, which satisfies AC.

Reasoning now in N , suppose z P ω2. Let Fz “ tr P |Cν | | Dn P ω r ě pz ænu.
Then Fz is a filter on Cν and meets every Dn, so it is M 1-generic. Obviously,
9xFz “

Ť

nPω ξz æn. Since p P Fz and p,DpČ, š, 9xq, 9xFz P X. t 9xFz | z P ω2u is
therefore a perfect subset of X.

In Note 10.31 we provide a detailed proof of Theorem 8.225.

63Recall that V is the predicate comprehending the ground model for the relevant generic ex-

tension, so in this case VM 1rGν s is M 1.
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8.14.4.3 Relative consistency

To obtain a finitary proof of the consistency of ZF`DC + xall sets of reals have the
Baire property, etc.y relative to that of ZFC + xthere exists an inaccessible cardinaly,
we may use any of the methods described in Section 8.6. Note that we have used
Definition 6.22 of ordinal-definability, rather than (6.21) in the above argument. As
the discussion in Section 6.5 makes clear, this choice is obligatory if M is allowed
to be a proper class, as it must be if we are to use Method 3 of Section 8.6, i.e.,
“arguing in a generic extension (of V )”. Note also that our use of the notion of
satisfaction for M rGs and its submodels is legitimate, because we have restricted
it to the specific formulas ∆, ∆, and D. For example, we could have written these
out in full and replaced satisfaction statements by relativizations. This would not
have been the case if we had used (6.21).

Suppose, however, we specified that the ground model M be countable. Then
M -generic filters G would actually exist, M rGs would be countable, and we could
define N ĎM rGs using Definition 6.21 of ordinal-definability. Likewise, satisfaction
relations would exist for all structures under consideration. The above argument
would then show that if there is a transitive model of ZFC + xthere exists an
inaccessible cardinaly then there is a transitive model of ZF`DC + xall sets of reals
have the Baire property, etc.y. We would not, however, be able to obtain a finitary
proof of relative consistency by replacing ZF by a finite fragment as required by
Method 1 of Section 6.5, because we must allow arbitrary formulas ϕ in definitions
of sets X of reals in N , which now take the form

X “ tx P RMrGs |M rGs |ù ϕrs, xsu,

rather than (8.226).

8.15 Summary

The problem of extending a transitive model M of ZF without the addition of
new ordinals was solved by Paul Cohen with the concept of a generic extension.
Supposing M is countable, P PM is a partial order, ϕ is a P-forcing sentence, and
p P |P|, we say that p,˚ϕ

def
ðñM rGs |ù ϕ for every M -generic filter G on P such

that p P G. We establish a simple set of identities for ,˚, whose derivation depends
on the existence of M -generic filters, by which we mean that for every p P |P| there
exists an M -generic filter G on P such that p P G; this follows from the countability
of M .

Once derived, these identities are seen to provide a recursive definition of a
relation ,M,P over any transitive class model M of ZF containing P, including V .
If M -generic filters exist then ,M,P “ ,˚. A very useful technique in forcing is
to imagine that M -generic filters exist even when they don’t. This technique may
be justified by the consideration of countable transitive models of sufficiently large
finite fragments of ZF, which exist by the reflection principle. We call this “arguing
with generic extensions”.

Defining the boolean value of a forcing sentence to be the set of conditions that
force it leads naturally to the notion of boolean-valued structures, which can also
be used as a primary framework in which to develop the theory. In practice partial
orders and boolean algebras are used interchangeably as convenience dictates.

The same difficulties arise in the definition of forcing and boolean valuation for
proper class models as in the definition of satisfaction for these models, and they
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are dealt with in the same way, and similar logical considerations apply.
The definability of forcing (or boolean valuation) leads to a straightforward

proof that if M is a transitive model of ZF, P P M is a partial order, and G is an
M -generic filter on P, then MrGs is a transitive model of ZF with the same ordinals
as M , and MrGs |ù xrGs is a V-generic filter on rPsy, where MrGs is M rGs with the
additional predicate symbol V denoting M . The method of “arguing in a generic
extension” using the theory Θ8.101 achieves the advantages of reasoning in MrGs
even when M -generic filters do not exist, e.g., when M “ V .

Θ is a pure set theory that implements the assumption that M models ZF as
the set of relativizations θV of the axioms θ of ZF to V. A conservative extension
result8.108 allows us to use instead the class theory Θ1, which implements the as-
sumption that M models ZF as the single sentence xV |ù ZFy. One may also argue
directly in a boolean-valued universe V A.§ 8.5.4

Several ways to obtain a relative consistency result by a forcing argument are
given in Section 8.6. They are all essentially equivalent.

Certain properties of partial orders and boolean algebras are particularly rele-
vant to the properties of generic extensions. Among these are chain (or saturation),
closure, and distributivity conditions. We show how these conditions may be em-
ployed to control cardinalities and powersets in extensions, and we show the relative
consistency of the violation of the generalized continuum hypothesis (GCH) at any
regular cardinal.

We adapt the Fraenkel-Mostowski method of symmetric models to generic ex-
tensions to show the consistency of ZF`␣␣␣AC (without the use of urelements).

We discuss the basic forcing properties of products of partial orders, and apply
this theory to prove a limited version of Easton’s result on adjusting the size of 2κ

for a set of regular cardinals κ.
Up to this point the discussion has been limited to “set forcing”, i.e., to the

case of partial orders that are sets. We now indicate the issues that must be dealt
with to extend the discussion to “class forcing”, and we show that the tame partial
orders are the appropriate ones for class forcing. We use this theory to prove the
full Easton result on adjusting the size of 2κ for all regular cardinals κ.

We show how a generic extension of a generic extension may be modeled as
a single forcing construction, with particular attention to the elegant analysis in
terms of complete subalgebras. This theory is important in its own right, but it
is also the basis for the theory of forcing iterations of arbitrary length. Here we
limit our discussion to iteration with finite support, and we give the application for
which it was invented, viz., the relative consistency of Suslin’s hypothesis and more
generally Martin’s axiom.

We conclude with several arguments giving some indication of the diversity of
uses of forcing. We begin with Tennenbaum’s clever method of obtaining a Suslin
tree by forcing with finite conditions, followed by the construction of a ♢-sequence
using countable conditions. We then present Silver’s theorem on the powersets of
singular cardinals of uncountable cofinality. Finally, we present Solovay’s model
of ZF ` DC in which all sets of reals have the Baire, Lebesgue measurability, and
perfect set properties.
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Said Conrad Cornelius o’Donald o’Dell,
My very young friend who is learning to spell:
“The A is for Ape. And the B is for Bear.
“The C is for Camel. The H is for Hare.
¨ ¨ ¨

“. . . Through Z is for Zebra. I know them all well.”
Said Conrad Cornelius o’Donald o’Dell.
“So now I know everything anyone knows
“From beginning to end. From the start to the close.
“Because Z is as far as the alphabet goes.”
Then he almost fell flat on his face on the floor
When I picked up my chalk and drew one letter more!
A letter he never had dreamed of before!
And I said, “You can stop, if you want, with the Z
“Because most people stop with the Z
“But not me!
¨ ¨ ¨

So, on beyond Zebra!
Explore!
Like Columbus!
¨ ¨ ¨

On Beyond Zebra by Theodor Seuss Geisel (Dr. Seuss)

. . . all experience is an arch wherethro’
Gleams that untravell’d world whose margin fades
For ever and for ever. . .

Ulysses by Alfred, Lord Tennyson

‘Beauty is truth, truth beauty, . . . ’

Ode on a Grecian Urn by John Keats

Ad pulcritudinem tria requiruntur, integritas, consonantia, clari-
tas.1

Summa Theologica by Thomas Aquinas
as paraphrased by Stephen Dedalus in A Portrait of the Artist

as a Young Man by James Joyce

[Aki Kanamori’s The Higher Infinite[14] is an excellent source for the topics of this
chapter, particularly large cardinals. As we have previously stated, Thomas Jech’s
Set Theory [12] is an excellent source for all aspects of set theory, including this these
topics. Both books provide an entrée into the world of active research in set theory.
The Handbook of Set Theory [5], edited by Matthew Foreman and Aki Kanamori,
is a collection of fairly self-contained monographs by leading mathematicians in
the field; an “unofficial index” is available at http://handbook.assafrinot.com/
with links to the authors’ websites, where the chapters can be downloaded.]

1Three things are needed for beauty: wholeness, harmony, radiance.

http://handbook.assafrinot.com/
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9.1 Introduction

The limitations of ZF have been extensively studied by the use of inner models
and generic extensions. Many statements are known to be neither provable nor
disprovable using the axioms of ZFC alone. If we take the position that sets exist
in some ideal realm, then each of these statements is either true or false, and we
are motivated to determine which is which, just as we are motivated to determine
which statements are true concerning the physical world.

I am not at all convinced of the validity of this so-called platonist position,
but then again, I am also uncertain as to the nature of physical reality. Perhaps
after we have explored the foundations of physics you will join me in the latter
skepticism. In any event, a good many students of the foundations of mathematics
are uncomfortable with the notion of absolute truth as regards statements of set
theory.

But it is a narrow conception of mathematics to regard its value as solely de-
scriptive. Indeed, mathematics, more than any other human endeavor, reveals
that ‘beauty is truth, truth beauty’. Before the foundations of mathematics—and
concomitantly set theory—were investigated, mathematics had produced many ex-
amples of the beauty of truth, and it continues to do so; but perhaps now it is time
also to embrace the bolder half of Keats’s thesis: the truth of beauty. Given the
inability of the Zermelo-Fraenkel axioms to answer many mathematical questions,
may we not undertake, in the words of Tennyson’s Ulysses, ‘to seek a newer world
. . . To sail beyond the sunset . . . ’, and find a larger truth? We of the present era
have an opportunity unsuspected by mathematicians of former times, the opportu-
nity to create mathematical truth even as we discover it. And what better guide
in this endeavor—indeed, what other guide—than that of beauty?

The simplest option that presents itself for extending ZF is the axiom of con-
structibility, xV “ Ly. This is a very powerful assumption, which settles many
questions left open by ZF. The theory of L has real aesthetic merit, but I think it is
fair to say that it is a rare set theorist in whose mind L is anything but a very thin
sliver of the universe. The reason is this: once one has conceived of a mathematical
object, then it exists. Unlike Descartes, who was not content to be someone’s dream
content, sets are happy to say ‘I am thought of, therefore I am.’. At least, if an
object can conceivably (consistently) exist, then it seems unwarranted to deny its
existence without good reason. In terms of Aquinas’s three conditions of beauty, we
therefore conclude that while the theory of L possesses harmony, it lacks wholeness
and consequently radiance.

If L is the safe and ordered world of Ithaca after Ulysses’s return (and after a
little messy business was attended to), the world outside of L is just as wild and
wonderful as the one Ulysses longed to explore again. The challenge of defining
truth out there is a daunting one, but there are few intellectual adventures to
match it. In this chapter we will see how the expansive impulse has led to a truly
beautiful theory of the countably infinitary.

All of the above makes sense from a certain point of view, but I would be remiss
if I did not point out that instead of viewing V “““L as saying that V is so thin that
every set is constructible, we may view it as saying that Ord is so long that every set
gets constructed. From this point of view V “““L is a strong axiom of infinity. That
said, ZFY tV “““Lu can only be considered to “generate” the sets in the minimum
model of it. This model certainly does not contain any transitive set models with
large cardinals. We should also note that a measure of a theory’s power is its ability
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to interpret other theories. ZF Y tV “““Lu cannot interpret any theory with large
(enough) cardinals, as it cannot interpret any theory that ZF Y tCon ZFu cannot
prove consistent.

9.1.1 Comparison of theories

The strength of a theory is its position in the partial ordering of theories by the
relation $. Thus, Θ1 is as strong as Θ iff Θ1$Θ. The consistency strength of a
theory Θ is the position of Con Θ in the partial ordering of sentences by $ modulo
a suitable base theory such as S. Thus, the consistency strength of Θ1 is as great as
that of Θ iff S$ xCon Θ1ÑCon Θy. We may also compare theories by the relation
of interpretability; however, the first two modes of comparison are the most used.

9.2 Large cardinals

One of the most potent ways of extending ZF is by asserting the existence of sets
with some attribute that implies that they are large in a suitable sense. In the
context of AC, every set is equipollent with a cardinal, and we refer generally to
assumptions of this sort as large cardinal hypotheses.

The axiom of Infinity is the paradigm of large cardinal hypotheses, and in terms
of the qualitative difference between the theory of membership with and without
it, it is the most powerful large cardinal axiom. One way to formulate a statement
that a cardinal is “large” is to say that it stands in a similar relation to all smaller
cardinals as ω does to all finite cardinals.

There is a great diversity of assertions that imply that a cardinal is large, and it
is a remarkable fact that the large cardinal hypotheses that have been proposed are
for the most part linearly ordered by strength. Figure 9.1 compares the strengths
of some of the large cardinal hypotheses considered here.

9.2.1 Somewhat large cardinals

(9.1) Definition [ZFC] Suppose κ is an uncountable cardinal.

1. κ is weakly inaccessible
def
ðñ κ is a regular limit cardinal.

2. κ is (strongly) inaccessible
def
ðñ κ is weakly inaccessible and is also a strong

limit cardinal, i.e, for every cardinal λ ă κ, 2λ ă κ.

Note that apart from the condition of uncountability, ω satisfies the definition of
inaccessibility. Thus, inaccessibility is an example of asserting that a cardinal is
large by attributing to it a property that ω enjoys vis-à-vis smaller cardinals, viz.,
that its cofinality exceeds any smaller cardinal and that it exceeds the size of the
powerset of any smaller cardinal.

(9.2) Theorem [ZFC] Suppose κ is a strongly inaccessible cardinal. Then Vκ |ù
ZFC.

Proof For any limit ordinal α ą ω, Vα is easily seen to be a model of ZFC without
the Collection schema. To show that Vκ |ù Collection it suffices to show that for any
x P Vκ and f : x Ñ Vκ, im f Ď Vα for some α ă κ. Since κ is weakly inaccessible,
it is enough to show that |x| ă κ, and this follows from the fact that κ is a strong
limit cardinal. 9.2
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Dj : V ă V , “ω-huge”, “I -1”

yyssss
␣AC

I0Ñ I1Ñ I2Ñ I3

huge
yy

ssss

��
Vopěnka’s principle

��
extendible

��
supercompact

ssgggggggggg

��

strongly compact

((PPPPPPPPPPPPPPPPP ␣pV “ LrAsq

Woodin
��

measurable
��

κÑ pκqăω2

��
κÑ pω1q

ăω
2

��
07 exists

��

␣pV “ Lq

totally indescribable

��
weakly compact

��
Mahlo

��
inaccessible

��
infinite

��
2
��
1

Figure 9.1: Large cardinal hypotheses. An arrow joining A to B means variously
that A˚ implies B˚ or that ConpGBC` A˚q implies ConpGBC`B˚q, where A˚ is
either the statement that a given cardinal κ has property A or that there exists a
cardinal with property A or that V |ù A, as appropriate.
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(9.3) Theorem [S] Suppose ZF is consistent. Then ZFC ` GCH& xthere exists a
weakly inaccessible cardinaly.

Proof Suppose ZFC` GCH$ xthere exists a weakly inaccessible cardinaly. In the
context of ZFC, GCH implies that every limit cardinal is a strong limit cardinal, so
every weakly inaccessible cardinal is strongly inaccessible. GCH also implies that
Vκ |ù GCH for every limit cardinal κ ą ω. Thus, ZFC ` GCH$ xthere exists a
strongly inaccessible cardinal κ, and9.2 Vκ |ù ZFC` GCHy.

It follows that ZFC` GCH proves its own consistency, so by Gödel’s second in-
completeness theorem, it is inconsistent. We’ve already seen that if ZF is consistent
then ZFC` GCH is consistent, so ZF is inconsistent, contrary to hypothesis. 9.3

By virtue of (9.3) inaccessibility qualifies as a large cardinal property; it is in
some sense the weakest such property. We can easily manufacture stronger large
cardinal properties by saying that a cardinal is 0-inaccessible

def
ðñ it is inaccessible;

pα ` 1q-inaccessible
def
ðñ it is α-inaccessible and is a limit of α-inaccessibles; and

α-inaccessible for a limit ordinal α
def
ðñ it is β-inaccessible for all β ă α. The

following definition is a more sophisticated version of this, and it hints at the
sort of relationship that often holds between large cardinal properties of differing
strengths.

(9.4) Definition [ZFC] Suppose κ is a cardinal and α is an ordinal. The following
definition is to be understood as a recursion on α.

1. κ is 0-Mahlo
def
ðñ κ is (strongly) inaccessible.

2. κ is pα`1q-Mahlo
def
ðñ κ is α-Mahlo and tλ ă κ | λ is α-Mahlou is stationary

in κ.

3. κ is α-Mahlo for α a limit ordinal
def
ðñ κ is β-Mahlo for all β ă α.

κ is Mahlo
def
ðñ it is 1-Mahlo. κ is hyper-Mahlo

def
ðñ κ is α-Mahlo for all α ă κ.

Clearly we can extend this sort of thing as long as we wish, defining 1-hyper-Mahlo
to mean ‘hyper-Mahlo’, α-hyper-Mahlo by recursion as in (9.4.2, 3), hyper-hyper-
Mahlo by diagonalization as for ‘hyper-Mahlo’, etc.

9.2.2 Measurable cardinals

Although each of the successive notions of largeness defined in the last section is
stronger than each of the preceding ones, none of them is very large by modern
standards. In particular, the existence of any of them is consistent with xV “ Ly.2

In other words, their existence implies the universe V of sets is tall, but not that it
is fat.

Inconsistency with xV “ Ly is something of a threshold for large cardinal hy-
potheses. Remarkably, hypotheses above this threshold often have consequences
concerning the existence and behavior of relatively small sets, in particular, reals,
i.e., subsets of ω. The paradigm of “large” large cardinal properties is that of
measurability.

2This is to be understood in terms of consistency strength, i.e., if it is consistent that such a
cardinal exists then it is consistent that such a cardinal exists and V “ L. In fact, in the cases
mentioned, any cardinal with the given property continues to have that property in L.
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Recall the notion of measure that we have seen is so important in analysis and
descriptive set theory. A finite3 measure space is a set X, a set M of subsets of X
that is a countably complete subalgebra of PX regarded as a boolean algebra, and
a map µ : MÑ r0,8q that is countably additive:

(9.5) For any sequence xAn | n P ωy of disjoint sets in M,

µ

˜

ď

nPω

An

¸

“

8
ÿ

n“0

µpAnq.

This sort of measure is called real-valued for the obvious reason.
As we have already seen, the existence of real-valued measures is a matter of

considerable importance to the foundations of mathematics. The measure problem
as originally posed by Lebesgue was whether there exists a nontrivial translationally
invariant measure on PR; ‘nontrivial’ in this context means not identically 0. As
we have seen,§ 5.7 Lebesgue measure is the unique solution to this problem (up to
normalization) if we restrict our attention to certain countably closed subalgebras
of PR, such as the algebra of Borel sets, or more generally, the closure of the class
of analytic sets under the Suslin operation A. Vitali showed5.162 that a complete
solution is incompatible with ZFC. Solovay—assuming the consistency of ZFC`
xthere exists an inaccessible cardinaly—showed8.225 that the existence of a complete
solution of Lebesgue’s problem is consistent with ZF` DC.

Following Vitali’s result, Banach posed the following variant of Lebesgue’s prob-
lem: whether there exists any nontrivial measure on PR, not necessarily translation-
invariant. For this problem, ‘nontrivial’ means not identically 0 but assigning mea-
sure 0 to singletons txu. Banach and Kuratowski showed that a solution of this
problem is incompatible with ZFC ` CH. Note that existence of a solution to Ba-
nach’s measure problem for subsets of any bounded interval is equivalent to a full
solution, and it is acceptable to standardize the problem by restricting attention
to unit measures, i.e. those whose values are bounded by 1. Also, given that
translation-invariance is not required, the structure of R is irrelevant, and any set
will serve.

(9.6) Suppose S is a set. µ is a unit real-valued measure over S
def
ðñ

1. µ : P S Ñ r0, 1s;

2. µS “ 1;

3. for each x P S, µtxu “ 0; and

4. µ is countably additive.9.5

In this discussion, we will use measure to mean unit real-valued measure.

In general, an object defined on a boolean algebra A of subsets of a given set S, is
said to be defined over S when |A| “ P S. (This usage is subject to variation, and
we will rely on context to resolve any potential ambiguity.)

Banach’s problem is as follows:

(9.7) Does there exist a (unit real-valued) measure over a nonempty set S?

Given that the structure of the set S in (9.7) does not matter, in the setting of
ZFC we may suppose S is a cardinal.

3‘Finite’ here refers to the fact that every set in M has finite measure.
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Clearly, S must be uncountable.

Banach observed that it is not necessary to restrict the additivity of measures to
countable sets. At first this would not seem to be a useful generalization, since
uncountable sums of real numbers are rather trivial: We define the sum of an
arbitrary set of nonnegative reals as the supremum of the sums of its finite subsets,
which is either a nonnegative real number or 8; and the sum of an uncountable set
of positive real numbers is always 8, since for some n ą 0, there are uncountably
many ą 1{n.

Nevertheless, we do generalize this way, and we find that it does not make the
existence problem any harder.9.8

Definition [ZFC] Suppose κ is a cardinal. A measure µ over a set S is κ-additive
def
ðñ for every λ ă κ, if Aα (α P λ) are disjoint subsets of S then

µ
ď

αPλ

Aα “
ÿ

αPλ

µAα.

Note that ω1-additivity is countable additivity.

(9.8) Theorem [ZFC] Suppose κ is the least cardinal such that there is a (countably
additive) measure over κ. Then every (countably additive) measure over κ is κ-
additive.

Proof Suppose toward a contradiction that µ is a measure over κ that is not κ-
additive. Let λ ă κ and Aα (α P λ) be disjoint subsets of κ such that µ

Ť

αPλAα ‰
ř

αPλ µAα. There exist only countably many α P λ such that µAα ą 0, and if
we remove these, by countable additivity, we still have the foregoing inequality,
so we may assume without loss of generality that for all α P λ, µAα “ 0, yet
µ
Ť

αPλAα “ r ą 0. Let µ1 : P λÑ r0, 1s be such that for every X Ď λ,

µ1X “
µ
Ť

αPX Aα
r

.

Then µ1 is a measure over λ. 9.8

This leads to the following definition.

(9.9) Definition [ZFC] A cardinal κ is real-valued measurable
def
ðñ there exists a

κ-additive measure over κ.

Banach showed under the hypothesis of GCH that real-valued measurability is a
large cardinal property; specifically, if κ is real-valued measurable then κ is weakly
inaccessible.

A more discriminating analysis was achieved by Ulam.

(9.10) Theorem [ZFC] For any cardinal λ there exists an Ulam matrix, i.e., xAηα |
α ă λ`^ η ă λy such that for all α ă β ă λ` and η ă λ

1. Aηα Ď λ`;

2. Aηα XA
η
β “ 0; and

3. |λ`z
Ť

ηăλA
η
α| ď λ.
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Proof For each γ ă λ` let fγ : λ sur
Ñ γ ` 1, and for α ă λ` and η ă λ, let

Aηα “ tγ ă λ` | fγη “ αu. Note that if γ ě α then Dη ă λ fγη “ α, so
γ P

Ť

ηăλA
η
α. 9.11

(9.11) Theorem [ZFC] Suppose κ is real-valued measurable. Then κ is weakly
inaccessible.

Proof Let µ be a κ-additive measure over κ. We first show that κ is regular. To
this end, suppose to the contrary that xγα | α ă λy is unbounded in κ, where λ ă κ.
Since singletons have measure 0,9.6.3 and µ is κ-additive,

µκ ď
ÿ

αăλ

µγα “
ÿ

αăλ

ÿ

βăγα

µtβu “ 0.

To show that κ is a limit cardinal, suppose toward a contradiction that κ “ λ`.
Let xAηα | α ă λ`^ η ă λy be an Ulam matrix9.11 for λ. Then for each α ă κ
there exists ηα ă λ such that µAηα

α ą 0. For some η ă λ, |tα ă κ | ηα “ ηu| “ κ.
tAα | ηα “ ηu is therefore a set of κ pairwise disjoint sets of positive measure,
which is not possible, since κ is uncountable. 9.11

Ulam pointed out the following distinction, which proves to be far deeper than
it first appears.

(9.12) Definition [ZFC] Suppose µ is a measure over a set S.

1. A Ď S is an atom for µ
def
ðñ µA ą 0 and for any B Ď A, µB “ 0 or

µB “ µA.

2. µ is atomless
def
ðñ no A Ď S is an atom for µ.

As it turns out, it is the atomless case that is directly relevant to the original
measure problem of Lebesgue and Banach. The existence of a κ-additive measure
with an atom is, on the other hand, a very powerful large cardinal hypothesis, which
we will use as our entrée into the world of truly large cardinals. Importantly, from
the standpoint of consistency strength the two cases are equivalent, and Solovay’s
proof9.113 of this is a beautiful synthesis of some of the major themes in set theory:
constructibility, genericity, and large cardinals.

(9.13) Theorem [ZFC] Suppose there is an atomless κ-additive measure over
κ.

1. κ ď 2ω.

2. There is a measure over R extending Lebesgue measure.

Proof 1 Suppose µ is an atomless κ-additive measure over κ. We first observe
that for any X Ď κ such that µX ą 0 and any ε ą 0, there exists Y Ď X such that
0 ă µY ă ε. To prove this, construct a sequence X “ X0 Ě X1 Ě ¨ ¨ ¨ such that
for each n P ω, 0 ă µXn`1 ď

1
2µXn. To accomplish this we use the fact that Xn

is not an atom9.12 to let X 1 Ď Xn be such that 0 ă µX 1 ă µXn. Then let Xn`1 be
either X 1 or XnzX

1, whichever is smaller. Clearly, for some n P ω, µXn ă ε. Let
Y “ Xn.

Next we observe that any X Ď κ may be divided precisely in half. We may as-
sume that µX ą 0. We will use the preceding observation to construct a sequence
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of disjoint subsets Xα of X for α ă η, where η is a countable ordinal to be deter-
mined, such that for each α ă η, µ

Ť

βăαXβ ă
1
2µX, and µ

Ť

βăηXβ “
1
2µX.

Start by letting X0 Ď X be such that µX0 ď 1
2µX. If, having defined Xβ

for all β ă α, we find that µ
Ť

βăαXβ “
1
2µX, we let η “ α and we are fin-

ished. Otherwise, µ
Ť

βăαXβ ă
1
2µX, and we let Xα Ď Xz

Ť

βăαXβ be such that
µ
Ť

βăαXβ ă µ
Ť

βďαXβ ď
1
2µX. At some countable stage, equality must obtain;

otherwise, we would have an uncountable set of disjoint sets of positive measure,
some countable subset of which would necessarily have total measure ą 1.

Now define for each s P ăω2 a subset Xs of κ, such that

1. X0 “ κ;

2. @s P ăω2 µXs “ 2´|s|, where |s| is the size of s, which is also the length of s;

3. for all s P ăω2, Xs is the disjoint union of Xs ⌢x0y and Xs ⌢x1y.

For each f P ω2, letXf “
Ş

nPωXf æn. Note that each µXf “ 0, and κ “
Ť

fPω2Xf .
It follows that µ is not p2ωq`-additive, so κ ď 2ω.

2 We use µ and the system of Xss to define an extension of Lebesgue measure as
follows. Let I be the set of real numbers x P r0, 1s whose binary representation does
not terminate. Note that I simply omits the countable set of numbers in r0, 1s that
are integer multiples of 2´n for some n P ω. Similarly, let J be the set of f P ω2
that are not eventually constant. J omits only a countable set of functions. Let
ι : J bij

Ñ I be such that
ιf “

ÿ

nPω

fpnq 2´n´1.

Define µ1 : Pr0, 1s Ñ r0, 1s so that for each R Ď r0, 1s,

µ1R “ µ
`
Ť

fPpιÐRqXf

˘

.

Note that for each interval of the form rk ¨ 2´n, pk ` 1q ¨ 2´ns, µ1 assigns the usual
Lebesgue measure 2´n. Since these intervals form a base for the topology on r0, 1s,
µ1 agrees with Lebesgue measure on all Borel sets. Thus, it also has the same null
sets, and it therefore agrees with Lebesgue measure on all Lebesgue-measurable
sets. It therefore extends Lebesgue measure.

µ1 satisfies the theorem if we interpret R to be r0, 1s, but we can also extend
µ1 by translation to all of R in the usual sense. Note that this is only translation
by integers; the resulting measure cannot be translation invariant per se, by virtue
of Vitali’s theorem,5.162 despite the fact that it extends Lebesgue measure, which is
translation invariant. 9.13

Of course, Theorem 9.13 could be moot, as in ZFC we cannot prove that there
exists a measure, since the least cardinal κ that supports a measure is weakly
inaccessible,9.8, 9.11 so Lκ |ù ZFC, and Gödel’s incompleteness theorem applies.
Nevertheless, it appears unlikely that in ZFC one can disprove the existence of
a measure (which is not to say that people haven’t tried,4 but it would not be a
good choice of dissertation topic), and (9.13) is a good early example of a plausible
hypothesis implying a drastic failure of the continuum hypothesis.

4Indeed, it is because very smart people have tried hard and failed that it appears unlikely.
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We now turn to the other branch9.12.1 of Ulam’s investigation of measure. Sup-
pose A Ď κ is an atom for a κ-additive measure µ over κ. Let µ1 be defined on P κ
so that for every X Ď κ

µ1X “
µpX XAq

µA
.

Note that µ1 is κ-additive. For every X Ď κ, µ1X is 0 or 1, and we say that µ1 is
2-valued, where 2 is understood as the von Neumann ordinal t0, 1u. In this context,
the character of 0 and 1 as real numbers is no longer relevant.

For any measure µ over a set S, the sets tX Ď S | µX “ 0u and tX Ď S |
µX “ 1u are respectively an ideal and a filter on P S.5 If µ is 2-valued, its filter
and its ideal are each maximal in the sense that neither can be enlarged without
encompassing the entire algebra. A maximal filter on a boolean algebra is usually
referred to as an ultrafilter. The topic of 2-valued measures is therefore coextensive
with that of ultrafilters, and the discussion usually focuses on the latter.

Definition [ZF] A filter F over a set X is principal
def
ðñ Dx P X @A P F x P A.

Given x P X, let Ux def
“ tA Ď X | x P Au. Ux is clearly a principal ultrafilter. The

use of a principal ultrafilter trivializes the ultraproduct construction described in
Section 2.7.5, inasmuch as

ś

xAy | y P Xy{U
x – Ax. The existence of nonprincipal

ultrafilters, on the other hand, is a matter of considerable interest.

Definition [ZF] Suppose κ is a cardinal. A filter F over a set X is κ-complete
def
ðñ for all λ ă κ, for all xAα | α ă λy, if Aα P F for all α ă λ then

Ş

αăλAα P F .

Note that ‘countably complete’ is synonymous with ‘ω1-complete’.
Nothing we have to say apropos of measures over a set X has anything to do with

any attribute of X other than its size, and in the presence of AC it is convenient to
restrict our attention to the canonical representatives of sizes of sets, viz., cardinals.

(9.14) Definition [ZF] A cardinal κ is measurable
def
ðñ κ is uncountable and there

exists a nonprincipal κ-complete ultrafilter over κ. In the context of a measurable
cardinal κ, the term ‘measure’, unqualified, will be taken to mean nonprincipal κ-
complete measure.

Definition [ZF] The completeness of a nonprincipal ultrafilter U over some set S
def
“ the greatest cardinal κ such that U is κ-complete, i.e., the least cardinal κ such

that there exist Xα P U (α ă κ) such that
Ş

αăκX R U . Note that κ ď |S|. The
corresponding term for measures is additivity.

Note that the completeness of a principal ultrafilter U is undefined because U is
κ-complete for all κ.

5Recall that a filter on a boolean algebra M is a nonempty set F Ď |M| such that

1. 0 R F ;

2. @a P F @b P |M| pb ě a ùñ b P F q;

3. @a, b P F pa^ b P F q.

An ideal is dual to a filter, i.e., it is a nonempty subset I of |M| such that

1. 1 R I;

2. @a P I @b P |M| pb ď a ùñ b P Iq;

3. @a, b P I pa_ b P Iq.
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(9.15) Theorem [ZFC]

1. Suppose U is a countably complete nonprincipal ultrafilter over a set S. Then
the completeness of U is measurable.

2. Suppose κ is the least cardinal such that there is a countably complete nonprin-
cipal ultrafilter over κ. Then every countably complete nonprincipal ultrafilter
over κ is κ-complete. Hence, κ is measurable.

3. If a cardinal κ is measurable then there exists a normal3.175 ultrafilter over κ.

Proof 1 Essentially the same as the proof of (9.8). Suppose U is a countably
complete nonprincipal ultrafilter over S. Let λ be the completeness of U . Note
that λ is uncountable. Let Xα Ď κ (α ă λ) be such that @α ă λ Xα R U , but
Ť

αăλXα P U . Let U 1 “ tY Ď λ |
Ť

αPY Xα P Uu. Then U 1 is a λ-complete
nonprincipal ultrafilter over λ, so λ is measurable.9.14

2 This is a corollary of (9.15.1) more along the lines of (9.8). Suppose κ is the
least cardinal such that there is a countably complete nonprincipal ultrafilter over
κ, and suppose U is a countably complete nonprincipal ultrafilter over κ. Let λ be
the completeness of U . Then λ is measurable,9.15.1 so λ ě κ. Hence U is κ-complete.

3 Suppose κ is uncountable and U is a κ-complete nonprincipal ultrafilter over κ.
Let ăU be the relation on κκ given by

f ăU gØtα P κ | fpαq ă gpαqu P U.

(9.16) Claim ăU is wellfounded.

Proof Suppose toward a contradiction that f0 ąU f1 ąU ¨ ¨ ¨ is a descending
ω-sequence in ăU . (We are assuming AC, which gives us a descending ω-sequence
E0, E1, . . . of ăU -equivalence classes if ăU is nonwellfounded, and, once we have the
equivalence classes, a member fn of each class En.) Let Xn “ tα P κ | fn`1pαq ă
fnpαqu. Then each Xn P U . Let X “

Ş

nPωXn. Since U is countably complete,
X P U . Suppose α P X. Then f0pαq ą f1pαq ą ¨ ¨ ¨ is a descending ω-sequence of
ordinals, which is impossible. 9.16

Let f be ăU -minimal such that for all α P κ, f ıU ᾱ, where f ”U g
def
ðñ tα P

κ | fpαq “ gpαqu P U , and ᾱ P κκ is the constant function with value α.2.166 Define
an ultrafilter U 1 by:

(9.17) A P U 1
def
ðñ fÐA P U

for A Ď κ. Observe that U 1 is nonprincipal and κ-complete.

(9.18) Claim U 1 is closed under diagonal intersection.3.168

Proof Suppose @α P κ Aα P U 1 and suppose toward a contradiction that tβ P κ |
@α ă β β P Aαu R U

1. Then

tγ P κ | Dα ă fpγq fpγq R Aαu “ fÐtβ P κ | Dα ă β β R Aαu P U.
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For γ P κ, let gpγq be the least α ă fpγq such that fpγq R Aα if there is such
an α; 0 otherwise (which only happens for γ in a U -small set). Then g ăU f , so
by the minimality assumption on f , there exists α P κ such that g ”U ᾱ, whence
tγ P κ | fpγq R Aαu P U , and Aα R U

1, contrary to hypothesis. 9.18 9.15

The following theorem of Tarski and Ulam complements (9.11) and (9.13.1).

(9.19) Theorem [ZFC] A measurable cardinal is (strongly) inaccessible.

Proof Suppose U is a nonprincipal κ-complete ultrafilter over an uncountable car-
dinal κ. If κ is singular then for some λ ă κ there is a λ-sequence xαβ | β P λy
of ordinals ă κ such that κ “

Ť

βPλ αβ . Since U is nonprincipal and κ-complete,
αβ R U for all β P λ, so, since U is κ-complete,

Ť

βPλ αβ R U , a contradiction.
Now it only remains to show that κ is a strong limit cardinal, so suppose toward

a contradiction that for some λ ă κ, 2λ ě κ. Let h : κ inj
Ñ λ2, and let

U 1 “ tA Ď λ2 | hÐA P Uu.

Then U 1 is a nonprincipal κ-complete ultrafilter on Ppλ2q. Define a function f P λ2
recursively so that for all α ď λ,

(9.20) tg P λ2 | g æα “ f æαu P U 1.

(9.20) is trivially true for α “ 0. Suppose we have constructed f æα so that (9.20)
is true for α, i.e., G “ tg P λ2 | g æα “ f æαu P U 1. Then there exists i P 2 such
that tg P G | gpαq “ iu P U 1, and we continue the construction of f by letting fpαq
be that i. If η ď λ is a limit ordinal and (9.20) holds for all α ă η, then (9.20)
holds for α “ η by virtue of the κ-completeness of U 1. In particular, therefore,
(9.20) holds for α “ λ. But tg P λ2 | g æλ “ f æλu “ tfu, so U 1 is principal, a
contradiction. 9.19

We will soon obtain much stronger “largeness” consequences of (2-valued) mea-
surability, which make it clear that it is a much stronger assumption than real-
valued measurability. As we will show, however, from the standpoint of relative
consistency it is equivalent.9.113

9.2.3 Elementary embeddings of transitive classes

The following theorem reveals the source of the great strength of measurable cardi-
nals. Recall the construction of the ultrapower of a structure that may be a proper
class.2.169

(9.21) Theorem [GBC] Suppose U is a countably complete ultrafilter over a cardinal
κ, and A is a structure whose similarity type contains a binary relation index R
such that RA is wellfounded. Then R

κA{U is wellfounded.

Proof Suppose toward a contradiction that R
κA{U is not wellfounded. As in the

proof of (9.16), using AC, suppose xan | n P ωy is a descending sequence in R
κA{U

and xfn | n P ωy is such that @n P ω fn P an; so for all n P ω, tα P κ | xfn`1α, fnαy P
RAu P U . Since U is countably complete, tα P κ | @n P ω xfn`1α, fnαy P R

Au P U ,
but RA is well founded, so this set must be empty. 9.21
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(9.22) Definition [GBC] Suppose U is a countably complete ultrafilter over a car-
dinal κ. Let π : κpV ; Pq{U – pM ; Pq be the transitive collapse.9.21 The canonical
injection is the map j : V ÑM given by

jpxq “ πprx̄s˚q,

where x̄ is the function on κ with constant value x and rx̄s˚ is its reduced equivalence
class2.167 mod U .

Since x ÞÑ x̄ is an elementary embedding,2.173 and π is an isomorphism, j is an
elementary embedding.

The following theorem provides important information about the canonical in-
jection for a measurable cardinal.

(9.23) Theorem [GBC] Suppose U is a κ-complete nonprincipal ultrafilter over
an uncountable cardinal κ. Let π : κV {U Ñ M be the transitive collapse, and let
j : V Ñ M be the canonical injection. Let i be the identity function on κ, and let
η “ πris˚.

1. @x P Vκ jx “ x.

2. κ ď η ă jκ.

3. U “ tX Ď κ | η P jXu.

4. For any f : κÑ V , πrf s˚ “ pjfqpηq.

5. κM ĎM . In particular, Vκ`1 ĎM .

6. U is normal iff η “ κ.

Proof 1 Since κ is inaccessible,9.19 for all x P Vκ, |x| ă κ. By virtue of the κ-
completeness of U , if x P Vκ, f : κ Ñ V , and rf s˚ P rx̄s˚, i.e., fpαq P x for almost
every α,6 then for some y P x, fpαq “ y for almost every α, i.e., rf s˚ “ rȳs˚. Hence
jx “ tjy | y P xu, and (9.23.1) follows by P-induction on x.

2 Suppose β ă κ. Since U is κ-complete and nonprincipal, β R U , so κzβ P U .
Hence, for almost every α P κ, β̄pαq “ β ă ipαq ă κ “ κ̄pαq, so β “ jβ “ πrβ̄s˚ ă
πris˚ ă πrκ̄s˚ “ jκ. It follows that κ ď η ă jκ.

3 Suppose X Ď κ. Then

η P jXØris˚ P rX̄s˚Øtα P κ | ipαq P Xu P U

ØX P U.

4 Suppose f, g : κ Ñ V . Let X “ tα ă κ | gpαq P fpαqu. Then jX “ tα ă jκ |
pjgqpαq P pjfqpαqu, and

πrgs˚ P πrf s˚ØX P UØ η P jX

Øpjgqpηq P pjfqpηq.

6We will use the conventional expressions large and small to refer to subsets of κ that are
respectively in and not in U , and almost always, almost every, and the like, to mean for a large
subset of κ.
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Recall that M “ tπrf s˚ | f P κV u. Suppose f P κV and for all g P κV , if
πrgs˚ P πrf s˚ then πrgs˚ “ pjgqpηq. Then

πrf s˚ “ tπrgs˚ | g P κV ^πrgs˚ P πrf s˚u

“ tπrgs˚ | g P κV ^pjgqpηq P pjfqpηqu “ tx PM | x P pjfqpηqu

“ pjfqpηq.

It follows by P-induction that for all f P κV , πrf s˚ “ pjfqpηq.

5 Let k : κ Ñ Ord be such that πrks˚ “ κ. Suppose f : κ Ñ M . For each α P κ
let hα : κ Ñ V be such that πprhαs˚q “ fpαq. Define F : κ Ñ V so that for each
β P κ, F pβq : kpβq Ñ V and for each α P kpβq,

F pβqpαq “ hαpβq.

For all β P κ, dompF pβqq “ kpβq, so dompπrF s˚q “ πrks˚ “ κ. Suppose α ă κ.
Then for almost all β ă κ, α P dompF pβqq and F pβqpαq “ hαpβq, so rF s˚pαq “
rhαs

˚, and πrF s˚pαq “ πrhαs
˚ “ fpαq; hence, πrF s˚ “ f , so f PM .

6 As above, let k : κ Ñ κ be such that πrks˚ “ κ. Since κ ď η, rks˚ ď ris˚.
Suppose U is normal, and suppose toward a contradiction that κ ă η. Let X “

tα ă κ | kpαq ă αu. Then X P U . Let g “ pk æXq Y tpα, 0q | α P κzXu. Then
rgs˚ “ rks˚ and g is regressive, so for some β ă κ, tα ă κ | gpαq “ βu P U . Hence
rks˚ “ rgs˚ “ rβ̄s˚, and κ “ πrks˚ “ πrgs˚ “ πrβ̄s˚ “ β, a contradiction. Thus
κ “ η.

Conversely, suppose κ “ η. Then rks˚ “ ris˚. Suppose h : κÑ κ is a regressive
function. Then rhs˚ ă ris˚, so rhs˚ ă rks˚, and πrhs˚ ă πrks˚ “ κ. Let β “ πrhs˚.
Then rhs˚ “ rβ̄s˚, so tα ă κ | hpαq “ βu P U . Thus, U is normal. 9.23

Definition [GB] Suppose j : N Ñ M is a ∆0-elementary embedding of transitive
classes. If j is not the identity on OrdXN , the critical point of j def

“ crit j def
“ the

first ordinal moved by j.

(9.23.2) states that κ is the critical point of the embedding associated with a κ-
complete measure over κ.

For most purposes we may restrict our attention to normal measures,9.15.2 and
the following theorem is specific to this case. Note that since it deals with an
arbitrary s-formula ϕ and proper class structures, the existence of tϕu-satisfaction
relations must be explicitly assumed.

(9.24) Theorem [GBC] Suppose U is a normal ultrafilter over a cardinal κ. Let
j : V Ñ M be the canonical injection.9.22 Suppose ϕ is an s-formula with one
free variable and the tϕuV -satisfaction relation exists. Then the tϕuM -satisfaction
relation exists and, letting S and S1 be these respective relations,

M |ùS
1
ϕrκsØtα ă κ | V |ùS ϕrαsu P U.

Remark We could omit ‘S1’ above, and still have a meaningful and true statement.
It would not, however, be proper to write ‘tα ă κ | V |ù ϕrαsu’ in place of ‘tα ă κ |
V |ùS ϕrαsu’, because the definition1.61.1 of ‘|ù’ involves quantification over classes
(partial satisfaction relations for pV ; Pq), and the Comprehension axiom of GB is
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restricted to formulas with only set quantification, so the abstraction term is not
well formed. We may nevertheless lapse into the former usage, relying on the reader
to make the necessary adjustment.

Proof This is  Loś’s theorem for ultrapowers of proper class structures2.170 carried
through from κV {U to M via the transitive collapse isomorphism. 9.24

We now turn our attention to elementary embeddings of transitive classes—in
particular of V into a class M—without presupposing that the embedding comes
from a countably complete ultrafilter. Recall6.3 that we can prove in GB that tϕu-
satisfaction relations exist for proper classes for any particular ϕ, or for all formulas
with any given bound on their complexity, say, for all Σs

1 formulas, for all Σs
2

formulas, etc. This can be combined with the absoluteness of ∆0-formulas6.6.1 for
transitive classes to obtain the following theorem.

(9.25) Theorem [S] Suppose ϕ is a ∆ZF
1 s-formula and xu0, . . . , un-y enumerates

Freeϕ. Let ϕ̂, û0, . . . , ûn- be the corresponding canonical terms. Suppose M , j, v0,
. . . , vn- , are distinct variables not in ϕ. Then GB$ xSuppose pMq is transitive and
pjq : V Ñ pMq is elementary. Then

(9.26) pϕ
`

u0 ¨ ¨ ¨ un-

v̄0 ¨ ¨ ¨ v̄n-

˘

qØ pϕ
`

u0 ¨ ¨ ¨ un-

jv̄0 ¨ ¨ ¨ jv̄n-

˘

qØ pMq |ù pϕ̂q
“

pû0q ¨ ¨ ¨ pûn- q
pjv̄0q ¨ ¨ ¨ pjv̄n- q

‰

.y

Proof For any ϕ, with no restriction on its complexity, we can reason as follows in
GB:

xSuppose pMq is transitive and pjq : V Ñ pMq is elementary. Let pv0q, . . . ,
pvn-q P V be given. Then

pϕ
`

u0 ¨ ¨ ¨ un-

v̄0 ¨ ¨ ¨ v̄n-

˘

qØV |ù pϕ̂q
“

pû0q ¨ ¨ ¨ pûn- q
pv̄0q ¨ ¨ ¨ pv̄n- q

‰

ØpMq |ù pϕ̂q
“

pû0q ¨ ¨ ¨ pûn- q
pjv̄0q ¨ ¨ ¨ pjv̄n- q

‰

.y,

where the existence of a GB-proof of the first equivalence is an instance of (3.98)
with V for C,7 and the second equivalence follows from the elementarity of j and
the fact that there is a GB-proof of the existence of tϕu-satisfaction relations.

Now suppose ϕ is ∆s
0. Then we can reason as follows in GB:

xSuppose pMq is transitive and pjq : V Ñ pMq is elementary. Let pv0q, . . . ,
pvn-q P V be given. Then

pϕ
`

u0 ¨ ¨ ¨ un-

v̄0 ¨ ¨ ¨ v̄n-

˘

qØ pMq |ù pϕ̂q
“

pû0q ¨ ¨ ¨ pûn- q
pjv̄0q ¨ ¨ ¨ pjv̄n- q

‰

ØV |ù pϕ̂q
“

pû0q ¨ ¨ ¨ pûn- q
pjv̄0q ¨ ¨ ¨ pjv̄n- q

‰

Øpϕ
`

u0 ¨ ¨ ¨ un-

jv̄0 ¨ ¨ ¨ jv̄n-

˘

q.y,

where the second equivalence is an instance of the absoluteness of ∆s
0 formulas for

transitive classes,6.6.1 and the existence of a GB-proof of the last equivalence is again
an instance of (3.98).

Now suppose ϕ is ∆ZF
1 . Let ϕ0 “ DDDuψ0 and ϕ1 “ @@@uψ1 be ZF-equivalent to ϕ,

where ψ0 and ψ1 are ∆s
0, and u is distinct from u0, . . . , un- . Let ϕ̂0, ϕ̂1, ψ̂0, ψ̂1, and

7Remember that the incorporation of an instance of a metatheorem such as (3.98) into a GB-
proof π does not consist of quoting the metatheorem, but rather of inserting into π a GB-proof
whose existence (3.98) asserts.
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û be the corresponding canonical terms. Let v be a variable distinct from all the
others we’ve mentioned. Then we can reason as follows in GB:

xSuppose pMq is transitive and pjq : V Ñ pMq is elementary. Let pv0q, . . . ,
pvn-q P V be given. Then

pϕ0

`

u0 ¨ ¨ ¨ un-

v̄0 ¨ ¨ ¨ v̄n-

˘

qØ pMq |ù pϕ̂0q
“

pû0q ¨ ¨ ¨ pûn- q
pjv̄0q ¨ ¨ ¨ pjv̄n- q

‰

ØDpvq P pMq pMq |ù pψ̂0q
“

pûq pû0q ¨ ¨ ¨ pûn- q
pv̄q pjv̄0q ¨ ¨ ¨ pjv̄n- q

‰

ØDpvq P pMq V |ù pψ̂0q
“

pûq pû0q ¨ ¨ ¨ pûn- q
pv̄q pjv̄0q ¨ ¨ ¨ pjv̄n- q

‰

ÑDpvq P V V |ù pψ̂0q
“

pûq pû0q ¨ ¨ ¨ pûn- q
pv̄q pjv̄0q ¨ ¨ ¨ pjv̄n- q

‰

ØV |ù pϕ̂0q
“

pû0q ¨ ¨ ¨ pûn- q
pjv̄0q ¨ ¨ ¨ pjv̄n- q

‰

Øpϕ0

`

u0 ¨ ¨ ¨ un-

jv̄0 ¨ ¨ ¨ jv̄n-

˘

q.y,

by cobbling together proofs of the previous two sorts for the bi-implications, and
using the fact that M Ď V for the implication.

Similarly, in GB we can prove:
xSuppose pMq is transitive and pjq : V Ñ pMq is elementary. Let pv0q, . . . ,

pvn-q P V be given. Then

pϕ1

`

u0 ¨ ¨ ¨ un-

jv̄0 ¨ ¨ ¨ jv̄n-

˘

qÑ pϕ1

`

u0 ¨ ¨ ¨ un-

v̄0 ¨ ¨ ¨ v̄n-

˘

q.y

Since GB$ϕ0Øϕ1Øϕ, GB$
xSuppose pMq is transitive and pjq : V Ñ pMq is elementary. Let pv0q, . . . ,

pvn-q P V be given. Then

pϕ
`

u0 ¨ ¨ ¨ un-

v̄0 ¨ ¨ ¨ v̄n-

˘

qØ pϕ
`

u0 ¨ ¨ ¨ un-

jv̄0 ¨ ¨ ¨ jv̄n-

˘

q.y

This is the first equivalence of (9.26), and the second equivalence follows from the
preceding discussion. 9.25

It may be helpful to review some of our previous complexity classifications:
(4.16), (4.18), and (4.27). In addition,

(9.27) Theorem [S] The following s-formulas are ∆ZF
1 :

1. xS is the satisfaction relation for Sy.

2. xS |ù ϕrAsy.

Remark Note that the theorem refers to the ZF-equivalence of s-expressions. The
variables xSyand xSyare therefore understood as referring to sets, and the existence
of satisfaction relations is provable in ZF.

Proof Straightforward. 9.27

The following theorem lists some of the features of elementary embeddings of
the universe into transitive classes.

(9.28) Theorem [GBC] Suppose M is a transitive class and j : V ÑM is elemen-
tary. Then for all x, y, x0, . . . , xn- , xxn | n P ωy P V and α P Ord,

1. x P yØ jx P jy;
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2. j : xÑ jx;

3. jtx, yu “ tjx, jyu;

4. jpx, yq “ pjx, jyq;

5. @n P ω jn “ n;

6. jω “ ω;

7. jxx0, . . . , xn-y “ xjx0, . . . , jxn-y;

8. jxxn | n P ωy “ xjxn | n P ωy;

9. jpVαq “ Vjα XM ;

10. j æx is an elementary embedding of x into jx (i.e., of px; Pq into pjx; Pq).

Proof Straightforward. 9.28

We make frequent use of these and other similar identities for elementary em-
beddings of transitive classes, often without explicit recognition.

9.2.4 Ultrafilters from embeddings

The whole world having been into its ultrapower injected—
The latter being founded well if all goes as expected—
The sets whose images contain the point of criticality
Return an ultrafilter with a dividend: normality!

Plus Ultra by Robert A. Van Wesep

Suppose U is a κ-complete nonprincipal ultrafilter over an uncountable cardinal
κ, and j : V Ñ M is the canonical injection. Let j1 “ j æVκ`1, and let M 1 “

Vjκ`1 XM . Then j1 is an elementary embedding of Vκ`1 in M 19.28.10 with critical
point κ,9.23.1, 2 and

U “ tX Ď κ | η P j1Xu,

where η is as in (9.23). So U is recoverable from the “initial segment” j1 of j. It
is also straightforward to show that U generates j1 directly, in that j1x “ π1rx̄s,8

where π1 : κVκ`1{U Ñ M 1 is the transitive collapse. We can to some extent avoid
the consideration of proper class structures by working with j1 instead of j.

(9.29) Theorem [GB] Suppose j : N Ñ M is an elementary embedding, where
N,M are transitive classes, κ “ crit j, and Vκ`1 Ď N .

1. κ is an uncountable cardinal.

2. tA Ď κ | κ P jAu is a normal ultrafilter over κ.

Hence κ is a measurable cardinal.

Remark Note that if N “ V then trivially Vκ`1 Ď N , so we have the simple
statement: If j : V ÑM is a nontrivial elementary embedding of V into a transitive
class M then its critical point is a measurable cardinal.

8Since Vκ`1 is a set, the U -equivalence classes in κVκ`1 are sets, and we do not have to resort
to reduced U-equivalence classes rf s˚, although we could.
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Proof 1 Since κ “ crit j, jκ ą κ. Clearly, κ is a limit ordinal. If κ “ ω then
M |ù xrjωs is the least infinite ordinal, and rωs ă rjωs, so rωs has an immediate
predecessory, which is impossible. So κ ą ω.

If κ is not a cardinal, let f : λ sur
Ñ κ for some λ ă κ. Since Vκ`1 Ď N , f P N .

Since κ “ crit j, jλ “ λ, so M |ù xrjf s : rλs sur
Ñ rjκsy. Since κ P jκ, there exists

α P λ such that

(9.30) M |ù xrjf sprαsq “ rκsy.

Let β “ fpαq ă κ. Then jα “ α, and jβ “ β, so M |ù xrjf sprαsq “ rβsy,
contradicting (9.30). Hence, κ is a cardinal, and since κ ą ω, it is an uncountable
cardinal.

2 Let U “ tA Ď κ | κ P jAu. U is easily seen to be an ultrafilter. Since, by
hypothesis, for any α P κ, jα “ α, and j is elementary, jtαu “ tαu, so κ R jtαu,
and U is therefore not principal.

We now show that U is κ-complete. Suppose λ ă κ and for each α P λ, Aα P U .
Let A “

Ş

αPλAα. Let B “ tpα, βq | α P λ^β P Aαu. Note that

(9.31) A “ tβ | @α P λ pα, βq P Bu.

Vκ is closed under the formation of pairs and ordered pairs; hence, B Ď Vκ, so
B P Vκ`1 Ď N . Since j is the identity on κ, j is the identity on B and jλ “ λ.

jB consists of pairs pα, βq of ordinals such that α P jλ “ λ. For each α P λ,
@β ppα, βq P BØβ P Aαq. By elementarity, since jα “ α, @β ppα, βq P jBØβ P
jAαq, i.e.,

jB “ tpα, βq | α P λ^β P jAαu.

Thus,9.31

jA “ tβ | @α P λ pα, βq P jBu

“ tβ | @α P λ β P jAαu.

By the definition of U , κ P jAα for every α P λ, so κ P jA, so A P U .
Finally, we show that U is normal. Suppose f : κ Ñ κ is regressive. Then

jf : jκ Ñ jκ is regressive, and since jκ ą κ, jf is defined at κ and pjfqpκq ă κ.
Let α “ pjfqpκq. Let A “ tβ P κ | fpβq “ αu. Then jA “ tβ P jκ | pjfqpβq “ jαu.
Since jα “ α, we find that κ P jA, so A P U . In other words, f is constant (with
value α) on a large set. 9.29

Definition Suppose j : N Ñ M is an elementary embedding, where N,M are
transitive classes, κ “ crit j, and Vκ`1 Ď N . Then tA Ď κ | κ P jAu is the
canonical ultrafilter over κ (for j).

(9.32) Theorem [GBC] Under the conditions of Theorem 9.29, suppose additionally
that κN Ď N . Let M 1 “ tpjfqpκq | f P κNu. Then M 1 – κN{U , where U “ tA Ď
κ | κ P jAu.

Proof Given f, f 1 P κN ,

rf s˚ “ rf 1s˚Øtα ă κ | fpαq “ f 1pαqu P U

Øκ P jtα ă κ | fpαq “ f 1pαqu

Øκ P tα ă jκ | pjfqpαq “ pjf 1qpαqu

Øpjfqpκq “ pjf 1qpκq.
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Likewise,
rf s˚E rf 1s˚Øpjfqpκq P pjf 1qpκq,

where E is the membership relation of κN{U . 9.32

(9.33) Theorem [GBC] Suppose U is a nonprincipal κ-complete ultrafilter over an
uncountable cardinal κ, and j : V ÑM is the canonical embedding. Then U RM .

Proof If U P M , then, since κOrd Ď κM Ď M ,9.23.5 the prewellorder of κOrd
defined by f ĺ g ðñ tα P κ | fpαq ď gpαqu P U is definable in M , so M contains
the canonical map of κκ onto jκ. On the other hand, since κ is measurable (in
V ) and j is elementary, jκ is measurable in M . M therefore believes that jκ is
strongly inaccessible and is therefore not the surjective image of αα for any α ă jκ,
in particular for α “ κ. (|λλ| “ 2λ for any infinite cardinal λ.) 9.33

(9.33) immediately yields the following theorem of Scott.

(9.34) Theorem [S] ZF` V “““L$ xMeasurable cardinals do not exist.y.

Proof Reason as follows in GB` V “““L (remember that AC follows from V “““L):
xSuppose V “ L and there exists a measurable cardinal. Let κ be the least such.

Let j : V Ñ M be the canonical embedding. Since j is elementary, M |ù xrjκs is
the smallest measurable cardinaly. But since V “ L and L is the smallest model of
ZF that contains all ordinals, M “ V . So jκ is the smallest measurable cardinal,
which is a contradiction.y

Since GB is a conservative extension of ZF, we can also obtain the contradiction
from ZF` V “““L. 9.34

Contrapositively, if κ is measurable then there exists a nonconstructible set. In
particular, any nonprincipal κ-complete measure over κ is nonconstructible.

9.2.5 On the largeness of measurable cardinals

The characterization of measurability in terms of elementary embeddings given by
Theorem 9.29 is an indication of the deep significance of measurability and is the
starting point for the study of large large cardinal properties (as opposed to small
large cardinal properties like inaccessibility).

In the setting of (9.24), any formula ϕ that holds at κ and is downward absolute
at κ from V to M holds at almost every α ă κ. In this sense, κ is large. The
following theorem states this for an important class of formulas.

(9.35) Theorem [GBC] Suppose U is a normal ultrafilter over a cardinal κ, R Ď Vκ,
ϕ is a Πs

1-formula with two free variables, and V |ù ϕrVκ`1, Rs. Then tα ă κ |
V |ùS ϕrVα`1, RX Vαsu P U , where S is the tϕuV -satisfaction relation.

Remark We do not need to posit the existence of the tϕuV -satisfaction relation as
an hypothesis in (9.35), as we have done in (9.24), because we have specified that ϕ
is Π1, and it is a theorem of GB that for every Π1 formula ψ, the tψuM -satisfaction
relation exists for any class M .9

9This is a straightforward exercise. The essential thing is to show that the ∆0-satisfaction
relation for structures pM ; Pq is uniformly definable, despite the unlimited quantifier depth of ∆0

formulas.
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Proof Let j : V Ñ M be the canonical injection. Vκ`1, R P M ,9.23.5 and j is the
identity on Vκ,9.23.1 so R “ jpRq X Vκ. Π1 formulas are absolute downward for
transitive classes, so M |ù ϕrVκ`1, jpRq X Vκs. Hence9.24

tα ă κ | V |ùS ϕrVα`1, RX Vαsu P U,

as claimed. 9.35

(9.36) Theorem [GBC] Measurable cardinals are Mahlo, hyper-Mahlo, etc.9.4

Proof Suppose κ is measurable, with a normal ultrafilter U and canonical embed-
ding j : V ÑM . Inaccessibility of an ordinal η is a ∆0 property of Vη`1, inasmuch
as η is an inaccessible cardinal iff

1. η is a limit ordinal (@α P η Dβ P η α P β) ;

2. there exists λ P η such that λ is a limit ordinal (η ą ω);

3. for all functions f P Vη`1, @λ P η Dα P η @pβ, γq P f pβ P λÑ γ P αq (no
function maps λ cofinally into η, so η is a weakly inaccessible cardinal); and

4. for all functions f P Vη`1, @λ P η Dα P η @px, αq P f Dy P x y R λ (no function
maps P λ onto η, so η is a strong limit cardinal).

Since κ is inaccessible,9.19 it follows from (9.35) that almost every cardinal less than
κ is inaccessible. By Theorem 3.178 κ is therefore 1-Mahlo.

Suppose γ is inaccessible. Clearly, for any α ď β ă γ, Vγ |ù xrβs is rαs-Mahloy

iff β is α-Mahlo. Hence, γ is α-Mahlo iff γ is inaccessible and for every closed
unbounded C Ď γ, for every α1 ă α, for some β P C, Vγ |ù xrβs is rα1s-Mahloy.
This is a ∆0 statement about Vγ`1. It follows that if α ď κ and κ is α-Mahlo then
almost every β ă κ is α-Mahlo, so3.178 κ is pα` 1q-Mahlo. By induction, therefore,
κ is κ-Mahlo, i.e., κ is hyper-Mahlo.

Etc. 9.36

9.2.6 Iterated ultrapowers

The ultrapower construction applied to transitive models of sufficient fragments of
set theory lends itself naturally to iteration. Suppose M is a transitive model of
ZFC´, κ is a cardinal in M , and U P M is such that M |ù xrU s is a countably
complete ultrafilter over rκsy. Let xrκsrM s{rU sy

M
be the ultrapower of M mod U

formed within M , whose individuals are equivalence classes of elements of κMXM .
Then xrκsrM s{rU sy

M
is wellfounded in the sense of M and is therefore wellfounded,

since M is wellfounded. Let π : xrκsrM s{rU sy
M
Ñ N be the transitive collapse.

Since M models AC, the map x ÞÑ rx̄s˚, where x̄ is the constant map on κ with value
x, is an elementary embedding to M into xrκsrM s{rU sy

M
, and the map j : M Ñ N

given by
jx “ πrx̄s˚

is likewise elementary. The following definition formalizes (9.22) in the present
more general setting and provides a name for N .
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(9.37) Definition [GBC] Given M and U as above, UltU M
def
“ the transitive col-

lapse of the ultrapower xrκsrM s{rU sy
M

of M mod U as defined in M . The map j9.37

is the canonical embedding or injection.

Suppose U is a κ-complete nonprincipal ultrafilter over κ. Let j : V Ñ UltU V be
the canonical embedding.9.37 Let κ1 “ jκ and U1 “ jU . Then by elementarity, M |ù
xrU1s is a rκ1s-complete nonprincipal ultrafilter over rκ1sy. It follows that within
the structure pM ; Pq we may carry out the canonical embedding construction with
U1 and κ1, and we may continue this process ad infinitum.

In the interest of uniformity of notation, let M0 “ V , κ0 “ κ, and U0 “ U , and
define indexed families rMα | α ă ωs and rjα | α ă ωs, together with the sequences
xUα | α ă ωy and xκα | α ă ωy, such that for each α ă ω

1. Mα is a transitive model of ZFC;

2. Mα |ù xrUαs is a normal ultrafilter over rκαsy;

3. jα : Mα ÑMα`1 “ UltUα Mα is the canonical injection;

4. jακα “ κα`1; and

5. jαUα “ Uα`1.

For each α ď β ă ω, let iαβ “ jβ- ˝ ¨ ¨ ¨ ˝ jα`1 ˝ jα.10 Then riαβ | α ď β ă ωs is a
directed system of elementary embeddings, i.e., iβγ ˝ iαβ “ iαγ , with iαβ : Mα Ñ

Mβ .
To show the existence of these ω- and ωˆω-indexed families of proper classes, we

cannot use a straightforward recursion argument, because it would rely on quantifi-
cation over classes. Note, however, that if we let M0 “ Vη for any ordinal η ě κ`ω
then U P Vη, and we can carry out the above construction using only set quantifi-
cation. Let Mη

α, jηα, etc. be the sets obtained in this way. Note that κηα “ κη
1

α and
Uηα “ Uη

1

α for all η, η1 ě κ`ω. Let Mα “
Ť

ηěκ`ωM
η
α, jα “

Ť

ηěκ`ω j
η
α, etc. Then

rMα | α ă ωs, rjα | α ă ωs, riαβ | α ď β ă ωs, xκα | α ă ωy, and xUα | α ă ωy have
the requisite properties.

Satisfaction in pMα; Pq is to be understood in the usual way. We will be con-
cerned only with satisfaction for specific formulas, and we may suppose that we
have proved the existence of partial satisfaction relations for these. At no time will
we have to consider satisfaction for arbitrary formulas. The entire argument could
be formulated in ZFC by replacing references to defined classes by their definitions.

The natural extension of the construction to ω and beyond is by means of the
direct limit construction.2.156 The critical issue is the preservation of wellfoundedness
at limits. To address this question without prejudice, suppose M “ pM ;E, k, Uq
is such that M |ù ZFC` xrU s is a rks-complete nonprincipal ultrafilter over the
cardinal rksy. We define structures UltαU pMq “ pM

α;Eα, kα, Uαq (α P Ord) such
that UltαU pMq |ù ZFC` xrUαs is a rkαs-complete nonprincipal ultrafilter over rkαsy,
and a directed system of elementary embeddings iα,β : UltαU pMq Ñ UltβU pMq (α ď
β P Ord), as follows.

1. Ult0U pMq “ M. Thus, M0 “M , E0 “ E, k0 “ k, and U0 “ U .

10iαpα`1q “ jα and iαα is the identity on Mα.
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2. Ultα`1
U pMq “ UltUα

`

UltαU pMq
˘ def
“ x UltrUαs

y
M

; and iα,α`1 : UltαU pMq
inj
Ñ

Ultα`1
U pMq is the elementary embedding x ÞÑ rx̄s˚. Note that UltUα

`

UltαU pMq
˘

is the ultrapower of the universe by Uα as understood by UltαU pMq
`

“ pMα;
Eα, kα, Uαq

˘

. In particular, its elements are—in effect—reduced equivalence
classes mod Uα of functions from kα to Mα that are in Mα.

3. If Lim η then UltηU pMq, together with riα,β | α ď β ď ηs, is the direct limit of
“

rUltαU pMq | α ă ηs, riα,β | α ď β ă ηs
‰

.

If M “ pV ; P, κ, Uq, we let UltαU “ UltαU pMq.

(9.38) Theorem [GBC] Given α P Ord and b P OrdUltα
U , the above construction in

the sense of UltαU yields a structure x Ultrbs
rUαs

y
Ultα

U . If UltαU is wellfounded (i.e., Eα

is wellfounded) then b corresponds to an ordinal β, and it is reasonable to expect

that x Ultrbs
rUαs

y
Ultα

U
– UltβUαpUltαU q – Ultα`βU . This is indeed the case.

Proof Fairly straightforward by induction on β. 9.38

(9.39) Theorem (Gaifman) [GBC] Suppose U is a κ-complete nonprincipal ul-
trafilter over κ. UltαU is wellfounded for all α P Ord.

Proof Suppose not. Let α be least such that UltαU is not wellfounded. α is nec-
essarily a limit ordinal. Let β be least such that the ordinals preceding i0,αβ in
UltαU are not wellordered. Let b “ i0,αβ, and let c P |UltαU | be such that c ăα b
and the ordinals preceding c in OrdUltα

U are not wellordered. Since α is limit, there
exists α1 ă α and c1 P Ultα

1

U such that c “ iα1,αc
1. Note that c1 ăα

1
i0,α1β. Let

α2 be such that α “ α1 ` α2. Ultα
1

U is wellfounded by hypothesis. Let a2 be the
α2th ordinal in Ultα

1

U . By virtue of (9.38), Ultα
1

U |ù xthe predecessors of i0,ra2src
1s in

Ultra
2s

rUα1
s

are not wellorderedy. Since α2 ď α, a2 ďα
1
i0,α1α. As noted, c1 ăα

1
i0,α1β.

Hence Ultα
1

U |ù xthere exist η ď ri0,α1αs and ζ ă ri0,α1βs such that the predecessors
of i0,ηζ in Ultη

rUα1
s

are not wellorderedy. Since i0,α1 is elementary, pV ; Pq |ù xthere
exist η ď rαs and ζ ă rβs such that the predecessors of i0,ηζ in Ultη

rUs are not

wellorderedy, contrary to the minimality of α and β. 9.39

Suppose U is a κ-complete nonprincipal ultrafilter over an uncountable cardinal
κ. In light of (9.39) we now replace UltαU by its transitive collapse, to which we give
the same name. i0,α : V Ñ UltαU is therefore an elementary embedding of V into a
transitive class. It is possible to define each UltαU and i0,α directly in terms of an
ultrafilter Uα over a subalgebra of P ακ. The ultrafilters Uα form a coherent system
that reflects the structure of riα,β | α ď β P Ords. Generalizations of this line of
development are important in the definition of inner models of large cardinals, but
are largely beyond the scope of this book. We will limit our attention at present to
the important case of finite iterations.

The following notation will be convenient.

Definition Suppose U is an ultrafilter over a set S and ϕ is a formula. Then
‘QUx ϕ’ abbreviates ‘tx P S | ϕu P U ’.

‘QU ’ is a quantifier in the general sense. Like all non-null quantifiers, it is somewhere
between ‘@’ and ‘D’; in a sense it is halfway between, inasmuch as␣QUx ϕØQUx ␣ϕ.
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(9.40) Definition [ZFC] Suppose U is a κ-complete nonprincipal ultrafilter over κ
and n P ω. Let Un “ tX Ď nκ | QUξ0 ¨ ¨ ¨Q

Uξn- xξ0, . . . , ξn-y P Xu.

(9.41) Theorem [ZFC] Suppose U is a κ-complete nonprincipal ultrafilter over κ
and n P ω. Then Un9.40 is a κ-complete nonprincipal ultrafilter over nκ.

Proof To show that Un is an ultrafilter we note that for any X Ď nκ

X R UnØ␣QUξ0 ¨ ¨ ¨Q
Uξn- xξ0, . . . , ξn-y P X

ØQUξ0 ␣QUξ1 ¨ ¨ ¨Q
Uξn- xξ0, . . . , ξn-y P X

...

ØQUξ0 ¨ ¨ ¨Q
Uξn- xξ0, . . . , ξn-y R X

ØκzX P Un.

It is trivial that Un is nonprincipal. To show that Un is κ-complete, suppose λ ă κ
and @α ă λ Xα P Un. Since U is κ-complete,

@α ă λQUξ0 ¨ ¨ ¨Q
Uξn- xξ0, . . . , ξn-y P Xα

ÑQUξ0 @α ă λQUξ1 ¨ ¨ ¨Q
Uξn- xξ0, . . . , ξn-y P Xα

...

ÑQUξ0 ¨ ¨ ¨Q
Uξn- @α ă λ xξ0, . . . , ξn-y P Xα.

Hence,
Ş

αăλXα P Un. 9.41

(9.42) Definition [ZFC] Let nÒκ be the set of strictly increasing elements of nκ.
Note that nÒκ P Un, so Un X PpnÒκq is an ultrafilter over nÒκ which is essentially
equivalent to Un. Let rκsn be the set of n-element subsets of κ. The function im,
i.e., f ÞÑ im f , is a natural bijection between nÒκ and rκsn, and tim ÑX | X P

UnXPpnÒκqu is the corresponding ultrafilter over rκsn. We will refer to all of these
ultrafilters as Un.

(9.43) Theorem [GBC] Suppose U is normal. Let UltαU , iαβ : UltαU Ñ UltβU , κα,
and Uα be as above. Suppose n P ω.

1. Let9.40 Un “ tX Ď nκ | QUξ0 ¨ ¨ ¨Q
Uξn- xξ0, . . . , ξn-y P Xu. Then

Un “ tX Ď nκ | xκ0, . . . , κn
-

y P i0nXu.

2. Equivalently ( per the preceding discussion), letting Un “ tX Ď rκsn | QUξ0 ¨ ¨ ¨
QUξn- tξ0, . . . , ξn-u P Xu,

Un “ tX Ď rκsn | tκ0, . . . , κn
-

u P i0nXu.

Proof Since U “ U0 is a normal ultrafilter over κ “ κ0 in pV ; Pq “ Ult0U , for each
m P ω, Um is a normal ultrafilter over κm in UltmU . Suppose m ă n and let Y be
the set of ξm P κm such that

QU
m

ξm`1 ¨ ¨ ¨Q
Um

ξn- xκ0, . . . , κm
-
, ξm, ξm`1, . . . , ξn-y P i0mX.
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Then

QU
m

ξm QU
m

ξm`1 ¨ ¨ ¨Q
Um

ξn- xκ0, . . . , κm
-
, ξm, ξm`1, . . . , ξn-y P i0mX

ØQU
m

ξm pξm P Y qØY P UmØκm P im,m`1Y

ØQU
m`1

ξm`1 ¨ ¨ ¨Q
Um`1

ξn- xκ0, . . . , κm
-
, κm, ξm`1, . . . , ξn-y P i0pm`1qX.

Applying this repeatedly, for any X Ď nκ

X P UnØQU
0
ξ0 ¨ ¨ ¨Q

U0
ξn- xξ0, . . . , ξn-y P X

ØQU
1
ξ1 ¨ ¨ ¨Q

U1
ξn- xκ0, ξ1, . . . , ξn-y P i01X

...

ØQU
n-

ξn- xκ0, . . . , κn´2, ξn-y P i0n-X

Øxκ0, . . . , κn
-
y P i0nX.

9.43

The following theorem gives another characterization of Un.

(9.44) Theorem [ZFC] Suppose U is a normal ultrafilter over κ, n P ω, and
X Ď rκsn. Then X P UnØDY P U rY s

n Ď X.

Proof As above, let i0m : V Ñ UltmU pV q be the canonical elementary embedding
of V into its mth U -ultrapower. Let κm “ i0mκ. (Thus, κ0 “ κ.)

ÐÐÐ Suppose Y P U . Then for each m ă m1 ă ω, κm P i0m1Y ; in particular,
κ0, . . . , κn- P i0nY . Suppose rY sn Ď X. By elementarity, ri0nY sn Ď i0nX; in
particular, tκ0, . . . , κn-u Ď i0nX. Hence,9.43.2 X P Un.

ÑÑÑ Suppose X P Un. By definition,

QUξ0 ¨ ¨ ¨ QUξn- tξ0, . . . , ξn-u P X.

Let
A0 “ tξ0 P κ | Q

Uξ1 ¨ ¨ ¨ QUξn- tξ0, . . . , ξn-u P Xu.

By the definition of ‘QU ’, A0 P U . For each ξ0 P κ, let

Bξ0 “

#

tξ1 P A0 | Q
Uξ2 ¨ ¨ ¨ QUξn- tξ0, ξ1, . . . , ξn-u P Xu if ξ0 P A0

A0 otherwise.

Then Bξ0 P U and Bξ0 Ď A0. Let

A1 “ ∆ξ0ăκBξ0 .

Since U is normal, A1 P U . For any ξ0, ξ1 P A1, if ξ0 ă ξ1 then

QUξ2 ¨ ¨ ¨ QUξn- tξ0, . . . , ξn-u P X.

Continuing, we obtain A0 Ě A1 Ě ¨ ¨ ¨ Ě An- such that for each m ă n, Am P U
and for all ξ0, . . . , ξm P Am, if ξ0 ă ¨ ¨ ¨ ă ξm then

QUξm`1 ¨ ¨ ¨ QUξn- tξ0, . . . , ξn-u P X.
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In particular, if m “ n´ 1 then tξ0, . . . , ξn-u P X. In other words,

rAn-sn Ď X.

9.44

9.2.7 Compactness

We have seen how the examination of the existence of measures leads to a large
cardinal property, viz., measurability; and we have seen how measurable cardinals
may be characterized metamathematically, in terms of elementary embeddings of
transitive models. Large cardinals also arise naturally in another metamathematical
context.

Definition [ZFC] Suppose κ, λ are infinite cardinals and ρ is a signature. Lρκλ
def
“ the language in the signature ρ whose expressions are generated in the usual

way, with the following modifications.

1. The size of the set V of variables is maxtκ, λu.

2. The terms are formed in the usual way, as are atomic formulas, but it is
permitted to form disjunctions and conjunctions of potentially infinite sets of
formulas, as long as the size of such a set is ă κ and the size of the set of free
variables in the resulting expression is ă λ. Thus, we permit operations that
may be represented as

Ž

αăµ and
Ź

αăµ, where µ ă κ.

3. It is permitted to quantify existentially or universally over infinite sets of vari-
ables of size ă λ. These operations may be represented as Dxuα | α ă µy
and @xuα | α ă µy, where µ ă λ and uα (α ă µ) are variables. These may
be regarded as potentially infinitary quantifier prefixes Du0 Du1 ¨ ¨ ¨ Duα ¨ ¨ ¨ and
@u0 @u1 ¨ ¨ ¨ @uα ¨ ¨ ¨ .

Ordinary languages are of the form Lρωω. The interpretation of Lρκλ-expressions is
done in the natural way (in ρ-structures of the usual type).

The study of these languages was initiated by Tarski and pursued by Tarski and
his students William Hanf and Jerome Keisler, among others. The issue of compact-
ness of these languages was found to be particularly interesting. We say that a set
Σ of Lρκλ-sentences is ν-satisfiable

def
ðñ every subset of Σ of size ă ν is satisfiable.

The compactness question is whether ν-satisfiability implies satisfiability.

Definition [ZFC] Suppose κ is an uncountable cardinal.

1. κ is weakly compact
def
ðñ for any signature ρ of size ď κ and any set Σ of

Lρκκ sentences, if Σ is κ-satisfiable then Σ is satisfiable.

2. κ is strongly compact
def
ðñ for any signature ρ (with no restriction on its size)

and any set Σ of Lρκκ sentences, if Σ is κ-satisfiable then Σ is satisfiable.

Note that if we eliminate the requirement that κ be uncountable then ω is strongly
(and therefore also weakly) compact; so weak and strong compactness assert for an
uncountable cardinal a property enjoyed by ω. Just as the compactness property
of ω may be viewed as relating to its great size compared to smaller (i.e., finite)
cardinals, compactness of an uncountable cardinal also implies it is quite large
compared to smaller cardinals.
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(9.45) Theorem [ZFC] Suppose κ is a weakly compact cardinal. Then κ is inac-
cessible.

Proof To show that κ is regular, suppose toward a contradiction that X Ď κ,
|X| ă κ, and X is unbounded in κ. Let the signature ρ have κ distinct constants
cα (α ă κ) and an additional constant c. Let

Σ “ tc ‰‰‰ cα | α ă κu Y
␣

ł

βPX

ł

αăβ
c“““ cα

(

.

Σ is clearly κ-satisfiable but not satisfiable.
To show that κ is a strong limit cardinal, suppose toward a contradiction that

λ ă κ and 2λ ě κ. Let ρ have distinct constants cα (α ă λ) and di (i P 2). Let

Σ “ td0 ‰‰‰ d1u Y tcα“““ d0___ cα“““ d1 | α ă λu Y
␣

ľ

αăλ
cα ‰‰‰ dfpαq

ˇ

ˇ f P λ2
(

.

If T Ď Σ and |T | ă κ, let f P λ2 be such that
Ź

αăλ cα ‰‰‰ dfpαq R T . Then we can

satisfy T in a structure A by letting cAα “
`

dfpαq
˘A. On the other hand, Σ is clearly

not satisfiable. 9.45

(9.46) Note that the expressions used in the preceding proof have no quantifiers, so
they are actually in Lκω, even in the simpler language Lκ, which has disjunctions
and conjunctions of length ă κ, but no quantification.

It can be shown that there are many inaccessible cardinals below any weakly com-
pact cardinal, so weak compactness is strictly stronger than inaccessibility. On the
other hand, we have the following theorem of Erdös and Tarski comparing weak
compactness with measurability.

(9.47) Theorem [ZFC] If κ is measurable then κ is weakly compact.

Proof Suppose |ρ| ď κ and Σ is a κ-satisfiable set of Lρκκ-sentences. Clearly,
|Σ| ď κăκ, so |Σ| ď κ, since κ is inaccessible. Let xσα | α ă κy enumerate Σ. For
each β ă κ let A be a ρ-structure such that A |ù

Ź

αăβ σα. Let U be a nonprincipal
κ-complete ultrafilter over κ, and let A “

ś

βăκ Aβ{U . Then for any α ă κ

tβ ă κ | Aβ |ù σαu Ě pα, κq P U,

so A |ù σα. Hence A satisfies Σ. 9.47

Thus, weak compactness is weaker than or equivalent to measurability. In fact,
it is strictly weaker.

(9.48) Theorem [ZFC] Suppose U is a normal ultrafilter on κ. Then the set of
weakly compact cardinals ă κ is in U .

Proof This follows from (9.35) and the fact that weak compactness of κ is a ∆0

property of Vκ`1. 9.48

Turning now to strong compactness, we have the following characterization in
terms of ultrafilters, due to Keisler and Tarski. We begin with a definition.

(9.49) Definition [ZFC] Suppose κ is a cardinal. PκX
def
“ tY Ď X | |Y | ă κu.

(9.50) Theorem [ZFC] An uncountable cardinal κ is strongly compact iff for any
set Z, every κ-complete filter over Z can be extended to a κ-complete ultrafilter over
Z.
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Proof ÑÑÑ Suppose κ is strongly compact and F is a κ-complete filter over a set
Z. Since the theorem depends only on the size of Z we may assume without loss of
generality that Z X PZ “ 0. Let P “ PZ. Let ρ be a signature consisting of two
unary relation symbols I and S, a binary relation symbol E and a distinct constant
symbol 9X for each X Ď Z. Let A be the ρ-structure with

1. |A| “ Z Y P ;

2. IA “ Z;

3. SA “ P ;

4. EA “ txz,Xy | X P P ^ z P Xu; and

5. 9XA “ X for each X P P .

Let ρ1 be the extension of ρ by the addition of a new constant symbol c. Let T be
the Lκκ-theory of A, and let

Σ “ T Y txpcqE p 9Xqy | X P F u.

Suppose Σ1 Ď Σ and |Σ1| ă κ. Since F is κ-complete, Σ1 is satisfied in a ρ1-expansion
A1 of A obtained by letting cA

1
“ z, where z P

Ş

tX P F | xpcqE p 9Xqy P Σ1u. Thus,
Σ is κ-satisfiable.

In general, if A1 |ù T then |A1| is the union of a set Z 1 “ IA1
of “individuals”

and a disjoint set P 1 “ SA1
of “sets”, with the “membership relation” E1 “ EA1

.
Replacing A1 by a suitable isomorph we may arrange that P 1 Ď PZ 1 and E1 is
the membership relation per se. If 9XA “ X P P is a singleton tzu, then 9XA1

is
necessarily a singleton tz1u for some z1 P Z 1. By replacing A1 again by a suitable
isomorph, we may arrange that z1 “ z in each such case, so that Z 1 Ě Z and
P 1 Ď PZ 1. Note that 9XA1

X Z “ X for each X P P .

(9.51) Additional structural properties of A also carry over to A1:

1. Suppose tX,Y u is a partition of Z, i.e., X Y Y “ Z and X X Y “ 0. Then
␣

9XA1
, 9Y A1(

is likewise a partition of Z 1.

2. Suppose β ă κ and xXα | α ă βu Ď P . Let X “
Ş

αăβ Xα.

1. Then

@z1 P Z 1
´

z1 P 9XA1
Ø

ľ

αăβ
z1 P 9Xα

A1¯

.

2. Moreover, if X “ 0 then 9XA “ 0, so 9XA1
“ 0.

Since κ is strongly compact, there exists a model A1 of Σ. Let Z 1 “ IA1
and

P 1 “ SA1
. By a suitable choice of isomorph as above, we may suppose that Z 1 Ě Z

and P 1 Ď PZ 1. Let U be the set of X P P such that A1 |ù cE 9X. Then9.51.1 U is an
ultrafilter over Z extending F .

We will show that U is κ-complete. To this end, suppose β ă κ and for each
α ă β, Xα P U . Let X “

Ş

αăβ Xα, and let X 1 “ 9XA1
. Then X 1 P P 1, and9.51.2.1

@z1 P Z 1
`

z1 P X 1Ø
Ź

αăβ z
1 P 9Xα

A1
˘

. Since cA
1
P 9Xα

A1

for each α ă β, cA
1
P X 1, so

X 1 ‰ 0. Hence9.51.2.2 X ‰ 0.
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ÐÐÐ Suppose κ is uncountable and for any set Z, every κ-complete filter over Z can
be extended to a κ-complete ultrafilter over Z.

(9.52) Claim κ is regular.

Proof Let F “ tX Ď κ` | |κ`zX| ă κ`u. Then F is a κ-complete filter over
κ`. Let U be a κ-complete ultrafilter over κ` extending F . Now observe that if
κ is singular then (without any additional assumptions) any κ-complete filter is
κ`-complete; hence, U is nonprincipal κ`-complete ultrafilter over κ`, so κ` is
measurable, contradicting (9.19). 9.52

Suppose Σ is a κ-satisfiable set of Lρκκ-sentences. For each s P Pκ Σ let As be a
ρ-structure such that As |ù s, i.e., Ax |ù σ for all σ P s. Let F “ tX Ď Pκ Σ | Dx P
Pκ Σ @y P Pκ Σ py Ě xÑ y P Xu. Clearly F is a κ-complete (since κ is regular)
filter over Pκ Σ.

Let U be a κ-complete ultrafilter over Σ extending F , and let

A “
ź

sPPκ Σ

As{U.

By virtue of the κ-completeness of U ,  Loś’s theorem2.164 applies to Lκκ. For each
σ P Σ

ts P Pκ Σ | As |ù σu Ě ts P Pκ Σ | σ P su P F,

so ts P Pκ Σ | As |ù σu P U , whence A |ù σ. Thus A satisfies Σ. 9.50

Note that for any infinite cardinal κ and γ ě κ, the filter F generated by the
sets tx P Pκ γ | α P xu for α P γ is κ-complete. If κ is strongly compact then F is
extendible to a κ-complete ultrafilter. Conversely, if we examine the proof of (9.50)
we see that the existence of such an ultrafilter for each γ ě κ implies that κ is
strongly compact. This motivates the following definition.

(9.53) Definition [ZFC] Suppose κ is an uncountable cardinal and γ ě κ.

1. A filter F over Pκ γ is fine
def
ðñ for every α P γ, tx P Pκ γ | α P xu P F .

2. κ is γ-compact
def
ðñ there exists a fine κ-complete ultrafilter over Pκ γ.

By the preceding remarks:

(9.54) Theorem [ZFC] An uncountable cardinal κ is strongly compact iff for every
γ ě κ, κ is γ-compact.

The following theorem is an immediate corollary of (9.50).

(9.55) Theorem [ZFC] If κ is strongly compact then κ is measurable.

Proof Let F “ tX Ď κ | |κzX| ă κu. Then F is clearly a filter over κ, and since
κ is (at least) weakly compact, κ is regular,9.45 so F is κ-complete. Thus9.50 there
is a κ-complete ultrafilter U over κ extending F . Since F contains κztαu for every
α P κ, U is nonprincipal. 9.55

Thus, strong compactness is at least as strong as measurability.
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9.2.8 Trees

Several sorts of “combinatorial” objects figure importantly in the theory of large
cardinals. Principal among these are trees and partitions. We have encountered
trees already in several contexts. To introduce trees in the context of large cardinals,
we begin with the following theorem of König.

(9.56) Theorem: König’s lemma [ZFC] Suppose pT ;ăq is a tree3.179 of height ω
all of whose levels are finite. Then T has an infinite branch.

Proof We proceed recursively. Let a0 be an element of T in level 0 such that there
are infinitely many elements of T above a0. Such an element exists because level
0 is finite and T is infinite. Let a1 be an element of level 1 above a0 such that
there are infinitely many elements of T above a1, and continue in this fashion to
construct a sequence a0 ă a1 ă ¨ ¨ ¨ of length ω. tan | n P ωu is clearly an infinite
branch in T . 9.56

This motivates the following definition.

(9.57) Definition [ZFC] A cardinal κ has the tree property
def
ðñ every tree of

height κ, all of whose levels have size ă κ, has a branch of length κ.

König’s lemma9.56 states that ω has the tree property. Our present interest is in the
conjunction of the tree property with inaccessibility, which is equivalent to weak
compactness.

(9.58) Theorem [ZFC] Suppose κ is an uncountable cardinal. Then κ is weakly
compact iff κ is inaccessible and has the tree property.

Proof ÑÑÑ By (9.45) κ is inaccessible. Suppose pT ;ăT q is a tree of height κ each
of whose levels is of size ă κ. Since κ is inaccessible, |T | “ κ. For each t P T , let Pt
be a proposition symbol and let Σ consist of the following sentences of Lκκ (which
are actually in Lκ9.46):

1.
Ž

tPt | o t “ αu for each α ă κ;

2. ␣␣␣pPt ^̂̂Pt1q for each t, t1 P T such that t and t1 are ăT -incomparable.

Since T has height κ, Σ is κ-satisfiable. By weak compactness there is an interpre-
tation A of Σ. tt P T | A |ù Ptu is a branch of T of length κ.

ÐÐÐ For this we adapt the proof of the completeness theorem. Note that we do
not seek to establish a system of deduction for Lκκ, and we use satisfiability rather
than consistency throughout. Keep in mind that we assume that κ is inaccessible.
Suppose ρ is a signature of size κ, and Σ is a set of Lρκκ-sentences that is κ-satisfiable.
We will construct a κ-satisfiable complete extension Σ1 of Σ with witnesses in an
expanded signature ρ1, and then use the tree property to obtain a ρ1-model of Σ1,
whose reduct to ρ is a model of Σ.

Let ρ1 be an expansion of ρ by the addition of κ new constant symbols. Let
xσα | α ă κy enumerate the Lρ1

κκ-sentences. Let xeα | α ă κy enumerate the
existential sentences in the same order. (A formula is existential iff it begins with
an existential quantifier.) For each α ă κ, let ϕα be the (unique) non-existential
formula ϕ such that eα “ DDDxuξ | ξ ă µy ϕ (for some ordinal µ). By recursion on
α ă κ, let wα be the Skolem sentence eαÑÑÑϕαpc

α
ξ | ξ ă µq, where ‘pcαξ | ξ ă µq’
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indicates the substitution
@`

uξ

cα
ξ

˘

| ξ ă µ
D

, and cαξ (ξ ă µ) are the first µ new
constants that do not occur in any wβ (β ă α) or in ϕα. Let W “ twα | α ă κu.

For α ă κ let ρα be the expansion of ρ by the new constants occurring in
twβ | β ă αu. Given a ρ-structure A, there is a sequence xAα | α ď κy of successive
expansions, where Aα is a ρα-structure, such that A0 “ A and for each for each
α ď κ, Aα |ù twβ | β ă αu. Given Aα, α ă κ, to obtain Aα`1 we first assign
arbitrary denotations to any new constants in ϕα to obtain an expansion A1; then

1. if A1 |ù eα we obtain Aα`1 by assigning denotations to the witnesses cαξ
(ξ ă µ) so as to satisfy ϕpcαξ | ξ ă µq; and

2. if A1* eα we obtain Aα`1 by assigning arbitrary denotations to the witnesses.

We make the obvious definition at limit ordinals, including κ. Then any ρ-structure
A has a ρ1-expansion A1 that satisfies W .

Let T be the set of functions f P ăκ2 such that

1. for all α P dom f , if σα P ΣYW then fα “ 1; and

2. tσα | fα “ 1u Y t␣␣␣σα | fα “ 0u is satisfiable.

Let ăT“Ď. Since κ is inaccessible, each level of T is smaller than κ. It is easy to
see that T has height κ. For suppose α ă κ. Let Σα “ tσβ | β ă α^σβ P Σu.
Since Σ is κ-satisfiable, Σα is satisfiable. Let A be a ρ-structure satisfying Σα. Let
A1 be an expansion of A satisfying W . Let f : αÑ 2 be such that for each β ă α,
fβ “ 1 iff A1 |ù σβ . Then f P T (at level α).

By the tree property, there exists f : κ Ñ 2 such that @α ă κ f æα P T . We
use f to define a structure A as in the proof of the completeness theorem. Let
xcα | α ă κy enumerate the set C of “new” constant symbols. (There is no need to
use “old” constant symbols, because each of these is stated to be equal to a new one
by a sentence in W .) Define an equivalence relation ” on C by setting cα ” cβ iff
fpcα“““ cβq “ 1. The satisfiability requirement on f æ γ for every γ ă κ ensures that
” is in fact an equivalence relation. Let A be the set of ”-equivalence classes, and
let |A1| “ A. For each n-ary predicate symbol R of ρ, let RA1

be the set of n-tuples
xa0, . . . , an-y P nA such that fpR̃xb0, . . . , bn-yq “ 1, where for each k ă n, rbks “ ak.
Again, the satisfiability requirement on f æ γ for every γ ă κ ensures that it does
not matter which representatives bk we use for this determination. Similarly, for
each n-ary operation symbol F of ρ, let FA1

be the function that maps each n-tuple
xa0, . . . , an-y P nA to that unique a P A such that fpF̃ xb0, . . . , bn-y“““ bq “ 1, where
rbs “ a and for each k ă n, rbks “ ak. Again we use the satisfiability requirement
to justify this definition.

It is now straightforward to show by induction on logical complexity that for
every α ă κ, A1 |ù σα iff fα “ 1. The existence of witnesses is of course used to
justify the quantification steps in this induction. Since fα “ 1 whenever σα P Σ,
A1 |ù Σ. Let A be the reduct of A1 to the signature ρ. Then A |ù Σ. 9.58

It is of interest that by virtue of (9.46) and the parenthetical remark made early
in the above proof, the weak compactness of the quantifier-free language Lκ is
equivalent to the weak compactness of Lκκ. For this reason, the original character-
ization of weak compactness has largely been supplanted in modern treatments by
more overtly combinatorial definitions: either the tree property with inaccessibility,
or—even more directly—an equivalent partition property to be defined presently.
We have followed the above historically representative approach in part as a way
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of recalling to mind the fundamental logical principles that got us going on this
journey way back in Chapter 2.

The tree property for a cardinal κ without the assumption of inaccessibility
has been extensively investigated. The original result is the following theorem of
Nathan Aronszajn.

Theorem ω1 does not have the tree property.

In general, a counterexample to the tree property for κ is called a κ-Aronszajn tree,
and an ω1-Aronszajn tree is called simply an Aronszajn tree. Thus, Aronszajn’s
theorem is that there exists an Aronszajn tree. It is easy to show that for any
singular cardinal κ there exists a κ-Aronszajn tree. Thus, the issue centers on
the existence of κ-Aronszajn trees for regular cardinals ą ω1. Mitchell and Silver
showed that for any weakly compact cardinal κ above a regular uncountable cardinal
λ there is a generic extension in which all cardinals ď λ are preserved and κ becomes
λ` and retains the tree property. Thus, if it is consistent (with ZFC) that there
exists a weakly compact cardinal, then it is consistent that ω2 has the tree property
(no ω2-Aronszajn tree). On the other hand, Silver showed that if κ ą ω1 and κ has
the tree property then κ is weakly compact in L. Hence the tree property for ω2 is
equiconsistent with the existence of a weakly compact cardinal.

9.2.9 Partitions

The theory of partitions originated in a theorem of Ramsey, which we introduce by
giving some definitions of general utility.

Definition [ZF] A partition P of a set S is a set P of disjoint nonempty subsets
of S such that

Ť

P “ S.

Note that any function with domain S defines a partition of S, viz., tfÐtyu | y P
im fu, and any partition P of S arises from a function in this way, e.g. the function
f : S Ñ P defined by the condition that for all s P S, s P fpsq. We frequently want
to limit the cardinality of partitions, which we can conveniently do in the context
of AC by simply specifying, for some cardinal κ, that f : S Ñ κ.

(9.59) Definition [ZFC]

1. Suppose X is a set and n P ω.

1. rXsn
def
ðñ the set of subsets of X of size n.

2. rXsăω
def
ðñ the set of finite subsets of X.11

2. Suppose X is a set of ordinals and γ is an ordinal.

1. rXsγ
def
ðñ the set of subsets of X of order type γ.

2. rXsăγ
def
ðñ the set of subsets of X of order type ă γ.

Note that (9.59.2) agrees with (9.59.1) when γ P ω, and when γ “ ω in
(9.59.2.2).

3. Given a function f with domain rXsκ in either of the above senses, a subset

A of X is homogeneous for f
def
ðñ f is constant on rAsκ.

11Thus,9.49 ‘rXsăω ’ is synonymous with ‘Pω X’.
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The matter of the existence of homogeneous sets as above, with various constraints
on the sizes of X, κ, A and im f , is a very fertile source of ideas in set theory.
The paradigm and progenitor of the theory of partition relations is the following
theorem of Ramsey mentioned above.

(9.60) Theorem [ZFC] If X is infinite, and m and n are finite, then for any
f : rXsm Ñ n then there exists an infinite homogeneous set for f .

Proof The proof is by induction on m. The case m “ 1 is trivial. We now assume
the result for m “M and prove it for m “M ` 1. We need the axiom of choice to
carry out the following construction, and we posit at the outset a choice function
for PPX. We also need a choice function for PX, although we can obviate this
by observing that it is enough to deal with the case X “ ω, using the fact that
any infinite set has a subset that is equipollent with ω (a consequence of AC). We
then have the definable choice function S ÞÑ inf S for P ωzt0u. We will take this
route, and we now suppose that X “ ω. We will define sequences xXk | k P ωy,
xxk | k P ωy, and xik | k P ωy recursively to have the following properties.

1. ω “ X0 Ě X1 Ě ¨ ¨ ¨ , and Xk is infinite for all k P ω.

2. xk is the least element of Xk, and xk R Xk`1.

3. @k P ω @s P rXk`1s
M fptxku Y sq “ ik.

Given Xk, we let xk be its least element, and we obtain ik and Xk`1 as follows.
Let X 1 “ Xkztxku and define g : rX 1sM Ñ n by

gpsq “ fptxku Y sq.

Use the induction hypothesis to conclude that there is an infinite subset of X 1

homogeneous for g, and let ik be the least i P n for which an infinite homogeneous
set exists,12 and use our initial choice function to pick one such set to be Xk`1.
This construction clearly satisfies the three conditions stated above.

Now let i P n and K Ď ω be such that K is infinite and p@k P Kq ik “ i. Let
A “ txk | k P Ku. Note that for any k, k1 P K, if k ă k1 then xk1 P Xk`1. Let s
be an arbitrary element of rAsM`1. Let x be the least element of s. Since x P A,
x “ xk for some k P K. Let s1 “ sztxu. Each element of s1 is xk1 for some k1 ą k,
so s1 Ď Xk`1, and s1 P rXk`1s

M . By construction, fpsq “ f
`

txku Y s1
˘

“ ik “ i.
In other words, A is homogeneous for f . 9.60

Although we have proved this theorem in ZFC, it is not hard to prove it in ZF
if we assume that X has a subset equipollent with ω, or, without significant loss
of generality, if X “ ω. It is amusing to note, however, that a metatheoretical
argument may be used to achieve the same end:

Recall that for any set A, LrAs |ù ZFC.7.28 Thus LrAs |ù xRamsey’s theoremy by
the above argument. We may therefore reason in ZF as follows. Suppose m,n P ω
and f : rωsm Ñ n. It is easy to see that f P Lrf s, so in Lrf s there exists an infinite
X Ď ω that is homogeneous for f in the sense of Lrf s. It is easy to see that X is
homogeneous for f per se.

12We do not have to choose ik to be the smallest acceptable value of i; we just want to have a
definite choice. Since there are definable choice functions for P n, we might as well use one—the
least-element function in this case—rather than invoke the axiom of choice yet again.
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(9.61) Definition [ZFC] Suppose α and β are ordinals and ν and λ are cardi-

nals. Then α Ñ pβqνλ
def
ðñ for any f : rαsν Ñ λ there exists A P rαsβ such that

|fÑrAsν | “ 1.13

In other words, for any partition of rαsν into λ parts there is a homogeneous set of
order type β.

In the terminology of (9.61) Ramsey’s theorem states that for all m,n P ω,
ω Ñ pωqmn . In Ramsey’s original article[20] this was only a prelude to the following
finitary version, which he used to prove the decidability of a class of first-order
predicate theories. Although it is not germane to the present discussion, it is worth
noting that there is an extensive literature focused on finitary partition theory. For
our purposes, the following derivation of the finitary version from the infinitary
version of Ramsey’s theorem is instructive, as it brings into play the compactness
theorem (of ordinary logic, i.e., Lωω) and thus illustrates in a relatively tame en-
vironment the role of metatheoretical considerations in the theory of membership.
In this connection, we note that König’s lemma is itself more or less equivalent to
the completeness theorem for Lωω.14

(9.62) Theorem [ZF] Suppose m,n P ω. For each M P ω there exists N P ω such
that N Ñ pMqmn .

Proof Suppose m,n P ω. We consider a signature ρ for logic with equality that
has a unary predicate symbol P and an m-ary operation symbol F . For each k P ω
let δk be the formula

Ź

lăl1ăk vl ‰‰‰ vl1 . Let Sm be the set of permutations of m,

i.e., functions π : m bij
Ñ m. Let T be the ρ-theory consisting of the sentences

1. DDDv0, . . . , vn-

`

δn ^̂̂
Ź

kăn P̃ xvky ^̂̂ @@@vn
`

P̃ xvnyÑÑÑ
Ž

kăn vn“““ vk
˘˘

;

2. @@@v0, . . . , vm- P̃ xF̃ xv0, . . . , vm-yy;

3. @@@v0, . . . , vm-
Ź

πPSm
F̃ xv0, . . . , vm-y“““ F̃ xvπ0, . . . , vπm-y; and

4. ␣␣␣DDDv0, . . . , vM -

`

δM ^̂̂ DDDvM
Ź

k0ă¨¨¨km-ăM F̃ xvk0 , . . . , vkm- y“““ vM
˘

.

Succinctly, if A |ù T then, letting A “ |A|, p “ PA and f “ FA,

1. p is a set of exactly n elements of A;

2. f : mAÑ p;

3. the value of f is independent of the order of its arguments, so that—restricted
to distinct arguments—f is in effect a function from rAsm to p; and

4. there is no homogeneous subset of A for f of size M .

For each N P ω, let αN “ DDDv0, . . . , vN - δN . Thus, A |ù αN iff there are at least N
distinct elements in A. Let

S “ T Y tαN | N P ωu.

13Recall9.59.2 that if X is a set of ordinals and γ is an ordinal then rXsγ is the set of subsets of
X of order type γ, and rXsăγ is the set of subsets of X of order type ă γ.

14This may be understood informally as the impression that they say roughly the same thing,
or that each is a “corollary” the other. More precisely, a form of König’s lemma known as weak
König’s lemma is equivalent to the completeness theorem over a certain well developed theory of
second-order arithmetic, RCA0, which is itself too weak to prove the completeness theorem.
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Suppose toward a contradiction that there does not exist N P ω such that N Ñ

pMqmn . Then any finite subset of S is satisfiable. By the compactness theorem,
S is satisfiable. Let A be a model of S, and let A “ |A|. Then A is infinite, FA

is (in effect) a partition of rAsm into n sets, and there is no M -element subset of
A homogeneous for f , contradicting (the infinitary version of) Ramsey’s theorem.

9.62

We take this opportunity to introduce the notion of indiscernibility in model
theory, which will be very important later on.

Definition [GB] Suppose S is a ρ-structure and pX;ăq is a linear order. pX;ăq

is a class of indiscernibles for S15 def
ðñ X Ď |S|,16 and for every n P ω, every

ρ-formula ϕ with n free variables, and every pair xxm | m P ny and xx1m | m P ny of
increasing n-sequences from pX;ăq,

S |ù ϕrx0, . . . , xn-s ðñ S |ù ϕrx10, . . . , x
1
n-s.

The concept of indiscernibility was introduced by Ehrenfeucht and Mostowski in
the following seminal theorem, with the original purpose of obtaining models with
many automorphisms. Its proof exploits the evident analogy of indiscernibility for
models and homogeneity for partitions.

(9.63) Theorem [ZF] Suppose Θ is a theory with an infinite model and pX;ăq
is a linear order. Then there exists a model S of Θ such that pX;ăq is a set of
indiscernibles for S.

Proof Let ρ be the signature of Θ, and let ρ1 expand ρ by the addition of a distinct
constant symbol 9x for each x P X. Let Θ1 be the extension of Θ by the addition of
the sentences

1. 9x ‰‰‰ 9y for every x, y P X such that x ‰ y; and

2. ϕp 9x0, . . . , 9xn-qØØØϕp 9x10, . . . , 9x1n-q for every ρ-formula ϕ with n free variables and
every pair of increasing sequences xx0, . . . , xn-y and xx10, . . . , x

1
n-y in pX;ăq.

Clearly, any model S of Θ1 has an isomorph S1 such that 9xS1
“ x for all x P X,

and pX;ăq is a set of indiscernibles for S1.
Thus it suffices to show that Θ1 is satisfiable. By the compactness theorem, it

is enough to show that every finite subset of Θ1 is satisfiable. To this end, suppose
Σ is a finite subset of Θ1. Let S be an infinite model of Θ, and let xan | n P ωy
enumerate a subset of |S|.17 Let C be the (finite) set of new constants occurring
in Σ, and let Φ be the (finite) set of formulas ϕ occurring in Σ in sentences of the
second type above. Let M “ |C| and let n “ 2|Φ|, the number of subsets of Φ. For
each nonzero m ď M let fm be the function with domain rωsm such that for each
s P rωsm, letting xil | l ă my be the increasing enumeration of s,

fms “ tϕ P Φ | |Freeϕ| “ m^S |ù ϕrai0 , . . . , aim- su.

15Referring to pX;ăq as a class of indiscernibles appears to ignore ă in favor of X and is not
altogether appropriate in general; but in most of our applications X is a class of ordinals and ă
is the usual ordering, so the emphasis on X is proper.

16X and ă are not necessarily definable over S.
17No choice is required for this, as we may invoke the compactness theorem to show that there

is a model of Θ Y t 9am ‰‰‰ 9an | m ă n ă ωu, where x 9an | n P ωy is an ω-sequence of distinct new
constant symbols.
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Since im fm Ď PΦ, fm partitions rωsm into n components (some empty, but no
matter). We will show that there exists H Ď ω of size M such that H is homoge-
neous for fm for all nonzero m ď M . The infinitary version of Ramsey’s theorem
is available to us, and with it we can actually obtain an infinite homogeneous H,
but the finitary version is also adequate. Let M “ N0 ă N1 ă ¨ ¨ ¨ ă NM be
such that for each m ă M ,9.62 Nm`1 Ñ pNmq

m`1
n . Now working backward, let

NM “ HM Ě HM - Ě ¨ ¨ ¨ Ě H0 be such that @m ď M |Hm| “ Nm and for each
nonzero m ďM , Hm- is homogeneous for fm. Let H “ H0.

Let xi0, . . . , iM -y be the increasing enumeration of H, and let xc0, . . . , cM -y be
the increasing enumeration of C

`

in the order inherited from pX;ăq
˘

. Expand S

to a ρ1-structure S1 by letting cS
1

l “ ail for each l ă M , and assigning arbitrary
denotations to new constant symbols that do not occur in Σ. Clearly, S1 |ù Σ. 9.63

The grouping of arguments of the arrow symbol reflects that fact that a given
partition relation αÑ pβqνλ implies the corresponding relation with α increased, or
with β, ν, or λ decreased. Although we have defined the relation for an arbitrary
cardinal ν, we are only interested in the case of finite ν—indeed, ZFC proves that
αÑ pωqω2 does not hold for any α.18 The following definition states a property that
is as close as we can get to an infinite exponent without knowingly contradicting
ZFC.

Definition [ZFC] Suppose α and β are ordinals and λ is a cardinal. Then α Ñ

pβqăωλ
def
ðñ for any xfn | n P ωy, where fn : rαsn Ñ λ, there exists A Ď α of order

type β such that for all n P ω, |fnÑrAsn| “ 1.

In other words A is homogeneous for all the partitions fn (n P ω) simultaneously.

(9.64) Definition [ZFC] A cardinal κ is Ramsey
def
ðñ κÑ pκqăω2 .

Although this property is named in recognition of Ramsey’s work on partitions of
ω, ω is not Ramsey. For example, define fn : rωsn Ñ 2 so that

fns “

#

0 if min s ď n

1 otherwise.

There is no infinite homogeneous set for xfn | n P ωy.
The following simple combinatorial result is worth noting.

(9.65) Theorem [ZFC] If κ is Ramsey then κÑ pκqăωλ for all λ ă κ.

Proof Suppose for each n P ω, fn : rκsn Ñ λ. For m P ω and s P rκs2m, let
s0 and s1 be respectively the lower and upper halves of s. For each n P ω define
g : rκsn Ñ 2 so that

18Given s P rωsω let es be its enumeration in increasing order. Define an equivalence relation
on rωsω by letting s ” t iff tn P ω | esn ‰ etnu is finite. Pick a representative from each ”-
equivalence class. Define f : rωsω by letting f s “ 0 if es differs from the enumeration of the
representative of its class at an even number of places; otherwise, f s “ 1. Suppose X P rωsω . We
claim that X is not homogeneous for f . To this end, let s “ teXp2nq | n P ωu, i.e., s consists of
every other element of X. Let u be the representative of the equivalence class of s. Let N P ω be
such that esn “ eun for all n ě N . Let t be obtained from s by removing esN “ eXp2Nq and
adding eXp2N ` 1q. Then esn “ etn for all n other than N . et differs from eu at exactly the
same places as es does, except the Nth place, where es agrees with eu and et does not. Hence,
the number of places of disagreement with eu is even for one of es and et and odd for the other.
Thus, X is not homogeneous for f .
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1. if n “ 2m then

gns “

#

0 if f s0 “ f s1

1 otherwise;

2. if n is odd, gns “ 1.

Let X P rκsκ be homogeneous for every gn. Suppose m P ω. Since λ ă κ, there
exist s, t P rXsm such that max s ă min t and f s “ f t. Then s Y t P rXs2m

and g2mps Y tq “ 0. Now, given any s, s1 P rXsm, let t P rXsm be such that
maxpsY s1q ă min t. Since X is homogeneous for g2m,

f s “ f t “ f s1.

Thus, X is homogeneous for fm. 9.65

(9.66) Theorem [ZFC] Suppose U is a normal ultrafilter over a cardinal κ, λ ă κ,
and f : rκsăω Ñ λ. Then there exists X P U homogeneous for f in the sense that
for each n P ω, |fÑrXsn| “ 1. Thus, every measurable cardinal is Ramsey.

Remark Note that if X is homogeneous for f then |fÑrXsăω| is countable, which
is all that is required for some applications.

Proof Suppose n P ω. Let Un be the ultrafilter over rκsn corresponding to U .9.40, 9.42

Since Un is κ-complete9.41 there exists a unique γ ă λ such that fÐtγu P Un.19 Thus

QUξ0 ¨ ¨ ¨ QUξn- ftξ0, . . . , ξn-u “ γ.

Let
A0 “

␣

ξ0 P κ
ˇ

ˇQUξ1 ¨ ¨ ¨ QUξn- ftξ0, . . . , ξn-u “ γ
(

.

By the definition of ‘QU ’, A0 P U . For each ξ0 P κ, let

Bξ0 “

#

␣

ξ1 P A0

ˇ

ˇQUξ2 ¨ ¨ ¨ QUξn- ftξ0, . . . , ξn-u “ γ
(

if ξ0 P A0

A0 otherwise.

Then Bξ0 P U and Bξ0 Ď A0. Let

A1 “ ∆ξ0ăκBξ0 .

Since U is normal, A1 P U . For any ξ0, ξ1 P A1, if ξ0 ă ξ1 then

QUξ2 ¨ ¨ ¨ QUξn- ftξ0, . . . , ξn-u “ γ.

Continuing, we obtain A0 Ě A1 Ě ¨ ¨ ¨ Ě An- such that for each m ă n, Am P U
and for all ξ0, . . . , ξm P Am, if ξ0 ă ¨ ¨ ¨ ă ξm then

QUξm`1 ¨ ¨ ¨ QUξn- ftξ0, . . . , ξn-u “ γ.

In particular, if m “ n´ 1 then ftξ0, . . . , ξn-u “ γ. In other words,

fÑrAn-sn “ tγu.

Thus, for each n P ω there exists Xn P U homogeneous for f ærκsn. Let X “
Ş

nPωXn. Then X is homogeneous for f . 9.66

The following theorem in conjunction with (9.58) provides another characteri-
zation of weak compactness.

19It is worth noting that by virtue of (9.43) γ “ pi0nfqtκ0, . . . , κn-u, where i0n is the canonical
injection of V into its n-fold U -ultrapower, which is also its Un-ultrapower. (Keep in mind that
κ0 “ κ and i0n is the identity on κ, so i0nf : rκns

n Ñ λ.)
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(9.67) Theorem [ZFC] Suppose κ is an uncountable regular cardinal. Then κ is
inaccessible and has the tree property iff κÑ pκq22.

Proof ÑÑÑ It’s no harder to show that κ Ñ pκq2ν for any ν ă κ, so we’ll do that.
Suppose f : rκs2 Ñ ν. We will construct a set T of functions s P ăκν so that
pT ;Ďq is a tree of height κ with levels smaller than κ to which we can apply the
tree property to obtain a homogeneous set for f . We will define T recursively as
tsα | α ă κu, where the map α ÞÑ sα is injective.

Let s0 “ 0. Suppose we have xsβ | β ă αy. We will define t “ xtξ | ξ ă ηy
by recursion on ξ, where the length η of the construction is to be determined. Let
t0 “ 0. At stage ξ

1. if t æ ξ, i.e., xtξ1 | ξ1 ă ξy, is not sβ for any β ă α, let η “ ξ, and the
construction of t is complete; but

2. if t æ ξ “ sβ for some β ă α then let tξ “ ftβ, αu.

At some η the construction of t must terminate, since we only have |α| sβ ’s to
which to compare t æ ξ. Let sα “ t p“ t æ ηq. The construction guarantees that sα
is not sβ for any β ă α, but that every proper initial segment of sα is sβ for some
β ă α. Thus, α ÞÑ sα is injective, and the elements of T at level α are elements
of αν. Since κ is inaccessible, the levels are smaller than κ, and since α ÞÑ sα is
injective, |T | “ κ, so the height of T is κ.

Invoking the tree property, let F : κ Ñ ν be a branch of T of length κ. For
each µ P ν, let Xµ “ tβ ă κ | sβ Ď F ^F pdom sβq “ µu. By construction,
for any α, β P κ, if sβ Ł sα then β ă α and sαpdom sβq “ ftβ, αu. For each
µ ă ν, for any distinct β, α P Xµ, sβ and sα are initial segments of F , hence
comparable, so supposing without loss of generality that β ă α, sβ Ł sα, so
ftβ, αu “ sαpdom sβq “ F pdom sβq “ µ, so Xµ is homogeneous for f . Since κ is
inaccessible, there exists µ such that |Xµ| “ κ.

ÐÐÐ Suppose κ is inaccessible and T “ pT ;ăT q is a tree of height κ all of whose
levels have size ă κ. Since κ is inaccessible, |T | “ κ, and we will assume that
T “ κ. Let ă be the lexicographic extension of ăT to a total order, i.e., for any
α, β P κ, α ă β iff

1. α ăT β; or

2. α and β are ďT -incomparable, and letting ξ be the first level of T at which
the respective predecessors αξ and βξ of α and β are different, αξ ă βξ (in
the usual ordering of ordinals).

Define f : rκs2 Ñ 2 so that ftα, βu “ 1 iff (α ă βØα ă β). Let X of size κ be
homogeneous for f . Let B be the set of γ such that |tα P X | γ ăT αu| “ κ. Since
the levels of T are smaller than κ there exists a member of B at every level. We will
show that there is only one member of B at each level, i.e., that any two members
of B are ăT -comparable, so B is a branch of T of length κ.

Suppose toward a contradiction that γ0, γ1 P B are ăT -incomparable, and sup-
pose γ0 ă γ1. Pick α0 P X such that γ0 ăT α0, then pick α1 ą α0 (in the usual
ordering of ordinals) such that α1 P X and γ1 ăT α1, and then pick β0 ą α1

such that β0 P X and γ0 ăT β0. Then α1 is ăT -incomparable to α0 and β0, so
α0, β0 ă α1, since γ0 ă γ1. Hence, ftα0, α1u “ 1 and ftα1, β0u “ 0; a contradic-
tion, since X is homogeneous for f . 9.67
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As mentioned above (following the proof of (9.58)), the partition property κÑ
pκq22 is often taken as the definition of weak compactness. As the preceding proof
makes clear, κ Ñ pκq22 implies κ Ñ pκq2λ for any λ ă κ. It also implies κ Ñ pκqmλ
for any m P ω (proof omitted). It does not, however, imply κ Ñ pκqăω2 , which is
much stronger.

9.3 Large cardinals and constructibility

We have already derived the seminal result9.34 of Scott that measurable cardinals
do not exist in L, which is to say, there does not exist an ordinal that L thinks is
a measurable cardinal. In general, the interpretation of large cardinal properties in
L and in other inner models with a similar mode of construction is an important
theme in the subject. At the simplest level, consistency with V “““L is a natural
threshold in the assessment of the strength of large cardinal properties.

9.3.1 Weak compactness

As we have noted, measurability has crossed the constructibility threshold. It is
quite easy to see that inaccessibility has not, as a cardinal that is inaccessible (in
the “real world” of V ) is clearly inaccessible in L. The following series of theorems
shows that weak compactness is also consistent with V “““L.

We begin with an extendibility property, followed by a reflection property.

(9.68) Theorem [ZFC] Suppose κ is weakly compact, and R Ď Vκ. Then there
exist a transitive set M Ń Vκ and R1 ĎM such that pVκ; P, Rq ă pM ; P, R1q.

Proof Let ρ0 be an expansion of s by the addition of a unary predicate symbol
9R and a constant symbol 9x for each x P Vκ. Let A “ pVκ; P, R, xqxPVκ be the ρ0-

structure with 9RA “ R and 9xA “ x for all x P Vκ. For convenience, let 9P be the
predicate symbol in s denoting membership. Thus A “ pVκ; 9P

A, 9RA, 9xAqxPVκ .
Let Σ0 be the Lρ0κκ-theory of A

`

the complete Lκκ-theory of pV ; P, Rq
˘

. Let ρ be
ρ0 with one more constant symbol c. Let

Σ “ Σ0 Y tc ‰‰‰ 9x | x P Vαu.

|ρ0| “ κ and Σ is κ-satisfiable, since for any subset S of Σ smaller than κ, we may
expand A to a ρ-structure by letting c denote any x P Vκ such that 9x does not occur
in S.

Let B “ pB; 9P
B, 9RB, 9xBqxPVκ be a model of Σ. Clearly we may assume that

Vκ Ď B, that 9P
B agrees with 9P

A
p“Pq on Vκ, and that 9xB “ x for all x P Vκ; and

then clearly A ă B. Suppose 9P
B is wellfounded. Then there is a (unique) transitive

set M and (unique) isomorphism π : pB; 9P
B
q Ñ pM ; 9P

M
q, where 9P

M is necessarily P.
We let R1 “ πÑ 9RB. Then π is also an isomorphism of pB; 9P

B, 9RBq with pM ; P, R1q.
Since Vκ Ď B, π is the identity on Vκ, so Vκ ĎM and pVκ; P, Rq ă pM ; P, R1q. Since
cB R Vκ, B ‰ Vκ, so M ‰ Vκ.

Thus it suffices to show that 9P
B is wellfounded. The sentence

␣␣␣DDDxvn | n P ωy
ľ

nPω
vn`1 9P9P9P vn

is in Σ since P is wellfounded, so it holds in pB; 9P
B
q, so 9P

B is wellfounded. 9.68

Note that this is the first time we have used quantification in Lκκ, but even
here Lκω1 suffices.



616 CHAPTER 9. ON BEYOND ZF

(9.69) Theorem [ZFC] Suppose κ is weakly compact and U Ď Vκ. Suppose ρ is
the expansion of s by the addition of two unary predicate symbols 9R and 9X, and
suppose σ is a ρ-sentence such that

@X Ď Vκ pVκ; P, R,Xq |ù σ,

where, here and elsewhere, it is to be understood that 9R and 9X respectively denote
R and X. Then there exists α ă κ such that

@X Ď Vα pVα; P, RX Vα, Xq |ù σ.

Proof Let9.68 pM ; P, R1q be an elementary extension of pV ; P, Rq, where M is tran-
sitive and M ‰ Vκ. Note that κ P M , and xVrκsy

M
“ Vκ. Note also that for any

structure A in Vκ, the satisfaction relation for A is in Vκ and is recognized as such
in pVκ; Pq, along with all the properties appertaining thereto. With a mild abuse of
notation that is easily made right, pM ; P, R1q may refer to R as x 9RX Vrκsy. Since

@X Ď Vκ pVκ; P, R,Xq |ù σ,

pM ; P, R1q |ù x@X Ď Vrκs pVrκs; P, 9RX Vrκs, Xq |ù σy.

Hence
pM ; P, R1q |ù xDOrdα @X Ď Vα pVα; P, 9RX Vα, Xq |ù σy.

By elementarity,

pVκ; P, Rq |ù xDOrdα @X Ď Vα pVα; P, 9RX Vα, Xq |ù σy.

Hence, there exists α ă κ such that

@X Ď Vα pVα; P, RX Vα, Xq |ù σ.

9.69

Indescribability The property of weakly compact cardinals just demonstrated9.69

is referred to as Π1
1-indescribability. The notion of indescribability of cardinals was

introduced by Hanf and Scott. It is most naturally defined in terms of second- and
higher-order predicate languages. As indicated in the discussion following (1.19),
first-order predicate languages are the usual languages we have been discussing all
along. For the purpose of generalization, the names of the complexity classes Σn
and Πn are given the superscript ‘0’. Thus, first-order expressions are classified as
Σ0
n or Π0

n. To interpret a first-order quantifier phrase in a structure S, we allow
the quantified variable to range over the members of |S|. A second-order variable
ranges over P |S|, a third-order variable over PP |S|, etc. Σmn and Πm

n refer to
syntactical and semantical classes corresponding to quantification over variables of
order m` 1 or less.20

In this system we would render

x@X Ď |S| S |ù σy,

20The terminological adjustment from m to m ` 1 is unfortunate but entrenched. Recall that
we have used the related concept of type in our discussion5.1 of the theory of Vω and Vω`1. Type
n corresponds to order n` 1, and we do not have the above discrepancy. There are no objects of
order 0.
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as
xS |ù @@@1X σy,

with the superscript ‘1’ indicating second-order quantification. x@1X σy is a Π1
1

sentence. In general, κ is respectively Πm
n - or Σmn -indescribable

def
ðñ the analog of

(9.69) holds for an arbitrary Πm
n or Σmn sentence in place of @@@1X σ. A cardinal is

totally indescribable
def
ðñ it is Σmn -indescribable for all m,n P ω.

The application of ‘indescribability’ to the property stated in Theorem 9.69
derives from its implication that weak compactness of a cardinal κ is not a Π1

1

property of the structure pVκ; Pq.21 In their seminal work on indescribability, Hanf
and Scott proved, inter alia, the above theorem and its converse, giving yet another
characterization of weak compactness and further evidence of the robustness of
this concept. In this paper they also showed that measurable cardinals are Π2

1-
indescribable. This is, of course, a specialization of (9.35).

Since the existence of a nonprincipal κ-complete ultrafilter over κ is a Σ2
1 prop-

erty of Vκ, the least measurable cardinal is not Σ2
1-indescribable. Indescribability

is not, however, stronger than measurability, as shown by the following theorem of
Vaught.

(9.70) Theorem [ZFC] Suppose U is a normal ultrafilter over κ. Then the set of
totally indescribable cardinals below κ is in U .

Proof We will carry out the proof in GBC so that we can treat proper classes
properly. Let j : V Ñ M be the canonical elementary embedding. Note that
since U RM ,9.33 M cannot reason as above that κ is not Σ2

1-indescribable. The key
observation is that in fact M |ù xrκs is totally indescribabley. To show this, suppose
ϕ is a Σmn -sentence for some m,n P ω, R Ď Vκ, and

M |ù xpVrκs; P, rRsq satisfies ϕy.

Since κ ă jκ and j is the identity on Vκ so that R “ jRX Vκ,

M |ù xthere exists α ă rjκs such that pVα; P, rjRs X Vαq satisfies ϕy.

By the elementarity of j,

V |ù xthere exists α ă rκs such that pVα; P, rRs X Vαq satisfies ϕy.

Since xpVα; P, RX Vαq satisfies ϕy is a ∆0 property of xVα`ω, Ry and Vκ ĎM ,

M |ù xthere exists α ă rκs such that pVα; P, rRs X Vαq satisfies ϕy.

Thus, M |ù xrκs is totally indescribabley.
As usual, since κ is represented in κV {U by the identity function on κ, tα ă κ |

V |ù xrαs is totally indescribableyu is in U .22 Again using the equivalence of satis-
faction in pV ; Pq and reality, we conclude that tα ă κ | rαs is totally indescribableu P
U . 9.70

As an easy corollary of (9.69) we have the following theorem.
21Note that it is necessary to refer to pVκ; Pq rather than pκ; Pq, as the structure of pκ; Pq does

not in general embody the structure of pVκ; Pq in the way that pω; Pq embodies that of pVω ; Pq—as
has been amply demonstrated in the preceding chapter.

22Keeping in mind that total indescribability of an ordinal α is a ∆0 property of Vα`ω , we only
need the ∆0-satisfaction relation for pV ; Pq, whose existence is GB-demonstrable, to explicate and
justify this statement and the next.
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(9.71) Theorem [ZFC] Suppose κ is weakly compact. Then κ is Mahlo.9.4

Proof We have already shown9.45 that κ is inaccessible. Suppose R is closed un-
bounded in κ. Then pVκ; P, Rq satisfies the Π1

1 sentence x@1F
`

F is not a function
from some ordinal cofinal in Ord, the Power axiom holds, and 9R is unbounded
(in Ord)

˘

y, where 9R is the constant symbol denoting R in pVκ; P, Rq. By Π1
1-

indescribability, there exists α ă κ such that α is a regular strong limit cardinal,
hence inaccessible, and RX α is unbounded in α, so α P R. 9.71

This argument is easily adapted to show that a weakly compact cardinal κ is
hyper-Mahlo, etc. The proof is left for the energetic reader.23

(9.72) Theorem [ZFC] Suppose κ is weakly compact, R Ď κ, and X X α is con-
structible for every α ă κ. Then R is constructible.

Proof Let9.68 pM ; P, R1q be a transitive proper elementary extension of pVκ; P, Rq.
The constructible hierarchy is given by the standard definition interpreted over any
transitive model of ZF, so the sentence xfor all ordinals α, p 9Rq Xα is constructibley

is true in pVκ; P, Rq (where 9R is the predicate symbol for R). It is therefore true in
pM ; P, R1q. Hence xp 9Rq X rκs is constructibley is true in pM ; P, R1q. 9RpM ;P,R1q X κ “
R1Xκ “ R, so we may invoke the absoluteness of constructibility again to conclude
that R is constructible. 9.72

Finally we have the promised result about constructibility.

(9.73) Theorem [ZFC] Suppose κ is weakly compact. Then κ is weakly compact in
the sense of L.

Proof Obviously κ is inaccessible in L. Suppose that, in L, T is a tree of height
κ with all levels smaller than κ. In V , T has a branch B of length κ. By (9.72)
B P L. 9.73

9.3.2 Strong compactness

Just as weak compactness is in the sense of (9.73) weak, strong compactness is in
a similar sense strong, as shown by Vopěnka and Hrbáček.

(9.74) Theorem [GB] Suppose there is a set A such that V “ LrAs. Then no
cardinal is strongly compact.

Proof Since AC holds in LrAs, AC holds. We can use a bijection of tcA with a
set of ordinals to obtain a relation on ordinals isomorphic to ptcA; Pq, and then
use a definable pairing function on ordinals to obtain a set A1 of ordinals such that
V “ LrA1s. Thus, without loss of generality, we assume that A Ď Ord.

(9.75) Suppose toward a contradiction that κ is a strongly compact cardinal.

Let λ ě κ be a cardinal such that A Ď λ. Let F “ tX Ď λ` | |λ`zX| ď λu.
Then F is a κ-complete filter over λ`. Let U Ě F be a κ-complete ultrafilter over
λ`. Note that for any X Ď λ` smaller than λ`, λ`zX P F , so X R U . Briefly,
U X Pλ` λ` “ 0.

23Given that the reader is still reading, ‘energetic’ may be taken to be descriptive rather than
restrictive.
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For f : λ` Ñ V , let rf s˚ be the reduced equivalence class2.167 of f mod U .
Let UltU V “ λ`

V {U be the ultrapower. Since U is κ-complete, it is ω1-complete,
so UltU V is wellfounded. Let π : UltU V

sur
Ñ M be its transitive collapse, and let

j : V ÑM be the canonical embedding. jx “ πrx̄s˚, where x̄ : λ` Ñ txu.
Now construct another ultrapower of V mod U , with the following variation:

use only functions f : λ` Ñ V such that | im f | ď λ. Let F be the class of
all such functions. Let rf s˚

1
be the reduced equivalence class of f in F mod U ,

and let Ult1U V be the ultrapower formed in this way. We will use rf s generically
for rf s˚ or rf s˚

1
. Clearly, Ult1U V Ď UltU V , and Ult1U V is wellfounded. Let

π1 : Ult1U V
sur
Ñ M 1 be its transitive collapse, and let j1 : V Ñ M 1 be the canonical

injection. j1x “ π1rx̄s˚
1
.  Loś’s theorem2.164 holds for Ult1U V 24 as for UltU V .

For any ordinal γ, jγ and j1γ are respectively the order types of the predecessors
of rγ̄s in UltU V and Ult1U V . In either ultrapower, any predecessor of rγ̄s is rf s for
some f : λ` Ñ γ, where in the latter case f must be in F . Suppose γ ă λ`, and
f : λ` Ñ γ. Then f P F . Hence, rγ̄s has exactly the same predecessors in UltU V
as in Ult1U V , so jγ “ j1γ, i.e., j æλ` “ j1 æλ`. In particular, j1λ “ jλ.

Now consider j1λ` vs. jλ`. If f : λ` Ñ λ` and f P F , then f : λ` Ñ γ for
some γ ă λ`, so j1pλ`q “ supγăλ` j1γ “ supγăλ` jγ.

On the other hand, suppose f is the identity function on λ`. Then for any
γ ă λ`, tα ă λ` | fα ą γu P U , since U does not have any members of size
ă λ`. Hence, rλ̄`s˚ ą rf s˚ ą rγ̄s˚ in UltU V , and therefore jpλ`q ą πrf s˚ ě
supγăλ` jγ “ j1pλ`q.

Now observe that if f : λ` Ñ A then f P F , so jA “ j1A. Since V “ LrAs,
M “ LrjAs “ Lrj1As “M 1.

Since V |ù xrλ`s is the next cardinal after rλsy,

M |ù xrjpλ`qs is the next cardinal after rjλsy,

whereas
M 1 |ù xrj1pλ`qs is the next cardinal after rj1λsy,

which is contradictory, since M “M 1, jλ “ j1λ, and jpλ`q ą j1pλ`q; hence, (9.75)
is untenable. 9.74

9.3.3 Measurability: LrU s

The following theorem, together with (9.74), shows immediately that measurability
does not imply strong compactness.

(9.76) Theorem [GB] Suppose U is a nonprincipal κ-complete ultrafilter over an
uncountable cardinal κ. Let U 1 “ U X LrU s. Note that LrU s |ù ZFC, U 1 P LrU s,
LrU s “ LrU 1s, and LrU s |ù xV “ LrrU 1ssy (appropriately formulated in ZF).

1. LrU s |ù xrU 1s is a nonprincipal rκs-complete ultrafilter over rκsy; hence, LrU s |ù
xrκs is measurabley.

2. If U is normal then LrU s |ù xrU 1s is normaly.

Proof Straightforward. 9.76

The following theorem is due to Solovay.

24A witness rf s˚
1

for an existential formula at a given assignment
“

rf0s˚
1
, . . . , rfn- s˚

1 ‰
, with

f0, . . . , fn- P F , can be obtained by choosing a fixed witness for each assignment rf0α, . . . , fn-αs,
α ă λ`, and these are all in pim f0q ˆ ¨ ¨ ¨ ˆ pim fn- q, so there are ď λ of them.
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(9.77) Theorem [GB] Suppose U is a normal ultrafilter over κ.

1. LrU s |ù x@λ ě rκs 2λ “ λ`y.

2. LrU s |ù xrκs is the only measurable cardinaly.

Proof 1 This is an easy modification of the proof7.27 of GCH in L.

2 We will “work in LrU s” in GBC. Thus, we assume GBC` xU is a normal
ultrafilter over a cardinal κ and V “ LrU sy.

Suppose toward a contradiction that W is a normal ultrafilter over a cardinal
λ ‰ κ. Let π : λV {W Ñ M be the transitive collapse, and let j : V Ñ M be the
canonical injection. We will show that M “ V .

We will use xis constructible from U y as an s-equivalent of xis in LrU sy. Since
V |ù xevery set is constructible from rU sy, by elementarity, M |ù xevery set is
constructible from rjU sy. Thus

(9.78) M “ LrjU s.

We will show that M “ LrU s “ V . Hence, W PM , contrary to (9.33).
If λ ą κ then jU “ U , so M “ LrjU s “ LrU s “ V . Suppose therefore that

λ ă κ. Let I be the set of inaccessible cardinals µ such that λ ă µ ă κ. Then
I P U ,9.36 and it is easy to show that for each µ P I, jµ “ µ.

By the same token, jκ “ κ, so jU is an ultrafilter on κ in M . We will show that
jU “ U XM . Since jU is in M and is an ultrafilter in the sense of M , it suffices
to show that jU Ď U . To this end, suppose X P jU . Let f : λ Ñ U be such that
πrf s˚ “ X. Let Y “

Ş

αăλ fα. Then Y P U and jY Ď X. For all µ P Y X I,
µ “ jµ P jpY X Iq. Hence, X Ě jY Ě jpY X Iq Ě Y X I P U , so X P U . Hence,9.78

M “ LrjU s “ LrU XM s “ LrU s, 7.28.2

as claimed. 9.77

The following theorem of Silver extends the previous theorem to show that GCH
holds in LrU s for a measure ultrafilter U . As a relative consistency result it yields
priority to a theorem of Jensen, who showed how to carry out an Easton-style
product forcing to collapse a proper class of cardinals so as to make GCH true
while retaining the measurability of a given cardinal. Like Gödel’s original proof
of GCHL, however, Theorem 9.79 has the additional significance of the insight it
provides into the structure of an inner model of a measurable cardinal.

(9.79) Theorem [GB] Suppose U is a normal ultrafilter over κ. Then LrU s |ù GCH.

Proof Again we will “work in LrU s” in GBC. Given (9.77), we have only to show
that for any infinite cardinal λ ă κ, 2λ “ λ`. Let ă˚ be the canonical wellordering
of LrU s, which is uniformly definable in models of the form pLηrU s; P, U X LηrU sq
for limit ordinals η. To prove that 2λ “ λ` it suffices to show that the ă˚-order
type of P λ is λ`. (Indeed, it would suffice merely to show that it is ă λ``, but in
fact it is λ`.) For this it suffices to show that for any X P P λ, the order type of
the ă˚-predecessors of X in P λ is ă λ`.

(9.80) Suppose to the contrary that X P P λ and the order type of the set R “ tY P
P λ | Y ă˚ Xu of ă˚-predecessors of X in P λ is λ`.
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Let η be a limit ordinal ě κ such that U Ď LηrU s and X P LηrU s. Let A “ LηrU s.
Note that R Ď A. Let ρ be a signature expanding s by the addition of unary
predicates 9U and 9R, a constant symbol 9X, and for each γ P λ, a constant symbol 9γ.
Note that |ρ| “ λ. Let A be the ρ-structure pA; P, U,R,X, γqγPλ, with the obvious
correspondences. Let F be a complete set of Skolem functions for A.2.160 Note that
|F | may be taken to be λ. For each f P F , let kf be the arity of f .

For each f P F let hf : rκskf Ñ R be such that for each s P rκskf , letting
xα0, . . . , αkf

-y be the increasing enumeration of s,

hf s “

#

fxα0, . . . , αkf
-y if this is in R

0 otherwise.25

Since |R| “ λ` ă κ, (9.66) applies. For each f P F , let rf P R and Zf P U be such
that hfÑrZf s

kf “ trfu. Let Z “
Ş

fPF Zf . Since |F | “ λ ă κ, Z P U .
Let

B “ tfxα0, . . . , αkf
-y | f P F ^α0, . . . , αkf

- P Z ^α0 ă ¨ ¨ ¨ ă αkf
-u,

and let B be the corresponding substructure of A. Then2.162 B ă A.26 Note that
B “ pB; P, UXB,RXB,X, γqγPλ. Clearly RXB “ RXtrf | f P F u, so |BXR| ď λ.
Also, λ Ď B, and Z Ď B.

Let π : pB; P, U X Bq Ñ pM ; P,W q be the transitive collapse. Then π is the
identity on λ, and for every Y P B X P λ, πY “ Y . Hence X P M and M X R “
B XR. Also πκ “ κ.

(9.81) Claim W “ U XM .

Proof Let Z 1 “ tα P Z | πα “ αu. Since π is a collapsing map, @α P Z πα ď α, so
π is regressive on ZzZ 1. Thus, since U is normal, if ZzZ 1 P U then for some β P κ,
πÐtβu X Z P U , which is not the case, since π is injective. Thus, Z 1 P U . Given
S P M X P κ we let S1 “ π´1S. Then S P W ØS1 P U , and S X Z 1 “ S1 X Z 1.
Thus, S PW ØS1 P UØS1 X Z 1 P UØS X Z 1 P UØS P U . 9.81

By elementarity, M “ LζrW s “ LζrU s
27 for some limit ordinal ζ. Since X PM ,

every ă˚-predecessor of X is in M , i.e., R Ď M . Hence R Ď B, so λ` “ |R| “
|B XR| ď λ; which contradiction invalidates (9.80). 9.79

9.3.4 Indiscernibles

We have previously introduced the concept of indiscernibility in the setting of the
Ehrenfeucht-Mostowski theorem,9.63 deriving the existence of models with indis-
cernibles from Ramsey’s theorem: @m,n P ω ω Ñ pωqmn . Haim Gaifman observed
that if κ is a measurable cardinal then by iterating the ultrapower construction one
can obtain a proper class C of indiscernibles for L.

Using the terminology of Section 9.2.6, we begin with the observation that, for
any α ď β, iαβ æL is an elementary embedding of L into L. Note that if γ ă α then

25The choice of 0 for this case is arbitrary. It conveniently happens that 0 P R, but this is
immaterial.

26Note that this is not a direct quotation of (2.162), since we apply the Skolem functions only
to increasing sequences of ordinals in Z, not to all sequences; however, it follows from the closure
of F under substitution2.161.2 that this does not actually reduce the set of values obtained.

27By the level-specific version of (7.28.2).
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iαβκγ “ κγ , and iαβκα “ κβ . Also, for any n P ω, iαβκα`n “ κβ`n. With this
information it is evident that for any increasing sequence xαm | m ă ny of ordinals,
the composition i “ ipαn´2`1qαn´1˝¨ ¨ ¨˝ipα0`1qα1˝i0α0 has the property that for each
m ă n, iκm “ καm . Since i is elementary, for any s-formula ϕ with n free variables,
L |ù ϕrκ0, . . . , κn-s iff L |ù ϕrκα0 , . . . , καn- s. It follows that tκα | α P Ordu is a class
of indiscernibles for L.

Letting x be the theory of pL; P, καqαPOrd, we have the following theorem of
Gaifman. We present this as a prelude to Silver’s theory of indiscernibles and
refrain from any further justification by Gaifman’s methods.

(9.82) Theorem Suppose there exists a measurable cardinal. Then there exists a
closed unbounded class C of ordinals such that

1. @α P C Lα ă L;
2. every uncountable cardinal is a limit point of C;
3. there exists x Ď ω such that C is definable over Lrxs.

Note that (assuming the existence of a measurable cardinal) every uncountable
cardinal λ is inaccessible in L (since Lλ ă L). Note also that arbitrarily large
cardinals in L are “collapsed” in Lrxs, where x is as in (9.82.3).

Silver realized that the existence of indiscernibles for L is the essential impli-
cation of large cardinal hypotheses regarding L, with the same holding mutatis
mutandis for other similarly structured inner models. Silver began with a variation
on the Ehrenfeucht-Mostowski construction.9.63 Recall that the purpose of that con-
struction was to obtain models of finite subtheories of a theory T of indiscernibles
in order to infer the existence of a model of T . The purpose of Silver’s construction
is to obtain indiscernibles for a pre-existing structure, viz., L or an initial segment
of it. For the remainder of this discussion we will be concerned exclusively with
ordinal indiscernibles. For these the order is always the natural order, so it is not
necessary to specify it.

The following theorem is the starting point.

(9.83) Theorem [ZF] Suppose α is a limit ordinal ď κ. Then κ Ñ pαqăω2 iff for
every structure S with a countable signature such that κ Ď |S| there exists X Ď κ
of order type α such that pX;ăq is a set of indiscernibles for |S|.

Proof Straightforward. 9.83

A key idea complementing the indiscernibility in L of the Silver indiscernibles
is the definability in L of every element of L from them. We formulate this in
terms of canonical Skolem terms. This is a bit of a misnomer, as these terms are
merely operation indices. What makes them canonical Skolem are the definitions
by which they are introduced. Recall7.29 the formula ϕ0 that defines the canonical
wellordering of L in any limit Lα.

(9.84) Definition [S] Suppose ϕ is an s-formula with n ` 1 free variables. Let
xv0, v1, . . . , vny enumerate Freeϕ in the standard ordering of V, and let u be the
first variable not occurring in ϕ. The canonical Skolem term τϕ is introduced with
the definition

τϕpv1, . . . , vnq“““ v0ØØØ
´

p@@@v0 ␣␣␣ϕpv0, v1, . . . , vnq ^̂̂ @@@u uRRR v0q

___
`

ϕpv0, v1, . . . , vnq ^̂̂ @@@u pϕ0pu, v0qÑÑÑ␣␣␣ϕpu, v1, . . . , vnqq
˘

¯

.
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For completeness, if ϕ is an s-sentence, let τϕ be introduced with the definition

τϕ“““ v0ØØØ@@@v1 v1 RRR v0.

Let sk be the expansion of s by the addition of the canonical Skolem terms.

Suppose M “ pM ;Eq is an s-structure such that ϕ0 defines a linear ordering of M
and for every s-formula ϕ,

M |ù @@@v1, . . . , vn

´

DDDv0 ϕpv0, v1, . . . , vnq

ÑÑÑDDDv0
`

ϕpv0, v1, . . . , vnq ^̂̂ @@@u pϕ0pu, v0qÑÑÑ␣␣␣ϕpu, v1, . . . , vnqq
˘

¯

.

Then M˚ def
“ pM ;E, τM˚

ϕ qϕPF s
28 is the expansion of pM ;Eq to an sk-structure with

the obvious assignment of values to τM˚

ϕ . If M happens to be pLα; Pq for a limit
ordinal α, then everything has the correct set-theoretical meaning, but to define M˚

it is sufficient that M be elementarily equivalent to (i.e., have the same elementary,
i.e., first-order, theory as) such a model (and this is not necessary).

Clearly tτM˚

ϕ | ϕ P F su is complete set of Skolem functions for M.

Definition [ZF] For M “ pM ;Eq and M˚ as above, and for X Ď M , the Skolem
hull of X in M

def
“ HMX

def
“ the set of values of the canonical Skolem terms inter-

preted in M at arguments in X.

By the Tarski-Vaught criterion, the Skolem hull of any X Ď M is the smallest
elementary substructure of M including X. Obviously, for every x in the Skolem
hull of X, txu is definable over M from parameters in X; and conversely, every
such x is in the Skolem hull of X. Note that this provides an absolute notion of
Skolem hull, applicable in any structure S with an S-definable linear ordering that
is a wellordering for S-definable classes. The specific choice of Skolem terms is not
relevant to this consideration.

Let em be the signature s expanded by the addition of constant symbols tcn |
n P ωu.

(9.85) Definition [ZF] An EM-set def
“ the theory of an em-structure pLα; P, xnqnPω

for some limit ordinal α and indiscernibles x0 ă x1 ă ¨ ¨ ¨ for pLα; Pq.

(9.86) Theorem [ZF] Suppose Σ is an EM-set and α is an infinite ordinal. Let
Σ´ be the s-reduction of Σ (i.e., the set of s-sentences in Σ).

1. There exists an s-model M of Σ´ and a set X of ordinal indiscernibles for M
of order type α, such that

1. for any s-formula ϕ with n free variables and any x0 ă
M ¨ ¨ ¨ ăM xn- in

X,
M |ù ϕrx0, . . . , xn-sØϕpc0, . . . , cn-q P Σ.

2. M “ HMX.

2. If pM ;Eq and pM 1;E1q are two such structures with respective sets X and X 1

of ordinal indiscernibles (both of order type α) then pM ;E,Xq – pM 1;E1, X 1q.

28Recall that F s is the set of s-formulas.



624 CHAPTER 9. ON BEYOND ZF

Proof The existence of pM ;Eq and X Ď M satisfying (9.86.1.1) is proved by a
simple compactness argument. Let pLγ ; P, xnqnPω be an em-structure with theory
Σ. Let emα be the expansion of em by the addition of constants cβ (ω ď β ă α).
(emω “ em.) Let Σα be the emα-theory obtained by adding to Σ all sentences
ϕpcβ0 , . . . , cβn- q, where ϕ is an s-formula with n free variables, β0 ă ¨ ¨ ¨ ă βn- ă α,
and ϕpc0, . . . , cn-q P Σ. Any finite S Ď Σα involves only a finite set of constants,
say C “ tcβn | n ă Nu, where β0 ă ¨ ¨ ¨ ă βN - ă α. Let emC be the reduction of
emα by the removal of all constants not in C. Let M be the expansion of pLγ ; Pq
to an emC-structure by letting cMβn

“ xn for each n P N . Then M |ù S. By the
compactness theorem, Σα has a model M, which, letting X “ tcMβ | β ă αu, is
easily seen to satisfy the requirements of (9.86.1.1).

To obtain (9.86.1.2) we let M 1 “ HpM ;EqX, and let pM 1;E1q be the correspond-
ing (elementary) substructure. Then HpM

1;E1qX “M 1.
Given pM ;Eq, X and pM 1;E1q, X 1 satisfying (9.86.1.1, 2) we extend the (unique)

order-isomorphism of X and X 1 to an isomorphism of pM ;Eq and pM 1;E1q using
the fact that in both models every element is the value of a Skolem term applied
to indiscernibles. 9.86

If the structures corresponding to an EM-set Σ and an ordinal α are wellfounded
then there is a unique structure pM ; Pq of this isomorphism type, where M is a
transitive set, which must by definition9.85 be of the form pLδ; Pq for a limit ordinal
δ.

(9.87) We refer to a model constructed as above from an EM-set Σ and ordinal
α as MpΣ, αq with the understanding that it is in general only the isomorphism
type of MpΣ, αq that is defined. If it is wellfounded then we define MpΣ, αq to be
specifically the transitive set representative of its type, i.e., the appropriate Lδ, and
we let IpΣ, αq be the set of ordinal indiscernibles in Lδ.

(9.88) Theorem [ZF] Suppose Σ is an EM-set. If MpΣ, αq is wellfounded for every
α ă ω1, then MpΣ, αq is wellfounded for every α.

Proof A straightforward descending chain argument. Choice is not needed, since
pM ;Eq “ MpΣ, αq may be wellordered by consideration of the representation of
its elements as Skolem terms applied to n-sequences from α, regardless of whether
E is wellfounded. Let X Ď OrdpM ;Eq be the set of indiscernibles (of order type
α). If a0E

´1 a1E
´1 ¨ ¨ ¨ is an descending ω-sequence in pM ;Eq then there is a

countable X 1 Ď X such that, letting M 1 “ HpM ;EqX 1, @n P ω an P M
1. Letting

E1 “ E XM 1 ˆM 1, pM 1;E1q – MpΣ, α1q, where α1 is the order type of X 1. Since
X 1 is countable, α1 ă ω1. 9.88

(9.89) Theorem [ZF] Suppose κ Ñ pω1q
ăω
2 . Then there exists an EM-set Σ with

the following properties.

1. For all ordinals α, MpΣ, αq is wellfounded.
2. For every m-ary Skolem term τ , Σ contains

Ord τpc0, . . . , cm-qÑÑÑ τpc0, . . . , cm-q ăăă cm.

3. For every pm` nq-ary Skolem term τ , Σ contains

τpc0, . . . , cm`n-q ăăă cm

ÑÑÑ τpc0, . . . , cm`n-q“““ τpc0, . . . , cm- , cm`n, cm`n`1, . . . , cm`2n-q.
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Note that by indiscernibility the upper constants may be arbitrary, i.e., for any
m ď k0 ă ¨ ¨ ¨ ă kn- ,

τpc0, . . . , cm`n-q ăăă cm

ÑÑÑ τpc0, . . . , cm`n-q“““ τpc0, . . . , cm- , ck0 , . . . , ckn- q.

Proof By (9.83) there exists a set of indiscernibles in Lκ of order type ω1. Let δ
be least such that Lδ has a set of indiscernibles I of length ω1, and let I be a set of
indiscernibles in Lδ with the least possible ωth element. Let Σ be the corresponding
EM-set.

By virtue of (9.88), Σ satisfies (9.89.1). To show that Σ satisfies (9.89.2), suppose
to the contrary that τ is a Skolem term and

cm ďďď τpc0, . . . , cm-q

is in Σ. Note that by indiscernibility cm1 ďďď τpc0, . . . , cm-q is also in Σ for any
m1 ą m. It follows that if Σ says that τpc0, . . . , cm-q is a successor ordinal then
we may let τ 1 be the Skolem term for the greatest limit ordinal below τ , and
cm ďďď τ 1pc0, . . . , cm-q will also be in Σ. Thus, we may suppose without loss of
generality that Lim τpc0, . . . , cm-q is in Σ.

Let α0 ă ¨ ¨ ¨ ă αm- be the first m elements of I, and let ν “ τLδpα0, . . . , αm-q.
Then ν is a limit ordinal and I Ď ν. Let I 1 “ Iztα0, . . . , αm-u. Now suppose
β0 ă ¨ ¨ ¨ ă βn- and γ0 ă ¨ ¨ ¨ ă γn- in I 1, and suppose ϕ is an s-formula ϕ with n
free variables. Let ϕ1pu0, . . . , um- , v0, . . . , vn-q be

xLτpu0,...,um- q |ù ϕrv0, . . . , vn-sy.

Then

Lν |ù ϕrβ0, . . . , βn-sØLδ |ù ϕ1rα0, . . . , αm- , β0, . . . , βn-s

ØLδ |ù ϕ1rα0, . . . , αm- , γ0, . . . , γn-s

ØLν |ù ϕrγ0, . . . , γn-s.

Thus I 1 is a set of indiscernibles for Lν . But the order type of I 1 is ω1 and ν ă δ,
contradicting the minimality of δ.

To verify (9.89.3), we may suppose

(9.90) τpc0, . . . , cm`n-q ăăă cm P Σ;

otherwise, it is satisfied trivially, since Σ is a complete theory. We may also suppose
n ą 0. As before, let α0 ă ¨ ¨ ¨ ă αm- be the first m elements of I, and let
I 1 “ Iztα0, . . . , αm-u. Let xβγ | γ ă ω1y be the increasing enumeration of I 1.
Keeping in mind that any ordinal γ is uniquely of the form η ` k, where η is not a
successor ordinal and k P ω, for each ordinal γ “ η ` k in this form with γ ă ω1,
let

νγ “ xτpα0, . . . , αm- , βη`kn, βη`kn`1, . . . , βη`kn`n-qy
Lδ
.

If
τpc0, . . . , cm`n-q“““ τpc0, . . . , cm- , cm`n, cm`n`1, . . . , cm`2n-q

is in Σ, of course, xνγ | γ ă ω1y is constant. If not then either

τpc0, . . . , cm`n-q ąąą τpc0, . . . , cm- , cm`n, cm`n`1, . . . , cm`2n-q

or τpc0, . . . , cm`n-q ăăă τpc0, . . . , cm- , cm`n, cm`n`1, . . . , cm`2n-q
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is in Σ. In the former case, xνγ | γ ă ω1y is strictly decreasing, which is impossible.
In the latter case, xνγ | γ ă ω1y is strictly increasing, and it is easy to see that
tνγ | γ ă ω1u is a set of indiscernibles for Lδ. But9.90

νω “ xτpα0, . . . , αm- , βω, . . . , βω`n-qy
Lδ
ă βω,

which is the ωth element of I. This contradicts the choice of I as a set of indis-
cernibles in Lδ with the least ωth element. 9.89

In the original publication an EM-set was defined as remarkable
def
ðñ it satisfies

(9.89.3).

Definition [ZF] For terminological convenience we will say that Σ is remarkable
def
ðñ Σ is an EM-set satisfying (9.89.1–3). For the nonce, if Σ is remarkable and α

is an ordinal then ιΣ,αγ
def
“ the γth element of the set I of indiscernibles in MpΣ, αq,

which is well defined by virtue of (9.86.2).

The aptness of the appellation ‘remarkable’ is illustrated by the following series
of theorems and definitions.

(9.91) Theorem [ZF] Suppose Σ is remarkable, α is a limit ordinal, and α ă
β.

1. ιΣ,βα “ supγăα ιΣ,βγ .

2. MpΣ, αq “ HMpΣ,βqpIpΣ, βq X ιΣ,βα q “ LιΣ,β
α

.29

3. IpΣ, αq “ IpΣ, βq X ιΣ,βα .

Proof Let Lδ “ MpΣ, βq.9.87 Then9.86.1.2 Lδ “ HLδpIpΣ, βqq. By remarkability9.89.3

and the fact that α is limit, LιΣ,β
α
Ď HLδpIpΣ, βqXιΣ,βα q, and from (9.89.2) it follows

that HLδpIpΣ, βq X ιΣ,βα q Ď Lν , where ν “ supγăα ιΣ,βγ ď ιΣ,βα .
Thus, ιΣ,βα “ ν “ supγăα ιΣ,βγ , and Lν “ HMpΣ,βqpIpΣ, βq X νq. As a Skolem

hull in Lδ, Lν is automatically an elementary substructure of Lδ, and since ιΣ,βγ

pγ ď αq are indiscernible in Lδ, they are indiscernible in Lν . Hence, MpΣ, αq “ Lν
and IpΣ, αq “ IpΣ, βq X ν. 9.91

Definition [GB] For the nonce, with (9.91) as justification, if Σ is remarkable
then

1. ιΣγ
def
“ ιΣ,αγ for any (equivalently, for all) limit α ą γ; and

2. IpΣq def
“ tιΣγ | γ P Ordu.

(9.92) Theorem [GB]

1. Suppose Σ is remarkable.

1. IΣ is closed and unbounded in Ord.
2. For all α ă β, LιΣα ă LιΣβ .

3. For any uncountable cardinal κ, IΣ X κ has order type κ. Hence, ιΣκ “ κ.

2. There exists at most one remarkable EM-set.
29Remember9.87 that MpΣ, νq is an initial segment of L for any ordinal ν.
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Proof (9.92.1.1) follows from (9.91.1).
Given α ă β, let γ ą β be a limit ordinal.30 Given an s-formula ϕ with n free

variables, and x0, . . . , xn- P LιΣα , let S be a finite set of indiscernibles in IΣ
γ above

ιΣβ . Let τ0, . . . , τn- be Skolem terms which, evaluated in LιΣγ at indiscernibles in
IΣ
α Y S, give x0, . . . , xn- . Then by the indiscernibility of IΣ

α Y tι
Σ
α , ι

Σ
β u Y S in LιΣγ ,

LιΣγ believes that

LιΣα |ù ϕrx0, . . . , xn-sØLιΣβ |ù ϕrx0, . . . , xn-s,

so this is true by the absoluteness of satisfaction.
(9.92.1.3) follows easily from the fact that |MpΣ, αq| “ |α| for any infinite α.
By virtue of (9.92.1), all uncountable cardinals are indiscernibles, so any re-

markable EM-set is the theory of the structure pLωω ; P, ωn`1qnPω. 9.92

(9.92.2) is perhaps the most remarkable thing of all. It certainly concentrates
the mind wonderfully. Note that, as a theory in a countable signature, the unique
remarkable EM-set is a countably infinitary object, i.e., a real in the usual sense
of that term in set theory. Second, given any real x—regarded, say, as a subset of
ω—the entire preceding analysis may be undertaken with Lrxs in place of L, with
the conclusion that there exists a unique remarkable EM-set relative to x, with a
canonical class of indiscernibles in Lrxs. Letting x7 be the unique EM-set relative
to x, x7 is transcendent over x from the standpoint of constructibility in much the
same way that the jump4.103 x1 of x is transcendent over x from the standpoint of
computability. Let x ďc y

def
ðñ x P Lrys. The relation ďc of relative constructibility

is analogous to the relation ďT of relative computability (Turing reducibility). The
equivalence classes of ďc are the constructibility degrees, analogous to computability
degrees, i.e., Turing degrees. x ÞÑ x7 is clearly well defined on constructibility
degrees, just as the jump operation is well defined on Turing degrees.

Definition [GB] Suppose x Ď ω.

1. If there exists an EM-set Σ satisfying (9.89) relative to x then x-sharp def
“ x7

def
“ Σ, coded (in some uniform way) as a subset of ω.

2. If x7 exists, Ix is the class of x-indiscernibles, and ιxα is the αth element of Ix.

3. If x7 exists for all x Ď ω then I˚
def
“

Ş

xĎω I
x, and for all α P Ord, uα is the

αth element of I˚.

4. An ordinal ν is a uniform indiscernible
def
ðñ ν P I˚ iff ν “ uα for some α.

We may summarize Silver’s analysis of indiscernibles as follows.

Theorem [GB] Suppose x Ď ω.

1. x7 exists iff for some ordinal δ, Lδrxs has an uncountable set of indiscernibles.

2. x7 exists if there exists κ such that κÑ pω1q
ăω
2 .

3. If x7 exists then

1. there exists a unique class Ix of indiscernibles for Lrxs such that Ix is
closed and unbounded in Ord and HLrxspIxq “ Lrxs;

30For limit α, (9.92.1.2) follows from the fact that LιΣα
“ MpΣ, αq “ H

L
ιΣ
β pIΣα q ă LιΣ

β
, but this

argument doesn’t generalize.
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2. if α ď β then Lιxαrxs ă Lιxβ rxs;
3. for every uncountable cardinal κ, IxXκ has order type κ and ιxκ “ κ; and
4. if Limα then HLιx

α
rxstιxγ | γ ă αu “ Lιxαrxs.

Note that if x7 exists for all x Ď ω then every uncountable cardinal is a uniform
indiscernible, and u0 “ ω1. The identity of the other uniform indiscernibles is
obviously a very interesting question.

Just as measurability of a cardinal κmay be characterized in terms of elementary
embeddings of V into a transitive class M , the existence of 07 may be characterized
in terms of elementary embeddings of L into L (the only transitive model of ZF
included in L). In one direction this is immediate. For suppose I “ I0 is the
canonical class of L-indiscernibles and j : I Ñ I is an order-preserving injection.
Extend j to an embedding of L into L by letting

jpτpi0, . . . , in-qq “ τpji0, . . . , j in-q

for any Skolem term τ with n arguments and any increasing sequence xim | m ă ny
in I. It is easy to show that j is an elementary embedding of L into L.

This construction yields an easy proof of the following theorem, which states—
perhaps unsurprisingly—that indiscernibles are indescribable.

(9.93) Theorem [GB] Assume 07 exists. Then every indiscernible is totally inde-
scribable in the sense of L.

Proof By indiscernibility, it suffices to show that xι0 is totally indescribabley
L

. Let
j : L Ñ L be the elementary embedding derived as above from a map of I into I
that moves ι0. It is easy to see using (9.89.3) (with m “ 0) that ι0 is the critical
point of j. The argument used to prove (9.70) shows that ι0 is totally indescribable
in L. 9.93

Note that this theorem places the consistency strength of x07 existsy between
that of xthere exists a totally indescribable cardinaly and xthere exists a cardinal κ
such that κÑ pω1q

ăω
2 .

The following theorem of Kunen, provides a converse to the above inference of
the existence of a nontrivial elementary embedding of L into L from the existence
of indiscernibles, along with an equivalent statement in terms of ultrafilters. By
way of orientation, if M is a transitive model of ZF (or some adequate fragment
of ZF, such as ZF´), an M -ultrafilter over an ordinal κ def

“ an ultrafilter U on the
boolean algebra xP rκsyM . Note that U need not be in M .

(9.94) Theorem [GB] The following are equivalent.

1. There exists a nontrivial (not the identity) elementary embedding of L into L.
2. There exists a nontrivial elementary embedding of Lα into Lβ with critical

point ă |α|.
3. There exists an L-ultrafilter U over an ordinal κ such that κL{U is wellfounded.
4. 07 exists.

(9.94.2) is basically a way of stating (9.94.1) without quantification over proper
classes, so that it makes sense in the context of ZF. We omit the proof of this
theorem.

The perceived minimality of 07 as an object that is intrinsically outside the
realm of constructibility led Solovay to formulate the genericity conjecture:
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If x Ď Ord and 07 R Lrxs, then x is generic over L.

Here ‘generic over L’ is intended to mean that there exists a partial order P P L
and an L-generic filter G on P such that x P LrGs. Since forcing with a partial
order P preserves cardinals ě |P|, 07 is not generic over L.31

This conjecture was refuted by Jensen, who showed8.167 how to encode the uni-
verse by a real using a proper class forcing. If 07 does not exist initially then 07

does not exist in the extension. Applying Jensen’s method to a model obtained by
Easton forcing in which 2κ ą κ` for every regular cardinal κ, we obtain x Ď ω such
that x R Lrys for any set-generic y,32 and 07 R Lrxs. Moreover, if 07 exists then
there exists x ăc 07 such that x is not set-generic over L.

We conclude this section with Jensen’s famous covering theorem, which gives
what is perhaps the subtlest known criterion for the existence of 07. The proof is
beyond the scope of this book.

(9.95) Theorem [ZF] 07 exists iff there exists an uncountable X Ď Ord such that
there is no Y P L such that X Ď Y and |Y | “ |X|.

9.4 Ideals over cardinals

9.4.1 Saturation

We have previously discussed ideals on boolean algebras.3.164 When the algebra is
P S for some set S, we say that the ideal is over S.3.171 See Sections 3.10.3 and
3.10.4 for relevant definitions. We have also discussed the saturation of boolean
algebras in general terms. We now focus on boolean algebras of the form P κ{I,
where I is an ideal over a cardinal κ. In this context we refer to saturation as a
property of I.

Definition [ZFC] Suppose I is an ideal over a set S, and κ is a cardinal.

1. A Ď P S is an I-antichain
def
ðñ A Ď I`3.174.2 and for every X,Y P A, if

X ‰ Y then X X Y P I (the members of A are nonsmall and pairwise almost
disjoint).

2. I is κ-saturated
def
ðñ P S{I is κ-saturated,8.121 i.e., every I-antichain is smaller

than κ.
3. The saturation of I def

“ sat I def
“ the least κ such that I is κ-saturated.

Note that an ideal is maximal iff it is 2-saturated.33 It is easy to show that if I
is ω-saturated then it is n-saturated for some finite n.34 Thus, sat I cannot be ω.

31Every L-indiscernible is a cardinal in L (by indiscernibility, since every uncountable cardinal
is an L-indiscernible). Thus, there are arbitrarily large cardinals in L that are not cardinals in
Lr07s.

32P-forcing does not increase 2κ for any regular cardinal κ ě |P|.
33Any discussion of ideals or filters may be framed in terms of either ideals or filters or both.

For maximal such objects the preferred terminology is that of filters, and a maximal filter is called
an ultrafilter. This preference is probably due to the fact that the definition of ultraproducts in
terms of ultrafilters rather than maximal ideals avoids a negation (or complementation) operation.
On the other hand, the quotient operation on algebras is more economically described in terms of
ideals than filters. The preference for ideals over filters in this and other contexts may also derive
from their use in ring theory and the conventional correspondence of join with addition and meet
with multiplication.

34Suppose to the contrary that I is ω-saturated but not n-saturated for any finite n. Let A0

be a maximal antichain. Then |A0| ă ω. Let n “ |A0|. Let A1 be any antichain of size n1 ą n,
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It is also easy to show that if sat I is infinite it is regular. Thus, sat I is finite or
uncountable and regular.

Ideals over countable cardinals are for the present purpose quite simple. Any
ideal over a finite set is principal. Assuming AC, every ideal over ω can be extended
to a 2-saturated (i.e., maximal) ideal.35 Hence, there exists a maximal nonprincipal
ideal over ω. Since every ideal is ω-complete, we have a nonprincipal ω-complete
2-saturated ideal over ω.

For the purpose of large-cardinal studies, we are concerned specifically with
ideals (over cardinals κ) that are nonprincipal and κ-complete. As just discussed,
these are only of interest if κ is uncountable. In the interest of terminological
brevity we make the following definition.

(9.96) Definition [ZFC] Suppose I is an ideal over a cardinal κ. I is nontrivial
def
ðñ κ is uncountable and I is nonprincipal and κ-complete.36

It is easy to see that if I is a nontrivial ideal over κ then κ is regular.

(9.97) Definition [ZFC] Suppose I is an ideal over a set S. A Ď S is an atom
def
ðñ A P I` and for every X Ď A, either X P I or AzX P I.9.12.1

If I is a nontrivial ideal and sat I ď ω, then every antichain in I` is finite, so every
element of I` includes an atom; otherwise, by successive fission we could produce
an infinite antichain. If A is an atom for I then tX Ď κ | X X A P I`u is a
κ-complete nonprincipal ultrafilter over κ, so κ is measurable. As noted above, if
sat I is infinite then sat I is regular. Obviously, sat I ď p2κq`. To summarize:

(9.98) Theorem [ZFC] Suppose I is a nontrivial ideal over a cardinal κ.

1. sat I ď p2κq`.

2. If sat I ď ω then κ is measurable.

3. If sat I ě ω then sat I is a regular cardinal.

let B “ ta X a1 | a P A0^ a1 P A1u, and let A1 “ B X I`. Then A1 is an antichain. Since A0 is
maximal, for every a1 P A1 there exists a P A0 such that aX a1 P I`, so there exists b P A1 (e.g.,
aX a1) such that b Ď a1. Hence, |A1| ě n1 ą n, and A1 is an antichain such that every element of
A1 is included in an element of A0. Continue in this fashion to construct antichains A0, A1, . . .
of progressively larger cardinality such that each element of each antichain is included in some
element of each earlier antichain. By a process similar to that used in the proof of König’s lemma,
we can now construct sequences xni | i P ωy, xai | i P ωy, and xbi | i P ωy such that

1. n0 ă n1 ă . . . ;

2. ai, bi P Ani and ai ‰ bi (so ai X bi P I); and

3. i ă jÑ ai Ě aj , bj .

Then tbi | i P ωu is an infinite antichain.
35Suppose I is an ideal over ω. Let xXα | α ă κy enumerate P ω. Define ideals Iα, α ă κ, such

that

1. I0 “ I;

2. if Limα then Iα “
Ť

βăα Iβ ; and

3. if α “ β ` 1 then

1. if pωzXβq P Iβ then Iα “ Iβ ; otherwise,

2. Iα is the smallest ideal including I Y tXβu, viz., tX Y Y | X Ď Xβ ^Y P Iβu.
Ť

αăκ Iα is a maximal ideal extending I.
36The convention is often adopted that ideal over κ means nontrivial ideal over κ in this context.
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The following theorem of Ulam is an important limitation on saturation for
successor cardinals.

(9.99) Theorem [ZFC] Suppose κ is an infinite successor cardinal and I is a
nontrivial ideal over κ. Then sat I ą κ.

Proof This is essentially the proof that κ is not real-valued measurable. Thus, let
λ be such that κ “ λ`, and let xAηα | α ă λ`^ η ă λy be an Ulam matrix,9.11 i.e.,
for all α ă β ă λ` and η ă λ

1. Aηα Ď λ`;

2. Aηα XA
η
β “ 0; and

3. |λ`z
Ť

ηăλA
η
α| ď λ.

Since I is nonprincipal and λ`-complete, every subset of λ` of size ď λ is in I.
Hence (again using λ`-completeness) for each α ă λ` there exists ηα ă λ such
that Aηα

α P I`. For some η ă λ, |tα ă λ` | ηα “ ηu| “ λ`. tAα | ηα “ ηu is a
counterexample to λ`-saturation.37 9.99

Thus, for successor cardinals κ, the existence of a κ`-saturated nontrivial ideal
over κ is the primary question. The most fundamental issue is whether there exists
an ω2-saturated nontrivial ideal over ω1, in particular, whether the nonstationary
ideal over ω1 is ω2-saturated. We will return to these questions.

For limit cardinals κ the following theorem due to Tarski (Part 1) and Levy and
Silver (Part 2) establishes the significance of relatively low values of satκ.

(9.100) Theorem [GBC] Suppose I is a nontrivial ideal over a cardinal κ.

1. If 2ăλ ă κ and I is λ-saturated then κ is measurable.

2. If κ is weakly compact and I is κ-saturated then κ is measurable.

Proof It is enough to show that I has an atom9.97 A, in which case, tX Ď κ |
X XA P I`u is a κ-complete nonprincipal ultrafilter over κ, so κ is measurable.

Therefore, suppose toward a contradiction that I has no atom. We will construct
a tree S Ď ăκ2 (i.e., for any s P S and α P dom s, s æα P S) and a function
F : S Ñ P κ such that F is decreasing, i.e., for s, t P S, if s Ď t then F s Ě F t. We
define F recursively. F 0 “ κ. Suppose F s is given. If F s P I` let X0, X1 P I

` be
disjoint such that X0 YX1 “ F s, and let F ps ⌢xiyq “ Xi for i P 2; if F s R I`, i.e.,
F s P I, we do not extend s in S.

At limit stages we put s P S iff every initial segment of s is in S, and we let
F s “

Ş

αPdom s F ps æαq.
Given ν ď κ and s : ν Ñ 2,

tF ps æα ⌢x1´ sαyq | α ă ν^ sα`1 P Su

has size |ν| and consists of pairwise disjoint elements of I`. Note also that κ “
Ť

tF s | s is maximal in Su, and if s is maximal in S and dom s ă κ then F s P I.

1 If I is λ-saturated the height of S is at most λ, and if 2ăλ ă κ then κ is the
union of fewer than κ elements of I, violating the hypothesis of κ-completeness.

37The sets Aα such that ηα “ η are actually disjoint, not merely almost disjoint, but this is not
a stronger result: Given that I is κ complete, any sequence xXα | α ă κy of almost disjoint sets
in I` gives rise to a κ sequence of disjoint sets in I`—replace Xα by Xαz

Ť

βăα Xβ .
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2 If κ is weakly compact then κ is inaccessible, so if the height of S is ă κ then
κ is again the union of fewer than κ sets in I. Hence, htS “ κ. The levels of S
are smaller than κ, so by weak compactness, S has a branch of length κ, but this
violates the κ-saturation of I. 9.100

The following is a brief summary of the preceding discussion.

(9.101) Suppose κ is a cardinal and I is an ideal over κ.

1. If κ is finite then I is principal.

2. If κ “ ω then I can be extended to a 2-saturated ideal. Since every ideal is
ω-complete, there is a nontrivial 2-saturated ideal over ω.

3. If I is nontrivial then κ is regular (and uncountable by definition9.96) .

4. sat I is either finite or uncountable and regular.

5. Suppose I is nontrivial and λ “ sat I.

1. λ ď p2κq`.
2. If κ is a successor cardinal then λ ě κ`.
3. If 2ăλ ă κ then κ is measurable.

Thus, the region of interest is defined by the inequalities:

1. λ ď 2κ, and

2. 2ăλ ě κ.

In practice, the important cases for limit cardinals κ are λ “ κ`, λ “ κ, and λ ă κ;
the important case for successor cardinals κ is λ “ κ`.

The remainder of this section is devoted to implications of the existence of
variously saturated nontrivial ideals. Ultimately we will show that if λ ă κ and I
is a normal λ-saturated nontrivial ideal over κ then I˚XLrIs is a normal ultrafilter
over κ in LrIs,9.112 so κ is measurable in LrIs. Indeed, it is sufficient that I be κ`-
saturated in order that κ be measurable in some inner model, but this is somewhat
harder to prove and not on the main route of our presentation. The weaker result is
sufficient for Solovay’s proof that a real-valued measurable cardinal is measurable
in an inner model.9.113.2

9.4.2 Precipitousness and normality

A very useful tool in the theory of nontrivial ideals over cardinals is the obser-
vation of Solovay that some arguments predicated on the existence of a maximal
(2-saturated) nontrivial ideal over a cardinal κ (i.e., a measurable cardinal) could
be adapted to a broader class of ideals by making use of the fact that any ideal
I over κ in a transitive model M of ZF can be extended to a maximal ideal on
P κXM in a generic extension M rGs, using the partial order PI defined as follows.

(9.102) Definition [ZFC] Suppose I is an ideal over a set S. PI “ pI`;ďIq, where
Y ďI XØY zX P I.

The essential observation is that if G is an M -generic filter on PI , then G is an
ultrafilter on P κ XM , and the dual ideal G˚ extends I. Note that G is not an
ultrafilter over κ in the sense of M rGs, because G Y G˚ is not P κ in the sense
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of M rGs but rather in the sense of M . Nevertheless, in M rGs we can form the
ultrapower

`

M X κM
˘

{G˚, whose individuals are equivalence classes modulo G˚

of functions from κ into M that are in M . The following definition describes this
construction. It is most useful when pM ; Pq is a model of a sufficient fragment of
ZFC, but we state it in greater generality for later convenience.

Definition [GBC] Suppose M is a transitive class and κ P OrdXM .

1. An M -ultrafilter over κ def
“ an ultrafilter on P κXM .

2. An M -ultrafilter U is λ-complete
def
ðñ for every α ă λ and f P αU X M ,

Ş

αăλ fα P U .

3. An M -ultrafilter U over κ is normal
def
ðñ for every X P U and regressive

f P XκXM , f is constant on some Y P U .

4. Suppose U is an M -ultrafilter over κ. UltU M
def
“

`

M X κM
˘

{U .

5. A generic ultrapower def
“ a structure UltGM , where G is an M -generic filter

on PI for some ideal I over κ (and hence an M -ultrafilter, in M rGs).

Unsurprisingly, a key question regarding a generic ultrapower is whether it is well-
founded.

Definition [GBC] Suppose κ is a cardinal and I is an ideal over κ. I is precipitous
def
ðñ ,PI

xthe generic ultrapower UltGpVq is wellfoundedy.

Of course, we presume that the corner-quoted text is appropriately interpreted
in ZFC so that it can be an argument of the forcing predicate. Note that if we
undertake to prove the forcing relation by arguing in a generic extension using
the class theory Θ1,8.106 then we may use the direct interpretation of xUltGpVαq is
wellfoundedy in GBC.

Before moving on, we observe that PI is not separative.8.57 The corresponding
separative partial order is the set B` of nonzero elements of the quotient algebra
B “ BI “ P κ{I. The regular algebra of PI is therefore the completion RBI of
BI . The following theorem of Smith and Tarski is relevant.

(9.103) Theorem [ZFC] Suppose I is a κ`-saturated nontrivial ideal over κ. Then
P κ{I is a complete boolean algebra.

The proof is not difficult, but we do not need this result, so we omit it. Conversely
to (9.103) the completeness of P κ{I has implications for the saturation of I. Specif-
ically, suppose P κ{I is complete and I is not λ-saturated. Let xXα | α ă λy be a
counterexample to λ-saturation. For A Ď λ, let fA be a representative of the join
in P κ{I of trXαs | α P Au, where rXs P P κ{I is the equivalence class of X Ď κ.
Then f : P λÑ P κ is injective, so 2λ ď 2κ. Hence:

If I is a nontrivial ideal over κ and P κ{I is a complete boolean algebra, then

1. if 2λ ą 2κ then I is λ-saturated;

2. in particular

1. I is 2κ-saturated; and
2. if 2κ

`
ą 2κ then I is κ`-saturated.
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The following theorem of Solovay establishes the precipitousness of κ`-saturated
nontrivial ideals over κ.

(9.104) Theorem [GBC] Suppose I is a κ`-saturated nontrivial ideal over a cardinal
κ. Then I is precipitous.

Proof Let P “ pI`;ďIq. It is enough to show that it is a P-validity that the
ordinals of UltGpVq are wellordered. In the interest of notational simplicity, we will
write ‘r¨s’ for the reduced equivalence class operation modulo an ultrafilter, rather
‘r¨s˚’. An ordinal of UltGpVq is the equivalence class rf̌ s mod G of the canonical
representative f̌ of an ordinal-valued function on κ in the ground model (represented
by ‘V’). Note that for any X P I` and f, g P κOrd, X ,rǧs ăăă rf̌ s iff g is almost
everywhere less than f on X, i.e., X ďI tα | gα ă fαu; similarly, X ,rǧs“““rf̌ s iff g
is almost everywhere equal to f on X.

(9.105) Claim Suppose W P I`, 9a P V P and W , xp 9aq is a nonempty set of ordinals
in UltGpVqy. Then W , x there is a least ordinal in p 9aqy.

Proof

(9.106) Claim Suppose X ďI W . Then there exist Y ďI X and f P κOrd such
that Y , xrpf̌qs is the least ordinal in p 9aqy.

Proof Suppose the contrary.

(9.107) Claim Suppose X 1 ďI X, f P κOrd, and X 1,rf̌ s PPP 9a. Then there exists
g P κOrd such that X 1,rǧs PPP 9a ^̂̂rǧs ăăă rf̌ s.

Proof Let A Ď I` be maximal subject to the conditions:

1. @Y P A Y ďI X 1;

2. @Y, Y 1 P A Y X Y 1 P I; and

3. @Y P A Dg P κOrd Y ,rǧs PPP 9a ^̂̂rǧs ăăă rf̌ s.

Then A is a maximal antichain below X 1 in I` because, by hypothesis, for every
Y ďI X 1, Y . xrpf̌qs is the least ordinal in p 9aqy, so there exist Z ďI Y and g P κOrd
such that Z ,rǧs PPP 9a ^̂̂rǧs ăăă rf̌ s.

Since I is κ`-saturated, |A| ď κ. Let xYξ | ξ ă ηy enumerate A, where η ď κ.
For each ξ ă η let Y 1ξ “ Yξz

Ť

ξ1ăξ Yξ1 . By virtue of the κ-completeness of I,
Y 1ξ ”

I Yξ. Let A1 “ tY 1ξ | ξ ă ηu. Then A1 has the defining characteristics of
A, but it consists of disjoint sets. For each ξ ă η, let gξ P κOrd be such that
Yξ ,rǧξs PPP 9a ^̂̂rǧs ăăă rf̌ s. Let g1 “

Ť

ξăη gξ æY
1
ξ , and let g P κOrd be any extension

of g1.
For every ξ ă η, Yξ ,rǧs“““rǧξs, so Yξ ,rǧs PPP 9a ^̂̂rǧs ăăă rf̌ s. Thus the set of

conditions forcing rǧs PPP 9a ^̂̂rǧs ăăă rf̌ s is dense below X 1, so X 1,rǧs PPP 9a ^̂̂rǧs ăăă rf̌ s.
9.107

By hypothesis9.105 there exist X 1 ďI X and g0 P
κOrd such that X 1,rǧ0s PPP 9a.

Using Claim 9.107 construct a sequence xgn | n P ωy such that for each n P ω,
X 1,rǧns PPP 9a ^̂̂rǧn`1s ăăă rǧns. For each n P ω, let Yn “ tα ă κ | gn`1α ă gnαu. As
noted above, for each n P ω, X 1 ďI Yn. It follows from the ω1-completeness of I
that X 1 ďI

Ş

nPω Yn, so
Ş

nPω Yn ‰ 0. Let α be any member of
Ş

nPω Yn. Then
g0α ą g1α ą ¨ ¨ ¨ , which is impossible, as these are ordinals. 9.106

Now let A Ď I` be maximal subject to the conditions:
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1. @Y P A Y ďI W ;

2. @Y, Y 1 P A Y X Y 1 P I; and

3. @Y P A Dg P κOrd Y , xrpǧqs is the least ordinal in p 9aqy.

Then A is a maximal antichain below W in I` by virtue of Claim 9.106. As before,
since I is κ`-saturated, |A| ď κ, and we let xYξ | ξ ă ηy enumerate A, where η ď κ.
For each ξ ă η let Y 1ξ “ Yξz

Ť

ξ1ăξ Yξ1 . For each ξ ă η, let gξ P κOrd be such that
Yξ , xrpǧqs is the least ordinal in p 9aqy. Let g1 “

Ť

ξăη gξ æY
1
ξ , and let g P κOrd be

any extension of g1.
For every ξ ă η, Yξ ,rǧs“““rǧξs, so Yξ , xrpǧqs is the least ordinal in p 9aqy. Thus

the set of conditions forcing xrpǧqs is the least ordinal in p 9aqy is dense below W , so
W ,xrpǧqs is the least ordinal in p 9aqy. 9.105

Now suppose toward a contradiction that I is not precipitous. Then there exist
W P I` and 9a P V P such that W , xp 9aq is a nonempty set of ordinals in UltGpVq
with no least membery, contradicting Claim 9.105. 9.104

The preceding theorem may be viewed as extending to κ`-saturated nontrivial
ideals over κ a property of 2-saturated nontrivial ideals over κ (i.e., a property
of measurability). The next theorem, also due to Solovay, similarly generalizes
(9.15.2). We preface it with a definition.

(9.108) Definition [ZFC] Suppose I is a nontrivial ideal over κ, X Ď κ, and
f : X Ñ κ.

1. f is I-unbounded (or I-small)
def
ðñ for every α P κ, fÐtαu P I. Note that by

κ-completeness, this is equivalent to fÐα P I.

2. f is I-incompressible
def
ðñ

1. f is I-unbounded; and
2. for every Y Ď X such that Y P I`, and g : Y Ñ κ, if @α P Y gα ă fα

then g is not I-unbounded.

(9.109) Theorem [ZFC] Suppose λ ď κ`, and there exists a λ-saturated nontrivial
ideal over a cardinal κ. Then there exists a normal λ-saturated ideal over κ.

Proof Let I be a κ`-saturated nontrivial ideal over a cardinal κ. Let P “ PI and
let , “ ,P. For any x, let x̄ be the constant function on κ with value x. It is
easy to show that , xfor every α P pκ̌q, rᾱs is the αth ordinal in UltGpVqy. Since
I is precipitous,9.104 , xthere is a least ordinal in UltGpVq exceeding rᾱs for every
α ă pκ̌qy. It follows that for every X P I` there exist Y ďI X and f P κκ38 such
that Y , xrpf̌qs is the least ordinal exceeding rᾱs for every α ă pκ̌qy.

Let A Ď I` be maximal subject to the conditions:

1. @Y, Y 1 P A pY X Y 1 P Iq; and

2. @Y P A Df P κκ Y , xrpf̌qs is the least ordinal in UltGpVq exceeding rᾱs for
every α ă pκ̌qy.

38Since the identity function on κ exceeds every ᾱ almost everywhere, the least ordinal exceeding
the rᾱss is represented by some f : κÑ κ.
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Then A is a maximal antichain in I`. As in the proof of (9.104) (twice), using the
κ`-saturation and κ-completeness of I, we may assume that the elements of A are
disjoint. For each Y P A, let fY P κκ be such that Y , xrpf̌Y qs is the least ordinal
in UltGpVq exceeding rᾱs for every α ă pκ̌qy; let f 1 “

Ť

Y PApfY æY q, and let f P κκ
be an extension of f 1. Then for every Y P A, Y ,rpf̌qs“““rpf̌Y qs, so Y , xrpf̌qs is
the least ordinal in UltGpVq exceeding rᾱs for every α ă pκ̌qy; from which it follows
that , xrpf̌qs is the least ordinal in UltGpVq exceeding rᾱs for every α ă pκ̌qy.

It is straightforward to show that f is I-incompressible.9.108 Let

I 1 “ tA Ď κ | fÐA P Iu.

Clearly I 1 is a λ-saturated ideal over κ. We will show that I 1 is normal. I 1

is nonprincipal because f is I-unbounded,9.108.1 and κ-complete because I is κ-
complete. To verify the normality condition, suppose X 1 P I 1` and h : X 1 Ñ κ
is regressive. Let X “ fÐX 1 and g “ h ˝ f . Then X P I`, g : X Ñ κ, and
@α P X gα “ hpfαq ă fα, since h is regressive. Thus9.108.1.2 for some α P κ,
gÐtαu P I`. But gÐtαu “ fÐphÐtαuq, so hÐtαu P I 1`. 9.109

It is instructive to view the above construction in terms of the generic ultra-
power. Thus, in VrGs we may use f to define a normal V-ultrafilter G1 by putting9.17

A P G1Ø fÐA P G,

for every A Ď κ. This is equivalent to putting A P G1 iff κ P jA, where j is the
canonical injection of V into the transitive collapse of UltGpVq (since rf s maps to κ
in the collapse). Note that G1 is V-generic over P κ{I 1.

The κ`-saturation of I is used twice in the proof of (9.109): first to show that I
is precipitous, and again to prove the existence of an I-incompressible function, by
means of which I is converted to a normal ideal. It is an open question whether the
existence of a precipitous ideal over κ implies the existence of a normal precipitous
ideal over κ.

The following theorem9.112 of Solovay is in effect a generalization of (9.76) but
the proof incorporates that of (9.79). Our proof of the latter used the fact that
a measurable cardinal is Ramsey.9.64 The hypothesis of (9.112) is that there is a
normal λ-saturated ideal over κ with λ ă κ, which does not imply that κ is Ramsey;
however, examination of the proof of (9.79) shows that the weaker Rowbottom
property suffices, and this does follow from the existence of such an ideal by another
theorem9.110 of Solovay. The definition of Rowbottom is rather technical and is tailor-
made for the model-theoretic uses to which it is put.

Definition [ZFC]

1. Suppose α, β, γ, δ are ordinals.

1. α Ñ rβsγδ
def
ðñ for every f : rαsγ Ñ δ there exists X P rαsβ such that

fÑrXsγ ‰ δ. This differs from the round-bracket partition relation9.60 in
that it is only required that fÑrXsγ omit a member of δ, not that it consist
of just one member of δ. Note that δ may be taken to be a cardinal.

2. Suppose ν is a cardinal. Then α Ñ rβsγδ;ăν
def
ðñ for every f : rαsγ Ñ δ

there exists X P rαsβ such that |fÑrXsγ | ă ν.
3. We also have ‘ă ω’-exponent variants:
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1. α Ñ rβsăωδ
def
ðñ for every f : rαsăω Ñ δ there exists X P rαsβ such

that fÑrXsăω ‰ δ.

2. α Ñ rβsăωδ;ăν
def
ðñ for every f : rαsăω Ñ δ there exists X P rαsβ such

that |fÑrXsăω| ă ν.

2. Suppose κ and ν are cardinals.

1. κ is ν-Rowbottom
def
ðñ κ Ñ rκsăωλ;ăν for every λ ă κ. κ is Rowbottom

def
ðñ κ is ω1-Rowbottom.

2. Suppose F is a filter over κ. F is ν-Rowbottom
def
ðñ for any λ ă κ

and f : rκsăω Ñ λ there exists X P F such that |fÑrXsăω| ă ν. F is

Rowbottom
def
ðñ F is ω1-Rowbottom.

Note that a Ramsey9.64 cardinal is Rowbottom, i.e., ω1-Rowbottom,9.65 and as noted
in the remark following (9.66) any normal ultrafilter is Rowbottom. The following
theorem generalizes this to normal filters with suitable saturation properties.

(9.110) Theorem [GBC] Suppose κ and ν are cardinals, ω ă ν ă κ, ν is regular,
and I is a normal ν-saturated ideal I over κ. Then I˚ is ν-Rowbottom.

Proof Suppose λ ă κ. It is sufficient to show that for each n P ω and f : rκsn Ñ λ
there exists C Ď λ and B P I˚ such that |C| ă ν and fÑrBsn Ď C.39 We imitate
the proof of (9.66), with the necessary modification that instead of ultrapowers per
se, we use generic ultrapowers.40

Strict adherence to the structure of the previous proof would entail the use of
an n-fold iteration of the generic ultrapower construction to obtain forcing terms
9κα and 9fα, α ď n, and a term 9γ with , 9γ“““ 9fnt 9κ0, . . . , 9κn-u. We would then work
our way back using ν-saturation to obtain terms t 9γu “ 9Cn, 9Cn- , . . . , 9C0, such that
for each α ď n, 9Cα denotes a set of ordinals of size ă ν in the ground model. In
this construction, 9κ0 “ κ̌, 9f0 “ f̌ , and 9C0 “ Č for some C in the ground model;
and

@Iξ0 ¨ ¨ ¨ @
Iξn-f tξ0, . . . , ξn-u P C.

We would now use the normality of I to obtain a homogeneous set as before.
Effecting this construction is a bit complicated on account of the forcing itera-

tion, and in the interest of clarity we formulate the argument instead as an induction
over n. To begin we let n “ 1. Suppose f : κÑ λ. Let C “ tγ ă λ | fÐtγu P I`u.
Since I is ν-saturated, |C| ă ν. Let X “ fÐC. Since I is κ-compete, X P I˚.

(9.111) Now suppose n ą 1, and suppose for all m ă n and g : rκsm Ñ λ there
exist C P Pν λ and X P I˚ such that gÑrXsm Ď C.

Suppose f : rκsn Ñ λ. We will work in a PI -generic extension.9.102 Thus, we suppose
GBC, V is an inner model of ZFC plus (9.111), and U is a V-generic filter on PI .
U is a V-ultrafilter over κ. Since I is precipitous,9.104 UltU V is wellfounded. Let
π : UltU V Ñ M be its transitive collapse and let j : V Ñ M be the canonical
embedding. By routine arguments, since I is κ-complete, κ is the first ordinal

39We make use of the fact that ν ą ω and ν is regular, so cf ν ą ω.
40Solovay’s published proof of this theorem is entirely combinatorial, and is admittedly some-

what simpler than the proof given here. Solovay indicates in that publication, however, that he
first developed the relevant theory by consideration of generic ultrapowers. In any event, we prefer
the generic ultrapower approach for the insight it provides.
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moved by j, and since I is normal, κ “ πrks, where k is the identity function on κ,
so U “ tA P P κ X V | κ P jAu. Also, V and M assign the same cardinalities and
cofinalities to ordinals ă κ.

Let κ1 “ jκ, I1 “ jI, and f1 “ jf . For each ξ ă κ, let fξ : rκsn
-
Ñ λ be such

that

fξs “

#

fptξu Y sq if ξ ă min s
0 otherwise.

Then

V |ù xfor every ξ ă rκs there exist C P Prνs rλs and X P rIs˚ such that rf sξÑrXsn
-
Ď

Cy.

Since κ ă κ1, there exists δ ă ν such that δ is a cardinal in V (and therefore in
M), and

M |ù xthere exist C Ď rλs andX P rI1s
˚ such that |C| “ rδs and rf1srκsÑrXsn

-
Ď Cy.

To formulate these statements in the PI -forcing language we must formulate them
in ZF, which we can do by consideration of initial segments of V and M . Let
M0 “ Vκ`2. Then I P M0, U is an ultrafilter on P κ X M0 extending I˚, and
UltU M0 is wellfounded. Let M1 be its transitive collapse. Then M1 “ Mκ1`2.
The canonical embedding is j æM0.

For the nonce, we make the following definition:

δ is big enough
def
ðñM1 |ù xthere exist C Ď rλs and X P rI1s

˚ such that |C| “ rδs
and rf1srκsÑrXsn

-
Ď Cy.

The preceding argument pertains to any V-generic filter U on PI , and V |ù AC,
so,8.109 returning to the ground model V , there exists 9δ P V PI

such that , xp 9δq is a
cardinal ă pν̌q that is big enoughy, where , is ,PI

.
Let S Ď I` be a maximal antichain subject to the condition that for each Y P S

there exists a cardinal δ ă ν such that Y , 9δ“““ δ̌, and let δY be the unique δ ă ν
with this property. Since , 9δ ăăă ν̌, S is a maximal antichain in PI . By ν-saturation,
|S| ă ν. Let δ0 “ supY PS δY . Since ν is regular by assumption, δ0 ă ν. Every
condition in PI is compatible with a member of S, so , xpδ̌0q is a cardinal ă pν̌q
that is big enoughy.

Let 9I1, 9ȷ, and 9f1 be the canonical terms for I1, j, and f1 (derived from 9U),
and let 9h be such that , xp 9hq : pδ̌0q Ñ pλ̌q and there exists X P p 9I1q

˚ such that
p 9f1q

pκ̌qÑrXsn
-
Ď im p 9hqy. By a ν-saturation argument similar to the preceding,

we show that for each α ă δ0 there is a set Cα of possible values for 9hpαq with
|Cα| ă ν, and we let C “

Ť

αăδ0
Cα. Then |C| ă ν and , im 9h ĎĎĎ Č. Thus,

,DDDX PPP 9I˚1 p
9f κ̌1

ÑrXsn
-
ĎĎĎ Čq.

Let
A “ tξ ă κ | DX P I˚ fξÑrXsn

-
Ď Cu.

Then , κ̌PPP 9ȷǍ, so , ǍPPP 9U . It follows that A P I˚ (otherwise, letting B “ κzA,
B P I` and B, ǍRRR 9U).

For each ξ ă κ let Xξ P I
˚ be such that if ξ P A then

fξÑrXξs
n-
Ď C,
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otherwise, Xξ “ κ. Let

B “ AX∆ξăκXξ.

By normality, B P I˚. Suppose s P rBsn, and let ξ “ min s and t “ sztξu. Then
ξ P A and t Ď Xξ, so f s “ fξ t P C. 9.110

(9.112) Theorem [GBC] Suppose λ ă κ and I is a normal λ-saturated ideal over
κ. Then LrIs |ù xrκs is measurabley.

Proof Clearly LrIs |ù xrI X LrIss is a normal rλs-saturated ideal over rκsy. We now
“work in LrIs”, which is to say that everything we say is supposed to be relativized
to LrIs: every use of an axiom θ of ZFC—whether explicit, or implicit as a premise
of a quoted theorem of ZFC—is presumed to be accompanied by an interpolated
proof of θLrIs. For convenience, working in LrIs we will use ‘I’ to refer to I XLrIs.
By virtue of (9.99), κ is not a successor cardinal. Hence, in particular, λ` ă κ.

We now adapt Silver’s proof of (9.79) to show that 2λ “ λ`. For the most part
we simply replace U by I. Instead of invoking (9.66) to obtain for each Skolem
function f with arity n a set Zf P U such that |fÑrZf s

n| “ 1, we instead invoke
(9.110) to obtain a set Zf P I˚ such that |fÑrZf s

n| ă λ. We let Z “
Ş

fPF Zf ,
which is in I˚, and we generate

B “ pB; P, I XB,RXB,X, γqγPλ ă A

from Z using the Skolem functions, so that |R X B| ď λ, λ Ď B, and Z Ď B. Let
π : pB; P, I X Bq Ñ pM ; P, Jq be the transitive collapse. To show that J “ I, we
define, as before, Z 1 “ tα P Z | πα “ αu, and use the normality of I to show
that Z 1 P I˚. Given S P M X P κ we let S1 “ π´1S. Then S P JØS1 P I, and
S X Z 1 “ S1 X Z 1. Thus

S P JØS1 P IØS1 X Z 1 P IØS X Z 1 P IØS P I.

We complete the proof as before.

Still working in LrIs, we now know that 2ăλ ď 2λ “ λ` ă κ, and we apply
(9.100.1) to conclude that κ is measurable; hence, LrIs |ù xrκs is measurabley. 9.112
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9.4.3 Real-valued and 2-valued measurability

Any set of reals that may be covered by a set
Of intervals whose total length’s as short as it can get
Shy of zero is so small that we declare that it is null
And is to be ignored for ev’ry purpose practical:
Thus spake Lebesgue. To differ nary one of us would dare,
Nor cavil at the comparable claim advanced by Baire
That denumerable unions of sets closed and nowhere dense
Are of first category, therefore of no consequence.
To be precise, we say such sets as these are almost naught,
Which seems at first peculiar, given what we’ve all been

taught—
To wit, that mathematics is the science of precision,
Which contemplates the concept of ‘almost’ with frank derision.
From ‘this is so’ to ‘this is almost always so’ would seem
To be a backward step, yet it’s become a basic theme
Of modern math, and nowhere more so than at its foundation:
In logic and the theory of the membership relation.
It’s there in Cohen’s concept of genericity,
Which animates the subject with such felicity;
And—allowing that the axiom of choice receive its due—
For ultraproducts that that’s almost always true is true.
Leave it to Solovay to tie this all up with a bow
In his celebrated article[23] where he proceeds to show
With generic ultrapowers and sundry arguments—
Clever, to be sure, but not prohibitively dense—
That it’s equally consistent with the theory ZFC
That the answer to the measure question of Banach should be
‘Yes’ as that there be a cardinal that’s measurable.
Please take the time to read it if it isn’t too much trouble.

‘Almost’ Here, ‘Almost’ There, ‘Almost’ Almost Everywhere by
Robert A. Van Wesep

We conclude this brief survey of saturated ideals with Solovay’s celebrated
theorem9.113 stating the equiconsistency of

1. There exists a countably additive real-valued measure over some nonempty
set.9.6

2. 2ω is real-valued measurable.9.9

3. There exists a measurable cardinal.

Note that by an earlier result, to these we may add:

4. There exists a countably additive measure over R extending Lebesgue measure.9.13

(9.113) Theorem [GBC]

1. Suppose there is a countably additive real-valued measure over a cardinal κ.
Then κ is measurable in an inner model.

2. Suppose κ is a measurable cardinal. Then there is a partial order P such that
,P xpκ̌q “ 2ω and pκ̌q is real-valued measurabley.

Proof 1 Let I be the null ideal of a countably additive real-valued measure9.6

over κ. Then I is a nontrivial ω1-saturated ideal over κ, so9.109 there is a normal
ω1-saturated nontrivial ideal I 1 over κ. Since ω1 ă κ,9.8, 9.9, 9.11 LrI 1s |ù xrκs is a
measurable cardinaly.9.112
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2 Recall the use of the algebra Borel{n of Borel sets of reals modulo the ideal
of null sets (in the sense of Lebesgue measure) as a forcing algebra in the analysis
of Solovay’s model in which all sets of reals are Lebesgue measurable.8.225 We now
use a similar algebra, albeit in a quite different way. Let B be the Borel algebra of
κ2 regarded as the product of κ copies of the discrete 2-element topological space.
Thus, for each finite s : κá 2, let Is “ tf P κ2 | s Ď fu. The Iss constitute a base
for the product topology on κ2, i.e., X Ď κ2 is open iff X “

Ť

tIs | Is Ď Xu. B is
obtained by closing under complementation and countable union (and intersection).

We let u be the uniform measure on B, which is the product of the uniform
measures on each of the factor 2-element spaces. Let n “ tX P B | uX “ 0u.
Let B “ B{n, the boolean algebra of Borel subsets of κ2 modulo the u-null sets.
Let u be also the measure induced on B by u, i.e., urXs def

“ uX, for any X P B,
where rXs is the n-equivalence class of X in B. Since u is countably additive, B is
countably complete and countably (i.e., ω1-)saturated. It is therefore a complete
boolean algebra.

Much of the analysis of the Baire and Lebesgue algebras, B (no relation) and
L, undertaken in the course of proving (8.225), is applicable here. For convenience,
we will “work in a generic extension”. Thus, we suppose the above definitions are
made in a transitive model V of ZFC and G is a V-generic filter on B. There is a
unique f P κ2 such that for all finite s Ď f , rIss P G. We define fG to be this f .
Conversely, G is recoverable from fG.

Given f P κ2, let fα “ tpn, iq | n P ω^ i P 2^ fpω ¨ α ` nq “ iu. In this way
any f P κ2 encodes a κ-sequence of reals (elements of ω2 in the current context). It
follows from the genericity of G that fαG ‰ fβG if α ‰ β. Hence 2ω ě κ.

To show that 2ω ď κ, note that any x P ω2 is 9xG for some 9x P VB, and
rr 9xPPP ω2ss P G. x is uniquely determined via G by the function (in V)

n ÞÑ rr 9xPPP ω2 ^̂̂ 9xpňq“““0 ss.

Reasoning now in V, the number of such functions is no more than ||B||ω, so it
is enough to show that ||B|| ď κ, since κω “ κ. For this it suffices to show that
|B| ď κ. This is done by looking at the way B is generated by countable unions
and complements, starting from the set of basic open sets Is, of which there are κ.
This occurs in ω1 stages, so |B| ď ω1 ¨ κ

ω “ κ.
It follows from the above remarks that rrκ̌“““ 2ωss “ 1. Now we show that

rrκ̌ is real-valued measurabless “ 1. Let U be a κ-complete nonprincipal ultrafilter
over κ. Let B` be the partial order of nonzero elements of B. Given a B-term 9X,
let µ 9X : B` Ñ r0, 1s be such that if p, 9X Ď κ̌ then for any x P r0, 1s,

µ 9X p “ xØ
␣

α ă κ
ˇ

ˇ

uprrα̌PPP 9Xss ^ pq
up “ x

(

P U.

(µ 9X p may be defined arbitrarily for p such that p. 9X Ď κ̌.) Since U is κ-complete
and 2ω ă κ (we’re still back in V!), µ 9X p is well defined.

(9.114) For fixed p, 9X ÞÑ µ 9X p has the following measure-like properties:

1. For any X Ď κ, µX̌ p “ 1 if X P U ; otherwise, µX̌ p “ 0.

2. If p, 9X Ď 9Y Ď κ̌ then µ 9X p ď µ 9Y p.

3. For any ν ă κ, 9F , and 9X, if p, xp 9F q is a pν̌q-sequence of pairwise disjoint
subsets of pκ̌q and p 9Xq “

Ť

im p 9F qy, then µ 9X p “
ř

ηăν µ 9Xη
p, where, for each

η ă ν, p, 9Xη“““ 9F pη̌q.
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The first two of these are entirely straightforward. For the last, note that for any
α ă κ

u
`

rrα̌PPP 9Xss^ p
˘

“ u
`

ł

ηăν

rrα̌PPP 9F pη̌qss^ p
˘

“ u
`

ł

ηăν

rrα̌PPP 9Xηss^ p
˘

“
ÿ

ηăν

u
`

rrα̌PPP 9Xηss^ p
˘

,

by the countable additivity of u, since only countably many terms on the right are
nonzero.

(9.115) Claim Suppose p P B`, p, 9X Ď κ̌, and x P r0, 1s. Then

@q ď p Dr ď q pµ 9X r ď xqÑµ 9X p ď x,

and the same with ‘ě’ for ‘ď’ in the last two occurrences.

Proof Let A be a maximal antichain in B` below p such that @r P A µ 9X r ď
x. Assuming the antecedent of the claim, A is predense below p by virtue of its
maximality, so p “

Ž

A. As an antichain in B, A is countable, so since U is
countably complete there exists Z P U such that @α P Z @r P A uprrα̌PPP 9Xss^ rq ď
x ¨ uprq. Since u is countably additive and p “

Ž

A, for any α P Z

uprrα̌PPP 9Xss^ pq “
ÿ

rPA

uprrα̌PPP 9Xss^ rq ď x ¨
ÿ

rPA

uprq “ x ¨ uppq.

Hence, µ 9X p ď x. 9.115

Given a B-term 9X, let µ˚9X : B` Ñ r0, 1s be such that if p, 9X ĎĎĎ κ̌ then

(9.116) µ˚9X p “ inf
qďp

µ 9X q.

Using (8.109), for each B-term 9X let m 9X be a B-term such that

(9.117) , xp 9Xq Ď pκ̌qÑ pm 9Xq “ sup
pPG

pµ̌˚9Xqp
y.

(9.118) Claim For any p P B`, B-term 9X, and x P r0, 1s, if p, 9X ĎĎĎ κ̌ then

µ˚9X p ě xØ p,m 9X ěěě x̌.

Proof ÑÑÑ is obvious. For the converse, suppose p,m 9X ěěě x̌, and suppose y P r0, xq.
It suffices to show that µ˚9X p ě y. By virtue of (9.117), p,DDDr PPPG µ̌˚9X r ěěě y̌. Hence,
tr P B` | µ˚9X r ě yu is predense below p. It follows that tr P B` | µ 9X r ě yu is
dense below p, and therefore dense below every extension of p, so9.115 µ 9X q ě y for
every q ď p, from which it follows that µ˚9X p ě y. 9.118

(9.119) Claim

1. For any X Ď κ, ,mX̌ “““ 1 if X P U ; otherwise, ,mX̌ “““ 0.

2. Suppose 9X, 9Y are B-terms.

1. If p, 9X ĎĎĎ 9Y ĎĎĎ κ̌ then p,m 9X ďďď m 9Y .
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2. Hence, ,p 9X“““ 9Y ĎĎĎ κ̌ÑÑÑm 9X “““m 9Y q.

Proof The first claim is immediate from (9.114.1). For the second, observe that
otherwise there exists q ď p and x P r0, 1s such that q,m 9X ěěě x̌ ąąą m 9Y , whence9.118

µ˚9X q ě x ą µ˚9Y q. From the definition of µ˚ it follows that for some r ď q, µ 9Y r ă

µ 9X r, contrary to (9.114.2). 9.119

By virtue of (9.119.2.2) there is a B-term 9µ such that , 9µ : P κ̌Ñ r0, 1s and for
any B-term 9X,

(9.120) , 9µ 9X“““m 9X .

Now we’ll work again in a generic extension. Let G be a V-generic filter on B,
and let

µ “ 9µG.

(9.121) Claim µ is finitely additive.

Proof Suppose X,Y Ď κ and X X Y “ 0. Let Z “ X Y Y . We show first that
µZ ě µX `µY . It is enough to show that for any x, y P V, if µX ě x and µY ě y
then µZ ě x` y, because the reals in V are dense in R (i.e., R in the sense of the
“real world”, which we are taking to be VrGs). (Every rational is in V, for example.)
To this end, let 9X, 9Y , 9Z, and p P G be such that 9XG “ X, 9Y G “ Y , 9ZG “ Z, and
p, 9X, 9Y ĎĎĎ κ̌, p, 9Z“““ 9X YYY 9Y , p,m 9X ěěě x̌, and p,m 9Y ěěě y̌. Then9.114.3

µ˚9Zp ě µ˚9X p` µ
˚
9Y
p,

and9.118

µ˚9X p` µ
˚
9Y
p ě x` y.

Hence9.118 p,m 9Z ěěě x̌ `̀̀ y̌, so µZ ě x` y.
To show that µZ ď µX`µY , suppose the contrary. Then there exist x, x1, y, y1 P

V and p P G such that p, 9µ 9X ăăă x̌ ăăă x̌1, p, 9µ 9Y ăăă y̌ ăăă y̌1, and p, 9µ 9Z ěěě x̌1 `̀̀ y̌1.
Hence9.120 p,m 9X ăăă x̌, so9.118 for every q ď p, µ˚9X q ă x, so9.116 there exists r ď q
such that µ 9X r ă x. Thus9.115 µ 9X p ď x. Likewise, µ 9Y p ď y, so

µ˚9Zp ď µ 9Zp “ µ 9X p` µ 9Y p ď x` y ă x1 ` y1,

whence9.118 p.m 9Z ěěě x̌1 `̀̀ y̌1, contrary to our assumption that p, 9µ 9Z ěěě x̌1 `̀̀ y̌1.
9.121

Finally we have to show κ-additivity. Thus, suppose ν ă κ and F is a ν-sequence
of disjoint subsets of κ. Let X “

Ť

ηPν F pηq. Let 9F be such that 9FG “ F , and let
p P G be such that p, xp 9F q is a pν̌q-sequence of pairwise disjoint subsets of pκ̌qy.
There are terms 9X and 9Xη, η ă ν, such that p, xp 9Xq “

Ť

im p 9F qy, and for each
η ă ν, p, xp 9Xηq “ p 9F qpη̌qy.

Recall that the sum of any set of non-negative real numbers is by definition the
supremum of the sums of its finite subsets. It follows from the finite additivity of
µ9.121 that µX ě

ř

ηăν µXη. To show that µX ď
ř

ηăν µXη, suppose the contrary,
and let x, x1 P V be such that

ÿ

ηăν

µXη ă x ă x1 ď µX.
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Let p1 P G be such that p1 ď p and p, x̌1 ďďď 9µ 9X. Then9.120 p1,m 9X ěěě x̌1, so9.118

(9.122) µ˚9X p
1 ě x1.

For any finite s Ď ν, let Xs “
Ť

ηPsXη. By finite additivity, µXs ă x. Let 9Xs

be such that p, xp 9Xsq “ p 9Xη0q Y ¨ ¨ ¨ Y p
9Xηn- qy, where xηm | m ă ny enumerates

s. Let p2 P G be such that p2 ď p1 and p2, 9µ 9Xs ăăă x̌. As in the proof of (9.121),
it follows that tr | µ 9Xs

r ă xu is dense below p2, so9.115 µ 9Xs
p2 ď x; and9.114.3

µ 9Xs
p2 “

ř

ηPs µ 9Xη
p2, so

ř

ηPs µ 9Xη
p2 ď x. Since this is true for any finite s Ď ν,

by virtue of (9.114.3) µ 9X p
2 “

ř

ηăν µ 9Xη
p2 ď x.

Hence9.116 µ˚9X p
1 ď x ă x1, contrary to (9.122). 9.113.2 9.113

9.5 Larger cardinals

We have now given several properties of a cardinal that imply that it is large,
beginning with inaccessibility and the Mahlo hierarchy, and proceeding through
weak compactness, measurability, and strong compactness. As we have seen,9.73

weak compactness does not exceed the threshold of inconsistency with V “““L; it is
in that sense a “small” large cardinal property. We have presented measurability as
the paradigm of a truly large cardinal property. Recall the characterization9.23, 9.29

of measurability in terms of elementary embeddings:

κ is measurable iff there exists an elementary embedding of V into a transitive class
M with critical point κ.

Recall also that κM ĎM in this event.

9.5.1 Supercompactness

A natural way to strengthen the hypothesis of measurability is to require stronger
closure properties of M . An early such enhancement, which has proven quite useful,
is the notion of supercompactness.

(9.123) Definition [GBC] Suppose κ is a cardinal.

1. Suppose γ ě κ. κ is γ-supercompact
def
ðñ there exists an elementary embed-

ding j of V into a transitive class M with critical point κ such that

1. jκ ą γ; and
2. γM ĎM .

2. κ is supercompact
def
ðñ κ is γ-supercompact for all γ P Ord.

Supercompactness is stronger than measurability:

(9.124) Theorem [GBC] Suppose κ is 2κ-supercompact. Then there is a normal
ultrafilter U over κ such that the set of measurable cardinals below κ is in U .

Proof Let A “ tα ă κ | α is measurableu. Let j : V Ñ M witness the 2κ-
supercompactness of κ. Let U “ tX Ď κ | κ P jXu. Then, as usual, U is a
normal ultrafilter over κ. Since P κ Ď M and p2κqM Ď M , U P M , so M |ù xrκs is
measurabley. Hence κ P jA, so A P U . 9.124
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The origin of the term ‘supercompact’ is the comparison with ‘strongly compact’
as formulated in terms of fine κ-complete ultrafilters.9.53, 9.54 Supercompactness adds
the condition of normality.

Definition [ZFC] Suppose κ is an uncountable cardinal, γ ě κ, and F is a filter over

Pκ γ. F is normal
def
ðñ F is κ-complete and fine and for every family xXα | α P γy

of members of F , the diagonal intersection ∆αPγXα
def
“ tx P Pκ γ | @α P x x P Xαu

is in F .

The normality condition may also be stated in terms of regressive functions on
F -stationary sets. X Ď Pκ λ is F -stationary iff X is not in the ideal dual to F ,
i.e., X meets every member of F . f : Pκ γ á γ is regressive

def
ðñ @x P dom f px ‰

0Ñ fpxq P xq (f is a choice function).

A fine κ-complete filter F over Pκ γ is normal iff for every F -stationary X and
regressive f : X Ñ γ, there exists α P γ such that fÐtxu is F -stationary.

The following theorem provides a characterization of supercompactness in terms
of normal ultrafilters, along with a characterization in terms of elementary embed-
dings of set structures. (Cf. (9.29) and the remarks preceding it.)

(9.125) Theorem [GBC] Suppose κ is an uncountable cardinal and γ ě κ. The
following are equivalent.

1. κ is γ-supercompact.

2. There exist transitive classes N and M and an elementary embedding j : N Ñ

M with critical point κ such that

1. Vγ`ω Ď N ;
2. jκ ą γ; and
3. jÑγ PM .

3. There is a normal ultrafilter over Pκ γ.

Remark (9.125.2.1) could be weakened, but this is sufficient for our purposes.

Proof 1ÑÑÑ2 Immediate.

2ÑÑÑ3 Let Γ “ jÑγ. Then Γ PM 9.125.2.3 and

(9.126) M |ù xrΓs P Prjκs rjγsy.9.125.2.2

Note that PpPκ γq Ď N .9.125.2.1 Let

U “ tX Ď Pκ γ | Γ P jXu.

Suppose X,Y Ď Pκ γ, and X Y Y “ Pκ γ. Then M |ù xrjXs Y rjY s “ Prjκs rjγsy,
so M |ù xrΓs P rjXsy or M |ù xrΓs P rjY sy, so Γ P jX or Γ P jY . Thus, U is an
ultrafilter.

Suppose β ă κ and f : β Ñ U . Then f P N ,9.125.2.1 and dompjfq “ jβ “
β, since j is the identity on κ; for the same reason, for each α ă β, pjfqα “

pjfqpjαq “ jpfαq. Let X “
Ş

αăβ fα. Then M |ù xrjXs “
Ş

αărβs rjf sαy, so
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jX “
Ş

αăβpjfqα. For each α ă β, fα P U , so Γ P jpfαq “ pjfqαq. Hence,
Γ P

Ş

αăβpjfqα “ jX, so X P U . U is therefore κ-complete.
Suppose α P γ. Let X “ tx P Pκ γ | α P xu. Then M |ù xrjXs “ tx P

Prjκs rjγs | rjαs P xuy. Since jα P Γ, M |ù xrΓs P rjXsy.9.126 Hence, Γ P jX, so
X P U . Thus, U is fine.

Finally, suppose X P U and f is regressive on X. Then jf is regressive on jX.
Since X P U , Γ P jX, and pjfqΓ P Γ. Let α P γ be such that jα “ pjfqΓ, and
let Y “ tx P X | fx “ αu. Then jY “ tx P jX | pjfqx “ jαu. By construction,
Γ P jX and pjfqΓ “ jα, so Γ P jY , and Y is therefore in U . Thus, U is normal.

3ÑÑÑ1 Since U is countably complete, the ultrapower pPκ γqV {U is wellfounded.
Let π : pPκ γqV {U Ñ M be the transitive collapse, and let j : V Ñ M be the
canonical elementary embedding. We will show that j satisfies (9.123.1).

(9.127) The following identities are easily verified, where x ranges over Pκ γ, and
f, g range over Pκ γV .

1. πrx ÞÑ xs “ jÑγ.

2. Let Γ “ jÑγ.

1. U “ tX Ď Pκ γ | Γ P jXu.
2. πrf s “ πrgs iff pjfqΓ “ pjgqΓ.
3. πrf s P πrgs iff pjfqΓ P pjgqΓ.

3. πrx ÞÑ otpxX αqs “ α for all α ď γ. In particular:

1. πrx ÞÑ αs “ πrx ÞÑ xX αs “ πrx ÞÑ otpxX αqs “ α for all α ă κ.
2. πrx ÞÑ xX κs “ πrx ÞÑ otpxX κqs “ κ.
3. πrx ÞÑ otxs “ γ.

(9.127.3.1, 2) imply that crit j “ κ, and (9.127.3.3) shows that jκ ą γ. To show that
γM ĎM , it is enough to show that for any f : γ ÑM , im f PM (because we can
replace f by f 1 “ tpα, pα, fαqq | α P γu, and im f 1 “ f). For each α ă γ, let gα be
such that πrgαs “ fα. Let g be the function on Pκ γ such that gx “ tgαx | α P xu.
Then πrgs “ im f . 9.125

The following corollary provides another useful characterization of supercom-
pactness.

(9.128) Theorem [ZFC] Suppose κ is an uncountable cardinal and γ ě κ. Then
κ is γ-supercompact iff there exist transitive sets N and M and an elementary
embedding j : N ÑM with critical point κ such that

1. Vγ`ω Ď N ;

2. jκ ą γ; and

3. jÑγ PM .

Proof We have stated this as a theorem of ZFC, so it may be presumed that
our definition of supercompactness is (9.125.3). Nevertheless, we may use GBC
to prove it, since GBC is a conservative extension of ZFC. Thus, in the forward
direction, suppose j is an elementary embedding of V into a transitive class M
satisfying our original definition of γ-supercompactness (9.123.1). Let j1 “ j æVγ`ω,
and let M 1 “ M X Vjγ`ω. Then j1 is an elementary embedding of Vγ`ω into
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jVγ`ω “ xVrjγs`ωy
M
“ M 1. Clearly crit j1 “ crit j “ κ, and j1κ “ jκ ą γ.

j1Ñγ “ jÑγ, and jÑγ is in both M and Vjγ`ω, so it is in M 1.
We have already proved the converse, since the hypothesis here implies (9.125.2).

9.128

An uncountable cardinal κ is therefore supercompact iff there exists a nor-
mal fine κ-complete ultrafilter on Pκ γ for every γ ě κ. Thus, supercompactness
adds the condition of normality to definition of strong compactness in terms of
the existence of ultrafilters. Recall that in the case of ultrafilters over κ (which is,
for κ-complete filters, Pκ κ, in effect) normality comes free (see headnote to Sec-
tion 9.2.4). This led Solovay to conjecture that strong compactness is equivalent to
supercompactness, which has been refuted. In fact, relative to the consistency of
a strongly compact cardinal, it is consistent that the least measurable cardinal is
strongly compact; and relative to the consistency of a supercompact cardinal, it is
consistent that the least strongly compact cardinal is supercompact; whereas, we
know already that any supercompact cardinal κ is the κth measurable.9.124

9.5.2 An upper limit

The characterization of large cardinal properties in terms of elementary embed-
dings of V into transitive classes M with various closure properties leads naturally
to what is evidently the strongest possible such hypothesis: the existence of a non-
trivial elementary embedding of V into V . This was briefly considered by William
Reinhardt in his doctoral dissertation, and the critical point of such an embedding
has been referred to as a Reinhardt cardinal. Kunen showed that the existence
of such an embedding is inconsistent with GBC, but it has not been shown to be
inconsistent with GB.

To obtain Kunen’s result we first establish a combinatorial theorem of Erdös
and Hajnal

(9.129) Theorem [ZFC] For any infinite cardinal λ there is a function f that is
ω-Jónsson for λ, i.e.,

1. f : rλsω Ñ λ; and

2. for any X P rλsλ, fÑrXsω “ λ.41

Proof Define an equivalence relation on rλsω by letting x ” y iff for some ordinal
α, 0 ‰ xzα “ yzα (x and y are eventually equal). Let E be the set of equivalence
classes, and let g be a choice function for E. Define f : rλsω Ñ λ so that fx is the
least α P grxs such that xzpα` 1q “ grxszpα` 1q.

We will show that for some X P rλsλ, for every Y P rXsλ, fÑrY sω Ě X. To
this end, suppose to the contrary that for every X P rλsλ there exists Y P rXsλ and
α P X such that α R fÑrY sλ. Let λ “ X0 Ě X1 Ě ¨ ¨ ¨ and α0 ă α1 ă ¨ ¨ ¨ be such
that for each n P ω, Xn P rλs

λ, αn P Xn, and

(9.130) αn R f
ÑrXn`1s

ω.

(Given Xn and αm (m ă n), let α be the least ordinal that exceeds every αm,
m ă n. Hence, α “ 0 if n “ 0 and α “ αn- ` 1 if n ą 0. Let X “ Xn-zα. Let
αn P X and Xn`1 P rXs

λ be such that αn R fÑrXn`1s
ω.) Let x “ tαn | n P ωu,

41Recall9.59.2 that rλsα is the set of subsets of λ of order type α. Since λ is a cardinal, X P rλsλ

iff X Ď λ and |X| “ λ.
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and let m P ω be such that tαn | n ě mu “ grxszαm. Let y “ tαn | n ą mu. Since
y ” x, grys “ grxs, so f y “ αm. But y P rXm`1s

ω, so αm “ f y P fÑrXm`1s
ω,

contrary to (9.130).
Thus, there exists X P rλsλ such that for every Y P rXsλ, fÑrY sω Ě X. Let

f 1 : rXsω Ñ X be such that f 1x “ fx if fx P X; otherwise f 1x “ the least element
of X. Then use the isomorphism of pX;ăq with pλ;ăq to define a function that is
ω-Jónsson for λ. 9.129

(9.131) Theorem (Kunen) [GBC] There does not exist a nontrivial elementary
embedding j : V Ñ V .

Proof Let κ “ crit j. For each n P ω, let jn be the nth iterate of j, i.e., j0x “ x,
and jn`1x “ jpjnxq. Let κn “ jnκ for each n P ω. Let λ “ supnPω κn. By
elementarity, each κn is a cardinal, so λ is a cardinal. Also by elementarity, jλ “
sup jtκn | n P ωu “ suptκn`1 | n P ωu “ λ.

Let f be ω-Jónsson for λ. By elementarity, jf is ω-Jónsson for jλ “ λ. Since
jÑλ P rλsλ, pjfqÑrjÑλsω “ λ. Let x P rjÑλsω be such that pjfqx “ κ, and let
y P rλsω be such that jy “ x. Then κ “ pjfqx “ pjfqpjyq “ jpf yq P jÑλ; but
κ R jÑλ. 9.131

As of this writing, it has not been shown that the existence of a nontrivial
elementary embedding of V into V is inconsistent with GB (without Choice); never-
theless, Kunen’s theorem places a definite ceiling on the method of defining large
cardinals by elementary embeddings. This ceiling is actually a bit lower than the
statement of the theorem suggests: The proof of (9.131) is easily adapted to prove
the following theorem.

(9.132) Theorem [GBC]

1. There does not exist an elementary embedding j of V into a transitive class
M with critical point κ such that λM ĎM , where λ “ supnPω jnκ.

2. There does not exist a nontrivial elementary embedding of Vδ`2 into Vδ`2 for
any δ.

There remains the possibility of embeddings with less generous closure proper-
ties along the same lines. The following is in the vein of (9.132.1).42

(9.133) Definition [GBC] Suppose κ is a cardinal.

1. For n P ω, κ is n-huge
def
ðñ there exists an elementary embedding j of V into

a transitive class M with critical point κ such that pj
nκqM ĎM .

2. κ is huge
def
ðñ κ is 1-huge.

3. κ is almost huge
def
ðñ there exists an elementary embedding j of V into a

transitive class M with critical point κ such that ăpjκqM ĎM .

The following hypotheses are in the vein of (9.132.2), curiously named in de-
creasing order by strength.43

42Note that by natural extension of this definition, Kunen’s theorem could be said to exclude
the possibility of an ω-huge cardinal.

43Note that I3 and I1 begin a sequence that arithmetically continued generates the name ‘I -1’
for Kunen’s inconsistency result in the form (9.132.2), as indicated in Figure 9.1.
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Definition [GBC]

I0. For some δ there exists an elementary embedding j : LpVδ`1q Ñ LpVδ`1q with
crit j ă δ.

I1. For some δ there exists a nontrivial elementary embedding j : Vδ`1 Ñ Vδ`1.

I2. For some δ there exists an elementary embedding j of V into a transitive class
M such that Vδ ĎM , crit j ă δ, and jδ “ δ.

I3. For some δ there exists a nontrivial elementary embedding j : Vδ Ñ Vδ.

I1–I3 were defined first. I0 was inserted later by Woodin for a specific purpose.
One final definition along these lines is rather technical, but quite useful, and

intimately related to determinacy.

Definition [GBC] A cardinal κ is Woodin
def
ðñ for every f : κÑ κ there exists an

elementary embedding j : V ÑM with critical point α ă κ such that

1. fÑα Ď α and

2. Vpjfqα ĎM .

9.5.3 Vopěnka’s principle and extendibility

We have seen that the “largeness” of a large cardinal κ is often understandable as
a statement that κ is much larger than any smaller cardinal. We have noted that
ω is the epitome of large cardinals in this respect. For uncountable “large” κ, this
often means that—in an appropriate sense—whatever happens below κ, happens
repeatedly below κ. Vopěnka proposed the following principle as a statement that
Ord itself is large in this sense. It is perhaps the purest assertion that Ord goes on
forever and ever.44

Vopěnka’s principle [GB] Suppose ρ is a signature and C is a proper class of
ρ-structures. Then there exist distinct S,S1 P C such that S is elementarily em-
beddable in S1.

As usual, a version of Vopěnka’s principle may be stated in the context of ZF as
a schema using s-formulas that define proper classes (from parameters). It is clear
that the mandate of elementary embeddability is unnecessary, as we may expand
each structure by the addition of its satisfaction relation. Any embedding of the
expanded structures is an elementary embedding of the original structures. Indeed,
we get the same strength if we limit the structures to be binary relations and require
only embeddability.

We will assess the strength of Vopěnka’s principle in tandem with the notion of
extendibility.

Definition [ZF] A cardinal κ is extendible
def
ðñ for every α ą κ there exists an

ordinal β and an elementary embedding of Vα into Vβ with critical point κ.

(9.134) Theorem [GBC] Assume Vopěnka’s principle. Then there is an extendible
cardinal.

44See Ulysses headnote.p. 578
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Proof Let ϕ be the s-formula xpvq is an extendible cardinaly. By this, of course,
we mean that ϕ is some such s-formula (with some variable v). We presume that
ϕ has a subformula ϕ1 “ xpvq ă pv1q and there is an elementary embedding of
Vpv1q into some Vδ with critical point pvqy. The reflection principle6.12 states that
A “ tα P Ord | Vα ătϕu V u is closed unbounded in Ord. Keep in mind that if
Vα ătϕu V then Vα ătϕ

1u V also. Thus for any α P A

(9.135)

1. for every κ ă α, if Vα |ù xrκs is extendibley then κ is extendible; and

2. for every κ ă γ ă α, if there exists an elementary embedding of Vγ into some
Vδ with critical point κ then Vα |ù xthere exists an elementary embedding of
Vrγs into some Vδ with critical point rκsy.

Let B be the class of limit points of A of cofinality ω. Let

C “ tpVα`1; Pq | α P Bu.

By Vopěnka’s principle there exists an elementary embedding j : Vα`1 Ñ Vβ`1 for
some α, β P B with α ă β. Since jα “ β, j moves an ordinal. Let κ “ crit j. Then
κ is measurable,9.29 so κ is not α, which has cofinality ω.

Now suppose κ ă γ ă α. Then9.28.10 j æVγ is an elementary embedding of Vγ
into Vjγ with critical point κ, so9.135.2 Vα |ù xthere exists an elementary embedding
of Vrγs into some Vδ with critical point rκsy. Hence, Vα |ù xrκs is extendibley, so9.135.1

κ is extendible. 9.134

So, how strong are extendible cardinals? We will limit our remarks to the
establishment of two supercompactness consequences. We begin with a lemma.

(9.136) Theorem [ZFC] Suppose κ is λ-supercompact, where λ ě κ is regular, and
suppose α ă κ, and α is γ-supercompact for all γ ă κ. Then α is λ-supercompact.

Remark In stating this as a theorem of ZFC we are obviously presuming a defin-
ition of supercompactness that does not refer to proper classes, such as (9.125.3)
or (9.128). The proof is given in GBC, and we invoke the fact that GBC is a
conservative extension of ZFC to infer the existence of a proof in ZFC.

Proof Let U be a normal ultrafilter over Pκ λ. Let jU : V ÑMU be the canonical
embedding of V into a transitive class MU . Then

MU |ù xrjUαs is γ-supercompact for all γ ă rjU κsy.

By construction, crit jU “ κ ą α, so jUα “ α; and jU κ ą λ. Hence,

MU |ù xrαs is rλs-supercompacty.

Therefore, let U 1 P MU be such that MU |ù xrU 1s is a normal ultrafilter over
Prαs rλsy.

(9.137) Claim PPα λ ĎMU .

Proof Suppose x P Pα λ. Let fx : Pκ λÑ V be such that @y P Pκ λ fxy “ πy
Ñx,

where πy : y Ñ ot y is the collapsing map (order-preserving bijection).

(9.138) Claim πrfxs “ x, where π : Pκ λV {U ÑMU is the collapsing map.
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Proof Since πry ÞÑ ot ys “ λ,9.127.3.3 πrfxs Ď λ. Suppose β P λ. For almost all
y P Pκ λ, xY tβu Ď y. For any such y, πyβ “ otpy X βq, and πyβ P fxy (“ πy

Ñx)
iff β P x. Since9.127.3 πry ÞÑ otpy X βqs “ β, β P πrfxs iff β P x. 9.138

Suppose X Ď Pα λ. Let f : Pκ λ Ñ V be such that for each y P Pκ λ, f y “
tπy

Ñx | x P X ^x Ď yu.

(9.139) Claim πrf s “ X.

Proof For any y P Pκ λ, f y Ď Pαpot yq, so πrf s Ď Pα λ. Suppose x P Pα λ. Then
πrfxs “ x.9.138 For almost all y P Pκ λ, x Ď y, and for any such y and any z Ď y,
πy

Ñx “ πy
Ñz iff x “ z, so fxy P f y iff x P X. It follows that x P πf rf s iff x P X.

9.139 9.137

U 1 is therefore a normal ultrafilter over Pα λ. α is therefore λ-supercompact.
9.136

(9.140) Theorem [ZFC] Suppose κ is extendible. Then

1. κ is supercompact; and

2. there exists a normal ultrafilter U over κ such that

tα ă κ | α is supercompactu P U.

Proof 1 Using the reflection principle as in the proof of (9.134), let α ą κ be a
limit cardinal such that45

1. for any κ ď λ ă α if κ is λ-supercompact then Vα |ù xrκs is rλs-supercompacty;
and

2. if Vα |ù xrκs is supercompacty then κ is supercompact.

Then it suffices to show that if κ ď λ ă α then κ is λ-supercompact, as α may be
taken to be arbitrarily large.

Since κ is assumed extendible, there exists an elementary embedding j : Vα Ñ
Vβ with critical point κ. Let xκn | n ă ηy be such that η ď ω; κ0 “ κ; and for each
n ă η, if jκn ă α then n ` 1 ă η and κn`1 “ jκn. Clearly, η ą 0. If η ă ω then
jκη- ě α. In this case, let κη “ α. If η “ ω then supnPω κn “ α; otherwise, the
proof of (9.132.1) may be adapted to derive a contradiction.

It suffices therefore to show that κ is λ-supercompact for all regular λ ă κn`1

for all n ă η, which we do by induction on n ă η. Suppose λ ă κ1 “ mintjκ, αu.
Then λ ă α, and j witnesses the λ-supercompactness of κ by (9.128).

If η “ 1 we are finished. Otherwise, suppose 0 ă n ă η and κ is λ-supercompact
for all regular λ ă κn. Then Vα |ù xrκs is λ-supercompact for all regular λ ă rκnsy,
so

(9.141) Vβ |ù xrjκs is λ-supercompact for all regular λ ă rjκnsy.

It is also true that

(9.142) Vβ |ù xrκs is γ-supercompact for all γ ă rjκsy,

45Note that we have necessarily formulated ‘supercompact’ in a way that does not refer to
proper classes, e.g., as in (9.125.3) or (9.128), so these statements make sense.
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since κ1 “ jκ, so for any γ ă jκ we have just established this in the real world,
and any normal ultrafilter over Pκ γ is in Vβ and is recognized by Vβ as such. Note
that here and elsewhere we make use of absoluteness of various formulas between
models of the form Vµ, where µ has various closure properties. For this argument
the properties in question have to do with normal ultrafilters and elementary em-
beddings that are elements of Vµ, and for absoluteness it suffices that µ be a limit
ordinal.

Now suppose λ ă κn`1 ď jκn and λ is regular. By virtue of (9.141) and
(9.142) the conditions of (9.136) are satisfied with Vβ for V , jκ for κ, and κ for
α. Examination of the proof of (9.136) shows that the argument is valid with the
replacement of V by Vβ , and we conclude that Vβ |ù xrκs is rλs-supercompacty, and
this clearly implies that κ is in fact λ-supercompact.

2 We know that κ is supercompact.9.140.1 Let A be the set of δ ă κ such that δ is
γ-supercompact for all γ ă κ. By (9.136) every δ P A is supercompact.

Now let j : Vα Ñ Vβ be an elementary embedding with critical point κ, where
α ą κ is a limit ordinal. Then A P Vα. Let U “ tX Ď κ | κ P jXu be the canonical
normal ultrafilter over κ. We wish to show that A P U , i.e., that κ P jA. Note that
Vα |ù xfor all δ ă rκs, if δ is γ-supercompact for all γ ă rκs then δ P rAsy. Thus
Vβ |ù xfor all δ ă rjκs, if δ is γ-supercompact for all γ ă rjκs then δ P rjAsy.

Since κ is supercompact, Vβ |ù xrκs is supercompacty. Therefore, since jκ ă β,
Vβ |ù xrκs is γ-supercompact for all γ ă rjκsy. Thus, Vβ |ù xrκs P rjAs, so κ P jA,
as desired. 9.140

The following theorem places an upper bound on the strength of Vopěnka’s
principle.

(9.143) Theorem [ZFC] Suppose κ is almost huge.9.133.3 Then V`κ |ù xVopěnka’s
principley, where V`κ “ pVκ`1; P, Vκq construed as a c-structure with |V`κ | “ Vκ`1

and V V`
κ “ Vκ.

Remark Vopěnka’s principle can only be fully expressed in a class theory. Thus,
a statement that Vopěnka’s principle is satisfied vis-à-vis Vκ must be interpreted
to mean that some c-structure S |ù xVopěnka’s principley, where V S “ Vκ and |S|
consists of Vκ together with a set of subsets of Vκ that are the proper classes in the
sense of S. At a minimum these must include all subsets of Vκ definable over Vκ
from parameters in Vκ. We have chosen the maximum, viz., P Vκ “ Vκ`1, thereby
obtaining the strongest interpretation of the statement that Vopěnka’s principle is
satisfied vis-à-vis Vκ.

Proof Suppose xSα | α ă κy P Vκ`1 is a sequence of ρ-structures, where ρ P Vκ.
Since κ is (strongly) inaccessible, by choosing isomorphs if necessary, we may assume
that |Sα| is an ordinal (ă κ) for each α ă κ.

Suppose j : V Ñ M witnesses the almost hugeness of κ, and let U “ tX Ď κ |
κ P jXu be the canonical ultrafilter for j. For each α ă κ let Xα be the set of β ă κ
such that there is an elementary embedding of Sα into Sβ . Let X “ xXα | α ă κy,
and let A “ tα ă κ | Xα P Uu.

(9.144) Claim A P U .

Proof Suppose α ă κ. Then Xα P U iff κ P jpXαq iff there is an elementary
embedding in M of pjSqα into pjSqκ. Note that any k : |pjSqα| Ñ |pjSqκ| is a
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function from an ordinal into an ordinal, so it is a subset of M . Since ||pjSqα|| ă
κ ă jκ and j witnesses the almost hugeness of κ, any such function is in M . Note
also that pjSqα “ Sα. Hence, for all α ă κ, Xα P U iff there is an elementary
embedding (in V ) of Sα into pjSqκ.

Since j is elementary, for any α ă jκ, pjX qα P jU iff there is an elementary
embedding in M of pjSqα into pj2Sqjκ. Therefore, A P U iff κ P jA iff pjX qκ P
jU iff there is an elementary embedding in M of pjSqκ into pj2Sqjκ. Let j1 “
j æ |pjSqκ|. jρ1 “ ρ1, so j1 is an elementary embedding of pjSqκ into pj2Sqjκ.
Reasoning as before, since ||pjSqκ|| ă jκ, j1 PM . Hence, A P U . 9.144

Let B “ tβ P A | β P
Ş

αPβXA Xαu. Since U is normal, B P U . Let α, β P B be
such that α ă β. Then β P Xα, so there is an elementary embedding of Tα into Tβ .
As noted above, any such embedding restricts to an elementary embedding of Sα
into Sβ . 9.143

9.6 The continuum problem, continued

In pursuing the theory of ever larger cardinals one should not lose sight of the fact
that the point of large cardinals is not simply that they are large, but rather that
their existence has implications for the structure of pV ; Pq, either actual or potential,
beyond the simple fact that large cardinals exist. One of the goals of their study is
to shed light on the on the behavior of the continuum function κ ÞÑ 2κ—which, by
virtue of Easton’s theorem,8.165 boils down to the singular cardinals problem,§ 3.9.2

which is to say, how can the singular cardinals hypothesis SCH fail? The following
theorem shows that large cardinal-type hypotheses are necessary if SCH is to be
violated.

(9.145) Theorem [ZFC] Suppose 07 does not exist. Then SCH.

Proof Suppose κ is a singular cardinal such that 2cf κ ă κ. It suffices to show that
|A| ď κ`, where A “ tX Ď κ | |X| “ cf κu. Let λ “ maxtω1, cf κu. Since cf κ is
regular, pcf κqcf κ “ 2cf κ. Also, ωcf κ

1 ď p2ωqcf κ “ 2ω¨cf κ “ 2cf κ. Since 2cf κ ă κ by
hypothesis, λcf κ ă κ.

For any Y Ď κ let BY “ tX Ď Y | |X| “ λu. By the covering theorem,9.95 for
every X P A there exists a constructible set Y Ď κ of size λ such that X P BY .
Since L |ù GCH, there are at most κ` constructible sets Y Ď κ, and by the previous
computation, for each Y of size λ there are fewer than κ subsets of Y of size cf κ.
It follows that |A| ď κ`. 9.145

By Silver’s theorem,8.216 if κ is a singular cardinal of uncountable cofinality and
2λ “ λ` for a stationary set of λ ă κ then 2κ “ κ`, but this does not constrain 2κ

when cf κ “ ω, nor does it have any implication for 2κ if we only assume that κ is
a singular strong limit cardinal, i.e., 2λ ă κ for all λ ă κ. The following theorem
of Moti Gitik (9.146.1–3) and Gitik and Woodin (9.146.4) deals with both of these
issues at the level of relative consistency.

(9.146) Theorem [S] The following are equiconsistent over ZFC:

1. There exists a strong limit singular cardinal κ such that 2κ ą κ`.

2. There exists a measurable cardinal κ such that 2κ ą κ`.
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3. There exists a measurable cardinal κ of Mitchell order κ``.46

4. For all n P ω 2ωn “ ωn`1 and 2ωω “ ωω`2.

Much more is known—for example, the result of Woodin and James Cummings
that if there is a supercompact cardinal then there is a generic extension in which
2κ “ κ`` for every cardinal κ—but this will have to suffice for us.

9.7 Determinacy

In Section 5.8 we introduced the notion of determinacy of infinite games of perfect
information, specifically games of length ω, most commonly on a countable set,
such as ω.5.165 Thus, a subset A of ωω is determinate iff there is a winning I- or
II-strategy in the corresponding game. We saw there that the determinacy of Borel
sets is provable in ZFC.5.177 (Interestingly, the Power axiom is necessary for this.§ 7.6.2)
We also saw that the existence of an indeterminate set is provable in ZFC.5.179

A seminal event in the history of determinacy was the proposal by Jan Mycielski
and Hugo Steinhaus in 1962 that the hypothesis that all sets of reals are determinate
be considered as an axiom[18].

(9.147) The axiom of determinacy def
“ AD

def
“ the assertion that all subsets of ωω

are determinate.

As we will see, it is not necessary to take sides, i.e., to profess either AD or AC
(or to deny both). No, we are going to have our cake and eat it, too; and it is
delicious.

9.7.1 Regularity properties of pointsets

A major theme in the investigation of countable infinitarity beyond ZF is the ex-
tension of the regularity properties of definable sets of reals proved in Chapter 5.
Suppose X is a Polish space and A Ď X. Recall that the following are theorems of
ZFC:

1. If A is analytic then A has the perfect set property.5.183

2. If A is obtainable from a family of open subsets of X by the operations of
complementation, countable union, and the Suslin operation S, then A has
the Baire property and is Lebesgue measurable.5.181

3. If A is Borel then A is determined.5.177

Determinacy has a central position in this investigation inasmuch as each of the
other listed properties is implied by it.

(9.148) Theorem [ZF ` ACωpRq] Suppose Γ Ď Ppωωq, Γ contains all open sets,
and Γ is closed under continuous preimage and Borel operations, i.e., complemen-
tation and countable union (and hence also countable intersection). Suppose Γ-
determinacy and A P Γ.

46Suppose κ is measurable. The Mitchell ordering of normal ultrafilters over κ is given by:
U ă U 1 iff U P UltU 1 V . We have shown that U R UltU V ,9.33 so ă is irreflexive. It is clearly
transitive. It is not hard to show that it is wellfounded. The Mitchell order of a measurable
cardinal κ is the height of ă.
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1. A has the perfect set property.

2. A has the Baire property.

3. A is Lebesgue measurable.

Proof 1 For n P ω let Zn “ tpm, 0q | m P nu, i.e., the sequence consisting of n
0s. Thus, Z0 “ 0, Z1 “ x0y, Z2 “ x0, 0y, etc. Let h : ωω Ñ ω2 be such that

h xx0, x1, x2, . . . y “ Zx0
⌢x1y ⌢ Zx1

⌢x1y ⌢ Zx2
⌢x1y ⌢ ¨ ¨ ¨ .

For example, hx2, 0, 3, . . . y “ x0, 0, 1, 1, 0, 0, 0, 1, . . . y. Note that h is a bicontinuous
injection. Let C0 “ imh.47 Then h is a homeomorphism of ωω to C0.

Let A1 “ hÑA.

(9.149) Claim A1 has the perfect set property.

Proof Consider the following game G1:

At stage n, I plays an P ăω2 and II plays bn P 2, i.e., bn P t0, 1u. Let c “
a0

⌢xb0y
⌢ a1

⌢xb1y
⌢ ¨ ¨ ¨ . I wins iff c P A1.

(9.150) Claim G1 is determined.

Remark This is a straightforward coding exercise. We provide the details in this
case by way of example.

Proof Let G2 be the following game on ω:

Let xn and yn be respectively I’s and II’s move at stage n. Let an “ B⃗ xn, where
B⃗ : ω Ñ Vω is the canonical enumeration of Vω,3.213.1 and let bn “ yn. The following
rules apply:

1. an P
ăω2.

2. bn P 2.

If either player violates one of these rules, the first player to do so loses. If both
players follow these rules for all n P ω, let c “ a0

⌢xb0y
⌢ a1

⌢xb1y
⌢ ¨ ¨ ¨ . I wins iff

c P A1.

Given z P ωω, let x “ zI and y “ zII, i.e., xn “ z2n and yn “ z2n`1, so z “ x ˚ y.
Let R1 be the set of z P ωω such that I loses G2 by virtue of being the first to
violate one of its rules, and let R2 be the corresponding set for II. Note that
R1 and R2 are open sets and are therefore in Γ. Let R0 “

ωωzpR1 Y R2q. Note
that R0 P Γ. For z P R0, let az, bz, and cz be the sequences defined in the
description of G2, i.e., azn “ B⃗ xn, bzn “ yn, and cz “ az0

⌢xbz0y
⌢ az1

⌢xbz1y
⌢ ¨ ¨ ¨ .

Let A2 “ R2 Y tz P R0 | c
z P A1u “ R2 Y tz P R0 | h

´1cz P Au. Note that
G2 “ x

ăωω,A2y.
Note that z ÞÑ cz is continuous on R0, and h´1 is continuous on C0, so tz P R0 |

h´1cz P Au P Γ. Hence, A2 P Γ, so A2, i.e., G2, is determined. It is straightforward,
given a winning strategy for either I or II in G2, to define a winning strategy for
the same player in G1. Hence G1 is determined. 9.150

Suppose σ is a winning strategy for I in G1. Let S “ tσ ˚ b | b P ω2u be the set
of plays according to σ. Clearly, S is a nonempty perfect closed set included in A1.

47C0 is the set of sequences in ω2 that are not eventually 0.
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Alternatively, suppose τ is a winning strategy for II in G1. Suppose t “
xa0, b0, a1, b1, . . . , an- , bn-y is partial play according to τ in which each player has
moved n times. Let ct “ a0

⌢xb0y ⌢ ¨ ¨ ¨ ⌢ an-
⌢xbn-y, and let dt P ω2 be such that for

each m P ω
dtm “ 1´ τpt ⌢xdt æmyq.

Since τpt ⌢xdt æmyq is 0 or 1, dtm is correspondingly either 1 or 0. ct ⌢ dt may be
thought of as the outcome that τ avoids at this stage of the game, inasmuch as for
any move an by I,

an
⌢xτpt ⌢xanyqy Ę dt.48

(9.151) Note, however, that this is—so to speak—the only outcome that τ avoids
at this stage.

For let C be the set of sequences ct ⌢ dt formed in this way, and suppose c R C. Then
c ‰ d0, so there exists m P ω such that c æm Ď d0 but cm ‰ d0

m, so cm “ 1 ´ d0
m.

Let a0 “ c æm and b0 “ cm. Then b0 “ τxa0y, so t0 “ xa0, b0y is a partial play
according to τ . Let ct0 “ a0

⌢xb0y Ď c. Then ct0 ⌢ dt0 P C, and accordingly
c ‰ ct0 ⌢ dt0 . Arguing as before, there exist a1 and b1 such that b1 “ τpt0

⌢xa1yq

and ct0 ⌢ a1
⌢xb1y Ď c. Proceeding in this fashion, we obtain a play a “ xa0, a1, . . . y

for I such that a ˚ τ “ c. In other words, if c R C then τ cannot avoid c.9.151

Since τ is a winning strategy for II, c R CÑ c R A1, i.e., A1 Ď C. The set of
partial plays t is countable, so C is countable. Hence, A1 is countable. 9.149

Thus,9.149 A1 either is countable or has a nonempty perfect closed subset. Since
h is a homeomorphism, the same is true for A. 9.148.1

2 Let M “ ăωωzt0u. Given B Ď ωω, let GB be the following game:

I and II alternate choosing elements s0, t0, s1, t1, . . . of M such that s0 Ł t0 Ł s1 Ł
t1 Ł ¨ ¨ ¨ . I wins iff

Ť

nPω sn P B.

Via the bijection B⃗ : ω Ñ Vω, it is easy to code GB as a game on ω, which is in Γ
if B P Γ, hence determined by assumption, and the determinacy of which implies
that of GB. So GB is determined for all B P Γ.

(9.152) Claim If there is a winning II-strategy in GB then B is meager.

Proof Let τ be a winning II-strategy in GB. Let E be the set of positions of GB
of even length. For each p P E, let p̂ be the last item in p (the most recent play by
II) if p ‰ 0; otherwise, let p̂ “ 0 (nobody has yet played). Let Fp “ tx P ωω | p̂ Ď
x^@s PM ps Ń p̂Ñ τpp ⌢xsyq Ę xu.

(9.153) Claim B Ď
Ť

pPE Fp.

Proof Suppose toward a contradiction that x P B and @p P E x R Fp. x R F0, so
we may let s0 P M be such that t0 Ď x, where t0 “ τxs0y. x R Fxs0,t0y, so we may
let s1 Ń t0 be such that t1 “ τxs0, t0, s1y Ď x. Proceeding in this way49 we obtain
a play xs0, t0, . . . y according to τ such that

Ť

nPω sn “ x P B, contradicting the
assumption that τ is a winning II-strategy in GB . 9.153

48Either an Ę dt or an “ dt æ |an|, in which case τpt ⌢xanyq ‰ dt
|an|

.
49An axiom of choice is not required, as ăωω has a definable wellordering.
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Note that each Fp is closed. Since M is countable, given (9.153), it suffices to
show that each Fp is nowhere dense, i.e., any open interval has an open subinterval
disjoint from Fp. To this end, suppose p P E and s P ăωω. If p̂ Ę s then IsXFp “ 0.
If p̂ Ď s then let s1 Ě s be such that p̂ Ł s1, and let t “ τpp ⌢xs1yq. Then It Ď Is,
and It X Fp “ 0. 9.152

(9.154) Claim If there is a winning I-strategy in GB then there exists s P ăωω such
that IszB is meager.

Proof Let σ be a winning I-strategy in GB , and let s “ σ 0. To show that IszB is
meager, we will describe a winning II-strategy τ in GIszB :

Let s0, t0, s1, t1, . . . be the successive moves according to the II-strategy τ we are
describing. Given an initial move s0 by I, if s0 Ğ s, let t0 be any proper extension of
s0 such that t0 is incomparable with s. At this point I has already lost GIszB , since
for any x P ωω, t0 Ď xÑx R Is, so II’s remaining responses t1, t2, . . . may be chosen
arbitrarily.

Suppose, on the other hand, s0 Ě s. In this case, we will define II’s strategy
τ in GIszB in terms of I’s strategy σ in GB . Let s1

0, t
1
0, s

1
1, t

1
1, . . . be the successive

moves in the latter so-called auxiliary game. Thus, s1
0 “ σ0 p“ sq. By hypothesis,

s0 extends s1
0. Let t10 be an extension of s0 that is a proper extension of s1

0, let
s1
1 “ σxs1

0, t
1
0y, and let t0 “ s1

1. Given a proper extension s1 of t0, let t11 “ s1 and let
t1 “ s1

2 “ σxs1
0, t

1
0, s

1
1, t

1
1y. Continue ad infinitum, so that xs1

0, t
1
0, s

1
1, t

1
1, . . . y is a play

according to σ, and for every n P ω, tn “ s1
n`1 and t1n`1 “ sn`1.

Let x “
Ť

nPω sn
`

“
Ť

nPω tn
˘

. If s0 Ğ s, we have chosen t0 so that It0 X Is “ 0, so
x R Is. If s0 Ě s, we have created an auxiliary sequence xs10, t

1
0, . . . y according to σ

in such a way that x “
Ť

nPω s
1
n. Since σ is a winning I-strategy in GB , x P B. In

either case, x R IszB. Thus, τ is a winning II-strategy in GIszB. It follows9.152 that
IszB is meager. 9.154

Let S be the set of s P ăωω such that IszA is meager. Let G “
Ť

sPS Is. Then
GzA is meager.50 We claim that AzG is meager. Suppose not. Then9.152 there is
no winning II-strategy in GAzG. Since AzG P Γ, there is a winning I-strategy σ in
GAzG. Let9.154 s be such that IszpAzGq is meager. Then IszA is meager, so s P S,
so Is Ď G, so IszpAzGq “ Is, which is not meager (by Baire’s theorem).

Thus, A△G is meager. Since G is open, A has the Baire property. 9.148.2

3 See Section 5.7, in particular the subsection 5.7.3, for a discussion of measure
and measurability. We will prove the theorem for the uniform measure on ω2. The
case of Lebesgue measure on Rn may be handled similarly, with intervals in Rn in
place of intervals in ω2.

Recall:

1. The uniform measure on ω2 is defined on open intervals Is, s P ăω2, by
µ Is “ 2´|s|.

2. The measure of an open set is unambiguously defined as
ř

sPS µ Is, where
S Ď ăω2 is any set such that s, t P SÑ Is X It “ 0, and B “

Ť

sPS Is.

3. The outer measure of a set B Ď ω2 is the infimum of the measures of the
open sets that include B; and the inner measure of B is the supremum of the
measures of the closed sets included in it.

50This is where we use ACωpRq, invoking (5.146).
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4. B Ď ω2 is measurable iff its outer and inner measures are equal, and µB is
(unambiguously) defined to be this common value.

5. The outer (inner) measure of B is also the infimum (supremum) of the mea-
sures of measurable sets including (included in) B; and there is a Gδ (Fσ) set
including (included in) B with this measure.

6. B Ď ω2 is null iff its outer measure is 0. Note that every null set is measurable,
with measure 0.

7. The class of measurable sets contains all analytic and coanalytic sets.5.181.2

(9.155) Claim Suppose B P Γ, and for every measurable X Ď B, µX “ 0. Then
B is null.

Proof Suppose ϵ ą 0. For each n P ω let Kn be the set of finite unions G of
open intervals such that µG ď ϵ{4n`1. Note that Kn is countable. Let xGnk |
k P ωy enumerate Kn. (Everything is definable, so no choice is required, although
countable choice would suffice.) Consider the following game Gϵ:

I and II alternate moving, with I producing a sequence a “ xa0, . . . y P
ω2, and II

producing a sequence b “ xb0, . . . y P
ωω. I wins iff a P B and a R

Ť

nPω G
n
bn

.

Given Γ-determinacy and the closure properties of Γ, since B P Γ, Gϵ is determined.

(9.156) Claim There is no winning I-strategy in Gϵ.

Proof Suppose toward a contradiction that σ is a winning I-strategy in Gϵ. The
map b ÞÑ σ ˚ b is a continuous function from ωω to ω2, so the set X of all plays σ ˚ b
according to σ is analytic and hence measurable. Since X Ď B, by hypothesis X is
null. Let G Ě X be open with µG ď ϵ{4. Let xJ0, J1, . . . y be a sequence of disjoint
open intervals such that G “

Ť

mPω Jm. For n P ω, define 0 “ m0 ă m1 ă ¨ ¨ ¨

recursively so as to maintain the following conditions, letting

(9.157) Hn “
ď

mămn

Jm.

1. µpGzHnq ď µG{4n.

2. µpHn`1zHnq ď ϵ{4n`1.

Suppose mn1 has been defined for all n1 ď n and µpGzHnq ď µG{4n. Let mn`1 be
the least m ą mn such that µ

Ťm-

k“mn
Jk ě p3{4qµ

Ť8
k“mn

Jk. Note that9.157 for any
n1,

Ť8
k“mn1 Jk “ GzHn1 , so

µpGzHn`1q ď p1{4qµpGzHnq ď µG{4n`1.

Since pHn`1zHnq Ď pGzHnq and by assumption µG ă ϵ{4,

µpHn`1zHnq ď µpGzHnq ď µG{4n ď ϵ{4n`1.

For each n P ω, Hn`1zHn P Kn; and X Ď G “
Ť

nPωpHn`1zHnq, so if II plays
xb0, . . . y, where bn is such that Gnbn

“ Hn`1zHn, then II wins against σ. 9.156
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It follows from the determinacy of Gϵ that II has a winning strategy τ . For each
n P ω and each s “ xs0, . . . , sny P

n`12 considered as a partial play by I, let bns be
the next move of II according to τ . Let Cn “

Ť

sPn`12G
n
bn

s
, and let C “

Ť

nPω C
n.

For any a P ω2, letting xb0, . . . y “ a ˚ τ ,
Ť

nPω G
n
bn
Ď C. Since τ is a winning II-

strategy, for any a P B, a P C, i.e., B Ď C. Since |n`12| “ 2n`1, and µGnk ď ϵ{4n`1

for all k,
µCn ď ϵ{2n`1,

so µC ď ϵ. Since C is open, and ϵ may be any positive real number, B is null. 9.155

We now show that A is measurable. Let u be the outer measure of A. Let Y be
a Borel set including A such that µY “ u. Note that Y zA P Γ, so (9.155) applies.
Any measurable X Ď pY zAq is null, because otherwise there is a non-null closed
set F Ď X, so we have a Borel set Y zF such that A Ď pY zF q and µpY zF q ă u.
Hence9.155 Y zA is null. Thus, A△ Y is null, so A is measurable. 9.148.3 9.148

9.7.2 Structural properties of pointclasses

9.7.2.1 The reduction property

The first use of a determinacy hypothesis to prove a structural property of point-
classes was David Blackwell’s derivation of the reduction property for Π1

1 from ∆0
1

determinacy.[3] Blackwell’s proof goes as follows. Suppose A,B Ď ωω are Π1
1. Us-

ing the representation (5.60), let S, T be ∆0
1 trees on ωˆω such that for all z P ωω,

z P A (resp., B) iff Srzs (resp., Trzs) is wellfounded. For each z P ωω, let Gz be the
following game:

I x0 x1 ¨ ¨ ¨ x

II y0 y1 ¨ ¨ ¨ y

I wins iff for some n P ω, x æn P Trzs and y æn R Srzs.

In effect, I is trying to show that z R B, while II is trying to show that z R A,
each by playing a branch of the appropriate tree. I wins iff II fails before I fails.
Equivalently, II wins iff I fails either before or simultaneously with II, or if neither
fails. Note that if z P AYB then Gz is ∆0

1, i.e., both open and closed, because in
this case either I or II fails, and this is known at some finite stage of the game.

Let

A1 “ tz P A | there is no winning II-strategy in Gzu

B1 “ tz P B | there is no winning I-strategy in Gzu.

Clearly, AzB Ď A1, because if z P AzB then there is a winning I-strategy, viz., to
play a fixed branch of Trzs regardless of what II does. Likewise, BzA Ď B1.

If z P A X B then z P A1 Y B1, because I and II cannot both have winning
strategies in Gz. Since A1 Ď A and B1 Ď B by definition, A1 YB1 “ AYB.

To show that xA1, B1y reduces xA,By it suffices to show that A1 X B1 “ 0.
Suppose to the contrary that z P A1XB1. Then z P AXB, and neither I nor II has
a winning strategy in Gz, contradicting the fact that Gz is determined.

To complete the proof we must show that A1 and B1 are Π1
1. Recall that for

z P A Y B, the winner of Gz is always known at some finite stage of the game.
Thus, z P A1 iff z P A and for every II-strategy τ , there exist n P ω and t, s P nω
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such that t ˚ s is a partial play according to τ (i.e., t ˚ s “ t ˚ τ) which is a win for
I, i.e., t P Trzs and s R Srzs. This is a Π1

1 description of A1. Similarly, B1 is Π1
1.

Moschovakis and Addison recognized the significance of Blackwell’s proof and
independently generalized it to prove Π1

3-reduction from ∆1
2-determinacy. Moschovakis

and Martin then independently showed how to prove Π1
2n`1- and Σ1

2n`2-reduction
from ∆1

2n-determinacy. We will not present the proofs of these results per se, as
they are superseded by the corresponding results for the prewellordering property
treated in the next section.

9.7.2.2 The prewellordering property

(9.158) Theorem: First periodicity (Martin, Moschovakis) [ZF` DC] Sup-
pose Γ is an adequate5.109 pointclass. Let ∆ “ Γ X Γ̆ and suppose ∆

r

-determinacy.
Suppose A Ď ωω ˆ ωω is in Γ and has a Γ-norm.5.108 Let B “ ta P ωω | @x P
ωω xa, xy P Au. Then B has a @@@1DDD1Γ-norm.

Proof Let φ be a Γ-norm on A. Given a, b P ωω, let Gpa, bq be the following game
on ω:

Letting x and y be I’s and II’s respective plays.

I winsØxb, yy ă˚
φ xa, xy;

equivalently, II winsØxb, yy ă
˚
φ xa, xy

Øxb, yy R A_xa, xy ď˚
φ xb, yy.

Let ď be the binary relation on B ˆB such that

a ď bØ II has a winning strategy in Gpa, bq.

(9.159) Claim ď is a (weak) preorder, i.e., for all a, b, c P B,

1. a ď a; and
2. if a ď b and b ď c then a ď c.

Proof 1 II wins Gpa, aq by copying I’s moves, i.e., playing so that y “ x.

2 Let τa,b and τb,c be winning II-strategies for Gpa, bq and Gpb, cq, respectively.
Let τ be the II-strategy indicated in the following diagram by the dashed arrows in
the game Gpa, cq, where τa,b and τb,c are indicated by solid arrows in the respective
games Gpa, bq and Gpb, cq.

I x0

��5
55

55
x1

��5
55

55
x

Gpa, bq τa,b ¨ ¨ ¨

II y0 y1 y

I y0

��5
55

55
y1

��5
55

55
y

Gpb, cq τb,c ¨ ¨ ¨

II z0 z1 z

I x0

##H
H

H x1

##H
H

H x

Gpa, cq τ ¨ ¨ ¨

II z0 z1 z
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In other words—or, rather, in words—given a first move x0 by I, II imagines that
I has played x0 in Gpa, bq and applies τa,b to obtain y0, then imagines that I has
played y0 in Gpb, cq and applies τb,c to obtain z0, which II plays as τxx0y. Given a
response x1 by I, II repeats this procedure to obtain z1, ad infinitum.

To show that τ is a winning II-strategy in Gpa, cq we must show that for any x,
letting y and z be constructed as above, either xc, zy R A or xa, xy ď˚φ xc, zy. Thus,
suppose xc, zy P A. Since τb,c is a winning II-strategy in Gpb, cq, xb, yy ď˚φ xc, zy.
Hence, xb, yy P A, and since τa,b is a winning II-strategy in Gpa, bq, xa, xy ď˚φ xb, yy.
Thus, xa, xy ď˚φ xc, zy. 9.159

(9.160) Claim

1. For all a, b P ωω, Gpa, bq is determined.

2. Suppose a, b P B. Let a ă b
def
ðñ a ď b^ b ď a.

1. a ă b iff I wins Gpb, aq.
2. a ď b_ b ď a, so ď is a (total) preorder on B.

Proof 1 If b R B then for some y P ωω, xb, yy R A, and II can win by playing y
regardless of what I plays. If b P B then for every y P ωω, xb, yy P A. Since φ is a
Γ-norm, there exist binary relations ďΓP Γ and ďΓ̆P Γ̆ such that for all x, y P ωω

xa, xy ď˚φ xb, yyØxa, xy ďΓ xb, yyØxa, xy ďΓ̆ xb, yy.

Hence, the win set for II is in ∆
r

and is therefore determinate by hypothesis.

2.1 Suppose a ă b. Then b ď a, so II does not win Gpb, aq; hence, I wins Gpb, aq.
Conversely, suppose I wins Gpb, aq. Then II does not win Gpb, aq, so b ď a. To

show that a ă b it suffices to show that a ď b, i.e., that II has a winning strategy
in Gpa, bq. The following diagram illustrates such a strategy τ as dashed arrows,
where solid arrows indicate a winning strategy σ for I in Gpb, aq.

I y0 y1 y2 y

Gpb, aq σ ¨ ¨ ¨

II x0

DD					
x1

DD					
x

I x0

nnnnnn

''PPPPP x1

nnnnnn

''PPPPP x

Gpa, bq τ ¨ ¨ ¨

II y0 y1 y2 y

Thus, in Gpa, bq, τ initially ignores I’s first move x0 and simply plays I’s first move
y0 according to σ. τ then initially ignores I’s next move x1, but imagines that II
has played x0 in response to y0 in Gpb, aq and plays I’s response y1 “ σxy0, x0y, etc.
Since σ is a winning I-strategy in Gpb, aq, xa, xy ă˚φ xb, yy, a fortiori xa, xy ď˚φ xb, yy,
so τ is a winning II-strategy in Gpa, bq.

2.2 Either II wins Gpa, bq, in which case a ď b, or I wins Gpa, bq, in which case
b ă a, so b ď a. 9.160

(9.161) Claim ď is wellfounded.
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Proof If ď is not wellfounded then by DC there exists an ω-sequence xxan, σny |
n P ωy such that for every n P ω, an`1 ă an and σn is a I-strategy in Gpan, an`1q

that witnesses this.9.160.2.1 Consider the diagram

I x0
0 x0

1 x0
2 x0

Gpa0, a1q σ0 ¨ ¨ ¨

II x1
0

EE����
x1

1

EE����
x1

I x1
0

��
x1

1

��
x1

2 x1

Gpa1, a2q σ1 ¨ ¨ ¨

II x2
0

EE����
x2

1

EE����
x2

I x2
0

��
x2

1

��
x2

2 x2

Gpa2, a3q σ2 ¨ ¨ ¨

II x3
0

EE����
x3

1

EE����
x3

����
���� ...

In other words, we let xn0 “ σnx y for every n P ω; and then we use recursion on
m P ω to define xnm`1 “ σnxx

n
0 , x

n`1
0 , xn1 , x

n`1
1 , . . . , xn`1

m y for every n P ω.
As a result, for all n P ω, xan`1, xn`1y ă

˚
φ xan, xny, which is impossible since

ă˚φ is wellfounded. 9.161

All that is left is to show that ď is a @@@1DDD1Γ prewellordering. To this end, suppose
b P B and a P ωω. Then

a ď bØ II wins Gpa, bq

ØDII-strategyτ @x P
ωω xa, xy ď˚φ

@

b, pτ ˚ xqII
D

ØDII-strategyτ @x P
ωω xa, xy ďΓ̆

@

b, pτ ˚ xqII
D

,

since @y P ωω xb, yy P A.5.108 On the other hand,

a ď bØ a P B and I does not win Gpa, bq

Ø a P B and @I-strategyσ Dy P
ωω

@

a, pσ ˚ yqI
D

ď˚φ xb, yy

Ø a P B and @I-strategyσ Dy P
ωω

@

a, pσ ˚ yqI
D

ďΓ xb, yy,

again using the fact that @y P ωω xb, yy P A. Since DDD1@@@1Γ̆ is dual to @@@1DDD1Γ, ď is a
@@@1DDD1Γ prewellordering of B. 9.158

Combining (9.158) with (5.113) and (5.114) we have the following theorem.

(9.162) Theorem: Prewellordering under projective determinacy [ZF`DC]
Suppose all projective sets are determined. Then for every n P ω and z P ωω,
Π1

2n`1pzq and Σ1
2n`2pzq have the prewellordering property.

This alternating behavior is the origin of the term ‘periodicity’ in the name of
Theorem 9.158.
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9.7.2.3 The scale property and uniformization

(9.163) Theorem [ZF`ACωpRq] Suppose Γ is an adequate pointclass. Let ∆ “ ΓXΓ̆
and suppose ∆

r

-determinacy. Suppose A Ď ωω ˆ ωω is in Γ and has a Γ-scale. Let
B “ tx P ωω | @y P ωω xx, yy P Au. Then B has a @@@1DDD1Γ-scale.

This is proved by a similar argument to that of (9.158), but of course somewhat
more elaborate, and we omit it in the interest of brevity.

As in the case of the prewellordering property,9.162 it follows from (9.163) that
projective determinacy implies that the scale property “alternates” in the projective
hierarchy, i.e., for every n P ω and z P ωω, Π1

2n`1pzq and Σ1
2n`2pzq have the scale

property, and therefore also the uniformization property.

9.7.3 The Wadge hierarchy

As the reader will have noticed, complexity hierarchies of pointclasses figure promi-
nently in descriptive set theory. We have focused on the Borel and projective
hierarchies, but other hierarchies both beyond and within these have also been pro-
ductively studied. For example, it is natural to define pointclasses Πm

n , Σm
n , and

∆m
n based on quantification over type-m objects. For m ą 1 these properly extend

the projective hierarchy.
As an example of the other direction, we mention the Hausdorff difference hier-

archies α - Π0
ξ (0 ă ξ, α ă ω1) within the class of Borel sets. These are based on a

generalization of the usual difference operation on sets: D1xAy “ A, D2xA0, A1y “

A0zA1, D3xA0, A1, A2y “ A0zpA1zA2q, etc. Given a class Γ and an ordinal α ą 0,
α - Γ “ tDαA | A P

αΓu. Hausdorff showed that ∆0
2 “

Ť

0ăαăω1
α - Π0

1; and Kura-
towski proved the generalization: ∆0

ξ`1 “
Ť

0ăαăω1
α - Π0

ξ , for all 0 ă ξ ă ω1. The
details are discussed in Note 10.32.

(9.164) All these hierarchies H of pointclasses have several features in common:

1. Every Γ P H is a continuously closed pointclass.

2. For each Γ P H, its dual class Γ̆ “ ␣␣␣Γ “ tX | ␣X P Γu is also in H. Note
that a pointclass may or may not be selfdual.51

3. They are semilinearly ordered in the sense that for pointclasses Γ,Γ1 P H,
either Γ Ď Γ1 or Γ1 Ď Γ or Γ1 “ Γ̆.

4. Each nonselfdual Γ P H has a complete member, i.e., A P Γ such that for all
B P Γ, B is a continuous preimage of A.

5. The inclusion relation on H is wellfounded.

It is natural to wonder how pervasive this sort of organization is in the universe
of continuously closed pointclasses. William Wadge made the key observation that
the semilinearity of the inclusion relation on continuously closed pointclasses is an
easy consequence of determinacy. Soon thereafter, Monk and Martin demonstrated
the wellfoundedness of this relation.

We will only briefly sketch this theory.

Definition [ZF] Suppose A,B Ď ωω.
51In the Borel and projective hierarchies the ∆ classes are selfdual, while the Σ and Π classes

are nonselfdual.
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1. The Lipschitz game GlpA,Bq is played in the conventional way with the payoff
set pAˆ␣Bq Y p␣AˆBq. Schematically,

I x0 x1 . . . x

II y0 y1 . . . y

II wins iff x P AØ y P B.

2. The Wadge game GwpA,Bq is played as follows:

I x0 x1 . . . xn0 xn0`1 . . . xn1 . . . x

II y0 y1 . . . y

I plays x0, x1, . . . . After each move by I, II has the option of passing or playing.
II wins iff it plays infinitely often and x P AØ y P B.

Clearly a Wadge game may be reformulated as a conventional game by requiring II
to play on each turn in the usual way, but interpreting 0 as a pass and interpreting
k ` 1 as k. Given a Wadge II-strategy τ , and x P ωω, by a minor modification of
(5.164.3.2.2) we let τ⃗ x be the sequence produced by τ in response to I playing x if
this is an infinite sequence. Thus, τ⃗ is a partial continuous function from ωω to ωω.
Conversely, if f : ωω Ñ ωω is continuous then f “ τ⃗ for some Wadge II-strategy τ .

If τ is a Lipschitz II-strategy (i.e., a II-strategy in the usual sense) then τ⃗ is
continuous and additionally satisfies the Lipschitz condition with factor 1 defined
in terms of a metric ρ on ωω with the property that ρpx, x1q is a decreasing function
of npx, x1q, where npx, x1q is the greatest n P ω such that x æn “ x1 æn. This
follows immediately from the fact that if y “ τ⃗ x, y1 “ τ⃗ x1, and x æn “ x1 æn, then
y æn “ y1 æn.

Definition [ZF] Suppose A,B Ď ωω.

1. A is Wadge-reducible to B
def
ðñ A ďw B

def
ðñ A is a continuous preimage of

B iff there is a winning II-strategy in GwpA,Bq.

2. A is Lipschitz-reducible to B
def
ðñ A ďl B

def
ðñ A is the preimage of B by a

function with Lipschitz factor 1 iff there is a winning II-strategy in GlpA,Bq.

Note that A ďl BÑA ďw B, so the Lipschitz ordering is potentially a refinement
of the Wadge ordering.

We define the Lipschitz and Wadge equivalence relations in the usual way:

1. A ”l B
def
ðñ A ďl B^B ďl A.

2. A ”w B
def
ðñ A ďw B^B ďw A.

The Lipschitz and Wadge degrees are the equivalence classes of ”l and ”w, respec-
tively. The relations ďl and ďw are applied to degrees in the obvious way.

Wadge’s observation was simply this

(9.165) Theorem: Wadge’s lemma [ZF] Suppose A,B Ď ωω.

1. If GlpA,Bq is determined then A ďl B or B ďl ␣A.

2. If GwpA,Bq is determined then A ďw B or B ďw ␣A.
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Proof Suppose II does not have a winning strategy in GlpA,Bq. Then I does have
a winning strategy. This is easily converted to a winning II-strategy in GlpB,␣Aq.
The same is true for the Wadge games. 9.165

For the remainder of this discussion we will generally assume the axiom of
determinacy AD.9.147 This is largely a convenience, as many of the results are such
that a limitation on the complexity of the pointsets appearing in the conclusion
permits a corresponding limitation on the class of sets assumed to be determinate.
These correspondences will generally be obvious.

We will also generally assume the axiom of dependent choices DC.3.140.3

Wadge observed that (9.165) implies that, under the hypothesis of AD, the set
of all continuously closed pointclasses is a hierarchy in the sense of (9.164), with the
possible exception of (9.164.5). For suppose Γ,Γ1 Ď P ωω are continuously closed,
and suppose that neither Γ nor Γ1 is included in the other. Let A P ΓzΓ1 and
suppose A1 P Γ1. Then A ďw A1, so9.165.2 A1 ďw ␣A. Thus, A1 P Γ̆. Since A1 was
arbitrary in Γ1, Γ1 Ď Γ̆. Taking duals of both sides, Γ̆1 Ď Γ. Similarly, Γ Ď Γ̆1 and
Γ̆ Ď Γ1; hence, Γ1 “ Γ̆.

Thus, (9.164.1–3) are satisfied. Note that in the course of the proof we have
also shown that if Γ is nonselfdual then any A P ΓzΓ̆ is complete in Γ, so (9.164.4)
is satisfied.

The following theorem of Martin and Leonard Monk shows that (9.164.5) is also
satisfied. We make use of (the first part of) the following easy lemma.

(9.166) Theorem [ZF] Suppose X Ď ω2.

1. If X has the Baire property and is not meager, then X is comeager on a basic
interval, i.e., for some s P ăω2, IszX is meager.

2. If X is measurable (with respect to the standard measure µ) and is not null,
then for any real p ă 1, there exists a basic interval I such that µpXXIq{µpIq ą
p.

Proof 1 Let G be open such that x△G is meager. Since X is not meager, G ‰ 0.
Let I Ď G be a basic interval. Then IzX is meager. 9.166.1

2 Without loss of generality, suppose p ą 0. Let m “ µX ą 0. Let G be open
such that X Ď G and µG ă µX{p. Let I be a set of pairwise disjoint basic intervals
such that G “

Ť

I, so µG “
ř

IPI µI and µX “
ř

IPI µpX X Iq. Then for some
I P I, µpX X Iq{µpIq ą p. 9.166.2 9.166

(9.167) Theorem [ZF` AD` DC] ďl is wellfounded.

Proof Suppose not. By DC there exist An Ď ωω, n P ω, such that for all
n P ω, An`1 ăl An. It follows from semilinearity that I wins GlpAn, An`1q and
GlpAn,␣An`1q, say by strategies σn1 and σn0 , respectively.52

Given α P ω2, let xnα P ωω, n P ω, be defined as indicated in Figure 9.2, which is
to say, for each n,m P ω

xnαpmq “ σnαn
xxnαp0q, x

n`1
α p0q, . . . , xnαpm´ 1q, xn`1

α pm´ 1qy.
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x0
αp0q x0

αp1q x0
αp2q . . . x0

α A0

σ0
α0

x1
αp0q

;;xxxxxx
x1
αp1q

;;xxxxxx
x1
αp2q . . . x1

α A1

σ1
α1

x2
αp0q

;;xxxxxx
x2
αp1q

;;xxxxxx
x2
αp2q . . . x2

α A2<<xxxxxx

<<xxxxxx

...

xnαp0q

<<xxxxxx
xnαp1q

<<xxxxxx
xnαp2q

>>}}}}}}
. . . xnα An

σnαn

xn`1
α p0q

;;vvvvvv
xn`1
α p1q

;;vvvvvv
xn`1
α p2q . . . xn`1

α An`1<<xxxxxx

<<xxxxxx

...

Figure 9.2
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In particular, the whole thing gets started by letting xnαp0q “ σnαn
x y (I’s first move

according to σnαn
, where x y “ 0 is the empty sequence) for all n. Moving to the

right, each succeeding column is filled in according to the contents of the columns
to its left. The result is that xnα “ σ⃗nαn

xn`1
α , so

(9.168) pxnα P AnØxn`1
α P An`1qØαn “ 0.

Let T “ tα P ω2 | x0
α P A0u. For s P ăω2, let Ts “ tβ P ω2 | s ⌢ β P T u. Note that

xnα depends only on α æpωznq. It follows from this and (9.168) that for any s P ăω2,
Ts ⌢x0y and Ts ⌢x1y are complementary subsets of ω2.

Since T has the Baire property,9.148.2 there exists s P ăω2 such that Ts is either
meager or comeager.9.166.1 Hence, Ts ⌢x0y and Ts ⌢x1y are either both meager or both
comeager, which is impossible since they are complementary. 9.167

The following theorem characterizes the order type of the Lipschitz and Wadge
degrees. The proof is fairly straightforward and not very illuminating and will be
omitted. The terms successor, limit, and cofinality as applied to l- or w-degrees
refers to their ordinal rank in ďl or ďw, respectively.

(9.169) Theorem [ZF` AD` DC]

1. The structure of ďl is as follows.

1. The sets t0u and tωωu are dual nonselfdual l-degrees and are the least
l-degrees.

2. Every successor l-degree is selfdual.
3. Every limit l-degree of cofinality ω is selfdual.
4. Every limit l-degree of uncountable cofinality is nonselfdual.

2. The structure of the w-degrees is as follows.

1. The nonselfdual w-degrees are exactly the nonselfdual l-degrees.
2. Every selfdual w-degree is the union of a maximal set of consecutive self-

dual l-degrees, which necessarily has order type ω1.

Figure 9.3 illustrates ďw. The order type of the l-degrees is obtained by replacing
each selfdual w-degree by an ω1-sequence of l-degrees.9.169.2.2 The nonselfdual w-
degrees are l-degrees.9.169.2.1

Definition [ZF ` AD] A Wadge class is a continuously closed pointclass in the
sense of (5.52).

As usual in descriptive set theory, the pointspace ωω is of primary interest, and we
often treat Wadge classes as though they were confined to subsets of ωω.

The first two Wadge classes are t0u and tωωu. The next Wadge class is ∆0
1.

Next are Σ0
1 and Π0

1. These are followed by the Hausdorff difference hierarchy on
Π0

1, which has ω1 levels and runs through ∆0
2. Next are Σ0

2 and Π0
2. After this,

the Wadge hierarchy is a refinement of the Hausdorff hierarchy (which is itself a
refinement of the Borel hierarchy).

52Although DC is available, there is no need to use it here, as ACωpRq suffices, and this follows
from AD.
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...
˝

˝ ˝ cf ą ω

...
˝

˝ ˝

˝ cf “ ω

...
˝

˝ ˝
˝

˝ ˝

Figure 9.3: The order type of the Wadge degrees

Universal sets for Wadge classes In discussing universal sets for Wadge classes,
for our purposes it is sufficient and convenient to restrict our attention to sets
U Ď ωωˆ ωω that are universal for classes ΓXPpωωq. The following definition just
specializes (5.52.2.1) to this setting.

(9.170) Definition [ZF]

1. The following notation is handy.

1. Suppose A Ď X ˆ Y and x P X. Then Ax
def
“ ty | xx, yy P Au.

2. Recall that x1, . . . , xk ÞÑ xx1, . . . , xky¨ is a bijection of kpωωq to ωpkωq.
Thus, for example, given x, y P ωω, xx, yy¨ “ xxxn, yny | n P ωy. To define

a bijection to ωω, for each k P ω we let pk : kω
bij
Ñ ω be a birecursive

bijection, and

xx1, . . . , xkyp
def
“ xpkxx1

n, . . . , x
k
ny | n P ωy.

2. U Ď ωω ˆ ωω is a universal set for a Wadge class Γ
def
ðñ U P Γ and @A P

ΓX Ppωωq Da P ωω A “ Ua.

3. U Ď ωωˆωω is a good universal set for Γ
def
ðñ U is universal for Γ and there

exists a continuous function s : ωω ˆ ωω Ñ ωω such that for all a, x, y P ωω

xx, yyp P UaØ y P Usxa,xy.

As for Σ1, the existence of a good universal set for any Wadge class implies the
recursion theorem for the class.

(9.171) Theorem [ZF] Suppose Γ is a Wadge class, U is a good universal set for
Γ, and A Ď ωω ˆ ωω is in Γ. Then there exists a P ωω such that Aa “ Ua.

Proof Let s witness the goodness of U .9.170.3 As in the proof of (4.80), txb, cyp |
xsxb, by, cy P Au, being a continuous preimage of A, is in Γ, so there exists d P ωω
such that for all b, c P ωω

xd, xb, cypy P UØxsxb, by, cy P A.
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Let a “ sxd, dy. Then for all c P ωω

xa, cy P UØxsxd, dy, cy P UØxd, xd, cypy P U

Øxsxd, dy, cy P A

Øxa, cy P A,

i.e., Aa “ Ua. 9.171

(9.172) Theorem [ZF` AD] Suppose Γ is a nonselfdual Wadge class. Then there
exists a good universal set for Γ.

Proof Let A be in ΓzΓ̆. Let t be a birecursive bijection of ωω with the set of
II-strategies for games on ω. Let

U “ txx, yy | ttxy P Au.

Note that xx, yy ÞÑ ttxy is continuous, so U P Γ. Suppose B P Γ. Let x P ωω be
such that tx is a winning II-strategy in GlpB,Aq. Then B “ ty P ωω | xx, yy P Uu.
Thus, U is a universal set for Γ.

To show that U is good, let f be a recursive function such that for any y P ωω
and any II-strategy τ for games on ω, fxτ, yy is a II-strategy such that

@z P ωω Ńfxτ, yyz “ tτ xy, zyp.

Let s : ωω ˆ ωω Ñ ωω be the (recursive) function such that @x, y P ωω tpsxx, yyq “
fxtx, yy. Then for any x, y, z P ωω

xy, zyp P UxØ ttxxy, zyp P AØ Ńf xtx, yyz P AØ Ńtpsxx, yyqz P A

Ø z P Usxx,yy.

9.172

9.7.3.1 Structural properties of Wadge classes

We now turn our attention to structural properties of Wadge classes under the hy-
pothesis of AD. We will prove just one result of this type, viz., Theorem 9.176 of
Steel and Van Wesep. By way of preparation we define another structural property
of pointclasses closely related to the separation property and establish its relation-
ship to the separation property.

Definition [ZF] Suppose Γ is a nonselfdual Wadge class. Γ has the second sepa-

ration property
def
ðñ SepII Γ

def
ðñ

@A,B P Γ DA1, B1 P Γ̆ pAzB Ď A1^BzA Ď B1^A1 XB1 “ 0q.

Note that since AzB “ ␣Bz␣A, SepII Γ iff

(9.173) @A,B P Γ̆ DA1, B1 P Γ̆ pAzB Ď A1^BzA Ď B1^A1 XB1 “ 0q.

By way of distinction, the separation property5.111.1 per se is also referred to as the
first separation property : SepI.

(9.174) Theorem [ZF ` AD] Suppose Γ is a nonselfdual Wadge class. Then
SepII Γ̆Ø␣ SepI Γ.
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Proof Ñ Let A be in ΓzΓ̆. Let s be a birecursive bijection of ωω with the set of
2-sequences of II-strategies for games on ω, and—to simplify the notation—let p¨, ¨q
be a birecursive bijection of ωω ˆ ωω with ωω (e.g., px, yq “ xx, yyp). Let

A0 “ tpx, yq | Łpsxq0y P Au

A1 “ tpx, yq | Łpsxq1y P Au.

Note that px, yq ÞÑ Łpsxqiy is continuous for i P 2, so A0, A1 P Γ. Also, if we let
x P ωω be such that psxq0 and psxq1 are both the copying II-strategy, so that
@i P 2@y P ωω Łpsxqiy “ y, then

A “ ty P ωω | px, yq P A0u “ ty P
ωω | px, yq P A1u,

so A0, A1 R Γ̆, i.e., A0 and A1 are both complete in Γ.
Suppose B0, B1 P Γ. Let x P ωω be such that for each i P 2, psxqi is a winning

II-strategy in GlpBi, Aiq. Then for each i P 2, Bi “ ty P ωω | px, yq P Aiu. In this
sense, xA0, A1y is universal for pairs of sets in Γ. Note that for this argument, a
universal set is a subset of ωω, not ωω ˆ ωω.

(9.175) x␣A0,␣A1y is likewise universal for pairs of sets in Γ̆.

Suppose SepII Γ̆. We will show ␣SepI Γ. To this end let9.173 B0, B1 P Γ be
disjoint such that A0zA1 Ď B0 and A1zA0 Ď B1. For i P 2, let Ci “ tx | px, xq P
Biu. C0, C1 are disjoint sets in Γ. We will show that they are not separable by a
set D P ∆ “ ΓX Γ̆. For suppose C0 Ď D and D X C1 “ 0. Let9.175 z be such that
D “ tx | pz, xq P ␣A0u and ␣D “ tx | pz, xq P ␣A1u. Then

z P DÑpz, zq P A1zA0Ñpz, zq P B1Ñ z P C1Ñ z R D

and z R DÑpz, zq P A0zA1Ñpz, zq P B0Ñ z P C0Ñ z P D;

contradiction.

Ð Conversely, suppose ␣SepI Γ. Let C,D P Γ be disjoint and not separable by
a set in ∆. Suppose A,B P Γ̆. To demonstrate SepII Γ̆, we must find disjoint sets
A1, B1 P Γ such that AzB Ď A1 and BzA Ď B1. Consider the following game.

I and II produce x, y P ωω, respectively, and I wins iff

y P CÑx P AzB

y P DÑx P BzA

and x P A△B “ pAzBq Y pBzAq.

Suppose σ is a winning I-strategy. Let E “ σ⃗ÐA. σ⃗ is continuous, and im σ⃗ Ď
A△ B, so σ⃗ÐA “ ␣ σ⃗ÐB, and E is therefore in ∆. But C Ď E and E XD “ 0,
contradicting the inseparability of C,D. There is thus no winning I-strategy.

Therefore let τ be a winning II-strategy. Let A1 “ τ⃗ÐD and B1 “ τ⃗ÐC. Then
A1, B1 are as desired. 9.173

(9.176) Theorem [ZF` AD`DC] Suppose Γ is a nonselfdual Wadge class. Then
either Γ or Γ̆ has the (first) separation property, but not both. Equivalently,9.174

either Γ or Γ̆ has the second separation property, but not both.
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Proof We first show that either Γ or Γ̆ has the second separation property. Let
xA0, A1y be a complete pair of sets in Γ as in the proof of (9.174), i.e., for any
A10, A

1
1 P Γ there exists a continuous f : ωω Ñ ωω such that A1i “ fÐAi for each

i P 2. We will show that if xA0, A1y is SepII-separable then SepII holds for Γ. Thus,
suppose B0, B1 P Γ̆ are disjoint such that A0zA1 Ď B0 and A1zA0 Ď B1. Suppose
A10, A

1
1 P Γ. Let f : ωω Ñ ωω be continuous such that A1i “ fÐAi for each i P 2. Let

B1i “ fÐBi for i P 2. Then B10 and B11 are disjoint sets in Γ̆ such that A10zA
1
1 Ď B10

and A11zA
1
0 Ď B11.

Thus, if ␣SepII Γ then there do not exist disjoint B0, B1 P Γ̆ such that A0zA1 Ď

B0 and A1zA0 Ď B1. Similarly, if ␣SepII Γ̆9.173 then there do not exist disjoint
B0, B1 P Γ such that A0zA1 Ď B0 and A1zA0 Ď B1. We will derive a contradiction
from these hypotheses.

Consider the following two games in which I and II play x, y P ωω, respectively.

G0: II wins iff

x P A0zA1Ñ y P A1zA0,

x P A1zA0Ñ y P A0zA1,

and y R A0 XA1.

G1: II wins iff

x P A0zA1Ñ y P A0zA1,

x P A1zA0Ñ y P A1zA0,

and y P A0 YA1.

Suppose τ is a winning II-strategy in G0 or G1. Let f “ τ⃗ . In the former case,
let Bi “ fÐA1´i, and in the latter case let Bi “ fÐp␣A1´iq. In either case,
B0 XB1 “ 0, A0zA1 Ď B0, and A1zA0 Ď B1, which contradicts our hypothesis.

Hence, there exist winning I-strategies σ0, σ1 in G0, G1, respectively. Let f0, f1
be the corresponding functions from ωω to ωω. Then

f0
ÑpA0zA1q Ď A0zA1,

f0
ÑpA1zA0q Ď A1zA0,

and f0
Ñp␣A0 X␣A1q Ď pA0zA1q Y pA1zA0q.

Similarly,

f1
ÑpA0zA1q Ď A1zA0,

f1
ÑpA1zA0q Ď A0zA1,

and f1
ÑpA0 XA1q Ď pA0zA1q Y pA1zA0q.

As in the proof of (9.167), given α P ω2, let xnα P
ωω, n P ω, be such that for each

n P ω
xnα “ fαpnqx

n`1
α .

This is possible, of course, because for any y P ωω, pfiyqm is uniquely determined
by y æm.

(9.177) Claim tα P ω2 | x0
α P A0 △A1u is comeager.

Proof If not, then since by AD every set of reals has the Baire property, for some
s P ăωω, tα P ω2 | x0

s ⌢ α P A0 △ A1u is meager. Recall that A0 △ A1 “ pA0zA1q Y
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pA1zA0q, and note that fiÑpA0 △ A1q Ď A0 △ A1 for each i P 2. Hence, tα P
ω2 | x0

α P A0 △ A1u is meager. It follows that either tα P ω2 | x0
α P A0 X A1u or

tα P ω2 | x0
α P ␣A0 X␣A1u is nonmeager. Without loss of generality, suppose the

former. For any α in this set, px1y ⌢ αq0 P A0 △ A1, so tα P ω2 | x0
α P A0 △ A1u is

nonmeager; contradiction. 9.177

Let X “ tα P ω2 | x0
α P A0 △ A1u, and let Xi “ tα P X | x0

α P AizA1´iu. Then
X is the disjoint union of X0 and X1, and for any i P 2 and α P Xi,

1. x0y ⌢ α P Xi, and

2. x1y ⌢ α P X1´i.

We now derive a contradiction as in the proof of (9.167). Since X is comeager,9.177

either X0 or X1 is nonmeager. Suppose Xi is nonmeager. Let s P ăωω be such
that tα P ωω | s ⌢ α P Xiu is comeager. Again using the fact that X is comeager,
letting j “ i or 1´ i according on whether s has an even or odd number of 0s, Xj is
comeager, so X1´j is meager. But X1´j Ě tx1y ⌢ α | α P Xju, which is nonmeager;
contradiction.

This completes the proof that either Γ or Γ̆ has the second separation property;
equivalently, Γ and Γ̆ do not both have the first separation property.

It remains to be shown that either Γ or Γ̆ has the first separation property. Let
us call a function f : ωω Ñ ωω I-Lipschitz

def
ðñ f “ σ⃗ for some I-strategy σ.

(9.178) Claim Suppose xA0, A1y is an inseparable pair of sets in Γ, and suppose
xB0, B1y is a disjoint pair of sets in Γ or in Γ̆. Then there exists a I-Lipschitz f
such that fÑB0 Ď A0 and fÑB1 Ď A1.

Proof Consider the game in which I and II play respective reals x and y, and I
wins iff

y P B0Ñx P A0 and y P B1Ñx P A1.

A winning II-strategy in this game would yield a continuous g : ωω Ñ ωω such that

gÑA0 Ď B1,

gÑA1 Ď B0,

and im g Ď B0 YB1.

Then D “ gÐB1 “ gÐp␣B0q is in ΓX Γ̆ and separates A0 from A1. Since A0 and
A1 are inseparable, this cannot be. Therefore let σ be a winning I-strategy and let
f “ tσ. 9.178

Now suppose toward a contradiction that xA0, A1y is an inseparable pair of Γ
sets, and xC0, C1y is an inseparable pair of Γ̆ sets. Let f be I-Lipschitz such that
fÑA0 Ď C0 and fÑA1 Ď C1, using (9.178) (with Γ̆ for Γ). Let B0 “ fÐC0 and
B1 “ fÐC1. Note that A0 Ď B0, A1 Ď B1, and B0 X B1 “ 0. Since xA0, A1y is
inseparable, so are xA0,␣B0y and xA1,␣B1y.

Now use (9.178) with various disjoint and inseparable pairs to obtain I-Lipschitz
functions f0, f1, f2 : ωω Ñ ωω such that

f0
ÑA0 Ď A1^ f0

ÑA1 Ď A0,

f1
ÑA0 Ď A0^ f1

Ñp␣B0q Ď A1,

and f2
ÑA1 Ď A1^ f2

Ñp␣B1q Ď A0.
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As before, given α P ω3, let xnα, n P ω, be such that for each n P ω,

xnα “ fαpnqx
n`1
α .

(9.179) Claim tα P ω3 | x0
α P A0 YA1u is comeager.

Proof Suppose not. Then there exists s P ăω3 such that tα P ω3 | x0
s ⌢ α R A0YA1u

is comeager. But for any α P ω3, x0
s ⌢ α R A0YA1Ñx0

α R A0YA1, so tα P ω3 | x0
α R

A0 YA1u is comeager.
Since B0 and B1 are disjoint, there exists i P 2 such that tα P ω3 | x0

α R Biu is
nonmeager. Since fi`1

Ñp␣Biq Ď A0 Y A1, it follows that tα P ω3 | x0
α P A0 Y A1u

is nonmeager; contradiction. 9.179

Now let9.179 i P 2 be such that tα P ω3 | x0
α P Aiu is nonmeager, and let s P ăω3

be such that tα P ω3 | x0
s ⌢ α P Aiu is comeager. Since f0ÑAi Ď A1´i, 0 must occur

an even number of times in s, and tα P ω3 | x0
α P A1´iu must be meager; however,

for any α P ω3, if x0
α P Ai then x0

x0y ⌢ α P A1´i, so tα P ω3 | x0
α P A1´iu is nonmeager.

Thus, either Γ or Γ̆ has the first separation property. 9.176

The ostensibly stronger reduction and prewellordering properties are indeed
stronger than the separation property, and it has been shown that there are non-
selfdual Wadge classes Γ such that neither Γ nor Γ̆ has the reduction property.
On the other hand, certain closure properties of pointclasses have been shown to
imply that reduction or prewellordering holds for one or the other of a dual pair.
For example, Steel has shown that if Γ is nonselfdual and continuously closed, and
ΓX Γ̆ is closed under (finite) unions, then either Γ or Γ̆ has the reduction property.

9.7.4 AD

Up to this point most of the consequences of determinacy we have proved for a
pointclass Γ follow from the hypothesis of the determinacy for sets in a suitable
continuously closed pointclass Γ1 that does not in general contain every subset of
ωω. In this section we will explore consequences of AD per se, i.e., the assumption
that all subsets of ωω are determinate. AD is, of course, inconsistent with AC,
but this does not render AD useless in the setting of ZFC. For example, as we
have seen, ZF$ZFLpRq, and clearly ZF ` AD$ADLpRq. We will also show that
ZF`DC$DCLpRq. This suggests the possibility of ZFC`ADLpRq as a comprehensive
theory of the countably infinitary, within which context LpRq is an inner model of
ZF` DC` AD

The acceptability this theory as an extension of ZFC, however, is contingent on
its consistency—which is an absolute requirement—and also on its plausibility: Do
we have any reason to believe that it is true, or, contrarily, do we have any reason
to believe that it is false? In this section we will address these issues, which we will
find to be very precisely related to certain large cardinal hypotheses.

We begin with several theorems that derive large cardinal conclusions from AD.
We follow this with several theorems that derive determinacy conclusions from large
cardinal hypotheses. Applying the aesthetic criterion these results may be taken as
strong evidence in favor of both determinacy and large cardinal hypotheses.

By way of preparation, we discuss two choice axioms.

(9.180) Theorem [ZF` AD] ACωpRq.
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Proof Suppose for each n P ω, An is a nonempty subset of ωω. We must show
that there exists f : ω Ñ ωω such that @n P ω fn P An. Consider the game in
which I and II play x and y in ωω, and II wins iff y P Ax0 . Clearly, I does not have
a winning strategy in this game, so II does, say τ . For each n P ω let fn be II’s
response to xn, 0, 0, . . . y according to τ . f is a choice function for xAn | n P ωy.

9.180

(9.181) Theorem [ZF` DC] DCLpRq.

Proof We work in GB ` DC to facilitate the use of proper classes. Using the
recursive definition of LpRq we may define a function Φ : Ordˆωω sur

Ñ LpRq such
that for every α P Ord, Φ æpα ˆ ωωq P LpRq. Suppose X,R P LpRq, R is a binary
relation on X, and

@x P X Dy xx, yy P R.

Suppose x0 P X. Then by DC there exists xxn | n P ωy such @n P ω xxn, xn`1y P R.
We will show that there exists such a sequence in LpRq.

Since LpRq is transitive, X Ď LpRq. Let λ P Ord be such that txn | n P ωu Ď
ΦÑpλ ˆ ωωq. Using ACω, which is a special case of DC, let

@

xαn, any | n P ω
D

be
such that @n P ω

`

αn ă λ^Φxαn, any “ xn
˘

. Note that xan | n P ωy P LpRq
because it can be coded by a single real.

Let ă be the binary relation on λˆ ω defined by the condition:

xα, iy ă xβ, jyØ i “ j ` 1^
@

Φxβ, ajy,Φxα, aiy
D

P R.

Then ă P LpRq, and
@

xαn, ny | n P ω
D

is a descending ă-sequence, so ă is illfounded
below xα0, 0y. Hence, LpRq |ù xrăs is illfounded below rxα0, 0ysy.53 Working in
LpRq, define by recursion xβn | n P ωy such that β0 “ α0 and for every n P ω, βn`1

is the least β such that xβ, n ` 1y ă xβn, ny and ă is illfounded below xβ, n ` 1y.
This is a legitimate definition in ZF.

Let yn “ Φxβn, any. Then xyn | n P ωy P LpRq, y0 “ x0 and @n xyn, yn`1y P R,
as desired. 9.181

9.7.5 Large cardinals from determinacy

Recall4.102 that D “ DT is the set of Turing degrees, and ďT is Turing reducibility,
i.e., the relation of relative recursiveness. For x P ωω, rxs is the Turing degree of x.

Definition [ZF]

1. The cone of Turing degrees with base d def
“ Cd

def
“ td1 P D | d ďT d1u.

2. The cone filter over D def
“ tS Ď D | Dd P DCd Ď Su.

It is straightforward to show that what we have defined as the cone filter is indeed
a filter.

(9.182) Theorem (Martin) [ZF ` AD] The cone filter over D is a nonprincipal
countably complete ultrafilter.

53By the usual argument: If LpRq thinks ă is wellfounded then there is a rank function for ă

in LpRq, which is a rank function for ă in V , contradicting the illfoundedness of ă.
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Proof Let F be the cone filter. We first show that F is nonprincipal, i.e., for any
d P D, there exists d1 P D such that d1 ďT d. This follows from the fact that
tx1 P ωω | x1 ďT xu is countable for any x P ωω, whereas ωω is not countable; or
simply let d1 be the Turing jump of d.

Next we show that F is countably complete. Suppose tDn | n P ωu Ď F . For
each n P ω, let An “ tx P ωω | Crxs Ď Dnu. Let9.180 f be a choice function for

xAn | n P ωy. Thus, f : ω Ñ ωω, and @n P ω Crfns Ď Dn. Let j : ωω bij
Ñ ωpωωq be

the homeomorphism defined in (5.87) from a recursive pairing function p : 2ω
bij
Ñ ω.

Then j and j´1 are recursive. Let x “ j´1f . Then Crxs Ď Dn for all n P ω, so
Ş

nPωDn P F .
Next we show that F is an ultrafilter. Suppose D Ď D. Let G be the game in

which I and II play x and y, respectively, and I wins iff rx ˚ ys P D. Suppose σ is
a winning I-strategy in G. Note that σ Ď Vω is a type-1 object to which the notion
of Turing degree applies. Suppose y P ωω and rσs ďT y. Clearly, σ ˚ y ”T y, i.e.,
rσ ˚ ys “ rys. Since σ is a winning I-strategy in G, rσ ˚ ys P D, so rys P D. In other
words, Crσs Ď D, so D P F .

On the other hand, if τ is a winning II-strategy in G, then Crτs Ď pDzDq, so
DzD P F . F is therefore an ultrafilter. 9.182

As above in this chapter, we will use ‘measure’ interchangeably with ‘ultrafilter’
for countably complete ultrafilters.

Definition [ZF` AD] The Martin measure over D def
“ the cone filter.

D is not a cardinal, and our working theory does not contain AC (but rather the
incompatible AD), so we cannot simply quote the theory of measurable cardinals
developed above. Nevertheless, the existence of the Martin measure is a very strong
consequence of ZF` AD, as the following two theorems demonstrate.

(9.183) Theorem [ZF` AD] ω1 is measurable.

Proof Let F be the cone (ultra)filter over D. It suffices to show the existence
of a function f : D Ñ ω1 such that for every α P ω1, fÐtαu R F ; for then
tX Ď ω1 | f

ÐX P F u is a nonprincipal countably complete ultrafilter over ω1.
A simple way to define f is to let fd be the least ordinal α such that α is not

the order type of a wellordering R of a subset of ω such that rRs ďT d. Clearly,
for any α P ω1, letting R be a wellordering of a subset of ω with order type α,
fÐtαu X CrRs “ 0. 9.183

It would appear from (9.183) that, absent the axiom of choice, a measurable
cardinal need not be large. The following theorem shows that ZF`AD nevertheless
does imply that ω1 is large in a certain sense. We formulate the following theorem
in GB so that we can easily talk about inner models.

(9.184) Theorem [GB` AD] HOD |ù xrω1s is measurabley.

Remark In other words, letting κ “ ω1, HOD |ù xrκs is measurabley. This is not
to say that HOD |ù xω1 is measurabley, which is manifestly false, since HOD |ù ZFC.

Proof Clearly the Martin measure is ordinal-definable (OD)—it is in fact definable
from no parameters at all. Let U be the ultrafilter over ω1 defined in the proof of
(9.183). Then U is OD. Let U 1 “ U XHOD. Since HOD is definable, U 1 is OD and
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therefore HOD (since it is included in HOD). Since all ordinals are OD, a subset of
ω1 is HOD iff it is OD. U 1 therefore consists of all OD subsets of ω1 that are in U .
Clearly HOD |ù xrU 1s is an ultrafiltery. The intersection of any OD ω-sequence of
members of U 1 is clearly OD and is in U , so it is in U 1, and therefore HOD |ù xrU 1s
is countably completey. Since U is nonprincipal, so is U 1. Hence, HOD |ù xrU 1s is
a nonprincipal countably complete ultrafilter over rω1sy. 9.184

(9.184) gives us the following relative consistency result.

(9.185) Theorem [S] If ZF`AD is consistent then ZFC` xthere exists a measurable
cardinal y is consistent.

Proof Any proof of inconsistency in the latter theory yields a proof of inconsistency
in GB ` AD via (9.184), hence a GB-proof of ␣␣␣AD. Since GB is a conservative
extension of ZF, ZF$␣␣␣AD, so ZF` AD is inconsistent. 9.185

With a little more work we obtain the following.

(9.186) Theorem [ZF` AD] The closed unbounded filter over ω1 is an ultrafilter.

Proof We will make use of a birecursive coding of members of ωpωωq by members

of ωω, as in the proof of (9.182). Thus, let j : ωω bij
Ñ ωpωωq be a homeomorphism

as defined in (5.87).54 As a notational convenience, for x P ωω and n P ω, let
xn “ pjxqn.

Recall5.61 the definition of WO Ď ωω as the set of codes of countable ordinals
via the map x ÞÑ Rx, where Rx is a binary relation on Vω that is a wellorder iff
x P WO. For x P WO, let }x} be the order type of Rx.

Suppose X Ď ω1 and consider the game GX in which I and II play x, y P
ωω, which are regarded as coding ω-sequences xxn | n P ωy and xyn | n P ωy,
respectively, as above. The winner is defined as follows.

1. If for some n P ω, x0, y0, x1, y1, . . . , xn, yn are not all in WO, let n be least
with this property. I wins iff xn P WO.

2. If xn, yn P WO for all n P ω, and for some n P ω, x}x0}, }y0}, }x1}, }y1},
. . . , }xn}, }yn}y is not strictly increasing, let n be least with this property. I
wins iff x}x0}, }y0}, }x1}, }y1}, . . . , }xn}y is strictly increasing.

3. If xx0, y0, x1, y1, . . . y is a strictly increasing sequence of ordinal codes, then I
wins iff supnPω }xn} P X.

(9.187) Claim If I has a winning strategy in GX then X includes a closed unbounded
subset of ω1. If II has a winning strategy in GX then ω1zX includes a closed
unbounded subset of ω1.

Proof Suppose σ is a winning I-strategy in GX . For each α P ω1, let

Xα “ tppσ ˚ yq
Iqn | y P ωω^n P ω^@m ă n pym P WO^}ym} ă αqu.

Since σ is a winning I-strategy in G, Xα Ď WO. Let a P WO be such that }a} “ α.
Then tb P WO | }b} ă αu is Σ1

1paq. Hence, Xα is Σ1
1pσ, aq. Thus5.118 there exists

β P ω1 such that @x P Xα }x} ă β.

54Unlike the proof of (9.182), the present application does not require recursiveness.
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Let f : ω1 Ñ ω1 be defined by the condition that for each α P ω1, fα is the least
ordinal β such that @b P Xα }b} ă β. Let C “ tγ P ω1 | Lim γ^@α ă γ fα ă γu.
C is closed unbounded in ω1. Let C 1 be the set of limit points of C. C 1 is closed
unbounded in ω1.

(9.188) Claim C 1 Ď X.

Proof Suppose α P C 1. Let xαn | n P ωy be a strictly increasing sequence of
ordinals in C with limit α. Let y P ωω be such that for each n P ω, yn P WO and
}yn} “ αn (invoking ACωpRq). Let x “ pσ ˚ yqI. Since σ is a winning I-strategy,
xn P WO for all n P ω. Suppose n P ω. Since C consists of limit ordinals, there
exists β ă αn such that αm ă β for all m ă n. Since }ym} “ αm for all m ă n,
xn P Xβ , so }xn} ă fβ ă αn, since αn P C.

Thus, }xn} ă }yn} for all n P ω. Since σ is a winning I-strategy, }yn} ă }xn`1}

for all n P ω. Hence, xx0, y0, x1, y1, . . . y is a strictly increasing sequence of ordinal
codes. Since }yn} “ αn, supnPω }xn} “ supnPω }yn} “ supnPω αn “ α. Since σ is a
winning I-strategy, α P X. 9.188

The analogous argument shows that if II has a winning strategy in GX then
ω1zX includes a closed unbounded subset of ω1. 9.187

The closed unbounded filter is therefore an ultrafilter. 9.186

(9.189) Theorem [ZF`AD] The closed unbounded filter over ω1 is a nonprincipal
countably complete ultrafilter.

Proof Let F be the closed unbounded filter over ω1. We have just shown9.188 that
F is an ultrafilter. F is obviously nonprincipal, so it only remains to be shown that
F is countably complete. Suppose xXn | n P ωy is an ω-sequence of members of F .
Let X “

Ş

nPωXn. We claim that X P F . If we had the axiom of choice we could
let Cn Ď Xn be closed unbounded in ω1 for each n P ω, and let C “

Ş

nPω Cn. It
is easy to show that C is closed unbounded, and clearly C Ď X.

But we don’t have AC. We have ACωpRq,9.180 but this is not enough for the
preceding argument, because for each n P ω we have to choose from the set of
closed unbounded subsets of Xn, which is a set of subsets of ω1, not of ωω. The
proof of (9.186), however, shows us a way around this difficulty. A strategy for a
game on ω is a subset of Vω, i.e., an element of Vω`1, so we may use (9.180)—with
the trivial substitution of Vω`1 for ωω—to conclude that there exists xσn | n P ωy
such that for each n P ω, σn is a winning I-strategy in the game GXn as defined in
the proof of (9.186). (II cannot have a winning strategy because then ωωzXn would
include a closed unbounded set;9.187 hence, by AD, I must have a winning strategy.)

A review of the proof of (9.188) shows that the closed unbounded set C 1 was
defined from the strategy σ. We now define C 1n from σn the same way for each
n P ω, so that each C 1n is closed unbounded in ω1 and C 1n Ď Xn. Let C “

Ş

nPω C
1
n.

Then C is closed unbounded in ω1, and C Ď X. 9.189

Another way to show that the closed unbounded filter over ω1 is countably
complete is to make use of the remarkable fact that—assuming ZF ` AD—any
ultrafilter over any set is countably complete.

Definition [ZF] Suppose X Ă ωM for some set M . X is a tail set
def
ðñ for all

x, y P ωM , if Dm@n ą m xn “ yn (i.e., x and y have a common “tail”) then
x P XØ y P X.
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(9.190) Theorem: the 0-1 law [ZF] Suppose X Ď ω2 is a tail set.

1. If X has the Baire property then X is meager or comeager.

2. If X is measurable then µX “ 0 or µX “ 1.

Proof Suppose I and J are basic intervals of the same size, i.e., I “ Is and J “ It
where |s| “ |t|. Then X X I and X X J are homeomorphic. Thus, if they have the
Baire property and either is meager or comeager, so is the other; and if they are
measurable, they have equal measure.

Suppose X has the Baire property. If X is not meager then9.166.1 it is comeager
on a basic interval; hence, it is comeager on every basic interval of the same size,
so it is comeager.

By a similar argument, if X is measurable and not null then9.166.2 for any p ă 1,
µX ą p, so µX “ 1. 9.190

(9.191) Theorem [ZF] A nonprincipal ultrafilter over ω, construed as a subset of
ω2, does not have the Baire property and is not measurable. Therefore, if AD then
every ultrafilter over ω is principal.

Proof It is easy to see that a nonprincipal ultrafilter U , construed as a subset of
ω2, is a tail set. The map X ÞÑ ωzX is a homeomorphism of U with its complement,
which is also a tail set. They cannot both be meager, and they cannot both be
comeager, so they cannot have the Baire property. Similarly, they cannot both have
measure 0 and they cannot both have measure 1, so they cannot be measurable.

9.191

(9.192) Theorem [ZF` AD] Every ultrafilter is countably complete.

Proof Suppose U is an ultrafilter over some set M , and suppose toward a contra-
diction that xXn | n P ωy is a sequence of subsets of M such that @n P ω Xn P U and
Ş

nPωXn R U . Let Y0 “
Ş

nPωXn, and for each n P ω, let Yn`1 “
`
Ş

mănXm

˘

zXn,
where

Ş

0 is understood in this case to be M , so Y1 “ MzX0. xYn | n P ωy is a
partition of M into sets not in U .

Let U 1 “
␣

A Ď ω
ˇ

ˇ

`
Ť

nPA Yn
˘

P U
(

. U 1 is a nonprincipal ultrafilter over ω, the
existence of which contradicts (9.191). 9.192

(9.193) Theorem [ZF` AD] For all x P ωω, x7 exists.

Proof Working in GB for convenience, we note that for any x P ωω, HODptxuq |ù
xrω1s is measurabley.9.184 Hence, in HODptxuq there exists I Ď ω1 of order type
ω1, such that I is a set of indiscernibles for Lrxs. It follows that I is in fact an
uncountable set of indiscernibles for Lrxs, so x7 (the theory of pLrxs; P, iqiPI1 , where
I 1 is any subset of I of order type ω) exists. 9.193

The following theorem of Solovay is an early example of the use of reals (i.e.,
subsets of ω) to code subsets of an uncountable cardinal, prefiguring the general
coding lemma of Moschovakis (9.207).

(9.194) Theorem (Solovay) [ZF`AD] Suppose X Ď ω1. Then tx P WO | }x} P Xu
is Π1

1.
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Proof We will use the recursive bijection x ÞÑ xxn | n P ωy of ωω with ωpωωq, as
described in the proof of (9.186). Consider the following game.

I and II respectively produce a and b in ωω in the usual way. II wins iff

1. a R WO; or

2. a P WO and

1. @n P ω bn P WO, and

2. X X p}a} ` 1q Ď t}bn} | n P ωu Ď X.

Thus, in order to win, I must code a countable ordinal, say α; and if I does this
then, in order to win, II must code a countable subset of X including X X pα` 1q.

We first observe that I cannot win this game. For suppose σ is a winning I-
strategy. Let S “ im tσ. S is Σ1

1 relative to σ, and S Ď WO. Thus there exists
α P ω1 such that @x P S }x} ă α. Let b P ωω be such that X X α Ď xbn | n P ωy.
Obviously, σ does not win against b.

Hence, there exists a winning II-strategy τ . Suppose x P WO. If }x} P X then
Dn P ω }ptτ xqn} “ }x}. Conversely, if Dn P ω }ptτ xqn} “ }x} then (since }ptτ xqn} P X
for all n P ω) }x} P X. Thus, for all x P WO,

(9.195) }x} P XØDn P ω }ptτ xqn} “ }x}.

As we have seen in the discussion of the prewellordering property of Π1
1, there is a

Π1
1 set D Ď ωω ˆ ωω such that for any y P WO and any z P ωω

z P WO^}z} ď }y}Øxz, yy P D.

Since x P WOÑ@n P ω ptτqn P WO, and WO is Π1
1, it follows that X is Π1

1pτq.
9.194

The following two of theorems are good examples of early work in the theory of
AD.

(9.196) Theorem (Solovay) [ZF`AD] Suppose X Ď ω1. Then X is constructible
from a real, i.e., X P Lrzs for some z P ωω.

Proof See Note 10.33.

(9.197) Theorem (Solovay) [ZF` DC` AD] ω2 is measurable.

Proof See Note 10.34.

Actually, (9.196) follows from (9.194) by a general theorem of ZF.

(9.198) Theorem [ZF] Suppose X Ď ω1 and A “ tx P ωω | x P WO^}x} P Xu is
Σ1

2pzq for some z P ωω. Then X P Lrzs.

Proof The proof is an instructive elaboration on the forcing constructions used
in the proofs of the preceding two theorems, but it is a bit of a digression and is
relegated to Note 10.35.



680 CHAPTER 9. ON BEYOND ZF

9.7.5.1 The size of the continuum

As we have seen, a wellordering of the continuum may be used to define a game on
ω that is not determined, so under the assumption of AD, ω2 cannot be wellordered.
In fact, assuming AD, there does not exist any uncountable wellordered subset of
ω2.

(9.199) Theorem [ZF` AD] There does not exist an injection of ω1 into ω2.

Proof Suppose f : ω1
inj
Ñ ω2. By (9.148.1) since im f is uncountable, it has a

perfect subset S. Any perfect set is equipollent with ω2, so let g : S bij
Ñ ω2. Then

g ˝ f is a bijection of a subset of ω1 with ω2, which gives a wellordering of ω2. As
noted above, this is impossible. 9.199

Thus, in the presence of AD, ω1 ę 2ω;3.126.1 and for all κ P Ord 2ω ę κ. Injec-
tions are therefore of little value in assessing the size of 2ω. Surjections, on the other
hand, are quite useful. Of course, any surjection of an ordinal κ to ω2 leads to a
bijection of a subset of κ with ω2, which cannot exist; so it is surjections f : R Ñ α
that interest us, where ‘R’ stands generically for ω2, ωω, etc.

Definition [ZF] Θ def
“ the least ordinal α such that there does not exist φ : ωω sur

Ñ α.

Note that the relevant functions here are those we have previously termed ‘norms’,5.107

and we may define Θ as the supremum of the lengths of norms on subsets of ωω.
We have seen that a complete Π1

1 set has a natural norm of length ω1, so Θ ą ω1.
Clearly, Θ is a cardinal, so Θ ě ω2. In ZFC, of course, Θ “ p2ωq`.

Just as AD imposes limitations on the complexity of subsets of ω2 relative to
subsets of ω (games on ω being essentially subsets of ω2, and strategies being
essentially subsets of ω), it also imposes limitations on the complexity of subsets
of ordinals below Θ relative to subsets of ω (of which (9.194) and (9.196) are early
examples). In particular, it imposes limitations on the lengths of wellorderings of
ordinals below Θ, and in this way it implies that there are many cardinals below
Θ.

The following theorem of Moschovakis provides considerable information about
Θ.

(9.200) Theorem [ZF` AD] Suppose α P Ord and there exists f : ωω sur
Ñ α. Then

there exists g : ωω sur
Ñ P α.

Proof We will use a fixed coding s of strategies for games on ω by reals. Thus, for
every x P ωω, sx is a I- or II-strategy, and every strategy is sx for some x P ωω. We
now define xgβ | β ď αy such that @β ď α gβ : ωω sur

Ñ P β. For finite β we do this
directly, say by letting gβx “ tγ ă β | xγ “ 0u. For infinite β ď α we proceed by

recursion on β. Given β ě ω, let hβ : β bij
Ñ β` 1 be any definite bijection, say,

1. hβ0 “ β;

2. hβpn` 1q “ n for n P ω; and

3. hβγ “ γ for ω ď γ ă β.

Given gβ , let gβ`1 be defined by the condition that gβ`1x “ hÑpgβxq.
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To define gβ for limit β we proceed as follows. For the nonce, if x, y P ωω and
z “ xx, yyp then let

ζz “ fx

Sz “ gζz y.

If z is not xx, yyp for any x, y P ωω then let ζz “ Sz “ 0. Given X Ď β, let GX be
game on ω in which the players I and II produce x and y, respectively, and II wins
iff

Sx “ X X ζxÑpζy ą ζx^Sy “ X X ζyq.

Suppose σ is a winning I-strategy for GX . Then

(9.201) @y P ωω S
tσy “ X X ζ

tσy,

and X is the only subset of β with this property. For suppose Y Ď β and δ P X△Y .
Let y be such that ζy “ δ ` 1 and Sy “ X X pδ ` 1q. Let x “ tσy. Then ζx ě δ ` 1
and Sx “ X X ζx ‰ Y X ζx.

Now suppose τ is a winning II-strategy in GX . Then

(9.202) @x P ωω
`

Sx “ X X ζxÑpζtτ x ą ζx^Stτ x “ X X ζ
tτ xq

˘

,

and X is the only subset of β with this property. For suppose Y Ď β, and Y ‰ X.
Let δ be the least member of X △ Y , and let x be such that ζx “ δ and Sx “
X X δ “ Y X δ. Then ζ

tτ x ą δ and S
tτ x “ X X ζ

tτ x ‰ Y X ζ
tτ x.

We now define gβx for x P ωω as follows. Recall that at the outset we defined
the surjection s from ωω to the set of strategies for games on ω. Suppose first that
sx is a I-strategy σ, there exists X Ď β satisfying (9.201) with σ “ sx, and σ is
a winning I-strategy in GX . As we have shown, there is at most one X Ď β with
this property vis-à-vis σ. Let gβx “ X. Similarly, suppose sx is a II-strategy τ ,
there exists X Ď β satisfying (9.202) with τ “ sx, and τ is a winning II-strategy
in GX . Again, there is at most one X Ď β with this property, and we let gβx “ X.
If neither of these two scenarios is applicable, let gβx “ 0.

The preceding arguments have shown that for every X Ď β one of the first two
scenarios is applicable for some x P ωω, so gβ : ωω sur

Ñ P β, as specified.
This completes the definition of xgβ | β ď αy. Let g “ gα. 9.200

(9.203) Theorem (Friedman) [ZF` AD] Θ is a limit cardinal.

Proof Suppose λ ă Θ is a cardinal. We will show that λ` ă Θ. By (9.200) there
exists g : ωω sur

Ñ P λ. It is easy to map P λ onto λ`, using first a pairing function
from λ to λ ˆ λ to map P λ onto the set of wellorderings of λ, and then applying
the function taking a wellordering to its order type. Thus, we obtain h : ωω sur

Ñ λ`.
9.203

(9.204) Theorem (Solovay) [ZF` AD] Θ “ ωΘ.

Proof The arguments for (9.200) and (9.203) show that there exists a function F
such that for every cardinal λ ă Θ and f : ωω sur

Ñ λ, F pfq : ωω sur
Ñ λ`. Suppose

α ă Θ. Let f : ωω sur
Ñ α. It is a simple matter, using F , to define from f a sequence

xgβ | β ď αy such that for each β ă α, gβ : ωω sur
Ñ ωβ . It follows that ωα ă Θ.

It follows that Θ “ ωΘ. 9.204
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It follows from (9.204) that Θ is pretty big: If we let κ0 “ ω and κn`1 “ ωκn ,
then Θ ą κn for all n P ω.

It is easy to show that

(9.205) ZF` ACωpPRq$ cf Θ ą ω, 55

but this does not follow from ZF ` AD, or even from ZF ` ADR. In fact, Solovay
showed that

ZF` ADR ` cf Θ ą ω$ConpZF` ADRq.

Thus, it follows from Gödel’s second incompleteness theorem that ConpZF`ADRqÑConpZF`
ADR` cf Θ “ ωq. Hence also9.205 ConpZF`ADRqÑConpZF`ADR`␣␣␣ACωpPRqq.

Things are a good deal more regular in the model LpRq.

(9.206) Theorem

1. [ZF` xV “ LpRqy] Θ is regular.
2. [ZF` AD` xV “ LpRqy] Θ is weakly inaccessible.56

Proof 1 As in the proof of (9.181) we define Φ : Ordˆωω sur
Ñ V . Suppose 0 ă

α ă Θ. Define gα : ωω sur
Ñ α as follows. Let β be the least ordinal such that there

exists x P ωω such that Φxβ, xy : ωω sur
Ñ α. Given z P ωω, if z “ xx, yyp for some

x, y P ωω and Φxβ, xy : ωω sur
Ñ α, let gαz “ pΦxβ, xyqy. Otherwise, let gαz “ 0.

Clearly, gα : ωω sur
Ñ α.

Now it is easy to use xgα | 0 ă α ă Θy to derive a contradiction from the
supposition that there exists f : α Ñ Θ such that α ă Θ and im f is cofinal in Θ.
Hence Θ is regular.

2 This follows directly from (9.203) and (9.206.1). 9.206

Recall that AD implies ADLpRq, so ZF`AD$ xΘ is weakly inaccessibley
LpRq

.9.206.2

9.7.5.2 The coding lemma

The remarkable coding lemma of Moschovakis improves on the already remarkable
(9.200) by relating the complexity of codes for subsets of an ordinal λ ă Θ to the
complexity of a wellfounded relation on a subset of ωω with rank λ. The use of the
recursion theorem is striking.

(9.207) Theorem: Moschovakis’s coding lemma [ZF ` AD ` DC] Suppose Γ
is a nonselfdual Wadge class including Σ1

1 and closed under ___, ^̂̂, DDD0, @@@0, and
DDD1.57 Suppose λ P Ord, and ă P Γ is an irreflexive wellfounded relation with rank
λ on a set D Ď ωω. (Note that D P Γ.) Suppose R Ď D ˆ ωω is such that
@x P D Dy xx, yy P R. Then there exists A P Γ such that A Ď R and

@α ă λ Dx P D Dy P ωω prkă x “ α^xx, yy P Aq.

55Remember that ACωpRq follows from AD. ACωpP Rq is of course a special case of ACω , which
is a special case of DC, which is an axiom frequently adopted in the setting of AD.

56Inaccessibility per se—i.e., strong inaccessibility—is of course out of the question.
57In the language of descriptive set theory, closure under the logical operations ___ and ^̂̂ is

equivalent to closure under (finite) union and intersection, respectively; and—given the existence
of universal sets for nonselfdual Wadge classes, together with ACωpRq, both of which follow from
AD—closure under DDD0 and @@@0 is equivalent to closure under countable union and intersection,
respectively. Closure under DDD1 is the same as closure under projection (along a type-1 coordinate
axis, such as ωω).
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Proof Given ă and R as above, we will use the following definition for A Ď ωωˆωω
and α P Ord.

1. A is a choice set below α
def
ðñ A Ď R and @β ă α Dx P D Dy P ωω prkă x “

β^xx, yy P Aq. (Note that A is a choice set below 0 iff A Ď R.)

2. A is a choice set at α
def
ðñ A is a choice set below α` 1.

Note that a choice set below α is a choice set below any β ă α, and a union of
choice sets below α is a choice set below α.

Suppose toward a contradiction that the theorem fails for Γ, and let λ be the
least ordinal for which it fails. It is easy to see that λ is a limit ordinal. Let ă

and R be such that rk ă “ λ and there does not exist a choice set in Γ below λ
(vis-à-vis ă and R). By virtue of the minimality of λ, for every α ă λ there exists
a choice set in Γ below α.

Let U Ď ωω ˆ ωω be a good universal set for Γ,9.172 and let s : ωω ˆ ωω Ñ ωω
be recursive such that for all a, b, c P ωω,

xa, xb, cy¨y P UØxsxa, by, cy P U.

As usual, for any A Ď ωω ˆ ωω and a P ωω, let Aa “ tb | xa, by P Au. Thus, for all
a, b, c P ωω

(9.208) xb, cy¨ P UaØ c P Usxa,by.

We will say that a P ωω is good below or at α
def
ðñ txx, yy | xx, yy¨ P Uau is a choice

set below or at α, respectively. By hypothesis, no a P ωω is good below λ.
Let G be the following game:

I and II play a and b in ωω, respectively. II wins iff for every α ă λ, if a is good
below α then b is good at α. In other words, if a is good then b is better. Note that
I wins iff a is good below 0 and for every α ă λ, if b is good below α then a is good
below α.

Suppose σ is a winning I-strategy. Then for any b P ωω, σ⃗b is good below some α,
and for every α ă λ, if b is good below α then σ⃗b is good below α. By hypothesis, for
every α ă λ there exists b P ωω such that b is good below α. Let C “ tσ⃗b | b P ωωu.
C P Σ1

1 Ď Γ. Let A “ txx, yy | Da P ωω pa P C ^xx, yy¨ P Uaqu. Then A P Γ and A
is a choice set below λ; contradiction.

By AD, there is a II-winning strategy τ . Let B Ď ωω ˆ ωω be such that for all
a P ωω

Ba “ txx, zy
¨ | x P D^ z P ωω^Dx1 ă x z P Uτ⃗psxa,x1yqu.

Then B P Γ. By the recursion theorem,9.171 let a0 be such that Ba0 “ Ua0 . Then9.208

for any x, z P ωω

z P Usxa0,xyØxx, zy
¨ P Ua0

Øx P D^Dx1 ă x z P Uτ⃗psxa0,x1yq.

For x P ωω, let gx “ sxa0, xy. Then for all x P D

Ugx “
ď

x1ăx

Uτ⃗pgx1q.
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Note that if x is ă-minimal then Ugx “ 0, so gx is good below 0 “ rkă x. In
general, suppose x P D and for all x1 ă x, gx1 is good below rkă x1. Then for
all x1 ă x, τ⃗pgx1q is good at rkă x1, so gx is good below supx1ăx rkă x1 “ rkă x.
It follows by ă-induction that for every x P D, Ugx is good below rkă x. Let
A “ txx1, y1y | Dx P D xx1, y1y¨ P Ugxu. Then A is a choice set below λ; contradiction.

Having obtained a contradiction from the existence of a winning strategy for
either player in G, we conclude that the the theorem holds for Γ. 9.207

In the typical application of the coding lemma R Ď D ˆ ωω is derived from a
function f : λ Ñ Ppωωq, with xx, yy P RØ y P fprkă xq. In particular, f may be
two-valued, acting as a characteristic function for a subset of λ. For example, we
might specify that fα be either 0̄ “ x0, 0, . . . , y or 1̄ “ x1, 1, . . . y, so that f represents
the set tα ă λ | fα “ 1̄u. More generally, we may apply this to functions from
products of ordinals.

Similarly, we may apply the coding lemma to obtain sets of reals corresponding
to sets of ordinals according to the following scheme.

Definition [ZF] Suppose n P ω and for each m P n, ďm is a prewellordering
of a set Dm (typically ωω in our applications). Let λm “ rk ďm. Then for any
A Ď λ0 ˆ ¨ ¨ ¨ ˆ λn- , CodepA; ď0, . . . ,ďn-q

def
“

␣

xx0, . . . , xn-y P D0 ˆ ¨ ¨ ¨ ˆDn-

ˇ

ˇ xrkď0 x0, . . . , rkďn- xn-y P A
(

.

(9.209) Theorem [ZF`AD] Suppose Γ is a nonselfdual Wadge class including Σ1
1

and closed under ___, ^̂̂, DDD0, @@@0, and DDD1. Let ∆ “ ΓX Γ̆.

1. Suppose ď P ∆ is a prewellordering of ωω. Let λ “ rk ď. Then for any A Ď λ,
CodepA; ďq P ∆.

2. More generally, suppose n P ω and for each m P n, ďm P ∆ is a prewellorder-
ing of ωω. For each m P n let λm “ rk ďm. Then for any A Ď λ0 ˆ ¨ ¨ ¨ ˆ λn- ,
CodepA; ď0, . . . ,ďn-q P ∆.

Proof 1 Note that ă and ” are in ∆, where x ” yØx ď y^ y ď x. Suppose
A Ď λ. Let

R “ txx, 1̄y | rkă x P Au Y txx, 0̄y | x P D^ rkă x R Au

Let B P Γ be a choice set for R. Then for any x P ωω,

x P CodepA; ďqØDx1 px1 ” x^xx1, 1̄y P Rq
Ø␣Dx1 px1 ” x^xx1, 0̄y P Rq.

Thus, CodepA; ďq is in both Γ and Γ̆, so it is in ∆.

2 Let ă1 be the (strict) lexicographic ordering of npωωq defined from ď0, . . . ,ďn- ,
i.e.,

xx0, . . . , xn-y ă1 xx10, . . . , x
1
n-y

Ø x0 ă0 x
1
0

_x0 ”0 x
1
0^x1 ă1 x

1
1

_ ¨ ¨ ¨

_x0 ”0 x
1
0^ ¨ ¨ ¨^xn´2 ”n´2 x

1
n´2^xn- ăn- x1n- .
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ă1 is in ∆ and is an irreflexive wellfounded relation (a prewellordering, in fact) Let

R “ txxx0, . . . , xn-y, yy |

By means of a recursive bijection of npωωq with ωω, such as xx0, . . . , xn-y ÞÑ

xx0, . . . , xn-yp,9.170.1.2 we may reduce this to the previous case. 9.209

(9.210) Theorem [ZF`AD] Suppose Γ is a nonselfdual Wadge class including Σ1
1

and closed under ___, ^̂̂, DDD0, @@@0, and DDD1. Let ∆ “ ΓX Γ̆. Let

δ “ suptrk ď | ď P ∆ is a reflexive prewellordering of ωωu
σ “ suptrk ă | ă P Γ is an irreflexive wellfounded relation on some D Ď ωωu.

1. δ is a cardinal.

2. σ is a regular cardinal.

Proof 1 It is easy to see that there is no longest ∆ prewellordering of ωω, so δ
is a limit ordinal, and there is no ∆ prewellordering of ωω of length δ.

Suppose toward a contradiction that λ ă δ and f : λ bij
Ñ δ. Let ď P ∆ be a

prewellordering of ωω of length λ. Let A “ txα, βy P λ ˆ λ | fα ď fβu. A is a
reflexive wellordering of length δ. Let C “ CodepA; ď,ďq. Then C P ∆,9.209.2 and
C is a reflexive prewellordering of ωω of length δ.

2 Since DDD1Γ “ Γ, if ă P Γ is a relation on D Ď ωω, then D P Γ, and if ă is
wellfounded, then there is a wellfounded ă1 P Γ with greater rank than ă. Hence,
σ is a limit ordinal and there does not exist an irreflexive wellfounded relation
ă P Γ on any D Ď ωω such that rk ă “ σ.

Suppose toward a contradiction that λ ă σ and f : λ Ñ σ is cofinal in σ.
Let ă P Γ be a prewellordering of D Ď ωω of length λ. Let U be universal for
Γ, and for the purpose of this argument, let Ua “ txx, yy | xa, xx, yypy P Uu. Let
R Ď D ˆ ωω be the set of xx, ay such that Ua is an irreflexive wellfounded relation
of rank fprkă xq. Let A P Γ be a choice set for R,9.207 and let ă1 consist of all pairs
@

xx, a, yyp, xx1, a1, y1yp
D

such that xx, ay “ xx1, a1y P A and

xy, y1y P Ua.

Then ă1 is an irreflexive wellfounded relation in Γ with rank σ. 9.210

AD provides much additional information about the cardinals associated with
pointclasses as in (9.210). We begin with a brief survey of the cardinals associated
with the projective hierarchy, omitting proofs.

Definition [ZF] We apply the naming convention of (9.210) to the projective point-
classes as follows.

δ1
n

def
“ suptrk ď | ď P ∆1

n is a reflexive prewellordering of ωωu

σ1
n

def
“ suptrk ă | ă P Σ1

n is an irreflexive wellfounded relation on some D Ď ωωu.

Several people contributed importantly to the following theorem, including Mar-
tin, Kunen, Moschovakis, Kechris, and Jackson.
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Theorem [ZF` AD` DC]

1. For each n ą 0, δ1
n “ σ1

n, and δ1
n is a regular cardinal.

2. ω1 “ δ1
1 ă δ1

2 ă ¨ ¨ ¨ .

3. For each odd n, δ1
n`1 “ pδ

1
nq
`,

4. For each odd n, δ1
n “ ωωpn´2q`1, where ωp0q “ 1 and @n P ω ωpn`1q “ ωωpnq.

Thus, δ1
3 “ ωω`1, δ1

5 “ ωωωω
`1, . . . .

As we have previously noted, absent AC, successor cardinals may be singular,
and assuming AD, this is demonstrably so for many successor cardinals. In par-
ticular, cf ωn “ ω2 for every 2 ă n ă ω (Martin), and for every n P ω there are
exactly 2n`1´ 1 regular cardinals less than δ1

2n`1 (Jackson). The first nine regular
cardinals (assuming AD` DC) are

ω

ω1 “ δ1
1

ω2 “ δ1
2

ωω`1 “ δ1
3

ωω`2 “ δ1
4

ωω¨2`1

ωωω`1

ωωωω
`1 “ δ1

5

ωωωω
`2 “ δ1

6.

AD also has large cardinal implications for cardinals below Θ. We have already
mentioned Solovay’s proofs that ω1 and ω2 are measurable. Jackson showed (as-
suming AD ` DC) that every uncountable regular cardinal less than supnPω δ1

n is
measurable.

Theorem (Steel, Woodin) [ZF` AD` xV “ LpRqy] Every uncountable regular
cardinal below Θ is measurable.

Much more than measurability is achievable:

(9.211) Theorem [ZF` AD` xV “ LpRqy] xrΘs is Woodiny
HOD

.

The inner model construction of (9.211) may also be used in an ultrapower con-
struction to obtain an inner model with infinitely many Woodin cardinals.

9.7.6 Determinacy from large cardinals

Martin’s proof of Π1
1-determinacy from the existence of a measurable cardinal was

the first use of a large cardinal hypothesis to prove determinacy. We will present
the proof in the context of homogeneous systems of ultrafilters, in which format it
is a paradigm of proofs of determinacy from large cardinals.

In this final section of the book we deviate somewhat from our pedagogical
principles in that we present a rather elaborate machinery of which we make rather
little use in the form of theorems actually proved. The development of homogene-
ity systems may be justified as an abstraction of the essence of Martin’s proof of
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Π1
1-determinacy, which does not unduly complicate the presentation of that argu-

ment. The discussion of weak homogeneity is not similarly justified by application.
Although we do indicate rather strongly how it figures in Martin’s proof9.235 that
Σ1

3 sets are ω2-Suslin, our principal purpose in its presentation is to permit a
comprehensible statement of the Martin-Steel theorem9.236 on the propagation of
homogeneity through the projective hierarchy, with projective determinacy as an
immediate consequence, which was a stunning breakthrough in the derivation of
determinacy from large cardinal hypotheses.

9.7.6.1 Homogeneity systems

We use the terminology of ultrafilters and measures interchangeably. Thus, a mea-
sure over a set Z is in this discussion a 2-valued measure on PZ, and it is the
characteristic function (relative to PZ) of the corresponding ultrafilter over Z.
Additivity of measures is the same as completeness of ultrafilters.

Definition [ZF]

1. Suppose κ is a cardinal. msκ Z
def
“ the set of κ-complete ultrafilters (κ-additive

measures) over ăωZ. Note that κ ě λÑmsκ Z Ď msλ Z.

2. msZ def
“ msω1 Z. We will be exclusively interested in the case that κ ą ω, in

which case msκ Z Ď msZ.

3. Suppose U P msZ. The dimension of U def
“ dimU

def
“ the (unique) n P ω such

that nZ P U .

(9.212) Definition [ZF]

1. Suppose U,U 1 P msZ and n “ dimU ě dimU 1 “ m. Then U projects to U 1
def
ðñ for all A Ď mZ, A P U 1Øts P nZ | s æm P Au P U . (Note that since U 1

is an ultrafilter and U is a filter, the forward implication implies the reverse.)

2. A tower of ultrafilters over ăωZ def
“ a sequence xUn | n ă ky, where k ď ω,

such that

1. for each n ă k, Un P msZ and dimUn “ n; and
2. for each m ď n ă k, Un projects to Um.

3. An infinite tower xUn | n ă ωy of ultrafilters over ăωZ is countably complete
def
ðñ for every xZn | n P ωy such that @n P ω Zn P Un, there exists z P ωZ

such that @n P ω z æn P Zn.

(9.213) Definition [ZF]

1. Ū is a homogeneity system over X with support Z
def
ðñ

1. Ū : ăωX Ñ msZ;
2. @s P ăωX dim Ūs “ |s|; and
3. @s, t P ăωX ps Ď tÑ Ūt projects to Ūsq.

2. A homogeneity system is κ-complete
def
ðñ all of its ultrafilters are κ-complete.

3. Suppose Ū is a homogeneity system over X with support Z.
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1. Suppose x P ωX. Then Ūx
def
“ xŪx æn | n P ωy, which is a tower of ultrafil-

ters over ăωZ.
2. SŪ

def
“ tx P ωX | Ūx is countably completeu.

4. Suppose A Ď ωX. A is (κ-)homogeneous (with support Z)
def
ðñ for some

(κ-complete) homogeneity system Ū over X (with support Z), A “ SŪ .

The above notion of a homogeneous subset of ωX is similar to that of a Suslin set.
We may say that A Ď ωX is Z-Suslin5.120 iff there is a sequence tree T on X ˆ Z
such that A “ p¨rT s “ tx P ωX | Dz P ωZ xx, zy¨ P rT su. (Recall the definitions5.58

of p¨ and of Ts, Trss, and Trxs.) If instead of a homogeneity system we use the
function Ū : ăωX Ñ PpăωZq defined by the condition that Ūs “ tTsu, then for any
x P ωX, Ūx “ xtTx ænu | n P ωy, which is countably complete just in case there
exists z P ωZ such that @n P ω z æn P Tx æn, i.e., xx, zy¨ P rT s, so SŪ “ p¨rT s. Thus,
‘S’ here stands for ‘Suslin’.

The relationship of homogeneity per se to Suslin properties is illuminated by
the following theorem of Woodin.

(9.214) Theorem [ZFC] Suppose Ū is a |X|`-complete homogeneity system over
X with support Z. Then there is a tree T on X ˆ Z such that

1. @s P ăωX Ts P Ūs; and

2. SŪ “ p¨rT s.

Proof For each x P ωXzSŪ let xZxn | n P ωy witness that Ūx is not countably
complete. Thus, @n P ω Zxn P Ūx æn, but ␣Dz P ωZ @n P ω z æn P Zxn. We may
suppose that

(9.215) @n ă ω @u P Zxn @m ă n u æm P Zxm;

otherwise, replace Zxn by tu P Zxn | @m ă n u æm P Zxmu, which can be done by
virtue of the fact that Ūx æn projects to Ūx æm.

Let T be the tree on X ˆ Z such that for every n P ω and s P nX,

Ts “
nZ X

č

tZxn | x P
ωXzSŪ ^ s Ď xu.

T is a tree by virtue of (9.215). Ū is assumed to be |X|`-complete, and it is by
definition9.213.1.1 ω1-complete. The completeness of any nonprincipal ω1-complete
ultrafilter is measurable,9.15.1 and any principal ultrafilter is λ-complete for all λ, so
Ū is |ωX|`-complete. Hence, Ts P Ūs for each s P ăωX, i.e., (9.214.1) holds.

Suppose x P ωXzSŪ , and suppose z P ωZ. Then there exists n P ω such that
z æn R Zxn, so z æn R Tx æn; hence, z R Trxs. Thus, if x R SŪ then x R p¨rT s.
Inversely, suppose x P SŪ . Then Ūx is countably complete, so9.214.1 there exists
z P ωZ such that @n P ω z æn P Tx æn; hence, z P Trxs, so x P p¨rT s. 9.214

Definition [ZFC]

1. Suppose T is a sequence tree on X ˆ Z. T is κ-homogeneous
def
ðñ there is a

κ-complete homogeneity system Ū on X with support Z such that

1. @s P ăωX Ts P Ūs; and
2. p¨rT s “ SŪ .
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Ū is a homogeneity system for T in this case.

2. Suppose A Ď ωX. A is κ-homogeneously (Z-)Suslin
def
ðñ A “ p¨rT s for some

κ-homogeneous tree T (on X ˆ Z).

(9.216) Clearly, if A Ď ωX is κ-homogeneously Z-Suslin then A is κ-homogeneous
with support Z, and by virtue of (9.214), if A is κ-homogeneous with support Z and
κ ą |X| then A is κ-homogeneously Z-Suslin.

Before continuing with the general theory, we illustrate the notion of homogene-
ity with the urexample of Π1

1.

(9.217) Theorem [ZFC] Suppose A Ď ωω is Π1
1, and suppose κ is a measurable

cardinal. Then A is κ-homogeneously Suslin.

Proof Let5.60 T Ď ăωpω ˆ ωq be a sequence tree such that A “ ␣ p¨rT s “ tx P
ωω | Trxs is wellfoundedu. Let xsn | n P ωy be an enumeration of ăωω such that
@m,n P ω pm ă nÑ sn Ę smq.

Given n ď ω and s P nω, let ăs be the total order on n such that for all
m,m1 ă n, m ăs m

1 iff

1. sm, sm1 P Trss^ sm ăBK sm1 , or

2. sm P Trss^ sm1 R Trss, or

3. sm, sm1 R Trss^m ă m1,

where ăBK is the Brouwer-Kleene ordering of ăωω.5.62 Note that for s, t P ďωω,

s Ď tÑ ăsĎăt,

and we have allowed for the possibility that n “ ω. If x P ωω then ăx is a total
order of ω that arranges those n P ω such that sn P Trxs according to the Brouwer-
Kleene ordering of Trxs, and arranges the remaining elements of ω above them in
(increasing) numerical order. Thus,

(9.218) ăx is wellordered iff Trxs is wellfounded.

Let T˚ Ď ăωpω ˆ κq be the sequence tree such that for every n P ω, s P nω and
θ P nκ, xs, θy¨ P T˚ iff @m,m1 P n pθm ă θm1 Øm ăs m

1q.

Suppose n P ω and s P nω.

(9.219) Then

1. T˚s consists of injective elements of nκ; and
2. for every a P rκsn there is a unique θ P T˚s such that im θ “ a.

(9.220) Claim For all x P ωω, x P p¨rT˚sØx R p¨rT s.

Proof Suppose x P p¨rT˚s. Let θ P ωκ be such that xx, θy¨ P rT˚s. Then
tpsn, θnq | n P ωu is an order-preserving function from pω;ăxq to pκ;ăq. Hence ăx
is wellordered, so9.218 Trxs is wellfounded, so x R p¨rT s.

Conversely, if x R p¨rT s then Trxs is wellfounded, so ăx is a wellordering of ω.
Since κ is uncountable there exists θ : ω Ñ κ that is order-preserving. Clearly,
xx, θy¨ P rT˚s, so x P p¨rT˚s. 9.220

Suppose U is a normal ultrafilter over κ. For each n P ω, let Un be the cor-
responding ultrafilter over rκsn.9.42 By virtue of the preceding remarks, there is a
natural map Ū : ăωω Ñ msκ κ such that for each s P nω
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Ūs “
␣

X Ď ăωκ
ˇ

ˇ tim θ | θ P X X T˚s u P Un
(

.

Note that9.219.2

(9.221) T˚s P Ūs.

It follows from the proof of (9.66) that for any Y P Un there exists Y 1 P U such
that rY 1sn Ď Y . Conversely, for any Z P U , rZsn P Un; otherwise, rκsnzrZsn P Un,
so for some Z 1 P U , rZ 1sn X rZsn “ 0, which is impossible, since Z X Z 1 P U , so
|Z X Z 1| ě n. Thus, for all X Ď T˚s

(9.222) X P ŪsØDZ P U @θ P T
˚
s pim θ Ď ZÑ θ P Xq.

(9.223) Claim Suppose m ď n ă ω, t P mω, and t Ď s P nω. Then Ūs projects to
Ūt.9.212.1 Hence, Ū is a homogeneity system over ω with support κ.9.213.1

Proof Suppose X Ď mκ. If X P Ūt, let9.222 Z P U be such that @θ P T˚t pim θ Ď
ZÑ θ P Xq. Then @θ P T˚s pim θ Ď ZÑ θ æm P Xq, so9.222 tθ P nκ | θ æm P Xu P
Ūs. 9.223

Thus, if x P ωω then Ūx “ xŪx æn | n P ωy9.213.3.1 is a tower of ultrafilters over
ăωω.

(9.224) Claim Suppose x P ωω. Then x P p¨rT˚s iff Ūx is countably complete.

Proof Suppose x P p¨rT˚s. Then9.220 x R p¨rT s, i.e., Trxs is wellfounded, so9.218

pω;ăxq is wellordered. Suppose for each n P ω, Xn P Ūx æn. For each n P ω, let9.222

Zn P U be such that for all θ P T˚x æn, im θ Ď ZnÑ θ P Xn. Let Z “
Ş

nPω Zn.
Then Z P U , so Z is uncountable. Let θ : pω;ăxq Ñ pZ;ăq be order-preserving.
Then for each n P ω, θ æn P T˚x æn and impθ ænq Ď Z Ď Zn, so θ æn P Xn.

Conversely, suppose xŪx æn | n P ωy is countably complete. Then there exists
θ P ωκ such that @n P ω θ æn P T˚x æn.9.221 xx, θy¨ P rT˚s, so x P p¨rT˚s. 9.224

Thus, A “ ␣ p¨rT s “ p¨rT˚s “ SŪ , so A is κ-homogeneously Suslin. 9.217

Homogeneous sets have various regularity properties, of which the most impor-
tant is determinacy.

(9.225) Theorem [ZFC] Suppose A Ď ωX is |X|`-homogeneous. Then A is deter-
minate.

Proof Let Ū be an |X|`-complete homogeneity system over X with support Z
such that A “ SŪ , and let T be a sequence tree on X ˆ Z such that9.214

1. @s P ăωX Ts P Ūs; and

2. SŪ “ p¨rT s.

Let GT be the following game:

1. I plays pairs xk, ly, where k P X and l P Z.

2. II plays elements of X.

3. Let xI P ωX and y P ωZ be such that xxI, yy¨ is I’s sequence of moves, and let
xII P ωX be II’s sequence of moves. Let x “ xI ˚ xII. I wins iff xx, yy¨ P rT s.
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Let us compare GT to the game GA, where A “ p¨rT s. In both cases I is trying to
get x “ xI ˚ xII in p¨rT s; however, in the former game, I is required to provide a
witness y, i.e., y P ωZ such that xx, yy¨ P rT s.

GT is a closed game, i.e., I wins iff the successive values of xx æn, y æny¨, as they
become known, are always in the tree T .58 GT is therefore determined. We will use
this to show that GA is determined.

It is straightforward to show that if I has a winning strategy σ in GT then I
has a winning strategy σ1 in the easier game GA by playing according to σ and
discarding the auxiliary information about the companion sequence y, i.e., letting
σ1s “ pσsq0.

Conversely, suppose II has a winning strategy τ in GT . Let τ 1 be the following
strategy for II in GA.

Given sI P n`1X and sII P nX, let s “ sI ˚ sII, and let s1 “ s æpn ` 1q. Let τ 1psq
be that (unique) k P X such that tt P Ts1 | τ

`

xsI, ty¨ ˚ sII
˘

“ ku P Ūs1 . (k exists
because Ts1 P Ūs1 and Ūs1 is |X|`-complete.) For future reference, let Xn`1 “ tt P
Ts1 | τ

`

xsI, ty¨ ˚ sII
˘

“ τ 1psqu; and let X0 “ t0u, which is the only member of U0.

Suppose toward a contradiction that τ 1 is not a winning strategy for II.

Suppose xI P ωX is such that x “ xI˚τ 1 P A “ p¨rT s “ SŪ , i.e., Ūx “ xŪx æn | n P ωy
is countably complete. Let xXn | n ă ωy be the sequence of sets Xn P Ūx æn
used by II in playing according to τ 1 against xI; and let y P ωZ be such that
@n P ω py æn P Xnq. Then xxI, yy¨ ˚ xII “ xxI, yy¨ ˚ τ .

Then, on the one hand, y æn P Tx æn for each n P ω, so xx, yy¨ P rT s; whereas,
on the other hand, since τ is a winning II-strategy in GT , xx, yy¨ R rT s. This
contradiction establishes that τ 1 is a winning II-strategy in GA. 9.225

Putting (9.217) together with (9.225) we have Martin’s theorem:

(9.226) Theorem [ZFC] Suppose there exists a measurable cardinal. Then Det Π1
1.

Measurability is much more than is needed for Π1
1-determinacy. For example, it is

sufficient that there exist a cardinal κ such that κ Ñ pω1q
ăω
ω .59 A proof from this

hypothesis is fairly easily constructed along the lines of the proof given above (with
homogeneous sets implied by the partition relation in place of those derived from
a homogeneity system), but for our purposes this refinement is unnecessary, and
we are actually interested in the generalization to more complex sets, for which the
above treatment in terms of homogeneity systems is appropriate.

9.7.6.2 Weak homogeneity

Suppose B Ď ωpX ˆ ωq is Z-Suslin, say B “ p¨rT s, where T is a sequence tree
on pX ˆ ωq ˆ Z; and suppose A “ p¨B “ tx P ωX | Dy P ωω xx, yy¨ P Bu. Then
A “ p¨rT 1s, where T 1 “ txs, xt, uy¨y¨ | xxs, ty¨, uy¨ P T u. T 1 is a sequence tree on
X ˆ pω ˆ Zq, so A is pω ˆ Zq-Suslin.

Note that if X “ ω and B is in a pointclass Γ then A P DDD1Γ, the class whose
members are obtained from sets in Γ by existential quantification over a real variable
(equivalently, projection along a coordinate of type 1). Π1

n and Σ1
n`1, for example,

are related in this way.
58It doesn’t matter that by the time we know y æn we already know x æp2n´ 1q. We still only

check that xx æn, y æny¨ P T˚.
59In fact, it suffices that sharps exist.
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Suppose now that T is homogeneously Suslin, via a homogeneity system Ū :
ăωpX ˆ ωq Ñ msκ Z, so that xx, yy¨ P B iff the tower Ū xx,yy

¨
of ultrafilters over

ăωZ is countably complete. Then x P A iff there exists y P ωω such that Ū xx,yy
¨

is
countably complete. A is weakly homogeneous in the following sense.

(9.227) Definition [ZF]

1. Suppose A Ď ωX. A is (κ-)weakly homogeneous (with support Z)
def
ðñ there

is a (κ-complete) homogeneity system Ū over X ˆ ω (with support Z) such
that A “ tx P ωX | Dy P ωω xx, yy¨ P SŪu “ p¨ SŪ .9.213.3.2

2. Suppose T is a sequence tree on XˆZ. T is (κ-)weakly homogeneous
def
ðñ there

is a (κ-complete) homogeneity system Ū over X ˆ ω with support Z such
that

1. @xs, ty¨ P ăωpX ˆ ωq Ts P Ūxs,ty¨ ; and
2. p¨rT s “ p¨ SŪ .

3. A Ď ωX is (κ-)weakly homogeneously (Z-)Suslin
def
ðñ A “ p¨rT s for some

(κ-)weakly homogeneous tree T (on X ˆ Z).

It turns out that for sufficiently large cardinals κ, κ-weak homogeneity is itself a
powerful regularity property.

Note that in the scenario described just preceding this definition, the tree T 1

is not rendered weakly homogeneous by Ū , because the ultrafilters Ūxs,ty¨ are over
ăωZ, not ăωpω ˆ Zq, but this is easily remedied.

(9.228) Theorem [GBC] Suppose X is a set, κ is an uncountable cardinal.

1. Suppose B Ď ωpX ˆ ωq is κ-homogeneous with support Z. Then p¨B is κ-
weakly homogeneous with support Z.

2. Suppose Z is infinite60 and B Ď ωpXˆωq is κ-homogeneously Z-Suslin. Then
p¨B is κ-weakly homogeneously Z-Suslin.

Proof See Note 10.36. 9.228

With reference to the urexample of homogeneity of Π1
1 sets,9.217 we have:

(9.229) Theorem [ZFC] Suppose A is Σ1
2 and κ is measurable. Then A is κ-weakly

homogeneously Suslin.9.227.1

For countable sets X, weak homogeneity has the following equivalent definition.

(9.230) Theorem [ZFC] Suppose X is countable, T is a tree on X ˆ Z, and
κ ą ω. Then T is κ-weakly homogeneous iff there exists a countable set U Ď msκ Z
such that for all x P ωX, if x P p¨rT s then there is a countably complete tower
xUn | n P ωy P

ωU such that @n P ω Tx æn P Un.

60We assume Z is infinite so that |ω ˆ Z| “ |Z|, but this is also the only interesting case. If Z
is finite and T Ď ăωpX ˆ Zq is a tree, let S “ ts P ăωX | Ts ‰ 0u. Then S is a tree, and for all
x P ωX, x P rSs iff Trxs is infinite iff Trxs has an infinite branch, by König’s lemma.9.56 Hence,
p¨rT s “ rSs, and every Z-Suslin set is closed. If Z is finite (or even countable) then all countably
complete ultrafilters over ăωZ are principal, so all towers are countably complete, and p¨ Ū “ ωX
for any homogeneity system Ū over X with support Z. (The reason homogeneously Z-Suslin is
more restrictive than Z-Suslin in the finite case is that it excludes the possibility that Ts “ 0 by
the requirement that Ts be in Ūs.)
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Proof See Note 10.37. 9.230

It is often useful to view towers of ultrafilters in terms of elementary embeddings
of their ultrapowers. Suppose xUn | n P ωy is a tower of ultrafilters over ăωZ.
Recall that by definition, for each n P ω, dimUn “ n, so Un is—in effect—an
ultrafilter over nZ. Since Un is ω1-complete,

nZV {Un is wellfounded, and we let
πn :

nZV {Un Ñ UltUnpV q be the transitive collapse. Note that 0Z “ t0u “ 1, so
U0 “ t1u and

0ZV {U0 –
1V – V , and UltU0pV q “ V .

Suppose m ď n ă ω. Given f : mZ Ñ V , let f̄ : nZ Ñ V be such that
@u P nZ f̄puq “ fpu æmq. Then f ”Um gØ f̄ ”Un ḡ,9.212.2.2 so rf sUm ÞÑ rf̄ sUn

is a well defined injection of
mZV {Um into

nZV {Un, and it is elementary. Define
imn : UltUmpV q Ñ UltUnpV q so that for all f : mZ Ñ V ,

imnπmrf sUm “ πnrf̄ sUn .

For n P ω let Mn “ UltUnpV q and let Mn “ pMn; Pq.
“

rimn | m ď n ă ωs, rMn | n P

ωs
‰

is a directed system of elementary embeddings, and its direct limit is defined in
terms of its continuation to a directed elementary system

“

rimn | m ď n ď ωs, rMn |

n ď ωs
‰

of length ω`1, such that |Mω| “
Ť

năω inω
ÑMn. Mω and inω are uniquely

defined up to isomorphism, and we refer to Mω as the direct limit of the system,
with the understanding that the embeddings inω are intrinsic to its status as such.
Let Mω “ pMω;Eωq.

(9.231) Concretely, we may take Mω to consist of pairs xn, ay, where n P ω, a PMn,
and there do not exist n1 ă n and a1 PMn1 such that in1na

1 “ a. Given xn0, a0y and
xn1, a1y in Mω, let n “ maxtn0, n1u. Then xn0, a0yEω xn1, a1y iff in0na0 P in1na1.

(9.232) Theorem [GBC] Suppose xUn | n P ωy is a tower of ultrafilters over ăωZ.
Then it is countably complete iff the direct limit of the corresponding directed system
of embeddings is wellfounded.

Proof Suppose xUn | n P ωy is countably complete. Using the above terminology,
suppose toward a contradiction that Mω is not wellfounded. Then there is a de-
scending ω-sequence

@

xnk, αky
ˇ

ˇ k P ω
D

9.231 in the ordinals of Mω. Since each Mn

is wellfounded, xnk | k P ωy is unbounded, and by taking a subsequence we may
suppose that xnk | k P ωy is strictly increasing. For each k P ω let fk : nkZ Ñ Ord
represent αk in Mnk

“ UltUnk
pV q. Let Zk “ tu P nk`1Z | fnk

pu ænkq ą fnk`1puqu P
Unk`1 . By hypothesis there exists z P ωZ such that for each k P ω, z ænk`1 P Zk.
Then xfnk

pz ænkq | k P ωy is a descending ω-sequence in Ord.
Inversely, suppose xUn | n P ωy is not countably complete, and let Zn (n P ω)

be such that Zn P Un and there does not exist z P ωZ such that @n P ω z æn P Zn.
By virtue of (9.212.2.2) we may suppose that for all m ă n ă ω, if u P Zn then
u æm P Zm. Let T “

Ť

nPω Zn. Then T is a sequence tree on Z, which by hypothesis
has no infinite branch, so it is wellfounded. Let ρ : T Ñ Ord be its rank function.
For each n P ω, let fn : nZ Ñ Ord be such that for all u P nZ,

fnu “

#

ρu if u P Zn
0 otherwise.

For each n P ω, let an “ πnrfnsUn . For each u P Zn`1, u æn P Zn and fnpu ænq “
ρpu ænq ą ρpuq “ fn`1puq, so inpn`1qan ą an`1, and ipn`1qωan`1Eω inωan. It
follows that Mω “ pMω;Eωq is not wellfounded. 9.232
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By virtue of (9.232), we use ‘wellfounded’ synonymously with ‘countably com-
plete’ in reference to towers of ultrafilters.

The above point of view is quite useful in the consideration of homogeneity
systems. Suppose Ū : ăωX Ñ msZ is a homogeneity system. For each n P ω
and s P nX,

nZV {Ūs is wellfounded, and we let πs :
nZV {Ūs Ñ UltŪs

pV q be the
transitive collapse. Suppose s, t P ăωX and s Ď t. Let m “ |s| and n “ |t|. Given
f : mZ Ñ V , let f̄ : nZ Ñ V be such that f̄puq “ fpu æmq. Then rf sŪs

ÞÑ rf̄ sŪt

is a well defined injection of
mZV {Ūs into

nZV {Ūt, and we define the elementary
embedding ist : UltŪs

pV q Ñ UltŪt
pV q so that for all f : mZ Ñ V ,

istπsrf sŪs
“ πtrf̄ sŪt

.

For s P ăωX let Ms “ UltŪs
pV q and let Ms “ pMs; Pq.

Suppose x P ωX. Then Ūx “ xŪx æn | n P ωy is a tower of ultrafilters over ăωZ.
For m ď n P ω, let Mx “ rMx æn | n ă ωs, and let ix “ ripx æmqpx ænq | m ď n ă ωs.
Then rix,Mxs is a directed system of elementary embeddings. Let Mx

ω be its direct
limit. By virtue of (9.232), SŪ is the set of x P ωX such that Mx

ω is wellfounded.
As noted previously, the above proof of Det Π1

1 is a model for proofs of deter-
minacy from large cardinal hypotheses. The following are several key elements of
the proof.

1. If A Ď ωω is Σ1
1 then A is the projection of a closed subset of ωω ˆ ωω. In

other words, there is a sequence tree T on ω ˆ ω such that A “ p¨rT s.
2. If A Ď ωω is the projection of a closed subset of ωωˆ ωω then ␣A is κ-Suslin

for any uncountable cardinal κ, i.e., there is a sequence tree T˚ on ωˆκ such
that ␣A “ p¨rT˚s.

3. If κ is measurable then the tree T˚ may be designed to be homogeneous, i.e., for
each s P ăωω there is an ω1-complete ultrafilter Us over T˚s such that for any
x P ωω, xUx æn | n P ωy is a tower, which is countably complete iff x P p¨rT˚s.

4. If T˚ is homogeneous in this sense then p¨rT˚s is determinate.

A key construct relates trees T on ω ˆ Z and T 1 on ω ˆ Z 1 so that an infinite
branch in T 1

rxs witnesses the wellfoundedness of Trxs and hence the nonexistence of
an infinite branch in Trxs. In the case of Σ1

1{Π
1
1, Z may be taken to be ω, which

makes it quite easy to define T 1, with Z 1 being any cardinal κ ě ω1, and a branch
of T 1

rxs amounting to an order-preserving tagging of Trxs by ordinals ă κ. By taking
κ measurable, we can make T 1 homogeneous and derive regularity consequences
for p¨rT s. When Z is not countable a more sophisticated construction of T 1 is
necessary so that the wellfoundedness of Trxs may be witnessed by a branch of T 1

rxs,
with homogeneity systems playing a critical role. Specifically, a κ-complete weak
homogeneity system for T is used to define T 1, along with a λ-complete homogeneity
system for T 1, with λ ă κ typically.

(9.233) Definition [GBC] Suppose T is a κ-weakly homogeneous tree on X via the
homogeneity system Ū : ăωpX ˆ ωq Ñ msκ Z. Using the terminology elaborated
following Theorem 9.232, for any λ P Ord, the Martin-Solovay tree def

“ T̃λ
def
“ the

sequence tree on X ˆ λ such that for all n P ω and xs, vy¨ P npX ˆ λq, xs, vy¨ P T̃ iff

@i, j ă n
`

si ⫋ sjÑ vj ă ipxs æ |si|,siy¨qpxs æ |sj |,sjy¨qpviq
˘

,

where s is the fixed enumeration of ăωω posited at the beginning of the proof of
(9.217).
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(9.234) Theorem [GBC] Suppose T , Ū , and T̃λ are as in (9.233). If λ ą 2|Z| then
p¨rT̃λs “ ωXz p¨rT s.

Proof Given x P ωX and i P ω, let

Uxi “ Ūxx æ |si|,siy¨ .

Analogously, let πxi “ πxx æ |si|,siy¨ andMx
i “Mxx æ |si|,siy¨ ; and let ixij “ ipxx æ |si|,siy¨qpxx æ |sj |,sjy¨q

whenever si Ď sj .
Let T̃ “ T̃λ, and suppose x P p¨rT̃ s. Let f P ωλ be such that xx, fy¨ P rT̃ s.

Given i, j P ω such that si ⫋ sj , it follows from the definition of T̃ 9.233 that fj ă
ixijfi. Note that if y P ωω is such that si ⫋ sj Ď y then ixij “ i

xx,yy¨

|si||sj |
, so fj ă

i
xx,yy¨

|si||sj |
fi, and—more to the point—

i
xx,yy¨

|sj |ω
fj ă i

xx,yy¨

|si|ω
fi.

Now suppose toward a contradiction that x P p¨rT s. Let y P ωω be such that
Ū xx,yy

¨
is countably complete, so that M

xx,yy¨

ω is wellfounded. Let xin | n P ωy be
such that xsin | n P ωy is a strictly increasing sequence of initial segments of y.
Then

@

i
xx,yy¨

|sin |ω
fin

ˇ

ˇn P ω
D

is a strictly decreasing sequence of ordinals in M
xx,yy¨

ω ,
which is impossible, as it is wellfounded.

Conversely, suppose x R p¨rT s. Then Trxs is wellfounded. Let ρ : Trxs
sur
Ñ η be its

rank function, where η is the height of Trxs. Note that |η| ď |Z|.
For i P ω let

fi “ πxi rρ æTx æ |si|sUx
i
,

regarding Uxi “ Ūxx æ |si|,siy¨ as an ultrafilter over Tx æ |si| (or, equivalently, extending
ρ arbitrarily to a total function on ăωZ).

Note that Z cannot be finite (or even countable), because in that case all count-
ably complete ultrafilters over ăωZ are principal, so all towers are countably com-
plete, and p¨rT s “ ωX, contradicting the choice of x. Given that Z is infinite,
|fi| ď |

Zη| ď |ZZ| “ 2|Z|. Hence, fi ă λ.
Suppose si ⫋ sj . Then for any u P Tx æ |sj |, u æ |si| P Tx æ |si|, and ρpuq ă

ρpu æ |si|q. Since Uxj projects to Uxi ,

fj ă ixijfi “ ipxx æ |si|,siy¨qpxx æ |sj |,sjy¨qfi.

Thus, xx, fy¨ P rT̃ s, so x P p¨rT̃ s. 9.234

The above construction of T̃ was originally carried out by Martin and Solovay,
starting from a κ-weakly homogeneous Suslin tree T for an arbitrary Σ1

2 set A Ď
ωωˆωω, where κ is measurable.9.229 In this case T̃ is a λ-Suslin tree for the arbitrary
Π1

2 set B “ pω ˆ ωqzA, where λ is a cardinal ą 2κ. It follows that the arbitrary
Σ1

3 set C “ pB Ă ωω is also λ-Suslin. As noted following (9.226), a measurable
cardinal is more than is needed for this. Assuming the existence of sharps, Martin
was able to define a T̃ -like sequence tree on ω ˆ uω, where uω is the ωth uniform
indiscernible. It can be shown that uω ă ω3, which yields the following theorem.

(9.235) Theorem [ZFC] Suppose @x P ωω px7 existsq. Then every Σ1
3 set is ω2-

Suslin.
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Note that Π1
2 sets are not shown by this construction to be homogeneously Suslin,

nor are Σ1
3 sets shown to be weakly homogeneously Suslin; they are simply shown to

be Suslin. Nevertheless, the Martin-Solovay construction holds the key to propagat-
ing homogeneous and weakly homogeneous Suslin representations up the projective
hierarchy, and the following theorem of Martin and Steel unlocks the door.

(9.236) Theorem (Martin, Steel) [ZFC] Suppose λ is a Woodin cardinal and
T is a λ`-weakly homogeneous tree. Then for every µ ă λ, for every sufficiently
large ν, the tree T̃ ν defined as in (9.233) (from a given homogeneity system) is
µ-homogeneous.

As we have seen, if κ is measurable then any Π1
1 set is κ-homogeneously Suslin,

so any Σ1
2 set is κ-weakly homogeneously Suslin. If λ ă κ is Woodin then any Σ1

2

set is λ`-weakly homogeneously Suslin, so any Π1
2 set is µ-homogeneously Suslin

for every µ ă λ,9.236 so any Σ1
3 set is µ-weakly homogeneously Suslin for every

µ ă λ. If there is a Woodin cardinal λ1 ă λ, then by the same reasoning any
Π1

3 set is µ-homogeneously Suslin for every µ ă λ1,9.236 so any Σ1
4 set is µ-weakly

homogeneously Suslin for every µ ă λ1.
This yields the following corollary of (9.236).

Theorem [ZFC] Suppose n P ω and there are n Woodin cardinals with a measurable
cardinal above them. Then Det Π1

n`1.

This of course implies that if there are infinitely many Woodin cardinals with
a measurable cardinal above them then all projective sets are determinate. This
result was soon improved by Woodin as follows.

Theorem [GBC] Suppose there exist infinitely many Woodin cardinals xλn | n P ωy
and a measurable cardinal above them. Then every set of reals in LpRq is λ-weakly
homogeneously Suslin for every λ ă supnPω λn. Hence ADLpRq.

At the level of consistency, the measurable above the Woodin cardinals is unneces-
sary, and its elimination allows the converse to be proved.

Theorem (Woodin) [S] The following theories are equiconsistent, i.e., the con-
sistency of each implies the consistency of the other:

1. ZFC` xthere exist infinitely many Woodin cardinalsy.

2. ZF` AD.

We have previously established relationships between large cardinals and ideals
over relatively small cardinals. Such relationships also hold for determinacy. Recall
Solovay’s result9.186 that ZF ` AD$ xthe closed unbounded filter over ω1 is an
ultrafiltery, which is to say xNSω1 is 2-saturatedy, where NSλ

def
“ the nonstationary

ideal over a cardinal λ. In the context of ZFC, of course, satω1 ě ω2.9.101.5.2 Steel and
Van Wesep, using a forcing construction of Steel, showed that if ZF`AD`DC`ACR
is consistent then so is ZFC ` ADLpRq` xNSω1 is ω2-saturatedy, where ACR is the
axiom of choice for functions with domain R. Shelah derived the consistency of
xNSω1 is ω2-saturatedy from the existence of a Woodin cardinal.

Definition [ZFC] Suppose I is an ideal over a cardinal κ, and λ is a cardinal. I

is λ-dense
def
ðñ there a dense set in P κ{I of size λ.
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Clearly the existence of a dense set in a boolean algebra of size λ precludes the
existence of an antichain of size ą λ, so if I is λ-dense and µ ą λ, then I is
µ-saturated.

The following theorem summarizes several relevant results, all due to Woodin.

Theorem [ZFC]

1. If there is an ω1-dense ideal over ω1 then ADLpRq.

2. If ADLpRq then there is a generic extension of LpRq satisfying ZFC` xNSω1 is
ω1-densey.

It follows that the theories

1. ZFC` xthere exist infinitely many Woodin cardinalsy,

2. ZF` AD, and

3. ZFC` xNSω1 is ω1-densey

are equiconsistent, with associated closely related outright implications.

9.8 Summary

As Chapters 7 and 8 have already suggested, ZF is better viewed as a canon of
core principles than as a comprehensive theory of membership, because so many
reasonable questions about fairly simple objects, such as projective sets of real
numbers, are not settled by ZF, even with the addition of AC. A complete theory
of membership does not, of course, exist, as Gödel has taught us, but the possibility
of broadly explanatory extensions of ZFC is not ruled out, and the definition and
elaboration of such extensions has been a vital field of research in which remarkable
progress has been made, as described in this chapter.

One can easily imagine a proliferation of “schools” of set theory, arising by the
adoption of mutually inconsistent new “axioms”, and it is of interest that this has
not happened (to date). This is not to say that mutually inconsistent propositions—
such as AC and AD—are not entertained, but in any instance at most one is treated
as true per se, i.e., in V “ pV ; Pq, with the rest being true in other models, often
related to V by generic extension and/or inner model constructions: all being
simultaneously regarded as expressing aspects of a single reality.

One is tempted to attribute this to some underlying principle that—while it
may not be expressible as an axiom—may usefully expand our intuition as to the
nature of membership that already gives rise to ZFpCq. This has been done with
some success for large cardinal axioms, which are justified as strong statements
of the principle that the cumulative hierarchy goes on forever and ever. The ex-
istence of inaccessibles (or perhaps more naturally the assertion that there are
arbitrarily large inaccessibles) is an obvious—albeit relatively weak—example of
this. Vopěnka’s principle stands out as a natural—and, as it happens, extremely
powerful—statement of this intuition, and for that reason would actually appear to
have a reasonable claim to the status of “axiom”. On the other hand, determinacy
does not appear to derive from any prior intrinsically plausible principle.

Perhaps it should suffice that the theory described in this chapter is very beau-
tiful. Why it works is an interesting but inessential question; that it works is
undeniable, and how it works irresistibly fascinating.
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We begin the chapter with a discussion of large cardinals, noting first that Infinity
is the paradigm and (relatively) the most powerful of large cardinal hypotheses.
We have also noted that Power is a large cardinal axiom in the context of Infinity.
The weakest large cardinal properties beyond the reach of ZF are weak and strong
inaccessibility.9.1 The derivative notion of α-inaccessibility is introduced, based on
the notion of κ being “large`” if the set of “large” cardinals below κ is cofinal in κ.
We then introduce Mahlo properties, based on the qualitatively important notion
of κ being “large`” if the set of “large” cardinals below κ is stationary in κ.

Next we revisit the concept of measure, introduced by Lebesgue as a useful way
of assigning sizes in r0,8q to complicated sets of real numbers, and discussed by
us in Section 5.7 with an emphasis on delimiting the class of sets of reals to which
a Lebesgue measure can be assigned. Lebesgue’s measure problem is whether a
nontrivial translation-invariant measure can apply to all sets of reals. Vitali showed
that this is inconsistent with ZFC; but the problem is still interesting in the setting
of ZF ` DC. In the setting of ZFC, Banach’s measure problem, which drops the
requirement of translation invariance, is quite productive and leads to the notion
of a real-valued measurable cardinal.9.9

Without the requirement of translation invariance, the concept of measure be-
comes essentially combinatorial, and further investigation leads to the important
case of 2-valued (as opposed to more generally real-valued) measures, and thereby
to the notion of a measurable cardinal, which is where our discussion of large cardi-
nals begins in earnest. In the presence of AC, a countably complete ultrafilter (i.e.,
a countably additive 2-valued measure) over a cardinal κ determines an elementary
embedding j : V Ñ M , where M is transitive and crit j “ κ. Conversely, such an
elementary embedding provides a simple definition of a nontrivial (i.e., κ-complete
nonprincipal) ultrafilter over κ, in fact, a normal ultrafilter.

The notion of a large cardinal as the critical point of an elementary embedding
of transitive classes with certain closure properties is enormously productive. The
ultimate example, that of a nontrivial elementary embedding of V into V , is ex-
cluded by Kunen’s theorem.9.131 It is perhaps important that Kunen’s proof and
all other known proofs of this theorem use Choice, so it remains open whether the
existence of a nontrivial elementary embedding of V into V is consistent with ZF.

One criterion of the usefulness of a new hypothesis is whether it settles a pre-
existing question of interest. The question of the size of powersets was raised very
early in the development of the theory of membership—as Cantor’s continuum
hypothesis and the generalized continuum hypothesis—and the behavior of the con-
tinuum function κ ÞÑ 2κ, or more generally κÑ κcf κ, remains a fundamental issue.
We have seen that large cardinal hypotheses bear importantly on this issue, but the
basic question of whether 2ω “ ω1 is still unsettled; indeed, based on the intuition
that has been gained through years of research into this topic, it is reasonable to
suggest that this question concerning sets of reals may be of a sort that is intrin-
sically incapable of satisfactory resolution. That would, of course, in itself be an
important insight into the nature of infinitarity.

On the other hand, many other questions about sets of reals have received satis-
factory answers by the methods described in this chapter. The web of implications
relating the theory ZF` AC` ADLpRq to hypotheses concerning large cardinals, as
sketched in this chapter, convey an impression of inevitability hardly imaginable
when the extraordinary axiom of determinacy was proposed as a deus ex machina
by Mycielski and Steinhaus—somewhat as Planck proposed the quantization of the
electromagnetic field as a solution to the black-body problem. Its intimate relation-
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ship to the properties of relatively small objects, like the nonstationary ideal on ω1,
only strengthen this impression. In the other direction, the program of extending
ZFC by large-cardinal hypotheses derives credibility from its connection—at least
at the level of Woodin cardinals—to this elegant and powerfully explanatory theory.

As discussed in the introduction to this chapter, it may be a vain hope that
mathematical principles such as these will ever receive confirmation as conclusive
as that accorded Planck’s quantization principle, for example; but it may not be
too much to hope for a comparable degree of affirmation.
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Chapter 10

Notes

10.1 Multisorted signatures and structures

[Refer to p. 29.]

(10.1) Definition [C0] A multisorted signature is a 4-indexed family r∆,Π,Φ, T s
with the following properties:

1. Π and Φ are disjoint classes.

2. T is a function with domain ΠY Φ.

3. For each P P Π, TP is a nonempty subset of n∆ for some n P ω. We define
arρpP q, the ρ-arity of P , to be the unique n for which this is true. If 0 P Π
then T0 “

2∆.

4. For each F P Φ, TF is a nonempty function with domTF Ď n∆ for some
n P ω, and imTF Ď ∆. We define arρpF q, the (ρ-)arity of F , to be the unique
n for which this is true.

Definition [C0] For ρ “ r∆,Π,Φ, T s as in (10.1),

1. ∆ρ def
“ ∆, Πρ def

“ Π, Φρ def
“ Φ, and T ρ def

“ T .

We refer to the members of ∆ as sort or domain indices, to the members of Π
as predicate or relation indices, and to the members of Φ as function or operation
indices. Given an index X P Π Y Φ, we call TrXs the type of X; it specifies the
domain sequences from which it is legitimate to form expressions using X, and if
X is an operation index it also specifies the sort of the resulting term. 0 is reserved
to index the identity predicate, if present, so the last sentence in (10.1.4) stipulates
that it shall make sense to ask whether two individuals are identical regardless of
what sorts they respectively are.

We suppose that for each D P ∆ we have an infinite class VD of variables such
that D ‰ D1ÑVD X VD1 “ 0. Thus, each variable is of a specific sort.

(10.2) Definition [C0] Given a multisorted signature ρ, we define the sort of a
ρ-term τ

def
“ srt τ by recursion on complexity as follows:

1. For each D P ∆ and v P VD, srt v̄ “ D.

701
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2. Suppose F is n-ary operation index. An n-sequence xτ0, . . . , τn-y of terms is in
dom F̃ iff xsrt τ0, . . . , srt τn-y P domT , and in this case srt

`

F̃ xτ0, . . . , τn-y
˘

“

T xsrt τ0, . . . , srt τn-y.

(10.3) Definition [C0] Given a signature ρ “ r∆,Π,Φ, T s, a ρ-structure S is a
4-indexed family rρ, δ, π, ϕs with the following properties:

1. δ, π, and ϕ are prefunctions with dom δ Ď ∆, domπ Ď Π, and domϕ Ď Φ.
Let |S| def

“
Ť

DP∆ δrDs.

2. For each P P Π,
πrP s Ď

ď

DPTP

ą

mPdom D

δrDms.

If 0 P Π then πr0s “ txx, xy | x P |S|u.

3. For each F P Φ, ϕrF s is a function with domain

ď

DPdomTF

ą

mPdom D

δrDms

such that for all D P domTrF s,

ϕrF s
Ñ
´

ą

mPdom D

δrDms

¯

Ď TFD.

Definition [C0] Given a multisorted signature ρ “ r∆,Π,Φ, T s and a ρ-structure
S “ rρ, δ, π, ϕs,

@D P ∆ DS def
“ δrDs

@P P Π PS def
“ πrP s

@F P Φ FS def
“ ϕrF s.

The valuation of ρ-terms and ρ-formulas is defined in the same way as for unisorted
languages and structures. Note that for any ρ-term τ , τS P psrt τqS, i.e., the value
in S of a term of sort D is a member of the D-domain of S. Note that, while every
ρ-term has a unique sort, this is not necessarily the case for the individuals of a
ρ-structure, i.e., a given member of |S| may be denoted by terms of distinct sorts.

10.1.1 Example: Vector spaces over ordered fields

A concrete example will help to solidify these ideas. We will define a typographical
signature ρ for vector spaces over ordered fields. We use either the underline or
the single-quote convention to produce metalanguage names for object-language
expressions. Let the character F (= ‘F’) index the domain of scalars; let V index the
domain of vectors; let ă index the order relation on the field of scalars;1 let ` index
the addition operation (on scalars or vectors); and let ¨ index the multiplication

1‘ă’ is a name for the symbol ‘ă’, meaning ‘less than’; it is not the symbol ‘ď’, meaning ‘less
than or equal to’.
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operation (applicable to two scalars or to a scalar and a vector). Remember that
by convention 0 indexes the identity relation. Thus ρ “ r∆,Π,Φ, T s, where

∆ “ tF,Vu,
Π “ t0,ău,
Φ “ t`, ¨u,

and T is given by

Tr0s “ txF,Fy, xF,Vy, xV,Fy, xV,Vyu
“ tF,Vu ˆ tF,Vu,

Trăs “ txF,Fyu,
Tr`s “ tpxF,Fy,Fq, pxV,Vy,Vqu,
Tr¨s “ tpxF,Fy,Fq, pxF,Vy,Vqu.

10.1.2 Example: Theory of membership with sets and classes

The theory of membership with sets and classes is also naturally treated as mul-
tisorted. The domains are those of sets and classes. An expression τ PPP τ 1 is well
formed iff τ is of the set sort; τ 1 may be of set or class sort. Let S and C index the
domains of sets and classes; and let P index the membership predicate. Remember
that by convention 0 indexes the identity predicate. Thus ρ “ r∆,Π,Φ, T s, where

∆ “ tS,Cu,

Π “ t0, Pu,
Φ “ 0,

and T is given by

Tr0s “ tS,Cu ˆ tS,Cu,

TrPs “ txS, Sy, xS,Cyu.

As noted above, domains with distinct indices need not have disjoint interpretations
in a structure. The theory of membership is a case in point, as SS Ď CS for any
structure S interpreting the theory of membership, i.e., every set is a class.

10.2 Proof of (1.69)

[Refer to p. 56.]

(10.4) Theorem [C0] Suppose S is a (weakly) satisfactory ρ-structure and ρ1 is
an expansion of ρ. Then there is a (weakly) satisfactory ρ1-structure S1 that is an
expansion of S.

Remark We will call a ρ1-index new iff it is not a ρ-index. To expand S to a
ρ1-structure one simply assigns relations and operations on |S| to the new indices
X of ρ1. We have to show that the structure S1 so defined is (weakly) satisfactory.
If |S| is a proper class this does not follow for an arbitrary choice of denotations,
but by choosing carefully we can arrange that the Φ1-satisfaction relation for S1 for
any Φ1 Ď Fρ1

is definable from the Φ-satisfaction relation for S for an appropriate
Φ Ď Fρ.
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Proof For every new ρ1-predicate index R let RS1
“ 0, i.e., R is universally false

in S1. Let a0 be a fixed member of |S|,2 and for every new (n-ary) ρ1-operation
index F let FS1

be tps, a0q | s P
n|S|u. Let S1 be the resulting ρ1-structure.

Expand ρ to a signature 9ρ by the addition of a single nulary predicate index, P
(a constant predicate index). Let T “ P̄ p“ P̃ 0q, and let F “ ␣␣␣T . Expand S to a
9ρ-structure 9S by stipulating that P 9S “ 1 (so that T is true in 9S, and F is false).

We now define by recursion on complexity a function H that assigns to each ρ1-
expression a 9ρ-expression, which we will use to define partial satisfaction relations
for S1. Without loss of generality, we will restrict our attention to the minimal set
t␣␣␣,ÑÑÑ,DDDu of formula-building operations.1.18

(10.5) Suppose ϵ is a ρ1-expression.

1. If ϵ “ v̄n for some n P ω, then Hϵ “ v̄n`1.

2. If ϵ “ F̃ xτ0, . . . , τn-y for some F P Φρ
1

then

Hϵ “

#

F̃ xHτ0, . . . ,Hτn-y if F P Φρ

v̄0 otherwise.

3. If ϵ “ R̃xτ0, . . . , τn-y for some R P Πρ1
then

Hϵ “

#

R̃xHτ0, . . . , Hτn-y if R P Φρ

F otherwise.

4. If ϵ “ ␣␣␣ϕ then

1. if Hϕ “ T then Hϵ “ F (i.e., ␣␣␣T);
2. if Hϕ “ F then Hϵ “ T (which is not ␣␣␣F);
3. otherwise Hϵ “ ␣␣␣Hϕ.

5. If ϵ “ ϕÑÑÑψ then

1. if Hϕ “ T then Hϵ “ Hψ;
2. if Hϕ “ F then Hϵ “ T;
3. otherwise,

1. if Hψ “ T then Hϵ “ T;
2. if Hψ “ F then Hϵ “ ␣␣␣Hϕ;
3. otherwise, Hϵ “ HϕÑÑÑHψ.

6. If ϵ “ DDDvn ϕ then

1. if Hϕ “ T then Hϵ “ T;
2. if Hϕ “ F then Hϵ “ F;
3. otherwise, Hϵ “ DDDvn`1Hϕ.

Note that H replaces every occurrence of vn by vn`1, both in terms via (10.5.1) and
in quantifier phrases via (10.5.6). This makes v0 available to be used to represent
the common value of the new operations in ρ1, which we have specified as a0. We
let H˚ be the corresponding transformation of assignments:

H˚A “ tpv0, a0qu Y tpvn`1, Avnq | vn P domAu.

2Recall that a structure is by definition nonempty.
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(10.6) Claim For any ρ1-term τ and any S1-assignment A (which is also an S-
assignment, since |S1| “ |S|)

ValS
1
τ rAs “ ValSHτ rH˚As.

Proof Straightforward induction on complexity of terms.10.5.1, 2 10.6

Suppose Φ1 Ď Fρ1
. Let 9Φ “ tHϵ | ϵ P Φ1u. Let Φ “ 9Φ X Fρ. Note that Φ1 is

a class of ρ1-formulas, Φ1 is a class of ρ1-expressions (generally containing terms as
well as formulas), 9Φ is a class of 9ρ-expressions, and Φ is a class of ρ-formulas. It is
easy to show by induction that @ϕ P Fρ1

Hϕ P Fρ Y tT,Fu, i.e., neither T nor F is
ever incorporated into a complex formula during the construction of H; hence, the
only formulas in 9Φ that are not in Φ are (potentially) T and F. Note that if Φ1 is
finite then Φ is finite.

Suppose S is the Φ-satisfaction relation for S, which is also the Φ-satisfaction
relation for 9S. Let

9S “ S Y txT, Ay | A is an S-assignmentu,

which is the 9Φ-satisfaction relation for 9S, and let

S1 “ txϵ, Ay | ϵ P Φ1^xHϵ,H˚Ay P 9Su.

Note that we have not defined S1 by recursion, but rather directly from 9S.

(10.7) Claim S1 is the Φ1-satisfaction relation for S1.

Proof We just need to check the various clauses. Suppose ϵ P Φ1 and A is an
S1-assignment for ϵ.

Suppose ϵ “ R̃xτ0, . . . , τn-y, where τ0, . . . , τn- are ρ1-terms. If R P Πρ then
RS1

“ RS, and

xϵ, Ay P S1ØxHϵ,H˚Ay P 9SØxR̃xHτ0, . . . , Hτn-y,H˚Ay P S

ØxValSHτ0rH˚As, . . . ,ValSHτn-rH˚Asy P RS

ØxValS
1
τ0rAs, . . . ,ValS

1
τn-rAsy P RS1

,

as required. On the other hand, if R R Πρ, then

1. RS1
“ 0, so xValS

1
τ0rAs, . . . ,ValS

1
τn-rAsy R RS1

, and10.5.3

2. Hϵ “ F, so pHϵ,H˚Ay R 9S,

whence pHϵ,H˚Ay P 9SØxValS
1
τ0rAs, . . . ,ValS

1
τn-rAsy P RS1

, and therefore

xϵ, Ay P S1ØxValS
1
τ0rAs, . . . ,ValS

1
τn-rAsy P RS1

.

Suppose ϵ “ ␣␣␣ϕ. Then10.5.4

xHϵ,H˚Ay P 9SØxHϕ,H˚Ay R 9S,

so
xϵ, Ay P S1Øxϕ,Ay R S1.
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Suppose ϵ “ ϕÑÑÑψ. Then10.5.5

xHϵ,H˚Ay P 9SØ
`

xHϕ,H˚Ay P 9SÑxHψ,H˚Ay P 9S
˘

,

so
xϵ, Ay P S1Ø

`

xϕ,Ay P S1Ñxψ,Ay P S1
˘

.

Finally, suppose ϵ “ DDDvn ϕ. Then10.5.6

xHϵ,H˚Ay P 9SØDa P |S|
@

Hϕ, pH˚Aq
@

vn`1
a

DD

P 9S

so

xϵ, Ay P S1ØDa P |S|
@

Hϕ, pH˚Aq
@

vn`1
a

DD

P 9S

ØDa P |S|
@

Hϕ,H˚
`

A
@

vn

a

D˘D

P 9S

ØDa P |S1|
@

ϕ,A
@

vn

a

DD

P S1.

10.7

It follows from (10.7) that if S is (weakly) satisfactory then S1 is (weakly)
satisfactory. Since |S1| “ |S| and XS1

“ XS for every index X of ρ, S1 is an
expansion of S. 10.4

10.3 Proof of (2.59)

[Refer to p. 90.]

(10.8) Theorem [S0] A theory Θ is inconsistent iff there exist a finite Σ Ď Θ,
finite witness sequence W for Σ, and finite instance set I such that ΣY imW Y I
is propositionally inconsistent.

Proof ÐÐÐ Suppose ΣY imW Y I is propositionally inconsistent, i.e., ΣY imW Y

I $P F.2.58 A fortiori, ΣY imW Y I $F, and we will work entirely in ND from this
point on. Suppose

`

ψ
`

v
c̄

˘

ÑÑÑDDDv ψ
˘

P I. Let I 1 be I with this sentence omitted. Since

tDDDv ψu$ψ
`

v
c̄

˘

ÑÑÑDDDv ψ,

ΣY imW Y I 1 Y tDDDv ψu$F.

One application of Rule 7 will extend a proof of ΣY imW Y I 1 Y tDDDv ψuñF to a
proof of ΣY imW Y I 1 Y

␣

ψ
`

v
c̄

˘(

ñF, so

ΣY imW Y I 1 Y
␣

ψ
`

v
c̄

˘(

$F.

Since2.43.6 ␣␣␣ψ
`

v
c̄

˘

$ψ
`

v
c̄

˘

ÑÑÑDDDv ψ,

ΣY imW Y I 1 Y
␣

␣␣␣ψ
`

v
c̄

˘(

$F.

Hence,2.44.1.3

ΣY imW Y I 1$F.
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Proceeding in this way we eliminate every element of I, so

ΣY imW $F.

We now similarly eliminate the members of imW as premises, but in this case
we must proceed in a specific order. Let W “

@

DDDvn ψnÑÑÑψn
`

vn

c̄n

˘ ˇ

ˇn ă N
D

. Let
v “ vN´1, c “ cN´1, and ψ “ ψN´1, and let W 1 be W with the last item removed,
so W “W 1 ⌢ @

DDDv ψÑÑÑψ
`

v
c̄

˘

y. Since ψ
`

v
c̄

˘

$DDDv ψÑÑÑψ
`

v
c̄

˘

,

ΣY imW 1 Y
␣

ψ
`

v
c̄

˘(

$F.

Since W is a witness sequence for Σ, c does not occur in ΣY imW 1YtDDDv ψuY tFu.
Hence, we may apply Rule 4 to extend a proof of Σ Y imW 1 Y

␣

ψ
`

v
c̄

˘(

ñF to a

proof of ΣY imW 1 Y tDDDv ψ
(

ñF, whence,

ΣY imW 1 Y tDDDv ψ
(

$F.

As before, we also have
ΣY imW 1 Y t␣␣␣DDDv ψu$F,

so
ΣY imW 1$F.

Proceeding in this fashion, we progressively reduce W to the empty sequence, and
conclude that

Σ$F.

ÑÑÑ This direction requires the greater detail provided by proof trees. Thus, we
suppose π0 is an ND-proof tree with the root sequent

ΣñF,

for some finite Σ Ď Θ. Let N be the number of instances of Rule 4 in π0. By re-
cursion on n ď N we will construct a witness sequence W “

@

DDDvn ψnÑÑÑψn
`

vn

c̄n

˘ ˇ

ˇn ă

N
D

for Σ, and for each n ď N an ND proof tree πn with root sequent

ΣY impW ænqñF,

such that πn contains N ´ n instances of Rule 4.
To this end, given n ă N , let S be any element of πn of the form3

Σ1 Y
␣

ψ
`

v
c̄

˘(

ñσ

Σ1 Y tDDDv ψuñσ

...
ΣY impW ænqñF

where the top inference is justified by Rule 4. Let cn be a constant that does not
occur in πn, and let π1 be the result of replacing c̄ by c̄n in the last sequent of S

3Recall that a proof tree is a set of finite sequences of sequents, each of which progresses from
the root of the tree up to a node.
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and everywhere in πn above that point. By the definition of Rule 4, c does not
occur in Σ1, DDDv ψ, or σ, so S becomes

Σ1 Y
␣

ψ
`

v
c̄n

˘(

ñσ

Σ1 Y tDDDv ψuñσ

...
ΣY impW ænqñF

and π1 is a proof tree. Let vn “ v and ψn “ ψ; let W pnq “ DDDvn ψnÑÑÑψn
`

vn

c̄n

˘

; and
let π2 be the result of adding W pnq to the antecedent of every sequent in π1. π2 is
again a proof tree, and S has now become

Σ1 Y
␣

DDDvn ψnÑÑÑψn
`

vn

c̄n

˘

, ψn
`

vn

c̄n

˘(

ñσ

Σ1 Y tDDDvn ψnÑÑÑψn
`

vn

c̄n

˘

,DDDvn ψnuñσ

...
ΣY impW æpn` 1qñF

Finally, let πn`1 be obtained from π2 by replacing the fragment

...
Σ1 Y

␣

DDDvn ψnÑÑÑψn
`

vn

c̄n

˘

, ψn
`

vn

c̄n

˘(

ñσ

Σ1 Y tDDDvn ψnÑÑÑψn
`

vn

c̄n

˘

,DDDvn ψnuñσ

...

which uses Rule 4, by the fragment

...
Σ1 Y

␣

DDDvn ψnÑÑÑψn
`

vn

c̄n

˘

, ψn
`

vn

c̄n

˘(

ñσ

Σ1 Y
␣

DDDvn ψnÑÑÑψn
`

vn

c̄n

˘

, ψn
`

vn

c̄n

˘

,DDDvn ψn
(

ñσ Σ1 Y
␣

DDDvn ψnÑÑÑψn
`

vn

c̄n

˘

,DDDvn ψn
(

ñψn
`

vn

c̄n

˘

Σ1 Y tDDDvn ψnÑÑÑψn
`

vn

c̄n

˘

,DDDvn ψnuñσ

...
which instead uses Rules 0, 5 (as modified2.45.1.2), and 3.

After N steps, we have a proof πN with the root sequent ΣY imW ñF in which
there are no uses of Rule 4. Let I be the set of all sentences

ψ
`

v
c̄

˘

ÑÑÑDDDv ψ

such that there exists in πN a use

(10.9)

...
Σ1 Y tDDDv ψuñσ

Σ1 Y
␣

ψ
`

v
c̄

˘(

ñσ

...
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of Rule 7. Let π1 be the result of adding I to the antecedent of every sequent in
πN . Then π1 is a proof tree with root sequent ΣY imW Y IñF. Note that (10.9)
has become

(10.10)

...
Σ2 Y tψ

`

v
c̄

˘

ÑÑÑDDDv ψ,DDDv ψuñσ

Σ2 Y
␣

ψ
`

v
c̄

˘

ÑÑÑDDDv ψ, ψ
`

v
c̄

˘(

ñσ

...

where Σ2 “ Σ1 Y
`

Iz
␣

ψ
`

v
c̄

˘

ÑÑÑDDDv ψ
(˘

. We now eliminate each use of Rule 7 as we
did for Rule 4, i.e., replace (10.10) by

...
Σ2 Y

␣

ψ
`

v
c̄

˘

ÑÑÑDDDv ψ,DDDv ψ
(

ñσ

Σ2 Y
␣

ψ
`

v
c̄

˘

ÑÑÑDDDv ψ,DDDv ψ, ψ
`

v
c̄

˘(

ñσ Σ2 Y
␣

ψ
`

v
c̄

˘

ÑÑÑDDDv ψ, ψ
`

v
c̄

˘(

ñDDDv ψ

Σ2 Y tψ
`

v
c̄

˘

ÑÑÑDDDv ψ, ψ
`

v
c̄

˘

uñσ

...

to obtain a proof tree π2 with root sequent Σ Y imW Y IñF that has no use
of Rule 4 or 7. π2 is an NDP-proof tree, so Σ Y imW Y I is propositionally
inconsistent. 10.8

10.4 Proof of (2.85)

[Refer to p. 101.]

(10.11) Theorem [S0] Every formula is propositionally equivalent to a formula in
disjunctive normal form and to a formula in conjunctive normal form.

Proof We first note the duality of the two forms as mediated by negation. Suppose
I is a nonempty finite set and for each i P I, Ji is a nonempty finite set. Suppose
for each i P I and j P Ji, ηi,j is a formula. Although we are specifically interested
in the case that ηi,j is a prime formula or the negation of a prime formula, the
following claim is generally true.

(10.12) Claim

1. ␣␣␣
ŹŹŹ

iPI

ŽŽŽ

jPJi
ηi,j is propositionally equivalent to

ŽŽŽ

iPI

ŹŹŹ

jPJi
␣␣␣ ηi,j.

2. ␣␣␣
ŽŽŽ

iPI

ŹŹŹ

jPJi
ηi,j is propositionally equivalent to

ŹŹŹ

iPI

ŽŽŽ

jPJi
␣␣␣ ηi,j.

Proof Straightforward. 10.12

Next we note that there is a canonical way to convert from one form to the
other. Let Γ be the set of choice functions for xJi | i P Iy, i.e., the set of functions
f such that dom f “ I and @i P I fpiq P Ji.

(10.13) Claim
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1.
ŹŹŹ

iPI

ŽŽŽ

jPJi
ηi,j is propositionally equivalent to

ŽŽŽ

fPΓ

ŹŹŹ

iPI ηi,fpiq.
2.

ŽŽŽ

iPI

ŹŹŹ

jPJi
ηi,j is propositionally equivalent to

ŹŹŹ

fPΓ

ŽŽŽ

iPI ηi,fpiq.

Proof Both of these are generalizations of the distributive properties (of disjunc-
tion over conjunction and vice versa), and the straightforward proof is left to the
reader. Note that either may be derived from the other using (10.12). 10.13

It is worth noting that although
ŹŹŹ

iPI

ŽŽŽ

jPJi
ηi,j and

ŽŽŽ

fPΓ

ŹŹŹ

iPI ηi,fpiq are formed
from the same set tηi,j | i P I ^ j P Jiu of formulas, the latter typically is much
lengthier. In the case that the index set I is a (finite) ordinal and for some finite
ordinal J , for each i P I, Ji “ J , the first expression has I ˆ J “elements”, whereas
the latter has JIˆI elements. Note that if we first apply (10.13.1) to a conjunctive
form and then apply (10.13.2) to the resulting disjunctive form, we obtain another
conjunctive form—again, typically much lengthier than the original: IJ

I

ˆ JI vs
I ˆ J , in our example. It is a mildly entertaining exercise to show directly that the
final form is equivalent to the original, i.e., that

ľľľ

lPpIJqI

łłł

kPIJ
ηlpkq,kplpkqq

is propositionally equivalent to
ľľľ

iPI

łłł

jPJ
ηi,j .

[Hint: For any l : IJ Ñ I there exists i P I such that for all j P J there exists
k : I Ñ J such that lpkq “ i and kpiq “ j.]

We now note that any propositional expression is equivalent to one involving
only negation, disjunction, and conjunction, as ϕÑÑÑψ is propositionally equivalent
to ␣␣␣ϕ___ψ.

Finally we observe that prime formulas are already in both normal forms. It
is now straightforward to show by induction on complexity that any formula is
propositionally equivalent to a formula in conjunctive and to a formula in disjunctive
normal form. 10.11

10.5 Proof of (2.93)

[Refer to p. 104.]

(10.14) Theorem [S0] Suppose ρ is a signature with at least one constant, and σ
is a purely universal ρ-sentence.2.88 Let σ “ @@@v0 ¨ ¨ ¨ @@@vN -µ, where µ is quantifier-
free. Then tσu is inconsistent iff there exists M P ω and variable-free ρ-terms τmn ,
m PM , n P N , such that

␣

µ
`

v0 ¨ ¨ ¨ vN-

τ
m
0 ¨ ¨ ¨ τ

m
N-

˘ ˇ

ˇm PM
(

is propositionally inconsistent.

Proof As a matter of convenience, we will work in a language with the universal
but not the existential quantifier. Let ρ1 be an expansion of ρ by the addition of
countably infinitely many constants.4 Unless otherwise specified, all expressions
are ρ1-expressions. We make the following definitions specific to this proof.

4We are working in S0, which does not have the Infinity axiom, so we do not presume the
actual existence of ρ1; we merely allude to it as a concept in the formation of expressions like
‘ρ1-expression’.
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(10.15)

1. A witness sequence def
“ a finite sequence W of ρ1-sentences of the form

@

ϕ
`

vi

c̄i

˘

ÑÑÑ@@@v ϕ
ˇ

ˇ i P n
D

,

where for each i P n, ci is a ρ1-constant that is not an index of the original
signature ρ and does not occur previously in W .

2. An instance set is a finite set of ρ1-sentences of the form @@@v ϕÑÑÑϕ
`

v
τ

˘

.

3. The quantifier depth of a formula ϕ
def
“ qdϕ def

“ the number of quantifiers in
it.

4. The quantifier depth of a finite sequence W of formulas def
“ qdW def

“ is the
maximum quantifier depth of its items if W ‰ 0; otherwise, qdW “ 0.

5. The type of a finite sequence W of formulas def
“ tpW def

“ the pair xD,Ly, where
D “ qdW and L is the number of items in W with quantifier depth D.

6. We order types so that

xD,Ly ă xD1, L1yØ
`

D ă D1_pD “ D1^L ă L1q
˘

.

We will deal primarily with pairs of witness sequences and instance sets satisfying
the following conditions.

(10.16)

1. For every sentence @@@v ϕÑÑÑϕ
`

v
τ

˘

P I, there is a sentence ϕ
`

v
c̄

˘

ÑÑÑ@@@v ϕ P imW ,
i.e., any sentence that occurs as an antecedent in I occurs as a consequent in
W .

2. For i, i1 P |W |, if i ‰ i1, W piq “ ϕ
`

v
c̄

˘

ÑÑÑ@@@v ϕ, and W pi1q “ ϕ1
`

v1

c̄1

˘

ÑÑÑ@@@v1 ϕ1,
then @@@v ϕ ‰ @@@v1 ϕ1, i.e., no sentence @@@v ϕ is witnessed more than once in W .

(10.17) For the nonce we make the following definitions.

1. xΣ,W, Iy is good
def
ðñ

1. Σ is a finite set of constant instances of µ (i.e., sentences of the form
µ
`

v0 ¨ ¨ ¨ vN-

τ0 ¨ ¨ ¨ τN-

˘

, where τ0, . . . , τN - are variable-free ρ1-terms);

2. W is a witness sequence;
3. I is an instance set;
4. ΣY imW Y I is propositionally inconsistent; and
5. (10.16.1) is satisfied.

2. xΣ,W, Iy is fine
def
ðñ it is good and (10.16.2) is satisfied.

Note that the constants that occur as witnesses in W may also occur in Σ, i.e., we
do not specify that W is a witness sequence for Σ.

(10.18) Claim Suppose xΣ,W, Iy is good. Then there exists a fine xΣ1,W 1, I 1y such
that qdW 1 ď qdW .
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Proof Since W is finite, |W | is a finite ordinal. Let m “ |W |`1, also a finite ordi-
nal, so pm; Pq is by definition a wellorder. Let n P m be least such that there exists
a good xΣ0,W0, I0y such that qdW0 ď qdW and |W0| “ n, and let xΣ0,W0, I0y
be good such that qdW0 ď qdW and |W0| “ n. We will show that xΣ0,W0, I0y is
fine. To this end, suppose toward a contradiction that i ă i1, W0piq “ ϕ

`

v
c̄

˘

ÑÑÑ@@@v ϕ,

and W0pi
1q “ ϕ

`

v
c̄1

˘

ÑÑÑ@@@v ϕ. For any formula θ, let θ1 be the result of substituting c̄
for every occurrence of c̄1. Let Σ1, W 1, and I 1 be the corresponding transformations
of Σ0, W0, and I0. By the definition10.15.1 of witness sequence, c1 does not occur in
µ, so Σ1 is a set of constant instances of µ.

It is easy to show that Σ1 Y imW 1 Y I 1 is propositionally inconsistent. For
suppose I1 is a propositional interpretation such that I1 |ù Σ1 Y imW 1 Y I 1. Let I
be the propositional interpretation given by Iθ “ I1θ1 for every prime sentence θ
such that θ1 P dom I1. Then I |ù Σ0Y imW0Y I0, contrary to hypothesis. (10.16.1)
is still satisfied, so xΣ1,W 1, I 1y is good. Also, qdW 1 “ qdW0 ď qdW .

By design, W 1pi1q “ W 1piq. Let W 2 be the sequence that results from deleting
the i1th item from W 1, which is now entirely superfluous. Then xΣ1,W 2, I 1y is good,
qdW 2 “ qdW 1 ď qdW , and |W 2| ă n; contradiction. 10.18

We now turn to the proof of the theorem. The ‘if’ direction is trivial. We will
prove the ‘only if’ direction. Suppose therefore that tσu is inconsistent. Thus there
exist a finite witness sequence W for tσu in the original sense of Theorem 2.59, and
a finite instance set I, both in the signature ρ1, such that

(10.19) tσu Y imW Y I

is propositionally inconsistent. We may clearly arrange that W be a witness se-
quence in the sense of (10.15.1).

Let d0, . . . , dN - be ρ1-constants that do not occur in µ, W , or I, and let

W 1 “
@

@@@vn`1 ¨ ¨ ¨ @@@vN - µ
`

v0 ¨ ¨ ¨ vn

d̄0 ¨ ¨ ¨ d̄n

˘

ÑÑÑ@@@vn ¨ ¨ ¨ @@@vN - µ
`

v0 ¨ ¨ ¨ vn-

d̄0 ¨ ¨ ¨ d̄n-

˘ ˇ

ˇn P N
D ⌢W.

Then

imW 1 Y
␣

µ
`

v0 ¨ ¨ ¨ vN-

d̄0 ¨ ¨ ¨ d̄N-

˘(

$P σ,

so
␣

µ
`

v0 ¨ ¨ ¨ vN-

d̄0 ¨ ¨ ¨ d̄N-

˘(

Y imW 1 Y I

is propositionally inconsistent.
For each sentence @@@v ϕÑÑÑϕ

`

v
τ

˘

P I, if there is not already a sentence ϕ
`

v
c̄

˘

ÑÑÑ@@@v ϕ P

imW 1 then we add one at the end with a new constant. We do this sequentially
until (10.16.1) is satisfied. Let W 2 be the resulting witness sequence. Then

(10.20)
@␣

µ
`

v0 ¨ ¨ ¨ vN-

d̄0 ¨ ¨ ¨ d̄N-

˘(

,W 2, I
D

is good.

(10.21) Claim There exists a finite set Σ of constant ρ1-instances of µ such that
xΣ, 0, 0y is good. Hence Σ is propositionally inconsistent.

Proof Let xD0, L0y be the ď-least type xD,Ly such that there exists a good
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xΣ,W, Iy such that tpW “ xD,Ly.5 It suffices to show that xD0, L0y “ x0, 0y.6

Thus, suppose toward a contradiction that xD0, L0y ‰ x0, 0y.
By (10.18) there exists a fine xΣ0,W0, I0y with tpW0 “ xD0, L0y. Let

W0 “
@

ϕi
`

vi

c̄i

˘

ÑÑÑ@@@vi ϕi
ˇ

ˇ i P |W0|
D

,

and

(10.22) let i P |W0| be such that qdp@@@vi ϕiq is D0 and qdp@@@vi1 ϕi1q ă D0 for every
i1 P |W0| such that i1 ą i.

Let W 1 be W0 with the ith item deleted. Let T be the set of terms τ such that
@@@vi ϕiÑÑÑϕi

`

vi

τ

˘

P I0, let I 1 be I0 with all those sentences deleted, and let

(10.23) J “
␣

ϕi
`

vi

c̄i

˘

ÑÑÑϕ
`

vi

τ

˘ ˇ

ˇ τ P T
(

.

(10.24) Claim Σ0 Y imW 1 Y I 1 Y J is propositionally inconsistent.

Proof Suppose toward a contradiction that I is a propositional interpretation and
I |ù Σ0 Y imW 1 Y I 1 Y J . Since xΣ0,W0, I0y is fine and qdp@@@vi ϕiq is maximal in
imW0, @@@vi ϕi does not occur in W 1. Also, no member of I0 has quantifier depth
greater than D0, so any occurrence of @@@vi ϕi in I0 is in a sentence of the form
@@@vi ϕiÑÑÑϕi

`

vi

τ

˘

, so @@@vi ϕi does not occur in I 1 or J . Σ0 contains only quantifier-free
sentences, so @@@vi ϕi does not occur in Σ0, either. We may therefore suppose that
@@@vi ϕi R dom I. Since @@@vi ϕi is prime2.47.2 we may extend I to an interpretation I1

such that @@@vi ϕi P dom I and

(10.25) I1
`

@@@vi ϕi
˘

“ I
`

ϕi
`

vi

c̄i

˘˘

.

Obviously I1 |ù ϕi
`

vi

c̄i

˘

ÑÑÑ@@@vi ϕi, so I1 |ù imW0.

Suppose τ P T . Then I |ù ϕi
`

vi

c̄i

˘

ÑÑÑϕ
`

vi

τ

˘

.10.23 If I1 |ù @@@vi ϕi then10.25 I |ù ϕi
`

vi

c̄i

˘

,

so10.23 I |ù ϕi
`

vi

τ

˘

, so I1 |ù ϕi
`

vi

τ

˘

, so I1 |ù @@@vi ϕiÑÑÑϕi
`

vi

τ

˘

. Also, if I1*@@@vi ϕi then

I1 |ù @@@vi ϕiÑÑÑϕi
`

vi

τ

˘

. Thus, for any τ P T , I1 |ù @@@vi ϕiÑÑÑϕi
`

vi

τ

˘

. Since these are
just the sentences deleted from I0 to make I 1, I1 |ù I0.

Finally, I |ù Σ0, so I1 |ù Σ0. Thus, I1 |ù Σ0 Y imW0 Y I0, contradicting the
assumption that xΣ0,W0, I0y is good. 10.24

It follows from (10.24) that

(10.26) Σ0 Y imW 1 Y I 1 Y
␣

ϕ
`

vi

τ

˘ ˇ

ˇ τ P T
(

5That there exists a ď-least such type follows from the fact that ď is a wellorder. In C0 we
would express this by saying that any nonempty class of types has a ď-least member. As we are
working in S0, we have to do a little more work. Let D1 “ qdW 2 ` 1. D1 is a finite ordinal and
is therefore wellordered by P. The set of D P D1 such that there exists a good xΣ0,W0, I0y such
that qdW0 “ D is nonempty10.20 and therefore has a least element, say D0. Let xΣ0,W0, I0y be
good such that qdW0 “ D0. Similarly, let L1 “ |W0| ` 1, and let L0 be the least L P L1 such that
there exists a good xΣ1,W1, I1y such that qdW1 “ D0 and |W1| “ L. xD0, L0y is as desired.

6Since every item in a witness sequence has quantifier depth at least 1, if qdW “ 0 then
W “ 0; and if xΣ, 0, Iy is good then10.16.1 I “ 0.
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(10.27) Σ0 Y imW 1 Y I 1 Y
␣

␣␣␣ϕi
`

vi

c̄i

˘(

are both propositionally inconsistent.
Let W 1

0 “W0 æ i p“W 1 æ iq, and let W 1
1 be such that W 1 “W 1

0
⌢W 1

1 (so W 1
1pkq “

W 1pi` kq “W0pi` k ` 1q). Let cτj be a new constant for each τ P T and j P |W0|

with j ą i. For any sentence θ let

θτ “ θ
`c̄i c̄i`1 ¨ ¨ ¨ c̄|W0|-
τ c̄

τ
i`1 ¨ ¨ ¨ c̄

τ
|W0|-

˘

.

Let

Στ “ tθτ | θ P Σ0u

Iτ “ tθτ | θ P I 1u

W τ “ xW 1
1pkq

τ | k P |W 1
1|y.

Note that for j ě i, cj does not occur in W 1
0, so W 1

0 is unaltered by these transfor-
mations, and

tθτ | θ P imW 1u “ imW 1
0 Y imW τ .

By the definition of witness sequence, none of the constants ci, i P |W0|, is in ρ, so
Στ is a finite set of constant instances of µ.

Clearly,10.27 for each τ P T ,

Στ Y imW 1
0 Y imW τ Y Iτ Y

␣

␣␣␣ϕi
`

vi

τ

˘(

is propositionally inconsistent. It follows10.26 that

Σ0 Y imW 1 Y I 1 Y
ď

τPT

`

Στ Y imW τ Y Iτ
˘

is propositionally inconsistent.
Let

Σ1 “ Σ0 Y
ď

τPT

Στ

I1 “ I 1 Y
ď

τPT

Iτ .

Let xτm | m PMy enumerate T , and let

W1 “W 1 ⌢W τ0 ⌢ ¨ ¨ ¨ ⌢W τM-

Then
Σ1 Y imW1 Y I1

is propositionally inconsistent, and it is easy to check that xΣ1,W1, I1y is good.
Let xD1, L1y be the type of W1. By our choice10.22 of i every sentence in W τ

has quantifier depth ă D0. Since we have eliminated @@@vi ϕi from W0 to obtain
W 1, either D1 “ D0^L1 ă L0 or D1 ă D0. Either way, xD1, L1y ă xD0, L0y;
contradiction. 10.21

Let10.21 Σ be a propositionally inconsistent finite set of constant ρ1-instances of
µ. Let10.14 c be a ρ-constant, and let Σ1 be obtained from Σ by substituting c̄ for
every occurrence in Σ of a ρ1-constant that is not in ρ. Then Σ is a propositionally
inconsistent finite set of constant ρ-instances of µ. 10.14
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10.6 Proof of (2.99)

[Refer to p. 107.]

(10.28) Theorem [S0] Suppose Θ is a set of sentences, ψ is a formula, xv, v0, . . . , vn-y

is an enumeration of Freeψ, and v̄m is free for v in ψ for all m P n. Let F be
an n-ary operation index that does not appear in Θ or ψ. Suppose Θ is consistent.
Then

ΘY
!

@@@v0 ¨ ¨ ¨ @@@vn-

´

DDDv ψÑÑÑψ
´

v

F̃ xv̄0, . . . , v̄n- y

¯¯)

is consistent.

By way of preparation, we prove the following lemma, which is central to the finitary
treatment of skolemization.

(10.29) Theorem [S0] Suppose Θ is a consistent set of prenex sentences. Let Θ1

be a standard skolemization2.97.4 of Θ. Then Θ1 is consistent.

Proof It clearly suffices to prove this for finite Θ. For each θ P Θ, let θ1 be the
skolemization of θ, so that Θ1 “ tθ1 | θ P Θu. We may suppose without loss of
generality that there exist variables vm, um (m P ω) such that for each θ P Θ, vm
is the mth universally quantified and um the mth existentially quantified variable
in θ. (Here and throughout we start the numbering at 0, so the 0th is the first, the
1th is the second, etc.)

1. Let Eθ be the number of existential quantifiers in θ.

2. For each e ă Eθ, let Aθe be the number of universal quantifiers preceding
the eth existential quantifier, and let AθEθ be the total number of universal
quantifiers. Let Aθ “ AθEθ .

3. Let Qθ “ Eθ `Aθ, the total number of quantifiers in θ.

4. For q ă Qθ, let wθq be the qth quantified variable in θ. Thus wθq “ ue iff
q “ Aθe ` e; otherwise, wθq “ va for some a ă Aθ.

5. For q ă Qθ, let QQQθq “ DDD or @@@ according as wq is ue or va.

Let µθ be the matrix of θ. Let F θe be the operation index skolemizing the eth
existential quantifier in the formation of θ1, so F θe is Aθe-ary, and the matrix µθ

1
of

θ1 is obtained from µθ by substituting

F̃ θe xv̄0, . . . , v̄Aθ
e
-y

for ue, for each e ă Eθ. Note that, letting A “ Aθ, Q “ Qθ, and wq “ wθq ,

θ “ QQQθ0w0 ¨ ¨ ¨QQQ
θ
Q-wQ- µθ

θ1 “ @@@v0 ¨ ¨ ¨ @@@vA- µθ
1
.

(10.30) Suppose toward a contradiction that Θ1 is inconsistent.
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Let ρ1 be ρΘ1
expanded by the addition of as many new constants (nulary operation

indices) as required by the following construction. In particular, we suppose there
is at least one ρ1-constant. By Herbrand’s theorem2.94 there exists a finite set
S “

Ť

θPΘ S
θ of ρ1-sentences, where each Sθ is finite set of constant instances of

µθ
1
, such that S is propositionally inconsistent. Suppose σ P Sθ. Then

σ “ µ1
´

v0 ¨ ¨ ¨ vA-

τ
σ
0 ¨ ¨ ¨ τ

σ
A-

¯

“ µ
´

w0 ¨ ¨ ¨ wQ-

η
σ
0 ¨ ¨ ¨ η

σ
Q-

¯

,

where

1. µ1 “ µθ
1
, µ “ µθ;

2. A “ Aθ, E “ Eθ, Q “ Qθ;

3. τσ0 , . . . , τ
σ
A- are ρ1-terms; and

4. for each q ă Q,

1. if wθq “ ue then ησq “ F̃ θe xτ
σ
0 , . . . , τ

σ
Ae

-y;

2. if wθq “ va then ησq “ τσa .

For each q ď Qθ, let

(10.31) σq “ QQQθqw
θ
q ¨ ¨ ¨QQQ

θ
Qθ-wθQθ- µ

`

w
θ
0 ¨ ¨ ¨ w

θ
q-

η
σ
0 ¨ ¨ ¨ η

σ
q-

˘

.

Note that σ0 “ θ, σQθ “ σ, and

tθu Y tσqÑÑÑσq`1 | q ă Qθu$P σ.

Hence,

(10.32) ΘY
ď

θPΘ

ď

σPSθ

tσqÑÑÑσq`1 | q ă Qθu

is propositionally inconsistent.
We will call σqÑÑÑσq`1 an instantiation. If wθq “ ue for some e ă Eθ then

σqÑÑÑσq`1 is an existential instantiation, and it has the form of a witness sentence
in the sense of (2.57.1), where the witness is the term ησq “ F̃ θe xτ

σ
0 , . . . , τ

σ
Ae

-y; if
wθq “ va for some a ă Aθ then σqÑÑÑσq`1 is a universal instantiation, and it is an
instance sentence in the sense of (2.57.2), where the instantiation is again to ησq ,
which in this case is τσa .

We now wish to convert the above set of sentences10.32 to a proof

ΘY imW Y I

of the inconsistency of Θ in the sense of (2.60), where W is a witness sequence for
Θ and I is an instance set, both in the signature ρΘ extended by the addition of
constants. Thus, we must eliminate all the Skolem indices F θe , and we must order
the existential instantiations so as to form a witness sequence.2.57.1

Suppose τ is the witness for an existential instantiation10.32 σqÑÑÑσq`1, i.e., let-
ting θ P Θ and e ă Eθ be such that σ P Sθ and wθq “ ue,

τ “ ησq “ F̃ θe xτ
σ
0 , . . . , τ

σ
Aθ

e
-y.
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Note that θ and e, and therefore also q, are uniquely determined by τ , as are
τσ0 , . . . , τ

σ
Ae

- .
Thus, if τ is also the witness for σ1q1 ÑÑÑσ1q1`1, then σ1 P Sθ, q1 “ q, and

xτσ
1

0 , . . . , τσ
1

Aθ
e
-y “ xτ

σ
0 , . . . , τ

σ
Aθ

e
-y.

For each ē ă e, letting q̄ be such that wθq̄ “ uē,

ησ
1

q̄ “ F̃ θē xτ
σ
0 , . . . , τ

σ
Aθ

ē
-y “ ησq̄ .

Hence
xησ

1

0 , . . . , η
σ1

q y “ xη
σ
0 , . . . , η

σ
q y,

so10.31 σ1q̄ “ σq̄ for all q̄ ď q ` 1. In particular, since q1 “ q,

σ1q1 ÑÑÑσ1q1`1 “ σqÑÑÑσq`1.

Thus, each Skolem witness term occurs in just one existential instantiation, al-
though that instantiation may listed more than once in (10.32).

We use this fact to put the existential instantiations in a satisfactory order.
Define the Skolem rank of a ρ1-expression ϵ def

“ skr ϵ recursively by stipulating that
skr ϵ is the supremum of the Skolem ranks of the proper subexpressions of ϵ unless
ϵ “ F̃ xτ0, . . . , τn-y, where F is a Skolem operation index, in which case

skr F̃ xτ0, . . . , τn-y “ suptskr τ0, . . . , skr τn-u ` 1.

In particular, if v is a variable then skr v̄ “ 0, since it has no proper subexpressions.
Thus, for any σ P Sθ and e ă Eθ, letting q be such that wθq “ ue,

skr ησq “ suptskr τσa | a ă Aθeu ` 1.

so for all q1 ă q,

1. if De1 ă e wθq1 “ ue1 then skr ησq1 ď skr ησq ;

2. otherwise, skr ησq1 ă skr ησq .

Let ă be a linear ordering of the Skolem witnesses ησq such that ησ
1

q1 ă ησq if either

(10.33)

1. skr ησ
1

q1 ă skr ησq , or

2. skr ησ
1

q1 “ skr ησq and q1 ă q.

It is not necessary to specify ă beyond this. (10.33.2) is unambiguous because, as
noted above, if ησ

1

q1 “ ησq then q1 “ q.
We may therefore define W 0 to be the enumeration of the set

ď

θPΘ

ď

σPSθ

tσqÑÑÑσq`1 | De ă Eθ wθq “ ueu

of existential instantiations according to the ă-order of the Skolem terms ησq .
By the preceding remarks, the Skolem rank of any σqÑÑÑσq`1 P imW 0 is skr ησq ,

and apart from terms ησq1 with q1 ă q, which may have the same Skolem rank as
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ησq , every other Skolem term occurring as a subexpression of σqÑÑÑσq`1 has lower
Skolem rank. Thus, the first occurrence of ησq as a subexpression of an item in W 0

is as the witness for the existential instantiation σqÑÑÑσq`1.
Let I0 be the set

ď

θPΘ

ď

σPSθ

tσqÑÑÑσq`1 | Da ă Aθ wθq “ vau

of universal instantiations.
We now proceed to the elimination of Skolem operations. For each Skolem wit-

ness τ let cτ be a distinct new constant. Let σ1 and σ1
q derive from σ and σq

by the substitution of cτ for every occurrence of τ (as a subexpression) for every
Skolem witness τ of maximum Skolem rank. Let W 1 and I1 be the correspond-
ing transformations of W 0 and I0. Since no Skolem witness of maximum Skolem
rank is a subterm of any other Skolem witness, this is a well defined substitution.
Propositional relationships are not affected by this substitution, so

ΘY imW 1 Y I1

is propositionally inconsistent.
By the preceding remarks, for each constant cτ introduced at this stage, the first

occurrence of cτ in W 1 is as the Skolem witness in a sentence σ1
qÑÑÑσ1

q`1, which is

DDDue ψÑÑÑψ
`

ue

cτ

˘

,

where wθq “ ue,

ψ “ QQQθq`1w
θ
q`1 ¨ ¨ ¨QQQ

θ
Qθ-wθQθ- µ

`

w
θ
0 ¨ ¨ ¨ w

θ
q-

η
σ
0 ¨ ¨ ¨ η

σ
q-

˘

,

and τ “ ησq .
We now define σ2, σ2

q , W 2, and I2 by substitution of cτ for τ for all remaining
Skolem terms τ of highest rank. For each constant cτ introduced so far, the first
occurrence of cτ in W 2 is in a sentence of the form

DDDue ψÑÑÑψ
`

ue

cτ

˘

,

for appropriate e and ψ.
Continue in this fashion until all Skolem witnesses have been replaced by new

constants. Let Wn and In be the final versions of W 0 and I0. imWn consists
entirely of sentences of the form

DDDue ψÑÑÑψ
`

ue

cτ

˘

,

for appropriate e and ψ, and cτ does not occur in DDDue ψ or in any item that occurs
earlier in Wn. Thus, Wn is a witness sequence for Θ, In is an instance set, and

ΘY imWn Y In

is propositionally inconsistent.
Now eliminate any remaining occurrences of Skolem operation indices by succes-

sive substitutions of new constants for terms involving these indices, transforming
Wn to a sequence W and In to a set I. Clearly, W is a witness sequence for Θ, I
is an instance set, and

ΘY imW Y I

is propositionally inconsistent. Hence,2.59 Θ is inconsistent; contradiction. 10.29
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(10.34) Theorem [S0] Suppose Θ is a set of sentences, ψ is a formula, xv, v0, . . . , vn-y

is an enumeration of Freeψ, and v̄m is free for v in ψ for all m P n. Let F be an
n-ary operation index that does not appear in Θ or ψ. If

ΘY t@@@v0 ¨ ¨ ¨ @@@vn- DDDv ψu

is consistent then

(10.35) ΘY
!

@@@v0 ¨ ¨ ¨ @@@vn- ψ
´

v

F̃ xv̄0, . . . , v̄n-y

¯)

is consistent.

Proof Let ψ1 be a prenexification of ψ, and let Θ1 be a prenexification of Θ. It is
enough to show that if

Θ1 Y t@@@v0 ¨ ¨ ¨ @@@vn- DDDv ψ1u

is consistent then
Θ1 Y

!

@@@v0 ¨ ¨ ¨ @@@vn- ψ1
´

v

F̃ xv̄0, . . . , v̄n-y

¯)

is consistent.
Suppose

Θ1 Y t@@@v0 ¨ ¨ ¨ @@@vn- DDDv ψ1u

is consistent. Let σ be a standard skolemization of

@@@v0 ¨ ¨ ¨ @@@vn- ψ1
´

v

F̃ xv̄0, . . . , v̄n-y

¯

,

and let Θ2 be a standard skolemization of Θ1. Then σ is a standard skolemization
of @@@v0 ¨ ¨ ¨ @@@vn- DDDv ψ1, so10.29

Θ2 Y tσu

is consistent. Trivially,
Θ2$Θ1

and
tσu$@@@v0 ¨ ¨ ¨ @@@vn- ψ1

´

v

F̃ xv̄0, . . . , v̄n-y

¯

,

so
Θ1 Y

!

@@@v0 ¨ ¨ ¨ @@@vn- ψ1
´

v

F̃ xv̄0, . . . , v̄n-y

¯)

is consistent, as claimed. 10.34

Proof of (10.28) Suppose Θ is consistent. Let w be a new variable, and let

ϕ “ DDDv ψÑÑÑψ
`

v
w̄

˘

.

@@@v0 ¨ ¨ ¨ @@@vn- DDDwϕ is a validity, so

ΘY t@@@v0 ¨ ¨ ¨ @@@vn- DDDwϕu

is consistent. Hence,10.34

ΘY
!

@@@v0 ¨ ¨ ¨ @@@vn- ϕ
´

w

F̃ xv̄0, . . . , v̄n-y

¯)

is consistent. Since

ϕ
´

w

F̃ xv̄0, . . . , v̄n-y

¯

“ DDDv ψÑÑÑψ
´

v

F̃ xv̄0, . . . , v̄n-y

¯

,

the point is proved. 10.28
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10.7 Proof of (2.106)

[Refer to p. 109.]

(10.36) Theorem [S0] If Θ is a ρ-theory and Θ is consistent then Θ Y Θρ,“ is
consistent.

Proof Suppose Θ is a ρ-theory and ΘYΘρ,“ is inconsistent. We will show that Θ
is inconsistent.

(10.37) Since consistency is preserved under expansions and contractions of signa-
ture, we may suppose that ρ has at least one constant.

Using compactness, let Σ Ď Θ and Σ“ Ď Θρ,“ be finite such that Σ Y Σ“ is
inconsistent. Let σ “

ŹŹŹ

Σ, and let σ1 be a skolemization2.97 of σ with operation
indices that are not in ρ. Let ρ1 be the expansion of ρ with these new indices,
and let ρ1“ be ρ1 with the addition of 0 as a binary predicate index. Then σ1 is
universal, $σ1ÑÑÑσ, and tσ1u Y Σ“ is inconsistent.2.100 Let

σ1 “ @@@u0 ¨ ¨ ¨ @@@uJ-µ,

where µ is quantifier-free.
Note that Σ“ also consists of universal sentences. By Herbrand’s theorem2.94there

are finite sets M, K, and L, of variable-free sentences such that

(10.38)

1. if θ PM then θ is an instance of µ;

2. if θ P K then2.105.1

θ “
`

ľľľ

mPn
τm“““ τ

1
mÑÑÑ F̃ xτ0, . . . , τn-y“““ F̃ xτ 10, . . . , τ

1
n-y

˘

,

for some n P ω, n-ary ρ1-operation index F , and variable-free terms τ0, . . . ,
τn- , τ 10, . . . τ 1n- ;

3. if θ P L then2.105.2

θ “
`

ľľľ

mPn
τm“““ τ

1
mÑÑÑpP̃ xτ0, . . . , τn-yØØØ P̃ xτ 10, . . . , τ

1
n-yq

˘

,

for some n P ω, n-ary ρ“-predicate index P , and variable-free terms τ0, . . . ,
τn- , τ 10, . . . τ 1n- ; and

4. MYK Y L is propositionally inconsistent.

(10.39) Claim M is propositionally inconsistent.

Proof Suppose toward a contradiction that I is an interpretation whose domain
is the set of prime expressions of M, such that I |ù M. We wish to extend I
to an interpretation I1 such that I1 |ù M Y K Y L. To this end we first extend
I if necessary to cover all the ρ1-sentences that occur in in K Y L2.48 by assigning
arbitrary truth values to any new prime sentences P̃ xτ0, . . . , τn-y. We then cover
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all the ρ1“ sentences in K Y L by setting I1pτ “““ τ 1q “ 1 iff τ “ τ 1.7 It is easy to
check that I1 |ù K Y L. 10.39

It follows from (10.39) that tσ1u is inconsistent, so tσu is inconsistent,2.100 so Σ
is inconsistent, so Θ is inconsistent, as claimed. 10.36

10.8 Proof of (2.125)

[Refer to p. 124.]

(10.40) Theorem [PG2] DPÑDP˚.

Proof Suppose A,B,C, a, b, c and A1, B1, C 1, a1, b1, c1 are triangles perspective from
a line d. Let A2, B2, C2 be points on d such that A2 is on a and a1, B2 is on b and
b1, and C2 is on c and c1.

We first deal with degenerate cases. Suppose A “ A1. Then the triangles are
perspective from any point collinear with B,B1 and with C,C 1 (of which there is
at least one). Thus,

we assume that A ‰ A1, and likewise B ‰ B1 and C ‰ C 1.

Now suppose a “ a1. Then B,B1, C, C 1 are on a, so the triangles are perspective
from any point on pA,A1q and a. Thus,

we assume that a ‰ a1, and likewise b ‰ b1 and c ‰ c1.

(10.41) Suppose B2 is on pA,A1q.

If B2 is neither A nor A1 then pA,B2q “ pA1, B2q “ pA,A1q. Since B2 is on pA,Cq
and pA1, C 1q, C and C 1 are on pA,A1q, so the triangles are perspective from any
point on pA,A1q and pB,B1q. Thus, we may suppose that B2 is either A or A1, and

we assume without loss of generality that B2 “ A1.

Since B2 is on pA,Cq, C is on pA,A1q. By hypothesis, B2 is on the axis of perspec-
tivity d, so A1 is on d. A2 cannot be A1 because by hypothesis A2 is collinear with
B1, C 1, so d “ pA1, A2q. Also C2 cannot be A1, because C2 is on pA,Bq, so in that
case, A1 would be on pA,Bq as well as on pA,Cq, but A is the only point on both
pA,Bq and pA,Cq. Since C2 is on pA1, B1q, d “ pA1, B1q. Hence, A2 is on pA1, B1q.
A2 is also on pB1, C 1q by hypothesis. Since A1, B1, C 1 are not collinear, A2 “ B1.
Thus, B1 is on pB,Cq. Hence, the triangles are perspective from C.

We therefore assume B2 is not on pA,A1q,10.41 and we likewise assume A2 is not
on pB,B1q.

7The sentences (10.38.2) would be satisfied by a variety of interpretations, e.g., making
I1pτ “““ τ 1q always 1 or always 0. The particular definition we have made is mandated by the
necessity of satisfying the sentences10.38.3

pτ0“““ τ
1
0 ^̂̂ τ1“““ τ

1
1qÑÑÑpτ0“““ τ1ØØØ τ 1

0“““ τ
1
1q,

which it clearly does.
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Thus, AA1B2 and BB1A2 are triangles, which are perspective from C2, since C2

is collinear with A,B, with A1, B1, and with A2, B2. By DP, they are perspective
from a line d1. C is collinear with B2, A and with A2, B, and it is the only such
point; otherwise, C would be collinear with A and B. Similarly, C 1 is the only point
collinear with B2, A1 and A2, B1. Hence, d1 “ pC,C 1q. Thus, there exists a point D
on pC,C 1q that is on pA,A1q and pB,B1q. ABC and A1B1C 1 are perspective from
D. 10.40

10.9 Proof of (2.147)

[Refer to p. 144.]

(10.42) Theorem [C0] Suppose I “ pΓñ∆q is a sequent in a signature ρ with-
out identity that is not LK´-provable. Then there exists a ρ-structure S, an S-
assignment A to the free variables of I, and a subvaluation S for S such that for
each ϕ P ΓY∆,

1. xϕ,Ay P domS;

2. ϕ P ΓÑSxϕ,Ay “ 1; and

3. ϕ P ∆ÑSxϕ,Ay “ 0.

Proof We will construct a sequence xIn | n P ωy, where In “ pΓnñ∆nq with the
following properties.

(10.43)

1. I0 “ I.

2. For all n P ω, Γn Ď Γn`1 and ∆n Ď ∆n`1.

3. For all n P ω, In is not LK´-provable. Note that this implies that ΓnX∆n “ 0.

Ultimately, we will use
Ť

nPω Γn and
Ť

nPω ∆n to define a structure S, assignment
A, and subvaluation function S as required by the theorem. The resemblance to
the Henkin construction will be obvious.

We will work with a fixed signature ρ without identity.

(10.44)

1. As a convenience, we suppose that no variable occurs both free and bound in
ΓY∆. This can be achieved without loss of generality by a change of variables.

2. Let V be a countably infinite class of variables that do not occur in a quantifier
phrase in ΓY∆, and let ăV be an enumeration of V .

3. Let T be the class of terms τ such that Free τ Ď V , and let ăT be an enumer-
ation of T .

We will maintain a “to do” list, which is, for each n P ω, a subset Ln of Γn Y∆n

together with a linear ordering ăLn of Ln. At the outset, L0 “ Γ0 Y∆0 and ăL0 is
an arbitrary linear ordering of L0.

Now suppose we have Γnñ∆n, which is an LK´-unprovable sequent. Let ϕ
be the ăLn -first formula in the list Ln.
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(10.45) The next step depends on the structure of ϕ.

1. Suppose ϕ “ ␣␣␣ψ.

1. If ϕ P Γn let Γn`1 “ Γn and ∆n`1 “ ∆n Y tψu. Note that Γn`1ñ∆n`1

is unprovable.2.143.3

2. If ϕ P ∆n let Γn`1 “ Γn Y tψu and ∆n`1 “ ∆n. Note that Γn`1ñ∆n`1

is unprovable.2.143.4

3. Let Ln`1 “ Lnztϕu Y tψu, and define ăLn`1 by removing ϕ from the head
of the list ăLn and adding ψ at the tail.

2. Suppose ϕ “ ψ0ÑÑÑψ1.

1. Suppose ϕ P Γn. Then either Γnñ∆n Y tψ0u is unprovable or Γn Y
tψ1uñ∆n is unprovable.2.143.5 If the former, let Γn`1 “ Γn and ∆n`1 “

∆n Y tψ0u; otherwise let Γn`1 “ Γn Y tψ1u and ∆n`1 “ ∆n. In either
case Γn`1ñ∆n`1 is unprovable. To obtain Ln`1 from Ln, remove ϕ and
add ψ0 or ψ1, respectively, and define ăLn`1 from ăLn by removing ϕ from
the head of the list and adding ψ0 or ψ1, respectively, at the tail.

2. If ϕ P ∆n let Γn`1 “ Γn Y tψ0u and ∆n`1 “ ∆n Y tψ1u. Note that
Γn`1ñ∆n`1 is unprovable.2.143.6 To obtain Ln`1 from Ln, remove ϕ and
add ψ0 and ψ1, and define ăLn`1 from ăLn by removing ϕ from the head of
the list and adding ψ0, ψ1 at the tail (in either order).

3. Suppose ϕ “ DDDv ψ.

1. If ϕ P Γn let u be the ăV -first variable in V that does not occur free in
Γn Y ∆n, and let Γn`1 “ Γn Y

␣

ψ
`

v
ū

˘(

and ∆n`1 “ ∆n. By virtue of
(10.44.2) u does not occur in Γnñ∆n, and ū is free for v in ψ; hence,
Γn`1ñ∆n`1 is unprovable.2.143.7 To obtain Ln`1 from Ln, remove ϕ and
add ψ

`

v
ū

˘

, and define ăLn`1 from ăLn by removing ϕ from the head of the

list and adding ψ
`

v
ū

˘

at the tail.

2. If ϕ P ∆n let τ be the ăT -first term in T for which ψ
`

v
τ

˘

R Γn Y∆n, and

let Γn`1 “ Γn and ∆n`1 “ ∆n Y
␣

ψ
`

v
τ

˘(

. τ is free for v in ψ,10.44.2,3 so

Γn`1ñ∆n`1 is unprovable.2.143.8 To obtain Ln`1 from Ln, add ψ
`

v
τ

˘

, but

do not remove ϕ, and define ăLn`1 from ăLn by moving ϕ from the head to
the tail and adding ψ

`

v
τ

˘

after it.

Let Γω “
Ť

nPω Γn and ∆ω “
Ť

nPω ∆n. Define the structure S as follows.

1. |S| “ T .10.44.3

2. Suppose X is an n-ary ρ-operation index. Let

XS “ tpxτ0, . . . , τn-y, X̃xτ0, . . . , τn-yq | τ0, . . . , τn- P T u.

3. Suppose X is an n-ary ρ-predicate index. The only conditions we must impose
are that for any τ0, . . . , τn- P T ,

1. X̃xτ0, . . . , τn-y P ΓωÑxτ0, . . . , τn-y P XS; and

2. X̃xτ0, . . . , τn-y P ∆ωÑxτ0, . . . , τn-y R XS.



724 CHAPTER 10. NOTES

These are consistent by virtue of (10.43.3). To complete the definition we
arbitrarily declare that

XS “ txτ0, . . . , τn-y P nT | X̃xτ0, . . . , τn-y P Γωu.

We now define a subvaluation function S for S in the natural way.

1. For any ρ-term τ and S-assignment A for τ , xτ, Ay P domS and Sxτ, Ay “
τpAq. Recall that |S| “ T , the class of ρ-terms derived from the class V of
variables, so A is an assignment of terms in T to the free variables of τ , and
τpAq is the term obtained by indicated substitution, which is in T “ |S|, so
this definition is well made.

2. For a ρ-formula ϕ and S-assignment A for ϕ, xϕ,Ay P domS iff ϕpAq P
Γω Y ∆ω, in which case, Sxϕ,Ay “ 1 if ϕpAq P Γω, and Sxϕ,Ay “ 0 if
ϕpAq P ∆ω.

Conditions 1–3 of the definition2.146 of subvaluation are clearly met by S. To check
Condition 4, suppose x␣␣␣ψ,Ay P domS. Then ␣␣␣ψpAq P Γω Y ∆ω. Let n P ω be
the least such that ␣␣␣ψpAq P Γn Y ∆n. Then ␣␣␣ψpAq P Ln and for some m ě n,
␣␣␣ψpAq is the ăLm-first member of L. At this stage in the construction, if ␣␣␣ψpAq
was in Γm then ψpAq was put into ∆m`1,10.45.1.1 and vice versa.10.45.1.2 In either case
xψ,Ay P domS and Sx␣␣␣ψ,Ay “ 1´ Sxψ,Ay, as required.

A similar argument applies to Condition 7. (Note that Conditions 5, 6, 8, and 10
are automatically satisfied since we have excluded such formulas from our construc-
tion.) Specifically, if xψ0ÑÑÑψ1, Ay P domS, then for some m P ω, ψ0pAqÑÑÑψ1pAq
was ăLm-first in Lm. If Sxψ0ÑÑÑψ1, Ay “ 1, ψ0pAqÑÑÑψ1pAq was in Γm, and we either
put ψ0pAq in ∆m`1 or ψ1pAq in Γm`1,10.45.2.1 making Sxψ0, Ay “ 0 or Sxψ1, Ay “ 1,
respectively. On the other hand, if Sxψ0ÑÑÑψ1, Ay “ 0, ψ0pAqÑÑÑψ1pAq was in ∆m,
and we put ψ0pAq in Γm`1 and ψ1pAq in ∆m`1,10.45.2.2 making Sxψ0, Ay “ 1 and
Sxψ1, Ay “ 0.

To verify Condition 9, suppose xDDDv ψ,Ay P domS. Suppose first that pDDDv ψqpAq P
Γω, and let m P ω be such that pDDDv ψqpAq is the ăLm-first member of Γm. The for
some variable u P V , ψ

`

A
@

v
ū

D˘

P Γm`1,10.45.3.1 so S
@

ψ,A
@

v
ū

DD

“ 1. Since ū P T “
|S|, this suffices.

Finally, suppose pDDDv ψqpAq P ∆ω. By construction, for infinitely many m P ω,
pDDDv ψqpAq is the ăLm-first member of Lm. Each time this happens we have let
∆m`1 “ ∆m Y

␣

ψ
`

A
@

v
τ

D˘(

, where τ is the ăT -first term in T for which ψ
`

A
@

v
τ

D˘

R

Γn Y∆n.10.45.3.2 Consequently, ψ
`

A
@

v
τ

D˘

P ∆ω for every τ P T
`

since ψ
`

A
@

v
τ

D˘

R Γn
for any n

˘

. Again, since |S| “ T , this suffices.
Thus, S is a subvaluation function for S. Let A be the assignment of v̄ to v for

each variable v that is free in Γ Y∆. Then for each ϕ P Γ Y∆, ϕpAq “ ϕ. Since
Γ “ Γ0 Ď Γω and ∆ “ ∆0 Ď ∆ω, @ϕ P Γ Sxϕ,Ay “ 1 and @ϕ P ∆ Sxϕ,Ay “ 0, as
required. 10.42

Note that S is not necessarily even a partial valuation function for S, much
less a full valuation function, so (2.147) is not the completeness theorem for LK´.
If we assume Infinity, S is a set, so it has a full satisfaction relation. Thus, an
LK´-unprovable sequent is false in a satisfactory structure; equivalently, an LK´-
consistent theory has a satisfactory model, i.e., LK´ is a complete system of de-
duction. Obviously, this implies the completeness of LK. Thus, a sequent is LK´-
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provable iff it is semantically valid iff it is LK-provable. We therefore have a proof
of the cut-elimination theorem in ZF.

Alternatively, working finitarily, we can obtain the completeness theorem for
LK by a modification of the construction used in the proof of (2.147). We do this
in Note 10.10.

Of course, this does not give us a finitary proof of cut-elimination, and we
provide such a proof in Note 10.11. With this in hand, we have a finitary proof
that a sequent is LK´-provable iff it is LK-provable iff it is semantically valid. We
therefore have a finitary proof of the completeness of LK´.

10.10 Proof of (2.148)

[Refer to p. 144.]

(10.46) Theorem [C0] Suppose I “ pΓñ∆q is a sequent in a signature ρ without
identity that is not LK-provable. Then there exists a satisfactory ρ-structure S and
an S-assignment A to the free variables of I such that for each ϕ P ΓY∆,

1. if ϕ P Γ then S |ù ϕrAs; and

2. if ϕ P ∆ then S |ù ␣␣␣ϕrAs.

Proof Let V 1 be a countably infinite class of variables that contains all variables
that occur in quantifier phrases in ΓY∆, and let V be a countably infinite class of
variables not in V 1. Let F be the class of ρ-formulas all of whose bound variables
are in V 1. Note that Γ,∆ Ď F . As before, let T be the class of terms τ such that
Free τ Ď V .

Assume Γñ∆ is not LK-provable. Construct LK-unprovable sequents Γnñ∆n

as before, but alternate steps of the type (10.45) with steps of the following type.
Let ϕ be the first formula in F (in some fixed enumeration ăF ) that is not in
ΓnY∆n. Since Γnñ∆n is by construction not LK-provable, either Γnñ∆nYtϕu
or Γn Y tϕuñ∆n is not LK-provable.2.143.9 If the former, let Γn`1 “ Γn and
∆n`1 “ ∆n Y tϕu; otherwise let Γn`1 “ Γn Y tϕu and ∆n`1 “ ∆n. In either
case Γn`1ñ∆n`1 is LK-unprovable.

Now define Γω, ∆ω, and S as before. We will define a (full) valuation function
for A. Given a ρ-formula ϕ, let ϕ1 be any formula in F obtained from ϕ by a change
of bound variables. Given an |S|-assignment A for ϕ, A is also an |S|-assignment
for ϕ1, and ϕ1pAq P Γω Y ∆ω. If ϕ2 is any other formula in F obtained from ϕ
by a change of bound variables, then ϕ1 and ϕ2 are related by a change of bound
variables. Hence, ϕ1pAq and ϕ2pAq are related by a change of bound variables, and
it is not hard to show that tϕ1pAquñtϕ2pAqu is LK-provable.8 Thus, ϕ1pAq and

8We show by induction on logical complexity that for any ϕ, ϕ1 related by a change of bound
variables, tϕuñtϕ1u is LK-provable. Suppose DDDv ϕ and DDDv1 ϕ1 are related by a change of bound

variables. Let u be a variable that does not occur in either formula. Then ϕ
`v
ū

˘

and ϕ1
`v1

ū

˘

are

related by a change of bound variables. Suppose by induction hypothesis that ϕ
`v
ū

˘

ñϕ1
`v1

ū

˘

is LK-

provable. We can append the proof-segment

ϕ
`v
ū

˘

ñϕ1
`v1

ū

˘

ϕ
`v
ū

˘

ñDDDv1 ϕ1

DDDv ϕñDDDv1 ϕ1

to obtain an LK-proof of tϕuñtϕ1u.

(Clearly, we have proved the result for LK´, but that is inconsequential here.)
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ϕ2pAq cannot occur on opposite sides of any sequent Γnñ∆n, otherwise it would
be LK-provable. We therefore unambiguously define Sxϕ,Ay to be 1 or 0 according
as ϕ1pAq is in Γω or ∆ω for any (or all) ϕ1 P F obtained from ϕ by a change of
bound variables. 2.148

10.11 Proof of (2.149)

[Refer to p. 144.]

We will need the following theorem.

(10.47) Theorem [C0] Suppose a sequent Γñ∆ is LK´-provable, v is a variable,
τ is a term, and τ is free for v in every formula in ΓY∆. Let Γ1ñ∆1 be the result
of substituting τ for v in every formula in Γñ∆. Then Γ1ñ∆1 is LK´-provable.

Proof There is a direct syntactical argument involving changes of variables and
induction on the length of proofs, but there is a simpler semantical argument.
Suppose Γ1ñ∆1 is not LK´-provable. By (2.147) there is a structure S, an S-
assignment A1 to the free variables of Γ1ñ∆1, and a subvaluation S1 for S such
that for all ϕ P Γ1 Y∆1,

1. xϕ,A1y P domS1;

2. ϕ P Γ1ÑS1xϕ,A1y “ 1; and

3. ϕ P ∆1ÑS1xϕ,A1y “ 0.

Let A “ A1
@

v

ValS τrA1s

D

. It is a simple matter to modify S1 to obtain a subvaluation
S for S such that for all ϕ P ΓY∆,

1. xϕ,Ay P domS;

2. ϕ P ΓÑSxϕ,Ay “ 1; and

3. ϕ P ∆ÑSxϕ,Ay “ 0.

10.47

(10.48) Theorem [C0] Suppose I “ pΓñ∆q is a sequent in a signature ρ without
identity. If I is LK-provable then I is LK´-provable.

Proof By induction on the number of applications of the cut rule in an LK-proof.
The following claim clearly suffices.

(10.49) Claim Suppose π is an LK-proof of a sequent I with one application of the
cut rule, occurring as the last inference. Then I is LK´-provable.

Proof For technical reasons we will consider proofs with the following modification
of the cut rule:

(10.50)
Γ0ñ∆0 Y tϕu Γ1 Y tϕuñ∆1

Γ0 Y Γ1ñ∆0 Y∆1



10.11. 727

Any application of this rule may be replaced by the following proof segment

Γ0ñ∆0 Y tϕu. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Γ0 Y Γ1ñ∆0 Y∆1 Y tϕu

Γ1 Y tϕuñ∆1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Γ0 Y Γ1 Y tϕuñ∆0 Y∆1

Γ0 Y Γ1ñ∆0 Y∆1

where the dotted lines represent possible insertions of weakening inferences (2.143.1,2),
so despite its greater generality, (10.50) does not increase the strength of the de-
ductive system.9 For the nonce, we will call a proof π that ends as in (10.50) and
is otherwise cut-free, a ϕ-proof. We say that π is essential iff its final sequent does
not have a cut-free proof. The proof of Claim 10.49 proceeds by induction on the
complexity of proofs. The primary measure of complexity of a ϕ-proof is the logical
height of ϕ, defined as follows: the logical height of a term is 0, the logical height
of an atomic formula is 1, and the logical height of a complex formula is the least
n P ω that exceeds the logical height(s) of its immediate subformula(s). Since there
do not exist formulas with logical height 0, the following claim suffices.

(10.51) Claim Suppose ϕ is a ρ-formula, and for every formula ψ of lower logical
height, no ψ-proof is essential. Then no ϕ-proof is essential.

Proof Suppose for every formula ψ of lower logical height than ϕ, no ψ-proof is
essential. We seek to show that no ϕ-proof is essential.

(10.52) Claim Suppose π is an essential ϕ-proof that terminates thus:

(10.53)

... π0

Γ0ñ∆0 Y tϕu

... π1

Γ1 Y tϕuñ∆1

Γ0 Y Γ1ñ∆0 Y∆1

where π0 and π1 are the subproofs terminating with Γ0ñ∆0 Y tϕu and Γ1 Y

tϕuñ∆1, respectively. (In general, a label next to a vertical ellipsis indicates the
proof that ends with the following sequent.) Then ϕ occurs in either a succedent
in π0 or an antecedent in π1 immediately above the final sequent (of π0 or π1,
respectively) and is not the principal formula of the final inference.

Proof Suppose the contrary. Suppose Γ0ñ∆0Ytϕu is an axiom. Then Γ0 “ tϕu,
so Γ0 Y Γ1ñ∆0 Y∆1 is obtainable by weakening Γ1 Y tϕuñ∆1, and a cut is not
required. Hence, Γ0ñ∆0 Y tϕu is not an axiom. Likewise, Γ1 Y tϕuñ∆1 is not
an axiom.

Suppose Γ0ñ∆0 Y tϕu in π0 is obtained by weakening. Since weakening rules
do not have principal formulas, ϕ does not occur as a succedent in the penultimate
sequent of π0, so π0 is

...π2

Γ0ñ∆1

Γ0ñ∆0 Y tϕu

where ϕ R ∆1 and ∆1 Ď ∆0, and

...π2

Γ0ñ∆1

Γ0 Y Γ1ñ∆0 Y∆1

9Any of the rules with two upper sequents may be generalized in this way, and they are often
so stated.
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is therefore a cut-free proof of Γ0 Y Γ1ñ∆0 Y∆1. Hence, π0 does not end with a
weakening inference; nor does π1, by a similar argument.

It follows that ϕ must be the principal formula of the final inferences of both π0

and π1. There are three cases, depending on the primary structure of ϕ. Suppose
first that ϕ “ ␣␣␣ψ. Then π ends as follows:

... π2

Γ0 Y tψuñ∆0

Γ0ñ∆0 Y t␣␣␣ψu

... π3

Γ1ñ∆1 Y tψu

Γ1 Y t␣␣␣ψuñ∆1

Γ0 Y Γ1ñ∆0 Y∆1

We may replace this segment in π by

... π2

Γ0 Y tψuñ∆0

... π3

Γ1ñ∆1 Y tψu

Γ0 Y Γ1ñ∆0 Y∆1

which yields a proof that ends with a cut, with the cut formula ψ, and is otherwise
cut-free, i.e., a ψ-proof. By the induction hypothesis (of Claim 10.51) there is
therefore a cut-free proof of Γ0 Y Γ1ñ∆0 Y∆1.

Next, suppose ϕ “ ψÑÑÑψ1. Then π ends as follows:

... π2

Γ0 Y tψuñ∆0 Y tψ
1u

Γ0ñ∆0 Y tψÑÑÑψ1u

... π3

Γ1ñ∆1 Y tψu

... π4

Γ1 Y tψ
1uñ∆1

Γ1 Y tψÑÑÑψ1uñ∆1

Γ0 Y Γ1ñ∆0 Y∆1

We may replace this segment in π by

... π2

Γ0 Y tψuñ∆0 Y tψ
1u

... π3

Γ1ñ∆1 Y tψu

Γ0 Y Γ1ñ∆0 Y∆1 Y tψ
1u

... π4

Γ1 Y tψ
1uñ∆1

Γ0 Y Γ1ñ∆0 Y∆1

Using the induction hypothesis twice, first for ψ and then for ψ1, there is therefore
a cut-free proof of Γ0 Y Γ1ñ∆0 Y∆1.

Finally, suppose ϕ “ DDDv ψ. Then π ends as follows:

... π2

Γ0ñ∆0 Y
␣

ψ
`

v
τ

˘(

Γ0ñ∆0 Y tDDDv ψu

... π3

Γ1 Y
␣

ψ
`

v
ū

˘(

ñ∆1

Γ1 Y tDDDv ψuñ∆1

Γ0 Y Γ1ñ∆0 Y∆1

where τ and ū are free for v in ψ, and u does not occur free in Γ1 Y tDDDv ψuñ∆1.
τ is free for u in ψ

`

v
ū

˘

, and u does not occur free in Γ1Y∆1, so by Theorem 10.47

there is a cut-free proof, say π4, of Γ1 Y
␣

ψ
`

v
τ

˘(

ñ∆1. Thus we have a ψ
`

v
τ

˘

-proof

... π2

Γ0ñ∆0 Y
␣

ψ
`

v
τ

˘(

... π4

Γ1 Y
␣

ψ
`

v
τ

˘(

ñ∆1

Γ0 Y Γ1ñ∆0 Y∆1
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By induction hypothesis, there is therefore a cut-free proof of Γ0 Y Γ1ñ∆0 Y∆1.
10.52

Continuing with the proof of Claim 10.51, suppose toward a contradiction that
π “

... π0

Γ0ñ∆0 Y tηu

... π1

Γ1 Y tηuñ∆1

Γ0 Y Γ1ñ∆0 Y∆1

is an essential η-proof of minimum length, where the length of a proof is defined as
the number of inferences in it.10

We first note that

(10.54) η R Γ0 Y∆0 Y Γ1 Y∆1;

otherwise the final sequent is obtainable by a weakening either of Γ0ñ∆0 Y tηu if
η P ∆0 Y∆1, or of Γ1 Y tηuñ∆1 if η P Γ0 Y Γ1.

By (10.52), η occurs in either a succedent in π0 or an antecedent in π1 immedi-
ately above the final sequent and is not the principal formula.

(10.55) Suppose the former.

Then, except in the case of Rule 5, π terminates thus:

... π2

Γ2ñ∆2 Y tηu
i

Γ0ñ∆0 Y tηu

... π1

Γ1 Y tηuñ∆1

Γ0 Y Γ1ñ∆0 Y∆1

where inference i is either a weakening or an instance of a unary inference rule with
principal formula other than η.

Obviously, we may suppose η R ∆2. Remember that we have shown above10.54

that η R ∆0.
If i is an instance of Rule 1 or 22.143 then

(10.56) Γ2ñ∆2

Γ0ñ∆0

is an instance of the same rule.
In Rules 3, 4, 6, 7, 8 as listed in (2.143), any formula η that occurs in the

succedent of the lower sequent and is not the principal formula, occurs in ∆. Thus,
if i is an instance of Rule 4 or 7 then (10.56) is an instance of the same rule.

If i is an instance of Rule 3, 6, or 8, then either (10.56) or

(10.57)
Γ2ñ∆2 Y tηu

Γ0ñ∆0

is an instance of the same rule, depending on whether η is involved in the formation
of the principal formula. Specifically, (10.56) is an instance of the same rule as i,
unless i is an instance of

(10.58)

10We use ‘η’ rather than ‘ϕ’ to facilitate comparison with the inference rules as listed in (2.143).
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1. Rule 3 with principal formula ␣␣␣ η;

2. Rule 6 with principal formula ϕÑÑÑ η; or

3. Rule 8 with principal formula DDDϕ, where η “ ϕ
`

v
τ

˘

;

in which case (10.57) is an instance of the same rule.
Since

... π2

Γ2ñ∆2 Y tηu

... π1

Γ1 Y tηuñ∆1

Γ2 Y Γ1ñ∆2 Y∆1

is an η-proof shorter than π, it is replaceable by a cut-free proof. Thus we have the
cut-free proof

... π4

Γ2 Y Γ1ñ∆2 Y∆1

Γ2 Y Γ1ñ∆2 Y∆1 YΠ
i1 Γ0 Y Γ1ñ∆0 Y∆1

where the inference i1 is an instance of the same rule as inference i, with the same
principal formula, if any, and Π “ 0, unless (10.58) applies, in which case Π “ tηu.

In the case of Rule 5, π is of the form:

... π2

Γ2ñ∆2 Y tψ0u YΠ0

... π3

Γ3 Y tψ1uñ∆3 YΠ1

Γ0ñ∆0 Y tηu

... π1

Γ1 Y tηuñ∆1

Γ0 Y Γ1ñ∆0 Y∆1

where η R ∆2 Y∆3; Π0 and Π1 are individually either 0 or tηu, and at least one of
them is tηu; and

Γ0 “ Γ2 Y Γ3 Y tψ0ÑÑÑψ1u

∆0 “ ∆2 Y∆3.
(10.59)

We will now use the minimality of π to conclude that there are cut-free proofs

... π5

Γ1 Y Γ2ñ∆1 Y∆2 Y tψ0u

and
... π6

Γ1 Y Γ3 Y tψ1uñ∆1 Y∆3

For the first, if ψ0 is η or Π0 is empty, the final sequent is just a weakening of
Γ2ñ∆2 Y tψ0u Y Π0; if ψ0 is not η and Π0 “ tηu, we use the fact that the final
cut may be eliminated in

... π2

Γ2ñ∆2 Y tψ0u Y tηu

... π1

Γ1 Y tηuñ∆1

Γ2 Y Γ1ñ∆2 Y∆1 Y tψ0u

because this is a shorter η-proof than π.
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For the second, if Π1 “ 0 then the final sequent is a weakening of Γ3 Y

tψ1uñ∆3 YΠ1; otherwise we use cut-elimination as above.
We now have the cut-free proof

... π5

Γ1 Y Γ2ñ∆1 Y∆2 Y tψ0u

... π6

Γ1 Y Γ3 Y tψ1uñ∆1 Y∆3

Γ0 Y Γ1ñ∆0 Y∆1

using Rule 5 with principal formula ψ0ÑÑÑψ1 and the identities (10.59).
The preceding argument supposed that η occurs as a succedent in π0.10.55 The

other possibility is that η occurs as an antecedent in π1. The proof of this case is
handled similarly. 10.51 10.49 10.48

10.12 Proof of (2.183)

[Refer to p. 160.]

(10.60) Theorem [S0]

1. C0 is a conservative extension of S0.

2. C is a conservative extension of S.

Proof The following list of axioms of C1 is similar to (3.16) with the following
modifications:

1. The Extension axiom C1 has been rewritten to be meaningful in the absence
of identity.

2. The Collection axiom C5 has been replaced by the schema C15. This is done
for two reasons. First, since we do not have identity we cannot introduce
operations by definition, so the ordered pair operation used in C5 is not
available. Second, C15 incorporates the Collection schema of pure set theory
when class variables are absent.

For each number n, let vSn and vCn be the nth variable of set and class sort, respec-
tively.

(10.61) Axioms of C1

C11. Extension

@@@vC0 @@@vS0 @@@vS1 p@@@vS2 pv̄
S
2 PPP v̄S0 ØØØ v̄S2 PPP v̄S1 qÑÑÑpv̄

S
0 PPP v̄C0 ØØØ v̄S1 PPP v̄C0 q

˘

C12a. Comprehension

@@@v0 ¨ ¨ ¨ @@@vn- DDDCv @@@Sw pw̄ PPP v̄ØØØϕq,

where ϕ is any c1-formula with only set quantification, and

v0, . . . , vn- , v, w

are distinct variables such that Freeϕ Ď tv0, . . . , vn- , wu.
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C12b. Separation

@@@vC0 @@@vS0 DDDv
S
1 @@@vS2 pv

S
2 PPP vS1 ØØØ vS2 PPP vS0 ^̂̂ vS2 PPP vC0 q

C13. Existence

DDDvS0 @@@vS1 v̄S1 RRR v̄S0

C14. Pair

@@@vS0 @@@vS1 DDDv
S
2 pv̄

S
0 PPP v̄S2 ^̂̂ v̄S1 PPP v̄S2 q

C15. Collection

@@@v0 ¨ ¨ ¨ @@@vn- @@@Su
`

@@@Sv PPP ūDDDSw @@@Sa pϕÑÑÑ āPPP w̄q

ÑÑÑDDDSw @@@Sv PPP ū@@@Sa pϕÑÑÑ āPPP w̄q
˘

,

where ϕ is any c1-formula with only set quantification, and

v0, . . . , vn- , a, u, v, w

are distinct variables such that Freeϕ Ď tv0, . . . , vn- , a, vu.

We will show that C1 is a conservative extension of the c1-theory S1, defined
here.10.62 Note that no class variables occur in axioms of S1, and it is easily seen
that S1 is equi-interpretable with S0.

(10.62) Axioms of S1

S11. Extension

@@@vS3 @@@vS0 @@@vS1 p@@@vS2 pv̄
S
2 PPP v̄S0 ØØØ v̄S2 PPP v̄S1 qÑÑÑpv̄

S
0 PPP v̄S3 ØØØ v̄S1 PPP v̄S3 q

˘

S12. Comprehension

@@@v0 ¨ ¨ ¨ @@@vn- @@@uDDDw @@@v
`

v̄ PPP w̄ØØØpv̄ PPP ū ^̂̂ ϕq
˘

,

where ϕ is any c1-formula with only set quantification, and u, v, w, v0, . . . , vn- are
distinct set variables such Freeϕ Ď tv, v0, . . . , vn-u.

S13. Existence

DDDvS0 @@@vS1 v̄S1 RRR v̄S0

S14. Pair

@@@vS0 @@@vS1 DDDv
S
2 pv̄

S
0 PPP v̄S2 ^̂̂ v̄S1 PPP v̄S2 q

S15. Collection

@@@v0, . . . , vn- @@@u
`

@@@v PPPuDDDw @@@a pϕÑÑÑ aPPPwqÑÑÑDDDw @@@v PPPu@@@a pϕÑÑÑ aPPPwq
˘

,

where ϕ is any c1-formula with only set quantification, and a, u, v, w, v0, . . . , vn- are
distinct set variables such that Freeϕ Ď ta, v, v0, . . . , vn-u.
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Note that

@@@vS3 @@@vS0 @@@vS1 p@@@vS2 pv̄
S
2 PPP v̄S0 ØØØ v̄S2 PPP v̄S1 qÑÑÑpv̄

S
3 PPP v̄S0 ØØØ v̄S3 PPP v̄S1 q

˘

is a logical validity. It follows by induction on logical complexity that

(10.63) S1$@@@v0 ¨ ¨ ¨ @@@vn- @@@u0 @@@u1

´

@@@w pw̄ PPP ū0ØØØ w̄ PPP ū1qÑÑÑ
`

ϕ
`

u
ū0

˘

ØØØϕ
`

u
ū1

˘˘

¯

,

for any c1-formula ϕ with only set quantification, and distinct set variables u, u0, u1, w,
v0, . . . , vn- , such that Freeϕ Ď tu, v0, . . . , vn-u, and ū0 and ū1 are free for u in ϕ.

The first part of the proof is modeled on the proof of Herbrand’s theorem.10.14

To begin, we will work in a language with the universal but not the existential
quantifier. ‘DDD’ is understood to mean ‘␣␣␣@@@␣␣␣’. The following definition adapts
(10.15) to the present purpose. For the first part of the construction, to align
notation with that of (10.15), we let ρ be c1 and let ρ1 be ρ extended by new
constants (nulary operation indices) of both set and class sort. We will not introduce
any operations other than constants, so all terms are constants or variables. Note
that substitution of a term for a variable requires that they be of the same sort.

(10.64)

1. A witness sequence def
“ a finite sequence

W “
@

ϕi
`

vi

c̄i

˘

ÑÑÑ@@@vi ϕi
ˇ

ˇ i P n
D

of ρ1-sentences, where for each i P n, ci is a ρ1-constant that does not occur
previously in W .

2. An instance set is a finite set of ρ1-sentences of the form @@@v ϕÑÑÑϕ
`

v
c̄

˘

.

We will define the quantifier depth qdϕ of a formula ϕ as a 2-sequence xQ, qy of
numbers, and we will order these lexicographically, so that

xQ, qy ă xQ1, q1yØ
`

Q ă Q1_pQ “ Q1^ q ă q1q
˘

.

The definition is by recursion on complexity:

1. The quantifier depth of a quantifier-free formula is x0, 0y.

2. The quantifier depth of a propositional combination of formulas is the maxi-
mum quantifier depth of the constituent formulas.

3. Suppose qdϕ “ xQ, qy.

1. qdDDDSuϕ “ qd@@@Suϕ “ xQ, q ` 1y.
2. qdDDDCuϕ “ qd@@@Cuϕ “ xQ` 1, 0y.

The quantifier depth of a finite sequence W of formulas def
“ qdW def

“ is the maxi-
mum quantifier depth of its items if W ‰ 0; otherwise, qdW “ x0, 0y. The type
of a finite sequence W of formulas def

“ tpW def
“ xQ, q, Ly, where xQ, qy “ qdW

and L is the number of items in W with quantifier depth xQ, qy. We order types
lexicographically, so that

xQ, q, Ly ă xQ1, q1, L1y

Ø
`

Q ă Q1_pQ “ Q1^ q ă q1q_pQ “ Q1^ q ă q1^L ă L1q
˘

.

We will deal primarily with witness sequences and instance sets satisfying conditions
(10.16), which we repeat here for convenience.
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(10.65)

1. For every sentence @@@v ϕÑÑÑϕ
`

v
c̄

˘

P I, there is a sentence ϕ
`

v
c̄1

˘

ÑÑÑ@@@v ϕ P imW ,
i.e., any sentence that occurs as an antecedent in I occurs as a consequent in
W .

2. For i, i1 P |W |, if i ‰ i1, W piq “ ϕ
`

v
c̄

˘

ÑÑÑ@@@v ϕ, and W pi1q “ ϕ1
`

v1

c̄1

˘

ÑÑÑ@@@v1 ϕ1,
then @@@v ϕ ‰ @@@v1 ϕ1, i.e., no sentence @@@v ϕ is witnessed more than once in W .

Suppose C1$σ, where σ is a c1-sentence with no class variables. Let Σ0 be a finite
set of c1-sentences including ␣␣␣σ that is inconsistent. Recall that we have defined
ρ to be c1 and ρ1 to be ρ with additional constants. Let W0 and I be respectively
a ρ1-witness sequence for Σ0 and a ρ1 instance set such that

Σ0 Y imW0 Y I

is propositionally inconsistent.
Note that every axiom of Σ0 is of the form

@@@v0 ¨ ¨ ¨ @@@vn-ψ,

where ψ either has no class quantification or is of the form DDDCv ψ
1, where ψ1 has

only set quantification; n may be 0. The latter form is specific to C12a.

(10.66) We stipulate without loss of generality that in the initial universal quantifier
strings just mentioned, all class quantifications precede all set quantifications.

In the case of C11, C12b, C13, and C14, this is the form in which they have been
presented. In the case of C12a and C15, we have

We define for the nonce the matrix µθ of a formula θ to be the formula obtained
by removing any initial universal quantifications. Let M “ tµθ | θ P Σ0u.

For each θ P Σ0, let @vθ0 ¨ ¨ ¨ @v
θ
Nθ- be its initial universal quantification sequence

(which may be null). Let dθn (θ P Σ0, n ă Nθ) be distinct ρ1-class constants that do
not occur in W0 or I such that dθn is of the same sort as vθn. Let xθ0, . . . , θK-y be an
enumeration of Σ0 in an arbitrary order. For each k ă K, let µk “ µθk , Nk “ Nθk ,
vkn “ vθk

n , and dkn “ dθk
n ; let

(10.67)
W k “

@

@@@vkn`1 ¨ ¨ ¨ @@@v
k
Nk- µk

`

v
k
0 ¨ ¨ ¨ v

k
n

d̄
k
0 ¨ ¨ ¨ d̄

k
n

˘

ÑÑÑ@@@vkn ¨ ¨ ¨ @@@v
k
Nk- µk

`

v
k
0 ¨ ¨ ¨ v

k
n-

d̄
k
0 ¨ ¨ ¨ d̄

k
n-

˘ ˇ

ˇn P Nk
D

,

and let
W “W 0 ⌢W 1 ⌢ ¨ ¨ ¨ ⌢WK- ⌢W0.

Let
Σ “

␣

µk
`

v
k
0 ¨ ¨ ¨ v

k

Nk-

d̄
k
0 ¨ ¨ ¨ d̄

k

Nk-

˘ ˇ

ˇ k ă K
(

.

Then
ΣY im

`

W 0 ⌢ ¨ ¨ ¨ ⌢WK-˘

$P Σ0,

so

(10.68) ΣY imW Y I

is propositionally inconsistent.
We now proceed as in the proof of Herbrand’s theorem to remove elements from

W and I, while adding elements to Σ. For this purpose we modify (10.17) to refer
to sets Σ of constant instances of M .
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(10.69)

1. xΣ,W, Iy is good
def
ðñ

1. Σ is a finite set of constant ρ1-instances of M ;
2. W is a witness sequence;
3. I is an instance set;
4. ΣY imW Y I is propositionally inconsistent; and
5. (10.65.1) is satisfied.

2. xΣ,W, Iy is fine
def
ðñ it is good and (10.65.2) is satisfied.

Note that the constants that occur as witnesses in W may also occur in Σ, i.e., we
do not specify that W is a witness sequence for Σ. (10.18), which we repeat here,
remains valid, with the same proof.

(10.70) Suppose xΣ,W, Iy is good. Then there exists a fine xΣ1,W 1, I 1y such that
qdW 1 ď qdW .

The following claim corresponds to (10.21) and has a similar proof.

(10.71) Claim There exists a fine xΣ,W, Iy such that the only items of W involving
class quantification are of the form

ϕ
`

v
c̄

˘

ÑÑÑ@@@Cv ϕ.

where ϕ “ ␣␣␣ψ, and ␣␣␣@@@Cv ϕ P Σ (having been obtained from DDDCv ψ by the substitu-
tion of ␣␣␣@@@v␣␣␣ for DDD).

Proof We first observe that in (10.68), since we may append witness sentences to
W until (10.65.1) is satisfied, so there exists a good xΣ,W, Iy.

(10.72) Claim There exists a fine xΣ,W, Iy such that qdW ď x1, 0y.

Proof We follow the proof of (10.21) quite closely. Suppose xΣ,W, Iy is fine, where
W has the least possible type. Suppose toward a contradiction that qdW ą x1, 0y.
Let i be such that Wi “ ϕi

`

vi

c̄i

˘

ÑÑÑ@@@vi ϕi has the highest quantifier depth in W and
is the last item of W with this depth. We let W 1 be W with Wi omitted; we let T
be the set of constants c1 such that @@@vi ϕiÑÑÑϕi

`

vi

c̄1

˘

P I; we let I 1 be I with all these
instances omitted; and we let10.23

J “
␣

ϕi
`

vi

c̄i

˘

ÑÑÑϕ
`

vi

c̄
1

˘ ˇ

ˇ c1 P T
(

.

As in the proof of (10.24), we show that @@@vi ϕi does not occur in W 1, I 1, or J .
Since qdp@@@vi ϕiq “ qd

`

ϕi
`

vi

c̄i

˘

ÑÑÑ@@@vi ϕi
˘

, and no sentence in Σ has quantifier depth
greater than x1, 0y, @@@vi ϕi also does not occur in Σ. It follows as before10.24 that
ΣY imW 1 Y I 1 Y J is propositionally inconsistent.

The rest of the proof of (10.21) goes through without essential modification to
show that there exists a good and therefore10.70 a fine xΣ2,W 2, I2y with tpW 2 ă

tpW . 10.72

Now let xΣ,W, Iy be fine such that qdW ď x1, 0y and W has the least possible
number of items involving class quantification not of the form specified in (10.71).
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Suppose toward a contradiction that the number of such items in W is not zero. Let
Wi “ ϕi

`

vi

c̄i

˘

ÑÑÑ@@@vi ϕi be the last such item of W . Then vi is necessarily of class sort
and ϕi has no class quantifiers. Define W 1, T , I 1, and J as before. Since xΣ,W, Iy
is fine, @@@vi ϕi does not occur in W 1 or I 1. Since qd J ă x1, 0y, @@@vi ϕi does not occur
in J . The only class quantifiers in Σ are in sentences of the form ␣␣␣@@@v ␣␣␣ψ, so
the only way @@@vi ϕi could occur in Σ would be if ϕ “ ␣␣␣ψ and ␣␣␣@@@v ϕ P Σ, which
is excluded by hypothesis. It therefore follows as before that Σ Y imW 1 Y I 1 Y J
is propositionally inconsistent, and the rest of the proof of (10.21) goes through
without essential modification to complete the proof of the claim. 10.71

Let xΣ,W, Iy be as specified in (10.71). The only occurrences of class quantifi-
cation in W , and therefore also in I, are in expressions of the form @@@CV ψ, where
␣␣␣@@@CV ψ P Σ. ψ is therefore of the form ␣␣␣@@@Sv pv̄ PPP V̄ ØØØϕq, where ϕ has no class
quantification, so ␣␣␣@@@CV ψ is the instance

DDDCV @@@Sv pv̄ PPP V̄ ØØØϕq

of the Comprehension schema (with ␣␣␣@@@CV ␣␣␣ standing in for DDDCV ). We now wish
to arrange that any occurrence of class quantification occurring in Σ also occurs in
W . Let T be the set of sentences θ of the form @@@CV ψ such that ␣␣␣ θ P Σ but there
is no sentence ψ

`

V
C̄

˘

ÑÑÑ@@@CV ψ in W . Let Σ0zt␣␣␣ θ | θ P T u. Then no member of T

occurs in Σ0, W , or I. Thus, if Σ0 Y imW Y I is propositionally consistent then
there exists an interpretation I such that I |ù Σ0 Y imW Y I and θ R dom I. We
may therefore extend I to an interpretation I1 such that I1 |ù Σ Y imW Y I by
letting I1pθq “ 0 for all θ P T . Since Σ Y imW Y I is propositionally inconsistent
by hypothesis, Σ0 Y imW Y I is propositionally inconsistent.

In the interest of notational uniformity, let W 0 “ W and I0 “ I. Then
xΣ0,W 0, I0y is fine, and class quantification occurs in Σ0 Y imW 0 Y I0 only in
expressions of the form @@@CV ψ, where ψ is of the form ␣␣␣@@@Sv pv̄ PPP V̄ ØØØϕq and ϕ is
class-quantification-free. Each such expression occurs once in Σ0 and once in W ; it
may occur any number of times in I.

We will now eliminate all these remaining occurrences of class quantification. In
the interest of notational uniformity, let ρ0 be ρ1, the 2-sorted signature c1 expanded
with constants. ρ0 has one predicate index, which is binary, and no operation
indices other than constants. Thus, Σ0 is a finite set of constant instances of M ,
W 0 is a witness sequence, and I0 is an instance set, all in the signature ρ0; and
Σ0 Y imW 0 Y I0 is propositionally inconsistent.

(10.73) For each set constant c in Σ0 Y imW 0 Y I0 let vc be a distinct new set
variable.

Recall that the only remaining occurrences of class quantification are related to
instances of the class comprehension schema:

␣␣␣@@@CV ␣␣␣@@@Sv pv̄ PPP V̄ ØØØϕq,

where ϕ has no class quantification and only the free variable v (along with set and
class constants). Let

(10.74) x␣␣␣@@@vk pv̄k PPP C̄kØØØϕkqÑÑÑ@@@Vk ␣␣␣@@@vk pv̄k PPP V̄kØØØϕkq | k P Ky

enumerate the corresponding items of W 0 in the order in which they occur there.
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Let xc0, . . . , cn-y enumerate the set constants that occur in ϕ0. Let P0 be an
pn` 1q-ary predicate index, and, using the new set variables introduced above,10.73

let

(10.75) η0 “ @@@v0
`

P̃0xv̄
c0 , . . . , v̄cn- , v̄0yØØØϕ0

␣

c̄0 ¨ ¨ ¨ c̄n-

v̄
c0 ¨ ¨ ¨ v̄

cn-

(˘

,

and let

(10.76) δ0 “ @@@v
c0 ¨ ¨ ¨ @@@vcn- η0,

which is a ρ0-definition of P0 as a predicate index that takes n` 1 set arguments.
Let ρ1 be the expansion of ρ0 by the addition of the predicate index P0. Given

an expression θ, let θ1 be the result of replacing all occurrences of expressions of
the form τ PPP C̄0 by P̃0xc̄0, . . . , c̄n- , τy. Let Σ1, W 1, and I 1 be the result of making
this replacement in all sentences in Σ0, W 0 and I0, respectively. Then

Σ1 Y imW 1 Y I 1

is propositionally inconsistent. Since W 0 is a witness sequence, C0 does not occur
in ϕ0, and the first sentence in the sequence (10.74) has become

(10.77) ␣␣␣@@@v0 pP̃0xc̄0, . . . , c̄n- , v̄0yØØØϕ0qÑÑÑ@@@V0 ␣␣␣@@@v0 pv̄0 PPP V̄0ØØØϕ0q.

1. Let Σ1 be obtained from Σ1 by removing␣␣␣@@@V0 ␣␣␣@@@v0 pv̄0 PPP V̄0ØØØϕ0q and adding
δ0.10.76

2. Let W 1 be obtained from W 1 by removing

␣␣␣@@@v0 pP̃0xc̄0, . . . , c̄n- , v̄0yØØØϕ0qÑÑÑ@@@V0 ␣␣␣@@@v0 pv̄0 PPP V̄0ØØØϕ0q.10.77

W 1 is a witness sequence.

3. Let I1 be obtained from I 1 by removing all sentences of the form

@@@V0 ␣␣␣@@@v0 pv̄0 PPP V̄0ØØØϕ0qÑÑÑ␣␣␣@@@v0 pv̄0 PPP C̄ØØØϕ0q

and adding the instance sentences
(10.78)

@@@vcm ¨ ¨ ¨ @@@vcn- @@@v0 η0
`

v
c0 ¨ ¨ ¨ v

cm-

c̄0 ¨ ¨ ¨ c̄m-

˘

ÑÑÑ@@@vcm`1 ¨ ¨ ¨ @@@vcn- @@@v0 η0
`

v
c0 ¨ ¨ ¨ v

cm

c̄0 ¨ ¨ ¨ c̄m

˘

,

for all m P n.

We will now show that Σ1 Y imW 1 Y I1 is propositionally inconsistent. Suppose
toward a contradiction that I |ù Σ1 Y imW 1 Y I1. Then I |ù δ0 and I |ù (10.78)
for all m P n, so I |ù @@@v0 η0

`

vc0 ¨ ¨ ¨ vcn-

c̄0 ¨ ¨ ¨ c̄n-

˘

, which is ␣␣␣@@@v0 pP̃0xc̄0, . . . , c̄n- , v̄0yØØØϕ0q.
Hence, I |ù (10.77), so I |ùW 1.

Since @@@V0 ␣␣␣@@@v0 pv̄0 PPP V̄0ØØØϕ0q does not occur in Σ1YimW 1YI1, we may assume
that it is not dom I. Extend I to an interpretation I1 by setting

I1
`

@@@V0 ␣␣␣@@@v0 pv̄0 PPP V̄0ØØØϕ0q
˘

“ 0.

Then I1 |ù Σ1 and I1 |ù I 1. Hence, I1 |ù Σ1 Y imW 1 Y I 1; contradiction.
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Now eliminate all occurrences of @@@V1 ␣␣␣@@@v1 pv̄1 PPP V̄1ØØØϕ1
1q

10.74 from Σ1, W 1, and
I1 in the same way (ϕ1

1 being the sentence that has resulted from the replacement
of each occurrence of an expression τ PPP C̄0 by P̃0xc̄0, . . . , c̄n- , τy in ϕ1 as part of
the previous elimination). Let δ1 be the corresponding definition of P1. For each
sentence θ1 arising from the previous transformation, let θ2 be the result of replacing
all expressions of the form τ PPP C̄1 by P̃2x. . . , τy. Note that since W 1 is a witness
sequence, C1 does not occur in ϕ0, so δ0 is unaffected by this transformation, and
δ0 therefore remains a ρ0-definition of P0.

Let Σ2, W 2, and I2 be derived from Σ1, W 1 and I1 as before, by making the
above replacement, eliminating all sentences containing @@@V1 ␣␣␣@@@v1 pv̄1 PPP V̄1ØØØϕ1q,
and adding δ1 to Σ1 and the appropriate instance sentences to I1. δ1 is a ρ1-
definition of P1.

Proceed in this fashion to eliminate all class quantification. For each k ď K,
ρk is the expansion of ρ0 by the addition of the predicate indices P0, . . . , Pk´1;
and for each k ă K, δk is a ρk-definition of Pk. ΣK consists of the sentences θK

derived from class-quantifier-free members θ of Σ0, together with the definitions δk
(k ă K). WK is the residual witness sequence. IK is the final instance set.

For each remaining class constant C, let PC be a new unary predicate; and let

δC “ @@@v pP̃Cxv̄yØØØϕCq,

where ϕC is an arbitrary c1-formula with one free set variable v and only set quan-
tification, in the original signature, specifically, without any constants. Let ρ̄ be the
expansion of ρ by the addition of these predicate indices, and for any ρK-expression
θ let θ̄ be the result of replacing all occurrences of expressions of the form τ PPP C̄ by
P̃Cxτy.11 Let Σ̄K be tθ̄ | θ P ΣKu together with the definitions δC ; and let W̄K

and ĪK be the transformed versions of WK and IK . Then Σ̄K Y im W̄K Y ĪK is
propositionally inconsistent.

Σ̄K consists of ρ̄K-sentences derived from three sources:

1. Constant instances of the matrices obtained by removing all initial universal
quantifications from C1-axioms other than Comprehension.

2. Definitions δk.

3. Definitions δC .

All class constants have been eliminated in favor of defined predicates. The remain-
ing constants in Σ̄K are set constants in sentences of the first type. We transfer these
from Σ to I as we have done previously. Thus, suppose θ P Σ̄K . Let xc0, . . . , cn-y

enumerate the (set) constants that occur in θ. Let ζ “ θ
␣

c̄0 ¨ ¨ ¨ c̄n-

v̄c0 ¨ ¨ ¨ v̄cn-

(

. Replace θ in

Σ̄K by @@@vc0 ¨ ¨ ¨ @@@vcn- ζ, and add the sentences

@@@vcm ¨ ¨ ¨ @@@vcn- @@@v0 ζ
`

v
c0 ¨ ¨ ¨ v

cm-

c̄0 ¨ ¨ ¨ c̄m-

˘

ÑÑÑ@@@vcm`1 ¨ ¨ ¨ @@@vcn- @@@v0 ζ
`

v
c0 ¨ ¨ ¨ v

cm

c̄0 ¨ ¨ ¨ c̄m

˘

to ĪK for all m P n. Since θ derives propositionally from ζ and the above instanti-
ations, the resulting theory remains propositionally inconsistent.

11If our original proof that C1$σ was efficient, there are no remaining class constants; never-
theless, we must eliminate them if present. It is not surprising that this may be done entirely
arbitrarily. If we wished, however, we could choose the same formula for each ϕC , and we could
use a single new predicate, rather than one for each remaining class constant. We could further

simplify the transformation by choosing ϕ so that ϕ
`v
τ

˘

is tautologically true (or false) for every

τ .
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Let Σ˚ and I˚ be the result of eliminating all constants from Σ in this way. Let
W˚ “ W̄K . Then Σ˚ Y imW˚ Y I˚ is propositionaly inconsistent. Since W˚ is a
witness sequence and no constant occurs in Σ˚, W˚ is a witness sequence for Σ˚;
hence, Σ˚ is inconsistent.

Note that ␣␣␣σ has been unaffected by all of the above transformations, and the
only element of Σ˚ derived from ␣␣␣σ is ␣␣␣σ itself. Let SK be Σ˚ with ␣␣␣σ removed.
Then

S$σ.

(10.79) S consists of ρ̄K sentences of the following kinds.

1. Sentences derived from C1-axioms, which are of the following forms, where P
is a defined predicate, and all variables are of set sort.

C11:

@@@v0 ¨ ¨ ¨ @@@vn- @@@u@@@v p@@@w pw̄ PPP ūØØØ w̄ PPP v̄q

ÑÑÑpP̃ xv̄0, . . . , v̄n- , ūyØØØ P̃ xv̄0, . . . , v̄n- , v̄yq
˘

.

C12b: @@@v0 ¨ ¨ ¨ @@@vn- @@@uDDDv @@@w pw̄ PPP v̄ØØØ w̄ PPP ū ^̂̂ P̃ xv̄0, . . . , v̄n- , w̄yq.
C13: DDDu@@@v v̄ RRR ū.
C14: @@@u@@@v DDDw pūPPP w̄ ^̂̂ v̄ PPP w̄q.
C15:

@@@v0 ¨ ¨ ¨ @@@vn- @@@u
`

@@@v PPP ūDDDw @@@a pϕÑÑÑ āPPP w̄q

ÑÑÑDDDw @@@v PPP ū@@@a pϕÑÑÑ āPPP w̄q
˘

,

where ϕ is any ρ̄K-formula with only set quantification, and

v0, . . . , vn- , a, u, v, w

are distinct variables such that Freeϕ Ď tv0, . . . , vn- , a, vu.

2. Sentences derived from the definitions δk, k “ 0, . . . ,K ´ 1.

3. The definitions δC .

Note that there are no elements of S derived from C12a, as these have all been
eliminated.

Using the definitions δK- , . . . , δ0 in that order, and then the definitions δC in any
order, we may replace each θ P S by a sentence θ˚ that is equivalent to θ over the
theoryD consisting of the definitions δk and δC . Let S˚ “ tθ˚ | θ P SzDu. Since the
definitions δC do not mention any added predicates, and—as noted above—δk only
mentions predicates already defined by δk1 (k1 ă k), S is an extension-by-definition
of S˚. Since extension-by-definition is conservative,2.108.1

S˚$σ.

We now show that S1$S˚. First note that any element of S˚ derived from C12b,
C13, C14, or C15 is logically equivalent to the correpsonding S1-axiom: S12, S13,
S14 or S15, respectively. Next note that any element of S˚ derived from C11 is an
S1-theorem.10.63
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It follows that S1$σ. 10.60.1

To show that C is a conservative extension of S we could adapt the preceding
proof by including the Foundation axiom of C in the initial set Σ0 of c1-sentences
assumed to be inconsistent. This leads to instances

DDDv PPP C̄ÑÑÑDDDv PPP C̄ @@@w PPP v̄ w̄ RRR C̄,

for various class terms C, which get replaced by predicates P which are subsequently
written out in terms of their definitions, yielding instances of the Foundation schema
of S:

@@@v0, . . . , vn-

`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uPPP v ␣␣␣ϕ
`

v
u

˘˘˘

.

It is simpler, however, to use Theorem 3.116, which states that there are two
instances, θ03.111 and θ1,3.112 of the Foundation schema of S, from which the entire
schema follows (in S0). The proof of (3.116) is easily adapted to show that the
Foundation axiom of C also follows (in C0) from θ0 and θ1 (appropriately written
with all quantification restricted to sets). Suppose σ is a sentence of pure set theory
and C$σ. Then

C0$pθ0 ^̂̂ θ1qÑÑÑσ.

Hence,
S0$pθ0 ^̂̂ θ1qÑÑÑσ,

so S$σ. 10.60

10.13 Proof of (2.186)

[Refer to p. 163.]

(10.80) Theorem [S0] S0 and PA are equi-interpretable.

We make use of a system for using certain numbers to code certain finite se-
quences of numbers. Specifically, we define special numbers that code sequences
0, 1, 2, . . . , k and 20, 21, 22, . . . , 2k in such a way that we can state arithmetically
that two numbers occur in corresponding respective positions in these sequences.

We begin with some definitions and theorems that show that the Peano axioms
permit the development of arithmetic in the familiar way. It would be excessively
tedious to provide an exhaustive list of principles that we have understood since
childhood, and the intent is only to develop an intuition for what it means to operate
within the constraints of first-order predicate logic in the context of arithmetic.

(10.81) Theorem [PA]

1. @n p0` n “ n` 0 “ nq.

2. @m,n
`

Sm` n “ m` Sn “ Spm` nq
˘

.

3. @m,n pm` n “ n`mq.

4. @k,m, n
`

k ` pm` nq “ pk `mq ` n
˘

.

5. @n p0 ¨ n “ n ¨ 0 “ 0q.

6. @m,n pm ¨ n “ n ¨mq.
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7. @k,m, n
`

k ¨ pm ¨ nq “ pk ¨mq ¨ n
˘

.

8. @k,m, n
`

k ¨ pm` nq “ k ¨m` k ¨ n
˘

.

9. @m,m1, n pn`m “ n`m1Ñm “ m1q.

10. @m,m1 @n ‰ 0 pn ¨m “ n ¨m1Ñm “ m1q.

Proof See Note 10.13.1.

Definition [PA]

1. 1 def
“ S 0, 2 def

“ S 1.

2. m ď n
def
ðñ Dk pm` k “ nq.

3. m ă n
def
ðñ m ď n^m ‰ n.

4. n´m def
“ the unique10.81.9 k such that m` k “ n if m ď n; otherwise 0.

5. m divides n
def
ðñ m is a factor of n

def
ðñ m|n

def
ðñ Dk m ¨ k “ n.12

6. n is prime
def
ðñ @m pm|nÑm “ 1_m “ nq.

7. Suppose p is prime. n is a p-power
def
ðñ @m ‰ 1 pm|nÑ p|mq.

(10.82) Theorem [PA]

1. @n pn ‰ 0ÑDm n “ Smq.

2. @n 0 ď n.

3. @n, k, l pn` k “ n` lÑ k “ lq.

4. @m,n pm` n “ 0Ñm “ n “ 0q.

5. @m,n pm ď n_n ď mq.

6. @m,n pm ď n^n ď mÑm “ nq.

7. @n@m ‰ 0 D!q D!r ă m pn “ m ¨ q ` rq.

Proof See Note 10.13.2.

There are a number of other identities that we will use from time to time without
proof. These are all easily derived using techniques similar to the preceding. Some
examples are:

1. n` 1 “ Sn.

2. n ¨ 1 “ n.

3. If n ą 0 and m ą 1 then n ¨m ą n.

4. m ď nØm` k ď n` k.

5. If k ‰ 0 then m ď nØm ¨ k ď n ¨ k.

Definition [PA] Given n,m, if m ‰ 0, then Rempn,mq and n{m are by definition
the unique numbers such that Rempn,mq ă m and n “ pn{mq ¨m` Rempn,mq. If
m “ 0 then both are 0 (for completeness).

12Note that everything divides 0, 1 divides everything, and 0 divides only 0.
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(10.83) Theorem [S0] Suppose ϕ is an a-formula and u is a variable not in ϕ.
Then

PA$
`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uăăă v̄ ␣␣␣ϕ
`

v
ū

˘˘˘

.

Remark Remember that universal closure (i.e., universal quantification over all
free variables) is understood in statements of provability.

Proof This is another form of the induction schema PA4. To prove it for a given
formula ϕ, let

ϕ1 “ DDDvăăă w̄ ϕÑÑÑDDDvăăă w̄
`

ϕ ^̂̂ @@@uăăă v̄ ␣␣␣ϕ
`

v
ū

˘˘

,

where w is a variable other than v, u that is not in ϕ. Clearly, PA$ϕ1
`

w
0

˘

and

PA$
`

ϕ1ÑÑÑϕ1
`

w
S w̄

˘˘

, so by PA2, PA$ϕ1, i.e.,

PA$@@@w
`

DDDvăăă w̄ ϕÑÑÑDDDvăăă w̄
`

ϕ ^̂̂ @@@uăăă v̄ ␣␣␣ϕ
`

v
ū

˘˘˘

.

It follows directly that

PA$
`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uăăă v̄ ␣␣␣ϕ
`

v
ū

˘˘˘

,

as claimed. 10.83

We often use (10.83) in the form of the least counterexample principle: Letting
ϕ “ ␣␣␣ψ, we use (10.83) to infer that if there is a counterexample to ψ, there is a
least counterexample. We use ‘proof by induction’ to refer to invocations of (10.83)
generally, not just to direct applications of PA4.

(10.84) Theorem [PA]

1. Suppose p is prime and p|pm ¨ nq. Then p|m or p|n.

2. Every n ą 1 has a prime factor.

3. Suppose p is prime. n is a p-power iff n has no prime factor other than p.

Proof 1 Suppose p does not divide m. We claim that for every n

(10.85) p|pm ¨ nqÑ p|n.

Suppose toward a contradiction that this is not universally true, and let n be the
least counterexample, so p|pm ¨ nq and p ∤ n. Note that n is not 0, 1, or p. If
n ą p then p|pm ¨ pn ´ pqq, and p ∤ pn ´ pq, so n ´ p is a smaller counterexample.
Hence, n ă p (since n ‰ p). Let q, r be such that p “ n ¨ q ` r, with r ă n. Then
m ¨ p “ m ¨ n ¨ q `m ¨ r, so p|m ¨ r. Since p is prime and n is not 1 or p, r ‰ 0,
and r ă n ă p, so p ∤ r. Thus, r is a smaller counterexample than n to (10.85).
Contradiction.

2 Suppose toward a contradiction that for some n ą 1, n has no prime factor.
Let n be the least such. Then n is not prime. Let m, k ‰ 1 be such that m ¨ k “ n.
Then m, k ă n, so m, for example, has a prime factor p|m. Then p|pm ¨ kq “ n.
Contradiction.
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3 Left to the reader. 10.84

(10.86) Theorem [PA] Suppose p is prime.

1. 1 is the least p-power.

2. Suppose n is a p-power. If n ą 1 then p|n and n{p is a p-power.

3. Suppose n is a p-power. Then for all m, if n ă m ă p ¨ n then m is not a
p-power; and p ¨ n is a p-power. In other words, p ¨ n is the next p-power.

4. Suppose m,n are p-powers and m ď n. Then m|n and n{m is a p-power.

Proof 1 Trivial.

2 Suppose n is a p-power and n ą 1. Then10.84.2 n has a prime factor, which must
be p, so p|n. Every divisor of n{p is a divisor of n and is therefore divisible by p,
so n{p is a p-power.

3 By induction. Suppose n is a p-power, and for all n1 ă n, if n1 is a p-power then
p ¨ n1 is the next p-power. Suppose n ă m ă p ¨ n. If m is a p-power, let m1 “ m{p
and n1 “ n{p. Then n1 is a p-power10.86.3 and n1 ă m1 ă p ¨ n1, so by the induction
hypothesis, m1 is not a p-power. Hence,10.86.3 m is not a p-power.

To show that p ¨n is a p-power, we observe that if it were not then10.84.3 for some
prime q ‰ p, q|pp ¨ nq, whence10.84.1 q|n, contrary to supposition.

4 By induction on n ě m for a given a p-power m. The result is trivial for n “ m.
Suppose n ą m is a p-power. Then n ě p ¨ m.10.86.4 Let n1 “ n{p. Then n1 is
a p-power10.86.3 and n1 ě m, so by the induction hypothesis, m|n1 and n1{m is a
p-power. Hence, m|n, and n{m “ p ¨ pn1{mq is a p-power.10.86.3 10.86

Definition [PA]

1. n is even
def
ðñ 2|n.

2. n is odd
def
ðñ n is not even.

3. m and n have the same parity
def
ðñ both are even or both are odd; otherwise

they have opposite parity.

Definition [PA] m participates in n or is a participant in n
def
ðñ mPn

def
ðñ m

is a 2-power and n{m is odd.

The following theorem shows how to use a number as a representation of the set
of its participants, with numerical addition corresponding to set-theoretic union in
the limited sense that if n0 and n1 have no participants in common then n0 ` n1

represents the union of the sets represented by n0 and n1.

(10.87) Theorem [PA]

1. m ¨ n is odd iff either m and n are both odd.

2. m` n is even iff m and n have the same parity (are either both even or both
odd). m and m` n have the same parity iff n is even.
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3. Suppose m is a 2-power. Then m is the sole participant in m.
4. Suppose m is a 2-power.

1. Suppose m Pn. Then

@k pkPpn`mqØ kPn_ k “ mq.

2. Suppose mPn. Then n ě m and

@k pkPpn´mqØ kPn^ k ‰ mq.

5. Suppose n0 and n1 have no participants in common. Let n “ n0 ` n1. Then

@m pmPnØmPn0_mPn1q.

Proof See Note 10.13.3.

Definition [PA] Suppose k ă l are 2-powers. Then Ipm, k, lq
def
“ pRempm, lq ´

Rempm, kqq{k.

(10.88) Definition [PA]

1. a is an A-number
def
ðñ Apaq

def
ðñ

1. 1 P a;
2. 2 P a; and
3. if m0 ă m1 ă m2 are consecutive participants in a then m2{m1 “

pm1{m0q ¨ 2.

2. a and b code 2-exponentiation
def
ðñ Bpa, bq

def
ðñ

1. Apaq;
2. b is the smallest number such that

1. Ipb, 1, 2q “ 1; and
2. if m0 ă m1 ă m2 are consecutive participants in a then Ipb,m1,m2q “

SpIpb,m0,m1qq.

(10.89) Theorem [PA]

1. 1 ` 2 is the least A-number, and Bp1 ` 2, 1q. Note that every A-number has
at least two participants, e.g., 1 and 2.

2. Suppose Bpa, bq. Note that a is an A-number.10.88.2.1

1. The A-numbers less than a are the numbers Rempa,mq, where m ą 1` 2
is a participant in a. Note that the A-numbers less than or equal to a are
the numbers Rempa,mq `m, where m ą 1 is a participant in a.

2. Suppose m ą 1 and mP a. Let a1 “ Rempa,mq ` m and let b1 “
Rempb,mq. Then Bpa1, b1q. Note that if m is the largest participant in
a then a1 “ a and b1 “ b; note that b ă m.

3. Suppose m0 ă m1 are the largest two participants in a. Let

n “ Ipb,m0,m1q

m2 “ m1 ¨ pm1{m0q ¨ 2
a1 “ a`m2

b1 “ b`m1 ¨ Sn.

Then
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1. a1 is next A-number after a;
2. m1 ă m2 are the largest participants in a1;
3. Ipb1,m1,m2q “ Sn; and
4. Bpa1, b1q.

4. For each n ě 1 there are unique a, b such that

1. Bpa, bq;
2. Ipb,m0,m1q “ n, where m0 ă m1 are the largest two participants in a.

Proof 1 Clearly 1 ` 2 is an A-number, 1 and 2 are its only participants, and
Ip1, 1, 2q “ pRemp1, 2q ´ Remp1, 1qq{1 “ 1´ 0 “ 1, whereas Ip0, 1, 2q “ 0.

2 Straightforward.

3 Suppose a, b,m0,m1, . . . are as stated in (10.89.3).

3.1, 3.2 The participants of a1 are those of a with the addition of m2, which
is the largest participant in a1. It is straightforward to check that a1 is the next
A-number after a.

3.3 In general, for 2-powers k ă l, for any n, since Rempn, lq ă l and k|pRempn, lq´
Rempn, kqq, Ipn, k, lq ă l{k. Hence n ă m1{m0. It follows that Sn “ n ` 1 ă
pm1{m0q ` 1 ď pm1{m0q ¨ 2 “ m2{m1. Since b ă m1,10.89.3.2 Ipb1,m1,m2q “ Sn.

3.4 It is straightforward to check that b1 satisfies (10.88.2.1–2) vis-à-vis a1 and
that it is the least number that does, so Bpa1, b1q.

4 Straightforward induction on n. 10.89

Definition [PA]

1. Expn def
“ 1 if n “ 0; otherwise m1{m0, where m0 ă m1 are the largest two

participants in an A-number a for which there exists b such that Bpa, bq and
Ipb,m0,m1q “ n.

2. mEn
def
ðñ Expm participates in n.

(10.90) Theorem [PA]

1. Exp 0 “ 1.

2. @n ExppSnq “ 2 ¨ Expn.

3. Suppose n is a 2-power. Then D!m n “ Expm.

4. n “ 0Ø@m ␣mEn.

5. @m,n Exppm` nq “ Expm ¨ Expn.
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Proof The proofs of (1–3) are straightforward given (10.89). For (4), if n “ 0 then
all 2-powers divide it evenly, so @m ␣mPn; whereas if n ą 0 then mPn, where
m is the largest 2-power less than or equal to n. (5) follows from (1) by induction
on n for any given m. 6.10

The following theorem shows that S0 is interpretable in PA. a` is the expansion
of the basic signature a of arithmetic by the addition of the various predicate and
operation indices introduced in the course of this discussion. In particular, E is a
predicate of La`

; in fact, we really only have to consider expressions that use ‘E’
and ‘“’ exclusively, as these correspond to the membership and identity predicates
of set theory.

(10.91) Theorem [S0]

1. PA$p@@@v2 pv2 E v0ØØØ v2 E v1qÑÑÑ v0“““ v1q.13

2. Suppose ϕ is an a`-formula, and u, v are distinct variables with u R Freeϕ.
Then

PA$
`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uE v ␣␣␣ϕ
`

v
u

˘˘˘

.

3. Suppose ϕ is an a`-formula, and u, v, w are distinct variables with u,w R

Freeϕ. Then
PA$DDDw @@@v pvEwØØØ vEu ^̂̂ ϕq.

4. PA$DDDv0 @@@v1 v1 E v0.

5. PA$DDDv2 pv0 E v2 ^̂̂ v1 E v2q.

6. PA$DDDv1 @@@v2, v3 pv2 E v3 E v0ÑÑÑ v2 E v1q.

7. PA$DDDv1 @@@v2

`

@@@v1 pv1 E v2ÑÑÑ v1 E v0qÑÑÑ v2 E v1

˘

.

8. Suppose ϕ is an a-formula, and a, u, v, w are distinct variables with u,w R

Freeϕ. Then

PA$
`

@@@vEuDDDw @@@a pϕÑÑÑ aEwqÑÑÑDDDw @@@vEu@@@a pϕÑÑÑ aEwq
˘

.

Proof See Note 10.13.4.

We are now in a position to define the requisite interpretations. To interpret2.115

S0 in PA we extend PA by definition to incorporate the predicate E, and we interpret
P as E. The domain-defining formula ψ may be taken to be xv0 “ v0y or any other
formula with one free variable v such that PA$@@@v ψ. Theorem 10.91 shows that
this works.

To interpret PA in S0, using an appropriate extension-by-definition of S0 with
ordinal operations, we may take the domain-defining formula ψ to be xv0 is a finite
ordinaly, and interpret the zero, successor, addition, and multiplication operations
of PA as the corresponding operations on ordinals as given by (3.120) (the successor
operation being α ÞÑ α` 1). 10.80

Letting ι be the interpretation just defined of S0 in PA, PA easily shows that
if xE y then x ă y, so given any instance θ of the Foundation schema of S, ιθ is
provable in PA using the related instance of the Induction schema of PA. Hence, ι
interprets S in PA. Also, the set-theoretical axiom of finiteness, ␣␣␣ Infinity, becomes
a PA-theorem (easily proved by induction). Thus, ι interprets F in PA. As an

13Remember that Θ$ψ
def
ðñ Θ$ @̄̄@̄@ψ, where @̄̄@̄@ψ is the universal closure of ψ.
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interpretation of F, ι is conservative in the sense that any set-theoretical sentence
whose arithmetical interpretation is a PA-theorem is an F-theorem.

The interpretation given above of PA in S0 is, of course, also an interpretation
in the stronger theory F, and as such it is also conservative in this sense.

10.13.1 Proof of (10.81)

[Refer to p. 740.]

Theorem [PA]

1. @n 0` n “ n` 0 “ n.

2. @m,n Sm` n “ m` Sn “ Spm` nq.

3. @m,nm` n “ n`m.

4. @k,m, n pk ` pm` nqq “ ppk `mq ` nq.

5. @n 0 ¨ n “ n ¨ 0 “ 0.

6. @m,nm ¨ n “ n ¨m.

7. @k,m, n pk ¨ pm ¨ nqq “ ppk ¨mq ¨ nq.

8. @k,m, n k ¨ pm` nq “ k ¨m` k ¨ n.

9. @m,m1, n pn`m “ n`m1Ñm “ m1q.

10. @m,m1 @n ‰ 0 pn ¨m “ n ¨m1Ñm “ m1q.

Proof 1 The second equality is in PA2. We prove the first equality by induction
on n. This is trivial for n “ 0. Now suppose 0 ` n “ n ` 0. By PA2, n ` 0 “ n.
Using PA2 twice again, 0`Sn “ Sp0`nq “ Spn`0q “ Sn “ Sn`0. By Induction,
therefore, @n 0` n “ n` 0.

2 The second equality is in PA2. We prove the first equality by induction on n.
For n “ 0 we have Sm ` 0 “ Sm “ Spm ` 0q “ m ` S 0. Suppose for a given n
that for all m, Sm ` n “ m ` Sn. Then for any m, Sm ` Sn “ SpSm ` nq “
Spm` Snq “ m` SpSnq. By Induction, therefore, @n,m Sm` n “ m` Sn.

3 By induction on m. For m “ 0 this is (10.81.1). Now suppose, for a given m,
that @n m ` n “ n ` m. Then for any n, n ` Sm “ Spn ` mq “ Spm ` nq “
Sm` n.10.81.2 By Induction, therefore, @m,n m` n “ n`m.

4 By induction on k. We start with 0 ` pm ` nq “ m ` n “ p0 ` mq ` n.
Then assume @m,n pk ` pm` nqq “ ppk `mq ` nq and infer that S k ` pm` nq “
Spk ` pm` nqq “ Sppk `mq ` nq “ Spk `mq ` n “ pS k `mq ` n.

5 The second equality is in PA3. We now show by induction on n that 0 ¨ n “ 0.
For n “ 0 this again is in PA3. Suppose 0 ¨n “ 0. Then by PA3, 0 ¨Sn “ 0 ¨n` 0 “
0 ¨ n “ 0. By Induction, therefore, @n 0 ¨ n “ n ¨ 0 “ 0.
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6 We first show by induction on n that

(10.92) @m Sm ¨ n “ pm ¨ nq ` n.

For n “ 0 we have Sm ¨0 “ 0 “ pm ¨0q`0. Now suppose (10.92) holds for a given n.
Then for any m, Sm¨Sn “ pSm¨nq`Sm “ ppm¨nq`nq`Sm “ pm¨nq`pn`Smq “
pm ¨ nq ` pSn`mq “ pm ¨ nq ` pm` Snq “ ppm ¨ nq `mq ` Sn “ pm ¨ Snq ` Sn.
By Induction, therefore, @n,m Sm ¨ n “ pm ¨ nq ` n.

Now we show by induction on m that

(10.93) @nm ¨ n “ n ¨m.

For m “ 0 this is (10.81.5). Now suppose (10.93) holds for a given m. Then for
any n, Sm ¨ n “ pm ¨ nq ` n “ pn ¨ mq ` n “ n ¨ Sm. By Induction, therefore,
@m,n m ¨ n “ n ¨m.

7 Left to the reader.

8 By induction on k. For k “ 0 the result is trivial. Suppose it holds for k. Then
S k ¨pm`nq “ k ¨pm`nq`pm`nq “ pk ¨m`k ¨nq`pm`nq “ pk ¨m`mq`pk ¨n`nq “
S k ¨m` S k ¨ n.

9, 10 Left to reader. 10.81

10.13.2 Proof of (10.82)

[Refer to p. 741.]

Theorem [PA]

1. @n pn ‰ 0ÑDm n “ Smq.

2. @n 0 ď n.

3. @n, k, l pn` k “ n` lÑ k “ lq.

4. @m,n pm` n “ 0Ñm “ n “ 0q.

5. @m,n pm ď n_n ď mq.

6. @m,n pm ď n^n ď mÑm “ nq.

7. @n@m ‰ 0 D!q D!r ă m n “ m ¨ q ` r.

Proof 1 By induction on n. This is trivially true for n “ 0, and Sn “ Sn, so it
is true for Sn (even without the induction hypothesis).

2 n “ 0` n.

3 This is trivial for n “ 0. If it is true for n and Sn` k “ Sn` l then n` S k “
n` S l, so S k “ S l, so k “ l by PA1.

4 Suppose m ` n “ 0 and suppose toward a contradiction and without loss of
generality that m ‰ 0. Let l be such that m “ S l. Then 0 “ m ` n “ S l ` n “
Spl ` nq, which contradicts PA1.
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5 Let m be given. We will show by induction on n that

m ď n_n ď m.

For n “ 0, n ď m.10.82.2 To handle the induction step, suppose first that m ď n, say
n “ m` k. Then Sn “ m` S k, so m ď Sn. Now suppose n ď m, say m “ n` k.
If k “ 0 then n “ m, so Sn “ Sm “ Spm ` 0q “ m ` S 0, so m ď Sn; whereas if
k ‰ 0 then10.82.1 for some l, k “ S l, so m “ n` S l “ Sn` l, so Sn ď m.

6 Suppose m ď n and n ď m. Let k, l be such that n “ m ` k and m “ n ` l.
Then n` 0 “ n “ pn` lq ` k “ n` pl` kq, so10.82.3 l` k “ 0, so10.82.4 l “ k “ 0, so
m “ n.

7 To show uniqueness, suppose m ¨ q ` r “ m ¨ q1 ` r1, where r, r1 ă m. If q ‰ q1,
suppose without loss of generality that q ă q1, and let k ‰ 0 be such that q1 “ q`k.
Then m ¨ q ` r “ m ¨ pq ` aq ` r1 “ m ¨ q `m ¨ k ` r1. Hence, r “ m ¨ k ` r1. Let l
be such that k “ S l. Then r “ m ¨ l `m` r1, so r ě m, contrary to supposition.

We show existence by induction on n, given m. If n “ 0 then r “ q “ 0 will
do. Suppose n “ m ¨ q ` r with r ă m. Then Sn “ m ¨ q ` S r. If S r ă m we are
finished. Otherwise, S r ě m. In fact, S r “ m, because if S r ą m then for some
k ‰ 0, S r “ m ` k; letting l be such that k “ S l, S r “ m ` S l, so r “ m ` l, so
r ě m, contrary to supposition. Thus, Sn “ m ¨ q `m “ m ¨ S q. 10.82

10.13.3 Proof of (10.87)

[Refer to p. 743.]

Theorem [PA]

1. m ¨ n is odd iff either m and n are both odd.

2. m` n is even iff m and n have the same parity (are either both even or both
odd). m and m` n have the same parity iff n is even.

3. Suppose m is a 2-power. Then m is the sole participant in m.

4. Suppose m is a 2-power.

1. Suppose m Pn. Then

@k pkPpn`mqØ kPn_ k “ mq.

2. Suppose mPn. Then n ě m and

@k pkPpn´mqØ kPn^ k ‰ mq.

5. Suppose n0 and n1 have no participants in common. Let n “ n0 ` n1. Then

@m pmPnØmPn0_mPn1q.

Proof 1, 2 Straightforward.

3 m{m “ 1. If k ă m is a 2-power then m{k is a 2-power ą 1, hence even; and if
k ą m then m{k “ 0, also even.
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4.1 Suppose m Pn. Let r ă m and q be such that

n “ r ` q ¨m.

Then q “ n{m, so q is even, since m Pn. Let n1 “ n`m “ r ` pq ` 1q ¨m. q ` 1
is odd, so mPn1.

If k ă m is a 2-power, then Rempm, kq “ 0 so n1{k “ n{k `m{k. Since m{k is
even, n{k and n1{k are both even or both odd, so kPnØ kPn1.

If k ą m is a 2-power then k ě m ¨ 2 and pm ¨ 2q|k. Let k1 “ k{pm ¨ 2q. As we
have noted, q is even. Let q1 “ q{2. Then

n “ r ` q1 ¨ pm ¨ 2q.

Let r1 ă k1 and q2 be such that

q1 “ r1 ` q2 ¨ k1.

Then

n “ r ` pr1 ` q2 ¨ k1q ¨ pm ¨ 2q
“ r ` r1 ¨m ¨ 2` q2 ¨ k

and n1 “ r `m` r1 ¨m ¨ 2` q2 ¨ k.

Since r ă m, r `m ă m`m “ m ¨ 2. Since r1 ă k1, r1 ` 1 ď k1. Hence

r `m` r1 ¨m ¨ 2 ă m ¨ 2` r1 ¨m ¨ 2
“ pr1 ` 1q ¨m ¨ 2
ď k1 ¨m ¨ 2
“ k.

It follows that n{k “ q2 “ n1{k, so kPnØ kPn1.

4.2 Similar to the preceding.

5 Suppose the assertion is false. Let n0 be least such that it fails for some n1,
and let n1 be least such that it fails for n0, n1. Let n “ n0 ` n1. Then n0 and n1

have no participants in common, and for some m either

1. mPn0_mPn1, but m Pn; or

2. mPn, but m Pn0 and m Pn1.

(10.94) Let m be the least such.

In case (1), suppose mPn0. Then m Pn1. Note that m ď n0 ď n. The participants
in n0´m are those in n0 except for m,10.874.2 so n0´m and n1 have no participants
in common, and m participates in neither of them, so by the minimality of n0,
m Ppn ´mq. But by (10.87.4.),mPpn ´mq; contradiction. If mPn1 we obtain a
contradiction similarly.

In case (2), by arguments similar to those presented for (10.87.4), there exist
r, r0, r1 ă m and q, q0, q1 such that

n “ r `m` q ¨m ¨ 2
n0 “ r0 ` q0 ¨m ¨ 2
n1 “ r1 ` q1 ¨m ¨ 2.
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Note that
n “ n0 ` n1 “ r0 ` r1 ` pq0 ` q1q ¨m ¨ 2.

Since r `m ă m ¨ 2 and r0 ` r1 ă m ¨ 2,

r `m “ Rempn,m ¨ 2q “ r0 ` r1.

If m “ 1 then r “ r0 “ r1 “ 0; contradiction. Hence m ą 1. As m is a 2-power,
2|m. Since r `m ě m, either r0 ě m{2 or r1 ě m{2.

Suppose r0 ě m{2. Then n0 “ r10`m{2`q0 ¨m¨2, with r10 ă m{2, so pm{2qPn0.
By the assumed10.94 minimality of m, pm{2qPn, from which it follows that r ě m{2.
Since n0 and n1 have no participants in common, pm{2q Pn1, so r1 ă m{2. Hence

r0 ` r1 ă m`m{2 ď m` r;

contradiction.
Similarly, if we suppose r1 ě m{2, we arrive at a contradiction. 10.87

10.13.4 Proof of (10.91)

[Refer to p. 746.]

Theorem [S0]

1. PA$p@@@v2 pv2 E v0ØØØ v2 E v1qÑÑÑ v0“““ v1q.14

2. Suppose ϕ is an a`-formula, and u, v are distinct variables with u R Freeϕ.
Then

PA$
`

DDDv ϕÑÑÑDDDv
`

ϕ ^̂̂ @@@uE v ␣␣␣ϕ
`

v
u

˘˘˘

.

3. Suppose ϕ is an a`-formula, and u, v, w are distinct variables with u,w R

Freeϕ. Then
PA$DDDw @@@v pvEwØØØ vEu ^̂̂ ϕq.

4. PA$DDDv0 @@@v1 v1 E v0.
5. PA$DDDv2 pv0 E v2 ^̂̂ v1 E v2q.
6. PA$DDDv1 @@@v2, v3 pv2 E v3 E v0ÑÑÑ v2 E v1q.
7. PA$DDDv1 @@@v2

`

@@@v1 pv1 E v2ÑÑÑ v1 E v0qÑÑÑ v2 E v1

˘

.
8. Suppose ϕ is an a-formula, and a, u, v, w are distinct variables with u,w R

Freeϕ. Then

PA$
`

@@@vEuDDDw @@@a pϕÑÑÑ aEwqÑÑÑDDDw @@@vEu@@@a pϕÑÑÑ aEwq
˘

.

Proof 1 Reason as follows in PA:15
xSuppose toward a contradiction that for some n0 and n1

@n2 pn2 En0Øn2 En1q^n0 ‰ n1.

Let n0 be least for which such n1 exists, and let n1 be such that @n2 pn2 En0Øn2 En1q,
but n0 ‰ n1. If n0 “ 0 then @n2 ␣n2 En0, so @n2 ␣n2 En1, from which it follows
that n1 “ 0.

Hence, n0 ą 0. Let10.90.4 m be such that mEn. Let n10 “ n0 ´ Expm and
n11 “ n1 ´ Expm. Then @n2 pn2 En10Øn2 En11q, so by the posited minimality of
n0, n10 “ n11. Hence n0 “ n1, contrary to hypothesis.y

14Remember that Θ$ψ
def
ðñ Θ$ @̄̄@̄@ψ, where @̄̄@̄@ψ is the universal closure of ψ.

15As always, we suppose that variables indicated by distinct names are distinct.



752 CHAPTER 10. NOTES

2 Reason as follows in PA:
xSuppose that there exists a number pvq such that pϕq, and let pvq be the least

such. Then, since puqE pvqÑ puq ă pvq, p@@@uE v ␣␣␣ϕ
`

v
u

˘

q.y

In other words, the wellorderedness of universe of arithmetic—embodied in the
induction principle—implies the wellfoundedness of E.

3 Reason as follows in PA:
xSuppose toward a contradiction that for some puq it is not the case that

pDDDw @@@v pvEwØØØpvEu ^̂̂ ϕqqq,

and suppose puq is the least such number. If puq “ 0 then, letting pwq “ 0, trivially,
p@@@v pvE wØØØpvEu ^̂̂ ϕqqq. Hence puq ‰ 0. Let prq be such that prEuq. Then
Exp prqP puq. Let pu1q “ puq´Exp prq. Then pr Eu1q and @l plE puqØ lE pu1q_ l “
prqq. Since pu1q ă puq, for some pw1q,

p@@@v pvEw1ØØØpvEu1 ^̂̂ ϕqqq.

If pϕ
`

v
r

˘

q, let pwq “ pwq1 ` Exp prq; otherwise, let pwq “ pw1q. Then clearly

p@@@v pvEwØØØpvEu ^̂̂ ϕqqq,

contradicting the choice of puq.y

4 Reason as follows in PA:
xAs we have previously noted, @n n E 0.y
Note that all we really need for the Existence axiom of set theory is the assertion

that something exists, and in PA the mere presence of the 0-ary operation symbol
x0y suffices, as DDDv v“““ C̄ is a theorem of pure logic in any signature containing a
0-ary operation symbol C.

5 Reason as follows in PA:
xLet

n2 “

#

Expn0 ` Expn1 if n0 ‰ n1

Expn0 if n0 “ n1.

Then n0 En2 and n1 En2.y

6 Reason as follows in PA:
xSuppose toward a contradiction that for some n0 it is not the case that

Dn1 @n2, n3 pn2 En3 En0Ñn2 En1q,

and suppose n0 is the least such. Then n0 ‰ 0, because in that case we could
take n1 to be any number. Let n13 be such that n13 En0, i.e., pExpn13qPn0, and let
n10 “ n0 ´ Expn13. Since n10 ă n0, there exists n11 such that

@n2, n3 pn2 En3 En10Ñn2 En11q.y

Here we insert a PA-proof of

xDk @n2 pn2 E kØn2 En13^n2 En11qy,
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which we know exists by virtue of (10.91.3). Now we continue to reason as follows
in PA:

xLet k be such that

@n2 pn2 E kØn2 En13^n2 En11q.

Thus, for any m, mP k iff mPn13^m Pn11. k and n11 have no participants in
common, so,10.87.5 letting n1 “ n11 ` k, for all m

mPn1ØmPn11_mP k
ØmPn11_mPn13.

Hence, for all n2

n2 En1Øn2 En11_n2 En13.

Also,10.87.3, .4.2 since pExpn13qPn0 and n10 “ n0 ´ Expn13, for all m

mPn0ØmPn10_m “ Expn13,

so for all n3,
n3 En0Øn3 En10_n3 “ n13.

Thus, for all n2, n3

n2 En3 En0Øn2 En3^pn3 En10_n3 “ n13q

Ñn2 En11_n2 En13
Ñn2 En1,

contradicting our assumption about n0.

7 Reason as follows in PA:
Begin with a proof of the PA-version of Extension.10.91.1 Then continue with x

(10.95) Claim Suppose n ă n1. Then Dm pmEn1^m Enq.

Proof Suppose toward a contradiction that for some n

Dn1 ą n@m pmEn1ÑmEnq,

and suppose n is the least such. Let n1 ą n be such that @m pmEn1ÑmEnq. Since
n ‰ n1, by Extension there exists m0 En such that m0 En1. Let k “ n ´ Expm0.
Then for any m ‰ m0, mEnÑmE k, so @m pmEn1ÑmE kq, and k ă n1, Since
k ă n, this contradicts the minimality of n. 10.95

(10.96) Claim Suppose m ă n. Then mEpExpn´ 1q.

Proof Expn{Expm is a 2-power ą 1 and is therefore even. Expn´ 1 “ Expm´
1`Expm` ppExpm ¨ pExpn{Expmq ´ pExpmq ¨ 2q. Hence pExpn´ 1q{Expm “

1` pExpn{Expm´ 2q, which is odd, so mEpExpn´ 1q. 10.96

Using these two claims, it is clear that for any n0 and n2, if

@n1pn1 En2Ñn1 En0q

then n2 ď n0, so n2 EpExppn0 ` 1q ´ 1q. Hence

@n0 Dn1 @n2 p@n1 pn1 En2Ñn1 En0qÑn2 En1q.

y
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8 Left to the reader. Essentially, one translates the following argument into PA. If
one has a w that works in the consequent clause for u and u1 is obtained by adding
one element to u, then let w1 be something that works for u1 in the antecedent
clause and let w2 “ w Y w1. Then w2 works for u1 in the consequent clause. 10.91

10.14 Proof of (4.101)

[Refer to p. 306.]

[C`] First incompleteness theorem, Rosser’s improvement If S is consistent,
then S1 neither proves nor disproves ρ, so S is syntactically incomplete.

Proof Suppose S is consistent; hence S1 is consistent.

(10.97) Claim S1& ρ.

Proof Suppose toward a contradiction that

(10.98) S1$ ρ.

Then4.100

(10.99) S1$@@@HF v2

`

Prf 1
`

v0 v1
v̄2 τ

˘

ÑÑÑDDDHF v3

`

Prf 1
`

v0 v1

v̄3 τ
1

˘

^̂̂ Sh1
`

v0 v1
v̄3 v̄2

˘˘˘

.

Let π be an S1-proof of ρ, and let π “ Nmπ. Then

(10.100) S1$Prf 1
`

v0 v1
π τ

˘

because Prf 1 is Σ11 and SatΣ
1

1 Prf 1
`

v0 v1
π τ

˘

, so10.99

(10.101) S1$DDDHF v3

`

Prf 1
`

v0 v1

v̄3 τ
1

˘

^̂̂ Sh1
`

v0 v1
v̄3 π

˘˘

.

Since S1 is supposed consistent, and we have supposed S1$ ρ,10.98 there does not
exist an S1-proof of ␣␣␣ ρ. In S1 we can simply enumerate all proofs shorter than
π and verify that none of them is a proof of ␣␣␣ ρ, which we name by the term τ 1.
Hence

S1$␣␣␣DDDHF v3

`

Prf 1
`

v0 v1

v̄3 τ
1

˘

^̂̂ Sh1
`

v0 v1
v̄3 π

˘˘

,

so10.101 S1 is inconsistent, contrary to hypothesis. 10.97

(10.102) Claim S1&␣␣␣ ρ.

Proof Suppose toward a contradiction that

(10.103) S1$␣␣␣ ρ.

Let π be a proof of ␣␣␣ ρ, and let π “ Nmπ. Then, as before,10.100

(10.104) S1$Prf 1
`

v0 v1

π τ
1

˘

.
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Since we have assumed that S1 is consistent and S1$␣␣␣ ρ,10.103 there is no S1-proof
of ρ. In S1 we can therefore enumerate all proofs with length no greater than that
of π and verify that none is a proof of ρ. So

S1$@@@HF v2

`

Prf 1
`

v0 v1
v̄2 τ

˘

ÑÑÑ Sh1
`

v0 v1
π v̄2

˘˘

.

Therefore10.104

S1$@@@HF v2

`

Prf 1
`

v0 v1
v̄2 τ

˘

ÑÑÑDDDHF v3

`

Prf 1
`

v0 v1

v̄3 τ
1

˘

^̂̂ Sh1
`

v0 v1
v̄3 v̄2

˘˘˘

,

so S1$ ρ,4.100 which contradicts (10.103). 10.102 4.101

10.15 Proof of (5.77)

[Refer to p. 352.]

Theorem [ZF]

1. ω2 is homeomorphic to the Cantor set in R.

2. ωω is homeomorphic to RzQ.

Proof

1 It is straightforward to show that the map ι given by

ιf “
8
ÿ

n“0

2 ¨ fpnq ¨ 3´n
-

is a homeomorphism of ω2 with the Cantor set, where we have taken the liberty of
identifying the ordinals 0 and 1 with the real numbers of the same name.

2 We will define a homeomorphism ι of ωpωzt0uq with p1,8qzQ. We can then
compose this with

1. a homeomorphism of ωω with ωpωzt0uq and

2. a homeomorphism of p1,8qzQ with RzQ

to obtain the desired result. For the former, it is enough to note that ω and ωzt0u
are equipollent; any bijection of ω with ωzt0u can be use to define a homeomorphism
of ωω with ωpωzt0uq. For the latter, let ι1 : p1,8q sur

Ñ R be given by

ι1x “

#

x´ 3 if x P r2,8q
1{p1´ xq if x P p1, 2q.

It is easily checked that ι1 is continuous and strictly increasing (in fact, differentiable
with derivative ě 1) and is therefore bicontinuous; hence, a homeomorphism. Note
also that ι1 preserves (ir)rationality. Let ι2 “ ι1 æpp1,8qzQq.
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To define ι, given f P ωpωzt0uq, let

ιf “ fp0q `
1

fp1q `
1

fp2q ` ¨ ¨ ¨

def
“ lim

nÑ8
fp0q `

1
fp1q`

. . .

`
1

fpn´ 1q `
1

fpnq

.

Clearly, ι is a continuous injection of ωpωzt0uq into p1,8q.
On the other hand, given x P p1,8qzQ, define g : ω Ñ p1,8q by letting gp0q “ x,

gpn`1q “ 1{pgpnq´ rgpnqsq, where rys def
“ the greatest integer ď y. Note that since

x is irrational, gpnq is irrational for all n, so gpnq´rgpnqs P p0, 1q, and gn`1 P p1,8q.
Define fpnq “ rgpnqs, where we have again taken the liberty of identifying finite
ordinals with integers in R. Let ηx “ f . Clearly, η is a continuous injection of
p1,8q into ωpωzt0uq.

It is easy to see that for any f P ωpωzt0uq, ηpιfq “ f . In particular, ιf is
irrational; otherwise the above construction would terminate and not yield an in-
finite sequence. Thus, im ι Ď p1,8qzQ. Clearly, also, @x P p1,8qzQ ιpηxq “ x,
which shows that ι is a surjection to p1,8qzQ, hence a bicontinuous bijection, i.e.,
a homeomorphism. 5.77

10.16 Proof of (5.154)

[Refer to p. 393.]

(10.105) Theorem [ZF] Suppose S is a semiring on Ω and ACωp
ωSq. Let R be the

set of finite disjoint unions of members of S. Let C be the set of countable disjoint
unions of members of S. Suppose µ is a measure on S.

1. R is the smallest ring that includes S, i.e., the ring generated by S.

2. µ extends uniquely to a measure µ1 on R.

3. C is the smallest set that includes S and is closed under countable union.

4. C is closed under (finite) intersection.16

5. µ extends uniquely to a measure µ2 on C. µ2 has the following properties.

1. (Monotonicity) For any C,D P C, if C Ď D then µ2C ď µ2D.
2. (Subadditivity) For any C P C, if C “

Ť

nPω Cn with Cn P C for each
n P ω, then µ2C ď

ř

nPω µ2Cn.
3. (Downward continuity) Suppose C,C0, C1, . . . are members of C, @n P
ω Cn Ě Cn`1, µ2C0 ă 8, and

Ş

nPω Cn Ď C. Then limnÑ8 µ2Cn ď µ2C.

16Note that C is not in general closed under difference or countable intersection.
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Proof 1 To show that R is closed under difference it suffices to show that if
A P R and B P S then AzB P R; and to show that R is closed under union it
suffices to show that if A P R and B P S then A Y B P R. To this end, suppose
A0, . . . , An- , B P S and A “

Ů

mPnAm. Then AzB “
Ů

mPnpAmzBq. Since S is a
semiring, each AmzB is a finite disjoint union of members of S, so AzB is as well.
Since AYB “ pAzBq \B, AYB is also a finite disjoint union of members of S.

Hence, R is a ring. Clearly, any ring that includes S must include R, so R is
the smallest such ring. 10.105.1

2 Suppose A P R and A “
Ů

mPnBm “
Ů

mPn1 B1m, where Bm, B1m1 P S for all
m P n and m1 P n1.

(10.106) Claim
ř

mPn µBm “
ř

mPn1 µB1m.

Proof For m P n and m1 P n1, let Cm,m1 “ Bm X B1m1 . Note that Cm,m1 P

S. Clearly, for each m P n, Bm “
Ů

m1Pn1 Cm,m1 , so µBm “
ř

m1Pn1 µCm,m1 .
Similarly, for each m1 P n1, Bm1 “

Ů

mPn Cm,m1 , so µBm1 “
ř

mPn µCm,m1 . Hence
ř

mPn µBm “
ř

mPn,m1Pn1 µCm,m1 “
ř

mPn1 µB1m. 10.106

In view of the claim we may define µ1 : R Ñ r0,8s by the condition that
for any A “

Ů

mPnBm, with Bm P S for each m P n, µ1A “
ř

mPn µBm. It
is straightforward to show that µ1 is a measure on R, and it is clearly the only
extension of µ to R. 10.105.2

3

(10.107) Claim Suppose C “
Ť

nPω Sn, where Sn P S for each n P ω. Then C P C.

Proof For each n P ω let Rn “ Snz
Ť

mPn Sm. (Remember that the union of the
empty set is empty, so R0 “ S0.) The Rns are pairwise disjoint and

Ů

nPω Rn “
Ť

nPω Sn “ C. Note that each Rn must be in any ring that includes S, so Rn P
R,10.105.1 and Rn is therefore a finite disjoint union of members of S. Invoking
ACωp

ωSq, there is a function f such that for each n P ω, fn is a finite sequence
of disjoint members of S whose union is Rn, and this gives us an ω-sequence of
disjoint members of S whose union is C. 10.107

Now suppose C “
Ť

nPω Cn, where Cn P C for each n P ω. Using ACωp
ωSq,

let xSmn | m,n P ωy be such that Smn P S, and @n P ω Cn “
Ť

mPω S
m
n . Then

C “
Ť

m,nPω S
m
n , so C P C.10.107

Thus C is closed under countable union. It is obviously the smallest such set
including S. 10.105.3

4
Ů

mPω Sm X
Ů

mPω Tm “
Ů

m,nPωpSm X Tnq.
10.105.4

5 Suppose A P C and A “
Ů

mPω Bm “
Ů

mPω B
1
m, where Bm, B1m P S for all m P

ω. Then
ř

mPω µBm “
ř

mPω µB
1
m by the same argument used to prove (10.106).

Hence we may define µ2 : C Ñ r0,8s by the condition that for any A “
Ů

mPω Bm,
with Bm P S for each m P ω, µ2A “

ř

mPω µBm. It is straightforward to show
that µ2 is a measure on C, and it is clearly the only extension of µ to C.
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5.1 Suppose C,D P C and C Ď D. Suppose C “
Ů

nPω Sn and D “
Ů

nPω Tn,
with Sn, Tn P S for all n P ω. Then Sm “

Ů

nPωpSmXTnq and Tn Ě
Ů

mPωpSmXTnq.
Suppose n P ω. For each M P ω,

Ů

mPM pSm X Tnq is in R, which is closed under
difference, so letting U “

Ů

mPM pSm X Tnq,

µ1Tn “ µ1U ` µ1pTnzUq ě µ1U “
ÿ

mPM

µ1pSm X Tnq.

Since µ2 extends µ1, µ2Tn ě
ř

mPM µ2pSm X Tnq for all M P ω, so µ2Tn ě
ř

mPω µ2pSm X Tnq. Hence

µ2D “
ÿ

nPω

µ2Tn ě
ÿ

m,nPω

µ2pSm X Tnq “
ÿ

mPω

µ2Sm “ µ2C.

5.2 We first prove the following special case.

(10.108) Claim For any C P C, if C “
Ť

nPω Sn with Sn P S for each n P ω, then
µ2C ď

ř

nPω µ2Sn

Proof Note that in the disjointing process used for C “
Ť

nPω Sn in the proof of
(10.105.3), Rn Ď Sn for each n P ω, so µ2Sn “ µ1Sn “ µ1Rn ` µ1pSnzRnq ě
µ1Rn “ µ2Rn, so µ2C “

ř

nPω µ2Rn ď
ř

nPω µ2Sn. 10.108

To treat the general case, suppose C “
Ť

nPω Cn with Cn P S for each n P ω.
Let Smn P S pm,n P ωq be such that for each n P ω, Cn “

Ů

mPω S
m
n (ACωp

ωSq).
Then

µ2C ď
ÿ

m,nPω

µ2S
m
n “

ÿ

nPω

ÿ

mPω

µ2S
m
n “

ÿ

nPω

µ2Cn.

5.3 The essence of the proof is an approximation of the Cns by members of R,
which is closed under difference. Note that @n P ω µ2Cn ě µ2Cn`1.10.105.5.1 Suppose
toward a contradiction that limnÑ8 µ2Cn ą µ2C. Let ε “ 1

2

`

plimnÑ8 µ2Cnq ´

µ2C
˘

ą 0.
Let Tmn P S pm,n P ωq be such that Cn “

Ů

mPω T
m
n (using ACωp

ωSq).

(10.109) Construct C 1n P C, Rmn P R, Mn P ω, and Rn, R
1
n P R for m,n P ω, with

the following properties:

1. Rm0 “ Tm0 .
2. For any m P ω, Rmn Ď Tmn .
3. C 1n “

Ů

mPω R
m
n .

4. R1n “
Ů

měMn
Rmn and µ2R

1
n ă 2´n´1ε.

5. Rn “ C 1nzR
1
n “

Ů

măMn
Rmn .

6. C 1n`1 “ Rn X Cn`1.

(10.109.1) begins the construction. For each n P ω, supposing Rmn (m P ω) to have
been defined satisfying (10.109.2),

ÿ

mP8

µ2R
m
n ď

ÿ

mP8

µ2T
m
n “ µ2Cn ď µ2C0 ă 8.

Let Mn be least such that
ř

měMn
µ2R

m
n ă 2´n´1ε, and define C 1n, R1n and Rn as

in (10.109.3,4,5). Let Rmn`1 “ Tmn`1 XRn.
Note that by this construction, for each n P ω,
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1. Rn Ď C 1n Ď Cn;

2. Rn`1 Ď C 1n`1 Ď Rn;

3. CnzC 1n Ď
Ť

n1ănR
1
n1 ;

4. CnzRn Ď
Ť

n1ďnR
1
n1 ; and

5. µ2Cn ´ µ2Rn ă p1´ 2´n´1qε.

The first two assertions are immediate. The third and fourth are proved by si-
multaneous induction. For the last assertion we note that Cn Ď Rn Y

Ť

n1ďnR
1
n1 ,

so10.105.5.2 µ2Cn ď µ2Rn `
ř

n1ďn 2´n
1´1ε “ µ2Rn ` p1´ 2´n´1qε.

Note that
Ş

nPω Rn Ď
Ş

nPω Cn Ď C, and limnÑ8 µ2Rn ě limnÑ8 µ2Cn ´ ε ą
µ2C. However, R0 “

Ů

mănpRmzRm`1q\Rn, so µ2Rn “ µ2R0´
ř

măn µ2pRmzRm`1q,
and limnÑ8 µ2Rn “ µ2R0´

ř

mPω µ2pRmzRm`1q. Hence µ2C ă µ2R0´
ř

mPω µ2pRmzRm`1q,
which contradicts the fact that C Y

Ť

mPωpRmzRm`1q Ě R0.10.105.5.1 10.105

10.17 Proof of (5.156)

[Refer to p. 394.]

(10.110) Theorem [ZF] Suppose S is a semiring on Ω and ACωp
ωSq. Suppose µ

is a σ-finite measure on S. Then

1. S ĎMµ;

2. Mµ is a σ-algebra; and

3. µ̄ is the unique extension of µ to a measure on Mµ.

Proof 1 Suppose S P S. Since µ is σ-finite, let Sn P S, n P ω, be such that
Ω “

Ť

nPω Sn. For each n P ω, let Rn “ SnzS. Then for each n P ω, Rn is a finite
union of members of S, and ΩzS “

Ť

nPω Rn, so by ACωp
ωSq there exist Tn P S,

n P ω, such that ΩzS “
Ť

nPω Tn, so S is µ-measurable. 10.110.1

2 Let R be the set of finite disjoint unions of members of S, and let C be the set of
countable disjoint unions of members of S. Recall5.154 that R is the ring generated
by S, C is the set of countable unions of members of S, and we may suppose that µ
is defined on C. Keep in mind that R is closed under finite union, finite intersection,
and difference; C is closed under countable union and finite intersection, but not
necessarily difference or countable intersection.

(10.111) By virtue of (5.154) a set A Ď Ω is µ-measurable iff for all ε ą 0 there
exists C,D P C such that

1. A Ď C;

2. ΩzA Ď D; and

3. µpC XDq ă ε.
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Obviously, Mµ is closed under complementation (relative to Ω). It suffices,
therefore to show that it is closed under countable union. Suppose Mn P Mµ for
each n P ω. Let M “

Ť

nPωMn. We wish to show that M is µ-measurable.
Let S P S with µS ă 8, and ε ą 0 be fixed for the moment.

(10.112) Invoking ACωp
ωSq, let Cn, Dn P C pn P ωq be such that

1. Mn Ď Cn;

2. ΩzMn Ď Dn; and

3. µpCn XDnq ă 2´n´1ε.

Let C “
Ť

nPω Cn, D “
Ş

nPωDn, and Em “
Ş

nPmDn for m P ω. Then

1. M Ď C;

2. ΩzM Ď D;

3. C XD Ď
Ť

nPωpCn XDnq; and

4. xC X Em | m P ωy is a decreasing sequence of members of C with
Ş

mPωpC X
Emq “ C XD Ď

Ť

nPωpCn XDnq.

Restricting to S, xC X Em X S | m P ωy is a decreasing sequence of members of C
with

Ş

mPωpC X Em X Sq “ C XD X S Ď
Ť

nPωpCn XDn X Sq.
Since µS ă 8, (5.154.5.3) applies, so

lim
mÑ8

µ2pC X Em X Sq ď µ2

ď

nPω

pCn XDn X Sq.

By (5.154.5.2)

µ2

ď

nPω

pCn XDn X Sq ď
ÿ

nPω

µpCn XDn X Sq ă
ÿ

nPω

2´n´1ε “ ε.10.112.3

Let m P ω be such that µ2pC X Em X Sq ă ε. Let C 1 “ C X S and D1 “ Em X S.
Then

1. C 1, D1 P C;

2. C 1, D1 Ď S;

3. M X S Ď C 1;

4. SzM Ď D1; and

5. µ2pC
1 XD1q ă ε.

Since µ is σ-finite there exist Si P S pi P ωq such that @i P ω µSi ă 8 and
Ω “

Ť

iPω Si. By replacing Si with Siz
Ť

jăi Sj , we may assume that the Sis are
disjoint. Thus, Ω “

Ů

iPω Si.
Now suppose ε ą 0. For each i P ω, by the above argument with Si for S and

2´i´1ε for ϵ, there exist C 1i, D
1
i P C be such that

1. C 1i, D
1
i Ď Si;

2. M X Si Ď C 1i;
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3. SizM Ď D1i; and

4. µ2pC
1
i XD

1
iq ă 2´i´1ε.

Use ACωp
ωSq to show that there is a sequence xxCi, Diy | i P ωy of such pairs, and

let C 1 “
Ť

iPω C
1
i and D1 “

Ť

iPωD
1
i. Then

1. C 1, D1 P C;

2. M Ď C 1;

3. ΩzM Ď D1; and

4. µ2pC
1 XD1q ď

ř

iPω µ2pC
1
i XD

1
iq ă

ř

iPω 2´i´1ε “ ε.5.154.5.2

Hence M is µ-measurable. 10.110.2

3 Using the characterization (10.111) of Mµ, it is straightforward to show that
µ̄, which is by definition µ˚ restricted to Mµ, is a measure. It is clearly unique.

10.110.3 10.110

10.18 Proof of (5.158)

[Refer to p. 395.]

(10.113) Theorem [ZF` ACω] Suppose, for i “ 0, 1, that µi is a σ-finite measure
on a σ-algebra Mi on a set Ωi. Let µ “ µ0 ˆ µ1 be the product measure on the
product algebra M “ M0 ˆM1 on Ω “ Ω0 ˆ Ω1.5.157 Suppose A P M. For x P Ω0,
let Ax “ ty P Ω1 | xx, yy P Au. Let E “ tx P Ω0 | µ1Ax ą 0u. Then µA “ 0 iff
µ0E “ 0.

Remark We call Ax the section of A at x. E is the exceptional set of A. Thus
the theorem states that A is null iff almost every section of A is null, i.e., iff the
members of the exceptional set E truly are exceptional.

Proof Let S be the semiring of rectangles A0ˆA1, where A0 P M0 and A1 PM1.

pÑq Suppose N is some index set, which will often be ω or a subset of ω. Suppose
m P ω. We will say that xXn | n P Ny

1. covers Y
def
ðñ for every y P Y , y P Xn for some n P N ;

2. covers Y m times
def
ðñ for every y P Y , |tn P ω | y P Xnu| “ m;

3. covers Y at least m times
def
ðñ for every y P Y , |tn P ω | y P Xnu| ě m; and

4. covers Y infinitely often
def
ðñ it covers Y at least m times for every m P ω.
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By definition, for any measure µ on a semiring S, Y P Mµ is null iff for any ε ą 0
there exists xXn | n P ωy, with Xn P S, that covers Y such that

ř

nPω µXn ă ε. It
is easy to see that if Y is null then for any ε ą 0 there exists a sequence xXn | n P ωy,
with Xn P S, that covers Y infinitely often such that

ř

nPω µXn ă ε. (For each
m P ω, let xXm

n | n P ωy be a sequence that covers Y , such that
ř

nPω µX
m
n ă

ε{2m`1. Merge these sequences into a single ω-sequence.)

(10.114) Claim On the other hand, if Y is not null then for any xXn | n P Ny,
with Xn P S, that covers Y infinitely often,

ř

nPN µXn diverges.

Proof It suffices to prove this for N “ ω. We will show by induction on m ě 1
that if xXn | n P ωy covers Y at least m times then

ř

nPω µXn ě m ¨ µY . This is
trivial for m “ 1. Suppose it is true for m, and suppose xXn | n P ωy covers Y at
least m` 1 times. For each n P ω let Yn “ Xn X

Ť

n1ănXn1 , and let Zn “ XnzYn.
Note that Xn “ Yn\Zn.

Ť

nPω Zn “
Ť

nPωXn, so xZn | n P ωy covers Y . Since the
Zns are pairwise disjoint, xZn | n P ωy covers Y 1 time. It follows that xYn | n P ωy
covers Y at least m times. Since S is a semiring and we have ACω, there exists
a sequence of finite decompositions of the Yns into members of S, which can be
arranged as a single ω-sequence xY 1n | n P ωy, so that

ř

nPω µY
1
n “

ř

nPω µYn, and
xY 1n | n P ωy covers Y at least m times. By induction hypothesis, therefore,

ÿ

nPω

µYn “
ÿ

nPω

µY 1n ě m ¨ µY.

By a similar sequence of decompositions we obtain a sequence xZ 1n | n P ωy of
disjoint members of S such that

ř

nPω µZ
1
n “

ř

nPω µZn, and xZ 1n | n P ωy covers
Y , so

ÿ

nPω

µZn “
ÿ

nPω

µZ 1n ě µY.

Again invoking the fact that Xn “ Yn \ Zn, µXn “ µYn ` µZn, from which it
follows that

ř

nPω µXn ě pm` 1q ¨ µY .
If xXn | n P ωy covers Y infinitely often then it covers Y at least m times for

every m P ω, so
ř

nPN µXn ě m ¨ µY for all m P ω. Since µY ą 0 by assumption,
ř

nPN µXn diverges. 10.114

Suppose A P M and µA “ 0. Suppose ε ą 0. Let10.114 xXn ˆ Yn | n P ωy be an
ω-sequence of rectangles in S that covers A infinitely often, such that

(10.115)
ÿ

nPω

µ0Xn ¨ µ1Yn ă ε.

(10.116) By partitioning the Xns as necessary, we may arrange that for each m ă

n ă ω, either Xn Ď Xm or Xn XXm “ 0. The new Xns are still in M0.

For x P Ω0, let Nx “ tn P ω | x P Xnu. Note that for each x P Ω0, xYn | n P Nxy
covers Ax infinitely often. Thus, for every x P E,

ř

nPNx
µ1Yn diverges.

For n P ω, let ϕn : Ω0 Ñ R be defined by the condition that

ϕnx “
ÿ

tµ1Ym | m ă n^x P Xmu,

with the convention that the sum of the empty set is 0, so ϕ0x “ 0 for all x. Thus,

ϕn`1x´ ϕnx “

#

µ1Yn if x P Xn

0 otherwise.
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(10.117) By virtue of (10.116) the region under the graph of ϕn is the disjoint
union of the rectangles Xm ˆ ra, bq, m ă n, where ϕmx “ a for all x P Xm, and
b “ a` µ1Ym.

Note that for each x P Ω0, xϕnx | n P ωy is nondecreasing, and for any x P E,
limnÑ8 ϕnx “ 8. LetN be the set of n P ω such that for some x, ϕnx ă 1 ď ϕn`1x.
Then for any x P E, x P Xn for some n P N , i.e., xXn | n P Ny covers E.

Using a partitioning argument based on the above tiling,10.117 it is easy to show
that

ř

nPN µ0Xn ď
ř

nPω µ0Xn ¨ µ1Yn. Thus,
ř

nPN µ0Xn ă ε.10.115

Since ε was an arbitrary positive real number, this shows that µ0E “ 0.

pÐq Conversely, suppose µ0E “ 0, and suppose toward a contradiction that µA “
c ą 0. Let5.155.3 Sn, Tn P S, n P ω, be such that

1. A Ď
Ť

nPω Sn;

2. ΩzA Ď
Ť

nPω Tn; and

3.
ř

m,nPω µpSm X Tnq ă c{2.

(10.118) By partitioning, if necessary, we may arrange that17

1. the Sns and Tns are finite rectangles;

2. the Tns are pairwise disjoint; and

3. letting Tn “ T 0
n ˆ T

1
n , if m ă n ă ω then either T 0

n Ď T 0
m or T 0

n X T
0
m “ 0.

By construction,
µ
`
Ť

mPω Smz
Ť

m,nPωpSm X Tnq
˘

ą c{2,

so there exists k P ω such that

(10.119) µ
`

Skz
Ť

nPωpSk X Tnq
˘

ą 0.

Since
Skz

Ť

nPωpSk X Tnq Ď A,

for any x P Ω0zE,
`

Skz
Ť

nPωpSk X Tnq
˘

x
is null.

In the terminology of (10.118.3), let X “ S0
k, Y “ S1

k, Xn “ S0
k X T 0

n , and
Yn “ S1

k X T
1
n . Thus,

1. Sk “ X ˆ Y ; and

2. for each n P ω, Sk X Tn “ Xn ˆ Yn.

Then

(10.120) @x P XzE
`

Y z
Ť

tYn | x P Xnu is null
˘

.

The rectangles Xn ˆ Yn are pairwise disjoint,10.118.2 so10.119

(10.121) µpX ˆ Y q ´
ř

nPω µpXn ˆ Ynq ą 0,

17We could arrange that (10.118.2) apply to Sns as well as the Tns, and that (10.118.3) apply
to the T 1

ns, and to the S0
ns and S1

ns similarly defined, but the listed properties are all we will need.
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but10.120

(10.122) @x P XzE
ÿ

tµYn | x P Xnu “ µY.

We have arranged10.118.3 that for each m ă n ă ω, either Xn Ď Xm or XnXXm “ 0.
As before, define ϕn : X Ñ R for n P ω by the condition that

ϕnx “
ÿ

tµ1Ym | m ă n^x P Xmu.

Then

ϕn`1x´ ϕnx “

#

µ1Yn if x P Xn

0 otherwise.

Suppose 0 ă ε ă µ1Y . Let N be the set of n P ω such that for some x P X,
ϕnx ă µ1Y ´ ε ď ϕn`1x. For any x P XzE, limnÑ8 ϕnx “ µ1Y ,10.122 so x P Xn for
some n P N , i.e., xXn | n P Ny covers XzE. Since E is assumed null, there exists
n P ω such that

ř

tµ0Xm | m ă n^m P Nu ą µ0X ´ ε.
Using a tiling argument as before, we see that

ÿ

măn

µpXm ˆ Ymq ą pµ0X ´ εqpµ1Y ´ εq.

Since ε was an arbitrary positive number,
ÿ

mPω

µpXm ˆ Ymq ě pµ0Xqpµ1pY q “ µpX ˆ Y q,

which contradicts (10.121). 10.113

10.19 Proof of (5.177): Borel determinacy

[Refer to p. 406.]

In proofs of determinacy, auxiliary games are often useful. Suppose G “ xT,Xy
is a game. Informally, an auxiliary game for G is a game G1 “ xT 1, X 1y with the
property that a strategy σ1 in G1 determines a strategy σ in G (for the same or
the opposite player), such that if σ1 is a winning strategy in G1 then σ is a winning
strategy in G. Therefore, if G1 is determined, so is G. For the proof of Borel
determinacy, a particular sort of auxiliary game is used, viz., a covering. This
differs from the usual case in that the auxiliary games for xT,Xy and xT, rT szXy
are the same, i.e., in the definition of a covering we are indifferent as to which
outcome each player is imagined to be trying to achieve.

(10.123) Definition [ZF] Suppose T is a nonempty good tree.

1. xT 1, π, φy is a covering of T
def
ðñ

1. T 1 is a nonempty good tree;
2. π : T 1 Ñ T , where

1. π is monotone, i.e., s Ď tÑπ s Ď π t; and
2. π is length-preserving, i.e., |π s| “ |s|.

We extend π to rT 1s by letting π x “
Ť

nPω πpx ænq, so π ærT 1s : rT 1s Ñ
rT s.
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3. φ “ φI Y φII, where, letting P be I or II,
1. φP : S̄T 1

P Ñ S̄TP ;5.166.9.4

2. φP
ÑST

1|n
P Ď ST |nP ; and

3. for all σ P S̄T 1

P and n P ω, pφP σq|n “ φPpσ|nq.
We extend φP to ST 1

P by letting φP σ “
Ť

nPω φPpσ|nq.

4. for every σ P ST 1
, πÑrσs Ě rφσs.

2. Suppose k P ω. xT 1, π, φy is a k-covering of T
def
ðñ

1. xT 1, π, φy is a covering of T ;
2. T 1|2k “ T |2k; and
3. π æpT 1|2kq is the identity function.

Definition [ZF] Suppose xT 1, π, φy is a covering of a nonempty good tree T and

X Ď rT s. xT 1, π, φy unravels X
def
ðñ πÐX is clopen. Note that xT 1, π, φy unravels

X iff xT 1, π, φy unravels rT szX.

(10.124) Theorem [ZFC] Suppose G “ xT,Xy is a game and xT 1, π, φy is a covering
of T that unravels X. Then G is determined.

Proof Let X 1 “ πÐX, and let G1 “ xT 1, X 1y. By the Gale-Stewart theorem,
there is a P-strategy σ1 in T 1 that is winning in xT 1, X 1y. Let σ “ φσ1 be the
corresponding strategy in T . Suppose x P rσs. Let x1 P rσ1s be such that πx1 “ x.
Then

x1 P

#

X 1 if P is I
rT 1szX 1 if P is II,

and, accordingly,

x P

#

X if P is I
rT szX if P is II,

so σ is a winning P-strategy in G. 10.124

(10.125) Theorem [ZFC] Suppose T is a nonempty good tree and X Ď rT s is
closed. Then for any k P ω there is a k-covering of T that unravels X (and hence
also rT szX).

Proof Let TX “ tp P T | Dx P X p Ď xu. Since X is closed, X “ rTX s.

(10.126) Let T̃ be the good tree such that rT̃ s consists of all ω-sequences

xx0, . . . , x2k´1, xx2k,ΣIy, xx2k`1, ry, x2k`2, . . . y,

where, letting p1 “ xx0, . . . , x2ky, p2 “ xx0, . . . , x2k, x2k`1y, and x “ xx0, x1,
. . . y,

1. x P T ;

2. ΣI is a I-imposed subtree of Tpp1q; and

3. either

1. r “ x1, uy, where u is a sequence of even length extending p2 such that
1. u P ΣIzTX ; and
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2. x P rTpuqs; or
2. r “ x2,ΣIIy, where ΣII is a II-imposed subtree of ΣI

pp2q such that

1. ΣII Ď TX ; and
2. x P rΣIIs.

Note that xx2k,ΣIy is a play by I in the auxiliary game on T̃ , which consists of a play
x2k by I in the original game on T , together with a restriction ΣI on the rest of the
T -game imposable by I. The option (10.126.3.1) corresponds to II observing that
the restriction ΣI allows for the possibility of a continuation of play to a position
u P ΣI that is not in TX , and hence is a losing position for I.

Option (10.126.3.2) corresponds to II observing that it may restrict ΣI so as to
preclude the possibility of option 1.

If option 1 is not possible after II’s play of x2k`1 then option 2 is possible—
indeed, ΣII may be taken to be ΣI

pp2q. Note that either option may constrain the
subsequent play: option 1 requires that xm “ um for 2k ` 2 ď m ă |u|; option 2
requires that xx2k`2, . . . y P ΣII

p2 .
Let π be given by:

(10.127) πxx0, . . . , x2k´1, xx2k,ΣIy, xx2k`1, ry, x2k`2, . . . y “ xx0, . . . y.

Let X̃ “ πÐX, and let G̃ “ xT̃ , X̃y. Since X is closed, X̃ is closed.
Note also that x̃ P X̃ iff x̃2k`1 is of the form xx2k`1, x2,ΣIIyy, i.e.,

ppx̃2k`1q1q0 “ 2.

Hence X̃ “
Ť

tT̃pp̃q | |p̃| “ 2k ` 2^ppp̃2k`1q1q0 “ 2u, so X̃ is a union of basic open
sets in rT̃ s and is therefore open.

Thus X̃ is clopen. To complete the proof we must define the mapping φ : S T̃ Ñ
ST . Recall that φ “ φI Y φII, with φI and φII applying to I- and II-strategies,
respectively.

Case I Suppose σ̃ Ď T̃ is a I-strategy. We will define the I-strategy σ “ φ σ̃ Ď T .
Let σ|2k “ σ̃|2k. Suppose p “ xx0, . . . , x2k´1y P σ. We must define the unique

immediate extension of p in σ, which is I’s play according to σ at position p in
T . Since p is in σ̃, it has a unique immediate extension p ⌢xxx2k,ΣIyy in σ̃. Let
p1 “ p ⌢xx2ky be the unique extension of p in σ.

Being a I-strategy, σ does not restrict the immediate extensions of p1 in σ, so
we must define σpp2q for all p2 “ p1 ⌢xx2k`1y P T . To do this we consider the game

G1 “ xΣI
pp2q, rΣ

I
pp2qszXy.

Note that X X rΣI
pp2qs “ rT

X X ΣI
pp2qs. There are two cases to consider.

Case 1 Suppose there is a winning I-strategy in G1. Let σ1 be the first such
strategy in some fixed wellordering of strategies. Then @x P rσ1s Dn P ω x æn R TX .
Let U consist of the Ď-minimal members of the set of u P σ1zTX of even length.
Then σ1 “

Ť

uPU σ
1
puq, i.e., every play according to σ1 contains a (unique) position

u P U . For each u P U , let

ũ “ xx0, . . . , x2k´1, xx2k,ΣIy, xx2k`1, x1, uyy, u2k`2, . . . , u|u|´1y,
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and note that ũ P σ̃. Let

σp2 “
ď

uPU

tu ⌢ s | s P σ̃ũu

In other words, from position p2, I plays according to σ1 until a position u of even
length is reached such that u R TX , which must happen since σ1 is a winning I-
strategy in G1. As soon as this happens, I imagines that II has played xx2k`1, x1, uyy
after p1 in G̃ and that both players in that game have played—as they must—the
remainder of u. From this point on in G, I plays as instructed by σ̃ in G̃.

Case 2 Now suppose there is no winning I-strategy in G1. Let ΣII be the
II-nonlosing subtree of ΣI

pp2q for G1, i.e., the set of positions s P ΣI
pp2q such that

there is no winning I-strategy in xΣI
psq, rΣ

I
psqszX. Clearly, ΣII is a nonempty good

subtree of ΣI
pp2q and rΣIIs Ď TX , so

p̃2 “ xx0, . . . , x2k´1, xx2k,ΣIy, xx2k`1, x2,ΣIIyy P σ̃.

We will complete the description of σ in game-theoretic terminology, leaving a
strictly formal definition to the reader. I plays according to σ̃ as long as II plays
on ΣII. Note that in G̃, after p̃2, both players are required to play on ΣII, and
σ̃ therefore never instructs I to deviate from ΣII. In G, however, II may deviate
from ΣII. If and when it does, I is confronted by a position s P ΣIzΣII.18 By
the definition of ΣII, there is a winning I-strategy in G2 “ xΣI

psq, rΣ
I
psqszXy. As

in Case 1, we let σ1 be the first such strategy in the fixed wellordering mentioned
above. I follows σ1 until a position u P σ1zTX of even length is reached. I now
imagines that II has played xx2k`1, x1, uyy after p1 in G̃ and that both players in
that game have played—as they must—the remainder of u. From this point on in
G, I plays as instructed by σ̃ in G̃.

Case II Suppose σ̃ Ď T̃ is a II-strategy. We will define the II-strategy σ “ φ σ̃ Ď
T .

Let σ|2k “ σ̃|2k. Suppose p “ xx0, . . . , x2k´1y P σ. We must define II’s reply
to any move x2k of I, i.e., any x2k such that p ⌢xx2ky is in T . Therefore suppose
p1 “ p ⌢xx2ky. Let

U “ tpps̃2k`1q1q1 | s̃ P σ̃ppq^ |s̃| “ 2k ` 2^ps̃2kq0 “ x2k ^pps̃2k`1q1q0 “ 1u.

In other words, U consists of all the sequences u P Tpp1q of even length that occur
in a sequence in σ̃ of the form

xx0, . . . , x2k´1, xx2k,Σy, xx2k`1, x1, uyyy.

Let Y “ ty P rT s | @u P U u Ę yu, which is closed in rTpp1qs. Let TY be the
corresponding tree, and let G1 “ xTpp1q, Y y. We again consider two cases.

Case 1 Suppose there is a winning II-strategy in G1. Let σ1 be the first
such strategy in the fixed wellordering we have posited. Let σ instruct II to play
according to σ1 until a position u P U is reached, as must happen since σ1 is

18Since ΣI is a I-imposed subtree of Tpp1q, II cannot be the first to deviate from it.
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a winning II-strategy in G1. At this point let ΣI be the first Σ in some fixed
wellordering such that

xx0, . . . , x2k´1, xx2k,Σy, xx2k`1, x1, uyyy P σ̃,

where, of course, x2k`1 “ u2k`1 (just as xm “ um for all m ă 2k ` 1). Let σ
instruct II to play according to σ̃ for the rest of the game.

Case 2 Now suppose there is no winning II-strategy in G1. Let ΣI be the I-
nonlosing subtree of Tpp1q for G1, i.e., the set of positions s P Tpp1q such that there is
no winning II-strategy in xTpsq, Y y. ΣI is a I-imposed subtree of Tpp1q, and xx2k,ΣIy

is a legal move by I after p. Let

p̃1 “ xx0, . . . , x2k´1, xx2k,ΣIyy.

Clearly, rΣIs Ď TY , so the response of σ̃ to p̃1 cannot be of the form xx2k`1, x1, uyy,
because then u P U by definition, so u R TY by definition, whereas u P ΣI by the
definition of T̃ . Therefore let x2k`1 and ΣII be such that

p̃2 “ xx0, . . . , x2k´1, xx2k,ΣIy, xx2k`1,ΣIIyy P σ̃.

Let σ instruct II to play x2k`1 and then play as instructed by σ̃ from p̃2 as long
as the position remains in ΣII. σ̃ never instructs II to leave ΣII, and since ΣII is a
II-imposed subtree of ΣI, I cannot make a move that leaves ΣII without leaving ΣI,
so if a position s arises that is not in ΣII, it is also not in ΣI. By the definition of
ΣI, there is a winning II-strategy in G2 “ xTpsq, Y y, and we let σ1 be the first such
strategy in the fixed wellordering mentioned above. II follows σ1 until a position
u P U is reached, as must eventually happen; otherwise, the ultimate result would
be x P Y , which is a win for I in G2. Let Σ be the first I-imposed subtree of Tpp1q

such that
xx0, . . . , x2k´1, xx2k,Σy, xx2k`1, x1, uyyy P σ̃.

Then u æp2k ` 2q “ x æp2k ` 2q, and

xu0, . . . , u2k´1, xu2k,Σy, xu2k`1, x1, uyy, u2k`2, . . . , u|u|´1y P σ̃,

so II may now play in G as instructed by σ̃ after this position in G̃.
It is easy to check that the maps π defined by (10.127) and φ : S T̃ Ñ ST as

just defined satisfy (10.123), so xT̃ , π, φy is a k-covering of xT,Xy. Given

x̃ “ xx0, . . . , x2k´1, xx2k,ΣIy, xx2k`1, ry, . . . y P rT̃ s,

and
x “ xx0, . . . , x2k´1, x2k, x2k`1, . . . y “ π x,

clearly x P X iff r0 “ 2, i.e., r is of the form x2,ΣIIy with rΣIIs Ď X, as opposed
to x1, uy with u R TX . Hence X̃ “ πÐX is clopen; in fact, the winner of xT̃ , X̃y is
known after the first 2k ` 2 moves. 10.125

For convenience in the proof of (10.125) we have defined the auxiliary tree T̃ in
terms of subtrees ΣI of Tpp1q and Tpp2q. Since all the sequences in these trees begin
with p, the same information is contained in the the trees ΣI

p and ΣII
p consisting

of the sequences obtained by removing this initial segment, i.e. ΣI “ p ⌢ ΣI
p and
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ΣII “ p ⌢ ΣII
p . The following definition takes advantage of this opportunity for

efficiency,19 which will become important when we compute the complexity of the
trees that arise during iteration of the operation of forming coverings.

(10.128) Definition [ZFC] Suppose T is a nonempty good tree and X Ď rT s is
closed. The standard k-covering of xT,Xy def

“ xT̃T,X , πT,X , φT,Xy, where T̃T,X is
the good tree such that

1. rT̃T,X s consists of all ω-sequences

xx0, . . . , x2k´1, xx2k,ΣIy, xx2k`1, ry, x2k`2, . . . y,

where, letting p1 “ xx0, . . . , x2ky, p2 “ xx0, . . . , x2k, x2k`1y, and x “ xx0, x1, . . . y,

1. x P T ;
2. p ⌢ ΣI is a I-imposed subtree of Tpp1q; and
3. either

1. r “ x1, uy, where u is a sequence of even length extending p2 such
that

1. u P pp ⌢ ΣIqzTX ; and
2. x P rTpuqs; or

2. r “ x2,ΣIIy, where p ⌢ ΣII is a II-imposed subtree of p ⌢ ΣI
pp2q such

that
1. p ⌢ ΣII Ď TX ; and
2. x P rp ⌢ ΣIIs;

2. πxx0, . . . , x2k´1, xx2k,ΣIy, xx2k`1, ry, x2k`2, . . . y “ xx0, . . . y;10.125 and

3. φT,X is defined mutatis mutandis as in the proof of (10.125).

We now define the induction step in Martin’s proof of Borel determinacy.

(10.129) Definition [ZFC] Suppose k P ω.

1. xxTi | i P ωy, xπi | i P ωy, xφi | i P ωyy is a xk, ωy-covering system
def
ðñ T0 is a

nonempty good tree, and for each i P ω, xTi`1, πi, φiy is a pk ` iq-covering of
Ti.

2. Suppose xxTi | i P ωy, xπi | i P ωy, xφi | i P ωyy is a xk, ωy-covering system. The
standard k-limit of this system is the unique xT̂ , xπ̂i | i P ωy, xφ̂i | i P ωyy such
that

1. T̂ “
Ť

iPω Ti|2pk ` iq;
2. for all i P ω

1. π̂i æpT̂ |2pk ` iqq is the identity; and
2. π̂i “ πi ˝ π̂i`1 (“ πi ˝ πi`1 ˝ π̂i`2, etc.); and

3. for all i P ω
1. φ̂i æS T̂ |2pk`iq is the identity; and
2. φ̂i “ φi ˝ φ̂i`1 (“ φi ˝ φi`1 ˝ φ̂i`2, etc.).

19In fact, we could use ΣI
p1 and ΣII

p2 , but we will not need this degree of efficiency, and in the

interest of uniformity we will forgo this adjustment.
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(10.130) Theorem [ZFC] Suppose xxTi | i P ωy, xπi | i P ωy, xφi | i P ωyy is a
xk, ωy-covering system. Then (10.129.2) uniquely determines the standard k-limit
xT̂ , xπ̂i | i P ωy, xφ̂i | i P ωyy, and for each i P ω, xT̂ , π̂i, φ̂iy is a pk ` iq-covering of
Ti.

Proof By (10.123.2.2), for all i P ω, Ti|2pk ` iq “ Ti`1|2pk ` iq, so for all j ą i,
Ti|2pk ` iq “ Tj |2pk ` iq. It follows that T̂ 10.129.2.1 is a nonempty good tree with
T̂ |2pk ` iq “ Ti|2pk ` iq for each i P ω, thus satisfying (10.123.2.2).

Given s P T̂ , let j be least such that |s| ď 2pk`jq. For any i ě j let π̂i s “ s. In
particular, π̂j s “ s. Now let π̂j´1 s “ πj´1 s, π̂j´2 s “ πj´2pπj´1 sq, etc. In other
words, for any i ă j let

π̂i s “ πi ˝ πi`1 ˝ ¨ ¨ ¨ ˝ πj´1 s.

This uniquely determines π̂i s for all s P T̂ and i P ω so as to satisfy (10.129.2.2).
It is easy to check that (10.123.1.2) and (10.123.2.3) are satisfied.

The maps φ̂i are defined in identical fashion. Thus, given σ P S T̂ |n, let j be
least such that n ď 2pk ` jq. For any i ě j let φ̂i σ “ σ. For i ă j, let

φ̂i σ “ φi ˝ φi`1 ˝ ¨ ¨ ¨ ˝ φj´1 σ.

This uniquely determines φ̂i σ for all σ P S̄ T̂ and i P ω so as to satisfy (10.129.2.3)
and (10.123.1.3).

We extend π̂ to rT̂ s and φ̂ to S T̂ in the usual way, as in (10.123.1.2) and
(10.123.1.3). For each j P ω and σ P STj`1 ,10.123.1.4

(10.131) πj
Ñrσs Ě rφj σs.

To verify (10.123.1.4) for π̂i and φ̂i, suppose σ P S T̂ and xi P rφ̂i σs. Using some
fixed wellordering of a suitable set, define xj for j ą i by recursion on j so that

(10.132) for j ě i,

1. xj P rφ̂j σs;

2. πj xj`1 “ xj,

which is possible10.131 because φ̂j σ P STj and φ̂j σ “ φj ˝ φ̂j`1 σ. Note that for any
j ě i,10.129.2.3.1

(10.133) xj æ 2pk ` jq P φ̂jpσq|2pk ` jq “ φ̂jpσ|2pk ` jqq “ σ|2pk ` jq.

Let x “
Ť

jěi xj æ 2pk ` jq. Then10.123.2.3 x is an ω-sequence, and x æ 2pk ` jq “
xj æ 2pk ` jq for all j ě i, so10.133 x P rσs.

It only remains to be shown that π̂i x “ xi. By construction,10.132 for all j ě i,
πj xj`1 “ xj , which is to say, for all n P ω, πj pxj`1 ænq “ xj æn. Hence, for all
n P ω and j ě i,

xi æn “ πipxi`1 ænq “ ¨ ¨ ¨ “ πi ˝ πi`1 ˝ ¨ ¨ ¨ ˝ πj´1pxj ænq.

For all j ě i,10.129.2.2.1

π̂j px æ 2pk ` jqq “ π̂j pxj æ 2pk ` jqq “ xj æ 2pk ` jq,
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so

xi æ 2pk ` jq “ πi ˝ ¨ ¨ ¨ ˝ πj´1pxj æ 2pk ` jqq
“ πi ˝ ¨ ¨ ¨ ˝ πj´1 ˝ π̂j px æ 2pk ` jqq
“ π̂ipx æ 2pk ` jqq,

so π̂i x “ xi. 10.130

We now state and prove the theorem (see (5.177) in the main text).

Theorem [ZFC] Suppose T is a good tree and X Ď rT s is Borel. Then xT,Xy is
determined.

Proof It suffices to show that there is a covering xT̃ , π, φy of T that unravels X.10.124

The following claim provides the framework for a proof of this by induction on the
complexity of X.

(10.134) Claim Suppose 0 ă α ă ω1. Then for any nonempty good tree T , X P

Σ0
αprT sq, and k P ω there is a k-covering of xT,Xy that unravels X.

Proof By (10.125) this is true for α “ 1. Keep in mind that a covering that
unravels xT,Xy also unravels xT, rT szXy.

Suppose 0 ă α ă ω1, and suppose the claim holds for every β ă α. Suppose
X P Σ0

αprT sq. Specifically, suppose X “
Ť

iPωXi, where Xi P Π0
βi
prT sq, where

βi ă α for each i P ω. Let T0 “ T and let xT1, π0, φ0y be a k-covering of T0 that
unravels X0. Then π0

ÐX0 P ∆0
1prT1sq, and since π0 : rT1s Ñ rT0s is continuous,

π0
ÐXi P Π0

βi
for each i ą 0.

Now let xT2, π1, φ1y be a pk ` 1q-covering of T1 that unravels π0
ÐX1. Then

π1
Ðπ0

ÐXi P ∆0
1prT2sq for i “ 0, 1, while π1

Ðπ0
ÐXi P Π0

βi
prT2sq for i ą 1.

Continue in this fashion to obtain a xk, ωy-covering system xxTi | i P ωy, xπi | i P
ωy, xφi | i P ωyy, and let xT̂ , xπ̂i | i P ωy, xφ̂i | i P ωyy be its standard k-limit. Then
xT̂ , π̂0, φ̂0y unravels Xi, i.e., π̂0

ÐXi P ∆0
1prT̂ sq, for each i P ω. Thus,

π̂0
ÐX “ π̂0

Ð
ď

iPω

Xi “
ď

iPω

π̂0
ÐXi P Σ0

1prT̂ sq.

Now let xT̃ , π, φy be a k-covering of T̂ that unravels π̂0
ÐX. Then xT̃ , π̂0 ˝π, φ̂0 ˝φy

is a k-covering of T that unravels X. 10.134 5.177

10.20 Iterations of the powerset operation in Mar-
tin’s proof of Borel determinacy

[Refer to p. 407.]

To analyze the use of the powerset operation in Martin’s proof it is convenient
to use the following modification Q of P, and its iterates Qα, α P Ord.

(10.135) Definition [ZF] Suppose M is a set.

1. QM def
“ FM Y F PFM , where F is the operation of finitary closure, i.e.,

closure under the formation of finite subsets.20

20Note that for any set A, F A includes HF and is closed under the formation of finite sequences.
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2. Q0M
def
“ M ;

3. Qα`1 def
“ QQαM ; and

4. QαM “
Ť

βăαQβM , if α is a limit ordinal.

In the context of ZF´, of course, QM may not exist, or QαM may exist, while
Qα`1M does not exist. Clearly:

(10.136) if α is a limit ordinal and QβM exists for all β ă α then Qα exists.

We first observe that to demonstrate the determinacy of a Borel set X Ď rT s it
is not necessary to completely unravel X. For example, suppose X Ď ωM is Σ0

4,
say

X “
ď

kPω

č

lPω

ď

mPω

Xxk,l,my,

where each Xxk,l,my is Π0
1. Let xsi | i P ωy enumerate 3ω. As in the proof of

(10.134) let T0 “ T and let xT1, π0, φ0y be the standard 0-covering10.128 of T0 that
unravels Xs0 . Then π0

ÐXs0 P ∆0
1prT1sq, and since π0 : rT1s Ñ rT0s is continuous,

π0
ÐXsi P Π0

1 for each i ą 0.
Now let xT2, π1, φ1y be the standard 1-covering of T1 that unravels π0

ÐXs1 .
Then π1

Ðπ0
ÐXsi P ∆0

1prT2sq for i “ 0, 1, while π1
Ðπ0

ÐXsi P Π0
1prT2sq for i ą 1.

Continue in this fashion to obtain a x0, ωy-covering system xxTi | i P ωy, xπi | i P
ωy, xφi | i P ωyy, and let xT̂ , xπ̂i | i P ωy, xφ̂i | i P ωyy be its standard 0-limit. Then
xT̂ , π̂0, φ̂0y unravels Xsi , i.e., π̂0

ÐXsi P ∆0
1prT̂ sq, for each i P ω. Thus,

π̂0
ÐX “ π̂0

Ð
ď

kPω

č

lPω

ď

mPω

Xxk,l,my “
ď

kPω

č

lPω

ď

mPω

π̂0
ÐXxk,l,my P Σ0

3prT̂ sq.

By (5.176) π̂0
ÐX is determined, so X is determined.

Note that we specified that the standard k-covering10.128 be used at each step in
the above construction of the coverings xTi`1, πi, φiy.

1. The nodes of T0 are of the form xs0, s1, s2, s3, . . . y, where sn P FM for every
n P ω.

2. The nodes of T1 are of the form xS0, S1, s2, s3, . . . y, where S0, S1 P QM , and
sn P FM for every n ě 2.

3. Similarly, the nodes of T2 are of the form xS0, S1, S2, S3, s4, . . . y. Note that
for any q P T1 with |q| ě 2, pT1qq Ď FM , so S2, S3 P QM ,10.126.1 as are S0, S1,
which are inherited from T1; and sn P FM for every n ě 4. This is the reason
we use the standard coverings instead of coverings as described in (10.126).

4. Continuing in this way, we see that Ti Ď QM for every i P ω.

5. Hence, T̂ “
Ť

iPω Ti|2pk`iq Ď QM ,10.129.2.1 where T̂ is the tree of the standard
0-limit of this system.

(5.176) is a theorem of ZF´, so the only “powerset” that needs to be posited to
prove Σ0

4-determinacy for games on a set M is QM .
To prove Σ0

5-determinacy for games on a set M , we apply the same reasoning
to reduce it to Σ0

4-determinacy for games on QM , reduce this to Σ0
3-determinacy

for games on Q2M , and then apply (5.176). In general,

(10.137) ZF´$ x@M @n P ω pQnM exists ÑΣ0
n`3p

ωMq-determinacyqy.
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To see what happens at limit stages, take ω as an example. Suppose X is Σ0
ω`2,

say
X “

ď

kPω

č

lPω

ď

mPω

Xxk,l,my,

where each Xxk,l,my is Σ0
n for some n ă ω. If we have QnM for every n ă ω (i.e.,

we have QωM 10.136), then we have coverings that unravel each Xxk,l,my, and we can
put these together to form a single covering that unravels them all. This covering
reduces X to a Σ0

3 set, and (5.176) applies.
To prove Σ0

ω`3-determinacy for games on a set M , we apply this reasoning to
reduce it to Σ0

4-determinacy for games on QωM , reduce this to Σ0
3-determinacy

for games on Qω`1M , and then apply (5.176). In general, given the existence of
Qω`nM , we can prove Σ0

ω`n`2-determinacy, and this works for any limit ordinal
in place of ω. This leads to the following conclusion, which is stated so as to
incorporate the previous result10.137 for finite ordinals,

ZF´$ x@M @ρ ă ω1 pQρM exists ÑΣ0
1`ρ`2p

ωMq-determinacyqy.

10.21 Proof of (8.36)

[Refer to p. 487.]

Theorem [GB] For any sM,P-sentence σ, tp P |P| | p,M,P σu is regular.

Proof If there is no tσuM,P-forcing relation then tp P |P| | p,M,P σu “ |P|, which
is regular. Suppose therefore that , is a tσuM,P-forcing relation. We proceed by
induction on complexity of θ P tσuM,P to show that tp P |P| | p, θu is regular.
Recall8.10.2 that regular sets are open, and if X Ď |P| is open then X is regular iff
for any p P |P|, if X is dense below p then p P X.

Suppose, therefore, that θ P tσuM,P, and suppose first that θ is atomic, i.e.,
θ “ τ PPP τ 1, τ “““ τ 1, or VVVτ . Let X “ tp P |P| | p, θu. It is easy to see from (8.27.1, 2)
and (8.29.3) that X is open. To show X is regular, we consider each of the three
cases separately.

(θ “ τ PPP τ 1) Suppose X is dense below p, i.e.,

(10.138) @q ď p Dr ď q pr, τ PPP τ 1q.

We must show that p P X, i.e.,8.27.1

@q ď p Dr ď q Dxτ0, r
1y P τ 1 pr ď r1^ r, τ0“““ τq.

To this end, suppose q ď p. Let10.138 r ď q be such that r, τ PPP τ 1. Then there exists
xτ0, r

1y P τ 1, and s extending both r and r1, such that s, τ0“““ τ . Since s ď q, this
justifies the claim.

(θ “ τ “““ τ 1) Suppose X is dense below p. We must show that p P X, i.e.,8.27.2

@q ď p@xτ0, r
1y P τ pq ď r1Ñ q, τ0 PPP τ

1q,

and likewise with τ and τ 1 switched. To this end, suppose xτ0, r1y P τ and q ď p, r1.
By hypothesis, @r ď q Ds ď r s, τ “““ τ 1. Since q ď r1, it follows by definition
that @r ď q Ds ď r s, τ0 PPP τ

1, i.e., ts | s, τ0 PPP τ 1u is dense below q. By induction
hypothesis, therefore, q, τ0 PPP τ 1. This justifies the first half of the claim, and the
second half (with τ and τ 1 switched) is justified by the corresponding argument.



774 CHAPTER 10. NOTES

(θ “ VVVpτq) Suppose X is dense below p. We must show that p P X, i.e.,8.29.3

@q ď p Dr ď q Dx PM pr, τ “““ x̌q.

To this end, suppose q ď p. Since X is dense below p, there exists r ď q such that
r P X, so there exist s ď r and x PM such that s, τ “““ x̌. Since s ď q this justifies
the claim.

Now suppose θ is complex, and suppose that for all θ1 P tθuM,P of lower logical
complexity, tp P |P| | p, θ1u is regular. It is easy to see from Definition 8.29.4–10
that X is open. To show X is regular, we

(10.139) suppose X is dense below p,

and we show that p P X.

(θ “ ␣␣␣ϕ) Suppose q ď p. Let10.139 r ď q be such that r, θ. Then r.ϕ,8.29.4 so
q.ϕ, since tp P |P| | p,ϕu is open by induction hypothesis. Hence, p,␣␣␣ϕ.8.29.4

(θ “ ϕ ^̂̂ψ) For any r, if r, θ then r,ϕ and r,ψ, so10.139 @q ď p Dr ď q pr,ϕq
and @q ď p Dr ď q pr,ψq, so by the induction hypothesis, p,ϕ and p,ψ, so
p,ϕ ^̂̂ψ.

(θ “ ϕ___ψ) Suppose q ď p. Let10.139 r ď q be such that r,ϕ___ψ. Let s ď r be
such that s,ϕ or s,ψ. Then s ď q and s,ϕ_ s,ψ. Hence p,ϕ___ψ.

(θ “ ϕÑÑÑψ) Suppose q ď p and q,ϕ. By hypothesis,10.139 @q1 ď q Dr ď q1 r,pϕÑÑÑψq,
so @q1 ď q Dr ď q1 pr,ϕÑ r,ψq. Since q,ϕ, @q1 ď q Dr ď q1 r,ψ, so by induc-
tion hypothesis, q,ψ.

(θ “ ϕØØØψ) Essentially immediate.

(θ “ @@@v ϕ) Suppose τ P MP. Then10.139 @q ď p Dr ď q r,ϕpτq, so by induction
hypothesis, p,ϕpτq. Hence p, θ.

(θ “ DDDv ϕ) Suppose q ď p. There exists10.139 r ď q such that r,DDDv ϕ, and by
definition, there exist s ď r and τ P MP such that s,ϕpτq. s ď q, so @q ď p Ds ď
q Dτ PMP s,ϕpτq. Hence p,DDDv ϕ. 8.36

10.22 Proof of (8.44)

[Refer to p. 489.]

Theorem [GB] Suppose M is a transitive model of ZF, P P M is a partial order,
and G is an M -generic filter on P. For all τ, τ 1 PMP,

τG P τ 1GØDp P G p, τ PPP τ 1

τG “ τ 1GØDp P G p, τ “““ τ 1.
(10.140)
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Remark Note that we do not assume that for every p P |P| there exists an M -
generic filter G with p P G, so Theorem 8.21 does not apply.

Proof We prove (10.140) by induction using the ordering (8.22) of ordinal pairs as
in the proof of (8.21). We will use (8.10.6, 7) repeatedly, usually without reference.
We will also use the definability of the forcing relation as discussed in Section 8.2.4,
specifically (8.43), often without reference.

Suppose p P G and p, τ PPP τ 1. Then8.27.1 the set tr P |P| | Dxτ0, r1y P τ 1 pr ď
r1^ r, τ0“““ τqu is dense below p and is in M ,8.43 so G meets this set,8.10.7 say at r.
Let xτ0, r1y P τ 1 be such that r ď r1 and r, τ0“““ τ . Then r1 P G, so τG0 P τ 1G, and
by induction hypothesis τG0 “ τG, so τG P τ 1G.

Conversely, suppose τG P τ 1G. Then there exist r1 P G and xτ0, r1y P τ 1 such
that τG0 “ τG. By induction hypothesis, there exists s P G such that s, τ0“““ τ .
Let p be a common extension of r1 and s in G. Then for all q ď p, there exists
r ď q (e.g., q itself) such that r ď r1 and r, τ0“““ τ , so p, τ PPP τ 1.8.27.1

Now suppose p P G and p, τ “““ τ 1. Suppose x P τG. Then there exists xτ0, r1y P
τ such that r1 P G and τG0 “ x. Let q be a common extension of p and r1 in G.
Then8.27.2 q, τ0 PPP τ

1, so x “ τG0 P τ 1G by induction hypothesis. Similarly, for any
x P τ 1G, x P τG. Hence, τG “ τ 1G.

Conversely, suppose τG “ τ 1G. Let

S0 “ tp | @q ď p@xτ0, r
1y P τ pq ď r1ÑDr ď q r, τ0 PPP τ

1qu

S1 “ tq | Dxτ0, r
1y P τ pq ď r1^@r ď q r. τ0 PPP τ

1qu.

Note that S0 and S1 are open. Suppose p P |P|. Then either p P S0 or there exists
q ď p such that q P S1. Thus, S0 Y S1 is dense, so there exists p P G such that
p P S0 or p P S1. Suppose p P S1. Let xτ0, r1y P τ be such that p ď r1 and for all
q ď p, q. τ0 PPP τ 1. Since p ď r1, τG0 P τG, so τG0 P τ 1G. Let s P G be such that
s, τ0 PPP τ

1. Let q be a common extension of p and s. Then q. τ0 PPP τ 1 and q, τ0 PPP τ 1;
contradiction.

Thus, p R S1, so p P S0. Now suppose q ď p, xτ0, r1y P τ , and q ď r1. Since
q P S0 and q ď r1, @q1 ď q Dr ď q1 r, τ0 PPP τ

1, so8.36 q, τ0 PPP τ
1. Thus,

@q ď p@xτ0, r
1y P τ pq ď r1Ñ q, τ0 PPP τ

1q.

Similarly, there exists p P G such that

@q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q, τ0 PPP τq.

Thus, there exists p P G satisfying both of these open conditions, i.e.,

@q ď p@xτ0, r
1y P τ pq ď r1Ñ q, τ0 PPP τ

1q

^@q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q, τ0 PPP τq,

which is to say, p, τ “““ τ 1.
8.44

10.23 Proof of (8.45)

[Refer to p. 490.]
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(10.141) Theorem [GB] Suppose M is a transitive model of ZF, P PM is a partial
order, G is an M -generic filter on P, and σ is an sM,P-sentence. Suppose there is
a tσuM,P-forcing relation. Then there is a tσuMrGs-satisfaction relation, and

M rGs |ù σØDp P Gp,σ.

Proof Let , be the tσuM,P-forcing relation. Recall that M rGs “ tτG | τ P MPu.
Thus, given an sM,P-formula θ, every M rGs-assignment for θ is of the form TG,
where T “

@

u0 ¨ ¨ ¨ un-

τ0 ¨ ¨ ¨ τn-

D

is an MP-substitution for Free θ, and

TG
def
“

@u0 ¨ ¨ ¨ un-

τ
G
0 ¨ ¨ ¨ τ

G
n-

D

.

Let SG be the class of xθ, TGy such that θ P tσu, T is an MP-substitution for Free θ,
and

Dp P G p, θpT q.

Note that if A is an M rGs-assignment for θ then xθ,Ay P SG iff there exists an
MP-substitution T for Free θ such that A “ TG and Dp P G p, θpT q. A priori the
possibility exists that for some substitution T , xθ, TGy P SG by virtue of the fact
that TG “ T 1G for some substitution T 1 such that Dp P G p, θpT 1q, while it is not
the case that Dp P G p, θpT q. The first statement of the following claim is that
this does not happen.21

(10.142) Claim Suppose θ P tσu.

1. Suppose T, T 1 are MP-substitutions for Free θ and TG “ T 1G. Then

Dp P G p, θpT qØDp P G p, θpT 1q.

2. SG includes the tθuMrGs-satisfaction relation.

Proof By induction on the complexity of θ P tσu. Note that (10.142.1) implies
that for any MP-substitution T for Free θ,

xθ, TGy P SGØDp P G p, θpT q.

The proof consists therefore of showing that the relation defined by xDp P G p, θpT qy

satisfies the recursive definition of satisfaction for MrGs.

(θ “ t0 PPP t1) Here t0, t1 are terms of the forcing language, which may be variables
or constant terms, i.e., elements of MP. In any case, if T is an MP-substitution for
Free θ, then θpT q “ τ0 PPP τ1 for some τ0, τ1 PMP. By Theorem 8.44

τG0 P τG1 ØDp P G p, τ0 PPP τ1,

and the claim follows at once.

(θ “ t0“““ t1) Similar to the previous case.
21Since

ľľľ

mPn
τm“““ τ

1
mÑÑÑ

´

θ
`u0 ¨ ¨ ¨ un-

τ0 ¨ ¨ ¨ τn-

˘

ØØØ θ
`u0 ¨ ¨ ¨ un-

τ
1
0 ¨ ¨ ¨ τ

1
n-

˘

¯

is a logical validity, we could derive (10.142.1) from Theorem 8.82, but we don’t have this theorem
yet.
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(θ “ VVVptq) Whether t is a variable or a constant term, the proof boils down to
showing that for any τ PMP

τG PMØDp P G p,VVVpτq.

Suppose τG “ x P M . Then τG “ x̌G, where x̌ is the standard name for x. Thus
for some p P G, p, τ “““ x̌, so8.29.3 p,VVVpτq. Conversely, suppose p P G and p,VVVpτq.
Then8.29.3 the set of r P |P| such that r, τ “““ x̌ for some x P M is dense below p.
Hence for some r P G and x PM , r, τ “““ x̌, so τG “ x̌G “ x PM .

(θ “ ␣␣␣ϕ) As for the preceding cases, the essence of the argument concerns the
sentences that arise from substitution of constant terms for all free variables, and
we will henceforth confine our remarks to this case. We must show that

Dp P G p,␣␣␣ϕØ␣Dp P G p,ϕ.

Suppose p P G and p,␣␣␣ϕ. Then8.29.4 no extension of p forces ϕ. It follows that
there does not exist p1 P G such that p1,ϕ; otherwise there is q P G extending both
p and p1, and q is an extension of p forcing ϕ. Conversely, suppose ␣Dp P G p,ϕ.
Since8.38 tp | p | ϕu is dense (and is in M), and no p P G forces ϕ, for some p P G,
p,␣␣␣ϕ.

(θ “ ϕ ^̂̂ψ) We must show that

Dp P G p,pϕ ^̂̂ψqØDp P G p,ϕ^Dp P G p,ψ.

Suppose p P G and p,pϕ ^̂̂ψq. Then p,ϕ and p,ψ. Conversely, suppose p, p1 P G
are such that p,ϕ and p1,ψ. Let p2 P G extend both p and p1. Then p2,ϕ and
p2,ψ, so p2,pϕ ^̂̂ψq.

(θ “ ϕ___ψ) We must show that

Dp P G p,pϕ___ψqØDp P G p,ϕ_Dp P G p,ψ.

Suppose p P G and p,pϕ___ψq. Then the conditions forcing either ϕ or ψ are dense
below p, and therefore there exists r P G such that r,ϕ or r,ψ. Conversely,
suppose Dp P G p,ϕ or Dp P G p,ψ. Without loss of generality, let p P G be such
that p,ϕ. Then for any q ď p there exists r ď q—e.g., q itself—such that r,ϕ,
so p,ϕ___ψ.

(θ “ ϕÑÑÑψ) We must show that

Dp P G p,pϕÑÑÑψqØ
`

pDp P G p,ϕqÑpDp P G p,ψq
˘

.

Suppose p P G and p,pϕÑÑÑψq, i.e.,8.29.7 @q ď p pq,ϕÑ q,ψq. Suppose there
exists p1 P G such that p1,ϕ. Let q P G be a common extension of p and p1. Then
q ď p and q,ϕ, so q,ψ. Conversely, suppose pDp P G p,ϕqÑpDp P G p,ψq.
Then either @p P G p.ϕ or Dp P G p,ψ. In the former instance, since the
set of conditions deciding ϕ is dense, there exists p P G such that p,␣␣␣ϕ, i.e.,
@q ď p q.ϕ, so8.29.7 p,pϕÑÑÑψq. In the latter instance, let p P G be such that
p,ψ. Then p,pϕÑÑÑψq.



778 CHAPTER 10. NOTES

(θ “ ϕØØØψ) Straightforward.

(θ “ @@@v ϕ) Remember that every member of M rGs is τG for some τ PMP, so we
must show that

Dp P G p,@@@v ϕØ@τ PMP Dp P G p,ϕpτq,

where ϕpτq “ ϕ
`

v
τ

˘

, v being the sole free variable of ϕ, θ being presumed to be a

sentence. Suppose p P G and p,@@@v ϕ. Then @τ PMP p,ϕpτq.
Inversely, suppose @p P Gp.@@@v ϕ. Note that for every p P |P|, if p.@@@v ϕ then

for some τ P MP, p.ϕpτq. Hence, tq | q,ϕpτqu is not dense below p, so for
some q ď p, @r ď q r.ϕpτq, whence q,␣␣␣ϕpτq. Hence tp P |P| | pp,@@@v ϕq_ Dτ P
MP pp,␣␣␣ϕpτqqu is dense, so G meets this set. Since we have supposed @p P
Gp.@@@v ϕ, there exists τ PMP and p P G such that p,␣␣␣ϕpτq so ␣Dp P G p,ϕpτq.

(θ “ DDDv ϕ) We must show that

Dp P G p,DDDv ϕØDτ PMP Dp P G p,ϕpτq.

Suppose p P G and p,DDDv ϕ. Then the conditions r such that Dτ PMP r,ϕpτq are
dense below p, so Dτ PMP Dr P G r,ϕpτq.

Conversely, suppose τ PMP, p P G, and p,ϕpτq. Then p,DDDv ϕ. 10.142

SG is therefore the tσuM,P-satisfaction relation for MrGs, and MrGs |ù σØDp P
G p,σ. 10.141

10.24 Proof of (8.66)

[Refer to p. 497.]

(10.143) Theorem [GB]

1. rrx“““ yss^ rry“““ zss ď rrx“““ zss.

2. rrxPPP yss^ rrx“““ zss ď rrz PPP yss.

3. rry PPPxss^ rrx“““ zss ď rry PPP zss.

Proof By induction on xρx, ρy, ρzy with the following order ď:8.22

Given a 3-sequence s of ordinals, let s̄ be the (unique) 3-sequence of the form s ˝π,

where π : 3 bij
Ñ 3 is a permutation of t0, 1, 2u, and s̄0 ě s̄1 ě s̄2. s ď s1

def
ðñ s̄

precedes s̄1 lexicographically.

Note that ď is a prewellorder, sequences related by a permutation of their domain
(viz., 3) are at the same level of ď, and if s and s1 differ at one coordinate, then
whichever is lower at that coordinate is lower in ď.

For convenience we let

rrxĎĎĎ yss
def
“

ľ

zPdom x

`

xpzqÑ rrz PPP yss
˘

,

so rrx“““ yss “ rrxĎĎĎ yss^ rryĎĎĎxss. Suppose x, y, z PMP and the theorem holds for all
x1, y1, z1 PMP such that xρx1, ρy1, ρz1y ă xρx, ρy, ρzy.
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1 We first show that

(10.144) rrxĎĎĎ yss^ rry“““ zss ď rrxĎĎĎ zss,

for which it suffices to show that for any w P domx,
`

xpwqÑ rrw PPP yss
˘

^rry“““ zss ď
`

xpwqÑ rrw PPP zss
˘

.

This follows from the instance rrw PPP yss^ rry“““ zss ď rrw PPP zss of the induction hypoth-
esis. (Since ρw ă ρx, xρy, ρw, ρzy ă xρx, ρy, ρzy.)

Next we show that

(10.145) rryĎĎĎxss^ rry“““ zss ď rrzĎĎĎxss,

for which it suffices to show that rryĎĎĎxss^ rrzĎĎĎ yss ď rrzĎĎĎxss, for which it suffices
to show that for any w P dom z,

`

zpwqÑ rrw PPP yss
˘

^rryĎĎĎxss ď
`

zpwqÑ rrw PPPxss
˘

,

for which it suffices to show that rrw PPP yss^ rryĎĎĎxss ď rrw PPPxss, i.e.,
ł

w1Pdom y

`

ypw1q^ rrw1“““wss
˘

^
ľ

w1Pdom y

`

ypw1qÑ rrw1 PPPxss
˘

ď rrw PPPxss,

for which it suffices to show that for each w1 P dom y,

ypw1q^ rrw1“““wss^ rrw1 PPPxss ď rrw PPPxss

This follows from the instance rrw1 PPPxss^ rrw1“““wss ď rrw PPPxss of the induction hy-
pothesis. (xρw1, ρx, ρwy ă xρx, ρy, ρzy.)

Conjoining corresponding sides of (10.144) and (10.145), we have (10.143.1).

2 Suppose w P dom y. By induction hypothesis, rrx“““ zss^ rrx“““wss ď rrz“““wss, so

rrx“““ zss^ rrx“““wss^ ypwq ď rrz“““wss^ ypwq.

Disjoining over all w P dom y,

rrx“““ zss^ rrxPPP yss ď rrz PPP yss.

3 Suppose w P domx. Then

xpwq^ rrx“““ zss ď xpwq^
`

xpwqÑ rrw PPP zss
˘

ď rrw PPP zss,

so
rry“““wss^xpwq^ rrx“““ zss ď rry“““wss^ rrw PPP zss.

By induction hypothesis, rry“““wss^ rrw PPP zss ď rry PPP zss, so

rry“““wss^xpwq^ rrx“““ zss ď rry PPP zss,

so
ł

wPdom x

`

rry“““wss^xpwq
˘

^rrx“““ zss ď rry PPP zss,

i.e., rry PPPxss^ rrx“““ zss ď rry PPP zss, as claimed. 10.143
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10.25 Proof of (8.74)

[Refer to p. 499.]

(10.146) Theorem [GB] If ϕ is a formula with the single free variable u, then

1. rrx“““ yss^ rrϕpxqss ď rrϕpyqss.

2. rrDDDuPPPxϕss “
Ž

yPdomx

`

xpyq^ rrϕpyqss
˘

.

3. rr@@@uPPPxϕss “
Ź

yPdom x

`

xpyqÑ rrϕpyqss
˘

.

Proof If the tϕu-valuation function does not exist all boolean values in the state-
ment of the theorem are 1, so it is trivially true. We therefore assume that the
tϕu-valuation function exists and proceed accordingly.

1 We proceed by induction on logical complexity of subformulas ψ of ϕ. The case
that ψ is atomic is easily handled by (8.66) and (8.65).

Now suppose ψ “ ␣␣␣ψ1. By induction hypothesis, rrx“““ yss^ rrψ1pyqss ď rrψ1pxqss
(reversing the roles of x and y and using (8.65)). Thus

rrx“““ yss^ rrψpxqss “ rrx“““ yss^␣ rrψ1pxqss ď ␣ rrψ1pyqss “ rrψpyqss.

The remaining cases are left to the reader.

2, 3 These are dual to each other. We’ll prove the former.

rrDDDuPPPxϕss “
ł

zPMA

prrz PPPxss^ rrϕpzqssq

“
ł

zPMA

ł

yPdom x

pxpyq^ rrz“““ yssq^ rrϕpzqssq

“
ł

yPdomx

ł

zPMA

pxpyq^ rrz“““ yss^ rrϕpzqssq

“
ł

yPdomx

`

xpyq^
ł

zPMA

prrz“““ yss^ rrϕpzqssq
˘

“
ł

yPdomx

pxpyq^ rrϕpyqssq,

where the last line follows from the fact that

rrϕpyqss “ rry“““ yss^ rrϕpyqss

ď
ł

zPMA

prrz“““ yss^ rrϕpzqssq

ď
ł

zPMA

rrϕpyqss

“ rrϕpyqss,

using (10.146.1). 10.146
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10.26 Proof of (8.82)

[Refer to p. 504.]

(10.147) Theorem [GB] Suppose M is a transitive model of ZF and A P M is an
M -complete boolean algebra.

1. Suppose an sM,A-sentence σ is a logical validity, i.e., $σ, then rrσssM,A
“ 1.

2. Hence, if sM,A-formulas σ and θ are logically equivalent, i.e., σ and θ have the
same free variables and $σØØØ θ, then for any substitution T of forcing terms
for the free variables, rrσpT qss “ rrθpT qss.

Proof 1 If there is no tσuM,A-valuation then rrσssM,A
“ 1 automatically, so sup-

pose S is a tσuM,A-valuation. Let8.32 S1 be an extension of S to a pΣ Y tσuqM,A-
valuation, where Σ consists of the following axioms of identity.2.79,2.177

1. @@@v0 v0“““ v0.

2. @@@v0, v1 pv0“““ v1ÑÑÑ v1“““ v0q.

3. @@@v0, v1, v2 pv0“““ v1 ^̂̂ v1“““ v2ÑÑÑ v0“““ v2q.

4. @@@v0, v1, v2, v3

`

v0“““ v1 ^̂̂ v2“““ v3ÑÑÑpv0 PPP v2ØØØ v1 PPP v3q
˘

.

For the remainder of the proof, ‘rr ss’ refers to rr ssS
1
.

Suppose $σ, and let π be an LK´-proof of Σñtσu.

(10.148) Claim Suppose Γñ∆ occurs in π and T is an MA-substitution for the
free variables of ΓY∆. Then

ľ

γPΓ

rrγpT qss ď
ł

δP∆

rrδpT qss.

Proof The proof is by induction, starting at the topmost sequents of the tree π,
and working downward. The topmost sequents are axioms tϕuñtϕu, for which the
claim is immediate. We now deal with each of the inference rules (2.143.1–8) in
turn.

1, 2 Immediate.

3, 4, 5, 6 Suppose T is an MA-substitution for the lower sequent. Let g “
Ź

γPΓ rrγpT qss and d “
Ž

δP∆ rrδpT qss. Let a “ rrϕpT qss and b “ rrψpT qss. For (3), by
induction hypothesis, g ď d_ a, so

g^␣ a ď pd_ aq^␣ a “ pd^␣ aq_pa^␣ aq “ d^␣ a

ď d,

as claimed. (4), (5), and (6) follow by similar arguments.
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7 Suppose T is an MA-substitution for ΓYtDDDv ϕuY∆, and let g, d be as before.
We claim that g^rrpDDDv ϕqpT qss ď d.

Let T 1 “ T æFreepDDDv ϕq. Note that

(10.149) pDDDv ϕqpT q “ DDDv pϕpT 1qq.

Given x PMA, let T 2 “ T
@

u
x

D

. The conditions imposed on u in (2.143.7) guarantee

that ΓpT 2q “ ΓpT q, ∆pT 2q “ ∆pT q, and ϕ
`

v
u

˘

pT 2q “ ϕpT 1q
`

v
x

˘

. By induction

hypothesis, therefore, g^
““

ϕpT 1q
`

v
x

˘‰‰

ď d. By definition,

rrDDDv pϕpT 1qqss “
ł

xPMA

““

ϕpT 1q
`

v
x

˘‰‰

,

so10.149 g^rrpDDDv ϕqpT qss ď d, as claimed.

8 Suppose T is an MA-substitution for ΓY∆YtDDDv ϕu, and let g, d be as before.
We claim that g ď d_rrpDDDv ϕqpT qss.

As before, let T 1 “ T æFreepDDDv ϕq, and note that (10.149) holds. The term
τ appearing in the inference (2.143.8) is either a variable u or a constant x P
MA.

1. If τ is a variable u then

1. if u P domT then let x “ T puq and let T 2 “ T ; and

2. if u R domT then let x PMA be arbitrary and let T 2 “ T
@

u
x

D

.

2. If τ is a constant x PMA then let T 2 “ T .

In either case, ΓpT 2q “ ΓpT q, ∆pT 2q “ ∆pT q, and ϕ
`

v
τ

˘

pT 2q “ ϕpT 1q
`

v
x

˘

. By

induction hypothesis, therefore, g ď d_
““

ϕpT 1q
`

v
x

˘‰‰

.
We conclude as in the previous case. 10.148

Thus,
Ź

γPΣ rrγss ď rrσss. By virtue of (8.65) and (8.66), for every γ P Σ, rrγss “ 1,
so rrσss “ 1, as claimed. 10.147.1

2 This follows from (10.147.1) since in any boolean algebra, aØ b “ 1Ø a “ b.
10.147.2 10.147

10.27 Proof of (8.108)

[Refer to p. 517.]

(10.150) Theorem [S] Θ1 is a conservative extension of Θ in the sense that for
any s˚-sentence σ, if Θ1$σ then Θ$σ.

Remark We will first give an infinitary proof of this result—in ZF, for example—
and then show how to modify it to a finitary proof, i.e., a proof in C, from which
a proof in S may be derived. We could be satisfied with a proof of this theorem
in ZF, as the theory of forcing is not of interest without Infinity; however, since the
theorem is a finitary statement, it is reasonable to give a finitary proof.
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Proof Suppose Θ1$σ and suppose toward a contradiction that Θ&σ. Let M “

pM ; PM,M0,P, Gq be a satisfactory s˚-structure such that M |ù Θ Y t␣␣␣σu, where
M0 “ VM, P “ PM and G “ GM. Let T be the (full) satisfaction relation for M.
Thus, |ùT ΘYt␣␣␣σu. Let sV be the expansion of the signature s by the addition of
the unary predicate symbol V (without the constant symbols P and G of s˚). Extend
M to a c˚-structure M1 by adding (as proper classes) all subsets of M definable
over M from a parameter in M . This is the standard method of obtaining a model
of GB from a model of ZF, and it is straightforward to show that it is indeed a
model of GB.

(10.151) Claim M1 |ù Θ1.

Proof It is straightforward to check that M1 |ù θ for all θ P Θ1 other than xV |ù ZFy,
so the following claim completes the proof.

(10.152) Claim M1 |ù xV |ù ZFy.

Proof

(10.153) Suppose toward a contradiction that M1 |ù xV*ZFy, so there exist θ PM
and S P M 1 such that M |ù xrθs P ZFy and M1 |ù xrSs is the trθsu-satisfaction
relation for V, and *rSs rθsy.

PM is not necessarily wellfounded, but the ordinals of M are linearly ordered and
have a wellordered initial segment of length at least ω. Accordingly, HFM has a
wellfounded “intial segment”, which is necessarily isomorphic to HF. Let H be this
standard part of HFM, which is also the standard part of HFM0 , where M0 is the
substructure of M corresponding to M0. Let x ÞÑ x̄ be the (unique) isomorphism
of H with HF. The standard part of pLs˚

qM is included in H and is isomorphic
to Ls˚

. To simplify the notation we suppose that this isomorphism is the identity.
Thus, any actual s˚-expression ϵ is in pLs˚

qM, and ϵ̄ “ ϵ.
It is easy to show that if θ is in H then M1 |ù x|ùrSs rθsy iff M |ù θV, so

M1 |ù x|ùrSs rθsy, since M |ù ZFV by hypothesis. Thus, θ is in the nonstandard
part of ZFM, which means that it is an instance of one of the axiom schemas for a
nonstandard formula.

The schemas are Collection and Comprehension.22 A sufficiently general version
of Collection is

x@y @x DOrdα @z P x pDOrdβ pζqpz, β, yqÑDβ ă α pζqpz, β, yqqy,

where ζ is an s-formula with three free variables. Suppose θ is this above instance
of Collection. We will derive a contradiction by showing that M1 |ù x|ùrSs rθsy.

Since M1 |ù xrSs is the trθsu-satisfaction relation for Vy and M |ù xrζs is a
subformula of rθsy, it suffices to show that

M1 |ù x@y, x P V DOrdα @z P x
`

DOrdβ |ù
rSs rζsrz, β, ys

ÑDOrdβ ă α |ùrSs rζsrz, β, ys
˘

y.

This is a theorem of GB (following from the Collection axiom and an appropriate
instance of the Comprehension schema), so it holds in M1.

22Although in S we must formulate Foundation as a schema, in ZF, the single Foundation axiom
for sets suffices.
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Now suppose θ is the following instance of the Comprehension schema:

x@y @x Dx1 @z pz P x1Ø z P x^pζqpz, yqqy,

where ζ is an s-formula with two free variables. Given y, x P M0, we must show
that there exists x1 P M0 such that for all z P M0, z PM x1 iff z PM x and M1 |ù
x|ùrSs rζsrrz, yssy.

By construction, the PM1
-extension of S is a subclass of M definable over M by

an sV-formula ϕ from a parameter in M , which is aG for some a PM0, so

M1 |ù x |ùrSs rζsrrAssyØxζ, Ay PM1
SØM |ù ϕrζ, A, aGs.

(10.154) Thus, we must show that, given y, x PM0, there exists x1 PM0 such that
for all z P M0, z PM x1 iff z PM x and |ùT ϕrζ, A, aGs, where A is the assignment
of z and y to the free variables of ζ.

Let u, v be new variables, and let ϕ1 be the sV-formula with free variables u, v,
obtained from xS is the tpuqu-satisfaction relation for Vy by replacing each subfor-
mula of the form xxψ,Ay P Sy by ϕpψ,A, vq. Without belaboring the issue, suffice
it to say that ϕ1 is a conjunction of formulas such as

1. xpuq is an s˚-formulay;

2. xfor any subformulas ψ and ψ1 of puq and V-assignment A for ψ, if ψ “

␣␣␣ψ1, then pϕqpψ,A, vq iff ␣pϕqpψ1, A, vqy (with similar formulas for the other
propositional connectives); and

3. xfor any subformulas ψ and ψ1 of puq, variable w, and V-assignment A for ψ, if
ψ “ DDDwψ1, then pϕqpψ,A, vq iff for some x such that Vpxq,

`

ϕ
˘`

ψ1, A
@

w
x

D

, v
˘

y

(with a similar formula for the universal quantifier).

We now have
M |ù ϕ1rθ, aGs.

Since M is satisfactory and M |ù Θ, any deduction from Θ holds in M. We now
argue in Θ as follows.23

xSuppose pϕ1pθ, aGqq. Let p P G be such that

(10.155) pϕ1,qpP, p, θ̌, aq.

(10.156) Claim For every subformula ψ of θ and every V-assignment A for ψ,

pϕ,qpP, p, ψ̌, Ǎ, aq_ pp␣␣␣ϕq,qpP, p, ψ̌, Ǎ, aq.

Proof By induction on the complexity of ψ. By way of illustration, suppose ψ “
DDDwψ1, and suppose A is a V-assignment for ψ. For any x P V, let Ax “ A

@

w
x

D

. By
induction hypothesis, for any x P V,

(10.157) pϕ,qpP, p, ψ̌1, Ǎx, aq_ pp␣␣␣ϕq,qpP, p, ψ̌1, Ǎx, aq.

23For the purpose of this proof we will suppose that the formulas ψ, are defined as relativized
to V, so we do not have to write ‘ψ,V’ to refer to forcing over the ground model.
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Suppose ␣pϕ,qpP, p, ψ̌, Ǎ, aq. By virtue of (10.155)—which says that p forces that
ϕ defines the tθu-satisfaction relation for V from the parameter aG—for all x P V,
␣pϕ,qpP, p, ψ̌1, Ǎx, aq. By virtue of (10.157), for all x P V, pp␣␣␣ϕq,qpP, p, ψ̌1, Ǎx, aq.
Hence, using (10.155) again, we conclude that

pp␣␣␣ϕq,qpP, p, ψ̌, Ǎ, aq.

The other recursive clauses in the definition of satisfaction are handled similarly,
and the atomic formulas are easily dealt with. 10.156

Let x1 be the set of z P x such that pϕ,qpP, p, ζ̌, Ǎ, aq, where A is the assignment
of z and y to the free variables of ζ. Then x1 P V by virtue of ComprehensionV.
Given z P V, let A be the assignment of z and y to the free variables of ζ.

If z P x1 then pϕ,qpP, p, ζ̌, Ǎ, aq, so pϕqpζ, A, aGq, since p P G. On the other
hand, if z R x1 then ␣pϕ,qpP, p, ζ̌, Ǎ, aq, so by Claim 10.156

pp␣␣␣ϕq,qpP, p, ζ̌, Ǎ, aq,

whence p␣␣␣ϕqpζ, A, aGq, since p P G, so ␣pϕqpζ, A, aGq.y
As noted above, the existence of this argument in Θ shows that there exists

x1 PM0 as required by (10.154), and this completes the proof that M1 |ù x|ùrSs rθsy

for the case that θ is an instance of Collection. Thus, (10.153) is untenable. 10.152

10.151

We now know that M1 |ù Θ1, Θ1$σ, and M1 |ù ␣␣␣σ. Since we are working
infinitarily, e.g., in ZF, M1 is satisfactory, so this is an immediate contradiction.

This concludes the infinitary proof of the theorem. To achieve a proof in C,
we again suppose toward a contradiction that σ is an s˚-sentence such that Θ1$σ
and Θ&σ, and we let M “ pM ; PM,M0,P, Gq be a satisfactory structure such that
M |ù ΘY t␣␣␣σu. At this point in the infinitary proof, we expanded M to a model
M1 of GB, as in the infinitary proof of Theorem 2.183, stating the conservativity
of GB over ZF. To achieve the result finitarily, we now proceed as in the finitary
proof of Theorem 2.183, showing that any proof π of σ from Θ1 may be replaced
by a proof of σ from premises that are true in M.

Let θ1 “ xV |ù ZFy, i.e.,

(10.158) xfor all S, for all x P ZF, if S is an txu-satisfaction relation for V, then
xx, 0y P Sy (0 being the empty assignment, appropriate for sentences).

We systematically eliminate class variables in favor of defined new predicates to
obtain a proof of σ from a theory which is derived from Θ1 as S is derived from C1

in the finitary proof of (2.183).10.79 Eliminating the new predicates in favor of their
definitions, we arrive at a proof π1 of σ whose premises are

1. axioms of ZFV;

2. the “fixed premises” (8.101.2, 4, 5, 6), which are the same in Θ and Θ1; and

3. sentences θϕ obtained from θ1 by omitting the universal quantifications of S
and x in (10.158); replacing each expression of the form v PPPS by ϕpv0, . . . , vn- , vq,
where ϕ is an s-formula and v0, . . . , vn- are new variables; and universally
quantifying over x and v0, . . . , vn- .
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Premises of the first two sorts are axioms of Θ and therefore hold in M by virtue of
the fact that M |ù Θ. The proof of Claim 10.152 is, in effect, a proof that M |ù θϕ

for any ϕ as above. Thus, π1 is an s˚-proof of σ from premises that are true in M,
so M |ù σ, contradicting our assumption that M |ù ␣␣␣σ. 10.150

10.28 Distributivity properties of boolean alge-
bras

[Refer to p. 528.]

Definition [ZFC] Suppose A is a boolean algebra, and κ and λ are cardinals. A is

pκ, λq-distributive
def
ðñ for every xaα,β | α ă κ^β ă λy

(10.159)
ľ

αăκ

ł

βăλ

aα,β “
ł

f :κÑλ

ľ

αăκ

aα,fpαq.

By duality, this is equivalent to

(10.160)
ł

αăκ

ľ

βăλ

aα,β “
ľ

f :κÑλ

ł

αăκ

aα,fpαq.

For κ “ λ “ 2, (10.159) expresses the distributivity of ^ over _, i.e.,

pa0_ a1q^pb0_ b1q “ pa0^ b0q_pa0^ b1q_pa1^ b0q_pa1^ b1q,

and (10.160) expresses the distributivity of _ over ^. Every boolean algebra is
pm,nq-distributive for all m,n P ω.

Definition [ZFC] Suppose A is a boolean algebra, and κ is a cardinal. A is κ-

distributive
def
ðñ A is pκ, λq-distributive for all cardinals λ.

It is easy to show that this definition of κ-distributive is equivalent to (8.130.2).
The following theorem enlarges on (8.132). The proof is fairly straightforward

and is left to the reader.

Theorem [ZFC] Suppose A is a complete boolean algebra, and κ and λ are cardinals.
A is pκ, λq-distributive iff rrevery function f : κÑ λ is in VssA “ 1.

10.29 Proof of (8.159)

[Refer to p. 544.]

(10.161) Theorem [GB] There exists a Π1 sP-formula θ with two free variables
such that for any transitive model pM ; P,Pq of ZFP, if we let

p,M,P ϕ
def
ðñ θpM ;P,Pqpp, ϕq

for any p P |P| and ϕ P AM,P, then for all τ, τ 1 PMP

1. p,M,P τ PPP τ 1Ø@q ď p Dr ď q Dxτ0, r
1y P τ 1 pr ď r1^ r,M,P τ0“““ τq,
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and

p,M,P τ “““ τ 1Ø@q ď p@xτ0, r
1y P τ pq ď r1Ñ q,M,P τ0 PPP τ

1q

^@q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q,M,P τ0 PPP τq.

2.

Remark The proof may be simplified somewhat if we restrict our attention to the
case that M is a set, in which case (8.159.1, 2) constitutes a legitimate recursive
definition of ,M,P, and we only have to show that this relation satisfies (10.165)
and is therefore given by a Π1-definition over pM ; P,Pq. We have, however, stated
the theorem without this restriction. M may, for example, be V . We will therefore
work in the theory ZFP, in effect placing ourselves inside an arbitrary transitive
model pM ; P,Pq, so that V “M .

Proof By convention, we may omit references to M when M “ V . Thus, in
particular, AP def

“ AV,P.8.158 We also frequently omit reference to P. Thus, for the
purpose of this proof, A “ AP.

For α P Ord, let Aα “ A X Vα and let Pα “ p|Pα|;ďαq be the suborder of P
such that |Pα| “ |P| X Vα. Let ă be the wellordering of A used previously in the
definition of forcing for atomic sentences.8.22 Note that each Aα is an initial segment
of ă.

We will define a Ď-increasing sequence xFα | α P Ordy of functions such that
for each α P Ord,

1. domFα is a set of pairs xp, ϕy, where p P |Pα| and ϕ P Aα; and

2. for each xp, ϕy P domFα, Fαxp, ϕy “ xi, dy, where i P 2 and d is a nonempty
set of conditions in |Pα| extending p (i.e., @q P d q ďα p).

For ease of reference, for i P 2, let F iα “ tpx, dq | px, xi, dyq P Fαu.
Ultimately, if Fαxp, ϕy “ xi, dy, then if i “ 1 then @q P d q,ϕ, and if i “ 0 then

@q P d q,␣␣␣ϕ. This foreknowledge will help to explain the construction, but it is
not used in the construction, as we have not yet defined ,.

We will define F “
Ť

αPOrd Fα. The pretameness of P will allow us to show
that F is total, and we will ultimately define p,ϕ iff for all q ď p F xq, ϕy is of the
form x1, dy (rather than x0, dy). This foreknowledge will also help to explain the
construction, but of course it is not used in the construction.

Necessarily, F0 “ 0. For limit ordinals α, let Fα “
Ť

βăα Fβ . Given Fα we
define Fα`1xp, ϕy by ă-recursion on ϕ P Aα`1 as follows.24

(10.162)

1. Suppose ϕ “ τ PPP τ 1 and p P |Pα`1|. If xp, ϕy P domFα then let Fα`1xp, ϕy “
Fαxp, ϕy. Otherwise, proceed as follows.

1. Suppose there exists d such that there exist xτ0, r1y P τ 1 and q ďα`1 both
p and r1, such that d “ F 1

α`1xq, τ0“““ τy. Let e be the union of all such d,
and let Fα`1xp, ϕy “ x1, ey.

2. If there is no such d then suppose there exists q ďα`1 p and a function d
mapping τ 1 into P |Pα`1| such that for each xτ0, r1y P τ 1

24What we are actually defining by recursion is the function Gα`1 with domain Aα`1 such that
for each ϕ P Aα`1, Gα`1ϕ is Fα`1 ætxp, ϕy | p P |Pα`1|u.
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1. dxτ0,r1y Ď Dα
xτ0,r1y, where

Dα
xτ0,r1y “ tr

1uK Y
ď

tF 0
α`1xq, τ0“““ τy | q ď r1u,

2. and dxτ0,r1y is predense25 below q.
Let e be the set of all q ďα`1 p for which such a function d exists, and let
Fα`1xp, ϕy “ x0, ey.

3. If neither of the above suppositions holds, then xp, ϕy R domFα`1.

2. Now suppose ϕ “ τ “““ τ 1 and p P |Pα`1|. If xp, ϕy P domFα then let Fα`1xp, ϕy “
Fαxp, ϕy. Otherwise, proceed as follows.

1. Suppose there exists d1 such that there exist xτ0, ry P τ Y τ 1, q ďα`1 both
p and r, i P 2, and q1 P F iα`1xq, τ0 PPP τy, such that d1 “ F 1´i

α`1xq
1, τ0 PPP τ

1y.
Let e be the union of all such d1, and let Fα`1xp, ϕy “ x0, ey.

2. If there is no such d1 then suppose there exist q ďα`1 p and a function d
mapping τ Y τ 1 into P |Pα`1| such that for each xτ0, ry P τ Y τ 1

1. dxτ0,ry Ď Dα
xτ0,ry

, where

Dα
xτ0,ry

“ truK

Y
ď

tF iα`1xq
1, τ0 PPP τ

1y | i P 2^Dq ď r q1 P F iα`1xq, τ0 PPP τyu,

2. and dxτ0,ry is predense below q.
Let e be the set of all q ďα`1 p for which such a function d exists, and let
Fα`1xp, ϕy “ x1, ey.

3. If neither of the above suppositions holds, then xp, ϕy R domFα`1.

(10.163) Claim F is total, i.e., domF 0 Y domF 1 “ |P| ˆA.

Remark Note also that, as an increasing union of functions, F is a function, i.e.,
domF 0 X domF 1 “ 0.

Proof By ă-recursion. Thus, we suppose for all ϕ1 ă ϕ@p P |P| pxp, ϕ1y P domF 0Y

domF 1q.

ϕ “ τ PPP τ 1 Suppose p P |P|, and suppose xp, ϕy R domF 1. Then it is not the case
that there exist xτ0, r1y P τ 1 and q extending both p and r1 such that xq, τ0“““ τy P
domF 1, because if there were, then for some α P Ord, (10.162.1.1) would have
applied and assigned a value to F 1

α`1xp, ϕy. Thus, by induction hypothesis, for all
xτ0, r

1y P τ 1 and q extending both p and r1, xq, τ0“““ τy P domF 0.
We will show that in this case each class Dxτ0,r1y is dense below p, where Dxτ0,r1y

is defined as in (10.162.1.2.1) with F 0 in place of F 0
α`1. To this end, suppose r ď p.

Then either r K r1, in which case r P Dxτ0,r1y; or there exists q extending both r
and r1, in which case q extends both p and r1, so xq, τ0“““ τy P domF 0. Any member
of F 0xq, τ0“““ τy is in Dxτ0,r1y and extends r.

Thus, rDrxs | x P τ 1s is a set-indexed family of subclasses of P dense below p.
Since P is pretame, there exist q ď p and d as described in (10.162.1.2) for some
α P Ord, so xp, ϕy P domF 0

α`1. Thus, xp, ϕy P domF 0.

25Note that references to compatibility, denseness, etc., are with reference to P, not Pα`1.
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ϕ “ τ “““ τ 1 Suppose p P |P|, and suppose xp, ϕy R domF 0. Then it is not the case
that there exist xτ0, ry P τYτ 1, q extending both p and r, i P 2, and q1 P F ixq, τ0 PPP τy,
such that xq1, τ0 PPP τ 1y P domF 1´i, because if there were, then for some α P Ord,
(10.162.2.1) would have applied and assigned a value to F 0

α`1xp, ϕy. Thus, by
induction hypothesis, for all xτ0, ry P τ Y τ 1, q extending both p and r, i P 2, and
q1 P F ixq, τ0 PPP τy, xq1, τ0 PPP τ 1y P domF i.

We will show that in this case each class Dxτ0,ry is dense below p, where Dxτ0,ry
is defined as in (10.162.2.2.1) with F i in place of F iα`1. To this end, suppose r1 ď p.
Then either r1 K r, in which case r1 P Dxτ0,ry; or there exists q extending both r1

and r, in which case q extends both p and r, so for each i P 2 and q1 P F ixq, τ0 PPP τy,
xq1, τ0 PPP τ

1y P domF i. By induction hypothesis, there exists (a unique) i P 2 such
that xq, τ0 PPP τy P domF i, and letting q1 be any member of F ixq, τ0 PPP τy, we see that
any member of F ixq1, τ0 PPP τ 1y is in Dxτ0,ry and extends r1.

Thus, rDrxs | x P τ Y τ 1s is a set-indexed family of subclasses of P dense below
p. Since P is pretame, there exist q ď p and d as described in (10.162.2.2) for some
α P Ord, so xp, ϕy P domF 1

α`1. Thus, xp, ϕy P domF 1. 10.163

The following claim summarizes the properties of F vis-à-vis P corresponding
to the clauses in the definition of Fα vis-à-vis Pα.

(10.164) Claim

1. For all p1 P F 1xp, τ PPP τ 1y there exist xτ0, ry P τ 1 and q extending both p and r,
such that p1 P F 1xq, τ0“““ τy.

2. For all p1 P F 0xp, τ PPP τ 1y and xτ0, ry P τ 1, Dτ
xτ0,ry

is predense below p1, where

Dτ
xτ0,ry

“ truK Y
ď

tF 0xq, τ0“““ τy | q ď ru.

3. For all p1 P F 1xp, τ “““ τ 1y and xτ0, ry P τ Y τ 1, Dτ,τ 1

xτ0,ry
is predense below p1,

where

Dτ,τ 1

xτ0,ry
“ truK

Y
ď

tF ixq1, τ0 PPP τ
1y | i P 2^Dq ď r q1 P F ixq, τ0 PPP τyu.

4. For all p1 P F 0xp, τ “““ τ 1y there exist xτ0, ry P τ Y τ 1, q extending both p and r,
i P 2, and q1 P F ixq, τ0 PPP τy, such that p1 P F 1´ixq1, τ0 PPP τ

1y.

Proof These follow directly from the definition10.162 and the fact that α ă βÑF iα Ď
F iβ . 10.164

Recall8.158 that A (“ AP “ AV,P) is the class of sentences of LP of the form τ PPP τ 1

or τ “““ τ 1. Let A´ be the class of negations of these.

(10.165) For p P |P| and ϕ P A, let

1. p,P ϕ
def
ðñ @q ď p xq, ϕy P domF 1, and

2. p,P␣␣␣ϕ
def
ðñ @q ď p q.ϕ, i.e., @q ď p Dr ď q xr, ϕy P domF 0.

(10.166) Claim

1. Suppose ϕ P AYA´. If p,ϕ and q ď p then q,ϕ.
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2. Suppose ϕ P A. Then it is not the case that p,ϕ and p,␣␣␣ϕ.

Proof Immediate from the definition. 10.166

(10.167) Claim Suppose p P |P| and ϕ P A.

1. q P F 1xp, ϕyÑ q,ϕ.

2. q P F 0xp, ϕyÑ q,␣␣␣ϕ.

Proof We prove both claims together by ă-induction.

1 Suppose q P F 1xp, ϕy. We will show that q,ϕ. To this end, suppose r ď q.
We must show that xr, ϕy P domF 1. Suppose toward a contradiction that xr, ϕy P
domF 0, and suppose p1 P F 0xr, ϕy.

ϕ “ τ PPP τ 1 Since q P F 1xp, ϕy,10.164.1 there exist xτ0, r1y P τ 1 and q1 extending
both p and r1 such that q P F 1xq1, τ0“““ τy. By induction hypothesis, q, τ0“““ τ .
Since p1 ď r ď q, p1, τ0“““ τ .10.166.1 But10.164.2

tr1uK Y
ď

tF 0xs, τ0“““ τy | s ď r1u

is predense below p1. Note that p1 ď r ď q ď q1 ď r1. Thus, there exist s ď r1,
s1 P F 0xs, τ0“““ τy, and p2 extending both p1 and s1. Since p2 ď p1, p2, τ0“““ τ , and
since p2 ď s1 P F 0xs, τ0“““ τy, p2, τ0 ‰‰‰ τ (by induction hypothesis and 10.166.1);
contradiction.

ϕ “ τ “““ τ 1 There exist xτ0, r1y P τ Y τ 1, q1 extending both r and r1, i P 2, and
q2 P F ixq1, τ0 PPP τy, such that p1 P F 1´ixq2, τ0 PPP τ

1y. Since q P F 1xp, ϕy,

tr1uK Y
ď

tF jxs1, τ0 PPP τ
1y | j P 2^Ds ď p s1 P F jxs, τ0 PPP τyu

is predense below q. Since p1 extends both q and r1, there exist s ď p, j P 2,
s1 P F jxs, τ0 PPP τy, s2 P F jxs1, τ0 PPP τ 1y, and p2 extending both p1 and s2.

Since q2 P F ixq1, τ0 PPP τy, s1 P F jxs, τ0 PPP τy, and p2 extends both q2 and s1, i “ j
(using the induction hypothesis and 10.166.2). Similarly, since p1 P F 1´ixq2, τ0 PPP τ

1y,
s2 P F jxs1, τ0 PPP τ

1y, and p2 extends both p1 and s2, 1´ i “ j; contradiction.

2 Suppose q P F 0xp, ϕy. We claim that q,␣␣␣ϕ, i.e., for every r ď q, r.ϕ, i.e.,
Ds ď r xs, ϕy P domF 0. In fact, we will show that xr, ϕy P domF 0. To this end,
suppose toward a contradiction that xr, ϕy P domF 1, and suppose p1 P F 1xr, ϕy.

ϕ “ τ PPP τ 1 Since p1 P F 1xr, ϕy, there exist xτ0, r1y P τ 1 and q1 extending both r
and r1, such that p1 P F 1xq1, τ0“““ τy. Since q P F 0xp, ϕy,

tr1uK Y
ď

tF 0xq1, τ0“““ τy | q
1 ď r1u

is predense below q. Since p1 ď q and p1 ď r1, there exist q2 ď r1, s P F 0xq2, τ0“““ τy,
and p2 extending both p1 and s. By induction hypothesis, p2, τ0“““ τ and p2, τ0 ‰‰‰
τ ; contradiction.
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ϕ “ τ “““ τ 1 Since q P F 0xp, ϕy, there exist xτ0, r1y P τ Y τ 1, q1 extending both
p and r1, i P 2, and q2 P F ixq1, τ0 PPP τy, such that q P F 1´ixq2, τ0 PPP τ

1y. Since
p1 P F 1xr, ϕy,

tr1uK Y
ď

tF jxs1, τ0 PPP τ
1y | j P 2^Ds ď r1 s1 P F jxs, τ0 PPP τyu

is predense below p1. Note that p1 ď r ď q ď q2 ď q1 ď r1. Thus, there exist
j P 2, s ď r1, s1 P F jxs, τ0 PPP τy, s2 P F jxs1, τ0 PPP τ 1y, and p2 extending both p1 and s2.
Using the induction hypothesis, since q2 P F ixq1, τ0 PPP τy and s1 P F jxs, τ0 PPP τy, and
p2 extends both q2 and s1, i “ j. On the other hand, since q P F 1´ixq2, τ0 PPP τ

1y and
s2 P F jxs1, τ0 PPP τ

1y, and p2 extends both q and s2, 1´ i “ j; contradiction. 10.167

(10.168) Claim Suppose p P |P| and ϕ P A.

1. Suppose ϕ “ τ “““ τ . Then p,ϕ.

2. Suppose ϕ “ τ PPP τ 1 and xτ, py P τ 1. Then p,ϕ.

Proof 1 We claim that xp1, ϕy P domF 1 for any p1 P |P|. If not, then xp1, ϕy P
domF 0, and10.164.4 for any p2 P F 0xp1, ϕy there exist xτ0, ry P τ , q extending both p1

and r, i P 2, and q1 P F ixq, τ0 PPP τy, such that p2 P F 1´ixq1, τ0 PPP τy. If i “ 1 then10.167.1

q1, τ0 PPP τ , and10.167.2 p2, τ0 RRR τ , a contradiction, since p2 ď q1. Similarly, if i “ 0,
then q1, τ0 RRR τ , and p2, τ0 PPP τ .

2 Suppose p1 ď p. We claim that xp1, ϕy P domF 1. If not, then xp1, ϕy P domF 0,
so10.164.2 there exists p2 ď p1 such that

tpuK Y
ď

tF 0xq, τ “““ τy | q ď pu

is predense below p2. Since no condition forces τ ‰‰‰ τ ,10.168.1 xq, τ “““ τy is not in
domF 0 for any q, so tpuK is predense below p2, which is impossible, since p2 ď
p1 ď p. 10.168

(10.169) Claim Suppose p P |P| and ϕ P A.

1. Suppose ϕ “ τ PPP τ 1. Then

p,ϕØ@q ď p Dr ď q Dxτ0, r
1y P τ 1 pr ď r1^ r, τ0“““ τq.

2. Suppose ϕ “ τ “““ τ 1. Then

p,ϕØ@q ď p@xτ0, r
1y P τ pq ď r1Ñ q, τ0 PPP τ

1q

^@q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q, τ0 PPP τq.

Proof 1 Suppose ϕ “ τ PPP τ 1.

Ñ Suppose p,ϕ, and suppose q ď p. Then10.165 xq, ϕy P domF 1, so10.164.1

there exist xτ0, r1y P τ 1 and r extending both q and r1 such that xr, τ0“““ τy P domF 1.
Suppose s P F 1xr, τ0“““ τy. Then s extends both q and r1, and s, τ0“““ τ .10.167.1
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Ð Suppose @q ď p Dxτ0, r
1y P τ 1 Dr ď q, r1pr, τ0“““ τq. Suppose p1 ď p. We

wish to show that xp1, ϕy P F 1. Suppose not; then xp1, ϕy P F 0, so there exists
p2 ď p1 such that for every xτ0, r1y P τ 1, the class

Dτ
xτ0,r1y “ tr

1uK Y
ď

tF 0xq, τ0“““ τy | q ď r1u

is predense below p2. Since p2 ď p, by assumption there exist xτ0, r1y P τ 1 and r
extending both p2 and r1, such that r, τ0“““ τ . Let s ď r be such that s extends a
member of Dτ

xτ0,r1y. s ď r1, so it does not extend a member of tr1uK, so there exists
q ď r1 and q1 P F 0xq, τ0“““ τy, such that s ď q1. Now q1, τ0 ‰‰‰ τ and r, τ0“““ τ and
s ď r, q1; contradiction.

2 Suppose ϕ “ τ “““ τ 1.

Ñ Suppose p,ϕ.

(10.170) Claim

@p1 ď p@xτ0, r
1y P τ pp1 ď r1ÑDr ď p1 r, τ0 PPP τ

1q

^@p1 ď p@xτ0, r
1y P τ 1 pp1 ď r1ÑDr ď p1 r, τ0 PPP τq.

Proof Suppose p1 ď p. By definition, xp1, ϕy P domF 1, so10.164.3 there exists p2 ď p1

such that for every @xτ0, r1y P τ Y τ 1

Dτ,τ 1

xτ0,r1y “ tr
1uK

Y
ď

tF ixq1, τ0 PPP τ
1y | i P 2^Dq ď r1 q1 P F ixq, τ0 PPP τyu

is predense below p2.
Suppose first that xτ0, r1y P τ and p1 ď r1. Since Dτ,τ 1

xτ0,r1y is predense below p2,

there exists r ď p2 such that r extends a member of Dτ,τ 1

xτ0,r1y. r ď p2 ď p1 ď r1, so
r does not extend a member of tr1uK, so there exist i P 2, q ď r1, q1 P F ixq, τ0 PPP τy,
and q2 P F ixq1, τ0 PPP τ

1y, such that r ď q2. Since xτ0, r1y P τ , r1, τ0 PPP τ .10.168.2 Since
r ď r1, r, τ0 PPP τ . Since r ď q2 ď q1, q1. τ0 RRR τ , so i “ 1. Hence, q2, τ0 PPP τ 1, so
r, τ0 PPP τ

1.
Now suppose that xτ0, r1y P τ 1 and p1 ď r1. We argue as before that there exist

r ď p2, i P 2, q ď r1, q1 P F ixq, τ0 PPP τy, and q2 P F ixq1, τ0 PPP τ
1y, such that r ď q2.

Since xτ0, r1y P τ 1, r1, τ0 PPP τ 1. Since r ď r1, r, τ0 PPP τ 1. Since r ď q2, q2. τ0 RRR τ 1, so
i “ 1. Hence, q1, τ0 PPP τ , so r, τ0 PPP τ . 10.170

Suppose q ď p, xτ0, r1y P τ , and q ď r1. We will show that q, τ0 PPP τ 1. To this
end, suppose toward a contradiction that s ď q and xs, τ0 PPP τ 1y R domF 1.10.165.1

Then10.163 xs, τ0 PPP τ
1y P domF 0. Let t be a member of F 0xs, τ0 PPP τ

1y. Then10.167

t, τ0 RRR τ
1. But t ď p and t ď r1, so10.170 there exists r ď t such that r, τ0 PPP τ 1.

Since10.166.1 r, τ0 RRR τ
1, this contradicts (10.166.2).

Similarly, @q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q, τ0 PPP τq.

Ð Suppose

@q ď p@xτ0, r
1y P τ pq ď r1Ñ q, τ0 PPP τ

1q

^@q ď p@xτ0, r
1y P τ 1 pq ď r1Ñ q, τ0 PPP τq.
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Suppose p1 ď p. We wish to show that xp1, ϕy P F 1. Suppose not; then xp1, ϕy P F 0.
Thus, there exist xτ0, r1y P τYτ 1, q extending both p1 and r1, i P 2, q1 P F ixq, τ0 PPP τy,
and q2 P F 1´ixq1, τ0 PPP τ

1y.
Suppose first that xτ0, r1y P τ . By hypothesis, since q2 ď p and q2 ď r1,

q2, τ0 PPP τ
1. Hence, i “ 0 (otherwise q2, τ0 RRR τ 1), so q1, τ0 RRR τ , which is impossible,

since xτ0, r1y P τ , so r1, τ0 PPP τ , and q1 ď r1.10.166

The possibility that xτ0, r1y P τ 1 is excluded similarly. 10.169

Note that for any limit ordinal α, xFβ | β ă αy is included in Vα and is defined
over Vα by (10.162) relativized to Vα. Thus the preceding argument in ZFP contains
a Σ1 definition of F , viz., xpx, yq P F iff there is a limit ordinal α and a sequence
xFβ | β P αy satisfying (10.162) relativized to Vα, such that for some β P α,
px, yq P Fβy. For ϕ P AP and p P |P|,

p,ϕØ@q ď p xq, ϕy P domF 1

Ø@q ď p xq, ϕy R domF 0

Ø@q ď p@d pxq, ϕy, x0, dyq R F,

so txp, ϕy | ϕ P AP^ p,P ϕu is Π1. 10.161

10.30 Proof of (8.162)

[Refer to p. 545.]

(10.171) Theorem [GB] Suppose pM ; P,Pq is a transitive model of ZFP. Then
every axiom of ZFsV

with the possible exception of Power is a MP-validity, where
ZFsV

is ZF with the axiom schemas extended to all sV-formulas.

Proof Remember that for any sM,P-sentence σ, if the tσuM,P-forcing relation does
not exist then ,σ, so we will assume throughout this proof that the forcing relation
exists for the axiom in question.

Extension We will show that

@@@u@@@v
`

p@@@w PPPu w PPP v ^̂̂ @@@w PPP v w PPPuqÑÑÑu“““ v
˘

,

is a validity. Suppose x, y PMP. We must show that

,
`

p@@@w PPPx w PPP y ^̂̂ @@@w PPP y w PPPxqÑÑÑx“““ y
˘

,

i.e.,8.29.7

@p
`

p,p@@@w PPPx w PPP y ^̂̂ @@@w PPP y w PPPxqÑ p,x“““ y
˘

.

Suppose p P |P| and p,p@@@w PPPx w PPP y ^̂̂ @@@w PPP y w PPPxq. Then8.161.4.3

@q ď p@xz, r1y P x pq ď r1Ñ q, z PPP yq

^@q ď p@xz, r1y P y pq ď r1Ñ q, z PPPxq.

Hence,8.159.2 p,x“““ y.
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Comprehension We must show that for any x P MP and sM,P-formula ϕ with one
free variable,26

,DDDw @@@v
`

v PPPwØØØpv PPPx ^̂̂ ϕpvqq
˘

,

i.e.,
@p P |P| Dq ď p Dz PMP q,@@@v

`

v PPP zØØØpv PPPx ^̂̂ ϕpvqq
˘

.

Suppose p P |P|. Let D Ď M be the pdomxq-indexed family such that for each
y P domx,

(10.172) Drys “
␣

r P |P|
ˇ

ˇ r |py PPPx ^̂̂ ϕpyqq
(

.

(Recall that r | θ iff r decides θ iff either r, θ or r,␣␣␣ θ.) Note that each Drys is
dense,8.160: 8.38 a fortiori predense below p. Let q ď p and d P M be a pdomxq-
indexed family such that for all y P domx, drys is included in Drys and is predense
below q.

Let
z “ txy, ry | r P drys^ r,py PPPx ^̂̂ ϕpyqqu.

We will show that q,@@@v
`

v PPP zØØØpv PPPx ^̂̂ ϕpvqq
˘

, i.e., for all y PMP

q,
`

y PPP zØØØpy PPPx ^̂̂ ϕpyqq
˘

.

To this end, suppose8.29.8 s ď q; we will show that

s, y PPP zØ s,py PPPx ^̂̂ ϕpyqq.

Suppose first that s, y PPP z. Then

@s1 ď s Ds2 ď s1 Dxy1, ry P z ps2 ď r^ s2, y“““ y1q.

It suffices8.160: 8.36 to show that

@s1 ď s Ds2 ď s1 s2,py PPPx ^̂̂ ϕpyqq.

To this end, suppose s1 ď s and let s2 ď s1 and xy1, ry P z be such that s2 ď
r^ s2, y“““ y1. Then r,py1 PPPx ^̂̂ ϕpy1qq, so s2,py1 PPPx ^̂̂ y“““ y1 ^̂̂ ϕpy1qq, so s2,py PPPx ^̂̂ ϕpyqq.8.161

Conversely, suppose s,py PPPx ^̂̂ ϕpyqq. We must show that s, y PPP z. It suffices
to show that

@s1 ď s Ds2 ď s1 s2, y PPP z.

To this end, suppose s1 ď s. Since drys is predense below q and s1 ď q, there exists
s2 ď s1 and r P drys such that s2 ď r. Since r |py PPPx ^̂̂ ϕpyqq and s2,py PPPx ^̂̂ ϕpyqq,
r,py PPPx ^̂̂ ϕpyqq. Hence, xy, ry P z, so r, y PPP z, so s2, y PPP z.

Existence We show that ,DDDu@@@v v RRRu. This follows from the fact that 0 is in MP

and denotes the empty set in the sense that for any y P MP, , y RRR 0, as is easily
shown.

Pair Given x, y PMP, let z “ txx,1y, xy,1yu. Then for any w PMP, ,pw PPP zØØØw“““x___w“““ yq.

26As a convenience, the parameters that ordinarily occur in the axiom schema are in ϕ as
constant terms, rather than variables.
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Collection We must show that for any x PMP, distinct variables a, v, w, and sM,P-
formula ϕ with free variables in ta, vu,

,@@@v PPPxDDDw @@@a pϕpa, vqÑÑÑ aPPPwqÑÑÑDDDw @@@v PPPx@@@a pϕpa, vqÑÑÑ aPPPwq,

i.e., for all p P |P|,

p,@@@v PPPxDDDw @@@a pϕpa, vqÑÑÑ aPPPwqÑ p,DDDw @@@v PPPx@@@a pϕpa, vqÑÑÑ aPPPwq.

To this end, suppose p,@@@v PPPxDDDw @@@a pϕpa, vqÑÑÑ aPPPwq, i.e.,8.161.4.3

@xy, sy P x@q ď p
`

q ď sÑ q,DDDw @@@a pϕpa, yqÑÑÑ aPPPwq
˘

.

We must show that
p,DDDw @@@v PPPx@@@a pϕpa, vqÑÑÑ aPPPwq,

i.e.,

(10.173) @q ď p Dr ď q Dz PMP r,@@@v PPPx@@@a pϕpa, vqÑÑÑ aPPP zq.

Let D be the x-indexed family such that for each xy, sy P x

Drxy,sys “ tr P |P| | r K s_Dz PMP r,@@@a pϕpa, yqÑÑÑ aPPP zqu.

Then

(10.174) Drxy,sys is dense below p.

For suppose q ď p. Then either q K s or there exists q1 ď q such that q1 ď s, in
which case q1,DDDw @@@a pϕpa, yqÑÑÑ aPPPwq, so there exist z P MP and r ď q1 such that
r,@@@a pϕpa, yqÑÑÑ aPPP zq.

To prove (10.173), suppose q ď p. Based on (10.174), let r ď q and d P M be
such that d is an x-indexed family, @xy, sy P x drxy,sys Ď Drxy,sys, and each drxy,sys
is predense below r. Since M |ù Collection, there exists X PM such that

(10.175) @xy, sy P x@t P drxy,sys
`

t ∥ sÑDz P X t,@@@a pϕpa, yqÑÑÑ aPPP zq
˘

.

Let Y “
Ť

zPX dom z. Let z “ Y ˆ t1u.
We will show that r,@@@v PPPx@@@a pϕpa, vqÑÑÑ aPPP zq, i.e.,

(10.176) @t ď r @xy, sy P x pt ď sÑ t,@@@a pϕpa, vqÑÑÑ aPPP zq.

Suppose t ď r, xy, sy P x, and t ď s. Since drxy,sys is predense below r, for every
r1 ď t there exist r2 ď r1 and t1 P drxy,sys such that r2 ď t1. t1 is compatible with
s, so10.175 there exists z1 P X such that t1,@@@a pϕpa, yqÑÑÑ aPPP z1q. Note that @xy, sy P
z1 xy,1y P z, from which it follows easily that t1,@@@a pϕpa, yqÑÑÑ aPPP zq. Hence,
r2,@@@a pϕpa, yqÑÑÑ aPPP zq. Thus the set of conditions forcing @@@a pϕpa, yqÑÑÑ aPPP zq is
dense below t, so t,@@@a pϕpa, yqÑÑÑ aPPP zq, as claimed.10.176

Infinity We will show that

,DDDu pDDDv v PPPu ^̂̂ @@@v PPPuDDDw PPPu v PPPwq.

To this end, let x0 “ 0 and for each n P ω, let xn`1 “ txxn,1yu. Let x “ txxn,1y |
n P ωu. Since InfinityM , x PMP. It suffices to show that

,DDDv v PPPx ^̂̂ @@@v PPPxDDDw PPPx v PPPw.
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Note that for all n P ω,
,xn PPPx and ,xn PPPxn`1.

Thus, ,x0 PPPx, so ,DDDv v PPPx.
To show that p,@@@v PPPxDDDw PPPx v PPPw, we must show that @q ď p@xy, sy P x Dr ď

q pr ď s^ r,DDDw PPPx y PPPwq, i.e., @q ď p@n P ω Dr ď q r,DDDw PPPx xn PPPw. This
follows from the fact that ,xn`1 P x and ,xn PPPxn`1.

Foundation The proof is left to the reader. 10.171

10.31 Proof of (8.225)

[Refer to p. 572.]

The purpose of this note is to fill out the sketch of the proof of (8.225) given in
the main text.

10.31.1 Properties of the Levy collapse

The following theorem states that for any infinite cardinal κ, Cpω, κq is essentially
the only way to collapse κ to ω with a partial order of cardinality κ.27

(10.177) Theorem [ZFC] Suppose P is a partial order, κ “ ||P|| ą ω, and ,P xpκ̌q
is countabley. Then R P – Cpω, κq.

Remark Note that if we let κ “ ω, and we require that R P be atomless (i.e., that
P have no have no minimal element) then this is just the familiar fact that there
is—up to isomorphic equivalence—only one atomless complete boolean algebra with
a countable dense subset, viz., the Cohen algebra Cpω, 2q, which is isomorphic to
Cpω, ωq.

Proof Since R P “ R P, where P is the canonical separative quotient of P,8.59 we
may assume without loss of generality that P is separative. Recall that conditions
in Cpω, κq are functions whose domains are finite subsets of ω. Let Q “ tp P
|Cpω, κq| | dom p P ωu, and let Q be the corresponding partial order. Since Q is
dense in Cpω, κq, R Q “ R Cpω, κq “ Cpω, κq. We will show that Q is isomorphic
to a dense subset of P, from which it follows that Cpω, κq “ R C – R P.

Let G “ GP be the canonical term for the generic filter on P, as usual. Let8.109

9f P MP be such that ,P 9f : ω̌ sur
Ñ G. Let P “ |P| and let ď“ďP. We will define

(from a choice function adequate to the purpose) an isomorphism ι : Q inj
Ñ P by

Ď-recursion on Q. Specifically, we will show how to define ιpq ⌢xαyq for each α P κ,
given ιpqq.

Suppose |q| “ n. Since ,P xpκ̌q is countabley, there exists an antichain R in
P below ιpqq such that |R| “ κ. We can arrange that R is a maximal antichain,
and we can also arrange that for every r P R, r decides the value of 9f , i.e., Dp P
P r,P 9fpňq“““ p̌. Let xrα | α P κy enumerate R. For each α P κ, let ιpq ⌢xαyq “ rα.

ι is clearly injective and order-preserving, so it is an isomorphism. We will
show that tιpqq | q P Qu is dense in P. Suppose p P P . Then p, p̌PPPG, so

27Any partial order of cardinality ă κ satisfies the κ-chain condition, so it cannot render κ
countable.
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p,DDDnPPP ω̌ 9fpnq“““ p̌. Hence there exists r ď p and n P ω such that r, 9fpňq“““ p̌.
By the maximality of the antichains R used in the definition of ι, for each m P ω
there exists q P Q of length m such that ιpqq is compatible with r. In particular,
there exists such a q of length n` 1. By the definition of ι, ιpqq decides the value
of 9fpňq. Since r, 9fpňq “ p̌, necessarily ιpqq, 9fpňq “ p̌. Since , 9f : ω̌ sur

Ñ G,
ιpqq, p̌PPPG.

Since P is separative, if ιpqq ď p there exists s ď ιpqq such that s is incompatible
with p, in which case s, p̌RRRG. Hence ιpqq ď p. 10.177

We have as a corollary the following theorem of Kripke.

(10.178) Theorem [ZFC] Suppose κ is an infinite cardinal, A is a complete boolean
algebra, and ||A|| ď κ. Then A is isomorphic to a complete subalgebra of Cpω, κq.

Proof Let A` be the partial order of nonzero elements of A, and let P “ A` ˆ
Cpω, κq. Then P has cardinality κ and collapses κ to ω, so R P – Cpω, κq.10.177 Let
ι : |A| Ñ |R P| be such that

ιpaq “ txa1, cy | a1 ď a^ c P |Cpω, κq|u.

Clearly, ι is an isomorphism of A with a complete subalgebra of R P, so A isomorphic
to a complete subalgebra of Cpω, κq. 10.178

(10.179) Theorem [ZFC] Suppose κ is an infinite cardinal, A is a complete boolean
algebra, and ||A|| “ κ. Suppose B is a complete subalgebra of A, ||B|| ă κ, and ι
is a complete embedding of B in Cpω, κq. Then there exists an extension ι1 of ι to
a complete embedding of A in Cpω, κq.

Proof Let 9D “ A : B, i.e., a term denoting the quotient of Ǎ by the canonical
generic filter G on B̌ in V B. Let C “ Cpω, κq, let B1 be the image of B under ι,
and let 9D1 “ C : B1. Let 9CB and 9CB1

be terms for the collapsing algebra Cpω, κ̌q in
V B and V B1

, respectively.
It is easy to check that xpκ̌q is a cardinaly and x||p 9Dq|| ď pκ̌qy are B-valid.

Thus,10.178, 8.109 there exists 9k P V B such that xp 9kq is a complete embedding of p 9Dq

in p 9CBqy is B-valid.
We now define a complete embedding j of A in B ˚ 9CB. Suppose a P |A|.

Let ã P V B be the canonical name for the element of 9D corresponding to a (i.e.,
the equivalence class in Ǎ{GB containing ǎ), as defined in the proof of (8.184).
Let 9c P V B be such that 9c“““ 9kpãq is B-valid. Let jpaq be the element of B ˚ 9CB

corresponding to 9c, i.e., the canonical element 9c1 of V B such that rr 9c1“““ 9css
B
“ 1.

Note that if a P |B| then

rrã“““1 9Dss
B
“ a and rrã“““0 9Dss

B
“ ␣ a,

so
rr 9c“““1 9CB

ss
B
“ a and rr 9c“““0 9CB

ss
B
“ ␣ a.

Hence, jpaq is the image of a under the canonical (complete) embedding of B in
B ˚ 9CB.8.182

Working briefly in V rG1s, where G1 is a hypothetical V -generic filter on B1, and
letting D1 “ 9D1G

1
, we find that κ is an uncountable cardinal (because ||B1|| ă κ),

and D1 collapses κ to ω (since B1 ˚ 9D1 – C “ Cpω, κq). Let C be the canonical
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image of Cpω, κq in C (“ R Cpω, κq), i.e., C “ trps | p P Cpω, κqu. C is dense in
C. Let E “ tc̃G

1
| c P Cu, the projection8.193.2 of C in D1 (as the quotient of C by

G1). Let E “
`

Ezt0u;ďD1 ˘
be the corresponding partial order. Then E is dense in

D1,8.194 so R E – D1, so E collapses κ to ω. It follows that κ ď ||E|| ď ||C|| “ κ, so
||E|| “ κ, and10.177 D1 – C.

It follows from the existence of this argument in V rG1s that xp 9D1q – p 9CB1
qy is

B1-valid. Let 9k1 P V B1
be such that xp 9k1q is an isomorphism of p 9D1q with p 9CB1

qy is
B1-valid.8.109

We now proceed as above to define an isomorphism j1 of C with B1˚ 9CB1
such that

for any c P |B1|, j1pcq is the image of c under the canonical (complete) embedding
of B1 in B1 ˚ 9CB1

.
Since ι : B – B1, there exists π : B ˚ 9CB – B1 ˚ 9CB1

such that for all b P |B|, π
maps the canonical image of b in B ˚ 9CB to the canonical image of ιpbq in B1 ˚ 9CB1

.
Now, given a P |A|, let ι1paq “ j1´1pπpjpaqqq. Then ι1 is the desired extension of ι
to a complete embedding of A in C. 10.179

(10.180) Theorem [ZF] Suppose κ is an inaccessible cardinal. Suppose A and A1

are complete subalgebras of Cpω,ăκq of size ă κ, and ι : A – A1. Then ι may be
extended to an automorphism of Cpω,ăκq.

Proof Let C “ Cpω,ăκq and let C “ Cpω,ăκq “ R C. For each ν ă κ, let8.220

Cν “ Cpω,ăνq
Cν “ Cpω, rν, κqq.

Note that C is canonically isomorphic to Cν ˆ Cν . Let Cν be the subalgebra of
C corresponding to Cpω,ăνq. Thus, X P Cν iff X “ tp P C | p æpν ˆ ωq P Y u for
some Y P Cpω,ăνq. Cν is a complete subalgebra of C.8.146 Since κ is inaccessible,
||Cν || ă κ for every ν ă κ.

Suppose X P |C|. Then X is a regular subset of C. Let Y Ď X be a maximal
antichain in X. Then X “ Y . Since C has the κ-chain condition,8.223 Y Ď |Cν | for
some ν ă κ, so X P Cν . Hence |C| “

Ť

νăκ |Cν |.
Suppose ν is a cardinal ă κ. Then Cν`1 collapses ν to ω, and ||Cν`1|| “ ν,

so10.177

(10.181) Cν`1 – Cpω, νq.

Let A0 “ A, A10 “ A1, and ι0 “ ι. Let ν0, ν1 ă κ be infinite cardinals such that
|A0| Ď |Cν0 |, ||Cν0 || “ ν1, ||A0|| ă ν1, and |A10| Ď |Cν1`1|. By (10.179) with Cν0 for
A, ν1 for κ, A0 for B, ι0 for ι, and Cν1`1 for Cpω, ν1q,10.181 there exists a complete
embedding ι1 of Cν0 in Cν1`1 that extends ι0.

Let A1 “ Cν0 and A11 “ ι1
ÑA1. Since Cµ is a complete subalgebra of C for

any µ ă κ, A1 and A11 are isomorphic complete subalgebras of C of size ă κ, and
we can carry out the above construction in the other direction to extend ι1 to an
isomorphism ι2 of a complete subalgebra A2 of C with A12 “ Cν2 for some cardinal
ν2 ă κ.

We proceed in this alternating fashion for ω steps. Let ν “
Ť

nPω νn and ι1 “
Ť

nPω ιn. Then ι Ď ι1 and ι1 : Cν – Cν . It is easy to extend ι1 to an automorphism of
C. For example, let j be the automorphism Cν corresponding to ι1. Then xpν , pνy ÞÑ
xjppνq, p

νy is an automorphism of Pν ˆ Pν , and by using natural correspondences,
we can define from this an extension of ι1 to an automorphism of C. 10.180
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The next two theorems establish an important factorization property of collaps-
ing extensions, in particular the Levy collapse.

(10.182) Theorem [GBC] Suppose M is a transitive model of ZFC and κ is an
infinite cardinal in M . Suppose G is an M -generic filter on Cpω, κq and X PM rGs
is a set of ordinals. Then either M rXs “M rGs28 or there exists an M rXs-generic
filter H on Cpω, κq such that M rXsrHs “M rGs.

Proof Let C “ Cpω, κq, let 9X be such that 9XG “ X, and let A be the complete
subalgebra of C generated by elements of |C| of the form rrx̌PPP 9Xss for x P M , as in
the proof of (8.196). Let G1 “ GX |A|, so that G1 is an M -generic filter on A and
M rXs “M rG1s. Let 9B “ C : A, and let B “ 9BG1

. Then C – A ˚ 9B,8.184 and M rGs
is a B-generic extension of M rG1s.

As before (in the proof of (10.179)), let C be the canonical image of Cpω, κq
in its regular algebra, i.e., C “ trps | p P Cpω, κqu. Let B “ tc̃G

1
| c P Cu.8.193.2

Then8.194

(10.183) xrBszt0u is dense in rBsy
MrG1s

.

We now consider two cases. Suppose first that κ is uncountable in M rG1s, and let

λ “ x Card rκsy
MrG1s

. Working in M rG1s, we observe that B is a forcing algebra in
M rG1s that collapses λ to ω. Let P be the partial order consisting of Bzt0u with
the order inherited from B. P is dense in B,10.183 so R P – B, so P collapses λ to
ω. ||P|| “ |κ| “ λ, so10.177 B – Cpω, λq. Since λ „ κ, Cpω, λq – Cpω, κq. Hence,
M rGs is a Cpω, κq-generic extension of M rG1s.

Now suppose κ is countable in M rG1s. If M rG1s “ M rGs then we are finished,
since M rXs “ M rG1s. Suppose therefore that M rG1s ‰ M rGs. In this case,
C – Cpω, ωq in M rG1s, and the dense subset B of B is countable in M rG1s. To
show that B – C in M rG1s it therefore suffices to show that B is atomless, as
there is only one atomless countably generated complete boolean algebra up to
isomorphic equivalence.

Suppose toward a contradiction that b is an atom in B, i.e., b ‰ 0 and @b1 ď
b pb1 “ b_ b1 “ 0q. By (10.183) there exists b1 P B such that 0 ă b1 ď b. Thus,
b “ b1 P B. Let c0 P Cpω, κq be such that c̃G

1

0 “ b. Again using the fact that b is an
atom, for any finite D Ď ω such that dom c0 Ď D, there exists a unique extension
c1 of c0 with domain D such that c̃1G

1
‰ 0 (and, in fact, c̃1G

1
“ b). Let C 1 be the

set of all such extensions of c0. Clearly,8.188.3 C 1 Ď G, and, in fact, for any c P |C|,
c P GØDc1 P C 1 c1 ď c. Thus, G P M rG1s, so M rG1s “ M rGs, contradicting our
assumption that M rG1s ‰M rGs.

In this case also, therefore, B – Cpω, κq, so M rGs is a Cpω, κq-generic extension
of M rG1s. Since M rXs “M rG1s, this completes the proof. 10.182

Finally, we have Solovay’s factor lemma.

(10.184) Theorem [ZFC] Suppose M is a transitive model of ZFC, κ is an inac-
cessible cardinal in M , G is an M -generic filter on C “ Cpω,ăκq, and s is an
ω-sequence of ordinals in M rGs. Then κ is inaccessible in M rss, and there exists
an M rss-generic filter H on C such that M rGs “M rssrHs.

Proof For any ν ă κ, C is naturally isomorphic to Cν ˆCν , where Cν “ Cpω,ăνq
and Cν “ Cpω, rν, κqq. Let C,Cν ,C

ν be the corresponding regular algebras. Note

28See (8.196) for the definition of MrXs. Note that MrGs is a generic extension of MrXs.
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that if ν is an infinite cardinal in M , Cν`1 has cardinality ν and collapses ν to ω,
so Cν`1 – Cpω, νq (by virtue of (10.177) if ν is uncountable in M , and by direct
evaluation if ν “ ω; we’ll only need the uncountable case).

Let p P G be such that p, xp 9sq : ω Ñ Ordy. Working in M , for each n P ω let
Xn be a maximal antichain in C below p such that @q P Xn DOrdα q, 9spňq “ α̌.
Since C satisfies8.223 the κ-chain condition, |Xn| ă κ for each n P ω, and there exists
ν ă κ such that tpu Y

Ť

nPωXn Ď Cν .
Hence (working in M rGs), s P M rGνs, where Gν “ G X |Cν |. Since ||Cν || ă

κ in M , κ is inaccessible in M rGνs, hence in M rss. Since C – Cν`1 ˆ Cν`1,
M rGs “ M rGν`1srG

ν`1s, where Gν`1 “ G X |Cν`1|. Since M rss ‰ M rGν`1s, by
(10.182) and the preceding paragraph, there is an M rss-generic filter G1 on Cν`1

such that M rssrG1s “ M rGν`1s. It follows that M rGs “ M rssrG1srGν`1s. Let
H “ G1 ˆ Gν`1. Then H is an M rss-generic filter on C and M rGs “ M rssrHs.

10.184

10.31.2 The Solovay model

We presume a fixed enumeration xϕn | n P ωy of s-formulas.

Definition [ZF] ∆ps, xq
def
ðñ

1. s : ω Ñ Ord;

2. s0 P ω and if we let ϕ “ ϕs0 then ϕ is an s-formula with exactly two free
variables;

3. if we let α “ s1 and są1 “ xs2, s3, . . . y then są1, x P Vα; and

4. Vα |ù ϕrsą1, xsu.

Note that tx | ∆ps, xqu is 0 if it is not the case that s0 P ω and ϕs0 has exactly two
free variables, or if są1 R Vs1 ; and in any case, tx | ∆ps, xqu Ď Vs1 .

(10.185) [GBC] Suppose M is a transitive model of ZFC, κ is an inaccessible cardinal
in M , and G is an M -generic filter on Cpω,ăκq (or Cpω,ăκq as the spirit moves
us). Let S be the class of ω-sequences of ordinals in M rGs.

1. Let N1 be the class of x PM rGs such that there exists s P S such that x “ ty |
∆ps, yqu, i.e., N1 is ODpSq in the sense of M rGs.

2. Let N be the class of x such that tctxu Ď N1. I.e., N is HODpSq in the sense
of M rGs.

(10.186) Theorem [GBC] Suppose M , N , etc. are as in (10.185).

1. Suppose f PM rGs and f : ω Ñ N . Then f P N .

2. N |ù DC.

Proof 1 For each n P ω let sn be as in (10.185.2) such that fpnq “ tx |

∆MrGspsn, xqu. Let t : ω Ñ OrdM code the sequence xsn | n P ωy in some simple
way (by dovetailing perhaps), and let α P OrdM be such that t P M rGsα and f is
definable over M rGsα from t by some formula ϕ, i.e., f “ tx | M rGsα |ù ϕrt, xsu.
Let n P ω be such that ϕ “ ϕn, and let s “ xn, αy ⌢ t. Then f “ tx | ∆MrGsps, xqu,
so f P N1. Since fpnq P N for each n P ω, it is easy to see that tc f Ď N1. Hence,
f P N .
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2 Suppose R P N is a binary relation on a nonempty set X P N such that
@x P X Dy P X xRy. Since M rGs satisfies AC, for each x0 P X there exists
f P M rGs such that f : ω Ñ X, fp0q “ x0, and @n P ω fpnqRfpn` 1q. It follows
from (10.186.1) that f P N . 10.186

10.31.3 Cohen and random reals

We will be working with submodels M rss of N , where s : ω Ñ Ord, and M rss is
defined as in the remark following the statement of Theorem 8.196. Thus, M rss
models ZFC, a fortiori, ZF ` DC. In the following discussion, we will use ‘M ’ and
‘N ’ generally to denote transitive models of ZF ` DC with M Ď N . Note that
ZF`DC is sufficient to develop most of descriptive set theory, including the theory
of category and Lebesgue measure on R (for which ZF`ACωpRq actually suffices).
That part of the discussion that does not deal explicitly with models of ZF ` DC
may be regarded as taking place in ZF ` DC, so that it is applicable within these
models.

Let Borel “ BorelR be the boolean algebra of Borel subsets of R, where R is
formally defined as the set of Dedekind cuts5.71 in the rational number line Q. As
we have previously shown, all members of Borel have the Baire property5.147 and
are Lebesgue measurable.5.160 Within Borel let m and n be respectively the ideals
of meager5.143 and null5.155 sets. Let B “ Borel{m and let L “ Borel{n. As shown
previously,5.148, 5.161 B and L are complete boolean algebras satisfying the countable
chain condition.29

As we did in the introduction,8.7 we now exploit the correspondence between
generic filters on B or L and real numbers.

(10.187) Definition [GB] Suppose M is a transitive model of ZF ` DC and G is
an M -generic filter on BM (LM ). xG

def
“ tr P Q | rpr,8qs P Gu.

(10.188) Theorem [GB] Under the conditions of (10.187), xG is a Dedekind cut
in Q.

Proof xG is clearly closed downward. To see that it is bounded above, we note
that any nonzero element of B (L) has a nonzero extension of the form rXs for
some Borel set X such that X Ď p´8, sq for some rational s. It follows that G
contains such an element, so rp´8, sqs P G for some s P Q, whence it follows that
rpr,8qs R G for any r ě s. To see that xG has no greatest element (and is therefore
a cut in the strict sense), a similar density argument applies: given r P Q, any
nonzero element of B (L) has a nonzero extension of the form rXs for some Borel
set X such that X Ď p´8, sq for some rational s ă r or X Ď ps,8q for some
rational s ą r, from which it follows that either r R xG, or s P xG for some s ą r.

10.188

Definition [GB] Suppose M is a transitive model of ZF ` DC and x P R. x is

Cohen (random) over M
def
ðñ there exists an M -generic filter on BM

`

LM
˘

such
that x “ xG.

29Since we are only concerned with B and L as defined in M , and the models that serve in this
role in the subsequent proof all satisfy AC, it would suffice to have established these facts in ZFC,
but we have shown that they follow from ZF` ACωpRq.
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The rationale for the use of ‘Cohen’ here is the fact noted previously that since
B and the Cohen algebra are both atomless with countable dense sets, they are
isomorphic.

Note that for any r P Q,

(10.189) xG P pr,8qØrpr,8qs P G,

where ‘pr,8q’ on the left refers to pr,8q in the sense of N , and on the right to
the corresponding interval in the sense of M . Note that QM “ QN . Using the M -
genericity of G and the boolean operations of complementation and intersection,
(10.189) generalizes to arbitrary intervals, e.g.,

xG P rr,8qØrrr,8qs P G

xG P p´8, rqØrp´8, rqs P G

xG P pr, sqØrpr, sqs P G,

for any rationals r, s, where again we understand the intervals on the right in the
sense of M , and those on the left in the sense of N .

We can generalize these identities to arbitrary Borel sets in the sense of M if
we appropriately define the corresponding sets in N . For this purpose we employ a
propositional language B, which has a prime proposition Pr for each r P Q, along
with a negation (complementation) relation and countable disjunction (join) and
conjunction (meet) operations. We call the expressions of B, boolean expressions,
or more specifically Borel expressions in recognition of the countability condition.
An interpretation of B is a map I of the B-expressions into a countably complete
boolean algebra A that follows the obvious rules:

Ip␣␣␣ ϵq “ ␣ Iϵ

I
´

łłł

nPω
ϵn

¯

“
ł

nPω
Iϵn.

Clearly, any interpretation is uniquely determined by its values on the prime propo-
sitions. A natural interpretation B of B in Borel is obtained by letting BpPrq “
pr,8q. In this context, we may regard B-expressions as Borel codes, which we have
previously defined5.89 somewhat differently but equivalently.

Now suppose, as above, that M Ď N are transitive models of ZF ` DC and
G P N is an M -generic filter on BM . In the present terminology, (10.189) states
that

(10.190) xG P BpPrq
NØ

“

BpPrq
M
‰

P G.

As we have indicated, the purpose of B is to allow us to generalize (10.190) to
BorelN on the left and BorelM on the right, which it does:

(10.191) Theorem [GB] In the above context, suppose ϵ is a BM -expression. Then

(10.192) xG P pBϵq
NØ

“

pBϵqM
‰

P G.

Proof By induction on complexity. Prime propositions are covered by (10.190).
Suppose the theorem holds for ϵ. Then

xG P pBp␣␣␣ ϵqq
NØxG R pBϵq

NØ
“

pBϵqM
‰

R GØ␣
“

pBϵqM
‰

P G

Ø
“

pBp␣␣␣ ϵqqM
‰

P G,
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because G is an ultrafilter.
Next suppose E is a countable set of B-expressions in M and the theorem holds

for each ϵ P E. Let η “
Ž

E. Then

xG P pBηq
NØDϵ P E

`

xG P pBϵq
N
˘

ØDϵ P E
`“

pBϵqM
‰

P G
˘

Ø

´

ł

ϵPE

“

pBϵqM
‰

¯

P G

Ø
“

pBηqM
‰

P G,

because, firstly, G is M -generic and, secondly, E is countable in M . 10.191

(10.192) shows how to recover G from xG. Theorem 10.195 provides a useful
condition on a real x that guarantees that (10.192), with x for xG, defines an M -
generic filter G, from which it follows that x “ xG, since (10.192) includes the
definition10.187 of xG as the special case in which ϵ is prime.

Note that although the expression ϵ in (10.195) is required to be in M , it is
pBϵqN , not pBϵqM , that is evaluated as to whether it is meager (null). Thus,
preparatory to proving the theorem, we establish some absoluteness properties of
category and measure.

(10.193) Theorem [GB] Suppose M Ď N are transitive models of ZF` DC, and ϵ
is a BM -expression.

1. pBϵqM “ pBϵqN X RM .

2. pBϵqM is empty iff pBϵqN is empty.

Proof 1 Straightforward induction on the complexity of ϵ.

2 We have seen5.97 that any Borel set is Σ1
1. It is in fact not hard to define a Σ1

1

formula ϕ with free variables u, v such that for any BM -expression ϵ, which we may
suppose by a suitable coding scheme to be in RM , and any x P R, for any transitive
model N of ZF` DC that includes M and contains x,

x P pBϵqNØN |ù ϕ
“

u v
x ϵ

‰

.

(Bϵ is uniformly Π1
1pϵq in the same sense.) Let ψ “ DDDuϕ. ψ is Σ1

1. pBϵqM is non-
empty iff M |ù ψrϵs; and pBϵqN is nonempty iff N |ù ψrϵs. By the Σ1

1-absoluteness
theorem,6.7 M |ù ψrϵs iff N |ù ψrϵs, which proves the claim. 10.193

(10.194) Theorem [GB] Suppose M Ď N are transitive models of ZF` DC, and ϵ
is a BM -expression.

1. M |ù xBrϵs is meageryØN |ù xBrϵs is meagery.

2. M |ù xBrϵs is nullyØN |ù xBrϵs is nully.
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Proof 1 Suppose M |ù xBrϵs is meagery. Let xϵn | n P ωy P M be a sequence of
codes for open sets such that M |ù xBrϵns is open and densey for each n P ω, and
M |ù xBrϵs X

Ş

nPω Brϵns “ 0y, i.e., M |ù xBrϵ1s is emptyy, where ϵ1 “ ϵ ^̂̂
ŹŹŹ

nPω ϵn.
Using (10.193), we see that N |ù xBrϵns is open and densey for each n P ω, and N |ù
xBrϵ1s is emptyy, so N |ù xBrϵs X

Ş

nPω Brϵns “ 0y. Hence, N |ù xBrϵs is meagery.
Now suppose M |ù xBrϵs is not meagery. Then5.147.4 there is are rationals r ă s

such that M |ù xBrϵs is comeager on the open interval prrs, rssq, i.e., prrs, rssqzBrϵs
is meagery. It follows by the preceding argument that N agrees, so N |ù xBrϵs is
not meagery.

2 It is straightforward to show that M and N compute the same measure for open
sets coded in M as countable unions of rational open intervals, and for closed sets
coded in M as countable intersections of complements of rational open intervals. If
M |ù xBrϵs is nully then for any n ą 0, there is an open set G P M with measure
ă 1{n such that M |ù xBrϵs Ď rGs, so—again using (10.193)—N |ù xBrϵs Ď rGs.
Hence M |ù xBrϵs is nully.

Inversely, if M |ù xBrϵs is not nully then there is a closed set of positive measure
included in Brϵs in the sense of M and therefore also in the sense of N , so N |ù
xBrϵs is not nully. 10.194

(10.195) Theorem [GB] Suppose M Ď N are transitive models of ZF`DC, RM P

N , and x P RN .

1. x is Cohen over M iff x is not in any meager Borel set in N that is coded in
M , i.e., for all BM -expressions ϵ, if pBϵqN is meager then x R Bϵ, where we
take ‘pBϵqN is meager’ to mean that N |ù xBrϵs is meagery.

2. x is random over M iff x is not in any null Borel set in N that is coded in M .

Proof We will give one proof for both cases, giving case-specific details as neces-
sary. For the forward direction, suppose G P N is M -generic on BM

`

LM q, and
suppose ϵ P BM is such that pBϵqN is meager (null). Then10.194 pBϵqM is meager
(null), so

“

pBϵqM
‰

“ 0. Hence
“

Bp␣␣␣ ϵqM
‰

“ 1 P G, from which it follows10.191 that
xG P Bp␣␣␣ ϵq

N , so xG R pBϵqN .
For the reverse direction, suppose x is not in any meager (null) Borel set in N

that is coded in M . Let G “
␣“

pBϵqM
‰ ˇ

ˇ ϵ P BM ^x P pBϵqN
(

. Since M Ď N and
RM P N , PpRqM , BorelM , BM , LM , etc. are in N , so category- and measure-
theoretic notions as defined in M are also definable in N . Thus, in particular,
G P N . Since x is not in any meager (null) Borel set in N that is coded in M , G
does not contain 0, and G is clearly closed upward and closed under (finite) meet,
so G is a filter.

To show that G is M -generic, suppose A P M is dense in BM
`

LM q. Then
Ž

A “ 1.

(10.196) Claim There exists B Ď A, such that B P M and B is countable in M ,
such that

Ž

B “ 1.

Remark With AC this is easy to show. As we have noted above, for the present
purpose we could be satisfied with this, as M may be assumed to model ZFC.
Nevertheless, we will give a proof in ZF` DC, in fact, in ZF` ACωpRq.
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Proof We argue in M . First consider the case of B. Let tan | m P ωu be a
countable dense set in B. Using ACωpRq to choose Borel codes, for each n P ω, if
there exists b P A such that b ě an, let bn be such an element. Let B Ď A be the
set of all such elements bn. Then B is countable. We claim that b “

Ž

B “ 1. For
if not, let a P A be such that a ď ␣ b, and let n P ω be such that an ď a. Then an
is nonzero and disjoint from b. Since an ď a, bn is defined, and bn P B, so bn ď b.
But an ď bn, which is a contradiction.

Next we consider the case of L. Suppose toward a contradiction that for every
countable B Ď A,

Ž

B ă 1. We will use methods similar to those used in the proof
of (5.161.2). For each m P Z, where Z is the set of integers, let im “ rpm,m` 1qs,
the equivalence class in L of the interval pm,m ` 1q. Using ACωpRq with Borel
codes, one can show that there exists m P Z such that for every countable B Ď A,
Ž

bPBpb^ imq ă im. It follows that for every countable B Ď A, µ
`
Ž

bPBpb^ imq
˘

ă

µpimq “ 1. Let µ0 be the supremum over all countable B Ď A of µ
`
Ž

bPBpb^ imq
˘

.
Using ACωpRq again, it follows that µ0 ă 1 (since countable sets of Borel sets can be
coded by reals). Using ACωpRq again, we show that there exists a countable B Ď A
such that µ

`
Ž

bPBpb^ imq
˘

“ µ0. Let b0 “
Ž

bPBpb^ imq. Then 0 ă b0 ă im.
Since A is dense, there exists a P A be such that a ď imXp␣ b0q. Let B1 “ BYtau.
Then B1 is a countable subset of A and µ

`
Ž

bPB1pb^ imq
˘

“ µ0 ` µpaq ą µ0;
contradiction. 10.196

Still arguing in M as in the proof of the claim, and using the claim, let B be
a countable subset of A such that

Ž

B “ 1. Using ACωpRq, for each b P B let
ϵb be a B-expression such that rBpϵbqs “ b, and let ϵ “

ŽŽŽ

bPB ϵb. Note that ϵ is a
B-expression, since B is countable, and rBpϵqs “ 1.

Now moving to N , let X “ RNzBpϵqN . X is meager (null), so x R X. Hence,
x P BpϵqN “

Ť

bPB Bpϵbq
N , so there exists b P B such that x P BpϵbqN , whence

“

Bpϵbq
M
‰

P G, so G meets A.
We have shown that G is M -generic. It is clear from the definition of G that

x “ xG. 10.195

10.31.4 Solovay’s theorem

(10.197) Theorem [GBC] Under the conditions of (10.185), N |ù xfor every X Ď

R

1. X has the Baire property;

2. X is Lebesgue measurable; and

3. X has the perfect set property.y

Proof We will make use of the homeomorphism5.77.2 of RzQ with ωω. Thus, reals
are effectively ω-sequences of ordinals, and RN “ RMrGs. Suppose X Ď R and
X P N . Then

X “ tx P RMrGs |M rGs |ù ∆rs, xsu,

for some s P S (i.e., s : ω Ñ OrdM ).
Let M 1 “ M rss. Since10.184 κ is inaccessible in M 1, there exist λ ă κ and

f PM 1 Ď N such that f : λ sur
Ñ pω2qM

1
. In M rGs there exists g : ω sur

Ñ λ. Note that
f ˝ g : ω sur

Ñ pω2qM
1
. By (10.186.1) g P N , so f ˝ g P N .
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(10.198) Hence, RM 1
is countable in N .30

Let C “ Cpω,ăκq, and let ‘C’ abbreviate ‘Cpω,ăκq’, so that for any transitive
model M 1 of ZF containing C, CM

1
is the regular algebra obtained from C in M 1.

(Since the elements of C are finite, CM 1
is the same for any M 1 that contains κ.)

Suppose x P RN . Since s and x may be coded together as a single ω-sequence of
ordinals, the argument of the preceding paragraph applies to show that M 1rxs ‰ N ,
and (10.184) applies to show that there exists an M 1rxs-generic filter H on C such
that M rGs “M 1rxsrHs. Let

c “ rr∆pš, x̌qssC
M1rxs

.

š and x̌ are invariant under all automorphisms of CM
1rxs (since all that is necessary

is that 1 be fixed), so c is invariant under automorphisms of CM
1rxs in M 1rxs.

(10.199) Claim c “ 0 or c “ 1.

Proof Suppose not. Let c1 be any element of CM
1rxs other than c, 0, or 1—e.g.,

␣ c. Then t0, c,␣ c,1u and t0, c1,␣ c1,1u are complete subalgebras of CM
1rxs, with

an isomorphism π that takes c to c1, so by (10.180) there is an automorphism of
CM

1rxs in M 1rxs that takes c to c1, whence

c “ rr∆pš, x̌qssC
M1rxs

“ c1;

contradiction. 10.199

Thus

x P XØM rGs |ù ∆rs, xs
ØM 1rxsrHs |ù ∆rs, xs
Ø c P H

Ø c “ 1.

Equivalently,

(10.200) x P XØM 1rxs |ù ∆,rC, 0, š, x̌s,

where ∆, is the s-formula that expresses the forcing relation for sentences derived
by substitution of forcing terms for the (two) free variables of ∆, 0 is the empty
condition in C (which is its maximum element), and š, x̌ are the canonical terms
for s, x in M 1rxsC.

(10.201) Definition [ZF] DpP, a, bq def
ðñ ∆,pP, 0, ǎ, b̌q.

Then

(10.202) x P XØM 1rxs |ù DrC, s, xs.

30Recall that R, ω2, P ω, etc. are all equinumerous and for many purposes interchangeable
interpretations of ‘the reals’.
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1 Let B “ BM 1
. Let 9x P M 1B denote xG,10.187 where G is the canonical term for

the generic filter on B. Thus, for any M 1-generic filter F on B, 9xF “ xF . Let

(10.203) b “ rrDpČ, š, 9xqss
B
,

and let ϵ PM 1 be a Borel code such that pBϵqM
1
P b.

Now suppose F is an M 1-generic filter on B and let x “ xF . Then 9xF “ x and
M 1rF s “M 1rxs, so

x P XØM 1rxs |ù DpC, s, xq
ØM 1rF s |ù DpC, s, xq
Ø b P F

Øx P pBϵqN ,

where we have used successively (10.202), (10.203), and (10.192).
Borel expressions may be coded as reals, so the set of Borel codes in M 1 is

countable in N .10.198 Let A be defined in N as the set of reals that are in some
meager Borel set coded in M 1. Then N |ù xrAs is meager, and10.195 every real not
in rAs is Cohen over M rrsssy. Let B “ pBϵqN . Then X△B Ď A, so N |ù xrXs has
the Baire propertyy.

2 The proof is entirely parallel to the preceding.

3 Given the background provided in this Note, the proof of the perfect set property
given in the main text is adequately detailed. 10.197

10.32 The Hausdorff difference hierarchies

[Refer to p. 663.]

Definition [ZF] Suppose α is a positive ordinal, and A is a decreasing α-sequence
of sets, i.e., if β ď γ ă α then Aβ Ě Aγ . DαA

def
“ the set of x such that the least

β such that either x R Aβ or β “ α is odd, where an ordinal β is even or odd
according as β “ 2 ¨ γ or β “ 2 ¨ γ ` 1, respectively.

Thus

D1xA0y “ A0

D2xA0, A1y “ A0zA1

D3xA0, A1, A2y “ pA0zA1q YA2

D4xA0, A1, A2, A3y “ pA0zA1q Y pA2zA3q

...

Dω`1xA0, . . . , Aωy “
ď

γăω

pA2¨γzA2¨γ`1q YAω

...

In the following discussion we presume a fixed Polish topology T on a set X “
Ť

T .



808 CHAPTER 10. NOTES

Given a class Γ of sets and α ą 0, α - Γ def
“ the class of sets obtained by the

application of Dα to decreasing α-sequences from Γ. Recall that for any class Γ of
subsets of X, Γ̆ “ ␣␣␣Γ “ tXzY | Y P Γu is the class dual to Γ. For convenience, we
let ᾰ - Γ def

“ ˘α - Γ.

Definition [ZF] Suppose 0 ă ξ ă ω1. The Hausdorff difference hierarchy on Π0
ξ

consists of the classes α - Π0
ξ and ᾰ - Π0

ξ, 0 ă α ă ω1.

Clearly, α - Π0
ξ is continuously closed.

In general, the difference hierarchy on Γ is not simply related to the one on ␣␣␣Γ,
and our choice of Π0

ξ over Σ0
ξ as the base for the difference hierarchy is significant. In

particular, the closure of Π0
ξ under countable intersections is useful, as the following

argument demonstrates.
Suppose 0 ă ξ, α ă ω1. First note that we can replace decreasing α-sequences of

Π0
ξ sets by arbitrary α-sequences as arguments of Dα by the following device. Given

A P αpΠ0
ξq, define Ã by the condition that Ãβ “

Ş

γďβ Aγ . Note that Ã P αpΠ0
ξq,

Ã is decreasing, and if A is decreasing then Ã “ A. Extend the definition of Dα by
letting

(10.204) DαA
def
“ DαÃ

for any A P αpΠ0
ξq.

Let π be a fixed bijection of ωˆα with ω, and for x P ωω and β P α, let xpβq P ωω
be defined by the condition: @n P ω

`

xpβqpnq “ xpπxn, βyq
˘

. Let S Ď ωω ˆ ωω be a
universal set for Π0

ξ , i.e., S is Π0
ξ , and for any Π0

ξ set X Ď ωω, there exists a P ωω

such that X “ Sa
def
“ tx P ωω | xa, xy P Su. Let T “

␣

xa, xy
ˇ

ˇ a P ωω^x P DαxSapβq |

β P αy
(

, using the generalized difference operation (10.204).
T is clearly universal for α - Π0

ξ . It follows that α - Π0
ξ ‰ ᾰ - Π0

ξ , by the usual
argument. (Otherwise, let a P ωω be such that Ta “ tx P ωω | xx, xy R T u. Then
xa, ay P T Øxa, ay R T .)

Next we show that

1. α - Π0
ξ Ď pα` 1q - Π0

ξ ; and

2. ᾰ - Π0
ξ Ď pα` 1q - Π0

ξ .

For the first claim, suppose A P αpΠ0
ξq is decreasing. Let A1 “ A ⌢x0y. Then

Dα`1A
1 “ DαA.

To prove the second claim, suppose A P αpΠ0
ξq is decreasing. Define A1 P

α`1pΠ0
ξq as follows:

1. A10 “ X (the entire space under consideration).

2. For each successor β ď α, A1β “ Aβ- .

3. For each limit β ď α, A1β “
Ş

γăβ Aγ .

(Note that we have again used the closure of Π0
ξ under countable intersections.

Then Dα`1A
1 “ XzDαA.

Thus, the Hausdorff difference hierarchy over Π0
ξ is a hierarchy in the familiar

sense. The following theorem of Hausdorff and Kuratowski is analogous to Suslin’s
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theorem 5.106, inasmuch as it states that the difference operations generate ∆0
ξ`1

from Π0
ξ , as the operations of countable union and complementation generate ∆1

1

from Π0
1. In the proof of the theorem we will have occasion to consider multiple

topologies on a given set X, so we refer to the topology explicitly in the statement
of the theorem.

(10.205) Theorem [ZF] Suppose T is a Polish topology and 0 ă ξ ă ω1. ∆0
ξ`1pT q “

Ť

0ăαăω1
α - Π0

ξpT q.

Proof Given 0 ă α ă ω1 and A P αpΠ0
ξq, DαA is a countable union of differences

of Π0
ξ sets, each of which is Σ0

ξ`1, so DαA is Σ0
ξ`1. By the same reasoning, D̆αA

is Σ0
ξ`1, so DαA is Π0

ξ`1. Hence,
Ť

0ăαăω1
α - Π0

ξ Ď ∆0
ξ`1. It remains to be shown

that ∆0
ξ`1 Ď

Ť

0ăαăω1
α - Π0

ξ .
We will prove the theorem for ξ “ 1. The general case may be derived from

this case as described in[15, §22.E]. Briefly, if A P ∆0
ξ`1pT q, then there is a Polish

topology T 1 such that T Ď T 1 Ď Σ0
ξpT q such that A P ∆0

2pT 1q. Applying the
theorem for ξ “ 1 to T 1, for some 0 ă α ă ω1, A P α - Π0

1pT 1q Ď α - Π0
ξpT q, since

Π0
1pT 1q Ď Π0

ξpT q.
We now deal with a fixed Polish topology on a set X. Suppose F Ď X is closed.

We define the boundary relative to F of a set A Ď X to be

BFA
def
“ F XAX F zA.

Note that BFA is closed and included in F .
Suppose A P ∆0

2. Define xFγ | γ P Ordy recursively as follows:

1. F0 “ X.

2. Fγ`1 “ BFγA.

3. Fγ “
Ş

δăγ Fδ, if γ P Lim.

Let η be least such that Fη`1 “ Fη. Since the topology is Polish, it has a countable
base, and any strictly decreasing sequence of closed sets is countable. Hence η ă ω1.

(10.206) Claim Fη “ 0.

Proof Suppose toward a contradiction that Fη ‰ 0. Then Fη with the relative
topology is a Polish space, and Fη “ Fη XA “ FηzA. Thus, Fη XA and FηzA are
disjoint Gδ subsets of Fη, both of which are dense in Fη, and both of which are
therefore comeager, which is impossible. 10.206

Let α “ 2 ¨ η, and define a decreasing α-sequence C “ xCβ | β ă αy of closed
sets as follows. For γ ă η,

1. C2¨γ “ Fγ ; and

2. C2¨γ`1 “ FγzA.

Then
DαC “

ď

γăη

pC2¨γzC2¨γ`1q “
ď

γăη

pFγzFγzAq.

We claim that this is A. To prove it, suppose x P A. Let γ be such that x P FγzFγ`1,
which must exist, since F0 “ X, Fη “ 0, and xFγ | γ ď ηy is continuous at limits.
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Then x P Fγ X A and x R Fγ`1 “ BFγA “ Fγ XA X FγzA, so x R FγzA. Hence,
x P C2¨γzC2¨γ`1, so x P DαC.

Conversely, suppose x P DαC, say x P FγzFγzA. Then x P A; otherwise,
x P FγzA, so x R FγzFγzA. 10.205

10.33 Proof of (9.196)

[Refer to p. 679.]

(10.207) Theorem [ZF ` AD] Suppose X Ď ω1. Then X is constructible from a
real, i.e., X P Lrzs for some z P ωω.

Proof Let τ be a winning II-strategy in the game defined for X in the proof of
(9.194). We can obviously use (9.195) to show that XXωLrτs1 P Lrτ s. Since ωLrτs1 ă

ω1, this is not enough, but we can achieve the desired result by the consideration
of generic extensions of Lrτ s.

For each α P ω1 let Pα be the partial order that collapses α to ω with finite
conditions; specifically, let |Pα| “ ăωα, with q ď pØ p Ď q. Note that Pα P L,
and if G is an L-generic filter on Pα then

Ť

G : ω sur
Ñ α. Clearly, we may use this

to define a canonical Pα-term 9xα such that if G is an L-generic filter on Pα then
9xGα P WO and } 9xGα } “ α.31 Suppose G is an Lrτ s-generic filter on Pα. Let x “ 9xGα .
Then x P WO and }x} “ α, so9.195

α P XØDn P ω }ptτ xqn} “ }x}

ØLrτ srGs |ù xDn P ω }pĹrτ srxsqn} “ }rxs}y

ØDp P G Lrτ s |ù xrps,Prαs ψrαsy,

(10.208)

where
ψα “ xDn P ω }pĹpτ̌qp 9xαqq

n} “ }p 9xαq}y.

(10.209) Claim For any α P ω1,

α P XØLrτ s |ù x,Prαs ψrαsy.

Proof Since τ 7 exists9.193 ω1 is inaccessible in Lrτ s. It follows that for any α ă ω1,
xP r|Pα|sy

Lrτs
is countable, so for any p P |Pα| there exists an Lrτ s-generic filter G

on Pα with p P P .
Suppose α P ω1. If Lrτ s |ù x,Prαs ψrαsy then let G be any Lrτ s-generic filter on

Pα. Then 0 P G and Lrτ s |ù xr0s,Prαs ψrαsy, so10.208 α P X.
Inversely, suppose Lrτ s* x,Prαs ψrαsy. Let p0 P |Pα| be such that Lrτ s |ù

xrp0s,
Prαs ␣␣␣ψrαsy, and let G be an Lrτ s-generic filter on Pα such that p0 P G.

Then there is no p P G such that Lrτ s |ù xrps,Prαs ψrαsy, so10.208 α R X. 10.209

Thus,10.209 X is definable over Lrτ s, so X P Lrτ s. 10.207

31Given G, let r0 “
Ť

G, and let r1 “ txm,ny P 2ω | r0pmq ď r0pnqu. r1 is a prewellordering of
ω of length α. Let r2 be the subset of r1 obtained by taking just the numerically least member
of each level of r1. r2 is a wellordering of a subset of ω of length α. Let r3 : ω Ñ 2 code the
characteristic function of r2 as in (5.61.1), i.e.,

r3pmq “ 1Ø B⃗ m P r2.

Let 9xα be the natural Pα term denoting r3 for any given G.
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10.34 Proof of (9.197)

[Refer to p. 679.]

(10.210) Theorem [ZF` DC` AD] ω2 is measurable.

Proof For each x P ωω let fx “ xrω1s
`y
Lrxs

, the successor in the sense of Lrxs
of (the real) ω1. Since x7 exists, fx ă ω2.32 Note that fx depends only on the
Turing degree of x (indeed, only on its constructibility degree). Let F be the cone
ultrafilter on Turing degrees, and let U Ď P ω2 by defined by the condition that
X P U iff

trxs | fx P Xu P F ,

where rxs is the Turing degree of x. U is a countably complete ultrafilter since F
is.

To show that U is nonprincipal, suppose α P ω2. Let X Ď ω1 code a wellordering
of ω1 of length α. Let9.196 a P ωω be such that X P Lras. Then for any x ěT a,
xrω1s

`y
Lrxs

ą α, so ω2ztαu P U .
It remains to be shown that U is ω2-complete. Suppose xXα | α ă ω1y P

ω1U ,
where we may assume that α ă βÑXα Ě Xβ by virtue of the ω1-completeness of
U . We must show that

Ş

αăω1
Xα P U . Consider the following game:

I and II play reals x and y in ωω in the usual way. II wins iff either x R WO or
@z ěT y fpzq P X}x}.

A Σ1
1-bounding argument shows that I does not have a winning strategy. For

suppose σ is a winning I-strategy. Then for all y P ωω, tσpyq P WO. Hence,
tx P ωω | Dy P ωω x “ tσpyqu is a Σ1

1pσq subset of WO. Let5.118 α P ω1 be such that
@y P ωω }tσpyq} ă α. SinceXα P U there exists y P ωω such that @z ěT y fpzq P Xα.
Let β “ }tσpyq}. Then β ă α, so @z ěT y fpzq P Xβ , since Xβ Ě Xα. Thus, σ ˚ y
is a win for II.

Therefore, let τ be a winning II-strategy. We will show that for all x P ωω, if
x ěT τ then fx P

Ş

αăω1
Xα. To this end, suppose x ěT τ and α ă ω1. Let Pα be

as in the proof of (9.196), let G be an Lrxs-generic filter on Pα, and let x1 “ 9xGα .
Then x1 P WO and }x1} “ α. G is easily coded by a real, and there exists y ěT x
that efficiently codes both x and G, so Lrys “ LrxsrGs. Since Lrxs |ù xrPαs has the
rαs`-chain conditiony, Pα-forcing over Lrxs preserves cardinals (in Lrxs) above α,
so fx “ f y. Let y1 “ tτ x1. Then y1 ďT y. Thus, since }x1} “ α and τ is a winning
II-strategy, f y P Xα; hence, fx P Xα.

U is therefore an ω2-complete nontrivial ultrafilter over ω2. 10.210

10.35 Proof of (9.198)

[Refer to p. 679.]

(10.211) Theorem [ZF] Suppose X Ď ω1 and A “ tx P ωω | x P WO^}x} P Xu is
Σ1

2pzq for some z P ωω. Then X P Lrzs.

32Otherwise, Lrxs |ù rω2s “ rω1s
`. But then, since all (real) uncountable cardinals are indis-

cernible in Lrxs,9.193 Lrxs |ù rω3s “ rω1s
`, which is patently absurd.
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Proof For simplicity, suppose z “ 0. The proof relativizes directly to arbitrary
z P ωω. Working in GB for convenience, let ϕ be a Σ1

2 s1-formula5.2 with one free
variable v0 such that for all x P ωω

x P AØV |ù ϕrxs.33

If we wished only to show that X P Lras for some a P ωω, rather than X P L, we
could proceed as follows.

Suppose first that

(10.212) Da P ωω ω
Lras
1 “ ω1.

Then for any α P ω1

α P XØDx P WOLras p}x} “ α^V |ù ϕrxsq

ØDx P WOLras p}x} “ α^Lras |ù ϕrxsq

ØLras |ù xDx P WO p}x} “ rαs^ pϕqpxqqy,

by virtue of the absoluteness of Σ1
2 formulas between inner models.6.7.2 Thus, X is

definable over Lras, so X P Lras.
Now suppose

(10.213) @a P ωω ω
Lras
1 ă ω1.

Then for all a P ωω, ω1 is a limit cardinal in Lras. (If ω1 is the successor of some
cardinal κ in the sense of Lras, let b P ωω code κ, so that κ is countable in Lra, bs.
Let c P ωω encode both a and b. Then ω

Lrcs
1 “ ω1.)

We now proceed as in the proof of (9.196), using the partial orders Pα and
canonical ordinal codes 9xα. Suppose G is an L-generic filter on Pα. Let x “ 9xGα .
Then x P WO and }x} “ α, so (again using Σ1

2-absoluteness)

α P XØV |ù ϕrxs

ØLrGs |ù ϕrxs

ØDp P G L |ù xrps,Prαs ψrαsy,

where
ψα “ xpϕq

`

p 9xαq
˘

y.

The following claim is analogous to (10.209).

(10.214) Claim For any α P ω1

α P XØL |ù x,Prαs ψrαs.

Proof For any α P ω1, letting a P ωω be such that α ă ω
Lras
1 ,

Lras |ù x|Pp|Prαs|q| “ ω1y.

33Since the quantifiers in ϕ are restricted to Vω`1 (specifically to ωω and ω in the case of type-1
and type-0 quantifiers, respectively, we could replace V by Vω`1 here, but we want to follow the
format of Theorem 6.7.
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Since ωLras1 ă ω1 by hypothesis, P |Pα|XLras is countable, so P |Pα|XL is countable,
and for every p P |Pα| there exists an L-generic filter G on Pα with p P G.

Suppose α P ω1. If L |ù x,Prαs ψrαsy, let G be any L-generic filter on Pα. Then
0 P G and L |ù xr0s,Prαs ψrαsy, so α P X.

Inversely, suppose L* x,Prαs ψrαsy. Let p0 P |Pα| be such that L |ù xrp0s,
Prαs ␣␣␣ψrαsy,

and let G be an L-generic filter on Pα such that p0 P G. Then there is no p P G
such that L |ù xrps,Prαs ψrαsy, so α R X. 10.214

Thus,10.214 X is definable over L, so in this case10.215 we have the desired result
that X P L. In the first case,10.216 we have only shown that X P Lras for any a P ωω
such that ωLras1 “ ω1. One way to get the optimum result in general is to argue in
a generic extension of V in which ω1 is collapsed, i.e., to show that the following
statement is a theorem of GB:

(10.215) xSuppose M is an inner model of ZF, P P M is a partial order, H is a
M -generic filter on P, V “ M rHs, and ωM1 ă ω1. Suppose X Ď ωM1 , X P M , and
M |ù xtx P ωω | x P WO^}x} P rXsu is Σ1

2
y. Then X P L.y

The fact that this is a theorem of GB allows us to infer as usual that for any partial
order P such that ,P xrω̌1s ă ω1y, ,P xpX̌q P Ly. Since such partial orders exist,
and for any partial order P, if ,P xpX̌q P Ly then X P L, it follows that X P L.

Here is a GB-proof of (10.215):
xLet A “ xtx P ωω | x P WO^}x} P rXsuy

M
, and let ϕ be Σ1

2 such that for all
x P ωω XM

x P AØM |ù ϕrxs.

Let
θ “ xy P WO^Dx P WO ppϕqpxq^ }x} “ }y}qy.

Note that θ is Σ1
2 (with one free variable ‘y’).

Suppose α ă ωM1 . Let a P WOXM be such that }a} “ α. Then by Σ1
2

absoluteness

α P XØM |ù θras

ØV |ù θras.

Let G be an L-generic filter on Pα, and let b P WOXLrGs be such that }b} “ α
(e.g., b “ 9xGα ). Since }a} “ α “ }b},

V |ù θrasØV |ù θrbs,

and by Σ1
2-absoluteness

V |ù θrbsØLrGs |ù θrbs.

Hence,

α P XØLrGs |ù θr 9xGα s

ØDp P G L |ù xrps,Prαs ψrαsy,

where
ψα “ xpθq

`

p 9xαq
˘

.

The following claim is analogous to (10.214)
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(10.216) Claim For any α P ωM1

α P XØL |ù x,Prαs ψrαsy.

Proof ωM1 is a cardinal in L, and for α ă ωM1 , every constructible subset of |Pα|
is constructed before ωM1 , so P |Pα| is countable. Hence for any p P |Pα|, there is
an L-generic filter G on Pα with p P G. This fact permits the proof of the claim to
go through exactly as before. 10.216

Hence X P L.y
This concludes the proof of (10.215), from which it follows, as discussed above,

that X P L. 10.211

10.36 Proof of (9.228)

[Refer to p. 692.]

(10.217) Theorem [GBC] Suppose X is a set, κ is an uncountable cardinal, and
Z is an infinite set.

1. Suppose B Ď ωpX ˆ ωq is κ-homogeneous with support Z. Then p¨B is κ-
weakly homogeneous with support Z.

2. Suppose B Ď ωpX ˆ ωq is κ-homogeneously Z-Suslin. Then p¨B is κ-weakly
homogeneously Z-Suslin.

Proof 1 Immediate from the definitions.

2 Let Ū be a κ-complete homogeneity system for a sequence tree T on pXˆωqˆZ
such that B “ p¨rT s. Let T 1 “ txs, xt, uy¨y¨ | xxs, ty¨, uy¨ P T u, so T 1 is a sequence
tree on X ˆ pω ˆ Zq, and p¨B “ p¨rT 1s. Define Ū 1 : ăωpX ˆ ωq Ñ mspω ˆ Zq so
that for any n P ω, xs, ty¨ P npX ˆ ωq, and W Ď npω ˆ Zq

(10.218) W P Ū 1xs,ty¨ Øtu P nZ | xt, uy¨ PW u P Ūxs,ty¨ .

(10.219) Claim

1. Ū 1 is a κ-complete homogeneity system.

2. For any xx, yy¨ P ωpXˆωq, Ū xx,yy
¨

is countably complete iff Ū 1xx,yy
¨

is countably
complete.

Proof 1 We must verify (9.213.1) with Ū 1 for Ū ,X ˆ ω for X, and ω ˆ Z for
Z. The first two clauses are satisfied automatically. To justify Condition 9.213.1.3,
suppose n0 ď n1 ă ω, xs0, t0y¨ P n0pXˆωq, xs1, t1y¨ P n1pXˆωq, xs0, t0y¨ Ď xs1, t1y¨,
and W0 P Ū

1
xs0,t0y¨ . Let

W “ txt, uy¨ P n1pω ˆ Zq | xt, uy¨ æn0 PW0u.

We must show that W P Ū 1
xs1,t1y¨ .9.212.1
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Let Y0 “ tu P
n0Z | xt0, uy

¨ P W0u. Then Y0 P Ūxs0,t0y¨ . Let Y1 “ tu P
n1Z |

u æn0 P Y0u. Since Ū is a homogeneity system, Ūxs1,t1y¨ projects to Ūxs0,t0y¨ , so
Y1 P Ūxs1,t1y¨ . Let W1 “ txt1, uy

¨ | u P Y1u. Then W1 P Ū
1
xs1,t1y¨ . Clearly, W1 Ď W ,

so W P Ū 1
xs1,t1y¨ . 10.219.1

2 Suppose Ū xx,yy
¨

is countably complete, and suppose for each n P ω, Wn P

Ū 1
xx æn,y æny¨ . For each n P ω let Zn “ tu | xy æn, uy¨ P Wnu. Then Zn P

Ūxx æn,y æny¨ , so there exists z P ωZ such that @n P ω z æn P Zn. It follows that
@n P ω xy, zy¨ æn PWn. Hence, Ū 1xx,yy

¨
is countably complete. Conversely, suppose

Ū 1xx,yy
¨

is countably complete, and suppose for each n P ω, Zn P Ūxx æn,y æny¨ . For
each n P ω let Wn “ txu, y æny

¨ | u P Znu. Then Wn P Ū
1
xx æn,y æny¨ , so there exists

xy1, zy¨ P ωpω ˆ Zq such that @n P ω xy1, zy¨ æn P Wn. Necessarily, y1 “ y, so it
follows that @n P ω z æn P Zn. Hence, Ū xx,yy

¨
is countably complete. 10.219

To show that Ū 1 is a κ-complete weak homogeneity system for T 1, we must
verify (9.227.2) with T 1 for T and Ū 1 for Ū

Suppose xs, ty¨ P ăωpX ˆ ωq. Then

tu | xt, uy¨ P T 1su “ tu | xxs, ty
¨, uy¨ P T u “ Txs,ty¨ P Ūxs,ty¨ ,

so10.218 T 1s P Ū 1
xs,ty¨ . In fact, txt1, uy¨ P T 1s | t

1 “ tu P Ū 1
xs,ty¨ . Thus, Condi-

tion 9.227.2.1 is satisfied with Ū 1 for Ū and T 1 for T .
It only remains to show (9.227.2.2). By the definition of T 1 and using (10.219.2),

we see that for any x P ωX, x P p¨rT 1s iff there exists y P ωω such that xx, yy¨ P p¨rT s
iff there exists y P ωω such that Ū xx,yy

¨
is countably complete iff there exists y P ωω

such that Ū 1xx,yy
¨

is countably complete. Hence, (9.227.2.2) is satisfied with T 1 for
T and Ū 1 for Ū .

Since Z is infinite, |ω ˆ Z| “ |Z|; hence, p¨B is κ-weakly homogeneously Z-
Suslin. 10.217

10.37 Proof of (9.230)

[Refer to p. 692.]

(10.220) Theorem [ZFC] Suppose X is countable, T is a tree on X ˆ Z, and
κ ą ω. Then T is κ-weakly homogeneous iff there exists a countable set U Ď msκ Z
such that for all x P ωX, if x P p¨rT s then there is a countably complete tower
xUn | n P ωy P

ωU such that @n P ω Tx æn P Un.

Proof Clearly, if T is κ-weakly homogeneous via a homogeneity system Ū : ăωpXˆ
ωq Ñ msκ Z, then we may let U “ im Ū . Conversely, suppose U is as specified. We
may assume that U is closed under projection, i.e., for all U P U , if dimU “ n and
m ď n then there exists U 1 P U such that dimU 1 “ m and U projects to U 1. To
achieve this, for each U P U and each m ă dimU “ n, we add to U the ultrafilter
tW Ď ăωZ | DW 1 P U @u P W 1 X nZ u æm P W u, which preserves the countability
of U .

We now define a homogeneity system Ū : ăωpX ˆ ωq Ñ msκ Z by recursion.
Ū0 “ Ūx0,0y¨ is of course t1u. Suppose n P ω and Ūxs,ty¨ has been defined for all
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xs, ty¨ P npXˆωq. For each xs, ty¨ P npXˆωq and i P ω, let Ūxs ⌢xiy,t ⌢xeyy¨ be chosen
(for e P ω) so that xŪxs ⌢xiy,t ⌢xeyy¨ | e P ωy enumerates the ultrafilters U P U such
that

1. Ts ⌢xiy P U ; and

2. U projects to Ūxs,ty¨ .

It is straightforward to show that T is κ-weakly homogeneous via Ū . 10.220



Notation

def
“ equals, by definition 5
def
ðñ if and only if, by definition 5

⌢ concatenation 6
¨ ¨ ¨ use of underline to create a name for a typo-

graphical expression
7

␣,_,^,Ñ,Ø propositional connectives 12
D,@ quantifiers 13
X̃ specification operation corresponding to index

X
19

n- n´ 1 if n is a successor ordinal (typically finite) 27
|S| universe of structure S 30
∆,Π,Φ classes of domain, predicate, and operation in-

dices of a signature
30

vn nth standard variable 34
V,P,O, C,Q classes of variables, predicate and operation in-

dices, propositional connectives, and quantifier
phrases of a language

34

ς̂ expression-forming operation corresponding to
grammatical sign ς

34

E class of expressions of a language 37
T ,F classes of terms and formulas of a language 39
Lρ the standard ρ-language 39
∆ ϵ diagram of expression ϵ 41
␣

p
η

(

substitution of expression η at place p 44
`

v
τ

˘

substitution of term τ for variable v 44
x . . . y flexible quoting convention 45
pϵq insertion of expression ϵ in quoted text 45
“

v
a

‰

assignment of element a to variable v 48

ValS τ rAs value of term τ in structure S at assignment A 49
S |ù ϕrAs structure S satisfies formula ϕ at assignment A 50
Th S theory of (a satisfactory structure) S 55
Θ$σ theory Θ proves sentence σ 64
Σñσ sequent with antecedent Σ and succedent σ 73

A B ¨ ¨ ¨

Z inference rule justifying sequent Z from sequents
A B ¨ ¨ ¨

73

@̄̄@̄@ϕ universal closure of formula ϕ 94

817
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ϕ
A
” ψ formulas ϕ, ψ are equivalent over structure A 95

ϕ
Θ
” ψ formulas ϕ, ψ are equivalent modulo theory Θ 95

ŽŽŽ

Φ (
ŹŹŹ

Φ) disjunction (conjunction) of the formulas in the
finite set Φ

97

ρΘ signature of a theory Θ 102
Θ deductive closure theory Θ 103
Θ|ρ restriction of theory Θ to signature ρ 103
ρ`, Θ` expansion of signature ρ, extension of theory Θ,

by definition
111

Γñ∆ (Gentzen) sequent with antecedent Γ and succe-
dent ∆

140

A1 ăΦ A A1 is a Φ-elementary substructure of A 146
ś

xPX Ax{U ultraproduct of structure-valued function xAx |
x P Xy mod ultrafilter U on PX

152

XA
L

U ultrapower of structure A mod ultrafilter U on
PX

152

tu | ϕu the class of elements u such that ϕ 176,
183

0 the empty set 177
px, yq the ordered pair of elements x and y 178
xY y, xX y union, intersection, of classes x and y 184
xzy difference of classes x and y 184
Ť

x,
Ş

x union, intersection, of the members of class x 184
R æX restriction of prefunction or binary relation3.63

R to class X
185

RÑX, RÐX image, inverse image, of class X by prefunction
or binary relation3.63 R

185

R´1 inverse of prefunction or binary relation3.63 R 185
F x, F pxq, Fx the value of function F at x 185
F : X Ñ Y F is a function from X to Y 187
F : X á Y F is a partial function from X to Y 187
inj
á, sur

á, bij
Ñ injection, surjection, bijection 187

YX the class of functions from set Y to class X 187
xτ | ϕyu function tpu, τpuqq | ϕpuqu 188
rτ | ϕsu indexed family A with domain tu | ϕu such that

Arus “ τpuq
188

ω the class of finite ordinals 190
@

a0 ¨ ¨ ¨ an-

b0 ¨ ¨ ¨ bn-

D

function mapping a0 to b0, . . . , an- to bn- 193
xx0, . . ., xn-y n-sequence 193
rx0, . . ., xn-s n-indexed family 193
px0, . . ., xn-q ordered n-tuple 193
ˆ,

Ś

cartesian product via finite sequences, or func-
tions generally

195

ˆ, 9Ś cartesian product via ordered n-tuples 195
Rpx0, . . ., xn-q xx0, . . . , xn-y P R (for n-ary relation R) 195
F px0, . . ., xn-q F xx0, . . . , xn-y (for n-ary function F ) 195
xR y xx, yy P R (for binary relation R) 196
rxsR R-equivalence class of x 197
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”R equivalence as far as relation R is concerned 197
X{E quotient of class, relation, or function X modulo

equivalence relation E
197

“““X the identity relation on class X 198
α` β, α ¨ β, αβ ordinal arithmetic 214
x „ y sets x, y are equipollent (of equal size) 216
|x| cardinality of set x 217
x ă y set x is smaller than set y 217
a ă b cardinality a is smaller than cardinality b 217
α` least cardinal ą α 227
ωα or ℵα the αth infinite cardinal 227
f : x cof

Ñ X im f is cofinal in (ordered) set X 227
cf R cofinality of total order R 227
a` b, a ¨ b, ab cardinal arithmetic 229
ř

iPI κi,
ś

iPI κi cardinal sum, product 229
x_ y, x^ y join, meet, of elements x, y of a semilattice 234
␣x complement of element x of a lattice or boolean

algebra
235

rxs ty P |A| | y ď xu, for boolean algebra A, which
is the (principal) ideal of x

237

txu ty P |A| | y ě xu, for boolean algebra A, which
is the (principal) filter of x

238

∆αPγAα the diagonal intersection of γ-sequence of sets
Aα Ď γ

238

H` complement of ideal H or ideal H˚ dual to filter
H

240

H`˚ dual ideal (filter) of filter (ideal) H 240
Ts, T psq, T |n certain fragments of sequence tree T 243
rT s the set of infinite branches of sequence tree T 243
Ao, Ac, BA the interior, closure, boundary, of pointset A 246
∆ρ

0, Σρ0, Πρ
0 the class of bounded ρ-formulas 265

Σρn, Πρ
n the nth levels of the Levy hierarchy 265

ΣT
n, ΠT

n, ∆T
n the nth levels of the Levy hierarchy relative to

theory T extending S`
265

D, R the Turing degrees, r.e. Turing degrees 306
x |n, Uns the pointwise restriction of point x, pointspace

Us to length n
321

Σ0
1, Π0

1, ∆0
1 the semirecursive, co-semirecursive, recursive,

pointclasses
322

␣␣␣Γ, ___Γ, etc. the result of applying an operation to the mem-
bers of (recursively closed) pointclass Γ

325

Γ̆ ␣␣␣Γ, the dual of pointclass Γ 325
Σin, Πi

n, ∆i
n the Kleene pointclasses 326

Γ
r

the (full) relativization of pointclass Γ 335
F ¨xf0, . . ., fn-y the pointwise application of function F to se-

quence xf0, . . . , fn-y of argument-valued func-
tions

340

xf0, . . ., fn-y¨ function of sequences formed from sequence of
functions

340
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\,
Ů

disjoint union 392
x ˚ y composition of plays in a game 399
σ ˚ y, x ˚ τ composition of strategy and play in a game 399
σ ˚ τ composition of strategies in a game 399
zI zII I’s, II’s, contribution to play z of a game 399
s ⌢ T the concatenation of sequence s with set T of

sequences
401

ăL the canonical wellordering of L 438
rXs, tXu downward, upward, closure of subset X of a par-

tial order
476

p ∥ q, pK q elements p, q of a partial order are compatible,
incompatible

476

XK, X the complement, completion, of a subset X of a
partial order

476

1 maximum element of a partial order (for forcing
purposes)

478

MP
α the initial segment of length α of the class MP

of P-forcing terms for transitive model M
478

x̌ the canonical forcing term to denote element x
of the ground model

478,
496

,˚ extrinsically defined forcing relation 479
p,M,P σ condition p P |P| forces sentence σ P LM,P 485
p |σ forcing condition p decides sentence σ 487
ϕ, s-formula that expresses x¨ ,ϕp¨qy 487
P the canonical separative quotient of partial or-

der P
493

A` the partial order of nonzero elements of boolean
algebra A

494

MA
α the initial segment of length α of the A-valued

universe MA for transitive model M
496

rrσss
M,A the boolean value of sentence σ P LM,A 496

ϕrr ss s-formula that expresses xrrϕp¨qss “ ¨y 500
x̄, x̂ the regularization of a forcing term x PMP, the

corresponding element of MR P
501

P ˚ 9Q forcing iteration with P followed by 9Q 549
QUx for almost all x in the sense of ultrafilter U 599
Lρκλ infinitary language with parameters κ, λ 602
Lρκ infinitary propositional language with parame-

ter κ
603

rXsγ set of subsets of X with size (or order type) γ 608
αÑ pβqνλ partition relation 609
x7 theory of Silver indiscernibles in Lrxs 627
xx1, . . . , xkyp

@

pkxx1
n, . . . , x

k
ny | n P ω

D

668
}x} order type of x P WO 676
Θ least ordinal not surjective image of R 680
δ1
n, σ1

n ordinals associated with ∆1
n and Σ1

n 685
T̃ Martin-Solovay tree for T 694
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Index

A, 407
absoluteness

of a formula, 418
of constructibility, 437

absorption, 234
abstraction term, 176, 180, 183

functional „, 188
ACA, 225
ACApBq, 225
accumulation point (topology), 246
AD, 654
Addison, John West, Jr., 660
adequate pointclass, 369
adjunction (operation on sets), 277
algebra (of sets), 392

σ-„, 392
almost

category, 387
almost universal (class), 207
analytic, 362
Analytic, 362
Analytical, 326
antecedent (of a sequent), 72
antichain, 411
antisymmetric (relation), 197
appropriateness

of a class of prime propositions to a
class of propositions, 87

of a signature to a theory, 77
Aquinas, Thomas, 578
Arithmetical, 326
Aronszajn tree, 608
Aronszajn, Nachman (Nathan), 608
assignment (to variables), 48
asymmetric (relation), 196
atom

for a measure, 585
atom (in a theory of membership), 171
atomless (measure), 585
axiom

in Gentzen system, 141

of choice, 216
of membership

Aussonderungs„, 176
collection, 175
comprehension, 175
comprehension (predicative), 179
extension, 175
foundation, 176, 179
pair, 175
power, 185
replacement, 186
selection, 176
separation (for class theory), 179
union, 184

axiom of determinacy, 673

B⃗ , 255
⃗B, 255

Baire, 388
Baire property (of a topological space),

387
Baire property (of pointsets), 388, 573,

655
Baire space, 352
Baire, René-Louis, 352
ball (metric topology), 353
Banach, Stefan, 583
base (topology), 246
Baumgartner, James Earl, 568
BC, 358
Bendixson, Ivar Otto, 383
Bernstein, Felix, 218
bijective (function), 187
Bin, 254
bin, 254
BK, 342
Blackwell, David Harold, 659
boldface (pointclass, theory), 335
Bona, Jerry Lloyd, 223
Boole, George, 236
boolean algebra, 235
boolean valuation
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definability of „, 500
boolean valuation function, 497

partial „, 497
boolean valuation operation, 499
boolean-valued structure, 492
Borel

κ-„, 372
Borel, 357
Borel code, 358
Borel determinacy, 452
Borel hierarchy, 329, 357
Borel, Félix Édouard Justin Émile, 357
Boswell, James, 169
bound occurrence, 14
boundary (topology), 246
bounded

lattice, 235
bounded (formula), 266
branch of a tree, 242
Brouwer, Luitzen Egbertus Jan, 342
Brouwer-Kleene ordering, 342

C, 179
c, 179
C0, 179
C`, 265
c`, 265
C1, 277
Cantor set, 352
Cantor space, 352
Cantor, Georg Ferdinand Ludwig Phil-

ipp, 218, 232, 352, 383
Card, 217
cardinal, 217

regular, 228
singular, 228

cardinal arithmetic, 228
cardinality, 216, 217

of a set, 217
Carroll, Lewis, 8
category, 471

first „, 387
second „, 387

Cauchy construction of real numbers, 347
Cauchy sequence, 347, 353
Cauchy, Augustin-Louis, 347
ccc (countable chain condition), 411
CH, 232
chain condition, 411
change of variables, 15, 46

Chinese remainder theorem, 163
choice function, 215
Church, Alonzo, 289
Church-Turing thesis, 289
class

equivalence „, 197
proper „, 171

class (in a theory of membership), 171
class forcing, 540
classical descriptive set theory, 339
clopen, 401
closed (class of ordinals), 226
closed (pointset), 245
closure

deductive „, 103
closure (topology), 246
club (class of ordinals), 226
cluster point (topology), 246
cofinal (function on ordinals), 228
cofinality, 228
Cohen algebra, 523
Cohen real, 573
Cohen, Paul, 468
comeager, 387
compact (cardinal)

strongly„, 602
weakly„, 602

compactness
of first-order predicate logic, 68, 78
of propositional logic, 88

compactness (topology), 251
compatible (elements of a partial order),

476
complement (of a subset of a partial or-

der), 476
complemented lattice, 235
complete

κ-„ (filter, ideal), 587
complete (linear order), 349
complete (object in a pointclass), 329

Γ-„, 329
completely metrizable, 354
completeness (of a system of deduction),

65
completeness (of metric space), 354
completion (of a subset of a partial or-

der), 476
complexity

of classes, 279
of satisfaction, 283
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over type 1, 316
set-theoretic „, 266

composition (of plays of a game), 399
computable

class, 283
function, 289
partial „ function, 289

computable (function), 290
computation

science of „, 263
Con, 304
concatenation, 6
cone filter (on Turing degrees), 674
cone of Turing degrees, 674
consistency, 25, 65

ω-„, 291
propositional „, 88

consistency proofs using forcing, 521
constant, 11
constructibility, 434

relative, 444
continuous function, 248

from Ord to Ord, 226
on a pointspace, 338

continuum hypothesis, 232, 443
continuum problem, 653
convergent sequence, 250
countability, 225
countable chain condition, 411
cover

open, 251
crit, 591
criterion

Tarski-Vaught „, 147
Cummings, James, 654
cut rule, 141

Davis, Morton, 404
DC, 225
decidable (theory), 263
decision procedure, 263
decomposition (of a play of a game), 399
Dedalus, Stephen, 578
Dedekind completion, 350
Dedekind construction of real numbers,

347
Dedekind cut, 348, 350
Dedekind, Richard, 220, 347
Dedekind-finiteness, 220
deduction, 65

system of „, 65
Gentzen „, 140
Hilbert „, 139
natural, 73

system of „ for propositional logic,
87

definability
relative, 306

definability of boolean valuation, 500
definability of forcing, 487
definition, 110

extension by „, 110
dense (ideal), 696
dense (linear order), 349
dense (pointset), 246
dense (set in a partial order), 476
denumerability, 225
Desargues’s principle, 123
Desargues, Girard (Gérard), 122
Descartes, René, 117, 345
descriptive set theory, 339

classical „, 339
effective „, 339

determinacy, 397
Borel „, 452

determinate (game, set), 400
determined (game, set), 400
diagonal argument, 218
diagonal intersection, 238
diagram of an expression, 42
diamond principle, 449, 567
directed set

elementary „, 148
disjoint union, 392
distributivity, 235
Dodgson, Samuel, 8
domain

of prefunction, 185
of relation, 196
universal „, 16

domain of discourse, 16
DP, 123
dual (of a pointclass), 325
duality

in boolean algebras, 236
duality (in projective geometry), 119

synthetic and analytic, 132

Easton forcing, 537
Easton, William Bigelow, 537



826 INDEX

effective descriptive set theory, 339
effective procedure, 263
Ehrenfeucht, Andrzej, 611
element

proper „, 171
element (in a theory of membership), 171
elementary

class, 114
methods, 114
substructure, 146

elementary directed set, 148
Elements of Euclid, 113
EM-set, 623
embedding

elementary „, 146
entailment, 56
Epimenides the Cretan, 261
equipollence, 216
equivalence, 5

logical „, 95
modulo a theory, 95
over a structure, 95

equivalence class, 197
equivalence relation, 197
Erdös, Paul, 603, 647
Euclid of Alexandria, 113, 314
evaluation

of formulas, 49
of terms, 49

eventually (for sequences), 251
expansion

of a signature, 29
of a structure, 55

expression, 37
standard „, 41

extendible (cardinal), 650
extension

by definition, 110
conservative „, 103

logic with vs without identity, 109
of a theory, 103

extension of a sequence, 244
immediate „, 244
proper „, 244

extensional relation, 213

F, 273
F, 253
family

indexed „ of classes, 188

Fσ, 361
Fermat, Pierre de, 237
field

of relation, 196
fine (filter), 605, 645
finite

σ-„, 394
finite axiomatizability

non-„ of ZF, 422
of C, 423

finite sequence, 193
finiteness, 192

Dedekind-„, 220
definitions of „, 220

first countability (topology), 248
Fodor, Géza, 240
forcing, 474

class „, 540
definability of „, 487
Easton „, 537
iterated „, 549
product „, 534

forcing language, 479
forcing predicate, 487
forcing relation, 475, 485

extrinsically defined „, 479
partial „, 485

forcing term, 478
formula, 11, 39

atomic „, 39
complex „, 39
compound „, 39
simple „, 39

Fraenkel, Abraham Halevi (Adolf), 172,
428

free for, 14
free occurrence, 14
frequently (for sequences), 251
Friedberg, Richard, 308
Friedman, Harvey, 406
function, 185

n-ary „, 195
partial „, 187
total „, 187

G, 253
G, 478, 496
Gaifman, Haim, 621
Gale, David, 403
Galvin, Frederick William, 233
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game, 398
GB, 172
Gδ, 361
GB´, 222
GCH, 232
Geisel, Theodor Seuss, 578
generalized continuum hypothesis, 232
generic

arguing in a „ extension, 513
arguing with „ extensions, 490
extension, 475, 478
filter, 475
set, 471

generic (filter), 476
genericity conjecture, 628
Gentzen system of deduction, 140
Gentzen, Gerhard, 73
geometrical point, 345
geometry

analytic sim, 115
euclidean „, 113
projective „, 115
synthetic „, 117

Gitik, Moti, 653
Gödel, Kurt, 25, 58, 169, 426, 433
Goldbach’s conjecture, 314
Goldbach, Christian, 314
good (tree), 401
good universal set, 668
Gulliver, Lemuel, 64

Hajnal, András, 233, 647
halting problem, 297
Hamlet, Prince of Denmark, 79
Hanf, William Porter, 602, 616
Hausdorff difference hierarchies, 663, 807
Hausdorff space, 247
Hausdorff, Felix, 247
Henkin construction, 68, 142, 145
Henkin, Leon, 68
Herbrand, Jacques, 104
hereditary (property of sets), 204
hereditary ordinal-definability, 426
HF, 264
hierarchy

complexity „, 663
cumulative„ (in the theory of mem-

bership), 173
von Neumann„(in the theory of mem-

bership), 173

Hilbert system of deduction, 139
Hilbert, David, 113
HOD, 426
homeomorphism, 248
homogeneity system, 687
homogeneous

set for a partition, 608
subset of ωX, 688
tree, 688

homogeneously Suslin, 689
homology, 33
Horatio, friend to Hamlet, 79
Hrbáček, Karel, 618
ht, 242
huge, n-huge, almost huge (cardinal), 648
hyperarithmetical (pointset), 329

Is, 340
I0–I3 (large cardinal hypotheses), 649
ideal

in a ring, 237
on a boolean algebra, 237
principal „ in a ring, 237

idempotence, 234
identity, 5, 15
im, 185
image

by a prefunction, 185
by a relation, 196
of prefunction, 185
of relation, 196

indescribability (of cardinals), 616
index

Turing „, 294
indexed family

of classes, 188
indiscernible

uniform „, 627
x-„, 627

indiscernibles, 621
indiscernibles (for a structure), 611
induction

mathematical „, 191
on ordinals, 191
proof by P-„, 211

inference rule, 72
cut rule, 141

inference rules
for universal quantification, 91
logical, 141
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structural, 141
weakening, 141

infinitarity, 314
infinity, 220

(point, line, . . . ) at „, 115
injective (function), 187
inner model, 207
interior (topology), 246
interpretation, 2, 12, 47

of s`

finitary, 272
standard, 272
transitive, 272

of a propositional language, 86
of a theory in a language or theory,

113
intersection (of classes), 184
invariance

of a relation vis-à-vis an equivalence
relation, 197

inverse
of prefunction, 185
of relation, 196

inverse image
by a relation, 196
by prefunction, 185

irreflexive (relation), 196
isolated point, 382
isomorphism, 32
iterated forcing, 549
iterated ultrapower, 597

Jackson, Stephen Craig, 685, 686
Jensen, Ronald Björn, 449, 549
Johnson, Samuel, 169
Jónsson function, 647
Jónsson, Bjarni, 647
Joyce, James Augustine Aloysius, 578

Keats, John, 578
Kechris, Alekos (Alexander) Sotirios, 685
Keisler, Howard Jerome, 602
Kelly, John Leroy, 172
Kleene pointclass, 326
Kleene, Stephen Cole, 298, 326, 342
König, Dénes, 231, 606
Kripke, Saul Aaron, 797
Kronecker, Leopold, 314
Kummer, Ernst Eduard, 237
Kunen, Herbert Kenneth (Ken), 628
Kuratowski, Kazimierz, 355, 583

L, 434
LrAs, 444
LpAq, 445
language, 2

formal „, 3
meta„, 4
object „, 4
propositional „, 86
standard ρ-„, 34
standard „, 41

lattice, 233
Lebesgue, Henri-Léon, 583
Levy collapse, 571
Levy hierarchy, 265, 316
Levy, Azriel, 265, 571
Lim, 191
limit (of convergent sequence), 251
limit cardinal, 227
limit ordinal, 191
limit point (topology), 246
linear preorder, 198
Lipschitz game, 664
Lipschitz reducibility, degree, 664
Lipschitz, Rudolf Otto Sigismund, 664
LK, 140
LK´, 142
LO, 342
logic, 3

formal „, 3
propositional „, 86

 Loś, Jerzy, 152
Lusin, Nikolai Nikolaevich, 342
Lusin-Sierpinski ordering, 342

m, 387
MA, 561
Mahlo (cardinal), 582
Mahlo, Paulo, 582
Martin measure (on Turing degrees), 675
Martin’s axiom, 561
Martin, Donald Anthony, 406, 561, 665
Martin-Solovay tree, 694
mathematics, 4
maximal (element), 200
maximum (element), 200
meager, 387
measurability property (of pointsets), 396,

573, 655
measurable (cardinal), 587

real-valued „, 584
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measurable (set), 394
measure

Lebesgue „, 393
over a set, 583
real-valued, 392
uniform „, 393

metalanguage, 4
metatheory, 5
metric (topology), 352
metric space (topology), 353
metrizable, 353
minimal (element), 200
minimum (element), 200
Mitchell, William J., 233, 608
mod(ulo), 197
model, 51
Monk, Leonard Gaines, 665
Morse, Anthony Perry, 172
Morse-Kelly theory of membership, 180
Moschovakis, Yiannis Nicholas, 660, 680,

682
Mostowski collapse, 214
Mostowski, Andrzej, 214, 419, 428, 611
Moulton plane, 124
Moulton, Forest Ray, 124
Muchnik, Albert Abramovich, 308
Mycielski, Jan, 654

N, 347
natural deduction, 73
ND, 73
neighborhood (topology), 245
neighborhood base (topology), 246
neighborhood subbase (topology), 247
New Foundation (theory of sets), 172
node of a tree, 242
nontrivial (ideal over a cardinal), 630
norm (on a pointset), 368
normal (filter), 241, 645
normal form

conjunctive, 101
disjunctive, 101
prenex, 102

normed pointclass, 370
nowhere dense, 385
Num, 191
number, 191

o, 242
object language, 4
occur, 42

occurrence, 14, 43
OD, 425
on (vs. over), 583
open (pointset), 245
open (subset of a partial order), 476
open cover, 251
operation, 10
operation A, 407
oracle, 306
Ord, 189
order (first-„ and higher-„)

in geometry, 114
in mathematical theories, 114

ordered pair, 178
ordinal

initial „, 217
limit „, 191
successor „, 191

ordinal (von Neumann „), 189
ordinal arithmetic, 214
ordinal sequence, 215
ordinal-definability, 425
over (vs. on), 583

p¨, 342
PA, 162
pair

of elements, 177
ordered „, 178

paradox
Cantor „, 262
Epimenides „, 261
liar „, 261
Richard „, 262
Russell „, 172, 262
Skolem „, 80

Paris, Jeffrey B., 406
partial computable (function), 289
partial order, 198
partial recursive function, 292
partition, 608
Pbl, 300
Peano arithmetic, 23
perfect set, 382
perfect set property, 385, 573, 655
perspective (from a point or line), 122
perspectivity, 135
place in an expression, 42
player, 398
point, 321
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point (topology), 245
pointclass, 321
pointset, 321
pointset (topology), 245
pointspace, 321
Polish space, 355
Pope, Alexander, 416
powerclass (of a class), 185
p.r., 292
PRA, 158
predense (set in a partial order), 476
prefunction, 185
preimage

by prefunction, 185
preorder, 198
presses down, 238
pretameness, 543
prewellordering property, 370, 660
Prikry, Karel Libor, 568
prime formula, 86
prime proposition, 86
principal

filter, 587
principal formula, 141
principal ideal

in a boolean algebra, 237
problem

halting „, 297
procedure

decision „, 263
effective „, 263
interminable „, 288, 338
relative „, 338
terminable „, 288, 338

product forcing, 534
product measure, 395
product topology, 249
p, 362
projection, 248
projective hierarchy, 362
projectivity, 134
proof, 64, 74

tree, 141
proposition, 86

prime „, 86
propositional (language, logic, etc.), 86
propositional connective, 12
propositional part (of a predicate lan-

guage), 86
provability, 64, 74

Q, 348
quantification, 12
quantifier

phrase, 13
Quine, Willard Van Orman, 172
quotient

of a class modulo an equivalence re-
lation, 197

R, 348
R, 290
Ramsey cardinal, 612
Ramsey, Frank Plumpton, 608
random real, 573
rank (of a set), 211
r.e., 292
real, 352
real number, 345
recursion

definition by „ on wellfounded rela-
tion, 201, 281

recursive
class, 292
function, 292

partial „, 292
total „, 292

function on pointset, 323
pointset, 322

recursive substitution, 324
recursively closed (pointclass), 324
recursively closed pointclass, 324
recursively enumerable, 292
reducible

Turing „, 306
reductio ad absurdum, 65
reduction property, 369

Π1
1-„, 659

Π1
1-„, 344

reflection (set theory), 421
reflexive (relation), 196
R, 494
regressive function, 238
regular (norm on a pointset), 368
regular (subset of a partial order), 476
regular algebra, 475
regular algebra (of a partial order), 494
regular cardinal, 228
regular completion (of a boolean alge-

bra), 494
Reinhardt, William Nelson, 647
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relation, 195
n-ary „, 195
equivalence „, 197
on a class, 196

relational (signature), 29
relative constructibility, 444
relative definability, 306, 335
relative topology, 246
relativization, 112
relativization (of a pointclass)

full „, 335
to a type-1 object, 335

relativized (pointclass), 335
remarkable (EM-set), 626
restriction

of a prefunction to a class, 185
Richard, Jules, 262
ring (of sets), 392

σ-„, 392
rk, 211
Rosser, J. Barkley, 26
Rowbottom (filter, cardinal), 637
Russell paradox„, 172
Russell, Bertrand, 172, 174

S (basic set theory), 175
σ-finite, 394
s, 173
S0 (basic set theory without Foundation),

176
S`, 265
s`, 265
S1, 277
s1, 277
sat, 629
Sat0, Sat1, 276
satisfaction, 51

relation, 50
partial „, 50

satisfactoriness (of structures), 50
strong „, 50
weak „, 50

satisfiability, 56
propositional „, 87

saturation
of ideals, 629

scale (on a pointset), 378
scale property (of a pointclass), 380, 663
SCH, 233
Schröder, Ernst, 218

Scott, Dana Stewart, 596, 616
second countability (topology), 248
semirecursive, 292

pointset, 322
semiring (of sets), 392
semiscale (on a pointset), 377
separability (topology), 248
separable (linear order), 349
separation property, 247, 369
separative partial order, 493
sequence, 193

finite „, 193
ordinal, 215

sequent, 72
Gentzen „, 140

set (in a theory of membership), 171
setlike relation, 201
Seuss, Dr., 578
SH (Suslin’s hypothesis), 411
SH, 561
Shakespeare, William, 79
Shanin, Nikolai Alexandrovich, 526
Shelah, Saharon, 233
Shoenfield, Joseph, 419
Sierpiński, Wac law Franciszek, 342, 355
sign, 35
signature, 28

appropriate to an expression or class
of expressions, 56

relational „, 29
standard „, 33

Silver, Jack Howard, 233, 568, 608, 620,
622

singleton
of an element, 177

singular cardinal, 228
singular cardinals hypothesis, 233, 653
size of a set, 217
Skolem

function, 151
operation, 106

Skolem paradox, 80
Skolem, Thoralf, 80
skolemization, 106
Smith, Edgar C., Jr., 633
Solovay, Robert Martin, 561, 619
sort (of individual), 16
soundness (of a system of deduction), 65
sP, 540
space



832 INDEX

topological, 245
specification, 11
stationary set, 238
Steel, John Robert, 669, 686
Steinhaus, W ladys law Hugo Dionizy, 654
Stewart, F. M., 403
strategy, 398

I-„, 399
II-„, 399
winning „, 400

strategy (in an infinite game), 399
strict (pre)order, 199
strong (pre)order, 199
structure, 2, 20, 30

empty „, 102
empty „, 57

subbase (topology), 247
subformula property (of deductive sys-

tems), 142
subspace (topology), 246
substitution, 11

in diagrams, 44
in formulas, 14
in terms, 11
of equivalents, 100

substructure, 112
elementary „, 146

subtree
I-, II-imposed „, 401
non-losing „, 402

subvaluation function, 143
Suc, 191
succedent (of a sequent), 72
successor cardinal, 227
successor ordinal, 191
supercompact, γ-supercompact (cardinal),

644
surjective (function), 187
Suslin

κ-„, 373
Suslin line, 411
Suslin tree, 447
Suslin’s hypothesis, 411, 561
Suslin’s operation A, 407
Suslin, Mikhail Yakovlevich, 366, 407
Swift, Jonathan, 64
symmetric (relation), 196
syntactical element, 35

T, 273

tail set, 677
tameness, 545
Tarski, Alfred, 58, 355, 602
Tarski-Vaught criterion, 147
tautology, 87
tc, 212
Tennenbaum, Stanley, 561, 565
Tennyson, Alfred (Lord), 578
term, 10, 39
theorem

Σ1-uniformization, 293
0-1 law, 678
analytic boundedness, 371
analytic separation, 366
Baire category „, 386
Cantor’s „ on the size of the con-

tinuum, 218
Cantor-Bendixson „, 383
closure of ∆T

1 under recursive defin-
ition, 270

compactness „ for first-order pred-
icate logic, 78

completeness „, 77
for LK, 144
for ND, 77
for uncountable theories, 145

condensation lemma, 440
consistency

ZF` V ‰‰‰ L, 523
ZF`␣␣␣AC, 532
ZFC`␣␣␣CH, 530

consistency of ZF` V “““L, 438
consistency of ZFA`␣␣␣AC, 431
consistency of ZFC, 428, 440
cut-elimination „, 144
Desargues’s „, 123
determinacy

Borel-„, 406
Σ0

1-„, 403
Σ0

2-„, 403
Σ0

3-„, 406
Easton’s „, 537, 547
Ehrenfeucht-Mostowski „, 611
first periodicity „, 660
Fodor’s lemma, 240
Friedberg-Muchnik „, 308
Fubini’s „, 395
Fubini’s „ for nullsets, 395
fundamental „ of projective geom-

etry, 134
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Gale-Stewart „, 403
Gödel’s first incompleteness „, 25

finitary semantic form, 303
infinitary semantic form, 257
Rosser’s improvement, 306
syntactic form, 304

Gödel’s second incompleteness„, 25,
305

Gödel-Tarski undefinability „, 58
Herbrand’s „, 104
Jensen’s covering „, 629
König’s lemma, 231, 606
Kuratowski-Ulam „, 390
 Loś’ „, 152
Löwenheim-Skolem „, 149
Π1

1-reduction „, 344
recursion „, 298
recursive definition „, 201, 281
reflection principle, 421
Σ1

1-absoluteness, 419
Σ1

2-absoluteness, 419
Schröder-Bernstein „, 218
separation „ for Wadge classes, 670
Silver’s singular cardinals „, 568
Skolem-Löwenheim, 149
Suslin’s „, 368
undecidability of first-order predi-

cate logic, 291
unsolvability of the halting problem,

298
V |ù S, 256
Wadge’s lemma, 664

theory, 4, 55
closed „, 103
complete „, 102
maximal „, 66
of a (satisfactory) structure, 56
with witnesses, 68

thesis
Church-Turing, 289

topology, 245
of ordinals, 226
relative, 246

topology (of a pointspace), 337
topology of R, 351
total order, 199
total preorder, 198
total recursive function, 292
tower (of ultrafilters), 687
transitive closure, 212

transitive collapse, 214
transitivity

of classes, 189
of relations, 197

tree, 242
on a set, 243
sequence „, 243

tree property (of cardinals), 606
truth table, 88
truth value, 12
tuple

ordered n-„, 193
Turing index, 294
Turing, Alan Mathison, 289, 294
type-0, 1, 316
type (of a point), 321
type (of a set-theoretic object), 316

U0, U1, Us, 321
uα, 627
Ulam matrix, 584
Ulam, Stanislaw Marcin, 390, 584
ultrapower, 152

iterated, 597
of proper class, 154

ultraproduct, 152
unbounded (class of ordinals), 226
uniformization

property, 293
Σ1-„, 293

uniformization property (of a pointclass),
370, 663

uniformize, 293, 370
union (of classes), 184
unique readability, 37
universal (object in a pointclass)

0-i-„, 330
0-„, 329

universal closure, 94
universal set

good „, 668
urelement, 171

V (universe of sets), 173
V (the class of standard variables), 35
vn (the nth standard variable), 35
V, 479
Vα (level of cumulative hierarchy), 173
Val0, 275
validity, 81
valuation
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of formulas, 49
of terms, 49

valuation function, 49
∆0-„, 273
partial „, 50

value (of a function at an element), 186
Van Wesep, Robert Alan, 669
variable, 10
Vaught, Robert Lawson, 147, 617
Vitali (construction, set), 390, 397
Vitali, Giuseppe, 390
von Neumann, John, 173
Vopěnka’s principle, 649
Vopěnka, Petr, 618, 649

Wadge class, 667
Wadge game, 664
Wadge reducibility, degree, 664
Wadge, William Wilfred, 663
weak (pre)order, 199
wellfoundedness, 200
wellorder, 200
wellordering principle, 224
Whitehead, Alfred North, 174
winning strategy, 400
witness

sequence, 90
to an existential sentence, 68

WO, 342
Wolfe, Philip, 403
Woodin cardinal, 649
Woodin, William Hugh, 686

Z, 348
Zermelo, Ernst Friedrich Ferdinand, 172
ZF, 172
ZFA, 172
ZFC, 222
ZF´, 222
ZFP, 540
ZFP, 543
Zorn’s lemma, 224
Zorn, Max August, 224
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