
An Improved PMU Model for Voltage Response in
Transient Stability Simulation

by

Adheesh Boratkar

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science (M.A.Sc.)

Graduate Department of Electrical and Computer Engineering
University of Toronto

© Copyright 2019 by Adheesh Boratkar

Abstract

An Improved PMU Model for Voltage Response in Transient Stability Simulation

Adheesh Boratkar

Master of Applied Science (M.A.Sc.)

Graduate Department of Electrical and Computer Engineering

University of Toronto

2019

Large scale power networks are typically simulated only on transient stability analysis

(TSA) software. This is sufficient when modelling slow moving ac quantities is of interest

and is much faster than using time domain electromagnetic transient programs. However,

TSA tools are not capable of modelling the subcycle dynamics well.

Since wide-area measurement systems are practically only modelled on TSA software,

while evaluating potential phasor measurement unit (PMU) based control schemes, re-

searchers/utilities depend on TSA results to approximate PMU measurements. This is

not sufficient to ensure adequate real-world performance.

This research focused on creating a test bench for characterising the dynamic perfor-

mance of PMUs. Using voltage magnitude data from this test bench, an improved PMU

model for transient stability simulation has been created. The model achieves fits of over

97% across the test cases it was validated with, which is a substantial improvement over

the raw TSA simulation results (63-77% accuracy).

ii

I dedicate this thesis to my sister Aditi, and

my parents, Dr. Kumkum and Mr. Ravindra Boratkar.

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Zeb Tate, for

guiding me through the ups and downs of this journey (difficult courses, my first fracture

and surgery, and the pursuit of the 60 Hz sine wave) with immense patience.

I would like to thank the members of the final oral examination committee for my

thesis, Professor Joshua Taylor, Professor Aleksander Prodic and Professor Willy Wong,

for their time and valuable feedback.

I would like to acknowledge the help and support I received from Professor Tate’s

doctoral student Zhen Dai. I am also grateful to my colleagues Bibin, Ram, Andres and

Phil for their support in troubleshooting various issues along the way. My time at the

university was memorable, thanks to my fellow students and friends here.

I would like to thank Dr. Milind Pimprikar, whose guidance was invaluable in my

decision of moving to Canada for graduate studies. My special thanks to the Machado

and Golawar families who helped with my transition here and continue to act as my

safety net in Toronto.

I am eternally grateful to my parents and my sister, for their constant encouragement

and support. Finally, I would like to extend my gratitude to my extended family, my

friends back home, my former colleagues and teachers for their contribution to my overall

success.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Simulation of large transmission networks 2

1.3 Research objective . 4

1.4 Methodology overview . 4

2 Experiment Design 7

2.1 Hardware components of the testbench 7

2.1.1 The PMU . 7

2.1.2 Specifications required for grid voltage emulation 9

2.1.3 The CompactRIO . 10

2.2 System simulation . 11

2.2.1 The example electrical system . 12

2.3 Brief overview of the data processing . 12

3 Detailed Implementation on the CompactRIO 14

3.1 Basic structure of a LabVIEW VI . 14

3.2 Generating a 60 Hz sine wave . 20

3.2.1 Method 1: The Sine Wave Generation block on the FPGA 21

3.2.2 Sine wave generation using a circular array 24

3.2.3 Measuring the frequency using the PMU 28

3.2.4 Generating an accurate 60 Hz waveform 30

4 Data Processing, Results, Analysis and Modelling 34

4.1 Processing PSCAD data for the cRIO . 34

4.2 Obtaining PMU data . 38

4.3 Results . 38

4.4 Modelling the PMU . 39

iv

4.4.1 Choosing the ARX model order 48

4.4.2 Akaike’s information criterion (AIC) 52

5 Conclusions and Future Work 54

5.1 Conclusions . 54

5.2 Future work . 55

Bibliography 56

Appendices 59

A MATLAB scripts 60

B Python Script 62

v

List of Figures

1.1 Divergence between TSA simulation results and PMU measurements after

an event . 3

1.2 Block diagram of the example network used to generate the resistive load

step event . 3

1.3 Zoomed in view of Figure 1.1 shows the extent of divergence between TSA

simulation results and PMU measurements in the moments after the event 3

1.4 TSA simulation results processed through a PMU model compared against

measurements from a PMU show a good match 4

1.5 Zoomed in view of Figure 1.4 shows the TSA simulation results processed

through a PMU model and the PMU measurements 5

1.6 Block diagram presents a brief overview of the procedure followed in this

research . 6

2.1 SEL-451 PMU relay [1] . 8

2.2 SEL-2401 satellite-synchronized clock [2] 9

2.3 General architecture of the cRIO [3] . 10

2.4 NI cRIO 9035 [4] . 11

2.5 Block diagram of the example electrical network used to create the load

switching event . 12

2.6 Model in PSCAD of the example electrical network used to create the load

switching event . 13

3.1 LabVIEW Project Explorer shows the different levels at which VIs are

deployed . 14

3.2 Front Panel of the example VI . 15

3.3 The auto-generated Block Diagram of the Example VI 15

3.4 LabVIEW Project Explorer shows the I/O and clock resources on the FPGA 16

3.5 Physical connections made on the cRIO to read-back the AO0 port output

on the AI1 port . 16

vi

3.6 Block Diagram of the example VI, connections of the input and the display

to the appropriate I/O module source and sink are shown 17

3.7 Numeric data-type specification for the AI/AO modules 18

3.8 Block Diagram of the example VI. The data-types are now compatible and

flow control structures have been implemented 19

3.9 Example VI Front Panel shows the ‘Target Voltage’ input, the ‘Voltage

Readout’ display, the ‘Tick Count’ hold time control, and the ‘STOP’ stop

execution button . 19

3.10 Summary of the FPGA compilation shows the FPGA resource utilization

and the compilation time . 20

3.11 Sine Wave Generation block parameters 21

3.12 Block Diagram of the VI with Sine Wave Generation block feeding 2 AO

ports . 22

3.13 Front Panel of the VI with Sine Wave Generation block: frequency and

amplitude of the wave can be controlled 23

3.14 Oscilloscope trace of output from Sine Wave Generator VI shows a sine

wave with a frequency close to 60 Hz . 23

3.15 Oscilloscope FFT of output from Sine Wave Generator VI: Most of the

power is concentrated near 60 Hz . 24

3.16 Block Diagram of the VI that generates waveforms from circular arrays . 25

3.17 Front Panel of the VI that generates waveforms from circular arrays . . . 26

3.18 Sine wave of ≈ 50.3Hz generated with a 1000 point array and wait state

of 800 ticks . 26

3.19 Sine wave of ≈ 59.9Hz generated with a 1000 point array and wait state

of 670 ticks . 27

3.20 Half sine wave of 2 × 59.9Hz ≈ 120Hz generated with a 1000/2 = 500

point array and wait state of 670 ticks 27

3.21 PMU measurements with 667 wait states results in a frequency of 59.97

Hz. Phase in blue keeps rolling down. 29

3.22 PMU measurements when wait state is changed from 667 to 666. Fre-

quency jumps up to 60.06 Hz and the phase starts climbing upwards. . . 29

3.23 FPGA compilation report for the 1000 point array shows 54.9% device

utilization . 31

3.24 Fine frequency control results in a steady 60Hz frequency and a slow phase

drift. Note the time scale is same as Figures 3.21 and 3.22 32

vii

3.25 VI shows GPS triggered, timed implementation on the FPGA that utilises

FIFO to transfer data from the cRIO processor 33

4.1 The COMTRADE Block in PSCAD used to export the time domain volt-

age signal for the 15 second period of interest 35

4.2 Comparison of the performance of various resampling functions in MAT-

LAB used to interpolate a sine wave with 167 samples to 2574 samples . 36

4.3 Comparison of the performance of various resampling functions in MAT-

LAB used to interpolate a sine wave with 167 samples to 2574 samples.

Zoomed in view of Figure 4.2 shows the performance near the peak of the

wave. 37

4.4 PMU readings: Voltage magnitudes of all four cases 39

4.5 PMU readings and PSS/E Results for the voltage magnitudes, Case TE

= 0.5 s . 39

4.6 MU readings and PSS/E results for the voltage magnitudes, case TE =

0.5 s. Zoomed in view of Figure 4.5 shows dynamics just after the event. 40

4.7 Down sampled PSS/E results plotted against the original data set show a

good match . 41

4.8 Comparing the PSS/E results and PMU readings for the four cases. . . . 41

4.9 The System Identification Toolbox app 43

4.10 The System Identification Toolbox: Model outputs 43

4.11 Comparison of the model output to PMU readings and raw PSS/E Results

TE = 0.5 s for an ARX model with na = 5 and nb = 4 46

4.12 Zoomed in view of Figure 4.11. Comparison of the model output to PMU

readings and raw PSS/E Results for the case TE = 0.5 s using an ARX

model with na = 5 and nb = 4. 46

4.13 ARX model with na = 4 and nb = 4 trained with data from the case TE

= 1.0 s and validated with data from all four cases 47

4.14 Mean Fit Percentages for models generated with the four datasets by vary-

ing na and nb. 49

4.15 Fit Percentage Range for models generated with the four datasets by vary-

ing na and nb. 50

4.16 RCOF for models generated with the four datasets by varying na and nb. 51

4.17 Results produced by a model based on the dataset with TE = 0.5 s, na=2

and nb=6. A match% of over 97.98% is seen for all of the four datasets. . 52

viii

4.18 Zoomed in view of Figure 4.17 shows matching of data points during the

half second after the initial transient. Results Produced by the Model

based on the dataset with TE = 0.5 s, na=2 and nb=6. A match% of over

97.98% is seen for all of the four datasets. 53

ix

Chapter 1

Introduction

1.1 Motivation

Synchronized phasor measurement units (PMUs), which were first introduced in the early

1980s, have been deployed in large numbers in major power systems across the globe over

the last two decades [5] [6]. The value of data provided by PMUs was recognized with the

occurrence of major power blackouts. This gave momentum to large-scale implementation

of wide-area measurement systems (WAMS) using PMUs and phasor data concentrators

(PDCs) [6]. As compared to traditional power system measurement information like

SCADA, PMU data are more widely available in near real-time [7]. Multiple studies

have been published on the optimal placement of PMUs for power system observability

and their use in control applications [8] [9] [10].

While validating potential applications of PMUs on large systems is challenging, it is

necessary to do so to ensure adequate real world performance. It should be noted that

the steady-state behavior of PMUs is well modeled and standardized. On the other hand,

the dynamic behavior of PMUs (i.e., what PMUs do outside of steady-state conditions)

requires advanced modeling to ensure proper simulation.

In [11], wide-area protection schemes for controlled islanding of the Uruguayan elec-

trical power system are described. The performance of the schemes is compared based

on transient stability analysis simulations on the complete and official database of the

Uruguayan network. Similarly, in [12], a new synchrophasor-assisted load shedding

scheme for a 246-bus Indian system is compared against existing methods. In this work,

TSA simulators are used to model PMUs. For such applications outside the steady-state,

the use of TSA software to substitute PMU readings is not sufficient. This is explained

in detail in Section 1.2.

1

Chapter 1. Introduction 2

1.2 Simulation of large transmission networks

Multiple classes of power systems simulation tools exist. Some tools like Simscape Power

Systems support multiple simulation modes. Large power networks are typically simu-

lated using phasor based transient stability analysis (TSA) tools like PSS/E. For a given

time period of study, these tools solve much faster than the time domain electromagnetic

transient programs (EMTP) like PSCAD.

While time domain EMTP tools accurately model all circuit components and lines

in terms of their respective resistances, inductances and capacitances, the phasor TSA

tools treat all components as static admittances/impedances calculated at the nomi-

nal/fundamental frequency of the system. Further, the time step used by phasor TSA

simulators (typically about 2 ms) is much larger than that used by their time domain

EMTP simulator counterparts (typically about 100 µs).

Therefore, the phasor TSA simulators fail to model some of the sub-cycle details.

They are also not capable of modelling phenomenon like travelling waves on transmission

lines. TSA simulators are then preferred when modelling slow-moving ac quantities are

of interest. The key outputs of TSA software are the magnitude, frequency and phase of

voltages on all nodes and currents on all lines at each time step, in addition to internal

machine states (e.g., rotor speed, field current, etc.).

When an event that causes a slight change in the system frequency is simulated,

the results produced by TSA simulators can drift from real life observations as well as

from those calculated by their EMTP counterparts. This is because TSA simulators do

not re-evaluate their admittance matrices at the slightly changed frequencies at small

enough time intervals. They make this compromise to maintain their speed. In addition,

TSA tools rely on simplified generator and load models in comparison to EMTP tools.

Therefore, the phasors reported by TSA simulation tools often diverge from real life

observations, e.g. from PMUs, during such events.

Figure 1.1 below demonstrates such divergence after a load switching event is sim-

ulated on an example network (shown in Figure 1.2) in the TSA simulator PSS/E and

compared against the measurements reported by a PMU. While the voltage magnitude

values before and some time after the event match closely, Figure 1.3 shows the extent

of deviation in the moments just after the event, particularly in the rate of change of the

voltage magnitude.

Time domain EMTP tools are capable of providing more accurate PMU simulation,

but solving large electrical networks by this method is slow and often impractical. Per-

haps more importantly, from a practical standpoint, is that utilities model their complete

Chapter 1. Introduction 3

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

PSSE result
PMU reading

Figure 1.1: Divergence between TSA simulation results and PMU measurements after
an event

Figure 1.2: Block diagram of the example network used to generate the resistive load
step event

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Time (seconds)

0.975

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

PSSE result
PMU reading

Figure 1.3: Zoomed in view of Figure 1.1 shows the extent of divergence between TSA
simulation results and PMU measurements in the moments after the event

Chapter 1. Introduction 4

large electrical networks only in phasor TSA simulators like PSS/E. Therefore, due to lack

of detailed network models, even if time is not a constraint, time domain electromagnetic

simulations cannot easily be run for any real, large network.

This compels researchers to depend on the outputs from the phasor TSA simulators to

estimate what a PMU on one of the nodes in the network would output. As demonstrated

in Figure 1.1, this is not capable of providing an accurate simulation.

This makes evaluation of wide area controllers and monitoring inaccurate. Therefore,

the behaviour of controllers produced in studies like [12] and [11] might deviate from the

simulated expectations.

1.3 Research objective

This research aims to bridge this gap between the field measurements from devices like

PMUs and the results obtained from TSA simulators. The objective is to develop a model

of the PMU that can accept the results of a TSA simulator as its input and produce an

output that is much closer to the observations reported by a real PMU (as shown in

Figures 1.4 and 1.5).

0 1 2 3 4 5 6 7 8 9 10

Time

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

PMU Readings
Model Output

Figure 1.4: TSA simulation results processed through a PMU model compared against
measurements from a PMU show a good match

1.4 Methodology overview

To create such a model, phasor TSA simulations as well as the readings from a PMU

during the same events are required. Utilities can potentially generate such a dataset by

matching their field PMU readings against the PSS/E or PSLF simulation of a historical

Chapter 1. Introduction 5

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Time

0.975

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

PMU Readings
Model Result

Figure 1.5: Zoomed in view of Figure 1.4 shows the TSA simulation results processed
through a PMU model and the PMU measurements

event. In the absence of access to such data, appropriate conditions can also be created

in a laboratory setting.

First, an equivalent electrical system is modelled and simulated in both a phasor TSA

simulator and a time domain EMTP simulator. The results from the EMTP simulator

closely approximate the physical quantities that a field PMU measures (and reports at

60 Hz). These are then fed to a PMU in the lab after appropriate time-synchronized

digital-to-analog conversion. The measurements from the PMU and the results of the

phasor TSA simulator are then processed using system identification tools to arrive at an

improved PMU simulation model. A flowchart of this entire process is shown in Figure

1.6 below. Note that a variety of parameter variations need to be incorporated in event

definitions to cross validate the model and prevent overfitting. This is a general procedure

that could be repeated to calibrate the PMU model to different TSA simulators as well

as measurement instruments from various manufacturers.

This thesis follows the following structure. Chapter 2 discusses the high level design

decisions involved in developing the laboratory experiment/test bench. Chapter 3 dis-

cusses the grid emulation implemented on digital hardware in detail. Chapter 4 explains

the data processing steps at various stages of this research and analyses the results.

Chapter 1. Introduction 6

Time Domain
Electromagnetic

Simulator

Sample Electrical
Network

Phasor Transient
Stability Analysis

Simulator

Synchronized Digital
to Analog Converter

Phasor Measurement
Unit

System Identification

Improved PMU
model

Figure 1.6: Block diagram presents a brief overview of the procedure followed in this
research

Chapter 2

Experiment Design

This chapter discusses the high level design decisions involved in developing the labora-

tory experiment in accordance with the flowchart from the previous chapter. Blocks of

the flowchart are sub-tasks of this design process. Some data and models available from

previous research greatly accelerated this research.

Since pairs of field PMU measurements and corresponding TSA simulation data from

a utility were not available, the approach of recreating similar conditions in a lab was

adopted.

2.1 Hardware components of the testbench

2.1.1 The PMU

At the University of Toronto’s Energy Systems Lab, the SEL-451 PMU Relay (shown in

Figure 2.1) manufactured by Schweitzer Engineering Laboratories (SEL) is available. It

was used as the PMU for this research. SEL markets the SEL-451 Relay as a distribution

relay featuring auto-reclosing with synchronism check, circuit breaker monitoring and

circuit breaker failure protection. It supports extensive metering and data recording

features [13].

Inputs to the PMU

The SEL-451 is typically connected to the grid via CTs and PTs. It is capable of accepting

5 A nominal CT inputs and 300 V phase-to-neutral wye configuration PT inputs [13].

The SEL-451 has internal transformers that step down the input from the 300 V PTs to

a level acceptable by its internal DAC. The SEL-451 also provides direct access to these

DACs via its Low Energy Analog (LEA) port which accepts 8 V ac inputs. Use of the

7

Chapter 2. Experiment Design 8

LEA port enables the experiment to be conducted with low voltage analog signals (of

<8 V) instead of 300 V . This greatly simplifies the experiment. Therefore the LEA port

was chosen as the input port for the PMU in this research.

Apart from the physical quantities they have to measure, PMUs require one other

input, an accurate time reference. For this purpose, the SEL-451 accepts a 5 Vdc IRIG-B

signal.

Figure 2.1: SEL-451 PMU relay [1]

The IRIG-B signal

The US military’s Inter-Range Instrumentation Group (IRIG) publishes standards for

transferring timing information. The standard was first published in 1960 and was last

updated in 2016. IRIG-B is a serial time code format that has a rate of 100 pulse per

second [14]. The SEL-451 decodes the second, minute, hour, and day fields and sets the

internal time clock upon detecting valid IRIG-B time data on its time input port.

In the field, this signal is typically obtained via a GPS receiver. The SEL-2401

Satellite-Synchronized Clock (shown in Figure 2.2), which provides timing accuracy of

±100ns, is available in the University’s energy systems lab. This interfaces with the

PMU.

However, in a laboratory setting, the IRIG-B could be digitally generated, thereby

eliminating the requirement for a GPS receiver/clock. It would have to be implemented

on digital hardware such as an FPGA board with a precise clock. Dedicated logic can

be built by following the standard that specifies how each of the 10 millisecond long

pulses signify. For instance, the time-of-year and year information is encoded in BCD

format, and seconds-of-day are encoded as “Straight binary seconds (SBS)”, a 17-bit

binary counter that counts from 0 to 86399 [14]. Significant additional effort would have

Chapter 2. Experiment Design 9

been required to implement and verify such a set up due to the absence of an IRIG-B

library in LabView; thus, it was decided to rely on a GPS-connected clock as the IRIG-B

source.

Figure 2.2: SEL-2401 satellite-synchronized clock [2]

2.1.2 Specifications required for grid voltage emulation

The primary focus of this research is studying the deviation in the magnitude of the

voltage reported in synchrophasor measurements. Therefore, the PMU’s voltage ports

need to be stimulated. As discussed in section 2.1.1, a decision was made to achieve this

by providing a ≈ 8 V signal to the LEA port rather than a ≈ 300 V signal to the PT

port. This decision simplified the design of this part of the work bench considerably as

no relatively high voltages were involved.

This 8 V signal fed to the PMU needs to reflect events happening on the grid, which

necessitates the ability to generate a signal that represents the stepped down version of

the grid voltage. To generate this signal, the event itself is modelled and simulated in

an EMTP simulators, with the time domain response captured in the standard common

format for transient data exchange (COMTRADE) [15]

The next step is to translate the digital voltage waveform from the COMTRADE file

into the appropriate input into the PMU’s LEA ports.

The analog reconstruction of the voltage waveform must also be reproduced with

accurate timestamps, in order to match (in time) the output of the EMTP tool. It

Chapter 2. Experiment Design 10

therefore needs a DAC capable of producing 8 V and a mechanism of accurately timing

the updates to the DAC. The system also needs to be capable of reproducing each cycle of

the ac waveform with a sufficiently high number of samples to ensure the wave presented

to the PMU is an accurate representation of the voltage waveform. Furthermore, this

system should have the ability to time synchronize with the PMU.

In order to determine the minimum sampling rate of the grid voltage emulation signal,

it is essential to know the rate at which the PMU samples the signals fed to it. The

section on monitoring and metering in the PMU’s datasheet specifies 8 kHz as the highest

resolution at which the PMU can report data [13]. With 8 kHz as the sampling frequency

of the PMU’s internal ADC, the sampling rate of the DAC should be 8 kS/s or higher.

One way of achieving these functional requirements (GPS-synchronized +/-8V analog

output from a COMTRADE file with waveforms sampled at over 8 kS/s) was to utilize

the real time embedded industrial controller from National Instruments, the Compact

RIO.

2.1.3 The CompactRIO

The National Instruments Compact Reconfigurable I/O system (cRIO) is used to gener-

ate the signal provided to the LEA input of the PMU. A cRIO consists of a processor

that runs a real-time operating system (RTOS), a reconfigurable FPGA and multiple

interchangeable I/O modules. The processor is used for controlling the overall behaviour

of the cRIO unit while the FPGA is used to carry out smaller, detailed tasks which need

to be executed with precise timing. A general block diagram of the cRIO architecture is

shown in Figure 2.3 below.

Figure 2.3: General architecture of the cRIO [3]

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a system-

Chapter 2. Experiment Design 11

design platform and development environment from National Instruments. The cRIO is

configured using LabVIEW. LabVIEW programs/subroutines are termed Virtual Instru-

ments (VIs). Multiple VIs are created and linked together to fulfill the task of generating

a time synchronized LEA voltage input for the PMU based on the COMTRADE signal.

The specific model of the cRIO available in the Energy Systems Lab is the cRIO-9035

(shown in Figure 2.4 below). It is an 8 slot embedded real-time controller with a 1.33

GHz Dual-Core CPU, 1 GB DRAM, 4 GB Storage, and a Kintex-7 70T FPGA. Each of

the 8 I/O slots can be populated with I/O modules from NI or third-party vendors [16].

Figure 2.4: NI cRIO 9035 [4]

For this research, three such modules were used. The analog output module NI9263

is a 4 channel voltage output module with a 16-bit DAC and a nominal voltage output

range of 10 V. It is capable of updating each channel at 100 kS/s. NI9215 is a similar 4

channel analog input module with a 16-bit ADC and a nominal voltage input range of 10

V. It is capable of updating each channel at 100 kS/s as well. The NI 9467 is a stationary

GPS timing module. It provides accurate timing and geographic location information to

the cRIO host, which enables time synchronization of the signal generator and the PMU.

Since, the cRIO’s GPS module NI 9467 also has the same accuracy as the PMU’s

GPS clock (100 ns), in interest of time and simplicity it was decided to use the individual

GPS modules on these subsystems.

2.2 System simulation

For this research, equivalent example electrical systems needed to be modelled in both a

phasor TSA simulator and a time domain EMTP simulator. From prior research carried

out by Zhen Dai, models with matched behavior in PSS/E and PSCAD were available.

In that study, PSS/E from Siemens was used as the phasor TSA simulator and EMTDC

Chapter 2. Experiment Design 12

PSCAD was used as the time domain electromagnetic simulator. For this research, these

models were used with minor modifications.

2.2.1 The example electrical system

The example electrical system (shown in Figure 2.5) used in this study consists of a

synchronous generator connected to an 80 MW resistive load. After an interval, an

additional 10 MW resistive load is added on to the load bus via a breaker to create the

event. The system and the machine are rated 22 kV line-to-line.

Figure 2.5: Block diagram of the example electrical network used to create the load
switching event

PSCAD simulation

The PSCAD model of the example electrical system is shown in Figure 2.6. This sim-

ulation was run for 180 seconds at a time step of 10 µs. The generator stabilizes after

start up within the first 5 seconds. At 100.5 seconds, the breaker is closed adding the

10 MW resistive load to the 3 phase system. This causes a transient in the voltage and

frequency. The voltage and frequency stabilize within the 108th second. For this research,

the voltage time series from the 95 second mark till the 110 second mark was exported

to a COMTRADE file. Data to this file was written at intervals of 100 ms. This was

sufficient to capture all the dynamics of interest.

Since this research focuses on the deviation in the reported voltage amplitudes, the

generators exciter time constant is varied from 0.5 s to 2.0 s in steps of 0.5 s to create

multiple scenarios.

2.3 Brief overview of the data processing

The time series voltage data from PSCAD was resampled using the cubic spline in-

terpolation in MATLAB to match the sampling frequency required by the cRIO and its

Chapter 2. Experiment Design 13

Figure 2.6: Model in PSCAD of the example electrical network used to create the load
switching event

LabVIEW VIs. This suitable sampling frequency, which was empirically determined, was

not a whole number µs. Therefore, data could not be directly sampled from PSCAD.

This is explained in detail in Chapter 4. The cRIO reproduces the 15 second period of

study from the PSCAD simulation and the PMU records the corresponding synchropha-

sor observations. This process was repeated for the other three values of the generators

exciter time constant. Chapter 3 provides a detailed explanation of this process.

MATLABs System Identification Toolbox was used to compare the PMU outputs

with the results from PSS/E across all the cases. Various models were fit on to this data

to arrive at PMU like measurements directly from the PSS/E output. Details about the

model selection and parameter fitting are discussed below, in Chapter 4.

Chapter 3

Detailed Implementation on the

CompactRIO

This chapter discusses the programs deployed on the cRIO to make it emulate the grid

voltage for the PMU. The software environment used to program the cRIO, LabVIEW, is

a system-design platform and development environment from National Instruments which

relies on a graphical programming structure. LabVIEW programs and subroutines are

termed Virtual Instruments (VIs); the remainder of this chapter focuses on the VIs used

for grid emulation, along with the design decisions made to enable accurate testing and

identification of the PMU simulation model.

3.1 Basic structure of a LabVIEW VI

LabVIEW VIs are graphical programs, similar to MATLAB/Simulink. A cRIO Lab-

VIEW project can consist of VIs running on three hierarchical levels: the host PC the

cRIO is attached to, the cRIO chassis/processor, and the FPGA target, as shown in

Figure 3.1. Each VI consists of a front panel for controls & displays and a back-end

block diagram that captures the interactions between different components.

Figure 3.1: LabVIEW Project Explorer shows the different levels at which VIs are de-
ployed

14

Chapter 3. Detailed Implementation on the CompactRIO 15

To illustrate the basic setup of a VI, consider a simple example that produces a desired

analog voltage (via the NI 9263 analog output module) and reads it back (via the NI

9215 analog input module). Figure 3.2 shows the front panel of the VI on the LabVIEW

FPGA target. Right-clicking on the front panel opens the Controls menu from which

various controls and displays can be added. In this example (see Figure 3.2), one numeric

control (input), ‘Target Voltage’, is provided to set the desired analog output voltage. A

numeric indicator display, “Voltage Readout”, is also provided to display the value read

from the analog input module.

Figure 3.2: Front Panel of the example VI

Figure 3.3 shows the corresponding Block Diagram that is automatically generated

by LabVIEW as a result of adding these two components to the front panel. These

two blocks must be connected to resources present on the cRIO, which are accessed via

the Project Explorer panel under “FPGA Target” (as shown in Figure 3.4). Physically,

Figure 3.3: The auto-generated Block Diagram of the Example VI

Chapter 3. Detailed Implementation on the CompactRIO 16

Figure 3.4: LabVIEW Project Explorer shows the I/O and clock resources on the FPGA

Figure 3.5: Physical connections made on the cRIO to read-back the AO0 port output
on the AI1 port

Chapter 3. Detailed Implementation on the CompactRIO 17

Figure 3.6: Block Diagram of the example VI, connections of the input and the display
to the appropriate I/O module source and sink are shown

Channel 0 of the analog output module (AO-0) is connected to Channel 1 of the analog

input module (AI-1) (see Figure 3.5). Therefore, in the Block Diagram, it is necessary

to connect the numeric control “Target Voltage” to AO-0 and the numeric indicator

“Voltage Readout” to AI-1, as shown in Figure 3.6. Notice the red dots at the end of

the lines that connect the numeric control to the AO module and the AI module with

the numeric display. These red dots indicate a data type mismatch. In Figure 3.6, the

“I-16” written along the bottom of the “Target Voltage” and “Voltage Readout” blocks

indicate that these two blocks, by default, expect to provide (or consume, in the case

of the “Voltage Readout” block) 16-bit integer values. On the other hand, the AO and

AI modules are configured to use a fixed-point, 20-bit representation of the voltage (see

Figure 3.7). As indicated in the “Integer word length” field, the first 5 bits are used

to represent the signed integer component of the data; the remaining 15 bits are used

to represent the fractional component. Thus, the representable values range from -16

to (16 − 2−15), and the smallest difference between two values (“Delta”) is 2−15. Note

that these values are higher than the capabilities of the hardware in terms of both range

(+10 V to -10 V) and resolution (16-bit). The datatypes of the numeric control, “Target

Voltage” and the numeric indicator “Voltage Readout”, therefore have to be changed from

the default of I-16 to signed fixed-point with 20 bit total word length and 5 bit integer

component. After this change, the notations below the “Target Voltage” and “Voltage

Chapter 3. Detailed Implementation on the CompactRIO 18

Figure 3.7: Numeric data-type specification for the AI/AO modules

Readout” blocks change to “FXP” and the red circles indicating a type mismatch change

to black (see Figure 3.8).

Like most programming languages, LabVIEW has flow control structures like while,

for, case etc. Here, because the program should run continuously, the input/output

connections are placed inside a a while loop. This is represented by the outer rectangle

in Figure 3.8. The large red dot on the bottom right corner connected to a button

labelled “Stop” provides a way to stop the continuous execution of this while loop from

the front end (see Figure 3.9). Inside the while loop is a Flat Sequence Structure. While

tasks in each individual section of this structure are executed in parallel, the tasks in

the adjacent sections are run sequentially, i.e., tasks in the second section are run only

after the fist section finishes execution. Here, in the first subsection, the Analog values

are being both written and read from the I/O modules and the next section is merely

a wait state. The amount of time the wait state is held for can be controlled from the

front end by specifying the value of the “Tick Count” in milliseconds. Internally this is

implemented by a 32-bit counter running at the FPGA’s base frequency of 40 MHz.

In Figure 3.9, it can be noticed that when the target output voltage is set to 4 V and

the readout is 3.996 V. The typical accuracy specification of these devices mentions that

calibrated NI 9263 AO module and the NI 9215 AI module could suffer from 0.0214 V

Chapter 3. Detailed Implementation on the CompactRIO 19

Figure 3.8: Block Diagram of the example VI. The data-types are now compatible and
flow control structures have been implemented

Figure 3.9: Example VI Front Panel shows the ‘Target Voltage’ input, the ‘Voltage
Readout’ display, the ‘Tick Count’ hold time control, and the ‘STOP’ stop execution
button

Chapter 3. Detailed Implementation on the CompactRIO 20

(0.1% of its typical range of ±10.7 V) and 0.002912 V (0.014% of its typical range of

±10.4 V) offset respectively. Therefore, the error of 0.004 V (= 4 - 9.996) observed here

is within the 0.024312 V (= 0.0214 + 0.002912) offset the modules could cumulatively

suffer when calibrated.

All VIs to be deployed on the FPGA need to be compiled. This process consumes time.

A 64-bit Windows system with an Intel Xeon E5-16200 processor running at 3.6 GHz

and 8 GB RAM was used for all of these experiments. Figure 3.10 shows the compilation

summary, which includes detailed information on the FPGA utilization (number of slice

registers, LUTs, block RAMs, and DSPs). Once the VI is compiled, it can then be

deployed and executed on the cRIO.

Figure 3.10: Summary of the FPGA compilation shows the FPGA resource utilization
and the compilation time

3.2 Generating a 60 Hz sine wave

This subsection discusses the various ways of generating a sine wave at a desired frequency

and amplitude on the cRIO. This capability allows for testing of the steady-state behavior

Chapter 3. Detailed Implementation on the CompactRIO 21

of the PMU, which is well-defined by the C37.118 standard.

3.2.1 Method 1: The Sine Wave Generation block on the FPGA

LabVIEW comes with a built-in sine wave generation block (See Figure 3.11). This block

generates a sine wave point-by-point using direct digital synthesis. For implementing the

sine wave, it needs to be assigned a look up table size and an amplitude resolution. Tuning

these parameters has an impact on the power spectrum of the sine wave. It is a tradeoff

between the power spectrum of the resulting sine wave and the FPGA’s resources–using a

larger LUT results in better accuracy, but the physical implementation on the FPGA of a

large LUT consumes more FPGA resources. For guidance, the expected power spectrum

is updated on the display every time the amplitude resolution and LUT size are modified.

In this example, the largest permissible values are chosen for the LUT size (16384) and

the amplitude resolution (32 bit). The block also accepts the desired frequency in Hz

and calculates a parameter “Frequency”, with units of periods per tick. Here, one tick

corresponds to one clock cycle and the period is the inverse of the desired sine wave

frequency. This block can be configured to generate sine waves at designated frequencies.

Figure 3.11: Sine Wave Generation block parameters

However, due to the way the sine wave generator is implemented, the frequency of the

generated signal can only change in discrete steps. For example, in its current setting, it

cannot generate a wave of exactly 60 Hz. Instead, it can generate waves of either 59.9958

Chapter 3. Detailed Implementation on the CompactRIO 22

Hz or 60.0051 Hz. LabVIEW contains methods of digitally deriving higher frequency

clocks from the default clock, however they are not as accurate as the physical 40 MHz

clock and hence were not used.

Figure 3.12 shows the block diagram of a VI that uses this Sine Wave Generator

block. The block takes frequency (periods/tick) as an input. The FXP block at the

output of the Sine Wave Generator block converts its 32-bit signed integer output to a

fixed point value. This is then divided by its highest possible magnitude (231). At this

point, we have a high resolution sine wave with a unit magnitude. The multiplication

block takes an amplitude input from the front panel and generates a sine wave of the

desired amplitude. This is again converted to a FXP specification that matches with the

requirements of the analog output (AO) module. The same signal is fed to two channels

of the 4-channel AO module. One is fed to the PMU and the other is connected to an

oscilloscope to monitor the output. The instantaneous output is displayed on the Front

Panel via the “instantaneous output” display block (see Figure 3.13).

Figure 3.12: Block Diagram of the VI with Sine Wave Generation block feeding 2 AO
ports

Figures 3.14 and 3.15 show the resulting sine wave and its FFT on an oscilloscope.

The oscilloscope records the dominant frequency of the signal as 60.2 Hz. In Figure 3.15,

in the FFT, we see that most of the power is concentrated near the peak around ∼ 60

Hz.

There is a fundamental challenge using the increment-per-tick method described

above. The tick length corresponding to the 40 MHz clock is 2.5 × 10−8 s, and the

period of a 60 Hz sine wave is 0.016 s. Here, we use an overline to indicate infinitely-

repeated decimals. Therefore, in order to generate exactly 60 Hz from a 40 MHz clock,

Chapter 3. Detailed Implementation on the CompactRIO 23

Figure 3.13: Front Panel of the VI with Sine Wave Generation block: frequency and
amplitude of the wave can be controlled

Figure 3.14: Oscilloscope trace of output from Sine Wave Generator VI shows a sine
wave with a frequency close to 60 Hz

Chapter 3. Detailed Implementation on the CompactRIO 24

Figure 3.15: Oscilloscope FFT of output from Sine Wave Generator VI: Most of the
power is concentrated near 60 Hz

a non-integer number of ticks (666666.6) are contained within one period of the desired

sinusoid. The closest integer, 666666, result in a total sinusoidal period of 0.01666665

seconds, which in turn corresponds to a sinusoidal frequency of 60.00006000006 Hz (the

next-highest integer value, 666667, corresponds to a frequency of 59.999970000015 Hz).

Due to limitations of array sizes and the fact that executing an instruction, reading a

value, processing it, and passing it to the AO module takes multiple clock cycles, the

built-in Sine Wave Generation block cannot generate a precise 60 Hz sine wave but only

either 59.9958 Hz or 60.0051 Hz. Therefor, an alternative sine wave generator was devel-

oped.

3.2.2 Sine wave generation using a circular array

One of the simplest ways of generating any repeating waveform on the cRIO is to store

an array of constants in the FPGA and sequentially and cyclically passing the elements

from the array to the AO module. When implemented in this fashion, the number of

elements in the array define the smoothness of the resulting sine wave, and the number of

wait state ticks between updates in the output value determine the waveform’s frequency.

The shape of the waveform is determined by the contents of the array. In this example

(see Figure 3.16), an array of 1000 points forming a sine wave is used. Since the signal

in PSCAD is sampled at about 167 samples per period, a waveform with 1000 points

Chapter 3. Detailed Implementation on the CompactRIO 25

per period was thought to be adequate for this general test. A much larger number of

samples was not chosen taking into consideration, the limited resources like LUTs on the

FPGA. The values in the array are for a sine wave with an amplitude of 0.5. A For loop

is used to read out one element at a time from the array. The counter variable for this

loop can be controlled to produce repeating half or quarter sine waves, etc. Inside the

for loop, the 0.5 amplitude sine wave is multiplied by 2 to make it a sine wave with an

amplitude of 1. Next, it is multiplied by an input from the Front Panel (see Figure 3.17)

to generate a sine wave with the desired amplitude. Each element is then passed in to

the Flat Sequence Structure. Here, in the first frame, the elements are written to the AO

module and, in the next frame, the program holds based on the wait state input from

the front panel. During this wait time, the AO module holds its output voltage.

Figure 3.16: Block Diagram of the VI that generates waveforms from circular arrays

Figure 3.18 shows the results on an oscilloscope for the settings shown in Figure 3.17.

The array length is 1000 and hence we see the full sine wave. The wait state is set to

800 ticks and this results in a frequency of 50.3 Hz. Changing the wait state to 670 ticks

results in a waveform with a frequency of 59.9 Hz, as shown in Figure 3.19 (note: the

frequency measurement on the oscilloscope is fairly coarse as compared to the PMU).

Overriding the array length to 500 on the Front Panel results in a half wave as shown in

Figure 3.20.

Chapter 3. Detailed Implementation on the CompactRIO 26

Figure 3.17: Front Panel of the VI that generates waveforms from circular arrays

Figure 3.18: Sine wave of ≈ 50.3Hz generated with a 1000 point array and wait state of
800 ticks

Chapter 3. Detailed Implementation on the CompactRIO 27

Figure 3.19: Sine wave of ≈ 59.9Hz generated with a 1000 point array and wait state of
670 ticks

Figure 3.20: Half sine wave of 2×59.9Hz ≈ 120Hz generated with a 1000/2 = 500 point
array and wait state of 670 ticks

Chapter 3. Detailed Implementation on the CompactRIO 28

3.2.3 Measuring the frequency using the PMU

The oscilloscope used to make these previous measurements was Agilent DSO1014A

which is rated at 100 MHz and 2GSa/s. However, the frequency it displayed kept on

shifting every few seconds say between 60.0 and 60.2 etc. Closer observation of Figures

3.18 and 3.19 reveals that when the wait state is changed, without any change in the

amplitude, the Vpp reading has moved from 4.04 V to 4.12 V. However, the Vtop remains

at 1.99 in both cases. The oscilloscope was therefore deemed not accurate enough to

measure the waveforms generated by the cRIO precisely. However, it was good enough

to observe the expected trends that validated the proper functioning of the VIs running

on the cRIO. Because of the limitations of the frequency measurement provided by the

oscilloscope, it was decided to use the PMU to accurately measure the frequency of the

sine wave generated by the cRIO (the IEEE Standard for Synchrophasor Measurements

for Power Systems C37.118.1 requires PMUs to measure frequencies with an accuracy

of better than 0.005 Hz, and published independent lab tests have shown much better

steady state performances from PMUs of 0.0000345 Hz [17]).

Figure 3.21 shows the PMU phase and frequency measurements for a sine wave con-

structed with an array of 1000 data points, with the wait state set to 667 ticks (FPGA

clock cycles). The PMU records the frequency as 59.97 Hz. The green line on the graph

shows the frequency and the blue line shows the phase. Since PMUs report phase with

respect to a nominal frequency (60 Hz in this case), whenever the frequency deviates

from 60 Hz, the phase of consecutive cycles keeps shifting. If a perfect 60 Hz wave were

to be applied to the PMU, the blue line in Figure 3.21 would be flat.

PMUs report phase angles relative to a 60 Hz reference signal that is synchronized

to UTC. When a PMU measures a signal, it compares it with the reference signal and

reports the phase. If the frequency is exactly same as the nominal frequency, the phase

difference between the measured signal and the reference signal would remain constant.

However, if the frequency is constant but off from the nominal frequency, when the PMU

measures the signal (at exact 60 Hz), the waveform will be measured at varying distances

from the reference. Therefore, the phase reported begins to drift. [18]

Since the frequency is less than 60 Hz, we try to reduce the wait state by 1. Figure 3.22

captures the corresponding changes in the reported phase and frequency. The frequency

measured by the PMU changes to 60.06 Hz, which corresponding to a constant, linear

increase in the reported phase angle. Since neither of these wait states result in the

desired signal frequency (60 Hz), it isn’t possible to achieve a finer control on the sine

wave generated by a 1000-element circular array on the cRIO.

It is in fact possible to deduce this analytically. The period of a 40 MHz clock is

Chapter 3. Detailed Implementation on the CompactRIO 29

2.5×10−8 seconds. For the cRIO to output such a 1000 element circular array, with a 667

tick long wait state between each output, time required would be 1000×2.5×10−8×667 =

0.016675 seconds. This time period corresponds to a frequency of 59.97001499 Hz and the

PMU reports 59.97 Hz. Similarly for a wait state of 666 ticks, the frequency, analytically

should be 60.0600 Hz and the PMU correctly reports it to be 60.06 Hz.

Figure 3.21: PMU measurements with 667 wait states results in a frequency of 59.97 Hz.
Phase in blue keeps rolling down.

Figure 3.22: PMU measurements when wait state is changed from 667 to 666. Frequency
jumps up to 60.06 Hz and the phase starts climbing upwards.

Chapter 3. Detailed Implementation on the CompactRIO 30

3.2.4 Generating an accurate 60 Hz waveform

From Section 3.2.3, it is clear that generating an accurate 60 Hz waveform from a 1000

point sequence is not possible by varying the wait states of the FPGA. With a wait

state of 667 ticks, the frequency was 59.97 Hz. The time period of this waveform is

slightly longer than desired. Reducing the length of the array might help in achieving

our desired waveform. However, even reducing the length by one, i.e. with an array

of 999 data points, the analytically calculated frequency is 60.03, still not 60.00. This

is not a viable solution, at least in the vicinity of the array length of 1000 data points.

Therefore, generating an exact 60 Hz sine wave with an integer number of elements in the

sequence is not possible/feasible. However, unlike wait states that need to be integers,

the number of elements used to generate one sine wave can be, on average, fractional.

This can happen when a large sequence that captures a waveform of multiple sine waves

is used. For instance, if a sequence of 2001 points is used to generate 2 waves, then

on average one wave is generated using 1000.5 data points. As the number of waves in

the sequence, and the number of elements per wave are increased, a finer control over

the frequency can be achieved. Figure 3.23 is the compilation report from the VI which

stores 1000 elements in the FPGA’s memory–note that 54.9 percent of the resources on

the FPGA were consumed for this array length. For the purposes of experimentation, it

was desired to create a 15-second output. If the entire waveform is stored on the FPGA,

it would correspond to 900 waves, which is well beyond the local storage capabilities of

the FPGA (since storing only one wave takes up 54.9 percent of the available resources).

Fortunately, LabVIEW offers a solution to this problem in the form of dedicated FIFO

buffers. The cRIO chassis has larger memories, and dedicated FIFOs can be set up from

the chassis to the FPGA which transfer data at predictable data rates via DMA.

A FIFO (labelled FIFO 3) was set up to transfer data from the Host (processor

controlled part of the cRIO chassis) to the Target (FPGA). The complete (900-period)

sinusoidal signal array has a length of more than 30,000 elements. Each element in this

array is a signed fixed point value with word length of 25 bits and integer word length

of 5 bits, i.e., the FIFO is capable of transferring data with a higher precision than

required by the cRIO’s analog output module. During every read cycle on the FPGA,

one element is transmitted from the FIFO to the FPGA. By controlling the number of

elements used to generate the full (15-second) sequence, the frequency can be controlled

to satisfaction. Figure 3.24 shows that the phase drift is much less pronounced with fine

frequency control. Moreover, by using the FIFO buffer, arbitrary signals of relatively

long lengths (e.g., COMTRADE output of a PSCAD simulation) can be directly passed

to the FPGA with precise control of the timing between sample outputs. Note that the

Chapter 3. Detailed Implementation on the CompactRIO 31

Figure 3.23: FPGA compilation report for the 1000 point array shows 54.9% device
utilization

Chapter 3. Detailed Implementation on the CompactRIO 32

time scale here is same as that seen previously in Figures 3.21 and 3.22

Figure 3.24: Fine frequency control results in a steady 60Hz frequency and a slow phase
drift. Note the time scale is same as Figures 3.21 and 3.22

Time synchronisation

The GPS module provides a timestamp value in terms of a count of nanoseconds after a

known epoch. This time stamp can be compared with a predetermined value to trigger

the start of execution of a conditional while loop in a LabVIEW VI. Similarly, the VI can

be stopped after a particular predetermined time. Using such conditions, the 15 second

period of interest from a PSCAD simulation can be emulated on the cRIO with precise

start and stop times. Figure 3.25 shows the part of the VI deployed on the FPGA to

achieve this.

In the upper part of the VI, we see two numeric inputs which provide the VI with

the upper and lower bounds of the desired time period of operation entered in the front

panel. The block labelled ‘Get Time.vi’ is the block that supplies the current GPS time

stamp. This block is connected to two Boolean logic blocks (for the aforementioned

comparison/or) that compare its value against the desired upper and lower bounds. The

outputs of these blocks are in turn connected to a Boolean AND block. When both

conditions are met, the output of this AND block keeps the while loop in operation. By

adding an OR block in series, a provision for bypassing this timing condition from the

front panel is also made available.

In the Flat Sequence Structure below, the first section takes the elements from the

FIFO and supplies it to the AO modules. In the second section, the input labelled ‘Count’

Chapter 3. Detailed Implementation on the CompactRIO 33

determines how long the Wait block will hold program execution before the next element

from the FIFO is passed on to the AO modules. The display labelled ‘Tick count’ reflects

the action of the ‘Wait’ block on the front panel.

Figure 3.25: VI shows GPS triggered, timed implementation on the FPGA that utilises
FIFO to transfer data from the cRIO processor

Chapter 4

Data Processing, Results, Analysis

and Modelling

This chapter discusses the details of the steps involved in processing data at various

stages of this research. Section 4.1 discusses how the data was extracted from PSCAD

and processed to make it suitable for the cRIO. Section 4.2 explains how the readings

from the PMU were acquired. Section 4.3 presents the results and Section 4.4 discusses

the modelling of the PMU’s voltage response.

4.1 Processing PSCAD data for the cRIO

As described in Section 2.2.1 and shown in Figure 4.1, the COMTRADE block is used in

PSCAD to export the grid voltage waveform for the 15 second period of interest. This

waveform is sampled at 100 µs. At this rate, each period, is constituted of about 167

samples (actually 166.6), which is sufficient to capture the dynamics of interest. While

PSCAD can export this waveform at faster datarates, the sampling time needs to be an

integer (in µs) and it cannot sample at datarates fast enough to be directly passed on to

the cRIO for accurate reproduction. The .DAT file generated by the COMTRADE block

for the 15 second period of interest contains 150,000 points. On the cRIO, after multiple

trials, it was empirically determined that with the wait state = 1 tick, a circular array

of 2574 elements produces a wave with a period that is closest to a frequency of 60 Hz.

Therefore, for the cRIO to reproduce the PSCAD waveform faithfully/accurately, data

for each individual sinusoidal wave needs to consist of 2574 points instead of the current

166.6. This necessitates resampling.

34

Chapter 4. Data Processing, Results, Analysis and Modelling 35

Figure 4.1: The COMTRADE Block in PSCAD used to export the time domain voltage
signal for the 15 second period of interest

Interpolation of the COMTRADE signal

There are many mathematical methods and tools available for resampling data/signals.

MATLAB was used for this purpose because of familiarity and its convenient vector and

matrix manipulation capabilities. It also has easy to use system identification tools.

MATLAB has multiple functions for interpolation and resampling. To compare

these, the following procedure was followed. Two sine waves, one consisting of 167

data points/samples per period and the other consisting of 2574 data points/samples per

period were generated in MATLAB. From the 167 samples per period waveform, using

various MATLAB interpolants, waveforms of 2574 samples per period were generated.

These were compared with the ideal 2574 sample sine wave. The best method was chosen

based on the mean absolute error.

The ‘resample’ function resamples data to a new fixed rate based on the ratio of two

numerical inputs it accepts. It uses a polyphase anti-aliasing filter to resample data.

However, when filtering, ‘resample’ assumes that the input sequence is zero before and

after the samples it is given. Deviations from zero at the endpoints of the input signal

result in unexpected values of the output signal. These edge effects are shown in Figure

4.2. Further, as seen in Figure 4.3, while interpolating near the peak of the sine wave,

the ‘resample’ function creates small concave sections on the otherwise convex waveform.

Therefore, this method too had to be rejected.

Chapter 4. Data Processing, Results, Analysis and Modelling 36

The ‘interp1’ and ‘spline’ (cubic spline) functions work even with non-uniformly sam-

pled data. They accept the input signal vector along with its corresponding time vector.

The functions then require a time vector corresponding to which the resampled data is

calculated. By default, the ‘interp1’ function uses linear interpolation. While interpolat-

ing between two consecutive points, this can lead to sharp edges in the waveform (as can

be seen in Figure 4.3). The ‘spline’ function uses cubic spline interpolation which creates

piecewise cubic functions that are continuous and have continuous derivatives.

A review of the literature reveals that spline functions were developed specifically to

fix some problems with polynomial interpolation [19]. What stands out most are their

properties of continuity. For cubic spline functions, the functions themselves and their

derivatives up to the second derivative are continuous [20]. The cubic spline functions are

widely used in interpolation algorithms in medical imaging and chemical engineering[21].

0 50 100 150

Sample #

0

200

400

600

800

1000

A
m

pl
itu

de

(A)Sine wave of 167 samples

0 500 1000 1500 2000 2500

Sample #

0

200

400

600

800

1000

A
m

pl
itu

de

(B) interp1 function

0 500 1000 1500 2000 2500

Sample #

0

200

400

600

800

1000

A
m

pl
itu

de

(C) resample function

0 500 1000 1500 2000 2500

Sample #

0

200

400

600

800

1000

A
m

pl
itu

de

(D) spline function

Figure 4.2: Comparison of the performance of various resampling functions in MATLAB
used to interpolate a sine wave with 167 samples to 2574 samples

Figures 4.2 and 4.3 show the sine wave formed with 167 points alongside its 2574 point

interpolated versions generated by using the ‘resample’, ‘interp1’ and ‘spline’ functions.

Figure 4.2 displays the complete, full length signal sequence, here, all variants look more

or less similar apart from the edge distortions brought about by the ‘resample’ function.

Figure 4.3 shows a zoomed in view of the peaks of these waveforms. Here, the fine

differences between each of the methods are prominently visible. Based on these graphs,

cubic spline looks like the best method for resampling PSCAD waveforms for the cRIO.

Chapter 4. Data Processing, Results, Analysis and Modelling 37

38 40 42 44 46

Sample #

996

997

998

999

1000

1001

A
m

pl
itu

de

(A) Sine wave of 167 samples

580 600 620 640 660 680 700

Sample #

996

997

998

999

1000

1001

A
m

pl
itu

de

(B) interp1 function

580 600 620 640 660 680 700

Sample #

996

997

998

999

1000

1001

A
m

pl
itu

de

(C)resample function

580 600 620 640 660 680 700

Sample #

996

997

998

999

1000

1001

A
m

pl
itu

de

(D) spline function

Figure 4.3: Comparison of the performance of various resampling functions in MATLAB
used to interpolate a sine wave with 167 samples to 2574 samples. Zoomed in view of
Figure 4.2 shows the performance near the peak of the wave.

These three resampled waveforms were compared against the ideal sine wave. The

mean absolute errors, defined as

2574∑
i=1

|IdealSignal[i]− InterpolatedSignal[i]|
2574

for the ‘resample’ function was 7.761, for the ‘interp1’ function was 0.038 and for the

‘spline’ function was 9.176×10−07. Based on these mean absolute error values, it is clear

that among the methods considered, cubic spline is the most suitable for resampling.

Since voltages on power lines are ideally continuous sinusoidal signals this exercise with

interpolation of sine waves is a good indicator and can be used to decide the best method

for our application.

As discussed, the ‘spline’ (cubic spline) function accepts an input signal vector along

with two time vectors, one each corresponding to the sampling of the available input and

the desired output signal. The resampled signal contains the same number of samples

as this second time vector. Since our signal in PSCAD is sampled at a uniform rate and

the objective is to resample it as well at an uniform rate, the required time vectors can

be created using the ‘linspace’ command in MATLAB.

Chapter 4. Data Processing, Results, Analysis and Modelling 38

The specification of 2574 samples per period for the cRIO was arrived at based on a

circular array with data for one 60 Hz period only. As the simulation scenario consists

of 900 such periods/cycles, there is scope for finer control over the frequency. Instead of

900× 2574 data points in the final waveform, there can be (900× 2574)± x data points.

This x is named as the fine adjustment parameter in some of the MATLAB scripts (see

Appendix A). Since this process of resampling had to be repeated for multiple PSCAD

simulation scenarios, a MATLAB function, “PSCADtoCRIOfunction.m” was created.

The function accepts an input file name (the COMTRADE file), an output file name

and the fine adjustment parameter. The fine adjustment parameter was set to -14 for all

test cases. Therefore, the waveform generated by the cRIO, representing the 15 second

scenario consists of (2574× 900)− 14 = 2316586 data points.

4.2 Obtaining PMU data

The PMU communicates with the PC over the serial port. The openECA (Extensible

Control and Analytics) Platform from the Grid Protection Alliance receives and displays

the data from the PMU. The tool is connected to an SQL database. Every cycle, the

PMU reports 27 unique quantities. These records can be exported to .csv files. Of these,

only the voltage magnitude, phase and frequency of one particular channel are of interest

for the experiment. A Python script was written to isolate the quantities of interest (See

Appendix B).

While testing a particular case on the PMU, the 15 second period of interest was

produced continuously on the cRIO in a cyclic manner. Therefore, the PMU recorded

multiple instances of the experiment. The first instance was discarded as prior to its

beginning the PMU reports invalid data. The second cycle was isolated and analyzed for

each scenario.

4.3 Results

Of all the data collected, this research focuses on the voltage magnitude measurements.

Figure 4.4 shows the voltage magnitude measured by the PMU as the exciter time con-

stant is varied from 0.5 s to 2 seconds in steps on 0.5 s. It shows the changes in the

dynamic response for each of these cases. As the exciter time constant is increased, the

voltage magnitude dips further and takes longer to recover (as expected).

The PSS/E data for each of the cases is available for a period of 10 seconds with

the event occurring at 0.5 seconds. Figure 4.5 shows the PSS/E results and the PMU

Chapter 4. Data Processing, Results, Analysis and Modelling 39

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

Voltage Magnitude PMU Readings across the 4 cases

TE = 0.5
TE = 1.0
TE = 1.5
TE = 2.0

Figure 4.4: PMU readings: Voltage magnitudes of all four cases

readings for the case with exciter time constant 0.5s. The PSS/E simulation results do

not drop as sharp as the the PMU readings after the event. The PMU readings rise up/

recover after the sharp drop and then fall again. This is captured in the zommed in view

shown in Figure 4.6. The PMU readings are not in sync with the PSS/E results. Similar

behaviour is seen in the other cases as well.

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

PSSE result
PMU reading

Figure 4.5: PMU readings and PSS/E Results for the voltage magnitudes, Case TE =
0.5 s

4.4 Modelling the PMU

Once the PMU and PSS/E results were obtained, the next step was to take the PSS/E

results and process them to get a closer match with the PMU readings. Since both

the PSS/E results and the PMU readings are available, a model of the PMU can be

Chapter 4. Data Processing, Results, Analysis and Modelling 40

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Time (seconds)

0.975

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

PSSE result
PMU reading

Figure 4.6: MU readings and PSS/E results for the voltage magnitudes, case TE = 0.5
s. Zoomed in view of Figure 4.5 shows dynamics just after the event.

generated. For this purpose, MATLAB’s System Identification Toolbox was used.

The System Identification Toolbox provides MATLAB functions, Simulink blocks,

and an app for constructing mathematical models of dynamic systems from measured

input-output data. It facilitates creation of models of systems that are not easily modeled

from first principles or specifications. Once both data sets are imported into the System

Identification Toolbox, there are multiple options for estimating the system.

The System Identification Toolbox requires both the input and output signals to

have been sampled at the same time. The PMU reports one reading per 60 Hz cycle;

however, the PSS/E data available was at a faster rate. While the PMU data consists

of 600 samples for the 10 second period, the PSSE data contains 9600 data points (for

the same period). The PSS/E signal was therefore required to be downsampled. This

was accomplished on MATLAB using the (cubic) ‘spline’ command. Figure 4.7 shows

the original PSS/E results in blue and the PSS/E data downsampled at the timestep

corresponding to the PMU readings in red crosses.

This exercise was carried out for the four cases. Graphs in Figure 4.8 plot this

downsampled PSS/E data with the PMU readings. These were the input/output data

pairs imported into the System Identification Toolbox. The PSS/E results and the PMU

readings match before the load step/event, therefore those samples should not play a

major role in estimating the system dynamics.

How much do PSS/E simulations deviate from the PMU readings?

For the four cases, Fit Percentages (normalized root mean squared error (NRMSE) ex-

pressed as a percentage) were computed. Fit Percentage for a given TE case is defined

Chapter 4. Data Processing, Results, Analysis and Modelling 41

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Time (seconds)

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

Case: TE = 0.5 s

PSSE original
PSSE resampled

Figure 4.7: Down sampled PSS/E results plotted against the original data set show a
good match

0 2 4 6 8 10

Time (seconds)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

Voltage Magnitude Case: TE = 0.5 s

PSSE result
PMU reading

0 2 4 6 8 10

Time (seconds)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

Voltage Magnitude Case: TE = 1 s

PSSE result
PMU reading

0 2 4 6 8 10

Time (seconds)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

Voltage Magnitude Case: TE = 1.5 s

PSSE result
PMU reading

0 2 4 6 8 10

Time (seconds)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

Voltage Magnitude Case: TE = 2 s

PSSE result
PMU reading

Figure 4.8: Comparing the PSS/E results and PMU readings for the four cases.

Chapter 4. Data Processing, Results, Analysis and Modelling 42

as:

FitPercentTE = 100×

1−

√∑900
i=1(V mPMUTE[i]− V mPSS/ETE[i])2√∑900

i=1(V mPMUTE[i]− V mPMUTE)2

where TE ∈ Cases = {0.5, 1.0, 1.5, 2.0}, V mPMU and V mPSS/E are the voltage

magnitude data for the 15 second scenario of interest and the overline represents mean.

Since the PMU reports data once every cycle (60 Hz), for a 15 second scenario, there are

60× 15 = 900 data-points. These are reported in Table 4.1. They vary from 63.77 % for

FitPercent0.5 to 77.27 % for FitPercent2.0. This is a significant deviation.

Table 4.1: Deviation in PSS/E results from the PMU readings
Case Fit Percentage

TE = 0.5s 63.77%
TE = 1.0s 69.02%
TE = 1.5s 73.78%
TE = 2.0s 77.27%

General layout of the System Identification Toolbox app

The left portion of Figure 4.9 shows the four input-output paired time domain datasets

imported into the System Identification Toolbox. The case TE = 0.5 s has been chosen as

the working data. All estimation operations for generating models are performed on this

dataset. Options include using transfer functions, state space models, process models

with integrators and delays, polynomial models like ARX and ARMAX, non linear ARX

models and correlation models.

The right side of Figure 4.9 shows different models that have been estimated based

on this dataset. At the bottom of the Figure, in the ‘Validation Data’ box, the case with

TE = 1.5 s has been selected. This means that the models generated with the TE =0.5

case (’Working Data’) above will be tested on the input-output pairs of the TE =1.5 case

(’Validation Data’).

The output in Figure 4.10 shows how well the input data from Validation Dataset

(case TE = 1.5), when processed thorough the models shown in the right side of Figure

4.9 (based on the ‘Working Data’ or the case with TE = 0.5 s) matches with the output

data (of the Validation Dataset). In this Figure, the System Identification Toolbox plots

these model outputs (in colours corresponding to models in the previous Figure 4.9) and

Chapter 4. Data Processing, Results, Analysis and Modelling 43

Figure 4.9: The System Identification Toolbox app

Figure 4.10: The System Identification Toolbox: Model outputs

Chapter 4. Data Processing, Results, Analysis and Modelling 44

the actual PMU reading (in black). The right side of the figure, i.e. the Best Fit legend

lists the models in the order of their match percentages. Match percentages vary from

76.31% to 95.23%.

Therefore, once a model has been estimated, it can be validated against different sets

of data. For instance a model can be created using the case with TE = 1 s and then input

data from all other cases can be fed to the model and the accuracy of the model can be

tested by comparing the observed outputs with the model’s estimates. This exercise is

important to detect overfitting.

The ARX model

In time series modeling, autoregressive exogenous (ARX) models are autoregressive (AR)

models with exogenous inputs [22]. They are the simplest class of linear polynomial

models that incorporate stimulus response [23].In AR models, the output and input

are assumed to be correlated with one another. To identify the model, an assumption

about how the variables are contemporaneously correlated with one another needs to be

made. ARX models on the other hand use estimates of a given system of correlated

variables and also exogenous variables. They allow outside shocks/factors to be taken

into consideration [22].

The general structure of the ARX model is :

y[i] + a1y[i − 1] + ... + anay[i − na] = b1u[i − nk] + ... + bnb
u[i − nb − nk + 1] + e[i]

The parameters na and nb are the orders of the ARX model, and nk is the delay [24].

Symbols in the equations denote the following:

y[i] - The current output.

na - Number of poles or the order of the polynomial A(q).

nb - Number of zeroes plus 1 or the order of the polynomial B(q) + 1.

nk - Number of input samples that occur before the input affects the output, also called

the dead time in the system.

y[i− 1]...y[i− na] - Previous outputs on which the current output depends.

u[i− nk]...u[i− nk − nb + 1] - Previous and delayed inputs on which the current output

depends.

e[i] - White-noise disturbance value [24].

A more compact way to write the difference equation is:

A[q]y[i] = B[q]u[i− nk] + e[i]

Chapter 4. Data Processing, Results, Analysis and Modelling 45

where q is the delay operator. And therefore,

A[q] = 1 + a1q
−1 + ...+ anaq

na

B[q] = b1 + b2q
1 + ...+ bnb

qnb+1

The complexity of the ARX modelling is determined by model orders na, nb and nk.

The key problem is to determine the most suitable model complexity that can capture

the dynamics of the system in general and be biased [25].

ARX in MATLAB

The ‘arx’ command in MATLAB estimates the parameters of ARX model using least

squares. The input arguments for the command are the estimation data (input output

time series pair represented as an iddata object), the polynomial orders of the model

(na, nb and nk) and other estimation options (discussed in Section 4.4. The command

returns an ARX model that fits the estimation data, in the form of a discrete-time idpoly

object (polynomial model with identifiable parameters). Then the ‘compare’ command

compares the response of the system SYS (created by the ARX command) to any valida-

tion data (the iddata objects created with the input output pairs of the 4 cases). It plots

the graphs of the PMU output and compares it with the results obtained by processing

the original PSS/E results with the polynomial generated by the ARX function. It also

reports a fit percentage. Note that the dead time of the system, nk was set to 0 for all

models in this research.

Figure 4.11 below shows the raw PSS/E results in red (TSA simulation), the PMU

readings in blue (ground truth) and the result of an ARX fit in green (model). For this

model, data from the case TE = 0.5 s was used and the order of the coefficients of the

ARX model were na = 5, nb = 4, and nk = 0. The fit percentage (normalized root mean

squared error expressed as a percentage) is reported as 96.84%. For the discrete-time

ARX model: A[q]y[i] = B[q]u[i] + e[i], the following were the tuned model parameters.

y[i] = −2.338y[i− 1] + 2.192y[i− 2]− 1.348y[i− 3] + 0.492y[i− 4]+

1.004u[i]− 2.348u[i− 1] + 2.197u[i− 2]− 1.344z[i− 3] + 0.4915u[i− 4]

Figure 4.12 shows a zoomed in view of the same data. Here points are individually

plotted rather than joined by lines. It can be observed that the model output very

closely matches the PMU readings point by point. What can also be seen is how distant

the raw PSS/E results were from the PMU readings. This validates the model for this

particular/specific case.

Chapter 4. Data Processing, Results, Analysis and Modelling 46

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

Case TE = 0.5 s | Fit Percentage = 96.8356

Raw PSSE Result
PMU Readings
Model Result

Figure 4.11: Comparison of the model output to PMU readings and raw PSS/E Results
TE = 0.5 s for an ARX model with na = 5 and nb = 4

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Time (s)

0.975

0.98

0.985

0.99

0.995

1

1.005

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)

Case TE = 0.5 s | Fit Percentage = 96.8356

Raw PSSE Result
PMU Readings
Model Result

Figure 4.12: Zoomed in view of Figure 4.11. Comparison of the model output to PMU
readings and raw PSS/E Results for the case TE = 0.5 s using an ARX model with
na = 5 and nb = 4.

Chapter 4. Data Processing, Results, Analysis and Modelling 47

Figure 4.13 shows the results when all 4 cases were validated with a model trained

with data from the case with TE = 1.0 s. The ARX parameters used were na = 4 nb = 4

and nk = 0. With the lower order than the previous case, the percentage fit is lower

as well. by analysing the average match/fit percentage and their spread within these 4

cases, an optimal order can be deduced.

0 2 4 6 8 10

Time(s)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)ARX [4 4 0] Training TE=1.0, Validation TE= 0.5, Fit% =88.99

PMU reading
Model Estimate

0 2 4 6 8 10

Time(s)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)ARX [4 4 0] Training TE=1.0, Validation TE= 1.0, Fit% =90.54

PMU reading
Model Estimate

0 2 4 6 8 10

Time(s)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)ARX [4 4 0] Training TE=1.0, Validation TE= 1.5, Fit% =92.65

PMU reading
Model Estimate

0 2 4 6 8 10

Time(s)

0.96

0.97

0.98

0.99

1
V

ol
ta

ge
 M

ag
ni

tu
de

 (
p.

u.
)ARX [4 4 0] Training TE=1.0, Validation TE= 2.0, Fit% =94.29

PMU reading
Model Estimate

Figure 4.13: ARX model with na = 4 and nb = 4 trained with data from the case TE =
1.0 s and validated with data from all four cases

ARX options

The ‘arxOptions’ command is used to create an ‘option set’ for the ‘arx’ command that

specifies estimation options. The argument ‘Focus’ affects the formulation of the objec-

tive function. It specifies the error term to be minimized in the loss function during

estimation.

When ‘Focus’ is set to the ‘prediction’ option, command computes the model response

at some specified amount of time in the future. This is the default option and is used

when the ‘arx’ command is used for analyzing and predicting traditional time series

quantities like stocks etc. The one-step ahead prediction error between measured and

predicted outputs is minimized during estimation.

When ‘Focus’ is set to the ‘simulation’ option, the simulation error between measured

and simulated outputs is minimized during estimation. ‘Simulation’ computes the model

Chapter 4. Data Processing, Results, Analysis and Modelling 48

response using input data and initial conditions only. This is unlike the ‘prediction’ mode

where current and past values of the input data as well as the measured output are used.

This command also has options for adding input and output offsets in forms of coma

separated values or column vectors. The estimation focuses on generating a good fit

for simulation of model response with the current input. For this research, the ‘arx’

command was used in the ‘simulation’ mode.

4.4.1 Choosing the ARX model order

Determining the right order for the ARX as well as which of the four datasets should

be chosen for the model is not obvious. Therefore a large number of tests were run for

different values of na and nb. For each of the na- nb combinations, ARX models were fit

on each of the four datasets. Each of these models was validated against the four datasets

and their fit percentage was recorded. Each model yielded 4 such fit percentages, one

each corresponding to every dataset (one of these four is from the same data that was

used to create the model).

Any given fit percentage is characterised by the data-set used to create the model

denoted by TEM ∈ Cases = {0.5, 1.0, 1.5, 2.0}, the orders of the model denoted by na

and nb and finally data-set with which the model was tested to calculate the fit, denoted

by TEV ∈ Cases = {0.5, 1.0, 1.5, 2.0}. Therefore, a specific fit could be denoted by the

following notation, FitPercentTEV
TEM,na,nb

A good model is one which would produce a high percentage fit. However, producing

a good fit for only the dataset from which the model is derived is not sufficient. A good

model should not only capture the dynamics of the PMU but also be general enough to

not adversely impact the fit when data from other tests cases is tested with the model.

Therefore, a model may be considered good if the mean of the four Fit Percentages it

produces is high. For the model data from case TEM, and a model with orders na and

nb, the Mean Fit Percentage is define as:

MeanFitPercentTEM,na,nb
=

∑
TEV ∈Cases FitPercent

TEV
TEM,na,nb

4

This metric is analyzed in Figure 4.14.

The colour white represents a 100% fit and all matches 84% and below are shown

in black. Brighter the colour, higher is the Fit Percentage. One of the first things that

becomes evident is that increasing na and nb does not always lead to better results. For

Chapter 4. Data Processing, Results, Analysis and Modelling 49

5 10 15

na

5

10

15

nb

Model: TE= 0.5 s, mean FIT %

85

90

95

100

5 10 15

na

5

10

15

nb

Model: TE= 1.0 s, mean FIT %

85

90

95

100

5 10 15

na

5

10

15

nb

Model: TE= 1.5 s, mean FIT %

85

90

95

100

5 10 15

na

5

10

15

nb

Model: TE= 2.0 s, mean FIT %

85

90

95

100

Figure 4.14: Mean Fit Percentages for models generated with the four datasets by varying
na and nb.

Chapter 4. Data Processing, Results, Analysis and Modelling 50

instance, consider the case of the model trained using data from the case TE= 0.5 s,

shown on the top right corner of Figure 4.14. MeanFitPercent0.5,2,6 (i.e. the mean fit

percentage for the model prepared from data of the case TE= 0.5, and with polynomial

orders na = 2 and nb =6) is better than MeanFitPercent0.5,14,14 a model created with

higher order polynomials. Similar trends can be seen in the other models as well.

5 10 15

na

5

10

15

nb

Model: TE= 0.5 s, range

0

2

4

6

8

5 10 15

na

5

10

15

nb

Model: TE= 1.0 s, range

0

2

4

6

8

5 10 15

na

5

10

15

nb

Model: TE= 1.5 s, range

0

2

4

6

8

5 10 15

na

5

10

15

nb

Model: TE= 2.0 s, range

0

2

4

6

8

Figure 4.15: Fit Percentage Range for models generated with the four datasets by varying
na and nb.

Regardless of the match percent magnitude, it may also be desirable for a model to

have similar percentage fits across the cases. This would indicate less bias towards a

particular dataset and hence give confidence against the possibility of overfitting. This

can be tested by comparing the Range, defined as the difference between the largest and

the smallest percentage fit reported by a given model when applied to the four cases.

Similarly, for a given dataset for the case TE = TEM used to create the model, and the

Chapter 4. Data Processing, Results, Analysis and Modelling 51

polynomial orders of the model na and nb, Range is denoted as:

RangeTEM,na,nb
= max

TEV ∈Cases
(FitPercentTEV

TEM,na,nb
)− min

TEV ∈Cases
(FitPercentTEV

TEM,na,nb
)

The larger this range, the more biased the model is likely to be. This too was tested

and documented in Figure 4.15. A smaller range (indicated by a darker gray) is more

desirable. Again it is clear that arbitrarily increasing orders na and nb do not always

lead to more desirable outcomes. If that were the case, the top right corners of all the

sub plots which represent both high values of na and nb should have been the darkest.

5 10 15

na

5

10

15

nb

Model: TE= 0.5 s, RCOF

0

2

4

6

8

5 10 15

na

5

10

15

nb

Model: TE= 1.0 s, RCOF

0

2

4

6

8

5 10 15

na

5

10

15

nb

Model: TE= 1.5 s, RCOF

0

2

4

6

8

5 10 15

na

5

10

15

nb

Model: TE= 2.0 s, RCOF

0

2

4

6

8

Figure 4.16: RCOF for models generated with the four datasets by varying na and nb.

Fit percentages are always ≤ 100. The closer they are to 100, the better. For Range

on the other hand, smaller is better. By using a combination of the two criteria discussed

above, a third metric may be defined. Range Compensated Optimal Fit is defined as

the sum of Range and the difference between 100 and the percentage fit. With such a

definition, smaller RCOF is better.

Chapter 4. Data Processing, Results, Analysis and Modelling 52

RCOFTEM,na,nb
= RangeTEM,na,nb

+ (100−MeanFitPercentTEM,na,nb
)

Therefore, in Figure 4.16, a darker shade is more desirable. By analyzing the models

derived from the case TE = 0.5 s, shown on the top right corner, na=2 and nb=6 i.e.

RCOF0.5,2,6 looks like a good choice for a model. From its shade of gray, RCOF0.5,2,6 ≤ 3.

That means, across the four cases, it should have greater than 97% match and the range

too should be less than 3. Figure 4.17 shows the results. The lowest fit percentage is

97.98% while the highest is 98.25%. The range is 0.27. Figure 4.18 shows the zoomed in

view of the half second just after the event. A good match is observed through most of

the samples with only 3 to 4 points not exactly matching up, yet they are very close.

0 2 4 6 8 10

Time(s)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)ARX [2 6 0] Training TE=0.5, Validation TE= 0.5, Fit% =98.05

PMU reading
Model Estimate

0 2 4 6 8 10

Time(s)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)ARX [2 6 0] Training TE=0.5, Validation TE= 1.0, Fit% =98.09

PMU reading
Model Estimate

0 2 4 6 8 10

Time(s)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)ARX [2 6 0] Training TE=0.5, Validation TE= 1.5, Fit% =98.26

PMU reading
Model Estimate

0 2 4 6 8 10

Time(s)

0.96

0.97

0.98

0.99

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

)ARX [2 6 0] Training TE=0.5, Validation TE= 2.0, Fit% =97.98

PMU reading
Model Estimate

Figure 4.17: Results produced by a model based on the dataset with TE = 0.5 s, na=2
and nb=6. A match% of over 97.98% is seen for all of the four datasets.

Thus, it is shown that the proposed model estimation framework accurately repro-

duces the PMU behaviour from a given set of PSCAD and PSS/E simulations.

4.4.2 Akaike’s information criterion (AIC)

As discussed in Section 4.4.1, determining the order of a model is not trivial.

In a sequence of papers, starting in 1973, Akaike laid down the foundations of modern

statistical model identification. He developed the entropy based Akaike’s information

criterion (AIC) for the identification of an optimal model from a class of competing

Chapter 4. Data Processing, Results, Analysis and Modelling 53

0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

0.98

0.985

0.99

0.995

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

) ARX [2 6 0] Training TE=0.5, Validation TE= 0.5, Fit% =98.05

PMU reading
Model Estimate

0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

0.98

0.985

0.99

0.995

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

) ARX [2 6 0] Training TE=0.5, Validation TE= 1.0, Fit% =98.09

PMU reading
Model Estimate

0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

0.98

0.985

0.99

0.995

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

) ARX [2 6 0] Training TE=0.5, Validation TE= 1.5, Fit% =98.26

PMU reading
Model Estimate

0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

0.98

0.985

0.99

0.995

1

V
ol

ta
ge

 M
ag

ni
tu

de
 (

p.
u.

) ARX [2 6 0] Training TE=0.5, Validation TE= 2.0, Fit% =97.98

PMU reading
Model Estimate

Figure 4.18: Zoomed in view of Figure 4.17 shows matching of data points during the half
second after the initial transient. Results Produced by the Model based on the dataset
with TE = 0.5 s, na=2 and nb=6. A match% of over 97.98% is seen for all of the four
datasets.

models [26]. This criterion accounts for the model complexity and adds penalties for

higher orders. It is a trade-off between the accuracy of the fit and the simplicity of the

model. Therefore, it addresses both underfiting and overfitting. It is defined as:

AIC(k) = 2k − 2ln(L̂)

where k is the number of estimated parameters for a model, in this case, k = na + nb + 1

and L̂ is the maximum likelihood function of the model.

While this criterion is useful in determining model orders, it was not used in this

research as the data-set was fairly limited and the model was chosen based on the criterion

described in the previous Section 4.4.1 by traversing through all of the individual cases.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this research, a test bench has been created, through which the dynamic performance

of PMUs can be studied. This test bench accepts the results from EMTP programs using

the standard COMTRADE format and emulates a time-synchronized low voltage grid

for PMUs.

By utilizing features of the cRIO, like the FIFO buffer, for transferring large wave-

form sequences and the accurate analog output module, it was possible to create a very

accurate representation of the voltage waveform into the PMU. Multiple such scenarios

were emulated and the response of the PMU was recorded.

MATLAB’s System Identification Toolbox was used to create ARX models for the

voltage magnitude response of the PMU based on this data. Performance of these models

was studied by varying the model parameters (orders of the polynomials). An optimal

model was chosen based on a combination of metrics like high match percentages and

low variation in these match percentages across the four test cases. The optimal model

had match percentages of over 97% across all cases and a range of less than 0.5. This

significantly outperforms a naive simulation that directly uses the PSS/E results (which

has fit percentages in the range of 63-77%).

This research has successfully demonstrated a process that can be used to characterize

the dynamic performance of PMUs.

54

Chapter 5. Conclusions and Future Work 55

5.2 Future work

This research used limited test scenarios and focused on the deviations in voltage mag-

nitudes alone. One of the reasons that limited the number of cases was the difficulty in

getting simulations on different EMTP and TSA software to closely match. In the future,

more such test scenarios can be modelled and tested. Also, the load change modelled in

the event was purely resistive. Reactive elements could be included in future research.

Others in the research group (Zhen Dai) have worked on the deviations in the fre-

quency reported by PMUs. A model of the PMU that caters to the deviations across

the parameters of magnitude, frequency and phase can also be created to provide a full

virtual PMU.

In the course of this research, it was assumed that the analog source was completely

accurate. Since this is unlikely to be the case, more effort could be put into to calibrating

all the analog sources and measurement equipment used in this research.

The current set up relies on two separate GPS receivers in the PMU and the cRIO.

While running the experiments, the antennas needed to be placed outside through win-

dows. In the future, an IRIG B signal could be digitally synthesized which would not only

lead to more accurate experiments but would also make the experiment more convenient

to execute.

Finally, the impact of these model improvements in evaluating wide-area control sys-

tems needs to be studied.

Bibliography

[1] “451 front visual motion.png (JPEG Image, 1440660 pixels).” [Online]. Avail-

able: https://prodcdn.selinc.com/uploadedImages/Web/Products/Visuals/451%

20front%20visual%20motion.png?n=63667465321000&preset=pattern-carousel&

bp=lg

[2] “2401-with-9524a.png (JPEG Image, 380272 pixels).” [Online]. Avail-

able: https://prodcdn.selinc.com/uploadedImages/Web/Products/Popular/2XXX/

2401-with-9524A.png?n=63623381516000&preset=size-col-4&bp=lg

[3] “NI LabVIEW for CompactRIO Developers Guide.” [Online]. Available: http:

//www.ni.com/pdf/products/us/fullcriodevguide.pdf

[4] “cRIO9035photo.” [Online]. Available: http://www.ni.com/en-ca/support/model.

crio-9035.html

[5] J. D. L. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized Phasor

Measurement Applications in Power Systems,” IEEE Transactions on Smart Grid,

vol. 1, no. 1, pp. 20–27, Jun. 2010.

[6] G. C. Patil and A. G. Thosar, “Application of synchrophasor measurements us-

ing PMU for modern power systems monitoring and control,” in 2017 International

Conference on Computation of Power, Energy Information and Commuincation (IC-

CPEIC), Mar. 2017, pp. 754–760.

[7] J. E. Tate and T. J. Overbye, “Line Outage Detection Using Phasor Angle Measure-

ments,” IEEE Transactions on Power Systems, vol. 23, no. 4, pp. 1644–1652, Nov.

2008.

[8] B. Gou, “Optimal Placement of PMUs by Integer Linear Programming,” IEEE

Transactions on Power Systems, vol. 23, no. 3, pp. 1525–1526, Aug. 2008.

56

https://prodcdn.selinc.com/uploadedImages/Web/Products/Visuals/451%20front%20visual%20motion.png?n=63667465321000&preset=pattern-carousel&bp=lg
https://prodcdn.selinc.com/uploadedImages/Web/Products/Visuals/451%20front%20visual%20motion.png?n=63667465321000&preset=pattern-carousel&bp=lg
https://prodcdn.selinc.com/uploadedImages/Web/Products/Visuals/451%20front%20visual%20motion.png?n=63667465321000&preset=pattern-carousel&bp=lg
https://prodcdn.selinc.com/uploadedImages/Web/Products/Popular/2XXX/2401-with-9524A.png?n=63623381516000&preset=size-col-4&bp=lg
https://prodcdn.selinc.com/uploadedImages/Web/Products/Popular/2XXX/2401-with-9524A.png?n=63623381516000&preset=size-col-4&bp=lg
http://www.ni.com/pdf/products/us/fullcriodevguide.pdf
http://www.ni.com/pdf/products/us/fullcriodevguide.pdf
http://www.ni.com/en-ca/support/model.crio-9035.html
http://www.ni.com/en-ca/support/model.crio-9035.html

Bibliography 57

[9] J. S. Bhonsle and A. S. Junghare, “An optimal PMU-PDC placement technique in

wide area measurement system,” in 2015 International Conference on Smart Tech-

nologies and Management for Computing, Communication, Controls, Energy and

Materials (ICSTM), May 2015, pp. 401–405.

[10] S. Chakrabarti and E. Kyriakides, “Optimal Placement of Phasor Measurement

Units for Power System Observability,” IEEE Transactions on Power Systems,

vol. 23, no. 3, pp. 1433–1440, Aug. 2008.

[11] R. Franco, C. Sena, G. N. Taranto, and A. Giusto, “Using synchrophasors for con-

trolled islanding - A prospective application for the Uruguayan power system,” IEEE

Transactions on Power Systems, vol. 28, no. 2, pp. 2016–2024, May 2013.

[12] S. K, S. N. Singh, and S. C. Srivastava, “A Synchrophasor Assisted Frequency and

Voltage Stability Based Load Shedding Scheme for Self-Healing of Power System,”

IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 221–230, Jun. 2011.

[13] “SEL-451-5 Data Sheet.” [Online]. Available: https://cdn.selinc.com/assets/

Literature/Product%20Literature/Data%20Sheets/451-5 DS 20190613.pdf?v=

20190729-134306

[14] “Overview of IRIG-B Time Code Standard,” TELECOMMUNICATIONS AND

TIMING GROUP, TECHNICAL NOTE TN-102, May 2016. [Online]. Available:

https://www.itsamerica.com/assets/publications/TN-102 IRIG-B.pdf

[15] “IEEE/IEC Measuring relays and protection equipment Part 24: Common format

for transient data exchange (COMTRADE) for power systems - Redline,” IEEE Std

C37.111-2013 (IEC 60255-24 Edition 2.0 2013-04) - Redline, pp. 1–136, Apr. 2013.

[16] “NI cRIO-9035 User Manual - National Instruments,” p. 40.

[17] T. Becejac and P. Dehghanian, “PMU Multilevel End-to-End Testing to Assess

Synchrophasor Measurements During Faults,” IEEE Power and Energy Technology

Systems Journal, vol. 6, no. 1, pp. 71–80, Mar. 2019.

[18] “Phase Angle Calculations: Considerations and Use Cases,” NASPI

Engineering Analysis Task Team, Technical Paper, Sep. 2016. [On-

line]. Available: https://www.naspi.org/sites/default/files/reference documents/

naspi 2016 tr 006 phase angle calculations final.pdf

https://cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/451-5_DS_20190613.pdf?v=20190729-134306
https://cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/451-5_DS_20190613.pdf?v=20190729-134306
https://cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/451-5_DS_20190613.pdf?v=20190729-134306
https://www.itsamerica.com/assets/publications/TN-102_IRIG-B.pdf
https://www.naspi.org/sites/default/files/reference_documents/naspi_2016_tr_006_phase_angle_calculations_final.pdf
https://www.naspi.org/sites/default/files/reference_documents/naspi_2016_tr_006_phase_angle_calculations_final.pdf

Bibliography 58

[19] P. Thevenaz, T. Blu, and M. Unser, “Interpolation revisited [medical images appli-

cation],” IEEE Transactions on Medical Imaging, vol. 19, no. 7, pp. 739–758, Jul.

2000.

[20] M. Unser, “Splines: a perfect fit for signal and image processing,” IEEE Signal

Processing Magazine, vol. 16, no. 6, pp. 22–38, Nov. 1999.

[21] L. Matiu-Iovan, F. M. Frigura-Iliasa, and S. Rancov, “A cubic B-spline interpolation

algorithm that uses the first derivative values of the input function in the knots,” in

2013 36th International Conference on Telecommunications and Signal Processing

(TSP), Jul. 2013, pp. 709–712.

[22] “Autoregressive Exogenous Model Analytical Way.” [Online]. Available:

http://www.analyticalway.com/?p=62

[23] “ARX Model Definitions (System Identification Toolkit) - LabVIEW 2013

System Identification Toolkit Help - National Instruments.” [Online].

Available: http://zone.ni.com/reference/en-XX/help/372458D-01/lvsysidconcepts/

modeldefinitionsarx/

[24] “Estimate parameters of ARX or AR model using least squares - MATLAB arx.”

[Online]. Available: https://www.mathworks.com/help/ident/ref/arx.html

[25] Zulkeflee A.A., Sata S.A., and Aziz N., “Auto-regressive with exogenous

input model predictive controller for water activity in esterification,” Chemical

Engineering Transactions, vol. 56, pp. 217–222, Apr. 2017. [Online]. Available:

http://doi.org/10.3303/CET1756037

[26] H. Bozdogan, “Model Selection and Akaike’s Information Criterion (AIC):

The General Theory and Its Analytical Extensions,” Psychometrika; Colorado

Springs, Colo., vol. 52, no. 3, p. 345, Sep. 1987. [Online]. Available:

http://search.proquest.com/docview/1304598765?pq-origsite=summon

http://www.analyticalway.com/?p=62
http://zone.ni.com/reference/en-XX/help/372458D-01/lvsysidconcepts/modeldefinitionsarx/
http://zone.ni.com/reference/en-XX/help/372458D-01/lvsysidconcepts/modeldefinitionsarx/
https://www.mathworks.com/help/ident/ref/arx.html
http://doi.org/10.3303/CET1756037
http://search.proquest.com/docview/1304598765?pq-origsite=summon

Appendices

59

Appendix A

MATLAB scripts

The following script was used to process multiple PSCAD COMTRADE output files to

cRIO input data. This script merely calls the ‘PSCADtoCRIOfunction’ function which

is given further below.

1 close all;

2 clear;

3 clc;

4 inputpath = '..\PSCAD\TwoBus ideal s varyH.gf46\Rank 00001\Run 00001\';
5 inputfilelist = ['h0.dat' 'h1.dat' 'h2.dat' 'h3.dat' 'h4.dat' ...

'h5.dat'...

6 'h6.dat' 'h7.dat' 'h8.dat' 'h9.dat' 'h10.dat' 'h11.dat' 'h12.dat'...

7 'h6TE0p5.dat' 'h6TE1p0.dat' 'h6TE1p5.dat' 'h6TE2p0.dat'];

8

9 outputpath = '..\PSCAD\';
10 outputfilelist = ['h0.csv' 'h1.csv' 'h2.csv' 'h3.csv' 'h4.csv' ...

'h5.csv'...

11 'h6.csv' 'h7.csv' 'h8.csv' 'h9.csv' 'h10.csv' 'h11.csv' ...

'h12.csv' ...

12 'h6TE0p5.csv' 'h6TE1p0.csv' 'h6TE1p5.csv' 'h6TE2p0.csv'];

13

14 frq fine adj = −14;
15

16 for i=1:size(inputfilelist)

17 PSCADtoCRIOfunction(strcat([inputpath inputfilelist(i)]) ,...

18 strcat([outputpath outputfilelist(i)]),frq fine adj);

19 end

The function ‘PSCADtoCRIOfunction’ that resamples the PSCAD data for the PMU

is given below.

60

Appendix A. MATLAB scripts 61

1 function [] = PSCADtoCRIOfunction(in file,out file,frq fine adj)

2

3

4 %% Importing Data

5 pscad data = csvread(in file);

6 pscad data = pscad data(:,3); %Isolating the relevant column from ...

the COMTRADE file

7

8 %% Conversion

9 nominal frequency = 60; %in Hz

10 time = 15; % in seconds

11 number of waves = time*nominal frequency;

12 crio pscad factor = 2574; %Emperically Obtained

13

14 y pscad wave = pscad data;

15

16 length pscad wave = length(y pscad wave);

17 length crio wave = (crio pscad factor*number of waves) + frq fine adj;

18

19 x pscad = linspace(1, length pscad wave, length pscad wave);

20 x crio = linspace(1, length pscad wave,(length crio wave));

21

22

23 y crio wave = spline (x pscad, y pscad wave, x crio);

24

25

26 %% Exporting Output

27 csvwrite(out file,y crio wave')

28

29 end

Appendix B

Python Script

The PMU reported a streams of 27 parameters for each time stamp. For this research,

only the voltage magnitude, phase and the frequency for the one channel of interest

needed to be isolated. This python script was used for that purpose.

62

	Introduction
	Motivation
	Simulation of large transmission networks
	Research objective
	Methodology overview

	Experiment Design
	Hardware components of the testbench
	The PMU
	Specifications required for grid voltage emulation
	The CompactRIO

	System simulation
	The example electrical system

	Brief overview of the data processing

	Detailed Implementation on the CompactRIO
	Basic structure of a LabVIEW VI
	Generating a 60 Hz sine wave
	Method 1: The Sine Wave Generation block on the FPGA
	Sine wave generation using a circular array
	Measuring the frequency using the PMU
	Generating an accurate 60 Hz waveform

	Data Processing, Results, Analysis and Modelling
	Processing PSCAD data for the cRIO
	Obtaining PMU data
	Results
	Modelling the PMU
	Choosing the ARX model order
	Akaike's information criterion (AIC)

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Appendices
	MATLAB scripts
	Python Script

