An Improved Texture Synthesis Algorithm Using
Morphological Processing with Image Analogy

Jiang Ni Henry Schneiderman

CMU-RI-TR-04-52

October 2004

Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

(© Carnegie Mellon University

Abstract

Texture synthesis is an important technology for graphias animation. This paper proposes a novel
method based upon the multi-resolution neighborhood nractechnique pioneered by Wei and Levoy.
Wei and Levoy’s simple but powerful method is effective attigsizing a wide range of textures. However,
it has a tendency to produce synthesis artifacts in texttwegaining distinctive structural elements with
large degrees of irregularity, such as stones in a stone Wudlpropose several improvements designed to
overcome these artifacts: (1) Morphological operationsniphasize key aspects of structure such as edges
followed by image analogy to undo the effects of morphology @ombining non-causal neighborhoods
with causal neighborhoods (3) Appropriate weighting ofpheent and current level in the multi-resolution
pyramid. Experimental results demonstrate that these finations improve the quality of synthesis for
textures containing irregularly structured components.

1 Introduction

In recent years, texture synthesis has become an activarcbsarea in computer vision and computer
graphics. The idea of texture synthesis was closely relatdtie idea of image-based rendering, which
synthesizes novel views of the world using the sample imagesured from the real world, instead of
recreating the entire physical world from scratch. In textsynthesis, given a sample texture image, the
algorithms will use the information extracted from this impo synthesize new images that belong to the
same texture category but do not look identical to the inmage. Such techniques could be extended to
a lot of interesting applications such as texture mappiextute transfer, occlusion fill-in, etc., which are
useful in entertainment industries such as movies or videogs. Also, texture synthesis is a good way
to verify texture analysis methods, which aim to understidredfundamental mechanisms of textures and
could be used for texture classification, texture segmientagtc.

Texture synthesis is often formulated using a statisticadleh Some methods use a parametric texture
model. These include Cross and Jain’s MRF model [2], HeegdrBergen's pyramid-based model [7],
Zhu's FRAME model [13], Portilla and Simoncelli’'s parametmodel based on joint statistics of wavelet
coefficients [11], etc. Other methods use non-parametridatsato resample the input texture image one
pixel at a time to get an output image. These include De Bshethlacian pyramid sampling [3], Efros and
Leung’s single-scale sampling [5], Wei and Levoy’s muétsolution approach [12], etc. A related group
of resampling methods sample patches instead of indivigixals. These include Xu et al.'s mosaic [6],
Liang et al.’s patch-based sampling [10], Efros and Freésviarage quilting [4], Kwatra et al.'s graph-cut
approach [9], etc. Ashikhmin[1] presented a modified pdiaked version of Wei and Levoy’s algorithm
which takes into account the relative position of the pixed &s neighborhood pixels.

Patch-based resampling methods, especially the grapdppubach [9], generally seem more effective
in terms of their empirical performance. By copying entiegghes, many edges and corners are preserved
producing a result that is visually appealing. One potédtanside of this approach is that it fails to obey
various constraints that are implicit in the texture, suslpeeserving the convexity of texture elements.
Another problem can be a discontinuous seam between patalses such synthesized textures can often
appear too similar to the original input texture. Pixeldmsesampling techniques, on the other hand, have
the potential to generate a wider range of textures andalpt@void seam artifacts.

Wei and Levoy [12] published their pixel-based non-paraimdéxture synthesis algorithm (the WL
algorithm) in 2000. What makes it attractive is that they bome multi-resolution pyramids with non-
parametric neighborhood matching. Their simple but powenbdel can synthesize a wide range of textures
successfully. However, the algorithm has a tendency toym®dynthesis artifacts in textures containing
distinctive structural elements with large degrees ofjnfarity, such as stones in a stone wall. We propose
several modifications designed to overcome these artifactd present improved empirical results on a
range of example textures.

In Section 2, we describe the WL algorithm. In Section 3, walye some limitations of the algorithm.
In Section 4, we introduce our modifications to that algonithSection 5 gives some example empirical
results and Section 6 gives a summary of the overall apprdestribed in this paper.

2 Wei and Levoy’s Texture Synthesis Algorithm

The WL algorithm performs texture synthesis in a multi-fegon fashion. It uses a Gaussian pyramid (Fig.
1) to decompose the image into several scales. Startingrarifhiom white noise, it synthesizes each level
of Gaussian pyramid of the output image from coarse to finginguhe synthesis of each level, the value

of each pixel is determined by comparing its L-shaped cangighborhood (Fig. 2a) with all the candidate
neighborhoods in the training data. The input pixel with thest similar neighborhood using the sum of
squared differences (SSD) distance metric, is assigndebtoutput pixel.

Figure 1:A Gaussian pyramid. From left to right is the direction of fro m coarse to fine. Each level of
the pyramid is resized so that different levels can be compad more easily.

The algorithm involves the following steps:
1. The input image la is decomposed into a Gaussian pyramid Ga

2. The output image Is is initialized as random white noisel, @so decomposed into a Gaussian pyra-
mid Gs.

3. Each level of Gs is processed with histogram equalizatitimthe corresponding level of Ga.
4. For each level in the Ga and Gs, from coarse to fine:

(a) Neighborhood definition
At the coarsest level, define the neighborhood as the L-shegugsal neighborhood around the
pixel (Fig. 2a).
At any other level, define the neighborhood as the concadnagctor consisting of the square
non-causal neighborhood of the parent level and the L-shegesal neighborhood of the current
level (Fig. 2b).

(b) Training
Collect all such neighborhoods for the current level of Gahsthat its full extent of the neigh-
borhood is located within the image boundary.

(c) Synthesis using nearest neighbor matching
Assume the output image wraps around. For each pixel in tirertlevel of the Gs, extract its
neighborhood and compare it with all the candidates in thiaitrg set. From the training set,
find the pixel whose neighborhood has the smallest SSD eitbithe query neighborhood, and
put this input pixel at the current position inside Gs.

5. After all the levels of the pyramid are synthesized, thedidevel is output as the synthesized image
Is.

The WL algorithm implementation uses tree-structuredaegtiantization (TSVQ) to accelerate neigh-
borhood matching. This only improves the speed of the algori but does not help to improve the quality
of the synthesis and may degrade it. Since our purpose ispmwira the quality of the synthesis, we do not
use TSVQ acceleration.

ololo|o|o 5l olololo
olololo|o olala o|lo|lojo|o
ololx A oo«
olae|a
(a) (b)

Figure 2:(a) A 5x5 causal neighborhood used in the coarsest level ofdlpyramid. (b) A 5x5 causal
neighborhood from current level combined with a 3x3 non-casal neighborhood from the parent level.
(In our experiment, we actually used 9x9 causal neighborhats and 5x5 non-causal neighborhoods.)

3 Analysis of the WL Algorithm

The WL algorithm is effective at synthesizing a wide rangeestures. However, the algorithm has a ten-
dency to produce synthesis artifacts in textures contgidistinctive structural elements with large degrees
of irregularity (See Fig. 7b). Below we examine severaléssilnat seem to contribute to these artifacts.

3.1 Nearest Neighbor Matching Using SSD

The WL algorithm uses a nearest neighbor (NN) method forhimighood matching. As with all NN meth-
ods, it is guaranteed to perform well as the quantity of trgirdata approaches infinity. The classification
error can be no worse than twice the Bayes (optimal) rategifi@w neighborhood matching as a classifi-
cation problem. However, due to limited training data, N && subject to over-fitting. Moreover, there
is a known mismatch between the SSD criterion and human pp@roe It has long been observed in image
compression that differences in image quality do not alveayeelate well with the SSD. In particular, visu-
ally important features, such as edges and corners, are-angghasized by the SSD criterion. For a simple
example, in Fig. 3a, among the 40 pixels in the neighborhtweldark diagonal line given by 4 pixels is
much more visually salient than the remaining 36 pixels. SBiDs up the squared differences of the total
40 pixels, and the contribution of the 36 pixels dominatesr dirat of the 4 pixels. If Fig. 3a is compared
with 3b and 3c respectively, SSD(Fig3a, Fig3b) = 6444, anb(&®)3a, Fig3c) = 6400. Therefore, SSD
will choose 3c as the closer match although in fact 3b is muokersimilar to the original neighborhood.
This shows SSD can give suboptimal matches.

3.2 Causal Neighborhoods

Image synthesis is inherently constrained to the rastesrimgl of an image and must proceed in a causal
fashion. Causality, however, limits a synthesized pixehfrdepending on all its neighbors. Such an as-
sumption overlooks strong dependencies and will degraslevhrall results.

Also, the WL algorithm has an assumption that the output enagaps around and handles edges
toroidally. This tileability is well preserved across thedtland right borders. However, the top and bot-
tom borders do not tile well because the top rows do not apipghe causal neighborhood of the bottom

108 | 55 [123 (103 | 120 | 106 | 119 (120 124 06| 70 (112|119 | 118 |19 | 114 |102 125 109 (95 | 123|103 | 120 (106 | 119 |120(124

02| 112 | B0 | 108 [107 | 126 | 127 [113|103 127 (120 | B5 | 101|128 (110|106 | 105|118 102|112 {100 | 108 | 107 | 126 [127 | 113 103

106 (129 |107 | 65 129 115 |126 [117 [125 121126 | 104 | 60 | 116 [121 | 101 |112| 118 106 | 128|107 {105 |129 [115 |126 |117 [126

100|120 [114 (124 | 70 | 106 | 104 [116]125 100123 [129 | 12| 55 | 118|126 |16 | 105 100120 | 114|124 | 110 (108 | 104 | 116]125

N2 105 (118 | 106 122 (103 | 106 | 101 112105 | 118 | 106

(d) (e) (f)

Figure 3:(a), (b) and (c) are three neighborhoods. (d), (e) and (f) shothe pixel values of the above
neighborhoods.

part. This is undesirable because they two will appear irstime non-causal neighborhood and be com-
pared with the candidate non-causal neighborhoods whemetkidevel is being synthesized. This conflict
between the two part will lead to undesirable behavior uig#D matching.

3.3 Multi Resolution

The neighborhood matching technique is based on the Marksunaption that in a texture image every
pixel only depends on its neighborhood. Theoretically, dize of the neighborhood should be at least as
large as the size of the largest regular texture structuogveder, this makes the computation very expensive
because of high dimension if the image is represented ingdesiasolution. The multi-resolution approach
is a more natural way to solve this problem, because in thesestlevel, even very small neighborhoods
can cover a large part of the image.

Also, the multi-resolution method is very intuitive. In thearse level, it captures the global structure
of the texture, such as long-range repetitions, and syizérea low-resolution version of the output texture
that is blurry and lacks details, yet giving the correct glosiructure. Then from coarse to fine, it adds
details onto the predefined structure, to make it better atigh The low-resolution structures serve as a
guide laying out the foundation of the image as details adedd

The success of multi-resolution depends upon its execuiioimhe WL implementation, the image struc-
ture often seems to change during the coarse to fine progneskat is, the final result looks very different
from the synthesis of the first coarse level (See Fig. 4). Hason is very simple: in the concatenated
neighborhood containing both the current level and themtdevel, the numbers of pixels from the two
sources are different! For example, if the parent level causal neighborhood has 5x5=25 pixels, and
the current level causal neighborhood has (9x9-1)/2=486Ipixn the SSD the 40 current-level pixels will
dominate the 25 parent-level pixels. Therefore, the pdemet contributes less weight to the SSD and may
not fully forward the global structure to the next level.

(a)
(b)
Figure 4: (a) is the Gaussian pyramid of the input stonewall ¢xture. (b) is the synthesized Gaussian

pyramid of output texture. The coarsest level vaguely giveints of two dark lines in the reverse
diagonal direction. However, these hints are not picked upri the coarse-to-fine process.

4 The Improved Algorithm

Based on the problems that were discussed in the previotisrsewe propose some modifications to the
original algorithm. They are explained one by one as follows

4.1 Morphological Processing And Image Analogy

What motivated us to begin the research on this topic wasdihed of synthesis of the stonewall texture
(Fig. 4). The boundaries of the stones are lost in the outpagée. The challenge in synthesizing this texture
is that a majority of the pixels form the bodies of the stones are plain in appearance. Only a few salient
pixels form edges at the boundaries between the stones.

To balance the weights of plain pixels and edge pixels, wd os&phological operations such as erosion
or dilation, depending on whether the edges are relativati dixels or bright pixels. Such morphological
operations will increase the width of the edges so that tlegycount more in the SSD. The steps can be
described as follows. (Fig. 5)

1. Inputimage la is eroded (or dilated) to increase the widlthe edges, resulting in image Sa.
2. Sais processed with WL multiresolution synthesis athorj to synthesize an output Ss.

3. Use the image analogy concept [8], where three input imAg&’, B are given to produce an output
image B’ such that this new “analogous” image B’ relates tmBthe same way” as A relates to A.
Here Ais Sa, A'is la, B is Ss, and we compute the B’ which is thalfoutput texture Is. We use
image analogy in single resolution, by matching the comzdgzl vector of neighborhoods from B
(non-causal) and B’ (causal) to those candidate neighlooihérom A and A.

5

Input

Morphological
Operation

>

(A)

(A) Sa (A)

Image Analogy WL algorithm

s (B") Ss (B)

Figure 5:The image analogy step. la is the input texture image. It wasnocessed with morphological
operation to enhance the edges, to be image Sa. Sa was usechasnput of WL algorithm to synthesize
an output image Ss. Then la, Sa and Ss are used as the three irtmf the image analogy step, to get
the final output texture image Is.

In the morphological operation, the structure element eseh as a 5x5 square. Currently it is chosen
by hand. In future, we may select the size of the structurenefe automatically based on the image
histogram analysis, i.e., adjusting the size of the streatlement such that in the image histogram the peak
corresponding to ‘figure’ will have a comparable size witk ffleak corresponding to ‘background’.

This modification is only effective for those textures thansist of a lot of similar but irregular objects.
For other kinds of textures, this modification may not be ssagy.

4.2 Non-causal Neighborhoods

For each level of the pyramid, we reformulate synthesis agastep process.

1. First, we synthesize this level using causal neighbatbo@hen the bottom part is being synthesized,
non-causal neighborhoods should be used so that the alsgathesized top part can participate into
the synthesis process and give guide to the bottom part giegeare supposed to be tiled seamlessly.

2. Then we repeat the synthesis process using differentaosal neighborhoods within the same level.

This step can refine the synthesized results slightly becaos-causal neighborhoods give complete
information of the surroundings of each pixel.

4.3 Weighted Multiresolution Matching

To maintain a consistent image structure throughout theseeta-fine process, we use weighted neighbor-
hood matching. The goal of the weighting is to overcome theven numbers of pixels from the current
level and the parent level. In the total SSD we give the pdexet more weight to balance it with the current
level. In our experiment, we give the weights to the parerglland the current level as 2:1 to approximately
balance the 25 and 40 pixels in the SSD.

In the coarse level, because it is a blurred version of theyémé often has a much smaller dynamic
range of pixel values. Therefore, it also makes the pareml kctually less weighted. Also, sometimes
because of the blurriness, the coarsest level is nearlyridass (See Fig. 6). So we adjusted the dynamic
range of each level to be the same as the finest level to overtimproblem.

@
(b)

Figure 6: The Gaussian pyramid of the input stonewall textue image. (a) is the pyramid without
adjusting dynamic range. The coarsest level is almost feateless because of the blurriness. (b) shows
the pyramid with adjusted dynamic range, giving more detaik in the coarsest level.

5 Results

We tested our algorithm on many different textures, inalgdistonewall, pebbles, beads, pine-shoots, peas
and leaves. All these textures share one common featutes thigey all consist of many similar but irregular
objects. The WL algorithm does not perform well on theseur®d, but our modifications produce good
results on these.

We did two sets of experiments for comparison. The first setxpkriments intends to show the im-
provements by different combinations of our modificatiomsradhe WL algorithm (See Fig. 7). The second
set of experiments compares our results with state-okthepproaches in the texture synthesis field (See
Fig. 8 and Fig. 9).

5.1 First Set of Experiments

The first set of experiments shows different combinationswfmodifications, by adding one modifica-
tion each time. The three combinations include: (1)“Wesghmatching”, (2) “Weighted matching” +
“Non-causal neighborhoods”, (3) “Weighted matching” + ‘iNoausal neighborhoods” + “Morphologi-
cal processing and image analogy”. We compare these thrabications with the WL algorithm and
Ashikhmin’s algorithm [1]. Ashikhmin’s algorithm is anahmodified version of the WL algorithm which
usually produces discontinuity between patches. (Se€efffig.

For each texture, we showed six images. They are: (a) the image, (b) the output of the WL algo-
rithm [12], (c) the output of Ashikhmin’s algorithm [1], (djsing the modification of “Weighted matching”
on the WL algorithm, (e) using “Weighted matching” + “Nonusal neighborhoods” on the WL algorithm,
and (f) using “Weighted matching” + “Non-causal neighbaytis” + “Morphological processing and image
analogy” on the WL algorithm.

The results show that our modifications do improve the qualithe WL texture synthesis, in that the
blurriness produced by the WL algorithm is reduced by theifreadions. Moreover, our modifications do
not have the discontinuity problem that Ashikhmin’s algfum has. Among the three modifications, it seems
that “Morphological processing and image analogy” has teatgst effect, which improves the synthesis
guality dramatically.

In this set of experiment, each texture image is 128x128 sgadg, including both input and out-
put images. In both the WL algorithm and our approach, thes&auo pyramids contain 4 levels, with
the sizes as 16x16, 32x32, 64x64 and 128x128. Neighborhizedischosen as 9x9 and parent level
has neighborhood size of 5x5. We produced the results ofkAstin’s algorithm by using Hertzmann’s
code (http://mrl.nyu.edu/projects/image-analogi@s/iivith the option “Ashikhmin search method” being
selected.

5.2 Second Set of Experiments

In order to compare our algorithm with state-of-the-artrapphes in the texture synthesis area, we did the
second set of experiments. We compare the our results ofinorghall three modifications, with Efros
and Freeman’s image quilting algorithm [4] and Kwatra ¢ &raph-cut approach [9]. These two state-
of-the-art approaches are both patch-based. It is saigp#teh-based texture synthesis approaches usually
can avoid the blurriness problem which most pixel-basedagmhes have. This time, all output images are
256x256 grayscale, and the input texture images are the gaith@se in the first set of experiment, which
are all 128x128 grayscale.

We implemented Efros and Freeman’s image quilting algarjtim which the window size was chosen
to be approximately the size of the relevent structureséridkture. That is, the window sizes for stonewall,
pebbles, beads, pine-shoots, peas and leaves texture®ad?, 30, 66, 48 and 42 respectively. The width
of the overlap edge is 1/6 of the window size. Kwatra et alfagh-cut results were kindly provided by
Kwatra. Our own results were produced by combining all thmealifications. The Gaussian pyramids for
the output images contain 4 levels, with the sizes as 32x8%4 128x128 and 256x256. Neighborhood
size is chosen as 9x9 and parent level has neighborhoodf$zé.o(See Fig. 8 and Fig. 9)

From the comparison, we can see that our approach is almogtazable with these patch-based meth-
ods. Sometimes, our approach produces even better rdsafighe other two methods. For example, our
approach outperforms Efros and Freeman’s image quiltipgogzh on the “stonewall”, “pebbles”, “beads”
and “leaves” textures, because in these cases Efros anah&mnieapproach either has broken objects in the
output texture or produces a lot of exactly repeating elémdfwatra et al.'s Graph-cut approach is hard to
beat, however, on the “beads” texture, our approach pradieeeer “broken” beads in the output image than
the graph-cut approach. However, on the “pine-shootsutextthe two patch-based methods outperforms
our approach in that our result produces blurriness in &éxtute.

6 Conclusion

In this paper, we presented an improved version of Wei andy’suvexture synthesis algorithm. The
modifications include applying morphological operationsatld weight to salient edge pixels, using both
non-causal neighborhoods and causal neighborhoods, amstiad the weighting between the parent and
current level in the Gaussian pyramid. Experimental residimonstrate that the modifications improve the
synthesis results for many textures.

Acknowledgments

We thank Vivek Kwatra for kindly providing us the Graph-cyhthesis results for the input textures.

References

[1] M. Ashikhmin, “Synthesizing Natural TexturesRCM Symposium on Interactive 3D Graphics, pp. 217-226,
2001.

[2] G.R. Cross and A. K. Jain, “Markov Random Field Texturedéts,”| EEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 5, pp. 25-39, 1983.

[3] J.S. De Bonet, “Multiresolution Sampling ProcedureAmralysis and Synthesis of Texture Image3 GGRAPH,
pp. 361-368, 1997.

[4] A. Efrosand W. T. Freeman, “Image Quilting for Texturerfilyesis and Transferd GGRAPH, 2001.
[5] A. Efros and T. Leung, “Texture Synthesis by Non-parametampling,”lCCV, 1999.

[6] Y. Xu, B. Guo, and H.-Y. Shum, “Chaos mosaic: Fast and mgnedficient texture synthesisTech. Rep. MSR-
TR-2000-32, Microsoft Research, 2002.

[7] D.J. Heeger and J. R. Bergen, “Pyramid Based TextureysmsSynthesis, 9 GGRAPH, pp. 229-238, 1995.

[8] A.Hertzmann, C. Jacobs, N. Oliver, B. Curless, D. Salg$mage analogies, 3 GGRAPH, 2001.

[9] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick, ‘&hcut Textures: Image and Video Synthesis Using
Graph Cuts,SSGGRAPH, 2003.

[10] L. Liang, C. Liu, Y. Xu, B. Guo, and H.-Y. Shum, “Real-tertexture synthesis by patch-based sampliAGM
Transactions on Graphics, Vol. 20(3), pp. 127150, 2001.

[11] J Portilla and E P Simoncelli, “A parametric texture nebtased on joint statistics of complex wavelet coeffi-
cients,”Int’| Journal of Computer Vision, Vol. 40(1), pp. 49-71, 2000.

[12] L. Wei and M. Levoy, “Fast Texture Synthesis using Tedesctured Vector Quantizationsl GGRAPH, 2000.

[13] S. C. Zhu, Y. N. Wu and D.B. Mumford, “FRAME: Filters, Rdom field And Maximum Entropy: Towards a
Unified Theory for Texture ModelingJnternational Journal of Computer Vision, Vol. 27(2), pp. 1-20, 1998.

10

Stonewall (from VisTex, resized and changed to grayscale)

_ Pebbles (from http //textures forrest cz, Stone 091 rezsed and changed to grayscale)

(a) Inpt | (b) WL ©) Ashikhmin: () W (e) WHNT (W N s

Figure 7: Synthesis results of stonewall, pebbles, beadsing-shoots, peas and leaves. For each tex-
ture, we showed six images. They are: (a) the input image, (lihe output of the WL algorithm,

(c) the output of Ashikhmin’s algorithm, (d) the output using the modification of “Weighted match-
ing” (“W”) on the WL algorithm, (e) the output using “Weighte d matching” (“W”) + “Non-causal
neighborhoods” (“N”) on the WL algorithm, and (f) the output using “Weighted matching” (“W”") +
“Non-causal neighborhoods” (“N”) + “Morphological processing and image analogy” (“M”) on the
WL algorithm.

11

Stonewall

Pebbles

: i
. kb%k}*ku
(a) Input (b) Efros and Freeman (c) Kwatra et aI. (d) Our approach

Figure 8: Comparison of our approach with state-of-the-art texture synthesis approaches on
stonewall, pebbles, beads textures. Each row has four imagie(a) the input image, (b) the output of
Efros and Freeman'’s image quilting approach, (c) the outpuf Kwatra et al.'s Graph-cut approach,
(d) the output of our approach combining all three modifications.

12

Pine-shoots

.
L

(d) Our approach

Tl

(b) Efros and Freeman

(c) Kwatra et al.
Figure 9: Comparison of our approach with state-of-the-art texture synthesis approaches on pine-
shoots, peas and leaves textures. Each row has four images) (he input image, (b) the output of

Efros and Freeman'’s image quilting approach, (c) the outpuf Kwatra et al.'s Graph-cut approach,
(d) the output of our approach combining all three modifications.

13

