
European Journal of Operational Research 56 (1992) 343-356 343
North-Holland

Theory and Methodology

An in-depth empirical investigation
of non-greedy approaches for the minimum
spanning tree problem

F. Glover
School of Business, UniL,ersity of Colorado, Boulder, CO 80309-0419, USA

D. Klingman
Graduate School of Business, and Computer Sciences, College of Natural Sciences, The Unit~ersity of Texas
at Austin, Austin, TX 78712, USA

R. Krishnan
Decision Systems Research Institute, School of Urban and Public Affairs, Carnegie-Mellon Unicersity,
Pittsburgh, PA 15213, USA

R. Padman
School of Urban and Public Affairs, Carnegie-Mellon University, Pittsburgh, PA 15213, USA

Received March 1989; revised September 1989

Abstract: This paper details the design, implementation, and testing of a one edge pass non-greedy
algorithm for the minimum spanning tree problem. The use of network labeling procedures, and path
weights to screen entering edges, provides a novel implementation of this algorithm. The choice of data
structures also allows for an efficient implementation of reoptimization procedures, which have hitherto
never been studied. Comprehensive results on the performance of both the greedy and non-greedy
algorithms in optimization and reoptimization modes under various screening criteria, graph topologies,
sizes and densities, and weight distributions are presented. The empirical results based on 855 problems
bear out Tarjan's conjecture that greedy algorithms have a competitive advantage over non-greedy
algorithms for the minimum spanning tree problem, except in special cases. However, for the problems
tested, when a small percentage of edge weights are changed, non-greedy approaches are competitive
with greedy algorithms in reoptimization mode.

Keywords: Networks, minimum spanning tree, non-greedy approaches, reorganisation

1. Introduct ion

The minimum spanning tree (MST) problem is
one of the simplest and most widely studied graph
problems (Cheriton and Tarjan, 1976, Dijkstra,

1959, Graham and Hell, 1985, and Kershenbaum
and Van Slyke, 1972). The MST problem is useful
in the modeling of a variety of applications such
as the design of cable television networks, design
of leased-line telephone networks, and other

0377-2217/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

344 F. Glot!er et al. / In-depth incestigation .for the minimum spanning tree problem

telecommunications problems (Loberman and
Weinberger, 1957). It has also found important
applications in cluster analysis by providing effi-
cient modeling techniques to solve problems that
have not been handled well by clustering methods
(Gower and Ross, 1969), and in network reliabil-
ity, where the weight of a MST represents the
minimum probability that the tree will fail at one
or more edges (Van Slyke and Frank, 1972).
Gomory and Hu (1961) have used MST evalua-
tions as subproblems for solving multiterminal
flow problems. A similar application was pro-
posed by Held and Karp (1970, 1971) for solving
traveling salesman problems. Applications to
solving specialized transportation networks
(Golden, Magnanti, and Nguyen, 1977), and to
suboptimizing or decomposing larger, more com-
plex problems further illustrates the pervasive
nature of the MST problem.

The MST problem is one of the few problems
that can be solved via a 'greedy approach'
(Edmonds, 1971). There are three classical algo-
rithms which follow this approach, namely, those
of Boruvka (1926) (also rediscovered by Kruskal,
1956), Choquet (1938)(also rediscovered by Sollin
(Berge and Ghouila-Houri, 1965)), and Prim
(1957). Numerous greedy variants of these basic
algorithms have been proposed in the literature
(Pynn and Warren, 1972, Haymond, Jarvis and
Shier, 1984, Kevin and Whitney, 1972, Yao, 1975,
and Cheriton and Tarjan, 1976). Cheriton and
Tarjan (1976) have performed an extensive study
of the theoretical efficiency of MST algorithms,
and Kershenbaum and Van Slyke (1972) provide
an excellent survey of implementation techniques
for such algorithms. Efficient implementation
techniques and extensive computational testing of
these algorithms have also been documented in
the literature (Brennan, 1982, Haymond, Jarvis,
and Shier, 1984, Jarvis and Whited, 1983, John-
son, 1975, Kershenbaum and Van Slyke, 1972,
and Spira and Pan, 1975).

MST greedy algorithms are analogous to
label-setting shortest path algorithms. Label-se t -
ting procedures for shortest path problems
(Gilsinn and Witzgall, 1973) dictate that once an
arc has been selected for inclusion in the tree, it
is never discarded. Hence the tree is optimal at
every stage with respect to the arcs selected.
Greedy algorithms follow the same approach. On
the other hand, label-correcting shortest path

methods may be interpreted as performing ex-
changes that swap an edge in the tree with an
edge out of the tree to progressively improve the
solution. Label-correcting approaches have been
shown to be superior to label-setting approaches
in the study of shortest path problems over a
wide range of topologies (Glover, Klingman,
Phillips, and Schneider, 1985).

Non-greedy MST approaches are the analog of
label-correcting methods for the shortest path
problem. There have been some conjectures re-
garding the efficiency of such non-greedy ap-
proaches for the MST problem (Tarjan, 1983),
but no empirical study exists in the literature to
verify them. The research study of this paper
undertakes to remedy this lack. As a foundation
for this study, we develop non-greedy algorithm
variants based on efficient network flow labeling
procedures, and conduct in-depth empirical tests
comparing these non-greedy algorithms to greedy
algorithms for the MST problem.

Another motivation for studying non-greedy
approaches lies in their relevance to the design of
reoptimization procedures for the minimum
spanning tree problem. Surprisingly, no study of
MST reoptimization procedures has been con-
ducted to date. The ability of non-greedy algo-
rithms to start from any initial spanning tree, in
much the same manner as label-correcting short-
est path algorithms, suggests that non-greedy al-
gorithms may be a natural vehicle for reoptimiza-
tion when only a few of the edge weights change.
Moreover, in applications which employ MST
problems as subproblems, the edge weights often
change from one subproblem to the next, requir-
ing efficient techniques for obtaining the new
solution. Such related subproblems can be solved
either by starting fresh or by employing knowl-
edge about the old optimal MST. This occurs in
the solution of multiterminal network flow prob-
lems, traveling salesman problems, and the more
general degree-constrained minimum spanning
tree problems (Gomory and Hu, 1961, Gabow
and Tarjan, 1985, Glover and Klingman, 1974,
Glover and Novick, 1986, and Held and Karp,
1970).

2. Notation and terminology

Let G = (N , E) denote a connected undi-
rected graph with node set N and edge set E.

F. Glover et al. / In-depth inrestigation for tile minimum spanning tree probh'm 345

Each edge e = (i, j) in E has an associated weight
w(e) = w(i, j), unrestricted in sign. The weight
w(T) of a spanning tree T = (N, E ') is given by

w(7") = E w(e).
e C / 5 "

A minimum spanning tree (MST) for G is then
a spanning tree T ' such that w (T ') <~ w(T) for all
spanning trees T of G.

The data structures commonly used to repre-
sent and manipulate rooted spanning trees are
briefly reviewed as follows. (For a complete de-
scription, see Glover, Karney, and Klingman,
1972, and Barr, Glover, and Klingman, 1979.) If
nodes i and j denote the end points of a common
edge in the rooted tree such that node i is closest
to the root, then node i is called the predecessor
of node j, and j is called the immediate successor
of node i. The cardinality function defines for
each node k the number of nodes in its subtree.
The thread function defines a top-to-bottom, left-
to-right node pointer through the tree. All imme-
diate descendants of a node k are called brothers
of each other. The left-most node among these is
identified by the successor function of node k,
and the remaining are identified by the brother
function. The lastnode function of any node k is
the last node encountered in the subtree of k
when the subtree is traversed in thread order.

For any edge e = (i, j) in E - E ' , where E ' is
the set of edges forming the tree, the basis equi~'-
alentpath, PT(e) of e, is defined as the set of tree
edges in the unique cycle created by the addition
of e to E ' .

In this paper, we create and utilize a new node
label, called the path-weight label, which is an
upper bound on the maximum edge weight on the
unique path from the node to the root. This label
is used to improve computational efficiency of the
non-greedy algorithm variants.

3. Non-greedy algorithm for the MST problem

The following optimality condition character-
izes minimum spanning trees (Aho, Hopcroft,
and Ullman, 1974, Haymond, Jarvis, and Shier,
1984, and Tarjan, 1983):

Suppose T is a spanning tree of G. T is an
MST if and only if for all edges e not in T,
w(e) > w(u) for all edges u in PT(e).

Haymond et al. (1984) observe that this opti-
mality condition immediately suggests the follow-
ing algorithm. Construct an arbitrary spanning
tree for G, and test 'whether the optimality condi-
tion holds. If so, the current tree is optimal.
Otherwise, there are edges e and u such that the
condition is not satisfied, and it is therefore ad-
vantageous to exchange e and u in the current
tree. Henceforth we will call such an exchange,
an adt,antageous exchange. By repeating this
tes t /exchange procedure, an MST is obtained
after a finite number of steps.

If e is selected arbitrarily, we refer to such an
algorithm as non-greedy. By the following rule to
select u, the number of times an edge has to be
examined is reduced to one.

Leaving Edge Selection Criterion. For any-ad-
vantageous exchange (e, u), select u such that
w(u) = maximum/~ pV~,,)(w(i)).

Lemma: A non-greedy algorithm which employs
the Leal'ing Edge Selection Criterion has to exam-
ine each edge not in the starting tree exactly once.

Proof: There are two cases: (1) e is in the
starting tree, and (2) it is not. First, assume e was
in the starting tree and subsequently.removed but
never examined. In this case, some edge r re-
placed e, and w(e) was the largest weight in
PT(r). Suppose immediately after the exchange
(r, e), e had been examined. Its basis equivalent
path would consist of the edges (r U PT(r) - e).
Since w(e) > w(i), i E r u PT(r) - e, e would not
provide an improving exchange at this time. Fur-
ther, the same argument establishes that any edge
e which leaves the tree will not provide an im-
proving exchange if considered immediately after
leaving the tree.

We will now show that an edge which is not
improving when it is considered will never pro-
vide an improving exchange. Let e be an arbitrary
edge in the graph and PT(e) denote the basis
equivalent path of e when it was examined. PT(e)
will change only if an advantageous exchange
(x, y) occurs such that y ~ PT(e). Suppose such
an exchange occurs and the Leaving Edge Selec-
tion Criterion is applied. Let PT(x) denote the
basis equivalent path of x at the time of the
exchange. Then we have:

(1) w(e) > w(y) because e was not improving
when it was examined,

346 F. Glover et al. / In-depth investigation for the minimum spanning tree problem

(2) w(y) > w(x) because (x, y) is an advanta-
geous exchange, and

(3) w(y)>lw(i) for i ~ P T (x) because the
Leaving Edge Selection Criterion was applied.
Since the basis equivalent path of e after the
exchange (x, y) is a subset of PT(e) U PT(x) and
since w(e) > w(i), i ~ PT(e) U PT(x), e would not
provide an improving exchange after performing
any improving exchange which altered the basis
equivalent path of e. []

The first step of a non-greedy algorithm is to
obtain an initial spanning tree. The starting tree
may consist of edges in E, in which case it will be
called a feasible spanning tree. Otherwise, the
tree consists of one or more edges not in E. Such
edges will be referred to as artificial edges and
assigned a weight greater than the largest edge
weight of the edges in E. A tree containing one
or more artificial edges will be referred to as an
artificial spanning tree.

The basic steps of a one edge pass non-greedy
algorithm follow.

Algorithm BNG (Basic Non-Greedy Algorithm).
Step 1. Build an initial spanning tree T =

(N, E'), possibly containing artificial edges whose
edge weights are larger than the maximum edge
weight in E. Select an edge e = (i, j) in E - E'.

Step 2. Test the optimality condition; if T is
non-optimal, select u based on the Leaving Edge
Selection Criterion. Otherwise, go to Step 4.

Step 3. Perform the exchange (e, u), updating
T (and hence E).

Step 4. Select an edge not previously examined
from the set E - E' , where E ' is the set of edges
in the starting tree, and return to Step 2. If all
edges have been examined, stop. If the current
spanning tree T contains an artificial edge, the
problem is infeasible. Otherwise, it is an MST.

Justification of the algorithm follows from the
preceding lemma.

Since Step 2 of BNG has a worst case bound
of O(n), the algorithm has a worst case bound of
O(mn), where m is the number of edges in E.
We propose an enhancement which can reduce
the number of basis equivalent path cycle traces
performed in Step 2 and thus may improve the
empirical run time of the basic algorithm. The

result is termed the Intelligent Non-Greedy (ING)
algorithm.

Specifically, the ING algorithm employs the
path weight function to eliminate unnecessary
cycle traces. Recall that a path weight is defined
to be an upper bound on the maximum edge
weight of the unique path from the given node to
the root node. Thus, for every edge e = (i, j)
considered in Step 2 of the basic algorithm, if
w(e) is greater than or equal to Path-weight(i)
and Path-weight(j), then no advantageous ex-
change exists for e. The path weight function,
however, provides only partial screening in the
sense that, for some edges, a comparison of w(e)
with its associated path weights does not preclude
a cycle trace which may not result in an advanta-
geous exchange.

The basic steps of the ING algorithm are the
same as the BNG algorithm except that Step 2 is
replaced by Step 2a.

Step 2a. If w(e)> Path-weight(i) and w(e)>
Path-weight(j), discard edge e; else trace PT(e),
identify u, the maximum weight edge in PT(e); if
w(u) < w(e), discard edge e, and go to Step 4.

The worst case complexity of the 1NG algo-
rithm is the same as the BNG algorithm, O(mn).

4. Implementation issues

The implementation of the one edge pass
non-greedy algorithm provides several opportuni-
ties for utilizing network flow tree data struc-
tures. Several versions of both the BNG and ING
algorithms were developed, based on different
start procedures, alternative data structures, and
path weight functions of varying restrictiveness.

The basic computational tasks involved in im-
plementing the non-greedy algorithms are in cre-
ating the initial tree, performing cycle traces, and
updating the node label functions. Each of these
tasks may be implemented using several alterna-
tive strategies. This section considers the alterna-
tive starting procedures and data structures used
and presents a brief discussion of the trade-offs.

Two approaches were examined for building
the initial tree. One of these approaches creates a
starting tree composed of only artificial edges,
and the other approach creates a starting tree

F Glocer et al / In-depth mvesttgatton for the mmtmum spannmg tree problem 347

composed of no artificial edges. The artificial
start procedure, called AA, creates an artificial
node and links all nodes in the graph to it using
artificial edges with an edge weight set equal to 1
unit greater than the largest edge weight in the
graph.

To construct a feasible spanning tree, we chose
to reorder the edge list, in what is often called
forward star form, so that all edges incident to a
node are located contiguously. A breadth-first
tree is then generated using this reordered list, or
the problem is determined to be infeasible. This
start procedure will be called RR.

The data structures used to implement the
cycle trace and update procedures are presented
in increasing order of complexity. The basic algo-
rithm BNG was implemented using only the pre-
decessor and cardinality functions. In Step 2, for
a given edge e, its end nodes are identified, and
their predecessors are traversed using the cardi-
nality function (to ensure that only edges in PT(e)
are examined) until a common ancestor is en-
countered. This implementation is efficient in the
sense that it never considers any edge not in
PT(e) and thus simultaneously allows the edge u
in PT(e) with the largest weight to be identified.
If w(u) > w(e), an advantageous exchange is per-
formed and the predecessor and cardinality func-
tions are simultaneously updated. Another ad-
vantage of this approach is that the cardinality
function only has to be updated for the nodes in
PT(e); whereas other functions which could be
used in place of cardinality require a subtree
update, e.g., the depth function.

To reduce the number of cycles traces, the
path weight labels are employed in ING. In the
ING implementation, the cycle trace is still per-
formed using cardinahty and predecessor func-
tions, but the use and updating of the path weight
labels necessitates additional consideration.

Thus to thoroughly evaluate the effectiveness
of the path weight concepts and the trade-off of
the effort required to update them versus reduc-
ing the number of cycle traces, we looked at
alternative strategies on the tightness of the path
weight bounds and on when the algorithm begins
to maintain and utilize the path weight function.

More specifically, the use of the path weight
labels necessitates an update of these labels after
each advantageous exchange. This update can be
implemented as either a partial (P) or full (F)

update. A partial update of the path weight func-
tion creates sharp path weights (i.e., path weights
which are minimum upper bounds) on the nodes
involved in the cycle trace alone. It may leave
some of the remaining nodes in the tree with
non-sharp values (i.e., path weights which are
upper bounds, but not necessarily minimal). This
procedure can be performed effectively using the
predecessor, cardinality, and path weight func-
tions and only involves a partial retrace of PT(e).

In contrast, a full update maintains sharp path
weights for all the nodes of the tree at all times.
This can be done efficiently by considering only
the nodes in the subtree created when the largest
weight edge u = (i, j) leaves the spanning tree.
Let k denote the node l or j whose predecessor
is j or z, respectively. The subtree of node k is
rehung using the new edge e whose weight is less
than that of the leaving edge. Thus, the only
nodes whose path weight will not be sharp after
the exchange lie in subtree of k. Consequently,
two different sets of data structures were exam-
ined to efficiently traverse and update path
weights in subtree of k. One implementation uses
the predecessor, thread, and lastnode functions
to traverse and update path weights in the sub:
tree. The other implementation uses the succes-
sor and brother functions to maintain sharp path
weights.

Given the effort required to maintain the path
weight labels and the possibility that the path
weights may be particularly ineffective at elimi-
nating cycle traces when the current spanning
tree contains artificial edges, we also made an
evaluation as to when an algorithm should begin
to maintain and use path weight labels. Specifi-
cally, when the AA start is employed, path weight
labels are not maintained until a feasible tree is
found. At this point, the algorithm initializes and
updates path weight labels using either the par-
tial or full update procedure.

Four variants of the non-greedy algorithm were
implemented based on the above discussion. The
first variant, called RR, is an implementation of
algorithm BNG. It uses the predecessor and car-
dinality functions. The second varlant, called RR-
P, is an implementation of algorithm ING with
partial updates of the path weights using prede-
cessor, cardinality and path weight functions. The
third, called RR-F-TL, and fourth, called RR-F-
SB, variants are also implementations of the ING

348 F Glover et al. / 1n-depth mvesttgatton for the mmtmum spannmg tree problem

algorithm which employ complete updates; the
former uses predecessor, cardinality, path weight,
thread, and lastnode functions, while the latter
uses predecessor, cardinality, path weight, succes-
sor, and brother functions. These variants permit
a thorough comparison of path weight function
alternatives, as well as performance of each data
structure in the update procedure. These variants
are then tested with the two start procedures,
thus resulting in two BNG codes and six ING
codes. The codes employing the nonartificial start
have the above names. The codes using an artifi-
cial start have the same names, except that the
first two letters, RR, are replaced by APt.

5. Experimental design

Eight variants of the non-greedy algorithm
were developed and tested on a variety of prob-
lem sizes, densities, topologies, and weight distri-
butions, and the best among them were com-
pared with two implementations of Prim's algo-
rithm, called P1 and P2, and one of Kruskal's,
called K1. Table 1 specifies the memory require-
ments of each code. The best ING code from a
memory standpoint is AA-P. Implementation and
testing of these greedy-algorithm-based codes are
reported in Haymond, Jarvis, and Shier (1984).
P1 and K1 use a heap sort to select the least
weight edge to be included in the tree, and P2
uses an address calculation sort to select the next
eligible edge.

Comparative performance of alternative im-
plementation strategies is studied in this paper by
solving 855 randomly generated problems. All
codes are written in F O R T R A N and were exe-
cuted on the IBM 3081D under optimization
level 2. Five test problems were solved for each
problem size, starting with a different random
number seed, and the average solution time is
reported. The reported times exclude input and
output time. In order to ensure fair and consis-
tent comparisons across all algorithms, a standard

problem representation consisting of problem
data in random edge format is input to all algo-
rithms. This was selected as a standard because,
traditionally, undirected graphs have been repre-
sented as edge lists (Aho, Hopcroft, and Ullman,
1974). Furthermore, Prim codes and some ING
codes would have an undue advantage over the
other codes if data is presented in a different
format to these algorithms, such as forward star
form. Thus the total time includes the time re-
quired to convert this standard representation of
random edge format into forward star form for
those algorithms that require it, such as Prim's
codes, and those ING codes that use a non-artifi-
cial start.

For all test problems, edge weights are within
the range 1 to 2000. Computational testing in-
cludes edge weights generated from two distribu-
tions - the uniform probability distribution and
the beta distribution. In addition, four skewness
levels were investigated for the beta distribution
the first with 75% of the weights skewed to the
right, the second with 75% of the weights skewed
to the left, the third with 60% of the weights
skewed to the right, and the fourth with 60%
skewed to the left. This appears to be the first
testing of non-uniform edge weights. Fifteen
problem sizes were tested, ranging from 100 nodes
and 200 edges to 2000 nodes and 20000 edges.
For each node size, problems were generated
with node degrees of 2, 5, and 10, where node
degree is computed as the ratio of number of
edges to number of nodes in the graph.

Test problems from three distinct graph
topologies were generated. The first topology
consists of random graphs, where two nodes are
selected randomly to form a new edge to add to
the graph. This graph generation code was ob-
tained from Haymond, Jarvis, and Shier (1984). A
uniform probability distribution is used to select
the nodes.

The second topology is called a bi -c lus tered

graph. These problems are generated by dividing
the problem size into two equal groups and gen-

Table 1

Code K P1 P2 AA RR A A - P R R - P AA-F-SB AA-F-TL RR-F-SB RR-F-TL

Node arrays 4 5 5 3 4 4 5 6 6 7 7
Edge arrays 5 5 5 3 6 3 6 3 3 6 6

F Glot'er et al / In-depth mvesttgatton for the mmtmum spannmg tree problem 349

erating distinct random graphs for each group.
Two nodes are then randomly selected from the
two disjoint graphs and connected with an edge
having a weight of 2000.

The third topology, called a single-clustered
graph, denoted as S-clustered in the tables of
solution time, again consists of two groups, where
one group consists of a single node connected to
a randomly selected node from the second group
with an edge weight of 2000. The single node is
~tself selected randomly from the given set of
nodes. Bi-clustered and single-clustered graphs
force all algorithms, irrespective of greedy or
non-greedy structure, to scan all edges, thus pro-
viding a measure of the worst-case empirical per-
formance of these algorithms. This also appears
to be the first testing of MST algorithms on
non-random graph topologies.

6. Computational results

After solving the 855 test problems and analyz-
ing the results for the eight non-greedy codes, we
found that the major conclusions regarding their
relative performance could be expressed in one
summary table, Table 2. Table 2 contains the
aggregate solution time in milliseconds across all

weight distributions, but distinguishes the prob-
lems by topology and node degree.

The results indicate that the AA-P code is the
most robust. It dominates other non-greedy im-
plementations across alternative topologies and
in problems with node degrees of five and ten.
However, the code RR proves better for prob-
lems of node degree two. The success of AA-P is
due in part to two factors. First, its artificial start
allows it to build a start tree quickly. Further, no
path-weight labels are calculated or updated until
all artificial edges are removed. At this point, the
tree so obtained is typically a good tree resulting
in quality path-weight labels. These labels help it
to screen a large number of remaining non-tree
edges quickly. It is interesting to observe that the
behavior of AA-P is a function of both problem
topology and node degree. While solution times
are directly proportional to node degree, AA-P
performs better in random and S-clustered
topologies than in the bi-clustered topology. This
is due to the special structure of the bi-clustered
topology (two clusters linked by a single edge)
which yields trees comprised of two subtrees de-
rived from each cluster linked by a single edge
which is always part of the tree. Exchanges per-
formed on this structure in AA-P often alter the

Table 2
Aggregate solution hmes (mdhseconds) for variants of the non-greedy algorithm on the IBM 3081D

Codes RR-F-SB RR-F-TL RR-P R R AA-F-SB AA-F-TL AA-P A A Best

Topology. random
Node degree. 2 717 745 552 537 687 676 649 586 RR
Node degree 5 1572 1607 1587 1748 1498 1645 1349 1724 AA-P
Node degree :10 2260 2469 2966 3656 2483 2502 2088 3328 AA-P
Subtotal 4549 4821 5105 5941 4668 4823 4086 5638 AA-P

Topology bt-clustered
Node degree. 2 738 754 498 464 576 564 540 481 RR
Node degree 5 1676 1767 1441 1449 1462 1479 1341 1347 AA-P
Node degree 10 2900 3040 2472 2986 2674 2581 2396 2663 AA-P
Subtotal 5314 5561 4411 4899 4712 4624 4277 4491 AA-P

Topology S-clus~red
Node degree 2 761 787 558 535 682 671 645 586 RR
Node degree 5 1552 1675 1541 1733 1664 1646 1443 1664 AA-P
Node degree. 10 2308 2494 2952 3590 2510 2467 2099 3323 AA-P
Subtotal 4621 4956 5051 5858 4856 4784 4187 5573 AA-P

S u b t o t a l - Node degree. 2 2216 2286 1608 1536 1945 1911 1834 1653 R R
S u b t o t a l - N o d e degree 5 4800 5049 4569 4930 4624 4770 4133 4735 AA-P
S u b t o t a l - N o d e deg ree ' 10 7468 8003 8390 10232 7667 7550 6583 9314 AA-P

Grand Total 14484 15338 14567 16698 14236 14231 12550 15702 AA-P

350 F. Glover et al / In-depth mvesttgatton for the mmtmum spannmg tree problem

root path of several nodes resulting in low-quality
path-weight labels which in turn reduce effi-
ciency.

It is important to note that AA-F-TL and
AA-F-SB, which implement full updates of the

path-weight label, do not perform as well as AA-P
even though they employ the same start proce-
dure. This is due to the fact that the work used to
maintain the quality of the path-weight labels
dominates gains made in screening out non-tree

Table 3
Aggregate solution times (mllhseconds) on the IBM 3081D for the skewed weight distributions

Codes AA-P K P1 P2

Topology. random;
Node degree 2

Right skewed 1125 827 854 627
Left skewed 1339 821 858 907
Subtotal 2464 1648 1712 1534

Topology random,
Node degree: 5

Right skewed 2604 1479 1349 994
Left skewed 2749 1470 1336 1270
Subtotal 5353 2949 2685 2264

Topology random,
Node degree 10

Right skewed 4172 2277 2059 1699
Left skewed 3950 2323 2078 1947
Subtotal 8122 4600 4137 3646

Topology bt-clustered,
Node degree: 2

Right skewed 1138 827 785 617
Left skewed 1303 828 788 907
Subtotal 2441 1655 1573 1524

Topology bt-clustered,
Node degree 5

Right skewed 3020 1501 1286 992
Left skewed 2981 1499 1312 1269
Subtotal 6001 3000 2598 2261

Topology. bt-clustered,
Node degree 10

Right skewed 5049 2239 1999 1790
Left skewed 5239 2266 2010 1846
Subtotal 10288 4505 4009 3636

Topology S-clustered,
Node degree 2

R~ght skewed 1200 821 846 612
Left skewed 1473 830 854 924
Subtotal 2673 1651 1700 1536

Topology S-clustered,
Node degree" 5

Right skewed 2508 1485 1349 1055
Left skewed 2696 1516 1346 1285
Subtotal 5204 3001 2695 2340

Topology S-clustered;
Node degree 10

R~ght skewed 4103 2276 2081 1710
Left skewed 4274 2272 2094 1959
Subtotal 8377 4548 4175 3669

Grand total 50923 27557 25284 22410

Best

P2
K
P2

P2
P2
P2

P2
P2
P2

P2
P1
P2

P2
P2
P2

P2
P2
P2

P2
K
P2

P2
P2
P2

P2
P2
P2

P2

F Glot,er et al / In-depth mvesttgatton for the mmtmum spannmg tree problem 351

edges, resulting in less efficient solution times.
The alternative data structures used in the up-
date of the path-weight labels do not seem to
make any significant difference.

In all our testing, the code R R performed well
on problems with node degree two. Codes which
employ a real start such as R R build a tree from
edges in the problem data and have no artificial
edges. Since n - 1 edges, where n is the number
of nodes, are required to build a tree and since
problems with node degree two have 2n edges, a
real start procedure supplies a start tree with
about half the available edges already in it. Thus,
RR, even without a path-weight label, is efficient
due to the small number of edges considered.
However, as node degrees increase the perfor-
mance of R R drops sharply.

In fact, as shown in Table 2, real start proce-
dures in general seem to lose heavily in compar-
isons on the larger node degrees and topologies.
Real starts provide a tree composed of real edges
quickly. However, the quality of the tree is poor,
resulting in poor path-wetght labels. These low-
quahty labels are unable to screen a large propor-
tion of non-tree edges, regardless of the use of a
full or partial update procedure, and result m
htgh solution times. Thus, our comparative test-
ing of non-greedy implementations indicates that
an artificial start combined with a partial update
is the most efficient.

While AA-P is the best non-greedy code, it ts
completely dominated by our implementations of
Prim's algorithm and Kruskal 's algorithm. In fact,
Prim is more than twice as fast as AA-P. These
tests were conducted using problems whose edge
weights were generated f rom-random and skewed
distributions. Tables 3 and 4 show the-results of
the testing on skewed and uniform distributions,
respectively. P2, the implementat ion of Prim with
the address calculation sort, proved to be both
robust and efficient in all our testing. This di-
rectly bears out the superiority of greedy ap-
proaches over non-greedy approaches in solving
the minimum spanning tree problem.

Several interesting observations can be made
from the testing on skewed and uniform distribu-
tions. In the case of the greedy algorithms, the
type of sorting procedure plays an important role
in the effect of skewness on solution times. As
can be seen in Table 3, the K and P1 implemen-
tations of Kruskal and Prim algorithms, which
employ a heap sort, are unaffected by the weights
generated from the skewed distribution. How-
ever, P2, the implementat ion of Prim's algorithm
with an address calculation sort, runs faster when
the bulk of the edge weights have smaller magni-
tudes. This is due to the fact that an address
calculation sort locates edges in an array based
on the magnitude of its edge weight. In the event
that the bulk of the edge weights have large

Table 4
Aggregate solution times (mdhseconds) on the IBM 3081D for the umform weight distribution

Codes AA-P K P1 P2 Best

Topology random
Node degree 2 2596 1650 1706 1798 K
Node degree ' 5 5396 3033 2705 2236 P2
Node degree 10 8352 4592 4146 3495 P2
Subtotal 16344 9275 8557 7529 P2

Topology bz-clustered
Node degree ' 2 2160 1661 1575 1790 P1
Node degree 5 5364 3026 2569 2202 P2
Node degree 10 9584 4599 3999 3458 P2
Subtotal 17108 9286 8143 7450 P2

Topology. S-clustered
Node degree 2 2580 1650 1698 1770 K
Node degree 5 5772 3050 2726 2268 P2
Node degree 10 8396 4549 4141 3534 P2
Subtotal 16748 9249 8565 7572 P2

Grand total 50200 27810 25265 22551 P2

352 F Glover et al. / In-depth mvesngatton for the minimum spanning tree problem

values, location of an edge in the array typically
involves more searching resulting in slower solu-
tion times.

One final note seems appropriate concerning
implementations of greedy algorithms. While pre-
vious empirical studies (Haymond et al., 1984)
have concluded that the Kruskal approach is gen-
erally much slower than the Prim approach, our
results do not indicate this to be true. It appears
that the discrepancy may be due to our use of a
standard problem format. In Haymond et al.
(1984), the inputs are provided in the form re-
quired by the implementation, without counting
any time used to organize the problem inputs in
these forms. By contrast, our solution times in-
clude the effort to transform problem inputs from
a randomly ordered collection of edges into the
forms the various codes require.

AA-P also seems to be slightly affected by the
skewed weight distributions and generally (though
not exclusively) executes slower on problems with
skewed edge weights than on problems with uni-
form weight distributions. However, it does not
demonstrate, in any conclusive manner, improved
efficiency on either left- or right-skewed edge-
weight values.

In summary, AA-P proved to be the most
efficient and robust non-greedy code while P2
was the most robust and efficient greedy code.
Further, all greedy codes dominate the AA-P
code by a factor of almost two.

7. Reoptimization

Solution procedures for several interesting
problems such as the multiterminal flow problem,
the traveling salesman problem and the vehicle
routing problem often employ Lagrangean relax-
ation where the relaxed problem is an MST prob-
lem whose weights change from iteration to itera-
tion. In such applications, the ability to obtain a
new optimal MST solution quickly is very impor-
tant.

Reoptimization may be carried out either by
solving the modified problem anew or by starting
from the previous optimal solution. The former
strategy can be implemented by greedy ap-
proaches, but the latter strategy seems more
suited to implementation by non-greedy ap-
proaches, which have the ability to start from an

arbitrary tree. We were unable to find any previ-
ous work in the literature which addressed reop-
timization issues for the MST problem.

To test reoptimization using a non-greedy pro-
cedure, we started from an MST denoted by
T (N , E ' , w (E ')) for problem G (N , E , w (E)) , and
upon the introduction of a new weight function
• (E), we simply used tree T (N , E ' , ~ (E ')) as the
starting tree for problem G(N , E , ~ (E)). The pro-
cedure was implemented by providing the partial-
and full-update artificial start codes with the tree
T (N , E ' , w (E ')) and the edge weight changes.
These codes are called MST-P and MST-F, re-
spectively. The results were compared with the
times to solve the modified problem using P2,
since it was the best greedy algorithm. To test
reoptimization, we chose to create two types of
test scenarios. In the first, only the weight of
edges not in the old MST were changed. In this
case, each edge weight was decreased sufficiently
to ensure that the old MST was no longer opti-
mal. In the second, only the weight of edges in
the old MST were changed. In this case, each
edge weight was increased sufficiently to ensure
that the old MST was no longer optimal. Each of
these scenarios ensured that the non-greedy algo-
rithm would have to perform several exchanges.

In the reoptimization testing, five problem sizes
in the range 100 nodes to 2000 nodes with three
node degree densities (2, 5, 10) and three prob-
lem topologies (random, bi-Clustered, S-Clus-
tered) were tested. (Since the edge weights were
selected to ensure non-optimality of the old MST,
the weights can no longer be considered to be
randomly selected from a given distribution.
However, the original weights are from the same
distributions as in the earlier testing.)

For each scenario, we tested changing 5, 10,
15, and 20 edge weights at a time. Table 5 pre-
sents the aggregate solution times over all topolo-
gies for the case where the weight of edges in the
old MST are increased. Additionally, the first
three columns in Table 5 specify the solution
times according to the number of edge weights
increased for edges in the old MST and the next
three columns specify the solution times accord-
ing to node degree 2, 5, and 10. Table 6 presents
similar results for the scenario where the edge
weights are decreased for edges not in the old
MST. The tables contain the times for three
codes: P2, the most efficient greedy algorithm,

F Glover et al / In-depth mvesttgatton for the mmtmum spannmg tree problem 353

MST-P, the reoptimizat~on algorithm with a par-
tial update of the path-weight label, and the
MST-F, the reoptimization algorithm employing
a full update of the path-weight label.

As can be observed from the results m Table
5, MST-F dominates all codes at the four levels
of changes, when edge weights are increased for
edges in the old MST. The efficient performance
of MST-F may be attributed to the fact that the
old optimal tree provided quality path-weight la-
bels, and the full update procedure (which main-
tains the quality of these labels) facilitated effi-
cient screening of a large number of non-tree
edges. The use of the full update seems crucial
since MST-F substantially outperforms MST-P.

It is interesting to note from Table 5 that the
time for reoptimization increases slowly with the
number of weight changes in the case of the
MST-F code. It increases at a faster rate in the
MST-P code, and remains fairly constant in the
case of P2 (where it is independent of the num-
ber of changes since P2 solves the problem anew
every time). This clearly mdicates that in per-
forming reoptimization w~th a relatively small
number of changes, MST-F has an advantage
over other methods, but as the number of changes
increases, P2 eventually dominates. Another point
to observe is that the solution times are a func-
tion of the number of nodes for all codes when
the number of changes is small. This property

Table 5
Aggregate solution times (mdhseconds) on IBM 3081D for m-tree edge-weight changes

Nodes Codes Codes

MST-F MST-P P2 MST-F MST-P P2

5 changes a

100 39 74 57
300 108 231 160
700 211 508 379

1000 341 626 544
2000 782 2174 1153

Total 1481 3613 2293

10 changes ~

100 50 88 60
300 131 258 158
700 279 1004 379

1000 413 896 540
2000 818 2341 1149

Total 1691 4587 2286

15 changes a

Node degree = 2

46 39 84
102 115 202
196 275 497
462 644 688
644 718 1499

1450 1791 2970

Node degree = 5

79 107
183 128
428 1229
563 1375

1089 2206

2342 5045

Node degree = 10

71
217
461
662

1220

2631

100 64 97 60 105 215 85
300 136 286 158 240 643 236
700 339 1231 382 581 2485 632

1000 452 907 545 659 1569 832
2000 1022 4092 1143 2056 10279 1719

Total 2013 6613 2288 3641 15191 3504

20 changes d

100 77 106 63
300 157 339 162
700 374 1281 413

1000 478 1067 553
2000 1127 4606 1144

Total 2213 7397 2335

a Number of edge-weight changes

354 F Glover et al. / In-depth mvesttgatton for the mmtmum spannmg tree problem

Table 6
Aggregate solution times (milhseconds) on IBM 381D for non-tree edge weight changes

Nodes Codes Codes

MST-F MST-P P2 MST-F MST-P P2

5 changes a Node

100 30 24 58 35
300 79 68 155 68
700 182 161 380 148

1000 272 240 540 211
2000 597 546 1141 588

Total 1160 1039 2274 1050

10 changes a Node

100 31 27 58 40
300 84 71 155 106
700 187 163 382 231

1000 276 245 559 377
2000 618 551 1138 793

Total 1196 1057 2292 1547

15 changes a Node

degree = 2

degree = 5

28 79
58 196

129 489
190 679
508 1484

913 2925

degree = 10

33 69
88 188

203 427
334 655
707 1169

1365 2508

100 36 29 58 63 51 83
300 88 72 155 169 141 237
700 191 164 376 379 326 562

1000 283 251 540 535 462 827
2000 631 550 1137 1111 1089 1707

Total 1229 1066 2264 2257 2069 3416

20 changes a

100 41 31 57
3oo 92 76 156
700 198 170 374

1000 293 252 541
2000 646 556 1145

Total 1270 1085 2273

holds t rue for P2 even when the n u m b e r of
changes increases, enab l ing the es t imat ion of re-
opt imizat ion t ime when the n u m b e r of nodes
increases. However, in the case of MST-F, the
reopt imizat ion t imes increase at a slower rate
than the n u m b e r of nodes.

The last three columns of Table 5 present
results classified by the n u m b e r of changes by
node degree, re inforcing the superiori ty of MST-
F. As node degree increases, P2 per formances
become be t te r compared to M S T - F due to the
increased n u m b e r of upda tes per formed with
subopt imal path-weight labels.

In the case of changes to non- t ree edge weights,
Table 6 indicates that the non-greedy codes are

be t te r than P2, and in part icular , MST-P has a
slight edge over MST-F. This can be explained by
the fact that in hand l ing changes to non- t ree edge
weights, the non-greedy algori thms perform only
a l imited n u m b e r of cycle traces and updates,
s tart ing from an old opt imal tree, whereas P2
solved the p rob lem anew. Since MST-P performs
slightly be t te r than MST-F, it also appears that
the quali ty of the path-weight labels are not as
crucial in this case. Fur thermore , it is clear from
Table 6 that overall pe r formance is a funct ion of
the n u m b e r of nodes, but the n u m b e r of changes
does not affect per formance of the non-greedy
codes to the extent that it does in the case of
changes to in- tree edge weights.

F Glot,er et al / In-depth inL,esttgatton for the mmtmum spannmg tree problem 355

8. Conclusions

Several variants of the non-greedy algorithm
for the minimum spanning tree problem were
developed and implemented using a combination
of well known and novel labeling procedures.
AA-P, an implementation of the ING algorithm
using an artificial start and a partial update of the
path-weight labels was identified to be the best
non-greedy code. AA-P was compared with effi-
cient implementation of the greedy algorithms
and found to be dominated by all greedy ap-
proaches for all topologies and node degrees.

Algorithms and computational testing were
also conducted for the reoptimization case. The
non-greedy approaches proved quite successful in
reoptimization and dominated greedy approaches
on all topologies and node degrees. While the
code MST-F was very efficient for modifications
to edge weights of in-tree edges, the code MST-P
was dominant for modifications to edge weights
of non-tree edges.

Acknowledgements

We would like to thank Professor Doug Shier
at the College of William and Mary for providing
us with the random problem generator and the
greedy codes P1, P2, and K.

This research was partially funded by the Cen-
ter for Business Decision Analysis, the Hugh Roy
Cullen Centennial Chair in Business Administra-
tion, the Office of Naval Research under contract
N00014-87-K-0190, and the University of Min-
nesota Graduate School Grant-in-Aid under re-
search budget 0959-3306-06.

References

Aho, A V, Hopcraft, J.E. and Ullman, J D (1974), The Design
and Analysts of Computer Algorithms, Addison-Wesley,
Reading, MA.

Barr, R , Glover, F., and Khngman, D (1979) "Enhancements
of spanning tree labelhng procedures for network opti-
mization", INFOR 17/4, 16-33

Berge, C., and Ghoulla-Houri, A. (1965) Programming, Games
and Transportation Networks, Wiley, New York

Boruvka, O. (1926), "O jtstem problemu minimalnlm", Prdca
Moravsk~ P~frodov~deck~ Spole~nostt v Brne 3, 37-58

Brennan, J J. (1982), "Minimal spanning trees and partial
sorting", Operations Research Letters 1/3, 113-116.

Chenton, D., and Tarjan, R.E (1976), "Finding mtmmum
spanning trees", SIAM Journal on Computmg 5/4, 724-
742

Choquet, G (1938), "Etude de certams reseaux de routes", C
R Acad Sct Parts 206, 310-313

Dukstra, E W (1959), "A note on two problems m connect,on
with graphs", Numertsche Mathemattk 1,269-271

Edmonds, J (1971), "Matrolds and the greedy algorithm",
Mathematical Programmmg 1, 127-271

Gabow, H N, and Tarjan, R.E (1985), "Efficient algorithms
for a famdy of matrold intersection problems", Techmcal
Report CU-CS-214-82, Umverslty of Colorado

Gdsmn, J., and Wltzgall, C (1973), "'A performance compari-
son of labeling algorithms for calculating shortest path
trees", NBS Techmcal Note 772, US Department of Com-
merce

Glover, F , Karney, D, and Khngman, D (1972), "The aug-
mented predecessor index method for locating stepping-
stone paths and assigning dual prices m distribution prob-
lems", Transportation Science 6/2. 171-179

Glover, F , and Khngman, D (1974), "Finding minimum
spanning trees with a fixed number of links at a node", m
A Prekopa (ed), Colloquia Mathematwa Socwtatts,
North-Holland, New York, 425-439

Glover, F , Khngman, D, Phtlhps, N, and Schneider, R
(1985), "New polynomial shortest path algorithms and
their computational attributes", Management Science 31/9,
1106-1128

Glover, F , and Novlck, B (1986), "The 2-quasi-greedy algo-
rithm for cardmahty constrained matroJd bases", Discrete
Apphed Mathematics 13, 277-286

Golden, B L, Magnantl, T L, and Nguyen, H G (1977), "Im-
plementing vehicle routing algorithms", Networks 7, 113-
148

Gomory, R E , and Hu, T C (1961), "Multltermmal network
flows", SIAM Journal of Apphed Mathematws 9, 551-571

Gower, J C, and Ross, G J S (1969), "Minimum spanning
trees and single linkage cluster analysis", Apphed Statistics
18, 54-64

Graham, R L., and Hell, P (1985), "On the history of the
mlmmum spanning tree problem", Annals of the H, story of
Computing 7/1, 43-58

Haymond, R E, Jarvls, J P., and Shier, D R (1984), "AL-
GORITHM 613 Minimum spanning tree for moderate
integer weights", ACM Transactions on Mathematwal Soft-
ware 10/1, 108-110

Haymond, R E, Jarvls, J P, and Shier, D R (1984) "Compu-
tational methods for mm.mum spanning tree algorithms",
SlAM Journal on Sctenttfw and Statistical Computmg 5/1,
157-174

Held, M, and Karp, R.M (1970), "The travehng salesman
problem and minimum spanning trees", Operatton~ Re-
search 18, 1138-1162

Held, M, and Karp, R M (1971) "The traveling salesman
problem and minimum spanning trees II", Mathematical
Programming 1, 6-25

Jarvls, J P, and Whited, D E (1983), "Computational experi-
ence with minimum spanning tree algorithms", Operations
Research Letters 2/1, 36-41.

Johnson, D B (1975), "Priority queues with update and fred-
mg minimum spanning trees", Information Processmg Let-
ters 4/3, 53-57

356 F. Glover et al. / In-depth mvesttgatlon for the mmtmum spannmg tree problem

Kershenbaum, A , and Sylke, R.V. (1972), "Computing mini-
mum spanning trees efficiently", Proceedings ACM Na-
ttonal Conference, 518-527

Kevm, V., and Whitney, M. (1972), "Algorithm 422: Minimal
spanning tree [H]", Commumcattons of the ACM 15, 273-
274

Kruskal, J.B. (1956), "On the shortest spanning subtree of a
graph and the travehng salesman problem", Proceedmgs of
the Amertcan Mathemattcal Socwty 7, 48-50

Loberman, H., and Wemberger, A. (1957), "Formal proce-
dures for connecting terminals w~th a minimum total w~re
length", Journal of ACM 4, 428-437

Pynn, C, and Warren, J.H. (1972), "Improved algorithm for
the construction of mimmal spanning trees", Electromcs
Letters 8, 143-144.

Prim, R.C. (1957), "Shortest connection networks and some
generahzatlons", The Bell System Techmcal Journal 36/6,
1389-1401.

Splra, P.M., and Pan, A. (1975), "On finding and updating
spanning trees and shortest paths", Stam Journal on Com-
puting 4/3, 375-380.

Tarjan, R.E. (1983), Data Structures and Network Algorithms,
CBMS-NSF Regional Conference Series in Applied Math-
ematics, vol 44, Society for Industrial and Applied Mathe-
matics, Philadelphia

Van Slyke, R., and Frank, H (1972), "Network rehabdlty
analysis Pt. I", Networks 1,279-290.

Yao, A.C. (1975), "An O(e log v) algorithm for finding mini-
mum spanning trees", Informatton Processmg Letters 4,
21-23

