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Abstract: This paper details the design, implementation, and testing of a one edge pass non-greedy 
algorithm for the minimum spanning tree problem. The use of network labeling procedures, and path 
weights to screen entering edges, provides a novel implementation of this algorithm. The choice of data 
structures also allows for an efficient implementation of reoptimization procedures, which have hitherto 
never been studied. Comprehensive results on the performance of both the greedy and non-greedy 
algorithms in optimization and reoptimization modes under various screening criteria, graph topologies, 
sizes and densities, and weight distributions are presented. The empirical results based on 855 problems 
bear out Tarjan's conjecture that greedy algorithms have a competitive advantage over non-greedy 
algorithms for the minimum spanning tree problem, except in special cases. However, for the problems 
tested, when a small percentage of edge weights are changed, non-greedy approaches are competitive 
with greedy algorithms in reoptimization mode. 
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1. Introduct ion 

The minimum spanning tree (MST) problem is 
one of the simplest and most widely studied graph 
problems (Cheriton and Tarjan, 1976, Dijkstra, 

1959, Graham and Hell, 1985, and Kershenbaum 
and Van Slyke, 1972). The MST problem is useful 
in the modeling of a variety of applications such 
as the design of cable television networks, design 
of leased-line telephone networks, and other 
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telecommunications problems (Loberman and 
Weinberger, 1957). It has also found important 
applications in cluster analysis by providing effi- 
cient modeling techniques to solve problems that 
have not been handled well by clustering methods 
(Gower and Ross, 1969), and in network reliabil- 
ity, where the weight of a MST represents the 
minimum probability that the tree will fail at one 
or more edges (Van Slyke and Frank, 1972). 
Gomory and Hu (1961) have used MST evalua- 
tions as subproblems for solving multiterminal 
flow problems. A similar application was pro- 
posed by Held and Karp (1970, 1971) for solving 
traveling salesman problems. Applications to 
solving specialized transportation networks 
(Golden, Magnanti, and Nguyen, 1977), and to 
suboptimizing or decomposing larger, more com- 
plex problems further illustrates the pervasive 
nature of the MST problem. 

The MST problem is one of the few problems 
that can be solved via a 'greedy approach' 
(Edmonds, 1971). There are three classical algo- 
rithms which follow this approach, namely, those 
of Boruvka (1926) (also rediscovered by Kruskal, 
1956), Choquet (1938)(also rediscovered by Sollin 
(Berge and Ghouila-Houri, 1965)), and Prim 
(1957). Numerous greedy variants of these basic 
algorithms have been proposed in the literature 
(Pynn and Warren, 1972, Haymond, Jarvis and 
Shier, 1984, Kevin and Whitney, 1972, Yao, 1975, 
and Cheriton and Tarjan, 1976). Cheriton and 
Tarjan (1976) have performed an extensive study 
of the theoretical efficiency of MST algorithms, 
and Kershenbaum and Van Slyke (1972) provide 
an excellent survey of implementation techniques 
for such algorithms. Efficient implementation 
techniques and extensive computational testing of 
these algorithms have also been documented in 
the literature (Brennan, 1982, Haymond, Jarvis, 
and Shier, 1984, Jarvis and Whited, 1983, John- 
son, 1975, Kershenbaum and Van Slyke, 1972, 
and Spira and Pan, 1975). 

MST greedy algorithms are analogous to 
label-setting shortest path algorithms. Label-se t -  
ting procedures for shortest path problems 
(Gilsinn and Witzgall, 1973) dictate that once an 
arc has been selected for inclusion in the tree, it 
is never discarded. Hence the tree is optimal at 
every stage with respect to the arcs selected. 
Greedy algorithms follow the same approach. On 
the other hand, label-correcting shortest path 

methods may be interpreted as performing ex- 
changes that swap an edge in the tree with an 
edge out of the tree to progressively improve the 
solution. Label-correcting approaches have been 
shown to be superior to label-setting approaches 
in the study of shortest path problems over a 
wide range of topologies (Glover, Klingman, 
Phillips, and Schneider, 1985). 

Non-greedy MST approaches are the analog of 
label-correcting methods for the shortest path 
problem. There have been some conjectures re- 
garding the efficiency of such non-greedy ap- 
proaches for the MST problem (Tarjan, 1983), 
but no empirical study exists in the literature to 
verify them. The research study of this paper 
undertakes to remedy this lack. As a foundation 
for this study, we develop non-greedy algorithm 
variants based on efficient network flow labeling 
procedures, and conduct in-depth empirical tests 
comparing these non-greedy algorithms to greedy 
algorithms for the MST problem. 

Another motivation for studying non-greedy 
approaches lies in their relevance to the design of 
reoptimization procedures for the minimum 
spanning tree problem. Surprisingly, no study of 
MST reoptimization procedures has been con- 
ducted to date. The ability of non-greedy algo- 
rithms to start from any initial spanning tree, in 
much the same manner as label-correcting short- 
est path algorithms, suggests that non-greedy al- 
gorithms may be a natural vehicle for reoptimiza- 
tion when only a few of the edge weights change. 
Moreover, in applications which employ MST 
problems as subproblems, the edge weights often 
change from one subproblem to the next, requir- 
ing efficient techniques for obtaining the new 
solution. Such related subproblems can be solved 
either by starting fresh or by employing knowl- 
edge about the old optimal MST. This occurs in 
the solution of multiterminal network flow prob- 
lems, traveling salesman problems, and the more 
general degree-constrained minimum spanning 
tree problems (Gomory and Hu, 1961, Gabow 
and Tarjan, 1985, Glover and Klingman, 1974, 
Glover and Novick, 1986, and Held and Karp, 
1970). 

2. Notation and terminology 

Let G = ( N ,  E) denote a connected undi- 
rected graph with node set N and edge set E. 
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Each edge e = (i, j )  in E has an associated weight 
w(e) = w(i, j), unrestricted in sign. The weight 
w(T)  of a spanning tree T = (N, E ' )  is given by 

w(7") = E w(e). 
e C / 5 "  

A minimum spanning tree (MST) for G is then 
a spanning tree T '  such that w ( T ' )  <~ w(T)  for all 
spanning trees T of G. 

The data structures commonly used to repre- 
sent and manipulate rooted spanning trees are 
briefly reviewed as follows. (For a complete de- 
scription, see Glover, Karney, and Klingman, 
1972, and Barr, Glover, and Klingman, 1979.) If 
nodes i and j denote the end points of a common 
edge in the rooted tree such that node i is closest 
to the root, then node i is called the predecessor 
of node j, and j is called the immediate successor 
of node i. The cardinality function defines for 
each node k the number  of nodes in its subtree. 
The thread function defines a top-to-bottom, left- 
to-right node pointer through the tree. All imme- 
diate descendants of a node k are called brothers 
of each other. The left-most node among these is 
identified by the successor function of node k, 
and the remaining are identified by the brother 
function. The lastnode function of any node k is 
the last node encountered in the subtree of k 
when the subtree is traversed in thread order. 

For any edge e = (i, j )  in E -  E ' ,  where E '  is 
the set of edges forming the tree, the basis equi~'- 
alentpath, PT(e) of e, is defined as the set of tree 
edges in the unique cycle created by the addition 
of e to E ' .  

In this paper,  we create and utilize a new node 
label, called the path-weight label, which is an 
upper  bound on the maximum edge weight on the 
unique path from the node to the root. This label 
is used to improve computational efficiency of the 
non-greedy algorithm variants. 

3. Non-greedy algorithm for the MST problem 

The following optimality condition character- 
izes minimum spanning trees (Aho, Hopcroft,  
and Ullman, 1974, Haymond, Jarvis, and Shier, 
1984, and Tarjan, 1983): 

Suppose T is a spanning tree of G. T is an 
MST if and only if for all edges e not in T, 
w(e) > w(u) for all edges u in PT(e). 

Haymond et al. (1984) observe that this opti- 
mality condition immediately suggests the follow- 
ing algorithm. Construct an arbitrary spanning 
tree for G, and test 'whether the optimality condi- 
tion holds. If so, the current tree is optimal. 
Otherwise, there are edges e and u such that the 
condition is not satisfied, and it is therefore ad- 
vantageous to exchange e and u in the current 
tree. Henceforth we will call such an exchange, 
an adt,antageous exchange. By repeating this 
tes t /exchange procedure, an MST is obtained 
after a finite number of steps. 

If e is selected arbitrarily, we refer to such an 
algorithm as non-greedy. By the following rule to 
select u, the number of times an edge has to be 
examined is reduced to one. 

Leaving Edge Selection Criterion. For any-ad- 
vantageous exchange (e, u), select u such that 
w( u ) = maximum/~ pV~,,)( w( i ) ). 

Lemma: A non-greedy algorithm which employs 
the Leal'ing Edge Selection Criterion has to exam- 
ine each edge not in the starting tree exactly once. 

Proof: There are two cases: (1) e is in the 
starting tree, and (2) it is not. First, assume e was 
in the starting tree and subsequently.removed but 
never examined. In this case, some edge r re- 
placed e, and w(e) was the largest weight in 
PT(r).  Suppose immediately after the exchange 
(r,  e), e had been examined. Its basis equivalent 
path would consist of the edges (r U PT(r)  - e). 
Since w(e) > w(i), i E r u PT(r)  - e, e would not 
provide an improving exchange at this time. Fur- 
ther, the same argument establishes that any edge 
e which leaves the tree will not provide an im- 
proving exchange if considered immediately after 
leaving the tree. 

We will now show that an edge which is not 
improving when it is considered will never pro- 
vide an improving exchange. Let e be an arbitrary 
edge in the graph and PT(e) denote the basis 
equivalent path of e when it was examined. PT(e) 
will change only if an advantageous exchange 
(x, y) occurs such that y ~ PT(e). Suppose such 
an exchange occurs and the Leaving Edge Selec- 
tion Criterion is applied. Let PT(x)  denote the 
basis equivalent path of x at the time of the 
exchange. Then we have: 

(1) w(e) > w(y) because e was not improving 
when it was examined, 
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(2) w(y) > w(x) because (x, y) is an advanta- 
geous exchange, and 

(3) w(y)>lw(i) for i ~ P T ( x )  because the 
Leaving Edge Selection Criterion was applied. 
Since the basis equivalent path of e after the 
exchange (x, y) is a subset of PT(e) U PT(x) and 
since w(e) > w(i), i ~ PT(e) U PT(x), e would not 
provide an improving exchange after performing 
any improving exchange which altered the basis 
equivalent path of e. [] 

The first step of a non-greedy algorithm is to 
obtain an initial spanning tree. The starting tree 
may consist of edges in E, in which case it will be 
called a feasible spanning tree. Otherwise, the 
tree consists of one or more edges not in E. Such 
edges will be referred to as artificial edges and 
assigned a weight greater than the largest edge 
weight of the edges in E. A tree containing one 
or more artificial edges will be referred to as an 
artificial spanning tree. 

The basic steps of a one edge pass non-greedy 
algorithm follow. 

Algorithm BNG (Basic Non-Greedy Algorithm). 
Step 1. Build an initial spanning tree T =  

(N, E'), possibly containing artificial edges whose 
edge weights are larger than the maximum edge 
weight in E. Select an edge e = (i, j)  in E -  E'.  

Step 2. Test the optimality condition; if T is 
non-optimal, select u based on the Leaving Edge 
Selection Criterion. Otherwise, go to Step 4. 

Step 3. Perform the exchange (e, u), updating 
T (and hence E). 

Step 4. Select an edge not previously examined 
from the set E - E' ,  where E '  is the set of edges 
in the starting tree, and return to Step 2. If all 
edges have been examined, stop. If the current 
spanning tree T contains an artificial edge, the 
problem is infeasible. Otherwise, it is an MST. 

Justification of the algorithm follows from the 
preceding lemma. 

Since Step 2 of BNG has a worst case bound 
of O(n), the algorithm has a worst case bound of 
O(mn), where m is the number of edges in E. 
We propose an enhancement which can reduce 
the number of basis equivalent path cycle traces 
performed in Step 2 and thus may improve the 
empirical run time of the basic algorithm. The 

result is termed the Intelligent Non-Greedy (ING) 
algorithm. 

Specifically, the ING algorithm employs the 
path weight function to eliminate unnecessary 
cycle traces. Recall that a path weight is defined 
to be an upper bound on the maximum edge 
weight of the unique path from the given node to 
the root node. Thus, for every edge e = (i, j)  
considered in Step 2 of the basic algorithm, if 
w(e) is greater than or equal to Path-weight(i) 
and Path-weight(j), then no advantageous ex- 
change exists for e. The path weight function, 
however, provides only partial screening in the 
sense that, for some edges, a comparison of w(e) 
with its associated path weights does not preclude 
a cycle trace which may not result in an advanta- 
geous exchange. 

The basic steps of the ING algorithm are the 
same as the BNG algorithm except that Step 2 is 
replaced by Step 2a. 

Step 2a. If w(e)> Path-weight(i) and w(e)> 
Path-weight(j), discard edge e; else trace PT(e), 
identify u, the maximum weight edge in PT(e); if 
w(u) < w(e), discard edge e, and go to Step 4. 

The worst case complexity of the 1NG algo- 
rithm is the same as the BNG algorithm, O(mn). 

4. Implementation issues 

The implementation of the one edge pass 
non-greedy algorithm provides several opportuni- 
ties for utilizing network flow tree data struc- 
tures. Several versions of both the BNG and ING 
algorithms were developed, based on different 
start procedures, alternative data structures, and 
path weight functions of varying restrictiveness. 

The basic computational tasks involved in im- 
plementing the non-greedy algorithms are in cre- 
ating the initial tree, performing cycle traces, and 
updating the node label functions. Each of these 
tasks may be implemented using several alterna- 
tive strategies. This section considers the alterna- 
tive starting procedures and data structures used 
and presents a brief discussion of the trade-offs. 

Two approaches were examined for building 
the initial tree. One of these approaches creates a 
starting tree composed of only artificial edges, 
and the other approach creates a starting tree 
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composed of no artificial edges. The artificial 
start procedure, called AA, creates an artificial 
node and links all nodes in the graph to it using 
artificial edges with an edge weight set equal to 1 
unit greater than the largest edge weight in the 
graph. 

To construct a feasible spanning tree, we chose 
to reorder the edge list, in what is often called 
forward star form, so that all edges incident to a 
node are located contiguously. A breadth-first 
tree is then generated using this reordered list, or 
the problem is determined to be infeasible. This 
start procedure will be called RR. 

The data structures used to implement the 
cycle trace and update procedures are presented 
in increasing order of complexity. The basic algo- 
rithm BNG was implemented using only the pre- 
decessor and cardinality functions. In Step 2, for 
a given edge e, its end nodes are identified, and 
their predecessors are traversed using the cardi- 
nality function (to ensure that only edges in PT(e) 
are examined) until a common ancestor is en- 
countered. This implementation is efficient in the 
sense that it never considers any edge not in 
PT(e) and thus simultaneously allows the edge u 
in PT(e) with the largest weight to be identified. 
If w(u) > w(e), an advantageous exchange is per- 
formed and the predecessor and cardinality func- 
tions are simultaneously updated. Another ad- 
vantage of this approach is that the cardinality 
function only has to be updated for the nodes in 
PT(e); whereas other functions which could be 
used in place of cardinality require a subtree 
update, e.g., the depth function. 

To reduce the number of cycles traces, the 
path weight labels are employed in ING. In the 
ING implementation, the cycle trace is still per- 
formed using cardinahty and predecessor func- 
tions, but the use and updating of the path weight 
labels necessitates additional consideration. 

Thus to thoroughly evaluate the effectiveness 
of the path weight concepts and the trade-off of 
the effort required to update them versus reduc- 
ing the number of cycle traces, we looked at 
alternative strategies on the tightness of the path 
weight bounds and on when the algorithm begins 
to maintain and utilize the path weight function. 

More specifically, the use of the path weight 
labels necessitates an update of these labels after 
each advantageous exchange. This update can be 
implemented as either a partial (P) or full (F) 

update. A partial update of the path weight func- 
tion creates sharp path weights (i.e., path weights 
which are minimum upper bounds) on the nodes 
involved in the cycle trace alone. It may leave 
some of the remaining nodes in the tree with 
non-sharp values (i.e., path weights which are 
upper bounds, but not necessarily minimal). This 
procedure can be performed effectively using the 
predecessor, cardinality, and path weight func- 
tions and only involves a partial retrace of PT(e). 

In contrast, a full update maintains sharp path 
weights for all the nodes of the tree at all times. 
This can be done efficiently by considering only 
the nodes in the subtree created when the largest 
weight edge u = (i, j)  leaves the spanning tree. 
Let k denote the node l or j whose predecessor 
is j or z, respectively. The subtree of node k is 
rehung using the new edge e whose weight is less 
than that of the leaving edge. Thus, the only 
nodes whose path weight will not be sharp after 
the exchange lie in subtree of k. Consequently, 
two different sets of data structures were exam- 
ined to efficiently traverse and update path 
weights in subtree of k. One implementation uses 
the predecessor, thread, and lastnode functions 
to traverse and update path weights in the sub: 
tree. The other implementation uses the succes- 
sor and brother functions to maintain sharp path 
weights. 

Given the effort required to maintain the path 
weight labels and the possibility that the path 
weights may be particularly ineffective at elimi- 
nating cycle traces when the current spanning 
tree contains artificial edges, we also made an 
evaluation as to when an algorithm should begin 
to maintain and use path weight labels. Specifi- 
cally, when the AA start is employed, path weight 
labels are not maintained until a feasible tree is 
found. At this point, the algorithm initializes and 
updates path weight labels using either the par- 
tial or full update procedure. 

Four variants of the non-greedy algorithm were 
implemented based on the above discussion. The 
first variant, called RR, is an implementation of 
algorithm BNG. It uses the predecessor and car- 
dinality functions. The second varlant, called RR- 
P, is an implementation of algorithm ING with 
partial updates of the path weights using prede- 
cessor, cardinality and path weight functions. The 
third, called RR-F-TL, and fourth, called RR-F- 
SB, variants are also implementations of the ING 
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algorithm which employ complete updates; the 
former uses predecessor, cardinality, path weight, 
thread, and lastnode functions, while the latter 
uses predecessor, cardinality, path weight, succes- 
sor, and brother  functions. These variants permit 
a thorough comparison of path weight function 
alternatives, as well as performance of each data 
structure in the update procedure. These variants 
are then tested with the two start procedures, 
thus resulting in two BNG codes and six ING 
codes. The codes employing the nonartificial start 
have the above names. The codes using an artifi- 
cial start have the same names, except that the 
first two letters, RR, are replaced by APt. 

5. Experimental design 

Eight variants of the non-greedy algorithm 
were developed and tested on a variety of prob- 
lem sizes, densities, topologies, and weight distri- 
butions, and the best among them were com- 
pared with two implementations of Prim's algo- 
rithm, called P1 and P2, and one of Kruskal's, 
called K1. Table 1 specifies the memory require- 
ments of each code. The best ING code from a 
memory standpoint is AA-P. Implementation and 
testing of these greedy-algorithm-based codes are 
reported in Haymond, Jarvis, and Shier (1984). 
P1 and K1 use a heap sort to select the least 
weight edge to be included in the tree, and P2 
uses an address calculation sort to select the next 
eligible edge. 

Comparative performance of alternative im- 
plementation strategies is studied in this paper by 
solving 855 randomly generated problems. All 
codes are written in F O R T R A N  and were exe- 
cuted on the IBM 3081D under optimization 
level 2. Five test problems were solved for each 
problem size, starting with a different random 
number seed, and the average solution time is 
reported. The reported times exclude input and 
output time. In order  to ensure fair and consis- 
tent comparisons across all algorithms, a standard 

problem representation consisting of problem 
data in random edge format is input to all algo- 
rithms. This was selected as a standard because, 
traditionally, undirected graphs have been repre- 
sented as edge lists (Aho, Hopcroft, and Ullman, 
1974). Furthermore,  Prim codes and some ING 
codes would have an undue advantage over the 
other codes if data is presented in a different 
format to these algorithms, such as forward star 
form. Thus the total time includes the time re- 
quired to convert this standard representation of 
random edge format into forward star form for 
those algorithms that require it, such as Prim's 
codes, and those ING codes that use a non-artifi- 
cial start. 

For all test problems, edge weights are within 
the range 1 to 2000. Computational testing in- 
cludes edge weights generated from two distribu- 
tions - the uniform probability distribution and 
the beta distribution. In addition, four skewness 
levels were investigated for the beta distribution 
the first with 75% of the weights skewed to the 
right, the second with 75% of the weights skewed 
to the left, the third with 60% of the weights 
skewed to the right, and the fourth with 60% 
skewed to the left. This appears to be the first 
testing of non-uniform edge weights. Fifteen 
problem sizes were tested, ranging from 100 nodes 
and 200 edges to 2000 nodes and 20000 edges. 
For each node size, problems were generated 
with node degrees of 2, 5, and 10, where node 
degree is computed as the ratio of number of 
edges to number of nodes in the graph. 

Test problems from three distinct graph 
topologies were generated. The first topology 
consists of random graphs, where two nodes are 
selected randomly to form a new edge to add to 
the graph. This graph generation code was ob- 
tained from Haymond, Jarvis, and Shier (1984). A 
uniform probability distribution is used to select 
the nodes. 

The second topology is called a bi -c lus tered  

graph. These problems are generated by dividing 
the problem size into two equal groups and gen- 

Table 1 

Code K P1 P2 AA RR A A - P  R R - P  AA-F-SB AA-F-TL RR-F-SB RR-F-TL 

Node arrays 4 5 5 3 4 4 5 6 6 7 7 
Edge arrays 5 5 5 3 6 3 6 3 3 6 6 
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erating distinct random graphs for each group. 
Two nodes are then randomly selected from the 
two disjoint graphs and connected with an edge 
having a weight of 2000. 

The third topology, called a single-clustered 
graph, denoted as S-clustered in the tables of 
solution time, again consists of two groups, where 
one group consists of a single node connected to 
a randomly selected node from the second group 
with an edge weight of 2000. The single node is 
~tself selected randomly from the given set of 
nodes. Bi-clustered and single-clustered graphs 
force all algorithms, irrespective of greedy or 
non-greedy structure, to scan all edges, thus pro- 
viding a measure of the worst-case empirical per- 
formance of these algorithms. This also appears 
to be the first testing of MST algorithms on 
non-random graph topologies. 

6. Computational results 

After solving the 855 test problems and analyz- 
ing the results for the eight non-greedy codes, we 
found that the major conclusions regarding their 
relative performance could be expressed in one 
summary table, Table 2. Table 2 contains the 
aggregate solution time in milliseconds across all 

weight distributions, but distinguishes the prob- 
lems by topology and node degree. 

The results indicate that the AA-P code is the 
most robust. It dominates other non-greedy im- 
plementations across alternative topologies and 
in problems with node degrees of five and ten. 
However, the code RR proves better for prob- 
lems of node degree two. The success of AA-P is 
due in part to two factors. First, its artificial start 
allows it to build a start tree quickly. Further, no 
path-weight labels are calculated or updated until 
all artificial edges are removed. At this point, the 
tree so obtained is typically a good tree resulting 
in quality path-weight labels. These labels help it 
to screen a large number of remaining non-tree 
edges quickly. It is interesting to observe that the 
behavior of AA-P is a function of both problem 
topology and node degree. While solution times 
are directly proportional to node degree, AA-P 
performs better in random and S-clustered 
topologies than in the bi-clustered topology. This 
is due to the special structure of the bi-clustered 
topology (two clusters linked by a single edge) 
which yields trees comprised of two subtrees de- 
rived from each cluster linked by a single edge 
which is always part of the tree. Exchanges per- 
formed on this structure in AA-P often alter the 

Table 2 
Aggregate solution hmes  (mdhseconds)  for variants of  the non-greedy algorithm on the IBM 3081D 

Codes RR-F-SB RR-F-TL RR-P R R  AA-F-SB AA-F-TL AA-P A A  Best 

Topology. random 
Node degree. 2 717 745 552 537 687 676 649 586 RR 
Node degree 5 1572 1607 1587 1748 1498 1645 1349 1724 AA-P 
Node degree :10  2260 2469 2966 3656 2483 2502 2088 3328 AA-P 
Subtotal 4549 4821 5105 5941 4668 4823 4086 5638 AA-P 

Topology bt-clustered 
Node degree. 2 738 754 498 464 576 564 540 481 RR 
Node degree 5 1676 1767 1441 1449 1462 1479 1341 1347 AA-P 
Node degree 10 2900 3040 2472 2986 2674 2581 2396 2663 AA-P 
Subtotal 5314 5561 4411 4899 4712 4624 4277 4491 AA-P 

Topology S-clus~red 
Node degree 2 761 787 558 535 682 671 645 586 RR 
Node degree 5 1552 1675 1541 1733 1664 1646 1443 1664 AA-P 
Node degree. 10 2308 2494 2952 3590 2510 2467 2099 3323 AA-P 
Subtotal 4621 4956 5051 5858 4856 4784 4187 5573 AA-P 

S u b t o t a l -  Node degree. 2 2216 2286 1608 1536 1945 1911 1834 1653 R R  
S u b t o t a l - N o d e  degree 5 4800 5049 4569 4930 4624 4770 4133 4735 AA-P 
S u b t o t a l - N o d e  deg ree ' 10  7468 8003 8390 10232 7667 7550 6583 9314 AA-P 

Grand Total 14484 15338 14567 16698 14236 14231 12550 15702 AA-P 
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root path of several nodes resulting in low-quality 
path-weight labels which in turn reduce effi- 
ciency. 

It is important to note that AA-F-TL and 
AA-F-SB, which implement full updates of the 

path-weight label, do not perform as well as AA-P 
even though they employ the same start proce- 
dure. This is due to the fact that the work used to 
maintain the quality of the path-weight labels 
dominates gains made in screening out non-tree 

Table 3 
Aggregate solution times (mllhseconds) on the IBM 3081D for the skewed weight distributions 

Codes AA-P K P1 P2 

Topology. random; 
Node degree 2 

Right skewed 1125 827 854 627 
Left skewed 1339 821 858 907 
Subtotal 2464 1648 1712 1534 

Topology random, 
Node degree: 5 

Right skewed 2604 1479 1349 994 
Left skewed 2749 1470 1336 1270 
Subtotal 5353 2949 2685 2264 

Topology random, 
Node degree 10 

Right skewed 4172 2277 2059 1699 
Left skewed 3950 2323 2078 1947 
Subtotal 8122 4600 4137 3646 

Topology bt-clustered, 
Node degree: 2 

Right skewed 1138 827 785 617 
Left skewed 1303 828 788 907 
Subtotal 2441 1655 1573 1524 

Topology bt-clustered, 
Node degree 5 

Right skewed 3020 1501 1286 992 
Left skewed 2981 1499 1312 1269 
Subtotal 6001 3000 2598 2261 

Topology. bt-clustered, 
Node degree 10 

Right skewed 5049 2239 1999 1790 
Left skewed 5239 2266 2010 1846 
Subtotal 10288 4505 4009 3636 

Topology S-clustered, 
Node degree 2 

R~ght skewed 1200 821 846 612 
Left skewed 1473 830 854 924 
Subtotal 2673 1651 1700 1536 

Topology S-clustered, 
Node degree" 5 

Right skewed 2508 1485 1349 1055 
Left skewed 2696 1516 1346 1285 
Subtotal 5204 3001 2695 2340 

Topology S-clustered; 
Node degree 10 

R~ght skewed 4103 2276 2081 1710 
Left skewed 4274 2272 2094 1959 
Subtotal 8377 4548 4175 3669 

Grand total 50923 27557 25284 22410 

Best 

P2 
K 
P2 

P2 
P2 
P2 

P2 
P2 
P2 

P2 
P1 
P2 

P2 
P2 
P2 

P2 
P2 
P2 

P2 
K 
P2 

P2 
P2 
P2 

P2 
P2 
P2 

P2 
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edges, resulting in less efficient solution times. 
The alternative data structures used in the up- 
date of the path-weight labels do not seem to 
make any significant difference. 

In all our testing, the code R R  performed well 
on problems with node degree two. Codes which 
employ a real start such as R R  build a tree from 
edges in the problem data and have no artificial 
edges. Since n - 1 edges, where n is the number  
of nodes, are required to build a tree and since 
problems with node degree two have 2n edges, a 
real start procedure supplies a start tree with 
about half the available edges already in it. Thus, 
RR, even without a path-weight label, is efficient 
due to the small number  of edges considered. 
However, as node degrees increase the perfor- 
mance of R R  drops sharply. 

In fact, as shown in Table 2, real start proce- 
dures in general seem to lose heavily in compar-  
isons on the larger node degrees and topologies. 
Real starts provide a tree composed of real edges 
quickly. However, the quality of the tree is poor, 
resulting in poor path-wetght labels. These low- 
quahty labels are unable to screen a large propor- 
tion of non-tree edges, regardless of the use of a 
full or partial update procedure,  and result m 
htgh solution times. Thus, our comparative test- 
ing of non-greedy implementations indicates that 
an artificial start combined with a partial update  
is the most efficient. 

While AA-P is the best non-greedy code, it ts 
completely dominated by our implementations of 
Prim's algorithm and Kruskal 's algorithm. In fact, 
Prim is more than twice as fast as AA-P. These 
tests were conducted using problems whose edge 
weights were generated f rom-random and skewed 
distributions. Tables 3 and 4 show the-results of 
the testing on skewed and uniform distributions, 
respectively. P2, the implementat ion of Prim with 
the address calculation sort, proved to be both 
robust and efficient in all our testing. This di- 
rectly bears out the superiority of greedy ap- 
proaches over non-greedy approaches in solving 
the minimum spanning tree problem. 

Several interesting observations can be made 
from the testing on skewed and uniform distribu- 
tions. In the case of the greedy algorithms, the 
type of sorting procedure plays an important role 
in the effect of skewness on solution times. As 
can be seen in Table 3, the K and P1 implemen- 
tations of Kruskal and Prim algorithms, which 
employ a heap sort, are unaffected by the weights 
generated from the skewed distribution. How- 
ever, P2, the implementat ion of Prim's algorithm 
with an address calculation sort, runs faster when 
the bulk of the edge weights have smaller magni- 
tudes. This is due to the fact that an address 
calculation sort locates edges in an array based 
on the magnitude of its edge weight. In the event 
that the bulk of the edge weights have large 

Table 4 
Aggregate solution times (mdhseconds)  on the IBM 3081D for the umform weight distribution 

Codes AA-P K P1 P2 Best 

Topology random 
Node degree 2 2596 1650 1706 1798 K 
Node degree '  5 5396 3033 2705 2236 P2 
Node degree 10 8352 4592 4146 3495 P2 
Subtotal 16344 9275 8557 7529 P2 

Topology bz-clustered 
Node degree '  2 2160 1661 1575 1790 P1 
Node degree 5 5364 3026 2569 2202 P2 
Node degree 10 9584 4599 3999 3458 P2 
Subtotal 17108 9286 8143 7450 P2 

Topology. S-clustered 
Node degree 2 2580 1650 1698 1770 K 
Node degree 5 5772 3050 2726 2268 P2 
Node degree 10 8396 4549 4141 3534 P2 
Subtotal 16748 9249 8565 7572 P2 

Grand total 50200 27810 25265 22551 P2 
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values, location of an edge in the array typically 
involves more searching resulting in slower solu- 
tion times. 

One final note seems appropriate concerning 
implementations of greedy algorithms. While pre- 
vious empirical studies (Haymond et al., 1984) 
have concluded that the Kruskal approach is gen- 
erally much slower than the Prim approach, our 
results do not indicate this to be true. It appears 
that the discrepancy may be due to our use of a 
standard problem format. In Haymond et al. 
(1984), the inputs are provided in the form re- 
quired by the implementation, without counting 
any time used to organize the problem inputs in 
these forms. By contrast, our solution times in- 
clude the effort to transform problem inputs from 
a randomly ordered collection of edges into the 
forms the various codes require. 

AA-P also seems to be slightly affected by the 
skewed weight distributions and generally (though 
not exclusively) executes slower on problems with 
skewed edge weights than on problems with uni- 
form weight distributions. However, it does not 
demonstrate, in any conclusive manner, improved 
efficiency on either left- or right-skewed edge- 
weight values. 

In summary, AA-P proved to be the most 
efficient and robust non-greedy code while P2 
was the most robust and efficient greedy code. 
Further, all greedy codes dominate the AA-P 
code by a factor of almost two. 

7. Reoptimization 

Solution procedures for several interesting 
problems such as the multiterminal flow problem, 
the traveling salesman problem and the vehicle 
routing problem often employ Lagrangean relax- 
ation where the relaxed problem is an MST prob- 
lem whose weights change from iteration to itera- 
tion. In such applications, the ability to obtain a 
new optimal MST solution quickly is very impor- 
tant. 

Reoptimization may be carried out either by 
solving the modified problem anew or by starting 
from the previous optimal solution. The former 
strategy can be implemented by greedy ap- 
proaches, but the latter strategy seems more 
suited to implementation by non-greedy ap- 
proaches, which have the ability to start from an 

arbitrary tree. We were unable to find any previ- 
ous work in the literature which addressed reop- 
timization issues for the MST problem. 

To test reoptimization using a non-greedy pro- 
cedure, we started from an MST denoted by 
T ( N , E ' , w ( E ' ) )  for problem G ( N , E , w ( E ) ) ,  and 
upon the introduction of a new weight function 
• (E), we simply used tree T ( N , E ' , ~ ( E ' ) )  as the 
starting tree for problem G( N , E , ~ (  E)). The pro- 
cedure was implemented by providing the partial- 
and full-update artificial start codes with the tree 
T ( N , E ' , w ( E ' ) )  and the edge weight changes. 
These codes are called MST-P and MST-F, re- 
spectively. The results were compared with the 
times to solve the modified problem using P2, 
since it was the best greedy algorithm. To test 
reoptimization, we chose to create two types of 
test scenarios. In the first, only the weight of 
edges not in the old MST were changed. In this 
case, each edge weight was decreased sufficiently 
to ensure that the old MST was no longer opti- 
mal. In the second, only the weight of edges in 
the old MST were changed. In this case, each 
edge weight was increased sufficiently to ensure 
that the old MST was no longer optimal. Each of 
these scenarios ensured that the non-greedy algo- 
rithm would have to perform several exchanges. 

In the reoptimization testing, five problem sizes 
in the range 100 nodes to 2000 nodes with three 
node degree densities (2, 5, 10) and three prob- 
lem topologies (random, bi-Clustered, S-Clus- 
tered) were tested. (Since the edge weights were 
selected to ensure non-optimality of the old MST, 
the weights can no longer be considered to be 
randomly selected from a given distribution. 
However, the original weights are from the same 
distributions as in the earlier testing.) 

For each scenario, we tested changing 5, 10, 
15, and 20 edge weights at a time. Table 5 pre- 
sents the aggregate solution times over all topolo- 
gies for the case where the weight of edges in the 
old MST are increased. Additionally, the first 
three columns in Table 5 specify the solution 
times according to the number of edge weights 
increased for edges in the old MST and the next 
three columns specify the solution times accord- 
ing to node degree 2, 5, and 10. Table 6 presents 
similar results for the scenario where the edge 
weights are decreased for edges not in the old 
MST. The tables contain the times for three 
codes: P2, the most efficient greedy algorithm, 
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MST-P, the reoptimizat~on algorithm with a par- 
tial update of the path-weight label, and the 
MST-F, the reoptimization algorithm employing 
a full update of the path-weight label. 

As can be observed from the results m Table 
5, MST-F dominates all codes at the four levels 
of changes, when edge weights are increased for 
edges in the old MST. The efficient performance 
of MST-F may be attributed to the fact that the 
old optimal tree provided quality path-weight la- 
bels, and the full update procedure (which main- 
tains the quality of these labels) facilitated effi- 
cient screening of a large number of non-tree 
edges. The use of the full update seems crucial 
since MST-F substantially outperforms MST-P. 

It is interesting to note from Table 5 that the 
time for reoptimization increases slowly with the 
number of weight changes in the case of the 
MST-F code. It increases at a faster rate in the 
MST-P code, and remains fairly constant in the 
case of P2 (where it is independent of the num- 
ber of changes since P2 solves the problem anew 
every time). This clearly mdicates that in per- 
forming reoptimization w~th a relatively small 
number of changes, MST-F has an advantage 
over other methods, but as the number of changes 
increases, P2 eventually dominates. Another point 
to observe is that the solution times are a func- 
tion of the number of nodes for all codes when 
the number of changes is small. This property 

Table 5 
Aggregate solution times (mdhseconds) on IBM 3081D for m-tree edge-weight changes 

Nodes Codes Codes 

MST-F MST-P P2 MST-F MST-P P2 

5 changes a 

100 39 74 57 
300 108 231 160 
700 211 508 379 

1000 341 626 544 
2000 782 2174 1153 

Total 1481 3613 2293 

10 changes ~ 

100 50 88 60 
300 131 258 158 
700 279 1004 379 

1000 413 896 540 
2000 818 2341 1149 

Total 1691 4587 2286 

15 changes a 

Node degree = 2 

46 39 84 
102 115 202 
196 275 497 
462 644 688 
644 718 1499 

1450 1791 2970 

Node degree = 5 

79 107 
183 128 
428 1229 
563 1375 

1089 2206 

2342 5045 

Node degree = 10 

71 
217 
461 
662 

1220 

2631 

100 64 97 60 105 215 85 
300 136 286 158 240 643 236 
700 339 1231 382 581 2485 632 

1000 452 907 545 659 1569 832 
2000 1022 4092 1143 2056 10279 1719 

Total 2013 6613 2288 3641 15191 3504 

20 changes d 

100 77 106 63 
300 157 339 162 
700 374 1281 413 

1000 478 1067 553 
2000 1127 4606 1144 

Total 2213 7397 2335 

a Number of edge-weight changes 
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Table 6 
Aggregate solution times (milhseconds) on IBM 381D for non-tree edge weight changes 

Nodes Codes Codes 

MST-F MST-P P2 MST-F MST-P P2 

5 changes a Node 

100 30 24 58 35 
300 79 68 155 68 
700 182 161 380 148 

1000 272 240 540 211 
2000 597 546 1141 588 

Total 1160 1039 2274 1050 

10 changes a Node 

100 31 27 58 40 
300 84 71 155 106 
700 187 163 382 231 

1000 276 245 559 377 
2000 618 551 1138 793 

Total 1196 1057 2292 1547 

15 changes a Node 

degree = 2 

degree = 5 

28 79 
58 196 

129 489 
190 679 
508 1484 

913 2925 

degree = 10 

33 69 
88 188 

203 427 
334 655 
707 1169 

1365 2508 

100 36 29 58 63 51 83 
300 88 72 155 169 141 237 
700 191 164 376 379 326 562 

1000 283 251 540 535 462 827 
2000 631 550 1137 1111 1089 1707 

Total 1229 1066 2264 2257 2069 3416 

20 changes a 

100 41 31 57 
3oo 92 76 156 
700 198 170 374 

1000 293 252 541 
2000 646 556 1145 

Total 1270 1085 2273 

holds t rue for P2 even when  the n u m b e r  of 
changes increases,  enab l ing  the es t imat ion  of re- 
opt imizat ion t ime when the n u m b e r  of nodes  
increases. However,  in the case of MST-F,  the 
reopt imizat ion t imes increase at a slower rate 
than  the n u m b e r  of nodes.  

The  last three  columns of Table  5 present  
results classified by the n u m b e r  of changes by 
node  degree,  re inforcing the superiori ty of MST- 
F. As node  degree increases,  P2 per formances  
become be t te r  compared  to M S T - F  due to the 
increased n u m b e r  of upda tes  per formed  with 
subopt imal  path-weight  labels. 

In  the case of changes to non- t ree  edge weights, 
Table  6 indicates  that  the non-greedy  codes are 

be t te r  than  P2, and  in part icular ,  MST-P  has a 
slight edge over MST-F.  This can be explained by 
the fact that  in hand l ing  changes to non- t ree  edge 
weights, the non-greedy  algori thms perform only 
a l imited n u m b e r  of cycle traces and  updates,  
s tart ing from an  old opt imal  tree, whereas  P2 
solved the p rob lem anew. Since MST-P performs 
slightly be t te r  than  MST-F,  it also appears  that 
the quali ty of the path-weight  labels are not  as 
crucial in this case. Fur thermore ,  it is clear from 
Table  6 that  overall pe r formance  is a funct ion of 
the n u m b e r  of nodes,  but  the n u m b e r  of changes 
does not  affect per formance  of the non-greedy  
codes to the extent  that  it does in the case of 
changes to in- tree edge weights. 
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8. Conclusions 

Several variants of the non-greedy algorithm 
for the minimum spanning tree problem were 
developed and implemented using a combination 
of well known and novel labeling procedures. 
AA-P, an implementation of the ING algorithm 
using an artificial start and a partial update of the 
path-weight labels was identified to be the best 
non-greedy code. AA-P was compared with effi- 
cient implementation of the greedy algorithms 
and found to be dominated by all greedy ap- 
proaches for all topologies and node degrees. 

Algorithms and computational testing were 
also conducted for the reoptimization case. The 
non-greedy approaches proved quite successful in 
reoptimization and dominated greedy approaches 
on all topologies and node degrees. While the 
code MST-F was very efficient for modifications 
to edge weights of in-tree edges, the code MST-P 
was dominant for modifications to edge weights 
of non-tree edges. 
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