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Chapter 1 

PROBLEM 1.1 

The outer surface of a 0.2m-thick concrete wall is kept at a temperature of –5°C, while the 
inner surface is kept at 20°C. The thermal conductivity of the concrete is 1.2 W/(m K). 
Determine the heat loss through a wall 10 m long and 3 m high. 

GIVEN 

10 m long, 3 m high, and 0.2 m thick concrete wall 
Thermal conductivity of the concrete (k) = 1.2 W/(m K) 
Temperature of the inner surface (Ti) = 20°C 
Temperature of the outer surface (To) = –5°C 

FIND 

The heat loss through the wall (qk) 

ASSUMPTIONS 

One dimensional heat flow 
The system has reached steady state 

SKETCH 

L = 0.2 m

Ti = 20°C

To = – 5°C

qk

L
=

10
m

H = 3 m

 

SOLUTION 

The rate of heat loss through the wall is given by Equation (1.2) 

 qk = 
A K

L
(ΔT) 

 qk = 
( )(10m)(3m) 1.2 W/(m K)

0.2m
 (20°C – (–5°C)) 

 qk = 4500 W 

COMMENTS 

Since the inside surface temperature is higher than the outside temperature heat is transferred from the 
inside of the wall to the outside of the wall. 
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PROBLEM 1.2 

The weight of the insulation in a spacecraft may be more important than the space 
required. Show analytically that the lightest insulation for a plane wall with a specified 
thermal resistance is that insulation which has the smallest product of density times 
thermal conductivity. 

GIVEN 

Insulating a plane wall, the weight of insulation is most significant 

FIND 

Show that lightest insulation for a given thermal resistance is that insulation which has the smallest 
product of density (ρ) times thermal conductivity (k) 

ASSUMPTIONS 

One dimensional heat transfer through the wall 
Steady state conditions 

SOLUTION 

The resistance of the wall (Rk), from Equation (1.13) is 

 Rk = 
 

L

A k
 

where  
 L = the thickness of the wall 
 A = the area of the wall 
The weight of the wall (w) is 

 w = ρ A L 

Solving this for L 

 L = 
 

w

Aρ
 

Substituting this expression for L into the equation for the resistance 

 Rk = 
2  

w

k Aρ
 

 ∴ w = ρ k Rk A
2 

Therefore, when the product of ρ k for a given resistance is smallest, the weight is also smallest. 

COMMENTS 

Since ρ and k are physical properties of the insulation material they cannot be varied individually. 
Hence in this type of design different materials must be tried to minimize the weight. 

PROBLEM 1.3 

A furnace wall is to be constructed of brick having standard dimensions 22.5 cm × 11 cm 
× 7.5 cm. Two kinds of material are available. One has a maximum usable temperature 
of 1040°C and a thermal conductivity of 1.7 W/(m K), and the other has a maximum 
temperature limit of 870°C and a thermal conductivity of 0.85 W/(m K). The bricks cost 
the same and can be laid in any manner, but we wish to design the most economical wall 
for a furnace with a temperature on the hot side of 1040°C and on the cold side of 
200°C. If the maximum amount of heat transfer permissible is 950 W/m2 for each square 
foot of area, determine the most economical arrangements for the available bricks. 
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GIVEN 

Furnace wall made of 22.5 cm × 11 cm × 7.5 cm bricks of two types 
Type 1 bricks  Maximum useful temperature (T1, max) = 1040°C 
   Thermal conductivity (k1) = 1.7 W/(m K) 
Type 2 bricks  Maximum useful temperature (T2, max) = 870°C 
   Thermal conductivity (k2) = 0.85 W/(m K) 
Bricks cost the same 
Wall hot side temperature (Thot) = 1040°C and wall cold side temperature (Tcold) = 200°C 
Maximum permissible heat transfer (qmax/A) = 950 W/m2  

FIND 

The most economical arrangement for the bricks 

ASSUMPTIONS 

One-dimensional, steady state heat transfer conditions 
Constant thermal conductivities 
The contact resistance between the bricks is negligible 

SKETCH 

Type 2 Bricks

Tmax = 200°C

T12 870°C£

Tmax = 1040°C

Type 1 Bricks

 

SOLUTION 

Since the type 1 bricks have a higher thermal conductivity at the same cost as the type 2 bricks, the 
most economical wall would use as few type 1 bricks as possible. However, there should be thick 
enough layer of type 1 bricks to keep the type 2 bricks at 870°C or less. 
For one-dimensional conduction through type 1 bricks (from Equation 1.2) 

 qk = 
k A

L
 ΔT 

 maxq

A
 = 1

1

k

L
 (Thot – T12) 

where L1 is the minimum thickness of the type 1 bricks. 
Solving for L1 

 L1 = 1

max

k
q

A
 
  

 (Thot – T12) 

  L1 = 
2

1.7 W/(m K)

950 W/m
 (1040 – 870)K = 0.3042 m = 30.42 cm 
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This thickness can be achieved by using 4 layers of type 1 bricks using the 7.5 cm dimension. 
Similarly, for one-dimensional conduction through type 2 bricks 

 L2 = 2

max

k
q

A
 
  

 (T12 – Tcold) 

 L2 = 
2

0.85 W/(m K)

950 W/m
 (870 – 200)K = 0.6 m = 60 cm 

This thickness can be achieved with 8 layers of type 2 bricks using the 7.5 cm dimension.  
Therefore, the most economical wall would be built using 4 layers of type 1 bricks and 8 layers of 
type 2 bricks with the three inch dimension of the bricks used as the thickness. 

PROBLEM 1.4 

To measure thermal conductivity, two similar 1-cm-thick specimens are placed in an 
apparatus shown in the accompanying sketch. Electric current is supplied to the  
6-cm by 6-cm guarded heater, and a wattmeter shows that the power dissipation is 10 
watts (W). Thermocouples attached to the warmer and to the cooler surfaces show 
temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the 
material at the mean temperature in W/(m K). 

GIVEN 

Thermal conductivity measurement apparatus with two samples as shown 
Sample thickness (L) = 1 cm = 0.01 cm 
Area = 6 cm × 6 cm = 36 cm2 = 0.0036 m2 
Power dissipation rate of the heater (qh) = 10 W 
Surface temperatures   Thot = 322 K   
  Tcold = 300 K 

FIND 

The thermal conductivity of the sample at the mean temperature in W/(m K) 

ASSUMPTIONS 

One dimensional, steady state conduction 
No heat loss from the edges of the apparatus 

 

SKETCH 

Guard Ring and InsulationSE

Heater

Wattmeter

Similar Specimen

Thot

Tcold
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SOLUTION 

By conservation of energy, the heat loss through the two specimens must equal the power dissipation 
of the heater. Therefore the heat transfer through one of the specimens is qh/2. 
For one dimensional, steady state conduction (from Equation (1.3) 

 qk = 
 k A

L
 ΔT = 

2
hq

 

Solving for the thermal conductivity 

 k = 2
hq

L

A TΔ
  

 k = 
2

(5 W)(0.01m)

(0.0036 m )(322K 300 K)−
 

 k = 0.63 W/(m K)  

COMMENTS 

In the construction of the apparatus care must be taken to avoid edge losses so all the heat generated 
will be conducted through the two specimens. 

PROBLEM 1.5 

To determine the thermal conductivity of a structural material, a large 15 cm-thick slab 
of the material was subjected to a uniform heat flux of 2500 W/m2, while thermocouples 
embedded in the wall 2.5 cm apart were read over a period of time. After the system had 
reached equilibrium, an operator recorded the readings of the thermocouples as shown 
below for two different environmental conditions. 

Distance from the surface (cm) Temperature (°C) 

Test 1: 

0 

5 

10 

15 

Test 2: 

0 

5 

10 

15 

 

40 

65 

97 

132 

 

95 

130 

168 

208 

From these data, determine an approximate expression for the thermal conductivity as a 
function of temperature between 40 and 208°C. 

GIVEN 

Thermal conductivity test on a large, 15 cm slab 
Thermocouples are embedded in the wall, 2.5 cm apart 
Heat flux (q/A) = 2500 W/m2 
Two equilibrium conditions were recorded (shown in Table above) 
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FIND 

An approximate expression for thermal conductivity as a function of temperature between 40 and 
208°C. 

 

ASSUMPTIONS 

One-dimensional conduction 

SKETCH 

5 10 15Distance (cm)

Thermocouples

0  

SOLUTION 

The thermal conductivity can be calculated for each pair of adjacent thermocouples using the equation 
for one-dimensional conduction 

 q = k A 
T

L

Δ
 

Solving for k 

 k = 
q L

A TΔ
 

This will give a thermal conductivity for each pair of adjacent thermocouples which are assigned to the 
average temperature of the pair of thermocouples. As an example, for the first pair of thermocouples 
in Test 1, the thermal conductivity (ko) is 

 ko = 
–2

2
o o

5 10 m
(2500 W/m )

65 C 40 C

 ×
  −

 = 5 W/(m K) 

The average temperature for this pair of thermocouples is 

 Tavg = 
40 65

2

+
 = 52.5 °C 

The average temperature and the thermal conductivity for all other pairs of thermocouples are given in 
the table below. 

 n (°C)  Thermal Conductivity W/(m K) 

 1 52.5 5 
 2 81 3.9 
 3 114.5 3.57 
 4 112.5 3.38 
 5 149 3.29 
 6 188 3.125 
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These points are displayed graphically. 

Temperature (°C)

k
(W/(mK))

100 150 2003

4

5

Mean Variation of
with Temperature

k

 

We will use the best fit quadratic function to represent the relationship between thermal conductivity 
and temperature 

 k (T)  = a + b T + c T 2 

The constants a, b, and c can be found using a least squares fit. 
Let the experimental thermal conductivity at data point n be designated as kn. A least squares fit of the 
data can be obtained as follows 
The sum of the squares of the errors is 

 S = 2[ ( )]n n
N

k k T−  

 S = 2 2 2 2 22 2 2 2n n n n n n nk a k N a ab T b k T ac T b T− − + − + +       

   2 3 2 4– 2 2n n n nc k T bc T c T+ +    

By setting the derivatives of S (with respect to a, b, and c) equal to zero, the following equations 
result 

  N a + Σ Tnb + Σ Tn
2 c = Σ kn 

  Σ Tn a + Σ Tn
2 b + Σ Tn

3 c = Σ kn Tn 

  Σ Tn
2 a + Σ Tn

3 b + Σ Tn
4 c = Σ kn Tn

2 

For this problem 

 Σ Tn = 697.5 

 Σ Tn
2 = 9.263 × 104 

 Σ Tn
3 = 1.3554 × 107 

 Σ Tn
4 = 2.125 × 109 

 Σ kn = 22.41 

 Σ kn Tn = 2445.12 

 Σ kn Tn
2 = 3.124 × 104 

 Solving for a, b, and c 
 a = 6.9722 

 b = – 4.7213 × 10–2 

 c = 1.443 × 10–4 
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Therefore the expression for thermal conductivity as a function of temperature between 40 and 208°C is 

 k (T)  = 6.9722 – 4.7213 × 10–2 T + 1.443 × 10–4 T 2 

This is plotted in the following graph 

Temperature (deg C)

100 150 20050
3

3.5

4

4.5

5

T
h
e
rm

a
l
C

o
n
d
u

c
ti
v
it
y ,

[W
/m

K
]

k

 

COMMENTS 

Note that the derived empirical expression is only valid within the temperature range of the experi-
mental data. 

PROBLEM 1.6 

A square silicone chip 7 mm by 7 mm in size and 0.5 mm thick is mounted on a 
plastic substrate with its front surface cooled by a synthetic liquid flowing over it. 
Electronic circuits in the back of the chip generate heat at a rate of 5 watts that have 
to be transferred through the chip. Estimate the steady state temperature difference 
between the front and back surfaces of the chip. The thermal conductivity of silicone 
is 150 W/(m K). 

GIVEN 

A 0.007 m by 0.007 m silicone chip 
Thickness of the chip (L) = 0.5 mm = 0.0005 m 
Heat generated at the back of the chip ( Gq ) = 5 W 
The thermal conductivity of silicon (k) = 150 W/(m K) 

FIND 

The steady state temperature difference (ΔT) 

ASSUMPTIONS 

One dimensional conduction (edge effects are negligible) 
The thermal conductivity is constant 
The heat lost through the plastic substrate is negligible 

SKETCH 

Substrate

0.5

CNIP

7 mm

7 mm
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SOLUTION 

For steady state the rate of heat loss through the chip, given by Equation (1.3), must equal the rate of 
heat generation 

 qk = 
 A k

L
 (ΔT) = Gq  

Solving this for the temperature difference 

 ΔT = 
 

 
GL q

k A


 

 ΔT = 
( )

(0.0005) (5W)

150 W/(m K) (0.007 m)(0.007 m)
 

 ΔT = 0.34°C 

PROBLEM 1.7 

A warehouse is to be designed for keeping perishable foods cool prior to transportation 
to grocery stores. The warehouse has an effective surface area of 1860 m2 exposed to an 
ambient air temperature of 32°C. The warehouse wall insulation (k = 0.17 W/(m K) is  
7.5 cm thick. Determine the rate at which heat must be removed from the warehouse to 
maintain the food at 4°C. 

GIVEN 

Cooled warehouse 
Effective area (A) = 1860 m2 
Temperatures  Outside air = 32°C  
   Food inside = 4°C 
Thickness of wall insulation (L) = 7.5 cm 
Thermal conductivity of insulation (k) = 0.17 W/(m K) 

FIND 

Rate at which heat must be removed (q) 

ASSUMPTIONS 

One dimensional, steady state heat flow 
The food and the air inside the warehouse are at the same temperature 
The thermal resistance of the wall is approximately equal to the thermal resistance of the wall 

insulation alone 

SKETCH 

L = 7.5 cm

Warehouse

T• = 32°C Ti = 4°Cq
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SOLUTION 

The rate at which heat must be removed is equal to the rate at which heat flows into the warehouse. 
There will be convective resistance to heat flow on the inside and outside of the wall. To estimate the 
upper limit of the rate at which heat must be removed these convective resistances will be neglected. 
Therefore the inside and outside wall surfaces are assumed to be at the same temperature as the air 
inside and outside of the wall. Then the heat flow, from Equation (1.2), is 

 q = 
k A

L
 ΔT 

 q = 
( ) 2

–2

0.17 W/(m K) (1860 m )

7.5  10  m×
 (32 – 4) 

 q = 118 kW 

PROBLEM 1.8 

With increasing emphasis on energy conservation, the heat loss from buildings has 
become a major concern. For a small tract house the typical exterior surface areas and 
R-factors (area × thermal resistance) are listed below 

Element Area (m2)  R-Factors = Area × Thermal Resistance [(m2 K/W)] 

Walls 150 2.0 

Ceiling 120 2.8 

Floor 120 2.0 

Windows 20 0.1 

Doors 5 0.5 

(a) Calculate the rate of heat loss from the house when the interior temperature is 22°C 
and the exterior is –5°C. 

(b) Suggest ways and means to reduce the heat loss and show quantitatively the effect 
of doubling the wall insulation and the substitution of double glazed windows 
(thermal resistance = 0.2 m2 K/W) for the single glazed type in the table above. 

GIVEN 

Small house 
Areas and thermal resistances shown in the table above 
Interior temperature = 22°C 
Exterior temperature = –5°C 

FIND 

(a) Heat loss from the house (qa) 
(b) Heat loss from the house with doubled wall insulation and double glazed windows (qb). Suggest 

improvements. 

 

ASSUMPTIONS 

All heat transfer can be treated as one dimensional 
Steady state has been reached 
The temperatures given are wall surface temperatures 
Infiltration is negligible 
The exterior temperature of the floor is the same as the rest of the house 
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SOLUTION 

(a) The rate of heat transfer through each element of the house is given by Equations (1.33) and 
(1.34) 

 q = 
th

T

R

Δ
 

The total rate of heat loss from the house is simply the sum of the loss through each element: 

 q  = ΔT 

wall ceiling floor windows doors

1 1 1 1 1
AR AR AR AR AR

A A A A A

 
 + + + +
                             

  

 

 q = (22°C – –5°C) 

2 2 2 2 2

2 2 2 2 2

1 1 1 1 1

2.0 (m K)/W 2.8 (m K)/W 2.0 (m K)/W 0.5 (m K)/W 0.5 (m K)/W

150 m 120 m 120 m 20 m 5 m

 
 
 + + + +
          

                      

 

 q = (22°C – –5°C) (75 + 42.8 + 60 + 200 + 10) W/K 

 q = 10,500 W 

(b) Doubling the resistance of the walls and windows and recalculating the total heat loss: 

  q  = (22°C – –5°C) 

2 2 2 2 2

2 2 2 2 2

1 1 1 1 1

4.0 (m K)/W 2.8 (m K)/W 2.0 (m K)/W 0.2 (m K)/W 0.5 (m K)/W

150 m 120 m 120 m 20 m 5 m

 
 
 + + + +
          
                     

 

 q = (22°C – –5°C) (37.5 + 42.8 + 60 + 100 + 10) W/K 

 q = 6800 W 

Doubling the wall and window insulation led to a 35% reduction in the total rate of heat loss. 

COMMENTS 

Notice that the single glazed windows account for slightly over half of the total heat lost in case (a) 
and that the majority of the heat loss reduction in case (b) is due to the double glazed windows. 
Therefore double glazed windows are strongly suggested. 

 

PROBLEM 1.9 

Heat is transferred at a rate of 0.1 kW through glass wool insulation (density = 100 
kg/m3) of 5 cm thickness and 2 m2 area. If the hot surface is at 70°C, determine the 
temperature of the cooler surface. 
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GIVEN 

Glass wool insulation with a density (ρ) = 100 kg/m3 
Thickness (L) = 5 cm = 0.05 m 
Area (A) = 2 m2 
Temperature of the hot surface (Th) = 70°C 
Rate of heat transfer (qk) = 0.1 kW = 100 W 

FIND 

The temperature of the cooler surface (Tc) 

ASSUMPTIONS 

One dimensional, steady state conduction 
Constant thermal conductivity 

SKETCH 

L = 0.05 m

Glass Wool

qk = 100 W

Tc = ?
Th = 70°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
The thermal conductivity of glass wool at 20°C (k) = 0.036 W/(m K) 

SOLUTION 

For one dimensional, steady state conduction, the rate of heat transfer, from Equation (1.2), is 

 qk = 
A k

L
 (Th – Tc) 

Solving this for Tc 

 Tc = Th – 
 

kq L

A k
 

 Tc = 70°C –
( )2

(100 W)(0.05m)

(2 m ) 0.036 W/m K
 

 Tc = 0.6°C 

PROBLEM 1.10 

A heat flux meter at the outer (cold) wall of a concrete building indicates that the heat 
loss through a wall of 10 cm thickness is 20 W/m2. If a thermocouple at the inner surface 
of the wall indicates a temperature of 22°C while another at the outer surface shows 
6°C, calculate the thermal conductivity of the concrete and compare your result with the 
value in Appendix 2, Table 11. 

GIVEN 

Concrete wall 
Thickness (L) = 100 cm = 0.1 m 
Heat loss (q/A) = 20 W/m2 
Surface temperature  Inner (Ti) = 22°C 
  Outer (To) = 6°C 
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FIND 

The thermal conductivity (k) and compare it to the tabulated value 

ASSUMPTIONS 

One dimensional heat flow through the wall 
Steady state conditions exist 

SKETCH 

L = 0.1 m

qk

To = 6°CTi = 22°C  

SOLUTION 

The rate of heat transfer for steady state, one dimensional conduction, from Equation (1.2), is 

 qk = 
 k A

L
 (Thot – Tcold) 

Solving for the thermal conductivity 

 k = 
( )

k

i o

q L

A T T
 
   −

 

 k = 
2

2
o o

0.1m
(20 W/m )

22 C 6 C

 
  −

 = 0.125 W/(m K) 

This result is very close to the tabulated value in Appendix 2, Table 11 where the thermal 
conductivity of concrete is given as 0.128 W/(m K). 

PROBLEM 1.11 

Calculate the heat loss through a 1-m by 3-m glass window 7 mm thick if the inner 
surface temperature is 20°C and the outer surface temperature is 17°C. Comment on the 
possible effect of radiation on your answer. 

GIVEN 

Window: 1 m by 3 m 
Thickness (L) = 7 mm = 0.007 m 
Surface temperature  Inner (Ti) = 20°C  
  Outer (To) = 17°C 

FIND 

The rate of heat loss through the window (q) 

ASSUMPTIONS 

One dimensional, steady state conduction through the glass 
Constant thermal conductivity 
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SKETCH 

L = 0.007 m

qk

To = 17°CTi = 20°C

Glass

 
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
Thermal conductivity of glass (k) = 0.81 W/(m K) 

SOLUTION 

The heat loss by conduction through the window is given by Equation (1.2) 

 qk = 
k A

L
 (Thot – Tcold) 

 qk = 
( )0.81 W/(m K) (1m) (3m)

(0.007 m)
 (20°C – 17°C) 

 qk = 1040 W 

COMMENTS 

Window glass is transparent to certain wavelengths of radiation, therefore some heat may be lost by 
radiation through the glass. 
During the day sunlight may pass through the glass creating a net heat gain through the window. 

PROBLEM 1.12 

If in Problem 1.11 the outer air temperature is –2°C, calculate the convective heat 
transfer coefficient between the outer surface of the window and the air assuming 
radiation is negligible. 

Problem 1.11: Calculate the heat loss through a 1 m by 3 m glass window 7 mm thick if 
the inner surface temperature is 20°C and the outer surface temperature is 17°C. 
Comment on the possible effect of radiation on your answer. 

GIVEN 

Window: 1 m by 3 m 
Thickness (L) = 7 mm = 0.007 m 
Surface temperatures  Inner (Ti) = 20°C  
  Outer (To) = 17°C 
The rate of heat loss = 1040 W (from the solution to Problem 1.11) 
The outside air temperature = –2°C 

FIND 

The convective heat transfer coefficient at the outer surface of the window ( ch ) 

ASSUMPTIONS 

The system is in steady state and radiative loss through the window is negligible 
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SKETCH 

L = 0.007 m

To = 17°CTi = 20°C

qk

T•0 = –2°C

qc

 

 

SOLUTION 

For steady state the rate of heat transfer by convection (Equation (1.10)) from the outer surface must 
be the same as the rate of heat transfer by conduction through the glass 

 qc = ch  A ΔT = qk 

Solving for ch  

 ch  = 
( )

k

o

q

A T T∞−
 

 ch  = 
o o

1040W

(1m)(3m)(17 C 2 C)− −
 

 ch  = 18.2 W/(m2 K) 

COMMENTS 

This value for the convective heat transfer coefficient falls within the range given for the free 
convection of air in Table 1.4. 

PROBLEM 1.13 

Using Table 1.4 as a guide, prepare a similar table showing the order of magnitudes of 
the thermal resistances of a unit area for convection between a surface and various 
fluids. 

GIVEN 

Table 1.4— The order of magnitude of convective heat transfer coefficient ( ch ) 

FIND 

The order of magnitudes of the thermal resistance of a unit area (A Rc) 

SOLUTION 

The thermal resistance for convection is defined by Equation (1.14) as 

 Rc = 
1

ch A
 

Therefore the thermal resistances of a unit area are simply the reciprocal of the convective heat 
transfer coefficient 

 A Rc = 
1

ch
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As an example, the first item in Table 1.4 is ‘air, free convection’ with a convective heat transfer 
coefficient of 6–30 W/(m2 K). Therefore the order of magnitude of the thermal resistances of a unit 
area for air, free convection is 

 
2

1

30 W/(m K)
 = 0.03 2(m K)/W  to 

2

1

6 W/(m K)
 = 0.17 2(m K)/W  

The rest of the table can be calculated in a similar manner 

Order of Magnitude of Thermal Resistance of a Unit Area for Convection 

 Fluid W/(m2 K) 

 Air, free convection 0.03–0.2 
 Superheated steam or air, 0.003–0.03 
 forced convection 
 Oil, forced convection 0.0006–0.02 
 Water, forced convection 0.0002–0.003 
 Water, boiling 0.00002–0.0003 
 Steam, condensing 0.000008–0.0002 

COMMENTS 

The extremely low thermal resistance in boiling and condensation suggests that these resistances can 
often be neglected in a series thermal network. 

PROBLEM 1.14 

A thermocouple (0.8-mm-OD wire) is used to measure the temperature of quiescent gas 
in a furnace. The thermocouple reading is 165°C. It is known, however, that the rate of 
radiant heat flow per meter length from the hotter furnace walls to the thermocouple 
wire is 1.1 W/m and the convective heat transfer coefficient between the wire and the gas 
is 6.8 W/(m2 K). With this information, estimate the true gas temperature. State your 
assumptions and indicate the equations used. 

GIVEN 

Thermocouple (0.8 mm OD wire) in a furnace 
Thermocouple reading (Tp) = 165°C 
Radiant heat transfer to the wire (qr/L) = 1.1 W/m 

Heat transfer coefficient ( ch ) = 6.8 W/(m2 K) 

FIND 

Estimate the true gas temperature (TG) 

ASSUMPTIONS 

The system is in equilibrium 
Conduction along the thermocouple is negligible 
Conduction between the thermocouple and the furnace wall is negligible 
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SKETCH 

Thermocouple
qc

TP

TG

Furnace Wall

 

SOLUTION 

Equilibrium and the conservation of energy require that the heat gain of the probe by radiation if equal 
to the heat lost by convection. 
The rate of heat transfer by convection is given by Equation (1.10) 

 qc =  ch  A Δ T =  ch  π D L (Tp – TG) 

For steady state to exist the rate of heat transfer by convection must equal the rate of heat transfer by 
radiation 

 qc = qr 

 ch π D L (Tp – TG) = rq

L
 
  

L 

 TG = Tp – 

r

c

q
L

L
h D Lπ

 
  

 

 TG = 165°C – ( )2

(1.1W/m)

6.8 W/(m K) (0.0008m)π
 

 TG = 101°C 

COMMENTS 

This example illustrates that care must be taken in interpreting experimental measurements. In this 
case a significant correction must be applied to the thermocouple reading to obtain the true gas 
temperature. Can you suggest ways to reduce the correction? 

PROBLEM 1.15 

Water at a temperature of 77°C is to be evaporated slowly in a vessel. The water is in a 
low pressure container which is surrounded by steam. The steam is condensing at 107°C. 
The overall heat transfer coefficient between the water and the steam is 1100 W/(m2 K). 
Calculate the surface area of the container which would be required to evaporate water 
at a rate of 0.01 kg/s. 

GIVEN 

Water evaporated slowly in a low pressure vessel surrounded by steam 
Water temperature (Tw) = 77°C 
Steam condensing temperature (Ts) = 107°C 
Overall transfer coefficient between the water and the steam (U) = 1100 W/(m2 K) 
Evaporation rate ( )wm = 0.01 kg/s 

FIND 

The surface area (A) of the container required 
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ASSUMPTIONS 

Steady state prevails 
Vessel pressure is held constant at the saturation pressure corresponding to 77°C 

SKETCH 

Water Vapor, = 0.01 kg/smw

Saturated Steam, = 107 °CTs

Water
77°C

Condensate  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13 
The heat of vaporization of water at 77°C (hfg) = 2317 kJ/kg 

SOLUTION 

The heat transfer required to evaporate water at the given rate is 

 q = wm  hfg 

For the heat transfer between the steam and the water 

 q = U A ΔT = wm  hfg 

Solving this for the transfer area 

 A = 
w fgm h

U TΔ


 

 A = ( )2 o o

(0.01kg/s) (2317 kJ/kg) (1000J/kJ)

1100 W/(m K) (107 C 77 C)−
 

 A = 0.70 m2 

PROBLEM 1.16 

The heat transfer rate from hot air at 100°C flowing over one side of a flat plate with 
dimensions 0.1 m by 0.5 m is determined to be 125 W when the surface of the plate is 
kept at 30°C. What is the average convective heat transfer coefficient between the plate 
and the air? 

GIVEN 

Flat plate, 0.1 m by 0.5 m, with hot air flowing over it 
Temperature of plate surface (Ts) = 30°C 
Air temperature (T∞) = 100°C 
Rate of heat transfer (q) = 125 W 

FIND 

The average convective heat transfer coefficient, hc, between the plate and the air 

ASSUMPTION 

Steady state conditions exist 
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SKETCH 

qc = 125 W

Air

T• = 100°C
Ts = 30°C

 

SOLUTION 

For convection the rate of heat transfer is given by Equation (1.10) 

 qc = ch A ΔT 

 qc = ch  A (T∞ – Ts) 

Solving this for the convective heat transfer coefficient yields 

 ch  = 
( )

c

s

q

A T T∞ −
 

 ch  = 
o o

125W

(0.1m)(0.5m)(100 C 30 C)−
 

 ch  = 35.7 W/(m2 K) 

COMMENTS 

One can see from Table 1.4 (order of magnitudes of convective heat transfer coefficients) that this 
result is reasonable for free convection in air. 

Note that since T∞ > Ts heat is transferred from the air to the plate. 

PROBLEM 1.17 

The heat transfer coefficient for a gas flowing over a thin flat plate 3 m long and  
0.3 m wide varies with distance from the leading edge according to 

 ch  (x) = 10 × 
1

– 24 W/(m K)  

If the plate temperature is 170°C and the gas temperature is 30°C, calculate (a) the 
average heat transfer coefficient, (b) the rate of heat transfer between the plate and the 
gas and (c) the local heat flux 2 m from the leading edge. 

GIVEN 

Gas flowing over a 3 m long by 0.3 m wide flat plate 
Heat transfer coefficient (hc) is given by the equation above 
The plate temperature (TP) = 170°C 
The gas temperature (TG) = 30°C 

FIND 

(a) The average heat transfer coefficient ( ch ) 
(b) The rate of heat transfer (qc) 
(c) The local heat flux at x = 2 m (qc (2)/A) 

ASSUMPTIONS 

Steady state prevails 

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
20

SKETCH 

TP = 170°C

Gas

TG = 30°C

3 m

0.3 m

x  

SOLUTION 

(a) The average heat transfer coefficient can be calculated by 

 ch  = 
0

1
( )

L

ch x dx
L   = 

31 3
44 4

0 0

1 10 4 10 4
10 | 3

3 3 3

LL

L L

−
× = × =  

 ch  = 10.13 W/(m2 K) 

(b) The total convective heat transfer is given by Equation (1.10) 

 qc = ch  A (TP – TG) 

 qc = ( )210.13 W/(m K)  (3 m) (0.3 m) (170°C – 30°C) 

 qc = 1273 W 

(c) The heat flux at x = 2 m is 

 
( )q x

A
 = hc(x) (TP – TG) = 10 × 

1

4
−

 (TP – TG) 

 
(2)q

A
 = 10

1

4(2)
−

 (170°C – 30°C) 

 
(2)q

A
 = 1177 W/m2 

COMMENTS 

Note that the equation for hc does not apply near the leading edge of the plate since hc approaches 
infinity as x approaches zero. This behavior is discussed in more detail in Chapter 6. 

PROBLEM 1.18 

A cryogenic fluid is stored in a 0.3 m diameter spherical container in still air. If the 
convective heat transfer coefficient between the outer surface of the container and the 
air is 6.8 W/(m2 K), the temperature of the air is 27°C and the temperature of the 
surface of the sphere is –183°C, determine the rate of heat transfer by convection. 

GIVEN 

A sphere in still air 
Sphere diameter (D) = 0.3 m 
Convective heat transfer coefficient ch  = 6.8 W/(m2 K) 
Sphere surface temperature (Ts) = –183°C 
Ambient air temperature (T∞) = 27°C 
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FIND 

Rate of heat transfer by convection (qc) 

ASSUMPTIONS 

Steady state heat flow 

SKETCH 

Ts = – 183°C

T
�

= 27°C

 

SOLUTION 

The rate of heat transfer by convection is given by 

 qc = ch  A ΔT 

 qc = ch  (π D2) (T∞ – Ts) 

 qc = ( )26.8W/(m K) π (0.3 m)2 [27°C – (–183°C)] 

 qc = 404 W 

COMMENTS 

Condensation would probably occur in this case due to the low surface temperature of the sphere. A 
calculation of the total rate of heat transfer to the sphere would have to take the rate on condensation 
and the rate of radiative heat transfer into account. 

PROBLEM 1.19 

A high-speed computer is located in a temperature controlled room of 26°C. When the 
machine is operating its internal heat generation rate is estimated to be 800 W. The 
external surface temperature is to be maintained below 85°C. The heat transfer 
coefficient for the surface of the computer is estimated to be 10 W/(m2 K). What surface 
area would be necessary to assure safe operation of this machine? Comment on ways to 
reduce this area. 

GIVEN 

A high-speed computer in a temperature controlled room 
Temperature of the room (T∞) = 26°C 
Maximum surface temperature of the computer (Tc) = 85°C 
Heat transfer coefficient (U) = 10 W/(m K) 
Internal heat generation ( )Gq  = 800 W 

FIND 

The surface area (A) required and comment on ways to reduce this area 

ASSUMPTIONS 

The system is in steady state 
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SKETCH 

Tc = 85°C

T• = 26°C
Room

Computer

 

SOLUTION 

For steady state the rate of heat transfer from the computer (given by Equation (1.33)) must equal the 
rate of internal heat generation 

 q = U A ΔT = Gq  

Solving this for the surface area 

 A = Gq

U TΔ


 

 A = ( )2 o o

800W

10 W/(m K) (85 C 26 K)−
 = 1.4 m2 

COMMENTS 

Possibilities to reduce this surface area include 
Increase the convective heat transfer from the computer by blowing air over it 
Add fins to the outside of the computer 

PROBLEM 1.20 

In order to prevent frostbite to skiers on chair lifts, the weather report at most ski areas 
gives both an air temperature and the wind chill temperature. The air temperature is 
measured with a thermometer that is not affected by the wind. However, the rate of heat 
loss from the skier increases with wind velocity, and the wind-chill temperature is the 
temperature that would result in the same rate of heat loss in still air as occurs at the 
measured air temperature with the existing wind. 

Suppose that the inner temperature of a 3 mm thick layer of skin with a thermal 
conductivity of 0.35 W/(m K) is 35°C and the ambient air temperature is –20°C. Under 
calm ambient conditions the heat transfer coefficient at the outer skin surface is about  
20 W/(m2 K) (see Table 1.4), but in a 40 mph wind it increases to 75 W/(m2 K). (a) If 
frostbite can occur when the skin temperature drops to about 10°C, would you advise 
the skier to wear a face mask? (b) What is the skin temperature drop due to wind chill? 

GIVEN 

Skier’s skin exposed to cold air 
Skin thickness (L) = 3 mm = 0.003 m 
Inner surface temperature of skin (Tsi) = 35°C 
Thermal conductivity of skin (k) = 0.35 W/(m K) 
Ambient air temperature (T∞) = –20°C 
Convective heat transfer coefficients  Still air (hc0) = 20 W/(m2 K) 
  40 mph air (hc40) = 75 W/(m2 K) 
Frostbite occurs at an outer skin surface temperature (Tso) = 10°C 
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FIND 

(a) Will frostbite occur under still or 40 mph wind conditions? 
(b) Skin temperature drop due to wind chill. 

ASSUMPTIONS 

Steady state conditions prevail 
One dimensional conduction occurs through the skin 
Radiative loss (or gain from sunshine) is negligible 

SKETCH 

T
�

= –20°C
q Tso

Skin

Tsi = 35°C
T

�
= ?  

SOLUTION 

The thermal circuit for this system is shown below 

Tsi Tso T•

Rk Rc  

(a) The rate of heat transfer is given by 

 q = 
total

T

R

Δ
 = 

k c

T

R R

Δ
+

 = 
1

si

c

T T

L

k A h A

∞−
   +      

 

 ∴ q

A
 = 

1
si

c

T T
L

k h

∞−

+
 

The outer surface temperature of the skin in still air can be calculated by examining the conduction 
through the skin layer 

 qk = 
k A

L
 (Tsi – Tso) 

Solving for the outer skin surface temperature 

 Tso = Tsi – kq L

A k
 

The rate of heat transfer by conduction through the skin must be equal to the total rate of heat transfer, 
therefore 

 Tso = Tsi – 
1

si

c

T T L
L k
K h

∞

 
 −
 
 +  
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Solving this for still air 

 (Tso)still air = 35°C – 
o o

2

2

35 C ( 20 C) 0.003m
0.003m 1 0.25W/(m K)

0.25W/(m K) 20 W/(m K)

 
 − − 
 +  

 

 (Tso)still air = 24°C 
For a 40 mph wind 

 (Tso)40 mph = 35°C – 
o o

2

2

35 C ( 20 C) 0.003m
0.003m 1 0.25W/(m K)

0.25W/(m K) 75W/(m K)

 
 − − 
 +  

 

 (Tso)40 mph = 9°C 
Therefore, frostbite may occur under the windy conditions. 
(b) Comparing the above results we see that the skin temperature drop due to the wind chill was 

15°C. 

PROBLEM 1.21 

Using the information in Problem 1.20, estimate the ambient air temperature that could 
cause frostbite on a calm day on the ski slopes. 

From Problem 1.20 

Suppose that the inner temperature of a 3 mm thick layer of skin with a thermal 
conductivity of 0.35 W/(m K) is a temperature of 35°C. Under calm ambient conditions 
the heat transfer coefficient at the outer skin surface is about 20 W/(m2 K). 
Frostbite can occur when the skin temperature drops to about 10°C. 

GIVEN 

Skier’s skin exposed to cold air 
Skin thickness (L) = 3 mm = 0.003 m 
Inner surface temperature of skin (Tsi) = 35°C 
Thermal conductivity of skin (k) = 0.35 W/(m K) 

Convective heat transfer coefficient in still air ( ch ) = 20 W/(m2 K) 
Frostbite occurs at an outer skin surface temperature (Tso) = 10°C 

FIND 

The ambient air temperature (T∞) that could cause frostbite 

ASSUMPTIONS 

Steady state conditions prevail 
One dimensional conduction occurs through the skin 
Radiative loss (or gain from sunshine) is negligible 

SKETCH 

Tso = 10°Cqc

Skin

T• = ?

qk

Tsi = 35°C  
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SOLUTION 

The rate of conductive heat transfer through the skin at frostbite conditions is given by Equation (1.2) 

 qk = 
k A

L
 (Tsi – Tso) 

The rate of convective heat transfer from the surface of the skin, from equation (1.10), is 

 qc = ch  A (Tso – T∞) 

These heat transfer rates must be equal 

 qk = qc 

 
k A

L
 (Tsi – Tso) = ch  A (Tso – T∞) 

Solving for the ambient air temperature 

 T∞ = Tso 1
c

k

h L

 +  
 – Tsi 

c

k

h L

 
  

 

  T∞ = 10°C 
2

0.25W/(m K)
1

20 W/(m K) (0.003m)

 
+ 
     

 – 35°C 

   
2

0.25W/(m K)

20 W/(m K) (0.003m)

 
 
     

 

 T∞ = –94°C 

PROBLEM 1.22 

Two large parallel plates with surface conditions approximating those of a blackbody 
are maintained at 816 and 260°C, respectively. Determine the rate of heat transfer by 
radiation between the plates in W/m2 and the radiative heat transfer coefficient in 
W/(m2 K). 

GIVEN 

Two large parallel plates, approximately black bodies 
Temperatures  T1 = 816°C 
  T2 = 260°C 

FIND 

(a) Rate of radiative heat transfer (qr/A) in W/m2 
(b) Radiative heat transfer coefficient (hr) in W/(m2 K) 

ASSUMPTIONS 

Steady state prevails 
Edge effects are negligible 

SKETCH 

qr

T1 = 816 °C
T2 = 260 °C
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: Stefan-Boltzmann constant (σ) = 5.7 × 10–8 W/(m2 K4) 

SOLUTION 

(a) The rate of heat transfer is given by Equation (1.16) 

 rq

A
 = σ (T1

4 – T2
4) 

 rq

A
 = (5.7 × 10–8 W/(m2 K4)) [(1089 K)4 – (533 K)4] 

  rq

A
 = 75.56 (kW)/m2 

(b) Let hr represent the radiative heat transfer coefficient 

 qr = hr A ΔT 

 ∴ hr = rq

A
 

1

TΔ
 = 

4 2

o

7.556 10  W/m

(816 260) C

×
−

 

 hr = 136 W/(m2 K)  

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equation, whereas hr is 
based on the assumption that the rate of heat transfer is proportional to the temperature difference. 
Hence hr cannot be applied to any other temperatures than those specified. 

PROBLEM 1.23 

A spherical vessel 0.3 m in diameter is located in a large room whose walls are at 27°C 
(see sketch). If the vessel is used to store liquid oxygen at –183°C and the surface of the 
storage vessel as well as the walls of the room are black, calculate the rate of heat 
transfer by radiation to the liquid oxygen in watts. 

GIVEN 

A black spherical vessel of liquid oxygen in a large black room 
Liquid oxygen temperature (To) = –183°C = 90 K 
Sphere diameter (D) = 0.3 m 
Room wall temperature (Tw) = 27°C = 300 K 

FIND 

The rate of radiative heat transfer to the liquid oxygen in W 

ASSUMPTIONS 

Steady state prevails 
The temperature of the vessel wall is the same as the temperature of the oxygen 
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SKETCH 

Tw = 300 K

Liq. OX
–183°C

To = 90 K

qr

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The net radiative heat transfer to a black body in a black enclosure is given by Equation (1.16) 

 qr = A σ (T1
4 – T2

4) 

 qr = π D2 σ (Tw
4 – To

4) 

Converting the net radiative heat transfer into SI units using the conversion factor given on the inside 
front cover of the text 

 qr = 133 W 

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equation. 

PROBLEM 1.24 

Repeat Problem 1.23 but assume that the surface of the storage vessel has an absorptance 
(equal to the emittance) of 0.1. Then determine the rate of evaporation of the liquid oxygen 
in kilograms per second and pounds per hour, assuming that convection can be neglected. 
The heat of vaporization of oxygen at –183°C is 213.3 kJ/kg. 

From Problem 1.23: A spherical vessel of 0.3 m in diameter is located in a large 
room whose walls are at 27°C (see sketch). If the vessel is used to store liquid oxygen  
at –183°C and the surface of the storage vessel as well as the walls of the room are 
black, calculate the rate of heat transfer by radiation to the liquid oxygen in watts. 

GIVEN 

A spherical vessel of liquid oxygen in a large black room 
Emittance of vessel surface (ε) = 0.1 
Liquid oxygen temperature (To) = –183°C = 90 K 
Sphere diameter (D) = 0.3 m 
Room wall temperature (Tw) = 27°C = 300 K 
Heat of vaporization of oxygen (hfg) = 213.3 kJ/kg 

FIND 

(a) The rate of radiative heat transfer (qr) to the liquid oxygen in W 
(b) The rate of evaporation of oxygen (mo) in kg/s and 1b/h 
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ASSUMPTIONS 

Steady state prevails 
The temperature of the vessel wall is equal to the temperature of the oxygen 
Convective heat transfer is negligible 

SKETCH 

Tw = 300 K

Liq. OX
–183°C

To = 90 K

qr

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

(a) The net radiative heat transfer from a gray body in a black enclosure, from Equation (1.17) is 

 qr = A1 ε1 σ (T1
4 – T2

4) 

 qr = π D2 ε σ (To
4 – Tw

4) 

 qr = π (0.3 m)2 (0.1) (5.67 × 10–8 [W/(m2 K4)] [(90 K)4 – (300 K)4)] 

 qk = –12.9 W 

(b) The rate of evaporation of oxygen is given by 

 om  = r

fg

q

h
 

 om  = 
( )(12.9 W) J/Ws

(213.3 kJ/kg) (1000 J/kJ)
 

 om  = 6.05 × 10–5 kg/s 

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equation. 
The negative sign in the rate of heat transfer indicates that the sphere is gaining heat from the 
surrounding wall. 
Note that the rate of heat transfer by radiation can be substantially reduced (see Problem 1.23) by 
applying a surface treatment, e.g., applying a metallic coating with low emissivity. 

PROBLEM 1.25 

Determine the rate of radiant heat emission in watts per square meter from a blackbody 
at (a) 150°C, (b) 600°C, (c) 5700°C. 

GIVEN 

A blackbody 
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FIND 

The rate of radiant heat emission (qr) in W/m2 for a temperature of 
 (a) T = 150°C = 423 K 

 (b) T = 600°C = 873 K 

 (c) T = 5700°C = 5973 K 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The rate of radiant heat emission from a blackbody is given by Equation (1.15) 

 qr = σ A1 T1
4 

 rq

A
 = σ T 4 

(a) For T = 423 K 

 rq

A
 = [5.67 × 10–8 W/(m2 K4)] (423K)4 

 rq

A
 = 1820 W/m2 

(b) For T = 873 K 

 rq

A
 = [5.67 × 10–8 W/(m2 K4)] (873 K)4 

 rq

A
 = 32,900 W/m2 

(c) For T = 5973 K 

 rq

A
 = [(5.67 × 10–8 W/(m2 K4)] (5974 K)4 

 rq

A
 = 7.2 × 107 W/m2 

COMMENTS 

Note that absolute temperatures must be used in radiative heat transfer equations. 
The rate of heat transfer is proportional to the absolute temperature to the fourth power, this results in 
a rapid increase in the rate of heat transfer with increasing temperature. 

PROBLEM 1.26 

The sun has a radius of 7 × 108 m and approximates a blackbody with a surface 
temperature of about 5800 K. Calculate the total rate of radiation from the sun and the 
emitted radiation flux per square meter of surface area. 

GIVEN 

The sun approximates a blackbody 
Surface temperature (Ts) = 5800 K 
Radius (r) = 7 × 108 m 
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FIND 

(a) The total rate of radiation from the sun (qr) 
(b) The radiation flux per square meter of surface area (qr/A) 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The rate of radiation from a blackbody, from Equation (1.15), is 

 qr = σ A T 4 

 qr = [5.67 × 10–8 W/(m2 K4)] [4π (7 × 108 m)2] (5800 K)4 

 qr = 4.0 × 1026 W 

The flux per square meter is given by 

 rq

A
 = σ T 4 

 rq

A
 = [5.67 × 10–8 W/(m2 K4)] (5800 K)4 

 rq

A
 = 6.4 × 107 W/m2 

COMMENTS 

The solar radiation flux impinging in the earth’s atmosphere is only 1400 W/m2. Most of the radiation 
from the sun goes into space. 

PROBLEM 1.27 

A small gray sphere having an emissivity of 0.5 and a surface temperature of 537°C is 
located in a blackbody enclosure having a temperature of 37°C. Calculate for this 
system: (a) the net rate of heat transfer by radiation per unit of surface area of the 
sphere, (b) the radiative thermal conductance in W/K if the surface area of the sphere is 
95 cm2, (c) the thermal resistance for radiation between the sphere and its surroundings, 
(d) the ratio of thermal resistance for radiation to thermal resistance for convection if 
the convective heat transfer coefficient between the sphere and its surroundings is 11 
W/(m2 K), (e) the total rate of heat transfer from the sphere to the surroundings, and (f) 
the combined heat transfer coefficient for the sphere. 

GIVEN 

Small gray sphere in a blackbody enclosure 
Sphere emissivity (εs) = 0.5 
Sphere surface temperature (T1) = 537°C = 810 K 
Enclosure temperature (T2) = 37°C = 310 K 
The surface area of the sphere (A) is 95 cm2 

The convective transfer coefficient ( ch ) = 11 W/(m2 K) 
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FIND 

(a) Rate of heat transfer by radiation per unit surface area 
(b) Radiative thermal conductance (Kr) in W/K 
(c) Thermal resistance for radiation (Rr) 
(d) Ratio of the radiative and conductive resistance 
(e) Total rate of heat transfer (qT) to the surroundings 

(f) Combined heat transfer coefficient ( crh ) 

ASSUMPTIONS 

Steady state prevails 
The temperature of the fluid in the enclosure is equal to the enclosure temperature 

SKETCH 

Gray sphere: = 310 KTs

qr

es = 0.5

Enclosure: = 810 KTe

ee = 1.0

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

(a) For a gray body radiating to a blackbody enclosure the net heat transfer is given by Equation (1.17) 

 qr = A1 ε1 σ (T1
4 – T2

4) 

 rq

A
 = (0.5) (5.67 × 10–8 W/(m2 K4)) [(810 K)4 – (310 K)4] 

 rq

A
 = 11.94 kW/m2 

(b) The radiative thermal conductance must be based on some reference temperature. Let the 
reference temperature be the enclosure temperature. Then, from Equation (1.21), the radiative 
thermal conductance is 

 Kr = 
4 4

1 1 2 1 1

1 2

( )A T T

T T

σ−
′

−

−

f
 where f1–2 = εs 

 Kr = 
–4 2 8 2 4 4 4(95 10 m )(0.5) (5.67 10 W /(m K ))[(810K) (310K) ]

810K 310K

−× × −
−

 

  Kr = 0.227 W/K 

(c) The thermal resistance for radiation is given by 

 Rr = 
1

rK
 = 

1

0.227(W/K)
 = 4.4 K/W 

(d) The convective thermal resistance is given by Equation (1.14) 

 Rc = 
1

ch A
 = 

2 –4 2

1

(11W/(m K))(95 10 m )×
 = 9.57 K/W 
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Therefore the ratio of the radiative to the convective resistance is 

 r

c

R

R
 = 

4.4K/W

9.57 K/W
 = 0.46 

(e) The radiative and convective resistances are in parallel, therefore the total resistance, from Figure 
1.18, is 

 Rtotal = 
(9.57) (4.4)

9.57 4.4
c r

c r

R R

R R
=

+ +
 = 3.01 K/W 

The total heat transfer is given by 

 qT = 
total

T

R

Δ
 = 

810K 310K

3.01K/W

−
 = 166.1 W 

(f) The combined heat transfer coefficient can be calculated from 

 qT = crh  AΔ T 

 ∴ crh  = Tq

A TΔ
 = 

–4 2

166.1W

(95 10 m ) (810K 310K)× −
 

 crh  = 34.97 W/(m2 K) 

 

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equations. 
Both heat transfer mechanisms are of the same order of magnitude in this situation. 

 

PROBLEM 1.28 

A spherical communications satellite 2 m in diameter is placed in orbit around the earth. 
The satellite generates 1000 W of internal power from a small nuclear generator. If the 
surface of the satellite has an emittance of 0.3 and is shaded from solar radiation by the 
earth, estimate the surface temperature. 

 

GIVEN 

Spherical satellite 
Diameter (D) = 2 m 
Heat generation = 1000 W 
Emittance (ε) = 0.3 

 

FIND 

The surface temperature (Ts) 

 

ASSUMPTIONS 

The satellite radiates to space which behaves as a blackbody enclosure at 0 K 
The system is in steady state 
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SKETCH 

T2 = 0 K
D = 2 m

qr

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

From Equation (1.17), the rate of the heat transfer from a gray body in a blackbody enclosure is 

 qr = A1 ε1 σ (T1
4 – T2

4) 

 
Solving this for the surface temperature 

 T1 = 

1

4

1 1

rq

A ε σ
 
  

 = 

1

4

2
1

rq

Dπ ε σ
 
  

 

For steady state the rate of heat transfer must equal the rate of internal generation, therefore the 
surface temperature is 

 T1 = 

1

4

2 8 2 4

1000 W

(2m) (0.3)5.67 10 W/(m K )π −
 
  ×

 = 262 K = –11°C 

PROBLEM 1.29 

A long wire 0.7 mm in diameter with an emissivity of 0.9 is placed in a large quiescent 
air space at 270 K. If the wire is at 800 K, calculate the net rate of heat loss. Discuss your 
assumptions. 

GIVEN 

Long wire in still air 
Wire diameter (D) = 0.7 mm 
Wire temperature (Ts) = 800 K 
Emissivity (ε) = 0.9 
Air temperature (T∞) = 270 K 

FIND 

The net rate of heat loss 

ASSUMPTIONS 

The enclosure around the wire behaves as a blackbody enclosure at the temperature of the air 
The natural convection heat transfer coefficient is 17 W/(m2 K) (From Table 1.4) 
Steady state conditions prevail 
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SKETCH 

Length = L

qr

T• = 270 K

qc Wire surface temp ( ) = 800 KTs

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The total rate of heat loss from the wire is the sum of the convective (Equation (1.10)) and radiative 
(Equation (1.17)) losses 

 qtotal = ch  A (Ts – T∞) + A ε σ (Ts
4 – T∞

4) 

 qtotal = (17 W/(m2 K)) π (0.7 × 10–3) L (800 K – 270 K) 

  + π (0.7 × 10–3) L (0.9) (5.67 × 10–8) [(800 K)4 – (270 K)4] 

 totalq

L
 = 65 W/m = 65 W per m of wire length 

COMMENTS 

The radiative heat transfer is about twice the magnitude of the convective transfer. 
The enclosure is more likely a gray body, therefore the actual rate of loss will be smaller than we have 
calculated. 
The convective heat transfer coefficient may differ by a factor of two or three from our assumed 
value. 

PROBLEM 1.30 

Wearing layers of clothing in cold weather is often recommended because dead-air 
spaces between the layers keep the body warm. The explanation for this is that the heat 
loss from the body is less. Compare the rate of heat loss for single 2 cm-thick layer of 
wool [k = 0.04 W/(m K)] with three 0.67 cm layers separated by 1.5 mm air gaps. The 
thermal conductivity of air is 0.024 W/(m K). 

GIVEN 

Wool insulation 
Thermal conductivities  Wool (kw) = 0.04 W/(m K)  
  Air (ka) = 0.024 W/(m K) 

FIND 

Compare the rate of heat loss for a single 2 cm layer of wool to that of three 0.67 cm layers separated 
by 0.165 cm layers of air 

ASSUMPTIONS 

Heat transfer can be approximated as one dimensional, steady state conduction 
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SKETCH 

Single layer

2 cm

qka

3 Layers

0.67 cm

qkb

0.165 cm

 

SOLUTION 

The thermal resistance for the single thick layer, from Equation (1.3), is 

 Rka = 
w

L

k A
 = 

2

0.02m

(0.04 W /(m K)) ( m )A
 = 

1

A
 0.5 K/W 

(A is the area of the body covered by wool) 

The rate of conductive heat transfer is 

 qka = 
ka

T

R

Δ
 = 

1
0.5K/W

T K

A

Δ
 = ΔT (K) A (m2) 2W 

The thermal resistance for three thin layers equals sum of the resistances of the wool and the air 
between the layers 

  Rkb = w a

w a

L L

k A k A
+   

   = 
( )

2

(3layers) 0.0067 m/layer

(m )(0.04 W/(m K))A
 + 

( )
2

(2layers) 0.0015m/layer

(m )(0.024W/(mK))A
 

  = 
1

A
 [0.5 + 0.125] = 

2

1

(m )A
 0.625 K/W 

The rate of conductive heat transfer for the three layer situation is 

 qkb = 
kb

T

R

Δ
 = 

2

(K)
1

0.625K/W
(m )

T

A

Δ
 = ΔT (K) A(m2) 1.6 W 

Comparing the rate of heat loss for the two situations 

 ∴  kb

ka

q

q
 = 

1.6 W

2.0 W
 = 0.8 

Therefore, for the same temperature difference, the heat loss through the three layers of wool is only 
80% of the heat loss through the single layer. 
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PROBLEM 1.31 

A section of a composite wall with the dimensions shown below has uniform 
temperatures of 200°C and 50°C over the left and right surfaces, respectively. If the 
thermal conductivities of the wall materials are: kA = 70 W/(m K), kB = 60 W/(m K),  
kc = 40 W/(m K) and kD = 20 W/(m K), determine the rate of heat transfer through this 
section of the wall and the temperatures at the interfaces. 

GIVEN 

A section of a composite wall 
Thermal conductivities  kA = 70 W/(m K)  
  kB = 60 W/(m K) 
  kC = 40 W/(m K)  
  kD = 20 W/(m K) 
Surface temperatures  Left side (TAs) = 200°C  
  Right side (TDs) = 50°C 

FIND 

(a) Rate of heat transfer through the wall (q) 
(b) Temperature at the interfaces 

ASSUMPTIONS 

One dimensional conduction 
The system is in steady state 
The contact resistances between the materials is negligible 

SKETCH 

TDs = 50°C

TAs = 200°C

2 cm 2.5 cm 4 cm

A

B

C

6 cm

3 cm

3 cm

D

6
c
m

 

SOLUTION 

The thermal circuit for the composite wall is shown below 

TAs TABC TBCD TDs

RC

RA RD

RB

 

(a) Each of these thermal resistances has a form given by Equation (1.3) 

 Rk = 
L

Ak
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Evaluating the thermal resistance for each component of the wall 

 RA = A

A A

L

A k
 = 

0.02m

(0.06m)(0.06m)[70 W/(m K)]
 = 0.0794 K/W 

 RB = B

B B

L

A k
 = 

0.025m

(0.03m)(0.06m)[60 W/(m K)]
 = 0.2315 K/W 

 RC = C

C C

L

A k
 = 

0.025m

(0.03m)(0.06m)[40 W/(m K)]
 = 0.3472 K/W 

 RD = D

D D

L

A k
 = 

0.04m

(0.06m)(0.06m)[20 W/(m K)]
 = 0.5556 K/W 

The total thermal resistance of the wall section, from Section 1.5.1, is 

 Rtotal = RA + B C

B C

R R

R R+
 + RD 

 Rtotal = 0.0794 + 
(0.2315)(0.3472)

0.2315 0.3472+
 + 0.5556 K/W 

 Rtotal = 0.7738 K/W 

The total rate of heat transfer through the composite wall is given by 

 q = 
total

T

R

Δ
 = 

o o200 C 50 C

0.7738K/W

−
 = 194 W 

(b) The average temperature at the interface between material A and materials B and C (TABC) can be 
determined by examining the conduction through material A alone 

 qka = As ABC

A

T T

R

−
 = q 

Solving for TABC 
 TABC = TAs – q RA = 200°C – (194 W) (0.0794 K/W) = 185°C 
The average temperature at the interface between material D and materials B and C (TBCD) can be 
determined by examining the conduction through material D alone 

 qkD = BCD Ds

D

T T

R

−
 = q 

Solving for TBCD 

 TBCD = TDs + q RD = 50°C + (194 W) (0.5556 K/W) = 158°C 

PROBLEM 1.32 

Repeat the Problem 1.31 including a contact resistance of 0.1 K/W at each of the 
interfaces. 

Problem 1.31: A section of a composite wall with the dimensions shown in the schematic 
diagram below has uniform temperatures of 200°C and 50°C over the left and right 
surfaces, respectively. If the thermal conductivities of the wall materials are: kA = 70 
W/(m K), kB = 60 W/(m K), kC = 40 W/(m K), and kD = 20 W/(m K), determine the rate 
of heat transfer through this section of the wall and the temperatures at the interfaces. 
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GIVEN 

Composite wall 
Thermal conductivities  kA = 70 W/(m K) 
  kB = 60 W/(m K) 
  kC = 40 W/(m K) 
  kD = 20 W/(m K) 
  Right side (TDs) = 50°C 
Contact resistance at each interface (Ri) = 0.1 K/W 

FIND 

(a) Rate of heat transfer through the wall (q) 
(b) Temperatures at the interfaces 

ASSUMPTIONS 

One dimensional conduction 
The system is in steady state 

SKETCH 

TDs = 50°C

TAs = 200°C

2 cm 2.5 cm 4 cm

A

B

C

6 cm

3 cm

3 cm

D

6
c
m

 

SOLUTION 

The thermal circuit for the composite wall with contact resistances is shown below 

TIA TIBC TZBC TZD

RC

Ri Ri

RB

TAs

RA

TDs

RD

 

The values of the individual resistances, from Problem 1.31, are 

 RA = 0.0794 K/W  RB = 0.2315 K/W  RC = 0.3472 K/W  RD = 0.5556 K/W 

(a) The total resistance for this system is 

 Rtotal = RA + Ri + B C

B C

R R

R R+
 + Ri + RD 

 Rtotal = 0.0794 + 0.1 + 
(0.2315)(0.3472)

0.2315 0.3472+
 + 0.1 + 0.5556 K/W 

 Rtotal = 0.9738 K/W 

The total rate of heat transfer through the composite wall is given by 

 q = 
total

T

R

Δ
 = 

200 C 50°C

0.9738K/W

° −
 = 154 W 
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(b) The average temperature on the A side of the interface between material A and material B and C 
(T1A) can be determined by examining the conduction through material A alone 

 q = 1As A

A

T T

R

−
 

Solving for T1A 

 T1A = TAs – q RA = 200°C – (154 W) (0.0794 K/W) = 188°C 

The average temperature on the B and C side of the interface between material A and materials B and 
C (T1BC) can be determined by examining the heat transfer through the contact resistance 

 q = 1 1A BC

i

T T

R

−
 

Solving for T1BC 

 T1BC = T1A – q Ri = 188°C – (154 W) (0.1 K/W) = 172°C 

The average temperature on the D side of the interface between material D and materials B and C 
(T2D) can be determined by examining the conduction through material D alone 

 q = 2D Ds

D

T T

R

−
 

Solving for T2D 

 T2D = TDs + q RD = 50°C + (154 W) (0.5556 K/W) = 136°C 

The average temperature on the B and C side of the interface between material D and materials B and 
C (T2BC) can be determined by examining the heat transfer through the contact resistance 

 q = 2 2BC D

i

T T

R

−
 

Solving for T2BC 

 T2BC = T2D + q Ri = 136°C + (154 W) (0.1 K/W) = 151°C 

COMMENTS 

Note that the inclusion of the contact resistance lowers the calculated rate of heat transfer through the 
wall section by about 20%. 

PROBLEM 1.33 

Repeat the Problem 1.32 but assume that instead of surface temperatures, the given 
temperatures are those of air on the left and right sides of the wall and that the convective  
heat transfer coefficients on the left and right surfaces are 6 and 10 W/(m2 K), respectively. 

Problem 1.32: Repeat the Problem 1.31 including a contact resistance of 0.1 K/W at each 
of the interfaces. 

Problem 1.31: A section of a composite wall with the dimensions shown in the schematic 
diagram below has uniform temperatures of 200°C and 50°C over the left and right 
surfaces, respectively. If the thermal conductivities of the wall materials are: kA = 70 
W/(m K), kB = 60 W/(m K), kC = 40 W/(m K), and kD = 20 W/(m K), determine the rate 
of heat transfer through this section of the wall and the temperatures at the interfaces. 
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GIVEN 

Composite wall 
Thermal conductivities  kA = 70 W/(m K)  
  kB = 60 W/(m K) 
  kC = 40 W/(m K)  
  kD = 20 W/(m K) 
Air temperatures  Left side (TA∞) = 200°C  
  Right side (TD∞) = 50°C 
Contact resistance at each interface (Ri) = 0.1 K/W 

Convective heat transfer coefficients  Left side ( cAh ) = 6 W/(m2 K) 

  Right side ( cDh ) = 10 W/(m2 K) 

FIND 

(a) Rate of heat transfer through the wall (q) 
(b) Temperatures at the interfaces 

ASSUMPTIONS 

One dimensional, steady state conduction 

 

SKETCH 

TD• = 50°C

TA = 200°C•

2 cm 2.5 cm 4 cm

A

B

C

6 cm

3 cm

3 cm

D

6
c
m

 

SOLUTION 

The thermal circuit for the composite wall with contact resistances and convection from the outer 
surfaces is shown below 

TIA TIBC TZBC TZD

RC

Ri Ri

RB

TAs

RA

TDs

RD

TA•

RCA

TD•

RCD

 

The values of the individual conductive resistances, from Problem 1.31, are 
 RA = 0.0794 K/W RB = 0.2315 K/W RC = 0.3472 K/W  RD = 0.5556 K/W 
The values of the convective resistances, using Equation (1.14), are 

 RcA = 
1

cAh A
 = 

2

1

[6 W/(m K)](0.06m)(0.06m)
 = 46.3 K/W 

 RcD = 
1

cDh A
 = 

2

1

[10 W/(m K)](0.06m)(0.06m)
 = 27.8 K/W 

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
41

(a) The total resistance for this system is 

 Rtotal = RcA + RA + Ri + B C

B C

R R

R R+
 + Ri + RD + RcD 

 Rtotal = 46.3 + 0.0794 + 0.1 + 
(0.2315)(0.3472)

0.2315 0.34472+
 

  + 0.1 + 0.5556 + 27.8 K/W 

 Rtotal = 75.1 K/W 

 q = 
total

T

R

Δ
 = 

200 50

75.1K/W

C C° − °
 = 2.0 W 

(b) The surface temperature on the left side of material A (TAs) can be determined by examining the 
convection from the surface of material A 

 q = A As

cA

T T

R
∞ −

 

Solving for TAs 
 TAs = TA∞ – q RcA = 200°C – (2 W) (46.3 K/W) = 107.4°C 

The average temperature on the A side of the interface between material A and material B and C (T1A) 
can be determined by examining the conduction through material A alone 

 q = 1As A

A

T T

R

−
 

Solving for T1A 
 T1A = TAs – q RA = 107.4°C – (2 W) (0.0794 K/W) = 107.2°C 

The average temperature on the B and C side of the interface between material A and materials B and 
C (T1BC) can be determined by examining the heat transfer through the contact resistance 

 q = 1 1A BC

i

T T

R

−
 

Solving for T1BC 
 T1BC = T1A – q Ri = 107.2°C – (2 W) (0.1 K/W) = 107.0°C 

The surface temperature on the D side of the wall (TDs) can be determined by examining the 
convection from that side of the wall 

 q = Ds D

cD

T T

R
∞−

 

Solving for TDs 
 TDs = TD∞ + q RcD = 50°C + (2 W) (27.8 K/W) = 105.6°C 

The average temperature on the D side of the interface between material D and materials B and C 
(T2D) can be determined by examining the conduction through material D alone 

 q = 2D Ds

D

T T

R

−
 

Solving for T2D 
 T2D = TDs + q RD = 105.6°C + (2 W) (0.5556 K/W) = 106.7°C 
The average temperature on the B and C side of the interface between material D and materials B and 
C (T2BC) can be determined by examining the heat transfer through the contact resistance 

 q = 2 2BC D

i

T T

R

−
 

Solving for T2BC      T2BC = T2D + q Ri = 106.7°C + (2 W) (0.1 K/W) = 106.9°C 
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COMMENTS 

Note that the addition of the convective resistances reduced the rate of heat transfer through the wall 
section by a factor of 77. 

PROBLEM 1.34 

Mild steel nails were driven through a solid wood wall consisting of two layers, each  
2.5 cm thick, for reinforcement. If the total cross-sectional area of the nails is 0.5% of 
the wall area, determine the unit thermal conductance of the composite wall and the  
per cent of the total heat flow that passes through the nails when the temperature 
difference across the wall is 25°C. Neglect contact resistance between the wood layers. 

GIVEN 

Wood wall 
Two layers 0.025 m thick each 
Nail cross sectional area of nails = 0.5% of wall area 
Temperature difference (ΔT) = 25°C 

FIND 

(a) The unit thermal conductance (k/L) of the wall 
(b) Percent of total heat flow that passes through the wall 

ASSUMPTIONS 

One dimensional heat transfer through the wall 
Steady state prevails 
Contact resistance between the wall layers is negligible 

SKETCH 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 10 and 11 
Thermal conductivities  Wood (Pine) (kw) = 0.15 W/(m K) 
  Mild steel (1% C) (ks) = 43 W/(m K) 

SOLUTION 

(a) The thermal circuit for the wall is 

T1

Rs

Rw

T2
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The individual resistances are 

 Rw = w

w w

L

A k
 = 

wall

0.05m

(0.995 [0.15W/(m K)]A
 = 

2
wall

1

0.335 (K m )/WA
 

 Rs = s

s s

L

A k
 = 

wall

0.05m

(0.005 [43W/(m K)]A
 = 

2
wall

1

0.233 (K m )/WA
 

The total resistance of the wood and steel in parallel is 

 Rtotal = w s

w s

R R

R R+
 = 2

wall

1 (0.335)(0.233)
(K m )/W

0.335 0.233A
 
 + 

 = 
wall

1

A
0.1374 2(K m )/W  

The unit thermal conductance (k/L) is: 

 
k

L
 = 

total wall

1

R A
 = 

2

1

0.1374(K m )/W
 = 7.3 W/(K m2) 

(b) The total heat flow through the wood and nails is given by 

 qtotal = 
total

T

R

Δ
 = 

2

wall

25
1

0.1374(K m )/W

C

A

°
 

 ∴ total

wall

q

A
 = 182 W/m2 

The heat flow through the nails alone is 

 qnails = 
nails

T

R

Δ
 = 

2

wall

25
1

0.233(K m )/W

C

A

°
 

 ∴ nails

wall

q

A
 = 107 W/m2 

Therefore the percent of the total heat flow that passes through the nails is 

Percent of heat flow through nails = 
107

182
 × 100 = 59% 

PROBLEM 1.35 

Calculate the rate of heat transfer through the composite wall in Problem 1.34 if the 
temperature difference is 25°C and the contact resistance between the sheets of wood is 
0.005 m2 K/W. 

Problem 1.34: To reinforce a solid wall consisting of two layers, each 2.5 cm thick, mild 
steel nails were driven through it. If the total cross sectional area of the nails is 0.5% of 
the wall area, determine the unit thermal conductance of the composite wall and the 
percent of the total heat flow that passes through the nails when the temperature 
difference across the wall is 25°C. Neglect contact resistance between the wood layers. 

GIVEN 

Wood wall  Two layers 0.025 m thick each, nailed together 
Nail cross sectional area of nails = 0.5% of wall area 
Temperature difference (ΔT) = 20°C 
Contact resistance (A Ri) = 0.005 (m2 K)/W 
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FIND 

The rate of heat transfer through the wall 

ASSUMPTIONS 

One dimensional heat transfer through the wall 
Steady state prevails 

SKETCH 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 10 and 11 
Thermal conductivities  
Wood (Pine) (kw) = 0.15 W/(m K) 
Mild steel (1% C) (ks) = 43 W/(m K) 

SOLUTION 

The thermal circuit for the wall with contact resistance is shown below. 

T1 T2

1/2 Kw Ri 1/2 Rw

Rs

 
From Problem 1.34, the thermal resistance of the wood and the nails are 

 Rw = 
wall

1

A
 0.335 (K m2)/W Rs =  

wall

1

A
 0.233  (K m2)/W 

The combined resistance of the wood and the contact resistance in series is 

 Rwi = Rw + Ri = Rw + 
1

A
 (A Ri) = 

wall

1

A
2 20.355 (K m )/W 0.005 (K m )/W +   

 Rwi =  
wall

1

A
 0.360 (K m2)/W 

The total resistance equals the combined resistance of the wood and the contact resistance in parallel 
with the resistance of the nails 

 Rtotal = wi s

wi s

R R

R R+
 = 

wall

1

A
2(0.360) (0.233)

(K m )/W
0.360 0.233

 
 + 

=  
wall

1

A
 = 0.1415 (K m2)/W 

Therefore the rate of heat flow through the wall is: 

 q = 
2total

wall

25 C
1

0.1415 (K m )/W

T

R
A

Δ °=                              ∴ 
wall

q

A
 = 172 W/m2 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
45

COMMENTS 

In this case the inclusion of the contact resistance lowered the calculated rate of heat transfer by only 
3% because most of the heat is transferred through the nails (see Problem 1.34). 

PROBLEM 1.36 

Heat is transferred through a plane wall from the inside of a room at 22°C to the outside 
air at –2°C. The convective heat transfer coefficients at the inside and outside surfaces 
are 12 and 28 W/(m2 K), respectively. The thermal resistance of a unit area of the wall is 
0.5 m2 K/W. Determining the temperature at the outer surface of the wall and the rate of 
heat flow through the wall per unit area. 

GIVEN 

Heat transfer through a plane wall 
Air temperature  Inside wall (Ti) = 22°C  
  Outside wall (To) = –2°C 

Heat transfer coefficient  Inside wall ( cih ) = 12 W/(m2 K) 

  Outside wall ( coh ) = 28 W/(m2 K) 
Thermal resistance of a unit area (A Rw) = 0.5 (m2 K)/W 

FIND 

(a) Temperature of the outer surface of the wall (Two) 
(b) Rate of heat flow through the wall per unit area (q/A) 

ASSUMPTIONS 

One dimensional heat flow 
Steady state has been reached 

SKETCH 

Two

Ti = 22°C q

Twi

To = –2°C

 

SOLUTION 

The thermal circuit for the wall is shown below 

Twi

Rw

Ti Two

Rco

To

Rci  

The rate of heat transfer can be used to calculate the temperature of the outer surface of the wall, 
therefore part (b) will be solved first. 
(b) The heat transfer situation can be visualized using the thermal circuit shown above. The total heat 

transfer through the wall, from Equations (1.33) and (1.34), is 

 q = total

total

T

R

Δ
 

The three thermal resistances are in series, therefore 

 Rtotal = Rci + Rw + R∞ 
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 Rtotal = 
1

ciAh
 + 

1wA R

A Ah∞
+  

The heat flow through the wall is 

 q = 
1 1 1

i o

w
ci

T T

A R
A h h∞

−
 

+ +  

 

∴ q

A
= 

2
2 2

22°C ( 2°C)
1 1

0.5(m K)/W
12 W/(m K) 28W/(m K)

− −

+ +
 

 
q

A
 = 38.8 W/m2 

(a) The temperature of the outer surface of the wall can be calculated by examining the convective 
heat transfer from the outside of the wall (given by Equation (1.10)) 

 cq

A
 = coh  (Two – To) 

Solving for Two 

 Two = 
1

co

q

A h
 + To = (38.8 W/m2 

2

1

28W/(m K)

 
  

 + (–2°C) = – 0.6°C 

COMMENTS 

Note that the conductive resistance of the wall is dominant compared to the convective resistance. 

PROBLEM 1.37 

How much fiberglass insulation [k = 0.035 W/(m K)] is needed to guarantee that the 
outside temperature of a kitchen oven will not exceed 43°C? The maximum oven 
temperature to be maintained by the convectional type of thermostatic control is 290°C, 
the kitchen temperature may vary from 15°C to 33°C and the average heat transfer 
coefficient between the oven surface and the kitchen is 12 W/(m2 K). 

GIVEN 

Kitchen oven wall insulated with fiberglass 
Fiberglass thermal conductivity (k) = 0.035 W/(m K) 

Convective transfer coefficient on the outside of wall ( ch ) = 12 W/(m2 K) 
Maximum oven temperature (Ti) = 290°C 
Kitchen temperature (T∞) may vary: 15°C < T∞ < 33°C 

FIND 

Thickness of fiberglass (L) to keep the temperature of the outer surface of the oven (Two) at 43°C or 
less 

ASSUMPTIONS 

One dimensional, steady state heat transfer prevails 
The temperature of the inside of the wall (Twi) is the same as the oven temperature 
The thermal resistance of the metal wall of the oven is negligible 
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SKETCH 

Two = 43°C£

qk

L

15°C 33°CT•£ £

Twi 290°C£

qc

 

SOLUTION 

For steady state conditions, the heat transfer by conduction through the wall, from Equation (1.2), 
must be equal to the heat transfer by convection from the outer surface of the wall, from Equation 
(1.10) 

 qk = 
k A

L
 (Twi – Two) = qc = ch  A (Two – T∞) 

Solving for L 

 L = 
( )

( )
wi wo

c wo

k T T

h T T∞

−
−

 

By examination of the above equation, the greatest thickness required for a given Two will occur when 
Twi and T∞ are at their maximum values 

 L = 
o o

2 o o

0.035W/(m K)(290 C 43 C)

12 W/(m K)(43 C 33 C)

−
−

 = 0.072 m = 7.2 cm 

COMMENTS 

In a real design a slightly thicker layer of insulation should be chosen to provide a margin of safety in 
case the convective heat transfer coefficient on the outside of the wall in some circumstances is less 
than expected due to the location of the oven in the kitchen or other unforseen factors. 

PROBLEM 1.38 

A heat exchanger wall consists of a copper plate 2 cm thick. The heat transfer 
coefficients on the two sides of the plate are 2700 and 7000 W/(m2K), corresponding to 
fluid temperatures of 92 and 32°C, respectively. Assuming that the thermal conductivity 
of the wall is 375 W/(m K), (a) compute the surface temperatures in °C, and (b) calculate 
the heat flux in W/m2. 

GIVEN 

Heat exchanger wall, thickness (L) = 2 cm = 0.02 m 
Heat transfer coefficients  hc1 = 2700 W/(m2K)  
  hc2 = 7000 W/(m2K) 
Fluid temperatures  Tf 1  = 92°C 
  Tf 2  = 32°C 
Thermal conductivity of the wall (k) = 375 W/(m K) 

FIND 

(a) Surface temperatures (Tw1, Tw1) in °C 
(b) The heat flux (q/A) in W/m2 
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ASSUMPTIONS 

One dimensional heat transfer prevails 
The system has reached steady state 
Radiative heat transfer is negligible 

SKETCH 

Tw2

Tf1 = 92°C

Tw1

Tf 2 = 32°Cq

 

SOLUTION 

The thermal circuit for the wall is shown below 

Tw1

Rw

Tf1 Tw2 Tf 2

Rc1 Rc2  

The surface temperatures can only be calculated after the heat flux has been established, therefore 
part (b) will be solved before part (a). 
(b) The resistances are in series, therefore the total resistance is 

 Rtotal = 
3

1
1

i c
i

R R
=

= + Rw + Rc2 

The total rate of heat transfer is given by Equation (1.33) and (1.34) 

 q = 
total

T

R

Δ
 = 

1 2c w c

T

R R R

Δ
+ +

 = 1 2

1 2

1 1

c c

T T
L

h A kA h A

−

+ +
 

Therefore the heat flux (q/A) is 

  
q

A
 = 

2 2

92 32
1 0.02m 1

375W/(m K)2700 W/(m K) 7000 W/(m K)

−

+ +
 = 105.9 (kW)/m2 

(a) Equation (1.10) can be applied to the convective heat transfer on the fluid 1 side 

 cq

A
 = 1ch  (Tf 1  – Tw1) 

Solving for Tw1 

 Tw1 = Tf 1  – 
1

1

c

q

A h
 = 92°C – (105.9 W/(m2K)) 

2

1

2700 W/(m K)

 
  

 = 52.8°C 

Similarly, on the fluid 2 side 

 cq

A
 = 2ch  (Tw2 – Tf2) 

 Tw2 = Tf 2  – 
2

1

c

q

A h
 = 32°C + (105.9 W/(m2K)) 

2

1

7000 W/(m K)

 
  

 = 47.13°C 
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PROBLEM 1.39 

A submarine is to be designed to provide a comfortable temperature for the crew of no 
less than 21°C. The submarine can be idealized by a cylinder 9 m in diameter and 61 m 
in length. The combined heat transfer coefficient on the interior is about 14 W/(m2K), 
while on the outside the heat transfer coefficient is estimated to vary from about  
57 W/(m2K) (not moving) to 847 W/(m2K) (top speed). For the following wall 
constructions, determine the minimum size in kilowatts of the heating unit required if 
the sea water temperatures vary from 1.1 to 12.8°C during operation. The walls of the 
submarine are (a) 2 cm aluminium (b) 1.8 cm stainless steel with a 2.5 cm thick layer 
fiberglass insulation on the inside and (c) of sandwich construction with a 1.8 cm 
thickness of stainless steel, a 2.5 cm thick layer of fiberglass insulation, and a 0.6 cm 
thickness of aluminium on the inside. What conclusions can you draw? 

 

GIVEN 

Submarine  Inside temperature (Ti) > 21°C 
Can be idealized as a cylinder  Diameter (D) = 9 m  
  length (L) = 61 m 

Combined heat transfer coefficients  Inside ( cih ) = 14 W/(m2K) 

     Outside ( coh ): not moving = 57 W/(m2K) 
                                : top speed: 847 W/(m2K) 

 
Sea water temperature (To) varies: 1.1°C < To < 12.8°C 

FIND 

Minimum size of the heating unit (q) in kW for 
(a) 1.2 cm thick aluminium walls 
(b) 1.8 cm thick stainless steel with 2.5 cm of fiberglass insulation 
(c) Sandwich of 1.8 cm stainless steel, 2.5 cm of fiberglass insulation, and 0.6 cm of aluminium 

ASSUMPTIONS 

Steady state prevails 
Heat transfer can be approximated as heat transfer through a flat plate with the surface area of the 

cylinder 
Constant thermal conductivities 
Contact resistance between the difference materials is negligible 

SKETCH 

L = 61 m

D = 9 m

21 °C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 10, 11, and 12: The thermal conductivities are 

 Aluminium (ka)  = 236 W/(m K) at 0°C 

 Stainless steel (ks)  = 14 W/(m K) at 20°C 

 Fiberglass insulation (kfg)  = 0.035 W/(m K) at 20°C 
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SOLUTION 

The thermal circuits for the three cases are shown below 

1.2 cm Aluminium

2.5 cm Fiberglass

2.5 cm Fiberglass
and

0.6 cm Aluminium

(a)

Stainless
steel

Stainless
steel

Ti

Ri Ra Ro

To

Ri Rss RFG Ro

Ti To

Ti To

Ri Rss RFG Ra Ro

(b)

(c)

1.8 cm

1.8 cm

 

The total surface area of the idealized submarine (A) is 

 A = π DL + 2π 
2

4

D
 = (61 m)π (9 m) + 

2

π
 (9 m)2 = 1850 m2 

(a) For case (a) the total resistance is 

 Rtotal = 
3

1i=
Σ Ri = Ri + Ra + Ro = 

1 1

aci co

L
+ +

k Ah A h A
 

The heat transfer through the wall is 

 q = 
total

T

R

Δ
 = 

1 1
i o

a

aci co

T T
L

k Ah A h A

−

+ +
 

By examination of the above equation, the heater requirement will be the largest when To is at its 
minimum value and hco is at its maximum value 

  q = 
2

–2

2 2

(1850m )(21 1.1)K

1 1.2 10 m 1

(236 W/(m K))14 W/(m K) 847 W/(m K)

−
×+ +

 

  q = 507 kW 

 (b) Similarly, for case (b), the total resistance is 

 Rtotal = 
4

1i=
Σ  Ri = Rs + Ra + Rfg + Ro = 

1 1fgs

ci s fg co

LL

h A k A k A h A
+ + +  

The size of heater needed is 

 q = 
2

–2 –2

2 2

(1850m )(21 1.1)K

1 1.8 10 m 2.5 10 m 1

14 W/(m K) 0.035W/(m K)14 W/(m K) 847 W/(m K)

−
× ×+ + +

 

  q = 46.7 kW 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
51

(c) The total resistance for case (c) is 

 Rtotal = 
5

1i=
Σ Ri = Rs + Ra + Rfg + Ra + Ro = 

1 fgs

ci s fg

LL

h A k A k A
+ + +

1a

a co

L

k A h A
+  

The size of heater needed is 

 q =
2

–2 –2 –2

2 2

(1850m )(21 1.1)K

1 1.8 10 m 2.5 10 m 0.6 10 1

14 W/(m K) 0.035 W/(m K) 236 W/(m K)14 W/(m K) 847 W/(m K)

−
× × ×+ + + +

 

  q = 46.7 kW 

COMMENTS 

Neither the aluminium nor the stainless steel offers any appreciable resistance to heat loss. 
Fiberglass or other low conductivity material is necessary to keep the heat loss down to a reasonable 
level. 

PROBLEM 1.40 

A simple solar heater consists of a flat plate of glass below which is located a shallow pan 
filled with water, so that the water is in contact with the glass plate above it. Solar 
radiation is passing through the glass at the rate of 490 W/m2. The water is at 92°C and 
the surrounding air is 27°C. If the heat transfer coefficients between the water and the 
glass and the glass and the air are 28 W/(m2K), and 7 W/(m2K), respectively, determine 
the time required to transfer 1.1 MJ/m2 of surface to the water in the pan. The lower 
surface of the pan may be assumed to be insulated. 

GIVEN 

A simple solar heater: shallow pan of water below glass, the water touches the glass 
Solar radiation passing through glass (qr/A) = 490 W/m2 
Water temperature (Tw) = 92°C 
Surrounding air temperature (T∞) = 27°C 

Heat transfer coefficients  Between water and glass ( cwh ) = 28 W/(m2K) 

  Between glass and air ( cah ) = 7 W/(m2K) 

FIND 

The time (t) required to transfer 11 (kJ)/m2 to the water 

ASSUMPTIONS 

One dimensional, steady state heat transfer prevails 
The heat loss from the bottom of the pan is negligible 
The radiative loss from the top of the glass is negligible 
The thermal resistance of the glass is negligible 

SKETCH 

Water Tw = 92°C

qc qr

Glass plate
of area A
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SOLUTION 

The total thermal resistance between the water and the surrounding air is the sum of the two 
convective thermal resistances 

 Rtotal = 
2

1i=
Σ  Ri = Rcw + Rca = 

1 1

cw cah A h A
+  

 Rtotal = 
2 2 2

1 1 1

(28W/(m K)) (7 W/(m K)) (m )A A A
+ =  0.178 (m2K)/W 

The net rate of heat transfer to the water is 

 totalq

A
 = 

total

cr rqq q T

A A A A R

Δ
= = =  

 totalq

A
 = 490 W/m2 – 

2

92°C 27°C
1

0.178 (K m )/WA
A

−
 
 

 

 Totalq

A
 = 125 W/m2 

At this rate, the time required to transfer 1.1 M J to the water per m2 area is 

 t = 
total energy incident per unit area

heat flux
  

  = 
6 2

2

1.1 10 J/m

125W/m  

×
 = 2.45 hours 

  t = 2.45 hours 

PROBLEM 1.41 

A composite refrigerator wall is composed of 5 cm of corkboard sandwiched between a 
1.2 cm thick layer of oak and a 0.8 mm thickness of aluminium lining on the inner 
surface. The average convective heat transfer coefficients at the interior and exterior 
wall are 11 and 8.5 W/(m2K), respectively. (a) Draw the thermal circuit. (b) Calculate 
the individual resistances of the components of this composite wall and the resistances at 
the surfaces. (c) Calculate the overall heat transfer coefficient through the wall. (d) For 
an air temperature inside the refrigerator of – 1°C and outside of 32°C, calculate the 
rate of heat transfer per unit area through the wall. 

GIVEN 

Refrigerator wall: oak, corkboard, and aluminium 
Thicknesses  Oak (Lo) = 1.2 cm 
  Corkboard (Lc) = 5 cm  
  Aluminum (La) = 0.8 mm 

Convective heat transfer coefficients  Interior ( cih ) = 11 W/(m2K)  

  Exterior ( coh ) = 8.5 W/(m2K) 
Air temperature  Inside (Ti) = – 1°C;  
  Outside (To) = 32°C 
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FIND 

(a) Draw the thermal circuit 
(b) The individual resistances 
(c) Overall heat transfer coefficient (U) 
(d) Rate of heat transfer per unit area (q/A) 

ASSUMPTIONS 

One dimensional, steady state heat transfer 
Constant thermal conductivities 
Contact resistance between the different materials is negligible 

SKETCH 

q

Corkboard; = 5 cmLc

Oak; = 1.2 cmLo

Ti = –1°C To = 32°C

Twi
Two

Aluminium; =La 0.8 mm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 11 and 12, the thermal conductivities are 

 Oak (ko) = 0.2 W/(m K) at 20°C 

 Corkboard (kc) = 0.04 W/(m K) at 20°C 

 Aluminium (ka)  = 235 W/(m K) at 0°C 

SOLUTION 

(a) The thermal circuit for the refrigerator wall is shown below 
Ti To

Rci

Twi

Rka Rkc

Two

Rko Rco  
(b) The resistance to convection from the inner and outer surfaces is given by Equation (1.14) 

 Rc = 
1

ch A
 

This means 

 Rci = 
1

cih A
 = 

2 2

1

(11W/(m K)) (m )A
 = 

2

1

(m )A
 0.091 (K m2)/W 

 Rco = 
1

coh A
 = 

2 2

1

(8.5W/(m K)) (m )A
 = 

2

1

(m )A
 0.117 (K m2)/W 

The resistance to conduction through the components of the wall is given by Equation (1.3) 

 Rk = 
L

Ak
 

That is  

 Rka = a

a

L

Ak
=

–3

2 2

(0.8 10 m) 1

(m )(235W/(m K)) (m )A A

×
= 3.4 × 10–6 (K m2)/W 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
54

 Rkc =  c

c

L

Ak
 = 

–2

2

5 10 m

(m )(0.04 W/(m K))A

×
 = 

2

1

(m )A
 1.25 (K m2)/W 

 Rko = o

o

L

Ak
 = 

–2

2

1.2 10 m

(m )(0.2 W/(m K))A

×
 = 

2

1

(m )A
 0.06 (K m2)/W 

(c) The overall heat transfer coefficient satisfies Equation (1.34) 

 UA = 
total

1

R
 

 ∴ U = 
total

1 1

( )ci ka kc ko coA R A R R R R R
=

+ + + +
 

  U = 
6 2

1

(0.091 3.4 10 1.25 0.06 0.117) (K m )/W−+ × + + +
 

  U = 0.66 W/(m2K) 

(d) The rate of heat transfer through the wall is given by Equation (1.33) 

 
q

A
 = U ΔT = ( )20.66 W/(m K)  (32 + 1)K = 21.8 W/m2 

COMMENTS 

The thermal resistance of the corkboard is more than three times greater than the sum of the other 
resistances. The thermal resistance of the aluminum is negligible. 

PROBLEM 1.42 

An electronic device that internally generates 600 mW of heat has a maximum 
permissible operating temperature of 70°C. It is to be cooled in 25°C air by attaching 
aluminum fins with a total surface area of 12 cm2. The convective heat transfer 
coefficient between the fins and the air is 20 W/(m2 K). Estimate the operating 
temperature when the fins are attached in such a way that: (a) there exists a contact 
resistance between the surface of the device and the fin array of approximately  
50 K/W, and (b) there is no contact resistance but the construction of the device is more 
expensive. Comment on the design options. 

GIVEN 

An electronic device with aluminum fin array 
Device generates heat at a rate ( Gq ) = 600 mW = 0.6 W 
Surface area (A) = 12 cm2 
Max temperature of device = 70°C 
Air temperature (T∞) = 25°C 
Convective heat transfer coefficient ( ch ) = 20 W/(m2 K) 

FIND 

Operating temperature (To) for 
(a) contact resistance (Ri) = 50 K/W 
(b) no contact resistance 

ASSUMPTIONS 

One dimensional heat transfer 
Steady state has been reached 
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The temperature of the device is uniform 
The temperature of the aluminum fins is uniform (the thermal resistance of the aluminum is 

negligible) 
The heat loss from the edges and back of the device is negligible 

SKETCH 

q

Fins

Electronic Device

T• = 25°C

 

SOLUTION 

(a) The thermal circuit for the case with contact resistance is shown below 
T•

Rc Ri

To

 

The value of the convective resistance, from Equation (1.14), is 

 Rc = 
1

ch A
 = 

2 2

1

[20 W/(m K)](0.0012m )
 = 41.7 K/W 

For steady state conditions, the heat loss from the device (q) must be equal to the heat generated by 
the device 

 q = 
total

T

R

Δ
 = o

c i

T T

R R
∞−

+
 = Gq  

Solving for To 

 To = T∞ + Gq  (Rc + Ri) = 25°C + (0.6 W) (41.7 K/W + 50 K/W) = 80°C 

(b) Similarly, the operating temperature of the device with no contact resistance is 

 To = T∞ + Gq  Rc = 25°C + (0.6 W) (41.7 K/W) = 50°C 

COMMENTS 

The more expensive device with no contact resistance will have to be used to assure that the operating 
temperature does not exceed 70°C. 

PROBLEM 1.43 

To reduce the home heating requirements, modern building codes in many parts of the 
country require the use of double-glazed or double-pane windows, i.e., windows with 
two panes of glass. Some of these so called thermopane windows have an evacuated 
space between the two glass panes while others trap stagnant air in the space. 
(a) Consider a double-pane window with the dimensions shown in the following sketch. 
If this window has stagnant air trapped between the two panes and the convective heat 
transfer coefficients on the inside and outside surfaces are 4 W/(m2 K) and 15 W/(m2 K), 
respectively, calculate the overall heat transfer coefficient for the system. 
(b) If the inside air temperature is 22°C and the outside air temperature is –5°C, 
compare the heat loss through a 4 m2 double-pane window with the heat loss through a 
single-pane window. Comment on the effect of the window frame on this result. 
(c) The total window area of a home heated by electric resistance heaters at a cost of 
$.10/kWh is 80 m2. How much more cost can you justify for the double-pane windows if 
the average temperature difference during the six winter months when heating is 
required is about 15°C? 
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GIVEN 

Double-pane window with stagnant air in gap 
Convective heat transfer coefficients  Inside ( cih ) = 4 W/(m2 K) 

  Outside ( coh ) = 15 W/(m2 K) 
Air temperatures  Inside (Ti) = 22°C  
  Outside (To) = –5°C 
Single window area (Aw) = 4 m2 
During the winter months, (ΔT) = 15°C 
Heating cost = $.1.0/kWh 
Total window area (AT) = 80 m2 

FIND 

(a) The overall heat transfer coefficient 
(b) Compare heat loss of double- and single-pane window 

ASSUMPTIONS 

Steady state conditions prevail 
Radiative heat transfer is negligible 

SKETCH 

0.7 cm

T1i

2 cm

T1o

T2o

T2i

Ti = 22°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 11 and 27, the thermal conductivities are 
window glass (kg) = 0.81 W/(m K) at 20°C; dry air (ka) = 0.0243 W/(m K) at 8.5°C 

SOLUTION 

The thermal circuit for the system is shown below 

Ti To

Rci Rk1 Rka Rk2 Rko  

The individual resistances are 

 Rco = 
1

coh A
 = 

2

1

[15W/(m K)] A
 = 

1

A
 0.0667 (K m2)/W 

 Rk1 = Rk2 = 
g

g

L

Ak
 = 

0.007 m 1

[0.81W/(m K)]A A
=  0.00864  (K m2)/W 

 Rka =  a

a

L

Ak
 = 

0.02m 1

[0.0243W/(m K)]A A
=  0.823 (K m2)/W 

 Rci = 
1

cih A
 = 

2

1 1

[4 W/(m K)] AA
=  0.25 (K m2)/W 
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 The total resistance for the double-pane window is 

 Rtotal = 
5

1i=
Σ  Ri = Rco + Rk1 + Rka + Rk2 + Rci 

 Rtotal = 
1

A
 (0.0667 + 0.00864 + 0.823 + 0.00864 + 0.25) (m2 K)/W = 

1

A
 1.157 (K m2)/W 

 Therefore the overall heat transfer coefficient is 

 Udouble = 
2

total

1 1

1.157(m K)/WAR
=  = 0.864 W/(m2 K) 

(b) The rate of heat loss through the double-pane window is 

 qdouble – U A ΔT = [0.864 W/(m2 K)] (4 m2) [22°C – (–5°C)] = 93W 

The thermal circuit for the single-pane window is 

Ti

Rci

T1i

Rk Rco

ToT1o

 

The total thermal resistance for the single-pane window is 

 Rtotal = 
3

1i=
Σ  Ri = Rco + Rk1 + Rci = 

1

A
 (0.0667 + 0.00864 + 0.25) (m2 K)/W 

 Rtotal = 0.325 (m2 K)/W 

The overall heat transfer coefficient for the single-pane window is 

 Usingle = 
total

1

AR
 = 

2

1

0.325(m K)/W
 = 3.08 W/(m2 K) 

Therefore, the rate of heat loss through the single-pane window is 

 qsingle = U A ΔT = [3.07 W/(m2 K)] (4 m2) [22°C – (–5°C)] = 332 W 

The heat loss through the double-pane window is only 28% of that through the single-pane 
window. 

(c) The average heat loss through double-pane windows during the winter months is 

 qdouble = U AT ΔT = [0.864 W/(m2 K)] (80 m2) 15°C = 1040 W 

 Therefore, the cost of the heat loss from the double-pane windows is 
 Costdouble = qdouble (heating cost) 

 Costdouble = (1040 W) ($0.10/kWh) (24 h/day) (182 heating days/year) (1 kW/1000 W) 

 Costdouble = $454/yr 

The average heat loss through the single-pane windows during the winter months is 

 qsingle = U AT ΔT = [3.07 W/(m2 K)] (80 m2) (15°C) = 3688 W 

The cost of this heat loss is 
 Costsingle = qsingle (heat cost) 

 Costsingle = (3688 W) ($0.10/kWh) (24 h/day) (182 heating days/year) (1 kW/1000 W) 

 Costsingle = $1611/yr 

The yearly savings of the double-pane windows is $1157. Therefore if we would like to have a 
payback period of two years, we would be willing to invest $2314 in double panes. 
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PROBLEM 1.44 

A flat roof can be modeled as a flat plate insulated on the bottom and placed in the 
sunlight. If the radiant heat that the roof receives from the sun is 600 W/m2, the 
convection heat transfer coefficient between the roof and the air is 12 W/(m2 K), and the 
air temperature is 27°C, determine the roof temperature for the following two cases:  
(a) Radiative heat loss to space is negligible. (b) The roof is black (ε = 1.0) and radiates 
to space, which is assumed to be a black-body at 0 K. 

GIVEN 

A flat plate in the sunlight 
Radiant heat received from the sun (qr/A) = 600 W/m2 
Air temperature (T∞) = 27°C 
Convective heat transfer coefficient ( ch ) = 12 W/(m2 K) 

FIND 

The plate temperature (Tp) 

ASSUMPTIONS 

Steady state prevails 
No heat is lost from the bottom of the plate 

SKETCH 

Insulation

q Asol
2/ = 600 W/m

TP

qr
Air

T• = 27°C

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5: Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

(a) For this case steady state and the conservation of energy require the heat lost by conduction, from 
Equation (1.10), to be equal to the heat gained from the sun 

 qc = ch  A (Ts – T∞) = qr 

 Solving for Ts 

 Ts = 
1r

c

q

A h
 + T∞ = (600 W/m2) 

2

1

12 W/(m K)

 
  

 + (27°C) = 77°C 

(b) In this case, the solar gain must be equal to the sum of the convective loss, from Equation (1.10), 
and radiative loss, from Equation (1.16) 

 rq

A
 = ch  (Tp – T∞) + σ (Tp

4 – Tsp
4) 

 600 W/m2 = 12 W/(m2 K) (Tp – 300K) + 5.67 × 10–8 W/(m2 K4) (Tp
4 – 0) 

By trial and error 

 Tp = 308 K = 35°C 
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COMMENTS 

The addition of a second means of heat transfer from the plate in part (b) allows the plate to operate at 
a significantly lower temperature. 

PROBLEM 1.45 

A horizontal 3-mm-thick flat copper plate, 1 m long and 0.5 m wide, is exposed in air at 
27°C to radiation from the sun. If the total rate of solar radiation absorbed is  
300 W and the combined radiative and convective heat transfer coefficients on the upper 
and lower surfaces are 20 and 15 W/(m2 K), respectively, determine the equilibrium 
temperature of the plate. 

GIVEN 

Horizontal, 1 m long, 0.5 m wide, and 3 mm thick copper plate is exposed to air and solar radiation 
Air temperature (T∞) = 27°C 
Solar radiation absorbed (qsol) = 300 W 

Combined transfer coefficients are  Upper surface ( uh ) = 20 W/(m2 K) 

  Lower surface ( 1h ) = 15 W/(m2 K) 

FIND 

The equilibrium temperature of the plate (Tp) 

ASSUMPTIONS 

Steady state prevails 
The temperature of the plate is uniform 

SKETCH 
qsol = 300 W

TP

Copper plate

T• = 27°C

qcu

qCL  

SOLUTION 

For equilibrium the heat gain from the solar radiation must equal the heat lost from the upper and 
lower surfaces 

 qsol = uh  A (Tp – T∞) + 1h  A (Tp – T∞) 

Solving for Tp 

 Tp = sol

1

1

u

q

A h h+
 + T∞ 

 Tp = 
2 2

300 W 1

(1m)(0.5m) 20 W/(m K) 15W/(m K)

  
      +

 + (27°C) 

 Tp = 44°C 
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PROBLEM 1.46 

A small oven with a surface area of 0.28 m2 is located in a room in which the walls and 
the air are at a temperature of 27°C. The exterior surface of the oven is at 150°C and the 
net heat transfer by radiation between the oven’s surface and the surroundings is 586 W. If 
the average convective heat transfer coefficient between the oven and the surrounding air  
is 11 W/(m2K), calculate: (a) the net heat transfer between the oven and the surroundings  
in W, (b) the thermal resistance at the surface for radiation and convection, respectively,  
in K/W, and (c) the combined heat transfer coefficient in W/(m2K). 

GIVEN 

Small oven in a room 
Oven surface area (A) = 0.28 m2 
Room wall and air temperature (T∞) = 27°C 
Surface temperature of the exterior of the oven (To) = 150°C 
Net radiative heat transfer (qr) = 586 W 
Convective heat transfer coefficient ( ch ) = 11 W/(m2K) 

FIND 

(a) Net heat transfer (qT) in W 
(b) Thermal resistance for radiation and convection (RT) in K/W 

(c) The combined heat transfer coefficient ( crh ) in W/(m2K) 

ASSUMPTIONS 

Steady state prevails 

SKETCH 

Room

T• = 27°C

Oven

qr

To = 150 °C

A = 0.28 m2

 

SOLUTION 

(a) The net heat transfer is the sum of the convective heat transfer, from Equation (1.10), and the net 
radiative heat transfer 

 q
T
 = qc + qr + ch A (To – T∞) + qr 

This gives 

 q
T
 = 11 W/(m2K) (0.28 m2) (150 – 27)K +586 W = 965 W 

  = 379 W + 586 W 

(b) The radiative resistance is 

 Rr = 
(150 – 27)K

586 W
o

r

T T

q
∞−

=  = 0.21 K/W 
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The convective resistance is 

 Rc = 
(150 – 27)K

379 W
o

c

T T

q
∞−

=  = 0.325 K/W 

These two resistances are in parallel, therefore the total resistance is given by 

 RT = 
( ) ( )0.21K/W 0.325K/W

(0.21 0.325) K/W
c r

c r

R R

R R

 =   + +
 = 0.13 K/W 

(c) The combined heat transfer coefficient can be calculated from 

 q
T 

= crh A ΔT 

 ∴ crh  = rq

A TΔ
 = 

2

965 W

(0.28m )(150 27)K−
 = 28 W/(m2K)  

COMMENTS 

The thermal resistances for the convection and radiation modes are of the same order of magnitude. 
Hence, neglecting either one would lead to a considerable error in the rate of heat transfer. 

PROBLEM 1.47 

A steam pipe 200 mm in diameter passes through a large basement room. The 
temperature of the pipe wall is 500°C, while that of the ambient air in the room is 20°C. 
Determine the heat transfer rate by convection and radiation per unit length of steam 
pipe if the emissivity of the pipe surface is 0.8 and the natural convection heat transfer 
coefficient has been determined to be 10 W/(m2 K). 

GIVEN 

A steam pipe passing through a large basement room 
Pipe diameter (Δ) = 200 mm = 0.2 m 
The temperature of the pipe wall (Tp) = 500°C = 773 K 
Temperature of ambient air in the room (T∞) = 20°C = 293 K 
Emissivity of the pipe surface (ε) = 0.8 
Natural convection heat transfer coefficient (hc) = 10 W/(m2 K) 

FIND 

Heat transfer rate by convection and radiation per unit length of the steam pipe (q/L) 

ASSUMPTIONS 

Steady state prevails 
The walls of the room are at the same temperature as the air in the room 
The walls of the room are black (ε = 1.0) 

SKETCH 

Steam Pipe = 500°CTpT• = 20°C

L

Ts = 20°C

q
r
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PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The net radiative heat transfer rate for a gray object in a blackbody enclosure is given by Equation 
(1.17) 

 qr = A1 ε1 σ (T1
4 – T2

4) = π D L ε σ (Tp
4 – Ts

4) 

 ∴ rq

L
 = π (0.2 m) (0.8) [5.67 × 10–8 W/(m2 K4)] [(773 K)4 – (293 K)4] 

 rq

L
 = 9970 W/m 

The convective heat transfer rate is given by 

 qc = ch  A (Tp – T∞) = ch  (π D L) (Tp – T∞) 

 ∴ cq

L
 = [10 W/(m2 K)] π (0.2 m) (500°C – 20°C) 

 cq

L
 = 3020 W/m 

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equation. 
The radiation heat transfer dominates because of the high emissivity of the surface and the high 
surface temperature which enters to the fourth power in the rate of radiative heat loss. 

PROBLEM 1.48 

The inner wall of a rocket motor combustion chamber receives 160(kW)/m2 by radiation 
from a gas at 2760°C. The convective heat transfer coefficient between the gas and the 
wall is 110 W/(m2K). If the inner wall of the combustion chamber is at a temperature of 
540°C, determine the total thermal resistance of a unit area of the wall in (m2K)/W and 
the heat flux. Also draw the thermal circuit. 

GIVEN 

Wall of a rocket motor combustion chamber 
Radiation to inner surface (qr/A) = 160 (kW)/m2 
Temperature of gas in chamber (Tg) = 2760°C 
Convective heat transfer coefficient on inner wall (hc) = 110 W/(m2K) 
Temperature of inner wall (Tw) = 540°C 

FIND 

(a) Draw the thermal circuit 
(b) The total thermal resistance of a unit area (A Rtotal) in (m2K)/W 

ASSUMPTIONS 

One dimensional heat transfer through the walls of the combustion chamber 
Steady state heat flow 
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SKETCH 

qr

Tg = 2760 °C

Tw = 540 °C

 

SOLUTION 

(a) The thermal circuit for the chamber wall is shown below 

Tg Tw

Rc

Rr

 

(b) The total thermal resistance can be calculated from the total rate of heat transfer from the pipe 

 qtotal = 
total

T

R

Δ
 

 ∴ A Rtotal = 
total

T
q

A

Δ
 
  

 

The total rate of heat transfer is the sum of the radiative and convective heat transfer 

 qtotal = qr + qc = qr + ch  A ΔT 

 ∴ totalq

A
 = rq

A
 + ch  ΔT 

 totalq

A
 = 160000 W/m2 + 110 W/(m2K) (2760 – 540)K = 404,200 W/m2 

Therefore the thermal resistance of a unit area is 

 A Rtotal = 
2

(2760 – 540)K

404,200 W/m
 = 0.0055 (m2K)/W 

 

An alternate method of solving part (b) is to calculate the radiative and convective resistances 
separately and then combine them in parallel as illustrated below. 
The convective resistance is 

 Rc = 
1 1

ch A A
=  

2

1

110 W/(m K)

 
  

 = 
1

A
 0.0091 (m2K)/W 

The radiative resistance is 

 Rr = 
r

T

q

Δ
 = 

r

T
q

A
A

Δ
 
  

 = 
1

A
 

2

(2760 – 540)K 1

160000 W/m A
=  0.014 (m2K)/W 
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Combining these two resistances in parallel yields the total resistance 

 Rtotal = r c

r c

R R

R R+
 

 ∴ A Rtotal = 2(0.0091) (0.014)
(m K)/W

(0.0091 0.014)+
 = 0.0055 (m2K)/W 

PROBLEM 1.49 

A flat roof of a house absorbs a solar radiation flux of 600 W/m2. The backside of the 
roof is well insulated, while the outside loses heat by radiation and convection to ambient 
air at 20°C. If the emittance of the roof is 0.80 and the convective heat transfer 
coefficient between the roof and the air is 12 W/(m2 K), calculate: (a) the equilibrium 
surface temperature of the roof, and (b) the ratio of convective to radiative heat loss. 
Can one or the other of these be neglected? Explain your answer. 

GIVEN 

Flat roof of a house 
Solar flux absorbed (qsol/A) = 600 W/m2 
Back of roof is well insulated 
Ambient air temperature (T∞) = 20°C = 293 K 
Emittance of the roof (ε) = 0.80 
Convective heat transfer coefficient ( ch ) = 12 W/(m2 K) 

FIND 

(a) The equilibrium surface temperature (Ts) 
(b) The ratio of the convective to radiative heat loss 

ASSUMPTIONS 

The heat transfer from the back surface of the roof is negligible 
Steady state heat flow 

SKETCH 

Ts

qcqr
qsol

T• = 293 K

Roof  

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

(a) For steady state the sum of the convective heat loss, from Equation (1.10), and the radiative heat 
loss, from Equation (1.15), must equal the solar gain 

 solq

A
 = cq

A
 + r

c
q

h
A

=  (Ts – T∞) + ε σ Ts
4 

 600 W/m2 = 12 W/(m2 K) (Ts – 293K) + (0.8) ( )8 2 45.67 10 W/(m K )−×  Ts
4 

  4.535 × 10–8 Ts
4 + 12 Ts – 4116 = 0 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
65

By trial and error 

 Ts = 309 K = 36°C 

(b) The ratio of the convective to radiative loss is 

 c

r

q

q
 = 

4

( )c s

s

h T T

Tεσ
∞−

 = 
( ) ( )

( ) ( )

2

48 2 4

12 W/(m K) 309K 293K

(0.8) 5.67 10 W/(m K ) 309K−

−

×
 = 0.46 

COMMENTS 

Since the radiative and convective terms are of the same order of magnitude, neither one may be 
neglected without introducing significant error. 

PROBLEM 1.50 

Determine the power requirement of a soldering iron in which the tip is maintained at 
400°C. The tip is a cylinder 3 mm in diameter and 10 mm long. Surrounding air 
temperature is 20°C and the average convective heat transfer coefficient over the tip is 
20 W/(m2 K). Initially, the tip is highly polished giving it a very low emittance. 

GIVEN 

Soldering iron tip  Diameter (D) = 3 mm = 0.003 m  
  Length (D) = 10 mm = 0.01 m 
Temperature of the tip (Tt) = 400°C 
Temperature of the surrounding air (T∞) = 20°C 

Average convective heat transfer coefficient ( ch ) = 20 W/(m2 K) 

Emittance is very low (ε = 0) 

FIND 

The power requirement of the soldering iron ( q ) 

ASSUMPTIONS 

Steady state conditions exist 
All power used by the soldering iron is used to heat the tip 
Radiative heat transfer from the tip is negligible due to the low emittance 
The end of the tip is flat 
The tip is at a uniform temperature 

SKETCH 

Soldering
Iron

Tt = 400°C
D = 0.003 m

L = 0.01 m

T• = 20°C
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SOLUTION 

The power requirement of the soldering iron, q , is equal to the heat lost from the tip by convection 

 qc = coh  A ΔT = ch  (π D2/4 + π D L) (Tt – T∞) = q  

 q  = 20 2W/(m K)
2(0.003m)

(0.003m)(0.01m)
4

π π
 

+ 
 

(400°C – 20°C) 

 q  = 0.77 W 

PROBLEM 1.51 

The soldering iron tip in Problem 1.50 becomes oxidized with age and its gray-body 
emittance increases to 0.8. Assuming that the surroundings are at 20°C determine the 
power requirement for the soldering iron. 

Problem 1.50: 

Determine the power requirement of a soldering iron in which the tip is maintained at 
400°C. The tip is a cylinder 3 mm in diameter and 10 mm long. Surrounding air 
temperature is 20°C and the average convective heat transfer coefficient over the tip is 
20 W/(m2 K). Initially, the tip is highly polished giving it a very low emittance. 

GIVEN 

Soldering iron tip  Diameter (D) = 3 mm = 0.003 m  
  Length (D) = 10 mm = 0.01 m 
Temperature of the tip (Tt) = 400°C 
Temperature of the surrounding air (T∞) = 20°C 

Average convective heat transfer coefficient ( ch ) = 20 W/(m2 K) 

Emittance of the tip (ε) = 0.8 

FIND 

The power requirement of the soldering iron ( q ) 

ASSUMPTIONS 

Steady state conditions exist 
All power used by soldering iron is used to heat the tip 
The surroundings of the soldering iron behave as a blackbody enclosure 
The end of the tip is flat 

SKETCH 

Soldering
Iron

Tt = 400°C

D = 0.003 m

L = 0.01 m

T• = 20°C

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The rate of heat loss by convection, from Problem 1.50, is 0.77 W. 
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The rate of heat loss by radiation is given by Equation (1.17) 

 qr = A1 ε1 σ (T1
4 – T2

4) = 
2

4

D
DL

π π
 

+  
 ε σ (Tt

4 – Tw
4) 

 qr = 
2(0.003m)

(0.003m)(0.01m)
4

π π
 

+ 
 

 (0.8) [5.67 × 10–8 W/(m2 K4)] [(673 K)4 – (293 K)4] 

 qr = 0.91 W 
The power requirement of the soldering iron, q , is equal to the total rate of heat loss from the tip. The 
total heat loss is equal to the sum of the convective and radiative losses 

 q  = qc + qr = 0.77 W + 0.91 W = 1.68 W 

 

COMMENTS 

Note that the inclusion of the radiative term more than doubled the power requirement for the 
soldering iron. 
The power required to maintain the desired temperature could be provided by electric resistance 
heating. 

 

PROBLEM 1.52 

Some automobile manufacturers are currently working on a ceramic engine block that 
could operate without a cooling system. Idealize such an engine as a rectangular solid, 45 
cm by 30 cm by 30 cm. Suppose that under maximum power output the engine 
consumes 5.7 liters of fuel per hour, the heat released by the fuel is 9.29 kWh per liter 
and the net engine efficiency (useful work output divided by the total heat input) is 0.33. 
If the engine block is alumina with a gray-body emissivity of 0.9, the engine 
compartment operates at 150°C, and the convective heat transfer coefficient is 30 W/(m2 K), 
determine the average surface temperature of the engine block. Comment on the 
practicality of the concept. 

 

GIVEN 

Ceramic engine block, 0.45m by 0.3m by 0.3m 
Engine gas consumption is 5.7 1/h 
Heat released is 9.29 (kWh)/1 
Net engine efficiency (η) = 0.33 
Emissivity (ε) = 0.9 
Convective heat transfer coefficient (hc) = 30 W/(m2 K) 
Engine compartment temperature (Tc) = 150°C = 423 K 

FIND 

The surface temperature of the engine block (Ts) 
Comment on the practicality 

ASSUMPTIONS 

Heat transfer has reached steady state 
The engine compartment behaves as a blackbody enclosure 
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SKETCH 

0.3 m

Engine
Block

0.3 m
0.45 m

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The surface area of the idealized engine block is 

 A = 4 (0.45m) (0.3m) + 2(0.3m)2 = 0.72 m2 

The rate of heat generation within the engine block is equal to the energy from the gasoline that is not 
transformed into useful work 

 Gq  = (1 – η) mg hg = (1 – 0.33) (5.71/h) (9.29 (kWh)/1) = 35.5 kW 

For steady state conditions, the net radiative and convective heat transfer from the engine block must 
be equal to the heat generation within the engine block 

 qtotal = qr + qc = Gq  

 Gq  = A ε σ (Ts
4 – Tc

4) + ch  A (Ts – Tc) 

 35.5 kW = (0.72 m2) (0.9) ( )8 2 45.67 10 W/(m K )−×  [Ts
4 – (423 K)4] + (0.72 m2)  

   ( )230 W/(m K)  (Ts – 3.674 × 10–8 Ts
4 + 21.6 Ts – 45656 = 0 

By trial and error 

 Ts = 916 K = 643°C 

COMMENTS 

The engine operates at a temperature high enough to burn a careless motorist. 
Note that absolute temperature must be used in radiation equations. 
Hot spots due to the complex geometry of the actual engine may produce local temperatures much 
higher than 916 K. 

PROBLEM 1.53 

A pipe carrying superheated steam in a basement at 10°C has a surface temperature of 
150°C. Heat loss from the pipe occurs by radiation (ε = 0.6) and natural convection  
[ ch  = 25 W/(m2 K)]. Determine the percentage of the total heat loss by these two 

mechanisms. 

GIVEN 

Pipe in a basement 
Pipe surface temperature (Ts) = 150°C = 423 K 
Basement temperature (T∞) = 10°C = 283 K 
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Pipe surface emissivity (ε) = 0.6 
Convective heat transfer coefficient ( ch ) = 25 W/(m2 K) 

FIND 

The percentage of the total heat loss due to radiation and convection 

ASSUMPTIONS 

The system is in steady state 
The basement behaves as a blackbody enclosure at 10°C 

SKETCH 

Basement Wall
Temperature = T•

qr qc

Pipe = 423 KTs

T• = 283 K

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5: the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The rate of heat transfer from a gray-body to a blackbody enclosure, from Equation (1.17), is 

 qr = A1 ε1 σ (T1
4 – T2

4) = A ε σ (Ts
4 – T∞

4) 

 ∴ rq

A
 = (0.6) [5.67 × 10–8 W/(m2 K4)] [(423 K)4 – (283 K)4] 

 rq

L
 = 870 W/m 

The rate of heat transfer by convection, from Equation (1.10), is 

 qc = ch  A (Ts – T∞) 

 ∴ cq

A
 = 25 W/(m2 K) (423 K – 283 K) = 3500 W/m2 

The total rate of heat transfer is the sum of the radiative and convective rates 

 totalq

A
 = cr qq

A A
+  = 870 W/m2 + 3500 W/m2 = 4370 W/m2 

The percentage of the total heat transfer due to radiation is 

  
total

/

/
rq A

q A
 × 100 = 

870

4370
 × 100 = 20% 

The percentage of the total heat transfer due to convection is 

  
total

/

/
cq A

q A
 × 100 = 

3500

4370
 × 100 = 80% 
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COMMENTS 

This pipe surface temperature and rate of heat loss are much too high to be acceptable. In practice, a 
layer of mineral wool insulation would be wrapped around the pipe. This would reduce the surface 
temperature as well as the rate of heat loss. 

PROBLEM 1.54 

For a furnace wall, draw the thermal circuit, determine the rate of heat flow per unit 
area, and estimate the exterior surface temperature under the following conditions: the 
convective heat transfer coefficient at the interior surface is 15 W/(m2 K); rate of heat 
flow by radiation from hot gases and soot particles at 2000°C to the interior wall surface 
is 45,000 W/m2; the unit thermal conductance of the wall (interior surface temperature 
is about 850°C) is 250 W/(m2 K); there is convection from the outer surface. 

GIVEN 

A furnace wall 

Convective heat transfer coefficient ( ch ) = 15 W/(m2 K) 
Temperature of hot gases inside furnace (Tg) = 2000°C 
Rate of radiative heat flow to the interior of the wall (qr/A) = 45,000 W/m2 
Unit thermal conductance of the wall (k/L) = 250 W/(m2 K) 
Interior surface temperature (Twi) is about 850°C 
Convection occurs from outer surface of the wall 

FIND 

(a) Draw the thermal circuit 
(b) Rate of heat flow per unit area (q/A) 
(c) The exterior surface temperature (Two) 

ASSUMPTIONS 

Heat flow through the wall is one dimensional 
Steady state prevails 

SKETCH 

T•Tg = 2000 °C

qr

Twi = 850°C

Two

T•

 

SOLUTION 

The thermal circuit for the furnace wall is shown below 

Tg Twi

Rci

Rr

Rk

Two

Rco

T•
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The rate of heat flow per unit area through the wall is equal to the rate of convective and radiative heat 
flow to the interior wall 

 
q

A
 = rq

A
 + cq

A
 = rq

A
 + ch  (Tg – Twi) 

 
q

A
 = 45,000 W/m2 + 15 W/(m2 K) (2000°C – 850°C) = 62,250 W/m2 

We can calculate the outer surface temperature of the wall by examining the conductive heat transfer 
through the wall given by Equation (1.2) 

 qk = 
K A

L
 (Twi – Two)

 

 ∴ Two = Twi – 
1

/
kq

A k L
 = 850°C – (62,250 W/m2) 

2

1

250 W/(m K)

 
  

 = 601°C 

COMMENTS 

The corner sections should be analyzed separately since the heat flow there is not one dimensional. 

PROBLEM 1.55 

Draw the thermal circuit for heat transfer through a double-glazed window. Include 
solar energy gain to the window and the interior space. Identify each of the circuit 
elements. Include solar radiation to the window and interior space. 

GIVEN 

Double-glazed window 

FIND 

The thermal circuit 

SKETCH 

Glass Plate # 2 Glass Plate # 1

T2i T2o

TRW

T•i

T1i T1o

TRo

T•o

qs

 

SOLUTION 

TRW

Rr2

T•i

Rc2

T2 i

Rk2

T2o

Rr12

Rk12

T1 i T1o

Rk1

Tro

Rc1

qs

qs2

qs1

Direct Solar to the Room

T•o
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where Rr1, Rr12, Rr2 = Radiative thermal resistances 
 Rk1, Rk2, Rk12 = Conductive thermal resistances 
 Rc1, Rc2 = Convective thermal resistances 
 Trw, Tro = Effective temperatures for radiative heat transfer 

 T∞ = Air temperatures 
 T1i, T1o, T2i = Surface temperatures of the glass 
 qs1, qs2 = Solar energy incident on the window panes 

PROBLEM 1.56 

The ceiling of a tract house is constructed of wooden studs with fiberglass insulation 
between them. On the interior of the ceiling is plaster and on the exterior is a thin layer 
of sheet metal. A cross section of the ceiling with dimensions is shown below. 

(a) The R-factor describes the thermal resistance of insulation and is defined by: 

 R-factor = L/keff = ΔT/(q/A) 

Calculate the R-factor for this type of ceiling and compare the value of this R-factor with 
that for a similar thickness of fiberglass. Why are the two different? 

(b) Estimate the rate of heat transfer per square meter through the ceiling if the interior 
temperature is 22°C and the exterior temperature is –5°C. 

GIVEN 
Ceiling of a tract house, construction shown below 
Inside temperature (Ti) = 22°C 
Outside temperature (To) = –5°C 

FIND 

(a) R-factor for the ceiling (RFc). Compare this to the R-factor for the same thickness of fiberglass 
(RFfg). Why do they differ? 

(b) Rate of heat transfer (q/A) 

ASSUMPTIONS 

Steady state heat transfer 
One dimensional conduction through the ceiling 
Thermal resistance of the sheet metal is negligible 

SKETCH 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11, the thermal conductivities of the ceiling materials are 
 Pine or fir wood studs (kw) = 0.15 W/(m K) at 20°C 
 Fiberglass (kfg) = 0.035 W/(m K) at 20°C 
 Plaster (kp) = 0.814 W/(m K) at 20°C 
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SOLUTION 

The thermal circuit for the ceiling with studs is shown below 

Tsi Tso

Rfg

Rw

RP

 

where Rp = thermal resistance of the plaster 
 Rw = thermal resistance of the wood 
 Rfg = thermal resistance of the fiberglass 
Each of these resistances can be evaluated using Equation (1.4) 

 Rp = 
wall

P

P

L

A k
 = ( )

3

wall wall

15 10 m 1

[0.814 W/(m K)]A A

−×
=  0.0184 K m2/W 

 Rw = w

w w

L

A k
 = ( )

3

wall

105 10 m 1

[0.15W/(m K)]wA A

−×
=   0.7 K m2/W 

 Rfg =  
fg

fg fg

L

A k
 = ( )

3

wallfg

105 10  m 1

[0.035W/(m K)] AA

−×
=   3 K m2/W 

To convert these all to a wall area basis the fraction of the total wall area taken by the wood studs and 
the fiberglass must be calculated 

 wood studs = 
wall

wA

A
 = 

45mm

48cm
 = 0.094 

 fiberglass = 
wall

fgA

A
 = 

43.5cm

48m
 = 0.906 

Therefore the resistances of the studs and the fiberglass based on the wall area are 

 Rw = 
wall

1

0.094 A
 0.7 K m2/W = 

wall

1

A
 7.45 K m2/W 

 Rfg = 
wall

1

0.906 A
  3 K m2/W  = 

wall

1

A
 3.31 K m2/W 

The R-Factor of the wall is related to the total thermal resistance of the wall by 

 RFc = Awall Rtotal = Awall 
w fg

p
w fg

R R
R

R R

 
+ + 

= 

    0.0184 + 
(7.45) (3.31)

K m/W
7.45 3.31+

  = 2.31 K m2/W 

For 12 cm of fiberglass alone, the R-factor is 

 RFfg = 
fg

L

k
 = 

212 10  m

0.035W/(m K)

−×
 = 3.43 K m2/W 
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The R-factor of the ceiling is only 67% that of the same thickness of fiberglass. This is mainly due to 
the fact that the wood studs act as a ‘thermal short’ conducting heat through the ceiling more quickly 
than the surrounding fiberglass. 
(b) The rate of heat transfer through the ceiling is 

 
q

A
 = 

c

T

RF

Δ
 = 

2

22°C ( 5°C)

2.31K m /W

− −
 = 11.69 W/m2 

COMMENTS 

R-factors are given in handbooks. For example, Mark’s Standard Handbook for Mechanical 
Engineers lists the R-factor of a multi-layer masonry wall as 6.36 Btu/(h ft2) = 20 W/m2. 

PROBLEM 1.57 

A homeowner wants to replace an electric hot-water heater. There are two models in the 
store. The inexpensive model costs $280 and has no insulation between the inner and 
outer walls. Due to natural convection, the space between the inner and outer walls has 
an effective conductivity of 3 times that of air. The more expensive model costs $310 and 
has fiberglass insulation in the gap between the walls. Both models are 3.0 m tall and 
have a cylindrical shape with an inner wall diameter of 0.60 m and a 5 cm gap. The 
surrounding air is at 25°C, and the convective heat transfer coefficient on the outside is 
15 W/(m2 K). The hot water inside the tank results in an inside wall temperature of 
60°C. 
If energy costs 6 cents per kilowatt-hour, estimate how long it will take to pay back the 
extra investment in the more expensive hot-water heater. State your assumptions. 

GIVEN 

Two hot-water heaters  Height (H) = 3.0 m 
  Inner wall diameter (Di) = 0.60 m 
  Gap between walls (L) = 0.05 m 
Water heater #1  Cost = $280.00 
  Insulation: none 
  Effective Conductivity between wall (keff) = 3(ka) 
Water heater #2  Cost = $310.00 
  Insulation: Fiberglass 
Surrounding air temperature (T∞) = 25°C 
Convective heat transfer coefficient (hc) = 15 W/(m2 K) 
Inside wall temperature (Twi) = 60°C 
Energy cost = $0.06/kWh 

FIND 

The time it will take to pay back the extra investment in the more expensive hot-water heater 

ASSUMPTIONS 

Since the diameter is large compared to the wall thickness, one-dimensional heat transfer is assumed 
To simplify the analysis, we will assume there is no water drawn from the heater, therefore the inside 

wall is always at 60°C 
Steady state conditions prevail 
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SKETCH 

0.6 m

3.0 m
T• = 25°Cq

Ti = 60°C

0.05 m

Wall Detail  

PROPERTIES AND CONSTANTS 

From Appendix, Table 11 and 27: The thermal conductivities are 
fiberglass (ki) = 0.035 W/(m K) at 20°C 
dry air (ka) = 0.0279 W/(m K) at 60°C 

SOLUTION 

The areas of the inner and outer walls are 

 Ai = 2 
2

4
iDπ

 + π Di H = 2 
2(0.6m)

4

π
 + π (0.6 m) (3 m) = 6.22 m2 

 Ao = 2 
2

4
oDπ

  + π Do H = 2 
2(0.7 m)

4

π
 + π (0.7 m) (3 m) = 7.37 m2 

The average area for the air or insulation between the walls (Aa) = 6.8 m2. 
The thermal circuit for water heater #1 is 

Twi Two Tco

Rk eff, Rco  

The rate of heat loss for water heater #1 is 

 q1 = 
total

T

R

Δ
 = 

eff,k co

T

R R

Δ
+

 = 

eff

1
wi

a co

T T
L

k A h A

∞

∞

−

+
 

 q1 = 

2 2 2

60°C 25°C
0.05m 1

3[0.0279 W/(m K)](6.8m ) [15W/(m K)](7.37 m )

−

+
 = 361 W = 0.361 kW 

Therefore the cost to operate water heater #1 is 
 Cost1 = q1 (energy cost) = 0.361 kW ($0.06/kWh) (24 h/day) = $0.52/day 

The thermal circuit for water heater #2 is 
Twi Two Tdo

Rk i, Rco  

The rate of heat loss from water heater #2 is 

 q2 = 

2 2 2

60°C 25°C
0.05m 1

[0.035W/(m K)](6.8m ) [15W/(m K)](7.37 m )

−

+
  = 160 W = 0.16 kW 
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Therefore the cost of operating water heater #2 is 
 Cost2 = q2 (energy cost) = 0.16 kW ($0.06/kWh) (24 h/day) = $0.23/day 

The time to pay back the additional investment is the additional investment divided by the difference 
in operating costs 

 Payback time = 
$310 $280

$0.52 / day $0.23/ day

−
−

 

 Payback time = 103 days 

COMMENTS 

When water is periodically drawn from the water heater, energy must be supplied to heat the cold 
water entering the water heater. This would be the same for both water heaters. However, drawing 
water from the heater also temporarily lowers the temperature of the water in the heater thereby 
lowering the heat loss and lowering the cost savings of water heater #2. Therefore, the payback time 
calculated here is somewhat shorter than the actual payback time. 
A more accurate, but much more complex estimate could be made by assuming a typical daily hot 
water usage pattern and power output of heaters. But since the payback time is so short, the increased 
complexity is not justified since it will not change the bottom line—buy the more expensive model 
and save money as well as energy! 

PROBLEM 1.58 

Liquid oxygen (LOX) for the Space Shuttle can be stored at 90 K prior to launch in a 
spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated 
with superinsulation developed at the US Institute of Standards and Technology’s 
Cryogenic Division that has an effective thermal conductivity of 0.00012 W/(m K). If the 
outside temperature is 20°C on the average and the LOX has a heat of vaporization of 
213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate 
below 200 g/h. 

GIVEN 

Spherical LOX tank with superinsulation 
Tank diameter (D) = 4 m 
LOX temperature (TLOX) = 90 K 
Ambient temperature (T∞) = 20°C = 293 K 
Thermal conductivity of insulation (k) = 0.00012 W/(m K) 
Heat of vaporization of LOX (hfg) = 213 kJ/kg 
Maximum evaporation rate ( Loxm ) = 0.2 kg/h 

FIND 

The minimum thickness of the insulation (L) to keep evaporation rate below 0.2 kg/h 

ASSUMPTIONS 

The thickness is small compared to the sphere diameter so the problem can be considered one 
dimensional 

Steady state conditions prevail 
Radiative heat loss is negligible 
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SKETCH 

TLOX = 90 K

D = 4 m

L = ?

Insulation

 

SOLUTION 

The maximum permissible rate of heat transfer is the rate that will evaporate 0.2 kg/h of LOX 

 q = Lox fgm h  = (0.2 kg/h) (213 kJ/kg) 
h

3600 s

 
  

1000 J

kJ
 
   ( )Ws/J  = 11.8 W 

An upper limit can be put on the rate of heat transfer by assuming that the convective resistance on the 
outside of the insulation is negligible and therefore the outer surface temperature is the same as the 
ambient air temperature. With this assumption, heat transfer can be calculated using Equation (1.2), 
one dimensional steady state conduction 

 qk = 
k A

L
 (Thot – Tcold) = 

2k D

L

π
 (T∞ – TLOX) 

Solving for the thickness of the insulation (L) 

 L = 
2

k

k D

q

π
 (T∞ – TLOX) = 

2[0.00012 W/(m K)] (4m)

11.8W

π
 (293 K – 90 K) = 0.10 m = 10 cm 

COMMENTS 

The insulation thickness is small compared to the diameter of the tank. Therefore, the assumption of 
one dimensional conduction is reasonable. 

PROBLEM 1.59 

The heat transfer coefficient between a surface and a liquid is 60 W/(m2K). How many 
watts per square meter will be transferred in this system if the temperature difference is 
10°C? 

GIVEN 

The heat transfer coefficient between a surface and a liquid (hc) = 60 W/(m2K) 
Temperature difference (ΔT) = 10°C 

FIND 

The rate of heat transfer in watts per square meter 

ASSUMPTIONS 

Steady state conditions 
Surface temperature is higher than the liquid temperature 
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SKETCH 

hc = 60 W/(m K)2Liquid

qc

 

SOLUTION 

The rate of convective heat transfer per unit area (qc/A) is 

 cq

A
 = ch  ΔT = 60 W/(m2K) × 10°C = 600 W. 

PROBLEM 1.60 

An ice chest (see sketch) is to be constructed from Styrofoam [k = 0.033 W/(m K)]. If the 
wall of the chest is 5 cm thick, calculate its R-value in (m2K)/(W-cm). 

GIVEN 

Ice chest constructed of Styrofoam, k = 0.0333 W/(m K) 
Wall thickness 5 cm 

FIND 

(a) R-value of the ice chest wall 

ASSUMPTIONS 

(a) One-dimensional, steady conduction 

SKETCH 

5 cm

 

SOLUTION 

From Section 1.6 the R-value is defined as 

 R-value = 
thickness

thermal conductivity
 

 R-value = 
–25 10 m

0.033W/(m K)

×
 = 1.51 (m2K)/W 

From the problem statement, it is clear that we are asked to determine the R-value on a ‘per-cm’ basis. 
Dividing the above R-value by the thickness in cm, we get 

 R-value = 
1.51

5
 = 0.302 (m2K)/(W-cm) 
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PROBLEM 1.61 

Estimate the R-values for a 5 cm-thick fiberglass board and a 2.5 cm-thick polyurethane 
foam layer. Then compare their respective conductivity-times-density products if the 
density for fiberglass is 50 kg/m3 and the density of polyurethane is 30 kg/m3. Use the 
units given in Figure 1.27. 

GIVEN 

5 cm-thick fiberglass board, density = 50 kg/m3 
2.5 cm-thick polyurethane, density = 30 kg/m3 

FIND 

(a) R-values for both 
(b) Conductivity-times-density products for both 

 

ASSUMPTIONS 

(a) One-dimensional, steady conduction 

SOLUTION 

Ranges of conductivity for both of these materials are given in Figure 1.28. Using mean values we 
find: 

fiberglass board k = 0.04 W/(m K) 
polyurethane foam k = 0.025 W/(m K) 

For the 5 cm fiberglass we have 
 t = 0.05 m 
 k = 0.04 W/(m K) 
From Section 1.6 the R-value is given by 

 R-value = 
thickness

thermal conductivity
 = 

0.050m

0.04 W/(m K)
 = 1.25 (m2 K)/W 

and 

 conductivity × density = ( ) 30.04 W/(m K) (50 kg/m )  = 2 4(Wkg)/(Km )  

For the 2.5 cm polyurethane we have 

 t = 0.025 m 
 k = 0.025 W/(m K) 

 R-value = 
t

k
 = 1 (m2 K)/W 

 conductivity × density = ( ) ( )30.025 W/(m K) 30 kg/m   = 0.75 4(Wkg)/(Km )  

Summarizing, we have 

 
 

R-value 
(m2 K)/W 

conductivity × density 
(W kg)/(K m4) 

2′′ fiberglass board 1.25 2 

1′′ polyurethane foam           1    0.75 
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PROBLEM 1.63 

How many kilograms of ice can a 3-ton refrigeration unit produce in a 24-hour period? 
The heat of fusion of water is 330 kJ/kg. 

A manufacturer in the US wants to sell a refrigeration system to a customer in 
Germany. The standard measure of refrigeration capacity used in the United States is 
the ‘ton’; a one-ton capacity means that the unit is capable of making about one ton of 
ice per day or has a heat removal rate of 3.52 kW. The capacity of the American system 
is to be guaranteed at three tons. What would this guarantee be in SI units? 

GIVEN 

A three-ton refrigeration unit 
Heat of fusion of ice is 330 kJ/kg 

FIND 

(a) Kilograms of ice produced by the unit per 24 hour period 
(b) The refrigeration unit capacity is the net value, i.e., it includes heat losses 

ASSUMPTIONS 

(a) Water is cooled to just above the freezing point before entering the unit 

SOLUTION 

The mass of ice produced in a given period of time Δt is given by 

 mice = 
f

q T

h

Δ
 

where hf is the heat of fusion and q is the rate of heat removal by the refrigeration unit. From Problem 
1.65 we have q = 10,548 W. Inserting the given values we have 

 mice = 

( )5

(10,548 W)(24 hr)
hr

3.30 10 J / kg (Ws) / J
3600s
 ×  

 = 2762 kg 

PROBLEM 1.64 

Explain a fundamental characteristic that differentiates conduction from convection and 
radiation. 

SOLUTION 

Conduction is the only heat transfer mechanism that dominates in solid materials. Convection and 
radiation play important roles in fluids or, for radiation, in a vacuum. Under certain conditions, e.g., a 
transparent solid, radiation could be important in a solid. 

PROBLEM 1.65 

Explain in your own words: (a) what is the mode of heat transfer through a large steel 
plate that has its surfaces at specified temperatures? (b) what are the modes when the 
temperature on one surface of the steel plate is not specified, but the surface is exposed 
to a fluid at a specified temperature. 

GIVEN 

Steel plate with specified surface temperatures 
Steel plate with one specified temperature and another surface exposed to a fluid 
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FIND 

(a) Modes of heat transfer 

SKETCH 

T1 T2

Steel Plate

Tfluid T2

Steel Plate

(a) (b)  

SOLUTION 

(a) Since the surface temperatures are specified, the only mode of heat transfer of importance is 
conduction through the steel plate 

(b) In addition to conduction to the steel plate, convection at the surface exposed to the fluid must be 
considered 

PROBLEM 1.66 

What are the important modes of heat transfer for a person sitting quietly in a room? 
What if the person is sitting near a roaring fireplace? 

GIVEN 

Person sitting quietly in a room 
Person sitting in a room with a fireplace 

FIND 

(a) Modes of heat transfer for each situation 

ASSUMPTIONS 

The person is clothed 

 

SOLUTION 

(a) Since the person is clothed, we would need to consider conduction through the clothing, and 
convection and radiation from the exposed surface of the clothing. 

(b) In addition to the modes identified in (a), we would need to consider that surfaces of the person 
oriented towards the fire would be absorbing radiation from the flames. 

PROBLEM 1.67 

Explain a fundamental characteristic that differentiates condition from convection and 
radiation. 

SOLUTION 

Conduction is the only heat transfer mechanism that dominates in solid materials. Convection and 
radiation play important roles in fluids or, for radiation, in a vacuum. Under certain conditions, e.g. a 
transparent solid, radiation could be important in a solid. 
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PROBLEM 1.68 

Describe and compare the modes of heat loss through the single-pane and double-pane 
window assemblies shown in the sketch below. 

GIVEN 

A single-pane and a double-pane window assembly 

FIND 

(a) The modes of heat transfer for each 
(b) Compare the modes of heat transfer for each 

ASSUMPTIONS 

The window assembly wood casing is a good insulator 

SKETCH 
Wood Casing Wood Casing

Glass Glass

Single Pane Window Double Pane Window 

SOLUTION 

The thermal network for both cases is shown above and summarizes the situation. For the single-pane 
window, we have convection on both exterior surfaces of the glass, radiation from both exterior 
surfaces of the glass, and conduction through the glass. For the double-pane window, we would have 
these modes in addition to radiation and convection exchange between the facing surfaces of the glass 
panes. Since the overall thermal network for the double-pane assembly replaces the pane-conduction 
with two-pane conductions plus the convection/radiation between the two panes, the overall thermal 
resistance of the double-pane assembly should be larger. Therefore, we would expect lower heat loss 
through the double-pane window. 

PROBLEM 1.69 

A person wearing a heavy parka is standing in a cold wind. Describe the modes of heat 
transfer determining heat loss from the person’s body. 

GIVEN 

Person standing in a cold wing wearing a heavy parka 

FIND 

(a) The modes of heat transfer 

SKETCH 

Rshirt

Tskin

Rparka Rconvection

Tair 
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SOLUTION 

The thermal circuit for the situation is shown above. Assume that the person is wearing one other 
garment, i.e. a shirt, under the parka. The modes of heat transfer include conduction through the shirt 
and the parka and convection from the outer surface of the parka to the cold wind. We expect that the 
largest thermal resistance will be the parka insulation. We have neglected radiation from the parka 
outer surface because its influence on the overall heat transfer will be small compared to the other 
terms. 

PROBLEM 1.70 

Discuss the modes of heat transfer that determine the equilibrium temperature of the 
space shuttle Endeavor when it is in orbit. What happens when it reenters the earth’s 
atmosphere? 

GIVEN 

Space shuttle Endeavor in orbit 
Space shuttle Endeavor during reentry 

FIND 

(a) Modes of heat transfer 

SKETCH 

 

SOLUTION 

Heat generated internally will have to be rejected to the skin of the shuttle or to some type of radiator 
heat exchanger exposed to space. The internal loads that are not rejected actively, i.e., by a heat 
exchanger, will be transferred to the internal surface of the shuttle by radiation and convection, 
transferred by conduction through the skin, then radiated to space. These two paths of heat transfer 
must be sufficient to ensure that the interior is maintained at a comfortable working temperature. 
During reentry, the exterior surface of the shuttle will be exposed to a heat flux that results from 
frictional heating by the atmosphere. In this case, it is likely that the net heat flow will be into the 
space shuttle. The thermal design must be such that during reentry the interior temperature does not 
exceed some safe value. 
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Chapter 2 

PROBLEM 2.1 

The heat conduction equation in cylindrical coordinates is 

 ρ c 
T

t

∂
∂

 = k 
2 2 2

2 2 2 2

1 1T T T T

r rr r zφ
 ∂ ∂ ∂ ∂

+ + + ∂ ∂ ∂ ∂
 

(a) Simplify this equation by eliminating terms equal to zero for the case of steady-state 
heat flow without sources or sinks around a right-angle corner such as the one in the 
accompanying sketch. It may be assumed that the corner extends to infinity in the 
direction perpendicular to the page. (b) Solve the resulting equation for the temperature 
distribution by substituting the boundary condition. (c) Determine the rate of heat flow 
from T1 to T2. Assume k = 1 W/(m K) and unit depth perpendicular to the page. 

GIVEN 

• Steady state conditions 
• Right-angle corner as shown below 
• No sources or sinks 
• Thermal conductivity (k) = 1 W/(m K) 

FIND 

(a) Simplified heat conduction equation 
(b) Solution for the temperature distribution 
(c) Rate of heat flow from T1 to T2 

ASSUMPTIONS 

• Corner extends to infinity perpendicular to the paper 
• No heat transfer in the z direction 
• Heat transfer through the insulation is negligible 

SKETCH 

1 m f

r

1
m

T1 = 100°C

Insulated

T2 = 0°C  

SOLUTION 

The boundaries of the region are given by 

 1 m ≤ r ≥ 2 m 

 0 ≤ φ  ≥ 
2

π
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Assuming there is no heat transfer through the insulation, the boundary condition is 

 
∂
∂
T

r
 = 0 at r = 1 m 

 
∂
∂
T

r
 = 0 at r = 2 m 

 T1 = 100°C at φ = 0 

 T2 = 0°C at φ =  
2

π
 

(a) The conduction equation is simplified by the following 

 Steady state 

  
∂
∂
T

t
 = 0 

 No sources or sinks 

 q
k
 = 0 

No heat transfer in the z direction 

 
2

2

∂
∂

T

z
 = 0 

 Since  
∂
∂
T

r
 = 0 over both boundaries, 

∂
∂
T

r
 = 0 throughout the region 

  (Maximum principle); therefore, 
2

2

∂
∂

T

r
 = 0 throughout the region also. 

Substituting these simplifications into the conduction equation 

 0 = k 
2

2 2

1
0 0 0
 ∂

+ + +  ∂
T

r φ
 

 
2

2

∂
∂

T

φ
 = 0 

(b) Integrating twice 

 T = c1 φ + c2 

The boundary condition can be used to evaluate the constants 

 At φ = 0, T = 100°C : 100°C = c2 

 At φ = 
2

π
, T = 0°C : 0°C = c1 (π/2) + 100°C 

 sc1 = –
o200 C

π
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Therefore, the temperature distribution is 

 T(φ) = 100 – 
200 C

π
°

 φ °C 

(c) Consider a slice of the corner as follow 

Dr

r
rDf

f
f Df+

 

The heat transfer flux through the shaded element in the φ direction is 

 q′′ = 
thickness

k T− Δ
 = 

( )+ Δ− −
Δ

k T T

r
φ φ φ

φ
 

In the limit as Δφ → 0, q′′= – k 
dT

r dφ
 

Multiplying by the surface area drdz and integrating along the radius 

 q = 
1

or

r
q drdz′′  = 

200°C k

π 1

or

r

dr

r  = 
200°C k

π
 ln 

1

or

r
 

 q = 
200°C k

π
   [1 W/(m K)] ln(2 m/1 m) = 44.1 W/m 44.1W per meter in the z direction 

COMMENTS 

Due to the boundary conditions, the heat flux direction is normal to radial lines. 

PROBLEM 2.2 

Write Equation (2.20) in a dimensionless form similar to Equation (2.17). 

GIVEN 

• Equation (2.20) 

1 1GqT T
r

r r r k t

•
∂ ∂ ∂  + =  ∂ ∂ ∝ ∂

 

FIND 

• Dimensionless form of the equation 
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SOLUTION 

Let 

 τ = 
r

t

t
  t = τ tr 

 θ = 
r

T

T
  T = θ Tr 

 ζ = 
r

r

R
  r = ζ Rr 

Where Tr, Rr, and tr are reference temperature, reference radius, and reference time, respectively. 
Substituting these into Equation (2.20) 

  
( )1

( ) ( )
r

r
r r r

T
R

R R R

θζ
ζ ζ ζ

∂ ∂
  ∂ ∂

 + Gq

k


 = 

1

α
 

( )

( )
r

r

T

t

θ
τ

∂
∂′′

 

  
2

1

rR ζζ
∂

∂ rT
θζ
ζ

∂ 
  ∂

 + Gq

k


 = 

1

α
 r

r

T

t

θ
τ

∂
∂

 

  
1 θζ
ζ ζ ζ

∂ ∂ 
  ∂ ∂

 + 
2
r G

r

R q

T k


 = 

2
r

r

R

t

θ
α τ

∂
∂

 

  let GQ = 
2
r G

r

R q

T k


 and Fo = 

2
r

r

t

R

α
 

  
1

GQ
θζ

ζ ζ ζ
∂ ∂  +  ∂ ∂

  = 
1

oF

θ
τ

∂
∂

 

PROBLEM 2.3 

Calculate the rate of heat loss per foot and the thermal resistance for a 15 cm schedule 
40 steel pipe covered with a 7.5 cm thick layer of 85% magnesia. Superheated steam at 
150°C flows inside the pipe ( ch  = 170 W/(m2 K)) and still air at 16°C is on the outside 

( ch = 30 W/(m2 K)). 

GIVEN 

• A 15 cm standard steel pipe covered with 85% magnesia 
• Magnesia thickness = 7.5 cm 
• Superheated steam at 150°C flows inside the pipe 
• Surrounding air temperature (T∞) = 16°C 
• Heat transfer coefficients  Inside ( cih ) = 170 W/(m2 K) 

  Outside ( coh ) = 30 W/(m2 K) 

FIND 

(a) The thermal resistance (R) 
(b) The rate of heat loss per foot (q/L) 

ASSUMPTIONS 

• Constant thermal conductivity 
• The pipe is made of 1% carbon steel 
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SKETCH 

ri

Ts

rI

Steel Pipe

Magnesia Insulation

T• = 16°C
ro

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 10, 11, and 41 
For a 15 cm schedule 40 pipe 

 Inside diameter (Di) = 15.16 cm 
 Outside diameter (Do) = 16.56 cm 

Thermal Conductivities 
 85% Magnesia (kI) = 0.06 W/(m K) at 20°C 
 1% Carbon steel (ks) = 43 W/(m K) at 20°C 

SOLUTION 

The thermal circuit for the insulated pipe is shown below 

T• Ts

Rco RKI RKS Rci  

(a) The values of the individual resistances can be calculated using Equations (1.14) and (2.39) 

 Rco = 
1 1

co o co ih A h D Lπ
=  = ( )2

1 1

( ) 30 W/(m K) (0.1656m)L m π
 

  Rco =  
1

( )L m
0.064 (m K)/W 

 RkI = 

ln

2

I

o

I

r

r

L kπ

 
  

 = 

(0.1656 0.075)
ln

0.1656
( )2 (0.06 W/(m K))L m π

+ 
 

 = 
1

( )L m
1 (m K)/W 

 Rks = 

ln

2

o

i

s

r

r

L kπ

 
  

 = 

16.56
ln

1 15.16
( ) 2 (43W/(m K))L m π

 
 

 = 
1

( )L m
 3.26 × 10–4 (m K)/W 

 Rci = 
1

ci ih A
 = 

1

ci ih D Lπ
 = 

2

1 1

( ) (0.1516m)(170 W/(m K))L m π
 = 

1

( )L m
 0.0124 (m K)/W 

The total resistance is 
 Rtotal = Rco + RkI + Rks + Rci 

  = 
1

L
 (0.064 + 1 + 3.26 × 10–4 + 0.0124) (m K)/W 

  = 
1

L
 1.0764 (m K)/W 

(b) The rate of heat transfer is given by 

 q = 
total

ΔT

R
 = 

(150 16)K
1

1.0764 (m K)/W
L

−
 ∴ q

L
 = 124.5 W/m 
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COMMENTS 

Note that almost all of the thermal resistance is due to the insulation and that the thermal resistance of 
the steel pipe is negligible. 

PROBLEM 2.4 

Suppose that a pipe carrying a hot fluid with an external temperature of Ti and outer 
radius ri is to be insulated with an insulation material of thermal conductivity k and 
outer radius ro. Show that if the convective heat transfer coefficient on the outside of the 
insulation is h and the environmental temperature is T∞, the addition of insulation can 
actually increase the rate of heat loss if ro < k / h  and that maximum heat loss occurs 

when ro = k/ h . This radius, rc, is often called the critical radius. 

GIVEN 

• An insulated pipe 
• External temperature of the pipe = Ti 
• Outer radius of the pipe = ri 
• Outer radius of insulation = ro 
• Thermal conductivity = k 
• Ambient temperature = T∞ 
• Convective heat transfer coefficient = h  

FIND 

Show that 

(a) The insulation can increase the heat loss if ro < k/ h  

(b) Maximum heat loss occurs when ro = k/ h  

ASSUMPTIONS 

• The system has reached steady state 
• The thermal conductivity does not vary appreciably with temperature 
• Conduction occurs in the radial direction only 

SKETCH 

Ti

To

T•

ri

Insulation
ro

Hot Fluid

 

SOLUTION 

Radial conduction for a cylinder of length L is given by Equation (2.37) 

 q
k
 = 2 π L k 

ln

i o

o

i

T T
r

r

−
 

Convection from the outer surface of the cylinder is given by Equation (1.10) 

 q
c 

= ch  A ΔT = h  2 π ro L (To – T∞) 
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For steady state 

 q
k 

= q
c
 

 2 π L k 
ln

i o

o

i

T T
r

r

−
 = h  2 π ro L (To – T∞) 

The outer wall temperature, To, is an unknown and must be eliminated from the equation 
Solving for Ti – To 

 Ti – To = oh r

k
 ln o

i

r

r
 (To – T∞) 

 Ti – T∞ = (Ti – To) + (To – T∞) = oh r

k
 ln o

i

r

r
 (To – T∞) + (To – T∞) 

 Ti – T∞ = ln 1o o

i

h r r

k r

 +  
 (To – T∞) 

or To – T∞ = 

1 ln

i

o o

i

T T

h r r

k r

∞−

+
 

Substituting this into the convection equation 

 q = q
c
 = h  2 π ro L 

1 ln

i

o o

i

T T

h r r

k r

∞
 

− 
 

+ 
 
 

 

 q = 
ln1

22

o

i

i
r
r

o

T T

Lkr L h ππ

∞−
 
 +
  

 

Examining the above equation, the heat transfer rate is a maximum when the term 

ln
1

22

o

i

o

r

r

Lkr L h ππ

 
 
 +
 
  

 is a minimum, which occurs when its differential with respect to ro is zero 

 
1

ln
2

o

o io

rd k

k L dr rr hπ
 +  

 = 0 

 
1

o o

k d

dr rh

 
  

 + ln o

o i

rd

dr r

 
  

 = 0 

 
2

1

o

k

h r

 
−  

 +  
1

or
 = 0 

 ro = 
k

h
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PROBLEM 2.5 

A solution with a boiling point of 82°C boils on the outside of a 2.5 cm tube with a No. 14 
BWG gauge wall. On the inside of the tube flows saturated steam at 4.2 bar (abs). The 
convective heat transfer coefficients are 8500 W/(m2 K) on the steam side and 6200 
W/(m2 K) on the exterior surface. Calculate the increase in the rate of heat transfer for a 
copper over a steel tube. 

GIVEN 

• Tube with saturated steam on the inside and solution boiling at 82°C outside 
• Tube specification: 2.5 cm No. 14 BWG gauge wall 
• Saturated steam in the pipe is at 4.2 bar 

• Convective heat transfer coefficients Steam side ( cih ) : 8500 W/(m2 K) 

  Exterior surface ( coh ) : 6200 W/(m2 K) 

FIND 

• The increase in the rate of heat transfer for a copper over a steel tube 

ASSUMPTIONS 

• The system is in steady state 
• Constant thermal conductivities 

SKETCH 

Steam
Ts

Twi

Two

T• = 82° C
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 10, 12, 13 and 42 

• Temperature of saturated steam at 4.2 bar (Ts) = 144°C 

• Thermal conductivities  Copper (kc) = 390 W/(m K) at 127°C 

  1% Carbon steel (ks) = 43 W/(m K) at 20°C 
• Tube inside diameter (Di) = 0.834 in. 

SOLUTION 

The thermal circuit for the tube is shown below 

T•Ts

Rci RK Rco

Twi Two

 

The individual resistances are 

 Rci = 
1 1

ci i ci ih A h D Lπ
=  = 

2 –2

1 1

(8500 W/(m K)) (2.08 10 m)L π ×
 = 

0.0018

L
 K/W 

 Rco = 
1 1

co o co ih A h D Lπ
=  = 

2 –2

1 1

(6200 W/(m K)) (2.5 10 m)L π ×
 = 

0.00205

L
  K/W 
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 Rkc = 

ln

2

o

i

c

r

r

Lkπ

 
  

 = 
–5

2.5cm
ln

7.5 102.08cm

2 (390 W/(m K))L Lπ

 
   ×=  K/W 

 Rks = 

ln

2

o

s

s

r

r

Lkπ

 
  

 = 
–4

2.5cm
ln

6.81 102.08 cm
2 (43W/(m K))L Lπ

 
  ×=  K/W 

For the copper tube 

 cq

L
 = 

(144 82)K

(0.0018 0.000075 0.00205) (K m)/W

−
+ +

 = 15800 W/m 

For the steel tube 

 sq

L
 = 

(144 82)K

(0.0018 0.00068 0.00205)(K m)/W

−
+ +

 = 13690 W/m 

The increase in the rate of heat transfer per unit length with the copper tube is 

  = c sq q

L L
−  = 2110 W/m  

 ∴ % increase = 
2110

13690
 × 100 = 15.4% 

COMMENTS 

The choice of tubing material is significant in this case because the convective heat transfer 
resistances are small making the conductive resistant a significant portion of the overall thermal 
resistance. 

PROBLEM 2.6 

Steam having a quality of 98% at a pressure of 1.37 × 105 N/m2 is flowing at a velocity of 
1 m/s through a steel pipe of 2.7 cm OD and 2.1 cm ID. The heat transfer coefficient at 
the inner surface, where condensation occurs, is 567 W/(m2 K). A dirt film at the inner 
surface adds a unit thermal resistance of 0.18 (m2 K)/W. Estimate the rate of heat loss 
per meter length of pipe if; (a) the pipe is bare, (b) the pipe is covered with a 5 cm layer 
of 85% magnesia insulation. For both cases assume that the convective heat transfer 
coefficient at the outer surface is 11 W/(m2 K) and that the environmental temperature 
is 21°C. Also estimate the quality of the steam after a 3-m length of pipe in both cases. 

GIVEN 

• A steel pipe with steam condensing on the inside 
• Diameters  Outside (Do) = 2.7 cm = 0.027 m 
  Inside (Di) = 2.1 cm = 0.021 m 
• Velocity of the steam (V) = 1 m/s 
• Initial steam quality (Xi) = 98% 
• Steam pressure = 1.37 × 105 N/m2 
• Heat transfer coefficients  Inside (hci) = 567 W/(m2 K) 
  Outside (hco) = 11 W/(m2 K) 
• Thermal resistance of dirt film on inside surface (Rf) = 0.18 (m2 K)/W 
• Ambient temperature (T∞) = 21°C 
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FIND 

The heat loss per meter (q/L) and the change in the quality of the steam per 3 m length for 
(a) A bare pipe 
(b) A pipe insulated with 85% Magnesia: thickness (Li) = 0.05 m 

ASSUMPTIONS 

• Steady state conditions exist 
• Constant thermal conductivity 
• Steel is 1% carbon steel 
• Radiative heat transfer from the pipe is negligible 
• Neglect the pressure drop of the steam 

SKETCH 

Steam

T• = 21°C

Steam
Di = .021 m

Dirt Film

Do = .027 m

Case (a)

Li = 0.05 m

Case (b)

Dirt Film

Insulation

Steel Pipe

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 10, 11, and 13 
The thermal conductivities are: 1% carbon steel (ks) = 43 W/(m K) at 20°C 
 85% Magnesia (ki) = 0.059 W/(m K) at 20°C 

For saturated steam at 1.37 × 105 N/m2: Temperature (Tst) = 107°C 
 Heat of vaporization (hfg) = 2237 kJ/kg 

 Specific volume (υs) = 1.39 m3/kg 
SOLUTION 

(a) The thermal circuit for the uninsulated pipe is shown below 

T• TstTwiTwo

Rco Rf RciRKS  

Evaluating the individual resistances 

 Rco = 
1

co oh A
 = 

1

co oh D Lπ
 = 

2

1 1

[11W/(m K)] (0.027 m) LLπ
=  1.072 (m K)/W 

 Rks = 

ln

2π

 
 
 

o

i

i

r

r

Lk
 = 

0.027
ln

0.021
2 [43W/(mK)]π

 
 

 = 
1

L
 0.00093 (m K)/W 

 Rf = 
fr

A
 = 

2
f

i

r

D Lπ
 = 

1

L

20.18m K/W

(0.021m)π
 =

1

L
 2.728 (m K)/W 

 Rci = 
1

ci ih A
= 

1

ci ih D Lπ
 = 

2

1

[567 W/(m K)] (0.021m)Lπ
 = 

1

L
 0.0267 (m K)/W 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
95

The rate of heat transfer through the pipe is 

 q = 
total

T

R

Δ
 = st

ks i ci

T T

R R R R
∞

∞

−
+ + +

 

 
q

L
 = 

107°C 21°C

(1.072 0.00093 2.728 0.267) (mK)/W

−
+ + +

 = 22.5 W/m 

The total rate of transfer of a three meter section of the pipe is 

 q = 22.5 W/m (3 m) = 67.4 W 

The mass flow rate of the steam in the pipe is 

 sm  = i

s

A V

υ
 = 

2

4
i

s

D Vπ
υ

 = 
2

3

(0.021m) (1m/s)

4(1.39m /kg) (1kg/1000g)

π
 = 0.249 g/s 

The mass rate of steam condensed in a 3 meter section of the pipe is equal to the rate of heat transfer 
divided by the heat of vaporization of the steam 

 cm  = 
fg

q

h
 = 

67.4 W

2237J/g(Ws/J)
 = 0.030 g/s 

The quality of the saturated steam is the fraction of the steam which is vapor. The quality of the steam 
after a 3 meter section, therefore, is 

 Xi = 
(original vapor mass) (mass of vapor condensed)

total mass of steam

−
 = i s c

s

X m m

m

− 


 

 Xi = 
0.98(0.249g/s) 0.030g/s

0.249g/s

−
 = 0.86 = 86% 

The quality of the steam changed by 12%. 
The thermal circuit for the pipe with insulation is shown below 

T• TwiTwo

Rco Rks RfRki

Tst

Rci  

The convective resistance on the outside of the pipe is different than that in part (a) because it is based 
on the outer area of the insulation 

 Rco = 
1

co oh A
 = 

1

( 2 )co o ih D L Lπ +
 = 

2

1

[11W/(m K)] (0.027 m+0.1m)Lπ
 = 

1

L
 0.228 (m K)/W 

The thermal resistance of the insulation is 

 Rki = 

2 0.027 0.1ln ln
0.027

2 2 [0.059 W/(mK)]π π

+  + 
    

=

o i

i

i

D L
r

Lk
 = 

1

L
 4.18 (m K)/W 

The rate of heat transfer is 

 q = 
total

ΔT

R
 = si

ki ks f ci

T T

R R R R R
∞

∞

−
+ + + +

 

 ∴ q

L
 = 

107°C 21°C

(0.228 4.18 0.00093 2.728 0.0267)(mK)/W

−
+ + + +

 = 12.0 W/m 
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Therefore, the rate of steam condensed in 3 meters is 

 cm  = 
fg

q

h
 = 

12.0 W

2237 J/g (Ws/J)
 = 0.016 g/s 

The quality of the steam after 3 meters of pipe is 

 Xf = 
0.98(0.249g/s) 0.016g/s

0.249g/s

−
 = 0.92 = 92% 

The change in the quality of the steam is 6%. 

COMMENTS 

Notice that the resistance of the steel pipe and the convective resistance on the inside of the pipe are 
negligible compared to the other resistances. 
The resistance of the dirt film is the dominant resistance for the uninsulated pipe. 

PROBLEM 2.7 

Estimate the rate of heat loss per unit length from a 5 cm ID, 6 cm OD steel pipe covered 
with high temperature insulation having a thermal conductivity of 0.11 W/(m K) and  
a thickness of 1.2 cm. Steam flows in the pipe. It has a quality of 99% and is at 150°C. 
The unit thermal resistance at the inner wall is 0.0026 (m2 K)/W, the heat transfer 
coefficient at the outer surface is 17 W/(m2 K), and the ambient temperature is 16°C. 

GIVEN 

• Insulated, steam filled steel pipe 
• Diameters  ID of pipe (Di) = 5 cm 
  OD of pipe (Do) = 6 cm 
• Thickness of insulation (Li) = 1.2 cm 
• Steam quality = 99% 
• Steam temperature (Ts) = 150°C 
• Unit thermal resistance at inner wall (A Ri) = 0.0026 (m2 K)/W 
• Heat transfer coefficient at outer wall (ho) = 17 W /(m2 K) 
• Ambient temperature (T∞) = 16°C 
• Thermal conductivity of the insulation (kI) = 0.11 W /(m K) 

FIND 

• Rate of heat loss per unit length (q/L) 

ASSUMPTIONS 

• 1% carbon steel 
• Constant thermal conductivities 
• Steady state conditions 

SKETCH 

Steam
TS = 150°C 

D = 5 cm

Do = 6 cm

D D LI o i= + 2 = 8.4 cmT∞ = 16°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10 
The thermal conductivity of 1% carbon steel (ks) = 43 W/(m2 K) at 20 °C 
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SOLUTION 

The outer diameter of the insulation (DI) = 6 cm + 2 × 1.2 cm = 8.4 cm 

TcoTs

Ri RKS RKI Rco  

The values of the individual resistances are 

 Ri = i i

i i

AR AR

A D Lπ
=  = 

21 0.0026(m K)/W

(0.05m)L π
 = 

0.0165

L
 K/(W m) 

 Rks = 

ln

2

o

i

s

D

D

Lkπ

 
  

 = 

6cm
ln

5 cm

2 (43W /(m K))L π

 
  

 = 
–46.75 10

L

×
 K/(W m) 

 RkI = 

ln

2

o

I

i

D

D

Lkπ

 
  

 = 

8.4cm
ln

6cm

2 (0.11W/(m K))L π

 
  

 = 
0.487

L
 K/(W m) 

 Rco = 
1

co oh A
= 

1

co Ih D Lπ
 = 

2 –2

1 1

(17 W/(m K)) (8.4 10 m)L π ×
 = 

0.223

L
K/(W m) 

The rate of heat transfer is 

 q = 
total

T

R

Δ
 = 

i

s

ks kI co

T T

R R R R
∞−

+ + +
 

  
q

L
 = 

–4

150 16

0.0165 6.75 10 0.487 0.223

−
+ × + +

 = W/m 

 ∴ q

L
 = 184 W/m 

PROBLEM 2.8 

The rate of heat flow per unit length q/L through a hollow cylinder of inside radius ri 
and outside radius ro is 

 q/L = ( A k ΔT)/(ro – ri) 

where A = 2π (ro – ri)/ln(ro/ri). Determine the percent error in the rate of heat flow if the 
arithmetic mean area π (ro + ri) is used instead of the logarithmic mean area A for ratios 
of outside to inside diameters (Do/Di) of 1.5, 2.0, and 3.0. Plot the results. 

GIVEN 

• A hollow cylinder 
• Inside radius = ri 
• Outside radius = ro 
• Heat flow per unit length as given above 

FIND 

(a) Percent error in the rate of heat flow if the arithmetic rather than the logarithmic mean area is 
used for ratios of outside to inside diameters of 1.5, 2.0, and 3.0. 

(b) Plot the results 
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ASSUMPTIONS 

• Radial conduction only 
• Constant thermal conductivity 
• Steady state prevails 

SKETCH 

ri

ro

 

SOLUTION 

The rate of heat transfer per unit length using the logarithmic mean area is 

 
log

q

L
 
    = 

2 ( )

ln

o i

o

i

r r

r

r

π −
 
  

 
o i

k T

r r

Δ
−

 = 
2

ln o

i

k T

r

r

π Δ
 
  

 

The rate of heat transfer per unit length using the arithmetic mean area is 

 
arith

q

L
 
    = π (ro + ri) 

o i

k T

r r

Δ
−

 = π k ΔT  o i

o i

r r

r r

+
−

 

The percent error is 

 % error = 
log arith

log

q q

L L

q

L

   −      

 
  

 × 100 = 
( )

( )

2

ln

2

ln

o

i

o

i

o i
r

o ir

r
r

r rk T
k T

r r

k T

π π

π

+Δ
− Δ

−

Δ
 × 100 

 % error = 

1
1

1 ln
2

1

   +     −      −    

o

o i

i o

i

r
r r

r r
r

 × 100 

For a ratio of outside to inside diameters of 1.5 

 % error = 
1 1.5 1

1 ln (1.5)
2 1.5 1

+   −  − 
 × 100 = – 1.37% 

The percent errors for the other diameter ratios can be calculated in a similar manner with the 
following results 
 

 Diameter ratio % Error 
 1.5 –1.37 
 2.0 –3.97 
 3.0 –9.86 
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(b) 
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COMMENTS 

For diameter ratios less than 2, use of the arithmetic mean area will not introduce more than a 4% 
error. 

PROBLEM 2.9 

A 2.5-cm-OD, 2-cm-ID copper pipe carriers liquid oxygen to the storage site of a space 
shuttle at –183°C and 0.04 m3/min. The ambient air is at 21°C and has a dew point of 
10°C. How much insulation with a thermal conductivity of 0.02 W/(m K) is needed to 
prevent condensation on the exterior of the insulation if hc + hr = 17 W/(m2 K) on the 
outside? 

GIVEN 

• Insulated copper pipe carrying liquid oxygen 
• Inside diameter (Di) = 2 cm = 0.02 m 
• Outside diameter (Do) = 2.5 cm = 0.025 m 
• LOX temperature (Tox) = – 183°C 
• LOX flow rate (mox) = 0.04 m3/min 
• Thermal conductivity of insulation (ki) = 0.02 W/(m K) 
• Exterior heat transfer coefficients (ho = hc + hr) = 17 W/(m2 K) 
• Ambient air temperature (T∞) = 21°C 
• Ambient air dew point (Tdp) = 10°C 

FIND 

• Thickness of insulation (L) needed to prevent condensation 

ASSUMPTIONS 

• Steady-state conditions have been reached 
• The thermal conductivity of the insulation does not vary appreciably with temperature 
• Radial conduction only 
• The thermal resistance between the inner surface of the pipe and the liquid oxygen is negligible, 

therefore Twi = Tox 
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SKETCH 

TI = 10°C

Two

Twi

L
T

ox

ox = – 183°C

Di = 0.02 m

Do = 0.025 m

DI

Copper Pipe

Insulation  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, thermal conductivity of copper (kc) = 401 W/(m K) at 0°C 

SOLUTION 

The thermal circuit for the pipe is shown below 

T•

Rco RKI RKC

Tx Two T = Twi ox

 

The rate of heat transfer from the pipe is 

 q = 
total

T

R

Δ
 = ( ) ( )ln ln1

2 2

oI

o i

ox
DD

D D

I co I

T T

Lk Lkh A π π

∞ −

+

 

The rate of heat transfer by convection and radiation from the outer surface of the pipe is 

 q = 
o

T

R

Δ
 = 

1
I

o i

T T

h A

∞ −
 

Equating these two expressions 

  ( ) ( )ln ln1

2 2

oI

o i

ox
DD

D D

I co I

T T

Lk Lkh A π π

∞ −

+ +

 = 
1

I

o I

T T

h A

∞ −
 

 ox

I

T T

T T
∞

∞

−
−

 = 

( ) ( )ln ln1

2 2

1

oI

o i

DD
D D

I co I

o I

Lk Lkh D L

h D L

π ππ

π

+ +
 

 ox

I

T T

T T
∞

∞

−
−

 = 1 + 
2
o

I

h
D

ln ln oI

o i

I c

DD

D D

k k

     
       

+ 
 
  

 

 DI 

ln
lnln

o

o iI

I I c

D

D DD

k k k

   
   

+ + 
 
  

 = 
2

oh
 1ox

I

T T

T T
∞

∞

− 
−  −
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 DI 

0.025
lnln ln (0.025) 0.02

0.02 W/(m K) 0.02 W/(m K) 401W/(m K)

 
 + + 
  

ID
 = 

2

2

17 W/(m K)
  

 
o o

o o

21 C (183 C)

21 C 10 C
ID

 −
− −

 
ln

184.4 0.00056
0.02

ID + +  
 = 2.064 (m2  K)/W  

Solving this by trial and error 
 DI = 0.054 m = 5.4 cm 
Therefore, the thickness of the insulation is 

 L = 
2

I oD D−
 = 

5.4cm 2.5cm

2

−
 = 1.5 cm 

COMMENTS 

Note that the thermal resistance of the copper pipe is negligible compared to that of the insulation. 

PROBLEM 2.10 

A salesman for insulation material claims that insulating exposed steam pipes in the 
basement of a large hotel will be cost effective. Suppose saturated steam at 5.7 bars flows 
through a 30 cm OD steel pipe with a 3 cm wall thickness. The pipe is surrounded by air 
at 20°C. The convective heat transfer coefficient on the outer surface of the pipe is 
estimated to be 25 W/(m2 K). The cost of generating steam is estimated to be $5 per 109 J 
and the salesman offers to install a 5 cm thick layer of 85% magnesia insulation on the 
pipes for $200/m or a 10 cm thick layer for $300/m. Estimate the payback time for these 
two alternatives assuming that the steam line operates all year long and make a 
recommendation to the hotel owner. Assume that the surface of the pipe as well as the 
insulation have a low emissivity and radiative heat transfer is negligible. 

GIVEN 

• Steam pipe in a hotel basement 
• Pipe outside diameter (Do) = 30 cm = 0.3 m 
• Pipe wall thickness (Ls) = 3 cm = 0.03 m 
• Surrounding air temperature (T∞) = 20°C 
• Convective heat transfer coefficient (hc) = 25 W/(m2 K) 
• Cost of steam = $5/109 J 
• Insulation is 85% magnesia 

FIND 

Payback time for 
(a) Insulation thickness (LIa) = 5 cm = 0.05 m; Cost = $200/m 
(b) Insulation thickness (LIb) = 10 cm = 0.10 m; Cost = $300/m 
Make a recommendation to the hotel owner. 

ASSUMPTIONS 

• The pipe and insulation are black (ε = 1.0) 
• The convective resistance on the inside of the pipe is negligible, therefore the inside pipe surface 

temperature is equal to the steam temperature 
• The pipe is made of 1% carbon steel 
• Constant thermal conductivities 
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SKETCH 

Uninsulated
Pipe

ri

ro

rIa

5 cm

(a) 5 cm Thick
Insulation

(a) 10 cm Thick
Insulation

rIb

10 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Appendix 2, Table 10 and 11 
 Thermal conductivities: 1% Carbon Steel (ks) = 43 W/(m K) at 20°C 
  85% Magnesia (kI) = 0.059 W/(m K) at 20°C 
From Appendix 2, Table 13 
 The temperature of saturated steam at 5.7 bars (Ts) = 156°C 

SOLUTION 

The rate of heat loss and cost of the uninsulated pipe will be calculated first. 
The thermal circuit for the uninsulated pipe is shown below 

ToTs

R oco @ RKS Rco  

Evaluating the individual resistances 

 Rks = 

ln

2

o

i

s

r

r

Lkπ

 
  

 = 

0.15
ln

10.12
2 [43W/(m K)]π

 
 

=
L

 0.000826 (m K)/W 

 Rco = 
1

c oh A
 = 

1

2c oh r Lπ
 = 

2

1

[25W/(m K)]2 (0.15m)π L
 = 

1

L
 0.0424 (m K)/W 

The rate of heat transfer for the uninsulated pipe is 

 q = 
total

T

R

Δ
 = 

ks co

sT T

R R
∞−

+
 

 ∴ q

L
 = 

o o156 C 20 C

(0.000826 0.0424)(K m) / W

−
+

 = 3148 W/m 

The cost to supply this heat loss is 

 cost = (3148 w/m) (J/W s) (3600 s/h) (24 h/day) (365 days/yr) ($5/109J) = $496/(yr m) 

For the insulated pipe the thermal circuit is 

ToTs

R oci @ RKS Rco  
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The resistance of the insulation is given by 

 RkIa = 

aln

2

I

o

I

r

r

Lkπ

 
  

 = 

0.2
ln

10.15
2 [0.059 W/(mK)] Lπ

 
 

=  0.776 (m K)/W 

 RkIb = 

ln

2

Io

o

I

r

r

Lkπ

 
  

 = 

0.25
ln

10.15
2 [0.059 W/(mK)] Lπ

 
 

=  1.378 (m K)/W 

(a) The rate of heat transfer for the pipe with 5 cm of insulation is 

 q = 
total

T

R

Δ
 = s

ks kIa co

T T

R R R
∞−

+ +
 

 ∴ 
q

L
 = 

o o156 C 20 C

(0.000826 0.776 0.0424) (Km)/W

−
+ +

 = 166 W/m 

The cost of this heat loss is 
 cost = (166 w/m) (J/W s) (3600 s/h) (24 h/day) (365 days/yr) ($5/109J) = $26/yr m 
Comparing this cost to that of the uninsulated pipe we can calculate the payback period 

 Payback period = 
Cost of installation $200 / m

uninsulated cost insulated cost $496 /(yr m) $26 /(yr m)
=

− −
 

 Payback period = 0.43 yr = 5 months 

(b) The rate of heat loss for the pipe with 10 cm of insulation is 

 q = 
total

T

R

Δ
 = s

ks kIb co

T T

R R R
∞−

+ +
 

 ∴ 
q

L
 = 

o o156 C 20 C

(0.000826 1.378 0.0424) (Km)/W

−
+ +

 = 95.7 W/m 

The cost of this heat loss 

 cost = (95.7 w/m) (J/W s) (3600 s/h) (24 h/day) (365 days/yr) ($5/109 J) = $15/yr m 

Comparing this cost to that of the uninsulated pipe we can calculate the payback period 

 Payback period = 
$300 / m

$496 / yr m $15/ yr m−
 = 0.62 yr = 7.5 months 

COMMENTS 

The 5 cm insulation is a better economic investment. The 10 cm insulation still has a short payback 
period and is the superior environmental investment since it is a more energy efficient design. 
Moreover, energy costs are likely to increase in the future and justify the investment in thicker 
insulation. 
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PROBLEM 2.11 

A hollow sphere with inner and outer radii of R1 and R2, respectively, is covered with a 
layer of insulation having an outer radius of R3. Derive an expression for the rate of heat 
transfer through the insulated sphere in terms of the radii, the thermal conductivities, 
the heat transfer coefficients, and the temperatures of the interior and the surrounding 
medium of the sphere. 

GIVEN 

• An insulated hollow sphere 
• Radii  Inner surface of the sphere = R1 
  Outer surface of the sphere = R2 
  Outer surface of the insulation = R3 

FIND 

• Expression for the rate of heat transfer 

ASSUMPTIONS 

• Steady state heat transfer 
• Conduction in the radial direction only 
• Constant thermal conductivities 

SKETCH 

Ti

r3

r2

tI

Insulationr1

Sphere Material

To

 

SOLUTION 

Let  k12 = the thermal conductivity of the sphere 
   k23 = the thermal conductivity of the insulation 
   h1 = the interior heat transfer coefficient 
   h3 = the exterior heat transfer coefficient 
   Ti = the temperature of the interior medium 
   To = the temperature of the exterior medium 
The thermal circuit for the sphere is shown below 

Ti ToRC1 RK,12 RK, 13  

The individual resistances are 

 Rc1 = 
1 1

1

h A

−
 = 

2
1 1

1

4h R Lπ
 

From Equation (2.48) 

 Rk12 = 2 1

12 2 14

R R

k R Rπ
−
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 Rk23 = 3 2

23 3 24

R R

k R Rπ
−

 

 Rc3 = 
3 3

1

h A
 = 

2
3 3

1

4h R Lπ
 

The rate of heat transfer is 

 q = 
total

T

R

Δ
 = 

1 12 23 3c k k c

T

R R R R

Δ
+ + +

 

 q = 
3 22 1

2 2
12 2 1 23 3 21 1 3 3

1 1 1

4

T

R RR R

k R R k R RR h R hπ

Δ
 −−

+ + +  

 

 q = 
3 22 1

2 2
12 2 1 23 3 21 1 3 3

4
1 1

T
R RR R

k R R k R RR h R h

π Δ
−−

+ + +
 

PROBLEM 2.12 

The thermal conductivity of a material may be determined in the following manner. 
Saturated steam 2.41 × 105 N/m2 is condensed at the rate of 0.68 kg/h inside a hollow 
iron sphere that is 1.3 cm thick and has an internal diameter of 51 cm. The sphere is 
coated with the material whose thermal conductivity is to be evaluated. The thickness of 
the material to be tested is 10 cm and there are two thermocouples embedded in it, one 
1.3 cm from the surface of the iron sphere and one 1.3 cm from the exterior surface of 
the system. If the inner thermocouple indicates a temperature of 110°C and the outer 
themocouple a temperature of 57°C, calculate (a) the thermal conductivity of the 
material surrounding the metal sphere, (b) the temperatures at the interior and exterior 
surfaces of the test material, and (c) the overall heat transfer coefficient based on the 
interior surface of the iron sphere, assuming the thermal resistances at the surfaces, as 
well as the interface between the two spherical shells, are negligible. 

GIVEN 

• Hollow iron sphere with saturated steam inside and coated with material outside 
• Steam pressure = 2.41 × 105 N/m2 
• Steam condensation rate ( sm ) = 0.68 kg/h 

• Inside diameter (Di) = 51 cm = 0.51 m 
• Thickness of the iron sphere (Ls) = 1.3 cm = 0.013 m 
• Thickness of material layer (Lm) = 10 cm = 0.1 m 
• Two thermocouples are located 1.3 cm from the inner and outer surface of the material layer 
• Inner thermocouple temperature (T1) = 110°C 
• Outer thermocouple temperature (T2) = 57°C 

FIND 

(a) Thermal conductivity of the material (km) 
(b) Temperatures at the interior and exterior surfaces of the test material (Tmi, Tmo) 
(c) Overall heat transfer coefficient based on the inside area of the iron sphere (U) 
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ASSUMPTIONS 

• Thermal resistance at the surface is negligible 
• Thermal resistance at the interface is negligible 
• The system has reached steady-state 
• The thermal conductivities are constant 
• One dimensional conduction radially 

SKETCH 

Steam
=D Sli m

1.3 cm

1.3 cm

T2 = 57° C

T1 = 110° C

Material (Thickness = 0.1 m)

Iron (Thickness = 1.3 cm)

Tmi

Tmo

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13: For saturated steam at 2.41 × 105 N/m2, 
Saturation temperature (Ts) = 125°C 
Heat of vaporization (hfg) = 2187 kJ/kg 

SOLUTION 

(a) The rate of heat transfer through the sphere must equal the energy released by the condensing 
steam: 

 q = sm hfg = 0.68 kg/h ( ) ( ) ( )h
2187 kJ/kg 1000 J/kJ (Ws)/J

3600s
 
    = 413.1 W 

The thermal conductivity of the material can be calculated by examining the heat transfer between the 
thermocouple radii 

 q = 
12k

T

R

Δ
 = 2 1

2 1

2 14 m

T T

r r

k r rπ

−
− 

  

 

Solving for the thermal conductivity 

 km = 2 1

2 1 2 1

( )

4 ( )

q r r

r r T Tπ
−

−
 

 r1 = 
2

iD
 + Ls + 0.013 m = 

0.51m

2
 + 0.013 m + 0.013 m = 0.281 m 

 r2 = 
2

iD
 + Ls + Lm – 0.013 m = 

0.51m

2
 + 0.013 m + 0.1 m – 0.013 m = 0.355 

 km = 
o o

413.1W(0.355 m 0.281 m)

4 (0.355m)(0.281m)(110 C 57 C )π
−

−
 = 0.46 W/(m K) 
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(b) The temperature at the inside of the material can be calculated from the equation for conduction 
through the material from the inner radius, the radius of the inside thermocouple 

 q = 
1ki

T

R

Δ
 = 

1

14

mi i

i

m i

T T

r r

k r rπ

−
− 

  

 

Solving for the temperature of the inside of the material 

 Tmi = T1 + 1

1

( )

4
i

m i

q r r

k r rπ
=

 

 ri = 
2

iD
 + Lm = 

0.51 m

2
 + 0.013 m = 0.268 m 

 Tmi = 110°C + 
413.1W(0.013m)

4 [0.46W/(mK)](0.281 m)(0.268m)π
 = 122°C 

The temperature at the outside radius of the material can be calculated from the equation for 
conduction through the material from the radius of the outer thermocouple to the outer radius 

 q = 
2k o

T

R

Δ
 = 2

2

24

mo

o

m o

T T

r r

k r rπ

−
− 

  

 

Solving for the temperature of the outer surface of the material 

 Tmo = T2 – 2

2

( )

4
o

m o

q r r

k r rπ
−

 

 ro = 
2

iD
 + Ls + Lm = 

0.51 m

2
 + 0.013 m + 0.01 m = 0.368 m 

 Tmo = 57°C – 
413.1W (0.013m)

4 [0.46 W/(mK)](0.368 m)(0.355m)π
 = 50°C 

(c) The heat transfer through the sphere can be expressed as 

 q = U Ai ΔT = U π D1
2 (Ts – Tmo) 

 ∴ U = 
2 ( )i s mo

q

D T Tπ −
 = 

2

413.1 W

(0.51m) (125°C 50°C)π −
 = 6.74 W/(m2 K) 

PROBLEM 2.13 

A cylindrical liquid oxygen (LOX) tank has a diameter of 1.22 m, a length of 6.1 m, and 
hemispherical ends. The boiling point of LOX is – 179.4°C. An insulation is sought 
which will reduce the boil-off rate in the steady state to no more than 11.3 kg/hr. The 
heat of vaporization of LOX is 214 kJ/kg. If the thickness of this insulation is to be no 
more than 7.5 cm, what would the value of it’s thermal conductivity have to be? 

GIVEN 

• Insulated cylindrical tank with hemispherical ends filled with LOX 
• Diameter of tank (Dt) = 1.22 m 
• Length of tank (Lt) = 6.1 m 
• Boiling point of LOX (Tbp) = – 179.4°C 
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• Heat of vaporization of LOX (hfg) = 214 kJ/kg 
• Steady state boil-off rate ( m ) = 11.3 kg/hr = 3.14 × 10–3 kg/s 
• Maximum thickness of insulation (L) = 7.5 cm = 0.075 m 
• Outside temperature = 21°C 

FIND 

• The thermal conductivity (k) of the insulation necessary to maintain the boil-off rate below 25 
lb/h. 

ASSUMPTIONS 

• The length given includes the hemispherical ends 
• The thermal resistance of the tank is negligible compared to the insulation 
• The thermal resistance at the interior surface of the tank is negligible 

SKETCH 

ri

ro

L = 0.075 m

T Ti = = – 179.4°Cbp

To = 21°Cri = 0.61 m
ro = 0.685 m

m

Lt = 6.1 m

Dt = 1.22 m 

SOLUTION 

The tank can be thought of as a sphere (the ends) separated by a cylindrical section, therefore the total 
heat transfer is the sum of that through the spherical and cylindrical sections. The steady state 
conduction through a spherical shell with constant thermal conductivity, from Equation (2.47), is 

 qs = 
4 ( )o i o i

o i

K r r T T

r r

π −
−

 

The rate of steady state conduction through a cylindrical shell, from Equation (2.37), is 

 qc = 2 π Lc k 

ln

o i

o

i

T T

r

r

−
 
  

 (Lc = 6.1 – 1.22 = 4.88 m) 

The total heat transfer through the tank is the sum of these 

 q = qs + qc = 
4 ( )o i o i

o i

k r r T T

r r

π −
−

 + 2 π Lc k 
( )

ln

o i

o

i

T T

r

r

−
 
  

 = 2 π k (To – Ti) 
2

ln

o i c

o i o

i

r r L

r r r

r

 
 
 +
 −  
    

 

The rate of heat transfer required to evaporate the liquid oxygen at m is m hfg, therefore 

 sm hfg = 2 π k (To – Ti) 
2

ln

o i c

oo i

i

r r L
rr r
r

 
 
 +

− 
  

 

 ∴ k = 

2
2 ( )

ln

fg

o i c
o i

oo i

i

mh

r r L
k T T

rr r
r



π

 
 
 − +

− 
  

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
109

 k = 

–3 1000J
(3.14 10 kg/s) (214kJ/kg)

kJ

2(0.685m)(0.61m) 4.88m
2 [21 ( 179.4)](K)

6.6850.075m ln
0.61

π

× ×

 
 

− − + 
  
  

 

  k = 
672 W

2 (200.4K)[11.14 42.06]mπ +
 

  k = 0.01 W/(m K) 

COMMENTS 

Based on data given in Appendix 2, Table 11, no common insulation has such low value of thermal 
conductivity. However, Marks Standard Handbook for Mechanical Engineers lists the thermal 
conductivity of expanded rubber board, ‘Rubatex’, at – 179.4°C to be 0.007 W/(m K). 

PROBLEM 2.14 

The addition of insulation to a cylindrical surface, such as a wire, may increase the rate 
of heat dissipation to the surroundings (see Problem 2.4). (a) For a No. 10 wire (0.26 cm 
in diameter), what is the thickness of rubber insulation [k = 0.16 W/(m K)] that will 
maximize the rate of heat loss if the heat transfer coefficient is 10 W/(m2 K)? (b) If the 
current-carrying capacity of this wire is considered to be limited by the insulation 
temperature, what percent increase in capacity is realized by addition of the insulation? 
State your assumptions. 

GIVEN 

• An insulated cylindrical wire 
• Diameter of wire (Dw) = 0.26 cm = 0.0026 m 
• Thermal conductivity of rubber (k) = 0.16 W/(m K) 

• Heat transfer coefficient ( ch ) = 10 W/(m2 K) 

FIND 

(a) Thickness of insulation (Li) to maximize heat loss 
(b) Percent increase in current carrying capacity 

ASSUMPTIONS 

• The system is in steady state 
• The thermal conductivity of the rubber does not vary with temperature 

SKETCH 

rc

Li
Wire

Rubber
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SOLUTION 

(a) From Problem 2.4, the radius that will maximize the rate of heat transfer (rc) is: 

 rc = 
k

h
 = 

2

0.16 W/(mK)

10 W/(m K)
 = 0.016 m 

The thickness of insulation needed to make this radius is 

 Li = rc – rw = 0.016 m – 
0.0026 m

2
 = 0.015 m = 1.5 cm 

(b) The thermal circuit for the insulated wire is shown below 
TIi TIo T•

 

where RkI = 

ln

2

o

i

r

r

Lkπ

 
  

 and Rc = 
1

ch A
 = 

1

2c oh r Lπ
 

The rate of heat transfer from the wire is 

 q = 
total

T

R

Δ
 = Ii

kI c

T T

R R
∞−

+
 = 

2 ( )

ln
1

Ii

o

i

c o

L T T

r

r

k h r

π ∞−
 
  

+

 

If only a very thin coat of insulation is put on the wire to insulate it electrically then ro = ri = Dw/2 = 
0.0013 m. The rate of heat transfer from the wire is 

 
q

L
 = 

2

2 ( )
1

0
10 W/(m K)(0.0013m)

IiT Tπ ∞−

+
 = 0.082 (TIi – T∞) 

For the wire with the critical insulation thickness 

 
q

L
 = ( )0.016

0.0013
2

2 ( )
ln 1

10W/(m K) 10W/(m K)(0.016m)

π ∞−

+

IiT T
 = 0.286 (TIi – T∞) 

The current carrying capacity of the wire is directly related to the rate of heat transfer from the wire. 
For a given maximum allowable insulation temperature, the increase in current carrying capacity of 
the wire with the critical thickness of insulation over that of the wire with a very thin coating of 
insulation is 

 % increase = 
thin coat

thin coat

ar

q q
L L

q
L

   −   

 
 

 × 100 = 
0.286 0.082

0.082

−
 × 100 = 250% 

COMMENTS 

This would be an enormous amount of insulation to add to the wire changing a thin wire into a rubber 
cable over an inch in diameter and would not be economically justifiable. Thinner coatings of rubber 
will achieve smaller increases in current carrying capacity. 
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PROBLEM 2.15 

For the system outlined in Problem 2.11, determine an expression for the critical radius 
of the insulation in terms of the thermal conductivity of the insulation and the surface 
coefficient between the exterior surface of the insulation and the surrounding fluid. 
Assume that the temperature difference, R1, R2, the heat transfer coefficient on the 
interior, and the thermal conductivity of the material of the sphere between R1 and R2 
are constant. 

GIVEN 

• An insulated hollow sphere 
• Radii  Inner surface of the sphere = R1 
  Outer surface of the sphere = R2 
  Outer surface of the insulation = R3 

FIND 

• An expression for the critical radius of the insulation 

ASSUMPTIONS 

• Constant temperature difference, radii, heat transfer coefficients, and thermal conductivities 
• Steady state prevails 

SKETCH 

r1

Ti

r2

r3

Sphere
Matekial

Insulation

 

SOLUTION 

Let k12 = the thermal conductivity of the sphere 
 k23 = the thermal conductivity of the insulation 
 h1 = the interior heat transfer coefficient 
 h3 = the exterior heat transfer coefficient 
 Ti = the temperature of the interior medium 
 To = the temperature of the exterior medium 
From Problem 2.11, the rate of heat transfer through the sphere is 

 q = 
3 22 1

2 2
12 2 1 23 3 21 1 3 3

4
1 1

T
R RR R

k R R k R RR h R h

π Δ
−−+ + +

 

The rate of heat transfer is a maximum when the denominator of the above equation is a minimum. 
This occurs when the derivative of the denominator with respect to R3 is zero 

 
3

d

dR
 = 3 22 1

2 2
12 2 1 23 3 21 1 3 3

1 1R RR R

k R R k R RR h R h

 −−
+ + +  

 = 0 
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 – 
3 3

2

h R
 + 

23

1

k
 = 0 

 R3 = 23

3

2k

h
 

The maximum heat transfer will occur when the outer insulation radius is equal to 2 k23/h3. 

COMMENTS 

A more realistic analysis should take the dependence of hc on temperature into account. Such an 
analysis was made for a pipe by Sparrow and Kang, Int. J. Heat Mass Transf., 28: 2049-2060, 1985. 

PROBLEM 2.16 

A standard 10 cm steel pipe (ID = 10.066 cm, OD = 11.25 cm) carries superheated steam 
at 650°C in an enclosed space where a fire hazard exists, limiting the outer surface 
temperature to 38°C. In order to minimize the insulation cost, two materials are to be 
used; first a high temperature insulation (relatively expensive) applied to the pipe and 
then magnesia (a less expensive material) on the outside. The maximum temperature of 
the magnesia is to be 315°C. The following constants are known. 

 Steam-side coefficient h = 500 W/(m2 K) 

 High-temperature insulation conductivity k = 0.1 W/(m K) 

 Magnesia conductivity k = 0.076 W/(m K) 

 Outside heat transfer coefficient h = 11 W/(m2 K) 

 Steel conductivity k = 43 W/(m K) 

 Ambient temperature Ta = 21°C 

(a)  Specify the thickness for each insulating material. 
(b) Calculate the overall heat transfer coefficient based on the pipe OD. 
(c)  What fraction of the total resistance is due to (1) steam-side resistance, (2) steel pipe 

resistance, (3) insulation (combination of the two), and (4) outside resistance? 
(d) How much heat is transferred per hour, per foot length of pipe? 

GIVEN 

• Steam filled steel pipe with two layers of insulation 
• Pipe inside diameter (Di) = 10.066 cm 
• Pipe outside diameter (Do) = 11.25 cm 
• Superheated steam temperature (Ts) = 650°C 
• Maximum outer surface temperature (Tso) = 38°C 
• Maximum temperature of the Magnesia (Tm) = 315°C 
• Thermal conductivities  High-temperature insulation (kh) = 0.1 W/(m K) 
  Magnesia (km) = 0.076 W/(m K) 
  Steel (ks) = 43 W/(m K) 

• Heat transfer coefficients  Steam side ( cih ) = 500 W/(m2 K) 

  Outside ( coh ) = 11 W/(m2 K) 

• Ambient temperature (Ta) = 21°C 
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FIND 

(a) Thickness for each insulation material 
(b) Overall heat transfer coefficient based on the pipe OD 
(c) Fraction of the total resistance due to  Steam-side resistance 
   Steel pipe resistance 
   Insulation 
   Outside resistance 
(d) The rate of heat transfer per unit length of pipe (q/L) 

ASSUMPTIONS 

• The system is in steady state 
• Constant thermal conductivities 
• Contact resistance is negligible 

SKETCH 

T1

Steam
Ts = 650°C

T2

= 315°CT3

= 38°CT4

= 21°CT∞

Steel: = , =ID D OD D1 2

High Temp. Insulation
=OD D3

Magnesia =OD D4

 

SOLUTION 

The thermal circuit for the insulated pipe is shown below 
T•

Rco Rkm Rkn RkS

TsT1T2T3T4

Rci  

The values of the individual resistances can be evaluated with Equations (1.14) and (2.39) 

 Rco = 
4

1 1

2co o coh A h r Lπ
=  

 Rkm = 

4

3

ln

2 m

r

r

L kπ

 
  

 

 Rkh = 

3

2

ln

2 h

r

r

L kπ

 
  

 

 Rks = 

2

1

ln

2 s

r

r

L kπ

 
  

 

 Rci = 
1

1 1

2ci i cih A h r Lπ
=  
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The variables in the above equations are 

 r1 = 5.035 cm 

 r2 = 5.625 cm 

 r3 = ? 

 r4 = ? 

 km = 0.076 W/(m K) 

 ks = 43 W/(m K) 

 kh = 0.1 W/(m K) 

 coh  = 11 W/(m2 K) 

 cih  = 500 W/(m2 K) 

The temperatures for this problem are 

 Ts = 650°C 

 T1 = ? 

 T2 = ? 

 T3 = 315°C 

 T4 = 38°C 

 Ta = 21°C 

There are five unknowns in this problem: q/L, T1, T2, r3, and r4. These can be solved for by writing the 
equation for the heat transfer through each of the five resistances and solving them simultaneously. 
 
1. Steam side convective heat transfer 

 q = 
ci

T

R

Δ
  = 2 π cih  r1 L (Ts – Tl) = 2 π L (500 W/(m2K)) (5.035 × 10–2 m) (650 – T1)°C 

  
q

L
 = 102760 – 158.1T1 W/m (1) 

2. Conduction through the pipe wall 

 q = 
ks

T

R

Δ
  = 

2

1

2

ln

sk L

r

r

π
 
  

 (T1 – T2) = 
2 (43W/(mK))

5.625cm
ln

5.035cm

Lπ
 
  

 (T1 – T2) 

 
q

L
 = 2436 (T1 – T2) W/m (2) 

3. Conduction through the high temperature insulation 

 q = 
kh

T

R

Δ
  = 

1

2

2

ln

hk L

r

r

π
 
  

 (T2 – T3) = 
3

2 (0.1W/(m K))
cm

ln
5.625cm

L
r

π
 
  

 (T2 – 315) 

  
q

L
 = 2

3

0.628( – 315)

cm
ln

5.625cm

T

r 
  

 W/m (3) 
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4. Conduction through the magnesia insulation 

 q = 
km

T

R

Δ
 = 

4

3

2

ln

mk L

r

r

π
 
  

 (T3 – T4) = 
4

3

2 (0.076 W/(m K))

ln

L

r

r

π
 
  

 (315 – 38) 

 
q

L
 = 

4

3

132.2

ln
r

r

 
  

 W/m (4) 

5. Air side convective heat transfer 

 q = 
co

T

R

Δ
 = 2π coh  r4 L (T4 – Ta) = 2 π L r4 (11 W/(m2 K)) (38 – 21)K 

  
q

L
 = 377 r4 Btu/(h ft) (5) 

To maintain steady state, the heat transfer rate through each resistance must be equal. Equations [1] 
through [5] are a set of five equations with five unknowns, they may be solved through numerical 
iterations using a simple program or may be combined algebraically as follows 
Substituting Equation (1) into Equation (2) yields 

 T2 = (1.065 T1 – 42.18)°C 

Substituting Equation (1) into Equation (2) gives 

 102760 – 158.1 T1 = 2436 (T1 – T2) 

  42.18 – 0.065 T1 = T1 – T2 

  T2 = 1.065 T1 – 42.18 

Substituting this into Equation (3) and combining the result with Equation (1) 

 ln 3 cm

5.625cm

r 
  

 = 0.628 (1.065 T1 – 357.18) 

LHS can be arranged as ln 3

5.625

r 
  

 = – ln 4

3

r

r

 
  

 + ln 4

5.625

r 
    

This gives 

 0.628 (1.065 T1 – 357.18) = 
1

132.2

158.1 – 102760T
+ ln 4

5.625

r
 

Thus ln 4

5.625

r
 = 0.628 (1.065 T1 – 357.18) – 

1

132.2

102760 – 158.1T
 (6) 

Again using r4 from Equation (1) and (5), we get 

 r4 = 1102760 – 158.1

1175

T
 (7) 

Substituting Equation (7) into Equation (6) and solving by trial and error gives 

 T1  648°C 
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Then the unknown radii become (are solved) 

 r3 = 11.43 cm; r4 = 17.96 cm 

The thickness of the high temperature insulation = r3 – r2 = 5.8 cm 
The thickness of the magnesia insulation = r4 – r3 = 6.5 cm 

(b) Substituting T1 = 648°C, Equation (1) gives 
q

L
 = 311 W/m  

 Hence q = U A2 (Ts – Ta) = U π D2 L (Ts – Ta) 

 ∴ U = 
2

1

( )s a

q

L D T Tπ −
 = 311 

–2

1

(11.25 10 cm)(650 21)π × −
 

  U = 1.4 W/(m2 K) 
(c) The overall resistance for the insulated pipe is 

 Rtotal = 
2

1

UA
 = 

2

1

(1.4 W/(m K)) (0.1125m) Lπ
 = 

2.02

L
 K/W 

(4) The convective thermal resistance on the air side is 

 Rco = 
4

1 1

2co o coh A h r Lπ
=  = 

2

1

(11W/(m K))2 (0.1796) Lπ
 = 

0.08

L
 K/W 

The fraction of the resistance due to air side convection = 
0.08

2.02
 = 0.04. 

(3) The thermal resistance of the magnesia insulation is 

 Rkm = 

4

3

ln

2 m

r

r

Lkπ

 
  

 = 

17.96
ln

0.9511.43
2 (0.076 W/(m K))L Lπ

 
 

=  K/W 

The thermal resistance of the high temperature insulation is 

 Rkh = 

3

2

ln

2 h

r

r

Lkπ

 
  

 = 

11.43
ln

1.135.625
2 (0.1W/(m K))L Lπ

 
 

=  K/W 

The fraction of the resistance due to the insulation = 
0.95

1.13
 = 0.85. 

(2) The thermal resistance of the steel pipe is 

 Rks = 

2

1

ln

2 s

r

r

Lkπ

 
  

 = 

5.625
ln

0.00045.035
2 (43W/(mK))L Lπ

 
 

=  K/W 

The fraction of the resistance due to the steel pipe = 
0.004

2.02
  0.00. 

(1) The thermal resistance of the steam side convection is 

 Rci = 
1

ci ih A
 = 

1

1

2cih r Lπ
 = 

2 –2

1 0.0063

(500 W/(m K))2 (5.035 10 ) LLπ
=

×
 K/W 

The fraction of the resistance due to steam side convection = 
0.0063

2.02
  0.00. 
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(d) The rate of heat transfer is 

 q = U A2 (Ts – Ta) = U π D2 L (Ts – Ta) 

 
q

L
 = 1.4 W/(m2 K) 2 π (5.625 × 10–2) (650 – 21) = 311 W/m 

COMMENTS 

Notice that the insulation accounts for 97% of the total thermal resistance and that the thermal 
resistance of the steel pipe and the steam side convection are negligible. 

PROBLEM 2.17 

Show that the rate of heat conduction per unit length through a long hollow cylinder of 
inner radius ri and outer radius ro, made of a material whose thermal conductivity varies 
linearly with temperature, is given by 

 kq

L
 = 

( ) /
i o

o i m

T T

r r k A

−
−

 

where Ti = temperature at the inner surface 

  To = temperature at the outer surface 

  A = 2 π (ro – ri)/ln ( )o

i

r
r  

  km = ko [1 + βk (Ti + To)/2] 

  L = length of cylinder 

GIVEN 

• A long hollow cylinder 
• The thermal conductivity varies linearly with temperature 
• Inner radius = ri 
• Outer radius = ro 

FIND 

• Show that the rate of heat conduction per unit length is given by the above equation 

ASSUMPTIONS 

• Conduction occurs in the radial direction only 
• Steady state prevails 

SKETCH 

ri

ro

To

Ti

L

 

SOLUTION 

The rate of radial heat transfer through a cylindrical element of radius r is 

 
q

L
 = k A 

dT

dr
 = k 2 π r 

dT

dr
 = a constant 
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But the thermal conductivity varies linearly with the temperature 

 k = ko (1 + β T) 

 ∴ 
q

L
 = 2π r ko (1 + β T) 

dT

dr
 

 
q

L

1

r
dr = 2π ko (1 + β T) dT 

Integrating between the inner and outer radii: 

 
q

L

1o

i

r

r r  dr = 2π ko (1 )o

i

T

T
T dtβ+  

 
q

L
 (ln ro – ln ri) = 2π ko 

2 2

2 2o o i iT T T T
β β + − −  

 

 
q

L
 ln o

i

r

r

 
  

 = 2π ko 
2 2( ) ( )

2o i o iT T T T
β − + −  

 

 
q

L
 = 

2 ( )

ln ( )

o i

o
o i

i

r r
r

r r
r

π
 
 −
 
 −  

 ko (To – Ti) 1 ( )
2 o iT T
β + −  

 

 
q

L
 = 

( )o i

A

r r−
 km (To – Ti) 

 
q

L
 = o i

o i

m

T T

r r

k A

−
− 

  

 

PROBLEM 2.18 

A long, hollow cylinder is constructed from a material whose thermal conductivity is a 
function of temperature according to k = 0.15 + 0.0018 T, where T is in °C and k is in 
W/(m K). The inner and outer radii of the cylinder are 12.5 cm and 25 cm, respectively. 
Under steady-state conditions, the temperature at the interior surface of the cylinder is 
427°C and the temperature at the exterior surface is 93°C. 

(a) Calculate the rate of heat transfer per foot length, taking into account the variation 
in thermal conductivity with temperature. (b) If the heat transfer coefficient on the 
exterior surface of the cylinder is 17 W/(m2 K), calculate the temperature of the air on 
the outside of the cylinder. 

GIVEN 

• A long hollow cylinder 
• Thermal conductivity (k) = 0.15 + 0.0018 T [T in °C, k in W/(m K)] 
• Inner radius (ri) = 12.5 cm = 0.125 m 
• Outer radius (ro) = 25 cm = 0.25 m 
• Interior surface temperature (Twi) = 427°C 
• Exterior surface temperature (Two) = 93°C 
• Exterior heat transfer coefficient ( oh ) = 17 W/(m2 K) 

• Steady-state conditions 
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FIND 

(a) The rate of heat transfer per foot length (q/L) 
(b) The temperature of the air on the outside (T∞) 

ASSUMPTIONS 

• Steady state heat transfer 
• Conduction occurs in the radial direction only 

SKETCH 

ri

ro

Twi = 427°C

Two = 93°C

T•

 

SOLUTION 

(a) The rate of radial conduction is given by Equation (2.37) 

 q = – k A 
dT

dr
 

 q = – (0.15 + 0.0018 T) 2π r L 
dT

dr
 

 
1

r
 dr = 

2 L

q

π
 (0.15 + 0.0018 T) dT 

Integrating this from the inside radius to the outside radius 

 
1o

i

r

r r  dr = 
2

(0.15 0.0018 )wo

wi

T

T

L
T dt

q

π− +  

  ln o

i

r

r

 
  

 = – 2 22 0.0018
0.15( – ) ( – )

2wo wi wo wi
L

T T T T
q

π  +  
 

 ∴ 
q

L
 = 

2

ln o

i

r

r

π
 
  

 [0.15 (Twi – Two) + 0.0009 2 2( – )wi woT T ] 

  = 
2

25
ln

12.5

π
 
 

 [0.15 (427 – 93) + 0.0009 (4272 – 932)] 

  
q

L
 = 9.06 [50.1 + 156.3] = 1870 W/m 

(b) The conduction through the hollow cylinder must equal the convection from the outer surface in 
steady state 

 
q

L
 = oh  Ao ΔT = oh 2π ro (Two – T∞) 
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Solving for the air temperature 

 T∞ = Two – 
q

L

1

2o oh rπ
  

  = 93 °C – 1870 W/m 
2

1

(17 W/(m K))2 (0.25m)π
 

   = 93°C – 70°C 

  T∞ = 23°C 

PROBLEM 2.19 

A plane wall 15 cm thick has a thermal conductivity given by the relation 

 k = 2.0 + 0.0005 T W/(m K) 

where T is in degrees Kelvin. If one surface of this wall is maintained at 150 °C and the 
other at 50 °C, determine the rate of heat transfer per square meter. Sketch the 
temperature distribution through the wall. 

GIVEN 

• A plane wall 
• Thickness (L) = 15 cm = 0.15 m 
• Thermal conductivity (k) = 2.0 + 0.0005 T W/(m K) (with T in Kelvin) 
• Surface temperatures: Th = 150 °C Tc = 50 °C 

FIND 

(a) The rate of heat transfer per square meter (q/A) 
(b) The temperature distribution through the wall 

ASSUMPTIONS 

• The wall has reached steady state 
• Conduction occurs in one dimension 

SKETCH 
L = 0.15 m

T kh = 423 T kc = 323

x

q A/

 

SOLUTION 

Simplifying Equation (2.2) for steady state conduction with no internal heat generation but allowing 
for the variation of thermal conductivity with temperature yields 

 
d dT

k
dx dx

 = 0 
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with boundary conditions: T = 423 K at x = 0 

 T = 323 K at x = 0.15 m 

The rate of heat transfer does not vary with x 

 – k 
dT

dx
 = 

q

A
 = constant 

 – (2.0 + 0.0005T) dT = 
q

A
 dx 

Integrating 

 2.0T + 0.00025 T 2 = – 
q

A
 x + C 

The constant can be evaluated using the first boundary condition 

 2.0 (423) + 0.00025 (423)2 = C – 
q

A
 (0)  C = 890.7 

(a) The rate of heat transfer can be evaluated using the second boundary condition: 

 2.0 (323) + 0.00025 (323)2 = 890.7 – 
q

A
 (0.15 m)  q

k
 = 1457 W/m2 

(b) Therefore, the temperature distribution is 

 0.00025 T 2 + 2.0 T = 890.7 – 1458 x 

430

420

410

490

380

370

360

350

330

340

320
0 0.02 0.04 0.08

Distance (meters)x

0.10 0.12 0.14

Temperature Distribution in the Wall

400

T
e
m

p
e
ra

tu
re

(
)

K

 

COMMENTS 

Notice that although the temperature distribution is not linear due to the variation of the thermal 
conductivity with temperature, it is nearly linear because this variation is small compared to the value 
of the thermal conductivity. 
If the variation of thermal conductivity with temperature had been neglected, the rate of heat transfer 
would have been 1333 W/m2, an error of 8.5%. 

PROBLEM 2.20 

A plane wall 7.5 cm thick, generates heat internally at the rate of 105 W/m3. One side of 
the wall is insulated, and the other side is exposed to an environment at 90°C. The 
convective heat transfer coefficient between the wall and the environment is 500 W/(m2 K). If 
the thermal conductivity of the wall is 12 W/(m K), calculate the maximum temperature 
in the wall. 
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GIVEN 

• Plane wall with internal heat generation 
• Thickness (L) = 7.5 cm = 0.075 m 
• Internal heat generation rate ( Gq ) = 105 W/m3 

• One side is insulated 
• Ambient temperature on the other side (T∞) = 90 °C 
• Convective heat transfer coefficient ( ch ) = 500 W/(m2 K) 

• Thermal conductivity (k) = 12 W/(m K) 

FIND 

• The maximum temperature in the wall (Tmax) 

ASSUMPTIONS 

• The heat loss through the insulation is negligible 
• The system has reached steady state 
• One dimensional conduction through the wall 

SKETCH 

L = 0.075 m

qG T• = 93° C

x

In
s
u

la
te

d

 

SOLUTION 
The one dimensional conduction equation, given in Equation (2.5), is 

 k 
2

2

T

x

∂
∂

 + Gq  = ρ c 
T

t

∂
∂

 

 For steady state,  
T

t

∂
∂

 = 0 therefore 

 k 
2

2

d T

d x
 + Gq  = 0 

 
2

2

d T

d x
 = – Gq

k


 

This is subject to the following boundary conditions 
No heat loss through the insulation 

d T

d x
 = 0 at x = 0 

Convection at the other surface 

 – k 
d T

d x
  = ch  (T – T∞) at   x = L 
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Integrating the conduction equation once 

 
d T

d x
 = Gq

k


 + C1 

C1 can be evaluated using the first boundary condition 

 0 = – Gq

k


 (0) + C1  C1 = 0 

Integrating again 

 T = – 
2

Gq

k


 x2 + C2 

The expression for T and its first derivative can be substituted into the second boundary condition to 
evaluate the constant C2 

 – k Gq L

k
 
  


 = ch  
2

22
Gq L

C T
k ∞

 
− + −  


  C2 = Gq L  

1

2c

L

kh

 
+  

 + T∞ 

Substituting this into the expression for T yields the temperature distribution in the wall 

 T(x) = 
2

Gq

k


 x2 + Gq L  

1

2c

L

kh

 
+  

 + T∞ 

 T(x) = T∞ + 
2

Gq

k


 2 22

c

kL
L x

h

 
+ −  

 

Examination of this expression reveals that the maximum temperature occurs at x = 0 

 Tmax = T∞ + 
2

Gq

k


 2 2

c

kL
L

h

 
+  

 

 Tmax = 90°C + 
5 3

2
2

2[12 W/(mK)](0.075m)10 W / m
(0.075m)

2[12W/(mK)] 500 W/(m K)

 
+  

 = 128°C 

PROBLEM 2.21 

A small dam, which may be idealized by a large slab 1.2 m thick, is to be completely 
poured in a short period of time. The hydration of the concrete results in the equivalent 
of a distributed source of constant strength of 100 W/m3. If both dam surfaces are at 
16°C, determine the maximum temperature to which the concrete will be subjected, 
assuming steady-state condition. The thermal conductivity of the wet concrete may be 
taken as 0.84 W/(m K). 

GIVEN 

• Large slab with internal heat generation 
• Internal heat generation rate ( Gq ) = 100 W/m3 

• Both surface temperatures (Ts) = 16°C 
• Thermal conductivity (k) = 0.84 W/(m K) 

FIND 

• The maximum temperature (Tmax) 
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ASSUMPTIONS 

• Steady state conditions prevail 

SKETCH 

x

2 = 1.2 mL

qG

Ts = 16° CTs = 16° C

 

SOLUTION 

The dam is symmetric; therefore x will be measured from the centerline of the dam. The equation for 
one dimensional conduction is given by Equation (2.5) 

 k 
2

2

T

x

∂
∂

 + Gq  = ρ c 
T

t

∂
∂

 

For steady state, 
T

t

∂
∂

 = 0 therefore 

 k 
2

2

d T

d x
 + Gq  = 0 

This is subject to the following boundary conditions 
1. By symmetry, dT/dx = 0 at x = 0 
2. T = Ts at x = L 
Also note that for this problem Gq  is a constant. 

Integrating the conduction equation 

 
d T

d x
 = – Gq

k


x + C1 

The constant C1 can be evaluated using the first boundary condition 

 0 = – Gq

k


 (0) + C1  C1 = 0 

Integrating once again 

 T = 
2

Gq

k


 x2 + C2 

The constant C2 can be evaluated using the second boundary condition 

 Ts = 
2

Gq

k


 L2 + C2  C2 = Ts + 

2
Gq

k


 L2 

Therefore, the temperature distribution in the dam is 

 T = Ts + 
2

Gq

k


 (L2 – x2) 
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The maximum temperature occurs at x = 0 

 Tmax = Ts + 
2

Gq

k


(L2 – (0)2) = 16°C + 

3100 W/m

2[0.84 W/(m K)]
 (0.6 m)2 = 37°C 

COMMENTS 

This problem is simplified significantly by choosing x = 0 at the centerline and taking advantage of 
the problem’s symmetry. 
For a more complete analysis, the change in thermal conductivity with temperature and moisture 
content should be measured. The system could then be analyzed by numerical methods discussed in 
chapter 3. 

PROBLEM 2.22 

Two large steel plates at temperatures of 90° and 70°C are separated by a steel rod 0.3 m 
long and 2.5 cm in diameter. The rod is welded to each plate. The space between the 
plates is filled with insulation, which also insulates the circumference of the rod. Because 
of a voltage difference between the two plates, current flows through the rod, dissipating 
electrical energy at a rate of 12 W. Determine the maximum temperature in the rod and 
the heat flow rate at each end. Check your results by comparing the net heat flow rate at 
the two ends with the total rate of heat generation. 

GIVEN 

• Insulated steel rod with internal heat generation 
• Length (L) = 0.3 m 
• Diameter (D) = 2.5 cm = 0.025 m 
• Internal heat generation rate ( Gq V) = 12 W 

• End temperature of the rod: T1 = 90°C T2 = 70°C 

FIND 

(a) Maximum temperature in the rod (Tmax) 
(b) Heat flow rate at each end (q0 and qL) 
(c) Check the results by comparing with the heat generation 

ASSUMPTIONS 

• The system has reached steady state 
• The heat loss through the insulation is negligible 
• The steel is 1% carbon steel 
• Constant thermal conductivity 
• The plate temperatures are constant 
• Heat is generated uniformly throughout the rod 

SKETCH 

T1 = 90° C T2 = 70° C

D = 0.025 m

Insulation
x

L = 0.3 m
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10 
Thermal conductivity of 1% carbon steel (k) = 43 W/(m K) at 20°C 

SOLUTION 

The heat generation per unit volume of the rod is 

 Gq  = Gq V

V


 = 

2

4

Gq V

D L
π


 = 
2

12 W

(0.025m) (0.3 m)
4

π  = 81,487 W/m3 

(a) The temperature distribution in the rod will be evaluated from the conduction equation, Equation 
(2.5), and the boundary conditions. The one dimensional conduction equation is 

 k 
2

2

T

x

∂
∂

 + Gq  = ρ c 
T

t

∂
∂

 

For steady state,  
T

t

∂
∂

 = 0 therefore 

 
2

2

d T

d x
 = Gq

k


 = 0 

This is subject to the following boundary conditions 

 T = T1 at x = 0 and T = T2 at x = L 

Integrating the conduction equation yields 

 
d T

d x
 = Gq

k


 x + C1 

Integrating a second time 

 T = – 
2

Gq

k


 x2 + C1 x + C2 

The constant C2 can be evaluated using the first boundary condition 

 T1 = 
2

Gq

k


 (0)2 + C1 (0) + C2  C2 = T1 

Therefore, the temperature distribution becomes 

 T = – 
2

Gq

k


 x2 + C1 x + T1 

The second boundary condition can be used to evaluate the constant C1 

 T2 = – 
2

Gq

k


 L2 + C1 L + T1 y  C1 = 

1

L
 (T2 – T1) + 

2
Gq L

k


 

The temperature distribution in the rod is 

 T = – 
2

Gq

k


 x2 + 2 1

1
( )

2
Gq L

T T
L k
 − +  


 x + T1 
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The maximum temperature in the rod occurs where the first derivative of the temperature distribution 
is zero 

 
d T

d x
 = – Gq

k


xm + 

1

L
 (T2 – T1) + 

2
Gq L

k


 = 0 

 xm = 
G

k

Lq
 (T2 – T1) + 

3

43W/(m K)

2 0.3m (81,487 W/m )

L =  (70°C – 90°C) + 
0.3m

2
 = 0.1148 m 

Evaluating the temperature at this value of x 

 Tmax = 
2

Gq

k


 xm

2 + 2 1
1

( )
2
Gq L

T T
L k
 − +  


xm + T1 

 Tmax = 
( )

381,847 W/m

2 43 W/(mK)
 (0.1148 m)2 + 

( )
390°C 70°C 81,847 W/m (0.3m)

0.3 m 2 43 W/(mK)

 − + 
 

 (0.1148m) + 90° 

 Tmax = 102°C 

(b) The heat flow from the rod at x = 0 can be calculated from Equation (1.1) 

 q
0
 = – k A 0| x

dT

dx =  = – k A 2 1
0

1
( )

2
G G

x

q q L
x T T

k L k =

 + − +  

 
 

 q
0
 = – k 2

2 1
1

( )
4 2

Gq L
D T T

L k

π    − +      


 

 q
0
 = – 43 W/(m K) 2(0.025m)

4

π 
   ( )

31 81,847 W/m (0.3m)
(70 C 90 C)

0.3m 2 43 W/(m K)

 
° − ° + 

 
 = – 4.6 W 

(The negative sign indicates that heat is flowing to the left, out of the rod) 

The heat flow from the rod at x = L is 

 qL = – k A |x L
dT

dx =  = – k A 2 1
1

( )
2

G Gq q L
L T T

k L k
 − + − +  

 
 

 qL = 
4

π
 D2 2 1( )

2
Gq k T T

L
L

− −  


 

 q
L
 = – 

4

π
 (0.025m)2  

( ) ( )381,847 W/m (0.3m) 43 W/(m K) (70 C 90 C)
–

2 0.3 m

 ° − °
 
  

 = 7.4 W 

(The positive value indicates that heat is flowing to the right, out of the rod) 

(c) The total heat loss is the sum of the loss from each end 

 qtotal = | q0 | + | q
L
 | = 4.6W + 7.4W = 12.0W 

The total rate of heat loss is equal to the rate of heat generation within the rod. 
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PROBLEM 2.23 

The shield of a nuclear reactor can be idealized by a large 25 cm thick flat plate having a 
thermal conductivity of 3.5 W/(m K). Radiation from the interior of the reactor 
penetrates the shield and produces heat generation in the shield which decreases 
exponentially from a value of 187.6 (k W)/m3. at the inner surface to a value of 18.76 
(kW)/m3 at a distance of 12.5 cm from the interior surface. If the exterior surface is kept 
at 38°C by forced convection, determine the temperature at the inner surface of the 
shield. Hint: First set up the differential equation for a system in which the heat 
generation rate varies according to q (x) = q (0)e–Cx. 

GIVEN 

• Large flat plate with non-uniform internal heat generation 
• Thickness (L) = 25 cm = 0.25 m 
• Thermal conductivity (k) = 3.5 W/(m K) 
• Exterior surface temperature (To) = 38°C 
• Heat generation is exponential with values of   187.6 kW/m3 at the inner surface 
  18.76 kW/m3 at 12.5 cm from the inner surface 

FIND 

• The inner surface temperature (Ti) 

ASSUMPTIONS 

• One dimensional, steady state conduction 
• The thermal conductivity is constant 
• No heat transfer at the inner surface of the shield 

SKETCH 

10

9

8

7

6

5

4

2

3

1
0 2 4

Distance (m)

**
**

**
**

**
**

**
8

x

L= 25 cm

To = 38°C

qG (x)

Ti = ?

Internal Heat Generation vs Distance x

q x q e( ) = (0) – cx◊ ◊

  

SOLUTION 

From the hint, the internal heat generation is 

 q (x) = q (0) e–cx where q (0) = 187.6 kW/m3 

Solving for the constant c using the fact that q(x) = 1 Btu/h in3 at x = 5 in = 0.417 ft 

 c = – 
1 ( )

ln
(0)

q x

x q
 
  



 = – 
1

0.25
ln 

3

3

187.6kW/m

18.76kW/m

 
 
 

  

  c = 9.21 1/m 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
129

The one dimensional conduction equation is given by Equation (2.5) 

 k 
2

2

T

x

∂
∂

 + Gq  = ρ c 
T

t

∂
∂

 = 0 (steady state) 

 
2

2

d T

d x
 = – 

( )Gq x

k


 = 

(0)q

k


e–cx 

The boundary conditions are 

 
dT

dx
 = 0 at x = 0 

 T(L) = To = 38°C at x = L 

Integrating the conduction equation 

 
dT

dx
 = – 

(0)q

ck


 e–cx + C1 

The constant C1 can be evaluated by applying the first boundary condition 

 0 = – 
(0)q

ck


 e–c(0) + C1  C1 = 

(0)q

ck

− 
 

Integrating again 

 T(x) = 
2

(0)q

c k

− 
 e–cx – 

2

(0)q

c k


x + C2 

The constant C2 can be evaluated by applying the second boundary condition 

 T(L) = To = 
2

(0)q

c k

− 
e–cL – 

(0)q

c k


 L + C2   C2 = To + 

(0) 1 cLq
L e

c k c
− + 


 

Therefore, the temperature distribution is 

 T(x) = To + 
2

(0)q

c k

− 
 [e–cL – e–cx + c(L – x)] 

Solving for the temperature at the inside surface (x = 0) 

 Ti = T(0) = To + 
2

(0)q

c k


 [e–cL – 1 + cL] 

 Ti = 38°C + 

( )

3 3

2

2

187.6 10 W/m

(9.21)
3.5 W/(m K)

m

×
[e– (9.21)(0.25) – 1 + 9.21 × 0.25]°C 

 Ti = 38 + 631.2 [0.1 – 1 + 2.303] = 922°C 

PROBLEM 2.24 

Derive an expression for the temperature distribution in an infinitely long rod of 
uniform cross section within which there is uniform heat generation at the rate of  
1 W/m. Assume that the rod is attached to a surface at Ts and is exposed through a 
convective heat transfer coefficient h to a fluid at Tf. 
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GIVEN 

• An infinitely long rod with internal heat generation 
• Temperature at one end = Ts 
• Heat generation rate ( Gq A) = 1 W/m 

• Convective heat transfer coefficient = hc 
• Ambient fluid temperature = Tf 

FIND 

• Expression for the temperature distribution 

ASSUMPTIONS 

• The rod is in steady state 
• The thermal conductivity (k) is constant 

SKETCH 

Ts

T•

•

D

qG = Constant

 

SOLUTION 

Let A = the cross sectional area of the rod = π D2/4 
An element of the rod with heat flows is shown at the right 

Dx

qG

q D T Tc c= x ( – )h p D •

– kA
dT
dx x

– kA
dT
dx x + xD

 

Conservation of energy requires that 
Energy entering the element + Heat generation = Energy leaving the element 

 – k A 
dT

dx G
x x x

dT
q A x k A

dx +Δ
+ Δ = −  + ch π D Δx [T(x) – Tf] 

 kA 
x x x

dT dT

dx dx+Δ

 −  
 = ch π D Δx (T – Tf) – Gq  A Δx 
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Dividing by Δx and letting Δx → 0 yields 

 kA 
2

2

d T

dx
 = ch π D (T – Tf) – G

q A  

 
2

2

d T

dx
 = 

4 ch

D k
 (T – Tf) – Gq

k


 

Let θ = T – Tf and m2 = 
4

( )
ch

D k
 

 
2

2

d

dx

θ
 – m2 θ = Gq

k

− 
 

This is a second order, linear, nonhomogeneous differential equation with constant coefficients. Its 
solution is the addition of the homogeneous solution and a particular solution. The solution to the 
homogeneous equation 

 
2

2

d

dx

θ
 – m2 θ = 0 

is determined by its characteristic equation. Substituting θ = eλx and its derivatives into the 
homogeneous equation yields the characteristic equation 

 λ2 eλx – m2 eλx = 0  λ = ± m 

Therefore, the homogeneous solution has the form 

 θh = C1 c
mx + C2 e

–mx 

A particular solution for this problem is simply a constant 

 θ = ao 

Substituting this into the differential equation 

 0 – m2 ao = Gq

k

− 
  ao = 

2
Gq

m k


 

Therefore, the general solution is 

 q = C1 e
mx + C2 e

–mx + 
2
Gq

m k


 

With the boundary conditions 

 θ = a finite number as x → ∞ 

 θ = Ts – Tf at x = 0 

From the first boundary condition, as x → ∞ emx → ∞, therefore C1 = 0 
From the second boundary condition 

 Ts – Tf = C2 + 
2
Gq

m k


  C2 = Ts – Tf – 

2
Gq

m k


 

The temperature distribution in the rod is 

 q = T(x) – Tf = 
2
G

s f
q

T T
m k

 − −  


e–mx + 
2
Gq

m k


 

 T(x) = Tf + 
2
G

s f
q

T T
m k

 − −  


 e–mx + 
2
Gq

m k
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PROBLEM 2.25 

Derive an expression for the temperature distribution in a plane wall in which there are 
uniformly distributed heat sources which vary according to the linear relation 

 Gq  = wq  [1 – β(T – Tw)] 

where qw is a constant equal to the heat generation per unit volume at the wall 
temperature Tw. Both sides of the plate are maintained at Tw and the plate thickness is 
2L. 

GIVEN 

• A plane wall with uniformly distributed heat sources as in the above equation 
• Both surface temperatures = Tw 
• Thickness = 2L 

FIND 

• An expression for the temperature distribution 

ASSUMPTIONS 

• Constant thermal conductivity (k) 

SKETCH 

x

2L

Tw,qw Tw,qw

qG

 

SOLUTION 

The equation for one dimensional, steady state (dT/dt = 0) conduction from Equation (2.5) is 

 
2

2

d T

dx
 = Gq

k

− 
 = wq

k

− 
 [1 – β (T – Tw)] = wq

k

β
 (T – Tw) – wq

k


 

With the boundary conditions 

 
dT

dx
 = 0 at x = 0 

 T = Tw at x = L 

Let θ = T – Tw and m2 = ( wq β)/k then 

 
2

2

d

dx

θ
 – m2 θ = wq

k

− 
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This is a second order, linear, nonhomogeneous differential equation with constant coefficients. Its 
solution is the addition of the homogeneous solution and a particular solution. The solution to the 
homogeneous equation 

 
2

2

d

dx

θ
 – m2 θ = 0 

is determined by its characteristics equation. Substituting θ = eλx and its derivatives into the 
homogeneous equation yields the characteristics equation 

 λ2 eλx – m2 eλx = 0  λ = m 

Therefore, the homogeneous solution has the form 

 θh = C1 c
mx + C2 e

–mx 

A particular solution for this problem is simply a constant: θ = ao 
Substituting this into the differential equation 

 0 – m2 ao = wq

k

− 
  ao = 

2
wq

m k


 

Therefore, the general solution is 

 θ = C1 e
mx + C2 e

–mx + 
2
wq

m k


 

With the boundary condition 

d

dx

θ
 = 0 at x = 0 

 θ = 0 at x = L 

Applying the first boundary condition: 

 
d

dx

θ
 = C1 me(0) – C2 me(0) = 0  C1 = C2 = C 

From the second boundary condition 

 0 = C (emL + e–mL) + 
2
wq

m k


  C = 

2 ( )
w

mL mL

q

m k e e−
−

+


 

The temperature distribution in the wall is 

 θ = T(x) – Tw = 
2 ( )

w
mL mL

q

m k e e−
−

+


 (emx + e–mx) + 
2
wq

m k


 

 T(x) = Tw + 
2
wq

m k


1

mx mx

mL mL

e e

e e

−

−

 +−  +
 

 T(x) = Tw + 
2
wq

m k

 cosh( )
1

cosh( )

mx

mL
 −  
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PROBLEM 2.26 

A plane wall of thickness 2L has internal heat sources whose strength varies according to 

 Gq  = 0q  cos (ax) 

where 0q  is the heat generated per unit volume at the center of the wall (x = 0) and a is a 
constant. If both sides of the wall are maintained at a constant temperature of Tw, derive 
an expression for the total heat loss from the wall per unit surface area. 

GIVEN 

• A plane wall with internal heat sources 
• Heat source strength: Gq  = 0q  cos (ax) 

• Wall surface temperatures = Tw 
• Wall thickness = 2L 

FIND 

An expression for the total heat loss per unit area (q/A) 

ASSUMPTIONS 

• Steady state conditions prevail 
• The thermal conductivity of the wall (k) is constant 
• One dimensional conduction within the wall 

SKETCH 

x

2L

Tw Tw

qG

 

SOLUTION 

Equation (2.5) gives the equation for one dimensional conduction. For steady state, dT/dt = 0, 
therefore 

 
2

2 G
T

k q
x

∂ +
∂

  = ρc 
T

t

∂
∂

 = 0 

 
2

2

d T

d x
 = Gq

k

− 
 = 0 cos( )q ax

k

− 
 

With boundary conditions: 

 
dT

dx
 = 0 at x = 0 (by symmetry) 

 T = Tw at x = L (given) 
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Integrating the conduction equation once 

 
dT

dx
 = oq

a k


 sin (ax) + C1 

Applying the first boundary condition yields: C1 = 0 
The rate of heat transfer from one side of the wall is 

 q
k
 = – k A 

dT

dx
|
x = L

 = – k A sin ( ) sin ( )G oq q A
aL aL

a k a
 − =  

 
 

The total rate of heat transfer is twice the rate of heat transfer from one side of the wall 

 
total

kq

A

 
  

 = 
2 oq

a


sin (aL) 

An alternative method of solution for this problem involves recognizing that at steady state the rate of 
heat generation within the entire wall must equal the rate of heat transfer from the wall surfaces 

 A ( )
L

GL
q x dx

−   = q 

 oq cos
L

L− (ax) dx = 
q

A
 

 [ ]sin( ) sin ( )oq
aL aL

a
− −


 = 

q

A
 

 
q

A
 = 

2 oq

a


sin (aL) 

COMMENTS 

The heat loss can be determined by solving for the temperature distribution and then the rate of heat 
transfer or via the conservation of energy which allows us to equate the heat generation rate with the 
rate of heat loss. 

PROBLEM 2.27 

Heat is generated uniformly in the fuel rod of a nuclear reactor. The rod has a long, 
hollow cylindrical shape with its inner and outer surfaces at temperatures of Ti and To, 
respectively. Derive an expression for the temperature distribution. 

GIVEN 

• A long, hollow cylinder with uniform internal generation 
• Inner surface temperature = Ti 
• Outer surface temperature = To 

FIND 

• The temperature distribution 

ASSUMPTIONS 

• Conduction occurs only in the radial direction 
• Steady state prevails 
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SKETCH 

ri

ro

To

Ti

 

SOLUTION 

Let ri = the inner radius 

 ro = the outer radius 

 Gq  = the rate of internal heat generation per unit volume 

 k = the thermal conductivity of the fuel rod 

The one dimensional, steady state conduction equation in cylindrical coordinates is given in Equation 
(2.21) 

 
1 d dT

r
r dr dr

 
    + Gq

k


 = 0 

 
d dT

r
dr dr

 
    = Grq

k

− 
 

With boundary conditions 
T = Ti at r = ri 

 T = To at r = ro 

Integrating the conduction equation once 

 r 
dT

dr
 = 

2

2
Gr q

k

− 
 + C1 

 dT = 
2

1

2
Gr q C

k r

 −
+  


dr 

Integrating again 

 T = 
2

4
Gr q

k

− 
 + C1 ln (r) + C2 

Applying the first boundary condition 

 Ti = 
2

4
i Gr q

k

− 
 + C1 ln (ri) + C2 

 C2 = Ti + 
2

4
i Gr q

k


 – Ci ln (ri) 

Applying the second boundary condition 

 To = 
2

4
o Gr q

k

− 
 + C1 ln (ro) + C2 
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 To = 
2

4
o Gr q

k

− 
 + C1 ln (ro) + Ti + 

2

4
i Gr q

k


 – C1 ln (ri) 

 C1 = 

2 2( )
4

ln

G
o i o i

o

i

q
T T r r

k

r

r

− + −

 
  



 

Substituting the constants into the temperature distribution 

 T = 
2

4
Gr q

k

− 
+ 

2 2( )
4

ln

G
o i o i

o

i

q
T T r r

k

r

r

 
− + − 

 
  

      



ln (r) + Ti + 

2 2
2 ( )

4

4
ln

G
o i o i

i G

o

i

q
T T r r

r q k

k r

r

 
− + − 

−  
  

      




 

 T = 

2 2

2 2

( ) ln

( )
4

ln

o i
G i

i
o

i

r
r r

q r
r r

k r

r

   −    
 + −

  
      


 + 

( ) ln

ln

o i
i

o

i

r
T T

r

r

r

 −   
 
  

 + Ti 

 

PROBLEM 2.28 

Show that the temperature distribution in a sphere of radius ro, made of a homogeneous 
material in which energy is released at a uniform rate per unit volume Gq , is 

 T(r) = To + 
 2
G oq r

6 k
1
  −     

2

o

r

r
 

GIVEN 

• A homogeneous sphere with energy generation 
• Radius = ro 

FIND 

• Show that the temperature distribution is as shown above. 

ASSUMPTIONS 

• Steady state conditions persist 
• The thermal conductivity of the sphere material is constant 
• Conduction occurs in the radial direction only 

SKETCH 

ro

To

qG
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SOLUTION 

Let k = the thermal conductivity of the material 
 To= the surface temperature of the sphere 
Equation (2.23) can be simplified to the following equation by the assumptions of steady state and 
radial conduction only 

 2
2

1 Gqd dT
r

dr dr kr
  +  


 = 0 

 2d dT
r

dr dr
 
    = 

2
Gr q

k

− 
 

With the following boundary conditions 

 
dT

dr
 = 0 at r = 0 

 T = To at r = ro 

Integrating the differential equation once 

 r2 
dT

dr
 = 

3

3
Gr q

k

− 
 + C1 

From the first boundary condition 
 C1 = 0 

Integrating once again 

 T = 
2

6
Gr q

k

− 
 + C2 

Applying the second boundary condition 

 To = 
2

6
o Gr q

k

− 
 + C2  C2 = To + 

2

6
o Gr q

k

− 
 

Therefore, the temperature distribution in the sphere is 

 T = 
2

6
Gr q

k

− 
 + To + 

2

6
o Gr q

k

− 
 

 T(r) = To + 
2

6
G oq r

k


 

2

1
o

r

r

  
−     

 

PROBLEM 2.29 

In a cylindrical fuel rod of a nuclear reactor, heat is generated internally according to 
the equation 

 Gq  = 1q  1
  −     

2

o

r

r
 

where gq  = local rate of heat generation per unit volume at r 

  ro = outside radius 

  1q  = rate of heat generation per unit volume at the centerline 
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Calculate the temperature drop from the center line to the surface for a 2.5 cm OD rod 
having a thermal conductivity of 26 W/(m K) if the rate of heat removal from its surface 
is 1.6 MW/m2. 

GIVEN 

• A cylindrical rod with internal generation and heat removal from its surface 
• Outside diameter (Do) = 2.5 cm = 0.025 m 
• Rate of heat generation is as given above 
• Thermal conductivity (k) = 26 W/(m K) 
• Heat removal rate (q/A) = 1.6 MW/m2 

FIND 

• The temperature drop from the center line to the surface (ΔT) 

ASSUMPTIONS 

• The heat flow has reached steady state 
• The thermal conductivity of the fuel rod is constant 
• One dimensional conduction in the radial direction 

SKETCH 

qG

Do = 2.5 cm

r o

q/A = 1.6 MW/m2

 

SOLUTION 

The equation for one dimensional conduction in cylindrical coordinates is given in Equation (2.21) 

 
1 d dT

r
r dr dr

 
  

Gq

k


 = 0 

 
d dT

r
dr dr

 
    = 

r

k

−
1q  

2

1
o

r

r

  
−     

 

With the boundary conditions 

 
dT

dr
 = 0 at r = 0 

 T = Ts at r = ro 

Integrating once 

 r 
dT

dr
 = 

2
1

2

r q

k

−
 + 

4
1
24 o

r q

k r
 + C1 

From the first boundary condition: C1 = 0, therefore 

 
dT

dr
 = 1

2

q

k

3

22 o

r
r

r

 
−  
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Integrating again 

 T = 
1

2

q

k
 

4 2

2 28 o

r r

r

 
−  

 + C2 

Evaluate this expression at the surface of the cylinder and at the centerline of the Cylinder and 
subtracting the results gives us the temperature drop in the cylinder 

 ΔT = T0 – 
or

T = 
1

2

q

k

4 24 2

2 2

(0) (0)

2 28 8
o o

o o

r r

r r

 
− − +  

 = 
2

13

16
oq r

k
 

The rate of heat generation at the centerline (q1) can be evaluated using the conservation of energy. 
The total rate of heat transfer from the cylinder must equal the total rate of heat generation within the 
cylinder 

 
q

A
 
   A = L 10

or r

r
q

=

=
4

2
1

o

r

r

 
− 

 
 2π r dr 

 
q

A
 
    2π ro L = 2π L q1 

2 4

2
0

2 4

or

o

r r

r

 
− 

 
 

 
q

A
 
    ro = q1 

2 2

2 4
o or r 

− 
 

 = q1 
2

4
or  

 ∴ q1 = 
4

or

q

A
 
    = 5.12 × 108 W/m3 

–2

4

1.25  10  M×
 (1.6 × 106 W/m2) 

Therefore, the temperature drop within the cylinder is 

 ΔT = 
8 3 –2 23(5.12 10 W/m )(1.25 10 )

16(26 W/(m K))

× ×
 = 577°C 

PROBLEM 2.30 

An electrical heater capable of generating 10,000 W is to be designed. The heating 
element is to be a stainless steel wire, having an electrical resistivity of 80 × 10–6 ohm-
centimeter. The operating temperature of the stainless steel is to be no more than 
1260°C. The heat transfer coefficient at the outer surface is expected to be no less than 
1720 W/(m2 K) in a medium whose maximum temperature is 93°C. A transformer 
capable of delivering current at 9 and 12 V is available. Determine a suitable size for the 
wire, the current required, and discuss what effect a reduction in the heat transfer 
coefficient would have. Hint: Demonstrate first that the temperature drop between the 
center and the surface of the wire is independent of the wire diameter, and determine its 
value. 

GIVEN 

• A stainless steel wire with electrical heat generation 
• Heat generation rate ( GQ ) = 10,000 W 

• Electrical resistivity (ρ) = 80 × 10–6 ohms-cm 
• Maximum temperature of stainless steel (Tmax) = 1260°C 
• Heat transfer coefficient ( ch ) = 1700 W/(m2 K) 

• Maximum temperature of medium (T∞) = 93°C 
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• Voltage (V) = 9 or 12 V 

FIND 

(a) A suitable wire size: diameter (dw) and length (L) 
(b) The current required (I) 
(c) Discuss the effect of reduction in the heat transfer coefficient 

ASSUMPTIONS 

• Variation in the thermal conductivity of stainless steel is negligible 
• The system is in steady-state 
• Conduction occurs in the radial direction only 

SKETCH 

T r( )w

T(0)

rw

L

N

V = 6 or 12 Volts 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10, Thermal conductivity of stainless steel (k) = 14.4 W/(m2 K) 

SOLUTION 

The rate of heat generation per unit volume is 

 Gq  = 
volume

GQ
 = 

2
G

w

Q

r Lπ


 

The temperature distribution in a long cylinder with internal heat generation is given in  
Section 2.3.3 

 T(r) = C2 – 
2

4
Gq r

k


 

where C2 is a constant determined by boundary conditions. Therefore 

 T(0) – T(rw) – = [C2 – 0] – 
2

2 4
G wq r

C
k

 
− 

 


 = 

2

4
G wq r

k


 = 

4
GQ

kLπ


 

The convective heat transfer from the outer surface must equal the internal heat generation 

 qc = ch A [T(rw) – T∞] = GQ  

 ∴ T(rw) – T∞ = 
2

G

w c

Q

r Lhπ


 

Adding the two temperature differences calculated above yields 

 [T(0) – T(rw)] + [T(rw) – T∞] = 
4

GQ

kLπ


+ 
2

G

w c

Q

r Lhπ


 

 T(0) – T∞ = 
2

GQ

π

 1 1

2 w ckL r Lh

 
+  

 

The wire length and its radius are related through an expression for the electric power dissipation 
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 GQ  = Pe = 
2

e

V

R
 = 

2V
L

A

ρ  = 
2 2

wV r

L

π
ρ

  L = 
2 2

w

G

V r

Q

π π
ρ 

 

 ∴ T(0) – T∞ = 
2

2 22
GQ

V

ρ
π


2 3

1 1

2 w w ck r r h

 
+  

 

 rw
2 [T(0) – T∞] – 

2

2 22
GQ

V

ρ
π

 1

2
w

c

r

k h

 
+  

 = 0 

For the 12 volt case 

  rw
3 (1260°C – 90°C) – 

2 6

2 2

(10,000W) (80 10 ohm-cm)

2 (12 ) (100cm/m)Vπ

−×
( ) 2

1

2 14.4 W/(mK) 1700 (W/(m K))

 
+  

wr  = 0 

After checking the units, they are dropped for clarity 

 1167 rw
3 – 0.0281(0.0347 r2 + 0.000581) = 0 

Solving by trial and error 

rw = 0.0025 m = 2.5 mm 

For the 12 volt case, the suitable wire diameter is 

 dw = 2(rw) = 5 mm 

The length of the wire required is 

 L = 
2 2

6

(12 V) (0.0025m) (100 cm/m)

80 10 ohm-cm(10,000 W)

π
−

−
×

 = 0.353 m 

The electrical resistance of this wire is 

 Re = 
2
w

L

r

ρ
π

 = 
6

2

80 10 ohm-cm(0.353m)

(0.0025m) (100 cm/m)π

−×
−

 = 0.0144 ohm 

Therefore, the current required for the 12 volt case is 

 I = 
e

V

R
 = 

12V

0.0144ohm
 = 833 amps 

This same procedure can be used for the 9 volt case yielding 

 dw = 6.3 mm 

 L = 0.306 m 

 Re = 0.0081 ohm 

 I = 1111 amps 

COMMENTS 

The 5 mm diameter wire would be a better choice since the amperage is less. However 833 amps is 
still extremely high. 
The effect of a lower heat transfer coefficient would be an increase in the diameter and length of the 
wire as well as an increase in the surface temperature of the wire. 
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PROBLEM 2.31 

The addition of aluminum fins has been suggested to increase the rate of heat dissipation 
from one side of an electronic device 1 m wide and 1 m tall. The fins are to be 
rectangular in cross section, 2.5 cm long and 0.25 cm thick. There are to be 100 fins per 
meter. The convective heat transfer coefficient, both for the wall and the fins, is 
estimated at 35 W/(m2 K). With this information, determine the percent increase in the 
rate of heat transfer of the finned wall compared to the bare wall. 

GIVEN 

• Aluminum fins with a rectangular cross section 
• Dimensions: 2.5 cm long and 0.25 mm thick 
• Number of fins per meter = 100 

• The convective heat transfer coefficient ( ch ) = 35 W/(m2 K) 

FIND 

• The percent increase in the rate of heat transfer of the finned wall compared to the bare wall 

ASSUMPTIONS 

• Steady state heat transfer 
 

SKETCH 

W

t =
2.5

m
m

2.5 cm  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12 
The thermal conductivity of aluminum (k) = 240 W/(m K) at 127°C 

SOLUTION 

Since the fins are of uniform cross section, Table 2.1 can be used to calculate the heat transfer rate 
from a single fin with convection at the tip 

 qf = M 
sinh ( ) cosh ( )

( )

cosh ( ) sinh ( )

+

 +   

c

c

h
mL mL

mk
h

mL mL
mk

 

where M = ch P k A θs  = 2( ) ( )ch t w k tw+  θs 

 θs = Ts – T∞ 
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For a 1 m width (w = 1 m) 

 M = ( ) ( )2 235W/(m K) 2(1.0025m) 240W/(m K) (0.025 m )  θs = 6.49 θs W/K 

 m L = ch P

kA
 = L 

2( )

( )
ch t w

k tw

+
 = 0.025 m 

( )
( )

2

2

35 W/(m K) 2(1.0025m)

240W/(m K) (0.0025 m )
 

 L m = 0.025 m 
1

10.81
m

 
    = 0.270 

 
m K

ch
 = 

( )

235W/(m K)
1

10.81 240 W/(m K)
m

 
 

 = 0.0135 

Therefore, the rate of heat transfer from one fin, 1 meter wide is: 

 qf = 6.49 θs W/K
sin h (0.27) 0.0135 cos h (0.27)

cos h (0.27) 0.0135sin h (0.27)

+
+ +

 

 qf = 1.792 θs W/K 

In 1 m2 of wall area there are 100 fins covering 100 tw = 100 (0.0025 m) (1 m) = 0.25 m2 of wall area 
leaving 0.75 m2 of bare wall. The total rate of heat transfer from the wall with fins is the sum of the 
heat transfer from the bare wall and the heat transfer from 100 fins. 

 qtot = qbare + 100 qfin = h Abare θs + 100 qfin 

 qtot = ( )235 W/(m K)  (0.75 m2) θs + 100 (1.792) θs W/K = 205.3 θs W/K 

The rate of heat transfer from the wall without fins is 

 qbare = ch A θs = ( )235 W/(m K)  (1 m2) θs = 35.0 W/K 

The percent increase due to the addition of fins is 

 % increase = 
205.3 35

35

−
 × 100 = 486% 

COMMENTS 

This problem illustrates the dramatic increase in the rate of heat transfer that can be achieved with 
properly designed fins. 
The assumption that the convective heat transfer coefficient is the same for the fins and the wall is an 
oversimplification of the real situation, but does not affect the final results appreciably. In later 
chapters, we will learn how to evaluate the heat transfer coefficient from physical parameters and the 
geometry of the system. 

PROBLEM 2.32 

The tip of a soldering iron consists of a 0.6-cm-OD copper rod, 7.6 cm long. If the tip 
must be 204°C, what is the required minimum temperature of the base and the heat 
flow, in watts, into the base? Assume that h  = 22.7 W/(m2 K) and Tair = 21°C. 

GIVEN 

• Tip of soldering iron consists of copper rod 
• Outside diameter (D) = 0.6 cm = 0.006 m 
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• Length (L) = 7.6 cm = 0.076 m 
• Temperature of the tip (TL) = 204°C 
• Heat transfer coefficient ( h ) = 22.7 W/(m2 K) 
• Ambient temperature (T∞) = 21°C 

FIND 

(a) Minimum temperature of the base (Ts) 
(b) Heat flow into the base (q) in W 

ASSUMPTIONS 

• The tip is in steady state 
• The thermal conductivity of copper is uniform and constant, i.e., not a function of temperature 
• The copper tip can be treated as a fin 

 

SKETCH 

x

L = 7.6 cm

TL = 204°C

D = 0.6 cm

Ts

T• = 21°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12 
The thermal conductivity of copper (K) = 388 W/(m K) at 227°C 

SOLUTION 

(a) From Table 2.1, the temperature distribution for a fin with a uniform cross section and convection 
from the tip is 

 
s

θ
θ

 = 

cosh[ ( )] sinh[ ( )]

cosh( ) sinh( )

h
m L x m L x

mk

h
mL mL

mk

 − + −  
 +   

 

where θ = T – T∞ and θs = θ(0) = Ts – T∞ 

 L m = L 
h P

kA
 = L 

2

4

h D

k D

π
π  = 

4 h

kD
 = 0.076 m 

( )
( )

24 22.7W/(m K)

388W/(m K) (0.006m)
 

 L m = 0.076 m 
1

6.25
m

 
    = 0.475 

 
h

mK
 = 

( )
222.7 W/(m K)

1
6.25 388W/(mK)

m
 
 

 = 0.00936 
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Evaluating the temperature at x = L 

 L L

s s

T T

T T

θ
θ

∞

∞

−
=

−
 = 

cosh (0) 0.00936sinh (0)

cosh(0.475) 0.00936sinh(0.475)

+
+

 = 0.8932 

Solving for the base temperature 

 Ts = T∞ + 
0.8932
LT T∞−

 = 21°C + 
o o204 C 21 C

0.8932

−
 = 226°C 

(b) To maintain steady state conditions, the rate of heat transfer into the base must be equal to the rate 
of heat loss from the rod. From Table 2.1, the rate of heat loss is 

 qf = M 
sin h ( ) cosh ( )

cos h( ) sinh( )

 +   
 +   

h
mL mL

mk
h

mL mL
mk

 where M = sh PkAθ  =
2

3

4
h k D

π
 (Ts – T∞) 

 M = ( ) ( )
2

2 322.7W/(m K) 388W/(m K) (0.006m)
4

π
 (226°C – 21°C) = 14.045 W 

 qf = 14.045 W 
sinh (0.475) .00936cosh (0.475)

cosh(0.475) .00936sinh(0.475)

+
+

 = 6.3 W 

COMMENTS 

A small soldering iron such as this will typically be rated at 30 W to allow for radiation heat losses 
and more rapid heat-up. 

PROBLEM 2.33 

One end of a 0.3 m long steel rod is connected to a wall at 204°C. The other end is 
connected to a wall which is maintained at 93°C. Air is blown across the rod so that a 
heat transfer coefficient of 17 W/(m2 K) is maintained over the entire surface. If the 
diameter of the rod is 5 cm and the temperature of the air is 38°C, what is the net rate of 
heat loss to the air? 

GIVEN 

• A steel rod connected to walls at both ends 
• Length of rod (L) = 0.3 m 
• Diameter of the rod (D) = 5 cm = 0.05 m 
• Wall temperatures: Ts = 204°C TL = 93°C 
• Heat transfer coefficient ( ch ) = 17 W/(m2 K) 

• Air temperature (T∞) = 38°C 

FIND 

The net rate of heat loss to the air (qf) 

ASSUMPTIONS 

• The wall temperatures are constant 
• The system is in steady state 
• The rod is 1% carbon steel 
• The thermal conductivity of the rod is uniform and not dependent on temperature 
• One dimensional conduction along the rod 
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SKETCH 

x

Ts = 204°C TL = 93°C

L = 0.3 m

D = 5 cm

Air
= 38°CT•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10 
The thermal conductivity of 1% carbon steel (k) = 43 W/(m K) (at 20°C) 

 

SOLUTION 

The rod can be idealized as a fin of uniform cross section with fixed temperatures at both ends. From 
Table 2.1 the rate of heat loss is 

 qf = M 

cos h ( )

sin h ( )

L

s

mL

mL

θ
θ

 −   
 

where θL = TL – T∞ = 93°C – 38°C = 55°C and θs = Ts – T∞ = 204°C – 38°C = 166°C 

 L m = L ch P

kA
 = L 

2

4

ch D

k D

π
π  = L 

4 ch

kD
 = 0.3 m

( )
( )

24 17 W/(m K)

4 17 W/(m K) (0.05 m)
 = 1.687 

M = h PkA  θs = 
2

3

4
h D k

π
 θs = ( ) ( )

2
2 317W/(m K) (0.05 m) 43W/(m K)

4

π
 (166°C) = 78.82 W 

 qf = 78.82 W 

55
cosh (1.687)

166
sinh (1.687)

−
 = 74.4 W 

COMMENTS 

In a real situation the convective heat transfer coefficient will not be uniform over the circumference. 
It will be higher over the side facing the air stream. But because of the high thermal conductivity, the 
temperature at any given section will be nearly uniform. 

PROBLEM 2.34 

Both ends of a 0.6 cm copper U-shaped rod, as shown in the accompanying sketch, are 
rigidly affixed to a vertical wall, the temperature of which is maintained at 93°C. The 
developed length of the rod is 0.6 m and it is exposed to air at 38°C. The combined 
radiative and convective heat transfer coefficient for this system is 34 W/(m2 K). (a) 
Calculate the temperature of the midpoint of the rod. (b) What will the rate of heat 
transfer from the rod be? 
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GIVEN 

• U-shaped copper rod rigidly affixed to a wall 
• Diameter (D) = 0.6 cm = 0.006 m 
• Developed length (L) = 0.6 m 
• Wall temperature is constant at (Ts) = 93°C 
• Air temperature (T∞) = 38°C 
• Heat transfer coefficient ( h ) = 34 W/(m2 K) 

FIND 

(a) Temperature of the midpoint (TLf) 
(b) Rate of heat transfer from the rod (M) 

ASSUMPTIONS 

• The system is in steady state 
• Variation in the thermal conductivity of copper is negligible 
• The U-shaped rod can be approximated by a straight rod of equal length 
• Uniform temperature across any section of the rod 
 

SKETCH 

L
D

= 0.6 m
= 0.6 cm

L = 0.3 mq = 0 At Center Insulated End

0.3 m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, thermal conductivity of copper (k) = 396 W/(m2 K) at 64°C 

SOLUTION 

By symmetry, the conduction through the rod at the center must be zero. Therefore, the rod can be 
thought of as two pin fins with insulated ends as shown in the sketch above. 
(a) From Table 2.1, the temperature distribution for a fin of uniform cross section with an adiabatic 

tip is 

 
s

θ
θ

 = 
cosh[ ( )]

cosh( )
fm L x

mL

−
 

where θ = T – T∞, θs = Ts – T∞ and Lf = length of the fin 

 m = 
hP

kA
 = 

2

4

h D

k D

π
π 
  

 = 
4 h

kD
 = 

( )
( )

24 34W/(m K)

396W/(m K) (0.006m)
 = 7.57 

1

m
 

Evaluating the temperature of the tip of the pin fin 

 
( )f

s

Lθ
θ

 = 
cosh[ ( )]

cosh ( )

−f f

f

m L L

m L
 = 

1

cosh ( )fm L
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The length of the fin is half of the wire length (Lf = 0.3 m) 

 
( )f

s

Lθ
θ

 = 
( )

s

T Lf T

T T
∞

∞

−
−

 = 
1

1
cos h 7.57 (0.3m)

m
 
  

 = 0.205 

 T(Lf) = 0.205 (Ts – T∞) + T∞ = 0.205 (93°C – 38°C) + 38°C = 49.2°C 

The temperature at the tip of the fin is the temperature at the midpoint of the curved rod (49.2°C). 
(b) From Table 2.1, the heat transfer from the fin is 

 qfin = M tanh (m Lf)  

 where M = h PkA  θs =
2( )

4
h D k D

ππ  
   (Ts – T∞) 

 M = ( ) ( )2 334W/(m K) 396W/(m K) (0.006m)
4

π
 (93°C – 38°C) = 4.653 W 

 ∴ qfin = 4.653 W tanh 
1

7.57
m

 
    (0.3 m) = 4.56 W 

The rate of heat transfer from the curved rod is approximately twice the heat transfer of the pin fin 
 qrod = 2 qfin = 2(4.56 W) = 9.12 W 

PROBLEM 2.35 

A circumferential fin of rectangular cross section, 3.7 cm OD and 0.3 cm thick 
surrounds a 2.5 cm diameter tube. The fin is constructed of mild steel. Air blowing over 
the fin produces a heat transfer coefficient of 28.4 W/(m2 K). If the temperatures of the 
base of the fin and the air are 260°C and 38°C, respectively, calculate the heat transfer 
rate from the fin. 

GIVEN 

• A mild steel circumferential fin of a rectangular cross section on a tube 
• Tube diameter (Dt) = 2.5 cm = 0.025 m 
• Fin outside diameter (Df) = 3.7 cm = 0.037 m 
• Fin thickness (t) = 0.3 cm = 0.003 m 
• Heat transfer coefficient ( ch ) = 28.4 W/(m2 K) 

• Fin base temperature (Ts) = 260°C 
• Air temperature (T∞) = 38°C 

FIND 

• The rate of heat transfer from the fin (qfin) 

ASSUMPTIONS 

• The system has reached steady state 
• The mild steel is 1% carbon steel 
• The thermal conductivity of the steel is uniform 
• Radial conduction only (temperature is uniform across the cross section of the fin) 
• The heat transfer from the end of the fin can be accounted for by increasing the length by half the 

thickness and assuming the end is insulated 
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SKETCH 

Dt = 2.5 cm

Df = 3.7 cm

 

PROPERTIES AND CONSTANTS 

Thermal conductivity of 1% carbon steel (k) = 43 W/(m K) at 20°C 

SOLUTION 

The rate of heat transfer for the fin can be calculated using the fin efficiency determined from the 
efficiency graph for this geometry, Figure 2.17. 
The length of a fin (L) = (Df – Dt)/2 = 0.006 m 
The parameters needed are 

 ri = 
2

tD
 = 0.125 m  ro = 

2
tD

 + L = 0.125 m + 0.006 m = 0.0185 m 

 

3
2

2o i
t

r r + −   = 

1
22

( )
c

o i

h

k t r r

 
  −

3
20.003m

0.0815m 0.0125 m
2

 + −    

    
( )

( )

1
222 28.4w/(m K)

43W/(m K) (0.003 m)(0.0185m 0.0125 m)

 
 − 

 = 0.176 

 2

 
+  o

i

t
r

r
 = 

0.0185m 0.0015m

0.0125 m

+
 = 1.6 

From Figure 2.17, the fin efficiency for these parameters is: 

 ηf = 98% 

The rate of heat transfer from the fin is 

 qfin = ηf ch  Afin (Ts – T∞) = ηf ch  2π 
2

2

2o i
t

r r
  + −    

 (Ts – T∞) 

 qfin  = (0.98) ( )228.4W/(m K) 2π [(0.085 m + 0.0015 m)2 – (0.0125 m)2] (260°C – 38°C) = 9.46 W 

PROBLEM 2.36 

A turbine blade 6.3 cm long (see sketch on p. 156), with cross-sectional area A = 4.6 × 10–4 m2 
and perimeter P = 0.12 m, is made of stainless steel (k = 18 W/(m K). The temperature of 
the root, Ts, is 428°C. The blade is exposed to a hot gas at 871°C, and the heat transfer 
coefficient h is 454 W/(m2 K). Determine the temperature of the blade tip and the rate of 
heat flow at the root of the blade. Assume that the tip is insulated. 
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GIVEN 

• Stainless steel turbine blade 
• Length of blade (L) = 6.3 cm = 0.063 m 
• Cross-sectional area (A) = 4.6 × 10–4 m2 
• Perimeter (P) = 0.12 m 
• Thermal conductivity (k) = 18 W/(m K) 
• Temperature of the root (Ts) = 482°C 
• Temperature of the hot gas (T∞) = 871°C 
• Heat transfer coefficient ( ch ) = 454 W/(m2 K) 

FIND 

(a) The temperature of the blade tip (TL) 
(b) The rate of heat flow (q) at the roof of the blade 

ASSUMPTIONS 

• Steady state conditions prevail 
• The thermal conductivity is uniform 
• The tip is insulated 
• The cross-section of the blade is uniform 
• One dimensional conduction 

 

SKETCH 

L = 6.3 cm

Area ( ) = 4.6 10

Perimeter ( ) = 0.12 m

A m

P

¥ – 4 2

Ts = 482°C

T• = 871°C

 

SOLUTION 

(a) The temperature distribution in a fin of uniform cross-section with an insulated tip, from Table 
2.1, is 

 
s

θ
θ

 = 
cosh[ ( )]

cosh( )

m L x

mL

−
 

 where m = 
h P

k A
 = 

2

4 2

454W/(m K)(0.12 m)

18W/(m K)(4.6 10 m )−×
 = 81.1

1

m
 

 θ = T – T∞ 

At the blade tip, x = L, therefore 

 L

s

θ
θ

 = L

s

T T

T T
∞

∞

−
−

 = 
cosh[ (0)]

cosh( )

m

mL
 = 

1

cosh( )mL
 

 TL = T∞ + 
cosh( )

sT T

mL
∞−

 = 871°C + 
o o482 C 871 C

1
cosh 81.1 (0.063m)

m

−
  
   

 = 866°C 
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(b) The rate of heat transfer from the fin is given by Table 2.1 to be 
 q = M tanh (m L) 

where M = ch P k A  θs 

 M = ( )2 4 2454W/(m K)(0.12 m) 18W/(m K) (4.6 10 m )−×  (482°C – 871°C) = – 261 W 

 ∴ q = (– 261 W) tanh 
1

81.1 (0.063 m)
m

 
  

 = – 261 W (out of the blade) 

COMMENTS 

In a real situation, the heat transfer coefficient will vary over the surface with the highest value near 
the leading edge. But because of the high thermal conductivity of the blade, the temperature at any 
section will be esentially uniform. 

PROBLEM 2.37 

To determine the thermal conductivity of a long, solid 2.5 cm diameter rod, one half of 
the rod was inserted into a furnace while the other half was projecting into air at 27°C. 
After steady state had been reached, the temperatures at two points 7.6 cm apart were 
measured and found to be 126°C and 91°C, respectively. The heat transfer coefficient 
over the surface of the rod exposed to the air was estimated to be 22.7 W/(m2 K). What is 
the thermal conductivity of the rod? 

GIVEN 

• A solid rod, one half inserted into a furnace 
• Diameter of rod (D) = 2.5 cm = 0.25 m 
• Air temperature (T∞) = 27°C 
• Steady state has been reached 
• Temperatures at two points 7.6 cm apart 
 • T1 = 126°C 
 • T2 = 91°C 
• The heat transfer coefficient ( ch ) = 22.7 W/(m2 K) 

FIND 

• The thermal conductivity (k) of the rod 

ASSUMPTIONS 

• Uniform thermal conductivity 
• One dimensional conduction along the rod 
• The rod approximates a fin of infinite length protruding out of the furnace 

SKETCH 

Furnace

7.6 cm D = 2.5 cm

T1 T2

 

SOLUTION 

This problem can be visualized as the following pin fin problem shown below 

T Tw = = 126°C1 T TL = = 91°C2

•
T• = 27°CL = 7.6 cm

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
153

The fin is of uniform cross section, therefore Table 2.1 can be used. The temperature distribution for a 
fin of infinite length, from Table 2.1, is 

 
s

θ
θ

 = e–mx  

  where m = ch P

kA
 = 

2

2

ch D

k D

π
π  = 

4 ch

kD
 

Substituting this into the temperature distribution and solving for k 

 
s

θ
θ

 = exp 
4 ch

x
kD

 
− 
 

  k = 

( ) 2

4

ln
s

ch

D
x

θ
θ

 
 
  

 

at x = L θL = TL – T∞ = 91°C – 27°C = 64°C 
 θs = TW – T∞ = 126°C – 27°C = 99°C 

 L

s

θ
θ

 = 
64

99
 = 0.6465 

 
 
 
Therefore 

 k = 
( )2

2

4 22.7w/(m K)

ln (0.6465)
0.025

0.076m
 
  

 = 110 W/(m K) 

COMMENTS 

Note that this procedure can only be used if the assumption of an infinite length fin is valid. 
Otherwise, the location of the temperature measurements along the fin must be specified to determine 
the thermal conductivity. 

PROBLEM 2.38 

Heat is transferred from water to air through a brass wall (k = 54 W/(m K)). The 
addition of rectangular brass fins, 0.08 cm thick and 2.5 cm long, spaced 1.25 cm apart, 
is contemplated. Assuming a water-side heat transfer coefficient of 170 W/(m2 K) and an 
air-side heat transfer coefficient of 17 W/(m2 K), compare the gain in heat transfer rate 
achieved by adding fins to: (a) the water side, (b) the air side, and (c) both sides. (Neglect 
temperature drop through the wall.) 

GIVEN 

• A brass wall with brass fins between air and water 
• Thermal conductivity of the brass (k) = 54 W/(m K) 
• Fin thickness (t) = 0.08 cm = 0.0008 m 
• Fin length (L) = 2.5 cm = 0.025 m 
• Fin spacing (d) = 1.25 cm = 0.125 m 
• Water-side heat transfer coefficient ( cwh ) = 170 W/(m2 K) 

• Air-side heat transfer coefficient ( cah ) = 17 W/(m2 K) 
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FIND 

Compare the heat transfer rate with fins added to 
(a) the water side, q(a) 
(b) the air side, q(b) 
(c) both sides, q(c) 

ASSUMPTIONS 

• The thermal resistance of the wall is negligible 
• Steady state conditions prevail 
• Constant thermal conductivity 
• One dimensional conduction 
• Heat transfer from the tip of the fins is negligible 

SKETCH 

Air
Ta

Air
Water

Tw
Water

L = 2.5 cm

d = 1.25 cm

t = 0.08 cm

Air Water

Case (a) Case (b) Case (c)  

 

SOLUTION 

The fins are of uniform cross-section, therefore Table 2.1 may be used. To simplify the analysis, the 
heat transfer from the end of the fin will be neglected. For a fin with adiabatic tip, the rate of heat 
transfer is 

 qf = M tanh (m L) 

where  M = ch PkA  θs = (2 ) ( )ch w k wt  θs = w 2 ch kt  θs 

 m = ch P

kA
 = 

(2 )ch w

kwt
 = 

2 ch

kt
 

The number of fins per square meter of wall is 

 
2

number of fins

m
 = 

1

(0.0133m/fin)1m width)
 = 75.2 fins/m2 

Fraction of the wall area not covered by fins is 

 bare

n

A

A
 = 

2

2

1m 75.2(1m width)(0.008m)

m

−
 = 0.939 ≈ 0.94 

The rate of heat transfer from the wall with fins is equal to the sum of the heat transfer from the bare 
wall and from the fins 

 q = ch  Abare θs + (number of fins) [M tanh (m L)] 

 q = bare 75.2 tanh ( ) s
c w s

s c

M
h A A mL

R

θθ
θ

 + = 
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where Aw is the total base area, i.e., with fins removed. 
 
Therefore, the thermal resistance of a wall with fins based on a unit of base area is 

 Rc = 
bare

1

75.2 tanh ( )W c
w s

A M
A h mL

A θ
 + 
 

 

For fins on the water side 

 w

s

M

θ
 = 1 m width ( )2170W/(m K)(2) 54W/(m K) (0.0008 m)  = 3.832 W/K 

 wm   = 
( )22 170W/(m K)

54W/(m K)(.0008 m)
 = 88.72 

1

m
 

 tan h (ma L) = tanh 
1

88.72
m

 
    (0.025 m) = 0.977 

For fins on the air side 

 a

s

M

θ
 = 1 m width ( ) ( )217W(m K) (2) 54W/(m K) (0.0008)  = 1.212 W/K 

 ma = 
( )

( )

22 17W/(m K)

54W/(m K) (0.0008 m)
 = 28.05 

1

m
 

 tan h ma L = tan h 
1

28.05
m

 
    (0.025 m) = 0.605 

The thermal circuit for the problem is 

Ta

Rca Rcw

Ts Tw

 

The values of thermal resistances with and without fins are 

 (Rca)nofins = 
1

w caA h
 = ( )2

1

17W/(m K)wA
 = 

1

wA
 0.0588 (m2 K)/W  

 (Rcw)nofins = 
1

w cwA h
 = ( )2

1

170W/(m K)wA
 = 

1

wA
 0.00588 (m2 K)/W 

 (Rca)fins = 
( )2 2

1

17 W/(m K)(0.94) 75.2 m 1.212W/K (0.605)− + wA
 = 

1

wA
 0.0141 (m2 K)/W 

 (Rcw)fins = 
( )2 2

1

170 W/(m K)(0.94) 75.2 m 3.832 W/K (0.977)− + wA
 = 

1

wA
 0.00227 (m2 K)/W 
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(a) The rate of heat transfer with fins on the water side only is 

 q(a) = 
no fins fins( ) ( )ca cw

T

R R

Δ
+

 

 
( )a

w

q

A
 = 

2(0.0588 0.00227)(m K)/W

TΔ
+

 = 16.4 Δ T  W/(m2 K) 

(b) The rate of heat transfer with fins on the air side only is 

 q(b) = 
fins no fins( ) ( )ca cw

T

R R

Δ
+

 

 
( )b

w

q

A
 = 

2(0.0141 0.00588)(m K)/W

TΔ
+

 = 50.1 Δ T W/(m2 K) 

(c) With fins on both sides, the rate of heat transfer is 

 q(c) = 
fins no fins( ) ( )ca cw

T

R R

Δ
+

 

 
( )c

w

q

A
 = 

2(0.0141 0.00227)(m K)/W

TΔ
+

 = 61.1 Δ T W/(m2 K) 

 

As a basis of comparison, the rate of heat transfer without fins on either side is: 

 
w

q

A
 = 

2(0.0588 0.00588)(m W)/K

TΔ
+

 = 15.5 Δ T W/(m2 K) 

The following percent increase over the no fins case occurs 

 Case % Increase 

 (a) fins on water side 5.8 
 (b) fins on air side 223 
 (c) fins on both sides 294 

COMMENTS 

Placing the fins on the side with the larger thermal resistance, i.e., the air side, has a much greater 
effect on the rate of heat transfer. 
The small gain in heat transfer rate achieved by placing fins on the water side only would most likely 
not be justified due to the high cost of attaching the fins. 

PROBLEM 2.39 

The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of  
1.8 m2 (0.6m × 3m) with a heat transfer coefficient of 255 W/(m2 K). On the other side of 
the heat exchanger wall flows a gas, and the wall has 96 thin rectangular steel fins 0.5 cm 
thick and 1.25 cm high [k = 3 W/(m K)]. The fins are 3 m long and the heat transfer 
coefficient on the gas side is 57 W/(m2 K). Assuming that the thermal resistance of the 
wall is negligible, determine the rate of heat transfer if the overall temperature 
difference is 38°C. 
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GIVEN 

• The wall of a heat exchanger has 96 fins on the gas side 
• Surface area on the liquid side (AL) = 1.8 m2 (0.6 m × 3 m) 
• Heat transfer coefficient on the liquid side (hcL) = 255 W/(m2 K) 
• The wall has 96 thin steel fins 0.5 cm thick and 1.25 cm high 
• Thermal conductivity of the steel (k) = 3 W/(m K) 
• Fin length (w) = 3 m, Fin height (L) = 1.25 cm = 0.0125 m 
• Fin thickness (t) = 0.5 cm = 0.005 m 
• Heat transfer coefficient on the gas side (hcg) = 57 W/(m2 K) 
• The overall temperature difference (ΔT) = 38°C 

FIND 

• The rate of heat transfer (q) 

ASSUMPTIONS 

• The thermal resistance of the wall is negligible 
• The heat transfer through the wall is steady state 
• The thermal conductivity of the steel is constant 

SKETCH 

Gas

A Section of the Wall

w = 3m

L =.0125 m

t = 0.005 m

Liquid

 

SOLUTION 

The heat transfer from a single fin can be calculated from Table 2.1 for a fin with convection from the tip 

 qf = M  

sinh ( ) cosh ( )

cosh ( ) sinh ( )

c

c

h
mL mL

mk

h
mL mL

mk

 +   

 +   

 

 where m = ch P

kA
 = 

(2 2 )

( )
ch t w

k wt

+
 = 

257 W/(m K)(6m 0.01 m)

3W/(m K)(3m)(0.005 m)

+
 = 87.25 

1

m
 

 mL = 87.25 
1

m
 (0.0125 m) = 1.091 and ch

mk
=

( )
2

1
m

57 W/(m K)

87.25 3W/(m K)
 = 0.2178 

M = ch PkA  θs = ( ) ( )257 W/(m K) (6.01m) 3W/(m K) (3m)(0.005m) (Ts – Tg) = 3.926 (Ts – Tg)W/K 
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 qf = ( )3.926( )W/Ks gT T− sinh (1.091) 0.2178cos h (1.091)

cosh (1.091) 0.2178sin h (1.091)

+
+

 = 3.395 (Ts – Tg) W/K 

The rate of heat transfer on the gas side is the sum of the convection from the fins and the convection 
from the bare wall between the fins. The bare area is 

 Abare = Awall – (number of fins) (Area of one fin) 

  = 1.8 m2 – (96 fins) [(3 m) (0.005 m)/fin] = 0.36 m2 

The total rate of heat transfer to the gas is 

 qg = qbare + (number of fins) qf = cgh Abare (Ts – Tg) + 96(3.395) (Ts – Tg)  W/K 

 qg = 2 257 W/(m K)(0.36m ) 96(3.395) +   (Ts – Tg) W/K = 346.4 (Ts – Tg) W/K = 
s g

g

T T

R

−
 

The thermal resistance on the gas side is 

 Rg = 
1

346.4 K/W
 = 0.002887 K/W 

The thermal resistance on the liquid side is 

 RL = 
1

cL wh A
 = 

2 2

1

255W/(m K) (1.8 m )
 = 0.002179 K/W 

The rate of heat transfer is 

 q = 
tot

T

R

Δ
 = 

g L

T

R R

Δ
+

 = 
o38 C

(0.002887 0.002179)K/W+
 = 7500 W 

COMMENTS 

Note that despite the much lower heat transfer coefficient on the gas side, the thermal resistance is no 
larger than on the liquid side. This is the result of balancing the fin geometries which is a desirable 
situation from the thermal design perspective. Adding fins on the liquid side would not increase the 
rate of heat transfer appreciably. 

PROBLEM 2.40 

The top of a 30 cm I-beam is maintained at a temperature of 260°C, while the bottom is 
at 93°C. The thickness of the web is 1.25 cm Air at 260°C is blowing along the side of the 
beam so that h  = 40 W/(m2 K). The thermal conductivity of the steel may be assumed 
constant and equal to 43 W/(m K). Find the temperature distribution along the web 
from top to bottom and plot the results. 

GIVEN 

• A steel 30 cm I-beam 
• Temperature of the top (TL) = 260°C 
• Temperature of the bottom (Ts) = 93°C 
• Thickness of the web (t) = 1.25 cm 
• Air temperature (T∞) = 260°C 
• Heat transfer coefficient ( ch ) = 40 W/(m2 K) 

• Thermal conductivity of the steel (k) = 43 W/(m K) 
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FIND 

• The temperature distribution along the web and the plot the results 

ASSUMPTIONS 

• The thermal conductivity of the steel is uniform 
• The beam has reached steady state conditions 
• One dimensional through the web 
• The beam is very long compared to the web thickness 

SKETCH 
TL = 260°C

T• = 260°C

x

t = 1.25 cm

L = 30 cm

Ts = 93°C  

SOLUTION 

The web of the I beam can be thought of as a fin with a uniform rectangular cross section and a fixed 
tip temperature. From Table 2.1, the temperature distribution along the web is 

 
s

θ
θ

 = 

sinh ( ) sinh[ ( )]

sinh ( )

L

s

m x m L x

mL

θ
θ

  + −  
 

where θ = T – T∞ 

 m = ch P

kA
=

2( )ch w t

kwt

+
= 

2 ch

kt
=

2

2

2(40 W(m K))

(43 W/(m K)) (1.25 10 m)−×
= 12.2 1/m 

 mL = 12.2 sinh (mL) 

 = 3.66 

 θs = Ts – T∞  θL – TL – T∞ = 0 

 = 93°C – 260°C = – 167°C 

Substitute these into the temperature distribution 

 x

s

T T

θ
∞−

 = 0.0512 sinh [12.2 (0.3 – x)] (x in m) 

 or  

 x

s

T T

θ
∞−

 = 0.0512 sinh 
12.2

(30 – )
100

x 
  

 (x in cm) 

 ∴ Tx = 260 – 8.55 sinh [0.122 (30 – x)] (x in cm) 
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This temperature distribution is plotted below 
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COMMENTS 

In a real situation, the heat transfer coefficient is likely to vary with distance and this would require a 
numerical solution. 

PROBLEM 2.41 

The handle of a ladle used for pouring molten lead is 30 cm long. Originally the handle 
was made of 1.9 × 1.25 cm mild steel bar stock. To reduce the grip temperature, it is 
proposed to form the handle of tubing 0.15 cm thick to the same rectangular shape. If 
the average heat transfer coefficient over the handle surface is 14 W/(m2 K), estimate the 
reduction of the temperature at the grip in air at 21°C. 

GIVEN 

• A steel handle of a ladle used for pouring molten lead 
• Handle length (L) = 30 cm = 0.3 m 
• Original handle: 1.9 by 1.25 cm mild steel bar stock 
• New handle: tubing 0.15 cm thick with the same shape 
• The average heat transfer coefficient ( ch ) = 14 W/(m2 K) 

• Air temperature (T∞) = 21°C 

FIND 

• The reduction of the temperature at the grip 
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ASSUMPTIONS 

• The lead is at the melting temperature 
• The handle is made of 1% carbon steel 
• The ladle is normally in steady state during use 
• The variation of the thermal conductivity is negligible 
• One dimensional conduction 
• Heat transfer from the end of the handle can be neglected 

SKETCH 

L = 0.3 m

1.25 cm

1.9 cm

Solid Hollow
 

PROPERTIES 

From Appendix 2, Tables 10 and 12 
Thermal conductivity of 1% carbon steel = 43 W/(m K) at 20°C 
Melting temperature of lead (Ts) = 601 K = 328°C 

SOLUTION 

The ladle handle can be treated as a fin with an adiabatic end as shown below 

Ts = 328°C

T• = 21°C  

The temperature distribution in the handle, from Table 2.1 is 

 
s

θ
θ

 = 
cosh[ ( )]

cosh( )

m L x

mL

−
 

 where θ = T(x) – T∞  θs = Ts – T∞ = 328°C – 21°C = 307°C 

 m = ch P

kA
 

where  P = 2w + 2t = 2(0.019 m) + 2(0.0125 m) = 0.063 m 

The only difference in the two handles is the cross-sectional area 
Solid handle 

 As = wt = (0.019 m) (0.0125 m) = 0.0002375 m2 

 m L = 0.3 m 
2

2

14 W/(m K)(0.063 m)

43 W/(m K)(0.0002375 m )
 = 2.788 

 L

s

θ
θ

 = 
cosh(0)

cosh(2.788)
 = 0.1266  θL = TL – T∞ = 0.1226 θs 

 ∴ TL = T∞ + 0.1266 θs = 21°C + 0.1266 (307°C) = 60°C 
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Hollow handle 

 AH = wt – [w – 2(0.0015 m)] [t – 2(0.0015 m)]  

  = (0.019 m) (0.0125 m) – (0.016) (0.0095 m) = 0.0000855 m2 

 m L = 0.3 m 
2

2

14 W/(m K)(0.063 m)

43 W/(m K)(0.0000855 m )
 = 4.65 

 L

s

θ
θ

 = 
cosh(0)

cosh(4.647)
 = 0.0192 

 TL = T∞ + 0.01919 θs = 21°C + 0.0192 (307°C) = 27°C 

The temperature of the grip is reduced 33°C by using the hollow handle. 

COMMENTS 

The temperature of the hollow handle would be comfortable to the bare hand, therefore no insulation 
is required. This will reduce the cost of the item without reducing utility. 

PROBLEM 2.42 

A 0.3-cm thick aluminum plate has rectangular fins on one side, 0.16 × 0.6 cm, spaced 
0.6 cm apart. The finned side is in contact with low pressure air at 38°C and the average 
heat transfer coefficient is 28.4 W/(m2 K). On the unfinned side water flows at 93°C and 
the heat transfer coefficient is 283.7 W/(m2 K). (a) Calculate the efficiency of the fins  
(b) calculate the rate of heat transfer per unit area of wall and (c) comment on the 
design if the water and air were interchanged. 

GIVEN 

• Aluminum plate with rectangular fins on one side 
• Plate thickness (D) = 0.3 cm = 0.003 m 
• Fin dimensions (t × L) = 0.0016 m × 0.006 m 
• Fin spacing (s) = 0.006 m apart 
• Finned side  Air temperature (Ta) = 38°C 
  Heat transfer coefficient ( ah ) = 28.4 W/(m2 K) 

• Unfinned side  Water temperature (Tw) = 93°C 
  Heat transfer coefficient ( wh ) = 283.7 W/(m2 K) 

FIND 

(a) The fin efficiency (ηf) 
(b) Rate of heat transfer per unit wall area (q/Aw) 
(c) Comment on the design if the water and air were interchanged 

ASSUMPTIONS 

• The aluminum is pure 
• Width of fins is much longer than their thickness 
• The system has reached steady state 
• The thermal conductivity of the aluminum is constant 
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SKETCH 

W

L = 0.6 m

t = 0.16 m

s = 0.6 m

D = 0.3 cm

Water

Air

Tw = 93° C

Tsw Tsa

Ta = 38° C

 

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12 
The thermal conductivity of aluminum (k) = 238 W/(m K) at 65°C 

SOLUTION 

(a) The fin efficiency is defined as the actual heat transfer rate divided by the rate of heat transfer if 
the entire fin were at the wall temperature. Since the fin is of uniform cross section,  
Table 2.1 can be used to find an expression for the heat transfer from a fin with a convection from 
the tip 

 qf = M 
( )sinh ( ) cosh ( )

cosh ( ) ( ) sinh ( )

ah
mk

a

mL mL

mL h mk mL

+

+
 

where   m2 = ah P

kA
 = 

2

( )
ah w

k wt
 = 

2 ah

k t
 

 M = ah PkA  θs = w 2 ah tk θs  

where θs = Tsa – Ta 
If the entire fin were at the wall temperature (Tsa) the rate of heat transfer would be 

 q′f = ah Af (Tsa – Ta) = ah w(2L + t) (Tsa – Ta) 

The fin efficiency is 

 ηf = 
f

f

q

q′
 = 

( )
( )

sinh ( ) cosh ( )

cosh ( ) sinh ( )

(2 ) ( )

a

a

h
mk

h
mk

a sa a

mL mL
M

mL mL

h w L t T T

 +
 
 +  

+ +
 

 m = 
2 ah

kt
 = 

( )22 28.4 W/(m K)

238 W/(m K)(0.0016 m)
 = 12.2 

1

m
 

 m L = 12.2 
1

m
 (0.006 m) = 0.0733 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
164

 M = w (Tsa – Ta) ( ) ( )2 22 28.4 W/(m K) (0.0016 m) 238W/(m K)  = 4.65 w (Tsa – Tw)s W/(mK) 

 ah

mk
 = 

( )

228.4 W/(m K)
1

12.2 238W/(m K)
m

 = 0.0098 

 ηf = 

2

2

sinh (0.0733) 0.00977cosh (0.0733)
4.65W/(m K)

cosh (0.0733) 0.00977sinh (0.0733)

28.4 W/(m K) [(2)0.006 m 0.0016 m]

+ 
  +

+
 = 0.998 

(b) The heat transfer to the air is equal to the sum of heat transfer from the fins and the heat transfer 
from the wall area not covered by fins. 

The number of fins per meter height is 

  
1m

0.076 m/fin
 = 131.6 fins 

The wall area not covered by fins per m2 of total wall area is 

 Abare = 1 m2 – (131. 6 fins) ( )0.0016 m/fin  (1 m width) = 0.789 m2 

The surface area of the fins per m2 of wall area is 

 Afins = 131.6 fins (2(0.006 m) + 0.0016 m) (1 m width) = 1.79 m2 

The rate of heat transfer to the air is 

 qa = ah  Abare (Tsa – Ta) + ah  ηf Afins (Tsa – Ta) 

 qa = ah  (Abare + ηf Afins) (Tsa – Ta) = sa a

ca

T T

R

−
 

Therefore, the resistance to heat transfer on the air side (Ra) is 

 Rca = 
bare fins

1

( )a fh A Aη+
 ≈ 

total

1

ah A
 

The thermal circuit for the wall is shown below 

Tw Ta

Rcw Rk Rca

 

The individual resistance based on 1 m2 of wall area are 

 Rcw = 
1

w wh A
 = 

2 2

1

238.7 W/(m K)(1m )
 = 0.00419 K/W 

 Rk = 
w

D

kA
 = 

2

0.003m

238.7 W/m K(1m )
 = 0.0000126 K/W 

 Rca = 
bare fins

1

( )a fh A Aη+
 = 

2 2 2

0.003m

28.4 W/(m K) [0.789m (0.998)(1.79 m )+
 = 0.0137 K/W 

The rate of heat transfer through the wall is 

 q = 
tot

T

R

Δ
 = w a

cw k ca

T T

R R R

−
+ +

 = 
93 C 38 C

(0.00419 0.0000126 0.0137)K/W

o o−
+ +

= 3072 W (per m2 of wall) 
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(c) Note that the air side convective resistance is by far the dominant resistance in the problem. 
Therefore, the fins will enhance the overall heat transfer much less on the water side. 

For fins on the water side 

 m = 
( )22 283.7 W/(m K)

238W/(m K)(0.0016 m)
 = 38.6 

1

m
 and m L = 38.6 

1

m
 (0.006 m) = 0.2316 

 M = w (Tsw – Tw) ( ) ( )22 283.7 W/(m K) (0.0016 m)2 238 W/(m K)  = 14.70 w (Tsw – Tw)W/m K 

  wh

mk ( )

2283.7 W/(m K)
1

38.6 238 W/(m K)
m

 = 0.0309 

 ηf = 
2

sinh (0.2316) 0.0309cosh (0.2316)
14.70 W/(m K)

cosh (0.2316) 0.0309sinh (0.2316)

283.7 W/(m K) [2 (0.006 m) 0.0016 m

+ 
 + 

+
 = 0.978 

 q = 
1 1

(0.089 1.79)

w a

ca cw

T T
D

h k h η

−

+ +
+

 = 
o o

2

93 C 38 C

(0.0352 0.0000126 0.00139) (m K)/W

−
+ +

  

  = 1502 W/m2 

COMMENTS 

The fins are most effective in the medium with the lowest heat transfer coefficient. 
With no fins, the rate of heat transfer would be 1419 W/m2. Fins on the water side increase the rate of heat 
transfer 6%. Fins on the air side increase the rate of heat transfer 116%. Therefore, installing fins on the 
water side would be a poor design. 

PROBLEM 2.43 

Compare the rate of heat flow from the bottom to the top in the aluminum structure shown 
in the sketch with the rate of heat flow through a solid slab. The top is at –10°C, the bottom 
at 0°C. The holes are filled with insulation which does not conduct heat appreciably. 

GIVEN 

• The aluminum structure shown in the sketch below 
• Temperature of the top (TT) = – 10°C 
• Temperature of the bottom (TB) = 0°C 
• The holes are filled with insulation which does not conduct heat appreciably 

FIND 

• Compare the rate of heat flow from the bottom to the top with the rate of heat flow through a solid slab 

ASSUMPTIONS 

• The structure is in steady state 
• Heat transfer through the insulation is negligible 
• The thermal conductivity of the aluminum is uniform 
• The edges of the structure are insulated 
• Two dimensional conduction through the structure 
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SKETCH 

3 m

5 cm

1.25 cm

2.5 cm Diameter

2.5 cm

 

PROPERTIES AND CONSTANTS 

The thermal conductivity of aluminum (k) = 236 W/(m K) at 0°C 

SOLUTION 

Because of the symmetry of the structure, we can draw the flux plot for just one of the twenty-four 
equivalent sections 

 

(a) The total number of flow lanes in the structure, (M) = (12) (4) = (48). Each flow lane consists of 
12 curvilinear squares (6 on top as shown, and 6 on bottom. Therefore, the shape factor is 

 S = 
48

12

M

N
=  = 4 

The heat flow per meter, from Equation (2.80), is 

 q = kSΔToverall = 236 W/m K (4) (0°C – (– 10°C)) = 9440 W/m 

The total rate of heat flow is 

 qτoτ = q (length of structure) = ( )9440 W/m  (3 m) = 28,320 W 

(b) For a solid aluminum plate, the total heat flow from Equation (1.2), is 

 qTOT = 
Ak

t
 ΔT = 

[ ](3m)(0.3m) 236 W/(m K)

0.05
 (10 C) = 42,500 W 

Therefore, the insulation filled tubes reduce the heat transfer rate by 33%. 

COMMENTS 

The shape factor was determined graphically and can easily be in error by 10%. 
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Also, the surface temperature will not be uniform in the insulated structure. 

PROBLEM 2.44 

Determine by means of a flux plot the temperatures and heat flow per unit depth in the 
ribbed insulation shown in the accompanying sketch. 

GIVEN 

• The sketch below 

FIND 

(a) The temperatures 
(b) The heat flow per unit depth 

ASSUMPTIONS 

• Steady state conditions 
• Two dimensional heat flow 
• The heat loss through the insulation is negligible 
• The thermal conductivity of the material is uniform 

SKETCH 

Insulated Boundaries

100°C 8 cm
8 cm

16 cm

16 cm

30°C

k = 0.5 W/(mK)

24 cm

24 cm

30°C

In
s
u

la
te

d

In
s
u

la
te

d

100°C

 

SOLUTION 

The total number of heat flow lanes (M) = 11 
The number of curvilinear squares per lane (N) = 8 
Therefore, the shape factor is 

 S = 
11

8

M

N
=  = 1.38 

The rate of heat transfer for unit depth is given by Equation 2.80 

 q = kSΔT = (0.5 W/(m K)) (1.38) (100°C – 30°C) = 48.3 W/m 

PROBLEM 2.45 

Use a flux plot to estimate the rate of heat flow through the object shown in the sketch. 
The thermal conductivity of the material is 15 W/(m K). Assume no heat is lost from the 
sides. 

GIVEN 

• The shape of object shown in the sketch 
• The thermal conductivity of the material (k) = 15 W/(m K) 
• The temperatures at the upper and lower surfaces (30°C & 10°C) 
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FIND 

• The rate of heat flow through the object (By means of a flux plot) 

ASSUMPTIONS 

• No heat is lost from the sides and ends 
• Uniform thermal conductivity 
• Two dimensional conduction 
• Steady state 

SKETCH 

T = 10°C

Insulation
20 m

10 m

10 m

5 mInsulation

T = 30°

 

SOLUTION 

The flux plot is shown below 

In
s
u

la
te

d

In
s
u

la
te

d
(B

y
S

y
m

m
e

tr
y
)

 

The number of heat flow lanes (M) = 2 × 10 = 20 
The number of curvilinear squares in each lane (N) = 12 
Therefore, the shape factor for this object is 

 S = 
20

12

M

N
=  = 1.67 

The rate of heat transfer per unit length from Equation (2.80) is 

 q = kSΔToverall = [15 W/(m K)] (1.67) (20°C) = 500 W/m 

The total rate of heat transfer is 

 qtot = qL = (500 W/m) (20 m) = 10,000 W 

PROBLEM 2.46 

Determine the rate of heat transfer per unit length from a 5-cm-OD pipe at 150°C placed 
eccentrically within a larger cylinder of 85% Magnesia wool as shown in the sketch. The 
outside diameter of the larger cylinder is 15 cm and the surface temperature is 50°C. 
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GIVEN 

• A pipe placed eccentrically within a larger cylinder of 85% Magnesia wool as shown in the sketch 
• Outside diameter of the pipe (Dp) = 5 cm = 0.05 m 
• Temperature of the pipe (Ts) = 150°C 
• Outside diameter of the larger cylinder (Do) = 15 cm = 0.15 m 
• Temperature of outer pipe (To) = 50°C 

FIND 

• The rate of heat transfer per meter length (q) 

 

ASSUMPTIONS 

• Two dimensional heat flow (no end effects) 
• The system is in steady state 
• Uniform thermal conductivity 

SKETCH 

2.5 cm

50°C

150°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
The thermal conductivity of 85% Magnesia wool (k) = 0.059 W/(m K) (at 20°C). 

SOLUTION 

The rate of heat transfer can be estimated from a flux plot 

 

The number of flow lanes (M) = 2 × 15 = 30 
The number of squares per lane (N) = 5 
Therefore, the shape factor is 

 S = 
30

5

M

N
=  = 6 

Equation (2.80) can be used to find the rate of heat transfer per unit length 

 q = kSΔT = kS(Ts – To) = [0.059 W/(m K)] (6) (150°C – 50°C) = 35.4 W/m 
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COMMENTS 

This problem can also be solved analytically (see Table 2.2) 

 S = 
2 2

1

2

4
cosh

2

D d z

Dd

π
−  + −
  

 = 6.53 

(z = the distance between the centers of the circular cross sections) 

 ∴ q = kSΔT = 38.5 W/m 
The answer from the graphical solution is 8% less than the analytical value. 

PROBLEM 2.47 

Determine the rate of heat flow per foot length from the inner to the outer surface of the 
molded insulation in the accompanying sketch. Use 0.17 W/(m K). 

GIVEN 

• The object with a cross section as shown in the sketch below 
• The thermal conductivity (k) = 0.17 W/(m K) 

FIND 

• The rate of heat flow per foot length from the inner to the outer surface (q) 

ASSUMPTIONS 

• The system has reached steady state 
• The thermal conductivity does not vary with temperature 
• Two dimensional conduction 

SKETCH 

15 cm

7.5 cm

Temperature of these Surfaces is 38°C

This Face is Insulated Temperature of
this Surface

is 232°C

7.
5

cm
R
ad

iu
s

7.5 cm

 

SOLUTION 

A flux plot for the object is shown below 

Insulated

 

The number of heat flow lanes (M) = 2 × 8 = 16 
The number of curvilinear squares per lane (N) = 4 
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Therefore, the shape factor is 

   S = 
16

4
 = 4 

The heat flow per unit length, from Equation (2.80) is 

 q = kSΔToverall = (0.17 W/(m K)) (4) (232 – 38) K = 111.5 W/m 

COMMENTS 

The problem can also be solved analytically. From Table 2.2 

 S = 
( )

π
ln 1.08W/D

 =  
30cm

ln 1.08
15cm

π
 
  

 = 4.08  

 q = kSΔT = 113.7 W/m  

The analytical solution yields a rate of heat flow that is about 2% larger than the value obtained from 
the flux plot. 

PROBLEM 2.48 

A long 1-cm-diameter electric copper cable is embedded in the center of a 25 cm square 
concrete block. If the outside temperature of the concrete is 25°C and the rate of 
electrical energy dissipation in the cable is 150 W per meter length, determine the 
temperatures at the outer surface and at the center of the cable. 

GIVEN 

• A long electric copper cable embedded in the center of a square concrete block 
• Diameter of the pipe (Dp) = 1 cm = 0.01 m 
• Length of a side of the block = 25 cm = 0.25 m 
• The outside temperature of the concrete (To) = 25°C 
• The rate of electrical energy dissipation ( /GQ L ) = 150 W/m 

FIND 

• The temperatures at the outer surface (Ts) and at the center of the cable (Tc) 

ASSUMPTIONS 

• Two dimensional, steady state heat transfer 
• Uniform thermal conductivities 

SKETCH 

To = 25° C

1 cm

S = 25 cm

S = 25 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
The thermal conductivity of concrete (kb) = 0.128 W/(m K) at 20°C 
From Appendix 2, Table 12 
The thermal conductivity of copper (kc) = 396 W/(m K) at 63°C 
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SOLUTION 

For steady state, the rate of heat transfer through the concrete block must equal the rate of electrical 
energy dissipation. The heat transfer rate can be estimated with a flux plot of one quarter of the block: 

 

The number of flow lanes (M) = 4 × 6 = 24 
The number of squares per lane (N) = 10 
Therefore, the shape factor is 

 S = 
M

N
 = 

24

10
 = 2.4 

The rate of heat flow per unit length is given by Equation (2.80) 

 q = kbSΔT = kbS(Ts – To) = GQ

L


 

Solving for the surface temperature of the cable 

 Ts = To + 

G

b

Q

L

k S

 
  



 = 25°C + 
150W/m

[0.128W/(m K)](2.4)
 = 513°C 

From Equation (2.51) the temperature in the center of the cable is 

 Tc = Ts + 
2

0

4
G

C

q r

k


 

Where Gq = heat generation per unit volume 
2

0

Gq

r Lπ


 

TC = Ts + 
4

G

C

Q

L

kπ

 
  



 = 513°C + 
( )
150W/m

4 396W/(m K)π
 = 513°C + 0.03°C ≈ 513°C 

COMMENT 

The thermal conductivity of the cable is quite large and therefore its temperature is essentially 
uniform. 
The analytical solution for this geometry, given in Table 2.2, is 

 S = ( )
2 π

W
In 0.8

D

 = 
2 π

25 cm
In 1.08

1cm
 
  

 = 1.91 

This would lead to a cable temperature of 639°C, 20% higher than the flux plot estimate. The high 
error is probably due to the difficulty in drawing the flux plot close to the cable and may be improved 
by drawing a larger scale flux plot is geometries that involve tight curves. 
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PROBLEM 2.49 

A large number of 3.8 cm-OD pipes carrying hot and cold liquids are embedded in 
concrete in an equilateral staggered arrangement with center line 11.2 cm apart as 
shown in the sketch. If the pipes in rows A and C are at 16°C while the pipes in rows B 
and D are at 66°C, determine the rate of heat transfer per meter length from pipe X in 
row B. 

GIVEN 

• A large number of pipes embedded in concrete as shown below 
• Outside diameter of pipes (D) = 3.8 cm 
• The temperature of the pipes in rows A and C = 16°C 
• The temperature of the pipes in rows B and D = 66°C 

FIND 

• The rate of hat transfer per foot length from pipe X in row B 

ASSUMPTIONS 

• Steady state, two dimensional heat transfer 
• Uniform thermal conductivity in the concrete 

SKETCH 

3.8 cm

X

11.2 cm

Row : 16°CA

Row : 66°CB

Row : 16°CC

Row : 66°CD

11.2 cm

11.2 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
The thermal conductivity of concrete (kb) = 0.128 W/(m K) at 20°C 

SOLUTION 

A flux diagram for this problem is shown below 
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By symmetry, the total heat transfer from the tube X is four times that shown in the flux diagram. 

The number of heat flow lanes (M) = 8 × 4 = 32 
The number of curvilinear squares per lane (N) = 7 
Therefore, the shape factor is 

 S = 
M

N
 = 

32

7
 = 4.6 

The heat transfer per unit length from Table 2.2, from Equation (2.80) is 

 q KSΔToverall = 0.128 W/(m K) (4.6) (66 – 16) 

 = 35.3 W/m 

PROBLEM 2.50 

A long 1-cm-diameter electric cable is imbedded in a concrete wall (k = 0.13 W/(m K)) 
which is 1 m by 1 m, as shown in the sketch below. If the lower surface is insulated, the 
surface of the cable is 100°C and the exposed surface of the concrete is 25°C, estimate 
the rate of energy dissipation per meter of cable. 

GIVEN 

• A long electric cable imbedded in a concrete wall 
• Cable diameter (D) = 1 cm = 0.01 m 
• Thermal conductivity of the wall (k) = 0.13 W/(m K) 
• Wall dimensions are 1 m by 1 m, as shown in the sketch below 
• The lower surface is insulated 
• The surface temperature of the cable (Ts) = 100°C 
• The temperature of the exposed concrete surfaces (To) = 25°C 

FIND 

• The rate of energy dissipation per meter of cable (q/L) 

ASSUMPTIONS 

• The system is in steady state 
• The thermal conductivity of the wall is uniform 
• Two dimensional heat transfer 

SKETCH 

1 cm

Insulated Surface

1 m

1 m
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SOLUTION 

By symmetry, only half of the flux plot needs to be drawn 

 

 

The number of heat flow lanes (M) = 2 × 14 = 28 
The number of curvilinear squares per lane (N) = 6 
Therefore, the shape factor is 

 S = 
M

N
 = 

28

6
 = 4.7 

For steady state, the rate of energy dissipation per unit length in the cable must equal the rate of heat 
transfer per unit length from the cable which, from Equation (2.80), is 

 q = kS(Ts – To) = (0.13 W/(m K) (4.7)) (100°C – 25°C) = 46 W/m 

PROBLEM 2.51 

Determine the temperature distribution and heat flow rate per meter length in a long 
concrete block having the shape shown below. The cross-sectional area of the block is 
square and the hole is centered. 

GIVEN 

• A long concrete block having the shape shown below 
• The cross-sectional area of the block is square 
• The hole is centered 

FIND 

(a) The temperature distribution in the block 
(b) The heat flow rate per meter length 

ASSUMPTIONS 

• The heat flow is two dimensional and in steady state 
• The thermal conductivity in the block is uniform 

SKETCH 

50°C 6 cm

12 cm

Insulated Surface

10°C
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
The thermal conductivity of concrete (kb) = 0.128 W/(m K) at 20°C 

SOLUTION 

The temperature distribution and heat flow rate may be estimated with a flux plot 

 

(a) The temperature distribution is given by the isotherms in the flux plot. 
(b) The number of flow lanes (M) = 2 × 21 = 42 
 The number of squares per lane (N) = 4 
Therefore, the shape factor is 

 S = 
M

N
 =  

42

4
 = 10.5 

From Equation (2.80), the rate of heat flow per unit length is 

 q = kSΔT = [0.128 W/(m K)] (10.5) (40°C) = 54  W/m 

COMMENTS 

If the lower surface were not insulated, the shape factor from Table 2.2, would be 

 S = ( )
2

W
In 1.08

D

π
 = 14.8  q = 75.6 W/m 

The rate of heat transfer with the insulation as calculated with the flux plot is about 29% less than the 
analytical result without insulation. We would expect a reduction of slightly less than 25%. 

PROBLEM 2.52 

A 30-cm-OD pipe with a surface temperature of 90°C carries steam over a distance of 
100 m. The pipe is buried with its center line at a depth of 1 m, the ground surface is –
6°C, and the mean thermal conductivity of the soil is 0.7 W/(m K). Calculate the heat 
loss per day, and the cost, if steam heat is worth $3.00 per 106 kJ. Also, estimate the 
thickness of 85% magnesia insulation necessary to achieve the same insulation as 
provided by the soil with a total heat transfer coefficient of 23 W/(m2 K) on the outside 
of the pipe. 

GIVEN 

• A buried steam pipe 
• Outside diameter of the pipe (D) = 30 cm = 0.3 m 
• Surface temperature (Ts) = 90°C 
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• Length of pipe (L) = 100 m 
• Depth of its center line (Z) = 1 m 
• The ground surface temperature (Tg) = –6°C 
• The mean thermal conductivity of the soil (k) = 0.7 W/(m K) 
• Steam heat is worth $3.00 per 106 kJ 
• The heat transfer coefficient (hc) = 23 W/(m2 K) for the insulated pipe 

FIND 

(a) The heat loss per 24 hour day 
(b) The value of the lost heat 
(c) The thickness of 85% magnesia insulation necessary to achieve the same insulation 

ASSUMPTIONS 

• Steady state conditions 
• Uniform thermal conductivity 
• Two dimensional heat transfer from the pipe 

SKETCH 

D = 0.3 m

Tg = – 6°C

Ts = 90°C
Z = 1 m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
The thermal conductivity of 85% magnesia (ki) = 0.059 W/(m K) (at 20°C) 

SOLUTION 

(a) The shape factor for this problem, from Table 2.2, is 

 S = 
1

2
2

cosh

π
−  
 

L
z

D

 If   z/L < 1 

Note that the condition Z/L << 1 is satisfied in this problem. 

 S = 
–1

2 (100m)
2(1m)

cosh
0.3m

π
 
  

 = 243 m 

From Equation (2.80), the rate of heat transfer is 

 q = kSΔT = 0.7 W/(m K) (243 m) (90°C – (– 6°C)) 

 q = 16,300 W  (J/Ws) ( )k J 3600s 24 h

1000 J h day
   

     
 = 1.41 × 106 kJ/Day 

(b) The cost of this heat loss is 

 Cost = ( )6
6

$3.00
1.41×10 kJ/day

10 kJ
 
    = $4.23/day 

 

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
178

(c) The thermal circuit for the pipe covered with insulation is 
Ts Tg

Rki Rc  

The rate of heat loss from the pipe is 

 q = 
s g

ki c

T T

R R

−
+

 = 

1

1 1
ln

2 2π π

−
 +  

s g

o

i o c

T T

r

Lk r Lr h

 = 16,300 W 

16,300 W = 
2 ( )

1 1
ln

π −
 +  

s g

o

i i o c

L T T

r

k r r h

 = 

( )2

2 (100m)[90 ( 6 )]
1 1

ln
0.059W/(m K) 0.15m 23W/(m K)

o

o

L C
r

r

π ° − − °
  +  

 

 ln 
0.15

or + 0.00257 
1

or
 = 0.2183 

 By trial and error: ro = 0.184 m 

Insulation thickness = ro – ri = 0.184 m – 0.15 m = 0.034 m = 3.4 cm 

COMMENTS 

The value of the heat loss per year is 365 × $4.23 = $1544. Hence insulation will pay for itself quite 
rapidly. 

PROBLEM 2.53 

Two long pipes, one having a 10-cm-OD and a surface temperature of 300°C, the other 
having a 5-cm-OD and a surface temperature of 100°C, are buried deeply in dry sand 
with their centerlines 15 cm apart. Determine the rate of heat flow from the larger to the 
smaller pipe per meter length. 

GIVEN 

• Two long pipes buried deeply in dry sand 
• Pipe 1  Diameter (D1) = 10 cm = 0.1 m, 
  Surface temperature (T1) = 300°C 
• Pipe 2  Diameter (D2) = 5 cm = 0.05 m, 
  Surface temperature (T2) = 100°C 
• Spacing between their centerlines (s) = 15 cm = 0.15 m 

FIND 

• The rate of heat flow per meter length (q/L) 

ASSUMPTIONS 

• The heat flow between the pipes is two dimensional 
• The system has reached steady state 
• The thermal conductivity of the sand is uniform 

SKETCH 

l = 15 cm D2 = 5 cmD1 = 10 cm

 

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
179

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
Thermal conductivity of dry sand (k) = 0.582 W/(m K) at 20°C 

SOLUTION 

The shape factor for this geometry, from Table 2.2, is 

 S = 
2 2

–1

2

– 1 –
cosh

2
L r

r

π
 
  

 

where r = 1

2

r

r
 = 

5cm

2.5cm
 = 2 and L = 

2

1

r
 = 

15cm

2.5cm
 = 6 

 ∴ S = ( )–1

2π
36 – 1 – 4

cosh
4

 = 2.296 

The rate of heat transfer per unit length is 

 q = SkΔT = (2.296)  0.582 W/(m K) (300°C – 100°C) = 267 W/m 

PROBLEM 2.54 

A radioactive sample is to be stored in a protective box with 4 cm thick walls having 
interior dimensions 4 by 4 by 12 cm. The radiation emitted by the sample is completely 
absorbed at the inner surface of the box, which is made of concrete. If the outside 
temperature of the box is 25°C, but the inside temperature is not to exceed 50°C, 
determine the maximum permissible radiation rate from the sample, in watts. 

GIVEN 

• A radioactive sample in a protective concrete box 
• Wall thickness (t) = 4 cm = 0.4 m 
• Box interior dimensions: 4 × 4 × 12 cm 
• All radiation emitted is completely absorbed at the inner surface of the box 
• The outside temperature of the box (To) = 25°C 
• The maximum inside temperature (Ti) = 50°C 

FIND 

• The maximum permissible radiation rate from the sample, q (in watts) 

ASSUMPTIONS 

• The system is in steady state 

SKETCH 

20 cm

12 cm

12 cm

12 cm

4 cm

4 cm
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
The thermal conductivity of concrete (kb) = 0.128 W/(m K) at 20°C 

SOLUTION 

The box consists of 4 wall sections: A = 4 cm × 12 cm 

    2 wall sections: A = 4 cm × 4 cm 

    4 edge sections: D = 12 cm long 

    8 edge sections: D = 4 cm long 

    8 corner sections: L = 4 cm thick 

The shape factors for this geometry (when all interior dimensions are greater than one-fifth of the wall 
thickness, as in this case) is given on Section 2.5.2 of the text 
For the wall sections 

 S1 = 
A

L
 = 

(4cm)(12cm)

4cm
 = 12 m     and     S2 = 

A

L
 = 

(4cm)(4cm)

4cm
 = 4 cm 

For the edge sections 

S3 = 0.54 D = 0.54 (12 cm) = 6.48 cm     and    S4 = 0.54 D = 0.54 (4 cm) = 2.16 cm 

For the corner sections 

  S5 = 0.15 L = 0.15 (4 cm) = 0.6 cm 

Multiplying each shape factor by the number of elements having that shape factor and summing them 

 S = 4 S1 + 2 S2 + 4 S3 + 8 S4 + 8 S5 

S = 4 (12 cm) + 2(4 cm) + 4(6.48 cm) + 8(2.16 cm) + 8(0.6 cm) = 104 cm 

The rate of heat transfer is 

 q = kSΔT = 0.128 W/(m K) (104 cm) (1m/100 cm) (50°C – 25°C) = 3.3 W 

COMMENTS 

The conductivity of the concrete was evaluated at 20°C while the actual temperature is between 50°C 
and 25°C. Therefore, the actual rate of heat flow may be slightly different than that calculated, but no 
better property value is available in the text. 

PROBLEM 2.55 

A 15 cm-OD pipe is buried with its centerline 1.25 m below the surface of the ground  
(k of soil is 0.35 W/(m K)). An oil having a density of 800 kg/m3 and a specific heat of 2.1 
kJ/(kg K) flows in the pipe at 5.6 liters/s. Assuming a ground surface temperature of 5°C 
and a pipe wall temperature of 95°C, estimate the length of pipe in which the oil 
temperature decreases by 5.5°C. 

GIVEN 

• An oil filled pipe buried below the surface of the ground 
• Pipe outside diameter (D) = 15 cm = 0.15 m 
• Depth of centerline (z) = 125 cm = 1.25 m 
• Thermal conductivity of the soil (k) = 0.35 W/(m K) 
• Specific gravity of oil (Sp. Gr.) = 0.8 
• Specific heat of oil (cp) = 2.1 kJ/(kg K) 
• Flows rate of oil m  = 5.6 liters/s 
• The ground surface temperature (Ts) = 5°C 
• The pipe wall temperature (Tp) = 95°C 
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FIND 

• The length of pipe (L) in which the oil temperature decreases by 5.5°C 

ASSUMPTIONS 

• Steady state condition 
• Two dimensional heat transfer 

SKETCH 

D = 0.15 m

Ts = 5°C

Tp = 95°C

Z = 1.25 m

 

SOLUTION 

The rate of heat flow from the pipe can be calculated using the shape factor from Table 2.2 for an 
infinitely long cylinder 

 S = ( )–1

2
2

cosh
Z

D

π
 = 

–1

2π
2(1.25)

cosh
0.15

 
 

 = 1.79 

The rate of heat transfer per unit length is given by Equation (2.80) 

 q = kSΔToverall = (0.35 W/(m K)) (1.79) (95 – 5) 
  = 56.4 W/m 
The total heat loss required to decrease the oil by 5.5°C is 

 qL = m Cp ΔT = 5.6 liters/s (0.8 kg/liters) (2.1 kJ/(kg K)) (5.5°C) 

 = 51750 W 

We can estimate the length of pipe in which the oil temperature drops 5.5°C by assuming the rate of 
heat loss from the pipe per unit length is constant, then: 

 qt = qL  L = tq

q
 = 

51750 W

56.4 W/m
 = 917 m 

COMMENTS 

The heat loss from the pipe will actually be less because as the oil temperature and therefore also the 
pipe temperature decreases with distance from the inlet. This means the length will be slightly longer 
than the estimate above. If the calculation is based on an arithmetic mean pipe temperature of 90.5°C 
the estimated length is 966 m about 5% more. 

PROBLEM 2.56 

A 2.5-cm-OD hot steam line at 100°C runs parallel to a 5.0 cm OD cold water line at 
15°C. The pipes are 5 cm center to center and deeply buried in concrete with a thermal 
conductivity of 0.87 W/(m K). What is the heat transfer per meter of pipe between the 
two pipes? 

GIVEN 

• A hot steam line runs parallel to a cold water line buried in concrete 
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• Hot pipe outside diameter (Dh) = 2.5 cm = 0.025 m 
• Hot pipe temperature (Th) = 100°C 
• Cold pipe outside diameter (Dc) = 5.0 cm = 0.05 m 
• Cold pipe temperature (Tc) = 15°C 
• Center to center distance between pipes (l) = 5 cm = 0.05 m 
• Thermal conductivity of concrete (k) = 0.87 W/(m K) 

FIND 

• The heat transfer per meter of pipe (q/L) 

ASSUMPTIONS 

• Two dimensional heat transfer between the pipes 
• Steady state conditions 
• Uniform thermal conductivity 

SKETCH 

l = 5 cm

Dc = 5 cm
Dh = 2.5 cm

Concrete

 

PROPERTIES AND CONSTANTS 

Specific heat of water (cp) = 1 Btu/(lb °F) = 4187 J/(kg K) 

SOLUTION 

The shape factor for this geometry is in Table 2.2 

 S = 
2 2

1

2

1
cosh

2
L r

r

π
−  − −
  

 

Where L = 
1

hD
 = ( )1

0.05m
0.025m

cosh
2

−
 = 4 and r = c

h

r

r
 = c

h

D

D
 = 

0.05

0.025
 = 2 

 ∴ S = ( )1

2
16 1 4

cosh
4

π
− − −  = 3.763 

The rate of heat transfer per unit length, from Equation (2.80), is 

 q = kSΔToverall = 0.87 W/(m K) (3.763) (100°C – 15°C) = 278 W/m 

COMMENTS 

Normally, the temperature of both fluids will change as heat is transferred between them. Hence, for 
any appreciable length of pipe, an average temperature difference must be used. 
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PROBLEM 2.57 

Calculate the rate of heat transfer between a 15-cm-OD pipe at 120°C and a 10-cm-OD 
pipe at 40°C. The two pipes are 330 m long and are buried in sand [k = 0.33 W/(m K)] 12 m 
below the surface (Ts = 25°C). The pipes are parallel and are separated by 23 cm (center 
to center) distance. 

GIVEN 

• Two parallel pipes buried in sand 
• Pipe 1  Outside diameter (D1) = 15 cm = 0.15 m 
  Temperature (T1) = 120°C 
• Pipe 2  Outside diameter (D2) = 10 cm = 0.1 m  
  Temperature (T2) = 40°C 
• Length of pipes (L) = 330 m  
• Thermal conductivity of the sand (k) = 0.33 W/(m K) 
• Depth below surface (d) = 1.2 m 
• Surface temperature (Ts) = 25°C 
• Center to center distance between pipes (s) = 23 cm = 0.23 m 

FIND 

• The rate of heat transfer between the pipes (q) 

ASSUMPTIONS 

• The thermal conductivity of the sand is uniform 
• Two dimensional, steady state heat transfer 

SKETCH 

d = 1.2 m

Ts = 25° C

T1 = 120°C

S = 23 cm

D1 = 15 cm D2 = 10 cm

T2 = 40°C

 

SOLUTION 

For the pipe-to-pipe heat transfer, the surface is not important since Z >> D. The shape factor for this 
geometry, from Table 2.2, is 

 S = 2 2
1

2

1
cosh

2
L r

r

π
−  − −
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 where L = 
2

1

r
 = 

0.23m

0.05m
 = 4.6    and    r = 1

2

r

r
 = 1

2

D

D
 = 

15m

0.1m
 = 1.5 

 ∴ S = 2 2
1

2

(4.6) 1 (1.5)
cosh

2(1.5)

π
−  − −
  

 = 2.541 

The rate of heat transfer per unit length is 

 
q

L
 = kSΔT = 0.33 W/(m K) (2.541) (120°C – 40°C) = 67 W/m 

 For L = 330 m: q = 67 W/m (330 m) = 22,100 W 

COMMENTS 

Normally, the temperature of both fluids will change as heat is transferred between them. Hence, for 
any appreciable length of pipe, an average temperature difference must be used. 

PROBLEM 2.58 

A 0.6-cm-diameter mild steel rod at 38°C is suddenly immersed in a liquid at 93°C with 

ch  = 110 W/(m2 K). Determine the time required for the rod to warm to 88°C. 

GIVEN 

• A mild steel rod is suddenly immersed in a liquid 
• Rod diameter (D) = 0.6 cm = 0.006 m 
• Initial temperature of the rod (To) = 38°C 
• Liquid temperature (T∞) = 93°C 

• Heat transfer coefficient ( ch ) = 113.5 W/(m2 K) 

FIND 

• The time required for the rod to warm to 88°C 

ASSUMPTIONS 

• The rod is 1% carbon steel 
• Constant thermal conductivity 
• End effects are negligible 
• The rod is very long compared to its diameter 
• There is radial conduction only in the rod 

SKETCH 

D = 0.6 cm

Liquid

Initial Temperature ( ) = 38°CTo

T• = 93°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10: For 1% carbon steel at 20°C: 
Thermal conductivity (k) = 43 W/(m K) 
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Specific heat (c) = 473 J/(kg K) 
Density (ρ) = 7801 kg/m3 
Thermal diffusivity (α) = 1.172 × 10–5 m2/s. [α = k/ρc]. 

SOLUTION 

The Biot number is calculated first to check if the internal resistance is negligible 

 Bi = 
4
ch D

k
 = 

( )
( )

2

2

110W/(m K) (0.006m)

4 43W/(m K)
 = 0.0038 << 0.1 

Therefore, the internal resistance of the rod is negligible. 
The temperature-time history of the rod, from Equation (2.84) is 

 
o

T T

T T
∞

∞

−
−

 = exp c sh A
t

c Vρ
 
  

 

 
c sh A

c Vρ
 = 

2

4

ch DL

c D L

π
πρ

 = 
4 ch

c Dρ
 = 

( )
( )

2

3

4 100W/(m K) (J/Ws)

(473W/kg K) 7801 Kg/m (0.006m)
 = 0.020 1/S 

 
o

T T

T T
∞

∞

−
−

 = exp ( )1
0.020 −  

t
S

 

Solving for the time 

 t = – (50.3 s) ln 
o

T T

T T
∞

∞

− 
  −

 

 
The time required to reach 88°C is 

 t = – (50.3 s) ln 
88 93

38 93

− 
  −

 = 121s 

COMMENTS 

The analysis has assumed that the heat capacity of the liquid is much larger than that of the rod and 
thus the liquid temperature remains constant. 

PROBLEM 2.59 

A spherical shell satellite (3-m-OD, 1.25-cm-wall thickness, made of stainless steel) 
reenters the atmosphere from outer space. If its original temperature is 38°C, the 
effective average temperature of the atmosphere is 1093°C, and the effective heat 
transfer coefficient is 115 W/(m2 °C), estimate the temperature of the shell after reentry, 
assuming the time of reentry is 10 min and the interior of the shell is evacuated. 

GIVEN 

• A spherical stainless steel satellite reentering the atmosphere 
• Outside diameter (D) = 3 m 
• Wall thickness (L) = 1.25 cm = 0.0125 m 
• Its original temperature (To) = 38°C 
• The effective temperature of the atmosphere (T∞) = 1093°C 

• The effective heat transfer coefficient ch  = 115 W/(m2 °C) 
• The time of reentry (tr) = 10 min = 600 s 
• The interior of the shell is evacuated 
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FIND 

• The temperature of the shell after reentry (Tf) 

ASSUMPTIONS 

• Exterior heat transfer is uniform over the shell 
• Assume radiation heat transfer is allowed for in the heat transfer coefficient 

 

 

 

SKETCH 

D = 3 m

Vacuum

L = 1.25 cm

T• = 1093°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10, for stainless steel at 20°C 
Thermal conductivity (k) = 14.4 W/(m K) 
Density (ρ) = 7817 kg/m3 
Specific heat(c) = 461 J/(kg K) 

SOLUTION 

Since the thickness of the shell is much smaller than the shell radius, the wall can be treated as a plane 
wall. To estimate the importance of internal thermal resistance, the Biot number is calculated first 

 Bi = c

s

h L

k
 = 

2[115W/(m °C)](0.0125m)

14.4W/(m K)
 = 0.099 < 0.1 

Therefore, the internal resistance is less than 10% of the external resistance and may be neglected. 
The temperature-time history of the satellite is given by Equation (2.84): 

 
s

T T

T T
∞

∞

−
−

 = exp c sh A
t

c Vρ
 

−  
 = exp (– Bi Fo) 

 Bi Fo = 2
c

s

h L t

k L

α   
    

 = c sh A
t

c Vρ
 = 

( ) ( )
2

3 34
3 2 2

ch D t

D D
c L

π

ρ π
 

− −  

 

 Bi Fo = 
( )

( )
2 2

3 3 34
3

[115W/(m K)](3m) J/(Ws)

[461J/(kg K)] 7817kg/m [(1.5m) (1.5m 0.0125m) ]− −
t

 

  = 0.0025t (t in seconds) 

 
o

T T

T T
∞

∞

−
−

 = e–0.0025t 

 T = T∞+ (To – T∞)e–0.0025t 
 Tf = 1093°C + (38°C – 1093°C) e–0.0025(600) = 868°C 
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COMMENTS 

The analysis has neglected thermodynamic heating during reentry. 

PROBLEM 2.60 

A thin-wall cylindrical vessel (1 m in diameter) is filled to a depth of 1.2 m with water at 
an initial temperature of 15°C. The water is well stirred by a mechanical agitator. 
Estimate the time required to heat the water to 50°C if the tank is suddenly immersed 
into oil at 105°C. The overall heat transfer coefficient between the oil and the water is 
284 W/(m2 K), and the effective heat transfer surface area is 4.2 m2. 

GIVEN 

• A thin wall cylindrical vessel filled with water is suddenly immersed into oil 
• Diameter of vessel (D) = 1 m 
• Depth of water is vessel = 1.2 m  
• Initial temperature (To) = 15°C 
• Final temperature (Tf) = 50°C 
• Oil temperature (T∞) = 105°C 
• The overall heat transfer coefficient between the oil and water ( )h  = 284 W/(m2 K) 

• The effective heat transfer surface area (A) = 4.2 m2 

FIND 

• The time required to heat the water to 50°C 

ASSUMPTIONS 

• The thermal capacitance of the cylindrical vessel is negligible 
• The temperature of the water is uniform 
• The oil temperature remains constant 

SKETCH 

Oil
= 105°CT•

Water
15°C

= 50°C
T

T
o

f 1.2 m

1 m

 

PROPERTIES AND CONSTANTS 

Specific heat of water (c) = 1 Btu/lb = 4187 J/(kg K) 

Density of water (ρ) = 1000 kg/m3 

SOLUTION 

From Equation (2.83), the temperature-time relationship is 

 
o

T T

T T
∞

∞

−
−

 = exp sh A
t

c Vρ
 

−  
 

Solving for the time 

 t = 
s

c V

h A

ρ−
 ln 

o

T T

T T
∞

∞

− 
  −
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 t  = 
( ) ( )3 2

2 2

4187J/(kg K) 1000kg/m [ (0.5m) (1.2 m)]

[284 W/(m K)](4.2m )(J/(W s))

π−
 ln 

50°C 105°C

15°C 105°C

− 
  −

  

  = 1629 s = 27 min 

PROBLEM 2.61 

A thin-wall jacketed tank, heated by condensing steam at one atmosphere contains 91 kg 
of agitated water. The heat transfer area of the jacket is 0.9 m2 and the overall heat 
transfer coefficient U = 227 W/(m2 K) based on that area. Determine the heating time 
required for an increase in temperature from 16°C to 60°C. 

GIVEN 

• A thin wall jacketed tank, heated by condensing steam 
• Steam pressure = one atmosphere 
• Mass of water in the tank = 91 kg 
• The heat transfer area (A) = 0.9 m2 
• The overall heat transfer coefficient (U) = 227 W/(m2 K) based on that area 
• Temperature increases from 16°C to 60°C 

FIND 

• Determine the heating time required 

ASSUMPTIONS 

• Uniform water temperature due to agitation 
• Thermal capacitance of the tank wall is negligible 

SKETCH 

91 kg
of

Water

Steam
In

Steam
Out

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13 
The specific heat of water (c) = 1 Btu/lb = 4187 J/(kg K) 

Temperature of saturated steam at 1 atmosphere (1.01 × 105 ρa) = 100°C 

SOLUTION 

The temperature-time history for this system is given by Equation (2.83). 

 
o

T T

T T
∞

∞

−
−

 = exp sUA
t

c Vρ
 −  

 = exp sUA
t

m
cρ

ρ

 −  
     

 = exp sUA
t

c m
 −  

 

Solving this expression for the time 

 t = 
cm

ln
f

s o

T T

UA T T
∞

∞

− 
−   −

= – 
( )

2 2

[4187J/(kg K)](91kg) (Ws/J)

[227W/(m K)](0.9 m )
ln

60 C 100 C

16 C 100 C

° − ° 
  ° − °

 = 1384 s = 23 min. 
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PROBLEM 2.62 

The heat transfer coefficients for the flow of 26.6°C air over a 1.25 cm diameter sphere 
are measured by observing the temperature-time history of a copper ball of the same 
dimension. The temperature of the copper ball (c = 376 J/(kg K), ρ = 8928 kg/m3) was 
measured by two thermocouples, one located in the center, and the other near the 
surface. Both of the thermocouples registered, within the accuracy of the recording 
instruments, the same temperature at a given instant. In one test run, the initial 
temperature of the ball was 66°C and in 1.15 min, the temperature decreased by 7°C. 
Calculate the heat transfer coefficient for this case. 

GIVEN 

• A copper ball with air flowing over it 
• Ball diameter (D) = 1.25 cm = 0.0125 m 
• Air temperature (T∞) = 26.6°C 
• Specific heat of ball (c) = 376 J/(kg K) 
• Density of the ball (P) = 8928 kg/m3 
• Thermocouples in the center and the surface registered the same temperature 
• Initial temperature of the ball (To) = 66°C 
• Lapse time = 1.15 min = 69 s 
• The temperature decrease (To – Tf) = 7°C 

FIND 

• The heat transfer coefficient ( )ch  

ASSUMPTIONS 

• The heat transfer coefficient remains constant during the cooling period. 

SKETCH 

Thermocouples

D = 1.25 cm

Copper Ball

Air

= 26.6°CT•

 

SOLUTION 

Since the thermocouples register essentially the same temperature, the internal resistance of the ball is 
small compared to the external resistance and the ball can be treated with the lumped heat capacity 
method. 
From Equation (2.84) the temperature-time history is 

 
o

T T

T T
∞

∞

−
−

 = exp ch A
t

c Vρ
 

−  
 = exp ( )

2

3

( )

6

ch D
t

c D

π
πρ

 
− 

−  

 = exp 
6 ch

t
c Dρ

 −
  

 

Solving for the heat transfer coefficient 

 ch  = 
6

c D

t

ρ
 ln 

o

T T

T T
∞

∞

− 
  −

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
190

 ch  =   – 
( )

( )

3[376J/(kg K)] 8928 kg/m (0.0125m)

6(69s) J/(Ws)
 ln 

(66 C 7 C) 26.6 C

66 C 26.6 C

° − ° − ° 
  ° − °

 

 = 19.8 W/(m2 K) 

COMMENTS 

The value is an average over the cooling period. 
The procedure described by this problem can be used to evaluate heat transfer coefficients for odd 
shaped object experimentally. 

PROBLEM 2.63 

A spherical stainless steel vessel at 93°C contains 45 kg of water initially at the same 
temperature. If the entire system is suddenly immersed in ice water, determine  
(a) the time required for the water in the vessel to cool to 16°C, and (b) the temperature 
of the walls of the vessel at that time. Assume that the heat transfer coefficient at the 
inner surface is 17 W/(m2 K), the heat transfer coefficient at the outer surface is 22.7 
W/(m2 K), and the wall of the vessel is 2.5 cm thick. 

GIVEN 

• A spherical stainless steel vessel of water is suddenly immersed in ice water 
• Initial temperature of vessel and water (Ti) = 93°C 
• Mass of water in the vessel (m) = 45 kg 

• The inner heat transfer coefficient cih  = 17 W/(m2 K) 

• The outer heat transfer coefficient coh  = 22.7 W/(m2 K) 
• The vessel wall thickness (L) = 2.5 cm = 0.025 m 

FIND 

(a) The time required for the water in the vessel to cool to 16°C 
(b) The temperature of the walls of the vessel at that time (Tsf) 

ASSUMPTIONS 

• The water in the vessel is well mixed, therefore its temperature is uniform 
• The vessel is completely filled with water 

SKETCH 

L = 25 cm

I
T
CE Water

= 0°C•

hco

hci

Water
= 93°C

m = 45 kg
To

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10 
For stainless steel: The thermal conductivity (ks) = 14.4 W/(m K) 

Density (ρ) = 7817 kg/m3 
Specific heat (c) = 461 J/(kg K) 

SOLUTION 

If the vessel is completely filled with water 
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 V = wm

ρ
 = 

6

π
D1

3 

 Di = 

1

36 wm

π ρ
 
  

 = 

1

3

3

6(45kg)

(1000 kg / m )π
 
  

 = 0.44 m 

 Do = Di  + 2 L = 0.44 m  + 2 (0.025 m) = 0.49 m 

The internal resistance of the water can be neglected since the water is assumed to be well mixed. The 
importance of the internal resistance of the vessel wall is indicated by the Biot number of the vessel 
wall. The characteristic length for the vessel wall is 

 L = 
volume

Surface area
= 

3 3

2 2

( )
6

( )

o i

o i

D D

D D

π

π

−

+
 = 

3 3

2 2

1 (0.49m) (0.44m)

6 (0.49m) (0.44m)

−
+

 = 0.0125 m 

 ∴ Bi  = 
s

h L

k
=

1
( )

2
∞+ci

s

h h L

k
 = 

21
(17 22.7) [W/(m K)] (0.0125 m)

2
14.4 W/(m K)

+
 = 0.017 < 0.1 

Therefore, the vessel and its contents can be treated as a lumped capacitance and the system 
approximated two lumped capacitances as covered in Section 2.6.1 of the text. 
(a) The temperature-time history of the water in the vessel is given by Equation (2.87) 

 
0

wT T

T T
∞

∞

−
−

 = 12

2 1

m tm
e

m m−
 – 21

2 1

m tm
e

m m−
 

where Tw = temperature of the water, a function of time 

  m1 = 0.5  {– (k1 + k2 + k3) + [(k1 + k2 + k3)
2 – 4k1 k3]

0.5} 

m2 = 0.5 {– (k1 + k2 + k3) – [(k1 + k2 + k3)
2 – 4k1 k3]

0.5} 

 k1 = 
ci i

w w i

h A

c Vρ
 = 

2

3

6

π
πρ

ci i

w w i

h D

c D
 =

6 ci

w w i

h

c Dρ
 = 

( )
( )

2

3

6 17 W/(m K)

1000kg/m 4187J/(kg K) (0.44 m)
 = 5.53 × 10–5 1/s 

k2 = ci i

s s s

h A

c Vρ
 = 2

3 3( )
6

π
πρ −

ci i

s s o i

h D

c D D

 = ( )
( ) ( )

2 2

3 3 3 3

17 W/(m K) (0.44 m)

7817kg/m 461J/(kg K) 1/ 6 (0.49 0.044 ) m−
 = 1.69 × 10–4 1/s 

k3 = co o

s s s

h A

c Vρ
 = 

2

3 3( )
6

π
πρ −

co o

s s o i

h D

c D D

 = ( )
( ) ( )

2 2

3 3 3 3

22.7 W/(m K) (0.49 m)

7817kg/m 461 J/(kg/K) 1/ 6 (0.49 0.044 ) m−
 = 2.79 × 10–4 1/s 

 k1 + k2 + k3 = 5.04 × 10– 4 s–1 

 4k1 k3 = 6.17 × 10– 8 s–1 

 m1 = – 3.28 × 10–5 s–1 

 m2 = – 4.71 × 10– 4 s–1 

 m2 – m1 = 4.38 × 10–4 s–1 
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The temperature-time history of the water is 

 w

o

T T

T T
∞

∞

−
−

 = 
( ) ( )5 41 14 53.28 10 4.71 10

4 4

4.71 10 3.28 10

4.38 10 4.38 10

t t
s se e

− −− −− × − ×

− −
− × − ×

−
− × − ×

 

For the water to cool to 16°C 

  
16 C 0 C

93 C 0 C

° − °
° − °

 = 0.1720 = 1.075 E 
( )5 1

3.28 10 t
s

−− ×
 – 0.075 E

( )4 1
4.71 10 t

s
−− ×

 

By trial and error: t = 55,870 s = 15.5 hours 

(b) The energy balance for the fluid is given by Equation (2.86a) 

  – (c ρ V)w 
wdT

dt
= ih Ai (Tw – Ts)

 

Differentiating the temperature-time history 

 wdT

dt
 = (T0 – T∞) 1 11 2 1 2

2 1 2 1

m t m tm m m m
e e

m m m m
 − − − 

 = (T0 – T∞) 1 21 2

2 1

( )m t m tm m
e e

m m

−
−

−
 

Substituting this into the energy balance for the fluid 

 – (c ρ V)w (T0 – T∞) 1 21 2

2 1

( )m t m tm m
e e

m m
−

−
 = cih  Ai (Tw – Ts) 

 T0 = Tw + 
(cm)w

ci ih A
 (T0 – T∞) 1 21 2

2 1

( )m t m tm m
e e

m m
−

−
 

 Ts = 16°C + 
2 2

[4187J/(kg K)](45 kg)

[17 W/(m K)] (0.44 m)π
(93°C – 0°C) 

( )5 4

4

3.28 10 (1/s) 4.71 10 (1/s)

4.38 10 (1/s)

− −

−
− × − ×

− ×
 

  × ( )5 43.28 10 (1/s) (55870a) 4.71 10  (1/s) (55870a)− −− × − ×−e e
 

 Ts = 6.4 s 

PROBLEM 2.64 

A copper wire, 0.8 – mm – OD, 5 cm long, is placed in an air stream whose temperature 
rises at Tair = (10 + 14 t )°C where t is the time in seconds. If the initial temperature of the 
wire is 10°C, determine its temperature after 2 s, 10 s and 1 min. The heat transfer 
coefficient between the air and the wire is 40 W(m2 K). 

GIVEN 

• A copper wire is placed in an air stream 
• Wire diameter (D) = 0.8 mm = 8 × 10–3 m 
• Wire length (L) = 5 cm = 5 × 10–2 m 
• Air stream temperature is: Tair = (10 + 14 t)°C 
• The initial temperature of the wire (To) = 10°C 

• The heat transfer coefficient ( )ch  = 40 W/(m2 K) 

FIND 

• The wire temperature after 2 s, 10 s and 1 min 
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ASSUMPTIONS 

• Constant and uniform heat transfer coefficient 

SKETCH 

L = 5 cm
Air
Tair

D = 0.8 mm

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12 
For copper at 127°C 

• Thermal conductivity (k) = 391 W/(m K) 
• Density (ρ) = 9190 kg/m3 
• Specific heat (c) = 383 J/(kg K) 

SOLUTION 

The Biot number for this problem is 

 Bi = 
2

c

c

h D

k
 = 

( )
2 340 W/(m K) (0.8 10 m)

2 391 W/(m K)

−×
  4 × 10–5  

Therefore the internal resistance of the wire can be neglected. 
The temperature-time history of the wire can be calculated from the energy balance, Equation (2.82) 

 – c ρ V dT = h  As (T – T∞) dt 

but T∞ = Tair = 10 + 14t 

 ∴ – c ρ V dT = h  As (T – 10 + 14t) dt 

 Rearranging  

  
dT

dt
 = sh A

c Vρ
 (10 + 14t – T) 

 Let m = sh A

c Vρ
 = 

( )2

( )

4

h DL

c D L

π
πρ

 = 
4 h

c Dρ
 

  m = 
( )2

3 –3

4 40 W/(m K)

(383 J/(kg K))(9190 kg/m )(0.8 10 m)×
 = 0.057 1/s 

Thus, the equation becomes 

dT

dt
 + m T = m (10 + 14 t) 
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This is linear, first order, non-homogeneous differential equation with a homogeneous solution of the 
form T = c e–mt and a particular solution T = co + c1 t. Therefore, the general solution has the form 

 T = co + c1 t + c2 e
–mt 

 
dT

dt
 = c1 – c2 m e–mt 

Substituting in Equation (1), we get  

 
dT

dt
 + m T = c1 – c2 m e–mt + m co + m c1 t + m c2 e

–mt = m (10 + 14 t) 

 m co + c1+ m c1 t = 10 m + 14 m t 

Equating coefficients on both sides, we get 

 m c1 t = 14 mL      L1 = 14 

 m co + c1 = 10 m      co 
10 – 14m

m
 = 10 – 

14

m
 

Substituting back into the assumed solution yields 

 T = 10 – 
14

m
 + 14 t + c2 e

–mt 

Applying the initial condition: T = 10°C at t = 0  

 10 = 10 – 
14

m
 + c2        c2 = 

14

m
 

Therefore, the temperature-time history of the wire is  

 T = 10 + 14 t + 
14

m
(e–mt – 1) 

Since, we have already, calculated before that m = 0.057 1/s,  

We can evaluate the temperature of the wire at the requested time instants as follows 

  At t = 2 sec, T = 10 + 14 × 2 + 
14

0.057
 (e–0.057 × 2–1)        T = 11.54°C  

 At t = 10 sec, T = 10 + 14 × 10 + 
14

0.057
 (e–0.057 × 10–1)        T = 43.29°C 

 At t = 1 min = 60 sec, T = 10 + 14 × 60 + 
14

0.057
 (e–0.057 × 60–1)   T = 612.4°C 

However, radiation from the wire needs to be accounted well before 60 sec has elapsed.  

PROBLEM 2.65 

A large 2.54-cm.-thick copper plate is placed between two air streams. The heat transfer 
coefficient on the one side is 28 W/(m2 K) and on the other side is 57 W/(m2 K). If the 
temperature of both streams is suddenly changed from 38°C to 93°C, determine how 
long it will take for the copper plate to reach a temperature of 82°C. 

GIVEN 

• A large copper plate between two air streams whose temperatures suddenly change 
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• Plate thickness (2L) = 2.54 cm = 0.0254 m 

• The heat transfer coefficients are   lch  = 28 W/(m2 K) 

•   2ch  = 57 W/(m2 K) 
• Air temperature changes from 38°C to 93°C 

FIND 

• How long it will take for the copper plate to reach a temperature of 82°C 

ASSUMPTIONS 

• The initial temperature of the plate is 38°C 
• The plate can be treated as an infinite slab 

 

SKETCH 

Air

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12 
For copper Thermal conductivity (k) = 396 W/(m K) at 63°C 
   Density (ρ) = 8933 kg/m3 

Specific heat (c) = 383 J/kg 

SOLUTION 

The Biot number for this case, using the larger of the heat transfer coefficients is 

 Bi = ch L

k
 = 

( )2[57W/(m K)] 0.0254/2 m

396W/(m K)
 = 0.002 << 0.1 

Therefore, the internal resistance of the slab can be neglected (the temperature of the slab remains 
uniform) and the temperature-time history can be calculated from an energy balance 

 Change in internal energy = heat flow from both sides 

 – c ρ V dT = 1ch A  (T – T∞) dt + 2ch A  (T – T∞) dt 

 – c ρ V dT = ( 1ch + 2ch ) A (T – T∞) dt 

 Rearranging 

 
dT

T T∞−
 = 

( )d T T

T T
∞

∞

−
−

 = – 1 2( )c ch h
dt

c Vρ
+

 

Integrating between a temperature of To at time = 0 to a temperature of T at time = t yields 

 ln 
o

T T

T T
∞

∞

− 
  −

 = 
1 2( )c ch h A

c Vρ
+

 t = 
1 2( )

(2 )
c ch h A

c LAρ
+

 t 

Solving this for the time 

 t = – 
1 2

2

c c

Lc

h h

ρ
+

 ln 
o

–T T

T T
∞

∞

 
  −
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t =
( ) ( ) ( )3

2

0.0254 m 383J/(kg K) (Ws)/J 8933kg/m

(28 57)W/(m K)+
 ln 

82 C – 93 C

30 C 93 C

° ° 
  ° − °

 

 t = 1645 s = 27 min 

COMMENTS 

Because heat transfer is occurring at both sides of the slab, the characteristic length in the Biot number 
is approximately half of the slab’s thickness. However, since the heat transfer coefficients on the two 
surfaces are not equal, the center plane is not equivalent to an insulated surface. 

PROBLEM 2.66 

A 1.4-kg aluminum household iron has a 500 W heating element. The surface area is 0.046 m2. The 
ambient temperature is 21°C and the surface heat transfer coefficient is 11 W/(m2 K). How long after 
the iron is plugged in will its temperature reach 104°C? 

  

 

GIVEN 

• An aluminum household iron 
• Mass of the iron (M) = 1.4 kg 
• Power output G( )Q  = 500 W 

• Surface area (As) = 0.046 m2 
• The ambient temperature (T∞) = 21°C 

• The heat transfer coefficient ( )ch  = 11 W/(m2 K) 

FIND 

• How long after the iron is plugged in will its temperature reach 104°C 

ASSUMPTIONS 

• Constant heat transfer coefficient 
• The mass given is for the heated aluminum portion only 

SKETCH 

Aluminum Iron
= 1.4 kgM

Heation Element
= 500 WQ  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12 
For aluminum 

Thermal conductivity (k) = 240 W/(m K) at 127°C 
Specific heat (c) = 896 J/(kg K) 

SOLUTION 

To calculate the Biot number for this problem, we must first calculate the characteristic length 

 L = 
Volume

Surface area
 = 

s

M

A

ρ
 = 

s

M

Aρ
 = 

3 2

1.4 kg

(2702kg/m )(0.046 m )
 = 0.0113 m 
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The Biot number is 

 Bi = ch L

k
 = 

2[11 W/(m K)](0.0113 m)

240W/(m K)
  = 0.0005 < 0.1 

Therefore, the lumped capacity method may be used. The energy balance for the iron is 
 Change in internal energy = heat generation – net heat flow from the iron. 

 c ρ V dT = GQ – ch As (T – T∞) dt 

 Let Θ = T – T∞ and m = 
c sh A

c Vρ
 = 

c sh A

M
cρ

ρ
 
  

 = 
c sh A

c M
 

Then the heat balance can be written 

 
d

dt

Θ
 + m Θ = GQ

cM


 

This is a linear, first order, non-homogeneous differential equation. The solution to the homogeneous 
equation is θh = c e–mt and a particular solution is θp = c. The general solution is the sum of the 
homogeneous and particular solutions 

 Θ = c1 + c2 e
–mt 

Integrating 

 
d

dt

Θ
 = – c2 m e–mt = – m (Θ – c1) (From the previous equation) 

Substituting this into the heat balance 

 – m (Θ – c1) + m Θ = GQ

cM


  c1 = GQ

M cM


 

Applying the initial condition, θ = 0 at t = 0 yields 

 – c2 m = c1 m  c2 = – c1 = GQ

M cM


 

Therefore, the temperature-time history of the iron is given by 

 Θ = GQ

mcM


 (1 – e–mt) 

Solving for t 

 t  = – 
1

m
 ln 1

G

m cM

Q

Θ −    

 m = 
c sh A

cM
 = 

( )

2 2[11 W/(m K)](0.046 m )

[896 J/(kg K)](1.4 kg) (Ws)/J
 = 4.034 × 10–4 s–1 

 t = – 
4 –1

1

4.034 10 s−×
 ln

( ) ( ) ( )( )4 –1(104 C 21 C) 4.034 10 s 8961/(kg K) Ws / J (1.4 kg)
1

500 W

− ° − ° ×− 
 

 

 t = 217 s = 3.6 min 
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PROBLEM 2.67 

Estimate the depth in moist soil at which the annual temperature variation will be 10% 
of that at the surface. 

GIVEN 

• Moist soil 

FIND 

• The depth in moist soil at which the annual temperature variation will be 10 per cent of that at the 
surface 

ASSUMPTIONS 

• Conduction is one dimensional 
• The soil has uniform and constant properties 
• Annual temperature variation can be treated as a step change in surface temperature with a 6 

month response time 

SKETCH 

Ts

T x( ,t)

x

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
For wet soil Thermal conductivity (k) = 2.60 W/(m K) at 20°C 
  Density (ρ) = 1500 kg/m3 

  Thermal diffusivity (α) = 0.0414 × 10–5 m2/s 

SOLUTION 

The geometry of this problem is a semi infinite solid as covered in Section 2.6.3. The transient 
temperature for a change in surface temperature is given by Equation (2.105) 

 
( , )x t s

i s

T T

T T

−
−

 = erf 
2

x

tα
 
  

 

Where Ti is the temperature of the soil until the surface temperature is increased to Ts. For an annual 
temperature variation of less than 10% of that of the surface 

 T(x, t) – Ti = 0.1 (Ts – Ti) at t = 6 months 

 T(x, t) = 0.1Ts + 0.9Ti 

Therefore T(x, t) – Ts = 0.1Ts + 0.9Ti – Ts = 0.9 (Ti – Ts) 

 
( , )x t s

i s

T T

T T

−
−

 = 0.9 = erf 
2

x

tα
 
  

 

  erf 
( ) ( ) ( )5 22 [0.0414 10 (m s)](0.5 year) 365 (days / year) 24 (h/day) 3600(s/h)

x
−

 
  ×

 = 0.9 
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  erf 
5.110 m

x 
  

 = 0.9 

From Appendix 2, Table 43 

  erf (1.16) = 0.9 

 ∴  
5.110 m

x
 = 1.16 

  x = 6 m 

PROBLEM 2.68 

A small aluminum sphere of diameter D, initially at a uniform temperature To, is 
immersed in a liquid whose temperature, T∞, varies sinusoidally according to 

T∞ – Tm = A sin (ω t) 
where: Tm = time-averaged temperature of the liquid 

A = amplitude of the temperature fluctuation 

ω = frequency of the fluctuations 

If the heat transfer coefficient between the fluid in the sphere, ah , is constant and the 
system may be treated as a ‘lumped capacity,’ derive an expression for the sphere 
temperature as a function of time. 

GIVEN 

• A small aluminum sphere is immersed in a liquid whose temperature varies sinusoidally 
• Diameter of sphere = D 
• Liquid temperature variation: T∞ – Tm = A sin (ω t) 
• The heat transfer coefficient = ah  (constant) 
• The system may be treated as a ‘lumped capacity’ 

FIND 

• An expression for the sphere temperature as a function of time 

ASSUMPTIONS 

• Constant thermal conductivity 

SKETCH 

D

T T A t• – = sin ( )m w
 

SOLUTION 

Let k = thermal conductivity of sphere 
ρ = density of sphere 
c = specific heat of sphere 

An energy balance on the sphere yields 
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Change in internal energy = heat transfer to liquid 

 ρ c 
dT

dt
 = ah  As (T – T∞) 

 
dT

dt
 = s sh A

c Vρ
 [T – Tm – A sin (ω t)] 

 Let m = 
s sh A

c Vρ
 = 

2

3

6

sh d

c d

π
πρ

 = 
6 sh

c Dρ
 and Θ = T – Tm 

 
d

dt

Θ
 + m Θ = m As sin (ω t) 

This is a first order, linear, non-homogeneous differential equation. The general solution is the sum of 
the homogeneous solution and a particular solution. The homogeneous solution is determined by the 
characteristic equation, found by substituting θ = eλt into the homogeneous equation 

 λ eλt + m eλt = 0  (λ = – m) 

The homogeneous solution is θh = Ce–mt. 

As a particular solution, try θp = K cos (ω t) + M sin (ω t), substituting θp and its derivative into the 
energy balance 

  – ω  K sin (ω t) + M ω cos (ω t) + m K cos (ω t) + m  M sin (ω t) = m A sin (ω t) 

 (Mω + mK) cos (ω t) – (ωK – mM) sin (ω t) = m As sin (ω t) 

 ∴ M ω + m K = 0  M = – 
m K

ω
 

 and ω K – m M = – m As   ω K + 
m K

ω
 m = – m As 

 ∴ K = 
2 2

sM A

m

ω
ω +

 and M = 
2

2 2
sm A

mω +
 

Therefore, the general solution is 

 Θ = C e–mt + 
2 2

sM A

mω +
 [(– ω cos (ω t) + m sin (ω t)] 

At t = 0, T = To and θ = θo = To – Tm 

 Θo = C – 
2 2

sm A

m

ω
ω +

  C = Θo + 
2 2

sm A

m

ω
ω +

 

The dimensionless temperature distribution is 

 
o

Θ
Θ

 = 
2 2

o

1
( )

sm A

m

ω
ω

 +  Θ +
e–mt + 

2 2
sm A

mω +
 [(m sin (ω t) – ω cos (ω t)] 
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PROBLEM 2.69 

A wire of perimeter P and cross-sectional area A emerges from a die at a temperature T 
above ambient and with a velocity U. Determine the temperature distribution along the 
wire in the steady state if the exposed length downstream from the die is quite long. 
State clearly and try to justify all assumptions. 

GIVEN 

• A wire emerging from a die at a temperature (T) above ambient 
• Wire perimeter = P 
• Cross-sectional area = A 
• Wire emerges at a temperature T above ambient 
• Wire velocity = U 

FIND 

• The temperature distribution along the wire in the steady state if the exposed length downstream 
from the die is quite long. State clearly and try to justify all assumptions 

ASSUMPTIONS 

• Ambient temperature is constant at T∞ 
• Heat transfer coefficient between the wire and the air is uniform and constant at hc 
• The material properties of the wire are constant  Thermal conductivity = k 
  Thermal diffusivity = α 
• Axial conduction only 
• Wire temperature is uniform at a cross section (negligible internal thermal resistance) 

SKETCH 

D1E

x

x = 0

To
T•

U

 

SOLUTION 

Consider a control volume around the wire 

x x x+ D

U

 

Performing an energy balance on the control volume 
Conduction into volume + Energy carried into the volume by the moving wire = Conduction out of 
volume + Convection to the environment + Energy carried out of the volume by the moving wire. 

  – k A 
x

dT

dx
 + U A ρ c T(x) = – k A 

x x

dT

dx + Δ
 + ch  P Δx(T – T∞) + U A ρ c T(x + Δx) 

 x x x

dT dT
dx dx

x
+ Δ

−

Δ
 = 

[ ( ) ( )]
c

c
U T x x T x h Pk

x k A

ρ + Δ −
+

Δ
 (T – T∞) 
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letting Δx → 0 

 
2

2

d T

dx
 = cU dT h P

dx k Aα
+  (T – T∞) 

 Let θ = T – T∞ and m = ch P

k A
 = 

2

4

ch D

k D

π
π  = 

4 ch

k D
 

Then 

 
2

2

d

dx

θ
 – 

U d

dx

θ
α

 – m θ = 0 

This is a linear, differential equation with constant coefficients. The solution has the following form 

 θ = c1 
1s xe  + c2 2s xe  

Substituting this solution and its derivatives into the differential equation: 

  s1
2 c1 

1s xe  + s2
2 c2 2s xe  – 

U

α
(s1 c1

1s xe  + s2 c2 
2s xe ) – m (c1

1s xe  + c2
2s xe ) = 0 

 s1
2 – 

U

α
 s1 – m = 0  s1 = 

2
1

4 m
2 α α

  
 +    
U U

 

 s2
2 – 

U

α
 s2 – m = 0   s2 = 

2
1

4 m
2 α α

  
 +    
U U

 

 ∴ Let s1 = 
2

1
4 m

2 α α

  
 + +    
U U

 and s2 = 
2

1
4 m

2 α α

  
 − +    
U U

 

The boundary conditions for the problem are 

  1. θ = θo  at x = 0 
  2. θ  → 0  at x → ∞ 

Applying the first boundary condition 

 θo = c1 + c2 

Since, by inspection, s1 must be positive, for the second boundary condition to be satisfied, the 
constant c1 must be zero. Therefore, the temperature distribution in the wire is 

 θ = θo 2s te  

or 

 T = T∞ + (To – T∞) exp 
2

4 m
2

x U U

α α

     +     
 

PROBLEM 2.70 

Ball bearings are to be hardened by quenching them in a water bath at a temperature of 
37°C. Suppose you are asked to devise a continuous process in which the balls could roll 
from a soaking oven at a uniform temperature of 870°C into the water, where they are 
carried away by a rubber conveyer belt. The rubber conveyor belt would, however, not 
be satisfactory if the surface temperature of the balls leaving the water is above 90°C. If 
the surface coefficient of heat transfer between the balls and the water may be assumed 
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to be equal to 590 W/(m2 K), (a) find an approximate relation giving the minimum 
allowable cooling time in the water as a function of the ball radius for balls up to 1.0-cm 
in diameter, (b) calculate the cooling time, in seconds, required for a ball having a 2.5-cm 
diameter, and (c) calculate the total amount of heat in watts which would have to be 
removed from the water bath in order to maintain its temperature uniform if 100,000 
balls of 2.5-cm diameter are to be quenched per hour. 

GIVEN 

• Ball bearings quenched in a water bath 
• Water bath temperature (T∞) = 37°C 
• Initial temperature of the balls (To) = 870°C 
• Final surface temperature of the balls (Tf) = 90°C 

• Heat transfer coefficie ( )ch = 590 W/(m2 K) 

FIND 

(a) An approximate relation giving the minimum allowable cooling time in the water as a function of 
the ball radius for balls upto 1.0 cm in diameter 

(b) The cooling time, in seconds, required for a ball having a 2.5 cm diameter 
(c) The total amount of heat in watts which would have to be removed from the water bath in order to 

maintain its temperature uniform if 100,000 balls of 2.5 cm diameter are to be quenched per hour 

ASSUMPTIONS 

• The ball bearings are 1% carbon steel 

 

SKETCH 

T0 = 870°C

Oven

Ball
Movement

T• = 37°C

Water Bath  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10 
For 1% carbon steel Thermal conductivity (k) = 43 W/(m K) 
 Density (ρ) = 7.801 kg/m3 
 Specific heat (c) = 473 J/(kg K) 
 Thermal diffusivity (α) = 1.172 × 10–5 m2/s 

SOLUTION 

(a) For 1.0 cm diameter balls 

 Bi = och r

k
 = 

2[590W/(m K)] (0.005 m)

43W/(m K)
 = 0.07 < 0.1 

Therefore, a lumped capacity method can be used for balls less than 1 cm in diameter. The time 
temperature history of the ball is given by Equation 2.84 

 
o

T T

T T
∞

∞

−
−

 = 
sh A

t
c Ve ρ

−
 = 

2
o

3
o

4
4

3

h r
t

c r
e

π

ρ π
−

 = o

3 h
t

c re ρ
−
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Solving for the minimum cooling time 

 t = – 
o

–
ln

3
oc r T T

h T T

ρ ∞

∞

 
  −

 

 t = – 
( ) ( )

( )
3

o
2

[473 J/(kg K)] Ws/J 7801 (kg/m ) 90 C 37 C
ln

870°C 37 C3 590W/(m K)

° − ° 
  − °

r
 = 5743 ro s/m 

(b) For balls having a diameter of 2.5 cm 

 Bi = ch L

k
 = 

2[590W/(m K)](0.0125 m)

43 W/(m K)
 = 0.172 > 0.1 

Therefore, the internal resistance is significant and a chart solution will be used. From Figure 2.39 for 
1/Bi = 5.8 and r = ro 

 
( , )

(0, )
oT r t T

T t T
∞

∞

−
−

 = 0.92 

For a final surface temperature (T (ro, t)) of 90°C 

 T(0, t) = T∞ + 
1

0.92
 (T(ro, t) – T∞) = 37°C = 

1

0.92
 (90°C – 37°C) = 94.6°C 

 o,

o

tT T

T T
∞

∞

−
−

 = 
94.6 C 37 C

870 C 37 C

° − °
° − °

 = 0.069 

From Figure 2.39, for (To, t – T∞) / (To – T∞) = 0.069 and 1/Bi = 5.3: Fo = 5.3 = α t/ro
2 

 t = 
2

oFo r

α
 = 

2

5 2

5.3 (0.0125 m)

1.172 10 (m /s)−×
 = 71 sec 

(c) Figure 2.39 can be used to calculate the heat transferred from one ball during the cooling time: 

 (Bi)2 Fo = (0.172)2 (5.3) – 0.157 

From Figure 2.39 Q(t)/Qi = 0.93 
From Table 2.3 

Qi = ρ c
4

3
π ro

3 (To – T∞) = ( )3 4
[7801(kg/m )](473 J/kg K)

3
π (0.0125 m)3 (870°C – 37°C) = 25,150 J 

 ∴ Q(t) = 0.93 Qi = 0.93 (25,159 J) = 23,390 J 

The amount of heat needed to quench 100,000 balls per hour is 

 q = (Balls/hr) (Energy/ball) = 
[100,000(1/ h)](23,390 J)

3600(s/h)
 = 650,000 W 

PROBLEM 2.71 

Estimate the time required to heat the center of a 1.5-kg roast in a 163°C over to 77°C. 
State your assumptions carefully and compare your results with cooking instructions in 
a standard cookbook. 

GIVEN 

• A roast in an oven 
• Mass of the roast (m) = 1.5 kg 
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• Oven temperature (T∞) = 163°C 
• Final temperature of the roast’s center (Tf) = 77°C 

FIND 

• The time required to heat the roast 

ASSUMPTIONS 

• The shape of the roast can be approximated by a sphere 
• The roast temperature is initially uniform at (To) = 20°C 
• The properties of the roast are approximately those of water 
• Thermal conductivity (k) = 0.5 W/(m K) 
       Density (ρ) = 1000 kg/m3 

Specific heat = 4000 J/(kg K) 

• A uniform heat transfer coefficient of ( )ch  = 18 W/(m2 K) exists between the roast and the oven 
air (midline of the range for free convection given in Table 1.4.) 

 

SKETCH 

Roast
= 1.5 kg
=20°C

m
To

Oven = 163°CT•

 

SOLUTION 

With the assumptions listed above, the radius of the spherical roast is given by 

 V = 
m

ρ
 = 

4

3
π ro

3  ro = 

1

33 m

4π ρ
 
  

 = ( )

1

3

3

3(1.5 kg)

4 1000 (kg/m )π
 
  

 = 0.071 m 

Figure 2.39 can be used to find the Fourier number. To use Figure 2.39, the following parameters 
(which are listed in Table 2.3) are needed 

 Bi = och r

k
 = 

2[18 W/(m K)](0.071 m)

0.5 W/(m K)
 = 2.56  

1

Bi
 = 0.391 

 
o

(0, )tθ
θ

 = 
o

T T

T T
∞

∞

−
−

 = 
77 C 163 C

20 C 163 C

° − °
° − °

 = 0.60 

From Figure 2.39 Fo = 0.2 

From Table 2.3 Fo  = α t/ro
2 

Solving for the time 

 t = 
2

or Fo

α
 = 

2
or Fo c

k

ρ
 

 t = 
( ) ( )

( )
2 3(0.071m) (0.2) 1000·kg/m 4000J/(kg K)

0.5W/m K J/Ws
 

 t = 8065 s = 134 min 
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The Better Homes and Gardens Cookbook recommends cooking a Standing Rib Roast with the oven 
set at 325°F (163°C) for 27-30 minutes per pound to achieve a center temperature of 170°F (77°C) 
which is considered well done. 
This calculation yielded 134 minutes for 1.5 kg (3.3 lbs) or 40 minutes per pound. The discrepancy is 
probably due to inaccuracies in the assumed properties of the roast. 

PROBLEM 2.72 

A stainless steel cylindrical billet [k = 14.4 W/(m K), α = 3.9 × 10–6 m2/s] is heated to 593°C 
preparatory to a forming process. If the minimum temperature permissible for forming is 
482°C, how long may the billet be exposed to air at 38°C if the average heat transfer coefficient 
is 85 W/(m2 K)? The shape of the billet is shown in the sketch. 

GIVEN 

• A stainless steel cylindrical billet exposed to air 
• Thermal conductivity (k) = 14.4 W/(m K) 
• Thermal diffusivity (α) = 3.9 × 10–6 m2/s 
• Initial temperature (To) = 593°C 
• The minimum temperature permissible for forming is 482°C 
• Air temperature (T∞) = 38°C 

• Average heat transfer coefficient ( )ch  = 85 W/(m2 K) 

FIND 

• How long may the billet be exposed to the air? 

ASSUMPTIONS 

• End effects are negligible 
• Constant heat transfer coefficient 
• Conduction in the radial direction only 
• Uniform thermal properties 

SKETCH 

10 cm

200 cm

Initial
Temperature

= 593°CTo

= 38°CT•

 

SOLUTION 

The Biot number is calculated to determine if internal resistance is significant 

 Bi = och r

k
 = 

2[85 W/(m K)](0.05 m)

14.4 W/(m K)
 = 0.3 > 0.1 

Therefore, internal resistance is important, and a chart solution is used. 
The chart for this geometry is Figure 2.38. The approach will be as follows: 

1. Use the Biot number and the minimum surface temperature given to find (To,t – T∞)/(To – T∞) 
from Figure 2.38. 

2. Apply (To,t – T∞ )/(To –  T∞) and the Biot number to Figure 2.38 to find the Fourier number. 
3. Use the Fourier number to find the time it takes for the surface to cool to the given minimum 

surface temperature. 
1. From Figure 2.38, for r = ro (r/ro = 1.0) and 1/Bi = 3.33 
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 o( , )

o

T r t T

T T
∞

∞

−
−

 = 0.87 

The surface temperature must not fall below 482°C 

 o( , )

o

T r t T

T T
∞

∞

−
−

 = 
482 C 38 C

593°C 30 C

° − °
− °

 = 0.80 

Combining these results 

 
(0, )

o

T t T

T T
∞

∞

−
−

 = 

( , )

( , )

(0, )

o

o

o

T r t T

T T
T r t T

T t T

∞

∞

∞

∞

− 
  −

− 
  −

 = 
0.80

0.87
 = 0.92 

2. From Figure 2.38, for 1/Bi = 3.33 and (T(0, t) – Too)/(To – Too) = 0.92 

 Fo = 
2

o

t

r

α
 = 0.2 

 
3. Solving for the time 

 t = 
2

oFo r

α
 = 

2

6 2

0.2(0.05 m)

3.9 10 (m / s)−×
 = 128 s = 2.1 min 

PROBLEM 2.73 

In the vulcanization of tires, the carcass is placed into a jig, and steam at 149°C is 
admitted suddenly to both sides. If the tire thickness is 2.5 cm, the initial temperature is 
21°C, the heat transfer coefficient between the tire and the steam is 150 W/(m2 K), and 
the specific heat of the rubber is 1650 J/(kg K), estimate the time required for the center 
of the rubber to reach 132°C. 

GIVEN 

• Tire suddenly exposed to steam on both sides 
• Steam temperature (T∞) = 149°C 
• Tire thickness (2L) = 2.5 cm = 0.025 m 
• Initial tire temperature (To) = 21°C 
• The heat transfer coefficient (hc) = 150 W/(m2 K) 
• The specific heat of the rubber (c) = 165 J/(kg K) 

FIND 

• The time required for the central layer to reach 132°C 

ASSUMPTIONS 

• Shape effects are negligible, tire can be treated as an infinite plate 

SKETCH 

Steam
= 149°CT•

Steam
= 149°CT•

2 = 2.5 cmL

Tire Rubber.
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11 
For bana rubber 
  Thermal conductivity (k) = 0.465 W/(m K) at 20°C 

 Density (ρ) = 1250 g/m3 

SOLUTION 

The significance of the internal resistance is determined from the Biot number 

 Bi = ch L

k
 = 

2 0.025
[150W/(m K)] m

2
0.465W/(m K)

 
  

 = 4.0 >> 0.1 

Therefore, the internal resistance is significant and a chart solution will be used. Figure 2.37 contains 
the charts for this geometry. 
The time required can be calculated from the Fourier number which can be found from  
Figure 2.37. The centerline at time t must be 132°C, therefore 

 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
132 C 149 C

21 C 149 C

° − °
° − °

 = 0.13 

From Figure 2.37, for (T(0, t) – T∞)/(To – T∞) = 0.13 and 1/Bi = 0.25 

 Fo = 
2

o

t

r

α
 = 

2

k t

c Lρ
 = 1.32 

Solving for the time 

 t = 
2cL Fo

k

ρ
 = 

( ) ( ) ( )23[1250(kg/m )] 1650 J /(kg K) (Ws)/J 0.025/2 m (1.3)

0.465W/(m K)
 

 t = 900 s = 15 min 

PROBLEM 2.74 

A long copper cylinder 0.6 m in diameter and initially at a uniform temperature of 38°C 
is placed in a water bath at 93°C. Assuming that the heat transfer coefficient between 
the copper and the water is 1248 W/(m2 K), calculate the time required to heat the 
center of the cylinder to 66°C. As a first approximation, neglect the temperature 
gradient within the cylinder r/h, then repeat your calculation without this simplifying 
assumption and compare your results. 

GIVEN 

• A long copper cylinder is placed in a water bath 
• Diameter of cylinder (D) = 0.6 m 
• Initial temperature (To) = 38°C 
• Water bath temperature (T∞) = 93°C 
• The heat transfer coefficient ( )ch  = 1248 W/(m2 K) 
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FIND 

Calculate the time required to heat the center of the cylinder to 66°C assuming 
(a) Negligible temperature gradient within the cylinder 
(b) Without this simplification, then 
(c) Compare your results 

ASSUMPTIONS 

• Neglect end effects 
• Radial conduction only 

SKETCH 

D = 0.6 m Copper Cylinder

Water Bath T• = 93°C  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12 
For copper  
 Thermal conductivity (k) = 396 W/(m K) at 63°C 

 Density (ρ) = 8933 kg/m3 
 Specific heat (c) = 383 J/(kg K) 

 Thermal diffusivity (α) = 1.166 × 10–4 m2/s 

SOLUTION 

(a) For a negligible temperature gradient within the cylinder, the temperature-time history is given by 
Equation (2.84) 

 
o

T T

T T
∞

∞

−
−

 = 
c sh A

t
c Ve ρ

−
 = 

2
4

ch DL
t

c D L
e

π
π

ρ
−

 = 

4 ch
t

c De ρ
−

 

Solving for the time 

 t = –
4 c

c D

h

ρ
 ln 

–

o

T T

T T
∞

∞

 
  −

 

 t = 
( ) ( )
( )

3

2

[383 J/(kg K)] W s/J 8933(kg/m ) (0.6 m)

4 1248 W/(m K)
 ln 

66°C 93°C

38°C 93°C

− 
  −

 

 t = 293 sec = 4.9 min 

(b) The chart method can be used to take the temperature gradient within the cylinder into account. 
Figure 2.38 contains the charts for a long cylinder. 

 Bi = c oh r

k
 = 

2[1248 W/(m K)](0.3m)

396 W/(m K)
 = 0.95  1

Bi
 = 1.1 

 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
66°C 93°C

38°C 93°C

− 
  −

 = 0.49 
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From Figure 2.38, for 1/Bi = 1.1 and T(0, t) – T∞)/(To – T∞) = 0.49 

 Fo = 
2

o

t

r

α
 = 0.5 

 
Solving for the time 

 t = 
2

oFo r

α
 = 

2

4 2

0.5(0.3m)

1.166 10 m /s−×
 = 386 s = 6.4 min 

(c) The lumped capacity method (a) underestimates the required time by 24%. 

COMMENTS 

Since the Biot number is of the order of magnitude of unity, we could not expect that the lumped 
capacity assumption is valid. 

PROBLEM 2.75 

A steel sphere with a diameter of 7.6 cm is to be hardened by first heating it to a uniform 
temperature of 870°C and then quenching it in a large bath of water at a temperature of 
38°C. The following data apply 

  surface heat transfer coefficient h  = 590 W/(m2 K) 

  thermal conductivity of steel = 43 W/(m K) 

  specific heat of steel = 628 J/(kg K) 

  density of steel = 7840 kg/m3 

Calculate: (a) time elapsed in cooling the surface of the sphere to 204°C and (b) time 
elapsed in cooling the center of the sphere to 204°C. 

GIVEN 

• A steel sphere is quenched in a large water bath 
• Diameter (D) = 7.6 cm = 0.076 m 
• Initial uniform temperature (To) = 870°C 
• Water temperature (T∞) = 38°C 
• Surface heat transfer coefficient (h) = 590 W/(m2 K) 
• Thermal conductivity of steel (k) = 43 W/(m K) 
• Specific heat of steel (c) = 628 J/(kg K) 
• Density of steel (ρ) = 7840 kg/m3 

FIND 

(a) Time elapsed in cooling the surface of the sphere to 204°C 
(b) Time elapsed in cooling the center of the sphere to 204°C 

ASSUMPTIONS 

• Constant water bath temperature, thermal properties, and transfer coefficient 
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SKETCH 

Steel
= 7.6 cmD

Water T• = 38°C  

SOLUTION 

The importance of the internal resistance can be determined from the Biot number 

 Bi = c oh r

k
 = 

2 0.076
[590 W/(m K)] m

2
43 W/(m K)

 
  

 = 0.52 > 0.1 

Therefore, the internal resistance is significant and a chart solution will be used. 
Figure 2.39 contains the charts for this geometry. 
(a) From Figure 2.39, for r = ro and 1/Bi = 1.9: 

 
( , )

(0, )
o oo

oo

T r t T

T t T

−
−

 = 0.78 

Solving for the center temperature 

 T(0, t) = T∞ + 1.28 (T(ro, t) – T∞) = 38°C + 1.28(204°C – 38°C) = 251°C 

 ∴ 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
251 C 38 C

870 C 38 C

° − °
° − °

 = 0.26 

From Figure 2.39 for (T(0, t) – T∞)/(To – T∞) = 0.26, 1/Bi = 1.9 

 Fo = 
2

o

t

r

α
 = 

2
o

k t

c rρ
 = 0.8 

Solving for the time 

 t = 
2
oFo c r

k

ρ
= 

( ) ( )
2

3

2

0.076
0.8 7840kg/m 628J/(kg K) m

2
43W/(m K)

 
  

 = 132 s = 2.2 min 

(For the surface temperature to reach 204°C) 

(b) For a center temperature of 204°C 

 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
204 C 38 C

870 C 38 C

° − °
° − °

 = 0.20 

From Figure 2.39 for (T(0, t) – T∞)/(To – T∞) = 0.2, 1/Bi = 1.9: Fo = 1.1, therefore 

 t = 
( ) ( )

2
3

2

0.076
1.1 7840kg/m 628J/(kg K) m

2
43W/(m K)

 
  

 = 182 s = 3.0 min 

(For the center temperature to reach 204°C) 
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PROBLEM 2.76 

A 2.5-cm-thick sheet of plastic initially at 21°C is placed between two heated steel plates 
that are maintained at 138°C. The plastic is to be heated just long enough for its 
midplane temperature to reach 132°C. If the thermal conductivity of the plastic is  
1.1 × 10–3 W/(m K), the thermal diffusivity is 2.7 × 10–6 m2/s, and the thermal resistance 
at the interface between the plates and the plastic is negligible, calculate: (a) the 
required heating time, (b the temperature at a plane 0.6 cm from the steel plate at the 
moment the heating is discontinued, and (c) the time required for the plastic to reach a 
temperature of 132°C 0.6 cm from the steel plate. 

GIVEN 

• A sheet of plastic is placed between two heated steel plates 
• Sheet thickness (2L) = 2.5 cm = 0.025 m 
• Initial temperature (To) = 21°C 
• Temperature of steel plates (Ts) = 138°C 
• Heat until midplane temperature of sheet (Tc) = 132°C 
• The thermal conductivity of the plastic (k) = 1.1 × 10–3 W/(m K) 
• The thermal diffusivity (α) = 2.7 × 10–6 m2/s 
• The thermal resistance at the interface between the plates and the plastic is negligible 

FIND 

(a) The required heating time 
(b) The temperature at a plane 0.6 cm from the steel plate at the moment the heating is discontinued 
(c) The time required for the plastic to reach a temperature of 13°C 0.6 cm from the steel. 

ASSUMPTIONS 

• The initial temperature of the sheet is uniform 
• The temperature of the steel plates is constant 
• The thermal conductivity of the sheet is constant 

SKETCH 

2 L

Plastic, = 21°CTo

Steel
= 138°CTs

Steel
= 138°CTs

x  

SOLUTION 

The chart solutions apply to convective boundary conditions but can be applied to this problem by 
letting hc → ∞ . Therefore, 1/Bi = 0. 
(a) To find the time required to heat the midplane from 21°C to 132°C, first calculate the coordinate 

of Figure 2.42 

 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
132 C 138 C

21 C 138 C

° − °
° − °

 = 0.0513 
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From Figure 2.42 

 Fo = 
2

t

L

α
 = 1.3 

Solving for the time 

 t  = 
2Fo L

α
 = 

2

6 2

0.025
1.3 m

2
27 10 m /s−

 
  
×

 = 75 sec 

(b) At 0.6 cm from the steel plate 

 x = L – 0.006 m = 0.0125 m – 0.006 m = 0.0065 m  
x

L
= 

0.0065m

0.0125m
 = 0.52 

From Figure 2.42 

  
(0.0065m, )

(0, )

T t T

T t T∞

−
−

 = 0.70 

 T (0.0065 m, t) = 0.7 (T(0, t) – T∞) + T∞ = 0.7 (132°C – 138°C) + 138°C = 133.8°C 

(c) When the temperature 0.6 cm from the steel plate is 132°C, the center temperature 

 T(0, t) = T∞ + 
1

0.7
 (T(0.0065 m, t) – T∞) = 138°C + 

1

0.7
 (132°C – 130°C) = 129.4°C 

 ∴ 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
o o

o o

129.4 C 138 C

21 C 138 C

−
−

 = 0.0733 

From Figure 2.37 

 t = 
2FoL

α
 = 

2

6 2

0.025
1.15 m

2
2.7 10 m /s−

 
 
×

 = 67 sec 

PROBLEM 2.77 

A monster turnip (assumed spherical) weighing in at 0.45 kg is dropped into a cauldron 
of water boiling at atmospheric pressure. If the initial temperature of the turnip is 17°C, 
how long does it take to reach 92°C at the center? Assume that 

 ch  = 1700 W/(m2 K) cρ = 3900 J/(kg K) 

 k = 0.52 W/(m K) ρ = 1040 kg/m3 

GIVEN 

• A turnip is dropped into boiling water 
• Mass of turnip (M) = 0.45 kg 
• Water is boiling at atmospheric pressure 
• Initial temperature of the turnip (To) = 17°C 

FIND 

• Time needed to reach 92°C at the center 
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ASSUMPTIONS 

• Heat transfer coefficient (hc) = 1700 W/(m2 K) 
• Specific heat (cρ) = 3900 J/(kg K) 
• Thermal conductivity (k) = 0.52 W/(m K) 
• Density (ρ) = 1040 kg/m3 
• The specific heat of the turnip is constant 
• Altitude is sea level, therefore, temperature of boiling water (T∞) = 100°C 
• One dimensional conduction in the radial direction 

 

 

 

SKETCH 

Turnip

Boiling Water  

SOLUTION 

The radius of the turnip is given by 

 Volume = 
4

3
 π ro

3 = 
M

ρ
  ro = 

1

33

4

M

πρ
 
  

 = ( )

1

3

3

3(0.45kg)

4 1040 kg/mπ

 
 
 

 = 0.047 m 

The Biot number is 

 Bi = c oh r

k
 = 

2[1700 W/(m K)] (0.047 m)

0.52 W /(m K)
 = 153 > 0.1 

Therefore, internal resistance is significant and the chart method will be used. 

 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
o o

o o

92 C 100 C

17 C 100 C

−
−

 = 0.096 

From Figure 2.39, (T(0, t) – T∞)/(To – T∞) = 0.096 and 1/Bi = 0.0065 

 Fo = 
2

o

t

r

α
 = 

2
o

k t

crρ
 = 0.25 

Solving for the time 

 t = 
2

oFo cr

k

ρ
 = 

( ) ( ) ( )23

2

0.25 1040 kg/m 3900 J/(kg K) 0.047 m

0.52 W/(m K)
 

 t = 4307 s = 72 min = 1.2 hours 

PROBLEM 2.78 

An egg, which for the purposes of this problem can be assumed to be a 5-cm-diameter 
sphere having the thermal properties of water, is initially at a temperature of 4°C. It is 
immersed in boiling water at 100°C for 15 min. The heat transfer coefficient from the 
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water to the egg may be assumed to be 1700 W/(m2 K). What is the temperature of the 
egg center at the end of the cooking period? 

GIVEN 

• An egg is immersed in boiling water 
• Initial temperature (To) = 4°C 
• Temperature of boiling water (T∞) = 100°C 
• Time that the egg is in the water (t) = 15 min. = 900 s 
• The heat transfer coefficient (hc) = 1700 W/(m2 K) 

FIND 

• The temperature of the egg center at the end of the cooking period 

 

ASSUMPTIONS 

• The egg is a sphere of diameter (D) = 5 cm = 0.05 m 
• The egg has the thermal properties of water (From Appendix 2, Table 13) 
  Thermal conductivity (k) = 0.682 W/(m K)  

  Density (ρ) = 958.4 kg/m3 

  Specific Heat (c) = 4211 J/(kg K) 

SKETCH 

Egg D = 5 cm

T• = 100°C

Boiling water

 

SOLUTION 

The Biot number for the egg is 

 Bi = c oh r

k
 = 

2[1700 W/(m K)] (0.025 m)

0.682 W /(m K)
 = 62.3 > 0.1 

Therefore, the internal resistance is significant. Figure 2.39 can be used to solve the problem. The 
Fourier number at t = 900 s is 

 Fo = 
2

o

t

r

α
 = 

2
o

k t

crρ
 = 

( ) ( )3

0.682 W/(m K) (900 )

[4211 J/(kg K)] (W s)/J 958.4 kg/m

s
 = 0.24 

From Figure 2.39 for Fo = 0.24 and 1/Bi = 0.016 

 
(0, )

(0, )

T t T

T t T
∞

∞

−
−

 = 0.10  T(0, t) = T∞ + 0.1(To – T∞) = 100°C + 0.1 (4°C – 100°C) 

 T(0, t) = 90.4°C 

PROBLEM 2.79 

A long wooden rod at 38°C with a 2.5 cm diameter is placed into an airstream at 600°C. 
The heat transfer coefficient between the rod and air is 28.4 W/(m2 K). If the ignition 
temperature of the wood is 427°C, ρ = 800 kg/m3, k = 0.173 W/(m K), and c = 2500 J/(kg K), 
determine the time between initial exposure and ignition of the wood. 
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GIVEN 

• A long wooden rod is placed into an airstream 
• Rod outside diameter (D) = 2.5 cm = 0.025 m 
• Initial temperature of the rod (To) = 38°C 
• Temperature of the airstream (T∞) = 816°C 
• The heat transfer coefficient (hc) = 28.4 W/(m2 K) 
• The ignition temperature of the wood (TI) = 427°C 
• Density of the rod (ρ) = 800 kg/m3 
• Thermal conductivity (k) = 0.173 W/(m K) 
• Specific heat (c) = 2500 J/(kg K) 

FIND 

• The time between initial exposure and ignition of the wood 

SKETCH 
D = 2.5 cm

Air
= 816°CT•

 

SOLUTION 

The Biot number for the rod is 

 Bi = 
2
c oh r

k
 = 

2 0.025
[28.4 W/(m K)] m

2
0.173 W/(m K)

 
 

 = 2.05 > 0.1 

 
1

Bi
 = 0.49 

Therefore, the internal thermal resistance of the rod is significant and the chart solution of Figure 2.38 
will be used. From Figure 2.38 for r/ro = 1.0 and 1/Bi = 0.49 

 
( , )

(0, )
oT r t T

T t T
∞

∞

−
−

 = 0.52 

Solving for the difference between the center and ambient temperatures 

 T(0, t) – T∞ = 
1

0.52
 (T(ro, t) – T∞) 

When the surface temperature of the rod is 427°C 

 T(0, t) – T∞ = 
1

0.52
 (427°C – 600°C) = – 333°C 

 ∴ 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
o

o o

333 C

38 C 600 C

−
−

 = 0.59 

From Figure 2.43 for (T(0, t) – T∞)/(To – T∞) = 0.59 and 1/Bi = 0.49 

 Fo = 
2

o

t

r

α
 = 0.2 
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Solving for the time 

 t = 
2

oFor

α
 = 

2
oFo cr

k

ρ
 = 

( ) ( )
2

3

2

0.025
0.2 800 kg/m 2500 J/(kg K) m

2
0.173 W/(m K)

 
 

 = 361 sec = 6.0 min 

PROBLEM 2.80 

In the inspection of a sample of meat intended for human consumption, it was found 
that certain undesirable organisms were present. In order to make the meat safe for 
consumption, it is ordered that the meat be kept at a temperature of at least 121°C for a 
period of at least 20 min during the preparation. Assume that a 2.5-cm-thick slab of this 
meat is originally at a uniform temperature of 27°C; that it is to be heated from both 
sides in a constant temperature oven; and that the maximum temperature meat can 
withstand is 154°C. Assume furthermore that the surface coefficient of heat transfer 
remains constant and is 10 W/(m2 K). The following data may be taken for the sample of 
meat: specific heat = 4184 J/(kg K); density = 1280 kg/m3; thermal conductivity = 0.48 
W/(m K). Calculate the oven temperature and the minimum total time of heating 
required to fulfill the safety regulation. 

GIVEN 

• A slab of meat is heated in constant temperature over 
• Meat be kept at a temperature of at least 121°C for a period of at least 20 min during the 

preparation 
• Slab thickness (2L) = 2.5 cm = 0.025 m 
• Initial uniform temperature (To) = 27°C 
• The maximum temperature meat can withstand is 154°C 
• Specific heat (c) = 4184 J/(kg K) 
• Density (ρ) = 1280 kg/m3 
• Thermal conductivity (k) = 0.48 W/(m K) 

FIND 

• The minimum total time of heating required to fulfill the safety regulation 

ASSUMPTIONS 

• The surface heat transfer coefficient ( ch )= 10 W/(m K) 

• Edge effects are negligible 
• One dimensional conduction 

SKETCH 

Oven T•

2L Meat

 

SOLUTION 

The Biot number for the meat is 

 Bi = ch L

k
 = 

2 0.025
[10 W/(m K)]  m

2
0.48W/(m K)

 
 

 = 0.26 > 0.1 
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Therefore, the internal resistance is significant and the transient conduction charts will be used to find 
a solution. 
The highest temperature will occur at the surface of the meat while the lowest will occur at the center 
of the meat. Therefore, the maximum possible oven temperature (T∞) can be obtained from Figure 
2.37 for 1/Bi = 3.8; X = L 

  
( , )

(0, )

T L t T

T t T
∞

∞

−
−

 = 0.88 

 T∞ = 
0.88( (0, ) )

0.9 1.0

T t T∞−
−

 = 
o o0.88(121 C 154 C)

0.1

−
−

 = 475°C 

The actual oven temperature must be less than this so the center temperature can remain above 121°C 
without the surface temperature exceeding 154°C. The oven temperature and cooking time must be 
found by iterating the steps below 

1. Pick an oven temperature. 
2. Use Figure 2.37 to find the Fourier number which determines the time required for the center 

temperature to reach 121°C. 
3. Add 20 min to the time and calculate a new Fourier number. 
4. Use the new Fourier number and Figure 2.37 to find the center temperature at the end of the 

cooking period. 
5. Use (T(ro, t) – T∞)/(T(0, 2t) – T∞) = 0.9 to find the surface temperature at the end of the 

cooking period. 

1. For the first iteration, let the oven temperature (T∞) = 300°C. 

2. 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
o

o

121 C

27 C
 = 0.656 

 
From Figure 2.37 

 Fo = 
2

o

t

r

α
 = 

2

k t

cLρ
 = 1.7 

Solving for the time for the center to reach 121°C: 

 t = 
2Fo cL

k

ρ
 = 

( ) ( )23

2

1.7(4187 kg/m ) 1280J/(kg K) 0.0125m

0.48 W/(m K)
 = 2963 sec 

3. After 20 min (1200s) cooking time: t = 4163, Fo = 2.4. 
4. From Figure 2.37 for Fo = 2.4, 1/Bi = 3.8 

 
(0, )

o

T t T

T T
∞

∞

−
−

 = 0.55 

 T(0, t) = T∞ + 0.55 (To – T∞) = 300°C + 0.55 (27°C – 300°C) = 150°C 

5.  
( , )

(0, )

T L t T

T t T
∞

∞

−
−

 = 0.9 

 T(L, t) = T∞ + 0.9 (T(0, t) – T∞) = 300°C + 0.9 (150°C – 300°C) = 165°C 

Therefore, an oven temperature of 300°C is too high. The following iterations were performed using 
the same procedure 
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 Oven  Time to Fo for 
(0, )T t T

T T

− ∞
−∞ ∞

 To TL  

 Temperature Fo Reach 121°C 20 min  (°C) (°C) 

 300°C 1.7 2963 s 2.4 0.55 150 165 
 200°C 3.2 5578 s 3.9 0.37 136 142 
 150°C 2.4 4182 s 3.1 0.48 143 156 

Therefore, the oven temperature should be set at 250°C and the meat should be heated for a total of 
4184 s + 1200 s = 5384 s = 90 min. 

PROBLEM 2.81 

A frozen-food company freezes its spinach by first compressing it into large slabs and 
then exposing the slab of spinach to a low-temperature cooling medium. The large slab 
of compressed spinach is initially at a uniform temperature of 21°C; it must be reduced 
to an average temperature over the entire slab of –34°C. The temperature at any part of 
the slab, however, must never drop below –51°C. The cooling medium which passes 
across both sides of the slab is at a constant temperature of –90°C. The following data 
may be used for the spinach: density = 80 kg/m3; thermal conductivity = 0.87 W/(m K); 
specific heat = 2100 J/(kg K). Present a detailed analysis outlining a method estimate the 
maximum thickness of the slab of spinach that can be safely cooled in 60 min. 

GIVEN 

• Large slabs of spinach are exposed to a low-temperature cooling medium 
• Initial uniform temperature (To) = 21°C 
• Average temperature must be reduced to –34°C 
• The temperature at any part must never drop below –51°C 
• Cooling medium temperature (T∞) = –90°C 
• Density of spinach (ρ) = 80 kg/m3 
• Thermal conductivity (k) = 0.87 W/(m K) 
• Specific heat (c) = 2100 J/(kg K) 

FIND 

• Present a detailed analysis outlining a method to estimate the maximum thickness of the slab of 
spinach that can be safely cooled in 60 min 

ASSUMPTIONS 

• One dimensional conduction through the slab 
• Constant and uniform thermal properties 
• The average temperature within the slab is equal to the average of the center and surface 

temperatures 

SKETCH 

2L Spinach

Cooling
Medium T• = – 90°C
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SOLUTION 

For a final average temperature in the slab of –34°C, and a final surface temperature of –51°C, the 
final center temperature must be 

 T(0, t) = 2 TAve – T(L, t) = 2(– 34°C) + 51°C = –17°C 

Figure 2.37 can be used to find the Biot number for the spinach slab 

 
( , )

(0, )

T L t T

T t T
∞

∞

−
−

 = 
o o

o o

51 C ( 90 C)

17 C ( 90 C)

− − −
− − −

 = 0.53 

From Figure 2.37 1/Bi = 0.6. 
Figure 2.37 can be used to find the Fourier number 

 
(0, )T t T

T T
∞

∞ ∞

−
−

 = 
o o

o o

17 C ( 90 C)

21 C ( 90 C)

− − −
− − −

 = 0.66 

 
From Figure 2.37 Fo = 0.4 

 Fo = 
2

o

t

r

α
 = 

2

k t

cLρ
 

Solving for L 

 L = 
0.5

k t

Fo cρ
 
  

 = 
( ) ( )

( ) ( )

0.5

3

[0.87W/(m K)] J/(W s) (60 min) 60 s/min

0.4 80 kg/m 2100 J/(kg K)

 
 
 

 = 0.22 m 

The thickness of the slab of spinach that can be cooled in 60 minutes is 2L = 0.44 m = 44 cm. 
The heat transfer coefficient needed to achieve this cooling can be calculated from the Biot number 

 Bi = ch L

k
  ch  = Bi 

k

L
 = 

1

0.6

0.87 W/(m K)

0.22 m
 = 6.7 2W/(m K)  

COMMENTS 

The heat transfer coefficients is on the low side of the range for free convection in air  
(see Table 1.2). 
Note that if the heat transfer coefficient is greater than 6.7 W/(m2 K), the surface temperature of the 
spinach will drop below –51°C before the average temperature is lowered to –34°C. 

PROBLEM 2.82 

In the experimental determination of the hat transfer coefficient between a heated steel 
ball and crushed mineral solids, a series of 1.5% carbon steel balls were heated to a 
temperature of 700°C and the center temperature-time history of each was measured 
with a thermocouple while it was cooling in a bed of crushed iron ore, which was placed 
in a steel drum rotating horizontally at about 30 rpm. For a 5-cm-diameter ball, the time 
required for the temperature difference between the ball center and the surrounding ore 
to decrease from 500°C initially to 250°C was found to be 64, 67, and 72 s, respectively, 
in three different test runs. Determine the average heat transfer coefficient between the 
ball and the ore. Compare the results obtained by assuming the thermal conductivity to 
be infinite with those obtained by taking the internal thermal resistance of the ball into 
account. 
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GIVEN 

• Heat steel balls are put in crushed iron ore 
• Balls are 1.5% carbon steel balls 
• Initial temperature of balls (To) = 700°C 
• Ball diameter = 5 cm = 0.05 m 
• Temperature difference between the ball center and the ore 
• Center temperature of the balls decreases from 500°C to 250°C 
• Time taken was found to be 64, 67, and 72 s, respectively, in three different test runs 

FIND 

The average heat transfer coefficient between the ball and the ore. 
Compare the results obtained 
(a) by assuming the thermal conductivity to be infinite with 
(b) those obtained by taking the internal thermal resistance of the ball into account 

ASSUMPTIONS 

• Temperature of the iron ore is uniform and constant 

SKETCH 

Drum

w = 30 RPM

Thermocouple
Steel
Ball
= 5 cmD

Crushed
Iron Ore

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10 
For 1.5% carbon steel Thermal conductivity (k) = 36 W/(m K) 

 Density (ρ) = 7753 kg/m3 
 Specific heat (c) = 486 J/(kg K) 

 Thermal diffusivity (α) = 0.97 × 10–5 m2/s 

 

 

SOLUTION 

(a) Assuming the internal resistance of the balls is negligible. The temperature-time history is given 
by Equation (2.89) 

 
o

T T

T T
∞

∞

−
−

 = 
c sh A

t
c Ve ρ

−
 = 

2

3
4

ch D
t

c D
e

π
π

ρ
−

 = 

6 ch
t

c De ρ
−

 

Solving for the heat transfer coefficient 

 hc = 
6

c D

t

ρ
 ln 

o

T T

T T
∞

∞

− 
  −
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 hc = 
( ) ( )3[486 J/(kg K)] (Ws) /J 7753 kg/m (0.05 m)

6 t
 ln 

250 C 21,765

500 C

o

o t

 
=  

2Ws/(m K)  

For the three test runs: t = 64 s → hc = 340 W/(m2 K) 

 t = 67 s → hc = 325 W/(m2 K) 

 t = 72 s → hc = 302 W/(m2 K) 

The average heat transfer coefficient is 322 W/(m2 K) 
(b) The chart method will be used to take the internal thermal resistance into account. Figure 2.44 can 

be used to determine the Biot number for the balls 

 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
o

o

250 C

500 C
 = 0.5 

 Fo = 
2

o

t

r

α
 = 

5 2

2

0.97 10 m /s( )

(0.025m)

−× t
 

For the three test runs: t = 64 s → Fo = 0.99 

 t = 67 s → Fo = 1.04 

 t = 72 s → Fo = 1.12 
Figure 2.44 is not detailed enough to distinguish between the first two test runs 

 For the first two runs: Fo = 1.0 → 1/Bi = 4.0 Bi = 0.25 

 For the third run: Fo = 1.1 → 1/Bi = 4.2 Bi = 0.238 

The average Bi number = [2(0.250) = 0.263]/3 = 0.246 = (hc ro)/k 
Solving for the transfer coefficient 

 hc = 
o

Bi k

r
 = 

( )0.246 36W/(m K)

0.025 m
 = 354 2W/(m K)  

Neglecting the internal resistance resulted in a calculated heat transfer coefficient 9% lower than using 
the chart method. 

PROBLEM 2.83 

A mild-steel cylindrical billet, 25-cm in diameter, is to be raised to a minimum 
temperature of 760°C by passing it through a 6-m long strip type furnace. If the furnace 
gases are at 1538°C and the overall heat transfer coefficient on the outside of the billet is 
68 W/(m2 K), determine the maximum speed at which a continuous billet entering at 
204°C can travel through the furnace. 

 

GIVEN 

• A mild-steel cylindrical billet is passed through a furnace 
• Diameter of billet = 25 cm = 0.25 m 
• Billet is to be raised to a minimum temperature of 760°C 
• Length of furnace = 6 m 
• Temperature of furnace gases (T∞) = 1538°C 
• The overall heat transfer coefficient ( )ch  = 68 W/(m2 K) 

• Initial temperature of billet (To) = 204°C 

FIND 

• The maximum speed at which a continuous billet can travel through the furnace 
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ASSUMPTIONS 

• The heat transfer coefficient is constant 
• Billet is 1% carbon steel 
• Radial conduction only in the billet, neglect axial conduction 

SKETCH 

T t(0, ) = 760°C

V

Furnace

D = 25 cm

To = 204°C

T• = 1538°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10 
For 1% carbon steel Thermal conductivity (k) = 43 W/(m K) 
 Thermal diffusivity (α) = 1.172 × 10–5 m2/s 

SOLUTION 

The Biot number for the billet is 

 Bi = ohr

K
 = 

( )2[68 W/(m K)] 0.125m

43 W/(m K)
 = 0.198 > 0.1 

Therefore, internal resistance is significant and we cannot use the lumped parameter method, a chart 
solution must be used. 
The billet must obtain a centerline temperature of 760°C, therefore 

 
(0, )

i

T t T

T T
∞

∞

−
−

 = 
760°C 1538°C

204°C 1538°C

−
−

 = 0.583 

The Fourier number from Figure 2.38 for 1/Bi = 1/0.198 and (T(0, t) – T∞)/(To – T∞) = 0.583 is 

 Fo = 
2

o

t

r

α
 = 1.4 

Solving for the time 

 t = 
2

oFor

α
 = 

2

–5 2

1.4(0.125m)

1.172 10 m / s×
 = 1866 s 

The maximum speed of the billet is 

 V = 
Length of  furnace

time needed
 = 

6m

1866s
 = 0.0032 m/s  

PROBLEM 2.84 

A solid lead cylinder 0.6-m in diameter and 0.6-m long, initially at a uniform 
temperature of 121°C, is dropped into a 21°C liquid bath in which the heat transfer 
coefficient ch  is 1135 W/(m2 K). Plot the temperature-time history of the center of this 
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cylinder and compare it with the time histories of a 0.6 m diameter, infinitely long lead 
cylinder and a lead slab 0.6-m thick. 

GIVEN 

• A solid lead cylinder dropped into a liquid bath 
• Cylinder diameter (D) = 0.6 m 
• Cylinder (L) = 0.6 m 
• Initial uniform temperature (To) = 121°C 
• Liquid bath temperature (T∞) = 21°C 
• Heat transfer coefficient ( )ch  = 1135 W/(m2 K) 

FIND 

(a) Plot the temperature-time history of the cylinder center 
(b) Compare it with the time history of a 0.6 m diameter, infinitely long lead cylinder 
(c) Compare it with the time history of a lead slab 0.6 m thick 

ASSUMPTIONS 

• Two dimensional conduction within the cylinder 
• Constant and uniform properties 
• Constant liquid bath temperature 

SKETCH 

0.6 m Lead

0.6 m

Liquid
= 21°CT

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12 
For lead Thermal conductivity (k) = 34.7 W/(m K) at 63°C 

 Density (ρ) = 11340 kg/m3 
 Specific heat (c) = 129 J/(kg K) 

 Thermal diffusivity (α) = 24.1 × 10–6 m2/s 

SOLUTION 

The Biot number based on radius is 

 Bi = c oh r

K
 = 

( )2[1135W/(m K)] 0.3m

34.7W/(m K)
 = 9.81 > 0.1 

Therefore, internal resistance is significant. 
(a) This two-dimensional system required a product solution. From Table 2.4 the product solution is 
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( , )p

o

x rθ
θ

 = P(x) C(r) 

where 

 P(x) = 
( , )

o

x tθ
θ

 for an infinite plate (Figure 2.37) 

 C(r) = 
( , )

o

r tθ
θ

 for a long cylinder (Figure 2.38) 

Since the length of the cylinder is the same as its diameter, the Biot number based on length is the 
same as that based on radius 

 
1

Bi
 = 

1

9.81
 = 0.102 

The Fourier number is 

 Fo = 
2or )

2 o

t
L

r

α
 
 

 = 
( )

( )

–6 2

2

24.1 10 m / s

0.3m

t×
 = 0.000268 t s–1 

The temperature of the center of the cylinder (x = 0, r = 0) is determined by calculating the Fourier 
number for that time, finding P(0) on Figure 2.37, finding C(0) on Figure 2.38, and applying 

 
(0,0)p

o

θ
θ

 = 
(0, 0)

o

T T

T T
∞

∞

−
−

 = P(x) C(r) 

 T(0, 0) = T∞ + P(x) C(r) (To – T∞) 

(b) The center temperature for a long cylinder is 

 T(r = o, t) = T∞ + C(o) (To – T∞) 

(c) The center temperature for a slab is 

 T(x = o, t) = T∞ + P(o) (To – T∞) 

 

 

The temperature-time histories of these three cases are tabulated and plotted below 

     T(0, 0) (°C) 

Time(s) (min) Fo P(0) C(0) (a) Short  

Cylinder 

(b) Long 

 Cylinder 

(c) Slab 

120 2 0.03 0.99 0.95 115 116 120 

300 5 0.08 0.78 0.60 68 81 99 

1200 20 0.32 0.52 0.24 33 45 73 

4800 80 1.28 .075 .033 21 14 29 
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PROBLEM 2.85 

A long 0.6-m-OD 347 stainless steel (k = 14 W/(m K) cylindrical billet at 16°C room 
temperature is placed in an oven where the temperature is 260°C. If the average heat 
transfer coefficient is 170 W/(m2 K), (a) estimate the time required for the center 
temperature to increase to 323°C by using the appropriate chart and (b) determine the 
instantaneous surface heat flux when the center temperature is 232°C. 

GIVEN 

• A long cylindrical billet placed in an oven 
• Billet outside diameter = 0.6 m 
• Thermal conductivity (k) = 14 W/(m K) 
• Initial temperature (Ti) = 16°C 
• Oven temperature (T∞) = 260°C 
• The average heat transfer coefficient ( )ch  = 170 W/(m2 K) 

• Center temperature increases to 232°C 

FIND 

(a) The time required using the appropriate chart 
(b) The instantaneous surface heat fluxes when the center temperature is 232°C 

ASSUMPTIONS 

• Radial conduction only in billet 
• Uniform and constant properties 
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SKETCH 

BilletD = 0.6 m

Oven T• = 260°C
 

SOLUTION 

(a) The Biot number for the billet is 

 Bi = c oh r

K
 = 

( )2[170W/(m K)] 0.3m

14W/(m K)
 = 3.643 > 0.1 

 
1

Bi
 = 0.275 

 
(0, )f

o

T t T

T T
∞

∞

−
−

 = 
232°C 260°C

16°C 260°C

−
−

 = 0.115 

From Figure 2.38 

 Fo = 
2

o

t

r

α
 = 0.65 

Solving for the time 

 t = 
2

oFor

α
 = 

( )2

–5 2

0.65 0.3m

0.387 10 m /s×
 = 15,116 s = 252 min = 4.2 hr 

(b) The surface temperature is needed to find the surface heat flux. For 1/Bi = 0.275 and r = ro, from 
Figure 2.38. 

  
( , )

(0, )
oT r t T

T t T
∞

∞

−
−

 = 0.3 

 T(ro, t)  = T∞ + 0.3 (T(0, t) – T∞) = 260°C + 0.3 (232°C – 260°C) = 251.6°C 
The instantaneous surface flux is 

 
q

A
 = h  [T∞ – T(ro, t)] = 170 2W/(m K)  (251°C – 260°C) = 1428 2W/m  

PROBLEM 2.86 

Repeat Problem 2.85(a), but assume that the billet is only 1.2-m long and the average 
heat transfer coefficient at both ends is 136 W/(m2 K). 

Problem 2.85 

A long, 0.6 m OD 347 stainless steel (k = 14 W/(m K)) cylindrical billet at 16°C room 
temperature is placed in an over where the temperature is 260°C. If the average heat 
transfer coefficient is 170 W/(m2 K), estimate the time required for the center 
temperature to increase to 232°C by using the appropriate chart. 

GIVEN 

• A cylindrical billet placed in an over 
• Billet outside diameter = 0.6 m 
• Thermal conductivity (k) = 14 W/(m K) 
• Initial temperature (To) = 16°C 
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• Oven temperature (T∞) = 260°C 
• The average heat transfer coefficient ( )csh  = 170 W/(m2 K) 

• Increase of the center temperature is 232°C 
• Billet length (2L) = 1.2 m 
• Heat transfer coefficient at the ends ( )ceh  = 136 W/(m2 K) 

FIND 

• The time required using the appropriate charts 

ASSUMPTIONS 

• Two dimensional conduction within the billet 
• Constant and uniform thermal properties 
• Constant oven temperature 

SKETCH 

x

Ka

P x r( , ) 2L
r

ro

Oven T• = 260°C  

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10 For Type 304 stainless steel 

  Thermal diffusivity (α) = 0.387 × 10–5 m2/s 

SOLUTION 

From Table 2.4, the solution for this geometry is 

 
( ),p

o

x rθ
θ

 = P(x) C(r) 

where 

 P(x) = 
( ),

o

x tθ
θ

 for an infinite plate (Figure 2.37) 

 C(r) = 
( ),

o

r tθ
θ

 for a long cylinder (Figure 2.38) 

 
( )0,0p

o

θ
θ

 = 
(0,0)

o

T T

T T
∞

∞

−
−

 = 
232°C 260°C

16°C 260°C

−
−

 = 0.11 = P(0) C(0) 

For the infinite plate solution 

 (Bi)x = ceh L

k
 = 

( )2[136 W/(m K)] 0.6m

14 W /(m K)
 = 5.83  

1

Bi
 = 0.17 
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 Fo = 
2

t

L

α
 = 

( )

–5 2

2

0.387 10 m /s

0.6m

×
t = 1.075 × 10–5 t s–1 

For the long cylinder solution 

 (Bi)r = cs oh r

k
 = 

( )2[170 W/(m K)] 0.3m

14 W/(m K)
 = 3.54  

1

Bi
  = 0.28 

 Fo = 
2

o

t

r

α
 = 

( )

–5 2

2

0.387 10 m /s

0.3m

×
t = 4.3 × 10–5 t s–1 

The time required to reach a product solution of 0.115 is found through trial and error. 

 Time(s) (min) Fox P(0) For C(0) P(0)C(0) 

 6,000 100 0.065 0.99 0.26 0.37 0.0366 

 12,000 200 0.13 0.82 0.52 0.17 0.139 

 15,000 250 0.16 0.54 0.645 0.10 0.054 

 13,000 217 0.14 0.60 0.56 0.15 0.090 

 12,500 208 0.134 0.70 0.538 0.208 0.11 

The time required is approximately 208 min or 3.4 hours. 

COMMENTS 

The uncertainty in the solution is high because of the difficulty reading Figure 2.37 at very low 
Fourier numbers. For higher accuracy, the differential equations that describe the problem would have 
to be solved. 

PROBLEM 2.87 

A large billet of steel initially at 260°C is placed in a radiant furnace where the surface 
temperature is held at 1200°C. Assuming the billet is infinite in extent, compute the 
temperature at point P shown in the accompanying sketch after 25 min has elapsed. The 
average properties of steel are: k = 28 W/(m K), ρ = 7360 kg/m3, and c = 500 J/(kg K). 

GIVEN 

• A large billet of steel is placed in a radiant furnace 
• Initial temperature (To) = 260°C 
• Surface temperature of billet in the oven (Ts) = 1200°C 
• Lapse time (t) = 25 min = 1500 s 
• Thermal conductivity (k) = 28 W/(m K) 
• Density (ρ) = 7360 kg/m3 
• Specific heat (c) = 500 J/(kg K) 

FIND 

• The temperature at point P shown in the accompanying sketch 

ASSUMPTIONS 

• The billet infinite in extent 
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SKETCH 

Corner of Billet

•

•

•

•y x

5 cm

20 cm

 

SOLUTION 

From Table 2.4, the solution for a one quarter infinite solid is 

 
( ),p

o

x yθ
θ

 = 
( , , ) s

o s

T x y t T

T T

−
−

 = S(x) S(y) 

Where S(x) and S(y) are solutions for a semi-infinite solid, which are given for a constant surface 
temperature by Equation (2.105) 

 
( , )

o

T x t T

T T
∞

∞

−
−

 = erf 
2

x

tα
 
  

 

Therefore, the solution to this problem is 

 
( , , )

o

T x y t T

T T
∞

∞

−
−

 = erf 
2

x

tα
 
  

 erf 
2

y

tα
 
  

 

 T(x, y, t) = Ts + (To – Ts) erf erf
x y

M M
     

        
 

where 

 M = 2 tα  = 2
k t

cρ
 = 2

( )
( )2

[28 W/(m K)] 1500s

(7360kg/m ) 500J/(kg K)
 = 0.2137 

 ∴ T (0.05 m, 0.2 m, 1500 s) = 1200°C = (260°C – 1200°C) 
0.05m 0.2m

erf erf
0.2137 m 0.2137 m

   
      

 

Using Appendix 2, Table 43 for the error function values 

  T (0.05 m, 0.2 m, 1500 s) = 1200°C – 940° (0.259) (0.814) = 1002°C 
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Chapter 3 

PROBLEM 3.1 

Show that in the limit Δx → 0, the difference equation for one-dimensional steady 
conduction with heat generation, Equation (3.1), is equivalent to the differential 
equation, Equation (2.27). 

GIVEN 

• One dimensional steady conduction with heat generation 

SHOW 

(a) In the limit of small Δx, the difference equation is equivalent to the differential equation 

SOLUTION 

From Equation (3.1) 

 Ti + 1 – 2Ti + Ti – 1 = 
2

,G i
x

q
k

Δ−   

By definition 

 Ti – 1 = T (x – Δx) 

 Ti = T (x) 

 Ti + 1 = T (x + Δx) 

so we can rewrite Equation (3.1) as follows 

  
( ) ( ) ( )

2

2T x x T x T x x

x

+ Δ − + − Δ
Δ

= 
( )Gq x

k
−


 

Now, in the limit Δx → 0, from calculus, the left hand side of the above equation becomes 
2

2

d T

dx
 so we 

have 

 k 
2

2

d T

dx
 = ( )Gq x−   

which is equivalent to Equation (2.27). 

PROBLEM 3.2 

‘What is the physical significance of the statement that the temperature of each node is 
just the average of its neighbors if there is no heat generation’ [with reference to 
Equation (3.2)]? 

SOLUTION 

The significance is that in regions without heat generation, the temperature profile must be linear. 
Compare the subject equation with the solution of the differential equation 

 
2

2

d T

dx
 = 0 

which is T(x) = a + bx, which is also linear. 
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PROBLEM 3.3 

Give an example of a practical problem in which the variation of thermal conductivity 
with temperature is significant and for which a numerical solution is therefore the only 
viable solution method. 

SOLUTION 

From Figure 1.6, the thermal conductivity of stainless steel (either 304 or 316) is a fairly strong 
function of temperature. For example 

 kss 316 (100°C) = 14.2 (W/m K) 

 kss 316 (500°C) = 19.6 (W/m K) 

which is about a 38% difference. 
Suppose a stainless steel sheet is to receive a heat treatment that involves heating the sheet to 500°C 
and then plunging it into a water bath. The water near the sheet would probably boil producing a sheet 
surface temperature near 100°C while the interior of the sheet would be at 500°C, at least for a short 
time. One would expect the large variation in thermal conductivity to be important in this type of 
problem. 

PROBLEM 3.4 

Discuss advantages and disadvantages of using a large control volume. 

SOLUTION 

The advantages of a large control volume are 
(1) the numerical solution can be carried out quickly 
(2) manual calculation for all control volumes are feasible for the purpose of verifying the numerical 

calculation 
(3) energy will be conserved 
Disadvantages are 
(1) large temperature gradients cannot be accurately represented with large control volumes 
(2) it is difficult to accommodate all but rectangular geometries. 

PROBLEM 3.5 

For one-dimensional conduction, why are the boundary control volumes half the size of 
interior control volumes? 

GIVEN 

• One-dimensional conduction 

EXPLAIN 

(a) Why the boundary control volume is half the size of internal control volumes 

SOLUTION 

There is a node on the boundary as well as one a distance Δx to the interior of the boundary. Since the 
interior nodes are centered within a control volume of width Δx, the control volume associated with 
the first non-boundary node comes within Δx/2 of the boundary. So, there is a volume of only Δx/2 left 
over for the boundary node. 

PROBLEM 3.6 

Discuss advantages and disadvantages of two methods for solving one-dimensional steady 
conduction problems. 
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SOLUTION 

The two methods for solving one-dimensional steady conduction problems are matrix inversion and 
iteration. 
Matrix inversion requires that we have some method (usually software) for inverting the matrix or for 
solving a tridiagonal system of equations. The method is difficult to apply to problems with variable 
thermal conductivity. If we have access to the required software, the method is simple and fast. 
Iteration can handle variable thermal conductivity and does not require software for the inversion of a 
matrix. In practice, we will likely need to write a program or use a spreadsheet to carry out iteration 
and it may converge slowly. 

PROBLEM 3.7 

Solve the system of equations 

 2T1 + T2 – T3 = 30 

 T1 – T2 + 7T3 = 270 

 T1 + 6T2 – T3 = 160 

by Jacobi and Gauss-Seidel iteration. Use as a convergence criterion | T2
(p) – T2

(p – 1) | 
< 0.001. Compare the rate of convergence for the two methods. 

GIVEN 

• A system of three equations 

FIND 

(a) The solution of the system of equation using Jacobi and Gauss-Seidel iteration 

SOLUTION 

Since we do not know the physical problem these equations originated from, it is difficult to make a 
good first guess. Let’s use 0 for all three temperatures as an initial guess. 
If we solve the equations in the order given for T1, T2, and T3 and solve by iteration, we find that the 
solution is not stable. Let’s solve the first equation for T1, the second for T3, and the third for T2. For 
Jacobi iteration we have 

 T1
(p + 1) = 

1

2
(30 – T2

(p) + T3
(p)) 

 T3
(p + 1) = 

1

7
(270 – T1

(p) + T2
(p)) 

 T2
(p + 1) = 

1

6
(160 – T1

(p) + T3
(p)) 

and for Gauss-Seidel iteration we have 

 T1
(p + 1) = 

1

2
(30 – T2

(p) + T3
(p)) 

 T3
(p + 1) = 

1

7
(270 – T1

(p + 1) + T2
(p + 1)) 

 T2
(p + 1) = 

1

6
(160 – T1

(p + 1) + T3
(p)) 

The solution was carried out using a spreadsheet as shown on the next page 
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Problem 3.7 Filename 3_7.WQ1 
 ============= Jacobi ========== | ======= Gauss-Seidel ===== 
 iteration T1 T2 T3 T1 T2 T3 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 15.000 26.667 38.571 15.000 24.167 39.881 
2 20.952 30.595 40.238 22.857 29.504 39.521 
3 19.821 29.881 39.949 20.009 29.919 39.987 
4 20.034 30.021 40.009 20.034 29.992 39.994 
5 19.994 29.996 39.998 20.001 29.999 40.000 
6 20.001 30.001 40.000 20.000 30.000 40.000 
7 20.000 30.000 40.000 20.000 30.000 40.000 
8 20.000 30.000 40.000 20.000 30.000 40.000 
9 20.000 30.000 40.000 20.000 30.000 40.000 

Applying the criterion that the temperature change per iteration should be less than 0.001, we see that 
Jacobi iteration requires 7 iterations while Gauss-Seidel iteration requires 6 iterations. 

PROBLEM 3.8 

Develop the control volume difference equation for one-dimensional steady conduction in 
a fin with variable cross-sectional area A(x) and perimeter P(x). The heat transfer 
coefficient from the fin to ambient is a constant oh  and the fin tip is adiabatic. 

GIVEN 

• Fin with variable cross-sectional area and perimeter 
• Convection coefficient to ambient is constant, ho 

FIND 

(a) Control volume difference equation 

SKETCH 

T0

A x
P x

( )
( )

T•

L
 

SOLUTION 

Consider a control volume as shown below 

Ai

Ai + 1

Ti + 1
Ti

Dx

i i + 1

1 Ni£ £

Pi

 

An energy balance on this control volume is expressed by 
  heat conducted into left face = 

  heat convected out perimeter + heat conducted out right face 

or 
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  – kAi 
1i iT T

x
−− 

  Δ
 = Δx Pi ho (Ti – T∞) – kAi + 1 

1i iT T

x
+ − 

  Δ
 

which can be rearranged to give 

  Ti – 1 Ai + Ti 
( )2

1i i i o
x

A A Ph
k+

 Δ
− − −  

 + Ti + 1 Ai + 1= 
( )2x

k

Δ− Pi ho T∞ 

The boundary conditions can be written as 

 T1 = To 

 TN = TN – 1 

This can be written in the form of a tridiagonal matrix, per Equation (3.10) where the coefficients of 
the matrix are 

 a1 = 1    b1 = 0     d1 = To 

 ci  = – Ai     ai = Ai + Ai + 1 + 
( )2x

k

Δ
Pi ho    bi = – Ai + 1    di = 

( )2x

k

Δ
Pi ho T∞ 1 < i < N 

 cN  = – 1     aN = 1     dN = 0 

PROBLEM 3.9 

Using your results from Problem 3.11 find the heat flow at the base of the fin for the 
following conditions: 

 k = 34 W/(m K) 

 L = 5 cm 

  A(x) = 3.23 × 10–4 ( ) 21
1 sinh m

3
 − 

x

L
 

 P(x) = [ ( )]
1

2A x   

 ho = 110 W/(m2 K) 

 To = 93°C 

 T∞ = 27°C 

Use a grid spacing of 0.5 cm. 

From Problem 3.8: Develop the control volume difference equation for one-dimensional 
steady conduction in a fin with variable cross-sectional area A(x) and perimeter P(x). The 
heat transfer coefficient from the fin to ambient is a constant oh  and the fin tip is 

adiabatic. 

GIVEN 

• A fin with variable cross-sectional area and perimeter 

FIND 

(a) Heat flow rate for conditions given above 

 

 

 

SOLUTION 
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The number of nodes is N = 1 + 
L

xΔ
 = 11. The cross-sectional area at any node is 

 Ai = 3.23 × 10–4 
( )1 1

1 sinh
3

i x

L

− Δ  −      m2 

and the perimeter at any node is 

 Pi = 
1

2
iA  

Heat transfer at the fin root is 

 qfin = 
k

xΔ
 A1 (T1 – T2) 

The difference equation as derived in Problem 3.8 is 

  Ti – 1 Ai + Ti 
( )2

1i i i o
x

A A Ph
k+

 Δ
− − −  

 + Ti + 1 Ai + 1 = 
( )2x

k

Δ− Pi ho T∞ 

The boundary conditions can be written as 

 T1 = To 

 TN = TN – 1 

This can be written in the form of a tridiagonal matrix, per Equation (3.10) where the coefficients of 
the matrix are 

 a1 = 1     b1 = 0      d1 = To 

 ci  = – Ai        ai = Ai + Ai + 1 + 
( )2x

k

Δ
 Pi ho     bi = – Ai + 1      di = 

( )2x

k

Δ
 Pi ho T∞ 1 < i < N 

 cN  = – 1     aN = 1     dN = 0 

This set of equations can be easily solved using the matrix inversion function. The temperature values 
at various nodes are tabulated below: 

Node 
A(i) 

sq.m 

P(i) 

m 

T(i) 

K 

1 0.000323 0.017961 366 

2 0.000312 0.017658 363.5997 

3 0.000301 0.017347 361.6232 

4 0.00029 0.017025 359.8693 

5 0.000278 0.016686 358.3396 

6 0.000267 0.016326 357.0372 

7 0.000254 0.015941 355.9675 

8 0.000241 0.015525 355.139 

9 0.000227 0.015069 354.5646 

10 0.000212 0.014567 354.2633 

11 0.000196 0.014008 354.2633 

 Qbase = 5.2652 W 
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MATLAB PROGRAM 
L = 0.05; 
dx = 0.5/100; 
k = 34; 
Tamb = 300; 
h  = 110; 
N = (L–0)/dx 
 
T = zeros (N+1,1); 
A = zeros (N+1,1); 
P = zeros (N+1,1); 
 
X(1) = 0; 
T(1) = 366; 
for i = 2: N+1 
 x(i) = x(1)+((i–1)*dx); 
end 
for i=1:N+1 
 A(i) = (3.2258/(10^4))*(1–((sinh(x(i)/L))/3)); 
 P(i) = (A(i)^0.5); 
end 
 
a = zeros (N+1); % Lower diagonal of tridiagonal matrix 
b = zeros (N+1); % Principal diagonal of tridiagonal matrix 
c = zeros (N+1); % Upper diagonal of tridiagonal matrix 
d = zeros (N+1); % RHS 
 
 for i = 3: N 
  a(i) = A(i); 
 end 
 for i = 2: N–1 
  b(i) = –A(i)–A(i+1)–((h/k)*(dx^2)*P(i)); 
 end 
 b(N) = –A(N)–A(N+1)–((h/k)*(dx^2)*P(N))+A(N+1); 
 for i = 2: N–1 
  c(i) = A(i+1); 
 end 
 d(2) = (–(h/k)*(dx^2)*Tamb*P(i))–(A(2)*T(1)); 
 for i = 3: N 
  d(i) = –(h/k)*(dx^2)*Tamb*P(i); 
 end 
 
 % TDMA 
 for i = 3: N 
  b(i) = b(i)–(a(i)*c(i–1)/b(i–1)); 
  d(i) = d(i)–(a(i)*d(i–1)/b(i–1)); 
 end 
 T(N) = d(N)/b(N); 
 for i = N–1:–1:2 
  T(i) = (d(i)–(c(i)*T(i+1)))/b(i); 
 end   
 T(N+1) = T(N); 
 
 qbase = k*A(1)*(T(1)–T(2))/dx 
 
 The heat loss at the base of the fin 

 qbase = 1 1 2( )
k

A T T
x

−
Δ

 

  = 
34(W / mK)

0.005 m
 × (0.000323 m2)(366 – 363.5997)K 

  = 5.2652 W 
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PROBLEM 3.10 

Consider a pin fin with variable conductivity k(T), constant cross sectional area Ac and 
constant perimeter, P. Develop the difference equations for steady one-dimensional 
conduction in the fin and suggest a method for solving the equations. The fin is exposed 
to ambient temperature Ta through a heat transfer coefficient h. The fin tip is insulated 
and the fin root is at temperature To. 

GIVEN 

• Fin with variable thermal conductivity, k(T) 

FIND 

(a) Difference equation 
(b) Solution method 

SKETCH 

T T1 – o

i – 1 i + 1i

Ac P

Ta, h

TN
Dx  

SOLUTION 

For the control volume centered over the interior node i, an energy balance gives 

  Ac 
1 1

left right
i i i iT T T T

k k
x x

− +− − 
+  Δ Δ

 = ho P (Ti – Ta) 

The thermal conductivities are given in Section 3.2.1 

 kleft = 
1

1

2 i i

i i

k k

k k
−

−+
 = 

( ) ( )
( ) ( )

1

1

2 i i

i i

k T k T

k T k T

−

−+
 

and 

 kright = 
1

1

2 i i

i i

k k

k k
+

++
 = 

( ) ( )
( ) ( )

1

1

2 i i

i i

k T k T

k T k T

+

++
 

For the node at the root T1 = To. 
At the tip, an energy balance gives 

  Ac kN 
( )1N NT T

x
− −
Δ

 = ho P (TN – Ta) 

 
 
where 

 kN = 
( ) ( )

( ) ( )
1

1

2 N N

N N

k T k T

k T k T

−

−+
 

These equations can be written in tridiagonal form, Equation (3.9) 

 ai Ti = bi Ti + 1 + ci Ti – 1 + di 
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where 

 a1 = 1   b1 = 0   c1 = 0   d1 = To 

For 1 < i < N 

 ai  = ho P + cA

xΔ
(kleft + kright) 

 bi = cA

xΔ
kright 

 ci = cA

xΔ
kleft 

 di = ho PTa 
and 

 aN = ho P + c NA k

xΔ
 

 bN = 0 

 cN = c NA k

xΔ
 

 dN = ho PTa 
Note that kright, kleft, and kN depend on the nodal temperatures. To solve the system of equations, it will 
be necessary to 
(1) Guess at the nodal temperatures 
(2) Calculate the values for kright, kleft, and kN 
(3) Calculate the matrix coefficients ai, bi, ci and di, 1 ≤ i ≤ N 
(4) Solve for the nodal temperatures by inverting the matrix as in Equation (3.10) 
(5) Repeat steps 2 through 4 until the nodal temperatures cease to change 

PROBLEM 3.11 

How would you treat a radiation heat transfer boundary condition for a one-dimensional 
steady problem? Develop the difference equation for a control volume near the boundary 
and explain how to solve the entire system of difference equations. Assume that the heat 
flux at the surface is q = ε σ (Ts

4 – Te
4) where Ts is the surface temperature and Te is the 

temperature of an enclosure surrounding the surface. 

GIVEN 

• Radiation boundary condition 
• One-dimensional steady conduction 

FIND 

(a) Difference equation for control volume near surface 
(b) Solution method 

 

SKETCH 

Dx

N-I N

Te
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SOLUTION 

An energy balance on the half control volume surrounding the surface node is 

  k 
( )1N NT T

x
− −
Δ

 = ε σ (TN
4 – Te

4) 

The right side of the above equation can be written 

  (TN – Te) hr 
where 

 hr = ε σ (TN
2 + Te

2) (TN + Te) 

The difference equation can be written in the tridiagonal form like Equation (3.9) as follows 

 ai Ti = bi Ti + 1 + ci Ti – 1 + di 

The coefficients for 1 < i < N are given just before Equation (3.10). For i = 1, the coefficients will 
depend on the boundary condition at the left boundary. For i = N, the coefficients are 

 ai = hr + 
k

xΔ
   bi = 0    ci = 

k

xΔ
   di = hr Te 

To solve the set of difference equations, an initial temperature distribution guess will be made. This 
will allow a determination of all of the coefficients. The tridiagonal matrix can then be solved to get an 
updated temperature distribution. This distribution will be used to update the coefficients and the 
procedure will be repeated to convergence. 

PROBLEM 3.12 

How should the control volume method be implemented at an interface between two 
materials with different thermal conductivities? Illustrate with a steady, one-dimensional 
example. Neglect contact resistance. 

GIVEN 

• Interface between two different materials with different thermal conductivities 

FIND 

(a) Difference equation at the interface 

ASSUMPTIONS 

• No heat generation 

SKETCH 

I – 1

Interface

krightkleft

I I + 1  

SOLUTION 

As shown in the sketch, the node at the interface is i = I. The thermal conductivity to the left of the 
interface is kleft and on the right side of the interface it is kright. Since there is no contact resistance or 
heat generation, an energy balance for the control volume that straddles the interface is 

  kleft 
( )1I IT T

x
− −
Δ

 = kright 
( )1I IT T

x
+−

Δ
 

Simplifying and writing this in the tridiagonal form 
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  T1 (kleft + kright) = T1 + 1 kright + TI – 1 kleft 

The above coefficients would be used to write the Ith row of the tridiagonal matrix. The remaining 
rows for internal nodes would be written as before and those for the boundaries would depend on 
specified boundary conditions. 

PROBLEM 3.13 

How would you include contact resistance between the two materials in Problem 3.12? 
Derive the appropriate difference equations. 

GIVEN 

• Interface between two materials with different thermal conductivities and contact resistance at the 
interface 

FIND 

(a) The appropriate difference equations 

SKETCH 

I – 1

kright

TR i,

I I

TL i,

I + 1

kleft

Rc

 

SOLUTION 

Let the contact resistance be Rc. The interface is located at node i = I. Represent temperatures to the 
left of the interface with TL, i and to the right of the interface with TR, i. Thermal conductivity to the left 
of the interface is kleft and to the right of the interface is kright. We have drawn two half control 
volumes, one just to the left of the interface and one just to the right of the interface. 
An energy balance on the left control volume is 

  kleft 
( ), 1 ,L I L IT T

x
− −
Δ

 = 
, ,L I R I

c

T T

R

−
 

and for the right control volume 

  kright 
( ), 1 ,R I R IT T

x
+ −
Δ

 = 
, ,R I L I

c

T T

R

−
 

Writing these equations in the tridiagonal form we have 

  TL, I 
left1

c

k

R x

 
+  Δ

 = TL, I – 1 
leftk

xΔ
 + TR, I 

1

cR
 

  TR, I 
right1

c

k

R x

 
+  Δ

 = TL, I 
1

cR
 + TR, I + 1 

rightk

xΔ
 

 
From these equations, the coefficients for the tridiagonal matrix can be defined 

  aL, I = left1

c

k

R x
+

Δ
   bL, I = 

1

cR
   cL, I = leftk

xΔ
  dL, I = 0 
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  aR, I = 
right1

c

k

R x
+

Δ
   bR, I = 

rightk

xΔ
   cR, I = 

1

cR
  dR, I = 0 

The vector of nodal temperatures in Equation (3.10) would be modified to look like 

  

, 1

,

,

, 1

.

.

.

.

L I

L I

R I

R I

T

T

T

T

−

+

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The coefficients with subscripts L, I would appear in the row corresponding to TL, I and those with 
subscripts R, I would appear in the row corresponding to TR, I. Remaining coefficients would be 
determined as for any other one-dimensional steady problems including those determined by the 
boundary conditions. 

PROBLEM 3.14 

A turbine blade 5-cm long, with cross-sectional area A = 4.5 cm2 and perimeter  
P = 12 cm, is made of a high-alloy steel [k = 25 W/(m K)]. The temperature of the blade 
attachement point is 500°C and the blade is exposed to combustion gases at 900°C. The 
heat transfer coefficient between the blade surface and the combustion gases is 500 
W/(m2K). Using the nodal network shown in the accompanying sketch, (a) determine the 
temperature distribution in the blade, the rate of heat transfer to the blade and the fin 
efficiency of the blade and, (b) compare the fin efficiency calculated numerically with 
that calculated by the exact method. 

GIVEN 

• Turbine blade exposed to combustion gases 

FIND 

(a) Blade temperature distribution, heat gain, and fin efficiency 
(b) Fin efficiency calculated exactly 

ASSUMPTIONS 

• The convection coefficient applies at the blade tip 

 

 

 

SKETCH 

T h• = 900°C = 500 W/(m K)2

1 2 3 4 5 6L2  
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SOLUTION 

For the node and control volume arrangement shown in the sketch, we have 

 xi = Δx(i – 1)     i = 1, 2, …, N = 6     Δx = 
1

L

N −
 

For the control volume at i = 1, we have a specified temperature, therefore 

 T1 = Troot 

For the interior control volumes, i = 2, 3, 4, 5, an energy balance gives 

  kA 
1 1i i i iT T T T

x x
+ −− − 

+ Δ Δ 
 + PΔxh (T∞ – Ti) = 0 

Writing this in the tridiagonal form 

  Ti 
2

2
P x h

kA

 Δ
+  

 = Ti + 1 + Ti – 1 + 
2P x h

kA

Δ
 T∞ 

For the control volume at node i = N, an energy balance gives 

  kA 
1N NT T

x
− −
Δ

 + h (T∞ – TN) 
2

x
P A

Δ +    = 0 

In the tridiagonal form this becomes 

  TN 1
2

h x x
P A

kA

Δ Δ  + +      = TN – 1 + 
2

h x x
P A

kA

Δ Δ +   T∞ 

Filling in the matrix A coefficients in Equation (3.10) we have 

  a1 = 1      b1 = 0       c1 = 0      d1 = Troot 

  ai = 2 + 
2P x h

kA

Δ
    bi = 1     ci = 1     di = 

2P x h

kA

Δ
 T∞  i = 2, 3, 4, 5 

  aN = 1 + 
2

h x x
P A

kA

Δ Δ +       bN = 0    cN = 1 dN = 
2

h x x
P A

kA

Δ Δ +    T∞ 

The matrix can be inverted using a spreadsheet and then the inverse matrix is multiplied by the vector 
D to give the solution vector T of temperatures. 
Heat transfer from the fin is given by the heat loss from the first control volume 

  Qfin = h 
2

xΔ
 P (T1 – T∞) + 

kA

xΔ
 (T1 – T2) 
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The spreadsheet is shown below 
Problem 3.14 Filename: 3_14.WQ1 
PROBLM PARAMETERS 
=================================== 
 Ac  = 0.00045 (fin cross sectional area, m^2) 
 P = 0.12 (fin perimeter, m) 
 L = 0.05 (fin length, m) 
 h = 500 (heat transfer coefficient, W/m^2K) 
 k = 25 (fin thermal conductivity, W/mK) 
 Troot = 500 (root temperature, deg C) 
 Tgas = 900 (gas temperature, deg C) 
 N = 6 (number of nodes) 
 dx = 0.01 (length of control volume, m) 
 K1 = 0.533333 (–) 
 K2 = 444.4444 (m^ –2) 
 K3 =  0.00105 (m^2) 

 
COEFFICIENT MATRIX 

 ================================================== 
 1 0 0 0 0 0 
 –1 2.533333 –1 0 0 0 
 0 –1 2.533333 –1 0 0 
 0 0 –1 2.533333 –1 0 
 0 0 0 –1 2.533333 –1 
 0 0 0 0 -1 1.466667 
  
 VECTOR 
 VECTOR PRODUCT 

 INVERSE MATRIX  D T 

 ================================================================== ======= ========= 
 1 0 0 0 0 0 500 500 
 0.489927 0.489927 0.241149 0.120984 0.065343 0.044552 480 704.0291 
 0.241149 0.241149 0.610911 0.306492 0.165536 0.112865 480 803.5404 
 0.120984 0.120984 0.306492 0.655463 0.354014 0.241374 480 851.6065 
 0.065343 0.065343 0.165536 0.354014 0.731301 0.498614 480 873.8628 
 0.044552 0.044552 0.112865 0.241374 0.498614 1.021782 420 882.1792 

 FIN HEAT LOSS --> –349.533 watts 

 

The heat loss from the blade is –349.533 watts, i.e., the fin gains 349.533 watts from the combustion 
gases. 
To determine the fin efficiency of the blade, consider that if the entire blade were at the root 
temperature, the heat loss would be 

 QI, max = (PL + A) (Troot – T∞) 

 QI, max = ( )2500 W/(m K) ((0.12 m) (0.05 m) + 0.00045 m2) (900 – 500) K  

  = 1290.0 watt 

The fin efficiency is therefore 

 ηfin = 
,max

I

I

Q

Q
 = 

349.5

1290.0
 = 0.271 
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For the exact solution, use Table 2.1, entry 4 with 

 m = 
hP

kA
 = 

( ) ( )
( ) ( )

2

2

500 W/(m K) 0.12m

25W/(m K) 0.00045m
 = 73.0297 m–1 

 m L = (73.0297 m) (0.05 m) = 3.6514 

 M = hPkA (Troot – T∞) = ( ) ( ) ( ) ( )2 2500W/(m K) 0.12 m 25(W/m K 0.00045m  

   = 328.633 watt 

giving 

 Qfin = 328.381 watt 

which is about 6% less than our numerical solution. Presumably, as we increase N, the accuracy would 
improve. 

 

PROBLEM 3.15 

Determine the difference equations applicable to the centerline and at the surface of an 
axisymmetric cylindrical geometry with volumetric heat generation and convective 
boundary condition. Assume steady-state conditions. 

GIVEN 

• Axisymmetric, steady, cylindrical geometry with volumetric heat generation and surface 
convection boundary condition 

FIND 

(a) Difference equations for the centerline and surface 

SKETCH 

Dr

r R= o

i = 1 2 N –1

r

T•, h

N

2

 

SOLUTION 

The solution to this problem completes the formulation of the cylindrical geometry presented in 
Section 3.5, with the added constraints of steady state conditions and symmetry. 
As in Figure 3.20 and Section 3.5, the radius is given by 

 r = (i – 1) Δr       i = 1, 2, … N     Δr = 
1

oR

N −
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Let the convection coefficient be h and ambient temperature be T∞. The inner surface area per unit 
length of the shaded control volume is 

  2π 
2o
r

R
Δ −    

and the outer surface area is 

  2πRo 

The volume of the control volume per unit length is 

  π 
2

2

2o o
r

R R
 Δ − −    

 = π 
2

4o
r

R r
 Δ

Δ −  
 

The energy balance on the control volume gives 

  k 
1N NT T

r
− −

Δ
 2π 

2o
r

R
Δ −    + 2πRoh (T∞ – TN) + 

2 4G o
r r

q R
Δ Δ −  

 = 0 

Simplifying and putting into the tridiagonal form 

  TN 
2o o

k r
R R h

r

Δ   − +      Δ
= TN – 1 

2 2 4o o G o
k r r r

R R hT q R
r ∞

Δ Δ Δ     − + + −          Δ
  

For the control volume for the centerline node, i = 1, the volume per unit length is 

  π 
2

2

rΔ 
    

and the surface area per unit length is 

  2π 
2

rΔ
 = πΔr 

The energy balance gives 

  k 2 1T T

r

−
Δ

πΔr + 
2

2G
r

q π Δ 
  

  = 0 

Simplifying and putting into the tridiagonal form 

  T2 – TI + 
2

4G
r

q
k

Δ  = 0 

COMMENTS 

The above two difference equations can be combined with Equation (3.30) to produce the full set of 
difference equations. The resulting tridiagonal set of equation can be solved just as Equation (3.10). 
(The steady, axisymmetric version of Equation (3.30) would be used.) 

PROBLEM 3.16 

Determine the appropriate difference equations for an axisymmetric, steady, spherical 
geometry with volumetric heat generation. Explain how to solve the equations. 

GIVEN 

• Axisymmetric, steady, spherical geometry with heat generation 
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FIND 

(a) Difference equations 

SKETCH 

Dr
Dr/2

r

T•, h

r R= o

i = 1 2 3 i – 1 i i + 1 N – 1 N  

SOLUTION 

We need to perform an energy balance on the three shaded control volumes shown in the text. For the 
node at the sphere center, i = 1 

 Volume = 
34

3 2

rπ Δ 
    = 

6

π Δr3 

 Surface = 4π 
2

2

rΔ 
    = πΔr2 

The energy balance is 

  k 2 1T T

r

−
Δ

πΔr2 + 
6Gq
π Δr3 = 0 

In the tridiagonal form 

 T1 kΔr = T2 kΔr + 
3

6G
r

q
Δ  

For interior control volumes, 1 < i < N 

 Volume = 
4

3
π 

3 3

2 2

r r
i r i r

 Δ Δ   Δ + − Δ −        
= 

4

3
πΔr3 2 1

3
4

i +     ≡ Vi 

 Inner surface area = 4π 
2

2

r
i r

Δ Δ −    = 4πΔr2 
21

2
i −    ≡ Aii 

 Outer surface area = 4π 
2

2

r
i r

Δ Δ +    = 4πΔr2 
21

2
i +    ≡ Aio 

The energy balance is 

  k 
1i iT T

r
− −

Δ
Aii + k 

1i iT T

r
+ −

Δ
Aio + Gq Vi = 0 

In the tridiagonal form this becomes 

  Ti ( )ii io
k

A A
r

 + Δ 
 = Ti – 1 ii

k
A

r
 
 Δ 

 + Ti + 1 io
k

A
r

 
 Δ 

 + Gq Vi 
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For the control volume at the surface of the sphere 

 Volume = 
4

3
π 

3
3

2o o
r

R R
 Δ − −    

 ≡ Vo 

 Inner surface area = 4π 
2

2o
r

R
Δ −    ≡ ANi 

 Outer surface area = 4πRo
2 ≡ ANo 

The energy balance for the surface control volume is 

  k 
1N NT T

r
− −

Δ
ANi + ANo h (T∞ – TN) + Gq Vo = 0 

In the tridiagonal form 

  TN Ni No
k

A hA
r

 + Δ 
 = TN – 1 Ni

k
A

r
 
 Δ 

 + ANo h + Gq Vo 

From the three control volume difference equations given above in the tridiagonal form, we can 
determine the matrix coefficients 

  a1 = kΔr     b1 = kΔr     c1 = 0    d1 = 
3

6G
r

q
Δ  

  ai = 
k

rΔ
(Aii + Aio)    bi = 

k

rΔ
Aio    ci = 

k

rΔ
Aii    di = Gq Vi 1 < i < N 

  aN = 
k

rΔ
ANi + hANo    bN = 0     cN = 

k

rΔ
ANi     dN = ANo h + Gq Vo 

To solve this set of equations, we insert these coefficients into the matrix in Equation (3.10) and solve 
the tridiagonal matrix as was done for other one-dimensional problems. 

PROBLEM 3.17 

Show that in the limit Δx → 0 and Δt → 0, the difference Equation (3.12) is equivalent to 
the differential Equation (2.5). 

GIVEN 

• The difference equation for one-dimensional transient conduction 

SHOW 

(a) As Δx and Δt →0, the difference equation is equivalent to the differential equation, Equation (2.5) 

SOLUTION 

Equation (3.13) is 

 Ti, m + 1 = Ti, m + ( )1, , 1, ,2i m i m i m G i m
t k

T T T q x
c x xρ + −
Δ  − + + Δ  Δ Δ

  

By definition 

 Ti, m = T(x, t) 

 Ti + 1, m = T(x + Δx, t) 

 Ti – 1, m = T(x – Δx, t) 

 Ti, m + 1 = T(x, t + Δt) 
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So, the difference equation is equivalent to 

  ρ c 
( , ) ( , )T x t t T x t

t

+ Δ −
Δ

 = k 
2

( , ) 2 ( , ) ( , )T x x t T x t T x x t

x

+ Δ − + − Δ
Δ

 + Gq (x, t) 

In the limit as Δt → 0, from calculus, the left hand side of the above equation becomes 

  ρ c 
T

t

∂
∂

 

and in the limit as Δx → 0, from calculus, the first term on the right hand side of the equation becomes 

  k 
2

2

T

x

∂
∂

 

So the equation is equivalent to 

  ρ c 
T

t

∂
∂

 = k 
2

2

T

x

∂
∂

 + Gq (x, t) 

which is the same as Equation (2.5). 

PROBLEM 3.18 

Determine the largest permissible time step for a one-dimensional transient conduction 
problem to be solved by an explicit method if the node spacing is 1 mm and the material 
is (a) carbon steel 1C, and (b) window glass. Explain the difference in the two results. 

 

GIVEN 

• One-dimensional transient conduction in a 1 mm thickness of carbon steel and window glass 

FIND 

(a) Largest permissible time step for each material 

SOLUTION 

(a) From Table 10 in Appendix 2, the thermal diffusivity for carbon steel is α = 1.172 × 10–5 m2/s. 
The largest permissible time step is given by Equation (3.14) 

 Δtmax = 
2

2

x

α
Δ

 = ( )
3 2

5 2

(10 m)

(2) 1.172 10 m /s

−

−×
 = 0.0427 s 

(b) From Table 11 in Appendix 2 the thermal diffusivity for window glass is α = 0.034×10–5 m2/s. 
The largest permissible time step is given by Equation (3.14) 

 Δtmax = 
2

2

x

α
Δ

 = ( )
3 2

5 2

(10 m)

(2) 0.034 10 m /s

−

−×
 = 1.47 s 

Since the heat diffuses much more slowly through the window glass, much larger time steps are 
allowed. 

PROBLEM 3.19 

Consider one-dimensional transient conduction with a convective boundary condition in 
which the ambient temperature near the surface is a function of time. Determine the 
energy balance equation for the boundary control volume. How would the solution 
method need to be modified to accommodate this complexity? 
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GIVEN 

• One-dimensional transient conduction where the ambient temperature near the surface is a 
function of time 

FIND 

(a) The difference equation for the boundary control volume and explain how to solve the problem 

SOLUTION 

The difference equation would be derived exactly as Equation (3.17). Assuming we are the boundary 
in question is the left boundary we would have: 

 T1, m + 1 = T1, m = ( ) 2, 1,
, 1, 1,

2

2
m m

m m G m

T Tt x
h T T q k

c x xρ ∞
− Δ Δ

− + + Δ Δ 
  

Here, the term T∞ will depend on the time step m. Since this function of time is presumably known, a 
marching procedure can be used to solve the set of equations for the whole problem. 

PROBLEM 3.20 

What are the advantages and disadvantages of using explicit and implicit difference 
equations? 

EXPLAIN 

(a) Advantages and disadvantages of explicit and implicit methods 

 

SOLUTION 

The explicit method can be solved by marching, which is very simple to implement but the maximum 
time step is limited by stability considerations. The implicit method forces the use of matrix inversion 
software to find the solution, but the size of the time step is not limited by stability considerations. (It 
is limited by accuracy considerations just as it is for any method.) 

PROBLEM 3.21 

Equation (3.15) is often called the fully-implicit form of the one-dimensional transient 
conduction difference equation because all quantities in the equation, except for the 
temperatures in the energy storage term, are evaluated at the new time step, m + 1. In an 
alternate form called Crank-Nicholson, these quantities are evaluated at both time step 
m and m + 1 and then averaged. This has the effect of significantly improving accuracy of 
the numerical solution relative to the fully-implicit from without increasing complexity of 
the solution method. Derive the one-dimensional transient conduction difference 
equation in the Crank-Nicholson form. 

GIVEN 

• One-dimensional transient conduction difference equation in the implicit form 

FIND 

(a) The Crank-Nicholson form of the difference equation 

SOLUTION 

We have the explicit difference equation, Equation (3.13) 

 Ti, m + 1 = Ti, m + ( )1, , 1, ,2i m i m i m G i m
t k

T T T q x
c x xρ + −
Δ  − + + Δ  Δ Δ
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and the implicit difference equation, Equation (3.15) 

 Ti, m + 1 = Ti, m + ( )1, 1 , 1 1, 1 , 12i m i m i m G i m
t k

T T T q x
c x xρ + + + − + +
Δ  − + + Δ  Δ Δ

  

Adding these two equations and dividing by 2 gives the desired Crank-Nicholson form of the one-
dimensional transient difference equation 

 Ti, m + 1 = Ti, m + 
2

t

c xρ
Δ

Δ
 

  ( ) ( )1, , 1, 1, 1 , 1 1, 1 , , , 12 2i m i m i m i m i m i m G i m G i m
k

T T T T T T q q x
x + − + + + − + +

 − + + − + + + Δ  Δ
   

PROBLEM 3.22 

A 3-m-long steel rod (k = 43 W/(mK), α = 1.17 × 10–5 m2/s) is initially at 20°C and 
insulated completely except for its end faces. One end is suddenly exposed to the flow of 
combustion gases at 1000°C through a heat transfer coefficient of 250 W/(m2 K) and the 
other end is held at 20°C. How long will it take for the exposed end to reach 700°C? How 
much energy will the rod have absorbed if it is circular in cross section and has a 
diameter of 3 cm? 

GIVEN 

• Steel rod with one end at fixed temperature and the other end exposed to combustion gases 

 

FIND 

(a) Time required for the exposed face to reach 700°C 
(b) Heat input to the rod 

SOLUTION 

Ac

20°C

Insulated

3 m

3 cm dia.

1000°C
> 0t

x

i = 1 2 N – 1 N

Control Volume and Node Layout  

See the figure to the right for the arrangement of control volumes and nodes and symbol definitions. 
The nodes are located at 

 xi = (i – 1) Δx     Δx = 
( 1)

L

N −
     i = 1, 2, …, N 

and the time steps are given by 

 tm = mΔt      m = 0, 1, 2, … 

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
252

For the half control volume at i = 1, the temperature is constant so 

 T1, m = Tinitial        m ≥ 0  

For the half control volume at i = N, the explicit form of the energy balance is 

  k 
1, ,N m N mT T

x
− −

Δ
 + h(T∞ – TN, m) = ρ c 

, 1 ,

2
N m N mT Tx

t
+ −Δ 

   Δ
 

Solving for TN, m + 1 

 TN, m + 1 = TN, m + ( ) ( ){ }1, , .
2

N m N m N m
t k

T T h T T
c x xρ − ∞
Δ

− + −
Δ Δ

 

For all the interior nodes, i = 2, 3, 4, … N – 1, the energy balance is 

  
k

xΔ
{(Ti – 1, m – Ti, m) + (Ti + 1, m – Ti, m)} = ρ cΔx 

, 1 ,i m i mT T

t
+ −

Δ
 

Solving for Ti, m + 1 

 Ti, m + 1 = Ti, m + 
2

t

x

αΔ
Δ

{Ti – 1, m – 2Ti, m + Ti + 1, m}    i = 2, 3, … N – 1 

The heat input to the rod after any time step m is given by 

 Qinput, m = Ac ρ cΔx ( ) ( )
1

, , 0 , , 0
2

1

2

N

i m i m N m N m
i

T T T T
−

= =
=

  − + − 
  
  

The factor of 1/2 is because the control volume at i = N is Δx/2 in width. 
Since we have chosen an explicit method, we can use the marching procedure as described in Section 
3.3.1. Also, the time step Δt is restricted via Equation (3.14). After setting up the computer program to 
step through the time steps, the energy balance on nodes i = 1, 2, and N were checked by hand to 
insure that the code was correct. The several runs were made with various values of N and Δt to find 
how large N and how small Δt must be to get an accurate solution. The table below summarizes these 
runs 
 N Δtmax Δt tfinal Qinput 
  (s) (s) (s) (J/m2) 
 11 3846 10.0 5990 503.72 
 11 3846 1.0 5993 503.79 
 21 962 10.0 6350 490.33 
 41 240 10.0 6440 487.50 
 81 60 10.0 6460 486.69 
 81 60 5.0 6455 486.37 

Since there is little change between the last 3 runs, the solution is that 6455 seconds are required for 
the exposed face to reach 700°C and the heat input to the rod is 486.4 joules. 

PROBLEM 3.23 

A Trombe wall is a masonry wall often used in passive solar homes to store solar energy. 
Suppose such a wall, fabricated from 20 cm thick solid concrete blocks  
(k = 0.13 W/(mK), α = 0.05 × 10–5 m2/s is initially at 15°C in equilibrium with the room in 
which it is located. It is suddenly exposed to sunlight and absorbs 500 W/m2 on the 
exposed face. The exposed face loses heat by radiation and convection to the outside 
ambient temperature of –15°C through a combined heat transfer coefficient of 10 W/(m2 K). 
The other face of the wall is exposed to the room air through a heat transfer coefficient of 
10 W/(m2 K). Assuming that the room air temperature does not change, determine the 
maximum temperature in the wall after 4 hours of exposure and the net heat transferred 
to the room. 
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GIVEN 

• Trombe wall suddenly exposed to sunlight 

FIND 

(a) Maximum temperature in the wall after 4 hours 
(b) Heat input to the room 

SOLUTION 

x

Control Volume and Node Layout

500 W/m2

–15 °C

10 W/(m K)2

i = 1 2 N – 1 N

15°C

10 W/(m2 K)

 

See the figure to the right for the arrangement of control volumes and nodes and symbol definitions. 
The nodes are located at 

 xi = (i – 1)Δx    Δx = 
( 1)

L

N −
    i = 1, 2, …, N 

and the time steps are given by 

 tm = mΔt       m = 0, 1, 2, … 

For the half control volume at i = 1, the explicit form of the energy balance is 

  k 
2, 1,m mT T

x

−

Δ
 + h (T∞ – T1, m) = ρ c 

1, 1 1,

2
m mT Tx

t
+ −Δ
Δ

 

Solving for T1, m + 1 

 T1, m + 1 = T1, m + ( ) ( ){ }2, 1, 1,
2

m m m
t k

T T h T T
c x xρ ∞
Δ

− + −
Δ Δ

 

where h is the heat transfer coefficient on the room-side of the wall. For the half control volume at i = 
N, the explicit form of the energy balance is 

  k 
1, ,N m N mT T

x
− −

Δ
 + qabs = ρ c 

, 1 ,

2
N m N mT Tx

t
+ −Δ
Δ

 + Uo (TN, m – Tout) 

where Uo is the combined heat transfer coefficient to outside ambient. 
Solving for TN, m + 1 

 TN, m + 1 = TN, m + ( ) ( ){ }1, , , out
2

N m N m abs o N m
t k

T T q U T T
c x xρ −
Δ

− + − −
Δ Δ

 

For all the interior nodes, i = 2, 3, 4, … N – 1, the energy balance is 

  
k

xΔ
{(Ti – 1, m – Ti, m) + (Ti + 1, m – Ti, m)} = ρ cΔx 

, 1 ,i m i mT T

t
+ −

Δ
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Solving for Ti, m + 1 

 Ti, m + 1 = Ti, m + 
2

t

x

αΔ
Δ

{Ti – 1, m – 2Ti, m + Ti + 1, m}       i = 2, 3, … N – 1 

The maximum temperature in the wall at any time step m must be TN, m. 
The heat input to the room after any time step m is given by 

 Qinput, m = h Δt ( )
final

2
1,

 =1

( ) J/m
m

m
m

T T∞−  

Since we have chosen an explicit method, we can use the marching procedure as described in Section 
3.3.1. Also, the time step Δt is restricted via Equation (3.14). After setting up the computer program to 
step through the time steps, the energy balance on nodes i = 1, 2, and N were checked by hand to 
insure that the code was correct. 

Then several runs were made with various values of N and Δt to find how large N and how small Δt 
must be to get an accurate solution. The table below summarizes these runs 
 

 N Δtmax Δt Qinput TΝ  
  (s) (s) (J/m2) (°C) 

 11 400 100 31838 
 11 400 50 31713 
 11 400 25 31650 
 21 100 25 30892 
 31 44 25 30751 
 41 25 20 30689 33.29 
 41 25 5 30666 33.29 
 41 25 5 30653 33.29 

 61 11 10 30630 33.29 

Since there is little change between the last 4 runs, the solution is that after 4 hours the heat input to 
the room is 30630 joules per m2 of wall area and the maximum temperature in the wall is 33.29°C. 

PROBLEM 3.24 

To more accurately model the energy input from the sun, suppose the absorbed flux in 
Problem 3.23 is given by 

 qabs (t) = t (375 – 46.875 t) 

where t is in hours and qabs is in W/m2. (This time variation of qabs gives the same total 
heat input to the wall as in Problem 3.23, i.e., 2000 W hr/m2). Repeat Problem 3.23 with 
the above equation for qabs in place of the constant value of 500 W/m2. Explain your 
results. 

From Problem 3.23: A Trombe wall is a masonry wall often used in passive solar homes 
to store solar energy. Suppose such a wall, fabricated from 200 cm thick solid concrete 
blocks (k = 0.13 W/(mK), α = 0.05 × 10–5 m2s) is initially at 15°C in equilibrium with the 
room in which it is located. It is suddenly exposed to sunlight and absorbs 500 W/m2 on 
the exposed face. The exposed face loses heat by radiation and convection to the outside 
ambient temperature of – 15°C through a combined heat transfer coefficient of 10 W/(m2 
K). The other face of the wall is exposed to the room air through a heat transfer 
coefficient of 10 W/(m2 K). Assuming that the room air temperature does not change, 
determine the maximum temperature in the wall after 4 hours of exposure and the net 
heat transferred to the room. 

GIVEN 

• Trombe wall with specified absorbed solar flux as a function of time 
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FIND 

(a) Maximum temperature in the wall after 4 hours 
(b) Heat input to the room 

SOLUTION 

x

Control Volume and Node Layout

qabs( )t

–15 °C

10 W/(m2 K)

i = 1 2 N – 1 N

15°C

10 W/(m2 K)

 

See the accompanying figure for the arrangement of control volumes and nodes and symbol 
definitions. The nodes are located as 

 xi = (i – 1) Δx 

 Δx = 
( 1)

L

N −
         i = 1, 2, …, N 

and the time steps are given by 

 tm = m Δt          m = 0, 1, 2, … 

For the half control volume at i = 1, the explicit form of the energy balance is 

  k 
2, 1,m mT T

x

−
Δ

 + h(T∞ – T1, m) = ρ c 
1, 1 1,

2
m mT Tx

t
+ −Δ
Δ

 

Solving for T1, m + 1 

 T1, m + 1 = T1, m + ( ) ( ){ }2, 1, 1,
2

m m m
t k

T T h T T
c x xρ ∞
Δ − + −
Δ Δ

 

For the half control volume at i = N, the explicit from of the energy balance is 

  k 
1, ,N m N mT T

x
− −

Δ
 + qabs,m = ρ c 

, 1 ,

2
N m N mT Tx

x
+ −Δ
Δ

 + Uo (TN, m – Tout) 

Solving for TN, m + 1 

 TN, m + 1 = TN, m + ( ) ( ){ }1, , abs, , out
2

N m N m m o N m
t k

T T q U T T
c x xρ −
Δ − + − −
Δ Δ

 

For all the interior nodes, i = 2, 3, 4, … N – 1, the energy balance is 

  
k

xΔ
{(Ti – 1, m – Ti, m) + (Ti + 1, m – Ti, m) = ρ cΔx 

, 1 ,i m i mT T

t
+ −
Δ

 

Solving for Ti, m + 1 

 Ti, m + 1 = Ti, m + 
2

t

x

αΔ
Δ

{Ti – 1, m – 2Ti, m + Ti + 1, m} i = 2, 3, … N – 1 
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The maximum temperature in the wall at any time step m must be TN, m and the heat input to the room 
after any time step m is given by 

 Qinput, m = h Δt 1, 2
 =1

J
( )

m

m

m
m

T T∞
 −     

Since we have chosen an explicit method, we can use the marching procedure as described in Section 
3.3.1. Also, the time step Δt is restricted via Equation (3.14). After setting up the computer program to 
step through the time steps, the energy balance on nodes i = 1, 2, and N were checked by hand to 
insure that the code was correct. A run was then made with N = 41, Δt = 5 seconds. The results 
indicate that the heat input to the room is –1834 joules per m2 of wall area and the maximum wall 
temperature is 54.16°C. In comparison with the results from Problem 3.23 where 30630 J/m2 was 
delivered to the room, here the room has lost 1834 J/m2 to the wall. The reason is that for early times, 
before the absorbed solar flux becomes significant, the wall is losing heat to the outside and is rapidly 
cooling. The room-side face of the wall dips below the air temperature of 15°C and begins to remove 
heat from the room. Only at later times does the wall heat up sufficiently to begin transferring heat 
back to the room. For the short 4 hour run, the net effect is a loss of heat from the room to the wall. 

PROBLEM 3.25 

An interior wall of a cold furnace, initially at 0°C, is suddenly exposed to a radiant flux 
of 15 kW/m2 when the furnace is brought on line. The outer surface of the wall is exposed 
to ambient air at 20°C through a heat transfer coefficient of 10 W/(m2 K). The wall is 20 
cm thick and is made of expanded perlite (k = 0.10 W/(mK), α = 0.03 × 10–5 m2/s) 
sandwiched between two sheets of oxidized steel. Determine how long after startup will 
the inner (hot) sheet metal surface get hot enough so that reradiation becomes 
significant. 

GIVEN 

• Furnace wall suddenly exposed to radiant heat flux 

FIND 

(a) How long before reradiation from the heated wall becomes significant. 

ASSUMPTIONS 

(a) Reradiation becomes significant when the reradiated flux from the exposed wall exceeds 10% of 
the incident radiant flux. 

(b) The oxidized surface of the exposed wall is black. 

SOLUTION 

Control Volume
Boundary

i = 1 2 N –1 N

Control Volume and Node Layout  
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See the figure to the right for the arrangement of control volumes and nodes and symbol definitions. 
The nodes are located at 

 xi = (i – 1) Δx   Δx = 
( 1)

L

N −
 i = 1, 2, …, N 

and the time steps are given by 

  tm = m Δt  m = 0, 1, 2, … 

For the half control volume at i = 1, the explicit form of the energy balance is 

  k 
2, 1,m mT T

x

−
Δ

 + h(T∞ – T1, m) = ρ c 
1, 1 1,

2
m mT Tx

t
+ −Δ
Δ

 

Solving for T1, m + 1 

 T1, m + 1 = T1, m + ( ) ( ){ }2, 1, 1,
2

m m m
t k

T T h T T
c x xρ ∞
Δ − + −
Δ Δ

 

For the half control volume at i = N, the explicit form of the energy balance is 

  k 
1, ,N m N mT T

x
− −

Δ
 + qabs = ρ c 

, 1 ,

2
N m N mT Tx

t
+ −Δ
Δ

 

Solving for TN, m + 1 

 TN, m + 1 = TN, m + ( ){ }1, , abs
2

N m N m
t k

T T q
c x xρ −
Δ − +
Δ Δ

 

For all the interior nodes, i = 2, 3, 4, … N – 1, the energy balance is 

  
k

xΔ
{(Ti – 1, m – Ti, m) + (Ti + 1, m – Ti, m)} = ρ cΔx 

, 1 ,i m i mT T

t
+ −
Δ

 

Solving for Ti, m + 1 

 Ti, m + 1 = Ti, m + 
2

t

x

αΔ
Δ

{Ti – 1, m – 2Ti, m + Ti + 1, m} i = 2, 3, … N – 1 

Since the exposed wall is black, the reradiated flux from the hot wall is σTN
4 and the criterion we  

seek is 

  σTN
4 ≥ 0.1 qabs 

For the given values of problem parameters, this equates to TN = 130.3°C. 
Since we have chosen an explicit method, we can use the marching procedure as described in Section 
3.3.1. Also, the time step Δt is restricted via Equation (3.14). After setting up the computer program to 
step through the time steps, the energy balance on nodes i = 1, 2, and N were checked by hand to 
insure that the code was correct. Then several runs were made with various values of N and Δt to find 
how large N and how small Δt must be to get an accurate solution. The table below summarizes these 
runs 

 N Δtmax Δt tfinal Tmax 
  (s) (s) (s) (C) 

 21 16.7 0.1 15.25 131.5 
 41 41.7 0.1 8.0 130.9 
 61 18.5 0.1 5.6 131.7 
 81 10.4 0.1 4.4 131.4 
 161 2.6 0.1 2.7 130.4 
 321 0.65 0.1 2.2 133.0 
 641 0.163 0.1 2.0 130.6 

 1000 0.07 0.05 2.0 131.0 
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Note that a very large number of nodes is needed because the suddenly imposed flux causes very large 
temperature gradients in the furnace door. This requires a large number of nodes to accurately depict 
the temperature profile. The solution is that 2.0 seconds is required before reradiation must be 
considered. 

COMMENTS 

The answer given above is conservative because the emissivity of the exposed door surface will be less 
than 1 and the door will therefore heat up more quickly. 

PROBLEM 3.26 

A long cylindrical rod, 8 cm in diameter, is initially at a uniform temperature of 20°C. At 
time t = 0, the rod is exposed to an ambient temperature of 400°C through a heat transfer 
coefficient of 20 W/(m2 K). The thermal conductivity of the rod is 0.8 W/(mK) and the 
thermal diffusivity is 3 × 10–6 m2/s. Determine how much time will be required for the 
temperature change at the centerline of the rod to reach 93.68% of its maximum value. 
Use an explicit difference equation and compare your numerical results with a chart 
solution from Chapter 2. 

GIVEN 

• Cylindrical rod suddenly exposed to increased ambient temperature 

FIND 

(a) Time required for the centerline temperature change to reach 93.68% of its maximum value 

SOLUTION 

Since the rod will eventually reach 400°C, the maximum possible temperature change for any part of 
the rod is 400 – 20 = 380°C. Taking 93.68% of this temperature difference, we need to find the time 
such that the centerline temperature is 20 + (0.9368 × 380) = 376°C. 

As in Figure 3.20 and Section 3.5, the radius is given by 

 r = (i – 1) Δr     i = 1, 2, … N      Δr = 
1

oR

N −
 

and the time is given by 

 tm = m Δt, m = 0, 1, 2, … 

Note that since all gradients with respect to the circumferential direction, θ, are zero, the index j is not 
needed. Let the convection coefficient be h and ambient temperature be T∞. The following sketch 
shows the control volumes necessary to solve the problem numerically 

Dr Dr

r

T•, h

r R= o

i = 1 2 3 i –1 i i +1 N –1 N

2

 

Referring to the above sketch, the inner surface area per unit length of the shaded control volume at 
node i = N is 

  2π 
2o
r

R
Δ −    

and the outer surface area is 

  2πRo 
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The volume of the control volume per unit length is 

  π 
2

2

2o o
r

R R
 Δ − −    

 = π
2

4o
r

R r
 ΔΔ −  

≡ VN 

The explicit form of the energy balance on the control volume at i = N gives 

  ρ c VN 
, 1 ,N m N mT T

t
+ −
Δ

= k 
( )1, ,N m N mT T

r
− −

Δ
2π 

2o
r

R
Δ −    + 2π Ro h (T∞ - TN, m) 

Solving for TN, m + 1, 

  TN, m + 1 = TN, m
22 1

1
2

o o

N N

R t R ht

V r cV

πα π
ρ

ΔΔ  − − −   Δ 
+ TN – 1, m

22 1

2
o o

N N

R t R hTt

V r cV

πα π
ρ

∞ΔΔ  − +   Δ 
 

For the control volume at the centerline node, i = 1, the volume per unit length is 

  π 
2

2

rΔ 
   ≡ V1 

and the surface area per unit length is 

 2π 
2

rΔ
 = π Δr 

The energy balance on this node is 

  ρ c V1 
1, 1 1,m mT T

t
+ −

Δ
 = k 

2, 1,m mT T

r

−

Δ
π Δr 

Solving for T1, m + 1 

 T1, m + 1 = T1, m 
1

1
t

V

α πΔ −  
 + T2, m 

1

t

V

α πΔ
 

For nodes 1 < i < N, set the 
θ
∂

∂
 terms to zero and set Δ θ = 2π in Equation (3.30), 

  ρ c r 2π Δ r
, 1 ,i m i mT T

t
+ −

Δ
 = ( )1, , 1, 1, 1,

2
2

2i m i m i m i m i m
k r r

T T T T T
r r

π
− + + −

Δ − + + − Δ  
 

Solving for Ti, m + 1 

 Ti, m + 1 = Ti, m 
2

2
1

t

r

α Δ
−  Δ

 + Ti + 1, m 2
1

2

t r

rr

α Δ Δ +  Δ
 + Ti – 1,m 

2
1

2

t r

rr

α Δ Δ −  Δ
 

Note that 

 
2

r

r

Δ
 = 

1

2( 1)i −
 

and 

 oR

rΔ
 = N – 1 

Using a time step, Δt, such that 

 Δt = Γ 
2

2

r

α
Δ

 where Γ < 1 
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then the explicit solution can be solved by marching and it should be stable. For N = 10 and  
Γ = 0.5, the centerline temperature is found to exceed 376°C at 994 seconds. 
For the chart solution, we refer to Figure 2.38. The Biot number is 

 Bi = ohr

k
 = 

( ) ( )
( )

220 W/(m K) 0.04m

0.8W/(m K)
 = 1.0 

We need to find the abscissa in the figure such that 

  
(0, )

i

T t T

T T
∞

∞

−
−

 = 
376 400

20 400

−
−

 = 0.063 

For the Biot number calculated above, the abscissa is 

  
2

o

t

r

α
 = 1.78 

Solving for the time, we find t = 949 seconds, approximately 5% less than the numerical method 
predicts. Most likely, the difference is due to the precision with which the charts can be read. 

PROBLEM 3.27 

Develop a reasonable layout of nodes and control volumes for the geometry shown in the 
sketch below. Provide a scale drawing showing the problem geometry overlaid with the 
nodes and control volumes. 

GIVEN 

• Rectangular problem geometry 

FIND 

(a) A reasonable layout of nodes and control volumes 

SKETCH 

3.0 cm

Physical
Geometry

Nodes and Control
Volumes

1
0

.0
c
m

Node

Control Volume
Boundary
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SOLUTION 

The largest node spacing divisible into both 3 and 10 is 1 cm. So let’s use Δx = Δy = 1 cm. The sketch 
on the right above shows the resulting placement of nodes and control volume boundaries. 

PROBLEM 3.28 

Develop a reasonable layout of nodes and control volumes for the geometry shown in the 
sketch below. Provide a scale drawing showing the problem geometry overlaid with the 
nodes and control volumes. Identify each type of control volume used. 

GIVEN 

• Rectangular problem geometry with corners removed 

FIND 

(a) Reasonable layout of nodes and control volumes. 
(b) Identify each type of control volume. 

SKETCH 

2.5 cm

Physical Geometry Nodes and Control Volumes

ec

10 cm

he he he he ec

ec

ve

ve

ec
he he he he ec

ec
ic

ic

ve

ve

2.5 cm 2.5 cm

2.5 cm

15 cm

 

SOLUTION 

The largest grid spacing for this problem is Δx = Δy = 2.5 cm. If we used a larger node spacing, we 
could not adequately represent the cutout corners. The right side of the figure shows the resulting 
placement of nodes and control volumes. The notation for the type of control volumes is: 
ec = exterior corner, ic = interior corner, he = horizontal edge, ve = vertical edge. 

PROBLEM 3.29 

Determine the temperature at the four nodes shown in the figure. Assume steady 
conditions and two-dimensional heat conduction. The four faces of the square shape are 
each at different temperatures as shown. 

GIVEN 

• Square shape with four different face temperatures 

FIND 

(a) Temperature at four interior nodes 
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SKETCH 

2

3

6.00 mm

6.00 mm

0°C

300°C

200°C

10°C

 

SOLUTION 

If the shape is divided into square control volumes then according to Section 3.4.1, the temperature at 
each node is the average of its four neighbors. The equation for each node is therefore 

 T1 = 
1

4
 (0 + 300 + T3 + T2) 

 T2 = 
1

4
 (0 + 10 + T4 + T1) 

 T3 = 
1

4
 (300 + T1 + T4 + 200) 

 T4 = 
1

4
 (200 + 10 + T2 + T3) 

The equations can be solved by the iterative method. A table showing the calculation for the first 10 
iterations is given below. The zero iteration is the initial guess of the temperature at the four nodes. 
 

SOLUTION TO PROBLEM 3.29 

iteration T1 (°C) T2 (°C) T3 (°C) T4 (°C) 

0 150 5 250 100 

1 138.75 65.00 187.50 116.25 

2 138.13 66.25 188.75 115.63 

3 138.75 65.94 188.44 116.25 

4 138.59 66.25 188.75 116.09 

5 138.75 66.17 188.67 116.25 

6 138.71 66.25 188.75 116.21 

7 138.75 66.23 188.73 116.25 

8 138.74 66.25 188.75 116.24 

9 138.75 66.25 188.75 116.25 

10 138.75 66.25 188.75 116.25 
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PROBLEM 3.30 

The horizontal cross section of an industrial chimney is shown in the accompanying 
sketch. Flue gases maintain the interior surface of the chimney at 300°C and the outside 
is exposed to ambient temperature of 0°C through a heat transfer coefficient of 5 W/(m2 K). 
The thermal conductivity of the chimney is k = 0.5 W/(mK). For a grid spacing of 0.2 m, 
determine the temperature distribution in the chimney and the rate of heat loss from the 
flue gases per unit length of the chimney. 

GIVEN 

• Chimney with hot flue gases inside, ambient temperature outside 

FIND 

(a) Temperature distribution in the chimney 
(b) Rate of heat loss from the flue gases per unit length 

ASSUMPTIONS 

• Steady state conditions 
• Neglect radiation heat transfer 

SKETCH 

0
.6

m

2.0 m

2
.0

m

0
.4

m

0.6 m

0.4 m Convective Boundary
Condition all Exterior Surfaces

300°C

 

SOLUTION 

Due to a symmetry, only half of the problem geometry needs to be considered. The layout of control 
volumes and nodes is shown in the figure on the next page. There are a total of 63 control volumes 
although the temperature at the nodes for 7 of these is specified. So, we need to develop energy 
balance equations for the remainder. 
For shorthand, let’s define 

  T ≡ Ti, j  T1 ≡ Ti – 1, j  Tr ≡ Ti + 1, j  Tu ≡ Ti, j + 1  Td ≡ Ti, j – 1 

The subscripts in the previous equation stand for left, right, up, and down. 
Interior nodes are given by the following indices 
i = 3, 4, … 10; j = 10 
i = 7, 8, 9, 10; j = 9 
i = 7, 8, 9, 10; j = 8 
i = 7, 8, 9, 10; j = 7 
i = 7, 8, 9, 10; j = 6 
i = 8, 9, 10; j = 5 
i = 9, 10; j = 4 
i = 10; j = 3 
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and for these control volumes the energy balance equations are 

 T = 
1

4
(Tu + Td + T1 + Tr) 

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

i =

= j

Control Volume and Node Layout  

For the nodes along the top edge (except for the corner nodes) the energy balance gives 

  k 1

2 2
dr T TT T T Ty y

x
x x y

−− −Δ Δ + + Δ Δ Δ Δ 
 + h Δx (T∞ – T) = 0 

or 

 T = 
( )1

1
2

2

r d
h x

T T T T
k

h x
k

∞
Δ+ + +

Δ+
  j = 11   i = 2, 3, … 10 

For the nodes along the right edge (except for the corner nodes) 

  k 1

2 2
u dT T T TT T x x

y
x y y

− −− Δ Δ Δ + + Δ Δ Δ 
 + h Δy (T∞ – T) = 0 

or 

 T = 
( ) 1

1
2

2

u d
h y

T T T T
k

h y
k

∞
Δ+ + +

Δ+
  i = 11  j = 2, 3, … 10 

Nodes along the diagonal are identified by the following i, j pairs 
 i = 2 7 8 9 10 
 j = 10 5 4 3 2 
and for these control volumes we have 

  k ur T TT T
y x

x y

−− Δ + Δ Δ Δ 
 = 0 

or 

 T = 
1

2
(Tu + Tr) 
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Nodes along he chimney inner surface are identified by the indices 
j = 9; i = 3, 4, 5, 6 and 
i = 6; j = 6, 7, 8 
and for these control volumes 

  T = 300°C 

For the corners 
i = 1;  j = M 

  k 
2

rT T y

x

− Δ 
 Δ 

 + h 
2

xΔ
(T∞ – T) = 0 

or 

  T = 
1

r
h x

T T
k
h x

k

∞
Δ+

Δ+
  j = 11 i = 1 

i = 11;  j = 11 

  k 1

2 2
dT TT T y x

x y

−− Δ Δ + Δ Δ 
 (Δx + Δy) (T∞ – T) = 0 

or 

  T = 
( )

( )

1

2

d
h

T T x y T
k

h
x y

k

∞+ + Δ + Δ

+ Δ + Δ
  j = 11 i = 11 

i = N;  j = 1 

  k 
2

Tu T x

y

− Δ 
 Δ 

 + h 
2

yΔ
 (T∞ – T) = 0 

or 

  T = 
1

u
h

T yT
k
h

y
k

∞+ Δ

+ Δ
  j = 1 i = 11 

This set of difference equations can be solved by iteration. An initial guess of 

  Ti, j = 
1

2
 (0 + 300)°C 

for all nodes gives rapid convergence. 
The rate of heat loss, q, from the flue gas is equal to the convective loss from the outside surface of the 
chimney. From symmetry we have 

 q = 2h ( ){ ( ) ( ) ( )1,11 11,11 1,12 2 2

x x y y
T T T T T T∞ ∞ ∞

Δ Δ + Δ Δ− − −  

   + ( ) ( )
10 10

,11 11,
2 2

i j
i j

T T x T T y∞ ∞
= =

− Δ + − Δ 
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Results are given in the following table. 
Heat loss from chimney = 923.937002 W/m 

Node temperatures, °C 
i=  1 2 3 4 5 6 7 8 9 10 11 
j= 
11 10.0705 30.2115 48.8663 55.6317 56.3262 51.8848 38.8923 26.6768 17.0475 9.4740 3.0928 
10  91.3775 152.5436 169.9305 171.5467 159.9300 116.2884 78.7375 50.1145 27.8258 9.0827 
 9   300.0000 300.0000 300.0000 300.0000 187.5939 121.8701 76.8473 42.6318 13.9174
 8      300.0000 212.2172 144.3014 92.7730 51.9366 16.9928 
 7      300.0000 216.9733 150.3454 98.0064 55.3487 18.1517 
 6      300.0000 205.3306 142.1003 93.5585 53.3000 17.5236 
 5       162.2487 119.1666 80.8271 46.7692 15.4367 
 4        91.4904 63.8140 37.5129 12.4314 
 3         45.4255 27.0368 8.9886 
 2          16.2204 5.4038 
 1           1.8013 
 

As a check on the above heat loss calculation, we can also calculate the heat loss by determining the 
heat transferred out of the control volumes at the chimney inner surface. The appropriate equation is 

 q = 2k 
3,9 3,10 4,9 4,10 5,9 5,10 6,9 6,10T T T T T T T T

x x x x
y y y y

− − − −
Δ + Δ + Δ + Δ Δ Δ Δ Δ

 

   +
6,9 7,9 6,8 7,8 6, 7 7, 7 6, 6 7, 6T T T T T T T T

y y y y
y x x x

− − − − 
Δ + Δ + Δ + Δ Δ Δ Δ Δ 

 

The result of this calculation gives 

 q = 923.934 W/m 

which is very close to the value determined via convection at the outer surface. 

PROBLEM 3.31 

In a long, 30-cm square bar shown in the accompanying sketch, the left face is 
maintained at 40°C and the top face is maintained at 250°C. The right face is in contact 
with a fluid at 40°C through a heat transfer coefficient of 60 W/(m2 K) and the bottom 
face is in contact with a fluid at 250°C through a heat transfer coefficient of 100 W/(m2 K). 
If the thermal conductivity of the bar is 20 W/(mK), calculate the temperature at the 9 
nodes shown in the sketch. 

GIVEN 

• Square bar with two surfaces at fixed temperature and two surfaces with convective boundary 
conditions 

FIND 

(a) Temperature at 9 shown nodes 

SKETCH 
250°C

40°C

1 2 3

4 5 6

7 8 9

T•, = 40°Cs

hs = 60 W/(m K)2

T•, = 250°Cb

hb = 100 W/(m K)2
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SOLUTION 

Define the following symbols 
k  — thermal conductivity = 20 W/(m K) 

Δx = Δy — node spacing = 0.1 m 

TT  — top edge temperature = 250°C 

TL  — left edge temperature = 40°C 

hs  — right edge heat transfer coefficient = 60 W/(m2 K) 

T∞s  — right edge ambient temperature = 40°C 

hb  — bottom edge heat transfer coefficient = 100 W/(m2 K) 

T∞b  — bottom edge ambient temperature = 250°C 

From Equation (3.23), the temperature at nodes 1, 2, 4, and 5 is just the average of the temperature at 
the neighbor nodes 

 T1 = 
1

4
 (TL + TT + T2 + T4) 

 T2 = 
1

4
 (TT + T1 + T3 + T5) 

 T4 = 
1

4
 (TL + T1 + T5 + T7) 

 T5 = 
1

4
 (T2 + T4 + T6 + T8) 

The remaining control volumes have convective boundary conditions and we need to develop 
individual energy balance equations for each. 
For the control volume surrounding node 3 

  k 3 2 3 6 3

2 2
rT T T T T Tx x

x
x x x

− − −Δ Δ + Δ + Δ Δ Δ 
 + hs (T∞s – T3) Δx = 0 

which can be solved for T3 as follows 

 T3 = 
2 62 2

4 2

s
T s

s

h x
T T T T

k
h x

k

∞
Δ+ + +

Δ
+

 

For the control volume at node 6 

  k 5 6 3 6 9 6

2 2

T T T T T Tx x
x

x x x

− − −Δ Δ Δ + + Δ Δ Δ 
 + hs (T∞s – Tc) Δx = 0 

or 

 T6 = 
5 3 92 2

4 2

s
s

s

h x
T T T T

k
h x

k

∞
Δ+ + +

Δ
+

 

For the control volume at node 7 

  k 7 4 7 8 7

2 2
LT T T T T Tx x

x
x x x

− − −Δ Δ + Δ + Δ Δ Δ 
 + hb (T∞b – T7) Δx = 0 
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or 

 T7 = 
4 82 2

4 2

b
L b

b

h x
T T T T

k
h x

k

∞
Δ+ + +

Δ
+

 

For the control volume at node 8 

  k 7 8 5 8 9 8

2 2

T T T T T Tx x
x

x x x

− − −Δ Δ + Δ + Δ Δ Δ 
 + hb (T∞b – T8) Δx = 0 

or 

 T8 = 
7 5 92 2

4 2

b
b

b

h x
T T T T

k
h x

k

∞
Δ+ + +

Δ
+

 

  k 6 9 8 9

2 2

T T T Tx x

x x

− −Δ Δ + Δ Δ 
 + hs(T∞s – T9)

2

xΔ
+ hb(T∞b – T9)

2

xΔ
 = 0 

or 

 T9 = 
( )

( )

6 8

2

s b b b

s b

x
T T h T h T

k
x

h h
k

∞ ∞
Δ+ + +

Δ+ +
 

This set of equations can be solved iteratively. The table below shows the results of the first 25 
iterations after which the calculation appears to converge. Values for the 9 nodal temperatures at the 
zero iteration are the first guess. 
 

Temperature, °C 
 iteration T1 T2 T3 T4 T5 T6 T7 T8 T9 
 ====== ===== ===== ===== ===== ===== ===== ===== ===== ===== 

  0 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 
  1 92.500 105.625 114.185 53.125 59.688 64.687 87.250 99.325 107.504 
  2 112.188 134.015 131.895 74.781 93.202 97.783 107.778 130.337 130.400 
  3 124.699 149.949 146.018 91.420 117.372 116.340 120.635 147.156 143.034 
  4 132.842 161.558 155.099 102.712 131.942 127.395 128.516 157.087 150.529 
  5 138.568 1678.902 160.695 109.756 140.785 134.086 133.320 163.084 155.061 
  6 142.165 173.411 164.110 114.067 146.162 138.151 136.244 166.726 157.813 
  . 
  . 
  19 147.794 180.423 169.412 120.765 154.500 144.454 140.779 172.371 162.080 
  20 147.797 180.427 169.415 120.769 154.505 144.458 140.782 172.375 162.083 
  21 147.799 180.430 169.417 120.772 154.508 144.460 140.784 172.377 162.085 
  22 147.800 180.431 169.418 120.773 154.510 144.462 140.785 172.378 162.086 
  23 147.801 180.432 169.419 120.774 154.511 144.462 140.785 172.379 162.086 
  24 147.802 180.433 169.419 120.775 154.512 144.463 140.786 172.379 162.086 

  25 147.802 180.433 169.419 120.775 154.513 144.463 140.786 172.380 162.087 

 

 

 

PROBLEM 3.32 
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Repeat Problem 3.31 if the temperature distribution on the top surface of the bar varies 
sinusoidally from 40°C at the left edge to a maximum of 250°C in the center and back to 
40°C at the right edge. 

From Problem 3.31: In a long, 30-cm square bar shown in the accompanying sketch, the 
left face is maintained at 40°C and the top face is maintained at 250°C. The right face is 
in contact with a fluid at 40°C through a heat transfer coefficient of 60 W/(m2 K) and the 
bottom face is in contact with a fluid at 250°C through a heat transfer coefficient of 100 
W/(m2 K). If the thermal conductivity of the bar is 20 W/(mK), calculate the temperature 
at the 9 nodes shown in the sketch. 

GIVEN 

• Square bar with one surface at fixed temperature, one surface with a specified temperature 
distribution, and two surfaces with convective boundary conditions 

FIND 

(a) Temperature at 9 shown nodes 

SKETCH 
T xT ( )

40°C

1 2 3

4 5 6

7 8 9

T•, = 40°Cs

hs = 60 W/(m K)2

T•, = 250°Cb

hb = 100 W/(m K)2
 

SOLUTION 

Define the following symbols 
k  — thermal conductivity = 20 W/(mK) 
L  — bar width = 30 cm 

Δx = Δy — node spacing = 0.1 m 
TL  — left edge temperature = 40°C 
hs  — right edge heat transfer coefficient = 60 W/(m2 K) 

T∞s  — right edge ambient temperature = 40°C 
hb  — bottom edge heat transfer coefficient = 100 W/(m2 K) 

T∞b  — bottom edge ambient temperature = 250°C 
Tmax  — maximum temperature on the top edge = 250°C 
Tmin  — minimum temperature on the top edge = 40°C 

Since the temperature varies sinusoidally across the top surface we have 

 TT (x) = a + b sin 
x

L
π 

Since T(0) = Tmin, T ( )2

L
 = Tmax, T(L) = Tmin we can solve for a and b giving 

 TT (x) = Tmin + (Tmax – Tmin) sin 
x

L
π 

Now, define the temperature at the four nodes on the top edge as 
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 TT0 ≡ TT (0) = 40°C     TT1 ≡ TT ( )3

L
 = 221.866°C  

 TT2 ≡ TT ( )2

3

L
 = 221.866°C     TT3 ≡ TT (L) = 40°C 

From Equation (3.23), the temperature at nodes 1, 2, 4, and 5 is just the average of the temperature at 
the neighbor nodes 

 T1 = 
1

4
 (TL + TT 1 + T2 + T4) 

 T2 = 
1

4
 (TT 2 + T1 + T3 + T5) 

 T4 = 
1

4
 (TL + T1 + T5 + T7) 

 T5 = 
1

4
 (T2 + T4 + T6 + T8) 

The remaining control volumes have convective boundary conditions and we need to develop 
individual energy balance equations for each. 
For the control volume surrounding node 3 

  k 3 3 2 3 6 3

2 2
TT T T T T Tx x

x
x x x

− − −Δ Δ + Δ + Δ Δ Δ 
 + hs (T∞s – T3) Δx = 0 

which can be solved for T3 as follows 

 T3 = 
3 2 62 2

4 2

s
T s

s

h x
T T T T

k
h x

k

∞
Δ+ + +

Δ
+

 

For the control volume at node 6 

  k 5 6 3 6 9 6

2 2

T T T T T Tx x
x

x x x

− − −Δ Δ Δ + + Δ Δ Δ 
 + hs (T∞s – T6) Δx = 0 

or 

 T6 = 
5 3 92 2

4 2

s
s

s

h x
T T T T

k
h x

k

∞
Δ

+ + +

Δ
+

 

For the control volume at node 7 

  k 7 4 7 8 7

2 2
LT T T T T Tx x

x
x x x

− − −Δ Δ + Δ + Δ Δ Δ 
 + hb (T∞b – T7) Δx = 0 

or 

 T7 = 
4 82 2

4 2

b
L b

b

h x
T T T T

k
h x

k

∞
Δ

+ + +

Δ
+

 

For the control volume at node 8 

  k { }7 8 5 8 9 8

2 2

T T T T T Tx x
x

x x x

− − −Δ Δ+ Δ +
Δ Δ Δ

 + hb (T∞b – T8) Δx = 0 

or 
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 T8 = 
7 5 92 2

4 2

b
b

b

h x
T T T T

k
h x

k

∞
Δ+ + +

Δ
+

 

Finally, for the control volume at node 9 

  k 6 9 8 9

2 2

T T T Tx x

x x

− −Δ Δ + Δ Δ 
+ hs(T∞s – T9)

2

xΔ
+ hb(T∞b – T9)

2

xΔ
= 0 

or 

 T9 = 
( )

( )

6 8

2

s s b b

s b

x
T T h T h T

k
x

h h
k

∞ ∞
Δ+ + +

Δ+ +
 

This set of equations can be solved iteratively. Here we used a spreadsheet to employ the Gauss-Seidel 
iteration method. The table below shows the results of the first 25 iterations after which the calculation 
appears to converge. Values for the 9 nodal temperatures at the zero iteration are the first guess. 

Temperature, °C 
 iteration T1 T2 T3 T4 T5 T6 T7 T8 T9 

  0 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 
  1 85.467 96.833 64.710 51.367 57.050 52.785 86.547 98.129 102.826 
  2 102.516 111.536 73.882 71.528 83.494 79.934 106.237 125.211 122.195 
  3 111.232 122.619 84.603 85.241 103.251 95.065 117.139 139.167 132.583 
  4 117.431 131.788 91.878 94.455 115.119 104.065 123.616 147.287 138.697 
  5 122.027 137.723 96.415 100.190 122.316 109.510 127.534 152.173 142.387 
  6 124.945 141.386 99.192 103.699 126.692 112.818 129.914 155.137 144.627 
  .  
  . 
  . 
  .  
  . 
  19 129.523 147.090 103.504 109.148 133.476 117.946 133.604 159.730 148.099 
  20 129.526 147.093 103.507 109.152 133.480 117.949 133.607 159.733 148.101 
  21 129.528 147.095 103.509 109.154 133.483 117.951 133.608 159.735 148.102 
  22 129.529 147.097 103.510 109.155 133.484 117.952 133.609 159.736 148.103 
  23 129.529 147.097 103.510 109.156 133.485 117.953 133.609 159.737 148.103 
  24 129.530 147.098 103.511 109.156 133.486 117.953 133.610 159.737 148.104 
  25 129.530 147.098 103.511 109.156 133.486 117.954 133.610 159.737 148.104 

COMMENTS 

Comparing the results with those from Problem 3.31, we see that the bottom row of temperatures, 
nodes 7, 8, 9 show that the effect of lower temperatures near the top corners has propagated down 
through the bar. 

PROBLEM 3.33 

A 1-cm-thick, 1-m-square steel plate is exposed to sunlight and absorbs a solar flux of 
800 W/m2. The bottom of the plate is insulated, the edges are maintained at 20°C by 
water-cooled clamps, and the exposed face is cooled by a convection coefficient of 10 
W/(m2 K) to an ambient temperature of 10°C. The plate is polished to minimize 
reradiation. Determine the temperature distribution in the plate using a node spacing of 
20 cm. The thermal conductivity of the steel is 40 W/(m K). 

 

GIVEN 
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• Square plate with water-cooled edges exposed to solar flux 

FIND 

(a) Temperature distribution in the plate 

ASSUMPTIONS 

(a) Neglect temperature gradients through the plate thickness 

SKETCH 
20°C

20°C

20°C

20°C

3

2

1

6

5
4

 

SOLUTION 

Because of problem symmetry, we need only consider the 6 nodes in 1/8 th of the square plate as 
shown in the above sketch. The boundary condition gives us the temperature of nodes 1, 2, and 3 so 
we only need to perform a heat balance on nodes 4, 5, and 6. Define the following symbols 

 k  = plate thermal conductivity = 40 W/(m K) 
 h  = convection coefficient = 10 W/(m2 K) 

 T∞  = ambient temperature = 10°C 

 Δx  = node spacing = 20 cm = 0.2 m 
 t  = plate thickness = 1 cm = 0.01 m 
 q′′   = absorbed solar flux = 800 W/m2 

 Tedge  = specified edge temperature = 20°C 

Node 4 transfers heat by conduction with nodes 3, 5, and 6, by convection to ambient, and absorbs the 
specified solar flux. The energy balance on node 4 is therefore 

 k 3 4T T

x

−
Δ

 t Δx + k 6 4T T

x

−
Δ

 t Δx + k 5 4T T

x

−
Δ

 t Δx + h Δx2 (T∞ – T4) + q′′  Δx2 = 0 

Solving for T4 

 T4 = 
( ) 2 2

3 5 6
23

kt T T T h x T q x

kt h x
∞+ + + Δ + Δ′′

+ Δ
 

Node 5 transfers heat by conduction with node 4, by convection to ambient, and absorbs the specified 
flux. The energy balance on node 5 is therefore 

  k 4 5T T

x

−
Δ

 t Δx + h 
2

2

xΔ
 (T∞ – T5) + q′′  

2

2

xΔ
 = 0 

 
Solving for T5 
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 T5 = 
2 2

4
2

2

2

ktT h x T q x

kt h x
∞+ Δ + Δ′′

+ Δ
 

Node 6 transfers heat by conduction with nodes 4 and 2, by convection to ambient, and absorbs the 
specified flux. The energy balance on node 6 is therefore 

  k 4 6T T

x

−
Δ

 t Δx + k 2 6T T

x

−
Δ

 t Δx + h 
2

2

xΔ
 (T∞ – T6) + q′′

2

2

xΔ
 = 0 

Solving for T6 

 T6 = 
( ) 2 2

2 4
2

2

4

kt T T h x T q x

kt h x
∞+ + Δ + Δ′′

+ Δ
 

This set of equations can be solved by iteration. The table below shows the results of Gauss-Seidel 
iteration. Iteration 0 is the first guess for the temperature at nodes 4, 5, and 6. 

Temperature °C 
 iteration T1 T2 T3 T4 T5 T6 

 0 20 20 20 50 50 50 
 1 20.000 20.000 20.000 52.500 65.000 47.000 
 2 20.000 20.000 20.000 55.500 67.000 48.200 
 3 20.000 20.000 20.000 56.300 67.533 48.520 
 4 20.000 20.000 20.000 56.513 67.676 48.605 
 5 20.000 20.000 20.000 56.570 67.713 48.628 
 6 20.000 20.000 20.000 56.585 67.724 48.634 
 7 20.000 20.000 20.000 56.589 67.726 48.636 
 8 20.000 20.000 20.000 56.591 67.727 48.636 
 9 20.000 20.000 20.000 56.591 67.727 48.636 

 10 20.000 20.000 20.000 56.591 67.727 48.636 

The solution converges after about 8 iterations giving a peak temperature of 67.727°C at node 5. 

PROBLEM 3.34 

The plate in Problem 3.33 gradually oxidizes over time so that the surface emissivity 
increases to 0.5. Calculate the resulting temperature in the plate including radiation heat 
transfer to the surroundings at the same temperature as the ambient temperature. 

From Problem 3.33: A 1-cm-thick, 1-m-square steel plate is exposed to sunlight and 
absorbs a solar flux of 800 W/m2. The bottom of the plate is insulated, the edges are 
maintained at 20°C by water-cooled clamps, and the exposed face is cooled by a 
convection coefficient of 10 W/(m2 K) to an ambient temperature of 10°C. The plate is 
polished to minimize reradiation. Determine the temperature distribution in the plate 
using a node spacing of 20 cm. the thermal conductivity of the steel is 40 W/(m K). 

GIVEN 

• Plate in Problem 3.33 oxidizes 

FIND 

(a) New temperature distribution considering radiation heat transfer 

ASSUMPTIONS 

(a) Neglect temperature gradients through the plate thickness 

 

SKETCH 
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20°C

20°C

20°C
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2

1

6

5
4

 

SOLUTION 

Addition of radiative heat transfer from the plate can be most easily handled by computing the 
radiative heat transfer coefficient for each node (using the temperature for the node calculated from the 
previous iteration) and by then adding this radiative heat transfer coefficient to the convective heat 
transfer coefficient for the present iteration. The radiative heat transfer coefficient for node i is 

 hri = ε σ (Ti
2 + T∞

2) (Ti + T∞) 

The following table gives the results for the Gauss-Seidel iteration. (Recall that temperature must be 
expressed in Kelvins.) 

 Iteration Temperature (K) Temperature (K)/radiative heat transfer 
 coefficient (W/(m2 K)) 

  T1 T2 T3 T4/hr4 T5/hr5 T6/hr6 
 0 323 323 323 323 323 323 
     3.168 3.168 3.168 
 1 293.300 293.000 293.000 322.381 330.865 316.622 
     3.158 3.299 3.066 
 2 293.000 293.000 293.000 322.735 330.890 316.820 
     3.164 3.299 3.069 
 3 293.000 293.000 293.000 322.781 330.917 316.836 
     3.165 3.300 3.069 
 4 293.000 293.000 293.000 322.790 330.922 316.839 
     3.165 3.300 3.069 
 5 293.000 293.000 293.000 322.792 330.923 316.840 
     3.165 3.300 3.069 
 6 293.000 293.000 293.000 322.792 330.923 316.840 

Node temperature in degrees C 

 20.000 20.000 20.000 49.792 57.923 43.840 

The peak temperature has been reduced by about 9.8 K due to radiation. 

PROBLEM 3.35 

Determine (a) the temperature at the 16 equally spaced points shown in the 
accompanying sketch to an accuracy of three significant figures and (b) the rate of heat 
flow per meter thickness. Assume two-dimensional heat flow and k = 1 W/(mK). 

 

 

GIVEN 
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• A two-dimensional object with specified surface temperatures 

FIND 

(a) The temperature at the 16 specified locations 
(b) The heat flow per meter thickness 

ASSUMPTIONS 

• Steady state 

SKETCH 

0°C

3 m

1 m

1
m

3
m100°C0°C

0°C

0°C

 

SOLUTION 

Because of symmetry, it is only necessary to consider 1/8 th of the figure as shown below 

2

3

4

j = 1

y

100°C

0°C

2 3i = 1 x  

(a) Temperature distribution 
There are three nodes remaining for which we must determine the temperature. For these nodes, we 
need energy balance equations for the control volumes. The control volumes are shown as dashed lines 
surrounding each node. 
For the node at i = 2, j = 1 
The x axis is a line of symmetry so no heat flows into the control volume across it 

  
2

yΔ
(T1,1 – T2,1) + Δx (T2, 2 – T2,1) + 

2

yΔ
(T3,1 – T2,1) = 0 

Since we have chosen Δx = Δy, this equation simplifies to 

 T2,1 =  
1

4
(T1,1 + 2T2,2 + T3,1) 

For the node at i = 2, j = 2, we use Equation (3.23) 

 T2,2 = 
1

4
(T1,2 + T3,2 + T2,1 + T2,3) 

 
And for the node at i = 2, j = 3, we have for energy balance 
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  Δx (T2,2 – T2,3) + Δy (T3,3 – T2,3) = 0 

or 

 T2,3 = 
1

2
(T2,2 + T3,3) 

Substituting the known boundary temperatures, these equations simplify to 

 4T2,1 = 2T2,2 + 100 (1) 

 4T2,2 = T2,1 + T2,3 + 100 (2) 

 2T2,3 = T2,2 (3) 

These three equations can be solved by elimination. Substitute Equations (1) and (3) into Equation (2) 
to give 

 T2,2 = 41.666°C 

Substitute this result into Equation (3) to get 

 T2,3 = 20.833°C 

and then from Equation (1) we find 

 T2,1 = 45.833°C 

(b) Heat flow 
The total heat flow for the object can be calculated from 

 Q = 8 
1,1 2,1 1,2 2,2

2

T T T Ty
k k y

x x

− − Δ + Δ Δ Δ 
 

which simplifies to 

 Q = 8k { }1,1 2,1 1,2 2,2
1

( )
2

T T T T− + −  

  = 8 ( ) { }1
1W/(mK) (100 45.833) 100 41.666

2
− + − (K) = 683.2 W/m 

PROBLEM 3.36 

A long steel beam with rectangular cross section of 40 cm by 60 cm is mounted on an 
insulating wall as shown in the sketch below. the rod is heated by radiant heaters that 
maintain the top and bottom surfaces at 300°C. A stream of air at 130°C cools the 
exposed face through a heat transfer coefficient of 20 W/(m2K). Using a node spacing of 1 
cm, determine the temperature distribution in the rod and the rate of heat input to the 
rod. The thermal conductivity of the steel is 40 W/(m K). 

GIVEN 

• Rectangular steel beam mounted on an insulating surface, heated top and bottom, with exposed 
face cooled by an air flow 

FIND 

(a) Temperature distribution in the rod 
(b) Rate of heat input to the rod 

 

 

 

SKETCH 
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300°C Steel beam

T
h

• = 130°C
= 120 W/(m °C)2

Insulating Wall

300°C

6
0

c
m

40 cm  

SOLUTION 

Since the rod is long, we can consider a two-dimensional solution. By symmetry, the rod can be 
divided along its horizontal midplane. The sketch below shows the resulting geometry along with the 
node and control volume locations. 

Adiabatic

j = 1

j = 1 2 3 4 5

2

3

4

x

y

Adiabatic  

Define the top surface temperature as Ttop = 300°C, and the ambient temperature as T∞ = 130°C. 
We now need to determine an energy balance for each control volume. 
Along the top edge we have 

 Ti, 4 = Ttop i = 1, 2, 3, 4, 5 

For the central nodes we have from Equation (3.23) 

 4 Ti, j = Ti – 1, j + Ti + 1, j + Ti, j + 1 + Ti, j – 1  i = 2, 3, 4     j = 2, 3 

Along the left edge, an energy balance on the two nodes at j = 2 and 3 gives 

  k 
1, 1 1, 1, 1 1,2, 1,

2 2
j j j jj j T T T TT T x x

x
x x x

+ −− −− Δ ΔΔ + + Δ Δ Δ 
 = 0 j = 2, 3 

or 

 4 Ti, j = 2 T2, j + T1, j + 1 + T1, j – 1  j = 2, 3 

Along the bottom edge, an energy balance on the three nodes at i = 2, 3, and 4 gives 

  k 
1,1 ,1 1,1 ,1,2 ,1

2 2
i i i ii i T T T TT T x x

x
x x x

− +− −− Δ ΔΔ + + Δ Δ Δ 
 = 0 i = 2, 3, 4 

 
 
or 
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 4 Ti, 1 = 2 Ti, 2 + Ti – 1, 1 + Ti + 1, 1 i = 2, 3, 4 

For the node at i = 1, j = 1, an energy balance gives 

  k 
1,2 1,1 2,1 1,1

2 2

T T T Tx x

x x

− − Δ Δ+ Δ Δ 
 = 0 

or 

 2 T1, 1 = T1, 2 + T2, 1 

For the node at i = 5, j = 1, an energy balance gives 

  k 
4,1 5,1 5,2 5,1

2 2

T T T Tx x

x x

− − Δ Δ+ Δ Δ 
 + h 

2

xΔ
 (T∞ – T5,1) = 0 

or 

  2
h x

k

Δ +   T5, 1 = (T4, 1 + T5, 2) + 
h x

k

Δ
T∞ 

Finally, along the right edge, an energy balance on the two nodes at j = 2 and 3 gives 

  k 
5, 1 5, 5, 1 5,4, 5,

2 2
j j j jj j T T T TT T x x

x
x x x

− +− −− Δ ΔΔ + + Δ Δ Δ 
+ h Δx (T∞ – T5, j) = 0  j = 2, 3 

or 

 
2

4
h x

k

Δ +    T5, j = 2 T4, j + T5, j – 1 + T5, j + 1 + 
2h x

k

Δ
 T∞  j = 2, 3 

This set of difference equations can be written as a matrix equation as follows 

 AT = C 

where the coefficient matrix A is given by 
 –2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 1 –4 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 1 –4 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 1 –4 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 1 –2.05 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
 1 0 0 0 0 –4 2 0 0 0 1 0 0 0 0 0 0 0 0 0 
 0 1 0 0 0 1 –4 1 0 0 0 1 0 0 0 0 0 0 0 0 
 0 0 1 0 0 0 1 –4 1 0 0 0 1 0 0 0 0 0 0 0 
 0 0 0 1 0 0 0 1 –4 1 0 0 0 1 0 0 0 0 0 0 
 0 0 0 0 1 0 0 0 2 –4.1 0 0 0 0 1 0 0 0 0 0 
 0 0 0 0 0 1 0 0 0 0 –4 2 0 0 0 1 0 0 0 0 
 0 0 0 0 0 0 1 0 0 0 1 –4 1 0 0 0 1 0 0 0 
 0 0 0 0 0 0 0 1 0 0 0 1 –4 1 0 0 0 1 0 0 
 0 0 0 0 0 0 0 0 1 0 0 0 –1 4 1 0 0 0 1 0
 0 0 0 0 0 0 0 0 0 1 0 0 0 2 –4.1 0 0 0 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –1 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –1 
 
 
 
 
 
and the temperature vector T and constant vector C are given by 
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  T (1,1)  0 
  T (2,1)  0 
  T (3,1)  0 
  T (4,1)  0 
  T (5,1)  – 6.5 
  T (1,2)  0 
  T (2,2)  0 
  T (3,2)  0 
  T (4,2)  0 
  T (5,2)  –13 
 T = T (1,3) C = 0 
  T (2,3)  0 
  T (3,3)  0 
  T (4,3)  0 
  T (5,3)  –13 
  T (1,4)  –300 
  T (2,4)  –300 
  T (3,4)  –300 
  T (4,4)  –300 
  T (5,4)  –300 
Inverting the matrix A with a spreadsheet program and multiplying the constant vector C by the 
inverted matrix, we get the vector of nodal temperatures 
 295.2854 
 294.667 
 292.6705 
 288.8777 
 282.6697 
 295.9039 
 295.356 
 293.5687 
 290.0853 
T = 284.0951 °C 
 297.6181 
 297.2843 
 296.1632 
 293.7996 
 288.9498 
 300 
 300 
 300 
 300 
 300 
To determine the heat flow to the rod, consider the surface of the exposed control volumes. The rate of 
convective heat transfer from these surfaces must equal the rate of heat input to the rod. Remembering 
to double the value of account for the symmetry, we have 

 qinput = 2hΔx ( ) ( ) ( ) ( )5,4 5,1 5,2 5,3
1 1

2 2
T T T T T T T T∞ ∞ ∞ ∞

 − + − + − + −    

Inserting the nodal temperatures from the solution vector T given above, we find 
 qinput = 1897 watts 
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PROBLEM 3.37 

Consider a band-saw blade being used to cut steel bar stock. The blade thickness is  
2 mm, its height is 20 mm, and it has penetrated the steel workpiece to a depth of  
5 mm (see the accompanying sketch). Exposed surfaces of the blade are cooled by an 
ambient temperature of 20°C through a convection coefficient of 40 W/(m2K). Thermal 
conductivity of the blade steel is 30 W/(mK). Energy dissipated by the cutting process 
supplies a heat flux of 104 W/m2 to the surfaces of the blade that are in contact with the 
workpiece. Assuming two-dimensional, steady conduction, determine the maximum and 
minimum temperature in the blade cross section. Use a node spacing of 0.5 mm 
horizontally and 2 mm vertically. 

GIVEN 

• Band saw blade cutting steel bar stock 

FIND 

(a) Maximum and minimum temperatures in the blade cross section 

SKETCH 

5
m

m

Steel
Workpiece
Surface

2
0

m
m

2 mm

T• = 20°C

h = 40 W/(m K)2

Blade

Line of Symmetry

2

3

4

5

6

7

8

9

10

11

Control Volume

Workpiece
Surface

j =1

i =1 2 3 x

y

Note: Horizontal Scale is Expanded
by a Factor of 2 Relative to the Left
Side of the Figure  

SOLUTION 

Because of symmetry, we only need to consider half of the geometry as shown in the right side of the 
sketch. With a node spacing of Δx = 0.5 mm and Δy = 2.0 mm, we have for the number of horizontal 
and vertical nodes 

 M = 2
t

xΔ
 + 1 = 3 

 N = 
H

yΔ
 + 1 = 11 

We have 33 control volumes and need to develop an energy balance equation for each. For all the 
interior nodes 

  
1, ,i j i jT T

x
+ −

Δ
Δy + 

1, ,i j i jT T

x
− −

Δ
Δy + 

, 1 ,i j i jT T

y
+ −
Δ

Δx + 
, 1 ,i j i jT T

x
− −
Δ

Δx = 0 
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or 

 Ti, j = 
( ) ( )1, 1, , 1 , 1

2

i j i j i j i j
y x

T T T T
x y

y x

x y

+ − + −
Δ Δ− + −
Δ Δ

Δ Δ +  Δ Δ

 i = 2 j = 2, 3 … N – 1 

For all nodes (except the corner nodes) on the left edge 

  
1, ,i j i jT T

x
+ −

Δ
 Δy + 

, 1 , , 1 ,

2 2
i j i j i j i jT T T Tx x

x x
+ −− −Δ Δ+
Δ Δ

 = 0 

 
or 

 Ti, j = 
( )1, , 1 , 12i j i j i j

y x
T T T

x y
y x

x y

+ + −
Δ Δ+ −
Δ Δ

Δ Δ+
Δ Δ

 i = 1 j = 2, 3 … N – 1 

For i = 1, j = 1 

  k 
1, , , 1 ,

2 2
i j i j i j i jT T T Tx x

x y
+ +− − Δ Δ+  Δ Δ

+ 
2

x
q

Δ
′′  = 0 

or 

 Ti, j = 
1, , 1i j i j

y x x
T T q

x y k
y x

x y

+ +
Δ Δ Δ+ + ′′
Δ Δ

Δ Δ+
Δ Δ

 i = 1 j = 1 

For i = 1, j = N 

  k 
1, , , 1 ,

2 2
i j i j i j i jT T T Ty x

x y
+ −− − Δ Δ+  Δ Δ

 + h 
2

xΔ
 (T∞ – Ti, j) = 0 

or 

 Ti, j = 
1, , 1i j i j

y x x
T T h T

x y k
y x h x

x y k

+ − ∞
Δ Δ Δ+ +
Δ Δ

Δ Δ Δ+ +
Δ Δ

 i = 1 j = N 

For i = 2, j = N 

  k 
1, , 1, , , 1 ,

2 2
i j i j i j i j i j i jT T T T T Ty y

x
x x y

+ − −− − − Δ Δ+ + Δ  Δ Δ Δ
 + h Δx (T∞ – Ti, j) = 0 

or 

 Ti, j = 
( )1, 1, , 12 i j i j i j

y x h x
T T T T

x y k
y x h x

x y k

+ − − ∞
Δ Δ Δ+ + +
Δ Δ

Δ Δ Δ+ +
Δ Δ

 i = 2 j = N 

For i = 2, j = 1 

  k 
1, , 1, , , 1 ,

2 2
i j i j i j i j i j i jT T T T T Ty y

x
x x y

+ − +− − − Δ Δ+ + Δ  Δ Δ Δ
 + q′′  Δx = 0 
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or 

 Ti, j = 
( )1, 1, , 12 i j i j i j

y x x
T T T q

x y k
y x

x y

+ − +
Δ Δ Δ+ + + ′′
Δ Δ

Δ Δ+
Δ Δ

 i = 2 j = 1 

For i = M, j = N 

  k 
1, , , 1 ,

2 2
i j i j i j i jT T T Ty x

x y
− −− − Δ Δ+  Δ Δ

 + 
2

h
(Δx + Δy) (T∞ – Ti, j) = 0 

or 

 Ti, j = 
( )

( )

1, , 1i j i j
y x h

T T x y T
x y k

y x h
x y

x y k

− − ∞
Δ Δ+ + Δ + Δ
Δ Δ

Δ Δ+ + Δ + Δ
Δ Δ

 i = M j = N 

For i = M, j = 1 

  k 
1, , , 1 ,

2 2
i j i j i j i jT T T Ty x

x y
− +− − Δ Δ+  Δ Δ

 + q′′  
1

2
(Δx + Δy) = 0 

or 

 Ti, j = 
( )1, , 1i j i j

y x q
T T x y

x y k
y x

x y

− +
Δ Δ ′′+ + Δ + Δ
Δ Δ

Δ Δ+
Δ Δ

 i = M j = 1 

For i = M, j = 2, 3 

  k 
1, , , 1 , , 1 ,

2 2
i j i j i j i j i j i jT T T T T Tx x

y
x y y

− + −− − − Δ ΔΔ + +  Δ Δ Δ
 + q′′  Δy = 0 

or 

 Ti, j = 
( )1, , 1 , 12i j i j i j

y x q
T T T y

x y k
y x

x y

− + −
Δ Δ ′′+ + + Δ
Δ Δ

Δ Δ+
Δ Δ

 i = M j = 2, 3 

Finally, for i = M, j = 4, 5, … N – 1 

  k 
1, , , 1 , , 1 ,

2 2
i j i j i j i j i j i jT T T T T Tx x

y
x y y

− + −− − − Δ ΔΔ + +  Δ Δ Δ
 + h Δy (T∞ – Ti, j) = 0 

or 

 Ti, j = 
( )1, , 1 , 12i j i j i j

y x h
T T T yT

x y k
y x h

y
x y k

− + − ∞
Δ Δ+ + + Δ
Δ Δ

Δ Δ+ + Δ
Δ Δ

 i = M J = 4, 5… N – 1 
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This set of equations can be solved iteratively as described in Section 3.4. An initial guess for the 
temperature distribution is inserted into the right hand side of all the above equations to produce an 
improved value for T [i, j] for all i and j. These improved values are inserted into the right hand side of 
the same equations for the next update on T [i, j] and so on. We carried out the iteration until the 
temperature at i = 2, j = 1 changed by less than 10–6 °C. The results indicate a maximum temperature 
of 130.401°C at i = 3, j = 1, and a minimum temperature of 108.693°C at i = 3, j = M. 

 

PROBLEM 3.38 

How would the results of Problem 3.15 be modified if the problem were not 
axisymmetric? 

From Problem 3.15: Determine the difference equations applicable to the centerline and 
at the surface of the axisymmetric cylindrical geometry with volumetric heat generation 
and convective boundary condition. Assume steady state conditions. 

 

GIVEN 

• Non-axisymmetric, steady, cylindrical geometry with heat generation and convective boundary 
condition. 

FIND 

(a) Difference equations for the centerline and surface control volumes 

SKETCH 

i = 1

i = 2

Dr j + 1

j

j – 1 j – 1

j + 1

j Dq

i = N –1

i = N
Note: Scale Expanded Relative
to Right Side of Figure  

SOLUTION 

For the control volume at the centerline we have 

 Volume = π 
2

2 2

r θ
π

Δ Δ 
    = 

2

8

r θΔ Δ
 

 Surface area = 2π 
2 2

r θ
π

Δ Δ
 = 

2

r θΔ Δ
 

and the energy balance gives 

  k 
2, 1

2
j iT T r

r

θ=− Δ Δ
Δ

 + 
2

8G
r

q
θΔ Δ  = 0 

For the control volume at the surface, we have for the volume per unit length 

 Volume = π Δr 
4 2o
r

R
θ
π

Δ Δ −    = Δr 
4 2o
r

R
θΔ Δ −    

and for the surface area (per unit length) of the circumferential face inside Ro 

  Inner circumferential surface area = 2π 
2 2o
r

R
θ
π

Δ Δ −    = 
2o
r

R
Δ −   Δθ 
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For the surface area of the circumferential face at Ro we have 

  Outer circumferential surface area = 2πRo 
2

θ
π

Δ
 = Ro Δθ 

The surface area per unit length of the radial faces of the control volume are 

  radial surface area = 
2

rΔ
 

The energy balance is 

  k 
1, ,

2
N j N j

o

T T r
R

r
− − Δ −  Δ

Δθ + k 
, 1 ,

2
N j N j

o

T T r

R θ
− − Δ

Δ
 + k 

, 1 ,

2
N j N j

o

T T r

R θ
+ − Δ

Δ
 + h Ro Δθ (T∞ – TN, j) 

  + 
4 2G o
r

q r R
θΔ Δ Δ −  

  = 0 

The solution of the above set of equations would be carried out in parallel with the method explained 
in Section 3.4.3.1, for two-dimensional steady problems. The difference equation for the interior nodes 
given by Equation (3.30) (steady state terms only) would be added to the above difference equations 
and an iterative solution procedure would be employed to find the solution. 

PROBLEM 3.39 

For the geometry shown in the sketch below, determine the layout of nodes and control 
volumes. Provide a scale drawing showing the problem geometry overlaid with the nodes 
and control volumes. Explain how to derive the energy balance equation for all the 
boundary control volumes. 

GIVEN 

• Cylindrical geometry shown in the figure. 

FIND 

(a) A reasonable layout of nodes and control volumes 

SKETCH 

45°

10 cm

Physical Geometry Nodes and Control Volumes

Control Volume
Boundary

Node
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SOLUTION 

We do not know what the boundary conditions are so we cannot make any judgment about symmetry. 
Therefore, we must assume that the problem is axisymmetric. Since Ro = 10 cm, let’s use Δr = 2.5 cm 
giving 5 radial nodes. To accommodate the 45° cutout, let’s use a circumferential node spacing, Δθ = 
45°. The right side of the sketch shows the resulting layout of nodes and control volumes. Energy 
balance equations for the control volumes at the circumferential boundary would be derived as 
described in Section 3.5. For those control volumes, we have conduction from three surrounding 
control volumes and either convection, specified flux, or a specified temperature at the fourth surface, 
depending on the boundary condition. For the control volumes along the two radial boundaries, we 
have conduction from two surrounding control volumes. Treatment of the third surface would depend 
on the boundary condition. 

PROBLEM 3.40  

Hot flue gases from a combustion furnace flow though a chimney, which is 7 m tall and 
has a hollow cylindrical cross section with inner diameter di = 30 cm and outer diameter 
do = 50 cm. The flue gases flow with an average temperature of Tg = 300°C and 
convective heat transfer coefficient of hg = 75 W/(m2 K).  The chimney is made of 
concrete, which has a thermal conductivity of k = 1.4 W/(m K).  It is exposed to outside 
air that has an average temperature of Ta = 25°C and convective heat transfer coefficient 
of 15 W/(m2 K). For steady-state conditions, determine the inner and outer wall 
temperatures, plot the temperature distribution along the thickness of the chimney wall, 
and determine the rate of heat loss to outside air from the chimney.  Solve the problem 
by numerical analysis using a nodal network with Δr = 2 cm and Δθ = 10°.   

GIVEN 

• Hot flue gas flow in a hollow cylindrical 7 m tall chimney with inner and outer diameters of 
di = 0.3 m and do = 0.5 m, and thermal conductivity k = 1.4 W/(m K).  

• Average hot gas temperature Tg = 300°C and heat transfer coefficient ,c gh = 75 W/(m2 K).  

• Outside air average temperature Ta = 25°C and heat transfer coefficient ,c ah = 15 W/(m2 K).  

FIND  

• The temperature distribution in chimney wall and the inside and outside wall temperatures.  
• Rate of heat loss from gas to outside air through the chimney.  

ASSUMPTIONS  

• Steady state conditions, and there is no heat generation in the chimney wall and the conduction 
along the height of the chimney is negligible.  

SOLUTION  

For steady-state conditions, the heat conduction equation is  

  
2

2 2

1 1T T
r

r r r r θ
∂ ∂ ∂  +  ∂ ∂ ∂

 = 0  

which is subject to the following boundary conditions  

 q″ = ( ), ,
i

c g w i g
r r

dT
k h T T

dr =
− = −  and q″ = ( ), ,

o

c a w o a
r r

dT
k h T T

dr =
− = −  
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Construct a nodal network with 2 cm spacing in the radial direction in the thickness of the chimney’s 
hollow cylinder (6 nodal points total, including the nodal points on the inner and outer wall) and 
10-degree spacing in the angular direction (36 nodal points).  This would result in the following form 
of discretized equation (see Equation 3.36 and simplify it)  

 ( ) ( ) ( ), 1 , , 1 1, , 1, 1, 1,2 2
2i j i j i j i j i j i j i j i j

r r
T T T T T T T T

r r

θ θ
θ + + + − + −

Δ Δ Δ− + + − + + −
Δ Δ

 = 0  

Though, it may be noted that because of the circular symmetry, this can be solved as a one-
dimensional problem without using the angular nodes.  
The numerical solution (carried out on MATLAB) yields the following temperature values at the six 
(6) radial nodes along the wall thickness  

 Inner Wall     Outer Wall 

  Node 2 Node 3 Node 4 Node 5 
 Node 1     Node 6 

 266.1°C 235.7°C 208.5°C 183.7°C 160.9°C 126.8° 

This temperature distribution is depicted as an isotherm contour plot in the figure below.  

266.1
231.2
196.4

161.6
126.8

T °C

 

Also, the rate of heat loss from the outer wall of the chimney to air can be calculated as 

 q = ( ) ( ) ( ) ( ), , 15 0.5 7 126.8 25c a o w o ah d L T Tπ π− = × × −  = 16,790 W 

PROBLEM 3.41 

Show that in the limit Δx → 0, Δy → 0, Δt → 0, the difference Eq. (3.22) is equivalent to 
the two-dimensional version of the differential Eq. (2.6). 

GIVEN 

• Difference equation, Equation (3.22) 

SHOW 

(a) In the limit Δx, Δy, and Δt → 0, the difference equation is equivalent to the two-dimensional 
version of the differential equation, Equation (2.6). 

SOLUTION 

Equation (3.22) is 

  
1, , , , 1, , , 1, , , , 1, , , ,

2 2

2 2i j m i j m i j m i j m i j m i j m G i j mT T T T T T q

kx y

+ − + −− + − +
+ +

Δ Δ


 = 

, , 1 , ,i j m i j mT Tc

k t

ρ + −
Δ
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We have by definition 

 Ti, j, m = T (x, y, t) 

 Ti + 1, j, m = T (x + Δx, y, t) 

 Ti – 1, j, m = T (x – Δx, y, t) 

 Ti, j + 1, m = T (x, y + Δy, t) 

 Ti, j – 1, m = T (x, y – Δy, t) 

 Ti, j, m + 1 = T(x, y, t + yΔt) 

so Equation (3.22) is equivalent to 

  
( ) ( ) ( )

2

, , 2 , , , ,T x x y t T x y t T x x y t

x

+ Δ − + − Δ
Δ

 

  + 
( ) ( ) ( )

2

, , 2 , , , ,T x y y t T x y t T x y y t

y

+ Δ − + − Δ
Δ

 

  + 
( ), ,Gq x y t

k


 = 

( ) ( ), , , ,c T x y t t T x y t

k t

ρ + Δ −
Δ

 

In the limit Δx → 0, from calculus, the first term becomes 

In the limit Δy → 0, the second term becomes 

  
2

2

T

x

∂
∂

 

  
2

2

T

y

∂
∂

 

In the limit Δt → 0, the right side of the equation becomes 

  
c T

k t

ρ ∂
∂

 

so the difference equation becomes 

  
2 2

2 2
GqT T

kx y

∂ ∂
+ +

∂ ∂


 = 
c T

k t

ρ ∂
∂

 

which is equivalent to the two-dimensional version of Equation (2.6) as required. 

PROBLEM 3.42 

Derive the stability criterion for the explicit solution of two-dimensional transient 
conduction. 

GIVEN 

• Two-dimensional transient conduction 

FIND 

(a) The stability criterion for an explicit solution 
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SOLUTION 

From Equation (3.21), the coefficient on the Ti, j, m term is 

 
1

tαΔ
 – 

2

2

xΔ
– 

2

2

yΔ
 

which must be greater than zero to ensure stability. Therefore 

 
1

tαΔ
 > 2 

2 2

1 1

x y

 
+  Δ Δ

 

or 

 Δt < 
1

2α
 

1

2 2

1 1

x y

−
 

+  Δ Δ
 

which is the stability criterion as required. 

PROBLEM 3.43 

Derive Equation (3.27). 

GIVEN 

• Two-dimensional transient conduction at an inside corner with specified-flux boundary condition 

FIND 

(a) The control volume energy balance equation, Equation (3.27) 

SOLUTION 

Referring to Figure 3.14, heat conducted into the control volume is given by 

 k , ,–1, , i j mi j mT T

x

−

Δ
 Δy + k , ,, 1, i j mi j mT T

y

+ −

Δ
 Δx 

 + k , ,, 1, i j mi j mT T

y

− −

Δ 2

xΔ
 + k 

1, , , ,i j m i j mT T

x
+ −

Δ
 

2

yΔ
 

The rate of heat generation in the control volume is given by 

  , , ,
3

4G i j mq  ΔxΔy 

Heat transferred out of the boundaries by the specified fluxes is 

  xq′′
2

yΔ
 – yq′′

2

xΔ
 

The rate at which energy is stored in the control volume is given by 

 ρc 
, , 1 , , 3

4
i j m i j mT T

x y
t

+ −
Δ Δ

Δ
 

The sum of the first two equations above must equal the sum of the last two equations above. The 
coefficients on the individual terms is 

 Ti, j, m : 1 – 2αΔt 
2 2

1 1

x y

 
+  Δ Δ

 Ti – 1, j, m : 
2

4

3

t

x

αΔ
Δ

 Ti + 1, j, m : 2

2

3

t

x

αΔ
Δ

 Ti, j + 1, m : 
2

4

3

t

y

αΔ
Δ

 

 Ti, j – 1, m :     Gq : 
t

cρ
Δ

   :xq′′  – 
2

3

t

k x

αΔ
Δ

   :yq′′  
2

3

t

k y

αΔ
Δ

 

which is identical to those in Equation (3.27). 
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PROBLEM 3.44 

Derive the stability criterion for an inside-corner boundary control volume for two-
dimensional steady conduction when a convection boundary condition exists. 

GIVEN 

• Two-dimensional steady conduction at an inside corner with a convection boundary condition 

FIND 

(a) The stability criterion 

SOLUTION 

In Equation (3.27) write 

  , , ,x i j mq′′ = h (Ti, j, m – T∞) 

  , , ,y i j mq′′ = h (T∞ – Ti, j, m) 

to account for the convection boundary condition. 
The coefficient on Ti, j, m is now 

 1 – 2αΔt 
2 2

1 1

x y

 
+  Δ Δ

 + 
2

3

t

k

αΔ
 

1 1

x y
 − −  Δ Δ

 

  = 1 – 2aΔt 
2 2

1 1

x y

 
+  Δ Δ

 – 
2

3

h t

k

α Δ
 

1 1

x y
 +  Δ Δ

 

This coefficient must be greater than zero for stability, therefore 

 Δt < 

2 2

1

1 1 2 1 1
2

3

h

k x yx y

αα    + + +    Δ Δ Δ Δ

 

Note that as we have seen before, the criterion for a convective boundary condition is more restrictive 
than other boundary condition stability criteria. 

PROBLEM 3.45 

A long concrete beam is to undergo a thermal test to determine its loss of strength in the 
event of a building fire. The beam cross section is triangular as shown in the sketch. 
Initially, the beam is at a uniform temperature of 20°C. At the start of the test, one of the 
short faces and the long face are exposed to hot gases at 400°C through a heat transfer 
coefficient of 10 W/(m2 K) and the remaining short face is adiabatic. Produce a graph 
showing the highest and lowest temperatures in the beam as a function of time for the 
first 1 hour of exposure. For the concrete properties, use k = 0.5 W/(mK) and n = 5 × 10–7 
m2/s. Use a node spacing of 4 cm. and use an explicit difference scheme. 

GIVEN 

• Concrete beam suddenly exposed to hot gases 

FIND 

(a) Highest and lowest temperatures in the beam as a function of time 
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SKETCH 

Insulated

t T h> 0: = 400°C, = 10W/• (m K)2

Concrete Beam
Cross-section

t T h> 0: = 400°C, = 10 W/(m K)•
2

20 cm

Problem Definition Sketch

i = 1 2 3 4 5 6

i = 1

2

3

4

5

6

Node and Control Volume Layout

2
0

c
m

 

SOLUTION 

The arrangement of nodes and control volumes is shown in the figure to right. Examination of this 
figure reveals that we have 7 unique control volumes. We need to develop an energy balance for each 
type. To simplify the notation, use the following 

 To ≡ Ti, j, k  T1 ≡ Ti – 1, j, k Tr ≡ Ti + 1, j, k Tu ≡ Ti, j + 1, k  Td ≡ Ti, j – 1, k 
   (left) (right) (up) (down) 

and 

 K1 ≡ 
2

t

x

αΔ
Δ

 K2 ≡ 
h t

c xρ
Δ
Δ

 

For al interior control volumes: i = 2, j = 2, 3, 4; i = 3, j = 2, 3; and i = 4, j = 2, we have for the energy 
balance 

  k{T1 + Tr + Tu + Td – 4To} = ρc Δx2 
, , 1i j k oT T

t
+ −
Δ

 

Solving for Ti, j, k + 1 

 Ti, j, k + 1 = To + K1 (T1 + Tr + Tu + Td – 4 To) 

For the bottom row of control volumes (not corners), j = 1, i = 2, 3, 4, 5, we have 

  k { }1

2 2
o r o

u o
T T T T

T T
− −

+ + − + h Δx (T∞ – To) = ρc 
2

, , 1

2
i j k oT Tx

t
+ −Δ
Δ

 

Solving for Ti, j, k + 1 

 Ti, j, k + 1 = To + 2 K1 1
1

( ) 2
2 r u oT T T T + + −    + 2K2 (T∞ – To) 

For the left edge (not corners) i = 1, j = 2, 3, 4, 5 

 k { }2 2
d o u o

r o
T T T T

T T
− −

+ + −  = ρc 
2

, , 1

2
i j k oT Tx

t
+ −Δ
Δ

 

Solving for Ti, j, k + 1 

 Ti, j, k + 1 = To + 2 K1 
1

( ) 2
2 u d r oT T T T + + −    
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For control volumes on the diagonal (i, j) = (2, 5), (3, 4), (4, 3), (5, 2) we have 

 k {T1 – To + Td – To} + h 2 Δx (T∞ – To) = ρc 
2

2

xΔ , , 1i j k oT T

t
+ −
Δ

 

Solving for Ti, j, k + 1 

 Ti, j, k + 1 = To + 2 K1 (T1 + Td – 2 To) + 2 2  K2 (T∞ – To) 

Finally, for the corners 
i = 1, j = 1 

 k 
2 2

u o r oT T T T− − + 
 

 + h 
2

xΔ
 (T∞ – To) = ρ c 

2

4

xΔ , , 1i j k oT T

t
+ −
Δ

 

Solving for Ti, j, k + 1 

 Ti, j, k + 1 = To + 4 K1 
1

( )
2 u r oT T T + −    + 2 K2 (T∞ – To) 

i = 6, j = 1 

 k 
2

i oT T− 
 
 

 + h 
2

xΔ
 (1 + 2 ) (T∞ – To) = ρ c 

2

8

xΔ , , 1i j k oT T

t
+ −
Δ

 

Solving for Ti, j, k + 1 

 Ti, j, k + 1 = To + 8 K1 
1

( )
2 i oT T −    + 4 K2 (1 + 2 ) (T∞ – To) 

i = 1, j = 6 

 k 
2

d oT T− 
 
 

 + h Δx 
2

2
 (T∞ – To) = ρ c 

2

8

xΔ , , 1i j k oT T

t
+ −
Δ

 

Solving for Ti, j, k + 1 

 Ti, j, k + 1 = To + 8 K1 
1

( )
2 d oT T −    + 8 2  K2 (T∞ – To) 

The system of equations can be solved by the marching procedure. We must keep in mind the 
limitation in Δt given by Equation (3.14) which gives 

 Δtmax = 800 seconds 
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The equations were solved using Δt = 10 seconds. A check was performed by hand on each of the 
seven unique control volume energy balances. The maximum temperature occurs at i = 6, j = 1, and 
the minimum temperature occurs at i = 1, j = 3. The resulting temperature as a function of time is 
given below. 
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PROBLEM 3.46 

A steel billet is to be heat treated by immersion in a molten salt bath. The billet is  
5 cm square and 1 m long. Prior to immersion in the bath, the billet is at a uniform 
temperature of 20°C. The bath is at 600°C and the heat transfer coefficient at the billet 
surface is 20 W/(m2K). Plot the temperature at the center of the billet as a function of 
time. How much time is needed to heat the billet center to 500°C? Use an implicit 
difference scheme with node spacing of 1 cm. The thermal conductivity of the steel is 
40 W/(m K) and the thermal diffusivity is 1 × 10–5 m2/s. 

GIVEN 

• Steel billet undergoing heat treatment 

FIND 

(a) Temperature at the center of the billet as a function of time 
(b) How much time is needed to heat the center of the billet to 500°C 
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SOLUTION 

The billet can be considered two-dimensional since it is very long. The accompanying sketch shows 
the geometry. 

1

2

3 5 6

4

 

Allowing for symmetry, we need only consider 6 nodes and control volumes. These are also shown in 
the sketch. We need to develop a heat balance on each of these control volumes. In the implicit form 
Node (1) 

  k 
2, 1 1, 1k kT T

x
+ +−

Δ
Δx = ρ c 

2

2

xΔ 1, 1 1,k kT T

t
+ −
Δ

 

or 

 T1, k + 1 2

2
1

t

x

αΔ +  Δ
 – T2, k + 1 2

2 t

x

αΔ 
  Δ

 = T1, k 

Node (2) 

 k 
1, 1 2, 1 4, 1 2, 1 3, 1 2, 1k k k k k kT T T T T T

x x x
x x x

+ + + + + +− − − 
Δ + Δ + Δ Δ Δ Δ 

  

  = ρ c Δx2 
2, 1 2,k kT T

t
+ −
Δ

 

or 

 T2, k + 1 2

3
1

t

x

αΔ +  Δ
 – (T1, k + 1 + T3, k + 1 + T4, k + 1) 2

t

x

αΔ 
  Δ

 = T2, k 

Node (3) 

 k 
2, 1 3, 1 5, 1 3, 1

2
k k k kT T T T x

x
x x

+ + + +− − ΔΔ + Δ Δ 
 + h Δx (T∞ – T3, k + 1) = ρ c 

2

2

xΔ 3, 1 3,k kT T

t
+ −
Δ

 

or 

  T3, k + 1 2

3 2
1

t h t

c xx

α
ρ

Δ Δ + +  ΔΔ
 – T2, k + 1 2

2 t

x

αΔ 
  Δ

 – T5, k + 1 2

t

x

αΔ 
  Δ

 = T3, k + 
2h tT

c xρ
∞Δ

Δ
 

Node (4) 

 k  
2, 1 4, 1 5, 1 4, 1k k k kT T T T

x
x x

+ + + +− − 
Δ + Δ Δ 

 = ρ c 
2

2

xΔ 4, 1 4,k kT T

t
+ −
Δ

 

or 

 T4, k + 1 2

4
1

t

x

αΔ +  Δ
 – T2, k + 1 2

2 t

x

αΔ 
  Δ

 – T5, k + 1 2

2 t

x

αΔ 
  Δ

 = T4, k 
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Node (5) 

 k 
4, 1 5, 1 3, 1 5, 1 6, 1 5, 1

2 2
k k k k k kT T T T T Tx x

x
x x x

+ + + + + +− − − Δ ΔΔ + + Δ Δ Δ 
  

   + h Δx (T∞ – T5, k + 1) = ρ c 
2

2

xΔ 5, 1 5,k kT T

t
+ −
Δ

 

or 

 T5, k + 1 2

4 2
1

t h t

c xx

α
ρ

Δ Δ + +  ΔΔ
– T3, k + 1 2

t

x

αΔ 
  Δ

 – T4, k + 1 2

2 t

x

αΔ 
  Δ

  

   – T6, k + 1 2

t

x

αΔ
Δ

 = T5, k + 
2h tT

c xρ
∞Δ

Δ
 

Node (6) 

 k 
5, 1 6, 1

2
k kT T x

x
+ +− Δ

Δ
 + 

2

h xΔ
 (T∞ – T6, k + 1) = ρ c 

2

8

xΔ 6, 1 6,k kT T

t
+ −
Δ

 

or 

 T6, k + 1 2

4 4
1

t h t

c xx

α
ρ

Δ Δ + +  ΔΔ
 – T5, k + 1 2

4 t

x

αΔ 
  Δ

 = T6, k + 
4h tT

c xρ
∞Δ

Δ
 

The 6 equations for the 6 control volumes can be written in matrix form as follows 

1 1

1 1 1 1

1 1 2 1

1 1 1

1 1 1 2 1

1 1 2

1 2 2 0 0 0 0

1 3 0 0

0 2 1 3 2 0 0

0 2 0 1 4 2 0

0 0 2 1 4 2

0 0 0 0 4 1 4 4

K K

K K K K

K K K K

K K K

K K K K K

K K K

+ − 
 + − − 

− + + − 
 − + − 
 − − + + −
 

− + + 

 

   

1, 1

2, 1

3, 1

4, 1

5, 1

6, 1

k

k

k

k

k

k

T

T

T

T

T

T

+

+

+

+

+

+

 
 
 
 
 
 
 
 
 
 

 = 

1,

2,

3,

4,

5,

6,

k

k

k

k

k

k

T

T

T

T

T

T

 
 
 
 
 
 
 
 
 
 

+
2

2

2

K

K

K











 

In the above matrix, we have used the following notation 

 K1 = 
2

t

x

αΔ
Δ

 

and 

 K2 = 
h t

c xρ
Δ
Δ

 

The matrix equation can be written as 

 ATk + 1 = Tk + C 
For k = 0, we know the vector Tk from the initial conditions. Therefore, we know the right hand side of 
the above equation. Inverting the matrix A and multiplying by both sides of the matrix equation, we 
have the solution for Tk + 1 

 Tk + 1 = A–1 (Tk + C) 
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Incrementing k to k = 1, we can then insert the solution for T1 into the right hand side of the above 
equation to find T2 and so forth. This can be implemented fairly easily with a spreadsheet program in 
two steps. First, the coefficients of the matrix A are determined from the problem parameters. The 
matrix is then inverted. In the second step, the inverted matrix is repeatedly multiplied by the sum of 
the two vectors Tk and C. Each time it is multiplied by the sum of these two vectors, the vector Tk is 
updated with the results. The temperature at node 1 is nearest the center, so it is saved for later 
plotting. The spreadsheet is shown below. 
 
Problem 3_45 Filename: 3_45.WQ1 
PROBLEM PARAMETERS 
alpha  = 1 K–0.5 m^2/s 
dx  = 0.01 m 
dt  = 10 sec 
h  = 20 W/m^2K 
k  = 40 W/mK 
rho C = 4000000 Ws/m^3K 
T inf = 600 C 
K1  = 1 (–) 
K2  = 0.005 (–) 

Coefficient Matrix 
 =============================== 
 3 –2 0 0 0 0 
 –1 4 –1 –1 0 0 
 0 –2 4.01 0 –1 0 
 0 –2 0 5 –2 0 
 0 0 –1 –2 5.01 –1 
 0 0 0 0 –4 5.02 
     T(K+1) = 
     INVERSE 
     MATRIX 
  VECTOR VECTOR VECTOR VECTOR 
 INVERSE MATRIX T(K) C SUM SUM 
============================================= ======== == ====== == ======= 
 0.435834 0.307502 0.092423 0.086746 0.063115 0.012573 500.356 0 500.3  500.35
 0.153751 0.461253 0.138635 0.13012 0.094673 0.018859 500.5545 0 500.55 5 500.554 
 0.092423 0.27727 0.352369 0.109747 0.135732 0.027038 500.9511 6 506.95 1 500.951 
 0.086746 0.260239 0.109747 0.323986 0.179844 0.035826 500.7526 0 500.75 6 500.752 
 0.063115 0.189345 0.135732 0.179844 0.354938 0.070705 501.1484 6 507.14 4 501.148
 0.050291 0.150873 0.108153 0.143302 0.282819 0.255542 501.5426 12 513.54 6 501.542 
 The macro below automatically multiplies 
 the inverse matrix by the “vector sum” and puts the  
 result for T(1,k+1) into the table to the left for plotting 
Temperature of a function of time. 
Iteration time  { / Math: MultiplyMatrix}- 
 k (sec) T (1, k) {GOTO} 
 0 0 20 c39– 
 1 10 21.04797 {END} 
 2 20 22.75763 {DOWN 2} 
 3 30 24.78853 {/ Block; Copy} 
 . . . $1$26– 
 . . . {IF L26 < 500} {BRANCH E37} 
 . . . {BEEP 1} 
 441 4410 499.1603   
 442 4420 499.3605 
 443 4430 499.959 
 444 4440 500.3564 
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(b) The temperature at the billet centerline exceeds 500°C at 4440 seconds. 

PROBLEM 3.47 

It has been proposed that highly concentrated solar energy can be used to economically 
process materials when it is desirable to rapidly heat the material surface without 
significantly heating the bulk. In one such process for case hardening low-cost carbon 
steel, the surface of a thin disk is to be exposed to concentrated solar flux. The 
distribution of absorbed solar flux on the disk is given by 

 q′′ (r) = q′′ max 
  
      

2

1 – 0.9
o

r

R
 

where r is the distance from the disk axis and q′′ max and Ro are parameters that describe 
the flux distribution. The disk diameter is 2Rs, its thickness is Zs, its thermal conductivity 
is k and its thermal diffusivity is α. The disk is initially at temperature Tinit and at time t 
= 0 it is suddenly exposed to the concentrated flux. Derive the set of explicit difference 
equations needed to predict how the disk temperature distribution evolves with time. The 
edge and bottom surface of the disk are insulated and reradiation from the disk may be 
neglected. 

GIVEN 

• Steel disk exposed to concentrated solar flux 

FIND 

(a) Explicit difference equations that describe evolution of disk temperature 
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SOLUTION 

The problem is a two-dimensional cylindrical geometry in the coordinates r and z. There are no 
gradients in the circumferential direction. Let there be N radial nodes and M axial nodes as shown in 
the sketch below. Then the size of the control volumes and the node locations are given by 

 Δ r = 
1

sR

N −
 ri = (i – 1) Δr i = 1, 2, … N 

 Δ z = 
1

sZ

M −
 zj = (j – 1) Δz j = 1, 2, … M 

i = 1 2 N – 1 N

Insulated
i = 1 2 N – 1 N

j = 1

2

M – 1

M

q°rz

Top View
Edge View

(vertical dimension exaggerated)

r

 

There are a total of N × M control volumes and each has the shape of a ring with rectangular cross-
section. We need to develop an energy balance equation for each control volume. First, let us 
determine the volume and surface area of each control volume since these will be needed in the energy 
balance equations. 
The top or bottom face surface area of each control volume is Afi 

 Afi = π 
2

2

rΔ 
   i = 1 

 Afi = π 
2 2

2 2i i
r r

r r
 Δ Δ   + − −        

 = 2πΔr2 (i – 1) i = 2, 3, … N – 1 

 Afi = π 
2

2

2s s
r

R R
 Δ − −    

 = π Δr 
4s
r

R
Δ −    i = N 

Now, the volume of each control volume is just 

 Vi = Afi Δz i = 1, 2, … N 
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Except for the control volume at node i = 1, each control volume has two curved surfaces, an outer 
surface and an inner surface, see sketch below. 

Z

Zj ri

ri –

ri +

ACii

Afi

z +i

Acoi

z –i

r
Cross Section of Typical

Control Volume

Dr

2

Dr

2

Dz

2

Dz

2

 

The surface area of the outer curved surface is 

 A∞i = 2π  
2i
r

r
Δ −    Δz = 2πΔrz 

1

2
i −    i = 1, 2, … N – 1 

 A∞i = 2πRs Δz i = N 

The surface area of the inner surface is 

 Acii = 2π 
2i
r

r
Δ −    Δz = 2πΔrΔz 

3

2
i −    i = 2, 3, … N 

By definition 

 Acii = 0 i = 1 

(In the above notation for Acii, the first i in the subscript refers to the inner curved surface and the 
second i is the node index.) 
The control volumes along the exposed surface absorb solar flux given by the equation in the problem 
statement. We need to integrate this flux equation over each control volume to determine the solar 
energy absorbed for each control volume. The following equation expresses this 

 iq  ≡ 2
r

ir

o
q

Δ+
′′ (r) 2πrdr i = 1 

 iq  ≡ 2

2

r
i

r
i

r

r
q

Δ

Δ

+

+
′′ (r) 2πrdr i = 2, 3, … N – 1 

 iq  ≡ 
2

i

r
i

r

r
q

Δ−
′′  (r) 2πrdr i = N 

Carrying out the inegration and simplifying we find 

 iq  = 
4

π
 maxq″ Δr2  

2
0.9

1
8 o

r

R

  Δ−    
 i = 1 

 iq  = π maxq″ Δr2 
2

3 20.9
2( 1) (4 12 13 5)

8 o

r
i i i i

R

  Δ− − − + −     
 i = 2, 3, … N – 1 

 iq  = π maxq″ Δr2 
2

3 25 0.9 15 19 65
2

4 8 2 2 16o

r
N N N N

R

  Δ  − − − + −        
i = N 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
299

We are now in a position to evaluate the energy balance for each control volume. We actually only 
need to develop 9 unique difference equations. These are for the interior nodes, the nodes at the four 
corners, and the nodes on the axis, and on the three outer surfaces. 
The explicit energy balance equation for all interior nodes is 

  k 
1, , , , 1, , , , , 1, , , , 1, , ,i j k i j k i j k i j k i j k i j k i j k i j k

coi cii f i fi

T T T T T T T T
A A A A

r r z z
+ − + −− − − − 

+ + + Δ Δ Δ Δ 
  

 = ρ c Vi 
, , 1 , ,i j k i j kT T

t
+ −
Δ

 

Solving for the node temperatures 

 Ti, j, k + 1 = Ti, j, k + 
i

t

V

αΔ
 

1, , , , 1, , , ,i j k i j k i j k i j k
coi cii

T T T T
A A

r r
+ −− −

+ Δ Δ
+ 

  
, 1, , , , 1, , ,i j k i j k i j k i j k

f i fi

T T T T
A A

z z
+ −− − 

+ Δ Δ 
 

 i = 2, 3, … N – 1 j = 2, 3, … M – 1 
For the interior nodes along the axis we have 

 k 
1, , , , , 1, , , , 1, , ,i j k i j k i j k i j k i j k i j k

coi fi f i

T T T T T T
A A A

r z z
+ + −− − − 

+ + Δ Δ Δ 
=   ρ c Vi 

, , 1 , ,i j k i j kT T

t
+ −
Δ

 

Solving for the node temperatures 

 Ti, j, k + 1 = Ti, j, k + 
i

t

V

αΔ 1, , , , , 1, , , , 1, , ,i j k i j k i j k i j k i j k i j k
coi fi f i

T T T T T T
A A A

r z z
+ + −− − − 

+ + Δ Δ Δ 
 

 i = 1 j = 2, 3, … M – 1 
For the node on the top of the axis 

 k 
1, , , , , 1, , ,i j k i j k i j k i j k

coi fi

T T T T
A A

r z
+ −− − 

+ Δ Δ 
+ iq  = ρ c Vi 

, , 1 , ,i j k i j kT T

t
+ −
Δ

 

Solving for the node temperature 

 Ti, j, k + 1 = Ti, j, k + 
i

t

V

αΔ
 

1, , , , , 1, , ,i j k i j k i j k i j k
coi fi

T T T T
A A

r z
+ −− − 

+ Δ Δ 
 i

i

q t

cVρ
Δ

 

 i = 1 j = M 
For the node on the bottom of the axis 

 k 
1, , , , , 1, , ,i j k i j k i j k i j k

coi fi

T T T T
A A

r z
+ +− − 

+ Δ Δ 
 = ρ c Vi 

, , 1 , ,i j k i j kT T

t
+ −
Δ

 

 i = 1 j = 1 
For the interior nodes along the outer curved surface 

 k 
1, , , , , 1, , , , 1, , ,i j k i j k i j k i j k i j k i j k

cii fi fi

T T T T T T
A A A

r z z
− + −− − − 

+ + Δ Δ Δ 
 = ρ c Vi 

, , 1 , ,i j k i j kT T

t
+ −
Δ
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Solving for the node temperatures 

 Ti, j, k + 1 = Ti, j, k +
i

t

V

αΔ 1, , , , , 1, , , , 1, , ,i j k i j k i j k i j k i j k i j k
cii fi fi

T T T T T T
A A A

r z z
− + −− − − 

+ + Δ Δ Δ 
 

 i = N j = 2, 3, … M – 1 
For the node on the top of the outer curved surface 

 k 
1, , , , , 1, , ,i j k i j k i j k i j k

cii fi

T T T T
A A

r z
− −− − 

+ Δ Δ 
 iq  = ρ c Vi 

, , 1 , ,i j k i j kT T

t
+ −
Δ

 

Solving for the node temperature 

 Ti, j, k + 1 = Ti, j, k + 
i

t

V

αΔ 1, , , , , 1, , ,i j k i j k i j k i j k
cii fi

T T T T
A A

r z
− −− − 

+ Δ Δ 
 + i

i

q t

cVρ
Δ

 

 i = N j = M 
For the node on the bottom of the outer curved surface 

 k 
1, , , , , 1, , ,i j k i j k i j k i j k

cii fi

T T T T
A A

r z
− +− − 

+ Δ Δ 
 = ρ c Vi 

, , 1 , ,i j k i j kT T

t
+ −
Δ

 

Solving for the node temperature 

 Ti, j, k + 1 = Ti, j, k + 
1, , , , , 1, , ,i j k i j k i j k i j k

cii fi
i

T T T Tt
A A

V r z

α − +− − Δ + Δ Δ 
 

 i = N j = 1 
For the interior nodes on the bottom surface 

  k 
1, , , , 1, , , , , 1, , ,i j k i j k i j k i j k i j k i j k

cii i fi

T T T T T T
A A A

r r z
− + +

∞
− − − 

+ + Δ Δ Δ 
 = ρ c Vi 

, , 1 , ,i j k i j kT T

t
+ −
Δ

 

Solving for the node temperature 

  Ti, j, k + 1 = Ti, j, k + 
1, , , , 1, , , , , 1, , ,i j k i j k i j k i j k i j k i j k

cii i fi
i

T T T T T Tt
A A A

V r r z

α − + +
∞

− − − Δ + + Δ Δ Δ 
 

 i = 2, 3, … N – 1 j = 1 
Finally, for the interior nodes on the top surface 

  k 
1, , , , 1, , , , , 1, , ,i j k i j k i j k i j k i j k i j k

cii i fi

T T T T T T
A A A

r r z
− + −

∞
− − − 

+ + Δ Δ Δ 
 + iq  = ρ c Vi 

, , 1 , ,i j k i j kT T

t
+ −
Δ

 

Solving for the node temperature 

 Ti, j, k + 1 = Ti, j, k + 
1, , , , 1, , , , , 1, , ,i j k i j k i j k i j k i j k i j k

cii i fi
i

T T T T T Tt
A A A

V r r z

α − + −
∞

− − − Δ + + Δ Δ Δ 
 + i

i

q t

cVρ
Δ

 

 i = 2, 3, … N – 1 j = M 

PROBLEM 3.48 

Solve the set of difference equations derived in Problem 3.46 given the following values of 
the problem parameters 

 k = 40.0 W/(mK), disk thermal conductivity 

 α = 1 × 10–5 m2/s, disk thermal diffusivity 
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 Rs = 25 mm, disk radius 

 Zs = 5 mm, disk thickness 

 ′′q max = 3 × 106 W/m2, peak absorbed flux 

 Ro = 50 mm, parameter in flux distribution 

 Tinit = 20°C, disk initial temperature 

Determine the temperature distribution in the disk when the maximum temperature is 
300°C. 

GIVEN 

• Difference equations developed in Problem 3.46 given the following values of the problem 
parameters 

FIND 

(a) Disk temperature distribution when the maximum temperature is 300°C 

SOLUTION 

All 9 difference equations can be written in the form 

  Ti, j, k + 1 = Ti, j, k ( ), , , ,1 i j i j i j i j
i

t
R L U D

V

α Δ − + + +  
 

  + 
i

t

V

αΔ
 (Ri, j Ti + 1, j, k + Li, j Ti – 1, j, k + Ui, j Ti, j + 1, k + Di, j Ti, j – 1, k) + Ci, j 

Where the coefficients Ci, j, Ri, j, Li, j, Ui, j, Di, j are defined in the table below. Note that to use the above 
general equation for all nodes, we must allow the matrix of node temperatures to extend to indices i = 
0, i = N + 1, j = 0, and j = M + 1. Temperatures at these nodes do not have meaning, but to apply the 
general difference equation along the axis or on the boundaries, they must be defined. Their values do 
not matter because the coefficients are set up to account for the special equations on the axis or on the 
boundaries. 

Table of Coefficients for the Difference Equation 

Ci, j Ri, j Li, j Ui, j Di, j 
Applicable 
Range of i 

Applicable 
Range of j 

0 Acoi/Δr Acii/Δr Afi/Δz Afi/Δz 2, 3 … N – 1 2, 3 … M – 1 

0 Acoi/Δr 0 Afi/Δz Afi/Δz 1 2, 3 … M – 1 

i

i

tq

cVρ
Δ

 

Acoi/Δr 0 0 Afi/Δz 1 M 

0 Acoi/Δr 0 Afi/Δz 0 1 1 

0 0 Acii/Δr Afi/Δz Afi/Δz N 2, 3 … M – 1 

i

i

tq

cVρ
Δ

 

0 Acii/Δr 0 Afi/Δz N M 

0 0 Acii/Δr Afi/Δz 0 N 1 

i

i

tq

cVρ
Δ

 

Acoi/Δr Acii/Δr 0 Afi/Δz 2, 3 … N – 1 M 

0 Acoi/Δr Acii/Δr Afi/Δz 0 2, 3 … N – 1 1 

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
302

To maintain a positive coefficient on Ti, j, k for stability we must have 

  
i

t

V

αΔ
(Ri, j + Li, j + Ui, j + Di, j) < 1  i = 1, 2, … N j = 1, 2 … M 

The largest permissible time step Δt is therefore 

 Δtmax = ( ), , , , max

i

i j i j i j i j

V

R L U Dα
  
 

+ + +  
 

We will use some fraction of this time step in the program execution. 

Note that we must first calculate the coefficients R, L, U, and D before determining Δtmax. Then we can 
fill in the coefficients C. 
 
The Pascal program listed below solves the difference equations as described above. 
Program Prob3_M; {solution to Problem 3_M} 
uses crt, printer; 
const N = 11; {radial nodes} 
 M = 21; {axial nodes} 
 k = 40.0; {thermal conductivity (W/mK)} 
 alpha = 1e–5; {thermal diffusivity (m^2/s)} 
 Rs = 0.025; {disk radius (m)} 
 Zs = 0.005; {disk thickness (m)} 
 qmax = 3.0e6; {peak flux (W/m^2)} 
 Ro = 0.05; {parameter in flux equation (m)} 
 Tinit = 20.0; {initial temperature (C)} 
 Tmax = 300.0; {maximum desired temperature at top of axis (C)} 
var dr, dz, rhoC, dtMax, dt, time:real; 
 i, j : integer; 
 C,R,L,U,D : array [1..N,1..M] of real; 
 q,V,Aco,Aci,Af : array [1..N] of real; 
 Toid,Tnew : array [1..N+1,1..M+1] of real; 
begin 
 {calculate size of the control volumes} 
 dr : = Rs/(N – 1); 
 dz : = Zs/(M – 1); 
 rhoC: = k/alpha; 
 
 {calculate control volume surface areas and volumes} 
 Af[1] : = pi*dr*dr/4.0; 
 Af[N]  : = pi*dr*(Rs – dr/4.0); 
 for i  : = 2 to N – 1 do Af[i]  : = 2.0*pi*dr*dr*(i – 1); 
 for i  : = 1 to N do V[i] : = Af[i]*dz; 
 
 Aco[N] : = 2.0*pi*Rs*dz; 
 for i : = 1 to N – 1 do Aco[i] : = 2.0*pi*dr*dz*(i – 0.5); 
 
 Aci[1] : = 0.0; 
 for i : = 2 to N do Aci[i] : = 2.0*pi*dr*dz*(i – 1.5); 
 
 {calculate absorbed flux as function of i} 
 q [1] : = pi/4.0*qmax*dr*dr*(1.0 – 0.9/8.0*sqr(dr/Ro)); 

q [N]  : = pi*qmax*dr*dr*(N – 1.25–0.9/8.0*sqr(dr/Ro)*(2.0*N*N*N –7.5*N*N  
+ 9.5*N – 65.0/16.0)); 

 for i : = 2 to N – 1 do 
q [i]  : = pi*qmax*dr*dr*(2.0*(1 – 1.0) – 0.9/4.0*sqr(dr/Ro)*(4.0*i*i*i – 12.0*i* 
i + 13.0*i – 5.0)); 

 
 {fill in the coefficient matrices} 
 
 for i : = 1 to N do {first, zero all of them out} 
 for j : = 1 to M do 
 begin 
 R[i, j] : = 0.0; 
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 L[i, j]  :  = 0.0; 
 U[i, j]  :  = 0.0; 
 D[i, j]  :  = 0.0; 
 C[i, j] :  = 0.0; 
 end 
 
 for i : = 2 to N – 1 do 
 for j : = 2 to M – 1 do 
 begin 
 R[i, j]  :  = Aco[i]/dr; 
 L[i, j]  :  = Aci[i]/dr; 
 U[i, j]  :  = Af[i]/dz; 
 D[i, j]  :  = Af[i]/dz; 
 end;  
  
 i : = 1; 
 for j : = 2 to M – 1 do 
 begin 
  R[i, j] : = Aco[i]/dr; 
  U[i, j] : = Af[i]/dz; 
  D[i, j] : = Af[i]/dz; 
 end; 
 
 i : = 1; 
 j : = M; 
 R[i, j]  :  = Aco[i]/dr; 
 D[i, j]  : = Af[i]/dz; 
 i : = 1; 
 j : = 1; 
 R[i, j] : = Aco[i]/dr; 
 U[i, j]  : = Af[i]/dz;  
  
 i : = N; 
 for j : = 2 to M – 1 do 
 begin 
 L[i, j] : = Aci[i]/dr; 
 U[i, j]  : = Af[i]/dz; 
 D[i, j]  : = Af[i]/dz; 
 end; 
 
 i : = N; 
 j : = M; 
 L[i, j]  : = Aci[i]/dr; 
 D[i, j]  : = Af[i]/dz; 
 
 i : = N; 
 j : = 1; 
 L[i, j] : = Aci[i]/dr; 
 U[i, j] : = Af[i]/dz; 
 
 
 j : = M; 
 for I : = 2 to N – 1 do 
 begin 
 R[i, j] : = Aco[i]/dr; 
 L[i, j] : = Aci[i]/dr; 
 D [i, j] : = Af[i]/dz; 
 end; 
 
 j : = 1; 
 for I : = 2 to N – 1 do 
 begin 
 R [i, j] : = Aco[i]/dr; 
 L [i, j] : = Aci[i]/dr; 
 U [i, j] : = Af[i]/dz; 
 end; 
 
 {find maximum permissible dt} 
 dtMax : = 0.0; 
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 for i : = 1 to N do 
 for j : = 1 to M do 
 begin 
  dt : = V[i]/alpha/(R[i, j] + L[i, j] + U[i, j] + D[i, j]); 
  if = dt > dtMax then dtMax : = dt; 
 end; 
 dt : = 0.5*dtMax; {actual value to be used in solution} 
 
 {fill in the cij matrix} 
 for i : = 1 to N do C[i, M] : = dt*q [i]/rhoC/V[i]; 
 
 {establish the initial conditions} 
 for i : = 1 to N do 
 for j : = 1 to M do 
 Told [i, j] : = Tinit; 
 
 {carry out the solution} 
 time : = 0.0; 
 repeat 
 time: = time + dt; 
 writeln (time: 10:5); 
 for i: = 1 to N do 
 for j: = 1 to M do 

 Tnew [i,j] : = Told [i,j]*(1.0 – alpha*dt/V[i]*(R[i,j]+ L[i,j]+ U[i,j]+ 
D[i,j)) 

+ alpha*dt/V[i]*(R[i, j]*Told [i + 1, j] + L[i, j]*Told [i – 1, j] + U[i, j]*Told 
[i, j + 1] + D[i, j]*Told [i, j – 1]) + C[i, j]; 

  
 if Tnew[1, m] > Tmax then {print out distribution and quit} 
 begin 
  writeln(1st, time : 8 : 4, ‘sec dt = ‘, dt : 15 : 10); 
  write(1st,’   ’); 
  for i : = 1 to N do write (1st, 1 : 10); 
  writeln(1st); 
  for j : = M downto 1 do 
  begin 
   write(1st, j : 4); 
   for i : = 1 to N do write(1st, Tnew[i, j]; 10 : 5); 
   writeln(1st); 
  end; 
  writeln(1st); 
  halt; 
 end 
 
 (otherwise, keep going} 
 for i : = 1 to N do 
 for j : = 1 to M do 
 Told[i, j] ; = Tnew[i, j]; 
 
 until time < - 1.0; 
  
 end. 

Now, we need to determine the node spacing and Δt required for an accurate solution. As suggested in 
the text, trial and error is the best method. 
First, let’s determine the required spatial resolution, that is, the values of N and M. Since the gradients 
in the radial direction are small compared to those in the axial direction, we don’t expect much 
influence on the results by varying N so we will use N = 11. Now, pick values of M = 11, 21, 41, and 
61. A time step of Δt = 0.0003 s will give stable results for all these values of M. The table below gives 
the results for these 4 runs. 
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M Time (s) for 
Tmax = 300°C 

T [1, 1] T [N, 1] T [N, M] 

11 1.1979 116.29 109.86 281.97 

21 1.1223 115.75 109.32 282.05 

41 1.0845 115.49 109.06 282.08 

61 1.0719 115.40 108.97 282.09 

 
Notice that the temperatures in the table are not significantly affected by M but the time required to 
reach 300°C is somewhat sensitive. This is displayed in the graph shown to the right. It appears that 
the time gradually decreases but between M = 41 and M = 61, the graph levels off significantly. At M 
= 81, the time would probably be somewhat less than that at M = 61 but clearly we have reached the 
point of diminishing return. We will choose M = 41 as begin a reasonable compromise. 

10 20 30 40 50 60 70

Number of Axial Nodes, M

Time Required to Reach a Maximum Temperature
of 300°C as a Function of Number of Axial Nodes

1.2

1.18

1.16

1.14

1.12

1.1

1.08

1.06

s
T

)
(lanif

 

Next, we need to determine the appropriate time step, Δt. For N = 11, M = 41, the maximum 
permissible time step according to the equation given previously is 0.00155 s. In practice, values larger 
than 1/2 of this maximum result in instability. Running with 0.00015, 0.0003, and 0.0006 seconds, we find 

 

Δt (s) Time (s) for  
Tmax = 300°C 

T [1, 1] T [N, 1] 
T [N, M] 

0.00015 1.0845 115.488 109.06 282.08 

0.0003 1.0845 115.48659 109.06 282.08 

0.0006 1.0848 115.52582 109.09 282.13 

From the results in the table, it is clear that there is little benefit from a time step of less than 0.0003 s. 
For a reasonable compromise, choose Δt = 0.0006 s. 

Using these choices, M = 41, N = 11, and Δt = 0.0006 s, the results are plotted below 
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The solution shows that 1.0848 seconds is required for the maximum temperature in the disk to reach 
300°C. Furthermore, the graph demonstrates that the temperature gradient axially through the disk is 
not especially large as was required for the case hardening application. This indicates that the incident 
flux needs to be increased. 

PROBLEM 3.49 

Consider two-dimensional steady conduction near a curved boundary. Determine the 
difference equation for an appropriate control volume near the node (i, j). The boundary 
experiences convective heat transfer through a coefficient h to ambient temperature Ta. 
The surface of the boundary is given by ys = f(x). 

GIVEN 

• Two-dimensional steady conduction near a curved surface 
• Convective boundary condition 
• Curved surface given by ys = f(x) 

FIND 

(a) Difference equation for a node i, j near the surface 

 

SKETCH 

j + 1

j

j – 1

Ambient

i – 1 i i + 1

y = f xs ( )

y

x
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SOLUTION 

Consider a control volume for the node i, j as shown below 
y = f xs ( )

Control Volume

j – 1

i i + 1

j

Ta

Ambient

 

Heat can flow into or out of the control volume at four surfaces. An energy balance on the control 
volume is given by 

  k 
( ) ( ), 1 , 1, ,i j i j i j i jT T T T

x y
y x

− + − − Δ + Δ Δ Δ  
 + hc {(Ta – Ti, j) Δx + (Ta – Ti, j) Δy} = 0 

PROBLEM 3.50 

Derive the control volume energy balance equation for three-dimensional transient 
conduction with heat generation in a rectangular coordinate system. 

GIVEN 

• Three-dimensional transient conduction with heat generation in a rectangular coordinate system 

FIND 

(a) The control volume energy balance equation 

SKETCH 

Dy

Dz

z

y

x

Dz

 

SOLUTION 

The control volume, in an x, y, z coordinate system, is shown in the sketch above. Define the nodal 
indices as follows 

 x = (i – 1) Δx 

 y = (j – 1) Δy 

 z  = (l – 1) Δz 

and for simplicity define 

 T ≡ Ti, j, 1, m 

Now, heat conducted into the control volume is 

  k ( ) ( )1, , , 1, , , , 1, , , 1, ,i j l m i j l m i j l m i j l m
y z x z

T T T T T T T T
x y+ − + −

Δ Δ Δ Δ − + − + − + − Δ Δ
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   ( ), , 1, , , 1,i j l m i j l m
x y

T T T T
z+ −

Δ Δ + − + − Δ
 

The heat generated in the control volume is 

  , , ,1,G i j mq  Δx Δy Δz 

and the rate at which thermal energy is stored in the control volume is 

  ρ c Δx Δy 
, , , 1i j l mT T

t
+ −

Δ
 

Since the heat conducted into the control volume plus the rate at which heat is generated in the control 
volume must equal the rate at which energy is stored in the control volume, the difference equation is 

  k ( ) ( )1, , , 1, , , , 1, , , 1, ,2 2i j l m i j l m i j l m i j l m
y z x z

T T T T T T
x y+ − + −

Δ Δ Δ Δ − + + − + Δ Δ
 

   ( ), , 1, , , 1,2i j l m i j l m
x y

T T T
z+ −

Δ Δ + − + Δ
 

  + , , ,1,G i j mq  Δx Δy Δz = ρ c Δx Δy Δz 
, , , 1i j l mT T

t
+ −

Δ
 

Dividing by k Δx Δy Δz we have 

  
1, , , 1, , , , 1, , , 1, , , , 1, , , 1,

2 2 2

2 2 2i j l m i j l m i j l m i j l m i j l m i j l mT T T T T T T T T

x y z

+ − + − + −− + − + − +
+ +

Δ Δ Δ
 

  , , , ,G i j l mq

k
+


 = 
, , , 11 i j l mT T

tα
+ −

Δ
 

PROBLEM 3.51 

Derive the energy balance equation for a corner control volume in a three-dimensional 
steady conduction problem with heat generation in a rectangular coordinate system. 
Assume an adiabatic boundary condition and equal node spacing in all three dimensions. 

 

 

GIVEN 

• Three-dimensional steady conduction in a rectangular coordinate system, corner boundary control 
volume with specified temperature boundary condition 

FIND 

(a) Energy balance equation for the control volume 

SKETCH 
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Edge of Geometry

Edge of Geometry

Dx

2
Dx

2

Dx

2

z

y

x  

SOLUTION 

First, define the nodal indices as follows 

 x = (i – 1) Δx y = (j – 1) Δy z = (l – 1) Δz 

and for simplicity, let 

 T ≡ Ti, j, l, m 

where, as usual, m is the time index. Note that the volume of the control volume is 

  
8

x y zΔ Δ Δ
 

Referring to the sketch above, we see that there are three surfaces across which heat is transferred by 
conduction. For these surfaces, the heat transferred into the control volume is 

  k 
1, , , , 1, , , , 1,

4 4 4
i j l m i j l m i j l mT T T T T Ty z x z y x

x y z
+ − −− − − Δ Δ Δ Δ Δ Δ+ + Δ Δ Δ 

 

Heat generation in the control volume is 

  , , , , 8G i j l m
x y z

q
Δ Δ Δ  

and the rate at which energy is stored in the control volume is 

  ρ c 
, , , 1

8
i j l mT T x y z

t
+ − Δ Δ Δ

Δ
 

The resulting energy balance equation for the control volume is 

  
1, , , , 1, , , , 1,

2

3

4

i j l m i j l m i j l mT T T T

x

+ − −+ + −

Δ
 + 

, , , ,

8
G i j l mq

k


 = 

, , , 11

8
i j l mT T

tα
+ −

Δ
 

 

PROBLEM 3.52 

Determine the stability criterion for an explicit solution of three-dimensional transient 
conduction in a rectangular geometry. 

GIVEN 

• Three-dimensional transient conduction in a rectangular geometry 

FIND 
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(a) The stability criterion for an explicit situation 

SOLUTION 

From the solution of Problem 3.49, the control volume energy balance equation is 

   
1, , , 1, , , , 1, , , 1, , , , 1, , , 1,

2 2 2

2 2 2i j l m i j l m i j l m i j l m i j l m i j l mT T T T T T T T T

x y z

+ − + − + −− + − + − +
+ +

Δ Δ Δ
 

  +
, , , ,G i j l mq

k


 = 

, , , 11 i j l mT T

tα
+ −

Δ
 

so the coefficient on T is 

  – 2 
2 2 2

1 1 1

x y z

 
+ +  Δ Δ Δ

 + 
1

tαΔ
 

Since this coefficient must be greater than zero to ensure stability, we have 

  Δt < 
1

2 2 2

1 1 1 1

2 x y zα

−
 

+ +  Δ Δ Δ
 

Note that this expression is consistent with the extension from one-dimensional to two-dimensional 
stability criteria. 
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Chapter 4 

PROBLEM 4.1 

Evaluate the Reynolds number for flow over a tube from the following data 

 D = 6 cm 

 U∞ = 1.0 m/s 

 ρ = 300 kg/m3 

 μ = 0.04 N s/m2 

GIVEN 

• D = 6 cm 
• U∞ = 1.0 m/s 
• ρ = 300 kg/m3 
• μ = 0.04 N s/m2 

FIND 

• The Reynolds Number (Re) 

SOLUTION 

The Reynolds number, from Table 4.3, is 

 Re = 
U L

v
∞  = 

U Lρ
μ

∞  

The Reynolds number based on the tube diameter is 

 Re = 
U Dρ

μ
∞  = 

( ) ( ) ( )
( ) ( )

3

2 2

1m/s (6cm) 1m/(100 cm) 300 kg/m

0.04(Ns)/m kg m/(s N)
 = 450 

PROBLEM 4.2 

Evaluate the Prandtl number from the following data: 

 cp = 2.1 kJ/kg K,   k = 3.4 W/mK,  μ = 0.45 kg/ms 

GIVEN 

• cp = 2.1 kJ/kg K 
• k = 3.4 W/mK 
• μ = 0.45 kg/ms 

FIND 

• The Prandtl number (Pr) 

SOLUTION 

Prandtl number is given by Eqn. (4.8) 

 Pr = 
pc

k

μ
 = 

( ) ( )
–3

2.1 kJ/kg K 0.45 kg/ms

(3.4 ×10 kW/mK)
 

 Pr = 278 
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PROBLEM 4.3 

Evaluate the Nusselt number for flow over a sphere for the following conditions 

 D = 0.15 m 

 k = 0.2 W/(m K) 

 hc = 102 W/(m2 K) 

GIVEN 

• D = 0.15 m 
• k = 0.2 W/(m K) 
• hc = 102 W/(m2 K) 

FIND 

• The Nusselt number (Nu) 

SOLUTION 

The Nusselt number is given by Equation (4.18) 

 Nu = ch L

k
 ≡ ch D

k
 if D is characteristic length. 

Based on the diameter of the sphere, the Nusselt number is 

 NuD = ch D

k
 = 

( ) ( )2102 W / (m K) 0.15 m
76.5

0.2 W/(m K)
=  

PROBLEM 4.4 

Evaluate the Stanton number for flow over a tube from the data below 

 D = 10 cm 

 U∞ = 4 m/s 

 ρ = 13,000 kg/m3 

 μ = 1 × 10–3 N s/m2 

 cp = 140 J/(kg K) 

 hc = 1000 W/(m2 K) 

GIVEN 

• D = 10 cm 
• U∞ = 4 m/s 
• ρ = 13,000 kg/m3 
• μ = 1 × 10–3 N s/m2 
• cp = 140 J/(kg K) 

• ch  = 1000 W/(m2 K) 

FIND 

• The Stanton number (St) for flow over a tube 

SOLUTION 

The Stanton number is given in Table 4.3 as 

 St = c

p

h

U cρ ∞
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The Stanton number based on the average heat transfer coefficient is 

 St = c

p

h

U cρ ∞
 = 

( ) ( ) ( )

2

3

[1000W/(m K)]

13,000kg/m 4 m/s 140J/(kgK) Ws/J
 = 1.37 × 10–4 

PROBLEM 4.5 

Evaluate the dimensionless groups hcD/k, U∞ Dρ/μ, cp μ/k for water, n-Butyl alcohol, 
mercury, hydrogen, air, and saturated steam at a temperature of 100°C. Let D = 1 m, U∞ 
= 1 m/sec, and hc = 1 W/(m2 K). 

GIVEN 

• D = 1 m 
• U∞ = 1 m/s 
• hc = 1 W/(m2 K) 

FIND 

• The dimensionless groups 
 hc D/k (Nusselt number) 
 U∞ D ρ/μ (Reynolds number) 
 cp μ/k (Prandtl number) 

PROPERTIES AND CONSTANTS 

From Appendix 2, at 100°C 

 Substance Table Density, ρ Specific Heat, Thermal Absolute 
  Number (kg/m3) cp ( )(J /kg K)  Conductivity Viscosity 

     ( )W/(m K)  μ × 106 

      (N s/m2) 

 Water 13 958.4 4211 0.682 277.5 

 n-Butyl Alcohol 18 753 3241 0.163 540 

 Mercury 25 13,385 137.3 10.51 1242 

 Hydrogen 31 0.0661 14,463 0.217 10.37 

 Air 27 0.916 1022 0.0307 21.673 

 Saturated Steam 34 0.5977 2034 0.0249 12.10 

SOLUTION 

For water at 100°C 

 Nu = ch D

k
 = 

( )2[1W/(m K)] 1m

[0.682 W/(m K)]
 = 1.47 

 ReD = 
U Dρ

μ
∞  = 

( ) ( ) ( )
( ) ( )

3

–6 2 2

1m/s 1m 958.4 kg/m

277.5 10 Ns/m kg m/(s N)×
 = 34 × 106 

 Pr = 
pc

k

μ
 = 

[ ] ( )
[ ] ( )

–6 2

2

4211 J/(kg K) 277.5 10 (Ns)/m

0.682 W/(m K) Ns /(kg m)

×
 = 1.71 
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The dimensionaless groups for the other substances can be calculated in a similar manner 
 Substance Nu ReD Pr 

 Water 1.47 3.4 × 106 1.71 
 n-Butyl Alcohol 6.13 14. × 106 10.73 
 Mercury 0.10 1.1 × 107 0.016 
 Hydrogen 4.61 6.3 × 103 0.694 
 Air 32.6 4.2 × 104 0.721 
 Saturated Steam 40.2 4.9 × 104 0.988 

PROBLEM 4.6 

Suppose a fluid from the list below flows at 5 m/s over a flat plate 15 cm long. Calculate 
the Reynolds number at the downstream end of the plate. Indicate if the flow at that 
point is laminar, transition, or turbulent. Assume all fluids are at 40°C. 

(a) Air 
(b) CO2 
(c) Water 
(d) Engine Oil 

GIVEN 

• A fluid flows over a flat plate 
• Fluid velocity (U∞) = 5 m/s 
• Length of plate (L) = 15 cm = 0.15 m 
• Fluid temperature = 40°C 

FIND 

• The Reynolds number at the downstream end of the plate (ReL) for 
 (a) Air 
 (b) CO2 
 (c) Water 
 (d) Engine Oil 
Indicate if the flow is laminar, transitional, or turbulent 

ASSUMPTIONS 

• Steady state 

SKETCH 

Fluid
= 5 m/s
= 40°C

U
T

•
•

L = 0.15 m  

PROPERTIES AND CONSTANTS 

At 40°C, the kinematic viscosities of the given fluids are as follows 

From Appendix 2, Table 27 for Air (va) = 17.6 × 10–6 m2/s 

From Appendix 2, Table 28 for CO2 (vc) = 9.07 × 10–6 m2/s 

From Appendix 2, Table 13 for Water (vw) = 0.658 × 10–6 m2/s 

From Appendix 2, Table 16 for Engine Oil (vo) = 240 × 10–6 m2/s 

SOLUTION 

The Reynolds number, from Table 4.3, is 

  
Re U L

v
∞=
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The transition from laminar to turbulent flow over a plate occurs at a Reynolds number of about  
5 × 105. 
For air 

 ReL = 
( ) ( )

–6 2

5m/s 0.15m

17.6 10 m /s×
 = 4.3 × 104 (Laminar) 

For CO2 

 ReL = 
( ) ( )

–6 2

5m/s 0.15m

9.07 10 m /s×
 = 8.3 × 104 (Laminar) 

For water 

 ReL = 
( ) ( )

–6 2

5m/s 0.15m

0.658 10 m /s×
 = 1.1 × 106 (Turbulent) 

For engine oil 

 ReL = 
( ) ( )

–6 2

5m/s 0.15m

240 10 m /s×
 = 3.1 × 103 (Laminar) 

PROBLEM 4.7 

Replot the data points of Figure 4.9(b) on log-log paper and find an equation 
approximating the best correlation line. Compare your results with Figure 4.10. Then, 
suppose steam at 1 atm and 100°C is flowing across a 5 cm-OD pipe at a velocity of 1 m/s. 
Using the data in Figure 4.10, estimate the Nusselt number, the heat transfer coefficient, 
and the rate of heat transfer per meter length of pipe if the pipe is at 200°C and compare 
with predictions from your correlation equation. 

GIVEN 

• Figure 4.9(b) in text 
• Steam flowing across a pipe 
• Steam pressure = 1 atm 
• Steam temperature (Ts) = 100°C 
• Pipe outside diameter (D) = 5 cm = 0.05 m 
• Steam velocity (U∞) = 1 m/s 
• Pipe temperature (Tp) = 200°C 

FIND 

(a) Replot Figure 4.9(b) on log-log paper and find an equation approximating the best correlation line 
(b) Find the Nusselt number (Nu), the heat transfer coefficient (hc), and the rate of heat transfer per 

unit length (q/L) using Figure 4.10 
(c) Compare results with your correlated equation 

ASSUMPTIONS 

• Steady state 
• Radiative heat transfer is negligible 
SKETCH 

Steam
= 100°C
= 1 m/s

T
U

s

•

D = 0.05 m

Tp = 200°C
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 34, for steam at 1 atm and 100°C 
  Thermal conductivity (k) = 0.0249 W/(m K) 

  Kinematic viscosity (v) = 20.2 × 10–6 m2/s 

  Thermal diffusivity (α) = 0.204 × 10–4 m2/s 

SOLUTION 

(a) The data taken from Figure 4.9(b) is shown below and plotted on a log-log scale 

 Re Nu Log Re Log Nu 
 240 9 2.38 0.95 
 500 12 2.70 1.08 
 1,000 18 3.00 1.26 
 1,800 19 3.26 1.28 
 2,000 20 3.30 1.30 
 4,100 30 3.61 1.48 
 7,000 39 3.85 1.59 
 13,500 62 4.13 1.79 
 20,000 88 4.30 1.94 
 28,000 110 4.45 2.04 
 42,000 135 4.62 2.13 
 50,000 150 4.70 2.18 

Log Nu vs. Log Re
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0.7

Figure 4.9(b) Variation of Nusselts Number with Reynolds
Number on a log-log Scale

L
o
g

N
u

Log Re

 

Fitting this data with a linear least squares regression yields: 

 log Nu = 0.615 log ReD – 0.687 

  or 

 Nu = 0.21 ReD
0.615 

(b) For the given data 

 ReD = 
U D

v
∞  = 

( ) ( )
–6 2

1.0m/s 0.05m

20.2 10 m /s×
 = 2475 

 Pr = 
v

α
 = 

–6 2

–6 2

20.2 10 m /s

0.204 10 m /s

×
×

 = 0.990 
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Although Figure 4.10 applies to Reynolds numbers between 3 and 100, we will apply its results to the 
larger Reynolds number for this case for the purpose of comparison 

 
0.3
DNu

Pr
 = 0.82 ReD

0.4 

 NuD = 0.82 Pr0.3 ReD
0.4 = 0.82 (0.99)0.3 (2475)0.4 = 18.6 

From Table 4.3 

 NuD = ch D

k
 

 ∴  hc = DNu k

D
 = 

( )18.6 0.0249 W/(m K)

0.05m
 = 9.27 W/(m2 K) 

The rate of convective heat transfer is given by Equation (1.10) 

 q = hc A ΔT = hc π D L (Tp – Ts) 

 ∴   
q

L
 = hc π D (Tp – Ts) = ( )29.27 W/(m K)  π (0.05 m) (200°C – 100°C) = 145.6 W/m 

(c) The correlation from part (a) yields 

 Nu = 0.21 (2475)0.615 = 25.7 

 hc = 
Nu k

D
 = 

( )25.7 0.0249 W/(m K)

0.05m
 = 12.8 W/(m2 K) 

  
q

L
 = hc π D (Tp – Ts) = ( )212.8W/(m K)  π (0.05 m) (200°C – 100°C) = 201.0 W/m 

The results obtained from Figure 4.10 are 28% lower than these results. 

COMMENTS 

The use of Figure 4.10 for a Reynolds number larger than 100 is inappropriate and in this case leads to 
a significant underestimation of the heat transfer coefficient. On the other hand, the correlation 
equation we developed from Figure 4.9(b) is strictly valid for air only. Since the Prandtl number for 
steam is different than that of air, we introduce an (unknown) error in using the data of Figure 4.9(b) to 
predict heat transfer to steam. 

PROBLEM 4.8  

The average Reynolds number for air passing in turbulent flow over a 2 m – long flat 
plate is 2.4 × 106. Under these conditions, the average Nusselt number was found to be 
equal to 4150. Determine the average heat transfer coefficient for an oil having thermal 
properties similar to those of Table A-17 at 30°C at the same Reynolds number in flow 
over the same plate. 

GIVEN 

• Turbulent flow of air over a flat plate 
• Average Reynolds number (ReL) = 2.4 × 106 
• Plate length (L) = 2 m 
• Average Nusselt number (Nu) = 4150 
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FIND  

• Average heat transfer coefficient ( )ch for oil flowing at the same Re over the same plate 

ASSUMPTIONS 

• Steady state 
• Fully developed turbulent flow 
• Transition from laminar to turbulent flow occurs at Rex = 5 × 105 

SKETCH  

Fluid

L = 2 m
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 17, for oil at 30°C 
  Thermal Conductivity (k) = 0.11 W/(m K) 

  Kinematic Viscosity (v) = 15.4 × 10–6 m2/s 

  Thermal Diffusivity (α) = 707 × 10–10 m2/s 

SOLUTION  

The Prandtl number for the oil is 

 Pr = 
v

α
 = 

–6 2

–10 2

15.4 10 m /s

707 10 m /s

×
×

 = 218 

The empirical correlation from Table 4.5 can be used to find the Nusselt number for the oil. 

 NuL = 0.036 Pr0.33 [ReL
0.8 – 23,200] for ReL > 5 × 105 and Pr > 0.5 

 NuL = 0.036 (218)0.33 [(2.4 × 106)0.8 – 23,200] = 22,100 

 ch  = LNu k

D
 = 

( )22,100 0.11W/(m K)

2.0m
 = 1216 W/(m2 K) 

PROBLEM 4.9 

The dimensionless ratio U∞ / Lg , called Froude number, is a measure of similarity 

between an ocean-going ship and a scale model of the ship to be tested in a laboratory 
water channel. A 150 m long cargo ship is designed to run at 36 kmph, and a 1.5 m 
geometrically similar model is towed in a water channel to study wave resistance. What 
should be the towing speed in m s–1? 

GIVEN 

• A ship model and its prototype 

• Froude number = U∞ / Lg  is a measure of similarity 

• Ship length (Ls) = 150 m 
• Ship speed (U∞ s) = 36 kmph = 10 ms–1 
• Model length (Lm) = 1.5 m 
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FIND 

• Model towing speed (U∞ m) 

ASSUMPTIONS 

SKETCH 

U s• = 36 kmph

Ship Prototype

L = 150 ms

U m• = ?

Model

Lm = 1.5 m

 

SOLUTION 

For similar wave shape, the Froude number should be the same for the model and the prototype 

 
m

m

U

L g

∞
 = s

s

U

L g
∞   mU∞  = sU∞  m

s

L

L
 

 mU∞  = 10 ms–1 
1.5m

150m
 = 1 ms–1 

PROBLEM 4.10 

The torque due to the frictional resistance of the oil film between a rotating shaft and its 
bearing is found to be dependent on the force F normal to the shaft, the speed of rotation 
N of the shaft, the dynamic viscosity μ of the oil, and the shaft diameter D. Establish a 
correlation among the variables by using dimensional analysis. 

GIVEN 

• The oil film between a rotating shaft and its bearing 
• The torque (T) due to frictional resistance is a function of normal force (F), speed of rotation (N), 

dynamic viscosity (μ), and shaft diameter (D) 

FIND 

• A correlation among the variables 

ASSUMPTIONS 

• Steady state 

SOLUTION 

The Buckingham π Theorem (Sections 4.7.2 and 4.7.3) can be used to find the correlation. The 
primary dimensions of the variables are listed below 
  Variable Symbol Dimensions 
 1. Normal Force F [M L/t2] 
 2. Speed of Rotation N [1/t] 

 3. Dynamic Viscosity μ [M/L t] 
 4. Shaft Diameter D [L] 

 5. Torque T [M L2/t2] 

There are 5 variables and 3 primary dimensions. Therefore, two dimensionless groups are needed to 
correlate the variables 

 π = Ta Fb Nc μd De 
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In terms of the primary dimensions 

 [π] = 
2

2 2

1
a b c dML ML M

t Ltt t

       
             

 [L]e = 0 

Equation the sum of the exponents of each primary dimension to zero 

  For μ: a + b + d = 0  [1] 

  For L: 2a + b – d + e = 0 [2] 

  For t: 2a + 2b + c + d = 0 [3] 

By inspection of equation [1] and [3]: c = d 
There are five unknowns but only 3 equations. Therefore, the value of two of the exponents can be 
chosen for each dimensionless group. 

For π1: Let a = 1 and b = 0 
  From equation [1] d = – 1 = c 

  From equation [2] e = – 3 

 ∴  π1 = T N–1 μ–1 D–3 = 
3

T

N Dμ
 

For π2: Let a = 0 and b = 1 
  From equation [1] d = – 1 = c 

  From equation [2] e = – 2 

 ∴  π2 = F N–1 μ–1 D–2 = 
2

F

N Dμ
 

From Equation (4.24) 

 π1 = f (π2) ∴ 
3

T

N Dμ
 = f 

2

F

N Dμ
 
  

 

PROBLEM 4.11 

When a sphere falls freely through a homogeneous fluid, it reaches a terminal velocity at 
which the weight of the sphere is balanced by the buoyant force and the frictional 
resistance to the fluid. Make a dimensional analysis of this problem and indicate how 
experimental data for this problem could be correlated. Neglect compressibility effects 
and the influence of surface roughness. 

 

GIVEN 

• A sphere falling freely through a homogeneous fluid 
• Terminal velocity occurs when weight is balanced by buoyant force and friction resistance of the 

fluid 

 

FIND 

• Make a dimensional analysis and indicate how data may be correlated 

ASSUMPTIONS 

• Compressibility effects are negligible 
• Influence of surface roughness is negligible 
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SKETCH 

Terminal Velocity (U)

D

 

SOLUTION 

The variables which must be correlated and their dimensions are shown below 
  Variable Symbol Dimensions 
 1. Acceleration of Gravity g [L/t2] 

 2. Density Difference ρs – ρf [M/L3] 

 3. Fluid Density ρf [M/L3] 
 4. Terminal Velocity U [L/t] 
 5 Sphere Diameter D [L] 

 6. Fluid Viscosity μ [M/L t] 

The density difference was chosen for variable 2 because we anticipate that this difference, rather than 
the sphere density, will be an important parameter. Clearly, if ρs = ρf, then U = 0. The Buckingham π 
Theorem (Section 4.7.2 and 4.7.3) can be used to correlate the variables. There are 6 variables and 3 
primary dimensions. Therefore, 3 dimensionless groups will be found. 

 π = ga (ρs – ρf)
b ρf

c Ud De μf 

Substituting the primary dimensions into the equation 

 [π] = 
2 3

a b c dL M L

tt L

+
     
        

 [L]e 
fM

Lt
 
  

 = 0 

Equating the sum of the exponents of each primary dimension to zero: 
  For M: b + c + f = 0  [1] 
  For L: a – 3b – 3c + d + e – f = 0 [2] 
  For t: 2a + d + f = 0  [3] 
There are 6 unknowns and only 3 equations, therefore, the value of the 3 exponents can be chosen for 
each π 

For π1, Let a = 0, b = 0 and c = 1 
  From equation [1] f = – 1 
  From equation [3] d = 1 
  From equation [2] e = 1 

 ∴ π1 = U D ρf μ–1 = 
fUDρ

μ
 = ReD 

For π2, Let a = 1, b = 1 and f = 0 
  From equation [1] c = – 1 
  From equation [3] d = – 2 
  From equation [2] e = 1 

 ∴  π2 = g (ρs – ρf) U
–2 D ρf 

–1 = 
( )

2

s f

f

g D

U

ρ ρ
ρ

−
 = 

( ) 3

2 4

6
4 1
3 2 4

s f

f

x
g D

x
U D

ρ ρ

ρ

−

 
 

 

 π2 = 
( ) ( )

Weight of  sphere in the fluid 
4

Dynamic pressure cross sectional area of  sphere
3

×
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 π2 = 
( ) ( )Drag force on sphere / Cross sectional area  3

4 Dynamic pressure
 = 

3

4
CD (Drag Coefficient) 

For π3, Let a = 0, b = 1, and f = 0 
  From equation [1] c = – 1 

  From equation [3] d = 0 

  From equation [2] e = 0 

 ∴  π3 = (ρs – ρf) ρf
–1 = 

( )s f

f

ρ ρ
ρ
−

 

But this dimensionless group already appears in π2. (This redundancy could have been avoided had we 
chosen the weight of the sphere in the liquid in place of the two variables (ρs – ρf) and g.) Therefore, 
the experimental data for this problem could be correlated by 

 CD = f (ReD) 

PROBLEM 4.12 

Experiments have been performed on the temperature distribution in a homogeneous 
long cylinder (0.1 m diameter, thermal conductivity of 0.2 W/(m K) with uniform 
internal heat generation. By dimensional analysis, determine the relation between the 
steady-state temperature at the center of the cylinder Tc the diameter, the thermal 
conductivity, and the rate of heat generation. Take the temperature at the surface as you 
datum. What is the equation for the center temperature if the difference between center 
and surface temperature is 30°C when the heat generation is 3000 W/m3? 

GIVEN 

• A homogeneous long cylinder with uniform internal heat generation 
• Diameter (D) = 0.1 m 
• Thermal conductivity (k) = 0.2 W/(m K) 
• Difference between surface and center temperature (Tc – Ts) = 30°C 
• Heat generation rate ( )q  = 3000 W/m3 

FIND 

(a) Relation between center temperature (Tc), diameter (D), thermal conductivity (k), and rate of heat 
generation ( )q  

(b) Equation for the center temperature for the given data 

ASSUMPTIONS 

• Steady state 
• One dimensional conduction in the radial direction 

SKETCH 

q

D = 0.1 m
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SOLUTION 

(a) The temperature difference is a function of the variable given 
 Tc – Ts = f (D, k, q ) 

  having the following primary dimensions 

  Tc – Ts → [T] 
  D  → [L] 

  k  → 
3

ML

t T
 
  

 

  q   → 
3

M

Lt
 
  

 

Let the unknown function be represented by 
 Tc – Ts = A Da kb q c 

Where A is a dimensionless constant 

 ∴  [T] = [L]a 
3 3

b cML M

t T Lt

   
      

 

Summing the exponents of each primary dimension 

  For T: 1 = – b → b = – 1 
  For M: 0 = b + c → c = – b = 1 
  For L: 0 = a + b – c → a = c – b = 2 
  For t: 0 = – 3b + 3c 

 ∴  Tc – Ts = A D2 k–1 q  = A 
2D q

k


 

The given data can now be used to evaluate the unknown constant 

 A = 
( )

2
c sk T T

D q

−


 = 
( ) ( )
( ) ( )2 2

0.2 W/(m K) 30 C

0.1m 3000W/m

°
 = 0.2 

The equation for the center temperature is 

 Tc = Ts + 0.2
2D q

k


 

PROBLEM 4.13 

The convection equations relating the Nusselt, Reynolds, and Prandtl numbers can be 
rearranged to show that for gases, the heat-transfer coefficient hc depends on the 

absolute temperature T and the group /U x∞ . This formulation is of the form  

hc,x = CTn /U x∞ , where n and C are constants. Indicate clearly how such a relationship 

could be obtained for the laminar flow case from Nux = 0.332 Rex
0.5 Pr0.333 for the 

condition 0.5 < Pr < 5.0. State restrictions on method if necessary. 

GIVEN 

• For laminar flow: Nux = 0.332 Rex
 0.5 Pr0.333 for 0.5 < Pr < 5.0 

FIND 

• Rearrange the given equation to the form 

 hc,x = C T n 
U

x
∞  

(State restrictions) 
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ASSUMPTIONS 

• Gas behaves as an ideal gas 

SOLUTION 

From Table 4.3 

 Nux = ch x

k
  Rex = 

U x

v
∞   Pr = 

pc

k

μ
 

 ch x

k
 = 0.332 

1

2U ρ
μ

∞ × 
  

1

3pc

k

μ 
  

 

By the ideal gas law 

 ρ = 
P

RT
 

where  p = Pressure 
 R = Gas constant 
 T = Absolute temperature 

 ∴ hc = 0.332 

11 1 2 1
23 6 3 2

p
Up

c k T
R x

μ
− − ∞ 

    

 ∴ C = 0.332 

11 1 2
23 6 3

p
p

c k
R

μ
−  

    

C is constant if the following restrictions apply 

• Constant pressure 
• Variation of thermal properties with temperature is negligible 

 hc = 0.332 

11 1 2 1
23 6 3 2

p
Up

c k T
R x

μ
− − ∞ 

    

PROBLEM 4.14 

Experimental pressure-drop data obtained in a series of tests in which water was heated 
while flowing through an electrically heated tube of 1.3 cm ID, 1 m long, are tabulated 
below 

 Mass Fluid Bulk Tube Surface Pressure Drop with 
 Flow Rate m  Temp Tb Temp Ts Heat Transfer Δpht 
 (kg/s) (°C) (°C) (kPa) 
 1.37 32 52 67 
 0.98 45 94 33 
 0.82 36 104 23 
 1.39 37 120 58 
 0.97 42 140 31 

Isothermal pressure-drop data for the same tube are given in terms of the dimensionless 

friction factor f = (Δp/ρ 2u ) (2D/L)gc and Reynolds number based on the pipe diameter, 
ReD = u D/v = 4m/π Dμ below. 

 Red 1.71 × 105 1.05 × 105 1.9 × 105 2.41 × 105 
 f 0.0189 0.0205 0.0185 0.0178 
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By comparing the isothermal with the nonisothermal friction coefficients at similar bulk 
Reynolds numbers, derive a dimensionless equation for the non-isothermal friction 
coefficients in the form 

  f = constant × Red
n (μs /μb)

m 

where  μs = viscosity at surface temperature 

  μb = viscosity at bulk temperature 
  n and m = empirical constants. 

GIVEN 

• Water flowing through a tube 
• Isothermal and nonisothermal pressure drop data given above 

• The dimensionless friction factor (f) = (Δp/ρ 2u ) (2D/L)gc 
• Reynolds number (ReD) = 4 m /πD μ 
• Inside tube diameter (D) = 1.3 cm 
• Tube length (L) = 1 m 

FIND 

• Dimensionless equation of the form: f = constant × Red
n (μs/μb)

m 

SKETCH 

m

TbT3

ID = 1.3 cm
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water 
 Temperature (°C) Abs. Viscosity, μ × 106 (kg/ms) Density, ρ (kg/m3) 
 32 767.2 
 45 605.1 
 36 712.7 
 37 698.7 
 42 646.3 
 
 52 544.2 
 94 302.4 
 104 272.0 
 120 237.6 
 140 203.8 
 
 42  1091.4 
 69.5  1004.6 
 78.5  999.6 
 91  991.4 

SOLUTION 

The exponent n will be determined from the isothermal data by the least squares fit for log ReD vs. 
log f 
 x = log ReD y = log f 
 5.23 –1.724 
 5.02 –1.688 
 5.28 –1.733 
 5.38 –1.750 
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The least squares straight line fit for the data is 
 log f = – 0.823 – 0.172 log ReD 
  or 
 f = 0.149 ReD

 –0.1715 
The data and straight line fit are shown below 

Log f vs. Log Re

–1.75

–1.73

–1.71

–1.69

–1.68

L
o
g

f

5 5.1 5.2 5.3 5.4

Log Re

–1.70

–1.72

–1.74

 

Figure Problem 4.74 (a): Plot of log f with Respect to log Re 

Evaluating ReD (based on the bulk temperature), 0.149 Re–0.1715, f (based on the bulk temperature), and 
μs/μf for the non-isothermal case 

 ReD × 10–5 0.149 ReD
–0.1715 f μs /μb 

 1.73 0.0189 0.0187 0.709 
 1.55 0.0192 0.0182 0.500 
 1.11 0.0203 0.0175 0.381 
 1.91 0.0185 0.0160 0.340 
 1.45 0.0194 0.0173 0.315 

 Let  y = log 
0.17120.149 D

f

Re −
 
  

 and x = log s

b

μ
μ

 
  

 

 y x 
 –0.0046 –0.150 
 –0.0232 –0.302 
 –0.0666 –0.419 
 –0.0654 –0.469 
 –0.0520 –0.502 
The linear least square fit for this data is 

 y = 0.1649 × + 0.01976 
Therefore: f = 0.156 ReD

–0.1715 (μs/μb)
0.1649 

The data for x and y and the straight line fit are shown below 
x yvs

x

0

y

–0.01

–0.02

–0.03

–0.04

–0.05

–0.06

–0.07

–0.08
–0.55 –0.45 –0.35 –0.25 –0.15

 

Figure Problem 4.14 (b): Plot of Variables x and y 
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Comparing the correlation to the experimental data 
 f, experimental f, correlation % difference 

 0.0187 0.0186 –0.31 
 0.0182 0.0179 –1.6 
 0.0175 0.0181 3.4 
 0.0160 0.0162 1.2 

 0.0173 0.0168 –2.9 

 

PROBLEM 4.15 

Tabulated below are some experimental data obtained by passing n-butyl alcohol at a 
bulk temperature of 15°C over a heated flat plate (0.3 m long, 0.9 m wide, surface 
temperature of 60°C). Correlate the experimental data by appropriate dimensionless 
numbers and compare the line which best fits the data with equation 4.38. 

 Velocity (m/s) 0.089 0.305 0.488 1.14 
 Average heat transfer coefficient 121 218 282 425 

 ( )2W/(m C)°  

GIVEN 

• n-butyl alcohol flowing over a heated flat plate 
• Bulk temperature (Tb) = 15°C 
• Plate surface temperature (Tp) = 60°C 
• Plate length (L) = 0.3 m 
• Plate width (w) = 0.9 m 
• The experimental data given above 

FIND 

(a) Correlate the data by appropriate dimensionless numbers 
(b) Compare line which best fits the data with Equation 4.38 

ASSUMPTIONS 

• Steady state 
• Alcohol flows parallel to the length of the plate 
• Plate temperature is uniform 

 

SKETCH 

Tp = 60°C

Alcohol
= 15°CTb

L = 0.3 m  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 18: For n-butyl alcohol at the average of the bulk and surface temperatures 
(known as the film temperature): 37.5°C. 

  Absolute viscosity (μ) = 1.92 × 10–3 N s/m2 

  Thermal conductivity (k) = 0.166 W/(m K) 

  Density (ρ) = 796 kg/m3 

  Prandtl number (Pr) = 29.4 
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SOLUTION 

(a) The relevant variables and their primary dimensions are listed below 

 Variable Symbol Dimensions 

 Heat transfer coefficient ch  [M/t3 T] 

 Velocity U∞ [L/t] 
 Length of plate L [L] 
 Absolute viscosity μ [M/Lt] 
 Thermal conductivity k [ML/t3 T] 
 Density ρ [M/L3] 

Note: Specific heat should be included in this list, but we suspect that it will show up as a Prandtl 
number which is constant for the series of tests performed. Therefore, we can easily extract its 
contribution. There are 6 variables are 4 primary dimensions, therefore, they can be correlated with 
two dimensionless groups. These dimensionless groups can determined by the Buckingham π 
Theorem (Sections 4.7.2 and 4.7.3). 

 π = a
ch U∞

b Lc μd ke ρ f 
Equating the primary dimensions 

 0 = 
3

a bM L

tt T
   
      

[L]c 
3 3

d e fM ML M

Lt t T L
     
          

 

Equating the sums of the exponents of each primary dimension 
  For T: 0 = – a – e [1] 
  For M: 0 = a + d + e + f [2] 
  For t: 0 = – 3a – b – d – 3e [3] 
  For L: 0 = b + c – d + e – 3f [4] 
There are four equations and six unknowns. Therefore, the values of two of the exponents may be 
chosen for each dimensionless group. 

For π1, Let f = 1 e = 0 
  From equation [1]: a = 0 
  From equation [2]: d = – 1 
  From equation [3]: b = 1 
  From equation [4]: c = 1 

 ∴  π 1 = U∞ L μ–1 ρ = 
u Lρ
μ
∞  = ReL 

For π2, Let a = 1 d = 0 
  From equation [1]: e = – 1 
  From equation [2]: f = 0 
  From equation [3]: b = 0 
  From equation [4]: c = 1 

 ∴  π 2 = ch L k–1 = ch L

k
 = Nu 

The range of Prandtl number is insufficient to get a functional relationship, therefore the data can be 
correlated by the Nusselt number and the Reynolds number: 

 Nu = f (Re) 
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Calculating ReL and Nu for each data point 

 U∞(m/s) ch ( )2W/(m K)  ReL × 10–4 Nu  

 0.089 121 1.11 218.7 
 0.305 218 3.79 394.0 
 0.488 282 6.07 509.6 
 1.14 425 14.2 768.1 

On a log-log plot, these points fall roughly on a straight line 
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Problem 4.15

Reynolds Number  

Figure Problem 4.15: Plot of Nu vs Re on log-log scale  

The linear regression gives the following line 

 log Nu  = 0.494 log ReL + 0.339 
  or 

 Nu  = 2.185 ReL
 0.494 

(b) For this problem, Pr = 29.4. Including this in the correlation 

 Nu  = 0.708 ReL
0.494 Pr0.33 

Equation 4.38 for laminar flow over a flat plate is 

 Nu  = 0.664 ReL
0.5 Pr0.33 

which is about 7% less than our experimental data. 

PROBLEM 4.16 

Tabulated below are reduced test data from measurements made to determine the heat-
transfer coefficient inside tubes at Reynolds numbers only slightly above transition and 
at relatively high Prandtl numbers (as associated with oils). Tests were made in a double-
tube exchanger with a counterflow of water to provide the cooling. The pipe used to 
carry the oils was 1.5 cm OD, 18 BWG, 3 m long. Correlate the data in terms of 
appropriate dimensionless parameters. 

Test no. Fluid ch  ρu cp kf μb×103 μf ×103 

   (W/m2 K) (kg/m2 S)  (kJ/kg K) (W/m K)  (kg/ms)  (kg/ms) 

  
 11 10C oil 490 1450 1.971 0.1349 5.63 8.01 
 19 10C oil 725 2030 1.976 0.1349 5.49 7.85 
 21 10C oil 1500 3320 2.034 0.1342 3.96 5.75 
 23 10C oil 810 1445 2.072 0.1337 3.06 4.09 
 24 10C oil 940 3985 1.896 0.1358 9.82 11.22 
 25 10C oil 770 1400 2.076 0.1337 3.0 4.81 

  36 1488 pyranol 800 2425 1.088 0.1273 4.97 6.95 
  39 1488 pyranol 760 3840 1.088 0.1280 9.5 12.00 
  45 1488 pyranol 1025 2680 1.088 0.1271 4.25 5.3 
  48 1488 pyranol 715 5180 1.088 0.1285 16.52 22.00 

 49 1488 pyranol 600 4370 1.088 0.1285 16.32 18.7 
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where 
hc = mean surface heat-transfer coefficient based on the mean temperature difference, 
W/(m2 K) 
ρu = mass velocity, kg/(m2 s) 
cp = specific heat, kJ/(kg K) 
kf = thermal conductivity, W/(m K) (based on film temperature) 
μb = viscosity, based on average bulk (mixed mean) temperature, kg/ms 

μf = viscosity, based on average film temperature, kg/ms 
Hint: Start by correlating Nu and Red irrespective of the Prandtl numbers, since the 
influence of the Prandtl number on the Nusselt number is expected to be relatively small. 
By plotting Nu vs. Re on log-log paper, one can guess the nature of the correlation 
equation, Nu = f1 (Re). A plot of Nu/f1 (Re) vs. Pr will then reveal the dependence upon 
Pr. For the final equation, the influence of the viscosity variation should also be 
considered. 

GIVEN 

• Oil in a counterflow heat exchanger 
• Pipe specifications: 1.5 cm OD, 18 BWG 
• Pipe length (L) = 3 m 
• The experimental data above 

FIND 

• Correlate the data in terms of appropriate dimensionless parameters 

ASSUMPTIONS 

• The data represents the steady state for each case 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 42: for 1.5 cm OD, 18 BWG tubing, the inside diameter D = 1.34 cm 

SOLUTION 

The appropriate dimensionless parameters are the average Nusselt number (Nu = hc D/kf). The 
Reynolds number (ReD = ρuD/μf) and the Prandtl number (Pr = Cp μf/k). The values of the 
dimensionless parameters for each test are listed below. 

 Test no. Nu ReD × 10–3 Pr log Nu log Re 
 11 49.0 2.41 117.9 1.69 3.38 
 19 72.3 3.46 115.7 1.86 3.54 
 21 149.9 7.72 87.7 2.18 3.89 
 23 81.7 4.73 63.7 1.91 3.67 
 24 93.3 4.75 157.7 1.97 3.68 
 25 77.4 3.89 75.1 1.89 3.59 
 36 84.0 4.66 59.7 1.92 3.67 
 39 79.4 4.27 102.6 1.90 3.63 
 45 108.4 6.76 45.6 2.03 3.83 
 48 74.7 3.16 187.2 1.87 3.50 
 49 62.5 3.13 159.9 1.80 3.49 

Plotting log Nu vs. log ReD reveals a roughly linear relationship. 
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Fitting a least squares regression line to the data 

 log Nu = – 1.0314 + 0.812 log Re 

  or 

 Nu = 0.0931 Re0.812 

The variation of Nu with Prf can be determined by plotting log [Nu/(0.0931 Re0.812)] vs. log Prf. 

 log [Nu/(0.0931 Re0.812)] log Prf 
 –0.0252 2.07 
 0.0165 2.06 
 0.0501 1.94 
 –0.0405 1.80 
 0.0156 2.20 
 0.0047 1.88 
 –0.0240 1.78 
 –0.0171 2.01 
 –0.0438 1.66 
 0.0624 2.27 
 –0.0108 2.20 

Log Prf
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Although there is considerable scatter in this plot, it does follow a trend of increasing log Prf with 
increasing log [Nu/(0.0931 Re0.812)] and will be fit with a straight least squares regression line.  
A least squares fit yields 

  log [Nu/(0.0931 Re0.812)] = – 0.2152 + 0.1076 log Prf 

  or 

 Nu = 0.0567 Re0.812 Prf
0.108 

Plotting log [Nu/0.0567 Re0.812 Prf
0.108] vs. log (μf /μb) 

 log [Nu/0.0567 Re0.812 Prf
0.108] log (μf /μb) 

 –0.0335 0.153 
 0.0900 0.157 
 0.0557 0.164 
 –0.0200 0.127 
 –0.0064 0.058 
 0.0175 0.207 
   0.00041 0.145 
 –0.0190 0.104 
 –0.0076 0.098 
 0.0323 0.124 
 0.0334 0.061 
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0.00

Log ( , , ) vs Log (viscosity ratio)f Nu Re Pr
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Fitting these points with a straight least squares regression line 

  log 
0.812 0.1080.0567 f

Nu

Re Pr
 
 
 

 = – 0.0385 + 0.2993 log f

b

μ
μ

 
  

 

  or 

 Nu = 0.0519 Re0.812 Prf
0.108 

0.2993
f

b

μ
μ

 
  

 

 Test No. Experimental Nu 0.0432 Re0.828 Prf
0.118 

0.3128
f

b

μ
μ

 
  

 

 11 49.0 53.8 
 19 72.2 72.1 
 21 149.8 134.8 
 23 81.7 85.3 
 24 93.2 90.0 
 25 77.4 78.3 
 36 83.9 84.8 
 39 79.4 81.4 
 45 108.3 107.8 
 48 74.7 69.0 
 49 62.5 64.4 

PROBLEM 4.17 

A turbine blade with a characteristic length of 1 m is cooled in an atmospheric pressure 
wind tunnel by air at 40°C and a velocity of 100 m/s. At a surface temperature of 500 K, 
the cooling rate is found to be 10,000 watts. Apply these results to estimate the cooling 
rate from another turbine blade of similar shape, but with a characteristic length of 0.5 
m operating with a surface temperature of 600 K in air at 40°C and a velocity of 200 m/s. 

GIVEN 

• A turbine blade in a wind tunnel 
• Length of blade (L1) = 1 m 
• Air temperature (Tai) = 40°C = 313 K 
• Air velocity (U∞1) = 100 m/s 
• Air pressure = 1 atm 
• Blade surface temperature (Ts) = 500 K 
• Cooling rate (q) = 10,000 W 
FIND 

• Cooling rate from a similar blade with a characteristic length (L2) of 0.5 m and a surface 
temperature (Ts2) of 600 K and a velocity (U∞ 2) of 200 m/s 
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ASSUMPTIONS 

• Steady state for both cases 
• Uniform blade surface temperature 
• Air temperature is constant and the same in both cases 

SKETCH 

L = 1 m

Ts = 500 K

Ta1 = 313 K

U•1 = 100m/s

Air

Case 1 Case 2

Ta2 = 313 K

U•2 = 200m/s

Air
Ts2 = 600 K

L = 1/2 m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the film temperatures 
  Case 1 Case 2 
  T = 406.5 K T = 456.5 K 

 Kinematic viscosity, v × 106 (m2/s) 27.6 33.2 

 Thermal conductivity, k ( )W/(m K)  0.0328 0.0360 

SOLUTION 

Important variables 

  Dimensions 

 Cooling rate, q [M L2/t3] 
 Length, L [L] 
 Air–blade Temperatures (Ts – Tb) [T] 
 Air Velocity, U∞ [L/t] 
 Kinematic Viscosity, v [L2/t] 
 Thermal Conductivity, k [M L/t3 T] 

The (6 – 4 = 2) dimensionless groups can be determined by the Buckingham p theory 

 π = qa Lb (Ts – Tb)
c U∞

d ve kf 

Equating the primary dimensions 

 0 = 
2

3

a
ML

t

 
 
 

[L]b [T]c 
2

3

ed fL L ML

t t t T

    
        

 

For M: a + f = 0 
For T: c – f = 0 
For t: 3a + d + e + 3f = 0 
For L: 2a + b + d + 2e + f = 0 

π1: Let a = 0 and d = 1 → f = 0; c = 0; e = – 1; b = 1 

 π1 = 
U L

v
∞  = ReL 

π2: Let a = 1 and d = 0 → f = – 1; c = – 1; e = 0; b = – 1 

 π2 = ( )s a

q

L T T k−
 

 ∴ ( )s a

q

L T T k−
 = f(ReL) 
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Assume that the function has the form 

 ( )s a

q

L T T k−
 = ReL

m 

The data of the larger blade can be used to evaluate m 

 ReL = 
U L

v
∞  = 

( )
–6 2

100m/s 1.0m

27.6 10 m /s×
 = 3.62 × 106 

 m = 
( )log

log
s a

L

q
L T T k

Re

 
 −   = 

( ) ( )
( )6

10,000W
log

1m 500 K 313K 0.0328W/(m K)

log 3.62 10

 
 − 

×
 = 0.490 

 ∴ q = L k (Ts – Ta) ReL
0.49 

Applying this to the smaller blade 

 ReL = 
U L

v
∞  = 

( )
–6 2

200m/s 0.5m

33.2 10 m /s×
 = 3.0 × 106 

 q = 0.5 m ( )0.0360W/(m K)  (600 K – 313 K) (3.0 × 106)0.49 = 7723 W 

PROBLEM 4.18 

The drag on an airplane wing in flight is known to be a function of the following 
quantities 

  ρ  -  density of air 
  μ  -  viscosity of air 
  U∞  -  free-stream velocity 
  S  -  characteristic dimension of the wing 
  τs  -  shear stress on the surface of the wing 
Show that the dimensionless drag 

  
2

s

U∞

τ
ρ

 

can be expressed as a function of the Reynolds number 

  
U S∞ρ
μ

 

GIVEN 

• An airplane wing in flight 
• Drag on wing (D) = f (ρ, μ, U∞, S, τs) 

FIND 

 Show that 
2

s

U

τ
ρ ∞

 = f 
U Sρ
μ

∞ 
  

 

SOLUTION 

The relevant variables and their dimensions are shown below 

 Variable Symbol Dimensions 
 Density ρ [M/L3] 
 Viscosity μ [M/Lt] 
 Velocity U∞ [L/t] 
 Characteristic Dimensions S [L] 
 Shear Stress τs [M/Lt2] 
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There are 5 variables and 3 primary dimensions. Therefore, the variables can be correlated with 2 
dimensionless groups. 

Using the Buckingham π  theory (Sections 4.7.2 and 4.7.3) 

 π = ρa μb U∞
c Sd τs

e 

In terms of the primary dimensions 

 0 = 
3

a b cM M L

Lt tL

     
         

[L]d 
2

eM

Lt

 
  

 

Equating the sum of the exponents of each primary dimension to zero 
  For M: 0 = a + b + e  [1] 

  For t: 0 = – b – c – 2e  [2] 

  For L: 0 = – 3a – b + c + d – e [3] 

Since there are 5 unknowns and only 3 equations, the value two exponents may be chosen for each 
dimensionless group 

  For π1: Let e = 1 and a = –1 

  From equation [1]: b = 0 

  From equation [2]: c = –2 

  From equation [3]: d = 0 

 π1 = ρ–1 U∞
–2 τs = 

2
s

U

τ
ρ ∞

 

  For π2: Let a = 1 and b = – 1 

  From equation [1]: e = 0 

  From equation [2]: c = 1 

  From equation [3]: d = 1 

 π2 = ρ μ–1 U∞ S = 
U Sρ
μ

∞  

As shown in equation (4.24) 

 π1 = f (π2) 

  or 

 
2

s

U

τ
ρ ∞

 = f 
U Sρ
μ

∞ 
  

 

PROBLEM 4.19 

Suppose that the graph below shows measured values of hc for air in forced convection 
over a cylinder of diameter D plotted on a logarithmic graph of Nud as a function of 
RedPr. 

101 102 103

101

102

1

N
u

p

( )Re PsD  
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Write an appropriate dimensionless correlation for the average Nusselt number for these 
data and state any limitations to your equation. 

GIVEN 

• Forced convection of air over a cylinder 
• Experimental data given above 

FIND 

• An appropriate dimensionless correlation for the average Nusselt number 

SOLUTION 

The data lies along an approximately straight line on the log-log graph. Therefore, a straight line fit 
will be used. Choosing two points on the graph 

 [NuD = 1, (ReD) (Pr) = 1] and [NuD = 100, (ReD) (Pr) = 1000] 

A straight line on the log-log plot is represented by 

 log (NuD) = a log (ReD Pr) + b 

Substituting the two points into the equation and solving for a and b 

 log (1) = a log (1) + b → b = 0 

 log (100) = a log (1000) + b → a = 0.667 

 Therefore 

  log (NuD) = 0.667 log (ReD Pr) 

 or   

   NuD = (ReD Pr)0.667 

This is based on data in the range 1 < Red Pr < 103 and is therefore valid only in this range. 

PROBLEM 4.20 

Engine oil at 100°C flows over and parallel to a flat surface at a velocity of 3 m/s. 
Calculate the thickness of the hydrodynamic boundary layer at a distance 0.3 m from the 
leading edge of the surface. 

GIVEN 

• Engine oil flows over a flat surface 
• Engine oil temperature (Tb) = 100°C 
• Engine oil velocity (U∞) = 3 m/s 

FIND 

• The hydrodynamic boundary layer thickness (δ) at a distance 0.3 m from the leading edge 

ASSUMPTIONS 

• Steady state 

SKETCH 

x

0. 3 m

d

Oil
= 3 m/s

= 100°C
U
T

•
b
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 16, for engine oil at 100°C 

  Kinematic viscosity (ν) = 20.3 × 10–6 m2/s 

SOLUTION 

The local Reynolds 0.3 m from the leading edge based on the bulk fluid temperature is 

 Rex = 
U x

ν
∞  = 

( )
–6 2

3.0m/s 0.3m

20.3 10 m /s×
 = 4.43 × 104 

Since Rex < 5 × 105, the boundary layer is laminar. The boundary layer thickness for laminar flow over 
a flat plate is given by Equation (4.28) 

 δ = 
5

x

x

Re
 = 

( )
4

5 0.3m

4.43 10×
 = 7.1 × 10–3 m = 7.1 mm 

PROBLEM 4.21 

Assuming a linear velocity distribution and a linear temperature distribution in the 
boundary layer over a flat plate, derive a relation between the thermal and hydrodynamic 
boundary-layer thicknesses and the Prandtl number. 

GIVEN 

• Boundary layer over a flat plate 

FIND 

• A relation between the thermal and hydrodynamic boundary-layer thicknesses and the Prandtl 
number 

ASSUMPTIONS 

• Linear velocity and temperature distributions in the boundary layers 

SKETCH 

Ts

T T= su = 0

y

T•

U•
u = U0.99 • T = T0.99 •

 

SOLUTION 

Let   Absolute viscosity of the fluid = μ 

  Plate surface temperature = Ts 

  Bulk fluid temperature = T∞ 

  Bulk fluid viscosity = U∞ 

  Density of the fluid = ρ 

  Thermal diffusivity of the fluid = α 

The linear velocity profile will be used to solve the integral momentum equation first. The integral 
energy equation will then be solved and combined with the momentum solution. 
Linear velocity profile: u = uo + ay 

Subject to u = 0 at y = 0 → uo = 0 

   u = 0.99 U∞ ≈ U∞ at y = δ → a = U∞ /δ 

therefore  u = (U∞/δ)y 
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Substituting this into the integral momentum equation for a laminar boundary layer (Equation 4.42) 

  
d

dx 0

b U U
y U yρ

δ δ
∞ ∞

∞
   −       dy = τw = μ 

0y

du

dy =
 

(The wall shear stress (τw) is defined by Equation (4.2)) 

In this case, du/dy = constant = U∞ /δ 
Integrating 

  
d

dx
2 3

02 3

bU U U
y y

ρ
δ δ
∞ ∞ ∞   −    

 = μ 
U

δ
∞  

  
d

dx

2

6

U ρδ∞ 
 
 

 = μ 
U

δ
∞  

 δ dδ = 
6

U

μ
ρ ∞

dx 

Integrating 

 
1

2
δ 2 = 

6

U

μ
ρ ∞

x + c 

At x = 0, δ = 0 → c = 0 

 δ = 

1

212 x

U

μ
ρ ∞

 
  

 = 3.46 × 

1

2

U x

μ
ρ ∞

 
  

 = 3.46 × 
1

2
xRe

−
 

Linear temperature profile: T = To + by 

Subject to T = Ts at y = 0 → To = Ts 

 T = 0.99 T∞ ≈ T∞ at y = δt → b = 
( )s

t

T T

δ
∞ −

  

 ∴  T = Ts + s

t

T T
y

δ
∞ −

 

Substituting this and the expression for U into the integral energy equation of the laminar boundary 
layer for low speed flow (Equation 4.44) 

  
d

dx 0

t s
s

t

T T U
T T y y

δ

δ δ
∞ ∞

∞
−     − +        

 dy – a
0

s
s

t y

T Td
T y

dy δ
∞

=

−   
+    

 = 0 

  
d

dx
( ) 2

0

1t

s
t

U
T T y y

δ

δ δ
∞

∞
 − − 
 

 dy – α s

t

T T

δ
∞ −

 = 0 

Integrating 

  
d

dx
( ) 2 3

0

1 1

2 3

t

s
t

U
T T y y

δ

δ δ
∞

∞
   − −    

 = α s

t

T T

δ
∞ −

 

  
d

dx

2

6
tU

δ
δ∞

 
 
 

 = 
t

α
δ

 

 Let  ζ = tδ
δ
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 Then   
d

dx

2

6
U

ζ δ
∞

 
 
 

 = 
α
δζ

 

 or  δ d

dx

δ
 = 

3

6

U

α
ζ∞

 (ζ is independent of x) 

Substituting Equation [1] into this expression 

 
6

U

μ
ρ ∞

 = 
3

6

U

α
ζ∞

  ζ 3 = 
3

tδ
δ

 
  

 = 
αρ
μ

 = 
1

Pr
 

 
t

δ
δ

 = Pr0.33 

PROBLEM 4.22 

Air at 20°C flows at 1 m/s between two parallel flat plates spaced 5 cm apart. Estimate 
the distance from the entrance where the hydrodynamic boundary layers meet. 

GIVEN 

• Air flows between two parallel flat plates 
• Air speed (U∞) = 1 m/s 
• Distance between the plates (D) = 5 cm = 0.05 m 
• Air temperature = 20°C 

FIND 

• The distance from the entrance (X1) where the boundary layers meet 

ASSUMPTIONS 

• Steady state 
• Laminar flow 

SKETCH 

D = 0.05 m

x

Xc

Air
= 20°C
= 1 m/s

T
U

•
•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 20°C 

  Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

If the boundary layer is laminar, the hydrodynamic boundary layer thickness is given by Equation 
(4.28) 

 δ = 
5

x

x

Re
 = 5 

1

2x

U

ν
∞
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The boundary layers will meet when δ = D/2 

 
2

D
 = 5 

1

2cx

U

ν
∞

 
  

 

Solving for distance xc 

 xc = 
2

100

D U

ν
∞  = 

( ) ( )
( )

2

–6 2

0.05m 1m/s

100 15.7 10 m /s×
 = 1.59 m 

The Reynolds number at xc = 1.59 m is 

 
cxRe  = cU x

ν
∞  = 

( )
–6 2

1m/s 1.59 m

15.7 10 m /s×
 = 1.0 × 105 < 5 × 105 

COMMENTS 

Since Re < 5 × 105, the assumption of a laminar boundary layer is valid. If the Reynolds number were 
in the turbulent regime, the problem would have to be reworked. 

PROBLEM 4.23 

A fluid at temperature T∞ is flowing at a velocity U∞ over a flat plate which is at the same 
temperature as the fluid for a distance x0 from the leading edge, but at a higher 
temperature Ts beyond this point. Show by means of the integral boundary-layer 
equations that ζ, the ratio of the thermal boundary-layer thickness to the hydrodynamic 
boundary-layer thickness, over the heated portion of the plate is approximately 

  ζ ≈
 

     
 

1
3 31
43 1 ox

Pr
x

−
−  

if the flow is laminar. 

GIVEN 

• Laminar flow over a flat plate 
• Fluid temperature = T∞ 
• Fluid velocity = U∞ 
• Plate temperature = T∞ for x < Xo 
• Plate temperature = Ts for x > Xo 

FIND 

• Show that 

  ζ ≈

1
3 31
43 1 ox

Pr
x

−  
  −   

 
 

over the heated portion of the plate 

ASSUMPTIONS 

• Steady state 
• The temperature distribution is a third-order polynomial: T – Ts = ay + cy3 
• Property value changes due to the temperature profile do not affect the hydrodynamic boundary 

layer. 
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SKETCH 

x

d dt a
Ts

Heated
Xo

Unheated

T•

U•

 

SOLUTION 

The velocity and temperature distributions given in Equations (4.46) and (4.53) are valid for this 
problem 

 
u

U∞
 = 

3

2

y

δ
– 

31

2

y

δ
 
    for x > 0 

 s

s

T T

T T∞

−
−

 = 
3

2 t

y

δ
– 

3
1

2 t

y

δ
 
  

 for x > xo 

The integral energy equation is given by Equation (4.44) 

  
d

dx
( )

0

t
T T u

δ
∞ − dy – 

0y

T

y
α

=

∂ 
  ∂

 = 0 

As shown in Section 4.9.1, for the above velocity and temperature distributions 

  ( )
0

t
T T u

δ
∞ − dy = (T∞ – Ts) U∞ δ 2 43 3

20 280
ζ ζ −    

 where ζ = tδ
δ

 

Also 

 
0y

T

y =

∂ 
  ∂

 = (T∞ – Ts) 
2

3
0

3 1 3 1

2 2t t y

y
δ δ =

 
− 

 
 = 

3 1

2 tδ
(T∞ – Ts) = 

3 1

2 ζδ
(T∞ – Ts) 

Substituting these expressions into the energy equation 

  (T∞ – Ts) U∞ 
d

dx
2 43 3

20 280
δ ζ ζ   −    

 = 
3

2

α
ζδ

(T∞ – Ts) 

The hydrodynamic boundary layer begins at X = 0, but the thermal boundary layer does not begin until 
X = Xo. It will be assumed, therefore, that δt < δ → ζ < 1, therefore, the term 3/280 ζ 4 will be 
neglected, leaving 

  
3

20
U∞ 

d

dx
(δ ζ 2) = 

3

2

α
ζδ

 

  
1

10
U∞ ζ δ 22

d d

dx dx

ζ δδζ ζ +    = α 

  
1

10
U∞ 2 2 32

d d

dx dx

ζ δδ ζ δζ +    = α 
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As shown in Equation (4.50) 

 δ = 

1

2280

13

U x

ν

−
∞ 

   x 

 ∴  
d

dx

δ
 = 

1

21 280

2 13

U x

ν

−
∞ 

    

Substituting these into the energy equation 

  
1

10
U∞ 2 2 3560 140

13 13

d
x x

U x dx U x

ζν νζ ζ
∞ ∞

     +        
= α 

  ζ 3 + 4x ζ 2 d

dx

ζ
 = 

13

14

α
ν

 = 
13

14Pr
≈ 

1

Pr
 

 Let  λ = ζ 3 ∴  
d

dx

λ
 = 3ζ 2 d

dx

ζ
 

  λ + 
4

3

d

dx

λ×  = 
1

Pr
 

The solution to this differential equation is the sum of the homogeneous solution and a particular 
solution. A particular solution is λ = 1/Pr. The homogeneous solution can be found by assuming  
λ = xm 

  xm + 
4

3
x (m xm – 1) = 0 

  
4

1
3

m +   xm = 0 

  m = 
3

4
−  

Therefore, the solution to the differential equation is 

 λ = 
1

Pr
+ 

3

4Cx
−

 

The constant C can be evaluated by the condition that at x = xo, δt = 0 → ζ = 0 → λ = 0 

 0 = 
1

Pr
+ 

3

4Cx
−

  C = 
3

4
1

ox
Pr

−  

 λ = 

3

41
1 ox

Pr x

 
  −    

 

 

 ζ = 
1

3λ  = 

1
3 31
43 1 ox

Pr
x

−  
  −    

 

 

PROBLEM 4.24 

Air 1000°C flows at 2 m/s flows between two parallel flat plates spaced 1 cm apart. 
Estimate the distance from the entrance where the boundary layers meet. 
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GIVEN 

• Air flows between two parallel flat plates 
• Air velocity (U∞) = 2 m/s 
• Plate spacing (S) = 5 cm = 0.05 m 

FIND 

• The distance from the entrance (xc) where the boundary layers meet 

ASSUMPTIONS 

• Steady flow 
• Air is dry and at a temperature of 1000°C 

SKETCH 

x

xc

0.01 mAir
= 20 m/sU•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 1000°C 

The kinematic viscosity (ν) = 181 × 10–6 m2/s 

SOLUTION 

The boundary layers meet when 

 
cxδ  = 

1

2
S = 0.005 m 

Assuming the flow is laminar, the boundary layer thickness is given by Equation (4.28) 

 δx = 
5

x

x

Re
 = 5x 

0.5

U x

ν
∞

 
  

  x = 
2

25
x Uδ

ν
∞  

 xc = 
( ) ( )

( )
2

–6 2

0.005m 2 m/s

25 181 10 m /s×
 = 0.011 m 

Checking the laminar flow assumption 

Rexc < 5 × 105, therefore, the flow is laminar. The boundary layers meet at x = 0.011 m. 

PROBLEM 4.25 

Experimental measurements of the temperature distribution in flow of atmospheric 
pressure air over the wing of an airplane indicate that the temperature distribution near 
the surface can be approximated by a linear equation 

 (T – Ts)  = a y (T∞ – Ts) 

where  a = a constant = 2 m–1 

  Ts = surface temperature, K 

  T∞ = free stream temperature, K 

   y = perpendicular distance from surface (mm) 
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(a)  Estimate the convective heat transfer coefficient if 

  Ts = 50°C and T∞ = – 50°C. 

(b)  Calculate the heat flux in W/m2 

GIVEN 

• Air flow over an airplane wing 
• Temperature distribution is given by the expression above 
• Surface temperature (Ts) = 50°C 
• Ambient temperature (T∞) = – 50°C 

FIND 

(a) The convective heat transfer coefficient ( )ch  

(b) The heat flux (q/A) in W/m2 

ASSUMPTIONS 

• Steady state conditions 
• Uniform surface temperature 

SKETCH 

Ts = 50° C

Air
T• = – 50°C

Wing Surface  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for air at 0°C, the thermal conductivity (k) = 0.0237 W/(m K) 

SOLUTION 

(a) The heat transfer coefficient is given by Equation (4.1) 

 ch  = 
0

f

s y

k T

T T y∞ =

− ∂
− ∂

 

where kf is the thermal conductivity of the fluid. Evaluate at the average of the bulk fluid temperature 
and the surface temperature. (This average is called the film temperature). 
For this problem 

 
2

sT T∞+
 = 

50 C 50 C

2

° − °
 = 0°C; kf = 0.0237 W/(m K) 

For the temperature distribution, we find 

 
0y

T

y =

∂
∂

 = a (T∞ – Ts) 

 ∴  ch  = 
f

s

k

T T∞

−
−

 a (T∞ – Ts) = a kf = 2(1/m) ( )0.0237 W/(m K)  = 0.0474 W/(m2 K) 

(b) The rate of heat transfer is given by 

 q = ch A (Ts – T∞) 

 
q

A
 = ch (Ts – T∞) = [ ]20.0474 W/(m K)  (50°C + 50°C) = 4.74 W/m2 
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PROBLEM 4.26 

For flow over a slightly curved isothermal surface, the temperature distribution inside 
the boundary layer δt may be approximated by the polynomial 

T(y) = a + by + cy2 + dy3 (y < δt) where y is the distance normal to the surface. 

(a) By applying appropriate boundary conditions, evaluate the constants a, b, c, and 
d. 

(b) Then obtain a dimensionless relation for the temperature distribution in the 
boundary layer. 

GIVEN 

• Flow over a slightly curved isothermal surface 
• Polynomial temperature distribution: T(y) = a + by + cy2 + dy3 

FIND 

(a) The values for a, b, c, and d 
(b) A dimensionless relation for the temperature distribution in the boundary layer 

SKETCH 

ydt

Fluid

Ts

 

SOLUTION 

Let:  Bulk fluid temperature = T∞ 
 Temperature of the surface = Ts 
(a) The boundary conditions (BC) are 

 1. T = Ts at y = 0 

 2. T = 0.99 T∞ ≈ T∞ at y = δt 

 3. 
dT

dy
 = 0 at y = δt (zero heat flux) 

 4. 
2

2

d T

dy
 = 0 at y = 0 (see Section 4.9.1) 

From B.C. 1: a = Ts 

From B.C. 2:  T∞ = a + bδt + cδt
2 + dδt

3 

From B.C. 3: 0 = b + 2cδt + 3dδt
2 

From B.C. 4: 0 = c 
Solving this set of 4 equations with 4 unknowns yields 

 a = Ts 

 b = 
( )3

2
s

t

T T

δ
∞ −

 

 c = 0 

 d = 
32

s

t

T T

δ
∞−
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(b) Substituting the constants into the temperature distribution 

 T = Ts + 
3

2
s

t

T T
y

δ
∞ −

 + 3
32

s

t

T T
y

δ
∞−

 

 s

s

T T

T T∞

−
−

 = 
3

2 t

y

δ
 
  

 – 
3

1

2 t

y

δ
 
  

 

 Let  θ = dimensionless temperature = s

s

T T

T T∞

−
−

 

 ζ = dimensionless distance = 
t

y

δ
 

Then 

 θ = 
3

2
 ζ – 

1

2
 ζ 3 

PROBLEM 4.27 

The integral method can also be applied to turbulent flow conditions if experimental data 
for the wall shear stress are available. In one of the earliest attempts to analyze turbulent 
flow over a flat plate, Ludwig Prandtl proposed in 1921 the following relations for the 
dimensionless velocity and temperature distributions 

  
∞

u

U
 = ( )

1

7y

δ
 

  
)

)

(

(
∞

∞s

T – T

T – T
 = 1 –  

  

1
7

t

y

δ
 (Ts > T > T∞) 

From experimental data, an empirical relation relating the shear stress at the wall with 
boundary layer thickness is 

 τs =
ρ 2

0.25

0.023 U

Reδ

∞  where Reδ = ∞U

v

δ
 

Following the approach outlined in Section 4.9.1 for laminar conditions, substitute the 
above relations in the boundary layer momentum and energy integral equations and 
derive equations for: (a) The boundary layer thickness 

  (b) The local friction coefficient, and 

  (c) The local Nusselt number. 

Assume δ = δt and discuss the limitations of your results. 

GIVEN 

• Turbulent flow over a flat plate 
• Velocity and temperature distributions as given above 
• Shear stress at the wall as given above 

FIND 

(a) The boundary layer thickness (δ ) 
(b) The local friction coefficient (Cf) 
(c) The local Nusselt number (Nux) 
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ASSUMPTIONS 

• Steady state conditions 
• The hydrodynamic and thermal boundary layer thicknesses are equal 

SKETCH 

Ts
y

d

x

Fluid
T
U

•
•

 

SOLUTION 

(a) Substituting the relation for the velocity distribution and shear stress at the wall into the integral 
momentum equation (equation (4.42)) 

  
d

dx

1 1
7 7

0

t y y
U U U

δ
ρ

δ δ∞ ∞ ∞

 
    −       

 
  dy = τw = 0.023 

2

1

4

U

Reδ

ρ ∞  

Integrating 

  
d

dx

8 92
7 7

1 1

7 7

7 7

8
9

Uρ δ δ
δ δ

∞
   
  −  

   

 = + 0.023 ρ U∞
2 

1

4Uρ δ
μ

−
∞ 

  
 

  
d

dx

7 7

8 9
δ δ −    = 0.023 

1
1

4
4

Uρ
δ

μ

− −∞ 
  

 

  
1

4δ dδ = 0.023 

1

472

7

Uρ
μ

−
∞  

      
dx 

Integrating 

  
5

44

5
δ  = 0.023 

1

472

7

Uρ
μ

−
∞  

      
 x + C 

at x = 0, δ = o → C = 0 

 δ = 
( )

4 4
5 5

1

5

5 72
0.023

4 7
x

Uρ
μ

∞

   
   

 
  

 

 
x

δ
 = 0.377 

1

5
xRe

−
 

(b) Substituting the shear stress at the wall and the expression for δ into Equation (4.51) 

  Cf x = 
2

2 s

U

τ
ρ ∞

 = 

1

42

2

2 0.023
U

U

U

δρ
ν

ρ

−
∞

∞

∞

 
     

   = 0.046 

1

4U

ν

−
∞ 

  

1

4

1

5

0.377 x

U x

ν

−

∞

 
 
 
 
  
     

 

 Cf x = 0.059 
3

10Re
−
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(c) Substituting the velocity and temperature distributions into the integral energy equation, equation 
(4.44): Note that 

  
0y

T

y =

∂ 
  ∂

 = cq

kA−
 = – ch

k
(Ts – T∞) and δ = δt 

  ( )
1 1
7 7

0
1

t

s
d y y

T T U
dx

δ

δ δ∞ ∞

 
    − −        

 
 dy – α 

0y

T

y =

∂ 
  ∂

 = 0 

  (Ts – T∞) U∞ 

1 2
7 7

0

d y y

dx

δ

δ δ

 
    −        

 dy = – α ch

k
(Ts – T∞) = ch

cρ
(Ts – T∞) 

  U∞ 
d

dx

7

72
δ 

    = ch

cρ
 

From part (a) 

 δ = 0.377 

1

5U x

ν

−
∞ 

  
x = 0.377 

1

5U

ν

−
∞ 

  

4

5x  

 ∴  
d

dx

δ
 = 

1

54

5

U

ν

−
∞ 

  

1

5x
−

 = 0.3016 
1

5
xRe

−
 

 ∴  ch

cρ
 = 0.0293 U∞ 

1

5
xRe

−
 

 ch x

k
  = Nu = 0.0293 

U x

k
∞

1

5
xRe

−
 ρ c 

 Nu = 0.0293 
U xρ

μ
∞

1

5
xRe

−
 Pr 

  Nu ≈ 0.0293 
4

5
xRe  Pr 

COMMENTS 

Note that the assumption that the hydrodynamic and thermal boundary layer thicknesses are equal will 
only be valid if Pr ≈ 1. 

PROBLEM 4.28 

For liquid metals with Prandtl numbers much less the unity, the hydrodynamic 
boundary layer is much thinner than the thermal boundary layer. As a result, one may 
assume that the velocity in the boundary layer is uniform [u = U∞ and ν = 0]. Starting 
with equation (4.7b), show that the energy equation and its boundary condition are 
analogous to those for a semi-infinite slab with a sudden change in surface temperature 
(see Equation (2.105)). Then show that the local Nusselt number is given by 

 Nux = 0.565 (Rex Pr)0.5 

Compare this relation with the equation for liquid metals in Table 4.5. 
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GIVEN 

• Liquid metal flowing over a flat plate 

FIND 

(a) Show that the energy Equation (4.7b) and its boundary conditions are analogous to those for a 
semi-infinite slab with sudden change in surface temperature (Equation (2.105)) 

(b) Show that Nux = 0.564 (Rex Pr)0.5 
(c) Compare this relation with the equation in Table 4.5 for liquid metals. 

ASSUMPTIONS 

• Steady state 
• Uniform velocity in the boundary layer: u = U∞ , ν = 0 
• Mercury is at room temperature (20°C) 

SKETCH 

x

Liquid Metal
U
T

•
•

u
T

dt

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 25, for mercury at 20°C 

  Kinematic viscosity (ν) = 0.114 × 10–6 m2/s 

  Prandtl number (Pr) = 0.0249 

 

SOLUTION 

(a) Substituting u = U∞ and ν = 0 into the energy Equation (4.7b) 

  U∞ 
T

x

∂
∂

 = α 
2

2

T

y

∂
∂

 [1] 

The three dimensional conduction equation is given by Equation (2.6) 

  
2

2

T

x

∂
∂

 + 
2

2

T

y

∂
∂

 + 
2

2

T

z

∂
∂

 + Gq

k
 = 

1 T

tα
∂
∂

 

For a semi-infinite slab with no internal heat generation qG = 0 and the temperature varies only with x 
and t 

  
2

2

T

x

∂
∂

 = 
1 T

tα
∂
∂

 [2] 

This is analogous to the energy equation [1] with the following substitutions: y → x and x/U∞ → t. The 
boundary conditions for the energy equation and the conduction equation for a semi-infinite slab 
subjected to a step change in surface temperature are 
 Energy Equation Conduction Equation 
 T(o, x) = Tw T(o, t) = Ts 

 T(y, o) = T∞ T(x, o) = Ti 
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(b) Both the equations and the boundary conditions are analogous, therefore, the solution for a semi-
infinite solid (Equation (2.105)) can be used as a solution to the liquid metal flow problem with 
the appropriate substitution of variables 

 qi(x) = 
( )wk T T

x

U

πα
∞

∞

−
 = k(Tw – T∞) 

1

21 U

xαπ
∞ 

    

 Nux = 
hx

k
 = 

( )
( )w

q x x

k T T∞−


 = 

1

21 U x

απ
∞ 

    = 

1

21 U x ν
ν απ
∞ 

    

 Nux = 0.564 
1

2( )xRe Pr  

(c) The above equation agrees with the equation given in Table 4.5 for liquid metals. 

PROBLEM 4.29 

Hydrogen at 15°C and at a pressure of 1 atm is flowing along a flat plate at a velocity of 3 
m/s. If the plate is 0.3 m wide and at 71°C, calculate the following quantities at  
x = 0.3 m and at the distance corresponding to the transition point, i.e., Rex = 5 × 105. 
(Take properties at 43°C.) 

(a) Hydrodynamic boundary layer thickness, in cm. 

(b) Thickness of thermal boundary layer, in cm. 

(c) Local friction coefficient, dimensionless. 

(d) Average friction coefficient, dimensionless. 

(e) Drag force, in N. 

(f) Local convective-heat-transfer coefficient, in W/(m2 °C). 

(g) Average convective-heat-transfer coefficient, in W/(m2 °C). 

(h) Rate of heat transfer, in W. 

GIVEN 

• Hydrogen flowing over a flat plate 
• Hydrogen temperature (T∞) = 15°C 
• Hydrogen pressure = 1 atm 
• Velocity (U∞) = 3 m/s 
• Plate temperature (Tw) = 71°C 
• Width of plate = 0.3 m 

FIND 

At x = 0.3 m and xc (Rexc = 5 × 105) find 

(a) Hydrodynamic boundary layer thickness (δ ) in cm 
(b) Thickness of thermal boundary layer (δt) in cm 
(c) Local friction coefficient (Cfx) 
(d) Average friction coefficient (Cf) 
(e) Drag force (D) in N 
(f) Local convective-heat-transfer coefficient (hcx) in W/(m2 °C) 
(g) Average convective-heat-transfer coefficient (hc) in W/(m2 °C) 
(h) Rate of heat transfer (q) in W 
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ASSUMPTIONS 

• Steady state 
• Constant fluid properties 

SKETCH 
Transition

xc

x

Tw = 71°C

Rex = 5 x 105

Hydrogen
= 3 m/s
= 15°C

U
T

•
•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 31, for hydrogen at 43°C 

  Kinematic viscosity (ν) = 119.9 × 10–6 m2/s 

  Prandtl number (Pr) = 0.703 

  Density (ρ) = 0.07811 kg/m3 

  Thermal conductivity (k) = 0.190 W/(m K) 

SOLUTION 

Transition to turbulence occurs around Rex = (U∞ xc)/ν = 5 × 105 

 ∴  xc = 
5510

U

ν
∞

 = 
( )5 6 25 10 119.9 10 m /s

m/s
3

−× ×
 = 20.0 m 

The Reynolds number at x = 0.3 m is 

 Re0.3 = 
U x

ν
∞  = 

( ) ( )
6 2

3m/s 0.3m

119.9 10 m /s−×
 = 7506 

(a) The hydrodynamic boundary layer thickness is given by Equation (4.28) 

  δ = 
5

x

x

Re
 

 For x = 0.3 m  δ = 
( )5 0.03m

7506
 = 0.017 m = 1.7 cm 

 For x = 20 m  δ = 
( )

5

5 20 m

5 10×
 = 0.14 m = 14 cm 

(b) The thermal boundary layer thickness, from the empirical relation of Equation (4.32) is 

  δt = 
( )

1

3

δ

Pr
 

 For x = 0.3 m  δt = 
1

3

1.7cm

(0.703)

 = 1.91 cm 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
352

 For x = 20 m  δt = 
1

3

14cm

(0.703)

 = 15.7 cm 

(c) The local friction coefficient is given by Equation (4.30) 

  Cfx = 
0.664

xRe
 

 For x = 0.3 m  Cfx = 
0.664

7506
 = 0.0077 

 For x = 20 m  Cfx = 
5

0.664

5 10×
 = 0.00094 

(d) The average friction coefficient is given by Equation (4.31) 

 fC  = 
0

1 L

fxC
L  dx = 

1 0.664
2

L

L
L Re

 
  

 = 2 CfL (in the laminar regime) 

  For the plate between x = 0 and x = 0.3 m  fC  = 2(0.0077) = 0.0154 

  For the plate between x = 0 and x = 20 m  fC  = 2(0.0094) = 0.00188 

(e) The drag force is the product of the wall shear stress (τs) and the wall area (A). The wall shear 
stress is given in terms of the friction coefficient in Equation (4.30) 

 τs = 
1

2
ρ U∞

2 Cfx  D = 
0

L

swτ dx = 
1

2
ρ U∞

 2 A 
0

1 L

fxC
L  dx = 

1

2
ρ A U∞

2 Cf 

For the plate area between x = 0 and x = 0.3 m 

 D = 
1

2
(0.3 m) (0.3 m) ( )30.07811kg/m ( )23m/s (0.0154) = 0.00049 N 

For the plate area between x = 0 and x = 20 m 

 D = 
1

2
(0.3 m) (20 m) ( )30.07811kg/m ( )23m/s  (0.00188) = 0.0040 N 

(f) The local heat transfer coefficient is given in Equation (4.36) 

 hcx = 0.332 
11

32
x

k
Re Pr

x
 

 For x = 0.3 m hcx = 0.332 
( )[ ]0.19 W/ m K

0.3m
( ) ( )

1 1

2 37506 0.703  = 16.2 W/(m2 K) = 16.2 W/(m2 °C) 

 For x = 20 m hcx = 0.332 
[ ]0.19 W/(m K)

20m
( ) ( )

1 1
5 2 35 10 0.703× = 1.98 W/(m2 K) = 1.98 W/(m2 °C) 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
353

(g) The average heat transfer coefficient is twice the local heat transfer coefficient at the end of the 
plate length as shown in Equation (4.39) 

For the plate area from x = 0 to x = 0.3 m 

 hc = 2 ( )216.2 W/(m C)°  = 32.4 W/(m2 °C) 

For the plate area from x = 0 to x = 20 m 

 hc = 2 ( )21.98W /(m C)°  = 3.96 W/(m2 °C) 

(h) The rate of heat transfer is 

 q = hc A (Tw – T∞) 

For the plate area between x = 0 and x = 0.3 m 

 q = [ ]232.4 W/(m C)°  (0.3 m) (0.3 m) (71°C – 15°C) = 163 W 

For the plate area between x = 0 and x = 20 m 

 q = [ ]23.96W/(m C)°  (0.3 m) (20 m) (71°C – 15°C) = 1330 W 

COMMENTS 

Note that the local heat transfer coefficient decreases with distance from the leading edge. 

PROBLEM 4.30 

Repeat Problem 4.29, parts (d), (e), (g), and (h) for x = 4.0 m and U∞ = 80 m/s,  
(a) taking the laminar boundary layer into account and (b) assuming that the turbulent 
boundary layer starts at the leading edge. 

From Problem 4.29: Hydrogen at 15°C and at a pressure of 1 atm is flowing along a flat 
plate at a velocity of 3 m/s. If the plate is 0.3 m wide and at 71°C, calculate the following 
quantities: (Take properties at 43°C.) 

(d) Rate of heat transfer, in W. 

(e) Drag force (D) in N. 

(g) Average convective heat transfer coefficient (hc) in W/(m2 °C). 

(h) Rate of heat transfer (q) in Watts. 

GIVEN 

• Hydrogen flowing over a flat plate 
• Hydrogen temperature (T∞) = 15°C 
• Hydrogen pressure = 1 atm 
• Velocity (U∞) = 80 m/s 
• Plate temperature (Tw) = 71°C 
• Width of plate = 0.3 m 

FIND 

Calculate the quantities below for x = 4.0 and 
(A) Assuming turbulent boundary layer starts at the leading edge 
(B) Taking laminar boundary layer into account 
 (a) Rate of heat transfer, in W 

 (b) Drag force (D) in N 
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 (c) Average convective heat transfer coefficient ( )ch  in W/(m2 °C) 

 (d) Rate of heat transfer (q) in Watts 

ASSUMPTIONS 

• Steady state 
• Constant fluid properties 

SKETCH 
Transition

xL

x

Tw = 71°C

Hydrogen
= 3 m/s
= 15°C

U
T

•
•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 31, for hydrogen at 43°C 

  Kinematic viscosity (ν) = 119.9 × 10–6 m2/s 

  Prandtl number (Pr) = 0.703 

  Density (ρ) = 0.07811 kg/m3 

  Thermal conductivity (k) = 0.190 W/(m K) 

SOLUTION 

The transition to a turbulent boundary layer occurs at 

 Rex = cU x

ν
∞  = 5 × 105  xc = 

55 10

U

ν
∞

×
 = 

( )5 6 25 10 119.9 10 m /s

80m/s

−× ×
 = 0.75 m 

 At  x = 4.0 m: Rex = 
( )

6 2

80m/s 4.0m

119.9 10 m /s−×
 = 2.67 × 106 

which is beyond transition and is in the turbulent regime. 
(a) The average friction coefficient between x = 0 and x = L = 4.0 m 
 (A) Turbulent, Equation (4.78b) 

 ( )f T
C  = 0.072 

1

5
LRe

−
 = 0.072

1
6 5(2.67 10 )

−
×  = 3.75 × 10–3 

 (B) Mixed, Equation (4.80) 

 ( )f M
C  = 0.072

1

5
0.0464 c

L
x

Re
L

− 
− 

 
 = 0.072

1
6 5

0.0464(0.75 m)
(2.67 10 )

4.0 m

− 
× − 

 
 = 3.13 × 10–3 

(b) The drag force on the plate between x = 0 and x = L is given by 

 D = τs A = 
2

2f
U

C
ρ ∞ A 

 (A) Turbulent 

 DT = 
1

2
(3.75 × 10–3) ( ) ( )230.07811kg/m 80m/s (0.3 m) (4.0 m) = 1.12 N 
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 (B) Mixed 

 DM = 
1

2
(3.13 × 10–3) ( ) ( )230.07811kg/m 80m/s  (0.3 m) (4.0 m) = 0.94 N 

(c) The average heat transfer coefficient between x = 0 and x = L = 4.0 m 
 (A) Turbulent, Equation (4.82) 

 (hc)T = 
k

L
0.036 

1

3Pr ReL
0.8 = 

[ ]20.19 W/(m C)

4.0m

°
 0.036 

1

3(0.703) (2.67 × 106)0.8 = 210.5 W/(m2 °C) 

 (B) Mixed, Equation (4.83) 

 (hc)M = 
k

L
0.036 

1

3Pr  (ReL
0.8 – 23,200) 

 (hc)M = 
[ ]20.19 W/(m C)

4.0m

°
 0.036 ( )

1

3
0.703 [(2.67 × 106)0.8 – 23,200 = 175.2 W/(m2 °C) 

(d) The rate of heat transfer 

 q = hc A (Tw – T∞) 

 (A) Turbulent 

 (q)T =  [ ]2210.0 W/(m C)°  (0.3 m) (4.0 m) (71°C – 15°C) = 14,150 W 

 (B) Mixed 

 (q)M = [ ]2175.2 W/(m C)°  (0.3 m) (4.0 m) (71°C – 15°C) = 11,770 W 

COMMENTS 

Neglecting to take the laminar portion of the boundary layer into account led to a 20% overestimation 
in the rate of heat transfer from the plate. 

PROBLEM 4.31 

Determine the rate of heat loss from the wall of a building in a 16 kmph wind blowing 
parallel to its surface. The wall is 24 m long, 6 m high, its surface temperature is 27°C, 
and the temperature of the ambient air is 4°C. 

GIVEN  

• The wall of a building with wind blowing parallel to its surface 
• Wind speed (U∞) = 16 kmph = 4.4 ms–1 
• Length of wall (L) = 24 m 
• Height of wall (H) = 6 m 
• Surface temperature (Tw) = 27°C 
• Ambient air temperature (T∞) = 4°C 

FIND 

• The rate of heat loss (q) in W 

ASSUMPTIONS 

• Steady state 
• There is negligible moisture in the air 
• The wind blows along the length of the wall and parallel to it 
• Radiative loss is negligible 
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SKETCH 

Tw = 27°C

6 m

24 m

Air
= 16 kmph

= 4°C
U

T
•

•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average of the wall and ambient temperatures 15.5°C 

  Kinematic viscosity (ν) = 1.5 × 10–6 m2/s 

  Thermal conductivity (k) = 0.025 W/(m K) 

  Prandtl number (Pr) = 0.71 

SOLUTION 

Transition from laminar to turbulent boundary layer occurs at 

 Rex = cU x

ν
∞  = 5 × 105   xc = 

5 5 25 10 (1.5 10 m /s)

4.4 m/s

−× ×
 = 1.7 m 

Therefore, the boundary layer will be mixed and the average convective heat transfer coefficient is 
given by Equation (4.83) 

 hc = 
k

L
0.036 

1

3Pr (Re1
0.8 – 23,200) 

 where  ReL = 
U L

ν
∞  = 

5 2

4.4 m/s (24 m)

1.5 10 m /s−×
 = 7.04 × 106 

 ∴  hc = 0.036 
1

30.025 W/(m K)
(0.71)

24 m
  [(7.04 × 106)0.8 – 23,200] = 8.29 W/(m2 K) 

The rate of convective heat loss from the wall is 

 q = hc A (Tw – T∞) = (8.29 W/(m2 K) (6 m) (24 m) (27°C – 4°C) 

  = 27.46 kW 

COMMENTS 

Treating the whole boundary layer as turbulent, (Equation (4.82)) would lead to a rate of heat loss 8% 
higher than the mixed boundary layer solution shown above. 

PROBLEM 4.32 

A spacecraft heat exchanger is to operate in a nitrogen atmosphere at a pressure of about 
104 N/m2 and 38°C. For a flat-plate heat exchanger designed to operate on earth, in air at 
one atmosphere and 38°C in turbulent flow, estimate the ratio of heat-transfer 
coefficients on the earth to that in nitrogen, assuming forced circulation cooling of the 
flat plate surface at the same velocity in both cases. 

GIVEN 

• Flat plate heat exchangers in turbulent flow in air and nitrogen 
• Nitrogen pressure = 104 N/m2 
• Nitrogen and air temperature (T∞) = 38°C 
• Air pressure = 1 atm = 101,300 N/m2 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
357

FIND 

• Ratio of the heat transfer coefficients 

ASSUMPTIONS 

• Forced circulation coding of the plate surfaces at the same velocity in both cases 
• Steady state 
• Moisture in the air is negligible 
• The laminar portion of the boundary layer is negligible 
• Variation of Nitrogen properties with pressure is negligible 
• Nitrogen behaves as an ideal gas 

SKETCH 

Nitrogen
or
Air

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 38°C 

  Kinematic viscosity (νa) = 17.4 × 10–6 m2/s 

  Thermal conductivity (ka) = 0.0264 W/(m K) 

  Prandtl number (Pra) = 0.71 

From Appendix 2, Table, for nitrogen at 38°C and 1 atm 

  Density (ρ1) = 1.110 kg/m3 

  Absolute viscosity (μn) = 18.3 × 10–6 kg/m s 

  Thermal conductivity (ka) = 0.02699 W/(m K) 

  Prandtl number (Prn) = 0.711 

The nitrogen density at p = 104 Pa can be determined as follows 

 1

1

P

ρ
 = 2

2

P

ρ
  ρ2 = ρ1

2

1

P

P
 = 1.110 kg/m3

410

101,300

 
  

 = 0.1096 kg/m3 

Therefore, the kinematic viscosity of the nitrogen is 

 ν = 
μ
ρ

 = 
–6

3

18.3 10 kg/ms

0.1096kg/m

×
 = 167 × 10–6 m2/s 

SOLUTION 

The average heat transfer coefficient for a turbulent boundary layer is given by Equation (4.82) 

 hc = 0.036 
1

3k
Pr

L
ReL

0.8 = 0.036 
1

3k
Pr

L

0.8U L

ν
∞ 

    

The ratio of the heat transfer coefficient in air to the heat transfer coefficient in nitrogen is 

 ca

cn

h

h
 = 

1
0.8

3a a n

n n a

k Pr

k Pr

ν
ν

   
      

 = 

1 0.86
3

6

0.0264 0.71 167 10

0.027 0.711 17.4 10

−

−
 × 

      ×
 = 5.67 

The heat transfer coefficient in air is 6 times greater than that in the low pressure nitrogen. 
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PROBLEM 4.33 

A heat exchanger is under development for purposes of heating liquid mercury. The 
exchanger can be visualized as a 15 cm long and 0.3 m wide flat plate. If the plate is 
maintained at 70°C and the mercury flows parallel to the short side at 15°C and a 
velocity of 0.3 m/s find 

(a)  The local friction coefficient at the middle point of the plate, and the total drag 
force on the plate. 

(b)  The temperature of the mercury at a point 10 cm from the leading edge and 1.25 
mm from the surface of the plate. 

(c)  The Nusselt number at the end of the plate. 

GIVEN 

• Mercury flowing over a flat plate 
• Temperature of mercury (T∞)) = 15°C 
• Velocity (U∞)) = 0.3 m/s 
• Plate length (L) = 15 cm = 0.15 m 
• Plate width = 0.3 m 
• Plate surface temperature (Ts) = 70°C 

FIND 

(a) Local friction coefficient (Cfx) at the middle point of the plate (x = 7.5 cm) and the total drag force 
(D) on the plate 

(b) Temperature of the mercury 10 cm from the leading edge (x = 0.1 m) and (1.25 mm) from the 
surface of the plate 

(c) The Nusselt number (NuL) at the end of the plate 

ASSUMPTIONS 

• Steady state 

SKETCH 

L = 0.15 m

Mercury
= 0.3 m/s
= 15°C

U
T
•

•

¥

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 25, for mercury at the average of T∞ and Ts (42.5°C) 
  Thermal conductivity (k) = 9.33 W/(m K) 

  Kinematic viscosity (ν) = 1.044 × 10–7 m2/s 

  Prandtl number (Pr) = 0.0216 

  Density (ρ) = 13900 kg/m3 

SOLUTION 

The Reynolds number at the end of the plate is 

 ReL = 
U L

ν
∞  = 

–7 2

(0.3 m/s) (0.15 m)

1.044 10 m /s×
 = 4.3 × 105 < 5 × 105 

Therefore, the boundary layer is laminar over the entire plate. 
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(a) The local friction coefficient for a laminar boundary layer is given by Equation (4.30) 

 Cfx = 
0.664

xRe
 

 At  x = 7.5 cm:  Rex = 
U x

ν
∞  = 

7 2

(0.3m/s) (0.075 m)

1.044 10 m /s−×
 = 2.15 × 105 

 ∴  Cfx = 
5

0.664

2.15 10×
 = 1.42 × 10–3 

The total drag force on the plate is the product of the average shear stress and the area. The shear stress 
is related to the friction coefficient by Equation (4.30) 

 D = τs A = 
1

2
ρ U∞

2 fC  A = ρ U∞
2 CfL A = ρ U∞

2 
0.664

LRe
 A 

 D = 13900 kg/m3 (0.3 m/s)2 
5

0.664

4.3 10×
 (0.15 m) (0.3 m) = 0.057 N 

(b) The laminar thermal boundary layer thickness is given by Equations (4.32) and (4.28) 

 δth = 
1

3Pr

δ
 = 

11

32

5

x

x

Re Pr

 

 At  x = 0.1 m: Rex = 
7 2

(0.3 m/s) (0.1 m)

1.044 10 m /s−×
 = 2.87 × 105 

 δth = 
( )

11
5 32

5 0.1 m

(2.87 10 ) (0.0216)×

 3.3 mm 

Therefore, a point 1.25 mm from the plate surface is outside of the thermal boundary layer and the 
temperature of the mercury is the bulk temperature 15°C. 
(c) The local Nusselt number for a laminar boundary layer is given by Equation (4.37) 

 Nux = L = 0.332 
1 1

3 2
LPr Re  = 0.332 

1 1
53 2(0.0216) (4.3 10 )×  = 61.4 

PROBLEM 4.34 

Water at a velocity of 2.5 m/s flows parallel to a 1-m-long horizontal, smooth and thin 
flat plate. Determine the local thermal and hydrodynamic boundary-layer thicknesses, 
and the local friction coefficient, at the midpoint of the plate. What is the rate of heat 
transfer from the plate to the water per unit width of the plate, if the surface 
temperature is kept uniformly at 150°C, and the temperature of the main water stream is 
15°C? 

GIVEN 

• Water flows over a smooth and thin flat plate 
• Water velocity (U∞) = 2.5 m/s 
• Length of plate (L) = 1 m 
• Surface temperature (Ts) = 150°C 
• Water temperature (T∞) = 15°C 
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FIND 

(a) Local thermal and hydrodynamic boundary layer thicknesses (δ, δth) and the local friction 
coefficient (Cfx) at the midpoint of the plate (x = 0.5 m) 

(b) Heat transfer from the plate per unit width (q/w) 

ASSUMPTIONS 

• Steady state 

SKETCH 

Ts = 150°C

Water
= 2.5 m/s
= 15°C

U
T
•

•

L = 1 m
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at the average of T∞ and Ts (83°C) 

  Kinematic viscosity (ν) = 0.343 × 10–6 m2/s 

  Thermal conductivity (k) = 0.675 W/(m K) 

  Prandtl number (Pr) = 2.08 

SOLUTION 

The Reynolds number at x = 0.5 m is 

 Rex = 
U x

ν
∞  = 

( ) ( )
–6 2

2.5 m/s 0.5m

0.343 10 m /s×
= 3.46 × 106 > 5 × 105 

Therefore, the boundary layer is turbulent. The hydrodynamic boundary layer thickness for a turbulent 
boundary layer is given by Equation (4.79) 

 δx = 0.37 

1

5

U

ν
∞

 
  

4

5x  = 0.37 
( )

1
6 2 50.343 10 m /s

2.5 m/s

− ×
 
 

4

5(0.5 m)  = 0.0092 m = 9.1mm 

The thermal boundary layer thickness for a turbulent boundary layer is also given by Equation (4.79) 

 δthx = δx = 9.1 mm 

The local friction factor for a turbulent boundary layer is given by the empirical Equation (4.78a) (for 
5 × 105 < Re < 107) 

 Cfx = 0.0576 
1

5Re
−

 = 0.0576 
1

6 5(3.64 10 )
−

×  = 2.81 × 10–3 

(b) The heat transfer coefficient for a mixed boundary layer with transition at Re = 5 × 105 is given by 
Equation (4.83) 

 hc = 
k

L
0.036 

1

3Pr  [ReL
0.8 – 23,200]  where: ReL = 

( )
6 2

2.5m/s 1m

0.343 10 m /s−×
 = 7.28 × 106 

 hc = 
( )0.675W/(m K)

1m
0.036

1

3(2.08)  [(7.28 × 106)0.8 – 23,200] = 8560 W/(m2 K) 
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The rate of heat transfer from the plate is 

 q = hc A (Ts – T∞) 

 ∴  
q

w
 = hc L (Ts – T∞) = ( )28560W/(m K) (1 m) (150°C – 15°C) = 1.16 × 106 W/m 

COMMENTS 

Treating the entire boundary layer as turbulent would lead to an overestimation of the rate of heat 
transfer of about 12%. 

PROBLEM 4.35 

A thin, flat plate is placed in an atmospheric pressure air stream flowing parallel to it at 
a velocity of 5 m/s. The temperature at the surface of the plate is maintained uniformly at 
200°C, and that of the main air stream is 30°C. Calculate the temperature and horizontal 
velocity at a point 30 cm from the leading edge and 4 mm above the surface of the plate. 

GIVEN 

• A thin plate in an air stream at atmospheric pressure 
• Air velocity (U∞)) = 5 m/s 
• Plate surface (Ts) = 200°C (uniform) 
• Air temperature (T∞)) = 30°C 

FIND 

• The air temperature and horizontal velocity at x = 30 cm = 0.3 m and 4 mm = 0.004 m above the 
plate 

ASSUMPTIONS 

• Steady state 
• Moisture in the air is negligible 

SKETCH 

x

Ts = 200°C

Air
5 m/s

= 30°C
U
T

•
•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average of Ts and T∞ (115°C) 

  Kinematic viscosity (ν) = 25.4 × 10–6 m2/s 

  Prandtl number (Pr) – 0.71 

SOLUTION 

The Reynolds number at x = 0.3 m is 

 Rex  = 
U x

ν
∞  = 

( ) ( )
6 2

5 m/s 0.3m

25.4 10 m /s−×
 = 5.91 × 104 < 5 × 105 

Therefore, the boundary layer is laminar. The laminar hydrodynamic boundary layer thickness is given 
by Equation (4.28) 

 δ = 
5

x

x

Re
 = 

( )
4

5 0.3m

5.91 10×
 = 0.0062 m 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
362

The thermal boundary layer thickness is given in Equation (4.32) 

 δth = 
1

3Pr

δ
 = 

1

3

0.0062 m

(0.71)

 = 0.007 m 

Therefore, the point of interest is within both the hydrodynamic and thermal boundary layers. Figures 
4.11 and 4.13 can be used to find the velocity and temperature at x = 0.3 m, y = 0.004 m. The abscissa 
of Figure 4.11 is 

  x
y

Re
x

 = 40.004m
5.91 10

0.3m
×  = 3.24 

From Figure 4.11 

  
u

U∞
≈ 0.87 

 ∴  u = 0.87 U∞ = 0.82 ( )5m/s  = 4.4 m/s 

The abscissa for Figure 4.13 is 

  
1

3
x

y
Re Pr

x
 = 3.24 

1

3(0.71)  = 2.89 

From Figure 4.13 

 ∴  T = Ts + 0.78 (T∞ – Ts) = 30°C + 0.78 (200°C – 30°C) = 163°C 

PROBLEM 4.36 

The surface temperature of a thin, flat plate located parallel to an air stream is 90°C. The 
free stream velocity is 60 m/s and the temperature of the air is 0°C. The plate is 60 cm 
wide and 45 cm long in the direction of the air stream. Neglecting the end effect of the 
plate and assuming that the flow in the boundary layer changes abruptly from laminar to 
turbulent at a transition Reynolds number of Retr = 4 × 105, find 

(a) the average heat transfer coefficient in the laminar and turbulent regions 

(b) the rate of heat transfer for the entire plate, considering both sides 

(c) the average friction coefficient in the laminar and turbulent regions 

(d) the total drag force 

Also plot the heat transfer coefficient and local friction coefficient as a function of the 
distance from the leading edge of the plate. 

GIVEN 

• Air flow over a flat plate 
• Plate surface temperature (Ts) = 90°C 
• Air velocity (U∞) = 60 m/s 
• Air temperature (T∞) = 0°C 
• Plate length (L) = 45 cm = 0.45 m 
• Plate width = 60 cm = 0.6 m 
FIND 

(a) The average heat transfer coefficient in the laminar (hcL) and turbulent (hcT) regions 
(b) The rate of heat transfer for the entire plate, considering both sides (both sides) 
(c) The average friction coefficient in the laminar (Cf L) and turbulent (Cf T) regions 
(d) The total drag force (D) 
(e) Plot the heat transfer coefficient (hcx) and local friction coefficient (Cfx) as a function of the 

distance from the leading edge (x). 
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ASSUMPTIONS 

• Steady state 
• End effect of the plate is negligible 
• Boundary layer changes from laminar to turbulent at Re = 4 × 105 

SKETCH 

60
cm

45 cm

90°C

Air
60 m/s

0°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average of Ts and T∞ (45°C) 

  Kinematic viscosity (ν) = 18.1 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0269 W/(m K) 

  Prandtl number (Pr) = 0.71 

  Density (ρ) = 1.075 kg/m3 

SOLUTION 

The transition to turbulence occurs at 

 Rex = cU x

ν
∞  = 4 × 105  xc = 

54 10

U

ν
∞

×
 = 

( )5 6 24 10 18.1 10 m /s

60

−× ×
 = 0.121 m 

The Reynolds number at the end of the plate is 

 ReL = 
U L

ν
∞  = 

( ) ( )
6 2

60m/s 0.45m

18.1 10 m /s−×
 = 1.49 × 106 

(a) For the laminar region, hcx is given by Equation (4.56) and the average heat transfer coefficient is 

 hcL = 
11
32

0

1
0.33

cx

x
c

k
Re Pr

x x dx = 
11

320.66 x
c

k
Re Pr

x
 

 hcL  = 
[ ]0.0269W/(m K)

0.121m
0.66 

11
5 32(4 10 ) (0.71)×  = 82.8 W/(m2 K) 

For the turbulent region, hcx is given by Equation (4.81) 

 hcT = 
1

0.8 31
0.0288

c

L

xx
c

k
Re Pr

L x x−  dx = 
c

k

L x−
 0.036 (ReL

0.8 – 0.8
cxRe )

1

3Pr  

 hcT  = 
[ ]0.0269W/(m K)

0.45m 0.121m−
 0.036 [(1.49 × 106)0.8 – (4 × 105)0.8] 

1

3(0.71)  = 148.6 W/(m2 K) 

(b) The total heat transfer is the sum of the heat transfer from both regions. 

 q = qLam + qTurb = (hcL AL + hcT AT) (Ts – T∞) 

 q = ( ) ( ) ( ) ( ) ( ) ( )2 282.8W/(m K) 0.121m 0.6m 148.6W/(m K) 0.45m 0.121m 0.6m + −  (90°C – 0°C) 

 q = 3131 W 

For both sides  qTotal = 2 q = 6362 W 
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(c) The average friction coefficient in the laminar region is given by Equation (4.31) 

 fLC   = 1.33
1

2
cxRe
−

 = 1.33
1

5 2(4 10 )
−

×  = 0.00210 

The local friction coefficient in the turbulent region is given by Equation (4.78a). The average friction 
coefficient in the turbulent region is 

 fLC  = 
c

L

fxx
c

k
C

L x−  dx = 

1
31

0.0576
c

L

x
c

U x

L x ν

−
∞ 

  −  dx = 

1

50.0576

c

U

L x ν

−
∞ 

  −

4 4

5 55

4 cL x
 

− 
 

 

 fLC  = 
( )

1

5

6 2

0.0576 60m/s

0.45m 0.121m 18.1 10 m /s

−

−
 
 −  ×

1.25 [(0.45 m)0.8 – (0.121)0.8] = 0.00373 

(d) The drag force is 

 D = τs A  where: τs = 
1

2fC ρ U∞
2 As from Equation (4.13) 

For both sides of the plate 

 D  = ρ U∞
2 ( )fL L fT TC A C A+  

(e) For the laminar region, 0 < x < 0.121 m, Equation (4.56) gives the heat transfer coefficient 

 hcx = 
11

320.33 x
k

Re Pr
x

= 
[ ]0.0269W/(m K)

x
0.33

( )
1

11
2

32
6

60m/s
(0.71)

18.1 10
x−

 
  ×

 = ( )3
214.41W/m K

1

2x
−

 

For the turbulent region, 0.121 m < x < 0.45 m, from Equation (4.81) 

 hcx = 
k

x
0.0288 

1

3Pr Rex
0.8 = ( )2113.7 W/(m K) 0.2x−  

The friction coefficient for the laminar region (Equation (4.30)) is 

 Cfx = 
0.664

xRe
 = 3.65 × 10–4 

1

2x
−

 

For the turbulent region (Equation (4.78a)) 

 Cfx = 0.0576 
1

5Re
−

 = 2.859 × 10–3 
1

5x
−

 

The variations of the heat transfer coefficient and friction coefficient with distance from the leading 
edge are plotted below 

Heat Transfer Coefficeint vs. x
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PROBLEM 4.37 

The wing of an airplane has a polished aluminum skin. At a 1500 m altitude, it absorbs 
100 W/m2 by solar radiation. Assuming that the interior surface of the wing’s skin is well 
insulated and the wing has a chord of 6 m length, i.e., L = 6 m, estimate the equilibrium 
temperature of the wing at a flight speed of 150 m/s at distances of 0.1 m, 1 m, and 5 m 
from the leading edge. Discuss the effect of a temperature gradient along the chord. 

GIVEN 

• Airplane wing with polished aluminum skin 
• Altitude = 1500 m 
• Absorbed solar radiation (qsol/A) = 100 W/m2 
• Cord length of wing (L) = 6 m 
• Flight speed (U∞) = 150 m/s 

FIND 

(a) Equilibrium temperature at x = 0.1 m, 1 m, and 5 m 
(b) Discuss the effect of temperature gradient along the wing 

ASSUMPTIONS 

• Steady state 
• Inside surface of wing is well insulated, so heat loss from the inner surface is negligible 
• Radiative loss from the wing surface is negligible 
• Flight speed given is air speed not ground speed 
• Variation of air properties with pressure is negligible 
• Neglect aerodynamic heating 

SKETCH 

L = 6 m

= 100 W/m2

x

Air
= 150 m/sU•

qsol

A
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 37 at 1500 m altitude the air temperature (T∞) = 5°C and the density of the air 
(ρ) = 1.06 kg/m3 
From Appendix 2, Table 27, for dry air at 1 atm and 5°C 

  Absolute viscosity (μ) = 17.7 ×  10–6 N s/m2 

  Thermal conductivity (k) = 0.0273 W/(m K) 

  Prandtl number (Pr) = 0.71 

The kinematic viscosity at 1500 m is: ν = μ/ρ = 16.7 × 10–6 m2/s 

SOLUTION 

(a) The Reynolds numbers at the desired locations are 

 At x = 0.1 m: Rex = 
U x

ν
∞  = 

( )
6 2

150m/s (0.1m)

16.7 10 m /s−×
 = 0.89 × 106 

 At x = 1 m: Rex = 
( )

6 2

150m/s (1m)

16.7 10 m /s−×
 = 8.98 × 106 

 At x = 5 m: Rex = 
( )

6 2

150m/s (5m)

16.7 10 m /s−×
 = 4.49 × 107 

The boundary layer is turbulent at all these locations. For a turbulent boundary layer, the local heat 
transfer coefficient is given by Equation (4.81) 

 hcx = 
k

x
 0.0288 Rex 

0.8 
1

3Pr  

 At x = 0.1 m: hcx = 
[ ]0.0237W/(m K)

0.1m
 0.0288 (0.89 × 106)0.8 

1

3(0.71)  = 350 W/(m2 K) 

 At x = 1 m: hcx = 
[ ]0.0237W/(m K)

1m
 0.0288 (9.98 × 106)0.8 

1

3(0.71)  = 222 W/(m2 K) 

 At x = 5 m: hcx = 
[ ]0.0237W/(m K)

5m
 0.0288 (4.49 × 107)0.8 

1

3(0.71)  = 161 W/(m2 K) 

The local convective heat loss from the wing must equal the radiative heat gain for equilibrium to exist 

 cxq

A
 = hcx (Ts – T∞) = solq

A
 

Solving for the wing surface temperature 

 Ts = T∞ + sol1

cx

q

h A
 

 At x = 0.1 m: Ts = 5°C + [ ] ( )2
2

1
100W/m

350W/(m K)
 = 5.29°C 

 At x = 1 m: Ts = 5°C + [ ] ( )2
2

1
100W/m

222 W/(m K)
 = 5.45°C 

 At x = 5 m: Ts = 5°C + [ ] ( )2
2

1
100W/m

161W/(m K)
 = 5.62°C 
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In all three cases, the film temperature is very nearly 5°C, so our choice of 5°C for calculating the air 
properties is justified. 
(b) Conduction along the aluminum skin will effectively smooth out these small temperature 

differences. 

PROBLEM 4.38 

An aluminum cooling fin for a heat exchanger is situated parallel to an atmospheric 
pressure air stream. The fin is 0.075 m high, 0.005 m thick, and 0.45 m in the flow 
direction. Its base temperature is 88°C, and the air is at 10°C. The velocity of the air is 27 
m/s. Determine the total drag force and the total rate of heat transfer from the fin to the 
air. 

GIVEN 

• Air flow over a heat exchanger fin 
• Fin length (L) = 0.45 m 
• Fin height (w) = 0.075 
• Fin thickness = 0.005 m 
• Fin base temperature (Tb) = 88°C 
• Air temperature (T∞) = 10°C 
• Air velocity (U∞) = 27 m/s 

FIND 

(a) The total drag force (D) on the fin 
(b) The total rate of heat transfer (q) from the fin to the air 

ASSUMPTIONS 

• Steady state 
• Edge effects are negligible 
• Both sides of the fin are exposed to the air 
• Transition to a turbulent boundary layer occurs at 
• Rex = 5 × 105 
• Fin thickness is negligible 
• Radiation is negligible 

SKETCH 

0.005 m

0.075 m

Tb = 88° C

L
=

0.
45

m

Air
= 27 m/s
= 10°C

U
T
•
•  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average of Tb and T∞ (49°C) 

  Kinematic viscosity (ν) = 18.4 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0271 W/(m K) 
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  Density (ρ) = 1.061 kg/m3 

  Prandtl number (Pr) = 0.71 

From Appendix 2, Table 12, for aluminum at the average of Tb and T∞ (49°C) 
Thermal conductivity (k) = 238 W/(m K) 

SOLUTION 

The Reynolds number at the end of the fin is 

 ReL = 
U L

ν
∞  = 

( )
6 2

27m/s (0.45 m)

18.4 10 m /s−×
 = 6.60 × 105 > 5 × 105 

The boundary layer is turbulent at the end of the fin. The transition to turbulence occurs at 

 
cxRe  = cU x

ν
∞  = 5 × 105  xc = 

55 10

U

ν
∞

×
 = 

( )5 6 25 10 18.4 10 m /s m

27 s

−× ×
 = 0.341 m 

(a) The average friction factor (Cf) for a mixed boundary layer is given by Equation (4.80) 

 fC   = 0.072 
1

5
0.0464

Re c
L

x

L

− 
     

  = 0.072
1

5 5 0.0464 (0.341m)
(6.6 10 )

0.45m

− 
× − 

 
 = 0.00240 

The drag force on both sides of the plate (using Equation (4.13) for the shear stress at the wall) is 

 D = 2 τs A = Cf ρ U∞
2 A = 0.0024 ( ) ( )231.061kg/m 27 m/s (0.075 m) (0.45 m) = 0.063 N 

(b) The average heat transfer coefficient (hc) for a mixed boundary layer is given in Equation (4.83) 

 hc = 
k

L
 0.036 

1

3Pr  [ReL
0.8 – 23,200] = 

( )0.0271W/(m K)

0.45m
 0.036 

1

3(0.71)  [(6.6 × 105)0.8 – 23,200} 

 hc = 42.7 W/(m2 K) 

The rate of heat transfer from a fin of uniform cross section and convection from the tip is given in 
Table 2.1 

 q = M 

sinh ( ) cosh ( )

cosh ( ) sinh ( )

f f
a

f f
a

h
m L m L

mk
h

m L m L
mk

 +   
 +   

 

 where m ≡ c

a c

h P

k A
 

P = perimeter = 2(0.45 m + 0.005 m) = 0.91 m 
Ac = cross sectional area = (0.005 m) (0.45 m) = 0.00225 m2 
Lf = 0.075 m 

 ∴ m = 
( )

( )

2

2

42.7 W/(m K) (0.91m)

238W/(m K) (0.00225m )
 = 8.52 

1

m
 

 m Lf = 8.52 
1

m
 (0.075 m) = 0.639 
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 M = (Tb – T∞) c a ch P k A  = (88°C – 10°C) ( ) ( )2 242.7 W/(m K) (0.91m) 238W/(m K) (0.0025m )  

 M = 356 W 

 c

a

h

m k
 = 

( )
( )

242.7 W/(m K)
1

8.52 238W/(m K)
3

 = 0.0211 

 ∴ qf = 356 W 
sinh (0.639) 0.0211 cosh (0.639)

cosh (0.639) 0.0211sinh (0.639)

+
+

 = 206 W 

COMMENTS 

If the entire fin was assumed to be at the base temperature, the rate of heat transfer from the fin would 
be about 225 W, about 9% higher than calculated above. The high conductivity of the fin material 
makes this installation very thermally efficient, i.e., ηf = 91%. 

PROBLEM 4.39 

Air at 320 K with a free stream velocity of 10 m/s is used to cool small electronic devices 
mounted on a printed circuit board as shown in the sketch below. Each device is 5 mm × 
5 mm square in plane-form and dissipates 60 milliwatts. A turbulator is located at the 
leading edge to trip the boundary layer so that it will become turbulent. Assuming that 
the lower surface of the electronic devices are insulated, estimate the surface 
temperature at the center of the fifth device on the circuit board. 

GIVEN 

• Air flows over small electronic devices 
• Air temperature (T∞) = 320 K 
• Air velocity (U∞) = 10 m/s 
• Dimensions of each device = 5 mm × 5 mm = .005 m × .005 m 
• Power dissipation per device ( )Gq  = 60 milliwatts = 0.06 W 

• There is a turbulator at the leading edge 

FIND 

• The surface temperature (Tsx) at the center of the fifth device 

ASSUMPTIONS 

• Steady state 
• Lower surface of the devices is insulated (negligible heat loss) 
• The devices are placed edge-to-edge on the board 
• The boundary layer is turbulent from the leading edge on 
• The bulk fluid temperature is constant 

SKETCH 

0.005 m

x

L = 0.0225 m

Tsx

Turbulator

Electronic
Devices

Air
= 10 m/s
= 320 K

U
T

•
•
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average of 320 K 

  Kinematic viscosity (ν) = 18.2 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0270 W/(m K) 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The center of the fifth chip is 0.0225 m from the leading edge. The Reynolds number at this point is 

 Rex = 
U x

ν
∞  = 

( )
6 2

10m/s (0.0225m)

18.2 ×10 m /s−  = 1.24 × 104 

Although this would normally be a laminar boundary layer, in this case, it will be turbulent due to the 
turbulator at the leading edge. For a turbulent boundary layer, the local heat transfer coefficient is 
given by Equation (4.81) 

 hcx = 
k

x
 0.0288 Rex

0.8 
1

3Pr  = 
( )0.0270W/(m K)

0.0225m
 0.0288 (1.24 × 104)0.8 

1

3(0.71)  = 57.9 W/(m2 K)  

For steady state, the rate of convective heat flux at x = 0.0225 m must equal the rate of heat generation 
per unit surface area 

 cxq

A
 = hcx (Tsx – T∞) = Gq

A
 

Solving for the surface temperature 

 Tsx = T∞ + 
1 G

cx

q

h A
 = 320 K + 

2

1 1chip
0.06 W/chip

(0.005m) (0.005m)57.9 W/(m K)
 
  

  

  = 361 K = 88°C 

The film temperature is therefore (320 K + 361 K)/2 = 341 K. Performing another iteration using air 
properties evaluated at 341 K yields the following results 

 ν = 20.2 × 10–6 m2/s 

 k = 0.0285 W/(m K) 

 Pr = 0.71 

 Rex = 11,117 

 hcx = 56.1 

 Tsx = 363 K = 90°C 

PROBLEM 4.40 

The average friction coefficient for flow over a 0.6 m-long plate is 0.01. What is the value 
of the drag force in N per m width of the plate for the following fluids: (a) air at 15°C, (b) 
steam at 100°C and atmospheric pressure, (c) water at 40°C, (d) mercury at 100°C, and 
(e) n-Butyl alcohol at 100°C? 

GIVEN 

• Flow over a plate 
• Friction coefficient (Cf) = 0.01 
• Length of plate (L) = 0.6 m 
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FIND 

The value of the drag force (D) in N per meter width of the plate for 
(a) Air at 15°C 
(b) Steam at 100°C and atmospheric pressure 
(c) Water at 40°C 
(d) Mercury at 100°C 
(e) N-Butyl alcohol at 100°C 

ASSUMPTIONS 

• Steady state 
• Fully developed turbulent flow 

SKETCH 

L = 0.6 m

Fluid
T•

 

PROPERTIES AND CONSTANTS 

The following information is from Appendix 2 

  Table Temperature Kinematic Viscosity Density, ρ 
 Substance Number (°C) ν × 106 m2/s kg/m3 
 (a) Air 27 1 5 15.3 1.19 
 (b) Steam 34 100 20.2 0.5977 
 (c) Water 13 40 0.658 992.2 
 (d) Mercury 25 100 0.0928 13.385 
 (e) n-Butyl Alcohol 18 100 0.69 751 

SOLUTION 

Assuming the boundary layer is laminar, the average friction is given by Equation (4.31) 

 fC  = 1.33 ( )
1

2U L

ν

−
∞   U∞ = 

21.33

f LC

ν 
  

 

Therefore, the Reynolds number at the end of the plate is 

 Re1 = U∞ 
L

ν
 = 

21.33

f

L

LC

ν
ν

  
    

 = ( )21.33

0.01
 = 1.77 × 104 < 5 × 105 

Therefore, the assumption that the boundary layer is laminar is valid. 
The drag force on the plate is 

 D = wτ  A 

The wall shear stress (τw) is related to the friction coefficient by Equation (4.13) 

 wτ  = 
1

2fC ρ U∞
2 

 ∴ D = 
221 1.33

2
f

f
C

LC

νρ
  
    

As = ( )2

3

1.565

f
LC

νρ  L w 
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D

w
 = 2

3

1.565

f
LC

ρ ν   

 (a) Air: 
D

w
 = ( )

3
26 2

3

1.565 1.190kg/m
15.3×10 m /s

0.6m(0.01)
− 

  
= 7.3 × 10–4 N/m 

 (b) Steam: 
D

w
 = ( )

3
26 2

3

1.565 0.5977 kg/m
20.2 ×10 m /s

0.6m(0.01)
− 

  
 = 6.4 × 10–4 N/m 

 (c) Water: 
D

w
 = s ( )

3
26 2

3

1.565 992.2 kg/m
0.658×10 m /s

0.6(0.01)
− 

    = 1.1 × 10–3 N/m 

 (d) Mercury: 
D

w
 = ( )

3
26 2

3

1.565 13,385kg/m
0.0928×10 m /s

0.6m(0.01)
− 

  
 = 3.0 × 10–4 N/m 

 (e) Alcohol: 
D

w
 =  ( )

3
26 2

3

1.565 751kg/m
0.69 ×10 m /s

0.6m(0.01)
− 

  
 = 9.3 × 10–4 N/m 

PROBLEM 4.41 

A thin, flat plate 15 cm square is tested for drag in a wind tunnel with air at 30 m/s, 100 
kPa, and 16°C flowing across and parallel to the top and bottom surfaces. The observed 
total drag force is 0.06 N. Using the definition of friction coefficient, Equation (4.13), and 
the Reynolds analogy, calculate the rate of heat transfer from this plate when the surface 
temperature is maintained at 120°C. 

GIVEN 

• Air flow over the top and bottom of a thin plate 
• Plate dimensions = 0.15 m × 0.15 m 

• Air speed (U∞) = 30 m/s 

• Air pressure = 100 kPa 
• Air temperature (T∞) = 16°C 
• Total drag force (D) = 0.06 N 
• Surface temperature (Ts) = 120°C 

FIND 

• The rate of heat transfer (q) 

ASSUMPTIONS 

• Steady state 
• Constant and uniform plate temperature 
• Radiation is negligible 

SKETCH 

L = 15 cm

Ts = 120°C
Air

= 30 m/s

= 16°C

U

T
•

•
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for air at the average of Ts and T∞ (68.0°C) 

Kinematic viscosity (ν) = 2.96 × 10–5 m2/s 
Thermal conductivity (k) = 0.0342 W/(m K) 
Density (ρ) = 0.833 kg/m3 
Prandtl number (Pr) = 0.71 

SOLUTION 

The Reynolds number at the end of the plate is 

 ReL = 
U L

ν
∞  = 

–5 2

(30m/s) (0.15m)

2.96 10 m /s×
 = 1.52 × 105 (Laminar) 

Equation (4.13) 

 fC  = 
2

2 s

pU

τ

∞
 

The total drag force on both sides of the plate is 

 D = 2 A τs    τs = 
2

D

A
 

where A = the area of one side of the plate. 

 fC = 
2

D

AUρ ∞
 

The Reynolds analogy, corrected for Prandtl numbers other than unity, is given in Equation (4.40) 

 Nux = cxh x

k
 = 

1

3

2
fx

x

C
Re Pr  

  
1

3U k Pr

ν

∞

 hcx x = 
2
fxC

 

Averaging this over the length of the plate yields 

  
1 0
3

1 L

L
U k Pr

ν

∞

 hcx dx = 
0

1

2

L

L  Cfx dx 

  
1

3U k Pr

ν

∞

 hc = 
1

2
Cf 

 ∴   ch  = 
1

3

2
tC U Lk

Pr
L ν

∞   
     = 

1

3
22

L
k D

Re Pr
L AUρ ∞

 
  

 

  ch  = 
3 2 2

(0.0342 W/(m K)) 0.06 N

0.15m 2(0.833kg/m )(0.15m) (30m/s)
 (1.52 × 105)

1

3(0.71)  

  = 55 W/(m2 K) 

The rate of heat transfer from both sides of the plate is 

 q = 2 ch  A (Ts – T∞) = 2(55 W/(m2 K))(0.15 m)2 (120°C – 16°C) = 257.4 W 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
374

COMMENTS 

If radiation is included, assuming the plate behaves as a blackbody, and is totally enclosed by the wind 
tunnel which behaves as a blackbody at 60°C, the rate of heat transfer would be 

 q = qc + qr = qc + A σ (Ts
4 – T∞

4) 

 q = 257 W + (0.15 m)2 (5.67 × 10–8 W/(m2 K))[(393 K)4 – (289 K)4] 

   = 257.4 W + 21.5 W 

 q = 278.9 W 

(9% higher than the results neglecting radiation) 

PROBLEM 4.42 

A thin, flat plate 15 cm square is suspended from a balance into a uniformly flowing 
stream of engine oil in such a way that the oil flows parallel to and along both surfaces of 
the plate. The total drag on the plate is measured and found to be 55.5 N. If the oil flows 
at the rate of 15 m/s and at a temperature of 45°C, calculate the heat-transfer coefficient 
using the Reynolds analogy. 

GIVEN 

• Engine oil flowing along a thin flat plate 
• Plate dimensions = 15 cm × 15 cm = 0.15 m × 0.15 m 
• Engine oil velocity (U∞) = 15 m/s 
• Engine oil temperature (T∞) = 45°C 
• Total drag force (D) 55.5 N 

FIND 

• The heat transfer coefficient (hc) 

ASSUMPTIONS 

• Steady state 
• Constant fluid properties 
• Radiative heat transfer is negligible 

SKETCH 

0.15 m

Engine Oil
= 15 m/s

= 45°C

U

T
•

•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 16, for unused engine oil at (45°C): 

Kinematic viscosity (ν) = 201 × 10–6 m2/s 
Thermal conductivity (k) = 0.143 W/(m K) 
Density (ρ) = 873.1 kg/m3 
Prandtl number (Pr) = 24.2 

SOLUTION 

The Reynolds number is 

 ReL = 
U L

ν
∞  = 

( )
6 2

15m/s (0.15m)

201 10 m /s−×
 = 1.12 × 104 (Laminar) 
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The friction coefficient is defined in Equation (4.13) 

 fC  = 
2

2

U

τ
ρ ∞

 

The drag force on both sides of the plate is 

 D = 2 A τ  τ = 
2

D

A
 

Where A = the area of one side of the plate. 

 ∴ fC  = 
2

D

AUρ ∞
 

The Reynolds analogy relates the heat transfer coefficient and the friction coefficient in Equation 
(4.40) (corrected for Prandtl numbers other than unity) 

 Nux = cxh x

k
 = 

1

2
 Cfx Rex 

1

3Pr  

  
1

3U k Pr

ν

∞

 hcx = 
2
fxC

 

Averaging this over the length of the plate yields: 

  
1 0
3

1 L

L
U k Pr

ν

∞

 hcx dx = 
0

1

2

L

L  Cfx dx 

  
1

3U k Pr

ν

∞

 hc =  
1

2
Cf 

 ∴  ch  =  
1

3

2
fC U Lk

Pr
L ν

∞         = 
22

k D

L AUρ ∞

 
  

 ReL 
1

3Pr  

 ch  = 
( ) ( )

( ) ( )

2

23

0.143W/(m K) (55.5N) kg m/(Ns )

2 (0.15 m) 873.1kg/m (0.15m) (0.15m) 15m/s
 (1.12 × 104)

1

3(24.2)   

  = 194 W/(m2 K) 

COMMENTS 

Since the plate is submerged in the engine oil, the assumption that radiative heat transfer is negligible 
is valid. If the plate were in a gas, this assumption may not be valid. (See Problem 4.41.) 

PROBLEM 4.43 

For a study on global warming, an electronic instrument has to be designed to map and 
the CO2 absorption characteristics of the Pacific Ocean. The instrument package 
resembles a flat plate with a total (upper and lower) surface area of 2 m2. For safe 
operation, its surface temperature must not exceed the ocean temperature by 2°C. To 
monitor the temperature of the instrument package, which is towed by a ship moving at 
20 m/s, the tension in the towing cable is measured. If the tension is 400 N, calculate the 
maximum permissible heat generation rate from the instrument package. 
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GIVEN 

• A flat plate towed through water 
• Total surface area (A) = 2 m2 
• Speed through the water (U∞) = 20 m/s 
• Towing cable tension (T) = 400 N 
• Maximum plate surface temperature – ocean temperature (ΔTmax) = 2°C 

FIND 

• The maximum permissible heat generation rate ( )Gq  

ASSUMPTIONS 

• Steady state 
• Edge effects are negligible 
• Effects due to the towing cable are negligible 
• The speed given is speed relative to the water 
• The water temperature is about 20°C 
• The length of the plate in the direction of motion is not known 

SKETCH 

The plate can be visualized as stationary with the water moving over it 

T = 400 N

Water
= 20 m/sU•

Towing
Cable

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 20°C 

  Kinematic viscosity (ν) = 1.006 × 10–6 m2/s 

  Thermal conductivity (k) = 0.597 W/(m K) 

  Density (ρ) = 998.2 kg/m3 

  Prandtl number (Pr) = 7.0 

SOLUTION 

The Drag force on the plate is equal to the tension on the cable 

 T = D = τs A  τs = 
T

A
 

The friction coefficient is defined in Equation (4.13) as 

 fC  = 
2

2 s

U

τ
ρ ∞

 = 
2

2T

AUρ ∞
 = 

( )
( ) ( )

2

23 2

2 400(kg m/s )

998.2(kg/m ) (2 m ) 20m/s
 = 1.002 × 10–3 

The maximum possible heat generation rate is equal to the rate of heat transfer at the maximum 
permissible temperature difference 

 qG = qc = hc ΔTmax 
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(a) Assuming the boundary layer is laminar, Equations (4.38) and (4.31) give the average heat transfer 
coefficient and friction coefficient 

 hc =  
k

L
 0.664 

1 1
2 3U L

Pr
ν
∞ 

   

 Cf = 1.33 ( )
1

2U L

ν

−
∞  

These equations can be combined to eliminate the length of the plate (L) which is not known 

 hc = 0.664 

( )
1 1
2 3

1

2
1.33

fC U Lk
Pr

L
U L

ν

ν

∞

−
∞

 
   = 

1

2
 Cf k 

1

3
U

Pr
ν

∞  

(b) Assuming the boundary layer is turbulent and the laminar region can be neglected, the heat transfer 
coefficient can be taken from Equation (4.82) and the friction coefficient from Equation (4.78b) 

 hc = 
k

L
 0.036 

1 0.8
3

U L
Pr

ν
∞ 

   

 Cf = 0.072 ( ) 0.2U L

ν

−
∞  

Combining these to eliminate L 

 ch  = 
1

31

2
f

U
C k Pr

ν
∞  

This relationship is valid for the average heat transfer and friction coefficients for both laminar and 
turbulent boundary layers. Therefore, regardless of Reynolds number 

 ch  = 
1

2
 (1.002 × 10–3) ( )

1

3
6 2

20m/s
0.597 W/(m K) (7.0)

1.006 10 m /s−
 
  ×

 = 1.14 × 104 W/(m2 K) 

 ∴  Gq  = 1.14 × 101 W/(m2 K) (2 m2) (2°C) = 4.55 × 104 W = 45.5 kW 

PROBLEM 4.44 

For flow of gas over a flat surface that has been artificially roughened by sand-blasting, 
the local heat transfer by convection can be correlated by the dimensionless reaction 

 Nux = 0.05 Rex
0.9 

(a)  Derive a relationship for the average heat transfer coefficient in flow over a 
plate of length L. 

(b) Assuming the analogy between heat and momentum transfer to be valid, derive 
a relationship for the local friction coefficient. 

(c)  Assuming the gas to be air at a temperature at 400 K flowing at a velocity of 50 
m/s, estimate the heat flux 1 m from the leading edge for a plate surface 
temperature of 300 K. 

GIVEN 

• Gas flow over a roughened flat surface 
• Local Nusselt number Nux = 0.05 Rex

0.9 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
378

FIND 

(a) Average heat transfer coefficient ( )ch  for a plate of length L 
(b) The local friction coefficient (Cfx) 
(c) If gas is air at temperature (T∞) = 400 K and velocity (U∞) = 50 m/s, estimate flux (qx/A) at 1m 

from the leading edge for a plate surface temperature (Ts) = 300 K. 

ASSUMPTIONS 

• Steady state 
• she analogy between heat and momentum transfer is valid 

SKETCH 

L

Ts

Gas

T•

U•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the film temperature of 350 K 
  Thermal conductivity (k) = 0.0292 W/(m K) 

  Kinematic viscosity (ν) = 21.4 × 10–6 m2/s 

SOLUTION 

(a) The Nusselt number is defined in Table 4.3. 

 Nu = ch D

k
 = 0.05 Rex

0.9 = 0.05 ( )0.9U x

ν
∞  

 ∴  hcx = 0.05 k ( )0.9U

ν
∞  x–0.1 

The average heat transfer coefficient is obtained by integrating the local heat transfer coefficient 
between X = 0 and X = L 

 hc = 
0

1 L

L  0.05 k ( )0.9U

ν
∞  x–0.1 dx = 0.05 k ( )0.9U

ν
∞ 1

0.9
L–0.1 

 hc = 0.056 
k

L
 ReL

0.9 

(b) The relationship between the heat transfer and friction coefficients is given in Equation (4.77) 

 
2
fxC

 = 
1

3

x

x

Nu

Re Pr

 = 
0.9

1

3

0.05 x

x

Re

Re Pr

 

 Cfx = 0.1 Rex
–0.1 

1

3Pr
−

 

 
(c) From part (a) 

 hcx = 0.05 ( ) 6 2

50m/s
0.0291W/(m K)

21.2 10 m /s−
 
  ×

 (1 m)–0.1 = 791 W/(m2 K) 
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The heat flux is 

 xq

A
 = hcx (Ts – T∞) = 791 ( )2791 W/(m K) (400 K – 300 K) = 79100 W/m2 = 79.1 kW/m2 

PROBLEM 4.45 

When viscous dissipation is appreciable, the conservation of energy equation 4.6 in the 
text must take into account the rate at which mechanical energy is irreversibly converted 
to thermal energy due to viscous effects in the fluid. This gives rise to an additional term, 
φ, on the right-hand side, the viscous dissipation where 

 
φ
μ

 = ( )22 2 22
2

3

u v u v u v

y x x y x y

 ∂ ∂ ∂ ∂ ∂ ∂     + + + − +           ∂ ∂ ∂ ∂ ∂ ∂ 
 

Apply the resulting equation to laminar flow between two infinite parallel plates, with 
the upper plate moving at a velocity U. Assuming the constant physical properties [ρ, cp, 
k, μ], obtain expressions for the velocity and temperature distributions. Compare the 
solutions with the dissipation term included with the results when dissipation is 
neglected. Find the plate velocity required to produce a 1 K temperature rise in 
nominally 40°C air relative to the case where dissipation is neglected. 

GIVEN 

• Laminar flow between two infinite parallel plates 
• Upper plate moves at a velocity U∞ 
• The viscous dissipation term given above must be used in the conservation of energy equation 

FIND 

(a) Expression for velocity and temperature distributions 
(b) Compare these to solutions without the dissipation term 
(c) Plate velocity that gives a 1 K rise in 40°C air relative to the case without the dissipation term 

ASSUMPTIONS 

• Steady state 
• Constant physical properties 
• The plates are at constant temperatures, T1, T2 

SKETCH 

H

y

T1

T2

U

Fluid Velocity = ( )
Fluid Temperature = ( )

u y
T y

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 40°C 
  Thermal conductivity (k) = 0.0265 W/(m K) 

  Absolute viscosity (μ) = 19.1 × 10–6 N s/m2 
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SOLUTION 

(a) Including the viscous dissipation term in Equation (4.6) 

  ρ cp 
T T

u v
x y

∂ ∂ + ∂ ∂ 
 = k 

2 2

2 2

T T

x y

 ∂ ∂+  ∂ ∂
  

   + μ ( )22 2 22
2

3

u v u v u v

dy x x y x y

   ∂ ∂ ∂ ∂ ∂ ∂     + + + − +            ∂ ∂ ∂ ∂ ∂  
 

Eliminating the terms which are zero for this case 

 0 = k 
2

2

d T

dy
 + μ 

2du

dy
 
  

 

(Note that since the left side of Equation (4.6) drops out completely, d2T/dy2 is multiplied by k 
and not by α -see Section 4.4.) For this case, the conservation of momentum Equation (4.5) 
reduces to: 

 0 = 
2

2

d u

dy
 

The boundary conditions for these equations are 
 1. T = T1, u = 0 at y = 0 

 2. T = T2, u = U at y = H 

Integrating the momentum equation twice yields 

 
du

dy
 = c1 u(y) = c1 y + c2 

Applying the first boundary condition: c2 = 0 
Applying the second boundary condition: c1 = U/H 
Therefore, the velocity distribution between the plates is 

 u(y) = U 
y

H
  

du

dy
 = 

U

H
 

Substituting this into the energy equation yields 

 0 = k 
2

2

d T

dy
 + μ ( )2U

H
 or 

2

2

d T

dy
 = – ( )2U

k H

μ
 

Integrating twice 

 
dT

dy
 = 

2

2

U

k H

μ−  y + c1 T(y) = 
2

22

U

k H

μ−  y2 + c1 y + c2 

Applying the first boundary condition: c2 = T1 
Applying the second boundary condition: c1 = (T2 – T1)/H + (U)/(2 k H) 
Therefore, the temperature distribution is 

 T(y) = 
2

22

U

k H

μ−  y2 + 
2

2 1

2

T T U

H k H

μ −
+ 

 
 y + T1 

 T(y) = T1 + (T2 – T1) ( )22

2

y U y y

H k H H

μ  
+ −  
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(b) When dissipation is neglected, the momentum equation, and therefore, the velocity distribution, 
remain unchanged. Without viscous dissipation, the energy equation is 

 0 = 
2

2

d T

dy
 

Integrating twice 

 
dT

dy
 = c1 T(y) = c1 y + c2 

From the first boundary condition: c2 = T1 
From the second boundary condition: c1 = (T2 – T1)/H 

 ∴ T(y) = T1 + 2 1T T

H

−
 y 

Including the viscous dissipation term leads to an increase in temperature of 

  ( )22

2

U y y

k H H

μ  
−  

 

at each distance y from the lower plate. 

(c) This temperature increase is a maximum at 

  ( )2d y y

dy H H

 
−  

 = 0  y = 
2

H
 

At this point, the temperature increase is 

 ΔT = 
2

8

U

k

μ
 So U = 

8k T

μ
Δ

 

For ΔT = 1 K 

 U = 
( )

( )6 2

8 0.0265W/(m K) (1K)

19.1 10 Ns/m Ws/Nm−×
 = 105 m/s 

PROBLEM 4.46 

A journal bearing may be idealized as a flat plate with another flat plate moving parallel 
to the first and the space between the two filled by an incompressible fluid. Consider 
such a bearing with the stationary and moving plates at 10°C and 20°C respectively, the 
distance between them 3 mm, the speed of the moving plate 5 m/s, and engine oil between 
the plates. 

(a) Calculate the heat flux to the upper and lower plates, and 

(b) Determine the maximum temperature of the oil. 

GIVEN 

• Journal bearing: Two flat plates, one stationary, one moving with oil between them 
• Stationary plate temperature (Ts) = 10°C 
• Moving plate temperature (Tm) = 20°C 
• Distance between plate (H) = 3 mm = 0.003 m 
• Speed of the moving plate (Up) = 5 m/s 
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FIND 

(a) Heat flux (q/A) for the plates 
(b) The maximum temperature of the oil 

ASSUMPTIONS 

• Steady state 
• Constant physical properties 
• Negligible edge effects 
• Oil is incompressible 

SKETCH 

Tm = 20°C

Up = 5 m/s

Ts = 10°C

Fluid
u y( )

T y( )
y

H = 3 mm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 16, for engine oil at 15°C 
  Thermal conductivity (k) = 0.145 W/(m K) 
  Absolute viscosity (μ) = 1.561 (Ns)/m2 

  Prandtl number (Pr) = 196 

SOLUTION 

(a) The temperature distribution for this geometry was derived in Problem 4.45 

 T(y) = Ts + (Tm – Ts) ( )22

2

y U y y

H k H H

μ  
+ −  

 

For this case 

 T(y) = 10°C + (10°C) 
( )

( ) ( ) ( )2 221.561(Ns)/m 5m/s

2 0.145W/(m K) (Nm)/(Ws)

y y y

H H H

 
+ −  

 

 T(y) = 10°C + (10°C) 
y

H
 + (134.6 K) ( )2y y

H H

 
−  

 

This is plotted below 
Temperature Distribution in the Oil

*

*

*
*

*

*

*

*

*

*

*

*
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The first derivative of the temperature is 

 
dT

dy
 = 

2

2

1
2

2
m sT T U y

H k H H

μ−  + −  
 

The heat flux at the top plate (y = H) is 

 
q

A
 = – k 

=y H

dT

dy
 = – 

( )m sk T T

H

−
 – 

1

2
 μ Up

2 ( )1 2

H H
−  

 
q

A
 = 21 1

( )
2 p m sU k T T

H
μ − −  

 

 
q

A
 = ( ) ( ) ( )221 1

1.561(Ns)/m 5m/s (Ws)/(Nm) 0.145W/(m K)(20 C 10 C)
0.003m 2

 − ° − °  
 

 
q

A
 = 6020 W/m2 (into the plate) 

The heat flux at the bottom plate (y = 0) is 

 
q

A
 = – k 

= 0y

dT

dy
 = – k 

2

2
pm s

UT T

H k H

μ − + 
 

 = – 21 1
( )

2 p m sU k T T
H

μ + −  
 

 
q

A
 = ( ) ( ) ( )221 1

1.56(Ns)/m 5m/s (Ws)/(Nm) 0.145W/(m K)(20 C 10 C)
0.003m 2

 + ° − °  
 

 
q

A
 = – 6980 W/m2 (out of the plate) 

(b) The maximum temperature occurs where the first derivative is zero 

 0 = 
2

2

1 2

2
pm s

UT T y

H k H H

μ−  + −  
  y

H
  = 

2

( )1

2
m s

p

k T T

Uμ
−

+  

 
y

H
 = 

1

2
 + 

( ) ( )23

0.145W/(m K)(20 C 10 C)

1.561(Ns)/m 5m/s (Ws)/(Nm)

° − °
 = 0.537 

 ymax = 0.537(3 mm) = 1.61 mm 

Checking the second derivative 

 
2

2

d T

dy
 = – 

2
pU

k H

μ
 

This is negative throughout the region, therefore, T(y) is concave down throughout the region and the 
temperature at y = 1.6 mm is indeed the maximum temperature. These calculations are verified by the 
graph of T(y). Inserting ymax into the expression for T(y) yields: Tmax = T(0.00161 mm) = 48.8°C. 

 

COMMENTS 

The difference in heat fluxes at the plate qΔ ′′  = 6980 W/m2 – 6020 W/m2 = 920 W/m2 must equal the 

heat dissipated within the oil. 
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PROBLEM 4.47 

A journal bearing has a clearance of 0.5 mm. The journal has a diameter of 100 mm and 
rotates at 3600 rpm within the bearing. The journal is lubricated by an oil having a 
density of 800 kg/m3, a viscosity of 0.01 kg/ms, and a thermal conductivity of 0.14 W/(m K). 
If the bearing surface is at 60°C, determine the temperature distribution in the oil film 
assuming that the journal surface is insulated. 

GIVEN 

• A journal bearing 
• Diameter (D) = 100 mm = 0.1 m 
• Clearance (H) = 0.5 mm = 0.0005 m 
• Rotational speed (ω) = 3600 rpm 
• Oil properties  Density (ρ) = 800 kg/m3 

Viscosity (μ) = 0.01 kg/ms 
Thermal conductivity (k) = 0.14 W/(m K) 

• Temperature of bearing surface (Tb) = 60°C 

FIND 

(a) Temperature distribution in the oil film 

ASSUMPTIONS 

• Steady state 
• Uniform and constant bearing surface temperature 
• Constant fluid properties 
• The journal surface is insulated (negligible heat transfer) 

SKETCH 

D = 0.1 m

Bearing

Journal

H = 0.0005 m

Tb = 60°C

 

SOLUTION 

Since the clearance is small compared to the bearing diameter, the bearing may be idealized as parallel 
flat plates with oil between them, one stationary and one moving 

Uj

Oil

y

Insulated
Journal

Bearing
= 60°CTb

H = 0.0005 m
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(a) As shown in Problem 4.44, the velocity distribution for this geometry is linear 

 u(y) = Uj 
y

H
 where: Uj = 

2

D
 ω = 

1

2
 (0.1 m)  

   ( ) ( )rotations 2 rad 1 min
3600

s rotation 60 s

×  
  

 = 18.85 m/s 

For this geometry, the energy Equation (4.6) with viscous dissipation reduces to 

 k 
2

2

d t

dy
 = – μ 

2du

dy
 
  

 = – μ 
2

jU

H

 
    

With boundary conditions: at y = 0 T = Tb 
  at y = H      dT/dy = 0 (insulated) 

Integrating 

 k 
dt

dy
 = – μ 

2
jU

H

 
    y + c1 

Applying the second boundary condition 

 c1 = 
2
jU

H

μ
   k 

dt

dy
 = μ ( )2

1
jU y

H H
−  

Integrating 

 kT = μ 
2 2

2
jU y

y
H H

 
−  

 + c2 = μ  Uj
2 ( )21

2

y y

H H

 
−  

 + c2 

Applying the first boundary condition c2 = kTb 

 T = Tb + ( )2 21

2
jU y y

k H H

μ  
−  

 

 T = 60°C + 
( )

( ) ( )2 2

2 3

0.01kg/sm 18.85m/s 1

20.14 W/(m K) (kg m )/(Ws )

y y

H H

 
−  

 = 60°C + (25.38 K) ( )21

2

y y

H H

 
−  

  

This is shown graphically below 

Temperature Distribution in the Oil
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PROBLEM 4.48 

A journal bearing has a clearance of 0.5 mm. The journal has a diameter of 100 mm and 
rotates at 3600 rpm within the bearing. The journal is lubricated by an oil having a 
density of 800 kg/m3, a viscosity of 0.01 kg/(ms), and a thermal conductivity of 0.14 W/(m K). 
Both the journal and the bearing temperatures are maintained at 60°C. Calculate the 
rate of heat transfer from the bearing and the power required for rotation per unit 
length. 

GIVEN 

• A journal bearing 
• Diameter (D) = 100 mm = 0.1 m 
• Clearance (H) = 0.5 mm = 0.0005 m 
• Rotational speed (ω) = 3600 rpm 
• Oil properties Density (ρ) = 800 kg/m3 

Viscosity (μ) = 0.01 kg/(ms) 
Thermal conductivity (k) = 0.14 W/(m K) 

• Temperature of both surface (Tb) = 60°C 

FIND 

(a) The rate of heat transfer from the bearing 
(b) The power required for rotation per unit length 

ASSUMPTIONS 

• Steady state 
• Uniform and constant surface temperatures 
• Constant fluid properties 

SKETCH 

D = 0.1 m

Bearing

Journal

H = 0.0005 m

Tb = 60°C

 

SOLUTION 

Since the clearance is small compared to the bearing diameter, the bearing may be idealized as parallel 
flat plates with oil between them, one stationary and one moving 

Uj

Oil

y

Bearing
= 60°CTb

H = 0.0005 m

Journal
= 60°CTb
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The temperature distribution for this geometry was derived in Problem 4.45 

 T(y) = Tb + (Tj – Tb) ( )2 2

2
jm Uy y y

H k H H

 
+ −  

 

From Problem 4.47: Uj = 18.85 m/s 

 T(y) = 60°C + 
( )

( ) ( ) ( )2 2

2 2

0.1kg/(ms) 18.85m/s

2 0.14 W/(m K) (kg m )/(Ws)

y y

H H

 
−  

 

 T(y) = 60°C + (126.9 K) ( )2y y

H H

 
−  

 

The rate of heat transfer to the bearing is given by Fourier’s Law 

 q = – kA 0y
dt

dy =  = – k [π (D + 2H) L] ( )2

0

1j

y

U y

k H H

μ

=

 
− 

 
 

 
q

L
 = – π  μ U j

2 ( )2
D

H
+  

 
q

L
 = – π ( ) ( ) ( )2 2 20.1 m 0.001 m

0.01kg/ms 18.85m/s (Ws )/(kg m )
0.0005 m

+ 
  

 = – 2235 W/m 

   (into the bearing) 

The power required to turn the journal is the product of the drag force on the journal and the journal 
speed 

 P = F Uj = τw A Uj = π D L Uj τw 

The shear stress (τ) is given by Equation (4.2) 

 
P

L
 = π D Uj 

y H

du

dy
μ

=

 
  

 = π D Uj μ jU

H
 = 

1

H
 π D μ Uj

2 

 
P

L
 = 

1

0.0005 m
π (0.1 m) ( ) ( ) ( )2 3 20.01kg/(ms) 18.85m/s (Ws )/(kg m )  = 2233 W/m 

COMMENTS 

Note that for conservation of energy, the power required (P/L) should be equal to the heat loss (q/L). 
The slight difference (0.09%) in the results is due to the difference in surface area of journal and the 
bearing which was not incorporated into the analysis. 

PROBLEM 4.49 

A refrigeration truck is traveling at 130 kmph on a desert highway where the air 
temperature is 50°C. The body of the truck may be idealized as a rectangular box,  
3 m wide, 2.1 m high, and 6 m long, at a surface temperature of 10°C. Assume that the 
heat transfer from the front and back of the truck may be neglected, that the stream does 
not separate from the surface, and that the boundary layer is turbulent over the whole 
surface. If, for every 3600 W of heat loss, one ton capacity of the refrigerating unit is 
necessary, calculate the required tonnage of the refrigeration unit. 
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GIVEN 

• A refrigeration truck traveling on a desert highway 
• Speed of truck (U∞) = 130 kmph = 36.0 m/s 
• Air temperature (T∞) = 50°C 
• Truck may be idealized as a box: 3 m wide, 2.1 m high, 6 m long 
• Truck surface temperature (Ts) = 10°C 
• One ton of refrigeration unit is needed for every 3600 W of heat loss 

FIND 

• The required tonnage of the refrigeration unit 

ASSUMPTIONS 

• The heat transfer from the front and back of the truck is negligible 
• Air stream does not separate from the surface 
• The boundary layer is turbulent over the whole surface 
• Moisture of the air is negligible 
• Radiative heat transfer is negligible 

SKETCH 

Ts = 10°C

2.1 m

3
m

L = 6 m

Air

= 130 kmph

= 50°C

U

T
•

•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average of T∞ and Ts (30°C) 

  Kinematic viscosity (ν) = 16.7 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0258 W/(m K) 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The sides of the truck can be visualized as flat plates with air flowing over them. The Reynolds 
number at the back of the truck is 

 ReL = 
U L

ν
∞  = 

–6 2

(36.0m/s) (6m)

16.7 10 m /s×
 = 1.28 × 107 

The total area of the sides, top, and bottom of the truck is 

 A = 2 (6 m) (3 m) + 2 (6 m) (2.1 m) = 61.2 m2 
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The average heat transfer coefficient over the truck with a turbulent boundary layer is given by 
Equation (4.82) 

 hc = 
k

L
 0.036 

1

3Pr  ReL
0.8 

 hc = 
0.0258W/(m K)

6 m
 0.036 

1

3(0.71)  (1.28 × 107)0.8 = 67.0 W/(m2 K) 

The rate of convective heat transfer to the truck is 

 q = hc A (Ts – T∞) = 67.0 W/(m2 K) (61.2 m2) (50°C – 10°C) = 1.64 × 105 W/m 

The tonnage required to cool the truck is 

 Tonnage = 1.64 × 105 W 
1 ton

3600 W
 
  

 = 45.5 tons 

COMMENTS 

Solar gain may increase the required tonnage on a sunny day depending on the emissivity of the truck 
surface. Including the laminar portion of the boundary layer would result in an average heat transfer 
coefficient of 64 W/(m2 K) and a 5% decrease in the calculated required tonnage. 

PROBLEM 4.50 

At the equator, where the sun at noon is approximately overhead, a near optimum 
orientation for a flat plate solar hot water heater is in the horizontal position. Suppose a 
4 m × 4 m solar collector for domestic hot water use is mounted on a horizontal roof as 
shown in the attached sketch. The surface temperature of the glass cover is estimated to 
be 40°C, and air at 20°C is blowing at a velocity of 24 kmph over the roof. Estimate the 
heat loss by convection from the collector to the air when the collector is mounted 

 (a) at the leading edge of the roof [Lc = 0] and, 

 (b) at a distance of 10 m from the leading edge. 

GIVEN 

• A solar collector on a flat, horizontal roof 
• Collector area (L × w) = 4 m × 4 m 

• Glass cover surface temperature (Ts) = 40°C 
• Air temperature (T∞) = 20°C 
• Air velocity (U∞) = 24 kmph = 6.7 m/s 

FIND 

The heat loss by convection (qc) from the collector when it is mounted 
 (a) at the leading edge of the roof (Lc = 0) 

 (b) at a distance of 10 m from the leading edge (Lc = 10 m) 

ASSUMPTIONS 

• Steady state 
• The collector surface is connected smoothly to the roof surface 
• Uniform collector surface temperature 
• Moisture in the air is negligible 
• Neglect radiation heat transfer losses 
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SKETCH 

Flat
Roof

Lc

Collector
= 40° CTs

Air
= 15 mph
= 20°C

U
T
•

•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the film temperature (30°C) 

  Kinematic viscosity (ν) = 16.7 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0258 W/(m K) 

  Prandtl number (Pr) = 0.71 

SOLUTION 

(a) For Lc = 0, the Reynolds number at the trailing edge of the collector is 

 ReL = 
U L

ν
∞  = 

6 2

(6.7 m/s)(4m)

16.7 10 m /s−×
 = 1.61 × 106 > 5 × 105  

   (Turbulent) 

The average convective heat transfer coefficient over the collector with a mixed boundary layer is 
given by Equation (4.83) 

 hc = 
k

L
 0.036 

1

3Pr  [ReL
0.8 – 23,200] 

 hc = 
0.0258W/(m K)

4 m
 0.036 

1

3(0.71)  [(1.61 × 106)0.8 – 23,200] = 14.3 W/m2 K 

The rate of convective heat loss from the collector is: 

 q = hc A (Ts – T∞) = 14.3 ( )214.3W/(m K)  (4 m) (4 m) (40°C – 20°C) = 4572 W/m 

(b) For Lc = 10 m, the boundary layer will be turbulent over the entire collector surface. The average 
heat transfer coefficient over the collector can be calculated by integrating the local heat transfer 
coefficient, Equation (4.81), between Lc and Lc + L and dividing by the length of the collector L 

 hc = 
1 c

c

L L

cxL
h

L

+
 dx = 

1 c

c

L L

L

k

L x

+
  0.0288

1 0.8
3

U x
Pr

ν
∞ 

  dx  

  = 0.0288 ( )
0.81

0.23 c

c

L L

L

k U
Pr x

L ν
+ −∞   

 hc = 0.0288 
1 0.8
3

Uk
Pr

L ν
∞ 

   1.25 [(L + Lc)
0.8 – Lc

0.8] 

hc =  0.036 
1 0.8
3

6 2

0.0258W/(mK) 6.7 m/s
(0.71)

4m 16.7 10 m /s−
 
 × 

[(14 m)0.8 – (10 m)0.8] = 12.3π  
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The rate of convective heat loss from the collector is 

 q = hc A (Ts – T∞) = [12.3 W/(m2 K)] (4 m) (4 m) (40°C – 20°C) = 3928 W/m 

COMMENTS 

Note that placing the collector 10 m from the leading edge of the roof lowers the rate of convective 
loss by about 14% because the local convective coefficient is largest at the leading edge. 

PROBLEM 4.51 

An electronic device is to be cooled by air flowing over aluminum fins attached to its 
lower surface as shown 

Electronic
Device

Aluminum
Fins

Insulated

10 mm

9 mm

3 mm 1 mm

3 mm

6 mm

U•

 

U∞ = 10 m/s 

T∞ Air = 20°C 

The device dissipates 5 W and the thermal contact resistance between the lower surface 
of the device and the upper surface of the cooling fin assembly is 0.1 cm2 K/W. If the 
device is at a uniform temperature and insulated at the top, estimate that temperature 
under steady state. 

GIVEN 

• Electronic device attached to aluminum fins as shown above 
• Air velocity (U∞) = 10 m/s 

• Air temperature (T∞) = 20°C 
• The device temperature is uniform 
• Top is insulated 
• Heat dissipation from the device ( )Gq  = 5 W 

• Contact resistance between the device and the fins (Ri) = 0.1 cm2 K/W 

FIND 

• The steady state temperature of the device (Tdevice) 

ASSUMPTIONS 

• Fin material is pure aluminum 
• Heat transfer is one dimensional through the 3 mm thickness of aluminum 
• Heat loss through the insulation is negligible 
• Convection from the fins may be approximated as parallel flow over a flat plate 
• Heat loss from the edges of the device is negligible 
• Heat loss from the front and back edges of the fins is negligible 
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, for aluminum at 127°C: Thermal conductivity (ka) = 240 W/(m K) 
From Appendix 2, Table 27, for dry air at 20°C 

  Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0251 W/(m K) 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The thermal circuit for heat flow from the device to the air is shown below 

T•Tdevice

Rcontact Raluminum Rfin

Ts

 

The Reynolds number at the trailing edge of the device is 

 ReL = 
U L

ν
∞  = 

6 2

(10m/s) (0.01 m)

15.7 10 m /s−×
 = 6.37 × 103 (Laminar) 

The average heat transfer coefficient over the aluminum fins is given by Equation (4.38) 

 hc = 
k

L
 0.664 

11

32
LRe Pr  = 

0.0251W/(m K)

0.01m
 0.664

11
3 32(6.37 10 ) (0.71)×  = 118.7 W/(m2 K) 

The rate of heat transfer from a single fin with convection over the tip is given in Table 2.1 

 q =  M 

sinh ( ) cosh ( )

cosh ( ) sinh ( )

f f
a

f f
a

h
m L m L

m k
h

m L m L
m k

 +   
 +   

  (Lf = 0.006 m) 

 where Lf = 0.006 m    and    m = c

a c

h P

k A
 

P = fin perimeter = 20 mm = 0.02 m (Neglecting front and back surfaces.) 

Ac = fin cross sectional area = (0.01 m) (0.001 m) = 1 × 10–5 m2 

 ∴ m = 
2

5 2

118.7 W/(m K)(0.02 m)

240W/(m K)(1 10 m )−×
 = 31.4 m–1 

 m Lf = ( )1
31.4

m
 (0.006 m) = 0.189 

 M = (Ts – T∞) c a ch P k A  

 M =  (Ts – T∞) ( )2 5 2118.7 W/(m K)(0.02 m) 240W/(m K) (1 10 m )−×  = 0.076 (Ts – T∞) W/K 

 c

a

h

mk
 = 

( )

2

–1

118.7 W/(m K)

31.4 m 240W/(m K)
 = 0.0158 
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The rate of heat transfer from a single fin is 

 qf = 0.076 (Ts – T∞) W/K 
sinh (0.189) 0.0158 cosh (0.189)

cosh (0.189) 0.0158sinh (0.189)

+
+

 = 0.0153 (Ts – T∞) W/K 

The total heat transfer is the sum of the heat transfer from the aluminum base not covered by the fins 
and the heat transfer from three fins. This must equal the heat generation rate 

 q = hc Ab (Ts – T∞) + 3 [ ]0.0153( )W/KsR T∞−  = Gq  

Where Ab = 2(0.003 m) (0.01 m) = 0.6 × 10–4 m2 
Solving for Ts 

 Ts = T∞ + 
0.046W/K

G

c b

q

h A +


 = 20°C + 
2 4 2

5 W

118.7 W/(m K)(0.6 10 m ) 0.046W/K−× +
 = 114°C 

The device temperature is given by 

 Tdevice = Ts + Gq  (Rcontact + Raluminum) 

where 

 Raluminum = 
a

t

A k
 = 

( )
0.003 m

(0.01m) (0.009 m) 240W/(m K)
 = 0.1389 K/W 

 Rcontact = iR

A
 = 

20.1(cm K)/W

(1cm)(0.9cm)
 = 0.1111 K/W 

 ∴ Tdevice = 114°C + 5 W (0.1111 + 0.1389) K/W = 115°C 

PROBLEM 4.52 

An array of sixteen silicon chips arranged in 2 rows are insulated at the bottom and 
cooled by air flowing in forced convection over the top. The array can be located either 
with its long side or its short side facing the cooling air. If each chip is 10 mm × 10 mm in 
surface area and dissipates the same power, calculate the rate of maximum power 
dissipation permissible for both possible arrangements if the maximum permissible 
surface temperature of the chips is 100°C. What would be the effect of a turbulator on 
the leading edge to trip the boundary layer into turbulent flow? The air temperature is 
30°C and its velocity is 25 m/s. 

GIVEN 

• An array of sixteen silicon chips cooled by air flowing over the top 
• Bottom is insulated 
• Dimensions of each chip = 10 mm × 10 mm = 0.01 m × 0.01 m 
• Array is 2 rows, 8 chips per row 
• Each chip dissipates the same power ( Gq /A) 

• Maximum surface temperature (Ts) = 100°C 
• Air temperature (T∞) = 30°C 
• Air velocity (U∞) = 25 m/s 
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FIND 

The maximum power dissipation permissible (qG/A) for 
(a) The long side facing the air flow 
(b) The short side facing the air flow 
(c) The effect of a turbulator on the leading edge 

ASSUMPTIONS 

• Steady state 

SKETCH 

Air Case(b)

Insulated

Case (a)
Air

= 25 m/s
= 30°C

U
T
•
•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27 for dry air at the film temperature (65°C) 

  Kinematic viscosity (ν) = 19.9 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0283 W/(m K) 

  Prandtl number (Pr) = 0.71 

SOLUTION 

(a) With the long edge facing the air flow, L = (2) (.01 m) = 0.02 m 

 ReL = 
U L

ν
∞  = 

6 2

(25m/s) (0.02 m)

19.9 ×10 m /s−  = 2.51 × 104 < 5 × 105 (Laminar) 

The local heat transfer coefficient for laminar flow is given by Equation (4.37) 

 hcx = 
k

x
 0.332 

11

32
xRe Pr  

The transfer coefficient decreases with increasing x and it will be minimum at x = L. The permissible 
heat generation rate for a given maximum surface temperature will therefore be limited to the heat flux 
from the plate at x = L 

 ( )
max

Gq

A
= ( )G

x L

q

A =
= hcL (Ts – T∞) = 

k

L
 0.332 

11

32
LRe Pr  (Ts – T∞) 

 ( )
max

Gq

A
= 

0.0283W/(m K)

0.02 m
 0.332 

11
4 32(2.5 10 ) (0.71)× (100°C – 30°C) = 4650 W/m2 

 = 0.465 W/chip 

(b) With the short edge facing the air flow, L = (8) (0.01 m) = 0.08 m 

 ReL = 
U L

ν
∞  = 

6 2

(25m/s) (0.08m)

19.9 ×10 m /s−  = 1.01 × 105 (still laminar) 
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As shown in part (a) 

 ( )
max

Gq

A
= 

0.0283W/(m K)

0.08m
 0.332 

1
5 2(1.01 10 )×

1

3(0.71) (100°C – 30°C) = 2330 W/m2  

 = 0.233 W/chip 

(c) Assuming the boundary layer is turbulent over the entire array, the local heat transfer coefficient is 
given by Equation (4.81) 

 hcx = 0.0288 
1

0.8 3
x

k
Re Pr

x
  

Therefore, the maximum heat generation rate is 

 ( )
max

Gq

A

 = 0.0288 
k

L
 ReL

0.8 
1

3Pr  (Ts – T∞) 

For the long edge facing the air flow 

 ( )
max

Gq

A


 = 0.0288 

0.0283W/(m K)

0.02 m
(2.5 × 104)0.5 

1

3(0.71) (100°C – 30°C) 

 ( )
max

Gq

A

  = 0.842 
W

chip
 

For the short edge facing the air flow 

 ( )
max

Gq

A


= 0.0288 

0.0283W/(m K)

0.08m
5 0.8(1.01 10 )×

1

3(0.71) (100°C – 30°C) 

 ( )
max

Gq

A


 = 0.641 W/chip 

COMMENTS 

Orienting the short edge rather than the long edge into the air flow allows about a doubling of the heat 
generation rate for the laminar case and about a 31% increase in the turbulent case. Note that the heat 
transfer coefficient decreases less rapidly with x for a turbulent boundary layer than it does for a 
laminar boundary layer. 
The turbulator allows an increase in the heat generation rate of about 80% for the long edge oriented 
towards the air flow. 

PROBLEM 4.53 

The air conditioning system in a new Chevrolet Van for use in desert climates is to be 
sized. The system is to maintain an interior temperature of 20°C when the van travels at 
100 km/h through dry air at 30°C at night. If the top of the van can be idealized as a flat 
plate 6 m long and 2 m wide, and the sides as flat plates 3 m tall and 6 m long, estimate 
the rate of which heat must be removed from the interior to maintain the specified 
comfort conditions. Assume the heat transfer coefficient on the inside of the van wall is 
10 W/(m2 K). 
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GIVEN 

• A Chevrolet van traveling through dry air 
• Interior van temperature (Ti) = 20°C 
• Velocity (U∞) = 100 km/h 
• Air temperature (T∞) = 30°C 
• Top dimensions = 6 m long, 2 m wide 
• Side dimensions = 6 m long, 3 m wide 

FIND 

• The rate of which heat must be removed (q) 

ASSUMPTIONS 

• Heat gain from the front, back, and bottom of the van is negligible 
• Radiative heat transfer is negligible 
• Van walls are insulated 
• Thermal resistance of the sheet metal van walls is negligible 
• The interior heat transfer coefficient ( )ch  = 10 W/(m2 K) 

SKETCH 
2 m

3 m

6 m

Air

U• = 100 km/h
h

T• = 30°C  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at film temperature (25°C) 

  Kinematic viscosity (ν) = 16.2 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0255 W/(m K) 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The thermal circuit for the van walls and top is shown below 

T•

Rci Rco

Ti

 

The average heat transfer coefficient on the outside of the van (hco) can be calculated by treating the 
top and sides as flat plates and length (L) = 6 m 

 ReL = 
U L

ν
∞  = 

( )
( )6 2

100km/h 1000m/km (6m)

16.2 10 m /s 3600s/h−×
 = 1.03 × 107 > 5 × 105  

   (Turbulent) 
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For a mixed boundary layer, Equation (4.83) gives the average heat transfer coefficient on the outside 
of the van 

 hco = 0.036 
1

3k
Pr

L
 [ReL

0.8 – 23,200]  

 hco = 0.036 
( ) 1

30.0255W/(mK)
(0.71)

6m
 [(1.03 × 107)0.8 – 23,200] = 52.5 W/(m2 K) 

The value of the thermal resistances are 
Outside 

 Rco = 
1

o oh A
 = ( )2

1

52.5W/(m K) [2(3m)(6m) 2 m(6 m)]+
 = 0.00040 K/W 

Inside 

 Rci = 
1

i ih A
 = 

2

1

10W/(m K)[2(3m)(6m) 2 m(6m)]+
 = 0.00208 K/W 

The rate at which heat must be removed is equal to the convective heat gain  

 q = 
co ci

T

R R

Δ
−

 = 
30 C 20 C

(0.0004 0.002.8) K/W

° − °
+

 = 4032 W 

COMMENTS 

Radiative heat transfer may not be negligible depending on the color of the van and the temperature of 
the night sky. 

PROBLEM 4.54 

To cool an electronic device, six identical aluminum fins, as shown in the figure below, 
are attached. Cooling air is available at a velocity of 5 m/s from a fan at 20°C. If the 
average temperature at the base of a fin is not to exceed 100°C, estimate the maximum 
permissible power dissipation for the device. 

6 cm

1 cm

1 mm

6 mm

Air

 

GIVEN 

• Aluminum fins with air flowing over them 
• Air velocity (U∞) = 5 m/s 
• Air temperature (T∞) = 20°C 
• Maximum average temperature of the fin base (Ts) = 100°C 

FIND 

• The maximum permissible power dissipation q 

ASSUMPTIONS 

• Steady state 
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the film temperature (60°C) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0279 W/(m K) 

  Prandtl number (Pr) = 0.071 

From Appendix 2, Table 12, for aluminum at 100°C 
  Thermal conductivity (kal) = 239 W/(m K) 

SOLUTION 

The Reynolds number at the trailing edge of the fins is 

 ReL = 
U L

ν
∞  = 

6 2

(5m/s) (0.06m)

19.4 10 m /s−×
 = 1.55 × 104 < 1 × 105 (Laminar) 

The average transfer coefficient for a laminar boundary layer from Equation (4.38) is 

 hc = 
k

L
0.664

11

32
LRe Pr  = 

( )0.0279 W/(m K)

0.06m
0.664

11
4 32(1.55 10 ) (0.71)×  = 34.3 W/(m2 K) 

The maximum permissible heat generation is equal to the sum of the heat loss from the fins and heat 
loss from the wall area between the fins. The heat loss from a single fin is given in Table 2.1 

 qf = M 
( )
( )

sinh ( ) / cosh ( )

cosh ( ) / sinh ( )
f a f

f a f

m L h m k m L

m L h m k m L

+
+

 

 where Lf = 0.006 m and m = c

a c

h P

k A
 

P = fin perimeter = 2(0.06 m) + 2(0.001 m) = 0.122 m 

Ac = fin cross sectional area = (0.001 m) (0.06 m) = 6 × 10–5 m2 

 ∴ m = 
2

5 2

34.3W/(m K)(0.122 m)

239 W/(m K)(6 10 m )−×
 = 17.1 m–1 

 m Lf = 17.1 m–1 (0.006 m) = 0.10 

 M = (Tb – T∞) c a ch P k A  

 M = (100°C – 20°C) ( )2 5 234.3W/(m K)(0.122 m) 239 W/(m K) (6 10 m )−× = 19.6 W 

 c

a

h

m k
 = 

( )
( )

2

–1

34.3W/(m K)

17.1m 239 W/(m K)
 = 0.0084 

 ∴ qf = 19.6 W 
sinh (0.1) 0.0084cosh (0.1)

cosh (0.1) 0.0084sinh(0.1)

+
+

 = 1.94 W 

Summing the heat loss from the six fins and the five wall areas 

 q = 6qf  + 5qw = 6qf  + 5hc Aw (Ts – T∞) 

 q = 6 (1.94 W) + 5 
2

W
34.3

m K
 
   (0.01 m) (0.06 m) (100°C – 20°C) 

 = 11.6 W + 8.2 W = 19.8 W 
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COMMENTS 

The fins account for about 60% of the total heat transfer. The rate of heat transfer without the fins 
would be about 9.2 W—less than half of that with the fins. If the entire fin temperature was assumed 
to be at the base temperature, the calculated heat loss rate would be 21.0 W—about 4% higher than 
that calculated above. This means that the fin efficiency is very high and Lf could therefore be 
increased to increase the heat dissipation quite effectively. 

PROBLEM 4.55 

A row of 25 square computer chips each 10 × 10 mm in size and 1 mm thick and spaced 1 
mm apart is mounted on an insulating plastic substrate as shown below. The chips are to 
be cooled by nitrogen flowing along the length of the row at –40°C and atmospheric 
pressure to prevent their temperature from exceeding 30°C. The design is to provide for 
a dissipation rate of 30 milliwatts per chip. Estimate the minimum free stream velocity 
required to provide safe operating conditions for every chip in the array. 

GIVEN 

• A row of 25 square computer chips with nitrogen flowing over them 
• Chip dimensions = 10 mm × 10 mm = 0.01 m × 0.01 m 
• Chip thickness = 1 mm = 0.001 m 
• Maximum temperature of the chips (Ts) = 30°C 
• Nitrogen temperature (T∞) = – 40°C 
• Heat dissipation = 30 m W/chip = 0.03 W/chip 

FIND 

• The minimum free stream velocity (U∞) 

ASSUMPTIONS 

• Steady state 
• Heat transfer from the edge of the chips is negligible 
• The chips trip the boundary layer into turbulence 
• Radiative heat transfer is negligible 

SKETCH 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 32, for nitrogen at the film temperature (– 5°C) 

  Kinematic viscosity (ν) = 22.5 × 10–6 m2/s 

  Thermal conductivity (k) = 0.03106 W/(m K) 

  Prandtl number (Pr) = 0.698 

SOLUTION 

The heat flux from the chips is 

 Gq

A


 = 

2 2

0.03W/chip

(0.01) m /chip
 = 300 W/m2 
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The local heat transfer coefficient for a turbulent boundary layer is given by Equation (4.81) 

 hcx = 0.0288 
1 0.8
3

U xk
Pr

x ν
∞ 

   

Since hcx decreases with increasing x, the lowest heat transfer coefficient occurs at the trailing edge of 
the array. Therefore, the minimum velocity needed o keep the trailing edge of the array at 30°C will be 
determined by conditions at x = L. The convective heat flux at the trailing edge is 

 cq

A
 = hcL (Ts – T∞) = Gq

A
 

 Gq

A
 = 0.0288 

1 0.8
3

U Lk
Pr

L ν
∞ 

  (Ts – T∞) 

Solving for free stream velocity 

 U∞ = 84.29 

1.251

3

( )
G

s

q L
Pr

L A k T T

ν −

∞

 
 

− 
 

 U∞ = 84.29 
6 222.5 10 m /s

0.274 m

−×
  

  
( )

1.251
2 3 0.274 m

300W/m (0.698)
0.03106W/(m K) (30 C 40 C)

− 
 

° + ° 
 = 0.75 m/s 

The Reynolds number at the trailing edge for this velocity is 

 ReL = 
U L

ν
∞  = 

6 2

(0.75m/s) (0.274 m)

22.5 10 m /s−×
 = 9133 

COMMENTS 

Assuming the boundary layer is laminar would lead to higher U∞, (1.35 m/s). 

PROBLEM 4.56 

It has been proposed to tow icebergs from the polar region to the Middle East in order to 
supply potable water to arid regions there. A typical iceberg suitable for towing should 
be relatively broad and flat. Consider an iceberg 0.25 km thick and 1 km square. This 
iceberg is to be towed at 1 km/h over a distance of 6000 km through water whose average 
temperature during the trip is 8°C. Assuming that the interaction of the iceberg with its 
surrounding can be approximated by the heat transfer and friction at its bottom surface, 
calculate the following parameters: 

(a) The average rate at which ice will melt at the bottom surface. 

(b) The power required to tow the iceberg at the designated speed. 

(c) If towing energy costs are approximately 50 cents per kilowatt hour of power 
and the cost of delivering water at the destination can also be approximated by 
the same figure, calculate the cost of fresh water. 

The latent heat of fusion of the ice is 334 kJ/kg and its density is 900 kg/m3. 
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GIVEN 

• An ice sheet being towed through water 
• Ice sheet dimensions: 1 km × 1 km × 0.25 km = 1000 m × 1000 m × 250 m 
• Towing speed (U∞) = 1 km/h = 1000 m/h 
• Distance towed = 6000 km = 6 × 106 m 
• Average water temperature (T∞) = 8°C 
• Towing cost = $.50/kWh 
• Latent heat of fusion of the ice (hsf) = 334 kJ/kg 
• Density of he ice (ρi) = 900 kg/m3 

FIND 

(a) Average melt rate (m) at the bottom surface 
(b) Power (P) required to tow the iceberg 
(c) Cost of delivered water (= towing cost) 

ASSUMPTIONS 

• Heat transfer and friction of the sides of the iceberg are negligible 
• Properties of sea water are the same as fresh water sketch 

1000 m

1000 m

250 m

Water = 1 km/hU• T• = 8°C  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at the film temperature (4°C) 

  Kinematic viscosity (ν) = 1.586 × 10–6 m2/s 

  Thermal conductivity (k) = 0.566 W/(m K) 

  Density (ρw) = 1000 kg/m3 

  Prandtl number (Pr) = 11.9 

SOLUTION 

(a) The Reynolds number at the trailing edge of the iceberg is 

 ReL = 
U L

ν
∞  = 

( )6 2

(1000m/h) (1000m)

(1.586 10 m /s) 3600s/h−×
 = 1.75 × 108 > 5 × 105 

Therefore, the flow is turbulent. The Reynolds number is large enough that the laminar region of the 
boundary layer will be neglected. The average heat transfer coefficient over the iceberg bottom is 
given by Equation (4.82) 

 hc = 0.036 
1

3k
Pr

L
 ReL

0.8 = 0.036 
( ) 1

30.566W/(m K)
(11.9)

1000m
 (1.75 × 108)0.8 = 182.8 W/(m2 K)  
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The average rate of convective heat transfer from the bottom of the iceberg is 

 q = hc A (Ts – T∞) = ( )2182.8 W/(m K) (1000 m) (1000 m) (8°C – 0°C) = 1.46 × 109 W 

This will cause the ice to melt at an average rate (m) given by 

 m = 
sf

q

h
 = 

( )
( )

91.46 10 W J/(Ws)

334 kJ/kg 1000J/kJ

×
 = 4370 kg/s 

(b) The power required to tow the iceberg is the product of the drag force on the bottom of the iceberg 
and the towing speed 

 P = D U∞ = τs A U∞ 

but by definition [Equation (4.13)] 

 Cf = 
2

2 s

w U

τ
ρ ∞

  τs = 
1

2
 ρw U∞

2 Cf 

The friction coefficient for turbulent flow, 5 × 105 < Re < 107, is given by Equation (4.78b). Although 
this relation has not been verified for Re > 107, it will be extrapolated to Re = 1.75 × 108 for this 
problem 

 Cf = 0.072 
1

5
LRe

−
  P = 0.036 

1

5
LRe

−
 ρw A U∞

3 

 P = 0.036 (1.75 × 108)–0.2 ( )31000 kg/m (1000 m) (1000 m) 
31000m/h

3600s/h
 
  

  

 =  1.73 × 104 
2

kg m m

ss
 = 17.3 W 

(c) The cost of towing (C) per unit mass of delivered ice is 

 Cost = 
Total cost

Mass delivered
 = 

(Towing power) (Towing time) (Towing energy cost)

Initial mass (Rate of melting) (Towing time)−
 

 Towing time = 
6000k m

1km/h
 = 6000 h 

 Initial mass = (Volume (ρi) = (1000 m)(1000 m)(250 m) ( )3900kg/m  = 2.25 × 1011 kg 

 ∴ Cost = 
( )11

17.3kW (6000h)($.50/kWh)

2.25 10 kg (4370kg/s) (6000h) 3600s/h× −
 = 4 × 10–7 

$

kg
 

COMMENTS 

About 42% of the ice melts during the journey. There are 3.79 kg of water in a gallon, therefore, the 
transportation costs are $1 for every 6.6 million gallons of water. 

PROBLEM 4.57 

In a manufacturing operation, a long strip sheet of metal is transported on a conveyor at 
a velocity of 2 m/s while a coating on its top surface is to be cured by radiant heating. 
Suppose that infrared lamps mounted above the conveyor provide a radiant flux of 2500 
W/m2 on the coating. The coating absorbs 50% of the incident radiant flux, has an 
emissivity of 0.5, and radiates to surrounding at a temperature of 25°C. In addition, the 
coating also loses heat by convection though a heat transfer coefficient between both the 
upper and lower surface and the ambient air which may be assumed to be at the same 
temperature as the environment. Estimate the temperature of the coating under steady 
state conditions. 
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GIVEN 

• A long strip of sheet metal on a conveyor 
• Velocity (U∞) = 2 m/s 
• Radiant flux on upper surface (qlamps/A) 2500 W/m2 
• Coating absorbs 50 of incident radiant flux, absorptivity (α) = 0.5 
• Surroundings temperature (T∞) = 25°C = 298 K 
• Emissivity of coating (ε) = 0.5 

FIND 

• The temperature of the coating (Ts) 

ASSUMPTIONS 

• Steady state 
• The thermal resistance of the sheet metal is negligible 
• The surroundings behave as a blackbody 
• The ambient air is still 
• The ambient temperature is constant 

SKETCH 

T• = 25°C

qc

qc

Ts = ?

2 m/s

qlamps /A
2= 2500 w/m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 25°C (as a first guess) 

  Kinematic viscosity (ν) = 16.2 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0255 W/(m K) 

  Prandtl number (Pr) = 0.71 

From Appendix 1, Table 5, 

  The Stephen-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The length of metal strip (Lc) needed to reach the critical Reynolds number is given by 

 ReL
cU L

ν
∞  = 5 × 105   Lc = 

55 10

U

ν
∞

×
 = 

( )5 6 25 10 16.2 10 m /s

2

−× ×
 m/s = 4.1m 

Assuming the metal strip is less than 4.1 m, the flow will be laminar. The estimate of surface 
temperature will be based on the average convective heat transfer coefficient in the laminar region 
which is given by Equation (4.38) 

 hc = 
k

L
0.664

11

32
LRe Pr  = 

( )0.0255W/(m K)

4.1 m
0.664

11
5 32(5 10 ) (0.71)×  = 2.61 W/(m2 K) 
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By the conservation of energy, of steady state 

 α lampsq

A

 
    = rq

A
 + 2 cq

A
 

 where rq

A
 = ε σ (Ts

4 – T∞
4) [Equation (1.17)] 

 cq

A
 = hc (Ts – T∞) [Equation (1.10)] 

 ∴ α lampsq

A

 
    = ε σ   (Ts

4 – T∞
4) + 2 hc (Ts – T∞) 

 0.5 ( )22500W/m  = 0.5 ( )8 2 45.67 10 W/(m K )−× [Ts
4 – (298 K)4] + 2 ( )22.61W/(m K) (Ts – 298 K) 

Checking the units for consistency, then dropping them for clarity 

  2.835 × 10–8 Ts
4 + 5.22 Ts – 3029 = 0 

Solving by trial and error 

 Ts = 417 K = 144°C 

COMMENTS 

Note that absolute temperatures must by used in the radiation equation. 
Heat loss from the sheet is nearly equally divided between radiation and convection. 
The air properties where taken at the ambient temperature. The estimate could be improved by 
evaluating the properties at the corrected film temperature, (25°C + 144°C)/2 = 135°C and calculating 
a new steady state surface temperature. 
Because of the small forced convection component in this problem, natural convection from the metal 
strip may be important. Natural convection will be covered in Chapter 5. 

PROBLEM 4.58 

A 2 m by 2 m flat plate solar collector for domestic hot water heating is shown 
schematically in the sketch. Solar radiation at a rate of 750 W/m2 is incident on the glass 
cover which transmits 90% of the incident flux. Water flows through the tubes soldered 
to the backside of the absorber plate, entering with a temperature of 25°C. The Glass 
cover has a temperature of 27°C in the steady state and radiates heat with an emissivity 
of 0.92 to the sky at –50°C. In addition, the glass cover losses heat by convection to air at 
20°C flowing over its surface at 30 kmph. 

Air Flow

Air Space

Glass Cover

Absorber
Plate

Tubing for
Fluid

Insulation

qs

A

 

(a)  Calculate the rate at which heat is collected by the working fluid, i.e., the water in 
the tubes, per unit area of the absorber plate. 

(b)  Calculate the collector efficiency ηc defined as the ratio of useful energy 
transferred to the water in the tubes to the solar energy incident on the collector 
cover plate. 

(c)  Calculate the outlet temperature of the water if its flow rate through the collector 
is 0.02 kg/s. The specific heat of the water is 4179 J/(kg K). 
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GIVEN 

• A flat plate solar collector with air flowing over it 
• Collector dimensions = 2 m × 2 m 
• Incident solar flux = 750 W/m2 
• Glass cover transmits 90% of solar flux 
• Water enters tubes at a temperature (Twi = 25°C) 
• Glass cover steady state temperature (Ts) = 27°C = 300 K 
• Emissivity of glass cover (ε) = 0.92 
• Sky temperature (T∞ r) = –50°C = 223 K 
• Ambient air temperature (T∞ c) = 20°C = 293 K 
• Air speed (U∞) = 8.33 m/s 
• Water flow rate (m) = 0.02 kg/s 
• Specific heat of water (cp) = 4179 J/(kg K) 

 

FIND 

(a) Heat flux to the water qw/A 

(b) Collector efficiency (ηc) = 
energy to the water

incident solar energy
 

(c) Outlet temperature of the water (Two) 

 

ASSUMPTIONS 

• Steady State 
• Radiative heat transfer between the absorber and the glass plate is negliagible 
• The absorber plate absorbs all the incident solar radiation 
• Radiative heat transfer from the absorber plate, through the glass to the sky, is negligible 
• Heat transfer through the back and sides of the collector is negligible 
• Solar radiation blocked by the collector frame is negligible 
• Glass cover and absorber temperatures are uniform 
• The solar energy absorbed by the glass is negligible 
• The sky behaves as a blackbody 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the film temperature (23.5°C) 

  Kinematic viscosity (ν) = 16.0 × 10–6 m2/s 

  Thermal conductivity (k) = 0.0295 W/(m K) 

  Prandtl number (Pr) = 0.71 

From Appendix 1, Table 5 

  The Stephan-Boltzmann Constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The glass cover absorbs solar energy and also absorbs energy from the absorber plate. The cover loses 
heat to ambient by convection to the air and by reradiation. An energy balance on the glass cover will 
allow us to determine the rate of heat transfer from the absorber plate to the glass cover plate. The 
absorber plate absorbs solar energy but loses some of this to the glass cover plate as described above. 
Therefore, an energy balance on the absorber plate will allow us to determine the rate at which energy 
is absorbed by the absorber plate. Based on the assumptions listed above, this will equal the rate at 
which energy is delivered to the water. 
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(a) Energy balance on the glass cover plate 
Radiative flux to the sky (qr /A) + Convective flux to the air (qc /A) = Net energy gain from the 
absorber plate (qA–G /A) + Solar energy absorbed (qs /A) 

 where  rq

A
 = ε σ (Ts

4 – T∞ r
4)  [Equation (1.17)] 

 cq

A
 = ch (Ts – T∞ c)  [Equation (1.10)] 

 sq

A
 = (0.1) ( )2750W/m  = 75 W/m2 

 
A Gq

A
−

 = ε σ (Ts
4 – T∞ r

4) + hc (Ts –T∞ c) – qs/A 

The Reynolds number at the trailing edge of the glass cover plate is 

 ReL = 
U L

ν
∞  = 

6 2

8.33 m/s (2 m)

(16.2 10 m /s)−×
 = 1.03 × 106 > 5 × 105 

Therefore, the boundary layer is mixed and the average convective heat transfer coefficient is given by 
Equation (4.83) 

 h∞ = 0.036 
1

3k
Pr

L
[ReL

0.8 – 23,200] 

 hc = 0.036
( )0.0295W/(m K)

2 m

1

3(0.71) [(1.03 × 106)0.8 – 23,200] = 19.8 W/(m2 K) 

 
A Gq

A
−

 = 0.92 ( )8 2 45.67 10 W/(m K )−× [(300 K)4 – (223 K)4] + 19.8 W/(m2 K) 

   (300 K – 293 K) – 75 W/(m2 K) 

 
A Gq

A
−

 = (294 + 138.6 – 75) W/m2 = 357.6 W/m2 

Energy balance on the absorber plate 
heat flux to the water (qw/A) = solar gain (0.9 qs/A) heat flux to glass cover (qA–G/A) 

 wq

A
 = 0.9 ( )2750W/m  – 357.6 W/m2 = 317.4 W/m2 

(b) Collector efficiency 

 ηc = 

w

s

q

A
q

A

 = 
317.4

750
 = 0.423 = 42.3% 

(c) qw = m cp (Two – Twi) = wq

A
 
  

A 
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Solving for the water outlet temperature 

 Two = Twi + wq

A
 
   p

A

m c
 = 25°C + ( )2317.4W/m

( ) ( )
( ) ( )

2 m 2 m

0.02 kg/s 4179J/(kg K)
 = 40.2°C 

PROBLEM 4.59  

A 2.5 cm-diam, 15 cm-long transite rod (k = 0.97 W/(m K), 1647 kg/m3, 837 J/(kg K) on 
the end of a 2.5 cm-diam wood rod at a uniform temperature of 100°C is suddenly placed 
into a 16°C, 30 m/s air stream flowing parallel to the axis of the rod. Estimate the 
average center line temperature of the transite rod 8 min after cooling starts. Assume 
radial heat conduction, but include radiation losses, based on an emissivity of 0.90, to 
black surroundings at air temperature. 

GIVEN 

• Transite rod on the end of a wood rod with air flowing parallel to the axis  
• Transite properties   
 Thermal conductivity (kt) = 0.97 W/(m K) 
 Density (ρt) = 1647 kg/m3 
 Specific heat (ct) = 837 J/(kg K) 
• Rod diameter (D) = 2.5 cm 
• Transite rod length = 15 cm 
• Initial temperature (To) = 100°C = 373 K 
• Air temperature (T∞) = 16°C = 289 K 
• Air speed (U∞) = 30 m/s 
• Rod emissivity (ε) = 0.90 

FIND 

• The average temperature of the center of the rod after 8 min. 

ASSUMPTIONS 

• Radial heat conduction only – neglect end effects  
• Wood rod acts as an insulator and only provides support for the transite 
• Surroundings behave as a black body at the ambient temperature 
• Convective heat transfer can be approximated as a flat plate 
• Constant thermal properties of the rod and the air 

 SKETCH 

L = 15 cm

D = 2.5 cm

WoodTransite

Air
= 30 m/s
= 16°C

U
T
•
•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the initial film temperature (58°C) 

  Kinematic viscosity (ν) = 1.885 × 10–5 m2/s 

  Thermal conductivity (k) = 0.0277 W/m K 

  Prandtl number (Pr) = 0.71 

From Appendix 1, Table 5 

  The Stephen-Boltzmann Constant (σ) = 5.67 × 10–8 W/(m2 K4) 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
408

SOLUTION 

The convective heat transfer coefficient between the rod and the air will be determined by treating the 
rod as a flat plate. 

 ReL = 
U L

ν
∞  = 

5 2

(30 m/s) (0.15 m)

(1.885 10 m /s)−×
 = 2.39 × 105 (Laminar) 

From Equation (4.38) for a laminar boundary layer 

  hc = 
11

320.664 L
k

Re Pr
L

 = 
(0.0277 W/(m K))

(0.15m)
0.664

11
5 32(2.39 10 ) (0.71)×   

  hc = 53.5 W/(m2 K) 

The overall heat transfer coefficient satisfies the following equation 

 totalq

A
 = ht (To – T∞) = cq

A
 + rq

A
 = hc (To – T∞) + ε σ (To

4 – T∞
4) 

 ht = 
( ) ( )4 4

c o o

o

h T T T T

T T

ε σ∞ ∞

∞

− + −

−
 

 ht = 
2 –8 2 4 4 4(53.5W/(m K))(100°C – 16°C) 0.9(5.67 10 W/(m K ))(373 – 289 )

100°C – 16°C

+ ×
  

  = 61 W/(m2 K) 

The Biot number for the rod is given in Table 2.3 

 Bi = c o

t

h r

k
 = 

2 –2(61W/(m K))(1.25 10 m)

0.97 W/(m K)

×
 = 0.79 > 0.1 

Therefore, internal resistance is significant and a chart solution must be used: Figure 2.38 applies to a 
long cylinder. At t = 8 min, the Fourier number is 

 Fo = 
2

o

t

r

α
 = 

2
t

t t o

k t

c rρ
 = 

3 –2 2

(0.97 W/(m K) (4805)

(1647 kg/m ) (837 J/(kg K) (1.25 10 m)×
 = 2.16 

From Figure 2.38 for Fo = 2.15 and 1/Bi = 1.27 

  
(0, )

o

T t T

T T
∞

∞

−
−

 = 0.07 

Solving for the centerline temperature at t = 8 min (T(0,t)) 

 T(0,t) = T∞ + 0.07 (To – T∞) = 16°C + 0.07 (100°C – 16°C) = 21.9°C 

COMMENTS 

Note that absolute temperatures must be used in radiative equations. The overall heat transfer 
coefficient is actually decreasing slightly as the rod cools. At 8 min, the rod surface temperature would 
be about 68.8°C leading to a heat transfer coefficient of 10.2 Btu/(h ft2°F). 

PROBLEM 4.60 

A highly polished chromium flat plate is placed in a high-speed wind tunnel to simulate 
flow over the fuselage of a supersonic aircraft. The air flowing in the wind tunnel is at a 
temperature of 0°C, a pressure of 3500 N/m2, and a velocity parallel to the plate of 800 
m/s. What temperature is the adiabatic wall temperature in the laminar region and how 
long is the laminar boundary layer? 
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GIVEN 

• High speed air flow over a flat plate 
• Air temperature (T∞) = 0°C = 273 K 
• Air pressure = 3500 N/m2 
• Air velocity (U∞) = 800 m/s 

FIND 

(a) Adiabatic wall temperature (Tas) 
(b) Length of laminar boundary layer (Lc) 

ASSUMPTIONS 

• Steady state 

• Transition to turbulence occurs at xRe  = 105 

• The air behaves as an ideal gas 
• Radiation heat transfer is negligible because of the low emissivity of the plate 

SKETCH 

Lc

Transition

Air
= 800 m/s

= 0°C
U

T
•

•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at one atmosphere and at the bulk temperature 
(0°C)   Prandtl number (Pr) = 0.71 

  Specific heat (Cp) = 1011 J/kg K 

From Appendix 1, Table 5 gc = 1.000 kg m/N s2 (by definition) 

SOLUTION 

(a) The stagnation temperature is given by Equation (4.91) 

  To = T∞ + 
2

2 c p

U

g C
∞ = 273 K + 

( )
( ) ( ) ( )

2

2

800m/s

2 1(kg m)/(Ns ) 1011J/(kg K) (Nm)/J
 = 273 K + 317 K = 590 K 

The recovery factor in the laminar region is Pr1/2. The adiabatic surface temperature is given by 
Equation (4.94) 

  as

o

T T

T T
∞

∞

−
−

 = r = 
1

2Pr  

 Tas = T∞ + 
1

2Pr  (To – T∞) = 273 K + 
1

2(0.71) (590 K – 273 K) = 540 K 

(b) The reference temperature (T), which must be used in evaluating the Reynolds number, is given by 
Equation (4.97) 

 T   = T∞ + 0.5 (Ts – T∞) + 0.22 (Tas – T∞) 
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A surface temperature must be assumed to evaluate T. Assuming Ts = T∞ = 273 K 

 T   = 273 K + 0.5 (0) + 0.22 (540 K – 273 K) = 332 K 

The length of the laminar boundary layer (Lc) is given by 

 
cLRe  = cU L ρ

μ
∞



  = 105   Lc = 
510

U

μ
ρ∞



  

The density at the given pressure and reference temperature can be determined from the ideal gas law 

 ρ  = 
a

P

R T 
  where Ra = The gas constant for air = 287 J/(kg K) 

 ρ  = 
( ) ( ) ( )

23500 N/m

287J/(kg K) Nm/J 332 K
 = 0.0367 kg/m3 

From Appendix 2, Table 27, for dry air at T   = 332 K, the absolute viscosity (μ) = 19.3 × 10–6 N s/m2 

 ∴ Lc = 
( ) ( )

( ) ( )
5 6 2

3

10 19.3 10 kg m /(s N)

800m/s 0.0367 kg/m

−×
 = 0.066m = 6.6 cm 

COMMENTS 

For a more accurate estimation of the length of the laminar region, the average heat transfer coefficient 
from Equation (4.99) can be used to find the surface temperature. The surface temperature can be used 
to generate a new reference temperature which is used to find the length Lc. This procedure would be 
repeated until the value of Lc converges. 

PROBLEM 4.61 

Air at a static temperature of 21°C and a static pressure of 0.7 kPa (abs.) flows at zero 
angle of attack over a thin electrically heated flat plate at a velocity of 240 m/s. If the 
plate is 10 cm long in the direction of flow and 0.6 m the direction normal to the flow, 
determine the rate of electrical heat dissipation necessary to maintain the plate at an 
average temperature of 55°C. 

GIVEN 

• High speed air flow over a heated flat plate 
• Air static temperature (TA) = 21°C 
• Air static pressure (P) = 0.7 kPa (abs.) 
• Air velocity (U∞) = 240 m/s 
• Plate length (L) = 0.1 m 
• Plate width (w) = 0.6 m 
• Average plate temperature (Ts) = 55°C 

FIND 

• The rate of electrical heat dissipation ( )Gq to maintain the specified plate temperature 

ASSUMPTIONS 

• Steady state 
• Air behaves as an ideal gas 
• Air flows on one side of the plate only 
• Radiative heat transfer is negligible 
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SKETCH 

Ts = 55°C

Air
= 240 m/s

= 21°C
U

T
•

•

L = 10 cm
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the free-stream temperature of 21°C 
  Specific heat (cp) = 1013 J/(kg K) 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The stagnation (To) and adiabatic surface (Tas) temperatures must be calculated to find the reference 
temperature (T). From Equation (4.91) 

 To = T∞ + 
2

2 c p

U

g C
∞  = 21°C + 

2

2

(240 m/s)

2(9.81 m/s ) (1013 J/( kg K) (0.10 kg m/J)
 = 50°C 

Assuming the flow is laminar, r = Pr1/2 and the adiabatic surface temperature is given by Equation 
(4.94) 

 Tas = T∞ + 
1

2Pr (To – T∞) = 21°C + 
1

2(0.71) (50°C – 21°C) = 45.5°C 

From Equation (4.97) 

 T   = T∞ + 0.5 (Ts – T∞) + 0.22 (Tas –T∞) 

 T   = 21°C + 0.5 (55°C – 21°C) + 0.22 (45.5°C – 21°C) = 43.4°C = 316.4 K 

The density of air at the reference temperature can be calculated from the ideal gas law 

 ρ  = 
a

P

R T 
  where Ra = The gas constant for air = 287 J/(kg K) 

 ρ  = 
(700 Pa)

(287 J/(kg K)) (0.1 kg m/J) (316.4 K)
 = 0.0 77 kg/m3  

From Appendix 2, Table 27, for dry air at the reference temperature (43.4°C), the absolute viscosity 

( )μ  = 1.94 × 10–4 kg/ms, the Prandtl number ( )Pr   = 0.71 

The Reynolds number at the trailing edge of the plate is 

 
cLRe  = cU L ρ

μ
∞



  = 
3

4

(240 m/s) (0.1 m) (0.077 kg/m )

1.94 ×10 kg/ms−  = 9525 < 105 

Therefore, the laminar flow assumption is valid. 
The average heat transfer coefficient over the plate can be calculated by averaging Equation (4.99) 

 hc = 
21
32

0
0.332 ( ) ( )

L

p xc U Re Prρ
−−

∞    dx = 0.664 cp ρ U∞

21

32( ) ( )LRe Pr
−−   

 hc = 0.664 (1013 J/(kg K)) (0.077 kg/m3) (240 m/s) 
1

2(9525)
−

 
2

3(0.71)
−

  

  = 16 W(m2 K) 
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The electrical heat dissipation required is equal to the convective heat transfer rate 

 qG = qc = hc A (Ts – Tas) 

  = 16 W/(m2 K) (0.1 m) (0.6 m) (55°C – 45.5°C )  
  = 9.1 W 

PROBLEM 4.62 

Heat rejection from high-speed racing automobiles is a problem because the required 
heat exchangers generally create additional drag. For a car to be tested at the Bonneville 
Salt Flats, it has been proposed to integrate heat rejection into the skin of the vehicle. 
Preliminary tests are to be performed in a wind tunnel on a flat plate without heat 
rejection. Atmospheric air in the tunnel is at 10°C and flows at 250 ms–1 over the 3 m 
long thermally nonconducting flat plate. What is the plate temperature 1 m downstream 
from the leading edge? How much does this temperature differ from that which exists 
0.005 m from the leading edge? 

GIVEN 

• High speed air flow over a thermally nonconducting flat plate 
• Plate length (L) = 3 m 
• Air temperature (T∞) = 10°C 
• Air speed (U∞) = 250 m/s 
• Air pressure = 1 atmosphere 

FIND 

(a) The plate temperature (Ts) at x = 1 m 
(b) Temperature difference between x = 1 m and x = 0.005 m 

ASSUMPTIONS  

• Steady state 
• Air is on only one side of the plate 

SKETCH 

x

L = 3 m

Air
= 250 m/s
= 10° C

U
T
•

•

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 10°C 

  Kinematic viscosity (ν) = 14.8 × 10–6 m2/s 

  Prandlt number (Pr) = 0.71 

  Specific heat (cp) = 1011 J/(kg K) 

SOLUTION 

Since the surface is nonconducting, its surface temperature is equal to the adiabatic surface 
temperature (Tas) 

 At  x = 1 m:    Rex = 
U x

ν
∞  = 

( ) ( )
6 2

250m/s 1m

14.8 10 m /s−×
 = 1.69 × 107 (Turbulent) 
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 At  x = 0.005 m:   Rex = 
U x

ν
∞  = 

( ) ( )
6 2

250m/s 1m

14.8 10 m /s−×
 = 8.45 × 104 (Laminar) 

The stagnation temperature is given by Equation (4.91) 

 To = T∞ + 
2

2 c p

U

g c
∞  = 10°C + 

( )
( ) ( ) ( )

2

2

250m/s

2 1kg m/(N s ) 1011J/(kg K) (N m)/J
 = 41°C 

The adiabatic surface temperature is given by Equation (4.93) 

 Tas = Toc + r (To – T∞) 

(a) For the turbulent region, r = Pr1/3 

 ∴  At  x = 1 m: Tas = 10°C + 
1

3(0.71)  (41°C – 10°C) = 38°C 

(b) For the laminar region, r = pr1/2 

 ∴  At  x = 0.005m: Tas = 10°C + 
1

2(0.71)  (41°C – 10°C) = 36°C 

The temperature difference between x =1 m and x = 0.005 m is 2°C. 

PROBLEM 4.63 

Air at 15°C and 0.01 atmospheres pressure flows over a thin flat strip of metal, 0.1 m 
long in the direction of flow, at a velocity of 250 m/s. Determine (a) the surface 
temperature of the plate at equilibrium and (b) the rate of heat removal required per 
meter width if the surface temperature is to be maintained at 30°C. 

GIVEN 

• High speed air flow over a thin flat strip of metal 
• Air temperature (T∞) = 15°C = 288 K 
• Air pressure (P) = 0.01 atm = 1013 N/m2 
• Metal strip length (L) = 0.1 m 
• Air velocity (U∞) = 250 m/s 

FIND 

(a) Equilibrium surface temperature (Ts) 
(b) Rate of heat removal per unit width (q/w) for Ts = 30°C 

ASSUMPTIONS 

• Air flows over one side of the strip only 
• Air behaves as an ideal gas 

SKETCH 

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
414

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 15°C 

  Absolute viscosity (μ) = 18.0 × 10–6 N s/m2 

  Prandtl number (Pr) = 0.71 

  Specific heat (cp) = 1012 J/(kg K) 

SOLUTION 

(a) The density of air at the given pressure and temperature can be calculated from the ideal gas law 

 ρ = 
a

P

R T
  where Ra = The gas constant for air = 287 J/(kg K) 

 ρ = 
( ) ( ) ( )

21013N/m

287J/(kg K) N m/J 288K
 = 0.0123 kg/m3 

 ReL = 
U Lρ

μ
∞  = 

( ) ( ) ( )
( ) ( )

3

6 2 2

250m/s 0.1m 0.0123kg/m

18.0 10 N s/m kg m/(N s )−×
 = 1.69 × 104 (Laminar) 

The stagnation temperature is given by Equation (4.91) 

 To = T∞ + 
2

2 c p

U

g c
∞  = 15°C + 

( )
( ) ( ) ( )

2

2

250m/s

2 1kg m/(Ns ) 1012J/(kg K) N m/J
 = 46°C 

At equilibrium with no heat removal, the surface temperature is equal to the adiabatic surface 
temperature given by Equation (4.93) with r =Pr1/2. 

 Tas = T∞ + 
1

2Pr (To – T∞) = 15°C + 
1

2(0.71) (46°C – 15°C) = 41°C 

(b) The reference temperature, Equation (4.97), must be used for the non-adiabatic case 

 T   = T∞ + 0.5 (Ts – T∞) + 0.22 (Tas – T∞) 

 T   = 15°C +0.5 (30°C – 15°C) + 0.22 (41°C –15°C) = 28°C = 301 K 

From Appendix 2, Table 27, for dry air at 28°C 

  Absolute Viscosity ( )μ  = 18.6 × 10–6 N s/m2 

  Prandtl number ( )Pr   = 0.71 

The density, from the ideal gas law 

 ρ  = 
( ) ( ) ( )

21013N/m

287J/(kg K) N m/J 301K
 = 0.0117 kg/m3 

 LRe   = cU L ρ
μ

∞


  = 
( ) ( ) ( )
( ) ( )

3

6 2 2

250m/s 0.1m 0.0117 kg/m

18.0 10 Ns/m kg m/(N s )−×
 = 1.57 × 104 (Laminar) 

Averaging Equation (4.99) over the length of the plate yields 

 hc = 
21
32

0

1
0.332 ( ) ( )

L

p xc U Re Pr
L

ρ
−−

∞    dx = 0.664 cp 
21

32( ) ( )LU Re Prρ
−−

∞
    

 hc = 0.664 ( )1013J/(kg K) ( )30.0117 kg/m ( )250m/s ( )N m/J
21

4 32(1.57 10 ) (0.71)
−−

×  = 19.7 W/(m2 K) 
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The heat removal rate must equal the rate of heat gain from the air to maintain a constant surface 
temperature 

 
q

A
 = hc (Ts – Tas)  q/W = hcL (Ts – Tas) = 19.7 W/(m2 K) (0.1 m) (30°C – 43°C) = –25.6 W/m 

The negative sign indicates heat gained by the plate. 

PROBLEM 4.64 

A flat plate is placed in a supersonic wind tunnel with air flowing over it at a Mach 
number of 2.0, a pressure of 25,000 N/m2, and an ambient temperature of –15°C. If the 
plate is 30 cm long in the direction of flow, calculate the cooling rate per unit area that is 
required to maintain the plate temperature below 120°C. 

GIVEN 

• High speed air flow over a flat plate 
• Mach number (M) = 2.0 
• Air pressure (P) = 25,000 N/m2 
• Ambient temperature (T∞) = –15°C = 258 K 
• Plate length (L) = 30 cm = 0.3 m 

FIND 

• Cooling rate per unit area (qc/A) to keep plate temperature (Ts) below 120°C 

ASSUMPTIONS 

• Steady state 
• Air behaves as an ideal gas 
• Negligible radiative heat transfer 
• Air flows over only one side of the plate 

SKETCH 

x

L = 0.3 m

Air
= 2.0

= –15°C
M

T•

 

PROPERTIES AND CONSTANTS 

From Section 4.13, the specific heat ration for air (γ ) = 1.4. The gas constant for air (Ra) = 287 J/(kg K). 

SOLUTION 

The acoustic velocity (a) is given by Equation (4.89) 

 a∞ = aR Tγ ∞  = ( ) ( ) ( )21.4 287J/(kg K) N m/J kg m/(N s ) 258K  = 322 m/s 

 U∞ = M a∞ = 2.0 ( )322 m/s  = 644 m/s 

The stagnation temperature, from Equation (4.92) 

 To = T∞ 21
1

2
M

γ − +  
 = 258 K 

1.4 1
1 4.0

2

− +  
 = 464 K = 191°C 
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Assuming the flow is turbulent, r = Pr1/3 and the adiabatic surface temperature (Tas) is given by 
Equation (4.93) 

 Tas = T∞ + 
1

3Pr  (To – T∞) = –15°C + 
1

3(0.71)  [191°C – (–15°C)] = 169°C 

The reference temperature (T •) is given by Equation (4.97) 

 T • = T∞ + 0.5 (Ts – T∞) + 0.22 (Tas – T∞) 

 T • = –15°C + 0.5 (120°C + 15°C) +0.22 (169°C + 15°C) = 93°C = 366 K 

From Appendix 2, Table 27, for dry air at the reference temperature (93°C) 

  Absolute viscosity (μ•) = 21.36 × 10–6 Ns/m2 

  Prandtl number (Pr•) = 0.71 Specific heat (cp) = 1021 J/(kg J) 

The density can be calculated using the ideal gas law 

 ρ• = 
a

P

R T •  where Ra = The gas constant for air = 287 J/(kg J) 

 ρ• = 
225,000 N/m

287J/(kg J) (N m/J)(366 K)
 = 0.238 kg/m3 

 At L = 0.3 m ReL
• = 

U L ρ
μ

•
∞

•  = 
( )

( ) ( )
3

6 2 2

(644 m/s) (0.3 m) 0.238kg/m

21.36 10 N s/m kg m/(Ns )−×
 = 2.15 × 106 

Therefore, the assumption of turbulence is valid and the average heat transfer coefficient, neglecting 
the laminar portion of the boundary layer, can be calculated by averaging Equation (4.100) from x = 0 
to x = L 

 hc = 
0

1 L

L  0.0288 cp ρ• U∞  (Rex 
• ) – 0.2 

2

3( )Pr
−• dx = 0.036 cp ρ•  U∞ (ReL

• ) – 0.2
2

3( )Pr
−•  

 hc = 0.036 ( )1021J/(kg K) ( )30.238kg/m ( )644m/ s ( )N m/J (2.15× 106) – 0.2
2

3(0.71)
−

= 383 W/(m2 K) 

The rate of cooling must equal the rate of heat loss by convection, given by Equation (4.98) 

 cq

A
 = hc (Ts – Tas) = 383 W/(m2 K) (120°C –169°C) = –18,770 W/m2 

The negative sign indicates heat is being transferred to the plate from the air. 

COMMENTS 

The length of the laminar boundary layer is determined by 

 
cLRe•  = cU L ρ

μ

•
∞

•  = 105    Lc = 
510

U

μ
ρ

•

•
∞

 = 0.014 m << 0.3 m 

Therefore, neglecting the laminar region does not introduce significant error. 

PROBLEM 4.65 

A satellite reenters the earth’s atmosphere at a velocity of 2700 m/s. Estimate the 
maximum temperature the heat shield would reach if the shield material is not allowed to 
ablate and radiation effects are neglected. The temperature of the upper surface of the 
atmosphere –50°C. 
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GIVEN 

• High speed air flow over a satellite 
• Velocity (U∞) = 2700 m/s 
• Air temperature (T∞) = – 50°C 

FIND 

• Maximum heat shield temperature (Ts) 

ASSUMPTIONS 

• Radiative heat transfer is negligible  
• Shield material does not ablate 
• Shield can be approximated as a flat plate 
• Boundary layer is turbulent 

SKETCH 
Satellite

Air
= 2700 m/s
= – 50°C

U
T
•

•

 

PROPERTIES AND CONSTANTS 

Extrapolating from Appendix 2, Table 27, for dry air at –50°C 
  Prandtl number (Pr) = 0.71 

  Specific heat = 1000 J/(kg K) 

SOLUTION 

The stagnation temperature is given by Equation (4.91) 

 To = T∞ + 
2

2 c p

U

g c
∞  = –50°C + 

( )
( ) ( ) ( )

2

2

2700m/s

2 1kg m/(N s ) 1000J/(kg K) N m/J
 = 3595°C 

With no ablation or heat removal, the surface temperature of the satellite will be the adiabatic surface 
temperature given in Equation (4.93) where r = Pr1/3 for turbulent flow 

 Tas = T∞ + 
1

3Pr  (To – T∞) = –50°C + 
1

3(0.71)  (3295°C + 50°C) = 3200°C 

PROBLEM 4.66 

A scale model of an airplane wing section is tested in a wind tunnel at a Mach number of 
1.5. The air pressure and temperature in the test section are 20,000 N/m2 and –30°C, 
respectively. If the wing section is to be kept at an average temperature of 60°C, 
determine the rate of cooling required. The wing model may be approximated by a flat 
plant of 0.3 length in the flow direction. 

GIVEN 

• High speed air flow over an airplane wing section 
• Mach number (M∞) = 1.5 
• Air pressure (P) = 20,000 N/m2 
• Air temperature = –30°C = 243 K 
• Average wing surface temperature = 60°C = 333 K 
• Wing may be approximated as a flat of length (L) = 0.3 m 
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FIND 

• The cooling rate (q/A) required 

SKETCH 

60°C
Air
= 1.5

= 30°C
M

T•
–

L = 0.3 m

 

PROPERTIES AND CONSTANTS 

Extrapolating from Appendix 2, Table 27, for dry air at the ambient temperature, 
  The Prandtl number (Pr) = 0.71. 

From Section 4.13, the specific heat ratio (γ ) = 1.4 
The gas constant for air (Ra) = 287 J/(kg K) 

SOLUTION 

The stagnation temperature is given by Equation (4.92) 

 To = T∞ 21
1

2
M

γ − +  
 = 243 K 21.4 1

1 (1.5)
2

− +  
 = 352 K = 179°C 

The air speed (U∞) is calculated from 

 U∞ = M∞ a∞ = M∞ aR Tγ ∞  = 1.5 ( ) ( ) ( )21.4 287J/(kg K) N m/J kg m/(Ns ) 243K   

 = 469 m/s 

The adiabatic surface temperature, from Equation (4.93) is 

 Tas = T∞ + r (To – T∞) 

Assuming the boundary layer is turbulent, r = Pr1/3 

 Tas = T∞ + 
1

3Pr  (To – T∞) = 243 K + 
1

3(0.71)  (352 K – 243 K) = 340 K 

The reference temperature is given by Equation (4.97) 

 T • = T∞ + 0.5 (Ts – T∞) + 0.22 (Tas – T∞) 

 T • = 243 K  + 0.5 (333 K – 243 K) + 0.22 (340 K – 243 K) = 309 K 

From Appendix 2, Table 27, for dry air at 309 K 

  Absolute viscosity (μ•) = 18.9 × 10–6 Ns/m2 

  Prandtl number (Pr•) = 0.71 

  Specific heat (Cp
•) = 1014 J/(kg K) 

The density of the air can be calculated from the ideal gas law 

 ρ•  = 
a

P

R T •  Where: Ra = The gas constant for air 287 J/(kg K) 
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 ρ•  = 
220,000 N/m

287J/(kg K)(N m/J) (309 K)
 = 0.226 kg/m3 

 At L = 0.3 m ReL
• = 

U Lρ
μ

•
∞

•  = 
( )

( ) ( )
3

6 2 2

(469 m/s) (0.3 m) 0.226kg/m

18.9 10 Ns/m kg m/(Ns )−×
 = 1.68 × 106 

Therefore, the assumption that the boundary layer is turbulent is valid. 
The average heat transfer coefficient over the wing can be calculated by averaging equation (4.100), 
assuming constant thermal properties: 

 hc = 
0

1 L

L  0.0288 cp ρ• U∞ 
2

0.2 3( ) ( )xRe Pr
−• − •  dx = 0.036 cp ρ• U∞ 

2
0.2 3( ) ( )LRe Pr

−• − •  

 hc = 0.036 ( )1014J/kg  ( )20.226kg/m ( )469 m/s ( )N m/J (1.68 × 106)– 0.2
2

3(0.71)
−

 

  = 277 W/(m2 K) 

The rate of heat transfer from the wing is given by Equation (4.98) 

 cq

A
 = hc (Ts – Tas) = 277 W/(m2 K) (333 K –340 K) = –1940 W/m2 

The negative sign indicates that heat is being transferred from the air to the wing. Therefore,  
1940 W/m2 must be removed to maintain the wing at 60°C. 
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Chapter 5 

PROBLEM 5.1 

Show that the coefficient of thermal expansion for an ideal gas is 1/T, where T is the 
absolute temperature. 

GIVEN 

• Ideal gas 
• Absolute temperature = T 

FIND 

• Show that the thermal expansion coefficient (β) = 1/T 

SOLUTION 

The volumetric thermal expansion coefficient is defined as 

 β = – 
1

PT

ρ
ρ

∂ 
  ∂

 

For an ideal gas 

 pV = mRT  
m

V
 = ρ = 

p

RT
 

where p = pressure 

 V = volume 

 m = mass 

 R = gas constant 
For a constant pressure 

 
T

ρ∂
∂

 = –
2

p

RT
 

 ∴ β = – 
1
p

RT
 
  

2

p

RT

 −    = 
1

T
 

PROBLEM 5.2 

Calculate the coefficient of thermal expansion, β, for saturated water at 403 K from its 
definition and property values in Appendix 2, Table 13. Then compare your results with 
the value in the table. 

GIVEN 

• Saturated water at 400 K 

FIND 

• The thermal expansion coefficient, β, from its definition 
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SOLUTION 

The coefficient of thermal expansion is defined as the change of density with temperature at constant 
pressure 

 β = – 
1

PT

ρ
ρ

∂ 
  ∂

 

It can be approximated as 

 β ≅ – 1 2

1 2 1 2

1

2
T T

ρ ρ
ρ ρ

− 
 +  − 

  

 

For comparison with Appendix 2, Table 13, let T1 = 393 K, T2 = 413 K: From the table, ρ1 = 943.5 
Kg/m3, ρ2 = 926.3 Kg/m3. 

 β ≅ – 
3

1
943.5 926.3

kg /m
2

+ 
 

 
3(943.5 926.3)kg /m

(393K 413K)

 +
 − 

 = 9.19 × 10–4 K–1 

The table lists the thermal expansion coefficient at the average of these temperatures (403 K) to be 9.1 
× 10–4 1/K— a difference of about 1%. 

PROBLEM 5.3 

Calculate the coefficient of thermal expansion, β, from its definition for steam at 450°C 
and pressures of 0.1 atm and 10 atm from standard steam tables. Then compare your 
results with the value obtained by assuming that steam is a perfect gas and explain the 
difference. 

GIVEN 

• Steam 
• Temperature = 450°C = 723 K 

FIND 

The coefficient of thermal expansion at 0.1 atm and 10 atm from 
(a) Standard Steam tables 
(b) Perfect Gas Law 

PROPERTIES AND CONSTANTS 

From steam tables 

 Temperature (K) Pressure (Atm) Density (kg/m3) 

  673 10 3.262 
  773 10 2.824 
  673 0.1 0.03219 
  773 0.1 0.02803 

 

 

 

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
423

SOLUTION 

(a) The thermal expansion coefficient is given by 

 β = 1 2

1 2 1 2

1 1

2
PT T T

ρ ρρ
ρ ρρ

−∂    ≡ −     +  ∂ − 
  

 

At 10 Atm.: β ≅ – 
3

1
3.262 2.824

kg /m
2

+ 
 

 
3(3.262 2.824) kg /m

(673K 773K)

 −
 − 

 = 1.439 × 10–3 K–1 

At 0.1 Atm 

 β ≅ – 
3

1
0.03219 0.02803

kg /m
2

+ 
 

3(0.03219 0.02803) kg /m

(673K 773K)

 −
 − 

= 1.381 × 10–3 K–1 

(b) For an ideal gas 

 ρ1T1 = ρ2T2  ρ1 = ρ2 
2

1

T

T
 

 ∴  β  ≅ −
2 2

1

1

1
2

T

T

ρ  +  

 

2
2

1

1 2

1
T

T

T T

ρ  −  
−

 = 
2 1

1

2

T T+ 
  

 = 
ave

1

T
 

 At Tave = 723 K 

 β ≅ 
1

723 K
 = 1.383 × 10–3 

1

K
 (independent of pressure) 

COMMENTS 

The result of part (b) correlates better with ρ calculated in part (a) at 0.1 atm than at 10 atm because 
steam more closely resembles an ideal gas at 0.1 atm than at 10 atm. 

PROBLEM 5.4 

A long cylinder of 0.1 m diameter has a surface temperature of 400 K. If it is immersed 
in a fluid at 350 K, natural convection will occur as a result of the temperature 
difference. Calculate the Grashof and Rayleigh numbers that will determine the Nusselt 
number if the fluid is 

(a) Nitrogen (b) Air  (c) Water 

(d) Oil  (e) Mercury 

GIVEN 

• A long cylinder immersed in fluid 
• Diameter (D) = 0.1 m 
• Surface temperature (Ts) = 400 K 
• Fluid temperature (T∞) = 350 K 
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FIND 

The Grashof number (Gr) and the Rayleigh number (Ra) if the fluid is 
 (a) Nitrogen (b) Air (c) Water 
 (d) Oil (e) Mercury 

ASSUMPTIONS 

• The cylinder is in a horizontal position (the characteristic length is the diameter of the cylinder) 

SKETCH 

D = 0.1 m
Ts = 400 K

Fluid = 350 KT•  

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 32, 27, 13, 16 and 25, at the mean temperature of 375 K 

 Fluid Nitrogen Air Water Oil Mercury 

 Table number 32 27 13 16 25 
 Thermal expansion coefficient, β (1/K) 0.00271 0.00268 0.00075 — — 
 Kinematic viscosity, × 106 m2/s 23.21 23.67 0.294 20.3 0.0928 
 Prandtl number (Pr) 0.697 0.71 1.75 2.76 0.0162 

 Fluid Oil Mercury 

 Temperature (K) 353 393 323 423 
 Density, ρ (kg/m3) 852.0 829.0 13,506 13.264 

The thermal expansion coefficients for oil and mercury can be estimated from 

 β ≅ – 1 2

1 2 1 2

2

( ) T T

ρ ρ
ρ ρ

− 
  + −

 

For oil at 373 K  β ≈ 0.00068 1/K 
For mercury at 373 K β ≈ 0.00018 1/K 

SOLUTION 

The Grashof number based on the cylinder diameter is 

 GrD = 
3

3

( )sg T T Dβ
ν

∞−
 

For nitrogen 

 GrD = 
( )

( )
2 –1 3

26 2

(9.8 m/s ) 0.00271 K (400K 350K)(0.1m)

23.21 10 m / s−

−

×
 = 2.46 × 106 

The Rayleigh number is defined as 

 RaD = GrD Pr = 2.46 × 106 (0.697) = 1.72 × 106 (for Nitrogen) 
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Calculating the GrD and RaD in a similar manner for the other fluids 

 Fluid GrD RaD 

 Nitrogen 2.46 × 106 1.72 × 106 
 Air 2.34 × 106 1.66 × 106 
 Water 4.25 × 109 7.44 × 109 
 Oil 8.08 × 105 2.23 × 106 
 Mercury 1.02 × 1010 1.66 × 108 

PROBLEM 5.5 

For the conditions given in Problem 5.4, determine the Nusselt Number and the heat 
transfer coefficient from Fig. 5.3. 

From Problem 5.4: A long cylinder of 0.1 m diameter has a surface temperature of 400 
K. If it is immersed in a fluid at 350 K, natural convection will occur as a result of the 
temperature difference. Calculate the Grashof and Rayleigh numbers that will 
determine the Nusselt number if the fluid is 

(a)  Nitrogen (b) Air (c) Water 

(d) Oil (d) Mercury 

GIVEN 

• A long cylinder immersed in a fluid 
• Diameter (D) = 0.1 m 
• Surface temperature (Ts) = 400 K 
• Fluid temperature (T∞) = 350 K 

 Fluid GrD RaD 

 Nitrogen 2.46 × 106 1.72 × 106 
 Air 2.34 × 106 1.66 × 106 
 Water 4.25 × 109 7.44 × 109 
 Oil 8.08 × 105 2.23 × 106 
 Mercury 1.02 × 1010 1.66 × 108 

FIND 

• The Nusselt number (Nu) and heat transfer coefficient (hc) for each fluid from Figure 5.5 

SKETCH 

D = 0.1 m

Ts = 400 K

Fluid = 350 KT•  

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 32, 27, 13, 16 and 25, at the mean temperature of 375 K 

 Fluid Thermal Conductivity, k (W/(m K)) 

 Nitrogen 0.0316 
 Air 0.0307 
 Water 0.682 
 Oil 0.137 
 Mercury 10.51 
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SOLUTION 

From Problem 5.4, the Rayleigh number for nitrogen is 1.72 × 106. The abscissa of Figure 5.3 is the 
base 10 log of the Rayleigh number 

 Log (1.72 × 106)  = 6.24 

From Figure 5.3: log ( )DNu  ≈ 1.25 → DNu  = 17.78 

 ∴ ch  = D
k

Nu
D

 = 
( )0.03156 W/(mK)

0.1m
 17.78 = 5.61 2W/(m K)  

Following a similar procedure for the other fluids yields the following results 

 Fluid log (RaD) log ( DNu ) ( DNu ) ch  (W/(m2 K)) 

 Nitrogen 6.24 1.25 17.78 5.61 
 Air 6.22 1.25 17.78 5.46 
 Water (extrapolating) 9.87 2.2 158 1081 
 Oil 6.34 1.28 19.1 26.1 
 Mercury 8.22 1.75 56.2 5910 

PROBLEM 5.6 

An empirical equation proposed for the heat transfer coefficient in natural convection 
from long vertical cylinders to air at atmospheric pressure is 

 ch  = 
0.33536.5 ( )sT T

T
∞−

 

Where T = the film temperature = 1/2 (Ts + T∞) and T is in the range 0 to 200°C 

The corresponding equation in dimensionless form is 

 
( )ch L

k
 = C(GrPr)m 

By comparing the two equations, determine those values of C, m and n in the second 
equation that will give the same results as the first equation. 

GIVEN 

• Empirical equations shown above 

FIND 

• Values of C, m and n 

ASSUMPTIONS 

• Air behaves as an ideal gas 

SOLUTION 

 ch L

k
 = C(GrL Pr)m 
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But GrL = 
3

2

( )sg T T L

v

β ∞−
   and   Pr = pc

k

μ
 

 ∴ ch L

k
 = C 

3

2

( )
m

s pg T T L c

v k

β μ∞ −
 
 

 

But v = 
μ
ρ

 and for an ideal gas: β ≅ 1

T
 and ρ = 

P

RT
 

 ∴ ch  = C 
2 3

3 2

( )
m

s pg P T T L ck

L T R kμ
∞ −

 
 

 

Equating this to the empirical equation 

ch  = (Ck 1 – m g m p 2 m μ – m R –2m cp
m) (Ts – T∞)m L3m – 1 T – 3m = 536.5 (Ts – T∞)0.33 T – 1 

The exponents of the variables must be the same, so 

 For (Ts – T∞) m = 0.33 
 For L 3 m – 1 = 0 
 For T – 3 m = – 1 
The value of the constant C is determined by 

 C 
2 1 2 1 2 1

3 3 3 3 3 3
pk g p R cμ

− −
 = 536.5 

From Appendix 2, Table 27 for dry air at 100°C and one atmosphere 

  k = 0.0307 W/(m K) 

  μ = 21.673 × 10–6 N s/m2 

  cp = 1022 J/(kg K) 

The gas constant for air (R) = 287 J/(kg K) 
The absolute pressure of one atmosphere (P) = 101,000 N/m2. 

 ∴ C ( )
2

30.0307W/(m K)  ( )
1

2 39.8 m/s  ( )
2

2 3101,000 N/m   

( )
1

6 2 321.673 10 (Ns)/m
−−× ( )

2

3287 J/(kg K)
− ( )

1

31022 J/(kg K)  = 536.5 

 C = 0.142 

The non-dimensional empirical equation is 

 NuL = 0.142 
1

2( )LGr Pr  

COMMENTS 

The units of the constant in the empirical equation must be W/(m2 K1/3). 
The non-dimensional empirical equation closely resembles that given by Equation (5.13) for turbulent 
natural convection from vertical cylinders. 

PROBLEM 5.7 

‘Solar One’ is the first large-scale (10 MW electric) solar-thermal electric-power-
generating plant in the U.S. It is located near Barstow, CA. A schematic diagram of the 
receiver and tower is shown below (the heliostat, i.e., mirror field, is not shown). The 
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receiver may be treated as a cylinder 7 m in diameter and 13.5 m tall. At the design 
operating conditions, the average outer surface temperature of the receiver is about 
675°C and ambient air temperature is about 40°C. Estimate the rate of heat loss, in 
MW, from the receiver—via natural convection only—for the temperatures given. What 
are other mechanisms by which heat may be lost from the receiver? 

 

 

GIVEN 

• A vertical cylinder in air 
• Height of cylinder (L) = 13.5 m 
• Diameter (D) = 7 m 
• Surface temperature (Ts) = 675°C 
• Ambient air temperature (T∞) = 40°C 

FIND 

(a) The rate of convective heat loss (qc) in MW 
(b) What other mechanisms for heat loss exist? 

ASSUMPTIONS 

• Air is still 
• Surface temperature is uniform and constant 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 27, for dry air at the mean temperature of 357.5°C 

  Thermal expansion coefficient (β) = 0.00160 1/K 

  Thermal conductivity (k) = 0.0461 W/(m K) 

  Kinematic viscosity (ν) = 58.1 × 10–6 m2/s 

  Prandtl number (Pr) = 0.72 
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SOLUTION 

The Grashof number is 

 GrL = 
3

2

( )sg T T L

v

β ∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00161/K (675 C 40 C)(13.5m)

58.1 10 m / s−

° − °

×
 = 7.26 × 1012 

Therefore, the flow is turbulent. 
Equation (5.13) gives the Nusselt number for a turbulent boundary layer 

 NuL = 0.13 
1

3( )LGr Pr  = 0.13 
1

12 3[7.26 10 (0.72)]×  = 2256 

 ∴ ch  = 
k

L
 NuL = 

( )0.0461 W/(m K)

13.5m
 2256 = 7.70 2W/(m K)  

(a) The rate of convective heat transfer is 

 qc = ch π D L (Ts – T∞) = ( )27.7 W/(m K) π (7 m) (13.5 m) (675°C – 40°C)  

   ( )610 (MW) / W−  = 1.45 MW 

(b) Other mechanisms for heat transfer from the surface are 
1. Radiation to the surroundings. 
2. Conduction to the interior of the cylinder where the heat can be removed by a working  

  fluid. 
3. Conduction to the support structure. 
4. Forced convection to the ambient air when breezes occur. 

PROBLEM 5.8 

Compare the rate of heat loss from a human body with the typical energy intake from 
consumption of food (1033 kcal/day). Model the body as a vertical cylinder  
30 cm in diameter and 1.8 m high in still air. Assume the skin temperature is 2°C below 
normal body temperature. Neglect radiation, transpiration cooling (sweating), and the 
effects of clothing. 

GIVEN 

• Human body idealized as a vertical cylinder in still air 
• Diameter (D) = 30 cm = 0.3 m 
• Height (L) = 1.8 m 
• Skin temperature (Ts) = 2°C below normal body temperature (37°C) = 35°C 

FIND 

• Heat loss (q) and compare to consumption of food 1300 kcal/day 

ASSUMPTIONS 

• Steady state 
• Radiation, transpiration cooling, and clothing effects are negligible 
• Ambient air temperature (T∞) = 20°C 
• Heat loss from the top of the cylinder is small compared to that from the sides 
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SKETCH 

D = 0.3 m

Ts = 35°C

L = 1.8 m Idealized (!?) Human

T• = 20°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 27.5°C 

  Thermal expansion coefficient (β) = 0.00333 1/°C 

  Thermal conductivity (k) = 0.0257 W/(m K) 

  Kinematic viscosity (ν) = 16.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The Grashof number based on the height is 

 GrL = 
3

2

( )sg T T L

v

β ∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00333 1/ K (35 C 20 C)(1.8m)

16.4 10 m /s−

° − °

×
 = 1.06 × 1010 > 109 

Therefore, the flow is turbulent. 
For turbulent boundary layer, the average heat transfer coefficient is given by Equation (5.13) 

 hc =  0.13 
k

L

1

3( )LGr Pr  = 0.13
( ) 1

3100.0256 W/(m K)
[1.06 10 (0.71)]

1.8m
×  = 3.62 2W/(m K)  

The rate of convective heat loss from the sides of the cylinder is 

 qc = hc π D L (Ts – T∞) = ( )23.62 W/(m K) π  (0.3 m) (1.8 m) (35°C – 20°C) = 92.2 W 

Food consumption = 1033 (kcal)/day ( )cal/(kcal)1000 ( )4.1868 J/cal  

   
1 day

24 h
 
  

1h

3600s
 
  

( )Ws/J  = 50.1W 

COMMENTS 

The heat loss calculated for the idealized human is about 46% greater than the average food 
consumption. This point out the importance of clothing. 

PROBLEM 5.9 

An electric room heater has been designed in the shape of a vertical cylinder 2 m tall and 
30 cm in diameter. For safety, the heater surface cannot exceed 35°C. If the room air is 
20°C, find the power rating of the heater in watts. 

GIVEN 

• An electric heater in the shape of a vertical cylinder 
• Heater height (H) = 2 m 
• Heater diameter (D) = 30 cm = 0.3 m 
• Room air temperature (T∞) = 20°C = 293 K 
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FIND 

• The power rating of the heater (q) in watts 

ASSUMPTIONS 

• Radiation is negligible 
• Heat transfer from the top and bottom of the tank is negligible 

SKETCH 
D = 0.3 m

Ts = 35°C (max)

H = 2 m

T• = 20°C

Air

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 27.5°C 

  Thermal expansion coefficient (β) = 0.00332 1/K 
  Thermal conductivity (k) = 0.0256 W/(m K) 
  Kinematic viscosity (ν) = 16.4 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 

SOLUTION 

When the heater surface temperature is 35°C, the Grashof number for the heater sides is 

 Gr H = 
3

2

( )sg T T Hβ
ν

∞−
 = 

( )
( )

2 2

26 2

(9.8 m/s ) 0.003321/K (35 C 20 C) (2 m)

16.4 10 m / s−

° − °

×
= 1.45 × 1010 > 109 

Therefore, the flow is turbulent. 
The average heat transfer coefficient is given by Equation (5.13) 

 hc = 0.13 
1

3( )L
k

Gr Pr
L

 = 0.13 
( )0.0256 W/(m K)

2m
 

1
10 3[1.45 10 (0.71)]×  = 3.62 2W/(m K)  

The power rating of the heater must equal the rate of heat transfer from the heater 

 q =  hc π D L (Ts – T∞) = ( )23.62 W/(m K)  π (0.3 m) (2 m) (35°C – 20°C) = 102 W 

COMMENTS 

This heater would probably not suffice for most applications. Either the surface temperature needs to 
be raised, of the size of the heater needs to be increased. 

PROBLEM 5.10 

Consider a design for a nuclear reactor using natural-convection heating of liquid 
bismuth. The reactor is to be constructed of parallel vertical plates 1.8 m tall and 1.2 m 
wide, in which heat is generated uniformly. Estimate the maximum possible heat 
dissipation rate from each plate if the average surface temperature of the plate is not to 
exceed 870°C and the lowest allowable bismuth temperature is 315°C. 

GIVEN 

• Vertical plates with uniform heat generation in bismuth 
• Plate height (L) = 1.8 m 
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• Plate width (w) = 1.2 m 
• Maximum average surface temperature (Ts) = 870°C 
• Minimum bismuth temperature (T∞) = 315°C 

FIND 

• Maximum possible heat dissipation rate (q) from each plate 

ASSUMPTIONS 

• Steady state 
• Free convection only 
• Edge effects are negligible 

SKETCH 

w = 1.2 m

L
=

 1
.8

 m
Ts = 870°

Bismuth
T• = 315°

C (max)

C (min)

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 24, for bismuth at the mean temperature of 593°C (mean temperature) 
  Thermal conductivity (k) = 15.6 W/(m K) 

  Kinematic viscosity (ν) = 3.5 × 10–4 m2/s 

  Prandtl number (Pr) = 0.010 

Also Density at 540°C = 3020 kg/m3 

 Density at 650°C = 2980 kg/m3 

To find the thermal expansion coefficient (β) 

 β = 540 650

540 650

2

( ) 110

ρ ρ
ρ ρ

− 
 +

 = 1.21 × 10–5 1/K 

SOLUTION 

The Grashof number based on the vertical length of the plate is 

 GrL = 
3

s
2

( )g T T Lβ
ν

∞−
 = 

( ) ( )
( )

2 5 3

24 2

9.81 m /s 1.21 10 1/K (870 315)K (1.8m)

3.5 10 m / s

−

−

× −

×
 = 3.14 × 106 

The average Nusselt number for a vertical plate in liquid metal for Gr < 109 is given by Equation 
(5.12c) 

 LNu  = ch L

k
 = 0.68 

1
2 4( )LGr Pr  

Solving for the heat transfer coefficient 

 ch  = 0.68 
1

2 4( )L
k

Gr Pr
L

  

 ch  = 0.68 
15.6 W/(m K)

1.8m

1
6 2 4[3.14 10 (0.01) ]× ×  =  24.8 W/(m2 K)  
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The maximum rate of heat transfer from both sides of the plate is given by Equation (1.10) 

 q = ch  A ΔT = 24.8 [2 (1.8 m) (1.2 m)] [870 – 315]K  

 = 5.95 × 104 W  

 = 59.5 kW 

PROBLEM 5.11 

A mercury bath at 60°C is to be heated by immersing cylindrical electric heating rods, 
each 20 cm tall and 2 cm in diameter. Calculate the maximum electric power rating of a 
typical rod if its maximum surface temperature is 140°C. 

GIVEN 

• Cylindrical heating rods in a mercury bath 
• Mercury temperature (T∞) = 60°C 
• Rod diameter (D) = 2 cm = 0.02 m 
• Rod height (L) = 20 cm = 0.2 m 
• Maximum surface temperature (Ts) = 140°C 

FIND 

• The maximum electric power rating ( )eq  of a rod 

ASSUMPTIONS 

• Steady state 
• The rods are in a vertical position 

SKETCH 

D = 0.02 m

Ts = 150°C

L
=

0
.2

m

Mercury

T• = 60°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 25, for mercury at the mean temperature of 100°C 
  Thermal conductivity (k) = 10.51 W/(m K) 

  Kinematic viscosity (ν) = 0.093 × 10–6 m2/s 

  Prandtl number (Pr) = 0.0162 

Also Density at 50°C (ρ50) = 13,506 kg/m3 

 Density at 15°C (ρ150) = 13,264 kg/m3 

To find the thermal expansion coefficient (β) 

 β = 50 150

50 150

2

100 C

ρ ρ
ρ ρ

−  
    + °

 = 1.81 × 10–4 1/K 

SOLUTION 

The Grashof number at the top of the cylinder is 

GrL = 
3

s
2

( )g T T Lβ
ν

∞−
= 

( )
( )

2 4 3

26 2

(9.8 m/s ) 1.81 10 1/K (140 C 60 C)(0.2m)

0.093 10 m /s

−

−

× ° − °

×
 = 1.31 × 1011 > 109 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
434

Therefore, the boundary layer is turbulent and the average heat transfer coefficient is given by 
Equation (5.13) 

 ch  = 0.13 
1

3( )L
k

Gr Pr
L

 = 0.13 
( ) 1

11 310.5 W/(m K)
[1.31 10 (0.0162)]

0.2 m
×  = 8776 2W/(m K)  

The maximum electric power rating of a rod is equal to the maximum rate of heat transfer from a rod 

 cq  = qc = ch  π D L (Ts – T∞) = ( )28776 W/(m K) π (0.02 m)(0.2 m) (140°C – 60°C) = 8823 W 

PROBLEM 5.12 

An electric heating blanket is subjected to an acceptance test. It is to dissipate 400 W on 
the high setting when hanging in air at 20°C. If the blanket is 1.3 m wide: (a) what is the 
length required if its average temperature at the high setting is to be 40°C, and (b) if the 
average temperature at the low setting is to be 30°C, what rate of dissipation would be 
possible? 

GIVEN 

• An electric blanket hanging in air 
• Heat dissipation rate (qh) = 400 W 
• Air temperature (T∞) = 20°C 
• Blanket width (w) = 1.3 m 
• Average temperatures  High (Tsh) = 40°C 
   Low (Ts1) = 30°C 

FIND 

(a) The length of the blanket (L) 
(b) Heat dissipation rate on the low setting (q

1
) 

ASSUMPTIONS 

• Air is still 
• Moisture in the air has a negligible effect 
• Blanket is hung vertically with its 1.3 m sides vertical 

SKETCH 

T• = 20°C

Hanging Blanket

Tsh = 40°C

Tsl = 30°C

L = ?

Air
w = 1.3 m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27 for dry air at the mean temperatures for the two settings 

Mean Temperature (°C) 30°C 25°C 

 Thermal expansion coefficient, β (1/K) 0.00330 0.00336 

 Thermal conductivity, k (W/(m K)) 0.0258 0.0255 

 Kinematic viscosity, ν × 106 (m2/s) 16.7 16.2 
 Prandtl number, Pr 0.71 0.71 
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SOLUTION 

(a) On the high setting, the Grashof number for the blanket is 

 Grw = 
3

2

( )sg T T wβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00331/K (40 C 20 C)(1.3m)

16.7 10 m / s−

° − °

×
 = 5.09 × 109 

Therefore, the boundary layer is turbulent and the natural convection heat transfer coefficient is given 
by Equation (5.13) 

 chh  = 0.13 
1

3( )w
k

Gr Pr
w

 = 0.13 
( ) 1

9 30.0258 W/(m K)
[5.09 10 (0.71)]

1.3m
×  = 3.96 2W/(m K)  

The rate of heat transfer from both sides of the blanket is 

 qh = chh  A (Tsh – T∞) = chh  (2Lw) (Tsh – T∞) 

Solving for the length of the blanket 

 L = 
2 ( )

h

ch sh

q

h w T T∞−
 = ( )2

400 W

2 3.96 W/(m K) (1.3m)(40 C 20 C)° − °
 = 1.94 m 

(b) The Grashof number for the blanket on the low setting is 

 Grw = 
3

2

( )sg T T wβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.003361/K (30 C 20 C)(1.3m)

16.2 10 m / s−

° − °

×
 = 2.76 × 109 

This is still turbulent, therefore 

 clh  = 0.13 
( ) 1

9 30.0255 W/(m K)
[2.76 10 (0.71)]

1.3 m
×  = 3.19 2W/(m K)  

The heat dissipation rate possible is equal to the rate of convection from both sides 

 q1 = clh  2Lw (Tsl – T∞) = ( )23.19 W/(m K)  (2) (1.94 m) (1.3 m) (30°C – 20°C) = 161 W 

 

PROBLEM 5.13 

An aluminum sheet, 0.4 m tall, 1 m long, and 0.002 m thick is to be cooled from an initial 
temperature of 150°C to 50°C by immersing it suddenly in water at 20°C. The sheet is 
suspended from two wires at the upper corners. 

 (a) Determine the initial and the final rate of heat transfer from the plate. 

 (b) Estimate the time required. 

 (Hint: Note that in laminar natural convection, h ≈ ΔT 0.25) 

GIVEN 

• A vertical aluminum sheet in water 
• Plate dimensions: height (H) = 0.4 m, length (L) = 1 m, thickness (s) = 0.002 m 
• Initial plate temperature (Tsi) = 150°C 
• Water temperature (T∞) = 20°C 
• Final plate temperature (Tsf) = 50°C 

FIND 

(a) The initial and final heat transfer rates 
(b) The time required 
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ASSUMPTIONS 

• Constant and uniform water temperature 

SKETCH 

Tsi = 150°C

H = 0.4 m

L = 1 m

T• = 20°C

Water

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, for aluminum at the mean temperature of 100°C 
  Thermal conductivity (ka1) = 238 W/(m K) 

  Density (ρ) = 2702 kg/m3 

  Specific heat (c) = 896 J/(kg J) 

From Appendix 2, Table 13, for water at the mean temperatures: 

 Mean Temperature (°C) 85°C 35°C 

 Thermal expansion coefficients, β (1/k) 0.00066 0.00034 

 Thermal conductivity, k (W/(m K)) 0.675 0.624 

 Kinematic viscosity, ν × 106 (m2/s) 0.337 0.725 

 Prandtl number, Pr 2.04 4.8 

SOLUTION 

(a) The Grashof number based on the height of the plate is 
Initial 

GrH = 
3

2

( )sg T T Hβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00066 1/K (150 C 20 C)(0.4m)

0.337 10 m /s−

° − °

×
 = 4.74 × 1011 (Turbulent) 

Final 

 GrH = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.000341/K (50 C 20 C)(0.4m)

0.725 10 m / s−

° − °

×
 = 1.22 × 1010 

(Turbulent) 

The average heat transfer coefficient from a vertical plate with a turbulent boundary layer is given by 
Equation (5.13) 

 ch  = 0.13 
1

3( )L
K

Gr Pr
H

 

Initial 

 cih  = 0.13 
( ) 1

11 30.675 W/(m K)
[4.74 10 (2.04)]

0.4m
×  = 2169 2W/(m K)  
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Final 

 cfh  = 0.13 
( ) 1

10 30.624 W/(m K)
[1.22 10 (4.8)]

0.4m
×  = 787 2W/(m K)  

The rate of convective heat transfer from the plate is given by Equation (1.10) 

 qc = ch  A Δ T 

Initial 

 qci = ( )22169 W/(m K)  [2 (0.4 m) (1 m)] (150°C – 20°C) = 2.26 × 105 W 

Final 

 qcf  = ( )2787 W/(m K)  [2 (0.4 m) (1 m)] (50°C – 20°C) = 1.89 × 104 W 

(b) The initial Biot number for the aluminum sheet is 

 Bi = 
2

ci

al

h S

K
 = 

( )
( )

22169 W/(m K) (0.002 m)

2 238W/(m K)
 = 0.009 < < 0.1 

Therefore, the internal thermal resistance of the aluminum sheet is negligible during the entire cool 
down and the temperature-time history of the sheet is given by Equation (2.84) 

 
o

T T

T T
∞

∞

−
−

 = exp c sh A
t

c Vρ
 
  

 

Solving for the time 

 t = 
c s

c V

h A

ρ
 ln oT T

T T
∞

∞

− 
  −

 ≅ 
2 c

c s

h

ρ
 ln oT T

T T
∞

∞

− 
  −

 

Using the average of the initial and final heat transfer coefficients 

 t = 
( ) ( )

( ) ( )
2

2

896 J/(kg K) 2702 kg/m (0.002m)

2 1478 W/(m K) J/(W s)
 ln 

150 C 20 C

50 C 20 C

° − ° 
  ° − °

 = 2.4 s 

PROBLEM 5.14 

A 0.1 cm thick flat copper plate, 2.5 m × 2.5 m square is to be cooled in a vertical 
position. The initial temperature of the plate is 90°C with the ambient fluid at 30°C. The 
fluid medium is either atmospheric air or water. 

(a) Calculate the Grashof numbers 
(b) Determine the initial heat transfer coefficient 
(c) Calculate the initial rate of heat transfer by convection 
(d) Estimate the initial rate of temperature change for the plate 

GIVEN 

• A vertical flat copper plate in either air or water 
• Plate thickness (t) = 0.1 cm = 0.001 m 
• Plate dimensions (L × w) = 2.5 m × 2.5 m 
• Initial plate temperature (Ts,i) = 90°C 
• Ambient fluid temperature (T∞) = 30°C 
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FIND 

(a) The Grashof number (Gr) 
(b) The rate of heat transfer by convection (qc) 
(c) The initial rate of temperature change (dT/dt)t = 0 

SKETCH 

L
=

2
.5

m

w
= 2.5

m

t = 0.1 cm

Copper Plate, = 90°CTs,i

Water or Air

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, for copper 

  Density (ρc) = 8933 kg/m3 

  Specific heat (cc) = 383 J/(kg K) 

From Appendix 2, Tables 13 and 27 
  Water at 60°C Air at 60°C 

 Thermal conductivity, k (W/(m K)) 0.657 0.0279 

 Thermal expansion coefficient, β (1/K) 0.00052 0.003 

 Kinematic Viscosity ν × 106 m2/s 0.480 19.4 

 Prandtl number, Pr 3.02 0.71 

 

SOLUTION 

(a) The Grashof number is defined as 

 GrL = 
3

2

( )sg T T Lβ
ν

∞−
 

 For water 

 GrL = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.000521/K (90 C 30 C)(2.5m)

4.480 10 m / s−

° − °

×
 = 2.07 × 1013 

 For air 

 GrL = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.0031/K (90 C 30 C)(2.5m)

19.4 10 m / s−

° − °

×
 = 7.32 × 1010 

(b) The average heat transfer coefficient is given by equation (5.13) (turbulent) 

 ch  = 0.13 
1

3( )L
k

Gr Pr
L
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 For water 

 ch  = 0.13 
( ) 1

13 30.657 W/(m K)
[2.07 10 (3.02)]

2.5m
×  = 1356 2W/(m K)  

 For air 

 ch  = 0.13 
( ) 1

10 30.0279 W/(m K)
[7.32 10 (0.71)]

2.5m
×  = 5.4 2W/(m K)  

The rate of convective heat transfer is given by Equation (1.10) 

 qc = ch  A ΔT 

 For water 

 qc = ( )21356 W/(m K)  [2 (2.5 m)2] (90°C – 30°C) = 1.017 × 106 W 
 For air 

 qc = ( )25.4 W/(m K)  [2 (2.5 m)2] (90°C – 30°C) = 4050 W 

(c) Since the sheet is very thin and the thermal conductivity of copper is very high, it is safe to assume that 
the Biot number is less than 0.1 for both cases. The initial rate of temperature change is given by 

 
0t

dT

dt =

 
    = cq

mc
 = cq

V cρ
 = cq

c LW tρ
 

 For water 

 
0t

dT

dt =

 
    = 

( )
( )

6

3

1.017 10 W J/(W s)

(8933 kg/m ) 383 J/(kg K) (2.5m)(2.5m)(0.001m)

×
 = 47.6 K/s 

 For air 

 
0t

dT

dt =

 
    = 

( )
( )3

4050 W J/(W s)

(8933 kg/m ) 383 J/(kg K) (2.5m)(2.5m)(0.001m)
 = 0.19 K/s 

COMMENTS 

The initial cooling rate in water is about 250 times that in air. 

PROBLEM 5.15 

A laboratory apparatus is used to maintain a horizontal slab of ice at – 2.2°C so that 
specimens can be prepared on the surface of the ice and kept close to 0°C. If the ice is  
10 cm by 3.8 cm and the laboratory is kept at 16°C, find the cooling rate in watts that 
the apparatus must provide to the ice. 

GIVEN 

• A slab of ice in a laboratory 
• Ice temperature (Ti) = – 2.2°C 
• Ice dimensions: 10 cm by 3.8 cm 
• Ambient temperature (T∞) = 16°C 

FIND 

• The cooling rate (q) in watts 

ASSUMPTIONS 

• Air in the laboratory is still 
• Effects of sublimation are negligible 
• Effects of moisture in the air are negligible 
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SKETCH 

Ts =   2.2°
Air

T• = 16°

3.8 cm

10 cm

Ice

C C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 6.9°C 

  Thermal expansion coefficient (β) = 3.57 × 10–3 1/K 
  Thermal conductivity (k) = 0.024 W/(m K) 
  Kinematic viscosity (ν) = 1.424 × 10–8 m2/s 
  Prandtl number (Pr) = 0.71 

SOLUTION 

The characteristic length for the ice is 

 L = 
A

P
 = 

(0.1 m) (0.038 m)

2(0.1m 0.038m)+
 = 0.014 m 

The Grashof and Rayleigh numbers based on this length are 

 GrL = 
3

2

( )ig T T Lβ
ν
∞ −

 

  = 
2 –3 3

–8 2 2

(9.81 m/s ) (3.57 10 )1/K (16 2.2)K (0.014m)

(1.424 10 m /s)

× × +
×

  

 = 8.6 × 109 

 RaL = 8.6 × 109 (0.71) = 6.12 × 109 

Equation (5.17) may be used to find the Nusselt number. 

 NuL = 0.27 
1

4
LRa  = 0.27 

1
9 4(6.12 10 )×  = 75.5 

 ch  = NuL 
k

L
 = 75.5 

0.024 W/(m K)

0.014m
  

 = 129.4 W/(m2 K) 

The cooling load is 

 q = ch  A (T∞ – Ti) = 129.4 W/(m2 K) (0.1 m) (0.038 m) (16 + 2.2) 

 = 8.95 W 

PROBLEM 5.16 

An electronic circuit board is the shape of a flat plate 0.3 m × 0.3 m in plan-form and 
dissipates 15 W. It may be placed in operation on an insulated surface in a horizontal 
position or at an angle of 45 degrees to horizontal, both in still air at 25°C. If the circuit 
would fail above 60°C, determine if the two proposed installations are safe. 

GIVEN 

• A flat plate with insulated back, horizontal or at an angle of 45 degrees in still air 
• Plate size (s × s) = 0.3 m × 0.3 m 
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• Heat generation rate (qG) = 15 W 
• Air temperature (T∞) = 25°C 
• Maximum plate temperature (Ts) = 60°C 

FIND 

• If the two plate positions are safe 

ASSUMPTIONS 

• Radiative heat transfer is negligible 

SKETCH 

45°

0.3 m

Still Air

T• = 25°C

Ts = 60°C

Case 1 Case 2  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 43°C 

  Thermal expansion coefficient (β) = 0.00316 1/K 

  Thermal conductivity (k) = 0.0267 W/(m K) 

  Kinematic viscosity (ν) = 17.9 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

For the horizontal case, the characteristic length 

 L = 
A

P
 = 

2s

4s
 = 

s

4
 = 

0.3m

4
 = 0.075 m 

The Grashof and Rayleigh numbers for the flat case at the maximum operating temperature are 

 GrL = 
3

s
2

( )g T T Lβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00316 1/K (60 C 25 C)(0.075m)

17.9 10 m /s−

° − °

×
 = 1.83 × 106 

 RaL = GrL Pr = 1.83 × 106 (0.71) = 1.30 × 106 

For the inclined case, the characteristic length is the length of the inclined side (0.3 m), the Grashof 
number for the inclined case is 

 GrL = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.00316 1/K (60 C 25 C)(0.3m)

17.9 10 m / s−

° − °

×
 = 1.17 × 108 

Case 1: The average Nuselt number is given by Equation (5.15) 

 Nu  = 0.54 
1

4
LRa  = 0.54 

1
6 4(1.30 10 )×  = 18.23 

 ch  = Nu
k

L
 = 18.23 

( )0.0267 W/(m K)

0.075m
 = 6.49 2W/(m K)  
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The rate of heat transfer from the plate at Ts = 60°C is 

 q = ch  A (Ts – T∞) = ( )26.49 W/(m K)  (0.3 m)2 (60°C – 25°C) = 26.3 W 

Since this is larger than the heat generation rate, the actual surface temperature will be less than 60°C. 
Case 1 configuration is safe. 
Case 2 

 GrL Pr cos θ = 1.17 × 108 (0.71) cos (45°) = 5.87 × 107 

Therefore, the average heat transfer coefficient is given by Equation (5.14) 

 ch  = 0.56 
1

4( cos )L
k

Gr Pr
L

θ  = 0.56 
( ) 1

7 40.0267 W/(m K)
(5.87 10 )

0.3m
×  = 4.36 2W/(m K)  

The rate of heat transfer when Ts = 60°C is 

 q = ( )24.36 W/(m K)  (0.3 m)2 (60°C – 25°C) = 17.7 W 

Since this is also greater than the heat generation rate, the actual temperature will be less than 60°C. 
Therefore, Case 2 is also safe. 

PROBLEM 5.17 

Cooled air is flowing through a long sheet metal air conditioning duct, 0.2 m high and 
0.3 m wide. If the duct temperature is 10°C and passes through a crawl space under a 
house at 30°C, estimate 

(a) The heat transfer rate to the cooled air per meter length of duct. 

(b) The additional air conditioning load if the duct is 20 m long. 

(c) Discuss qualitatively the energy conservation if the duct were insulated with glass 
wool. 

GIVEN 

• An air conditioning duct in a crawl space 
• Duct height (H) = 0.2 m 
• Duct width (w) = 0.3 m 
• Duct temperature (Ts) = 10°C 
• Ambient temperature (T∞) = 30°C 

FIND 

(a) The heat transfer rate per meter length (qc/L) to the cooled air in the duct 
(b) The additional air conditioning load (q20) if the duct length (L) = 20 m 
(c) Discuss qualitatively the energy conservation if the duct were insulated with glass wool 

ASSUMPTIONS 

• Ambient air is still 
• Duct temperature is constant and uniform 
• Radiation is negligible 
• Edge effects are negligible 
• No condensation on the duct surface 
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SKETCH 

w = 0.3 m

H
=

0.
2

m

Ts = 10 °C

Air

T• = 30°C

Uninsulated Insulated  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 20°C 

  Thermal expansion coefficient (β) = 0.00341 1/K 

  Thermal conductivity (k) = 0.0251 W/(m K) 

  Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

(a) The duct can be thought of as two vertical and two horizontal cooled flat plates. 
For the sides 

 GrH = 
3

s
2

( )g T T Hβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00341 1/K (30 C 10 C)(0.2m)

15.7 ×10 m /s−

° − °
 = 2.17 × 107 < 109 

So the flow is laminar. 
For the top and bottom, the characteristic length (Lc) is given by 

Lc = A/P = Lw /(2L + 2w). Since L >> w: Lc ≈ w/2 = 0.15 m 

 GrLc = 
3

s
2

( ) cg T T Lβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00341 1/ K (30 C 10 C)(0.15m)

15.7 ×10 m /s−

° − °
 = 9.15 × 106 < 107 

The heat transfer coefficient for the vertical sides of the duct is given by Equation (5.12a) 

csh  = 0.68 

1
1 4
2

1

4(0.952 )

HGr k
Pr

H
Pr+

 = 0.68 
1

4(0.71)

1
7 4

1

4

(2.17 10 )

(0.952 0.71)

×

+

( )0.0251 W/(m K)

0.2m
= 4.32 2W/(m K)  

The top is a cooled surface facing upward. The heat transfer coefficient from the top is the same as 
that for a heated surface facing downward and given by Equation (5.17) 

 cth  = 0.27 
1

4( )L
c

k
Gr Pr

L
 = 0.27 

1
6 40.0251 W/(m K)

[9.15 10 (0.71)]
0.15m

×  = 2.28 2W/(m K)  

The heat transfer coefficient for the bottom, a cooled surface facing downward, is given by Equation 
(5.15) since RaL < 107 

 cbh  = 0.54 
1

4( )
cL

k
Gr Pr

w
 = 0.54 

( ) 1
6 40.0251 W/(m K)

[9.15 10 (0.71)]
0.15m

×  = 4.56 2W/(m K)  
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The total convective heat transfer to the duct is 

 qc = [2 ( ) ]cs ct cbh H L h h wL+ +  (T∞ – Ts) 

cq

L
 = ( ) ( )[ ]2 2 22 4.32 W/(m K) (0.2m) 2.28 W/(m K) 4.56 W/(m K) 0.3m+ + (30°C – 10°C) = 75.6 W/m 

(b) For a 20 m long duct 

 qc = c
q

L

 
    L = 75.6 W/m (20 m) = 1512 W 

(c) The addition of insulation to the outer surface of the duct will have several effects 
1. It will increase the outer surface temperature of the duct and decrease the duct wall 

temperature. 
2. The higher surface temperature will lower the natural convection heat transfer coefficient 

because the temperature difference between the duct and the ambient air will be reduced. 
3. The lower convective heat transfer coefficient and the additional conductive thermal 

resistance of the insulation will lead to a decrease in the rate of heat transfer to the air in the 
duct. This will reduce the load on the air conditioning system assuming that the crawl space 
is not to be intentionally cooled. 

PROBLEM 5.18 

Solar radiation at 600 W/m2 is absorbed by a black roof inclined at 30°C as shown. If the 
underside of the roof is well insulated, estimate the maximum roof temperature in 20°C 
air. 

GIVEN 

• Inclined roof, well insulated on the underside 
• Incline angle (θ) = 30 degrees 
• Air temperature = 20°C 
• Solar radiation absorbed (qs) = 600 W/m2 

FIND 

• The maximum roof temperature 

ASSUMPTIONS 

• The roof behaves as a black body (ε = 1.0) 
• The sky behaves as a black body at 0 K 

SKETCH 

T• = 20°C = 293 K
4 m

30°Insulated

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, 

The Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4). 
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SOLUTION 

The maximum roof temperature will occur when the air is quiescent. Since the air properties must be 
evaluated at the mean of the ambient and surface temperatures, as iterative procedure must be used. 
Iteration #1 
Let Ts = 60°C = 333 K 
From Appendix 2, Table 27, for dry air at the mean temperature of 40°C 

  Thermal expansion coefficient (β) = 0.00319 1/K 

  Thermal conductivity (k) = 0.0265 W/(m K) 

  Kinematic viscosity (ν) = 17.6 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

The Grashof number is 

 GrL = 
3

s
2

( )g T T Lβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.003191/K (333K 293K)(4m)

17.6 10 m /s−

−

×
 = 2.58 × 1011 

 GrL Pr cos θ  = 2.58 × 1011 (0.71) cos (30°) = 1.59 × 1011 

The average convective heat transfer coefficient for this geometry is given by Equation (5.14). 
Although GrL Pr cos θ is slightly larger than 1011, Equation (5.14) will be extrapolated by this 
problem 

 ch  = 0.56 
1

4( cos )L
k

Gr Pr
L

θ  = 0.56 
( ) 1

11 40.0265 W/(m K)
(1.59 10 )

4m
×  = 2.34 2W/(m K)  

For steady state, the solar gain must equal the convective and radiative losses 

 sq

A
 = ch  (Ts – T∞) + σ Ts

4 

 600 2W/m  = ( )22.34 W/(m K)  (Ts – 293 K) + 5.67 × 10–8 2 4W/(m K )  (Ts
4) 

Checking the units then eliminating them for clarity 

 5.67 × 10–8 Ts
4 + 2.34 Ts – 1286 = 0 

By trial and error: Ts = 314 K. 
Repeating this procedure for another iteration 

 Ts = 314 K GrL Pr cos θ = 9.58 × 1010 
 Tmean = 304 K = 30°C 

 β = 0.0033 1/K hc = 2.01 W/(m2 K) 
 k = 0.0258 W/(m2 K) Ts = 315 K 

 ν = 16.7 × 10–6 m2/s 
 PR = 0.71 
The maximum roof temperature: (Ts) = 315 K = 42°C 

COMMENTS 

The procedure converges quickly because of the 1/4 power in the Nusselt number correlation. 

PROBLEM 5.19 

A 1 m square copper plate is placed horizontally on 2 m high legs. The plate has been coated 
with a material that provides a solar absorptance of 0.9 and an infrared emittance of 0.25. If 
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the air temperature is 30°C, determine the equilibrium temperature on an average clear day 
in which the solar radiation incident on a horizontal surface is 850 W/m2. 

GIVEN 

• A horizontal copper plate in air 
• Plate dimensions (s × s) = 1 m × 1 m 
• Solar absorptance (αs) = 0.9 
• Infrared emittance (ε) = 0.25 
• Air temperature (T∞) = 30°C = 303 K 
• Incident solar radiation (qs/A) = 850 W/m2 

FIND 

• Equilibrium Temperature (Ts) 

ASSUMPTIONS 

• The sky behaves as a black body at 0 K 
• The effect of the legs is negligible 
• Air is quiescent 
• Radiative heat transfer from the bottom of the plate is negligible 

SKETCH 

Air
= 30°CT•

1 m

1 m

qs

Ts = ?

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, 

The Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4). 

SOLUTION 

Since the air properties must be evaluated at the mean of the surface and ambient temperatures, an 
iterative process must be used 
1. Guess at the surface temperature. 
2. Evaluate the air properties and calculate the Grashof number. 
3. Use the appropriate correlation to find the average convective heat transfer coefficients on the top 

and bottom of the plate. 
4. Calculate a new surface temperature. 
This process must be repeated until the temperature converges within an acceptable tolerance. 
Iteration #1 
1. Let Ts = 90°C = 363 K 
2. From Appendix 2, Table 27, for dry air at he mean temperature of (60°C) 

Thermal expansion coefficient (β) = 0.00300 1/K 
Thermal conductivity (k) = 0.0279 W/(m K) 
Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 
Prandtl number (Pr) = 0.71 
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The characteristic length of the plate (L) = A/P = (1 m2)/(4 m) = 0.25 m 
The Grashof and Rayleigh numbers based on the characteristic length are 

 GrL = 
3

s
2

( )g T T Lβ
ν

∞−
 = 

( )
2 3

26 2

(9.8 m/s ) (0.0031/K) (90 C 30 C) (0.25m)

19.4 10 m /s−

° − °

×
 = 7.32 × 107 

 RaL = GrL Pr = 7.32 × 107 (0.71) = 5.20 × 107 
3. For the top of the plate, Equation (5.16) gives the average Nusselt number 

 Nu  = 0.15 
1

3Ra  = 0.15 
1

7 3(5.20 10 )×  = 56.00 

 cth  = 
k

Nu
L

 = 56.00 
( )0.0279 W/(m K)

0.25m
 = 6.25 2W/(m K)  

For the bottom of the plate, Equation (5.17) gives the average Nusselt number 

 Nu  = 0.27 
1

4( )LRa  = 0.27 
1

7 4(5.20 10 )×  = 22.9 

 cbh  = 
k

Nu
L

 = 22.9 
( )0.0279 W/(m K)

0.25m
 = 2.56 2W/(m K)  

4. For equilibrium, the rate of solar gain must equal the total rate of convective heat transfer from 
top and bottom and radiative heat transfer from the top surface. 

 α ( )sq

A
 = ( )ct cbh h+  (Ts – T∞) + 

1

2
 ε σ (T s

4 – Tsky
4) 

 0.9 ( )2850 W/m  = [(6.25 + 2.56) 2W/(m K)]  (Ts – 303 K) + 0.25 ( )8 2 45.67 10 W/(m K )−× (Ts
4 – 0) 

Checking the units then eliminating them for clarity 

 1.43 × 10–8 Ts
4 + 8.81 Ts – 3434 = 0 

By trial and error: Ts = 362 K = 89°C. 
Since this is very close to the initial guess, another iteration is not necessary. The equilibrium 
temperature is about 89°C. 

COMMENTS 

The coating on the plate is called a selective surface and is often used in solar applications for 
decreasing reradiation losses from absorbers. 

PROBLEM 5.20 

A 2.5 × 2.5 m steel sheet 1.5 mm thick is removed from an annealing oven at a uniform 
temperature of 425°C and placed in a large room at 20°C in a horizontal position. (a) 
Calculate the rate of heat transfer from the steel sheet immediately after its removal 
from the furnace, considering both radiation and convection. (b) Determine the time 
required for the steel sheet to cool to a temperature of 60°C. Hint: This will require 
numerical integration. 

GIVEN 

• Horizontal steel sheet in air 
• Sheet dimensions = 2.5 m × 2.5 m × 0.0015 m 
• Sheet initial temperature (Tsi) = 425°C = 698 K 
• Air temperature (T∞) = 20°C = 293 K 
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FIND 

(a) The initial rate of heat transfer (q) 
(b) The time required for the sheet to cool to 60°C (333 K) 

ASSUMPTIONS 

• The room behaves as a black body at T∞ 
• The steel sheet behaves as a black body (ε = 1.0) 
• Heat transfer takes place from both top and bottom of the sheet 
• The steel is 1% carbon steel 
• Heat transfer from the edges of the plate is negligible 

SKETCH 
Air

= 293 KT•

2.5 m

0.0015 m

Ts i, = 698 K

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, 

The Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Appendix 2, Table 10, for 1% carbon steel 
  Specific heat (cs) = 473 J/(kg K) 

  Density (ρs) = 7801 kg/m3 

From Appendix 2, Table 27, for dry air at the mean temperature of 496 K (223°C) 

  Thermal expansion coefficient (β) = 0.00203 1/K 

  Thermal conductivity (k) = 0.0384 W/(m K) 

  Kinematic viscosity (ν) = 38.7 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

(a) The characteristic length for this geometry is 

 L = 
A

P
 = 

2S

4S
 = 

S

4
 = 

2.5m

4
 = 0.625 m 

The Grashof and Rayleigh numbers are 

 GrL = 
3

2

( )sg T T Lβ
ν

∞−
 = 

( )
( )

2 3

6 2

(9.8 m/s ) 0.002031/K (698K 293K) (0.625m)

38.7 10 m / s−
−

×
 = 1.31 × 109 

 RaL = GrL Pr = 1.31 × 109 (0.71) = 9.33 × 108 

The average Nusselt number on the bottom of the plate is given by Equation (5.17) 

 Nu  = 0.27 
1

4( )LRa  = 0.27 
1

8 4(9.33 10 )×  = 47.2 

 cth  = 
k

Nu
L

 = 47.2 
( )0.0384 W/(m K)

0.625m
 = 2.90 2W/(m K)  
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The average Nusselt number on the top of the plate is given by Equation (5.16) 

 Nu  = 0.15 
1

3Ra  = 0.15 
1

8 3(9.33 10 )×  = 146.6 

 ch  = 
k

Nu
L

 = 146.6 
( )0.0384 W/(m K)

0.625m
 = 9.01 2W/(m K)  

The total rate of heat transfer is the sum of the convective and radiative components 

 qtotal = ( )ct cbh h+  A (Ts – T∞) + 2 A σ (Ts
4 – T∞

4) 

 qtotal = [ ]2(9.01 + 2.90) W/(m K)  (2.5 m)2 (698 K – 293 K) + 2 (2.5 m)2  

   ( )8 2 45.67 ×10 W/(m k )−  [(698 K)4 – (293 K)4] 

 qtotal = 1.94 × 105 W 

(b) As the plate cools, the rate of heat transfer will decrease. The cooling time will be estimated by 
calculating a new sheet temperature and heat transfer every time period. 

The Biot number for the sheet is 

 Bi = 
s

2

h

k
 = 

( )
( )

29.01 W/(m K) (0.0015m)

2 0.0384 W/(m K)
 = 0.176 

This is slightly above 0.1. For a first order approximation, we can neglect the thermal resistance in the 
plate. For the first 20 second interval 

  Total energy loss, qtotal (20s) = m c ΔT = V ρ c (Ts,i – Ts, 20) 

Solving for temperature after 20 sec 

 Ts,20 = Ts,i – total (20s)q

V cρ
 = 698 K – 

( )
( ) ( )
5

2 3

1.94 10 W J/(Ws) (20s)

0.0015m(2.5m) 7801 kg/m 473 J/(kg K)

×
 = 586 K 

This temperature is then used to calculate new transfer coefficients and heat transfer rates as shown 
above. This procedure is followed until the temperature of the plate is 333 K. 

 

 Time (s) 20 40 80 120 

 Ts (K) 586 528 451 411 

 Tmean (K) 440 411 372 352 

 β (1/K) 0.00230 0.00244 0.00268 0.00284 

 k (W/m K) 0.0349 0.0332 0.0307 0.0292 

 ν × 106 (m2/s) 31.5 28.3 23.6 21.4 

 Pr 0.71 0.71 0.71 0.71 

 RaL × 10–9 1.15 1.22 1.29 1.24 

 hcb (W/(m2 K)) 2.78 2.67 2.51 2.37 

 hct (W/(m2 K)) 8.78 8.50 8.02 7.52 

 qtotal × 10–4 (W) 9.99 6.65 3.46 2.24 
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 Time (s) 200 300 

 Ts (K)  359 330 

 Tmean 326 

 β (1/K) 0.00306 

 k (W/m K) 0.0267 

 ν × 106 (m2/s) 17.9 

 Pr 0.71 

 RaL × 10–9 1.07 

 hcb ((W/(m2 K)) 2.09 

 hct ((W/(m2 K)) 6.56 

 qtotal × 10–4 (W) 1.01 

Interpolating between 200 and 300 seconds 

The time required to reach 333 K is approximately 290 seconds = 4.8 min. 

PROBLEM 5.21 

A thin electronic circuit board, 0.1 m by 0.1 m in size, is to be cooled in air at 25°C. The 
board is placed in a vertical position and the back side is well insulated. If the heat 
dissipation is uniform at 200 W/m2, determine the average temperature of the surface of 
the board cover. 

GIVEN 

• Vertical circuit board in air 
• Back is well insulated 
• Board dimensions (L × H) = 0.1 m × 0.1 m 
• Air temperature (T ∞) = 25°C 
• Uniform heat dissipation rate ( Gq /A) = 200 W/m2 

FIND 

• The average temperature of the surface of the board (Ts) 

ASSUMPTIONS 

• Ambient air is still 
• The board has reached steady state 
• Radiation is negligible 

SKETCH 

T• = 25°C

Insulation

Heat Generating
Components

Cover, Ts

 

SOLUTION 

Since the fluid properties must be evaluated at the average of the surface and ambient temperatures, 
an iterative procedure is required to calculate the average surface temperature of the cover. For the 
first iteration, let Ts = 55°C 
From Appendix 2, Table 27, for dry air at the mean temperature of 40°C 

  Thermal expansion coefficient (β) = 0.00319 1/K 

  Thermal conductivity (k) = 0.0265 W/(m K) 
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  Kinematic viscosity (ν) = 17.6 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

The Grashof number is 

 GrL = 
3

s
2

( )g T T Lβ
ν

∞−
 = 

( )
( )

2 3

6 2

(9.8 m/s ) 0.00319 1/K (55 C 25 C) (0.1m)

17.6 10 m / s−
° − °

×
 = 3.03 × 106 < 109 

For a laminar boundary layer, Equation (5.12a) gives the average heat transfer coefficient 

ch  = 0.68 
1

4Pr

1

4

1

4(0.952 )

HGr k

H
Pr+

 = 0.68 
1

4(0.71)

1
6 4

1

4

(3.03 10 )

(0.952 0.71)

×

+

( )0.0265 W/(m K)

0.1m
 = 6.07 2W/(m K)  

The rate of heat generation must equal the rate of convection heat transfer for steady state 

 Gq

A


 = cq

A
 = ch  (Ts – T∞) 

Solving for the surface temperature 

 Ts = T∞ + ( )Gq

A


 = 25°C + 

2

2

200 (W/m )

6.07 W/(m K)
 = 57.9°C 

For the second try, let Ts = (55°C + 57.9°C/2 = 56.5°C, i.e. halfway between the first guess and the 
result of the first interation. This gives Tmean = 40.7°C so the property values will change very little. 
For the second iteration. 
  Ts = 56.5°C 

  Mean Temp. = 40.7°C 
  β = 0.00319 1/K 
  k = 0.0265 W/(m K) 
  ν = 17.6 × 10–6 (m2/s) 
  Pr = 0.71 
  GrL = 3.17 × 106 
  ch  = 6.15 W/(m2 K) 
  Ts = 57.5°C 

Therefore, the average surface temperature is about 58°C. 

PROBLEM 5.22 

A plot of coffee has been allowed to cool to 17°C. If the electrical coffee maker is turned 
back on, the hot plate on which the pot rests is brought up to 70°C immediately and held 
at that temperature by a thermostat. Consider the pot to be a vertical cylinder 130 mm 
in diameter and the depth of coffee in the pot to be 100 mm. Neglect heat losses from the 
sides and top of the pot. How long will it take before the coffee is drinkable (50°C)? How 
much did it cost to heat the coffee if electricity costs $0.05 per kilowatt-hour? 

GIVEN 

• Coffee pot, idealized as a vertical cylinder, on a hot plate 
• Initial temperature of the pot and coffee (Ts,i) = 17°C 
• Hot plate temperature (Thp) = 70°C (constant) 
• Pot diameter (D) = 130 mm = 0.13 m 
• Depth of coffee (δ) = 100 mm = 0.1 m 
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FIND 

(a) Time for the coffee to reach 50°C 
(b) Cost to heat the coffee if electricity costs $0.05/kWh 

ASSUMPTIONS 

• Heat losses from the sides and the top are negligible 
• All energy from the hot plate goes into the coffee 
• Internal resistance of the coffee is negligible 
• Thermal resistance of the bottom of the pot is negligible 
• Coffee has the thermal properties of water 
• Variation of the thermal properties of the coffee with temperature can be neglected 

SKETCH 

L = 0.1 m

D = 0.13 m
Hot Pad, = 70°CThp

Ts,i = 17°C

Coffee Level

 

PROPERTIES AND CONSTANTS 

The relevant thermal properties will be evaluated using the average coffee temperature of (17°C + 
50°C)/2 = 33.5°C. 
From Appendix 2, Table 13, for water 

At 33.5°C Density (ρ) = 994.6 kg/m3 
  Specific Heat (c) = 4175 J/(kg K) 
At the mean temperature of (33.5°C + 70°C)/2 = 51.8°C 

  Thermal expansion coefficient (βc) = 0.00047 1/K 

  Thermal conductivity (kc) = 0.648 W/(m K) 

  Kinematic viscosity (νc) = 0.549 × 10–6 m2/s 

  Prandtl number (Prc) = 3.5 

SOLUTION 

(a) The heat transfer coefficient from between the hot plate and the coffee can be evaluated by treating the 
coffee volume as a horizontal water layer heated from below. The Rayleigh number is 

 Raδ = 
3

2

( )hp c c

c

g T T Pr

v

β δ−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00047 1/K (70 C 33.5 C) (0.1m) (3.5)

0.549 10 m / s−

° − °

×
 = 1.95 × 109 

The Nusselt number for this geometry is given by Equation (5.30b) 

 Nuδ = 1 + 1.44 
1708

1
Raδ

 −  

1

3
1

5830

Reδ
 
  −  

 + 2.0 

( )1

31 ln /1401

3

140

Ra

Re
δ

δ

 
−   
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where the notation [ ] indicates that if the quantity inside the bracket is negative, the quantity is to be 
taken as zero. 

 Nuδ = 1 + 1.44
9

1708
1

1.95 10
 − × 

+ 

1
9 31.95 10

1
5830

 
 × −    

+ 2.0 

1
9 31 ln ((1.95 ×10 ) /140)1

9 3(1.95 10 )

140

 
 −  

× 
  

 

 Nuδ = 71.0 

 hc = Nuδ 
ck

δ
 = 71.0 

( )0.648 W/(m K)

0.1m
 = 460 2W/(m K)  

The time required for heating can be calculated from Equation (2.84), solving for the time 

t = 
c

c V

h A

ρ
 ln hp

o hp

T T

T T

− 
 − 

 = – 
2

4
2

4c

c D

h D

π

π

ρ δ
 ln hp

o hp

T T

T T

− 
 − 

 = – 
c

c

h

ρδ
 ln hp

o hp

T T

T T

− 
 − 

 

 tf = 
( ) ( )

( ) ( )
3

2

4175 J/(kg K) 994.6 kg/m (0.1m)

460 W/(m K) J/(W s)
 ln 

50 C 70 C

17 C 70 C

° − ° 
 ° − ° 

 = 880 s = 14.7 min 

(b) The total heat transfer from the hot plate during this time is 

 E = 
1

0

t

 qt dt = 
1

0

t

 ch Abottom [Thp – T(t)] dt = hc 
4

π
 D2 

1

0

t

 [Thp – T(t)] dt 

From Equation (2.84) 

 Thp – T(t) = (Thp – Tsi) exp ch t

c ρδ
 

−  
 

Therefore 

1

0

t

  [Thp – T(t)] dt = (Thp – Tsi) 
1

0

t

 exp ch t

c ρδ
 

−  
 dt = (Thp – Tsi) exp 1

c f

c

h tc

h c

ρδ
ρδ

    − − −        
 

 ∴ E = –
4

π
 D2 c ρ δ (Thp – Tsi) exp 1

c fh t

c ρδ
   

− −    
 

 E = –
4

π
(0.13 m)2 ( )4175 J/(kg K) ( )3994.6 kg/m  (0.1 m) 

   (70°C – 17°C) 
( )

( ) ( )
2

3

460 W/(m K) (880s)
exp 1

4175 J/(kg K) 994.6 kg/m (0.1m)

   
− −    

 

 E = 181,916 J 
h

3600s
 
  

( )(Ws)/J
k W

1000W
 
  

 = 0.051 kWh 

 Cost = E 
$0.05

kWh

 
    = (0.051 kWh) 

$0.05

kWh

 
    = $0.003 
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COMMENTS 

The power consumption of the hot plat is about 12.5 watts. 
The cost estimate neglects all losses from the hot plate to the ambient air. 

PROBLEM 5.23 

A laboratory experiment has been performed to determine the natural-convection heat 
transfer correlation for a horizontal cylinder of elliptical cross section in air. The 
cylinder is 1 m long, has a hydraulic diameter of 1 cm, a surface area of 0.0314 m2, and 
is heated internally by electrical resistance heating. Recorded data include power 
dissipation, cylinder surface temperature, and ambient air temperature. The power 
dissipation has been corrected for radiation effects: 

 Ts – T∞ q 
 (°C) (W) 

 15.2 4.60 

 40.7 15.76 

 75.8 34.29 

 92.1 43.74 

 127.4 65.62 

Assume that all air properties may be evaluated at 27°C and determine the constants in 
the correlation equation: Nu = C (Gr Pr)m 

GIVEN 

• A horizontal, elliptical cylinder in air 
• Hydraulic diameter (Dh) = 1 cm = 0.01 m 
• Length (L) = 1 m 
• Cylinder surface area (As) = 0.0314 m2 
• Experimental data for (Ts – T∞) and q shown above 

FIND 

• The constants in the correlation equation Nu = C(Gr Pr)m 

ASSUMPTIONS 

• All air properties may be evaluated at 27°C 

SKETCH 

Dh = 0.01 m Ts

Air, T•

L = 1 m  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 27°C 

  Thermal expansion coefficient (β) = 0.00333 1/K 

  Thermal conductivity (k) = 0.0256 W/(m K) 

  Kinematic viscosity (ν) = 16.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 
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SOLUTION 

The Nusselt and Grashof number for the points are given by the following equation 

 DNu  = c hh D

k
 = 

( )
h

s s

D q

k A T T∞

 
 − 

 

 GrD = 
3

2

( )s hg T T Dβ
ν

∞−
 

Tabulating these and their logarithms for the experimental data 

 DNu  (GrD Pr) × 10–3  log DNu   log (GrD Pr) 

 3.76 1.31 0.575 3.11 
 4.81 3.51 0.682 3.55 
 5.62 6.53 0.750 3.81 
 5.91 7.93 0.772 3.90 
 6.40 10.98 0.806 4.04 

Performing a least squares fit on the data yields 

 log DNu  = 0.250 log (GrD Pr) – 0.204 

 or 

 DNu  = 0.63 (GrD Pr)0.25 

PROBLEM 5.24 

A long, 2-cm-OD horizontal copper pipe carries dry saturated steam at 1.2 atm absolute 
pressure. The pipe is contained within an environmental testing chamber in which the 
ambient air pressure can be adjusted from 0.5 to 2.0 atm, absolute while the ambient air 
temperature is held constant at 20°C. What is the effect of this pressure change on the 
rate of condensate flow per meter length of pipe? Assume that the pressure change does 
not affect the absolute viscosity, thermal conductivity, or specific heat of the air. 

GIVEN 

• A long horizontal copper pipe carrying saturated steam within an environmental testing chamber 
• Outside diameter (D) = 2 cm = 0.02 m 
• Steam pressure = 1.2 atm 
• Ambient pressure range (P) = 0.5 to 2 atm 
• Ambient air temperature (T∞) = 20°C 

FIND 

• Effect of ambient pressure change on rate of condensate flow per meter length of pipe 

ASSUMPTIONS 

• Pressure change has no effect on absolute viscosity, thermal conductivity, or specific heat of the 
air 

• Air is still 
• Chamber temperature is held constant while pressure is changed 
• Convective thermal resistance on the inside of the pipe is negligible 
• Thermal resistance of the copper pipe is negligible 
• The air behaves as an ideal gas 
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SKETCH 

D = 2 cm Ts

Environmental Chamber

T• = 20°C

0.5 ATM. < P < 2.0 ATM.
 

PROPERTIES AND CONSTANTS 

From standard steam tables: For saturated steam at 1.2 atm (0.12 MPa) the heat of vaporization (hfg) = 
2238 kJ/kg, and the temperature (Ts) = 105°C. 
From Appendix 2, Table 27, for dry air at the mean temperature of 62.5°C and one atmosphere 

  Thermal expansion coefficient (β) = 0.00298 1/K 

  Thermal conductivity (k) = 0.0281 W/(m K) 

  Absolute viscosity (μ) = 20.02 × 10–6 (N s)/m2 

  Prandtl number (Pr) = 0.71 

  Density (ρ) = 1.018 kg/m3 

For an ideal gas 

 1

2

P

P
 = 1

2

ρ
ρ

  ρ2 = 2

1

P

P
 ρ1 

 At P = 0.5 atm: ρ = ( )30.5
1.018 kg/m

1
 = 0.509 3kg / m       ν = 

μ
ρ

= 3.93 × 10–5 2m / s  

 At P = 2.0 atm: ρ = ( )32.0
1.018 kg/m

1
 = 2.036 3kg/m      ν = 

μ
ρ

= 9.83 × 10–6 2m / s  

SOLUTION 

The Grashof number based on the pipe diameter is 

 GrD = 
3

2

( )sg T T Dβ
ν

∞−
 

 At 0.5 atm 

 GrD = 
( )

( )
2 3

25 2

(9.8 m/s ) 0.002981/K (105 C 20 C) (0.02m)

3.93 10 m / s−

° − °

×
 = 1.29 × 104 

 At 2.0 atm 

 GrD = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.002981/K (105 C 20 C) (0.02m)

9.83 10 m / s−

° − °

×
 = 2.05 × 105 

The Nusselt number for a horizontal cylinder is given by Equation (5.20). (All requirements are 
satisfied at both pressures.) 

 DNu  = 0.53 
1

4( )DGr Pr  
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 At 0.5 atm 

 DNu  = 0.53 
1

4 4[1.29 10 (0.71)]×  = 5.18 

 ch  = D
k

Nu
D

 = 5.18 
( )0.0281 W/(m K)

0.2m
 = 7.28 2W/(m K)  

 At 2.0 atm 

 DNu  = 0.53 
5

1

4[2.05 10 (0.71)]×  = 10.35 

 ch  = D
k

Nu
L

 = 10.35 
( )0.0281 W/(m K)

0.02m
 = 14.54 2W/(m K)  

The rate of heat transfer per meter length of pipe is 

 cq

L
 = ch  π D (Ts – T∞) 

 At 0.5 atm 

 cq

L
 = ( )27.28W/(m K)  (π ) (0.02 m) (105°C – 20°C) = 38.9 W/m 

 At 2.0 atm 

 cq

L
 = ( )214.54 W/(m K)  (π ) (0.02 m) (105°C – 20°C) = 77.7 W/m 

It is clear that raising the ambient pressure from 0.5 atm to 2.0 atm will double the flow of 
condensation ( )cm  per meter of pipe 

 At 0.5 atm 

 cm

L


 = 

c

fg

q

L
h

 = 
( ) ( )

38.9 W/m

(2238 kJ/kg) 1000 J/k J (W s)/J
 = 1.74 × 10–5 kg/s  = 1.04 g /min  

 At 2.0 atm 

 cm

L


 = 

( ) ( )
77.7 W/m

2238 kJ/kg 1000 J/(k J) Ws/J
 = 3.47 × 10–5 kg /s  = 2.08 g /min  

PROBLEM 5.25 

Compare the rate of condensate flow from the pipe in Problem 5.24 (air pressure = 2.0 
atm) with that for a 3.89-cm-OD pipe and 2.0 atm air pressure. What is the rate of 
condensate flow if the 2 cm pipe is submerged in a 20°C constant-temperature water bath? 

From Problem 5.24: Long, 2-cm-OD horizontal copper pipe carries dry saturated steam 
at 1.2 atm absolute pressure. The pipe is contained within an environmental testing 
chamber in which the ambient air pressure can be adjusted form 0.5 to  
2.0 atm, absolute while the ambient air temperature is held constant at 20°C. Assume 
that the pressure change does not affect the absolute viscosity, thermal conductivity, or 
specific heat of the air.   

GIVEN 

• A long horizontal copper pipe carrying saturated steam within an environmental testing chamber 
or a water bath 

• Steam pressure = 1.2 atm 
• Ambient pressure (P) = 2 atm 
• Ambient air or water temperature (T∞) = 20°C 
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FIND 

Rate of condensate flow for 
(a) Diameter (D) = 3.89 cm = 0.0389 m Fluid is air at 2.0 atm 

(b) Diameter (D) = 2 cm = 0.02 m Fluid is water at T∞ = 20°C 

ASSUMPTIONS 

• Pressure change has no effect on absolute viscosity, thermal conductivity, or specific heat of the 
air 

• Air is still 
• Convective thermal resistance on the inside of the pipe is negligible 
• Thermal resistance of the copper pipe is negligible 
• The air behaves as an ideal gas 

SKETCH 

D Ts

T• = 20°C

Air at 2.0 ATM

or Water

.

 

PROPERTIES AND CONSTANTS 

From standard steam tables: For saturated steam at 1.2 atm (0.12 MPa), the heat of vaporization (hfg) = 
2238 kJ/kg, and the temperature (Ts) = 105°C. 
From Appendix 2, Table 27, for dry air at the mean temperature of 62.5°C and one atmosphere 

  Thermal expansion coefficient (β) = 0.00298 1/K 

  Thermal conductivity (k) = 0.0281 W/(m K) 

  Prandtl number (Pr) = 0.71 

From Problem 5.24: at P = 2.0 Atm, Kinematic viscosity (ν) = 9.83 × 10–6 N s/m2 
From Appendix 2, Table 13, for water at the mean temperature of 62.5°C and one atmosphere 

  β  = 0.00053 1/K k = 0.659 W/(m K) 

  v = 0.461 × 10–6 m2/s Pr = 2.89 

SOLUTION 

The Grashof number is 

 GrD = 
3

2

( )sg T T Dβ
ν

∞−
 

 Case (a) 

 GrD = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.002981/K (105 C 20 C) (0.0389m)

9.83 10 m / s−

° − °

×
 = 1.51 × 106 

 Case (b) 

 GrD = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.000531/K (105 C 20 C) (0.02m)

0.461 10 m / s−

° − °

×
 = 1.66 × 107 
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Both cases fall within the range of requirements for the use of Equation (5.20) 

 DNu  = 0.53 
1

4( )DGr Pr  

                 Case (a)  

 DNu  = 0.53 
1

6 4[1.51 10 (0.71)]×  = 17.1 

 ch  = D
k

Nu
D

 = 17.1 
( )0.0281 W/(m K)

0.0389m
 = 12.3 2W/(m K)  

                 Case (b)  

 DNu  = 0.53 
1

7 4[1.66 10 (2.89)]×  = 44.1 

 ch  = D
k

Nu
D

 = 44.1 
( )0.659 W/(m K)

0.02 m
 = 1453 2W/(m K)  

The condensate flow rate per meter of pipe is given by 

 cm

L


 = 

c

gf

q

L
h

 = 
( )c s

fg

h D T T

h

π ∞−
 

 Case (a) 

 cm

L


 = 

( )
( ) ( )

212.3 W/(m K) (0.0389m) (105 C 20 C)

2238 k J/kg 1000 J/k J Ws/J

π ° − °
= 5.7 × 10–5 kg/s  = 3.42 g/min  

 Case (b) 

 cm

L


 = 

( )
( ) ( )

21453 W (m K) (0.02m) (105 C 20 C)

2238 k J/kg 1000 J/(k J) Ws/J

π ° − °
= 3.47 × 10–3 kg/s  = 208 g/min  

COMMENTS 

The rate of condensate flow from Problem 5.24 with a 2 cm diameter pipe in air at 2.0 atm. is  
2.1 g/min. A change in the fluid from air to water leads to a much larger increase in the rate of 
condensate flow (100 times) than an increase in the pipe diameter to 3.89 cm (1.6 times). 

PROBLEM 5.26 

A thermocouple (0.8 mm OD) is located horizontally in a large enclosure whose walls are at 
37°C. The enclosure is filled with a transparent quiescent gas which has the same properties 
as air. The electromotive force (emf) of the thermocouple indicates a temperature of 230°C. 
Estimate the true gas temperature if the emissivity of the thermocouple is 0.8. 

GIVEN 

• Horizontal thermocouple in a large enclosure 
• Thermocouple outside diameter (D) = 0.8 mm = 0.0008 m 
• Enclosure wall temperature (Te) = 37°C = 310 K 
• Gas is enclosure is quiescent and has the same properties as air 
• Thermocouple reading (Ttc) = 230°C = 503 K 
• Thermocouple emissivity (ε) = 0.8 

FIND 
• True gas temperature (T∞) 
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ASSUMPTIONS 

• Enclosure behaves as a black body 
• Conduction along the thermocouple out of the enclosure is negligible 

SKETCH 

Ttc = 230°C

Gas, = ?T•

Te = 37°C

Thermocouple
wire

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5 The Stephan-Boltzmann Constant (σ) = 5.67 ×10–8 W/(m2 K4). 

 

SOLUTION 

An iterative procedure is required. For the first iteration, let T∞ = 300°C = 573 K. 
From Appendix 2, Table 27, for dry air at the mean temperature of 265°C 

  Thermal expansion coefficient (β) = 0.00188 1/K 

  Thermal conductivity (k) = 0.0408 W/(m K) 

  Kinematic viscosity (ν) = 44.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

The Grashof number based on the thermocouple diameter is 

GrD = 
3

2

( )sg T T Dβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.001881/K (300°C 230°C)(0.0008m)

44.4 10 m /s−

−

×
 = 0.335 

The Rayleigh number is 

 RaD = GrD (Pr) = (0.335) (0.71) = 0.238 

log RaD = – 0.624 

From Figure 5.3 log Nu ≈ – 0.05 → Nu = 0.89 

 hc = Nu 
k

D
 = 0.89 

( )0.0408 W /(m K)

0.0008m
 = 45 2W/(m K)  

For steady state, the rate of convection to the thermocouple must equal the rate of radiation from the 
thermocouple 

 hc A (T∞ – Ttc) = ε σ A (Ttc
4 – Te

4) 

Solving for the gas temperature 

 T∞ = Ttc + 
ch

εσ
 (Ttc

4 – Te
4) 

 T∞ = 503 K + 
( )

( )
8 2 4

2

0.8 5.67 10 W/(m K )

45 W/(m K)

−×
 [(503 K)4 – (310 K)4] = 559 K 

Using this as the beginning of another iteration 
  Tmean = 259°C 

  β = 0.00190 1/K 

  k = 0.0405 W/(m K) 

  ν = 43.5 × 10–6 m2/s 
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  Pr = 0.71 

  RaD = 0.20 

  hc = 43 W/(m2 K) 

  T∞ = 561 K 

Therefore, the true gas temperature is about 560 K = 287°C. 

PROBLEM 5.27 

Only 10 per cent of the energy dissipated by the tungsten filament of an incandescent 
lamp is in the form of useful visible light. Consider a 100 W lamp with a 10 cm spherical 
glass bulb. Assuming an emissivity of 0.85 for the glass and ambient air temperature of 
20°C, what is the temperature of the glass bulb? 

GIVEN 

• A spherical glass light bulb in air 
• Bulb power consumption (P) = 100 W 
• 10% of energy is in the form of visible light 
• Diameter (D) = 10 cm = 0.1 m 
• Bulb emissivity (ε) = 0.85 
• Ambient temperature (T∞) = 20°C = 293 K 

FIND 

• The temperature of the glass bulb (Ts) 

ASSUMPTIONS 

• Ambient air is till 
• The bulb has reached steady state 
• The surrounding behave as a black body at T∞ 

SKETCH 

T• = 20°C = 293 K

D = 0.1 m

Ts = ?

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5 the Stephan-Boltzmann constant (σ) = 5.7 × 10–8 W/(m2 K4). 

SOLUTION 

The rate of heat transfer by convection and radiation from the bulb must equal the rate of heat 
generation. 

 qc + qr = π D2 [ ch  (Ts – T∞) + ε σ (Ts
4 – T∞

4)] = 0.9 (100 W) = 90 W 

Since the fluid properties depend on the surface temperature, an iterative procedure must be used. For 
the first iteration, let Ts = 100°C = 373 K. 
From Appendix 2, Table 27, for dry air at the mean temperature of 60°C 

  Thermal expansion coefficient (β) = 0.00300 1/K 

  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 
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The characteristic length for a 3-D body is given by 

 L+ = 
1

2Horz4

A

A

π
 
 

 = 
2

1

22

4

D

4 D

π

π

π

   
  

  

 = π D = π  (0.1 m) = 0.314 m 

The Grashof and Rayleigh numbers are 

GrL+ = 
3

2

( ) ( )sg T T Lβ
ν

+
∞−

 = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.0031/K (100°C 20°C)(0.314m)

19.4 10 m / s−

−

×
 = 1.94 × 108 

 RaL+ = GrL+ + Pr = 1.94 × 108 (0.71) = 1.38 × 108 

Equation (5.25) correlates data for 3-D bodies including spheres for 200 < RaL+ < 1.5 × 109 

 Nu+ = 5.75 + 0.75 
0.252

( )

Ra

F Pr

+ 
 
 

 

 where   F(Pr) = 

16
9 9

160.49
1

Pr

 
  +     

 = 

16
9 9

160.49
1

0.71

 
  +     

 = 2.88 

 ∴ Nu+ = 5.75 + 0.75 
81.38 10

2.88

 ×
  

 = 70.4 

 ch  = Nu+ 
+

k

L
 = 70.4 

( )0.0279 W/(m K)

0.314m
 = 6.26 2W/(m K)  

The rate of heat transfer by convection and radiation must equal the heat generation rate 

 qc + qr = π (0.1 m)2 ( )2 8 2 4 4 46.26 W/(m K)( 293K) 0.85 5.67 10 W/(m K ) ( (293K) )s sT T− − + × −   = 90 W 

Checking the units then eliminating them for clarity 

 0.197 Ts + 1.514 × 10–9 Ts
4 – 158.8 = 0 

By trial and error: Ts = 460 K = 187°C. 
The results of further iterations are tabulated below 
 

Iteration # 2 3 

 Ts (K) 459 457 

 Tmean (K) 376 375 

 β (1/K) 0.00266 0.00270 

 k (W/(m2 K)) 0.0309 0.0308 

 ν × 106 (m2/s) 24.0 23.8 

 Pr 0.71 0.71 

 Ra+ × 10–8 1.86 1.68 

 hc (W/(m2 K)) 7.43 7.23 

Ts (°C) 181 182 

The bulb temperature, therefore, is approximately 182°C. 

COMMENTS 

Note that radiative transfer accounts for about 66% of the total heat transfer from the bulb. 
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PROBLEM 5.28 

A sphere 20 cm in diameter containing liquid air (–140°C) is covered with 5 cm thick 
glass wool (50 kg/m3 density) with an emissivity of 0.8. Estimate the rate of heat transfer 
to the liquid air from the surrounding air at 20°C by convection and radiation. How 
would you reduce the heat transfer? 

GIVEN 

• A sphere containing liquid air covered with glass wool 
• Sphere diameter (Ds) = 20 cm = 0.2 m 
• Liquid air temperature (Ta) = – 140°C = 133 K 
• Surrounding air temperature (T∞) = 20°C = 293 K 
• Insulation thickness (s) = 5 cm = 0.05 m 
• Insulation emissivity (ε) = 0.8 

FIND 

• Rate of heat transfer from liquid air to surrounding air (q) 
• How can this be reduced? 

ASSUMPTIONS 

• Steady state conditions 
• The surroundings behave as a black body enclosure at T∞ 
• Surrounding air is still 
• Thermal resistance of the convection inside the sphere and of the container wall are negligible 

SKETCH 

Ta = 133 K

Ds = 0.2 m

Liquid
Air

Ts

S = 5 cm

Insulation

T• = 20°C = 293 K

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4). 
From Appendix 2, Table 11, the thermal conductivity of glass wool (ki) = 0.037 W/(m K). 

SOLUTION 

The natural convection heat transfer coefficient on the exterior of the insulation depends on the 
exterior temperature of the insulation (Ts), an iterative procedure is therefore required. For the first 
iteration, let Ts = – 20°C (253 K) 
From Appendix 2, Table 27, for dry air at the mean temperature of 0°C 

  Thermal expansion coefficient (β) = 0.00366 1/K 

  Thermal conductivity (k) = 0.0237 W/(m K) 

  Kinematic viscosity (ν) = 13.9 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

The characteristic length for the sphere is 

 L+ = 
1

2Horz4

A

A

π
 
 

 = 
2
i

i

D

D

π
 = π Di = π  (Ds + 2s) = π  [0.2 m + 2(0.05 m)] = 0.942 m 
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The Grahsof and Rayleigh numbers based on this length are 

GrL+ = 
3

2

( ) ( )sg T T Lβ
ν

+
∞−

 = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.003661/K (20°C 20°C)(0.942m)

13.9 10 m / s−

−

×
 = 6.21 × 109 

 RaL+ = GrL+ Pr = 6.21 × 109 (0.71) = 4.41 × 109 

Although the empirical relation of Equation (5.25) extends only to Ra+ = 1.5 × 109, it will be 
extrapolated here to estimate the Nusselt number 

 Nu+ = 5.75 + 0.75 
0.252

( )

Ra

F Pr

+ 
 
 

 

where F(Pr) = 

16
9 9

160.49
1

Pr

 
  +     

 = 

16
9 9

160.49
1

0.71

 
  +     

 = 2.88 

 ∴ Nu+ = 5.75 + 0.75 
0.25294.41 10

2.88

 ×
  

 = 160.5 

 ch  = Nu+ 
k

L+  = 160.5 
( )0.0237 W/(m K)

0.942m
 = 4.04 2W/(m K)  

The thermal circuit for the sphere is shown below 

TaT•

Rks ª 0
Rki

Ts

Rci ª 0
Rro

Rco

 

where Rci = interior convective resistance (negligible) 

 Rks = conductive resistance of the container (negligible) 
 Rki = conductive resistance of the insulation 
 Rco = exterior convective resistance 
 Rro = exterior radiative resistance 
From Equation (2.48) 

 Rki = 
4

o i

i o i

r r

k r rπ
−

  where ro = 
2

sD
 + s = 0.1 m + 0.05 m = 0.15 m and ri = 

2
sD

 = 0.1 m 

 ∴ Rki = 
( )

0.15m 0.1m

4 0.037 W/(m K) (0.15m) (0.1m)π
−

 = 7.17 K / W  

From Equation (1.14) 

 Rco = 
1

ch A
 = 

2

1

4c oh rπ
 = ( )2 2

1

4.04 W/(m K) 4 (0.15m)π
 = 0.875 K / W  

The exterior radiative resistance is 

Rro = 
2 4 44 ( )

s

o s

T T

r T Tπ εσ
∞

∞

−
−

 = ( )2 8 2 4 4 4

293K 253K

4 (0.15m) (0.8) 5.67 10 W/(m K ) [(293K) (253K) ]π −
−

× −
 

 Rro = 0.953 K/W 
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The net resistance for the thermal network is Rt = Rki + Ro where 

 Ro = co ro

co ro

R R

R R+
 = 

(0.875K/W) (0.953K/W)

0.875K/W 0.953K/W+
 = 0.46 K/W 

 Rt = 7.17 K/W = 0.46 K/W = 7.63 K/W 

The rate of heat transfer is given by 

 q = a

t

T T

R
∞ −

  = 
293K 133K

7.63K/ W

−
 = 20.97 W 

The accuracy of the insulation surface temperature guess can be checked from 

 q = so

o

T T

R
∞ −

 = 
293K 253K

0.46K/ W

−
 = 86.9 W > 20.97 W 

Therefore, we need to reduce Tso. However, notice that nearly 94% of the total thermal resistance is 
due to the insulation. This means that adjusting Tso has little effect on the total rate of heat transfer. It 
also means that the heat gain by the liquid air can be most easily reduced by increasing the thickness 
of insulation, selecting an insulation with lower thermal conductivity, or both. 

PROBLEM 5.29 

A 2-cm-OD bare aluminum electric power transmission line with an emissivity of 0.07 
carries 500 amps at 400 kV. The wire has an electrical resistivity of 1.72 micro-ohms 
cm2/cm at 20°C and is suspended horizontally between two towers separated by  
1 km. Determine the surface temperature of the transmission line if the air temperature 
is 20°C. What fraction of the dissipated power is due to radiation heat transfer? 

GIVEN 

• An aluminium electric power transmission line suspended horizontally 
• Emissivity (ε) in air = 0.3 
• Line diameter (D) = 2 cm = 0.02 m 
• Current (I) = 500 amp 
• Voltage (V) = 400 kV 
• Electrical resistivity (ρe) = 1.72 Ω cm2/cm at 20°C 
• Space between towers (L) = 1 km 
• Air temperature (T∞) = 20°C = 293 K 

FIND 

(a) Surface temperature of wire (Tw) 
(b) Fraction of dissipated power due to radiation 

ASSUMPTIONS 

• Steady state 
• The wire radiates to the surroundings which behave as a black body enclosure at T∞ 

SKETCH 

Wire, TwT• = 20° C = 293 K

L k= 1 m  

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/m2 K4. 
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SOLUTION 

The power dissipation is given by Ohm’s Law 

 P = I2 Rc = I2 
cA

ρ
 = 

2

2

4 I

D

ρ
π

 = 
( )2 6 2

2

4 (500Amps) 1.72 10 ohmcm / cm

(2cm)π

−×
 

   = 0.1368 W/cm  = 13.68 W/m  

This must equal the rate of heat transfer by convection and radiation per meter 

 P = π D [hc (Tw – T∞) + εw σ (Tw
4 – T∞

4)] 

Since hc varies with Tw, an iterative procedure must be used. For the first iteration, let Tw = 60°C. 

From Appendix 2, Table 27, for dry air at the mean temperature of 40°C 

  Thermal expansion coefficient (β) = 0.00319 1/K 

  Thermal conductivity (k) = 0.0265 W/(m K) 

  Kinematic viscosity (ν) = 17.6 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

The Grashof number based on the wire diameter is 

 GrD = 
3

2

( )sg T T Dβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.003191/K (60°C 20°C) (0.02m)

17.6 10 (m / s)−

−

×
 = 3.23 × 104 

The Nusselt number for this geometry and Grashof number is given by Equation (5.20) 

 NuD =  0.53 
1

4( )DGr Pr  = 0.53 
1

4 4[3.23 10 (0.71)]×  = 6.52 

 hc = NuD 
k

D
 = 6.52 

( )0.0265 W/(m K)

0.02m
 = 8.64 2W/(m K)  

 ∴ P = 13.68 W/m = π (0.02 m)  

 ( )2 8 2 4 4 48.64 W/(m K) ( 293K) 0.07 5.67 10 W/(m K ) [ (293K) ]w wT T− − + × −   

Checking the units then eliminating them for clarity 

3.97 × 10–9 Tw
4 + 8.64 Tw –2778 = 0 

By trial and error Tw = 317 K = 44°C 
Performing further iterations 

Iteration # 2 3 

 Tw (°C) 44 46.6 
 Mean Temp. (°C) 32 33.33 

 β (1/K) 0.00328 0.00326 
 k W/(m K) 0.0259 0.0260 

 ν × 106 (m2/s) 16.8 17.0 

 Pr 0.71 0.71 

 GrD × 10-4 2.19 2.35 

 NuD 5.92 6.02 

 hc (W/(m2 K)) 7.66 7.83 

Tw (°C) 47 46 
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The equilibrium surface temperature is 46°C. 
(b) The rate of heat transfer by convection is 

 cq

L
 = hc π D (Tw – T∞) – 7.83 2W/(m K)  π  (0.02 m) (46°C – 20°C) = 12.79 W/m 

The rate of heat transfer by radiation is 

 rq

L
 = ε σ π D(Ts

4 – T∞
4) = 0.07 ( )8 2 45.67 10 W/(m K )−× π  (0.02 m)  

   [(319 K)4 – (293 K)4] = 0.74 W 

As a check on the results 

 cq

L
 + rq

L
= 12.79 W/m + 0.74 W/m = 13.53 W/m ≅ P 

The fraction of the power dissipation by radiation is 

 

rq

L
P

 = 
0.74

13.53
 = 0.055 = 5.5% 

PROBLEM 5.30 

An 20 cm OD horizontal steam pipe carries 1.66 kg/min dry saturated steam at 120°C.  
If ambient air temperature is 20°C, determine the rate of condensate flow at the end of  
3 m of pipe. Use an emissivity of 0.85 for the pipe surface. If it is desired to keep heat 
losses below 1 percent of the rate of energy transport by the steam, what thickness of 
fiberglass insulation is required? The rate of energy transport by the steam is the heat of 
condensation of the steam flow. The heat of vaporization of the steam is 2210 kJ/kg. 

 

GIVEN 

• A horizontal steam pipe in air 
• Pipe outside diameter (D) = 20 cm = 0.2 m 
• Mass flow rate of steam (ms) = 1.66 kg/min = 0.0276 kg/s 
• Steam temperature (Ts) = 393 K 
• Ambient air temperature (T∞) = 293 K 
• Emissivity of pipe surface (ε) = 0.85 
• Heat of vaporization (hfg) = 2210 kJ/kg 

FIND 

(a) Rate of condensate flow (mc) at the end of 3 m of pipe. 
(b) Thickness of fiberglass insulation (S) to keep loss below 1% of the energy transport by steam 

ASSUMPTIONS 

• Steady state 
• Air is still 
• Thermal resistance of the convection in the pipe and of the pipe wall are negligible 
• The surroundings behave as an enclosure at T∞ 
• Insulation is foil covered, its emissivity ≈ 0.0 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Appendix 2, Table 11, Thermal conductivity of fiberglass (ki) = 0.035 W/(m K) 
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From Appendix 2, Table 27, for dry air at the mean temperature of 70°C 

  Thermal expansion coefficient (β) = 0.0029 1/K 

  Thermal conductivity (k) = 0.0287 W/(m K) 

  Kinematic viscosity (ν) = 2.02 × 10–5 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

(a) The Grashof number for the uninsulated pipe is 

 GrD = 
3

2

( )sg T T Lβ
ν

∞− 2 –3 3

–5 2 2

(9.81m/s 2.9 10 1/K)(120 20)°C(0.2m)

(2.02 10 m /s)

× × −
×

 = 5.58 × 107 

The rate of radiative heat less from the pipe surface 

 qr = πDL σ ε (Ts
4 – T∞

4) 

  = π × (0.2 m) 3 m × 5.67 × 10–8 W/(m2 K4) (0.85) [3934 – 2934] 

  = 1497 W 

The convective heat transfer from the pipe surface can be found as 

 NuD = 0.53 
1

4( )DGr Pr  = 42.05 

 ∴  hc = NuD
K

D
 = 42.05 × 

0.0287 W/(m K)

0.2m
 = 6.03 W/(m2 K) 

Hence 

 qc = πDL hc (Ts – T∞) 

  = π (0.2 m) 3 m (6.03 W/(m2 K)) (100 K) 

  = 1136 W 

∴ Total heat transfer  

 qtotal = qr + qc = 1497 W + 1136 W 

   qtotal = 2633 W 

If the rate of condensate flow at the end of pipe length be condm ,  

then   cond
(kg/s)

m  × 2210 × 103 J/kg = 2633 W 

    condm  = 1.19 × 10–3 kg/s = 1.19 g/s 

In presence of insulation, the maximum heat less equals 1% of energy transported by steam. 

 q = hc π (D + 2s) L(Tsi – T∞) = si

k

T T

R
∞−

 = 0.01 × 
1.66

60
kg/s × 2210 × 103 J 

  = 611 W 

where Rk = 

2
ln

2 i

D s
D
Lkπ

+ 
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Rearranging to eliminate the insulation thickness 

 s = 
2 ( )c si

q

h L T Tπ ∞−
 – 

2

D
 –  q = 

2 ( )

( )
ln

i si

c si

Lk T T

h DL T T

q

π
π

∞

∞

−
− 

  

 

Since hc depends on the insulation surface temperature Tsi, an iterative procedure must be used. 
For the first iteration, let Tsi = 49°C. 
From Appendix 2, Table 27, for dry air at the mean temperature of 34.5°C 

  Thermal expansion coefficient (β) = 3.25 × 10–3 1/K 
  Thermal conductivity (k) = 0.026 W/(m K) 
  Kinematic viscosity (ν) = 1.68 × 10–5 m2/s 
  Prandtl number (Pr) = 0.71 

 
Assuming the insulation is thin compared to the pipe radius 

 GrD = 
3

2

( )sg T T Dβ
ν

∞−
 = 

2 –3 3

–5 2

(9.81m/s )(3.25 10 1/K)(49 20)K (0.2m)

(1.68 10 )

× −
×

 

  = 2.6 × 107 

Now hc = 0.53 
1

4( )D
K

Gr Pr
D

 

   hc = 0.53 
1

7 4(2.6 10 0.71)× ×  0.026 W, 0.2 m = 4.51 W/(m2 K) 

   611 W = 
2

2  (3 m) (0.026 W/(m K)) (  - 20)K

(4.51W/(m K)) (0.2m)(3m)( – 20)
ln

611

si

si

T

T

π
π 

 
 

 

By trial and error, it gives Tsi = 86.5°C 

The surface temperature of the insulation is about 86°C 

 ∴ s = 
2

611W 0.20
– m

22(4.51W/(m K)) (3m)(86.5°C – 20°C)π
 
  

 

 s = 0.8 cm 

PROBLEM 5.31 

A long steel rod (2 cm in diameter, 2 m long) has been heat-treated and quenched to a 
temperature of 100°C in an oil bath. In order to cool the rod further it is necessary to 
remove it from the bath and expose it to room air. Will the faster cool-down result from 
cooling the cylinder in the vertical or horizontal position? How long will the two 
methods require to allow the rod to cool to 40°C in 20°C air? 

GIVEN 

• A long steel rod in air 
• Diameter (D) = 2 cm = 0.02 m 
• Length (L) = 2 m 
• Initial temperature (Ts,i) = 100°C 
• Air temperature (T∞) = 20°C 
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FIND 

(a) Is it faster to cool the rod vertically or horizontally? 
(b) Time for rod to cool to 40°C in each position 

ASSUMPTIONS 

• Steel is 1% carbon 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10, for 1% carbon steel 
  Thermal conductivity (ks) = 43 W/(m K) 
  Specific heat (c) = 473 J/(kg K) 
  Density (ρ) = 7801 Kg/m3 

From Appendix 2, Table 27, for dry air at the initial mean temperature of 60°C 

  Thermal expansion coefficient (β) = 0.003 1/K 
  Thermal conductivity (k) = 0.0279 W/(m K) 
  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 

SOLUTION 

As the temperature of the rod decreases, the heat transfer coefficient will also decrease. Therefore, a 
rough numerical integration will be used to estimate the cooling time. 
Note that the air properties must be evaluated at each step. 

 Time (min) 5 10 15 20 30 40 42 60 76 

 Vertical hc (W/(m2 K)) 5.96 5.80 5.65 5.50 5.34 5.06 4.78 4.29 
 DT (°C) 7.8 6.8 6.0 5.3 9.4 7.3 11.6 5.7 
 New Ts (°C) 92.2 85.4 79.4 74.0 64.6 57.3 45.7 40.0 

 Horizontal hc (W/(m2 K))  10.15 9.73 9.37 9.02 8.67 8.02 7.54 
 DT (°C) 13.2 10.6 8.6 7.0 11.5 7.6 1.4 
 New Ts (°C) 86.8 76.2 67.6 60.6 49.1 41.5 40.1 

Cooling time: about 76 minutes in the vertical position, about 42 minutes in the horizontal position 

An alternate method of solution uses the average heat transfer coefficients and the time-temperature history 
given by Equation (2.84). Evaluating the heat transfer coefficients when the rod has reached 40°C 

Vertical: hcv, final = 4.22 W/(m2 K) → hcv, ave = 5.09 W/(m2 K) 
Horizontal: hch, final = 7.77 W/(m2 K) → hch, ave = 8.96 W/(m2 K) 

The time required for the rod to cool to the temperature Tf is calculated by rearranging Equation (2.84) 
Similarly for the horizontal position: t = 2854 s = 48 min. 
This more approximate technique yields cooling times about 10-14% greater than the numerical 
technique shown above. 

PROBLEM 5.32 

In petroleum processing plants, it is often necessary to pump highly viscous liquids such 
as asphalt through pipes. In order to keep pumping costs within reason, the pipelines are 
electrically heated to reduce the viscosity of the asphalt. Consider a 15-cm-OD uninsulated 
pipe and an ambient temperature of 20°C. How much power per meter of pipe length is 
necessary to maintain the pipe at 50°C? If the pipe is insulated with 5 cm of fiberglass 
insulation, what is the power requirement? 
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GIVEN 

• An electrically heated pipe 
• Diameter (D) = 15 cm = 0.15 m 
• Pipe surface temperature (Tsp) = 50°C 

FIND 

(a) Power per meter (qe/L) required with no insulation 
(b) Power per meter required with 5 cm (0.05 m) of fiberglass insulation 

ASSUMPTIONS 

• The pipe is horizontal and in quiescent air 
• Radiative heat transfer is negligible 
• No heat is transferred to the fluid in the pipe 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 35°C 

  Thermal expansion coefficient (β) = 0.00325 1/K 
  Thermal conductivity (k) = 0.0262 W/(m K) 
  Kinematic viscosity (ν) = 17.1 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 

From Appendix 2, Table 11, the thermal conductivity of fiberglass (kfg) = 0.035 W/(m K) 

SOLUTION 

The correlation for the average heat transfer coefficient for this geometry is given by Equation (5.20). 
(Note that the criteria of 103 < GrD < 109 and Pr > 0.5 is satisfied.) 

The thermal properties needed to evaluate hc must be calculated at the mean of Tsi and T∞. Therefore, 
an iterative process is required. 
For iteration #1, let Tsi = 35°C 
From Appendix 2, Table 27, for dry air at the mean temperature of 27.5°C 

  Thermal expansion coefficient (β) = 0.00333 1/K 
  Thermal conductivity (k) = 0.0256 W/(m K) 
  Kinematic viscosity (ν) = 16.4 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 

Equation (5.20) gives the heat transfer coefficient 
Performing further iterations using the same Procedure 

 Iteration # 2 3 

 Tsi (°C) 23.9 25.2 
 Mean Temp. (°C) 22.0 22.6 
 β (1/K) 0.00339 0.00338 

 k (W/(m K)) 0.0252 0.0253 

 ν × 106 (m2/s) 15.9 15.9 
 Pr 0.71 0.71 
 GrD × 10–6 8.01 10.6 

 hc (W/(m2 K)) 2.61 2.81 
 L Rc (m K)/W 0.488 0.452 
 Tsi (°C) 25.2 24.9 
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COMMENTS 

The insulation has reduced the rate of heat loss by 84%. 

 

PROBLEM 5.33 

Estimate the rate of convective heat transfer across a 1 m tall double-pane window 
assembly in which the outside pane is at 0°C and the inside pane is at 20°C. The panes 
are spaced 2.5 cm apart. What is the thermal resistance (‘R’ value) of the window if the 
rate of radiative heat flux is 84 W/m2? 

GIVEN 

• Double-pane window assembly 
• Height (H) = 1 m 
• Spacing (δ) = 2.5 cm = 0.025 m 
• Pane temperatures  Inside (Ti) = 20°C 

Outside (To) = 0°C 
• Radiative heat flux (qr/A) = 84 W/m2 

FIND 

(a) The rate of convective heat transfer (qc/A) 
(b) The thermal resistance (R) 

ASSUMPTIONS 

• Steady state 
• Conduction through the window frame is negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 10°C 

 Thermal expansion coefficient (β) = 0.00354 1/K 
 Thermal conductivity (k) = 0.0244 W/(m K) 
 Kinematic viscosity (ν) = 14.8 × 10–6 m2/s 
 Prandtl number (Pr) = 0.71 

SOLUTION 

(a) The aspect ratio for the window is 

 
H

δ
 = 

1m

0.025m
 = 40 

The Grashof and Rayleigh numbers based on the spacing are 

 Raδ = Grδ Pr = 4.95 × 104 (0.71) = 3.51 × 104 

 Grδ = 
3

2

( )sg T Tβ δ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.003541/K (20°C 0°C)(0.025m)

14.8 10 m / s−

−

×
 = 4.95 × 104 

 hc = Nuδ 
k

δ
 = 1.89 

( )0.0244 W/(m K)

0.025 m
 = 1.85 2W/(m K)  

 Nuδ = 0.42 Raδ
0.25 Pr0.012 

0.3H

δ

−
 
    = 0.42 (3.51 × 104)0.25 (0.71)0.012 (40)–0.3 = 1.89 

The Nusselt number for an enclosed space with H/δ = 40 and 109 < Raδ 107 is given by Equation (5.29a) 
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The rate of heat transfer by convection is given by 

 cq

A
 = hc ( )( )21.85 W/(m K) (20°C 0°Ci oT T− = −  = 37.0 W 

(b)The R value must satisfy the following equation 

 totalq

A
 = i oT T

R

−
 = cq

A
 + rq

A
 – R = 

2

20 0

(37 84) W/m
i o

c r

T T C C
q q

A A

− ° − °=
++

 = 0.165 2m K/W  

The R value is usually expressed in English units 

  ( )20.165 m K/W
0.5275 h°F/Btu

K/W
 
    ( )2 210.764 ft / m  = 0.94 2h ft °F/Btu  

The R value is approximately 1. 

PROBLEM 5.34 

An architect is asked to determine the heat loss through a wall of a building constructed 
as shown in the sketch. If the wall spacing is 10 cm, the inner surface is at 20°C and the 
outer surface is at – 8°C with air between, (a) estimate the heat loss by natural 
convection. Then determine the effect of placing a baffle (b) horizontally at the mid-
height of the vertical section (B), (c) vertically at the center of the horizontal section (C), 
and (d) vertically half-way between the two surfaces (D). 

6 m

3 m

0.1 m

Inside
Baffle ( )b

Baffle ( )c

Baffle ( )d

Outside

 

GIVEN 

• Air filled wall construction as shown above 
• Inner wall temperature (Ti) = 20°C 
• Outer wall temperature (To) = – 8°C 
• Wall spacing (δ) = 10 cm = 0.1 m 
• Wall height (L) = 3 m 
• Wall width (w) = 6 m 

FIND 

The rate of heat loss by natural convection (qc) for the wall 
(a) without baffles 
(b) with a horizontal baffle at a mid-height of the wall-baffle B 
(c) with a vertical baffle at the center of the horizontal section-baffle C 
(d) with a vertical baffle midway between the walls-baffle D 
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ASSUMPTIONS 

• Wall temperatures are constant and uniform 
• Steady state conditions 
• Baffle thickness is negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 6°C 

 Thermal expansion coefficient (β) = 0.00359 1/K 

 Thermal conductivity (k) = 0.0241 W/(m K) 

 Kinematic viscosity (ν) = 14.4 × 10–6 m2/s 

 Prandtl number (Pr) = 0.71 

SOLUTION 

(a)  The Grashof and Rayleigh numbers based on the space between the walls (d) are 

 Raδ = Grδ Pr = 4.75 × 106 (0.71) = 3.37 × 106 

 Grδ  = 
3

2

( )sg T Tβ δ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.003591/K (20°C 8°C)(0.1m)

14.4 10 m / s−

+

×
 = 4.75 × 106 

The aspect ratio (L/δ) = (3 m)/(0.1 m) = 30 
The correlation for this geometry is given by Equation (5.29a) 

 Nuδ  = 0.42 Raδ
0.25 Pr0.012

0.3L

δ

−
 
    = 0.42(3.37 × 106)0.25 (0.71)0.012 (30)– 0 .3 = 6.46 

 hc = Nuδ 
k

δ
 = 6.46 

( )0.0241 W/(m K)

0.1m
 = 1.56 2W/(m K)  

The rate of heat loss is 

 q = hc A (Ti – To) = ( )21.56 W/(m K)  (3 m) (6 m) (20°C + 8°C) = 786 W 

 hc = Nuδ 
k

δ
 = 7.95 

( )0.0241 W/(m K)

0.1m
 = 1.92 2W/(m K)  

(b) With baffles at mid-height, the Rayleigh number is unchanged, but L = 1.5 m, L/δ =  
(1.5 m)/(0.1 m) = 15 

 Nuδ = 0.42 (3.37 × 106)0.25 (0.71)0.012 (15)–0.3 = 7.95 

 q = ( )21.92 W/(m K)  (3 m) (6 m) (20°C + 8°C) = 966 W 

These baffles actually increase the rate of heat transfer by 23%. 
(c) The temperature of the vertical baffles is assumed to be approximately equal to the average of the 

wall temperatures (6°C). From Appendix 2, Table 27, for dry air at the mean temperatures for the 
two enclosed spaces 

 Mean Temperature (°C) – 1°C (estimated) 13°C 

 β (1/K) 0.00365 0.00350 

 k (W/(m K)) 0.0236 0.0246 

 N × 106 (m2/s) 13.5 15.1 
 Pr 0.71 0.71 
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The Rayleigh numbers for the two sections are 

 Raδ = Grδ Pr = 

3

2

( )
2sg T T Pr
δβ

ν

∞
 

−   
 

For the inside section 

 Raδ = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.0035 1/K (20°C 6°C)(0.05m) (0.71)

15.1 10 m / s−

−

×
  = 1.87 × 105 

 
For the outside section 

 Raδ = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.00365 1/K (6°C 8°C)(0.05m) (0.71)

13.5 10 m / s−

+

×
 = 2.44 × 105 

 Rci = 
1

ch A
 = ( )2

1

1.25 W/(m K) (3 m)(6 m)
 = 0.0443 K/W 

The aspect ratio is L/δ = 3/0.05 = 60 

 Nuδ = 0.42 (1.87 × 105)0.25 (0.71)0.012 (60)–0.3 = 2.55 

 hc = 2.55 
( )0.0246 W/(m K)

0.05m
 = 1.25 2W/(m K)  

Although this is beyond the range of the correlation, Equation (5.29a) will be used to estimate the 
Nusselt numbers 

 Rci = 
1

ch A
 = ( )2

1

1.28 W/(m K) (3m)(6m)
 = 0.0432 K/W 

Inside section 

 hc = 2.72 
( )0.0236 W/(m K)

0.05 m
 = 1.28 2W/(m K)  

Outside section 

 Nuδ = 0.42 (2.44 × 105)0.25 (0.71)0.012 (60)– 0.3 = 2.72 

These two thermal resistances are in series: therefore, the total resistance is their sum and the rate of 
heat transfer through the wall is 

 q = 
total

T

R

Δ
 = i o

ci co

T T

R R

−
+

 = 
20°C 8°C

0.0443 K/W 0.0432 K/W

+
+

 = 319.8 W 

This represents a 59% decrease in rate of heat transfer from the unbaffled case. 
(d) Since the width of the enclosed space does not enter into the calculation of the heat transfer 

coefficient, this baffle will have no effect on the rate of heat transfer. 

PROBLEM 5.35 

A flat plate solar collector of 3 m × 5 m area has an absorber plate that is to operate at a 
temperature of 70°C. To reduce heat losses, a glass cover is placed 0.05 m from the 
absorber and its operating temperature is estimated at 35°C. Determine the rate of heat 
loss from the absorber if the 3 m edge is tilted at angles of inclination from the 
horizontal of 0°, 30°, and 60°. 
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GIVEN 

• A flat plate solar collector 
• Area = 3 m × 5 m 
• Absorber temperature (Ta) = 70°C 
• Glass cover temperature (Tc) = 30°C 
• Distance between absorber and cover (δ) = 0.05 m 

FIND 

Heat loss by natural convection from the absorber of angles (θ) of (a) 0°, (b) 30°, and (c) 60° from the 
horizontal 

ASSUMPTIONS 

• The space is air filled 

SKETCH 

0.05 m30 m

0°.30°,or 60°

Glass Cover, 35° C

Absorber Plate. 70° C

Insulation

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 52.5°C 

  Thermal expansion coefficient (β) = 0.00307 1/K 
  Thermal conductivity (k) = 0.0274 W/(m K) 
  Kinematic viscosity (ν) = 18.7 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 

SOLUTION 

The Grashof and Rayleigh numbers for this geometry are 

 Grδ = 
3

2

( )sg T Tβ δ
ν

∞−
 = 

( )2 3

6 2 2

(9.8 m/s ) 0.00307 1/K (70°C 35°C)(0.05m)

(18.7 10 m / s)−
−

×
 = 3.76 × 105 

 Raδ = Grδ Pr = 3.76 × 105 (0.71) = 2.67 × 105 

The heat transfer coefficient is given by Equation (5.31), where the quantities enclosed by [ ] are to be 
set to zero if they are negative: At θ = 0°. 

Since the aspect ratio (L/δ) = 3/0.05 = 60, the critical angle is 70° 

 hc = 2.75 2W/(m K)  

The rate of natural convective heat transfer is given by 

 qc = hc A(Ta – Tc)  = ( )22.75 W/(m K)  (3 m) (5 m) (70°C – 35°C) = 1444 W/m 
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Performing a similar calculation for the other angles yields the following results 
 

 Angle, θ (degrees) hc (W/(m2 K)) qc (W) 

 0 2.75 1444 
 30 2.65 1390 
 60 2.32 1221 

COMMENTS 

Heat transfer by radiation will also be significant in this case. 

PROBLEM 5.36 

Determine the rate of heat loss through a double glazed window, as shown in the sketch, 
if the inside room temperature is 65°C and the average outside air is 0°C during 
December. Neglect the effect of the window frame. 

Frame

Inside, 65°C

Outside, 0°C

Glass
Panes

5 mm

5 cm
0.8 m

0.6 m

 

If the house is electrically heated at a cost of $0.06/(kW hr), estimate the savings 
achieved with a double glazed compared to a single glazed window during December. 

GIVEN 

• A double glazed window as shown 
• Inside room temperature (T∞i) = 65°C 
• Outside air temperature (T∞o) = 0°C 
• Cost of heating = $0.06/(kW hr) 

FIND 

(a) The rate of heat loss through a double glazed window 
(b) The saving of double glazing over single glazing 

ASSUMPTIONS 

• Saving can be based on steady state analysis 
• Inside and outside air is still 
• Radiative heat transfer is negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11, thermal conductivity of window glass (kg) = 0.81 W/(m K) 

SOLUTION 

A single glazed window will be analyzed first 

 GrH = 
3

2

( )sg T T Hβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00311 1/K (65°C 32.5°C)(0.8m)

18.4 10 m /s−

−

×
 = 1.50 × 109 
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Since the temperature of the glass is unknown, an iterative procedure is required. For the first 
iteration, let Tg = 32.5°C. 
From Appendix 2, Table 27, for dry air 

 Mean Temperature (°C) 16.3 48.8 

 Thermal expansion coefficient, β (1/K) 0.00346 0.00311 

 Thermal conductivity, k (W/(m K)) 0.0248 0.0271 

 Kinematic viscosity, ν × 106 (m2/s) 15.4 18.4 
 Prandtl Number, Pr 0.71 0.71 

The Grashof number based on the window height is 
Inside 

 GrH = 
3

2

( )sg T T Hβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00311 1/K (65°C 32.5°C)(0.8m)

18.4 10 m /s−

−

×
 = 1.50 × 109 

Outside 

 GrH =
3

2

( )sg T T Hβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00346 1/K (32.5°C 0°C)(0.8m)

15.4 10 m /s−

−

×
 = 2.38 × 109 

Since GrH > 109, the Nusselt numbers are given by Equation (5.13) 

 NuL = 0.13 ( )
1

3LGr Pr  
Inside 

 NuL = 0.13 
1

9 32.38 10 (0.71) ×   = 154.8 

 hc = NuL 
k

L
 = 154.8 

( )0.0248 W/(m K)

0.8 m
 = 4.80 2W/(m K)  

Outside 

 NuL = 0.13 
1

9 32.38 10 (0.71) ×   = 154.8 

 hc = NuL 
k

L
 = 154.8 

( )0.0248 W/(m K)

0.8m
 = 4.80 2W/(m K)  

The rate of convection inside and outside must be the same 

 hci A (T∞i – Tg) = hco A (Tg – T∞o) 

Solving for the glass temperature 

 Tg = ci i co o

ci co

h T h T

h h
∞ ∞+

+
 = 

( ) ( )2 2

2

4.5 W/(m K) (65°C) 4.8 W/(m K) (0°C)

(4.5 4.8) W/(m K)

+
+

 = 31.5°C 

This is close enough to the initial guess that the heat transfer coefficients will not be re-calculated. 
The thermal circuit for the single glazed window is shown below 
where 

 Rco = 
1

coh A
 = ( )2

1

4.8 W/(m K) (0.8m)(0.6m)
 = 0.434 K/W 
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 Rk = 
gk
gt

A
 = ( )

0.005m

0.81 W/(m K) (0.8m)(0.6m)
 = 0.0129 K/W 

 Rci = 
1

cih A
 = ( )2

1

4.5 W/(m K) (0.8m)(0.6m)
 = 0.463 K/W 

The rate of heat transfer is given by 

 q = 
total

T

R

Δ
 = i o

co k ci

T T

R R R
∞ ∞−
+ +

 = 
K
W

65°C 0°C

(0.434 0.0129 0.463)

−
+ +

 = 71.4 W 

For the double glazed case, the temperature of the inside and outside panes must be estimated for the 
first iteration. Let Tgo = 16°C and Tgi = 49°C (by symmetry). 

From Appendix 2, Table 27, for dry air 

  Outside Enclosure Inside 

 Mean Temperature (°C) 8 32.5 57 

 β (1/K) 0.00356 0.00327 0.00303 

 k (W/(m K)) 0.0243 0.0260 0.0277 

 ν × 106 (m2/s) 14.6 16.9 19.1 
 Pr 0.71 0.71 .071 

The Grashof numbers are 
Inside 

 GrH = 
3

2

( )sg T T Hβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00303 1/K (65°C 49°C)(0.8m)

19.1 10 m / s−

−

×
 = 6.67 × 108 

Outside 

 GrH = 
3

2

( )sg T T Hβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00356 1/K (16°C 0°C)(0.8m)

14.6 10 m / s−

−

×
 = 1.34 × 109 

Enclosed space 

 Grδ = 
3

2

( )sg T Tβ δ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00327 1/K (49°C 16°C)(0.5m)

16.9 10 m / s−

−

×
 = 4.63 × 105 

 Raδ = Grδ Pr = 4.63 × 105 (0.71) = 3.29 × 105 

Using the correlation in Equation (5.13) 
Inside 

 NuL = 0.13 
1

3( )LGr Pr  = 0.13 
1

8 36.67 10 (0.71) ×   = 101 

 hci = NuL 
k

L
 = 101 

( )0.0277 W/(m K)

0.8 m
 = 3.51 2W/(m K)  

Outside 

 NuL = 0.13 
1

9 31.34 10 (0.71) ×   = 128 

 hco = NuL 
k

L
 = 128 

( )0.0243 W/(m K)

0.8 m
 = 3.88 2W/(m K)  
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Enclosed space: H/δ = 0.8 m/0.05 m = 16. Although Pr < 1, the correlation in Equation (5.29a) will be 
applied to estimate the Nusselt number for the enclosed space 

 Nuδ  = 0.42 Raδ
0.25 Pr0.012 

0.3H

δ

−
 
    = 0.42 (3.29 × 105)0.25 (0.71)0.012 (16)–0.3 = 4.36 

 Hcδ = Nuδ 
k

L
 = 4.36 

( )0.0260 W/(m K)

0.05 m
 = 2.27 2W/(m K)  

The thermal circuit for the double glazed window is shown below 
The thermal resistance of the glass (Rkg) is the same as the single glazed case. The remaining thermal 
resistances are 

 Rci = 
1

cih A
 = ( )2

1

3.51 W/(m K) (0.8m) (0.6m)
 = 0.594 K/W 

 Rcδ = 
1

ch Aδ
 = ( )2

1

2.27 W/(m K) (0.8m) (0.6m)
 = 0.918 K/W 

 Rco = 
1

coh A
 = ( )2

1

3.88 W/(m K) (0.8m) (0.6m)
 = 0.537 K/W 

The rate of heat transfer is 

 q = 
total

T

R

Δ
 = 

kg2
i o

ci c co

T T

R R R Rδ
∞ ∞−

+ + +
 = 

65°C 0°C

[0.594 0.918 0.537 2(0.0129)]K/W

−
+ + +

 = 31.3 W 

The inner and outer glass temperatures can be checked by the convection equations for those surfaces 
Inside 

 q = hci A (Ti – Tgi) 

 Tgi = Ti – 
ci

q

h A
 = 65°C – ( )2

31.3 W

3.51 W/(m K) (0.8m)(0.6m)
 = 46.4°C 

Outside 

 Tgo = To + 
co

q

h A
 = 0°C + ( )2

31.3 W

3.88 W/(m K) (0.8m) (0.6m)
 = 16.8°C 

These are close enough to the initial guesses that another iteration is not warranted. 

The savings of the double glazed over the single glazed window are 

 Savings = (qdouble – qsingle) (Cost of heating) 

 Savings = (71.4 W – 31.3 W) 
$0.06

kWh
 
  

kW

1000 W
 
  

( )24 h/day  = 
$0.06

day
 

This one small double glazed window saves 6 cents per day. 

COMMENTS 

The two surfaces of each pane of glass will actually be at a slightly different temperature. This can be 
neglected because the convective resistance are an order of magnitude greater than the conductive 
resistance of the glass. 

PROBLEM 5.37 

Calculate the rate of heat transfer between a pain of concentric horizontal cylinders 20 
mm and 126 mm in diameter. The inner cylinder is maintained at 37°C and the outer 
cylinder is maintained at 17°C. 
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GIVEN 

• Concentric cylinders 
• Smaller diameter (Di) = 20 mm = 0.02 m 
• Larger diameter (Do) = 126 mm = 0.126 m 
• Inner cylinder temperature (Ti) = 37°C 
• Outer cylinder temperature (To) = 17°C 

FIND 

The rate of heat transfer (q) 

ASSUMPTIONS 

• Steady state 
• The space between the cylinders is filled with air 
• Radiative heat transfer is negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 27°C 

 Thermal expansion coefficient (β) = 0.00333 1/K 
 Thermal conductivity (k) = 0.0256 W/(m K) 
 Kinematic viscosity (ν) = 16.4 × 10–6 m2/s 
 Prandtl number (Pr) = 0.71 

SOLUTION 

 b = 
2

o iD D−
 = 

0.126 m 0.02 m

2

−
 = 0.053 m 

The Grashof number based on the space between the cylinders is 

 Grb = 
3

2

( )sg T T bβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00333 1/K (37°C 17°C)(0.053m)

16.4 10 m / s−

−

×
 = 3.61 × 105 

The Rayleigh number is 
 Rab = Grb Pr = 3.61 × 105 (0.71) = 2.57 × 105 
To use the correlation given in Equation (5.33), the following criteria must be satisfied 

 10 ≤ 

4

5

43

4
3 3

5 5

ln

1 1

o

i

i o

D

D

b

D D

      
 
   
  +  

   
 
 
 

 Rab < 107 

4

5

43

4
3 3

5 5

0.126
ln

0.02

1 1
(0.053)

(0.02) (0.126)

      
 

  
  +     
 
 
 

 (2.57 × 105) = (0.6196)4 (2.57 × 105) = 3.79 × 104 
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The effective thermal conductivity of the air in the gap between the cylinders is given by Equation (5.33) 

 keff = 0.386 k 

4

5

43

4
3 3

5 5

ln

1 1

o

i

i o

D

D

b

D D

      
 
   
  +  

   
 
 
 

1 1
4 4

0.861 b
Pr

Ra
Pr

 
  +

 

 keff = 0.386 ( )0.0386 W/(m K)   [0.6196] 

1

40.71

0.861 0.71
 
  +

 ( )
1

5 42.57 10× = 0.113 W/(m K)  

The rate of heat transfer is given by Equation (2.38) 

 qk = o i

th

T T

R

−
 

where Rth is given by substituting keff for k in Equation (2.39) 

 Rth = 
eff

ln

2 L k

o

i

r

r
 
  

Π
 = ( )2

0.126
ln

0.02
2 L 0.113 W/(m K)

 
 

Π
 = 2.59 

1
mK/W

L
 

 ∴ qk = 
37°C 17°C

1
2.59 (mK/W)

L

−
  kq

L
 = 7.72 W/m  

PROBLEM 5.38 

Two long concentric horizontal aluminum tubes of 0.2 m and 0.25 m diameter are 
maintained at 300 K and 400 K respectively. The space between the tubes is filled with 
nitrogen. If the surfaces of the tubes are polished to prevent radiation, estimate the rate 
of heat transfer for gas pressure of (a) 10 atm and (b) 0.1 atm in the annulus. 

GIVEN 

• Two concentric horizontal aluminum tubes with nitrogen between them 
• Diameters:  Di = 0.2 m 

 Do = 0.25 m 
• Temperatures:  Ti = 300 K 

To = 400 K 
• Surface of tubes is polished 

FIND 

The rate of heat transfer for 
(a) Pressure (pa) = 10 atm 
(b) Pressure (pb) = 0.1 atm 

ASSUMPTIONS 

• Steady state conditions 
• Radiative heat transfer is negligible 
• Only the density of the nitrogen is affected by the pressure 
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 32, for Nitrogen at one atmosphere and the mean temperature of 350 K 

 Thermal expansion coefficient (β) = 0.00292 1/K 
 Thermal conductivity (k) = 0.02978 W/(m K) 
 Absolute viscosity (μ) = 19.91 × 10–6 (Ns)/m2 
 Density (ρ) = 0.9980 Kg/m3 
 Prandtl number (Pr) = 0.702 
Correcting the density for Pressure 
(a) At pa = 10 atm  

 
1

a apρ
ρ

=  atm = 10 ρa = 9.98 3kg/m  – νa = 
a

μ
ρ

 = 1.99 × 10–6 2m / s  

(b) At pb = 0.1 atm 

 
1

b bpρ
ρ

=  atm = 0.1 ρa = 0.0998 3kg/m  – νb = 
b

μ
ρ

 = 199 × 10–6 2m / s  

SOLUTION 

The gap between the cylinders (b) = (Do – Di)/2 = 0.025 m 
The Grashof and Rayleigh numbers based on the gap between the cylinders (b) are 
Case (a) 

 Grb = 
3

2

( )sg T T bβ
ν

∞−
 = 

( )2 3

6 2 2

(9.8 m/s ) 0.00292 1/K (400K 300K)(0.025m)

(1.99 10 m /s)−
−

×
 = 1.13 × 107 

 Rab = Grb Pr = 1.13 × 107 (0.702) = 7.93 × 106 
Case (b) 

Grb = 1.13 × 103 Rab = 793 
To use the correlation of Equation (5.33), the following criteria must be met 
For case (b) 

 10 ≤ 

4

5

43

4
3 3

5 5

ln

1 1

o

i

i o

D

D

b

D D

      
 
   
  +  

   
 
 
 

 Rab < 107 

  

4

5

43

4
3 3

5 5

0.25
ln

0.2

1 1
(0.025)

(0.2) (0.25)

      
 

  
  +     
 
 
 

 (793) = (0.4839)4 (793) = 59.8 

For case (a): (0.4838)4 (7.93 × 106) = 4.35 × 105 
Therefore, the condition is met for both cases. 
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The effective thermal conductivity of the gap is given by Equation (5.33) 

 keff = 0.386 k 

5

43

4
3 3

5 5

ln

1 1

o

i

i o

D

D

b

D D

      
 
   
  +  

   
 
 
 

1 1
4 4

0.861 b
Pr

Ra
Pr

 
  +

 

Case(a) 

 keff = 0.386 ( )0.02978 W/(mK)  [0.4839] 

1 1
4 6 40.702

(793 10 )
0.861 0.702

  ×  +
 = 0.242 W/(mK)  

Case(b) 

keff = 0.386 ( )0.02978 W/(mK)  [0.4839] 

1 1
4 40.702

(793)
0.861 0.702

 
  +

 = 0.0242 W/(mK)  

The rate of heat transfer is given by Equations (2.38) and (2.39) 

 q = 
th

T

R

Δ
 = eff2 ( )

ln

o i

o

i

Lk T T
r

r

π −
 
  

 

 
q

L
 = 

( )
2 (400K 300K)

ln 0.25 / 0.2

π −
 keff = (2815.7K) keff 

Case (a) q/L = 681 W/m Case (b): q/L = 68.1 W/m 

PROBLEM 5.39 

A solar collector design consists of several parallel tubes each enclosed concentrically in 
an outer tube which is transparent to solar radiation. The tubes are thin walled with 
diameter of the inner and outer cylinders of 0.10 and 0.15 m respectively. The annular 
space between the tubes is filled with air at atmospheric pressure. Under operating 
condition the inner and outer tube surface temperatures are 70°C and 30°C respectively. 

(a) What is the convective heat loss per meter of tube length? 
(b) If the emissivity of the outer surface of the inner tube is 0.2 and the outer cylinder 

behaves as though it were a black body, estimate the radiation loss. 
(c) Discuss design options for reducing the total heat loss. 

GIVEN 

• Thin walled concentric tubes with air atmospheric pressure between them 
• Inner tube diameter (Di) = 0.1 m 
• Outer tube diameter (Do) = 0.15 m 
• Inner tube temperature (Ti) = 70°C = 343 K 
• Outer tube temperature (To) = 30°C = 303 K 
• Outer surface emissivity of inner tube (ε) = 0.2 

FIND 

(a) The convective loss pe meter of tube (qc/L) 
(b) The radiative loss (qr/L) 
(c) Discuss design options for reducing the total heat loss 
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ASSUMPTIONS 

• Steady state 
• Tubes are horizontal 

SKETCH 

To = 30°C

Ti = 70°C

Di = 0.1 m Do = 0.15 m

Air between Tubes

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, The Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Appendix 2, Table 27, for dry air at the mean temperature of 50°C 

 Thermal expansion coefficient (β) = 0.00310 1/K 
 Thermal conductivity (k) = 0.0272 W/(m K) 
 Kinematic viscosity (ν) = 18.5 × 10–6 m2/s 
 Prandtl number (Pr) = 0.71 

SOLUTION 

(a) The characteristic length for the Problem is the air gap 

 b = 
2

o iD D−
 = 

0.15m 0.1m

2

−
 = 0.025 m 

The Rayleigh number based on the characteristic length is 

 Rab = Grb Pr = 
3

2

( )sg T T b Prβ
ν

∞−
  

  = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.0031 1/K (70°C 30°C)(0.025m) (0.71)

18.5 10 m / s−

−

×
 = 3.94 × 104 

The correlation for this geometry is given in Equation (5.33). Its use is restricted to the following 
condition 

 10 ≤ 

4

5

43

4
3 3

5 5

ln

1 1

o

i

i o

D

D

b

D D

      
 
   
  +  

   
 
 
 

 Rab < 107 
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4

5

43

4
3 3

5 5

0.15
ln

0.1

1 1
(0.025)

(0.1) (0.15)

      
 

  
  +     
 
 
 

 (3.94 × 104) = (0.556)4 (3.94 × 104) = 3.77 × 103 

Therefore, the condition is met. 
The effective thermal conductivity of the gap is 

 keff = 0.386 k 

5

43

4
3 3

5 5

ln

1 1

o

i

i o

D

D

b

D D

      
 
   
  +  

   
 
 
 

 

1 1
4 4

0.861 b
Pr

Ra
Pr

 
  +

 

 keff = 0.386 ( )0.0272 W/(m K)  [0.556] 

1

40.71

0.861 0.71
 
  +

1
4 4(3.94 10 )×  = 0.0674 W/(m K)  

The convective heat transfer per unit length across the gap is given by Equation (2.38) and (2.39) 

 cq

L
 = eff( ) 2

ln

i o

o

i

T T k
D

D

π−
 
  

 = 
( )

( )
(70°C 30°C)2 0.0674 W/(m K)

ln 0.15 / 0.1

π−
 = 41.8 W/m 

(b) Since the inner tube is completely surrounded by the outer tube, the radiative heat transfer is 
given by Equation (1.17) 

 rq

L
 = π Di ε σ (Ti

4 – To
4) = π (0.1 m) (0.2) ( )8 2 45.67 10 W/(m K )−× [(343 K)4 – (303 K)4] = 19.3 W 

The total rate of heat transfer is the sum of the convective and radiative components 

 totalq

L
 = cq

L
 + rq

L
 = 41.8 W/m + 19.3 W/m = 61.1 W/m 

(c) Evacuating the space between the tubes would eliminate the convective heat transfer and thereby 
reduce the total rate of heat transfer by 67%. The heat loss could be further decreased by 
decreasing the emissivity of both cylinders. 

PROBLEM 5.40 

Liquid oxygen at – 183°C is stored in a thin walled spherical container with an outside 
diameter of 2 m. This container is surrounded by another sphere of 2.5 m inside 
diameter to reduce heat loss. The inner spherical surface has an emissivity of 0.05 and 
the outer sphere is black. Under normal operation the space between the spheres is 
evacuated. But due to an accident a leak developed in the outer sphere and the space is 
filled with air at one atm. If the outer sphere is at 25°C, compare the heat losses before 
and after the accident. 
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GIVEN 

• A sphere filled with liquid oxygen surrounded by a larger sphere 
• Sphere diameters:  Di = 2 m 
 Do = 2.5 m 
• Emissivity of inner sphere (ε) = 0.05 
• Outer sphere temperature (To) = 25°C = 298 K 
• Liquid oxygen temperature (Ti) = –183° = 90 K 
• Outer sphere is black 

FIND 

The rate of heat loss with 
(a) A vacuum between the spheres 
(b) Air at 1 atm between the spheres 

ASSUMPTIONS 

• Steady state 
• The internal convective resistance and the resistance of the inner sphere wall are negligible 

SKETCH 

LOX
Concentric
spheres

D T ei i= 2 m, = 90 K, = 0.05

D To o= 2.5 m, = 298 K, Black

 

PROPERTIES AND CONSTANTS 

The thermal expansion coefficient (β) ≈ 1/T = 1/(194 K) = 0.0052 1/K 
Extrapolating from Appendix 2, Table 27, for dry air at the mean temperature of –79°C from values at 
0°C and 20°C 

 Thermal conductivity (k) = 0.018 W/(m K) 
 Kinematic viscosity (ν) = 6.8 × 10–6 m2/s 
 Prandtl number (Pr) = 0.71 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

(a) With the space evacuated, there will only be radiative heat transfer as given by Equation (1.17) 

 qr = Ai εi σ (To
4 – Ti

4) = π Di
2 ε1 σ (To

4 – Ti
4) 

 qr = π (2m)2 (0.05) ( )8 2 45.67 10 W/(m K )−× [(298 K)4 – (90K)4] = 278.6 W 

The characteristic length for the problem is: b = (Do – Di)/2 = (2.5 m – 2.0 m)/2 = 0.25 m 
The Rayleigh number is 

Rab = Grb Pr = 
3

2

( )o ig T T b Prβ
ν
−

= 
( )

( )
2 3

26 2

(9.8m/s ) 0.0052 1/K (298K 90K)(0.25m) (0.71)

6.8 10 m /s−

−

×
 = 2.54 × 109 

(b) The following criteria must be satisfied to use Equation (5.34) for the convective heat transfer 

 10  ≤ 
57 7

4 5 5( )o i i o

b

D D D D
− −

 
 
 
 
  
 − + 
   

 Rab < 107 
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[ ]
57 7

4 5 5

0.25m

(2 m)(2.5m) (2.5m) (2.5m)
− −

 
 
 
 
  
 + 
   

2.54 × 109 = (0.0032879) (2.54 × 109) = 8.36 × 106 

Therefore, the condition is met. 
The effective thermal conductivity of the air space is 

 keff = 0.74 k 

1 114 44
5

7 7 4
5 5

0.861b

o i i o

b Pr
Ra

Pr

D D D D
− −

 
 
 

       +
  

+  
   

 

 keff  = 0.74 ( )0.018 W/(mK)

1
14

9 4
5

7 7 4
5 5

(0.25m)
(2.54 10 )

(2 m)(2.5m) (2 m) (2.5)
− −

 
 
 
  × 
  

+  
   

1

40.71

0.861 0.71
 
  +

 

 keff = 0.059 W/(m K)  

The total rate of heat transfer will be the sum of the convective and radiative heat transfer 

 q = qc + qr = 
eff

o iT T

R

−
 + qr 

where Reff is given by Equation (2.48) 

 Reff = 
eff4

o i

o i

r r

k r rπ
−

 = 
eff2
o i

o i

D D

k D Dπ
−

 = 
( )

0.5m

2 0.059 W/(m K) (2m)(2.5m)π
 = 0.270 K/W 

 q = 
298K 90K

0.270 K/W

−
 + 278.6 W = 771.1 W + 278.6W = 1050 W 

The leak causes the rate of heat loss to increase 3.8 times 

COMMENTS 

The rate of convective heat transfer is about 73% of the total rate of heat transfer. 

PROBLEM 5.41 

The surfaces of two concentric spheres having radii of 75 and 100 mm are maintained at 
325 K and 275 K, respectively. 

(a)  If the space between the spheres is filled with nitrogen at 5 atm, estimate the 
convection heat transfer rate. 

(b)  If both sphere surfaces are black, estimate the total rate of heat transfer between 
them. 

(c)  Suggest ways to reduce the heat transfer. 
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GIVEN 

• Concentric spheres with nitrogen between them 
• Nitrogen pressure (p) = 5 atm 
• Sphere radii  Inner sphere (ri) = 75 mm = 0.075 m 

Outer sphere (ro) = 100 mm = 0.1 m 
• Sphere temperatures  Inner sphere (Ti) = 325 K 

Outer sphere (To) = 275 K 
• Both spheres are black 

FIND 

(a) Convective heat transfer (qc) 
(b) Total heat transfer (qtotal) 
(c) Suggest ways to reduce the heat transfer 

ASSUMPTIONS 

• Sphere temperatures are constant and uniform 
• Only the density of the nitrogen is affected significantly by pressure 
• The nitrogen behaves as an ideal gas 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann consant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Appendix 2, Table 32, for Nitrogen at atmospheric pressure and the mean temperature of 300 K 

  Thermal expansion coefficient (β) = 0.00333 1/K 
  Thermal conductivity (k) = 0.02620 W/(m K) 

  Absolute viscosity (μ) = 17.84 × 10–6 N s/m2 
  Density (ρ) = 1.142 kg/m3 
  Prandtl number (Pr) = 0.713 

The density of the nitrogen at 5 atm can be calculated from the ideal gas law 

 ρ2 = 2

1

p

p
 ρ1 = 

5atm

1atm
 ( )31.1421 kg /m  = 5.7105 3kg /m  

 ∴  The kinematic viscosity (ν) = 
μ
ρ

 = 
6 2

3

17.84 10 (Ns)/m

5.7105 kg/m

−×
 = 3.124 10–6 2m / s  

SOLUTION 

(a) The effective thermal conductivity of the nitrogen is given by Equation (5.34) 

 keff = 0.74 k 

1 114 44
5

7 7 4
5 5

0.861b

o i i o

b Pr
Ra

Pr

D D D D
− −

 
 
 

       +
  

+  
   

 

where b = ro – ri = 25 mm = 0.025 m 

 Rab = Grb Pr = 
3

2

( )i og T T b Prβ
ν
−

 =  
( )

( )
2 3

26 2

(9.8 m/s ) 0.00333 1/K (325K 275K)(0.025m) (0.713)

3.124 10 m / s−

−

×
 

 Rab = 1.86 × 106 
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The following condition must be met to use the above correlation 

 10 ≤ 
57 7

4 5 5( )o i i o

b

D D D D
− −

 
 
 
 
  
 + 
   

 Rab < 107  

 
57 7

4 5 5

0.025m

[(0.2m)(0.15m)] (0.15m) (0.2m)
− −

 
 
 
 
  

+  
   

 1.86 × 106 = 7.59 × 103 

Therefore, the condition is met. 

 keff = 0.74 ( )0.0262 W/(m K)  

( )

1

4

5
7 7 4
5 5

(0.025m)

(0.2m)(0.15m) (0.15m) (0.2m)
− −

 
 
 
 
 + 

 

   
1

6 4(1.86 10 )×
1

40.713

0.861 0.713
 
  +

 

 keff = 0.148 W/(m K)  

The thermal resistance of the nitrogen is given by Equation (2.48) 

 Reff = 
eff4

o i

o i

r r

k r rπ
−

 = ( )
0.1m 0.075m

4 0.148 W/(m K) (0.1m)(0.075m)π
−

 = 1.792 K/W 

The rate of convective heat transfer is given by 

 qc = 
eff

T

R

Δ
 = 

325K 275K

1.792 K/W

−
 = 27.9 W 

(b) The radiative heat transfer from a black body to a black body enclosure is given by Equation 
(1.16) 

 qr = A1 σ (T1
4 – T2

4) =  4 π ri σ (T1
4 – T2

4) 

 qr = 4 π (0.075 m)2 ( )8 2 45.67 10 W/(m K )−× ((325K)4 – (275K)4) = 21.8 W 

The total rate of heat transfer is the sum of the radiative and convective heat transfer 

 qtotal = qr + qc = 21.8 W + 27.9 W = 49.7 W 

(c) The rate of heat transfer could be reduced in several ways, including 
• Coating the spheres to reduce their emissivity, thereby decreasing the rate of radiative heat 

transfer. 
• Partially or totally evacuating the space between the spheres to decrease the rate of 

convective heat transfer 

PROBLEM 5.42 

Estimate the rate of heat transfer from one side of a 2 m diameter disk rotating at 600 
rev/min in 20°C air, if its surface temperature is 50°C. 
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GIVEN 

• A disk rotating in air 
• Diameter (D) = 2 m 
• Rotational speed (ω) = 600 rev/min 
• Air temperature (T∞) = 20°C 
• Surface temperature (Ts) = 50°C 

FIND 

• The rate of heat transfer from one side (q) 

ASSUMPTIONS 

• The heat transfer has reached steady state 
• The disk is horizontal 
• Air is still 

SKETCH 

Still
Air
= 20°CT•

Ts = 50°C

D = 2 m w = 600 rev/min

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 35°C 

  Thermal expansion coefficient (β) = 0.00325 1/K 
  Thermal conductivity (k) = 0.0262 W/(m K) 
  Kinematic viscosity (ν) = 17.1 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 

SOLUTION 

The rotational Reynolds number for the disk is 

 Reω = 
2Dω

ν
 = 

( ) ( )
( )

2

6 2

(600 rev/min) 2 rad/rev 2m

17.1 10 m / s 60 s/min

π
−×

 = 1.47 × 107 > 106 (turbulent) 

The critical Reynolds number is given in Section 5.4 

 Reω = 1 × 106 = 
24 cr ω
ν

  rc = 
6(1 10 )

4

ν
ω

×
 

   = 
( ) ( )

( ) ( )

6 6 21 10 17.1 10 m /s 60 s/min

4 600 rev/min 2 rad/revπ

−× ×
 = 0.26 m 

The average heat transfer coefficient is given by Equation (5.38) 

 ch  = 
o

k

r

1
0.82 2.62 22

0.36 0.015 1o c o c

o o

r r r r

r r

ω ω
ν ν

          + −                  
 

Since ωD2/ν = 1.47 × 107, ω ro
2/ν = 3.67 × 106 and rc/ro = 0.26. So 

ch = 
( )0.0262 W/(m K)

1m

1
6 2 6 0.8 2.62(0.36) (3.67 10 ) (0.26) (0.015)(3.67 10 ) (1 (0.26) )

 
 × + × − 

 

 = 69.3 2W/(m K)  
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The rate of heat transfer is 

 q = hc A (Ts – T∞) = hc π ro
2 (Ts – T∞) = ( )269.3 W/(m K)  π (1 m)2 (50°C – 20°C) = 6535 W 

PROBLEM 5.43 

A sphere 0.1 m diameter is rotating at 20 RPM in a large container of CO2 at 
atmospheric pressure. If the sphere is at 60°C and the CO2 at 20°C, estimate the rate of 
heat transfer. 

GIVEN 

• A rotating sphere in carbon dioxide at atmospheric pressure 
• Diameter (D) = 0.1 m 
• Speed of rotation (ω) = 20 rev/min 
• Sphere temperature (Ts) = 60°C 
• CO2 temperature (T∞) = 20°C 

FIND 

• The rate of heat transfer 

ASSUMPTIONS 

• Steady state conditions 
• The carbon dioxide is still 
• Radiation is negligible 

SKETCH 

Carbon Dioxide

T• = 20°C
D = 0.1 m

Ts = 60°C

w = 20 rev/min

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 28, for CO2 at the mean temperature of 40°C 

  Thermal expansion coefficient (β) = 0.00319 1/K 

  Thermal conductivity (k) = 0.0176 W/(m K) 

  Kinematic viscosity (ν) = 9.0 × 10–6 m2/s 

  Prandtl number (Pr) = 0.77 

 

SOLUTION 

Converting the rotational speed to radians per second 

 ω = 
( )(20rev/min) 2 rad/rev

60 s/min

π
 = 2.09 

1

s
 

The rotational Reynolds number for the sphere is 

 ω = 
( )(20 rev/min) 2 rad/rev

60 s/min

π
 = 2.09 

1

s
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All requirements are met for the correlation presented in Equation (5.41) 

 DNu  = 0.43 Reω
0.5 Pr 0.4 = 0.43 (2322)0.5 (0.77)0.4 = 18.67 

 ch  = DNu  
k

D
= 18.67 

0.0176 W/(m K)

0.1m
 = 3.29 2W/(m K)  (5.38) 

The rate of heat transfer by natural convection is given by 

qc = ch  A (Ts – T∞) = ch  π D2 (Ts – T∞) = ( )23.29 W/(m K)  π (0.1 m)2 (60°C – 20°C) = 4.13 W 

PROBLEM 5.44 

A mild steal (1% carbon), 2 cm OD shaft, rotating in 20°C air at 20,000 rev/min, is 
attached to two bearings 0.7 m apart. If the temperature at the bearings is 90°C, 
determine the temperature distribution along the shaft. Hint: Show that for the high 

rotational speeds equation (5.35) approaches: DNu  = 0.086 (π D2ω/ν)0.7 

GIVEN 

• A mild steel shaft rotating in air between two bearings 
• Shaft diameter (D) = 2 cm = 0.02 m 
• Rotational speed (ω) = 20,000 rev/min 
• Air temperature (T∞) = 20°C 
• Length of shaft (L) = 0.7 m 
• Bearing temperatures (Tb) = 90°C 

FIND 

• The temperature distribution along the shaft 

ASSUMPTIONS 

• The rod has reached steady state 
• Radiation is negligible 
• The shaft is horizontal 

SKETCH 

Bearing
= 90°CTb

Bearing
= 90°CTb

Air, = 20°CT•

D = 2 cm
w = 20,000 rev/min

L = 0.7 m  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10, thermal conductivity of 1% carbon steel (ks) = 43 W/(m K) 

 

SOLUTION 

The Nusselt number for this geometry is given by Equation (5.35) 

 DNu  = 0.11 (0.5 Reω
2 + GrD Pr)0.35 

where 

 Reω = 
2D

v

π ω
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Evaluating the air properties at the mean of the air and bearing temperatures (55°C); from Appendix 2, 
Table 27 

  Thermal expansion coefficient (β) = 0.00305 1/K 

  Thermal conductivity (k) = 0.0276 W/(m K) 

  Kinematic viscosity (ν) = 19.0 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

The rotational Reynolds number is 

 Reω = 
( ) ( )

( )

2

6 2

2000 rev/min 2 rad/rev (0.02m)

19.0 10 m / s 60 s/min

π π
−×

 = 1.39 × 105 

GrD Pr = 
3

2

( )bg T T D Prβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00305 1/K (90°C 20°C)(0.02m) (0.71)

19.0 10 m / s−

−

×
 = 3.29 × 104 

For this problem, 0.5 Reω
2 >> GrD Pr because of the high rotational speed, therefore. GrD Pr can be 

neglected and the Nusselt number is given by 

 DNu  = 0.11 (0.5 Reω
2)0.35 = 0.0863 1Reω

0.7 

Based on the average of the air and bearing temperatures 

 DNu  = 0.0863 (1.39 × 105)0.7 = 344 

 ch  = DNu  
k

D
 = 344 

0.0276 W/(m K)

0.02m
 = 474 2W/(m K)  

By symmetry, the axial conduction at the center of the shaft must be zero and the shaft can be treated 
as two pin fins with adiabatic tips as shown below 

T• = 20°C
Tb = 90°C

x

L

2

 

The temperature distribution for this configuration is given in Table 2.1 

 
b s

T T

T T
∞−

−
 = 

cosh [ ( )]

cosh ( )
f

f

m L x

m L

−
 

L
=

2fL
 
    

 where m = c

s c

h P

k A
 = 

2/ 4
c

s

h D

k D

π
π

 = 
4 c

s

h

Dk
 = 

( )
( )

24 474 W/(m K)

0.02m 43 W/(m K)
 = 47.0 1/m 

 T = T∞+ (Tb – Ts) 
cosh [ ( )]

cosh ( )
f

f

m L x

m L

− 
 
 

 = 20°C + (90°C – 20°C) 
[ ]

( )[ ]
cosh 47.0 1/m (0.35m )

cosh 47.0 1/m (0.35m)

x− 
  

 

 T = 20°C + (1.0 × 10–5 °C cosh (16.5 – 47.0 x) 

The average rod temperature is given by 

 Tave = 
/ 2

0

1

2


L

L
T dx 

Let  A = 1.0 × 10–5 °C and y = 16.5 – 47.0 x then: dy = – 47.0 dx 

when × = 
2

L
, y = 0 

      when × = 0, y = 16.5 
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 Tave = 
0

16.5

2

47.0 L

−
 [20 + A cosh(y)] dy = 

2

47.0 L

−
 [20 y + A sinh(y)]0

16.5 

 Tave = 
2

47.0 L

−
 [–20(16.5) – (1.0 × 10–5) sinh(16.5)] = 24.5°C 

Using the mean of the air temperature and the average shaft temperature to evaluate the air properties 
and re-evaluating the temperature profile 
 Tmean

 = 22.2°C 
 k = 0.0253 W/(m K) 
 ν = 15.9 × 10–6 m2/s 
 Reω = 1.6 × 105 
 hc = 491 W/(m2 K) 
 m = 47.8 1/m 
 T = 20°C + (7.59 × 10–6 °C) cosh(16.7 – 47.8 x) 
 Tave = 24.0°C 
where x = distance in meters from a bearing up to L/2. 

PROBLEM 5.45 

An electronic device is to be cooled in air at 20°C by an array of equally spaced vertical 
rectangular fins as shown in the sketch below. The fins are made of aluminum and their 
average temperature, Ts, is 100°C. 

Ts = 100°C
t = 1 mm

S

0.3 m

20 mm

0.15 m

 

Estimate (a) The optimum spacing, s 
   (b) The number of fins 
   (c) The rate of heat transfer from one fin 
   (d) The total rate of heat dissipation 
   (e) Is the assumption of a uniform fin temperature justified? 

GIVEN 

• Electronic device with vertical aluminum fins in air 
• Air temperature (T∞) = 20°C 
• Average fin temperature (Ts) = 100°C 

FIND 

(a) The optimum spacing (s) 
(b) The number of fins 
(c) The rate of heat transfer from one fin 
(d) The total rate of heat dissipation 
(e) Is the assumption of a uniform fin temperature justified? 
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ASSUMPTIONS 

• Steady state 
• Uniform fin temperature 
• The air is still 
• Heat transfer from the top and bottom of the fins is negligible 
• The heat transfer coefficient on the wall area between the fins is approximately the same as on the fins 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12 
For aluminum: Thermal conductivity (kal) = 239 W/(m K) at 100°C 
From Appendix 2, Table 27, for dry air at the mean temperature of 60°C 

  Thermal expansion coefficient (β) = 0.00300 1/K 

  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The Grashof number for the fins, based on vertical height of the fin (L) is 

 GrL = 
3

2

( )sg T T Lβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.003 1/K (100 C 20 C) (0.15m)

19.4 10 m / s−

° − °

×
= 2.11 × 107 

Therefore, the Rayleigh number is 

 RaL = GrL Pr = 2.11 × 107 (0.71) = 1.50 × 107 

(a) The optimum fin spacing (s) is given by Equation (5.56a) 

 s = 
0.25

2.7

P
 

 where   P = 
4
LRa

L
 = 

7

4

1.50 10

(0.15m)

×
 = 2.96 × 1010 41/m  

 therefore, s = 0.0065 m = 6.5 mm 

(b) Let n = the number of fins on the device, then 

  n t + (n – 1) s = 0.3 m 

 n = 
0.3m s

s t

+
+

 = 
0.3m 0.0065m

0.0065m 0.001m

+
+

 = 40.9 

40 fins will fit on the device with optimum spacing. 
(c) The average heat transfer coefficient over a fin is given in Table 5.1 

 hc = 

1

2

2 8 1
22

576 2.873k

s P s
P s

−
 + 
  

 

 hc = 
( )0.0279 W/(m K)

0.0065m
 

( ) ( )

1

2

2 110 4 3
10 4 2

576 2.87

2.96 10 1/m (0.0065m) 2.96 10 1/m (0.0065m)

−
 + 

× × 

 

 hc = 5.78 2W/(m K)   
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The rate of heat transfer from a single fin is 

 qf = hc Af (Ts – T∞) = 5.78 2W/(m K)  [0.15 m (0.041 m)] (100°C – 20°C) = 2.84 W 

(d) The total rate of heat dissipation is the sum of the heat transfer from the fins and the heat transfer 
from the wall area between the fins 

 qtotal = ν qf + (ν – 1) hc Aw (Ts – T∞) 

 qtotal = 40 (2.84 W) + 39 ( )25.78 W/(m K)  (0.15 m)(0.0065 m) (100°C – 20°C) 

 qtotal = 113.6 W + 17.6 W = 131.2 W 

(e) From Table 2.1, if the heat transfer from the tips of the fins is neglected, the temperature 
distribution along each fin is 

 
( )

(0)

T x T

T T
∞

∞

−
−

 – 
cosh[ ( )]

cosh ( )

m L x

m L

−
 

The temperature change along the fin is 

 
(0) ( )

(0)

T T L

T T∞

−
−

 = 1 – 
1

cosh ( )m L
 

 where m = 
h P

k A
 = ( )

25.78 W/(m K)[2(0.15m 0.001m)]

0.001m (0.15m) 239 W/(m K)

+
 = 6.98 m–1L = 0.02 m 

 
(0) ( )

(0)

T T L

T T∞

−
−

 = 1 – 
1

1

cosh[(6.98m )(0.02m)]−  = 0.966 

Therefore, the assumption of an isothermal fin is justified. 

PROBLEM 5.46 

Consider a vertical 20 cm tall flat plate at 120°C suspended in a fluid at 100°C. If the 
fluid is being forced past the plate from above, estimate the fluid velocity for which 
natural convection becomes negligible (less than 10%) in: (a) mercury (b) air (c) water. 

GIVEN 

• A vertical flat plate suspended in a fluid 
• Plate temperature (Ts) = 120°C 
• Fluid temperature (T∞) = 100°C 
• Fluid is being forced past the plate from above 
• Plate height (H) = 20 cm = 0.2 m 

 

FIND 

• The fluid velocity (U∞) for which natural convection has a less than 10% effect in 
(a) mercury (b) air (c) water 

ASSUMPTIONS 

• Steady state 
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SKETCH 

Fluid, = 100°CT•

Ts = 120°C

H = 0.2 m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 25, 27 and 13 

 Fluid (at 110°C) Mercury Air Water 
 Thermal expansion coefficient, β (1/K) 0.000182 0.00262 0.00080 

 Kinematic viscosity, ν × 106 m2/s 0.0913 24.8 0.269 
 Prandtl number, Pr 0.016 0.71 1.59 

SOLUTION 

From Equation (5.46), for laminar forced convection over a flat plate, the effect of buoyancy will be 
less than 10% if 

  GrH < 0.150 ReH
2  

3

2

( )sg T T Hβ
ν

∞−
 < 0.150 

2
U H

ν
∞ 

    

Solving for the fluid velocity 

  U∞ > 
1

2[6.67 ( – ) ]sg T T Hβ ∞  

  U∞ > ( ) ( )
1

2 26.67 9.8 m/s (1/K) (120 C – 100 C)(0.2 m)β
 
 ° °   = 16.17 

1

2β m/s 

  (a) For mercury: U∞ < 16.17
1

2(0.000182)  = 0.22 m/s 

  (b) For air: U∞ < 16.17 
1

2(0.00262)  = 0.83 m/s 

  (c) For water: U∞ < 16.17 
1

2(0.0008)  = 0.46 m/s 

The Reynolds numbers for these fluid velocities are 

  (a) For mercury: ReH = 
6 2

(0.22 m/s) (0.2m)

0.0913×10 m / s−  = 4.82 × 105 

  (b) For air: ReH = 
6 2

(0.83 m/s)(0.2m)

24.8 ×10 m / s−  = 6.69 × 103 

  (c) For water: ReH =
6 2

(0.46 m/s)(0.2m)

0.269 ×10 m / s−  = 3.42 × 105 

These Reynolds numbers are all within the laminar regime (mercury is approaching the transition to 
turbulence). Therefore, the use of Equation (5.46) was valid. 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
499

PROBLEM 5.47 

Suppose a thin vertical flat plate. 60 cm high and 40 cm wide, is immersed in a fluid 
flowing parallel to is surface. If the plate is at 40°C and the fluid at 10°C, estimate the 
Reynolds number at which buoyancy effects are essentially negligible for heat transfer 
from the plate if the fluid is: (a) mercury, (b) air, and (c) water. Then calculate the 
corresponding fluid velocity for the three fluids. 

GIVEN 

• A thin flat plate immersed in a fluid flowing parallel to its surfaces 
• Plate height (H) = 60 cm = 0.6 m 
• Plate width (w) = 40 cm = 0.4 m 
• Plate temperature (Ts) = 40°C 
• Fluid temperature (T∞) = 10°C 

FIND 

• The Reynolds number and corresponding fluid velocity (U∞) for buoyancy effects to be negligible, 
if the fluid is (a) mercury, (b) air, (c) water 

ASSUMPTIONS 

• Steady state conditions 

SKETCH 

Fluid
= 10°CT• Ts = 40°C

w = 0.4 m

H
=

0
.6

m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 25, 27 and 13 at the mean temperature of 25°C 
 
 
 

Fluid Mercury Air Water 

 Thermal expansion coefficient, β (1/K) — 0.00336 0.000255 

 Kinematic viscosity, ν × 106 m2/s 0.112 16.2 0.884 

 Density, ρ (kg/m3): 13,628 (0°C) 
  13,506 (50°C) 

The thermal expansion coefficient of mercury can be estimated from 

  β ≅ 
0 50

2

ρ ρ+
 = 0 50

273K 323K

ρ ρ− 
  −

 = 
3

2

(13,658 13,506) kg/m+
 

3(13,658 13,506) kg/m

273K 323K

 −
 − 

  

    = 0.00018 1/K  
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SOLUTION 
The Grashof number based on height is 

 GrH =  
3

2

( )sg T T Hβ
ν

∞−
 

For mercury 

 Grs = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.00018 1/K (40 C 10 C)(0.6m)

0.112 10 m / s−

° − °

×
 = 9.11 × 1011 

For this geometry, the ratio that must be satisfied for the natural convection to have an essentially 
negligible effect is given at the end of Section 5.5 as 

  
2

H

w

Gr

Re
 < 0.7  Rew = 

U w

ν
∞  > 1.20 

1

2
HGr  

For mercury 
  Rew > 1.20(9.11 × 1011)2 = 1.15 × 106 

 ∴ U∞ = Rew 
w

ν
 = 1.15 × 106 

6 20.112 10 m / s

0.4m

−×
 = 0.321 m/s 

Applying a similar analysis to the other fluids yields the following results 
Fluid Mercury Air Water 

 GrH 9.11 × 1011 8.13 × 108 2.07 × 1010 

 Rew 1.15 × 106 3.42 × 104 1.72 × 105 
U∞ (m/s) 0.32 5.54 0.382 

PROBLEM 5.48 

A vertical isothermal plate 30 cm high is suspended in an atmosphere air stream flowing at 2 
m/s in a vertical direction. If the air is at 16°C, estimate the plate temperature for which the 
natural-convection effect on the heat transfer coefficient will be less than 10 per cent. 

GIVEN 

• A vertical isothermal plate is an atmospheric air stream 
• Plate height (L) = 30 cm = 0.3m 
• Air velocity (U∞) = 2 m/s (vertically) 
• Air temperature (T∞) = 16°C 

FIND 

• The plate temperature (Ts) for which natural convection effect on the heat transfer coefficient will 
be less than 10%. 

ASSUMPTIONS 

• Steady State 

SKETCH 

Air, = 16°C, = 2 m/sT U• •

L = 0.3 m
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SOLUTION 

The average of the air and plate surfaces must be used to evaluate the fluid properties. Since the 
surface temperature is not known, the problem will first be solved by guessing the plate surface 
temperature. This temperature will be used to evaluate fluid properties. The resulting plate 
temperature will be used to update the fluid properties. For the first iteration, let Ts = 30°C. Therefore, 
the fluid properties will be evaluated at (30°C + 16°C)/2 = 23°C. From Appendix 2, Table 27 

  Thermal expansion coefficient (β) = 0.00338 1/K 

  Kinematic viscosity (ν) = 16.0 × 10–6 m2/s 

The Reynolds number for the top of the plate is 

 ReL = 
U L

ν
∞  = 

6 2

(2 m/s)(0.3m)

16.0 10 m / s−×
 = 3.75 × 104 < 5 × 105 (laminar) 

By Equation (5.46), the natural convection effect will be less then 10% when 

  GrL < 0.150 ReL
2  

3

2

( )sg T T Lβ
ν

∞−
 < 0.150 

2
U L

ν
∞ 

    

Solving for the surface temperature 

 Ts < T∞ + 
20.150U

L g β
∞  = 16°C + 

( )
( ) ( )

2

2

0.15 2 m/s

0.3m (9.8 m/s ) 0.003381/K
 = 76.4°C 

Re-evaluating the thermal equation coefficient at the mean temperature of 46.2°C 

β = 0.00313 1/K 

 Ts = 16°C + 
( )

( ) ( )

2

2

0.15 2 m/s

0.3m 9.8 m/s 0.00313 1/K
 = 81.2°C 

Performing one more iteration 

 At   Tavg = 48.6°C, β = 0.00311 1/K 

 Ts = 16°C + 
( )

( ) ( )

2

2

0.15 2 m/s

0.3m 9.8 m/s 0.00311 1/K
 = 81.6°C 

For all surface temperatures 

  Ts <  81.6°C 

natural convection heat transfer will contribute less than 10% to the total heat transfer. 

PROBLEM 5.49 

A horizontal disk 1 m in diameter rotates in air at 25°C. If the disk is at 100°C, estimate 
the RPM at which natural convection for a stationary disk becomes less than 10% of the 
heat transfer for a rotating disk. 

GIVEN 

• A rotating horizontal disk in air 
• Diameter (D) = 1 m 
• Air temperature (T∞) = 25°C 
• Disk temperature (Ts) = 100°C 
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FIND 

• The rotational speed (ω) at which natural convection becomes less than 10% of the thermal effects 
of rotation 

ASSUMPTIONS 

• Steady state conditions 

SKETCH 

Air
= 25°CT•

Ts = 100°C

w = ?D = 1 m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 62.5°C 

  Thermal expansion coefficient (β) = 0.00297 1/K 

  Thermal conductivity (k) = 0.0281 W/(m K) 

  Kinematic viscosity (ν) = 19.7 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The characteristic length for free convection from the stationary disk is 

 Lc = 
A

P
 = 

2

4
D

D

π

π
 = 

4

D
 = 0.25 m 

The Rayleigh number is 

 RaLc = GrLc Pr = 
3

2

( )s cg T T L Prβ
ν

∞−
 

  = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.00297 1/K (100°C 25°C)(0.25m) (0.71)

19.7 10 m / s−

−

×
 = 6.24 × 10 

The Nusselt number for a static disk is given by Equation (5.16) 

 NuLc = 0.15 
1

3
LcRa  = 0.15 

1
7 3(6.24 10 )×  = 59.50 

 hstat = NuLc 
c

k

L
= 59.50 

( )0.0281 W/(m K)

0.25m
 = 6.69 2W/(m K)  

Assuming the rotational speed is high enough to product turbulent flow, the Nusselt number is given 
by Equation (5.38) 

 ch  = 
o

k

r
 

1
0.82 2.62 22

0.36 0.015 1o c o c

o o

r r r r

r r

ω ω
ν ν

          + −                  
 

 where  
24 cr ω

ν
 = 106 

 
 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
503

Since 

 hrot = 10 × 6.69 = 66.9 2W/(m K)  

we have 

 rot oh r

k
 = 1190 

This can be written as 

  0.36 

1

2

4
cReRe

Re

 
    + 0.015 

0.8

4

Re 
  

1.3

1 cRe

Re

  
−        = 1190 

By trial and error: Re = 5.64 × 106 (which is turbulent) and ω = 111 rad/s = 1060 rpm. 
Note that rc = 0.211 m. 

PROBLEM 5.50 

The refrigeration system for an indoor ice rink is to be sized by an HVAC contractor. 
The refrigeration system has a COP (coefficient of performance) of 0.5. The ice surface 
is estimated to be –2°C and the ambient air is 24°C. Determine the size of the 
refrigeration system in kW required for a 110 m diameter circular ice surface. 

GIVEN 

• Round ice rink 
• Diameter (D) = 110 m 
• Ice surface temperature (Ts) = – 2°C 
• Air temperature (T∞) = 24°C 
• COP of refrigeration system = 0.5 

FIND 

• Size of the refrigeration system required 

ASSUMPTIONS 

• Air is quiescent 
• The effects of sublimation are negligible 
• Radiation heat transfer is negligible 

SKETCH 

Still Air
= 24°CT•

D = 110 m

Ts = – 2°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 11°C 

  Thermal expansion coefficient (β) = 0.00352 1/K 
  Thermal conductivity (k) = 0.0245 W/(m K) 
  Kinematic viscosity (ν) = 14.9 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 
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SOLUTION 

The characteristic length (L) for the ice rink is 

 L = 
A

P
 = 

2

4
D

D

π

π
 = 

4

D
 = 

110m

4
 = 27.5 m 

The grashof and Rayleigh numbers are 

GrL = 
3

2

( )sg T T Lβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00352 (1/K) (24°C 2°C)(27.5m)

14.9 10 m / s−

+

×
 = 8.40 × 1013 

 RaL = GrL Pr = 8.4 × 1013 (0.71) = 5.97 × 1013 

Although this is beyond the range of available horizontal plate correlations, the correlation will be 
extended to estimate the Nusselt number for the ice rink. The correlation for a cooled surface facing 
downward is Equation (5.16) 

 LNu  = 0.15 
1

3
LRa  = 0.15 

1
13 3(5.97 10 )×  = 5862 

 ch  = LNu
k

L
 = 5862 

( )0.0245 W/(m K)

27.5m
 = 5.22 2W/(m K)  

The rate of heat transfer to the rink is 

 qc = ch  A (T∞ – Ts) = ch
4

π
 D2 (Ts – T∞) 

 qc = ( )25.22 W/(m K)
4

π
 (110 m)2 (24°C + 2°C) = 1.29 × 106 W = 1290 kW 

The size of the refrigeration unit (qref) is 

 qref  = 
COP

cq
 = 

1290 kW

0.5
 = 2580 kW 

PROBLEM 5.51 

A 0.15 m square circuit board is to be cooled in a vertical position as shown. The board 
is insulated on one side while on the other, 100 closely spaced square chips are mounted, 
each of which dissipated 0.06 W of heat. The board is exposed to air at 25°C and the 
maximum allowable chip temperature is 60°C. Investigate the following cooling options 

(a) Natural convection 

(b) Air cooling with upward flow at a velocity of 0.5 m/s 

(c) Air cooling with downward flow at the same velocity as (b)  

GIVEN 

• Square vertical circuit board insulated on one side, chips on the other side 
• Length of each side (L) = 0.15 m 
• Heat dissipation per chip (q) = 0.06 W 
• Number of chips (N) = 100 
• Ambient air temperature (T∞) = 25°C 
• Maximum allowable chip temperature (Ts) = 60°C 
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FIND 

Investigate the following cooling options 
(a) Natural convection 
(b) Forced air cooling with an upward air velocity (U∞) = 0.5 m/s 
(c) Forced air cooling with a downward air velocity (U∞) = 0.5 m/s 

ASSUMPTIONS 

• Steady state 
• Uniform surface temperature 
• Radiative heat transfer is negligible 

SKETCH 
Insulation

Chips

Air
= 25°CT•

Ts = 60°C Max

L
=

0
.1

5
m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperature of 42.5°C 

  Thermal expansion coefficient (β) = 0.00317 1/K 

  Thermal conductivity (k) = 0.0267 W/(m K) 

  Kinematic viscosity (ν) = 17.8 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The rate of heat generation per unit area is 

 gq

A
 = 

2

N q

L
 = 

2

100(0.06W)

(0.15m)
= 266.7 2W/m  

(a) The Grashof number is 

 GrL = 
3

2

( )sg T T Lβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.00317 (1/K) (60°C 25°C)(0.15m)

17.8 10 m / s−

−

×
 = 1.16 × 107 

The Nusselt number for natural convection is given by Equation (5.12b) 

 (NuL)free = 0.68 
1

2Pr  

1

4

1

4(0.952 )

LGr

Pr+

 = 0.68 
1

2(0.71)  

1
7 4

1

4

(1.16 10 )

(0.952 0.71)

×

+

 = 29.44 

 (hc)free = NuL 
k

L
 = 29.44 

( )0.0267 W/(m K)

0.15m
 = 5.24 2W/(m K)  

The rate of convective heat transfer must equal the rate of heat generation if 

 cq

A
 = hc (Ts – T∞) = ( )25.24 W/(m K)  (60°C – 25°C) = 183.4 2W/m  < gq

A
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Since this is lower than the heat generation rate, the actual surface temperature will be higher than the 
maximum of 60°C. 
Therefore, natural convection alone will not keep the chips cool enough. 

(b) The Reynolds number for U∞ = 0.5 m/s is 

 ReL = 
U L

ν
∞  = 

6 2

(0.5 m/s) (0.15m)

17.8 10 m / s−×
 = 4.21 × 103 < 5 × 105 (laminar) 

From Equation (5.45) the relative importance of natural and forced convection is indicated by the 
following ratio 

 
2

L

L

Gr

Re
 = 

7

3 2

1.16 10

(4.21 10 )

×
×

 = 0.65 

Since (GrL/ReL
2) ≈ 1, natural and forced convection are of the same order of magnitude. The average 

Nusselt number can be estimated from Equation (5.48) 

 Nu = 
1

3 3 3
forced free( ) ( )Nu Nu +   

In this case, the natural convective flow is in the same direction as the forced convection flow; 
therefore, the plus sign is appropriate. 
The forced convection Nusselt number is given by Equation (4.38) 

 (NuL)forced = 0.664 
11

32
LRe Pr  = 0.664 

1
3 2(4.21 10 )×

1

3(0.71)  = 38.44 

 ∴ Nu = 
1

3 3 3[(38.44) + (29.44) ]  = 43.50 

 hc = NuL 
k

L
 = 43.50 

( )0.0267 W/(m K)

0.15m
 = 7.74 2W/(m K)  

 cq

A
 = hc (Ts –T∞) = ( )27.74 W/(m K)  (60°C – 25°C) = 271.0 2W/m  > gq

A
 

Therefore, this configuration is adequate to keep the chip surface temperature below 60°C. 
(c) In this configuration, the free convective flow opposes the forced convection 

 Nu = 
1

3 3 3
forced free[( ) ( ) ]Nu Nu−  = 

1
3 3 3[(38.44) (29.44) ]−  = 31.51 

 hc = NuL 
k

L
 = 31.51 

( )0.0267 W/(m K)

0.15m
 = 5.61 2W/(m K)  

 cq

A
 = hc (Ts – T∞) = ( )25.16 W/(m K)  (60°C – 25°C) = 196.3 2W/m  < gq

A
 

Therefore, this configuration will not keep the chips cool enough. 

PROBLEM 5.52 

A gas-fired industrial furnace is used to generate steam. The furnace is a 3 m cubic 
structure and the interior surfaces are completely covered with boiler tubes transporting 
pressurized wet steam at 150°C. It is desired to keep the furnace losses to 1% of the total 
heat input of 1 MW. The outside of the furnace can be insulated with a blanket-type 
mineral wool insulation [k = 0.13 W/(m °C)], which is protected by a polished metal 
sheet outer shell. Assume the floor of the furnace is insulated. What is the temperature 
of the metal shell sides? What thickness of insulation is required? 
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GIVEN 

• An insulated cubic furnace with steam filled tubes on the inner walls 
• Steam temperature (Tst) = 150°C 
• Length of a side of the furnace (L) = 3 m 
• Thermal conductivity of mineral wool insulation (ki) = 0.13 W/(m°C) 
• Insulation is protected by metal sheet outer shell 
• Furnace losses (qc) = 1% of total heat input 
• Total heat input (qin) = 1 MW = 106 W 

FIND 

(a) Temperature of the metal sheel sides (Ts) 
(b) The thickness of insulation (s) required 

ASSUMPTIONS 

• Steady state operation 
• Thermal resistance of the convection within the steam pipes, the steam pipe walls, the furnace 

walls, and the metal shell negligible compared to that of the insulation 
• Air outside the furnace is still 
• The floor is well insulated —heat loss is negligible 
• Temperature of the metal shell is uniform 
• Ambient temperature (T∞) = 20°C (293 K) 
• Edge effects are negligible 
• The emissivity of the polished metal shell (ε) = 0.05 (see Table 9.2) 

SKETCH 

T• = 20°C

S = ?

Steam, = 150°CTst

Insulation

Sheet Metal, = ?Ts

L = 3 m

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann Constant (σ) = 5.67 × 10–8 W/(m2 K4) 

 

SOLUTION 

(a) Since the Grashof number on the outside of the metal shell will depend on the temperature of the 
metal shell, an iterative procedure is required. For the first iteration, let Ts = 100°C (373 K). 

From Appendix 2, Table 27, for dry air at the mean temperature of 60°C 

  Thermal expansion coefficient (β) = 0.00300 1/K 

  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

The Grashof number for the four sides of the furnace, assuming the insulation thickness is small 
compared to 3 m, is 

GrL = 
3

2

( )sg T T Lβ
ν

∞−
 = 

( )
( )

2 3

26 2

(9.8 m/s ) 0.003 1/K (100°C 20°C)(3m)

19.4 10 m / s−

−

×
 = 1.69 × 1011 
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The heat transfer from the furnace will be calculated by treating the sides as vertical flat plates and the 
top as a horizontal flat plate facing upward. From Equation (5.13), the heat transfer coefficient for the 
sides is 

csh  = 0.13 
k

L
 

1

3( )LGr Pr  = 0.13 
( )0.0279 W/(m K)

3m
 

1
11 3[1.69 10 (0.71)]×  = 5.96 2W/(m K)  

The characteristic dimension for the top of the furnace (Lc) is 

 Lc = 
A

P
 = 

2

4

L

L
 =  

4

L
 = 0.75 m 

The Grashof and Rayleigh numbers based on this dimension are 

 GrLc = 
( )

( )
2 3

26 2

(9.8 m/s ) 0.00188 (1/K) (100°C 20°C)(0.75m)

19.4 10 m / s−

−

×
 = 2.64 × 109 (turbulent) 

 RaLc = GrLc Pr = 2.64 × 109 (0.71) = 1.87 × 109 

The average Nusselt number is given by Equation (5.16) 

 LcNu  = 0.15 
1

3
LcRa  = 0.15 

1
9 3(1.87 10 )×  = 184.9 

 cth  = 
cLNu

c

k

L
= 184.9 

( )0.0279 W/(m K)

0.75m
 = 6.88 2W/(m K)  

The rate of convection and radiation must be 1% of the total heat input 

 qc = qr = ( csh  As + cth  At) (Ts – T∞) + ε σ A (Ts
4 – T∞

4) = 0.01 qin 

where As = the area of the sides = 4(3 m)2 = 36 m2 
At = the area of the top = (3 m)2 = 9 m2 
A = As + At = 45 m2 

  ( ) ( )[ ]2 2 2 25.96 W/(m K) (36m ) 6.88 W/(m K) (9m ) h+  (Ts – 293 K) + 0.05 

   ( )8 2 45.67 ×10 W/(m K )−  (45 m2) (Ts
4 – (293 K)4) 

 = 0.01 (106 W) 

By trial and error: Ts = 327 K = 54°C 
Following the same procedure for other iterations 

Iteration # 2 3 4 

 Ts (°C) 51 64 60 
 Mean Temp. (°C) 35.5 42 40 

 β (1/K) 0.00324 0.00317 0.00319 

 k (W/(m K)) 0.0262 0.0266 0.0265 

 ν × 106 (m2/s) 17.2 17.8 17.6 

 Pr 0.71 0.71 0.71 

 hcs (W/(m2 K)) 4.54 5.02 4.89 

 hct (W/(m2 K)) 5.23 5.79 5.65 

Ts (°C) 64 60 61 

Therefore, the surface temperature (Ts) ≈ 61°C 
(b) The rate of conductive heat transfer through the insulation must also be 1% of the input heat 

 qk = iAk

S
(Tst – Ts) = 0.01 qin 
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Solving for the insulation thickness 

 s = 
in0.01

iAk

q
 (Tst – Ts) = 

( )2

6

45m 0.13 W/(m K)

0.01(10 W)
 (150°C – 61°C) = 0.052m = 5.2 cm 

COMMENTS 

The insulation thickness is small compared to the length of a side of the furnace, therefore, neglecting 
the edge effects or effect on the exterior surface area should not introduce appreciable error. 

PROBLEM 5.53 

An electronic device is to be cooled by natural convection in atmospheric air at 20°C. The 
device generates internally 50 W and only one of its external surfaces is suitable for 
attaching fins. The surface available for attaching cooling fins is 0.15 m tall and 0.4 m wide. 
The maximum length of a fin perpendicular to the surface is limited to 0.02 m and the 
temperature at the base of the fin is not to exceed 70°C in one design and 100°C in another. 

L < 0.02 m

H = 0.15 m

w = 0.4 m

t = ?

t

H

S

L

w

 

Design an array of fins spaced at a distance (s) from each other so that the boundary 
layers will not interfere will each other appreciable and maximum rate of heat 
dissipation is approached. For the evaluation of this spacing, assume that the fins are at 
a uniform temperature. Then select a thickness (t) that will provide good fin efficiency 
and ascertain which base temperature is feasible. 

(For complete thermal analyses see ASME J. Heat Transfer, 1977, p. 369, J. Heat 
Transfer, 1979, p. 569, and J. Heat Transfer, 1984, p. 116.) 

GIVEN 

• An electronic device with vertical aluminum fins in air 
• Air temperature (T∞) = 20°C 
• Heat generation ( )Gq  = 50 W 

• Height of surface (H) = 0.15 m 
• Width of surface (w) = 0.4 m 
• Maximum fin length (Lf) = 0.02 m 
• Maximum base temperatures: 
  Tb1 = 70°C 
  Tb2 = 100°C 
• Fin spacing = s 
• Fin thickness = t 

FIND 

(a) Fin spacing such that the boundary layers do not interfere 
(b) Select a fin thickness that gives a good fin efficiency and ascertain which base temperature is 

feasible 
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ASSUMPTIONS 

• The fins are at a uniform temperature equal to the base temperature 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the mean temperatures for each of the base temperatures 

 Mean Temperature (°C) 45°C 60°C 

 Thermal expansion coefficient, β (1/K) 0.00314 0.003 

 Thermal conductivity, k (W/(m K)) 0.0269 0.0279 

 Kinematic viscosity, ν × 10–6 (m2/s) 18.1 19.4 

 Prandtl number, Pr 0.71 0.71 

From Appendix 2, Table 12, the thermal conductivity of aluminum in the range of 70 to 100°C  
(ka) = 240 (W/(m K)) 

SOLUTION 

(a) The boundary layer thickness on a vertical flat plate is given by Equation (5.11b) 

 δ (x) = 4.3 × 

1

4

2

0.56

x

Pr

Pr Gr

+ 
 + 

 

The fin spacing (s) must be twice the boundary thickness at the top of the fin (x = H) to avoid 
boundary layer interference 

 s = 2 δ (H) = 8.6 H  

1

4

2

0.56

H

Pr

Pr Gr

+ 
 + 

 

 where   GrH = 
3

2

( )sg T T Hβ
ν

∞−
 

 For Tb = 70°C 

  GrH =
( )

( )
2 3

26 2

(9.8 m/s ) 0.00314 (1/K) (70°C 20°C)(0.15m)

18.1 10 m / s−

−

×
= 1.59 × 107 

 s = 8.6 (0.15 m) 

1

4

2 7

0.71 0.56

0.71 (1.59 10 )

+ 
 × 

 = 0.026m = 2.6 cm 

 For Tb = 100°C 

  GrH =
( )

( )
2 3

26 2

(9.8 m/s ) 0.003 (1/K) (100°C 20°C)(0.15m)

19.4 10 m / s−

−

×
= 2.11 × 107 

 s = 8.6 (0.15 m) 

1

4

2 7

0.71 0.56

0.71 (2.11 10 )

+ 
 × 

 = 0.024m = 2.4 cm 

Let the fin spacing (s) = 2.5 cm. 
The average Nusselt number of the fins is given by Equation (5.12b) 
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 HNu  = 0.68  
1

2Pr  

1

4

1

4(0.952 )

HGr

Pr+

 

 For Tb = 70°C: HNu  = 0.68 
1

2(0.71)

1
7 4

1

4

(1.59 10 )

(0.952 0.71)

×

+

 = 31.87 

 ch  = HNu
k

H
 = 31.87 

( )0.0269 W/(m K)

0.15m
= 5.71 2W/(m K)   

 For Tb = 100°C: HNu  = 0.68 
1

2(0.71)

1
7 4

1

4

(2.11 10 )

(0.952 0.71)

×

+

 = 34.20  

 ch  = HNu  
k

H
 = 34.2 

( )0.0269 W/(m K)

0.15m
 = 6.36 2W/(m K)  

(b) The fin efficiency is approximated by Equation (2.67). 
For a ‘good’ fin efficiency, let ηf = 0.99 

 0.99 = 
tanh W

W
  W = 0.0289 

 where  W = 
22 c c

a

h L

k t
 Lc = Lf + 

2

t
 

 For Tb = 70°C: W = 
( ) ( )

( )
222 5.71 W/(m K) 0.02m + / 2

240 W/(m K)

t

t
 = 0.0289  t = 0.0007 m = 0.7 mm 

 For Tb = 100°C 

  W = 
( )

( )

2
2 0.02 m +

2 6.36 W/(m K)
2

240 W/(m K)

t

t

 
 

 = 0.0289  t = 0.0008 m = 0.8 mm 

Let t = 0.75 mm for either case. 
The number of fins on the device (N) is given by 

 N t + (N – 1) s = w  N = 
w s

t s

+
+

 = 
0.4m 0.025m

0.00075m 0.025m

+
+

 = 16.5 

There will be 17 fins. The surface area of the fins and wall area between them is 

 A = H [N(2Lf + t) + (N – 1)s] = 0.15m[17(0.04m + 0.00075m) + 16(0.025m)] = 0.164m2 

The rate of heat transfer is 

 q = hc A (Tb – T∞) 

 For Tb = 70°C q = 5.71 2W/(m K)  (0.164m2) (70°C – 20°C) = 46.8 W < qG 

 For Tb = 100°C q = 6.36 2W/(m K) (0.164m2) (100°C – 20°C) = 83.4 W > qG  
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The 100°C base temperature is feasible; the 70°C base temperature is not. 

 

 

COMMENTS 

The optimum spacing from Equation (5.56a) is 0.0017 m for t = 0.00075 m indicating the surface area 
gained outweighs the reduction in heat transfer due to the interference of the boundary layers. The rate 
of heat transfer with this spacing and a base temperature of 70°C is 47.4 W. Still not quite adequate. 
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Chapter 6 

PROBLEM 6.1 

To measure the mass flow rate of a fluid in a laminar flow through a circular pipe, a hot 
wire type velocity meter is placed in the center of the pipe. Assuming that the measuring 
station is far from the entrance of the pipe, the velocity distribution is parabolic, or 

  
max

( )u r

U
 = ( ) 

  

22
1 –

r

D
 

where Umax is the centerline velocity (r = 0) 
  r is the radial distance from the pipe centerline 
  D is the pipe diameter. 
(a) Derive an expression for the average fluid velocity at the cross-section. 
(b) Obtain an expression for the mass flow rate. 
(c) If the fluid is mercury at 30°C, D = 10 cm, and the measured value of Umax is 0.2 

cm/s, calculate the mass flow rate from the measurement. 

GIVEN 

• Fully developed flow of mercury through a circular pipe 
• Parabolic velocity distribution: u(r)/Umax = 1 – (2r/D)2 
• Mercury temperature (T) = 30°C 
• Pipe diameter (D) = 10 cm = 0.1 m 
• Measured center velocity (Umax) = 0.2 cm/s = 0.002 m/s 

FIND 

(a) An expression for the average fluid velocity ( u ) 
(b) An expression for the mass flow rate ( m ) 
(c) The value of the mass flow rate ( m ) 

SKETCH 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 25, for Mercury at 30°C: Density (ρ) = 13,555 kg/m3 

SOLUTION 

(a) The average fluid velocity is calculated as follows 

 u  = 
1

or
( )

or

o
u r dr  where ro = 

2

D
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 u  = 
2

max 1
or

o
o o

U r
dr

r r

  −     
  = 

3
max

2
0

1

3

or

o o

U r
r

r r

 
−  

 

 u  = Umax 
1

1
3

 −    = 
2

3
 Umax 

(b) The mass flow rate is given by 

 m  = u Ac ρ = 
2

3
 Umax(π ro

2)ρ 

 m  = 
2

3
π Umax ro

2 ρ 

(c) Inserting the values of these quantities into this expression 

 m  = 
2

3
π  ( )0.002 m/s  (0.05 m)2 ( )313,555 kg/m  = 0.14 kg/s 

PROBLEM 6.2 

Nitrogen at 30°C and atmospheric pressure enter a triangular duct 0.02 m on each side 
at a rate of 4 × 10–4 kg/s. If the duct temperature is uniform at 200°C, estimate the bulk 
temperature of the nitrogen 2 m and 5 m from the inlet. 

GIVEN 

• Atmospheric nitrogen flowing through a triangular duct 
• Bulk inlet temperature (Tb,in) = 30°C 
• Width of each side of the duct (w) = 0.02 m 
• Mass flow rate ( m ) = 4 × 1–4 kg/s 
• Duct temperature (Ts) = 200°C (uniform) 

FIND 

• The bulk temperature (a) 2 m from the inlet and, (b) 5 m from the inlet 

SKETCH 

w = 0 .02 m

Nitrogen
= 30° C

= 4 x 10 kg/s
T

m
b,in

– 4

x

 

SOLUTION 

(a) Assuming the outlet temperature is 70°C, then the average bulk temperature is 50°C 
From Appendix 2, Table 32, for nitrogen 

 Specific heat (cp) = 1042 J/(kg K) 
 Thermal conductivity (k) = 0.0278 W/(m K) 
 Absolute viscosity (μ) = 18.79 × 10–6 (Ns)/m2 
 Prandtl Number (Pr) = 0.71 

The hydraulic diameter of the duct is 

 DH = 
4 cA

P
 = 

2
21 W

4 W W
2 2

3W

  −      = 
4 24(1.73 10 m )

3(0.02m)

−×
 = 0.0115 m 
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 ∴ ReD = H

c

U D m D

A

ρ
μ μ

∞ =


 = 
( )

( ) ( )
4

4 2 6 2 2

4 10 kg/s (0.0115m)

1.73 10 m 18.79 10 Ns/m (kg m)/(Ns )

−

− −
×

× ×
 = 1415 

The length from the entrance at which the velocity and temperature profiles become fully developed 
can be obtained from Equations (6.7) and (6.8) 

 xfd = 0.05 DH ReD = 0.05 (0.0115 m)(1415) = 0.81 m 

 xft,T = 0.05 DH ReD Pr = 0.05 (0.0115 m) (1415)(0.71) = 0.58 m 

Therefore, the flow is fully developed over most of the duct length. 

From Table 6.1, for fully developed flow in triangular cross-section duct: DNu  = 2.47 

 ∴ ch  = DNu  
H

k

D
 = 2.47

( )0.0278 W/(m K)

0.0115m
 = 5.98 W/(m2 K) 

Rearranging Equation (6.36) 

 Tb,out = Ts + (Tb,in – Ts) exp c

p

PLh

mc

 
−  

 

 Tb,out= 200°C + (30°C – 200°C) exp 
( )

( ) ( ) ( )

2

4

3(0.02 m)(2 m) 5.98 W/(m K)

4 10 kg/s 1042 J/(kg K) Ws/J−
 

−  ×
 = 170°C 

With this outlet temperature, the average bulk temperature will be 100°C. This is far enough from the 
initial guess that another iteration is warranted 

 cp = 1045 J/(kg K) ch  = 6.75 W/(m2 K) 

 k = 0.0314 W/(m K) Tb,out = 176°C 

The bulk temperature at x = 2 m is 176°C. 
(b) The same procedure can be used to find the bulk temperature at x = 5 m. Let Tb,out = 190°C. 
Average bulk temperature = 110°C 

 cp = 1045 

 k = 0.0321 W/(m K) 

 ch  = 6.90 W/(m2 K) 

 Tb,out = 199°C 

The bulk temperature a x = 5 m is about 199°C. 

PROBLEM 6.3 

Air at 30°C enters a rectangular duct 1 m long and 4 mm by 16 mm in cross-section at a 
rate of 0.0004 kg/s. If a uniform heat flux of 500 W/m2 is imposed on both of the long 
sides of the duct, calculate (a) the air outlet temperature (b) the average duct surface 
temperature, and (c) the pressure drop. 

GIVEN 

• Air flowing through a rectangular duct 
• Inlet bulk air temperature (Tb,in) = 30°C 
• Duct length (L) = 1 m 
• Duct height (H) 4 mm = 0.004 m 
• Duct width (w) = 16 mm = 0.016 m 
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• Air mass flow rate ( m ) = 0.0004 kg/s 
• Uniform heat flux (q/A) = 500 W/m2 on the long sides 

FIND 

(a) Air outlet temperature (Tb,out) 
(b) The average duct surface temperature (Ts) 
(c) The pressure drop (Δ p) 

ASSUMPTIONS 

• The short sides of the duct are insulated 
• Entrance effects are negligible 

SKETCH 

w = 0.016 m

H = 0.004 m

Air

Tb,in = 30° C

m = 0.0004 kg/s

L = 1 m

 

SOLUTION 

(a) The total rate of heat transfer to the air 

 q = 
q

A
 
   A = 

q

A
 
   2 L w = ( )2500 W/(m K) (2)(1 m)(0.016 m) = 16 W 

 q = m  cp ΔT = m cp (Tb,out – Tb,in)  Tb,out = Tb,in + 
p

q

mc
 

The specific heat (cp) ≈ 1000 J/(kg K), therefore, Tb,out ≈ 70°C. From Appendix 2, Table 27, 
the specific heat at the approximate average bulk temperature of 50°C is 1016 J/(kg K). 

 ∴ Tb,out = 30°C + 
( ) ( ) ( )

16W

0.0004 kg/s 1016J/(kg K) (Ws)/J
 = 69.4°C 

(b) The average duct surface temperature is given by  

 
q

A
 = hc (Ts – Tb,ave)  Ts = Tb,ave + 

c

q

Ah
 = ,in ,out

2
b bT T+

 + 
c

q

Ah
 

The heat transfer coefficient can be obtained from the proper correlation. 
The hydraulic diameter of the duct is 

 DH = 
4A

P
 = 

4 w H

2( )L H+
 = 

4(0.016m)(0.004m)

2(0.02m)
 = 0.0064 m 

 
H

L

D
 = 

1m

0.0064m
 = 156 
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Therefore, entrance effects will be neglected. 
From Appendix 2, Table 27, for dry air at the average bulk temperature of 49.7°C 

 Thermal conductivity (k) = 0.0272 W/(m K) 
 Absolute viscosity (μ) = 19.503 × 10–6 (Ns)/m2 
 Density (ρ) = 1.015 kg/m3 

The Reynolds number is 

ReD = 
U Dρ

μ
∞  = 

w
Hm D

H μ


 = 
( )

( ) ( )6 2 2

0.0004 kg/s

(0.016m)(0.004 m) 19.503 10 (Ns)/m (kg m)/(Ns )−×
 = 2051 < 2100 

Therefore, the flow is laminar. 

The Nusselt number for this geometry is given in Table 6.1 

For 
2

2

b

a
 = 

0.008

0.032
 = 0.25, DNu  = 

2HNu  = 2.93 

 ∴ hc = NuD 
H

k

D
 = 2.93 

( )0.0272 W/(m K)

0.0064 m
 = 12.5 W/(m2 K) 

The average surface temperature is 

 Ts = 
30 C 69.4 C

2

° + °
 + 

( )
( )

2

2

500 W/m

12.5 W/(m K)
 = 90°C 

From Table 6.1 for 2b/2a = 1/4, fReD = 72.93 

 ∴ f = 
72.93

ReD

 = 
72.93

2051
 = 0.0356 

The pressure drop is given by Equation (6.13) 

 Δp = f 
2

2H c

L U

D g

ρ
 = f 

2
1

2 w HH c

L m

D g ρ
 
  


 

 Δp = 0.0356 
1m

0.0064m ( ) ( )
2

2 3

1 0.0004 kg/s

(0.016m)(0.004 m)2 (kg m)/(Ns ) 1.059 kg/m

 
  

 = 102 Pa 

PROBLEM 6.4 

Engine oil flows at a rate of 0.5 kg/s through a 2.5 cm ID tube. The oil enters 25°C while 
the tube wall is at 100°C. (a) If the tube is 4 m long. Determine whether the flow is fully 
developed. (b) Calculate the heat transfer coefficient. 

GIVEN 

• Engine oil flows through a tube 
• Mass flow rate ( m ) = 0.5 kg/s 
• Inside diameter (D) = 2.5 cm = 0.025 m 
• Oil temperature at entrance (Ti) = 25°C 
• Tube surface temperature (Ts) = 100°C 
• Tube length (L) = 4 m 

FIND 

(a) Is flow fully developed? 
(b) The heat transfer coefficient (hc) 
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ASSUMPTIONS 

• Steady state 

SKETCH 
D = 2.5 cm

Engine Oil
= 0.5 kg/s

= 25

m

Ti ° C L = 4 m  
PROPERTIES AND CONSTANTS 

From Appendix 2, Table 16, for unused engine oil at the initial temperature of 25°C 

 Density (ρ) = 885.2 kg/m3 

 Thermal conductivity (k) = 0.145 W/(m K) 
 Absolute viscosity (μ) = 0.652 (Ns)/m2 
 Prandtl number (Pr) = 85.20 
 Specific heat (c) = 1091 J/(kg K) 

SOLUTION 

The Reynolds number is 

 ReD = 
4V D m

D

ρ
μ π μ

=


 = 
( )

( ) ( )2 2

4 0.5kg/s

(0.025m) 0.652 Ns/m kg m/(Ns )π
 = 39.1 

Therefore, the flow is laminar. 
(a) The entrance length at which the velocity profile approaches its fully developed shape is given by 

Equation (6.7) 

 
fdx

D
 = 0.05 ReD  xfd = 0.05 D ReD = 0.05 (0.025 m) (39.1) = 0.049 m = 4.9 cm 

Therefore, the velocity profile is fully developed for 98.8% of the tube length. 
The entrance length at which the temperature profile approaches its fully developed shape is given by 
Equation (6.8) 

 
fdx

D
 = 0.05 ReD Pr  xfd = 0.05 D ReD Pr = 0.05(0.025 m) (39.1) (8520) = 416 m 

Therefore, the temperature profile is not fully developed. 
(b) Since the velocity profile is fully developed but the temperature profile is not, Figure 6.10 will be 

used to estimate the Nusselt number 

 210DRe PrD

L
−×  = 

(39.1) (85.20) (0.025m)

4m
 × 10–2 = 0.208 

Using the ‘parabolic velocity’ curve of Figure 6.12, NuD ≈ 4.8 

 hc = NuD 
k

D
 = 4.8 

( )0.145 W/(m K)

0.025m
 = 27.8 W/(m2 K) 

COMMENTS 

The rate of heat transfer calculated with the heat transfer coefficient at the inlet is 

 qmax = hc π D L (Ts – Tb)  = ( )227.8 W/(m K)  π (0.025 m) (4 m) (100°C – 25°C) = 656 W 

The outer temperature (To) is given by 

 qmax = m c (To,max – Ti) 

 To – Ti ≤ maxq

mc
 = 

( )
( ) ( )

656W J/(Ws)

0.5kg/s 1091J/(kg K)
 = 1.2°C 
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This small temperature change does not warrant another iteration. If the temperature change was 
larger, the fluid properties would need to be re-evaluated at the average bulk temperature and a new 
heat transfer coefficient calculate. 

PROBLEM 6.5 

The equation 

 ch D
Nu

k
=  = 

      
          

2
3

0.0668
3.65

1 0.04

D
RePr

L

D
RePr

L

+

+

 =  
  

0.14
b

s

μ
μ

 

was recommended by H. Hausen (Zeitschr. Ver. Deut. Ing., Belherft No. 4, 1943) 

for forced-convection heat transfer in fully developed laminar flow through tubes. 
Compare the values of the Nusselt number predicted by Hausen’s equation for  
Re = 1000, Pr = 1, and L/D = 2, 10 and 100, respectively, with those obtained from two 
other appropriate equations or graphs in the text. 

GIVEN 

• Fully developed laminar flow through a tube 
• The Nusselt number correlation shown above 
• Reynolds number (Re) = 1000 
• Prandtl number (Pr) = 1 
• Length divided by diameter (L/D) = 2, 10, or 100 

FIND 

• The Nusselt number (Nu) from the above correlation and two others from the text 

ASSUMPTIONS 

• μb / μs ≈ 1.0 
• Constant wall temperature 

SKETCH 

Fluid Flow

Pr 1ª
Re = 1000

D

L  

SOLUTION 

Using the Hausen correlation and L/D = 2 

 Nu  = ch D

k
 = 2

3

0.14
1

0.0668 (1000) (1)
23.65
1

1 0.04 (1000) (1)
2

b

s

μ
μ

        +        +       

= 13.1 
0.14

b

s

μ
μ

 
  

≈ 13.1 

Similarly for the other cases For 
L

D
 = 10  →  Nu  ≈ 7.2 

 For 
L

D
 = 100  →  Nu  ≈ 4.2 
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Figure 6.10 can also be used to estimate the Nusselt number. The velocity entrance region for this 
calculated for Equation (6.7) 

 
fdx

D
 = 0.05 ReD = 0.05 (1000) = 50 

The thermal entrance for this problem can be calculated from Equation (6.8) 

 
,fd Tx

D
 = 0.05 ReD Pr = 0.05 (1000)(1) = 5 

Therefore, in the first case, the temperature and velocity profiles are not fully developed and the ‘short 
duct approximation’ curve will be used 

 ReD Pr 
D

L
 × 10–2 = 1000 (1) 

1

2

 
    × 10–2 = 5 

From Figure 6.12, Nu ≈ 14 

For 
L

D
 = 10 

 ReD Pr 
D

L
 × 10–2 = 1000 (1) 

1

10

 
    × 10–2 = 0.1 

From Figure 6.12, for a parabolic velocity distribution, Nu ≈ 7.5 

For 
L

D
 = 100  

 ReD Pr 
D

L
 × 10–2 = 1000 (1) ( )1

100
 × 10–2 = 0.1 

From Figure 6.12 for a parabolic velocity distribution, Nu ≈ 4.1 
Finally, the Sieder and Tate correlations contained in Equation (6.40) can be applied (since  
Pr = 1 implies that the fluid is a liquid) 

 
HDNu  = 1.86 

0.33

D
D

Re Pr
L

 
  

0.14
b

s

μ
μ

 
  

 

 For 
L

D
 = 2 

HDNu  = 1.86
0.140.331

1000 (1)
2

b

s

μ
μ

    
        

= 14.8
0.14

b

s

μ
μ

 
  

 ≈ 14.8 

Similarly for 
L

D
 = 10 → Nu ≈ 8.6 

L

D
 = 100 → Nu ≈ 4.0 

Tabulating the results 
  Nusselt Numbers, Nu 

 L/D 2 10 100 

 Hausen Correlation 13.1 7.2 4.2 
 Figure 6.10 14 7.5 4.1 
 Sieder and Tate Correlation 14.8 8.6 4.0 

 Average 14.0 7.8 4.1 

 Maximum % Variation from Average 6% 10% 2% 

COMMENTS 

The agreement among the three correlations is within the accuracy of empirical correlations. 

PROBLEM 6.6 

Air at an average temperature of 150°C flows through a short square duct 10 × 10 × 2.25 
cm at a rate of 15 kg/h. The duct wall temperature is 430°C. Determine the average heat 
transfer coefficient, using the duct equation with appropriate L/D correction. Compare 
your results with flow-over-flat-plate relations. 
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GIVEN 

• Air flowing through a short square duct 
• Average air temperature (Ta) = 150°C 
• Duct dimensions = 10 × 10 × 2.25 cm = 0.1 × 0.1× 0.0225 m 
• Duct wall surface temperature (Ts) = 430°C 
• Mass flow rate ( m ) = 15 kg/h 

FIND 

The average heat transfer coefficient ( ch ) using 

(a) The duct equation with appropriate L/D correction 
(b) The flow-over-flat-plate relation 

ASSUMPTIONS 

• Constant and uniform duct wall temperature 

SKETCH 

10 cm

10 cm

2.25 cm

Ta = 150°C

Air

Ts = 430°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average temperature of 150°C 

 Thermal conductivity (k) = 0.0339 W/(m K) 

 Absolute viscosity (μb) = 23.683 × 10–6 (Ns)/m2 
 Prandtl number (Pr) = 0.71 

At the surface temperature of 430°C, the absolute viscosity (μs) = 33.66 × 10–6 (Ns)/m2. 

SOLUTION 

The hydraulic diameter of the duct is 

 DH = 
4 cA

P
 = 

4(0.1m)(0.1m)

4(0.1m)
 = 0.1 m 

The Reynolds number is 

HDRe = H H

c

V D m D

A

ρ
μ μ

=


 = 
( )

( ) ( ) ( )6 2 2

15kg/h (0.1m)

(0.1m)(0.1m) 23.683 10 (Ns)/m 3600s/h (kg m)/(Ns )−×
 = 1760 

Therefore, the flow is laminar. 

(a) Using the Hausen correlation, Equation (6.39) to estimate the Reynolds number with  
D/L = DH/L = 10/2.25 = 4.44 

 DNu  = ch D

k
 = 

0.14

0.66

0.0668
3.66

1 0.045

H

H

D
b

s
D

D
Re Pr

L

D
Re Pr

L

μ
μ

  
      +       

+       
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HDNu  = 

0.14

0.66

0.0668(1760)(0.71) (4.44) 23.683
3.66

33.6661 0.045[(1760) (0.71) (4.44)]

   +     + 
 = 28.3 

 ch  = 
HDNu

H

k

D
 = 28.3 

( )0.0339 W/(m K)

0.1m
 = 9.59 W/(m2 K) 

(b) Applying the flow-over-flat-plate relation of Equation (6.38) 

 
HDNu  = ln

4
HD H

Re Pr D

L

( ) 0.50.167

1
2.654

1
H

H

D
D LPr Re Pr

 
 
 
 

− 
     

 

 
HDNu  = 

(1760) (0.71)

4
(4.44) ln

0.167 0.5

1
2.654

1
(0.71) [1760 (0.71) (4.44)]

 
 
 
 − 
 

 = 53.3 

 ch  = 
HDNu

H

k

D
 = 53.3 

( )0.0339 W/(m K)

0.1m
 = 18.1 W/(m2 K) 

COMMENTS 

The flat plate estimate is almost twice the previous estimate based on flow through a short duct.  
It should be noted that the flow-over-flat-plate relation is only applicable in the following range: 
[ReD Pr (D/L)] from 100 to 1500. For this problem, ReD Pr D/L = 5548. 

PROBLEM 6.7 

Water enters a double pipe heat-exchanger at 60°C. The water flows on the inside 
through a copper tube 2.54 cm (1 in) ID at a velocity of 2 cm/s. Steam flows in the 
annulus and condenses on the outside of the copper tube at a temperature of 80°C. 
Calculate the outlet temperature of the water if the heat exchanger is 3m long. 

GIVEN 

• Water flow through a tube in a double pipe heat-exchanger 
• Water entrance temperature (Tb,in) = 60°C 
• Inside tube diameter (D) = 2.54 cm = 0.0254 m 
• Water velocity (V) = 2 cm/s = 0.02 m/s 
• Steam condenses at (Ts) = 0.80°C on the outside of the pipe 
• Length of heat exchanger (L) = 3 m 

FIND 

• Outlet temperature of the water (Tb,out) 

ASSUMPTIONS 

• Steady state 
• Thermal resistance of the copper pipe is negligible 
• Pressure in the annulus is uniform therefore, Ts is uniform 
• Heat transfer coefficient of the condensing steam is large (see Table 1.4) so its thermal resistance 

can be neglected 
• Outside surface of the heat exchanger is insulated 
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SKETCH 
Steam
= 80°CTs

Tb,in = 60°C

L = 3 m
Copper Pipe

= 2.54 cmID

Water

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at the inlet temperature of 60°C 

 Specific heat (c) = 4182 J/(kg K) 
 Thermal conductivity (k) = 0.657 W/(m K) 
 Kinematic viscosity (ν) = 0.480 × 10–6 m2/s 
 Prandtl number (Pr) = 3.02 
 Density (ρ) = 982.8 kg/m3 

The absolute viscosity is μb = 484 × 10–6 (Ns)/m2 at 60°C 

 μs = 357 × 10–6 (Ns)/m2 at 80°C 

SOLUTION 

The Reynolds number is 

 ReD = 
V D

ν
 = 

6 2

(0.02 m/s) (0.0254 m)

0.480 10 m /s−×
 = 1058 (Laminar) 

The thermal entrance length is given by Equation (6.8) 

 
fdx

D
 = 0.05 ReD Pr = 0.05 (1058) (3.02) = 159.8 → xfd = 159.8 (0.0254m) = 4.06m > L 

Therefore, the flow is not fully developed and the Sieder and Tale correlation, Equation (6.40) will be 
used 

 
HDNu  = 1.86 

0.140.33
b

D
s

D
Re Pr

L

μ
μ

  
      

 

 
HDNu  = 1.86

0.33 0.140.0254 484
1058 (3.02)

3m 357
     

       
 = 5.76 

 ch  = DNu  
k

D
 = 5.76 

( )0.657 W/(m K)

0.0254 m
 = 149.1 W/(m2 K) 

The outlet temperature is given by Equation (6.36) 

  out

in

T

T

Δ
Δ

 = ,out

,in

b s

b s

T T

T T

−
−

 = exp c

p

PLh

mc

 
−  

 = exp 
2

( )

4

c

p

D Lh

V D c

π
πρ

 
 −      

 

Solving for the bulk water outlet temperature 

  Tb,out = Ts + (Tb,in – Ts) exp c

p

P h L

VDcρ
 

−  
 

  Tb,out = 80°C + (60°C – 80°C) exp 

  
( )

( ) ( ) ( ) ( )

2

3

4 149.1 W/(m K) (3m)

982.8 kg/m 0.02 m/s (0.0254 m) 4182 J/(kg K) Ws/J

 
−  

 = 71.5°C 
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Performing a second iteration using the water properties at the average temperature of 66°C 

 c = 4186 J/(kg K) ν = 0.434 × 10–6 m2/s ReD = 1171 

 ρ = 988.1 kg/m3 Pr = 2.71 DNu  = 5.68 

 k = 0.662 W/(m K) μb = 440.9 × 10–6 (Ns)/m2 ch  = 147.9 W/(m2 K) 
   Tb,out = 71.4°C 

COMMENTS 

The negligible change of Tb,out in the second iteration could be expected because the changes in the 
water properties are small. 

PROBLEM 6.8 

An electronic device is cooled by passing air at 27°C through six small tubular passages 
in parallel drilled through the bottom of the device as shown below. The mass flow rate 
per tube is 7 × 10–5 kg/s. 

Air
Air in

27 °C

7 × 10
–

kg/s5 5.0 mm

Surface

Temperature-353 K

Single Tubular Passage

Air Out
44° C

10 cm

 

Heat is generated in the device resulting in approximately uniform heat flux to the air in 
the cooling passage. To determine the heat flux, the air outlet temperature is measured 
and found to be 77°C. Calculate the rate of heat generation, the average heat transfer 
coefficient, and the surface temperature of the cooling channel at the center and at the 
outlet. 

GIVEN 

• Air flow through small tubular passages as shown above 
• Air temperature 
 Entrance (Tb,in) = 27°C 
 Exit (Tb,out) = 77°C 
• Mass flow rate per passage ( m )= 7 × 10–5 kg/s 
• Number of passages (N) = 6 

FIND 

(a) The rate of heat generation ( GQ ) 

(b) The average heat transfer coefficient ( ch ) 
(c) Cooling channel surface temperature at the center (Ts,c) 
(d) Cooling channel surface temperature at the outlet (Ts,out) 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
525

ASSUMPTIONS 

• Steady state 
• Uniform heat generation 
• Uniform heat flux to the air 
• Viscosity variation is negligible 
• Heat transfer coefficient is approximately constant axially 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average bulk temperature of 52°C 

 Specific heat (c) = 1016 J/(kg K) 
 Thermal conductivity (k) = 0.0273 W/(m K) 
 Absolute viscosity (μ) = 19.593 × 10–6 (Ns)/m2 
 Prandtl number (Pr) = 0.71 

SOLUTION 

The Reynolds number is 

 ReD = 
V D ρ

μ
 = 

4m

Dπ μ


 = 
( )

( ) ( ) ( )
5

6 2 2

4 7 10 kg/s

0.005m 19.593 10 (Ns)/m (kg m)/(Ns )π

−

−
×

×
 = 910 (Laminar) 

The thermal entrance length is given by Equation (6.8) 

 
fdx

D
 = 0.05 ReD Pr = 0.05 (910) (0.71) = 32.3 → xfd  = 32.3 (0.005 m) = 0.16 m > L 

Therefore, the temperature profile is not fully developed. 
(a) The total rate of heat generation can be obtained by an energy balance 

 Gq  = N totalm  c(Tb,out – Tb,in) = 6 ( )57 10 kg/s−× ( )1016 J/(kg K) ( )Ws/J (77°C – 27°C) = 21.3 W 

(b) The Nusselt number for this geometry with uniform heat flux and fully developed flow is given 

Table 6.1 as Nu  = 4.364. Since no correction for entrance effect in a tube with uniform heat flux 
boundary is given in the text, the fully developed value will be used. 

 ch  = D
k

Nu
D

 = 4.36 
( )0.0273W/(m K)

0.005m
 = 23.8 W/(m2 K) 

(c) The surface temperature at the center is the average surface temperature (Ts) given by 

 q  = ch  6 π D L (Ts – Tb,ave) = Gq  

Solving for the duct surface temperature 

 Ts = 
6

G

c

q

h DLπ


 + ,in ,out

2
b bT T+

 = ( )2

21.3 W

23.8W/(m K) 6 (0.005m) (0.1m)π
 + 

27°C 77°C

2

+
 = 147°C 

(d) The heat flux to be air is 

 
q

A
 = Gq

A


 = 

6
Gq

DLπ


 = 
21.3W

6 (0.005m) (0.1m)π
 = 2260 W/m2 
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The surface temperature at the outlet is given be 

 
q

A
 = hcL (Ts,out – Tb,out) → Ts,out = 

1

cL

q

A h
 = Tb,out 

 ∴ (Ts,out)max = 
( )

( )
2

2

2260 W/m

23.8 W/(m K)
 + 77°C = 172°Cs 

PROBLEM 6.9 

Unused engine oil with a 100°C inlet temperature flows at a rate of 250 g/sec through a 
5.1-cm-ID pipe that is enclosed by a jacket containing condensing steam at 150°C.  If the 
pipe is 9 m long, determine the outlet temperature of the oil.   

GIVEN 

• Unused engine oil flows through a pipe enclosed by a jacket containing condensing steam.  
• Oil flow rate, m = 250 g/s = 0.25 kg/s.  
• Oil inlet temperature, Tb,in = 100°C.  
• Inner or inside diameter of pipe in which oil flows, D = 5.1 cm = 0.051 m.  
• Length of heated pipe (heated by condensing steam) in which oil flows, L = 9 m.  
• Temperature of condensing steam, Ts = 150°C.  

FIND  

• Temperature of oil, Tb,out, at the outlet of the 9 m long heated pipe.  

ASSUMPTIONS  

• Steady-state flow of oil and its heating by the condensing steam in the outer jacket.  
• The temperature of condensing steam is constant and uniform across the length of pipe.  
• The thermal resistance of the pipe is negligible, and hence the inside surface temperature of the 

pipe is Tw = Ts, this represents a uniform pipe surface temperature condition.  

SKETCH  

Steam @ = 150°CTs

Oil: = 100°CTb,in

L = 9 mPipe = 0.051 mID

m = 0.25 g/s

 

PROPERTIES AND CONSTANTS  

From Appendix 2, Table 17, for unused engine oil at Tb,in = 100°C 

Density, ρ = 840.0 kg/m3  

Thermal conductivity, k = 0.137 W/(m K)  

Absolute viscosity, μb = 17.1 × 10–3 (Ns)/m2  

Prandtl number, Pr = 276  

Specific heat, cp = 2219 J/(kg K)  
At the pipe surface temperature of 150°C, the absolute viscosity μs = 5.52 × 10–3 (Ns)/m2  
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SOLUTION  

The Reynolds number for oil flow inside the pipe is  

 ReD = 
4 4 0.25

0.051 0.017b b

VD m

D

ρ
μ π μ π

×= =
× ×


 = 367.1  Laminar flow 

The thermal entrance length is given by Equation (6.8) for laminar flow, and it can be calculated as  

 xfd = 0.05 Re Pr 0.05 0.051 367 276DD = × × ×  = 258 m 9L = m 

Hence, the temperature profile is NOT fully developed, or the flow is thermally developing.  
Because there is a large variation in the oil viscosity at the pipe wall temperature and the bulk 
temperature, the effect of property (viscosity) variation has to be considered. From Section 6.3.3 
either the Hausen correlation of Equation (6.41) or the Sieder and Tate correlation of Equation (6.42) 
could be used because (μb/μs) = 3.1 (< 9.75; the limit for Equation (6.42) to calculate the Nusselt 
number.  Thus, using the more simpler Sieder and Tate correlation  

 NuD  = 
0.14

Re Pr
1.86 bD

s

D

L

μ
μ

  
      

0.14367 276 0.051 0.0171
1.86 1251

9 0.00552

× ×   = =        

  ch  = 
0.137

Nu 1251 3361
0.051D

k

D
= =  W/(m2 K)  

The outlet temperature can now be calculated by Equation (6.36) as  

 out

in

T

T

Δ
Δ

 = exp c

p

h PL

mc

 
−  

            ( ), , exp c
b out s b in s

p

h PL
T T T T

mc

 
= + − −  

  

 ∴    Tb, out = ( ) 3361 0.051 9
150 100 150 exp

0.25 2219

π× × × + − −  ×
= 149.9 ≈150°C  

COMMENTS  

The oil flow attains the tube wall (or the condensing steam) temperature at the outlet of the 9-m-long 
pipe. Also, because of the 50°C temperature difference between the inlet and the outlet, the above 
calculation should be repeated after evaluating the properties at the average temperature between the 
inlet and outlet.   

PROBLEM 6.10 

Determine the rate of heat transfer per foot length to a light oil flowing through a  
1-in.-ID, 0.6 m copper tube at a velocity of 0.03 m/s. The oil enters the tube at 15°C and 
the tube is heated by steam condensing on its outer surface at atmospheric pressure  
with a heat transfer coefficient of 11.3 kW/(m2 K). The properties of the oil at various 
temperatures are listed in the accompanying tabulation 

T(°C) 15 30 40 65 100 
ρ (kg/m3) 938.8 938.8 922.3 906 889.4 
c (kJ/(kg K)) 1.8 1.84 1.92 2.0 2.13 
k (W/(m K)) 0.133 0.133 0.131 0.129 0.128 
μ (kg/ms) 0.089 0.0414 0.023 0.00786 0.0033 
Pr  1204 573 338 122 55 
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GIVEN 

• Oil flowing through a copper tube with atmospheric pressure steam condensing on the outer 
surface 

• Oil properties listed above 
• Inside diameter (D) = 2.5 cm 
• Tube length (L) = 0.6 m 
• Oil velocity (V) = 0.03 m/s 
• Inlet oil temperature (Tb,in) = 16°C 

• Heat transfer coefficient on outside of pipe ( ,c oh )= 11.3 × 103 W/(m2 K) 

FIND 

• The rate of heat transfer (q) to the oil 

ASSUMPTIONS 

• Steady state 
• The thermal resistance of the copper tube is negligible 
• Constant wall temperature 
• The tube wall is thin 

SKETCH 

Steam

Oil
Tb,in = 15°C
V = 0.03 m/s

Copper Tube

ID = 2.5 cm L = 0.6 m  

PROPERTIES AND CONSTANTS 

At atmospheric pressure, steam condenses at a temperature (Ts) of 100°C. 

SOLUTION 

The Reynolds number for the oil flowing through the pipe is 

 ReD = 
V D ρ

μ
 

Using the oil properties at the inlet temperature of 15°C 

 ReD = 
–2(0.03m/s) (2.5 10 m)(938.8kg/m)

(0.089kg/ms)

×
 = 7.91 (Laminar) 

The thermal entrance length is given by Equation (6.8) 

 
fdx

D
 = 0.05 ReD Pr = 0.05 (7.91) (1204) = 476  xfd = 476 (0.025 m) = 11.9 m >> L 

Therefore, the temperature profile is not fully developed and the Hausen correlation of Equation 
(6.39) will be used (assuming the wall temperature ≈ Ts for μs) 

 Nu  = 
0.14

0.66

0.0668
3.66

1 0.045

H

H

D
b

s
D

D
Re Pr

L

D
Re Pr

L

μ
μ

  
      +       

+       
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 Nu  = 

–2

0.14

0.66

2.5 10
0.0668(7.91) (1204)

0.6 0.089
3.66

0.00330.025
1 0.045 (7.91) (1204)

0.6

   ×
      +       +     

  

  = 
26.51

3.66 (1.586)
2.335

 +  
 = 23.8 

 ch  = 
D

k
Nu

D
 = 23.8 

0.133W/(m K)

0.025m
 = 126.6 W/(m2 K) 

The thermal circuit for heat flow from the steam to the oil is shown below 

R =c,o
RK = CO

To

R =c,o
1

h Aci i

Ts

1

h Aco o  

If the tube wall is thin, Ao ≈ Ai = πDL = π(0.025 m)(0.6 m) = 0.0471 m2 and the thermal resistance is 

 A Rco = 
2

1

11.3kW/(m K)
 = 8.85 × 10–5 (m2 K)/W 

 A Rco = 
2

1

126.6 W/(m K)
 = 7.9 × 10–3 (m2 K)/W 

 A Rtotal = A Rco + A Rci = (0.0885 + 7.9) × 10–3 (m2K)/W = 7.99 × 10–3 (m2 K)/W  
The outlet temperature can be calculated by replacing hcA by 1/ARtotal in Equation (6.36) 

 out

in

T

T

Δ
Δ

 = ,out

,in

b s

b s

T T

T T

−
−

 = exp
total( ) p

P L

A R m c

 
−  

 = exp
total( ) ( ) p

DL

A R VA c

π
ρ

 
−  

 

 Tb,out = Ts + (Tb,in – Ts) exp
total

4

( ) p

L

A R D VA cρ
 

−  
 

 Tb,out = 100 + (15 – 100) 

   exp
–3 2 3

4(0.6m)
–

(7.99 10 (m K)/W)(0.025m)(938.8 kg/m )(0.03 m/s)(1800J/kg K)

 
 × 

 

  Tb,out = 100 – 85 exp
2.4

–
10.126

 
  

 = 32.9°C 

The mean temperature of oil = 
15 32.9

2

+
  24°C. Hence the properties used above may change 

significantly at this temperature. 
This is a significant change in the oil temperature and warrants another iteration using the properties 
of the oil at the average bulk temperature of 24°C. Interpolating the oil properties from the given data 

 ρ = 938.8 kg/m3 Re = 11.93 

 c = 1840 J/(kg K) DNu  = 21.6 

 k = 0.133 W/(m K) A Rtotal = 8.15 × 10–3 ((m2 K)/W) 

 μb = 0.059 kg/ms Tb,out = 32.3°C 

 Pr = 816 
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The rate of heat transfer is given by Equation (6.37) substituting 1/A Rtotal for hc 

 qc = out

outtotal

in

ln

TA
TA R
T

 
 Δ
 Δ 
 Δ 

 

  qc = 
–3

0.0471 (100 32.3) (100 15)

100 – 32.38.15 10 ln
100 – 15

 
 − − − 

 ×  
    

 = 438 W 

COMMENTS 

Note that 99% of the thermal resistance is on the inside of the pipe. 

PROBLEM 6.11 

Calculate the Nusselt number and the convection heat transfer coefficient by three 
different methods for water at a bulk temperature of 32°C flowing at a velocity of 
1.5 m/s through a 2.54-cm-ID duct with a wall temperature of 43°C. Compare the 
results. 

GIVEN 

• Water flowing through a duct 
• Bulk water temperature (Tb) = 32°C 
• Water velocity (V) = 1.5 m/s 
• Inside diameter of duct (D) = 2.54 cm = 0.0254 m 
• Duct wall surface temperature (Ts) = 43°C 

FIND 

Use three different methods to find 
(a) The Nusselt number (NuD) 
(b) The convective heat transfer coefficient (hc) 

ASSUMPTIONS 

• Steady state 
• Fully developed, incompressible flow 

SKETCH 

Water
=32°C

= 1.5m/s
T

V
b

D = 2.54 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at a reference temperature equal to the bulk temperature 
(Tref = 32°C) 
 Thermal conductivity (k) = 0.619 W/(m K) 
 Kinematic viscosity (ν) = 0.773 × 10–6 m2/s 
 Prandtl number (Pr) = 5.16 
 Absolute viscosity (μb) = 763 × 10–6 (Ns)/m2 
At the surface temperature of 43°C: Absolute viscosity (μs) = 626.3 × 10–6 (Ns)/m2 

SOLUTION 

The Reynolds number is 

 ReD = 
 coU D

ν
 = 

( )
6 2

1.5 m/s (0.0254 m)

0.773 10 m /s−×
 = 4.93 × 104 > 2000 
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Therefore, the flow is turbulent. 
(a) Therefore, the flow is turbulent. Three different correlations that can be used to calculate the 

Nusselt number are contained in Table 6.3 
1. The Dittus-Boelter Equation (6.63) 
2. The Sieder and Tate Equation (6.64) 
3. The Petukhov-Popov Equation (6.66) 

 1. DNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

  DNu  = 0.023 (4.93 × 104)0.8 (5.16)0.4 = 252 

 2. DNu  = 0.027ReD
0.8Pr0.3 

0.14
b

s

μ
μ

 
  

 = 0.027 (4.93 × 104)0.8 (5.16)0.3
0.14763

626.3
 
   = 257 

 3. DNu  = 1
2 2

3
1 2

8

( 1)
8

D
f

Re Pr

f
K K Pr

 
  

 
+ −  

 

where f = (1.82 log ReD – 1.64)–2 = [1.82 log(4.93 × 104) – 1.64]–2 = 0.0210 

 K1 = 1 + 3.4 f = 1 + 3.4(0.0210) = 1.071 

 K2 = ( )2
3

1.8
11.7

Pr
+  = 2

3

1.8
11.7

(5.16)
+
  

 = 12.30 

 DNu  = 1
2 2

3

40.0210
(4.93 10 ) (5.16)

8

0.0210
1.071 12.30 (5.16) 1

8

 
×  

   + −    

 = 288 

(b) The heat transfer coefficient is given by 

 1. ch  = 252 
( )0.619 W/(m K)

0.0254 m
 = 6141 W/(m2 K) 

 2. ch  = 257 
( )0.619 W/(m K)

0.0254 m
 = 6263 W/(m2 K) 

 3. ch  = 288 
( )0.619 W/(m K)

0.0254 m
 = 7019 W/(m2 K) 

COMMENTS 

The Nusselt numbers vary by about 8% around the average value of 266. This is within the accuracy 
of empirical correlations. 

PROBLEM 6.12 

Atmospheric pressure air is heated in a long annulus (25 cm ID, 38 cm OD) by steam 
condensing at 149°C on the inner surface. If the velocity of the air is 6 m/s and its bulk 
temperature is 38°C, calculate the heat transfer coefficient. 

GIVEN 

• Atmospheric flow through an annulus with steam condensing in inner tube 
• Diameters Inside (Di) = 25 cm = 0.25 m 
  Outside (Do) = 38 cm = 0.38 m 
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• Steam temperature (Ts) = 149°C 
• Air velocity (V) = 6 m/s 
• Air bulk temperature (Tb) = 38°C 

FIND 

• The heat transfer coefficient ( ch ) 

ASSUMPTIONS 

• Steady state 
• Steam temperature is constant and uniform 
• Heat transfer to the outer surface is negligible 
• Air temperature given is the average air temperature 
• Thermal resistance of inner tube wall and condensing steam is negligible (Inner tube wall surface 

temperature = Ts) 

SKETCH 

Do = 38 cmDi = 25 cm

Air
= 38°C

= 6 m/s
Tb
V Steam

= 149°CTs

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 38°C 

 Density (ρ) = 1.099 kg/m3 
 Thermal conductivity (k) = 0.0264 W/(m K) 
 Absolute viscosity (μb) = 19.0 × 10–6 (Ns)/m2 
 Prandtl number (Pr) = 0.71 

At the surface temperature of 149°C μs = 23.7 × 10–6 (Ns)/m2 

SOLUTION 

As shown in Equation (6.3), the hydraulic diameter of the annulus is given by 

 DH = Do – Di = 0.38 m – 0.25 m = 0.13 m 

The Reynolds number based on this diameter is 

 ReD = HV D ρ
μ

 = 
( )

( ) ( )
3

6 2 2

(6 m/s) (0.13m) 1.099 kg/m

19.035 10 (Ns)/m (kg m)/(s N)−×
 = 4.50 × 104 (Turbulent) 

Applying the Seider-Tale correlation of Equation (6.64) 

 DNu  = 0.027 ReD
0.8 Pr0.3 

0.14
b

s

μ
μ

 
  

 = 0.027 (4.50 × 104)0.8 (0.71)0.3 
0.1419.0

23.7
 
    = 125 

 ch  = DNu
k

D
 = 125 

( )0.0264 W/(m K)

0.13m
 = 25.4 W/(m2 K) 

PROBLEM 6.13 

If the total resistance between the steam and the air (including the pipe wall and scale on 
the steam side) in Problem 6.12 is 0.05 m2 K/W, calculate the temperature difference 
between the outer surface of the inner pipe and the air. Show the thermal circuit. 

From Problem 6.12: In a long annulus (25 cm ID, 38 cm OD), atmospheric air is heated 
by steam condensing at 149°C on the inner surface. The velocity of the air is  
6 m/s and its bulk temperature is 38°C. 
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GIVEN 

• Atmospheric flow through an annulus with steam condensing in inner tube 
• Diameters Inside  (Di) = 25 cm = 0.25 m 
  Outside (Do) = 38 cm = 0.38 m 
• Steam temperature (Ts) = 149°C 
• Air velocity (V) = 6 m/s 
• Total resistance between the steam and air (At Rtot) = 0.05 (m2 K)/W 
• Air bulk temperature (Tb) = 38°C 

• From Problem 6.12 heat transfer coefficient on the outer surface of the inner pipe ( ch ) = 25.4 
W/(m2 K) 

FIND 

• The temperature difference between the outer surface of the inner pipe and the air (ΔT) 

ASSUMPTIONS 

• Steady state 
• Steam temperature is constant and uniform 
• Heat transfer to the outer surface is negligible 
• Air temperature given is the average air temperature 
• Thermal resistance of inner tube wall and condensing steam is negligible (Inner tube wall surface 

temperature = Ts) 

SKETCH 

Do = 38 cmDi = 25 cm

Air
= 38°C

= 6 m/s
T
V

b

Steam
= 149°CTs

 

SOLUTION 

The thermal circuit for the heat transfer between the steam and the air is shown below 

Ts

Rc,s

Tb

Rk,s Rk,p Rc,a  

where Rc,s = Convective thermal resistance on the steam side 
 Rk,s = Conductive thermal resistance of scaling on the steam side 
 Rk,p = Conductive thermal resistance of the pipe wall 

 Rc,a = Convective thermal resistance on the air side = 1/At ch  

 RTot = Rc,s + Rk,s + Rk,p + Rc,a 

 Rca = 
1

t cA h
 → At Rca = 

1

ch
 = ( )2

1

25.4 W/(m K)
 = 0.0394 (m2 K)/W 

The total rate of heat transfer must equal the rate of convective heat transfer from the pipe wall to the air 

 
total

s bT T

R

−
 = 

ca

T

R

Δ
 

 ΔT = 
total

caR

R
(Ts – Tb)  = 

total

t ca

t

A R

A R
(Ts – Tb) = 

0.0394

0.05
 
   (149°C – 38°C) = 87.4°C 
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COMMENTS 

Note that 79% of the thermal resistance is the convective resistance on the air side. 

PROBLEM 6.14 

Atmospheric air at a velocity of 61 m/s and a temperature of 16°C enters a 0.61-m-long 
square metal duct of 20 × 20 cm cross section. If the duct wall is at 149°C, determine the 
average heat transfer coefficient. Comment briefly on the L/Dh effect. 

 

GIVEN 

• Atmospheric air flow through a square metal duct 
• Air velocity (V) = 61 m/s 
• Inlet air temperature (Tb,in) = 16°C 
• Duct dimensions: 20 cm × 10 cm × 0.61 m = 0.2 m × 0.2 m × 0.61 m 
• Duct wall surface temperature (Ts) = 149°C 

FIND 

• The average heat transfer coefficient ( ch ) 

ASSUMPTIONS 

• Steady state 
• Constant and uniform wall surface temperature 

SKETCH 

L = 0.61 m

20 cm

20 cm

Air

V = 61 m/s

Tb,in = 16°C
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the inlet temperature of 16°C 

 Density (ρ) = 1.182 kg/m3 
 Thermal conductivity (k) = 0.0248 W/(m K) 
 Absolute viscosity (μb) = 18.08 × 10–6 (Ns)/m2 
 Prandtl number (Pr) = 0.71 
 Specific heat (c) = 1012 J/(kg K) 

At the wall temperature of 149°C μs = 23.8 × 10–6 (Ns)/m2 

SOLUTION 

The hydraulic diameter of the duct is given by Equation (6.2) 

 DH = 
4 cA

P
 = 

4(0.2m)(0.2m)

4(0.2m)
 = 0.2 m  = 

H

L

D
 = 

0.61m

0.2m
 = 3.05 

The Reynolds number based on the hydraulic diameter is 

 ReD = HV D ρ
μ

 = 
( )

( ) ( )
3

6 2 2

(61 m/s) (0.2 m) 1.182 kg/m

18.08 10 (Ns)/m (kg m)/(Ns )−×
 = 7.97 × 105 (Turbulent) 
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Using the Sieder-Tate correlation of Equation (6.64) with the hydraulic diameter 

 
HDNu  = 0.027

HDRe 0.8 Pr0.3 
0.14

b

s

μ
μ

 
  

  

  = 0.027(7.97 × 105)0.8 (0.71)0.3 
0.1418.08

23.8
 
    = 1235 

 ch  = 
HDNu

H

k

D
 = 1235 

( )0.0248 W/(m K)

0.2 m
 = 153 W/(m2 K) 

Note that since 2 < L/DH < 20, the heat transfer coefficient will be corrected using Equation (6.68) 
although this is strictly applicable only to circular ducts 

 
fd

Nu

Nu
 = ,c L

c

h

h
 = 1 + a

bL

D
 
    

where a = 24/ReD
0.23 = 24/(7.97 × 105)0.23 = 1.054 

 b = 2.08 × 10–6 ReD – 0.815 = 2.08 × 10–6 (7.97 × 105) – 0.815 = 0.843 

 ,c Lh  = ( )2153 W/(m K)  [1 + 1.054 (3.05)0.843 = 3.70] = 566 W/(m2 K) 

The air properties at the inlet temperature were used in the calculation. This may lead to significant 
errors if the air temperature rises appreciably within the duct, therefore, the outlet air temperature will 
be calculated. The outlet temperature can be calculated using Equation (6.36) 

 out

in

T

T

Δ
Δ

 = ,out

,

s b

b in

T T

Ts T

−
−

 = exp
,c L

p

P L h

m c

 
− 
 

 = exp ,c L

c

h P L

A V cρ
 

− 
 

 

 Tb,out = Ts – (Ts – Tb,in) exp ,c L

c

h P L

A V cρ
 

− 
 

 

 Tb,out = 149°C – (149°C – 16°C) 

   exp
( )

( ) ( ) ( ) ( )

2

2 3

566W/(m K) 4(0.2 m)(0.61m)

(0.2 m) 1.182 kg/m 61m/s 1012J/(kg K) (Ws)/J

 
−  

 = 28°C 

Therefore, the average air temperature is about 22°C. The difference in air properties at 22°C and 
16°C is not great enough to justify another iteration. 

COMMENTS 

Note that the average heat transfer coefficient in the duct is greater than that in a long duct due to the 
L/D effect. The heat transfer coefficient is largest at the entrance. This is analogous to flow over a flat 
plate as discussed in Chapter 4. 

PROBLEM 6.15 

Compute the average heat transfer coefficient hc for 10°C water flowing at 4 m/s in a 
long, 2.5-cm-ID pipe (surface temperature 40°C) by three different equations and 
compare your results. Also determine the pressure drop per meter length of pipe. 

GIVEN 

• Water flowing through a pipe 
• Water temperature (Tb) = 10°C 
• Water velocity (V) = 4 m/s 
• Inside diameter of pipe (D) = 2.5 cm = 0.025 m 
• Pipe surface temperature (Ts) = 40°C 
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FIND 

(a) The average heat transfer coefficient ( ch ) by 3 different equations. 

(b) The pressure drop per meter length (Δp/L) 

ASSUMPTIONS 

• Steady state 
• Uniform and constant wall surface temperature 
• Pipe wall is smooth 
• Fully developed flow (L/D > 60) 

SKETCH 

D = 0.025 m

Ts = 40°C

Water
= 3 m/s
= 10°C

V
Tb  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 10°C 

Density (ρ) = 999.7 kg/m3 
Thermal conductivity (k) = 0.577 W/(m K) 
Kinematic viscosity (ν) = 1.300 × 10–6 m2/s 
Prandtl number (Pr) = 9.5 
Absolute viscosity (μb) = 1296 × 10–6 (Ns)/m2 

At the surface temperature of 40°C μs = 658 × 10–6 (Ns)/m2 

SOLUTION 

The Reynolds number for this problem is 

 ReD = 
V D

ν
 = 

6 2

(4 m/s) (0.025m)

1.3 10 m /s−×
 = 7.69 × 104 (Turbulent) 

(a) 
1. Using the Dittus-Boelter correlation of Equation (6.63) 

 NuD = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

 NuD = 0.023 (7.69 × 104)0.8 (9.5)0.4 = 458.8 

 hc = NuD 
k

D
 = 458.8 

( )0.577 W/(m K)

0.025m
 = 10,590 W/(m2 K) 

2. Using the Sieder-Tale correlation of Equation (6.64) 

 NuD = 0.027 ReD
0.8 Pr0.3 

0.14
b

s

μ
μ

 
  

 = 0.027 (7.69 × 104)0.8 (9.5)0.3 
0.141296

658
 
   = 472.9 

 hc = NuD 
k

D
 = 472.9 

( )0.577 W/(mK)

0.025m
 = 10,914 W/(m2 K) 
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3. Using the Petukhov-Popov correlation of Equation (6.66) 

 NuD = 1
2 2

3
1 2

8

( 1)
8

D
f

Re Pr

f
K K Pr

 
  

 
+ −  

 

where f = (1.82 log(ReD) – 1.64)–2 = (1.82 log(7.69 × 104) – 1.64)–2 = 0.0190 

 K1 = 1 + 3.4 f = 1 + 3.4(0.019) = 1.065 

 K2 = 11.7 + ( )1
3

1.8

Pr
 = 11.7 + ( )1

3

1.8

9.5
 = 12.55 

 NuD = 

4

1
2

2
3

0.019
(7.69 10 ) (9.5)

8

0.019
1.065 12.55 (9.5) 1

8

 
×  

  
+ −       

 = 543 

 hc = NuD 
k

D
 = 543 

( )0.577 W/(mK)

0.025m
 = 12,530 W/(m2 K) 

(b) The friction factor correlation of Equation (6.54) is good only for 1 × 105 < ReD. Therefore, the 
friction factor will be estimated from the bottom curve of Figure 6.18: For Re = 7.69 × 104, f ≈ 
0.0188 (Note that this is in good agreement with the friction factor, f in the Petukhov-Popov 
correlation). 

The pressure drop per unit length can be calculated from Equation (6.13) 

 Δ P

D
 = 

2

2 c

f V

D g

ρ
 = 

( )
( ) ( )

23

2 2

0.0188 999.7 kg/m 4 m/s

0.025m 2 (Nm )/Pa (kg m)/(Ns )
 = 6014 Pa 

COMMENTS 

The heat transfer coefficients vary around the average of 11,345 W/(m2 K) by a maximum of 10%. 
This is within the accuracy of empirical correlations. 

PROBLEM 6.16 

Water at 80°C is flowing through a thin copper tube (15.2 cm ID) at a velocity of  
7.6 m/s. The duct is located in a room at 15°C and the heat transfer coefficient at the outer 
surface of the duct is 14.1 W/(m2 K). (a) Determine the heat transfer coefficient at the inner 
surface. (b) Estimate the length of duct in which the water temperature drops 1°C. 

GIVEN 

• Water flowing through a thin copper tube in a room 
• Water temperature (Tb) = 80°C 
• Inside diameter of tube (D) = 15.2 cm = 0.152 cm 
• Water velocity (V) = 7.6 m/s 
• Room air temperature (T∞) = 15°C 
• Outer surface heat transfer coefficient ( coh ) = 14.1 W/(m2 K) 

FIND 

(a) The heat transfer coefficient at the inner surface ( cih ) 
(b) Length of duct (L) for temperature drop of 1°C 
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ASSUMPTIONS 

• Steady state 
• Thermal resistance of the copper tube is negligible 
• Fully developed flow 

SKETCH 

D = 15.2 cm

T• = 15°C

Water
= 80°C

= 7.6 m/s
T

V
b

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 80°C 

 Density (ρ) 971.6 kg/m3 
 Thermal conductivity (k) = 0.673 W/(m K) 
 Absolute viscosity (μ) = 356.7 × 10–6 (Ns)/m2 
 Prandtl number (Pr) = 2.13 
 Specific heat (c) = 4194 J/(kg K) 

SOLUTION 

The Reynolds number is 

 ReD = 
V D ρ

μ
 = 

( )
( ) ( )

3

6 2 2

(7.6 m/s) (0.152 m) 971.6kg/m

356.7 10 (N s)/m (kg m)/(s N)−×
 = 3.15 × 106 (Turbulent) 

(a) Applying the Dittus-Boelter correlation of Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.3 for cooling 

 DNu  = 0.023 (3.15 × 106)0.8 (2.13)0.3 = 4555 

 cih  = DNu
k

D
 = 4555 

( )0.673 W/(m K)

0.152 m
 = 20,170 W/(m2 K) 

(b) Since the pipe wall is thin, Ao = Ai and the overall heat transfer coefficient is 

 
1

U
 = 

1

cih
 + 

1

coh
 = 

1 1

20,170 14.1
 +  

(m2 K)/W = 0.071 (m2 K)/W  U = 14.1 W/(m2 K) = coh  

The length can be calculated using Equation (6.63) 

 out

in

T

T

Δ
Δ

 = ,out

,in

b co

b co

T T

T T

−
−

 = exp 
co

p

P L h

mc

− 
  

 = exp 
2

4

co

p

D L h

D Vcπ

π
ρ

 −
 
  

 

Solving for the length 

 L = – ,out

,in

ln
4

p b co

b coc

D V c T T

T Th

ρ − 
 − 

 

 L = – 
( ) ( ) ( ) ( )

( )
3

2

(0.152 m) 971.6kg/m 7.6m/s 4194 J/(kg K) (Ws)/J

4 14.11W/(m K)
 ln 

79°C 15°C

80°C 15°C

− 
  −

 = 1294 m 

For these conditions, it would take over a kilometer for a 1°C temperature drop. This is largely the 
result of the small natural convection heat transfer coefficient over the outer surface. 
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PROBLEM 6.17 

Mercury at an inlet bulk temperature of 90°C flows through a 1.2-cm-ID tube at a flow 
rate of 4535 kg/h. This tube is part of a nuclear reactor in which heat can be generated 
uniformly at any desired rate by adjusting the neutron flux level. Determine the length 
of tube required to raise the bulk temperature of the mercury to 230°C without 
generating any mercury vapor, and determine the corresponding heat flux. The boiling 
point of mercury is 355°C. 

GIVEN 

• Mercury flow in a tube 
• Inlet bulk temperature (Tb,in) = 90°C 
• Inside tube diameter (D) = 1.2 cm = 0.012 m 
• Flow rate ( m ) = 4535 kg/h = 1.26 kg/s 
• Outlet bulk temperature (Tb,out) = 230°C 
• Boiling point of mercury = 355°C 

FIND 

(a) The length of tube (L) required to obtain Tb,out without generating mercury vapor 
(b) The corresponding heat flux (q/A) 

ASSUMPTIONS 

• Steady state 
• Fully developed flow 

SKETCH 

Tb.out = 230° C

Uniform Heat Flux, q/A

D = 1.2 cmMercury
= 90°C

= 4335 kg/h
T

m
b,in

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 25, for mercury at the average bulk temperature of 160°C 

 Density (ρ) = 13,240 kg/m3 
 Thermal conductivity (k) 11.66 W/(m K) 
 Absolute viscosity (μ) = 11.16 × 10–4 (Ns)/m2 
 Prandtl number (Pr) = 0.0130 
 Specific heat (c) = 140.6 J/(kg K) 

SOLUTION 

The Reynolds number is 

 ReD = 
4V D m

D

ρ
π π μ

=


 = 
( )

( ) ( )4 2 2

4 1.26kg/s

(0.012 m) 11.16 10 (Ns)/m (kg m)/(Ns )π −×
 = 1.2 × 102 (Turbulent) 

 ReD Pr = 1.2 × 105 (0.013) = 1557 > 100 

Therefore, Equation (6.76) can be applied to calculate the Nusselt Number 

 DNu  = 4.82 + 0.0185(ReD Pr)0.827 = 4.82 + 0.0185 (1557)0.827 = 12.9 

 ch  = DNu
k

D
 = 12.9 

( )11.66 W/(mK)

0.012 m
 = 1.25 × 104 W/(m2 K) 
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(b) The maximum allowable heat flux is determined by the outlet conditions. The outlet wall 
temperature must not be higher than the mercury boiling point 

 
q

A
 = (Twall,max – Tb,out) ch  = (355°C – 230°C) ( )4 21.25 10 W/(m K)×  = 1.57 × 102 W/(m2 K) 

(a) The length of the tube required can be calculated from the following 

 q = mc (Tb,out – Tb,in) = 
q

A
 (π D L) 

 
Solving for the length 

 L = ,out ,in( )b bmc T T

q
D

A
π

−
 = 

( ) ( )
( ) ( )6 2

1.26kg/s 140.6J/(kg K) (230°C 90°C)

1.57 10 W/(m K) J/(Ws) (0.012 m)π
−

×
 = 0.419 m 

COMMENTS 

Note that L/D = 0.419 m/0.012 m = 35 > 30, therefore, the assumption of fully developed flow and 
use of Equation (6.76) is valid. 

PROBLEM 6.18 

Exhaust gases having properties similar to dry air enter a thin-walled cylindrical 
exhaust stack at 800 K. The stack is made of steel and is 8 m tall and 0.5 m inside 
diameter. If the gas flow rate is 0.5 kg/s and the heat transfer coefficient at the outer 
surface is 16 W/(m2 K), estimate the outlet temperature of the exhaust gas if the ambient 
temperature is 280 K. 

GIVEN 

• Gas flow through a vertical cylindrical thin-walled steel exhaust stack 
• Gas properties are similar to dry air 
• Gas entrance temperature (Tb,in) = 800 K 
• Length of stack (L) = 8 m 
• Diameter of stack (D) = 0.5 m 
• Mass flow rate ( m ) = 0.5 kg/s 

• Heat transfer coefficient on the outer surface ( ,c oh ) = 16 W/(m2 K) 

• Ambient temperature (T∞) 280 K 

FIND 

• The outlet temperature of the exhaust gas (Tb,out) 

ASSUMPTIONS 

• Radiation heat transfer is negligible 
• Natural convection can be neglected 
• The inlet to the stack is sharp-edged 
• Thermal resistance of the stack wall is negligible 
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SKETCH 
Tb,out = ?

Ts,o

= 0.5 mD

L = 8 m

x

m = 0.5 kg/s

Tb,in = 800 K

Ts,i

 

SOLUTION 

For this problem, neither the heat flux nor the surface temperature will be constant. However, the 
ambient temperature will be constant, therefore, Equation (6.33) can be applied by replacing the 
surface temperature (Ts) with the constant ambient temperature (T∞) and replacing hc with U where 

 U = Overall heat transfer coefficient = 
1

1 1

co cih h
+

 

This results in the following version of Equation (6.36) 

 out

in

T

T

Δ
Δ

 = ,out

,in

b co

b co

T T

T T

−
−

 = exp 
p

P LU

mc

 
−  

 = exp
p

U D L

mc

π 
−  

 

 ∴ Tb,out = T∞ + (Tb,in – T∞) exp 
p

U D L

mc

π 
−  

 

The internal heat transfer coefficient and the average fluid properties will depend on the outlet bulk 
fluid temperature, therefore, an iterative procedure is required. For the first iteration, let  
Tb,out = 500 K. From Appendix 2, Table 27, for dry air at the average bulk temperature of 650 K 
 Specific Heat (cp) = 1056 J/(kg K) 
 Thermal conductivity (k) = 0.0472 W/(m K) 
 Absolute viscosity (μ) = 31.965 × 10–6 (Ns)/m2 
 Prandtl number (Pr) = 0.71 

The Reynolds number for flow in the stack is 

 ReD = coU D ρ
μ

 = 
4m

Dπ μ


 = 
( )

( ) ( )6 2 2

4 0.5kg/s

(0.5m) 31.965 10 (Ns)/m kg m/(Ns )π −×
= 3.98 × 104 (Turbulent) 

L/D = (8 m)/(0.5) = 16 
Since 2 < L/D < 20, the flow will not be fully developed, therefore, the correlation of Molki and 
Sparrow for sharp-edged inlets Equation (6.68), will be used to correct the correlation of Dittus-
Boelter, Equation (6.63) 

 fdNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 
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and  Nu  = fdNu 1
bL

a
D

  +     
 

where a = 24/ReD
0.23 = 24/(3.98 × 104)0.23 = 2.10 

 b = 2.08 × 10–6 ReD – 0.815 = 2.08 × 10–6 (3.98 × 104) – 0.815 = –0.732 

 Nu  = 0.023 (3.98 × 104)0.8 (0.71)0.4 [1 + 2.10(16)–0.732] = 122.5 

 ch  = Nu
k

D
 = 122.5 

( )0.0472 W/(m K)

0.5m
 = 11.6 W/(m2 K) 

 U = 
2

1
1 1

(m K)/W
16 11.6
 + 

 = 6.7 W/(m2 K) 

 ∴ Tb,out = 280 K + (800 K – 280 K) exp
( )

( ) ( ) ( )

26.7 W/(m K) (0.5m)(8m)

0.5kg/s 1056J/(kg K) (Ws)/J

π 
− 
 

= 723 K 

Another iteration using the same procedure yields 

 Average bulk temperature = 762 K 
 Specific Heat (cp) = 1074 J/(kg K) 
 Thermal conductivity (k) = 0.0534 W/(m K) 
 Absolute viscosity (μ) = 35.460 × 10–6 (Ns)/m2 
 Prandtl number (Pr) = 0.72 
 Reynolds number (ReD) = 3.59 × 104 

 Heat transfer coefficient ( c ih ) = 12.1 W/(m2 K) 

 Outlet temperature (Tb,out) = 722 K 

The outlet gas temperature = 722 K 

PROBLEM 6.19 

Water at an average temperature of 27°C is flowing through a smooth 5.08-cm-ID pipe 
at a velocity of 0.91 m/s. If the temperature at the inner surface of the pipe is 49°C, 
determine (a) the heat transfer coefficient, (b) the rate of heat flow per meter of pipe, (c) 
the bulk temperature rise per meter, and (d) the pressure drop per meter. 

GIVEN 

• Water flowing through a smooth pipe 
• Average water temperature (Tw) = 27°C 
• Pipe inside diameter (D) = 5.08 cm = 0.0508 m 
• Water velocity (V) = 0.91 m/s 
• Inner surface temperature of pipe (Ts) = 49°C 

FIND 

(a) The heat transfer coefficient ( ch ) 
(b) The rate of heat flow per meter of pipe (q/L) 
(c) The bulk temperature rise per meter of pipe (ΔTw/L) 
(d) The pressure drop per meter of pipe (Δp/L) 

ASSUMPTIONS 

• Steady state 
• Fully developed flow 
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SKETCH 

D = 5.08 cm

Ts = 49°C

Water

V = 0.91 m/s

Tw = 27°C
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 27°C 

 Density (ρ) = 996.5 kg/m3 
 Specific Heat (cp) = 4178 J/(kg K) 
 Thermal conductivity (k) = 0.608 W/(m K) 
 Absolute viscosity (μ) = 845.3 × 10–6 (Ns)/m2 
 Kinematic viscosity (ν) = 0.852 × 10–6 m2/s 
 Prandtl number (Pr) = 5.8 

 
At the surface temperature of 49°C 

Absolute viscosity (μs) = 565.1 × 10–6 (Ns)/m2 

SOLUTION 

The Reynolds number for this flow is 

 ReD = 
V D

ν
 = 

6 2

(0.91m/s) (0.0508m)

0.852 10 m /s−×
 = 5.42 × 104 > 2000 

Therefore, the flow is turbulent. 
The variation in property values is accounted for by using Equation (6.64) to calculate the Nusselt 
number 

 DNu  = 0.027ReD
0.8 Pr0.3 

0.14
b

s

μ
μ

 
  

 = 0.027(5.42 × 104)0.8 (5.8)0.3
0.14845.3

565.1
 
    = 296 

 ch  = DNu
k

D
 = 296 

( )0.608W/(m K)

0.0508m
 = 3543 W/(m2 K) 

(b) The rate of convective heat transfer is given by 

 q = ch At (Ts – Tw) = hc π D L (Ts – Tw) 

 
q

L
 = ( )23543 W/(m K)  π (0.0508 m) (49°C – 27°C) = 12,438 W/m 

(c) This rate of heat transfer will lead to a temperature rise in the water given by 

 q = pmc ΔTw = 2

4
V D

πρ 
   cp ΔTw 

 ∴ wT

L

Δ
 = 

2

4

pV D cρ π
q

L
 
    

 wT

L

Δ
 = ( ) ( ) ( ) ( ) ( )23

4

996.5kg/m 0.91m/s 0.0508m 4178J/(kg K) (Ws)/Jπ
( )12,438 W/m  = 1.6 K/m 
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(d) From Table 6.4, the friction factor for fully developed turbulent flow through smooth tubes is 
given by Equation (6.59) 

 f = 0.184 ReD
–0.2 = 0.184 (5.42 × 104)–0.2 = 0.0208 

The pressure drop is given by Equation (6.13) 

 
p

L

Δ
 = 

2

2

f V

D

ρ
 = 

( ) ( )
( ) ( )

23

2 2

0.0208 996.5kg/m 0.91m/s

2 (0.0508m) (kg m)/(s N) N/(Pa m )
 = 169 Pa/m 

PROBLEM 6.20 

An aniline-alcohol solution is flowing at a velocity of 3 m/s through a long, 2.5 cm-ID 
thin-wall tube. On the outer surface of the tube, steam is condensing at atmospheric 
pressure, and the tube-wall temperature is 100°C. The tube is clean, and there is no 
thermal resistance due to a scale deposit on the inner surface. Using the physical 
properties tabulated below, estimate the heat transfer coefficient between the fluid and 
the pipe by means of Equations (6.63) and (6.64), and compare the results. Assume that 
the bulk temperature of the aniline solution is 20°C and neglect entrance effects. 

Physical properties of the aniline solution 

Temperature Viscosity Thermal Specific  Specific Heat 
 (°C) (kg/ms) Conductivity Gravity  (kJ/(kg K)) 
   (W/(m K)) 
 20 0.0051 0.173 1.03 2.09 
 60 0.0014 0.169 0.98 2.22 
 100 0.0006 0.164   2.34 

GIVEN 

• An aniline-alcohol solution flowing through a thin-walled tube 
• Tube is clean with no scaling on inner surface 
• Velocity (V) = 3 m/s 
• Inside diameter of tube (D) = 2.5 × 10–2 m 
• Tube wall surface temperature (Ts) = 100°C 
• Solution has the properties listed above 
• Solution bulk temperature (Tb = 20°C) 

FIND 

• The heat transfer coefficient ( ch ) using: (a) Equation (6.63) (b) Equation (6.64) 

ASSUMPTIONS 

• Steady state 
• Entrance effects are negligible 
• Thermal resistance of the tube is negligible 
• Tube wall temperature is constant and uniform 
• Fully developed flow 

SKETCH 
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PROPERTIES AND CONSTANTS 

The density of water ≈ 1000 kg/m3 

SOLUTION 

The kinematic viscosity (ν) of the solution at the bulk temperature is 

 ν = 
μ
ρ

 = 
water( . .)s g

μ
ρ

 = 
3

(0.0051kg/ms)

(1.03)(1000kg/m )
 = 4.95 × 10–6 m2/s 

The Prandtl number is 

 Pr = 
pc

k

μ
 = 

(2090J/(kg K)) (0.0051kg/ms)

(0.173W/(m K))
 = 61.6 

The Reynolds number is 

 ReD = 
V D

ν
 = 

–2

–6 2

(3m/s) (2.5 10 m)

4.95 10 m /s

×
×

 = 15150 (Turbulent) 

(a) Applying the Dittus-Boelter correlation of Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

 DNu  = 0.023 (15150)0.8 (61.6)0.4 = 264 

 ch  = DNu
k

D
 = 264 

–2

0.173W/(m K)

2.5 10 m×
 = 1827 W/(m2 K) 

(b) Using the Sieder-Tate correlation of Equation (6.64) 

 DNu  = 0.027ReD
0.8 Pr0.3

0.14
b

s

μ
μ

 
  

 = 0.027(15150)0.8 (61.6)0.3
0.145.1

0.6
 
    = 277 

 ch  = D
k

Nu
D

 = 277 
–2

0.173W/(m K)

2.5 10 m×
 = 1917 W/(m2 K) 

COMMENTS 

These estimates vary by about 3% around an average value of 1880 W/(m2 K). But the Sieder-Tate 
correlation is more applicable in this case because it takes the large variation of the viscosity with 
temperature into account. 

Note that the above correlations require that all properties (except μs) be evaluated at the bulk 
temperature. 

PROBLEM 6.21 

In a refrigeration system, brine (10 per cent NaCl) by weight having a viscosity of 0.0016 
(Ns)/m2 and a thermal conductivity of 0.85 W/(m K) is flowing through a long 2.5-cm-ID 
pipe at 6.1 m/s. Under these conditions, the heat transfer coefficient was found to be 
16,500 W/(m2 K). For a brine temperature of –1°C and a pipe temperature of 18.3°C, 
determine the temperature rise of the brine per meter length of pipe if the velocity of the 
brine is doubled. Assume that the specific heat of the brine is 3768 J/(kg K) and that its 
density is equal to that of water. 
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GIVEN 

• Brine flowing through a pipe 
• Brine properties  Viscosity (μ) = 0.0016 Ns/m2 
  Thermal conductivity (k) = 0.85 W/(m K) 
  10% NaCl by weight 
  Specific heat (c) = 3768 J/(kg K) 
• Pipe inside diameter (D) = 2.5 cm = 0.025 m 
• Brine velocity (V) = 6.1 m/s 

• Heat transfer coefficient ( ch ) = 16,500 W/(m2 K) 

• Brine temperature (Tb) = –1°C 
• Pipe temperature (Ts) = 18.3°C 

FIND 

• Temperature rise of the brine per meter length (ΔTb/m) if the velocity is doubled (V = 12.2 m/s) 

ASSUMPTIONS 

• Steady state 
• Fully developed flow 
• Constant and uniform pipe wall temperature 
• Density of the brine is the same as water density 

SKETCH 

Brine

Tb = – 1°C

V = 60 m/s

Ts = 18.3°C

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, density (ρ) of water ≈ 1000 kg/m3 

SOLUTION 

The Reynolds number at the original velocity is 

 ReD = 
VD ρ

μ
 = 

( )
( )

3

2 2

(6.1m/s) (0.025m) 1000kg/m

0.0016(Ns)/m (kg m)/(s N)
 = 95,313 (Trubulent) 

The thermal conductivity of the fluid can be calculated from the given heat transfer coefficient using 
the Dittus-Boelter correlation of Equation (6.63) 

 DNu  = ch D

k
 = 0.023 ReD

0.8 Prn where n = 0.4 for heating 

 k = 
0.4

0.80.023

c

D

h D

c
Re

k
μ 

 

 

 k = 

1

0.6

0.8 0.40.023 ( )
c

D

h D

Re c μ
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 k = 
( )

( ) ( ) ( ) ( )

1
2 0.6

0.40.8 2 2

0.025m 16,500W/(m K)

0.023(95,313) 3768J/(kg K) 0.0016(Ns)/m (kg m)/(s N) (Ws)/J

 
 

     
 

   = 0.852 W/(m K) 

The Prandtl number is 

 Pr = 
c

k

μ
 = 

( ) ( ) ( )
( ) ( )

2 23768J/(kg K) 0.0016(Ns)/m (kg m)/(s N)

0.852 W/(m K) J/(Ws)
 = 7.08 

The Reynolds number for the new velocity is twice the original Reynolds number:  
ReD = 190,626. From Equation (6.63): For fully developed flow 

 DNu  = 0.023 (190,626)0.8 (7.08)0.4 = 843 

 ch  = DNu
k

D
= 843 

( )0.852 W/(m K)

0.025m
 = 28,733 W/(m2 K) 

The temperature after one meter is given by Equation (6.36) 

 out

in

T

T

Δ
Δ

 = ,out

,in

b co

b co

T T

T T

−
−

 = exp cP L h

mc

 
−  

 = exp
4 ch L

V D cρ
 

−  
 

 ,out

,in

b s

b s

T T

T T

−
−

 = exp
( )

( ) ( ) ( ) ( )

2

3

4 38,733W/(m K) (1m)

1000kg/m 12.2 m/s (0.025m) 3768J/(kg K) (Ws)/J

 
−  

 

  = 0.9048 (per m length) 

 ΔTb = Tb,out – Tb,in = ( ),out
,in

,in

b s
b s s

b s

T T
T T T

T T

−  
− +  −  

 – Tb,in 

 ΔTb = [0.9043 (–1°C – 18.3°C) + 18.3°C] + 1°C = 1.84°C per meter length 

 

PROBLEM 6.22 

Derive an equation of the form hc = f(T, D, V) for turbulent flow of water through a long 
tube in the temperature range between 20° and 100°C. 

GIVEN 

• Turbulent water flow through a long tube 
• Water temperature range (Tb) = 20°C to 100°C 

FIND 

• An expression of the form ch  = f(T, D. V) 

ASSUMPTIONS 

• Steady state 
• Variation of properties with temperature can be approximated with a power law 
• Fully developed flow 
• Water is being heated 
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SKETCH 

D

Water

V T, b
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water 

 Temperature (°C) 20 100 

 Temperature (K) 293 373 

 Density, ρ (kg/m3) 998.2 958.4 

 Thermal conductivity, k ( )W/(m K)  0.597 0.682 

 Absolute viscosity, ( )2(Ns) m/  993 × 10–6 277.5 × 10–6 

 Prandtl number, Pr 7.0 1.75 

SOLUTION 

Applying the Dittus-Boelter expression of Equation (6.63) for the Nusselt number 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 DNu  = 0.023 
0.8

DVρ
μ

 
  

 Prn 

 ch  = DNu
k

D
 = 0.023 

0.8 0.4

0.8

kPrρ
μ

D–0.2 V 0.8 

To put this in the required form, the fluid properties must be expressed as a function of temperature. 
Assuming the power law variation 

 Property = ATR 

where A and n are constant evaluated from the property values. 

For density ρ(293) = 998.2 kg/m3 = A(293)n 

 ρ(373) = 958.2 kg/m3 = A(373)n 

Solving these simultaneously 
 A = 2613  n = – 0.1694 

Therefore, ρ(T) = 2613 T –0.1694 
Applying a similar analysis for the remaining properties yields the following relationships 

 k (T) = 0.02605 T 0.5514 
 μ (T) = 1.058 × 1010 T –5.281 
 Pr (T) = 1.026 × 1015 T –5.7426 

Substituting these into the expression for the heat transfer coefficient 

 ch  = 0.023
0.1694 0.8 15 5.7426 0.4 0.5514

10 5.281 0.8

(2612 ) (1.026 10 ) (0.02605 )

(1.058 10 )

T T T

T

− −

−
×
×

D–0.2 V0.8 

 ch  = 0.0031 T 2.34 D–0.2 V 0.8 
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COMMENTS 

Note that in equations of the type derived, the coefficient has definite dimensions. Hence, the use of 
such equations is limited to the conditions specified and are not recommended. 

PROBLEM 6.23 

The intake manifold of an automobile engine can be approximated as a 4 cm ID tube, 30 
cm in length. Air at a bulk temperature of 20°C enters the manifold at a flow rate of 0.01 
kg/s. The manifold is a heavy aluminum casting and is at a uniform temperature of 
40°C. Determine the temperature of the air at the end of the manifold. 

GIVEN 

• Air flow through a tube 
• Tube inside diameter (D) = 4 cm = 0.04 m 
• Tube length (L) = 30 cm = 0.30 m 
• Inlet bulk temperature (Tb,in) = 20°C 
• Air flow rate ( m ) = 0.01 kg/s 
• Tube surface temperature (Ts) = 40°C 

FIND 

• Outlet bulk temperature (Tb,out) 

ASSUMPTIONS 

• Steady state 
• Constant and uniform tube surface temperature 

 

SKETCH 

Air
= 20°C

= 0.01 kg/s
T

m
b,in

Aluminum Manifold
= 40°CTs

D = 4 cm

L = 30 cm

Tb,out = ?

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the inlet bulk temperature of 20°C 

 Thermal conductivity (k) = 0.0251 W/(m K) 
 Absolute viscosity (μ) = 18,240 × 10–6 (Ns)/m2 
 Prandtl number (Pr) = 0.71 
 Specific heat (c) = 1012 J/(kg K) 

SOLUTION 

The Reynolds number is 

 ReD = 
V D ρ

μ
 = 

4m

Dπ μ


 = ( ) ( )6 2 2

4(0.01kg/s)

(0.04 m) 18.240 10 (Ns)/m (kg m)/(Ns )π −×
  

= 17,451 (Turbulent) 
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The Nusselt number for fully developed flow can be estimated from the Dittus-Boelter correlation of 
Equation (6.36) 

 Nufd = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 Nufd = 0.023 (17,451)0.8 (0.71)0.4 = 49.62 

 hc,fd = Nufd 
k

D
 = 49.62 

( )0.0251W/(m K)

0.04 m
 = 31.14 W/(m2 K) 

Since L/D = 30cm/4 cm = 7.5 < 60, the flow is not fully developed and the fully developed heat 
transfer coefficient must be corrected using Equation (6.68) 

 
fd

Nu

Nu
 = ,

,

c L

c fd

h

h
 = 1 + a 

bL

D
 
    

where a = 24/ReD
0.23 = 24/(17,451)0.23 = 2.538 

 b = 2.08 × 10–6 ReD
 – 0.815 = 2.08 × 10–6 (17,451) – 0.815 = – 0.7787 

 hc,L = ( )231.14 W/(m K)  
0.7787

30cm
1 2.538

4cm

−  +     
 = 47.60 W/(m2 K) 

Applying Equation (6.36) to determine the outlet air temperature 

 out

in

T

T

Δ
Δ

 = ,out

,in

b s

b s

T T

T T

−
−

 = exp cP L h

mc
 −  

 = exp ch D L

mc

π −  
 

 Tb,out = Ts – (Ts – Tb,in) exp ch D L

mc

π −  
 

 Tb,out = 40°C – (40°C – 20°C) exp
( )
( ) ( ) ( )

247.60W/(m K) (0.04 m)(0.3m)

0.01kg/s 1012 J/(kg K) (Ws)/J

π 
−  

= 23.2°C 

COMMENTS 

The rise in air temperature is not large enough to require another iteration using new air properties at 
the average bulk air temperature. 

PROBLEM 6.24 

High-pressure water at a bulk inlet temperature of 93°C is flowing with a velocity of 1.5 
m/s through a 0.015-m-diameter tube, 0.3 m long. If the tube wall temperature is 204°C, 
determine the average heat transfer coefficient and estimate the bulk temperature rise 
of the water. 

GIVEN 

• Water flowing through a tube 
• Bulk inlet water temperature (Tb,in) = 93°C 
• Water velocity (V) = 1.5 m/s 
• Tube diameter (D) = 0.015 m 
• Tube length (L) = 0.3 m 
• Tube surface temperature (Ts) = 204°C 

FIND 

(a) The average heat transfer coefficient ( ,c Lh ) 

(b) The bulk temperature rise of the water (ΔTb) 
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ASSUMPTIONS 

• Steady state 
• Constant and uniform tube temperature 
• Pressure is high enough to supress vapor generation. 

SKETCH 
Ts = 204°C

D = 0.015 m Tb,out =?
Water

= 93°C
= 0.015 m/s

T
V

b,in

L = 0.3 m  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at the inlet bulk temperature of 93°C 

 Density (ρ) = 963.0 kg/m3 
 Thermal conductivity (k) = 0.679 W/(m K) 
 Kinematic viscosity (ν) = 0.314 × 10–6 m2/s 
 Prandtl number (Pr) = 1.88 
 Specific heat (c) = 4205 J/(kg K) 

SOLUTION 

The Reynolds number is 

 ReD = 
V D

ν
 = 

6 2

(1.5m/s)(0.015m)

0.314 10 m /s−×
 = 71,656 (Turbulent) 

(a) The Nusselt number for fully developed flow can be estimated from the Dittus-Boelter correlation 
of Equation (6.36) 

 fdNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

 fdNu  = 0.023 (71,656)0.8 (1.88)0.4 = 226.8 

 ,c fdh  = fdNu
k

D
 = 226.8 

( )0.679 W/(m K)

0.015m
 = 10,265 W/(m2 K) 

Since L/D = 0.3/0.015 = 20 < 60, the heat transfer coefficient must be corrected by Equations (6.68) 
and (6.69). Since L/D is at the upper end of the range for (6.68) and the lower end of the range for 
(6.69), the average of the two equations will be used. 

From (6.68) 

 
fd

Nu

Nu
 = 

,c L

c

h

h
 = 1+ a 

bL

D
 
    

where a = 24 ReD
0.23 = 24/(71,656)0.23 = 1.834 

 b = 2.08 × 10–6 ReD – 0.815 = 2.08 × 10–6 (71,656) – 0.815 = – 00.666 

 
,

,

c L

c fd

h

h
 = 1+ 1.834 

–0.6660.3

0.015
 
    = 1.249 
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From (6.69) 

 
fd

Nu

Nu
 = 

,

,

c L

c fd

h

h
 = 1+ 

6 D

L
 
    = 1 + 

6(0.015)

0.3
 
    = 1.300 

The average of the two values is ,, /c c fdh L h  = 1.27 

 ∴  ,c Lh  = 1.27 ( )210,265W/(m K)  = 13,037 W/(m2 K) 

(b) The bulk temperature can be calculated from Equations (6.36) 

 out

in

T

T

Δ
Δ

 = ,out

,in

s b

s b

T T

T T

−
−

 = exp c

p

P L h

mc

 
−  

 = exp
4 ch L

V D cρ
 

−  
 

 Tb,out = Ts – (Ts – Tb,in) exp = 
4 ch L

V D cρ
 

−  
 

 Tb,out = 204 °C – (204°C – 93°C)  

   exp
( )

( ) ( ) ( ) ( ) ( )

2

3

4 13,037W/(m K (0.3m)

963.0kg/m 1.5m/s 0.015m 4205J/(kg K) (Ws)/J

 
−  

= 111°C 

The bulk temperature rise is 

 ΔTb = Tb,out – Tb,in = 111°C – 93ºC = 18°C 

PROBLEM 6.25 

Suppose an engineer suggests that air is to be used instead of water in the tube of 
Problem 6.24 and the velocity of the air is to be increased until the heat transfer 
coefficient with the air equals that obtained with water at 1.5 m/s. Determine the velocity 
required and comment on the feasibility of the engineer’s suggestion. Note that the speed 
of sound in air at 100°C is 387 m/s. 

From Problem 6.24: Water at a bulk inlet temperature of 93°C is flowing with a velocity 
of 1.5 m/s through a 0.015-m-diameter tube, 0.3 m long. If the tube wall temperature is 
204°C, determine the average heat transfer coefficient and estimate the bulk 
temperature rise of the water. 

GIVEN 

• Air flow through a tube 
• Bulk inlet air temperature (Tb,in) = 93°C 
• Tube diameter (D) = 0.015 m 
• Tube length (L) = 0.3 m 
• Tube surface temperature (Ts) = 204°C 

• From Problem 6.23: ,c Lh  = 13,037 W/(m2 K) 

FIND 

• The velocity (V) required to obtain ,c Lh  = 13,037 W/(m2 K) 

ASSUMPTIONS 

• Steady state 
• Constant and uniform tube temperature 
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SKETCH 

Air
= 93°CTb,in

D = 0.015 m

Ts = 204°C

L = 0.3 m  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the inlet bulk temperature of 93°C 
  Thermal conductivity (k) = 0.0302 W/(m K) 

  Kinematic viscosity (ν) = 22.9 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The flow must be turbulent, therefore, the heat transfer coefficient of the fully developed case must be 
13,037 W/(m2 K) as shown in Problem 6.24. Therefore, the Nusselt number is 

 fdNu  = ,c fdh D

k
 = 

( ) ( )
( )

213,037 W/(m K) 0.015m

0.0302 W/(m K)
 = 6475 

Applying the Dittus-Boelter correlation of Equation (6.63) 

 fdNu  = 0.023 ReD
0.8 Prn = 5099  where n = 0.4 for heating 

Solving for the Reynolds number 

 ReD = 
V D

ν
 = 

1.25

0.40.023
fdNu

Pr

 
  

 = 
1.25

0.4

6475

0.023(0.71)

 
  

 = 7.70 × 106 

Solving for the velocity 

 V = ReD 
D

ν
 = 7.70 × 106 ( )6 222.9 10 m /s

0.015m

−×
 = 11,749 m/s  

This velocity is obviously unrealistic because it corresponds to a Mach number of 30. Under such 
conditions when the speed of sound is reached, a shock wave will form and choke the flow. 

PROBLEM 6.26 

Atmospheric air at 10°C enters a 2 m long smooth rectangular duct with a  
7.5 cm × 15 cm cross-section. The mass flow rate of the air is 0.1 kg/s. If the sides are at 
150°C, estimate (a) the heat transfer coefficient, (b) the air outlet temperature,  
(c) the rate of heat transfer, and (d) the pressure drop. 

GIVEN 

• Atmospheric air flow through a rectangular duct 
• Inlet bulk temperature (Tb,in) = 10°C 
• Duct length (L) = 2 m 
• Cross-section = 7.5 cm × 15 cm = 0.075 m × 0.15 m 
• Mass flow rate (m) = 0.1 kg/s 
• Duct surface temperature (Ts) = 150°C 
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FIND 

(a) The heat transfer coefficient ( )ch  

(b) The air outlet temperature (Tb,out) 
(c) The rate of heat transfer (q) 
(d) The pressure drop (Δp) 

ASSUMPTIONS 

• Steady state 
• The duct is smooth 

SKETCH 

Air
= 10°CTb,in

Ts = 150°C

L = 2 m

0.15 m
Tb,out

0.075 m

 

SOLUTION 

The hydraulic diameter of the duct is 

 DH = 
4 cA

P
 = 

4(0.15 m) (0.075 m)

2(0.15 m) (0.075 m)
 = 0.10m 

For the first iteration, let Tb,out = 50°C. For dry air at the average bulk temperature of 30°C 

  Density (ρ) = 1.128 kg/m3 

  Thermal conductivity (k) = 0.0258 W/(m K) 

  Absolute viscosity (μ) = 18.68 × 10–6 (Ns)/m2 

  Prandtl number (Pr) = 0.71 

  Specific heat (cp) = 1013 J/(kg K) 

 ReD = HVD

ν
 = HmD

A


μ

 = 
( ) ( )

( ) ( ) ( ) ( )6 2 2

0.1kg/s 0.10m

0.15m 0.075m 18.68 10 (Ns)/m (kg m)/(Ns )−×
 

    = 47,585 > 10,000 (Turbulent) 

 
H

L

D
 = 

2 m

0.1 m
 = 20 

(a) Therefore, entrance effects may be significant — the correction Equations (6.68) and (6.69) will 
be applied to the Dittus Boelter correlation, Equation (6.63). 

From Equation (6.63) 

 fdNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 fdNu  = 0.023(47,585)0.8 (0.71)0.4 = 111 

 ,c fdh  = fdNu
k

D
 = 111

( )0.0258W/(m K)

0.1m
 = 28.56 W/(m2 K) 
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Since L/D = 20 is on the low end of the range of Equation (6.69) and the high end of the range for 
Equation (6.68), the average of these two corrections will be applied 
From Equation (6.68) 

 
,

,

c L

c fd

h

h
 = 1 + a

bL

D
 
    

where  a = 24 Re–0.23 = 24(47,585)–0.23 = 2.02 

 b = 2.08 × 10–6 Re – 0.815 = 2.08 × 10–6 (47,585) – 0.815 = – 0.716 

 
,

,

c L

c fd

h

h
 = 1 + 2.02

0.7162

0.1

−
 
    = 1.24 

From Equation (6.69) 

 
,

,

c L

c fd

h

h
 = 1 + 6

D

L
 
    = 1 + 

6(0.1)

2
 = 1.3 

The average of the two values is ,c Lh / ,c fdh  = 1.27 

 ∴  ,c Lh  = 1.27 ( )228.56W/(m K)  = 36.22 W/(m2 K) 

(b) The outlet temperature is found by rearranging Equation (6.63) 

 Tb,out = Ts – (Tb,in – Ts) exp cPLh

mc
 

−  
 

 Tb,out = 150°C – (10°C – 150°C) exp
( ) ( ) ( )

( ) ( ) ( )

22 0.075m 0.15m 2 m 36.32 W/(m K)

0.1kg/s 1013J/(kg K) (Ws)/J

 +
− 
 

 = 48°C 

No further iteration is needed since the result is close to the initial guess. 
(c) The rate of heat transfer is given by 

 q = m cΔTb = ( )0.1kg/s ( )1013J/(kg K) (48°C – 10°C) = 3849 W 

(d) The friction can be estimated from the lowest line for Figure 6.18: Re = 47,585 → f ≈ 0.021. The 
pressure drop is given by Equation (6.13) 

 oΔp = f 
H

L

D

2

2

Vρ
 = f 

H

L

D

2

2

4

2
H

m

D


ρ

ρπ
 
  

 = f 
H

L

D

8

ρ

2

2
H

m

D


π
 
  

 

So 

 Δp = 0.021
2 m

0.1m
 
   3

8

1.128kg/m

 
   ( )

2

2

0.1kg/s

0.1mπ
 
  

( )2(Pa m )/N ( )2(s N)/(kg m)  = 30.2 Pa 

PROBLEM 6.27 

Air at 16°C and atmospheric pressure enters a 1.25-cm-ID tube at 30 m/s. For an 
average wall temperature of 100°C, determine the discharge temperature of the air and 
the pressure drop if the pipe is (a) 10 cm long and (b) 102 cm long. 
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GIVEN 

• Atmospheric air flowing through a tube 
• Entering air temperature (Tb,in) = 16°C 
• Tube inside diameter (D) = 1.25 cm = 0.0125 m 
• Air velocity (V) = 30 m/s 
• Average wall surface temperature (Ts) = 100°C 

FIND 

The discharge temperature (Tb,out) and the pressure drop (Δp) if the pipe length (L) is 
(a) 10 cm (0.1 m) 
(b) 102 cm (1.02 m) 

ASSUMPTIONS 

• Steady state 
• The tube is smooth 

SKETCH 

L = (a) 10 cm (b) 102 cm

D = 1.25 cm

Air
= 16°C

= 30 m/s
T
V

b,in

Ts = 100°C

Tb,out = ?

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the entering bulk temperature of 16°C 

  Density (ρ) = 1.182 kg/m3 
  Thermal conductivity (k) = 0.0248 W/(m K) 
  Kinematic viscosity (ν) = 15.3 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 
  Specific heat (c) = 1012 J/(kg K) 

SOLUTION 

The discharge temperature will first be calculated using air properties evaluated at the entering 
temperature and will then be recalculated using the average bulk air temperature of the first iteration 
to evaluate the air properties. 
The Reynolds number is 

 ReD = 
V D

ν
 = 

( ) ( )
6 2

30m/s 0.0125m

15.3 10 m /s−×
 = 24,510 (Turbulent) 

(a) L/D = 0.1 m/0.0125 m = 8 < 20. Therefore, the flow is not fully developed and the heat transfer 
coefficient will have to be corrected with Equation (6.68). The Dittus-Boelter correlation of 
Equation (6.63) will be used to calculate the fully developed Nusselt number 

 fdNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 fdNu  = 0.023 (24,510)0.8 (0.71)0.4 = 65.11 

 ,c fdh  = fdNu
k

D
 = 65.11

( )0.0248W/(m K)

0.0125m
 = 129.2 W/(m2 K) 

Applying Equation (6.68) 

 
fd

Nu

Nu
 = 

,c L

c

h

h
 = 1 + a

bL

D
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where  a = 24/ReD
0.23 = 24/(24,510)0.23 = 2.347 

 b = 2.08 × 10–6 ReD – 0.815 = 2.08 × 10–6 (24,510) – 0.815 = – 0.7640 

 
,

,

c L

c fd

h

h
 = 1 + 2.347

0.76400.1

0.0125

−
 
    = 1.480 

 ∴ ,c Lh  = 1.480 ( )2129.2 W/(m K)  = 191.1 W/(m2 K) 

The outlet temperature is given be Equation (6.36) 

 out

in

T

T

Δ
Δ

 = out

in

s b,

s b,

T T

T T

−
−

 = exp c

p

PLh

mc
 

−  
 = exp

4 ch L

VDcρ
 

−  
 

 Tb,out = Ts – (Ts – Tb,in) exp
4 ch L

VDcρ
 

−  
 

 Tb,out = 100°C – (100°C – 16°C) exp
( ) ( )

( ) ( ) ( ) ( ) ( )

2

3

4 191.1W/(m K) 0.1m

1.182 kg/m 30m/s 0.0125m 1012J/(kg K) (Ws)/J

 
−  

 

   = 29.2°C 

Performing another iteration 
 Tb,avg = 22.6°C c = 1012 J/(kg K) 

 ρ = 1.155 kg/m3 Re = 23,584 

 k = 0.0253 W/(m K) fdNu  = 63.1 

 ν = 15.9 × 10–6 m2/s ,c Lh  = 189.4 

 Pr = 0.71 Tb,out = 29.3°C (Tb,avg = 22.7°C) 
(b) The friction factor, from Equation (6.59) is 

 f = 
0.2

0.184

DRe
 = 

0.2

0.184

(23,584)
 = 0.0246 

 Δp = f 
H

L

D

2

2 c

V

g

ρ
 = 0.0246

0.1

0.0125
 
  

( ) ( )
( ) ( )

23

2 2

1.155kg/m 30m/s

2 N/(m Pa) (kg m)/(s N)
 = 102.1 Pa 

For L = 1.02 m, L/D = 1.02m/0.0125 m = 81.6 > 60. Therefore, the analysis is the same as above 
except that the L/D correction of Equation (6.68) does not need to be applied. From the first iteration, 
the heat transfer coefficient (hc,fd) = 129.2 W/(m2 K). 

∴ Tb,out = 100°C – (100°C – 16°C) exp
( ) ( )

( ) ( ) ( ) ( ) ( )

2

3

4 129.2W/(m K) 1.02 m

1.182 kg/m 30m/s 0.0125m 1012J/(kg K) (Ws)/J

 
−  

 

 Tb,out = 74.1°C 

Performing another iteration 
 Tb,avg = 45.0°C c = 1015 J/(kg K) 

 ρ = 1.075 kg/m3 ReD = 20,718 

 k = 0.0270 W/(m K) DNu  = 56.9 

 ν = 18.1 × 10–6 m2/s ch  = 123.0 W/(m2 K) 

 Pr = 0.71 Tb,out = 75.4°C (Tb,avg = 45.7°C) 
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 From Equation (6.59) f = 
0.2

0.184

(20,178)
 = 0.0252 

 From Equation (6.13) Δp = 0.0252
0.2

0.0125
 
  

( ) ( )
( ) ( )

23

2 2

1.075kg/m 30m/s

2 N/(m Pa) (kg m)/(s N)
 = 995.0 Pa 

COMMENTS 

Note that by increasing the length of the pipe by a factor of 10 leads to a temperature rise increase of 
about 350% and a pressure drop increase of about 875% 

PROBLEM 6.28 

The equation 

 Nu = 0.116 (
2

3Re  – 125) 
1

3Pr

2 0.14
3

1 +
            
 

b

s

D

L

μ
μ

 

has been proposed by Hausen for the transition range (2300 < Re < 8000) as well as for 
higher Reynolds numbers. Compare the values of Nu predicated by Hausen’s equation 
for Re = 3000 and Re = 20,000 at D/L = 0.1 and 0.01 with those obtained from 
appropriate equations or charts in the text. Assume the fluid is water at 15°C flowing 
through a pipe at 100°C. 

GIVEN 

• Water flowing through a pipe 
• The Hausen correlation given above 
• Water temperature = 15°C 
• Pipe temperature = 100°C 

FIND 

• The Nusselt number using the Hausen correlation and appropriate equations and charts in the text 
for Re = 3000 and 20,000 and D/L = 0.1 and 0.01 

ASSUMPTIONS 

• Steady state 
• Constant and uniform pipe temperature 

SKETCH 
Ts = 100°C

Water
= 15°CT

L

D

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 15°C 

  Absolute viscosity (μb) = 1136 × 10–6 (Ns)/m2 

  Prandtl number (Pr) = 8.1 

At 100°C μs = 277.5 × 10–6 (Ns)/m2 
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SOLUTION 

For Re = 3000, D/L = 0.1 the flow is in the transition region. In addition, L/D = 10. Therefore, the 
flow is not fully developed. The “short duct approximation” curve of Figure 6.12 in the text will be 
used to estimate the Nusselt number 

 ReD Pr
D

L
 × 10–2 = 3000(8.1) (0.1) × 10–2 = 24.3 

From Figure 6.12, NuD= 23. 
For Re = 3000, D/L = 0.01, the flow is fully developed and the Nusselt number will be estimated by 
the laminar correlation of Sieder-Tate, Equation (6.40) 

 NuD = 1.86
0.33

D
D

Re Pr
L

 
  

0.14
b

s

μ
μ

 
  

 

 NuD = 1.86 [3000(8.1) (0.01)]0.33 
0.141136

277.5
 
    = 13.88 

For Re = 20,000, D/L = 0.1, the flow is turbulent, not fully developed. The fully developed Nusselt 
number can be estimated from Equation (6.63) 

 NuD = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 NuD = 0.023 (20,000)0.8 (8.1)0.4 = 146.5 

Correcting this for the entrance effect using Equation (6.68) 

 
fd

Nu

Nu
 = 

,c L

c

h

h
 = 1 + a

bL

D
 
    

where  a = 24/ReD
0.23 = 24/(20,000)0.23 = 2.459 

 b = 2.08 × 10–6 Re – 0.815 = 2.08 × 10–6 (20,000) – 0.815 = – 0.7734 

 
fd

Nu

Nu
 = 1 + 2.459 (10)–0.7734 = 1.41 

 ∴  Nu = 1.41 (146.5) = 206.6 

For Re = 20,000, D/L = 0.01, the entrance effect can be neglected NuD = 146.5 
The Hausen correlation yields 

 Nu  = 0.116 
2

3(3000)  – 125) 
1

3(8.1)  
2

31 (0.1)
 

+ 
  

0.141136

277.5
 
    = 28.63 

Applying the Hausen correlation to the remaining cases and comparing them to the results from the 
text yields the following 

 Case 1 2 3 4 

 Re 3000 3000 20,000 20,000 
 D/L 0.1 0.01 0.1 0.01 

 Nu  from text 23 13.88 206.6 146.5 

 Nu  from Hausen 28.63 24.65 211.0 181.7 

 Percent Difference 20% 44% 12% 14% 
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COMMENTS 

Note that the large difference in Case 2 is probably due to the use of a laminar correlation from the 
text when the flow is transitional. There are large variations is flow and heat transfer in this regime 
and it is usually avoided by good designers. 

PROBLEM 6.29 

Water at 20°C enters a 1.91 cm ID, 57 cm long tube at a flow rater of 3 gm/s. The tube 
wall is maintained at 30°C. Determine the water outlet temperature. What error in the 
water temperature results if natural convection effects are neglected? 

GIVEN 

• Water flowing through a tube 
• Entering water temperature (Tb,in) = 20°C 
• Tube inside diameter (D) = 1.91 cm = 0.0191 m 
• Tube length (L) = 57 cm = 0.57 m 
• Mass flow rate (m) = 3 gm/s = 0.003 kg/s 
• Tube wall surface temperature (Ts) = 30°C 

FIND 

(a) The water outlet temperature (Tb,out) 
(b) Percent error in water temperature rise if natural convection is neglected 

ASSUMPTIONS 

• Steady state 
• Tube temperature is uniform and constant 
• The tube is horizontal 

SKETCH 

D = 1.91 cm
Water

T = 20°C
= 39 m/s

b,in

m

Ts = 30°C

Tb,out = ?

L = 57 cm
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 20°C 
  Specific heat (c) = 4182 J/(kg K) 

  Thermal conductivity (k) = 0.597 W/(m K) 

  Kinematic viscosity (ν) = 1.006 × 10–6 m2/s 

  Prandtl number (Pr) = 7.0 

  Absolute viscosity (μb) = 993 × 10–6 (Ns)/m2 

  Thermal expansion coefficient (β) = 2.1 × 10–4 1/K 

At 30°C μs = 792 × 10–6 (Ns)/m2 

SOLUTION 

The Reynolds number is 

 ReD = 
VDρ

μ
 = 

4m

D


π μ

 = 
( )

( ) ( ) ( )6 2 2

4 0.003kg/s

0.0191m 993 10 (Ns)/m (kg m)/(Ns )π −×
 = 210.4 (Laminar) 
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The Graetz number is 

 Gz = 
4

π
ReD Pr

D

L
 = 

4

π
 (201.4) (7.0) 

0.0191m

0.57 m
 
  

 = 37.10 

The Grashof number (from Table 4.3) will be based on the diameter since the tube is horizontal 

 GrD = 
3

2

( )s bg T T Dβ
ν
−

 = 
( ) ( )

( )
2 4 3

26 2

9.8m/s 2.1 10 1/K (30 C 20 C)(0.0191m)

1.006 10 (Ns)/m

−

−

× ° − °

×
 = 1.42 × 105 

 GrD Pr
D

L
 = 1.42 × 105 (7.0) 

0.0191m

0.57 m
 
  

 = 3.3 × 104 

For this value and ReD = 200, Figure 6.12a indicates that the flow is in the ‘mixed convection laminar 
flow’ region. 

 DNu  = 1.75
0.14

b

s

μ
μ

 
  

 

1
1 3

0.36 0.883 + 0.12 (  )DGz Gz Gr Pr
 
 
  

 

(a) The Nusselt number can be estimated using Equation (6.44) 

 DNu  = 1.75
0.14

b

s

μ
μ

 
  

 

1
1 3

0.36 0.883 + 0.12 (  )DGz Gz Gr Pr
 
 
  

 

 DNu  = 1.75
0.14933

792
 
  

1
0.881 3

5 0.36337.1 0.12 (37.1) (1.42 10 ) (7)
  
 + × 
    

 = 10.7 

 ch  = DNu
k

D
 = 10.7

( )0.597 W/(m K)

0.0191m
 = 334 W/(m2 K) 

The outlet temperature can be calculated from Equation (6.63) 

 out

in

T

T

Δ
Δ

 = out

in

s b,

s b,

T T

T T

−
−

 = exp c

p

PLh

mc
 

−  
 = exp ch DL

mc

π −  
 

 Tb,out = Ts – (Ts – Tb,in) exp ch DL

mc
π −  

 

 Tb,out = 30°C – (30°C – 20°C) exp
( ) ( ) ( )
( ) ( ) ( )

2334 W/(m K) 0.0191m 0.57 m

0.003kg/s 4182J/(kg K) (Ws)/J

π 
−  

 

 Tb,out = 26°C 

The average bulk temperature is 23°C. Another iteration is therefore not warranted because the 
change in property values will not affect the result appreciably. 
(b) Natural convection can be neglected by applying Equation (6.40) for the Nusselt number 

 NuD = 1.86
0.33

D
D

Re Pr
L

 
  

0.14
b

s

μ
μ

 
  

 

 NuD = 1.86 ( )
0.33

0.0191m
201.4 7.0

0.57 m
   

    
 

0.14933

792
 
    = 6.8 

 hc = NuD 
k

D
 = 6.8

( )0.597 W/(m K)

0.0191m
 = 212.3 W/(m2 K) 
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 Tb,out = 30° – (30°C – 20°) exp
( ) ( ) ( )

( ) ( ) ( )
2212.3W/(m K) 0.0191m 0.57 m

0.003kg/s 4182J/(kg K) (Ws)/J

π 
−  

 

 Tb,out = 24.4°C 

The error in outlet temperature is 

 Error = 26 – 24.4 = 1.6°C 

PROBLEM 6.30 

A solar thermal central receiver generates heat by focusing sunlight with a field of 
mirrors on a bank of tubes through which a coolant flows. Solar energy absorbed by the 
tubes is transferred to the coolant which can then deliver useful heat to a load. Consider 
a receiver fabricated from multiple horizontal tubes in parallel. Each tube is 1 cm ID 
and 1 m long. The coolant is molten salt which enters the tubes at 370°C. Under start-up 
conditions, the salt flow is 10 gm/s in each tube and the net solar flux absorbed by the 
tubes is 104 W/m2. The tube wall material will tolerate temperatures up to 600°C. Will 
the tubes survive start-up? What is the salt outlet temperature? 

GIVEN 

• Molten salt flowing through a horizontal tube that is absorbing solar energy 
• Tube inside diameter (D) = 1 cm = 0.01 m 
• Tube length (L) = 1 m 
• Entering salt temperature (Tb,in) = 370°C 
• Start-up mass flow rate (m) = 10 gm/s = 0.01 kg/s 
• Net solar energy absorbed by the tube (qs) = 104 W/m2 
• Maximum tube wall temperature (Ts) = 600°C 

FIND 

(a) Salt outlet temperature (Tb,out) 
(b) Will the tubes survive start-up? 

 

SKETCH 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 23, for molten salt at 370° 
  Specific heat (c) = 1629 J/(kg K) 

SOLUTION 

(a) By the conservation of energy 

 qs A = m c(Tb,out – Tb,in) 

 ∴  Tb,out = Tb,in + 
( )sq DL

mc
π

 = 370°C + 
( ) ( ) ( )

( ) ( ) ( )
4 210 W/m 0.01m 1.0m

0.01kg/ s 1629J/(kg K) (Ws)/J

π
 = 389°C 
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Evaluating the molten salt properties at the average bulk temperature of 380°C 

  Density (ρ) = 1849 kg/m3 

  Absolute viscosity (μ) = 1970 × 10–6 (Ns)/m2 

  Thermal expansion coefficient (β) = 3.55 × 10–4 1/K 

  Thermal conductivity (k) = 0.516 W/(m K) 

  Kinematic viscosity (ν) = 1.065 × 10–6 m2/s 

  Prandtl number (Pr) = 6.18 

(b) The Reynolds number is 

 ReD = 
VDρ

μ
 = 

4m

D


π μ

 = 
( )

( ) ( )6 2 2

4 0.01kg/s

(0.01m) 1970 10 (Ns)/m (kg m)/(Ns )π −×
 = 646 (Laminar) 

With laminar flow and the high temperature differences possible, natural convection may be 
important. Since we do not know the tube wall temperature needed to evaluate the Grashof number, 
an iterative procedure must be used. For the first iteration, let the average tube wall temperature be 
10°C above the average bulk salt temperature (Ts = 390°C). 

From Appendix 2, Table 23, at the tube temperature of 390°C μs = 1882 × 10–6 (Ns)/m2 
The Graetz number is 

 Gz = 
4

π
ReD Pr

D

L
 = 

4

π
 (646.3)(6.18) 

0.01m

1m
 
  

 = 31.37 

The Grashof number based on the diameter, from Table 4.3 is  

 GrD = 
3

2

( )s bg T T Dβ
ν
−

 = 
( ) ( )

( )
2 4 3

26 2

9.8m /s 3.55 10 1/K (390 C 380 C)(0.01m)

1.065 10 (Ns)/m

−

−

× ° − °

×
 = 3.07 × 104 

 GrD Pr
D

L
 = 3.07 × 104 (6.18) (0.01) = 1.9 × 103 

For this value and ReD = 6.5 × 102, Figure 6.12a indicates the flow is in the mixed convection regime, 
therefore, Equation (6.46) will be used to estimate the Nusselt number. Note that this will be a rough 
estimate since Equation (6.46) is technically only for isothermal tubes. 

 DNu  = 1.75
0.14

b

s

μ
μ

 
  

 

1
1 3

0.36 0.883 + 0.12 (  )DGz Gz Gr Pr
 
 
  

 

 DNu  = 1.75 
0.141970

1882
 
    

1
0.881 3

4 0.36331.37.1 0.12 (31.37) (3.07 10 ) (6.18)
  
 + × 
    

 = 8.76 

 ch  = DNu
k

D
 = 8.76

( )0.516W/(m K)

0.01m
 = 452 W/(m2 K) 

The rate of heat transfer to the molten salt is 

 qc = ch At (Ts – Tb) = sq ′′ At 

 ∴  Ts – Tb = s

c

q

h

′′
 = 

4 2

2

10 W/m

452 W/(m K)
 = 22.1°C 
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Further iterations are necessary. However, the fluid properties will not change appreciably. Therefore, 
ReD, Pr, and Gz will not change. 

 Iteration # 2 3 

 Ts (°C) 402 401 

 μs × 106 1791 1798 
 Ts – Tb (°C) 22.1 20.7 

 GrD × 10–4 6.78 6.35 

 DNu  9.36 9.31 

 ch ( )2W/(m K)  483 481 
 Ts – Tb (°C) 20.7 20.8 

The maximum tube wall temperature is therefore 

 Tb,out + (Ts – Tb) = 389°C + 21°C = 410°C 

which is well below the tube melting point. The tube will have no problems surviving the start-up in 
good shape. 

PROBLEM 6.31 

Determine the heat transfer coefficient for liquid bismuth flowing through an annulus (5 
cm ID, 6.1 cm OD) at a velocity of 4.5 m/s. The wall temperature of the inner surface is 
427°C and the bismuth is at 316°C. It may be assumed that heat losses from the outer 
surface are negligible. 

GIVEN 

• Liquid bismuth flowing through an annulus 
• Annulus diameters  Di = 5 cm = 0.05 m  
  Do = 6.1 cm = 0.061 m 
• Bismuth velocity (V) = 4.5 m/s 
• Temperature  Inner wall surface (Tsi) = 427°C 
  Bismuth (Tb) = 316°C 

FIND 

• The heat transfer coefficient 

ASSUMPTIONS 

• Steady state 
• Heat losses from outer surfaces are negligible 

SKETCH 

Di = 5 cm

Tsi = 427°C

Do = 6.1 cm

Bismuth
= 45 m/s
= 316°C

V
Tb

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 24, for bismuth at the bulk temperature of 316°C 
  Thermal conductivity (k) = 16.44 W/(m K) 
  Kinematic viscosity (ν) = 1.57 × 10–7 m2/s 
  Prandtl number (Pr) = 0.014 
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SOLUTION 

The hydraulic diameter for the annual is given by Equation (6.3) 

 DH = Do – Di = 0.061 m – 0.05 m = 0.011 m 

The Reynolds number based on the hydraulic diameter is 

 
HDRe  = HVD

ν
 = 

( ) ( )
7 2

4.5m/s 0.011m

1.57 10 m /s−×
 = 3.15 × 105 

For liquid metals, the Nusselt number is given by Equation (6.75) 

 
HDNu  = 0.625 (

HDRe  Pr)0.4 = 0.625 [3.15 × 105 (0.014)]0.4 = 17.9 

 ch  = 
HDNu

H

k

D
 = 17.9

( )16.44 W/(m K)

0.011m
 = 26,800 W/(m2 K) 

PROBLEM 6.32 

Mercury flows inside a copper tube 9 m long with a 5.1 cm inside diameter at an average 
velocity of 7 m/s. The temperature at the inside surface of the tube is 38°C uniformly 
throughout the tube, and the arithmetic mean bulk temperature of the mercury is 66°C. 
Assuming the velocity and temperature profiles are fully developed, calculate the rate of 
heat transfer by convection for the 9 m length by considering the mercury as (a) an 
ordinary liquid and (b) liquid metal. Compare the results. 

GIVEN 

• Mercury flows inside a copper tube 
• Tube length (L) = 9 m 
• Inside diameter (D) = 5.1 cm = 0.051 m 
• Average mercury velocity (V) = 7 m/s 
• Tube inside surface temperature (Ts) = 38°C (uniform) 
• Bulk temperature of mercury (Tb) = 66°C 

FIND 

The rate of heat transfer for the 9 m length considering mercury as 
(a) an ordinary liquid, and 
(b) a liquid metal 

ASSUMPTIONS 

• Steady state 
• Fully developed flow 

SKETCH 

L = 9 m

D = 5.1 cm
Mercury

= 7 m/s
= 66°C

V
Tb

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 25, for mercury at the bulk temperature of 66°C 
  Thermal conductivity (k) = 9.76 W/(m K) 

  Kinematic viscosity (ν) = 0.1004 × 10–6 m2/s 

  Prandtl number (Pr) = 0.0193 
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SOLUTION 

The Reynolds number is 

 ReD = 
VD

ν
 = 

( )
( )6 2

(7 m/s) 0.051m

0.1004 10 m /s−×
 = 3.6 × 106 

(a) The mercury will be treated as an ordinary liquid by applying the Dittus-Boelter Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.3 for cooling 

 DNu  = 0.023 (3.6 × 106)0.8 (0.0193)0.3 = 1229 

 ch  = DNu
k

D
 = 1229

( )9.76W/(m K)

0.051m
 = 2.35 × 105 W/(m2 K) 

The rate of heat transfer is 

 q = ch A (Tb – Ts) = ch π D L (Tb – Ts) 

 q = ( )5 22.35 10 W/(m K)× π (0.051 m) (9 m) (66°C – 38°C) = 9.5 × 106 W 

(b) For liquid metals and a constant surface temperature boundary, the Nusselt number is given by 
Equation (6.78) 

  DNu  = 5.0 + 0.025 (ReD Pr)0.8 = 5.0 + 0.025 [(3.6 × 106) (0.0193)]0.8 = 191 

 ch  = DNu
k

D
 = 191

( )9.76W/(m K)

0.051m
 = 3.65 × 104 W/(m2 K) 

 q = ( )4 23.65 10 W/(m K)× π (0.051 m) (9 m) (66°C – 38°C) = 1.47 × 106 W 

COMMENTS 

Applying the Dittus-Boelter equation, which is valid for Pr > 0.5 only, to mercury (Pr ≈ 0.02) leads to 
a 648% overestimation in the rate of heat transfer to the pipe. This shows that application of empirical 
outside the limits of experimental verification can lead to serious errors. 

PROBLEM 6.33 

A heat exchanger is to be designed to heat a flow of molten bismuth from 377°C to 
477°C. The heat exchanger consists of a 50 mm ID tube with surface temperature 
maintained uniformly at 500°C by an electrical heater. Find the length of the tube and 
the power required to heat 4 kg/s and 8 kg/s of bismuth. 

GIVEN 

• Molten Bismuth flows through a tube 
• Bismuth temperature: Inlet (Tb,in) = 377°C Outlet (Tb,out) = 477°C 
• Tube inside diameter (D) = 50 mm = 0.05 m 
• Surface temperature (Ts) = 500°C 

FIND 

• The length (L) tube and power required (q) to heat 4 kg/s and 8 kg/s of bismuth 
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ASSUMPTIONS 

• Steady state 
• Uniform and constant surface temperature 
• Losses from the heater are negligible 

SKETCH 
Ts = 500°C

D = 0.05 m

L = ?

Tb,out = 477°C
Bismuth

= 377°C
= 4 kg/s

or
8 kg/s

T
m
b,in

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 24, for Bismuth at the average bulk temperature of 427°C 
  Specific heat (c) = 150 J/(kg K) 

  Thermal conductivity (k) = 15.58 W/(m K) 

  Absolute viscosity (μ) = 13.39 × 10–4 (Ns)/m2 

  Prandtl number (Pr) = 0.013 

SOLUTION 

At m  = 4 kg/s the Reynolds number is 

 Re = 
VDρ

μ
 = 

4m

D


π μ

 = 
( )

( ) ( ) ( )4 2 2

4 4 kg/s

0.05m 13.39 10 (Ns)/m (kg m)/(Ns )π −×
 = 76,070 

Re Pr = 76,070 (0.013) = 989 
Therefore, Equation (6.78) can be used. The resulting L/D should be greater than 30 

 DNu  = 5.0 + 0.025 (ReD Pr)0.8 = 5.0 + 0.025 (989)0.8 = 11.23 

 ch  = DNu
k

D
 = 11.23

( )15.58W/(m K)

0.05m
 = 3498 W/(m2 K) 

Equation (6.36) can be used to find the length required 

 out

in

T

T

Δ
Δ

 = out

in

s b,

s b,

T T

T T

−
−

 = exp c

p

PLh

mc

 
−  

 = exp ch DL

mc
π −  

 

 L = –
c

mc

h D


π

ln out

in

s b,

s b,

T T

T T

− 
 − 

 = –
( ) ( ) ( )

( ) ( )2

4 kg/s 150J/(kg K) (Ws)/J

3498W/(m K) 0.05mπ
ln

500 C – 477 C

500 C – 377 C

° ° 
  ° °

 = 1.83 m 

 L/D = (1.83 m)/(0.05 m) = 37 

Repeating the analysis for m  = 8 kg/s yields the following 
 Re = 152,140 
 RePr = 1978 

 DNu  = 15.84 

 ch  = 4935 W/(m2 K) 

 L = 2.60 m 

 
L

D
= 52 
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PROBLEM 6.34 

Liquid sodium is to be heated from 500 K to 600 K by passing it at a flow rate of  
5.0 kg/s through a 5 cm ID tube whose surface is maintained at 620 K. What length of 
tube is required? 

GIVEN 

• Liquid sodium flow in a tube 
• Bulk temperatures  Inlet (Tb,in) = 500 K 
  Outlet (Tb,out) = 600 K 
• Inside tube diameter (D) = 5 cm = 0.05 m 
• Tube surface temperature (Ts) = 620 K 
• Mass flow rate (m) = 5.0 kg/s 

FIND 

• The length of tube (L) required 

ASSUMPTIONS 

• Surface temperature is constant and uniform 

SKETCH 

L = ?

D = 5 cm

Ts = 620 K

T =b,out 600 K
Sodium

= 500 K
= 5 kg/s

T
m
b,in

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 26, for liquid sodium at the average bulk temperature of 550 K 
  Specific heat (c) = 1322 J/(kg K) 

  Thermal conductivity (k) = 76.9 W/(m K) 

  Absolute viscosity (μ) = 3.67 × 10–4 (Ns)/m2 

  Prandtl number (Pr) = 0.0063 

SOLUTION 

The Reynolds number is 

 ReD = 
U Dρ

μ
∞  = 

4m

D


π μ

 = 
( )

( ) ( ) ( )4 2 2

4 5kg/s

0.05m 3.67 10 (Ns)/m (kg m)/(Ns )π −×
 = 3.47 × 105 

 ReD Pr = 3.47 × 105 (0.0063) = 2186 

This is within the range of Equation (6.78) 

 DNu  = 5.0 + 0.025(ReD Pr)0.8 = 5.0 + 0.025(2186)0.8 = 16.7 

 ch  = DNu
k

D
 = 16.7

( )76.9 W/(m K)

0.05m
 = 2.57 × 104 W/(m2 K) 

Solving Equation (6.36) for the length 

 L = 
p

c

mc

h D


π

ln out

in

s b,

s b,

T T

T T

− 
 − 

 = 
( ) ( )

( ) ( ) ( )4 2

5kg/ s 1322J/(kg K)

2.57 10 W/(m K) 0.05m J/(Ws)π×
ln

620K – 600K

620K – 500K
 
  

= 2.93 m 

Note that L/D = 2.93 m/0.05 m = 58.6 > 30. Therefore, use of Equation (6.78) is valid. 
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PROBLEM 6.35 

A 2.54-cm-OD, 1.9-cm-ID steel pipe carries dry air at a velocity of 7.6 m/s and a 
temperature of –7°C. Ambient air is at 21°C and has a dew point of 10°C. How much 
insulation with a conductivity of 0.18 W/(m K) is needed to prevent condensation on the 
exterior of the insulation if h = 2.4 W/(m2 K) on the outside? 

GIVEN 

• Dry air flowing through an insulated steel pipe 
• Pipe diameters  Inside (Di) = 1.9 cm = 0.019 m 
  Outside (Do) = 2.54 cm = 0.0254 m 
• Air velocity (V) = 7.6 m/s 
• Air temperature (Ta) = –7°C 
• Ambient temperature (T∞) = 21°C 
• Ambient dew point (Tdp) = 10°C 
• Thermal conductivity of insulation (kI) = 0.18 W/(m K) 

• Heat transfer coefficient on exterior ( )ch ∞  = 2.4 W/(m2 K) 

FIND 

• Thickness of insulation (t) required to prevent codensation 

ASSUMPTIONS 

• Steady state 
• Flow is fully developed 
• Pipe surface temperature can be considered uniform and constant 

• Radiation heat transfer to the insulation is negligible or included in ch ∞  

• Pipe is 1% carbon steel 

SKETCH 

Steel Pipe :
D
D

i

o

= 1.9 cm
= 2.54 cm

Air
= – 7°C

= 7.6 m/s
T
V

a

Insulation
T T> = 10°Cdp

Tp = 21°C 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at –7°C by extrapolation 
  Thermal conductivity (k) = 0.0232 W/(m K) 

  Kinematic viscosity (ν) = 13.3 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

From Appendix 2, Table 10, the thermal conductivity of 1% carbon steel (ks) = 52 W/(m K) 

SOLUTION 

Interior heat transfer coefficient ( )cah  

The Reynolds number for the air flow is 

 ReD = iVD

ν
 = 

( ) ( )
( )6 2

7.6m/s 0.019 m

13.3 10 m /s−×
 = 10,860 (Turbulent) 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
570

Applying Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 DNu  = 0.023 (10,860)0.8 (0.71)0.4 = 33.95 

 ch  = DNu
i

k

D
 = 33.95

( )0.0232 W/(m K)

0.019 m
 = 41.45 W/(m2 K) 

Thermal circuit 

Ta

Rca

T•

Rks RkI Rc•

TI

 

where 

 Rca = 
1

ca ih A
 = 

1

ca ih D Lπ
 = ( )2

1

41.45W/(m K) (0.019 m)Lπ
 = 

1
0.404

L
 
    (m K)/W 

 Rks = 

ln

2

o

i

s

D

D

Lkπ

 
  

 = 
( )

2.54
ln

1.9
2 52 W/(m K)Lπ

 
 

 = 
1

0.00089
L

 
    (m K)/W 

 Rkl = 

ln

2

I

o

I

D
D

Lkπ

 
  

 = 
( )

ln

2 0.18W/(m K)

I

o

D
D

Lπ

 
  

 = 

ln

0.884

I

o

D
D

L

   
   

 
 
  

 (m K)/W 

 Rc∞ = 
1

c Ih A∞
 = 

1

c Ih D Lπ∞
 = ( )2

1

2.4 W/(m K) ID Lπ
 = 

1
0.1326

ID L

 
  

 (m2 K)/W 

The heat transfer from T∞ to TI and from TI to Ta will be equated 

 I

c

T T

R
∞

∞

−
 = I a

kI ks ca

T T

R R R

−
+ +

 

 
( )

20.1326(m K)/W
I ID T T∞ −

 = 
20.00089 0.884ln 0.404) (m K)/W

I a

I

o

T T

D
D

−
  + +    

 

  DI 6.671/m ln  + 3.051/m
(0.0254 m)

ID  
    

= I a

I

T T

T T∞

−
−

 = 
10 C 7 C

21 C 10 C

° + °
° − °

 = 1.545 

By trial and error: DI = 0.117 m = 11.7 cm 
Therefore, the insulation thickness must be greater than 

 t > 
2

I oD D−
 = 

11.7 cm 2.54 cm

2

−
 = 4.6 cm 
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PROBLEM 6.36 

A double-pipe heat exchanger is used to condense steam at 7370 N/m2. Water at an 
average bulk temperature of 10°C flows at 3.0 m/s through the inner pipe, which is made 
of copper and has a 2.54-cm ID and a 3.05-cm OD.  Steam at its saturation temperature 
flows in the annulus formed between the outer surface of the inner pipe and an outer 
pipe of 5.08-cm-ID. The average heat transfer coefficient of the condensing steam is 
5700 W/(m2 K), and the thermal resistance of a surface scale on the outer surface of the 
copper pipe is 0.000118 (m2 K)/W. (a) Determine the overall heat transfer coefficient 
between the steam and the water based on the outer area of the copper pipe and sketch 
the thermal circuit. (b) Evaluate the temperature at the inner surface of the pipe. 
(c) Estimate the length required to condense 45 gm/s of steam.  (d) Determine the water 
inlet and outlet temperatures.   

GIVEN 

• Double-pipe heat exchanger, steam in annulus, and water in inner pipe.  
• Steam is condensing at a pressure of 7370 N/m2.  
• Average bulk water temperature, Tb = 10°C, and water velocity, V = 3.0 m/s.  
• Copper inner pipe  Inside diameter, Dp,i = 0.0254 m 
  Outside diameter, Dp,o = 0.0305 m.  
• Outer pipe inside diameter, Do = 0.0508 m 

• Heat transfer coefficient of condensing steam, ,c sh = 5700 W/(m2 K) 

• Thermal resistance of scale on outside of copper pipe, (ARk,s) = 0.000118 (m2 K)/W 

FIND  

(a) Overall heat transfer coefficient, Uo.  
(b) Temperature of inner surface of the pipe, Twi.  
(c) The length, L, required to condense 0.45 kg/s of steam.  
(d) Water inlet and outlet temperatures, Tw,in and Tw,out.  
ASSUMPTIONS  

• Steady-state.  
• Constant steam temperature during condensation.  
• The flow is fully developed, and copper tube is made of pure copper.  

SKETCH  

Do = 5.08 cm

Steam
= 7370 Pap

Water
= 10°C

= 3 m/s
T
V

b

Copper Pipe
= 2.54 cm, = 3.05 cmD Dpi po  

PROPERTIES AND CONSTANTS  

From Appendix 2, Table 13, for steam at 7370 N/m2, the saturation temperature Ts = 40°C, and the 
heat of vaporization, hfg = 2406 kJ/kg.  

From Appendix 2, Table 12, for copper at ~ 40°C (~ steam temperature) the thermal conductivity 
kc = 398 W/(m K).  
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From Appendix 2, Table 13, for water at average bulk temperature of 10°C  

  Density, ρ = 999.7 kg/m3  
  Thermal conductivity, k = 0.577 W/(m K)  
  Absolute viscosity, μb = 1.296 × 10-3 (Ns)/m2  
  Prandtl number, Pr = 9.5  
  Specific heat, cp = 4195 J/(kg K)  

SOLUTION  

The Reynolds number for water flow inside the pipe is  

 ReD = , 999.7 3.0 0.0254

0.001296
p i

b

VDρ
μ

× ×=  = 58,779  turbulent flow  

Using the simpler Dittus-Boelter correlation for turbulent pipe flow, Equation (6.60), the average 
Nusselt number and hence the heat transfer coefficient for water flow can be calculated as  

  ( ) ( )0.8 0.40.8 0.4Nu 0.023Re Pr 0.023 58,779 9.5 370D D= = =  

  ,
,

0.577
Nu 370 8405

0.0254c w D
p i

k
h

D
 = = =  W/(m2 K)  

The thermal circuit for heat flow from the steam to the water can be sketched as follows  

Ts

Rcs

Tb

Rks Rkc Rcw

TwiTwo

 

Here, considering the pipe length to by L, each of the four resistances can be calculated (see Chapter 
1, Section 1.6.3, and Chapter 2, Section 2.3.2, for respective definitions) as follows  

  ,
, ,

1 1 0.00183

5700 0.0305c s
c s p o

R
h D L L Lπ π

 = = =   × × ×
 (m K)/W 

  ,
,

,

0.000118 0.00123

0.0305
k s

k s
p o

AR
R

D L L Lπ π
 = = =   × ×

 (m K)/W 

  

,

,
,

0.0305ln ln
0.0000730.0254

2 2 398

p o

p i
k c

c

D

D
R

k L L Lπ π

         = = =   × ×
 (m K)/W 

  ,
, ,

1 1 0.00149

8405 0.0254c w
c w p i

R
h D L L Lπ π

 = = =   × × ×
 (m K)/W 

(a) The overall heat transfer coefficient based on the outer area of the copper pipe is  

  ( ), , , , ,

1 1
o

o total p o c s k s k c c w

U
A R D L R R R Rπ

= =
+ + +

 

 ∴  
( ) ( )

1

0.0305 0.00183 0.00123 0.000073 0.00149oU
π

=
+ + +

= 2257 W/(m2 K)  
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(b) The temperature of the inner surface of the pipe can be calculated by equating the rate of heat 
transfer between steam and water to the rate of convection to the water 

  ( ) ( ) ( ) ( ), , ,o p o s b c w p i wi bq U D L T T h D L T Tπ π= − = −  

 ∴  
( ) ( ),

, ,

2257 0.0305 40 10
10

8405 0.0254
o p o s b

wi b
c w p i

U D T T
T T

h D

− × −= + = +
×

 = 19.7°C  

(c) The length L can now be determined from the rate of heat transfer needed to condense 0.45 kg/s 
of steam as follows  

( ) ( ),fg o p o s bq mh U D L T Tπ= = −  

 ∴  
( ) ( ),

0.45 2406 1000

2257 0.0305 40 10
fg

o p o s b

mh
L

U D T Tπ π
× ×= =

− × × −


 = 167 m 

(d) Recognizing that with steam condensation on the outside of the copper pipe its surface  temperature 
would be nearly constant and uniform, and hence the inlet and outlet temperatures for water flow 
can be calculated from Equation (6.36) as follows  

  , .,

, ,

exp c w p iwi w out

w i w in w p

h D LT T

T T m c

π −
= − −  

 

 and , ,
, ,2

2
w in w out

b w in b w out

T T
T T T T

+
=  = −  

Thus, if the water mass flow rate, wm  is known then both Tw,in and Tw,out can be calculated.   

PROBLEM 6.37 

Assume that the inner cylinder in Problem 6.31 is a heat source consisting of an 
aluminum-clad rod of uranium, 5-cm-OD and 2 m long. Estimate the heat flux that will 
raise the temperature of the bismuth 40°C and the maximum center and surface 
temperatures necessary to transfer heat at this rate. 

From Problem 6.31: Determine the heat transfer coefficient for liquid bismuth flowing 
through an annulus (5-cm-ID, 6.1-cm-OD) at a velocity of 4.5 m/s. The bismuth is at 
316°C. It may be assumed that heat losses from the outer surface are negligible. 

GIVEN 

• Liquid bismuth flowing through an annulus 
• Annulus inside diameter (Di) = 5 cm = 0.05 m 
• Annulus outside diameter (Do) = 6.1 cm = 0.061 m 
• Bismuth velocity (V) = 4.5 m/s 
• Bismuth temperature (Tb) = 316°C 
• Inner cylinder is an aluminum clad uranium heat source 
• Cylinder length (L) = 2 m 

• From Problem 6.31: ch  = 26,800 W/(m2 K) 

FIND 

(a) The heat flux (QG/At) necessary to raise the bismuth temperature 40°C, and 
(b) The maximum center (Tu,o) and surface (Tu,ro) temperatures of the uranium 
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ASSUMPTIONS 

• Steady state 
• The Bismuth temperature given in Problem 6.31 is the bulk Bismuth temperature 
• Thermal resistance of the aluminum is negligible 
• Thickness of the aluminum is negligible 

SKETCH 

Uranium

L = 2 m

Bismuth

Tb,in = 316°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, for uranium 
  Thermal conductivity (ku) = 36.4 W/(m K) at 427°C 

From Appendix 2, Table 24, for Bismuth at 316°C 
  Specific heat (cb) = 144.5 J/(kg K) 

  Density (ρ) = 10,011 kg/m3 

SOLUTION 

(a) The rate of heat transfer required to raise the Bismuth by 40°C is 

 q = m cbΔTb = ρ VAc cb ΔTb = ρ V
4

π
(Do

2 – Di
2) cb ΔTb 

 q = 10,011 kg/m3 ( )4.5m/s
4

π
[(0.061 m)2 – (0.05 m)2] ( )144.5 J/(kg K) (40°C) ( )(Ws)/J   

  = 2.50 × 105 W 

Therefore, the average heat flux is 

 G

t

Q

A


 = 

t

q

A
 = 

i

q

D Lπ
 = 

( ) ( )

52.50 10 W

0.05 m 2 mπ
×

 = 7.95 × 105 W/m2 

The temperature difference between the uranium and bismuth (ΔTub) required to transfer this heat can 
be calculated from 

 
t

q

A
 = ch ΔTub   ΔTub = 

t c

q

A h
 = 

( )
( )

5 2

2

7.95 10 W/m

26,500W/(m K)

×
 = 29.7 K 

The maximum uranium surface temperature will occur at the outlet where the bismuth temperature is 
Tb,max = 316°C + 0.5(ΔTb) = 336°C 

 Tu,ro,max = Tb,max + ΔTub = 336°C + 29.7 K ≈ 366°C 

The rate of internal heat generation per unit volume is 

 Gq  = 
Volume

GQ
 = 

2

4 i

q

D L
π  = 

( ) ( )

5

2

2.50 10 W

0.05m 2m
4
π

×
 = 6.37 × 107 W/m3 
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The maximum temperature at the center of the uranium is given by Equation (2.51) 

 Tu,o,max = Tu,ro,max + 
2

4
G o

u

q r

k


 = 366°C + 

( ) ( )
( )

27 36.37 10 W/m 0.05m/2

4 36.4W/(m K)

×
 = 639°C 

At the inlet 

 Tu,ro = (Tb – 0.5 ΔTb) + ΔTub + 
2

4
G o

u

q r

k


 

 Tu,ro = [316°C – 0.5(40°C)] + 29.7°C + 
( ) ( )

( )

27 36.37 10 W/m 0.05m/2

4 36.4W/(m K)

×
 = 599°C 

Therefore, the average uranium temperature is approximately 

 Tu,ave = 

366 639 329 599

2 2
2

+ + +  
 = 483°C 

Repeating the calculation using the thermal conductivity of uranium evaluated at this temperature 
yields the following result 

  Tu,ave = 483°C 

  ku = 37.7 W/(m K) 

  Tu,o,max = 630°C 

  Tu,ro (inlet) = 590°C 

  Tu,ave = 478°C (Convergence) 

PROBLEM 6.38 

Evaluate the rate of heat loss per meter from pressurized water flowing at 200°C 
through a 10-cm-ID pipe at a velocity of 3 m/s. The pipe is covered with a 5-cm-thick 
layer of 85% magnesia wool which has an emissivity of 0.5. Heat is transferred to the 
surroundings at 20°C by natural convection and radiation. Draw the thermal circuit and 
state all assumptions. 

GIVEN 

• Pressurized water flowing through an insulated pipe 
• Water temperature (Tw) = 200°C = 493 K 
• Pipe inside diameter (Di) = 10 cm = 0.1 m 
• Water velocity (V) = 3 m/s 
• Magnesia wool insulation thickness (t) = 5 cm = 0.05 m 
• Emissivity of the wool insulation (ε) = 0.5 
• Temperature of the surroundings (T∞) = 20°C = 293 K 

FIND 

• The rate of heat loss per meter (q/L) 

ASSUMPTIONS 

• Steady state 
• Pipe surface temperature can be considered constant and uniform 
• Surroundings behave as a black body 
• Pipe is horizontal 
• Thermal resistance of the pipe is negligible 
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• Ambient air is still 
• Pipe thickness is negligible 
• Fully developed flow 

SKETCH 

Insulation t = 5 cm

Di = 10 cm
Water
= 200° C
= 3 m/s

T
V
s

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11, the thermal conductivity of 85% magnesia (kI) = 0.059 W/(m K) at 20°C. 
From Appendix 2, Table 13, for water at 200°C 

 Thermal conductivity (kw) = 0.665 W/(m K) 
 Kinematic viscosity (νw) = 0.160 × 10–6 m2/s 
 Prandtl number (Prw) = 0.95 

From Appendix 1, Table 5, the Stephan Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4). 

SOLUTION 

Heat transfer coefficient on the water side: 
The Reynolds number of the water flow is 

 ReD = 
w

V D

ν
 = ( )6 2

(3m/s) (0.1m)

0.16 10 m /s−×
 = 1.875 × 106 (Turbulent) 

Applying Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.3 for cooling 

 DNu  = 0.023 (1.875 × 106)0.8 (0.95)0.3 = 2363 

 cwh  = DNu w

i

k

D
 = 2363 

( )0.665W/(m K)

0.1 m
 = 15,713 W/(m2 K) 

Heat transfer coefficient on the air side: 
The natural convection heat transfer coefficient on the outside of the insulation is a function of the 
exterior temperature of the insulation (TI). For a first iteration, let TI = T∞ + 20° = 40°C. Evaluating 
the air properties from Appendix 2, Table 27, at the film temperature of 30°C 

 Thermal expansion coefficient (β) = 0.0033 1/K 
 Thermal conductivity (ka) = 0.0258 W/(m K) 
 Kinematic viscosity (νa) = 16.7 × 10–6 m2/s 
 Prandtl number (Pra) = 0.71 

The Grashof number is 

 GrD = 
3

2

( )I I

a

g T T Dβ
ν

∞−
 = 

( ) ( )
( )

2 3

6 2

9.8m/s 0.00331/K (20°C)(0.2 m)

16.7 10 m /s−×
 = 1.855 × 107 
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Applying Equation (5.20) 

 DNu  = 0.53 
1

4( )DGr Pr  = 0.53 
1

7 41.855  10  (0.71) ×   = 31.93 

 cah  = a
D

I

k
Nu

D
 = 31.93 

( )0.0258W/(m K)

0.2 m
 = 4.12 W/(m2 K) 

The thermal circuit for this problem is shown below 

Tw

Rcw

T•

Rkp RKI
Rc•

Rr

TI

 

where 

 Rcw = 
1

cw wh A
 = 

1

cw wh D Lπ
 = ( )2

1

15,713W/(m K) (0.1m)Lπ
 = 

1
0.000203

L
 
    (m K)/W 

 Rkp = Thermal résistance of the pipe wall ≈ 0 

 RkI = 

ln

2

I

i

I

D
D

L kπ

 
  

 = 
( )

0.2
ln

0.1
2 0.059 W/(m K)Lπ

 
  

 = 
1

1.870
L

 
   (m K)/W  From Equation (2.39) 

 Rr = Radiative resistance 

 Rcw = Natural convective resistance 

The insulation temperature (TI) can be determined by equating the heat transfer between Tw and TI to 
that from TI to T∞ 

 w I

cw kI

T T

R R

−
−

 = qca + qra = AI [ cah (TI – T∞) + ε σ (TI
4 – T∞

4)] 

  

( )

473 K

1
(0.000203+1.87) (m K)/W

IT

L

−
 
  

 = π (0.2 m) L 

  ( ) ( )2 8 2 4 4 44.12 W/(m K) ( 293K) 0.5 5.67 10 W/(m K ) [ (293K) ]I IT T− − + × −   

Checking the units then eliminating them for clarity 

 1.79 × 10–8 TI
4 + 3.124 TI – 1142.7 = 0 

By trial and error: TI = 312 K = 39°C 
Further iterations are not required. The rate of heat loss can be calculated from 

 q = w I

cw kI

T T

R R

−
−

 = 

( )

473K 312 K

1
1.87 (m K)/W

L

−
 
  

 = 86.1 W/m 

COMMENTS 

Note that the convective resistance in the turbulent water is negligible compared to that of the 
insulation. 
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PROBLEM 6.39 

In a pipe-within-a-pipe heat exchanger, water is flowing in the annulus and an aniline-
alcohol solution having the properties listed in Problem 6.20 is flowing in the central 
pipe. The inner pipe is 1.3 cm ID, 1.6 cm OD, and the ID of the outer pipe is 1.9 cm. For 
a water bulk temperature of 27°C and an aniline bulk temperature of 60°C, determine 
the overall heat transfer coefficient based on the outer diameter of the central pipe and 
the frictional pressure drop per unit length of the water and the aniline for the following 
volumetric flow rates, (a) water rate 0.06 litres/sec, aniline rate 0.06 litres/sec, (b) water 
rate 0.6 litres/sec, aniline rate 0.06 litres/sec, (c) water rate 0.06 litres/sec, aniline rate  
0.6 litres/sec, and (d) water rate 0.6 litres/sec, aniline rate 0.6 litres/sec (L/D = 400). 

Physical properties of the aniline solution 

Temperature Viscosity Thermal Specific Specific Heat 
 (°C) (kg/ms) Conductivity Gravity kJ/(kg K) 
   (W/(m K)) 
 20 0.0051 0.173 1.03 2.09 
 60 0.0014 0.169 0.98 2.22 
 100 0.0006 0.164  2.34 

GIVEN 

• Pipe-within-a-pipe heat exchanger with water in the annulus and aniline-alcohol solution in the 
inner pipe 

• Solution properties listed above 
• Pipe diameters  Inner pipe Dii = 1.3 cm 
   Di = 1.6 cm 
  Inside of outer pipe Do = 1.9 cm 
• Bulk temperatures  Water (Tw) = 27°C 
  Aniline (Ta) = 60°C 
• L/D = 400 

FIND 

• The overall heat transfer coefficient (U) based on Di and the pressure drop (Δ p) for the following 
volumetric flow rates ( V ) 

 Case (a) (b) (c) (d) 

Water flow rate (L/s) 0.06 0.6 0.06 0.6 
Aniline flow rate (L/s) 0.06 0.06 0.6 0.6 

ASSUMPTIONS 

• Steady state 
• Thermal resistance of the pipe is negligible 
• Nusselt number can be estimated from correlations for constant and uniform surface temperature 
• The effect of viscosity variation is negligible 
• The tubes are smooth 
• Fully developed flow (L/D = 400) 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 27°C 

 Density (ρ) = 999 kg/m3 
 Thermal conductivity (kw) = 0.61 W/(m K) 
 Kinematic viscosity (νw) = 8.41 × 10–7 m2/s 
 Prandtl number (Prw) = 5.87 
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SOLUTION 

Water side heat transfer coefficient: 
The Reynolds number on the water side is 

 ReD = ii

w

V D

ν
 = ii

c w

V D

A ν


 = 
4

ii w

V

Dπ ν


 

For V  = 1 gal/min 

 ReD = 
–3 3

–2 –7 2

4 (0.06 10 m /s)

(1.3 10 m)(8.41 10 m /s)π
× ×

× ×
 = 6990 (Turbulent) 

Applying Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 DNu  = 0.023 (6990)0.8 (5.87)0.4 = 55.56 

 ,1cwh  = DNu
ii

k

D
 = 55.56 

–2

0.61W/(m K)

(1.3 10 m)×
 = 2607 W/(m2 K) 

For V = 0.6 m/s, Re  0.70 × 105 (Turbulent) 

 DNu  = 0.023 (0.70 × 105)0.8 (5.87)0.4 = 351 

 ,10cwh  = 351 
–2

0.61W/(m K)

(1.3 10 m)×
 = 16.47 kW/(m2 K) 

Aniline side heat transfer coefficient: 
The hydraulic diameter of the annulus, from Equation (6.3) is 

 DH = Do – Di = 1.9 cm – 1.6 cm = 0.3 cm = 3 × 10–3 m 

From the given properties; for aniline at 60°C 

 Density, ρ = ρH2O(s.g.) = 998 kg/m3 (0.98) = 978 kg/m3 

 Kinematic viscosity, νa = 
μ
ρ

 = 
3

0.0014kg/ms

978kg/m
 = 1.431 × 10–5 m2/s 

 Prandtl number, Pr = 
c

k

μ
 = 

(2.22kJ/kg K)(0.0014kg/ms)

(0.169 W/(m K))
 = 18.4 

for (V ) = 0.06 L/s 

 
HDRe  = H H

a c a

V D V D

Aν ν
=


 = 
2 2

4

( )
H

o i a

V D

D Dπ ν−


 

 
HDRe  = 

–3 3 –3

2 2 –4 2 –5 2

4(0.06 10 m /s)(3 10 m)

(1.9 – 1.6 ) 10 m 1.431 10 mπ
× ×

× × ×
 = 1526 (Laminar) 

From Table (6.2): For Di/Do = 1.6/1.9 = 0.84: DNu  ≈ 5.15 

 ,1cah  = 
HD

H

k
Nu

D
 = 5.15 

–3

(0.169 W/(m K))

3 10 m×
 = 290 W/(m2 K) 

For V  = 0.6 L/s    Re = 15260 (Turbulent) 
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Applying Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.3 for cooling 

 DNu  = 0.023 (15260)0.8 (18.4)0.3 = 122.5 

 ,10cah  = 122.5
–3

0.169 W/(m K)

3 10 m×
 = 6800 W/(m2 K) = 6.8 kW/(m2 K) 

Overall heat transfer coefficient: 
The thermal circuit for the problem is shown below 

Tw

Rcw

Ta

Rkp = 0 Rca  

where 

 Rcw = 
1

cw wh A
 = 

1

cw iih D Lπ
 

  Rkp ≈ 0 

 Rca = 
1

ca ah A
 = 

1

ca ih D Lπ
 

The overall heat transfer coefficient is 

 U Aref = 
1

cw caR R+
 where Aref = π Di L 

 ∴ U = 

,1 ,1

1

1 1
i

cw ii ca i

D
h D h D

 
+  

 

For case (a) 

 U = 
–1

–2
2 –2 2 –2

1 1
1.6 10 m

2607 W/(m K)(1.3 10 m) 290 W/(m K)(1.6 10 m)

   
× +   × × 

 

  = 255 W/(m2 K) 

Substituting the appropriate convective heat transfer coefficients into the above equations yields the 
following overall heat transfer coefficient for the remaining cases 

 (b) U = 277 W/(m2 K) 

 (c) U = 1623 W/(m2 K) 

 (d) U = 4487 W/(m2 K) 

Friction factors and pressure drop: 
For the turbulent cases, the friction factor is given by Equation (6.59) 

 f = 0.184 Rep
– 0.2 

For water with V  = 0.06 L/s: fw,1 = 0.184 (6990)–0.2 = 0.0313 

For water with V  = 0.6 L/s: fw,10 = 0.184 (69900)–0.2 = 0.0197 

For the aniline solution with V  = 0.6 L/s: fa,10 = 0.184 (15260)–0.2 = 0.0268 
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For the aniline solution with V  = 0.06 L/s, the flow is laminar and the friction factor is given by 
Table (6.2): f ReDH = 95.7 → fa,1 = 0.0594 

The pressure drop is given by Equation (6.13) 

 Δp = f 
2

2 c

L V

D g

ρ
 = 

2

2
=

2 c

f V L

DA

ρ
 

For the water, Ac = (π/4)Dii
2
 

For the aniline solution, Ac = (π/4)(Do
2 – Di

2) 

For the water with V  = 0.06 L/s 

 Δp = 
3 –3 3 2

2
–2 2

0.0313(400) (999kg/m )(0.06 10 m /s)

2 (1.3 10 m)
4
π

×

 × × 

 = 1.28 kPa 

Similarly for the other cases 

For water, V  = 10 gpm: Δp = 81.3 kPa 

For aniline solution V  = 0.6 L/s: Δp = 6.17 kPa 

For aniline solution V  = 0.06 L/s: Δp = 280 kPa 

Tabulating all the results 
 Case (a) (b) (c) (d) 

Water flow rate (L/s) 0.06 0.6 0.06 0.6 

Aniline flow rate (L/s) 0.06 0.06 0.6 0.6 

Overall heat transfer coef. 255 277 1623 4487 
W/(m2 K) 
Water pressure drop (kPa) 1.28 81.3 1.28 81.3 

Aniline pressure drop (kPa) 6.17 280 6.17 280 

COMMENTS 

Note that the flow rate of the aniline solution has a greater effect on the overall heat transfer 
coefficient than that of the water because the aniline flow changes from laminar to turbulent, whereas 
the water flow is turbulent at both flow rates. 

PROBLEM 6.40 

A plastic tube of 7.6-cm ID and 1.27 cm wall thickness having a thermal conductivity of 
1.7 W/(m K), a density of 2400 kg/m3, and a specific heat of 1675 J/(kg K) is cooled from 
an initial temperature of 77°C by passing air at 20°C inside and outside the tube parallel 
to its axis. The velocities of the two air streams are such that the coefficients of heat 
transfer are the same on the interior and exterior surfaces. Measurements show that at 
the end of 50 min, the temperature difference between the tube surfaces and the air is 10 
percent of the initial temperature difference. It is proposed to cool a tube of a similar 
material having an inside diameter of 15 cm and a wall thickness of 2.5 cm from the 
same initial temperature, also using air at 20°C and feeding to the inside of the tube the 
same number of kilograms of air per hour that was used in the first experiment. The air-
flow rate over the exterior surfaces will be adjusted to give the same heat transfer 
coefficient on the outside as on the inside of the tube. It may be assumed that the air-
flow rate is so high that the temperature rise along the axis of the tube may be neglected. 
Using the experience gained initially with the 4.5-cm tube, estimate how long it will take 
to cool the surface of the larger tube to 27°C under the conditions described. Indicate all 
assumptions and approximations in your solution. 
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GIVEN 

• Air flow inside and outside a plastic tube 

Case 1 

• Tube 1 inside diameter (D1i) = 7.6 cm = 0.076 m 
• Tube 1 wall thickness (S1) = 1.27 cm = 0.0127 m 
• Plastic properties  Thermal conductivity (kp) = 1.7 W/(m K) 
  Density (ρ) = 2400 kg/m3 

  Specific heat (c) = 1675 J/(kg K) 
• Tube initial temperature (Tti) = 77°C 
• Air temperature (Ta) = 20°C 
• After 10 min: (Tt – Ta) = 10% of initial (Tt – Ta) 

Case 2 

• Tube 2 inside diameter (D2i) = 15 cm = 0.15 m 
• Tube 2 wall thickness (S2) = 2.5 cm = 0.025 m 
• Same initial temperature and air temperature as Case 1 
• Same interior air flow rate as Case 1 
• Air velocities are such that heat transfer coefficients inside and outside are equal 

FIND 

• Time for Tt to reach 27°C in Case 2 

ASSUMPTIONS 

• Temperature rise along the tube is negligible 
• Tube may be treated as a lumped capacitance (This will be checked) 

SKETCH 

Di

Air

= 21°C
V

T
o

a
t Tt = 77°C Initially

Air

= 21°C
V

T
i

a

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 20°C 

 Density (ρ) = 1.164 kg/m3 
 Thermal conductivity (k) = 0.0251 W/(m K) 
 Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 
 Prandtl number (Pr) = 0.71 
 Absolute viscosity (μ) = 18.24 × 10–6 (Ns)/m2 

SOLUTION 

Case 1 

Assuming the tube can be treated as a lumped capacitance: Equation (2.84) can be applied 

 ln 
tf a

ti a

T T

T T

− 
  −

 = – 
c sh A

c Vρ
t = – 

2 2

( )

( )
4

c i o

o i

h D D L

c D D L

π
πρ

+
 −  

 t 

where Do = Di + 2s = 0.076 m + 2(0.0127 m) = 0.1014 m 
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Solving for the heat transfer coefficient 

 ch  = – 
2 2( )

4 ( )
o i

i o

c D D

D D t

ρ −
+

 ln 
tf a

ti a

T T

T T

− 
  −

 

 ch  = – 
( ) ( )

( ) ( )
3 2 21675J/(kg K) 2400kg/m [(0.1014 m) (0.076m) ]

4(0.076m 0.1014 m)(50min) 60s/min J/(Ws)

−
+

 ln (0.10) = 19.6 W/(m2 K) 

Checking the lumped capacity assumption, the Biot number should be based on half of the tube wall 
thickness since convection occurs equally on the inside and outside of the tube 

 Bi = 
2

c

s

h s

k
 =

( )
( )

219.6W/(m K) (0.0127 m)

2 1.7 W/(m K)
 = 0.07 < 0.1 

Therefore, the lumped capacity assumption is valid. Assuming the air flow is turbulent and applying 
Equation (6.63) to determine the Reynolds number for the interior air flow 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

 ∴ ReD = 
1.25

0.40.023Pr K
c ih D 

 
 

 = 
( )

( )

1.252

0.4

19.6W/(m K) (0.076m)

0.023(0.71) 0.0251W/(m K)

 
 
 

 = 21,825 (Turbulent) 

Therefore, the air velocity is 

 V = D

i

Re

D

ν
 = 

( )6 221,825 15.7 10 m /s

0.076m

−×
 = 4.51 m/s 

The mass flow rate is 

 m  = V ρ Ac = V ρ
4

π
Di

2 = 4.51 m/s ( )31.1641 kg/m
4

π
(0.076 m)2 = 0.024 kg/s 

Case 2 

Applying the mass flow rate to Case 2 

 ReD = 
VD ρ

μ
 = 

4m

Dπ μ


= 
( )

( ) ( )6 2 2

4 0.024 kg/s

(0.15m) 18.24 10 (Ns)/m kg m/(Ns )π −×
 = 11,169(Turbulent) 

Applying Equation (6.63) 

 DNu  = 0.023 (11,169)0.8 (0.71)0.4 = 34.72 

 ch  = DNu
k

D
 = 34.72 

( )0.0251 W/ (m K)

0.15m
 = 5.81 W/(m2 K) 

The Biot number is 

 Bi = 
2

c

s

h s

k
 = 

( )
( )

25.81W/(m K) (0.025m)

2 1.7 W/(m K)
 = 0.04 < 0.1 

Therefore, the internal thermal resistance can be neglected and Equation (2.84) can be applied. 
Solving for the time 

 t = – 
2 2( )

4( )
o i

i o c

c D D

D D h

ρ −
+

ln
tf a

ti a

T T

T T

− 
  −

 = – 
( )

4
o i

c

c D D

h

ρ −
ln

tf a

ti a

T T

T T

− 
  −

 = – 
(2 )

4 c

c s

h

ρ
 ln

tf a

ti a

T T

T T

− 
  −
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 t = – 
( ) ( )

( ) ( )

3

2

1675J/(kg K) 2400kg/m 2(0.025m)

4 5.81W/(m K) J/(Ws)
ln 

27°C 20°C

77°C 20°C

− 
  −

 

 t = 18,137 s = 302 min ≈ 5 hours 

 

PROBLEM 6.41 

Exhaust gases having properties similar to dry air enter an exhaust stack at 800 K. The 
stack is made of steel and is 8 m tall and 0.5 m ID. The gas flow rate is 0.5 kg/s and the 
ambient temperature is 280 K. The outside of the stack has an emissivity of 0.9. If heat 
loss from the outside is by radiation and natural convection, calculate the gas outlet 
temperature. 

GIVEN 

• Exhaust gas flow through a steel stack 
• Exhaust gas has the properties of dry air 
• Entering exhaust temperature (Tb,in) = 800 K 
• Stack height (L) = 8 m 
• Stack diameter (D) = 0.5 m 
• Gas flow rate ( m )= 0.5 kg/s 
• Ambient temperature (T∞) = 280 K 
• Stack emissivity (ε) = 0.9 

FIND 

• The outlet gas temperature (Tb,out) 

ASSUMPTIONS 

• Steady state 
• The surrounding behave as a black body enclosure at the ambient temperature 
• Thermal resistance of the duct is negligible 
• Duct thickness is negligible 

SKETCH 
Tb,out = ?

L
=

8
m

D
=

0
.5

m

T• = 280 K

Tb,in = 800 K
Exhaust Gas

m = 0.5 kg/s 
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 800 K 

 Density (ρ) = 0.433 kg/m3 
 Thermal conductivity (k) = 0.0552 W/(m K) 
 Kinematic viscosity (ν) = 86.4 × 10–6 (Ns)/m2 
 Prandtl number (Pr) = 0.72 
 Specific heat (c) = 1079 J/(kg K) 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

Interior convection: 
The Reynolds number is 

 ReD =
VD ρ

μ
 = 

4m

Dπ μ


 = 
( )

( ) ( )6 2 2

4 0.5kg/s

(0.5m) 86.4 10 (Ns)/m (kg m)/(Ns )π −×
 = 14,740 

Applying Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.3 for cooling 

 DNu  = 0.023 (14,740)0.8 (0.72)0.3 = 45.0 

 fich  = DNu
k

D
 = 45.0 

( )0.0552 W/(m K)

0.5m
 = 4.97 W/(m2 K) 

For the first iteration, let the duct temperature (Td) equal the average of the exhaust and ambient 
temperatures = 540 K. Then the interior film temperature is 670 K. From Appendix 2, Table 27, for 
dry air at 670 K 

 Thermal expansion coefficient (β) = 0.00149 1/K 
 Thermal conductivity (k) = 0.0485 W/(m K) 
 Kinematic viscosity (ν) 64.6 × 10–6 m2/s 
 Prandtl number (Pr) = 0.72 

The Grashof number is 

 GrL = 
3

2

( )I

a

g T T Lβ
ν

∞−
= 

( ) ( )
( )

2 3

26 2

9.8m/s 0.00149(1/K) (800 K 540 K)(8m)

64.6 10 m /s−

−

×
 = 4.66 × 1011 

 
2

Gr

Re
 = 

11

2

4.66 10

(14,740)

×
 = 2143 

Therefore, natural convection cannot be neglected. 
The interior natural convection heat transfer coefficient will be estimated using the vertical plant 
correlation of Equation (5.13) 

 LNu  = 0.13 
1

3( )LGr Pr  = 0.13 
1

11 34.66 10  (0.72) ×   = 903 

 cnih  = LNu
k

L
 = 903 

( )0.0485W/(m K)

8m
 = 5.47 W/(m2 K) 

Combining the natural forced coefficients using Equation (5.49) 

 cih  = ( )
1

3 3 3
cfi cfnh h+  = 

1
3 3 3(4.97) (5.47) +   = 6.59 W/(m2 K) 
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Exterior convection: 
Air properties at the exterior film temperature of 410 K are 

 Thermal expansion coefficient (β) = 0.00247 1/K 
 Thermal conductivity (k) = 0.033 W/(m K) 
 Kinematic viscosity (ν) = 28.0 × 10–6 m2/s 
 Prandtl number (Pr) = 0.71 

 GrL = 
( ) ( )

( )
2 3

6 2

9.8m/s 0.00247(1/K) (540 K 280 K)(8m)

28.0 10 m /s−
−

×
 = 4.11 × 1012 

 LNu  = 0.13 
1

12 34.11 10  (0.71) ×   = 1857 

 coh  = 1857 
( )0.033W/(m K)

8m
 = 7.66 W/(m2 K) 

Duct temperature: 
The rate of convection to the duct interior must equal the sum of convection and radiation from the 
exterior 

 cih At (Tb – Td) = coh At (Td – T∞) + At ε σ (Td
4 – T∞

4) 

 ( )26.59 W/(m K) (800 K – Td) = ( )27.66 W/(m K) (Td – 280 K) + 0.9 ( )8 2 45.67 10 W/(m K )−×   

   [Td
4 – (280 K)4] 

 5.13 × 10–8 Td
4 + 14.25 Td –7730 = 0 

By trial and error: Td = 425 K 
Using the duct temperature to estimate the rate of heat transfer 

 q = cih  π D L (Tb – Td) = ( )26.59 W/(m K)  π (0.5 m) (8 m) (800 K – 425 K) = 3.11 × 104 W 

The temperature rise of the exhaust gas is 

 ΔTb = 
q

mc
 = 

( ) ( ) ( )
43.11 10 W

0.5kg/s 1079J/(kg K) (Ws)/J

×
 = 57.5 K 

 Tb,out = Tb,in – ΔTb = 800 K – 57.5 K = 742 K 

The average bulk temperature is 721 K. This is close enough to the first iteration value that another 
iteration is not necessary. 

PROBLEM 6.42 

A 3.05 m long vertical cylindrical exhaust duct from a commercial laundry has an ID of 
15.2 cm. Exhaust gases having physical properties approximating those of dry air enter 
at 316°C. The duct is insulated with 10.2 cm of rock wool having a thermal conductivity 
of: k = 0.7 + 0.016 T (where T is in °C and k in W/(m K). 

If the gases enter at a velocity of 0.61 m/s, calculate 
 (a) The rate of heat transfer to quiescent ambient air at 15.6 °C. 
 (b) The outlet temperature of the exhaust gas. 

Show your assumptions and approximations. 
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GIVEN 

• Exhaust gases flowing through an insulated long vertical cylindrical duct 
• Exhaust gases have the physical properties of dry air  
• Duct length (L) = 3.05 m 
• Duct inside diameter (D) = 15.2 cm = 0.152 m 
• Entering exhaust temperature (Tb,in) 
• Rock wool insulation thickness (s) = 10.2 cm = 0.102 m 
• Thermal conductivity of insulation (k) = 0.7 + 0.016 T (T is in °C and k in W/(m K)) 
• Exhaust velocity (V) = 0.61 m/s 
• Gas inlet temperature (Tb,in) = 316°C 

FIND 

(a) Rate of heat transfer to ambient air at (T∞) = 15.6°C 
(b) Outlet exhaust gas temperature (Tb,out) 

ASSUMPTIONS 

• Steady state 
• Thermal resistance of the duct wall is negligible 
• Heat transfer by radiation is negligible 
• Natural convection on the inside of the duct can be approximated by natural convection from a 

vertical plate 
• The interior heat transfer coefficient can be accurately estimated using uniform surface 

temperature correlations 
• The ambient air is still 

SKETCH 

T• = 15.6°C

Di = 15.2 cm

Exhaust
= 316°C = 0.61 m/sT Vb,in

L = 3.05 m

Insulation, Thickness ( ) = 10.2 cms

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the inlet temperature of 316°C 

 Thermal expansion coefficient (β) = 0.00175 1/K 
 Thermal conductivity (k) = 0.0438 W/(m K) 
 Kinematic viscosity (ν) = 51.7 × 10–6 m2/s 
 Prandtl number (Pr) = 0.71 
 Density (ρ) = 0.582 kg/m3 
 Specific heat (c) = 1049 J/(kg K) 
 Absolute viscosity (μb) = 28.869 × 10–6 Ns/m2 

SOLUTION 

The expression for thermal conductivity is given as 

 k = 0.7 + 0.016 T (T in °C, k in W/(m K)) 
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Interior convection: 
The Reynolds number for the exhaust flow is 

 ReD = 
V D

ν
 = ( )6 2

(0.61m/s) (0.152 m)

51.7 10 m /s−×
 = 1793 (Laminar) 

For the first iteration, let the duct wall temperature (Td) = 300°C and the insulation surface 
temperature (TI) = 20°C. From Appendix, Table 27, the absolute viscosity at Td = 300°C is  
μs = 29.332 × 10–6 (Ns)/m2. Applying Equation (6.39) 

 DNu  = 
0.14

0.66

0.0668
3.66

1 0.045

D
b

s
D

D
Re Pr

L

D
Re Pr

L

μ
μ

  
      +       

+       

 

 DNu  = 
0.14

0.66

0.152
0.0668(1793) (0.71)

28.8693.053.66
29.3320.152

1 0.045 (1793) (0.71)
3.05

  
     +       +      

 = 6.17 

 ,forcedch  = DNu
i

k

D
 = 6.17 

( )0.0438W/(m K)

0.152 m
 = 1.77 W/(m2 K) 

The interior Grashof number based on the duct length is 

 GrL = 
3

,in
2

( )b d

a

g T T Lβ
ν

−
 =

( ) ( )
( )

2 3

26 2

9.8m/s 0.00171(1/K) (316 C 300 C)(3.05m)

51.7 10 m /s−

° − °

×
 = 2.85 × 109 

 
2
L

D

Gr

Re
 = 

9

2

2.85 10

(1793)

×
 = 885 

Therefore, natural convection on the inside of the duct cannot be ignored. The natural convection 
Nusselt number will be estimated with Equation (5.13) 

 LNu  = 0.13 
1

3( )LGr Pr  = 0.13 
1

9 32.85 10 (0.71) ×   = 164.4 

 ,naturalch  = LNu
k

L
 = 164.4 

( )0.0438W/(m K)

3.05m
 = 2.36 W/(m2 K) 

Combining the free and forced convection using Equation (5.49) 

 cih  = ( )
1

3 3 3
ci cnh h+  = 

1
3 3 3(1.77) (2.36) +   = 2.65 W/(m2 K) 

Exterior convection: 
The Grashof number on the exterior of the insulation is 

 GrL = 
3

1
2

( )

a

g T T Lβ
ν

∞−
 

For the film temperature of 17.8°C 

 β = 0.00344 1/K 

 ν = 15.5 × 10–6 m2/s 
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 Pr = 0.71 

 k = 0.0249 W/(m K) 

 GrL = 
( ) ( )

( )
2 3

26 2

9.8m/s 0.00344(1/K) (20 C 15.6 C)(3.05m)

15.5 10 m /s−

° − °

×
 = 1.75 × 1010 

The Nusselt number is given by Equation (5.13) 

 LNu  = 0.13 
1

3( )LGr Pr  = 0.13 
1

10 31.75 10 (0.71) ×   = 301.2 

 coh  = LNu
k

L
 = 301.2 

( )0.0249 W/(m K)

3.05m
 = 2.46 W/(m2 K) 

Conduction through the insulation: 
The rate of heat transfer through the insulation is 

 q = – k A 
dT

dr
 

 
2

o

i

r

r

q dr

L rπ   = 
i

d

T

T
kdT = – (0.7 0.016 )

i

d

T

T
T dt+  

where TI = exterior insulation temperature 
 Td = duct wall temperature = interior insulation temperature 

 
2

q

Lπ
ln o

i

r

r

 
  

 = – 0.7 (TI – Td) – 
0.016

2
 (TI

2 – Td
2) 

 q = 
2

ln o

i

L
r
r

π
 
  

 [0.7 (Td – TI) + 0.008 (Td
2 – TI

2)] = d I

k

T T

R

−
 

 ∴ 1

kR
 = 

2 22
0.7 0.008

ln

d I

o d I

i

T TL
r T T
r

π    −
+  −      

 = 
2

ln o

i

L
r
r

π
 
  

 [0.7 + 0.008 (TD + TI)] 

where ri = Di/2 = (0.0152 m)/2 = 0.076 m 
  ro = ri + s = 0.076 m + 0.102 m = 0.178 m 

 
1

kR
 = 

2 (3.05m)

0.178
ln

0.076

π
 
  

 [0.7 + 0.008 (300°C + 20°)] = 73.4 W/K 

 Rk = 0.0136 K/W 

The thermal circuit for the problem is shown below 

Tb

Rci

T•

Rk Rco

Td TI

 

 Rci = 
1

ci ih A
 = 

1

ci ih D Lπ
 = ( )2

1

2.65W/(m K) (0.152 m)(3.05m)π
 = 0.259 K/W 

 Rco = 
1

co oh D Lπ
 = ( )2

1

2.46W/(m K) [0.152m 2(0.102 m)](3.05m)π +
 = 0.119 K/W 
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The total rate of heat transfer is 

 q = b

ci k co

T T

R R R
∞−

+ +
 = 

316°C 15.6°C

(0.259 0.0136 0.119)K/W

−
+ +

 = 767 W 

Calculating a new duct wall temperature and insulation temperature 

 q = b d

ci

T T

R

−
  Td = Tb – q Rci = 316°C – 767 W ( )0.259 K/W  = 117°C 

 q = I

co

T T

R
∞−

  TI = T∞ + q Rco = 15.6°C + 767 W ( )0.119 K/W  = 107°C 

 ΔTbulk = 
q

mc
 = 

2

4 i

q

D Vc
π ρ

= 

( ) ( ) ( ) ( )2 3

767 W

(0.152m) 0.582kg/m 0.61m/s 1049J/(kg K) (Ws)/J
4
π = 113°C 

The third and fourth iterations are nearly converged. 
Therefore, the rate of heat transfer is about 767 watts. 

The outlet exhaust gas temperature = Tb,in – ΔTb = 316°C – 113°C = 203°C 

PROBLEM 6.43 

A long 1.2 m OD pipeline carrying oil is to be installed in Alaska. To prevent the oil from 
becoming too viscous for pumping, the pipeline is buried 3 m below ground. The oil is 
also heated periodically at pumping stations as shown schematically below 

L

Insulation

Oil 1.2 m Di

Ts

3 m

 

The oil pipe is to be covered with insulation having a thickness t and a thermal 
conductivity of 0.05 W/(m K). It is specified by the engineer installing the pumping 
station that the temperature drop of the oil in a distance of 100 km should not exceed 
5°C when the soil surface temperature Ts = – 40°C. The temperature of the pipe after 
each heating is to be 120°C and the flow rate is 500 kg/s. The properties of the oil being 
pumped are given below 

  Density (ρoil) = 900 kg/m3 

  Thermal conductivity (koil) = 0.14 W/(m K) 

  Kinematic viscosity (νoil) = 8.5 × 10–4 m2/s 

  Specific heat (coil) = 2000 J/(kg K) 

The soil under arctic conditions is dry ( )Table 11, 0.35 W/(m K)sk = . 

Estimate the thickness of insulation necessary to meet the specifications of the pumping 
engineer. 

Calculate the required rate of heat transfer to the oil at each heating point. 

Calculate the pumping power required to move the oil between two adjacent heating 
stations. 
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GIVEN 

• An insulated underground oil pipeline 
• Pipe outside diameter (Dpo) = 1.2 m 
• Depth to centerline (Z) = 3 m 
• Insulation thickness = t 
• Insulation thermal conductivity (ki) = 0.05 W/(m K) 
• For L = 100 km = 100,000 m, Maximum ΔTb = 5°C when ground surface temp. (Ts) = – 40°C 
• Oil temperature after heating (Tb,in) = 120°C 
• Mass flow rate ( m ) = 500 kg/s 
• Fluid properties listed above 
• Soil thermal conductivity (ks) = 0.35 W/(m K) 

FIND 

(a) The thickness of insulation (t) required 
(b) The required rate of heat transfer to the oil at each heating point (qh) 
(c) The pumping power required 

ASSUMPTIONS 

• Constant thermal properties 
• Uniform ground surface temperature  
• Flow is fully developed 
• The thermal resistance of the pipe is negligible 
• The thickness of the pipe is negligible compared to the diameter 

SOLUTION 

The interior heat transfer coefficient can be evaluated from correlations. The Reynolds number is 

 ReD = 
U D

ν
∞  = 

4m

Dπ ν ρ


 = 
( )

( ) ( )3 4 2

4 500kg/s

(1.2 m) 900kg/m 8.5 10 m /sπ −×
 = 693 (Laminar) 

Since the oil bulk temperature is to drop only 5°C, for practical purposes, the pipe is isothermal. 

Therefore, for fully developed flow: DNu  = 3.66 

 ch  = DNu oilk

D
 = 3.66 

( )0.14 W/(m K)

1.2 m
 = 0.427 W/(m2 K) 

(a) A heat balance on an element of the oil yields 

 dq = m cpdTb 

The rate of heat flow from the element is 

 dq = U (Tb – Ts) where U = 
total

1

R
 = 

1

c ki ksR R R+ +
 

where  Rc = interior convective resistance = 
1

ch A
 = 

1

c poh D dxπ
 

 Rki = conductive resistance of the insulation = 

ln

2

i

po

i

D
D

k dxπ

 
  

 

 Rks = conductive resistance of the soil = 
1

sk S
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The shape factor (S) is given in Table 2.2 

 S = 
1

2
2

cosh
i

dx
Z

D

π
−  
  

 

 ∴ Rtotal = 

1 2ln cos
1 1

2 2

i

po i

c po i s

D Z
D D

dx h D k kπ π π

−    
        + +

 
  

 

 Let U′ = 
total

1

dxR
 = 

U

dx
 then dq = U′ (Tb – Ts) dx = 

U

dx
 

 b

b s

dT

T T−
 = 

p

U

mc

′


dx 

Integrating 

 
,out

,in

1b

b

T

bT
b s

dT
T T−  = 

0

L

p

U

m c

′−  
 dx 

 ln ,out

,in

b s

b s

T T

T T

− 
 − 

 = 
p

U L

m c

′−


 

Solving for the overall heat transfer coefficient 

 U′ = 
pm c

L


 ln ,out

,in

b s

b s

T T

T T

− 
 − 

 = – 
( ) ( ) ( )500kg/s 2000J/(kg K) (Ws)/J

100,000m
 ln = 

115°C 40°C

120°C 40°C

+ 
  +

 

   = 0.317 W/(m K) 

 
1

U ′
 = 

1

c poh Dπ
 + 

ln

2

i

po

i

D
D

kπ

 
  

 + 

1 2
cosh

2
i

s

Z
D

kπ

−  
  

 

 
( )

1

0.317 W/(m K)
 = ( )2

1

0.427 W/(m K) (1.2 m)π
 + 

( )

ln
1.2m

2 0.05W/(m K)

iD

π

 
  

 + 
( )

1 2(3m)
cosh

2 0.35m W/(m K)
iD

π

−  
  

 

checking the units then eliminating them for clarity 

 5.571 = 7.01 n
1.2 m

iD 
  

 + cosh–1 
6

iD
 
  

 

by trial and error: Di = 2.06 m 

 t = 
( – )

2
iD D

 = 
[ ](2.06 m) – (1.2 m)

2
 = 0.43 m = 43 cm 

(b) The rate of heating required at each pumping station is 

 q = pmc ΔT = (500 kg/s) ( )2000J/(kgK) (5°C) ( )(Ws)/J  = 5 × 106 W = 5 MW 
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(c) The pumping power P, equals the product of the volumetric flow rate and the pressure drop, or 

 P = pm Δ  

Incorporating Equation (6.13) for the pressure drop and Equation (6.18) for the friction factor 

 P = 
264

2d c

m L U

Re D g

ρ
ρ

 
  


 = 32 
2

2

4

c D

m L m

Dg Re Dρπ
 
  

 
 = 

3

2 2 5

512

c D

L m

g Re Dπ ρ


 

 P = 
( )

( ) ( )
( )

3

2 22 3 5

512 100,000m 500kg/s
(Ws)/(Nm)

(kg m)/(s N) (693) 900kg/m (1.2 m)π
  

= 1.46 × 106 W = 1.46 MW 

PROBLEM 6.44 

Show that for fully developed laminar flow between two flat plates spaced 2a apart, the 
Nusselt number based on the ‘bulk mean’ temperature and the passage spacing is 4.12 if 
the temperature of both walls varies linearly with the distance x, i.e., ∂T/∂x = C. The 
‘bulk mean’ temperature is defined as 

 Tb = 



–

–

( ) ( )

( )

a

a
a

a

u y T y dy

u y dy
 

GIVEN 

• Fully developed laminar flow between two flat plates 
• Spacing = 2a 
• ∂T/∂x = C 
• Bulk mean temperature as defined above 

FIND 

• Show that the Nusselt number based on the bulk mean temperature = 4.12 

ASSUMPTION 

• Steady state 
• Constant and uniform property values 
• Fluid temperature varies linearly with x 

(This corresponds to a constant heat flux boundary) 

SKETCH 

Tw x( )

u = unax

u y( ) T y( )

Fluid

u u y= ( )

T T y= ( )

y = a

y a= –

x

y

CL
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SOLUTION 

The solution will progress as follows 

1. Derive the temperature distribution in the fluid. 
2. Use the temperature distribution to obtain an expression for the bulk mean temperature. 
3. Use the bulk mean temperature to derive the Nusselt number. 

Beginning with the laminar flow energy equation of Equation (4.7b) 

 u 
T

x

∂
∂

 + v 
T

y

∂
∂

 = α 
2

2

T

y

∂
∂

 

v = component of the velocity in the Y direction = 0 

 ∴ u 
T

x

∂
∂

 = α 
2

2

T

y

∂
∂

 

Note that ∂T/∂x = constant by assumption. 
The velocity profile u(y) must be substituted into this equation before the equation can be solved for 
the temperature distribution. The velocity profile can be derived by considering a differential element 
of fluid of width w as shown below 

Umax

P d+ p

y = 0

y dy+

y

dx

P  

A force balance on this element yields 

 2 w y  [p – (p + dp)] = 2 τ w dx = μ u

y

∂
∂

 – μ 
2u u

dy
y y

 ∂ ∂+ ∂ ∂ 
w dx 

Since the flow is fully developed 

 
dp

dx
 = μ 

2

2

d u

dy
 

Integrating with respect to y 

 u = 
21

2

dp y

dxμ
 + C 

This is subject to the following boundary conditions 

 u = umax at y = 0 therefore, C = umax 

 u = 0 at y = + a therefore, umax = – 
2

2

a dp

dxμ
 

Therefore, the velocity distribution is 

 u = umax 

2

1
y

a

  −     
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Substituting this into the energy equation 

 
2

2

T

y

∂
∂

 = 
2

max 1
u T y

x aα
 ∂  −    ∂  

 

 Let z = maxu T

xα
∂
∂

 (a constant) 

 Let z = maxu T

xα
∂
∂

 (a constant) 

Subject to the boundary conditions 

 
T

y

∂
∂

 = 0 at y = 0 (by symmetry) 

 T = Tw at y = + a 

Integrating once 

 
T

y

∂
∂

 = z
3

2

1

3

y
y

a

 
−  

 + C1 

Applying the first boundary condition, C1 = 0 
Integrating again 

 T = z 
4

2
2

1 1

2 12

y
y

a

 
−  

 + C2 

Applying the second boundary condition 

 Tw = z 2 21 1

2 12
a a −   + C2  C2 = Tw – 

5

12
 z a2 

Therefore, the temperature distribution is 

 T(x,y) = Tw(x) – 
5

12
 z a2 + 

2

z
 y2 – 

4

212

z y

a
 

The bulk mean temperature is defined as 

 Tb = –
( ) ( )

( )

a

a
a

a

u y T y dy

u y dy
−




 

Solving the numerator of this expression 

 ( ) ( , )
a

a
u y T x y dy

−  = 
2

max 1
a

a

y
u

a−

  −     
 2 2 4

2

5
( )

12 2 12
w

z z
T x za y y dy

a
 − + −  

 

 ( ) ( , )
a

a
u y T x y dy

−  = umax 
2 3 35

2 ( )
12 3 30w

z z
a T x za a a  − + −   

 

   2 3 32 5
( )

3 12 5 42w
z z

a T x za a a  − − − +    
  

 ( ) ( , )
a

a
u y T x y dy

−  = umax 
2 34 5 13

( )
3 12 105wa T x za za   − +    
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The denominator is 

  max

a

a
u

−
2

1
y

a

  −     
dy = umax 

2
2

3
a a −  

 = 
4

3
umax a 

 ∴ Tb = 

2 34 5 13
( )

3 12 105
4
3

wa T x za za

a

 − + 
 

 Tb – Tw = 
13 3

105 4
 
   za2  – 

5

12
 za2  = – 234

105
za  

The rate of heat transfer is given by 

 
q

A
 = ch (Tb – Tw) = – k y a

T

y =
∂
∂

 

 where y a
T

y =
∂
∂

 = z a – 
3

23

z a

a
 = 

2

3
a z 

 ∴ ch  = 
y a

b w

T
k

y

T T

=
∂−
∂
−

 = 
2

2
3

34
105

k az

za

 −  

−
 = 

210

51 2

k
a 

    

 Nu  = ch L

k
 = 

2ch a

k
 = 

210

51
 = 4.12 

PROBLEM 6.45 

Repeat Problem 6.44 but assume that one wall is insulated while the temperature of the 
other walls increases linearly with x. 

From Problem 6.44: For fully developed laminar flow between two flat plates spaced 2a 
apart, find the Nusselt number based on the ‘bulk mean’ temperature if the temperature 
of both walls varies linearly with the distance x, i.e., ∂T/∂x = C. The ‘bulk mean’ 
temperature is defined as 

 Tb = 
( ) ( )

( )

a

a
a

a

u y T y dy

u y dy

−

−




 

GIVEN 

• Fully developed laminar flow between two flat plates 
• Spacing = 2a 
• ∂T/∂x = C 
• Bulk mean temperature as defined above 
• One wall is insulated 
• The temperature of the other wall increases linearly with x 

FIND 

• The Nusselt number based on the bulk mean temperature (Nu) 
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ASSUMPTIONS 

• Steady state 
• Constant and uniform property values 
• Fluid temperature varies linearly with x 

(This corresponds to a constant heat flux boundary) 

SKETCH 

T( )yu( )y

y a=

y

x CL

Insulation

y a= –

Fluid

 

SOLUTION 

The velocity profile derived in the solution to Problem 6.44 remains unchanged 

 u = umax 

2

1
y

a

  −     
 

As does the energy equation 

 
2

2

T

y

∂
∂

 = z 
2

1
y

a

  −     
 

 where z = maxu T

xα
∂
∂

 (a constant) 

The new boundary conditions are 

 
T

y

∂
∂

 = 0 at y = a (due to the insulation) 

 T = Tw (x) at y = –a 

Integrating the energy equation once 

 
T

y

∂
∂

 = z 
3

2

1

3

y
y

a

 
−  

 + C1 

Applying the first boundary condition 

 0 = za  – 
3

23

za

a
 + C1  C1 = – 

2

3
 za  

Integrating the energy equation again 

 T = – 
2

3
 zay  + 

1

2
 z y2 – 

212

z

a
 y4 + C2 
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Applying the second boundary condition 

 Tw(x) = – 
2

3
 z a2 + 

1

2
 z a2 – 

212

z

a
 a4 + C2  C2 = Tw(x) + 

1

4
 za2 

Therefore, the temperature distribution is 

 T(x,y) = Tw(x) + 
1

4
 za2 – 

2

3
 zay  + 

1

2
 zy2  – 

212

z

a
 y4 

The numerator of the bulk mean temperature expression is 

 ( ) ( , )
a

a
u y T x y dy

−  = 
2

2 2 4
max 2

1 2 1
1 ( )

4 3 2 12

a

wa

y z
u T x za za y z y y

a a−

      − + − + −           
 dy 

  = umax 
2 3 3 2 3 31 1 1 2 1 1 1

2 ( ) ( )
4 3 30 3 4 5 42w wa T x za za za a T x za za za     + + − − + − +        

 

 ( ) ( , )
a

a
u y T x y dy

−  = umax 
2 34 1 13

( )
3 4 105wa T x za za   + +    

 

The denominator of the bulk mean temperature is 

 
2

max 1
a

a

y
u dy

a−

  −     
  = umax = 

2
2

3
a a −  

4

3
 umax a 

 ∴ Tb = 21
( )

4wT x za +    + 
3

4
 
  

13

105
 za2  = Tw(x) + 

57

210
 za2  

 Tw(x) – Tb = – 
57

210
 za2  

 At z = – a: 
T

y

∂
∂

 = z(– a) – 
23

z

a
 (– a)3 – 

2

3
 za  = – 

4

3
 za 

 ∴ ch  = 
y a

b w

T
k

y

T T
= −

∂−
∂

−
 = 

2

4
3

57
210

k a z

z a

 − − 
 = 

560

57 2

k
a 

    

By definition 

 Nu = ch L

k
 = 

2ch a

k
 = 

560

57
 = 9.82 

PROBLEM 6.46 

For fully turbulent flow in a long tube of diameter D, develop a relation between the 
ratio (L/ΔT)/D in terms of flow and heat transfer parameters, where L/ΔT is the tube 
length required to raise the bulk temperature of the fluid by ΔT. Use Equation 6.63 for 
fluids with Prandtl number of the order of unity or larger and Equation 6.75 for liquid 
metals. 
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GIVEN 

• Fully developed turbulent flow in a long tube 
• Diameter = D 
• L/ΔT = Tube length required to raise the bulk temperature by ΔT 

FIND 

A relationship for (L/ΔT)/D in terms of flow and heat transfer parameters using 

(a) Equation 6.63 for fluids with Pr ≈ 1 
(b) Equation 6.75 for liquid metals 

ASSUMPTIONS 

• Steady state 
• Constant fluid properties 
• Uniform wall temperatures 

SKETCH 

L TD

L + TDT

Fluid
D

 

SOLUTION 

Let 
 k = the thermal conductivity of the fluid 
 μ = the absolute viscosity of the fluid 
 c = the specific heat of the fluid 
 V = the velocity of the fluid 
 ρ = the density of the fluid 
 Tb = Average bulk fluid temperature 
 Tw = wall temperature 

(a) Using Equation (6.63) for the Nusselt number 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

 ch  = D
k

Nu
D

 = 0.023 
k

D
 ReD

0.8 Pr0.4 

The rate of heat transfer to the fluid must equal the energy needed to raise the temperature of the fluid 
by ΔT 

 q = ch  π D L (Tb – Tw) = m c ΔT 

 
L

TΔ
 = 

( )c b w

mc

h D T Tπ −


 = 

2

0.8 0.4

4

0.023 ( )D b w

V D C

k
Re Pr D T T

D

πρ

π −
 

 But ReD = 
V Dρ

μ
 and   Pr = 

c

k

μ
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 ∴ 
L

TΔ
 = 10.87 

2

0.8 0.4

( )b w

V D C

V D c
k T T

k

ρ
ρ μ
μ

    −    

 

 

L
D
TΔ

  10.87 ρ0.2 V0.2 D0.2 c0.6 μ0.4 k–0.6 (Tb – Tw)–1 

 
Checking the units 

 
L

D
T

 
 
 

Δ 
 

 = [ ]0.2 0.23kg/m m/s   [m]0.2 [ ] [ ]0.40.6 0.62J/(kgK) (Ns)/m W/(mK) −    [K]–1 

    [ ] 0.40.6 2(Ws)/J kg m/(s N)    = [ ]1/K  

(b) From Equation (6.75) 

 ch  = 0.625 
k

D
 ReD

0.4 Pr0.4 

 
L

TΔ
 = 

2

0.4 0.4

4

0.625 ( )D b w

V D c

k
Re Pr D T T

D

πρ

π −
 

 ∴ 
L

TΔ
 = 0.40 

2

0.4 0.4

( )b w

V D c

V D c
k T T

k

ρ
ρ μ
μ

    −    

 

 

L
D
TΔ

 = 0.40 ρ0.6 V0.6 D0.6 c0.6 k–0.6 (Tb – Tw)–1 

PROBLEM 6.47 

Water in turbulent flow is to be heated in a single-pass tubular heat exchanger by steam 
condensing on the outside of the tubes. The flow rate of the water, its inlet and outlet 
temperatures, and the steam pressure are fixed. Assuming that the tube wall 
temperature remains constant, determine the dependence of the total required heat 
exchanger area on the inside diameter of the tubes. 

GIVEN 

• Water in turbulent flow in tubes with steam condensing on the outside 
• Water flow rate, inlet and outlet temperatures, and steam pressure are fixed 

FIND 

• At = f(D) where At = Total heat exchanger area 
 D = Inside diameter of the tubes 

ASSUMPTIONS 

• Steady state 
• Fully developed flow 
• Tube wall temperature remains constant 
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• The heat exchanger is designed such that the flow is fully developed turbulent flow 
• Thermal resistance of the condensing steam is negligible 
• Thermal resistance of the water pipe is negligible 

SKETCH 

L Water
Tb,out

Steam, in Shell

Ts

Water in
Tubes
Tb,in

 

SOLUTION 

Let 
 N = The number of tubes 
 m  = Mass flow rate of the water 
 Tb,in = Water inlet bulk temperature 
 Tb,out = Water outlet bulk temperature 
 Tb,avg = Average of water inlet and outlet bulk temperatures 
 Ts = Saturation temperature of the steam 
 k = Thermal conductivity of water evaluated at Tb 
 ρ = Density of water evaluated at Tb 
 μ = Absolute viscosity of water evaluated at Tb 
 Pr = Prandtl number of water evaluated at Tb 
 c = Specific heat of water evaluated at Tb 
The Nusselt number on the inside of the tubes is given by Equation (6.63) 

 NuD = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

 hc = NuD 
k

D
 = 0.023 

k

D
 ReD

0.8 Pr0.4 = 0.023 
k

D
 

0.8
V Dρ

μ
 
  

Pr0.4 

 hc = 0.023 
k

D

0.8

4
m

N
Dπ μ

   
   

 
 
 



 Pr0.4 = 0.0279 k D–1.8 
0.8

m

N μ
 
  


 Pr0.4 

The heat transfer by convection to the water must equal the energy required to raise the water 
temperature by the given amount 

 hc At (Ts – Tb,ave) = m c (Tb,out – Tb,in) 

 At = ,out ,in

,ave

b b

c s b

T Tmc

h T T

−
−


 = ,out ,in

0.8
,ave1.8 0.40.0279

N

b b

s b

T Tmc

T Tm
k D Pr

μ
−

−
− 

  




 

 At = 35.8 
0.2 0.8 0.8

0.4

m N

k Pr

μ ,out ,in

,ave

b b

s b

T T

T T

− 
 − 

D1.8 

 At  ∝ D1.8 

Checking the units 

 [At] = [ ] [ ][ ] [ ]0.80.2 1 0.62kg/s (Ns)/m J/(kg K) W/(m K) (Ws)/J−    [m]1.8 = [m]2 
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COMMENTS 

The tube diameter must not become so large that the water flow becomes laminar. 

PROBLEM 6.48 

The following thermal-resistance data were obtained on a 5000 m2 condenser constructed 
with 2.5 cm-OD brass tubes, 7.2 m long, 1.2 mm wall thickness, at various water velocities 
inside the tubes [Trans. ASME, vol. 58, p. 672, 1936]. 

1/Uo × 103 Water Velocity 1/Uo × 103 Water Velocity 
(Km2/W) (m/s) (km2/W) (m/s) 

 0.364 2.11 0.544 0.90 
 0.373 1.94 0.485 1.26 
 0.391 1.73 0.442 2.06 
 0.420 1.50 0.593 0.87 
 0.531 0.89 0.391 1.91 
 0.368 2.14 

Assuming that the heat transfer coefficient on the steam side is 11.3 kW/(m2 K) and the 
mean bulk water temperature is 50°C, determine the scale resistance. 

GIVEN 

• Water flowing inside a brass tube condenser 
• Total transfer are (At) = 5000 m2 
• Tube outside diameter (D) = 2.5 cm 
• Tube length (L) = 7.2 m 
• Tube wall thickness (t) = 1.2 mm 

• Heat transfer coefficient on the steam side ( csh ) = 11.3 kW/(m2 K) 

• Mean bulk water temperature = 50°C 
• Thermal resistance data shown above 

FIND 

• The scale resistance (AtRks) 

ASSUMPTIONS 

• Data were taken at steady state 
• The tube temperature can be considered uniform and constant 
• Condenser surface area is based on the tube outside diameter 

SKETCH 

L = 7.2 m

One Tube

D = 2.5 cm

Water

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 50°C 

 Thermal conductivity (k) = 0.65 W/(m K) 
 Kinematiuc viscosity (ν) = 5.46 × 10–7 m2/s 
 Prandtl number (Pr) = 3.55 

From Appendix 2, Table 10, the thermal conductivity of brass (kb) = 111 W/(m K) 
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SOLUTION  

The inside tube diameter is  Di = Do – 2t = 2.5 cm – 0.24 cm = 2.26 cm 
The maximum and minimum velocities in the given data are 0.87 m/s and 2.14 m/s. These correspond 
to the following Reynolds numbers 

 Remin = 
V D

ν
 = 

–2

–7 2

(0.87 m/s) (2.26 10 m)

5.46 10 m /s

×
×

 = 36,000 

 Remax = 
V D

ν
 = 

–2

–7 2

(2.14m/s) (2.26 10 m)

5.46 10 m /s

×
×

 = 88,580 

Therefore, the flow is turbulent in all cases. Applying Equation (6.63) to the minimum Re case 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 DNu  = 0.023 (36,000)0.8 (3.55)0.4 = 168.6 

 cwh  = D
k

Nu
D

 = 168.6
( )

–2

0.65W/(m K)

2.26 10 m×
 = 4850 W/(m2 K) 

The thermal circuit for this problem is shown below 

Ts

Rcs

Tw

RkS RkB Rcw  

 At Rcs = 
1

csh
 = 

3 2

1

11.3 10 W/(m K)×
 = 8.85 × 10–5  (K m2)/W 

 At Rks = scaling resistance 

For one tube 

 At RkB = π D L 

ln

2

o

i

s

D

D

Lkπ

 
  

 

 At RkB = 

–2 2.5
(2.5 10 m)(7.2m)ln

2.26
2 (7.2m)(111W/(m K))

π

π

 ×  
 = 1.13 × 10–5 (K m2)/W 

For the minimum Re case 

 Ar Rcw = 
1

cwh
 = 

2

1

48.50 W/(m K)
 = 2.06 × 10–4 (K m2)/W 

These resistances are in series, therefore 

 Ar Rtotal = 
1

oU
 = At (Rcs + Rks + RkB + Rcw) 

 ∴ At Rks = 
1

oU
 – At (Rcs + RkB + Rcw) 

For the minimum Re case (from the given table) 

 At Rks = 0.593 × 10–3 (K m2)/W – (0.0885 + 0.0113 + 0.206) × 10–3 (K m2)/W 

 At Rks = 2.33 × 10–4 (K m2)/W 
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Repeating this method for the rest of the data given 

Water Velocity (m/s) cwh W/(m2 K) AtRks × 104 (Km2)/W 

 2.11 9850 1.43 

 1.94 9210 1.45 

 1.73 8405 1.50 

 1.50 7500 1.64 

 0.89 4940 1.99 

 2.14 9965 1.48 

 0.90 4950 2.13 

 1.26 6522 2.02 

 2.06 9665 2.11 

 0.87 4850 2.33 

 1.91 9100 1.58 

  Average: 1.79 × 10–4 (K m2)/W 

COMMENTS 

The standard deviation in the scale resistance is 24%. 

PROBLEM 6.49 

A nuclear reactor has rectangular flow channels with a large aspect ratio (w/h)>>1 

L

w

Sodium , Ts o( )
x

q(x)
.

h

 

Heat generation is equal from the upper and lower surface and uniform at any value of 
x. However, the rate varies along the flow path of the sodium coolant according to 

 q′′ (x) = qo′′ sin(π x/L) 

Assuming that entrance effects are negligible so that the convection heat transfer 
coefficient is uniform 

 (a) Obtain an expression for the variation of the mean temperature of the sodium, 
Tm (x). 

 (b) Derive a relation for the surface temperature of the upper and lower portion of 
the channel, Ts (x). 

 (c) Determine the distance xmax at which Ts(x) is maximum. 

GIVEN 

• Sodium flow through a rectangular flow channel with a large aspect ratio 
• Heat generation from each surface (upper and lower): q′′(x) = q′′o sin(π x/L) 

FIND 

(a) An expression for the variation of the mean sodium temperature, Tm(x) 
(b) A relationship for the upper and lower surface temperature Ts(x) 
(c) The distance xmax at which Ts(xmax) is maximum 
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ASSUMPTIONS 

• Entrance effects are negligible 
• The convective heat transfer coefficient is uniform 
• Steady state 

SOLUTION 

The hydraulic diameter for the duct is 

 DH = 
4 cA

P
 = 

4

2 2

wh

w h+
 = 2h 

(a) In steady state, all of the heat generation must be removed by the sodium, Therefore, the heat 
transfer to an element of sodium in the duct is 

 dq = 2 q′′ w dx = 2 q′′o sin 
x

L

π 
    w dx 

This will lead to a rise in temperature in the sodium according to 

 dq = m c dTm = 2 q′′o sin 
x

L

π 
    w dx 

 mdT

d x
 = 

2 oq w

mc

′′


 sin 
x

L

π 
    

Integrating 

 
,in

( )

,in( )
m

m

T x

m m mT
dT T x T= −  = 

0

2
sin

xoq w x
dx

m c L

π ′′
  

 

 Tm(x) = Tm,in + 
2 oq wL

mcπ
′′


1 – cos
x

L

π   
    

 

(b) The rate of heat transfer from both surfaces must equal the rate of heat generation 

 qcx = q (x)      2 hc w dx (Ts – Tm) = 2 sino
x

q
L

π 
″    w dx 

Solving for the surface temperature 

 Ts = Tm + o

c

q

h

′′
sin

x

L

π 
    

 Ts = Tm,in + 
2 oq wL

mcπ
′′


 1 – cos
x

L

π   
    

 + o

c

q

h

′′
 sin

x

L

π 
    

Assuming the flow is fully developed and approximating the heat flux as uniform, the Nusselt 
number, from Table 6.1, is 8.235. Therefore, hc = 8.235 k/DH. 

 Ts = Tm,in + 
2 oq w L

mcπ
′′


 1 – cos
x

L

π   
    

  + 
16.47

o Hq D

k

′′
 sin

x

L

π 
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(c) The maximum occurs when the first derivative of the expression for Ts is zero 

 sdT

d x
 = 

2 oq w

mc

′′


 sin
x

L

π 
    – 

16.47
o Hq D

k L

π′′
 cos

x

L

π 
    = 0 

 
sin

cos

x

L
x

L

π

π

 
  
 
  

 = 
16.47 2

HmcD

k w L

π 
 

 xmax = 
L

π
 Arctan 

16.47

mch

k w L

π 
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Chapter 7 

PROBLEM 7.1 

Determine the heat transfer coefficient at the stagnation point and the average value of 
the heat transfer coefficient for a single 5-cm-OD, 60-cm-long tube in cross-flow. The 
temperature of the tube surface is 260°C, the velocity of the fluid flowing perpendicularly 
to the tube axis is 6 m/s, and its temperature is 38°C. The following fluids are to be 
considered (a) air, (b) hydrogen, and (c) water. 

GIVEN 

• A single tube in cross-flow 
• Tube outside diameter (D) = 5 cm = 0.05 m 
• Tube length (L) = 60 cm = 0.6 cm 
• Tube surface temperature (Ts) = 260°C 
• Fluid velocity (V) = 6 m/s 
• Fluid temperature (Tb) = 38°C 

FIND 

1. The heat transfer coefficient at the stagnation point (hco) 
2. The average heat transfer coefficient ( )ch  for the following fluids 

 (a) air, (b) hydrogen, and (c) water. 

ASSUMPTIONS 

• Steady state 
• Turbulence level of the free stream approaching the tube is low 

SKETCH 

L = 60 cm

Tb = 38°C V = 6 m/s

Fluid

Ts = 260°C D = 5 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the bulk temperature of 38°C 
Thermal conductivity (k) = 0.0264 W/(m K) 

Kinematic viscosity (ν) = 17.4 × 10–6 m2/s 

Prandtl number (Pr) = 0.71 

and the Prandtl number at the surface temperature 

(Prs) = 0.71. 

From Appendix 2, Table 31, for hydrogen 
Thermal conductivity (k) = 0.187 W/(m K) 

Kinematc viscosity (ν) = 116.6 × 10–6 m2/s 
Prandtl number (Pr) = 0.704 
Prandtl number at the surface temperature (Prs) = 0.671 
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From Appendix 2, Table 13, for water 
Thermal conductivity (k) = 0.629 W/(m K) 
Kinematic viscosity (ν) = 0.685 × 10–6 m2/s 
Prandtl number (Pr) = 4.5 
Prandtl number at the surface temperature (Prs) = 0.86 

SOLUTION 

For air as the fluid 
The Reynolds number is 

 ReD = 
V D

ν
 = ( )6 2

(6m/s)(0.05m)

17.4 10 m /s−×
 = 17,241 

The heat transfer coefficient at the stagnation point can be calculated by applying Equation (7.2) at 
θ = 0 

 h∞ = 114
k

D
ReD

0.5 Pr0.4 = 1.14
( )0.0264 W/(m K)

0.05m
(17,241)0.5(0.71)0.4 = 68.9 W/(m2 K)  

The average Nusselt number is given by Equation (7.3) 

 DNu  = ch D

k
 = CReD m Prn 

0.25

s

Pr

Pr

 
  

 

For  ReD = 17,241  
 C = 0.26 m = 0.6  
For  Pr = 0.71 
 n = 0.37 

 DNu  = 0.26(17,241)0.6
 (0.71)0.37 

0.250.71

0.71
 
   = 79.8 

 ch  = DNu
k

D
 = 79.8 

( )0.0264 W/(m K)

0.05m
 = 42.1 2W/(m K)  

Using the properties listed above and applying the methodology above to the other fluids yields the 
following results 

 Fluid Re hco (W/(m2K)) ch  (W/(m2K)) 

 Air 17,241 68.9 42.1 
 Hydrogen 2572 187.9 96.1 
 Water 438,000 17,322 20,900 

COMMENTS 

Since the Reynolds number for water is much higher than the air or hydrogen transition from a laminar 
to a turbulent boundary layer occurs sooner and the flow over most of the cylinder surface is turbulent. 
Hence the average heat transfer coefficient over the surface is higher than the heat transfer coefficient 
at the stagnation point. 

PROBLEM 7.2 

A mercury-in-glass thermometer at 40°C (OD = 1 cm) is inserted through duct wall into 
a 3 m/s air stream at 66°C. Estimate the heat transfer coefficient between the air and the 
thermometer. 

GIVEN 

• Thermometer in an air stream 
• Thermometer temperature (Ts) = 40°C 
• Thermometer outside diameter (D) = 1 cm = 10–2 m 
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• Air velocity (V) = 3 m/s 
• Air temperature (Tb) = 66°C 

FIND 

• The heat transfer coefficient ( )ch  

ASSUMPTIONS 

• Steady state 
• Turbulence in the free stream approaching the thermometer is low 
• Effect of the duct walls in negligible 

SKETCH 

Duct Wall

Ts = 40°C

D = 1 cm

Air
V = 3 m/s

Tb = 66°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the bulk temperature of 66°C 
Thermal conductivity (k) = 0.0282 W/(m K) 

Kinematic viscosity (ν) = 1.961 × 10–5 m2/s 

Prandtl number (Pr) = 0.71 

At the thermometer surface temperature of 40°C, the Prandtl number (Prs) = 0.71 

SOLUTION 

The Reynolds number for this case is 

 ReD = 
V D

ν
 = 

–2

–5 2

3m/s (10 m)

1.961 10 m /s×
 = 1530 

The Nusselt number is given by Equation (7.3) 

 DNu  = ch D

k
 = C ReD

m Prn 
0.25

s

Pr

Pr

 
  

 

where   C = 0.26 

  m = 0.6 

  n = 0.37 

 DNu  = 0.26(1530)0.6 (0.71)0.37 
0.250.71

0.71
 
    = 18.65 
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 ch  = DNu
k

D
 = 18.65

–2

0.0282 W/(m K)

1 10 m×
 = 52.6 W/(m2 K) 

PROBLEM 7.3 

Steam at 1 atm and 100°C is flowing across a 5-cm-OD tube at a velocity of 6 m/s. 
Estimate the Nusselt number, the heat transfer coefficient, and the rate of heat transfer 
per meter length of pipe if the pipe is at 200°C. 

GIVEN 

• Steam flowing across a tube 
• Steam pressure = 1 atm 
• Steam bulk temperature (Tb) = 100°C 
• Tube outside diameter (D) = 5 cm = 0.05 m 
• Steam velocity (V) = 6 m/s 
• Pipe surface temperature (Ts) 200°C 

FIND 

(a) The Nusselt number ( )DNu  

(b) The heat transfer coefficient ( )ch  

(c) The rate of heat transfer per unit length (q/L) 

ASSUMPTIONS 

• Steady state 

SKETCH 

D = 5 cm

Steam

V = 6 m/s Tb = 100°C  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 34, for steam at 100°C and 1 atm 
Thermal conductivity (k) = 0.0249 W/(m K) 

Kinematic viscosity (ν) = 20.2 × 10–6 m2/s 

Prandtl number (Pr) = 0.987 

At the tube surface temperature of 200°C, the Prandtl number of the steam (Prs) = 1.00 

SOLUTION 

The Reynolds number is 

 ReD = 
V D

ν
 = 

( ) ( )
( )6 2

6m/s 0.05m

20.2 10 m /s−×
 = 1.49 × 104 

(a) The Nusselt number for this geometry is given by Equation (7.3) 

 DNu  = ch D

k
 = C ReD

m Prn
0.25

s

Pr

Pr
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For  Re = 1.49 × 104 
 C = 0.26  m = 0.6  n = 0.37 

 DNu  = 0.26(1.49 × 104)0.6 (0.987)0.37 
0.250.987

1.00
 
    = 82.2 

(b) 

 ch  = DNu
k

D
 = 82.2

( )0.0249W/(m K)

0.05m
 = 40.9 2W/(m K)  

(c) The rate of heat transfer by convection from the tube is 

 q = ch  At (Ts – Tb) = ch π DL (Ts – Tb) 

 
q

L
  = ( )240.9W/(m K) π (0.05 m) (200°C – 100°C) = 642 W/m  

PROBLEM 7.4 

An electrical transmission lin of 1.2 cm diameter carries a current of 200 Amps and has a 
resistance of 3 × 10–4 ohm per meter of length. If the air around this line is at 16°C, 
determine the surface temperature on a windy day, assuming a wind blows across the 
line at 33 km/h. 

GIVEN 

• An electrical transmission line on a windy day 
• Line outside diameter (D) = 12 cm = 0.012 m 
• Current (I) = 200b Amps 
• Resistance per unit length (Re/L) = 3 × 10–4 ohm/m 
• Air temperature (Tb) = 16°C 
• Air velocity (V) = 33 km/h = 9.17 m/s 

FIND 

• The line surface temperature (Ts) 

ASSUMPTIONS 

• Steady state conditions 
• Air flow approaching line has low free-stream turbulence  

SKETCH 

Ts = ?

D = 1.2 cm

Air

Tb = 16°C

V = 9.17 m/s  
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 16°C 
Thermal conductivity (k) = 0.0248 W/(m K) 

Kinematic viscosity (ν) = 15.3 × 10–6 m2/s 

Prandtl number (Pr) = 0.71 

SOLUTION 

The Reynolds number is 

 ReD = 
V D

ν
 = 

( )
( )6 2

(9.17 m/s) 0.012 m

15.3 10 m /s−×
 = 7192 

The Nusselt number is given by Equation (7.3). The variation of the Prandtl number with temperature 
is small enough to be neglected for air 

 DNu  = ch D

k
 = C ReD

m Prn 

For  ReD = 7192 
 C = 0.26  m = 0.6  n = 0.37 

 DNu  = 0.26(7192)0.6 (0.71)0.37 = 47.2 

 ch  = DNu
k

D
 = 47.2

( )0.0248W/(m K)

0.012 m
 = 97.5 W/(m2 K) 

The rate of heat transfer by convection must equal the energy dissipation 

  ch π D L (Ts – Tb) = I2 Re 

Solving for the tube surface temperature 

 Ts = 

2 e

c

R
I

L
h Dπ

 
  

+ Tb = 
( ) ( ) ( )

( )
2 –4 2

2

200A 3×10 Ohm/m W/(A Ohm)

97.5W/(m K) (0.012 m)π
 + 16°C = 19.3°C 

COMMENTS 

It is assumed that the thermal conductivity is high and thus the surface temperature is approximately 
uniform. 

PROBLEM 7.5 

Derive an equation in the form ch  = f(T, D, U∞) for flow of air over a long horizontal 

cylinder for the temperature range 0°C to 100°C, using Equation (7.3) as a basis. 

GIVEN 

• Flow over a long horizontal cylinder 
• Air temperature range is 0°C < T < 100°C 

FIND 

• An equation in the form ch  = f(T, D, U∞) based on Equation (7.3) 

ASSUMPTIONS 

• Steady state 
• Prandtl number variation is negligible 
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SKETCH 

AIr

0°C < T < 100°C0°C < T < 100°C Velocity = U•Velocity = U•  

SOLUTION 

From Appendix 2, Table 27, for dry air the Prandtl number is constant (Pr = 0.71) for the given 
temperature range. From Equation (7.3), neglecting the variation of Prandtl number term 

 ch  = C
k

D
 ReD

m Prn 

where n = 0.37 for air and C and m are given in Table 7.1. 

To obtain the desired functional relationship, the kinematic viscosity (ν) and thermal conductivity (k) 
must be expressed as a function of temperature.  
From Appendix 2, Table 27 

 T(°C) v × 106 (m2/s) k ( )W/(m K)  

 0 13.9 0.0237 
 20 15.7 0.0251 
 40 17.6 0.0265 
 60 19.4 0.0279 
 80 21.5 0.0293 
 100 23.6 0.0307 

Plotting these data, we see that the relationship is nearly linear in both cases. Therefore, a linear least 
squares regression line will be fit to the data 

 v = 1.38 × 10–5 + 9.67 × 10–8 T (v in m2/s, T in °C) 

 k = 0.0237 + 7.0 × 10–5 T (k in W/(m K), T in °C) 

Therefore 

 ch  = C
5

5 8

0.0237 7 10

1.38 10 9.67 10

m
U DT

D T

−
∞

− −

 + ×
  × + ×

(0.71)0.37 

 ch  = 0.881 C U∞
m Dm–1

5

5 8

0.0237 7 10

(1.38 10 9.67 10 )m

T

T

−

− −
+ ×

× + ×
 

where   T is in °C 

  ch  is in W/(m2 K) 

  and C and M are given in Table 7.1 as a function of Reynolds number 

PROBLEM 7.6 

Repeat Problem 7.5 for water in the temperature range 10°C to 40°C. From Problem 7.5: 
Derive an equation in the form ch  = f(T, D, U∞) for flow over a long horizontal cylinder 

using Equation (7.3) as a basis. 

GIVEN 

• Water flow over a long horizontal cylinder  
• Water temperature range is 10°C < T < 40°C 
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FIND 

• An equation in the form ch  = f(T, D, U∞) based on Equation (7.3) 

ASSUMPTIONS 

• Steady state 
• Temperature difference between water and the cylinder is small enough that the Prandtl number 

variation is negligible 
• The density of water can be considered constant  

SKETCH 

Water

10°C < T < 40°C10°C < T < 40°C Velocity = U•Velocity = U•  

SOLUTION 

Equation (7.3) neglecting the Prandtl number variation 

 ch  = C
k

D
Rem Prn = 

k

D

m nU D c

k

ρ μ
μ

∞   
     

 

Where C and m are given in Table 7.1 and n = 0.37. Since Pr < 10 for the given temperature range. 
From Appendix 2, Table 13, for water 

 T (°C) k ( )W/(m K)  μ × 106 (Ns/m2) 

 10 0.577 1296 
 15 0.585 1136 
 20 0.597 993 
 25 0.606 880.6 
 30 0.615 792.4 
 35 0.624 719.8 
 40 0.633 658.0 

Over the given temperature range, the density of water varies only 0.8%. Therefore, the density will be 
considered constant at its average value: ρ = 996 kg/m3. Likewise, the variation in specific heat is only 
0.5% and its average value is c = 4185 J/(kg K). 
Applying a linear least squares regression to k vs. T yields 

 k = 0.588 + 1.89 × 10–3 T. (T in °C,  k in W/(m K)). 

Applying a linear least squares regression on log (μ) vs. log (T) yields 

 log(μ) = –2.375 – 0.493 log(T) 

 μ = 0.0042 T –0.493 

Substituting these into the expression for hc 

 ch  = C(0.558 + 1.89 × 10–3T)(1 – 0.37) Dm – 1U∞
m ( )3996kg/m

m
 

   (0.0042T –0.493)(0.37 – m) ( )0.374185J/(kg K)  

 ch  = 21.88(996)m C U∞
m D(m – 1)(0.558 + 1.89 × 10–3 T)0.63(0.0042 T –0.493)(0.37 – m) 
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where ch  is in W/(m K) T is in °C 

  U∞ is in m/s  D is in m 

  and C and m are given in Table 7.1 as function of Re 

PROBLEM 7.7 

The Alaska Pipeline carries 230 million liters per day of crude oil from Prudhoe Bay to 
Valdez covering a distance of 1280 kilometers. The pipe diameter is 1.2 m and it is 
insulated with 10 cm of fiberglass covered with steel sheeting. Approximately half of the 
pipeline length is above ground, nominally running in the north-south direction. The 
insulation maintains the outer surface of the steel sheeting at approximately 10°C. If the 
ambient temperature averages 0°C and prevailing winds are 2 m/s from the northeast, 
estimate the total rate of heat loss from the above-ground portion of the pipeline. 

GIVEN 

• Fiberglass insulated pipe with air flow at 45° to its axis 
• Insulation is covered with sheet steel 

• Length of pipe above ground (L) = 
1280

2
 = 640 kilometers 

• Pipe diameter (Dp) = 1.2 m 
• Insulation thickness (t) = 10 cm 
• Sheet steel temperature (Ts) = 10°C 
• Average ambient air temperature (T∞) = 0°C 
• Average air velocity (U∞) = 2 m/s 

FIND 

• The total rate of heat loss from the above ground portion of the pipe (q) 

ASSUMPTIONS 

• Thermal resistance of the sheet steel as well as contact resistance can be neglected 

SKETCH 

N

Plan View

Dp = 1.2 m

Ds = 10°C

W
in
d

U •
=

2
m

/s

Fro
m

N
or

th
Eas

t

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 0°C 
Thermal conductivity (k) = 0.0237 W/(m K) 

Kinematic viscosity (ν) = 13.9 × 10–6 m2/s 

Prandtl number (Pr) = 0.71 

SOLUTION 

The outside diameter of the insulated pipe is 

 D = Dp + 2t = 1.2 m + 2 × 0.1 = 1.4 m 
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The Reynolds number is 

 ReD = 
U D

ν
∞  = 

–6 2

2 m/s (1.4m)

13.6 10 m /s×
 = 2.06 × 105 

Since the air flow is not perpendicular to the pipe axis, Groehn’s correlation, Equation (7.4), must be 
used 

 DNu  = ch D

k
 = 0.206 Pr0.36 ReN

0.63 

where  ReN = ReD sinθ = 2.06 × 105 sin(45°) = 1.45 × 105 

 DNu  = 0.206 (0.71)0.36 (1.45 × 105)0.63 = 325 

 ch  = DNu
k

D
 = 325

0.0237 W/(m K)

1.4m
 = 5.5 2W/(m K)  

The total rate of heat transfer is give by 

 q = ch At (Ts – T∞) 

where At   = the total transfer area = πDL = π (1.4 m) (640 × 103 m) = 2.81 × 106 m2 

  q = (5.5 W/(m2K)) (2.81 × 106 m2) (10°C – 0°C) = 1.54 × 108 W = 154 MW 

COMMENTS 

The calculation has assumed that there is no significant interaction between the ground and the  
pipe. 

PROBLEM 7.8 

An engineer is designing a heating system which consists of multiple tubes placed in a 
duct carrying the air supply for a building. She decides to perform preliminary tests with 
a single copper tube, 2 cm o.d., carrying condensing steam at 100°C. The air velocity in 
the duct is 5 m/s and its temperature is 20°C. The tube can be placed normal to the flow, 
but it may be advantageous to place the tube at an angle to the air flow since additional 
heat transfer surface area will result. It the duct width is 1 m, predict the outcome of the 
planned tests. 

GIVEN 

• A copper tube carrying condensed steam in an air duct 
• Tube outside diameter (D) = 2 cm = 0.02 m 
• Steam temperature (Ts) = 100°C 
• Air velocity (U∞) = 5 m/s 
• Air temperature (T∞) = 20°C 
• Duct width (w) = 1 m 

FIND 

• Is it more advantageous to have the tubes normal to the air flow or at some angle to the air  
flow? 

ASSUMPTIONS 

• Steady state 
• Air velocity in the duct is uniform 
• Thermal resistance due to steam condensing is negligible 
• Thermal resistance of the tube wall is negligible 
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SKETCH 

q

Air

At an angle to flow

Duct

Tube

Air

T
¥

= 20°C

Normal to flow  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 20°C 
Thermal conductivity (k) = 0.0251 W/(m K) 

Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 

Prandtl number (Pr) = 0.71 

SOLUTION 

The Reynolds number based on the tube diameter is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )6 2

5m/s 0.02 m

15.7 10 m /s−×
 = 6369 

For the perpendicular position, the tube length (L) = w = 1 m and the Nusselt number can be calculated 
using Equation (7.4) with θ = 90° 

 DNu  = ch D

k
 = 0.206 Pr0.36 ReN

0.63 

where  ReN = ReD sin(θ) = ReD for θ = 90° 

 DNu  = 0.206 (0.71)0.36 (6369)0.63 = 45.4 

 ch  = DNu
k

D
 = 45.4

( )0.0251 W/(m K)

0.02 m
 = 57.0 W/(m2 K) 

The rate of heat transfer is 

 q = ch π D L (Ts – T∞) = ( )257.0 W/(m K) π (0.02 m)(1 m)(100°C – 20°C) = 287 W 

For the angled position, the tube length (L) = w/sinθ. Applying Equation (7.4) 

 DNu  = 0.206 (0.71)0.36 (6369 sinθ)0.63 = 45.38 (sinθ)0.63 

 ch  = DNu
k

D
  = 45.38 (sinθ)0.63 

( )0.0251 W/(m K)

0.02 m
 = 56.95 (sinθ)0.63 2W/(m K)  

The rate of heat transfer is 

 q = ch π D L (Ts – T∞) = ch π D
w

sinθ
(Ts – T∞) 

 q = ( )( )0.63 256.95 sin W/(m K)θ π (0.02 m) 
1m

sinθ
(100°C – 20°C) = 286.3 (sinθ)–0.37 W 
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The engineer will find that the rate of heat transfer will increase because the heat transfer coefficient 
decreases with (sinθ)0.63 but the area increases with 1/sinθ. Therefore, the rate of heat transfer 
increases with 1/(sinθ)0.37. 

PROBLEM 7.9 

A long hexagonal copper extrusion is removed from a heat-treatment oven at 400°C and 
immersed into a 50°C air stream flowing perpendicular to its axis at 10 m/s. Due to 
oxidation, the surface of the copper has an emissivity of 0.9. The rod is 3 cm across 
opposing flats, has a cross-sectional area of 7.79 cm2, and a perimeter of 10.4 cm. 
Determine the time required for the center of the copper to cool to 100°C. 

GIVEN 

• A long hexagonal copper extrusion in an air stream flowing perpendicular to its axis  
• Initial temperature (To) = 400°C 
• Air temperature (T∞) = 50°C 
• Air velocity (V∞) = 10 m/s 
• Surface emissivity (ε) = 0.9 
• Distance across the flats (D) = 3 cm = 0.03 m 
• Cross sectional area of the extrusion (Ac) = 7.79 cm2 = 7.79 × 10–4 m2 
• Perimeter of the extrusion (P) = 10.4 cm = 0.104 m 

FIND 

• The time (t) required for the center of the copper to cool to 100°C 

ASSUMPTIONS 

• Variations of the copper properties with temperature are negligible 

SKETCH 

D = 3 cm

Air

U• = 10 m/s

T• = 50°C  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average of the initial and final film temperature of 150°C 
Thermal conductivity (ka) = 0.0339 W/(m K) 

Kinematic viscosity (ν) = 29.6 × 10–6 m2/s 

Prandtl number (Pr) = 0.71 

For Appendix 2, Table 12, for copper 
Thermal Conductivity (k) = 386 W/(m K) at 250°C 

Density (ρ) = 8933 kg/m3 at 20°C 

Specific heat (c) = 383 J/(kg K) at 20°C 

SOLUTION 

The Reynolds number is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )6 2

10m/s 0.02 m

29.6 10 m /s−×
 = 10,135 
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The Nusselt number for non-circular cross sections in gases by Equation (7.6) 

 DNu  = B ReD
n 

where D, B, and n are given by Table 7.2  B = 0.138, n = 0.638 

 DNu  = 0.138 (10,135)0.638 = 49.6 

 ch  = DNu
k

D
 = 49.6

( )0.0339 W/(m K)

0.03m
 = 56.0 2W/(m K)  

The characteristic length for determining the Biot number of the rod is defined in Section 2.6.1 as 

 Lc = 
volume

surface area
 = cLA

LP
 = cA

P
 = 

4 27.79 10 m

0.104m

−×
 = 0.0075 m 

The Biot Number, from Table 4.3, is 

 Bi = c c

c

h L

k
 = 

( ) ( )
( )

256W/(m K) 0.0075m

386W/(m K)
 = 0.0011 << 0.1 

Therefore, the internal thermal resistance of the extrusion may be neglected and lumped parameters 
may be applied. An energy balance on the extrusion, including radiation, yields the following 

 q = PL[ ch (T – T∞) + ε σ (T4 – T∞
4)] = – ρ Ac Lc

d T

d t
 

This equation must be solved numerically 

 
d T

d t
 = –

c

P

A cρ
[ ch (T – T∞) + ε σ (T4 – T∞

4)] = –
c

P

L cρ
[ ch (T – T∞) + ε σ (T4 – T∞

4)] 

 
d T

d t
 = ( ) ( ) ( )3

1

8933 kg/m 0.0075m 383 (Ws)/(kg K)

−
  

   ( ) ( )2 8 2 4 4 456.0 W/(m K) ( ) 0.9 5.67 10 W/(m K ) [ ]T T T T−
∞ ∞ − + × −   

 
d T

d t
 = – 0.0022(T – T∞) – 1.9887 × 10–12 (T4 – T∞

4) K / s 

This can be solved numerically using a finite difference method 

 ΔT = T(t + ΔT) – T(t) = –Δt{0.0022[T(t) – T∞] + 1.9887 × 10–12[T(t)4 – T∞
4]} 

 T∞ = 323 K, Let Δt = 30 seconds 

 t (s) T (K)  t (s) T (K) 
 0 673  390 431 
 30 638  420 422 
 60 608  450 415 
 90 582  480 407 
 120 559  510 401 
 150 538  540 395 
 180 519  570 389 
 210 503  600 384 
 240 488  630 380 
 270 474  660 375 
 300 462 Δt = 14 s 674 373.3 
 330 451 
 360 440 
   t = 674 s = 11.2 minutes 
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PROBLEM 7.10 

Repeat Problem 7.9 if the extrusion cross-section is elliptical, major axis normal to the 
air flow and same mass per unit length. The major axis of the elliptical cross-section is 
5.46 cm and its perimeter is 12.8 cm. 

From Problem 7.9: A long copper extrusion is removed from a heat-treatment oven at 
400°C and immersed into a 50°C air stream flowing at 10 m/s velocity. Due to oxidation, 
the surface of the copper has an emissivity of 0.9. Determine the time required for the 
center of the copper to cool to 100°C. 

GIVEN 

• A long elliptical copper extrusion in an air stream 
• Initial temperature (To) = 400°C 
• Air Temperature (T∞) = 50°C 
• Air velocity (V∞) = 10 m/s 
• Surface emissivity (ε) = 0.9 
• Elliptical cross-section with major axis normal to the air flow 
• Length of the major axis of the ellipse (D) = 5.46 cm = 0.0546 m 
• Perimeter of ellipse (P) = 12.8 cm = 0.128 m 
• Same mass per unit length as Problem 7.9 

FIND 

• The time (t) required for the center of the copper to cool to 100°C 

ASSUMPTIONS 

• Air flow is perpendicular to the axis of the extrusion 
• Variation of the copper properties with temperature is negligible 

SKETCH 

D = 5.46 cm

Air

U• = 10 m/s

T• = 60°C

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average of the initial and final film temperature of  
150°C 

Thermal conductivity (ka) = 0.0339 W/(m K) 

Kinematic viscosity (ν) = 29.6 × 10–69 m2/s 

Prandtl number (Pr) = 0.71 

From Appendix 2, Table 12, for copper 
Thermal conductivity (k) = 386 W/(m K) at 250°C 

Density (ρ) = 8933 kg/m3 at 20°C 

Specific heat (c) = 383 J/(kg K) at 20°C 
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SOLUTION 

Since the density of the extrusion in this problem is the same as the previous problem, the same mass 
per unit length implies the same cross-section area 

 Ac,ellipse = Ac,hexagon = 7.79 cm2 = 7.79 × 10–4 m2 

Following the same procedure as the solution to Problem 7.9 
The Reynolds number is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )6 2

10m/s 0.0546m

29.6 10 m /s−×
 = 18,446 

The Nusselt number for non-circular cross sections in gases is given by Equation (7.6) 

 DNu  = B ReD
n 

where D, B, and n are given by Table 7.2  B = 0.085, n = 0.804 
(Although the Reynolds number for this case is slightly out of range of Equation (7.6), it will be 
applied to estimate the Nusselt number) 

 DNu  = 0.085 (18,446)0.804 = 229 

 ch  = DNu
k

D
 = 229

( )0.0339 W/(m K)

0.0546m
 = 142 2W/(m K)  

The characteristic length for determining the Biot number of the rod is defined in Section 2.6.1 as 

 Lc = 
volume

surface area
 = cLA

LP
 = cA

P
 = 

4 27.79 10 m

0.128 m

−×
 = 0.0061 m 

The Biot number, from Table 4.3, is 

 Bi = c c

c

h L

k
 = 

( ) ( )
( )

2142 W/(m K) 0.0061m

386W/(m K)
 = 0.0022 << 0.1 

Therefore, the internal thermal resistance of the extrusion may be neglected and lumped parameters 
may be applied. An energy balance on the extrusion, including radiation, yields the following 

 
d T

d t
 = –

1

cL cρ
[ ch (T – T∞) + ε σ (T 4 – T∞

4)] 

 
d T

d t
 = ( ) ( ) ( )3

1

8933kg/m 0.0061m 383(Ws)/(kg K)

−
 

   ( ) ( )2 8 2 4 4 4142 W/(m K) ( ) 0.9 5.67 10 W/(m K ) [ ]T T T T−
∞ ∞ − + × −   

 
d T

d t
 = – 0.0068 (T – T∞) – 2.445 × 10–12 (T4 – T∞

4) K/s  

This can be solved numerically using a finite difference method 

 ΔT = T(t + ΔT) –T(t) = –Δt{0.0068[T(t) – T∞] + 2.445 × 10–12 [T(t)4 – T∞
4]} 

 T∞ = 323 K,    Let Δt = 30 seconds 

  t (s) T (K) 
  0 673  
  30 587 
  60 525 
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  90 479 
  120 444 
  150 418 
  180 397 
 Let Δt = 26 seconds 206 383 
 Let Δt = 19 seconds 225 375 
  t ≈ 225 s = 3.75 minutes 

COMMENTS 

The elliptical extrusion cools more quickly due to both higher convection heat transfer coefficient and 
more surface area. 

PROBLEM 7.11 

Calculate the rate of heat loss from a human body at 37°C in an air stream of 5 m/s, 
35°C. The body can be modeled as a cylinder 30 cm in diameter, 1.8 m high. Compare 
your results with those for natural convection from a body and with the typical energy 
intake from food, 1033 kcal/day (Problem 5.8). 

GIVEN 

• Human body modeled as a cylinder in an air stream 
• Body surface temperature (Ts) = 37°C 
• Air velocity (V∞) = 5 m/s 
• Air temperature (T∞) = 35°C 
• Cylinder diameter (D) = 30 cm = 0.3 m 
• Cylinder height (H) = 1.8 m 

FIND 

(a) The heat loss from the idealized human body 
(b) Compare with the free convection results of Problem 5.8 and with the typical food consumption 

rate of 1033 kcal/day 

ASSUMPTIONS 

• Air velocity is perpendicular to the axis of the cylinder 
• Air flow approaching cylinder is laminar 
• Heat transfer from the ends can be neglected 

SKETCH 

H = 1.8 m

Ts = 37°C

Air

U• = 5 m/s

T• = 35 °C

D = 0.3 m  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 35°C 
Thermal conductivity (k) = 0.0262 W/(m K) 

Kinematic viscosity (ν) = 17.1 × 10–6 m2/s 

Prandtl number (Pr) = 0.71 

At the surface temperature of 37°C Prs = 0.71 
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SOLUTION 

The Reynolds number is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )–6 2

5m/s 0.3m

17.1×10 m /s
 = 87,719 

 
L

D
 = 

1.8 m

0.3 m
 = 6 

(a) Since L/D > 4, its effect on the Nusselt number is negligible and Equation (7.3) may be applied 

 DNu  = ch D

k
 = C ReD

m Prn 
0.25

s

Pr

Pr

 
  

 

where n = 0.37 and, from Table 7.1: C = 0.26 m = 0.6 

 DNu  = 0.26 (87,719)0.6 (0.71)0.37 (1) = 212 

 ch  = DNu
k

D
 = 212

( )0.0262 W/(m K)

0.3m
 = 18.6 2W/(m K)  

The rate of heat transfer is 

 q = ch π D L (Ts – T∞) = ( )218.6W/(m K) π (0.3 M)(1.8 m)(37°C – 35°C) = 63.1 W 

(b) From Problem 5.8 for natural convection 

 qnatural = 92.2 W 

This result is 46% higher than that calculated above. Note that the ambient air temperature in Problem 
5.8 is 20°C. The natural convection heat transfer coefficient for that problem was 3.6 W/m2 K which is 
only 19% of the value calculated above for forced convection. 
The rate of food consumption is 

Food consumption = ( )1033kcal/day 1000cal/kcal ( ) 1day
4.1868J/cal

24 hr
 
  

1hr

3600 s
 
  

( )(Ws)/J  = 50.1W 

This heat transfer rate is 21% lower than that calculated in part (a). 

PROBLEM 7.12 

A nuclear reactor fuel rod is a circular cylinder 6 cm in diameter. The rod is to be tested 
by cooling it with a flow of sodium at 205°C and a velocity of 5 cm/s Perpendicular to its 
axis. If the rod surface is not to exceed 300°C, estimate the maximum allowable power 
dissipation in the rod. 

GIVEN 

• Cylinder in a cross flow of liquid sodium 
• Cylinder diameter (D) = 6 cm = 0.06 m 
• Sodium temperature (T∞) = 205°C 
• Sodium velocity (U∞) = 5 cm/s = 0.05 m/s 
• Maximum rod surface temperature (Ts) = 300°C 

 

FIND 

• The maximum allowable power dissipation ( )Gq  
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ASSUMPTIONS 

• Steady state 
• Turbulence in the sodium flow approaching the rod is low 
• Heat generation per unit volume in the rod is uniform 

SKETCH 

Sodium

U
¥

= 5 cm/s T
¥

= 205°C

Ts = 300°C MaxD = 6 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 26, for sodium at 205°C 
Thermal conductivity (k) = 80.3 W/(m K) 

Kinematic viscosity (ν) = 4.6 × 10–7 m2/s 

Prandtl number (Pr) = 0.0072 

SOLUTION 

The Reynolds number is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )–7 2

0.05m/s 0.06m

4.6×10 m /s
 = 6522 

ReD Pr = 6522 (0.0072) = 47.0 
Therefore, Equation (7.7) may be applied 

 DNu  = 1.125 (ReD Pr)0.413 = 1.125 (47.0)0.413 = 5.52 

 ch  = D
k

Nu
D

 = 5.52
80.3W/(m K)

0.06m

( )
 = 7381 2W/(m K)  

The rate of heat transfer at the maximum surface temperature is 

 q = ch At (Ts – T∞) = ch π D L (Ts – T∞) 

 
q

L
 = ( )27381W/(m K) π (0.06 m)(1 m)(300°C – 205°C) = 1.32 × 105 W/m  

The maximum rate of heat generation per unit volume of the rod is 

 Gq  = 
volume

q
 = 

2

4

q

D L
π  = 

2

4 q

LDπ
 
    = 

( )2

4

0.06 mπ
( )51.32 10 W/m×  = 4.67 × 107 3W/m  

COMMENTS  

If the rate of heat generation exceeds the value calculated, the surface temperature will rise to dissipate 
the energy. Also, nonuniform heat generation can lead to hot spots as will variations in the local value 
of the heat transfer coefficient around the circumference (see equation (7.2)). 

PROBLEM 7.13 

A stainless steel pin fin 5 cm long, 6 mm OD, extends from a flat plate into a 175 m/s air 
stream as shown in the accompanying sketch. (a) Estimate the average heat transfer 
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coefficient between air and the fin. (b) Estimate the temperature at the end of the fin. (c) 
Estimate the rate of heat flow from the fin. 

U•

– 50°C
Air

Pin Fin

Flat-plate Temperature
650°C

 

GIVEN 

• A stainless steel pin fin in an air stream 
• Pin length (L) = 5 cm = 0.05 m 
• Pin diameter (D) = 6 mm = 0.006 m 
• Air velocity (U∞) = 175 m/s 

FIND 

(a) The average heat transfer coefficient ( ch ) 
(b) The temperature of the end of the fin (TL) 
(c) The rate of heat flow from the fin (qf) 

ASSUMPTIONS 

• Steady state 
• Air approaching the fin has negligible turbulence 
• Radiative heat transfer is negligible 
• Steel is type 304 
• Steel properties are uniform 

PROPERTIES AND CONSTANTS 

Extrapolating from Appendix 2, Table 27, for dry air at –50°C 
Thermal conductivity (k) = 0.0202 W/(m K) 

Kinematic viscosity (ν) = 9.3 × 10–6 m2/s 

Prandtl number (Pr) = 0.71 

From Appendix 2, Table 10, for Type 304 stainless steel ks = 14.4 W/(m K) at 20°C 
(Note that figure 1.6 shows very little increase in k for stainless steel in the range of 300°C to 700°C.) 

SOLUTION 

(a) The Reynolds number is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )–6 2

175m/s 0.006m

9.3×10 m /s
 = 1.13 × 105 

 
L

D
 = 

0.05 m

0.006 m
 = 8.33 > 4 

Therefore, Equation (7.3) and Table 7.1 may be used. (Note that Pr/Prs = 1) 

 DNu  = ch D

k
 = C ReD

m Prn  c = 0.26  m = 0.6  n = 0.37 

 DNu  = 0.26 (1.13 × 105)0.6 (0.71)0.37 = 247 

 ch  = DNu
k

D
 = 247 

( )0.0202 W/(m K)

0.006m
 = 829 2W/(m K)  
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(b) From Table 2.1, for a fin of uniform cross-section with convection at the tip, the temperature 
distribution is 

 
s

T T

T T
∞

∞

−
−

 = 

cosh[ ( )] sinh[ ( )]
m k

cosh( ) sinh[ ]
m k

c

c

h
m L x m L x

h
m L m L

 
− + −  

 
+   

 

where 

 m = c

s c

h P

k A
 = 

2

4

c

s

h D

k D

π
π  = 

4 c

s

h

k D
 = 

( )
( ) ( )

24 829 W/(m K)

14.4 W/(m K) 0.006m
 = 196.3 1/m 

 m L = 196.3 1/m (0.05 m) = 9.81 

 
m K

ch
 = 

( )
( ) ( )

2829 W/(m K)

196.3(1/m) 14.4 W/(m K)
 = 0.2943 

At x = L 

 
s

T T

T T
∞

∞

−
−

 = 
cosh(0) 0.2943sinh(0)

cosh(9.81) 0.2943sinh(9.81)

+
+

 = 0.000085 

 ∴  T = 0.000085 (Ts – T∞) + T∞ = 0.000085 (650°C – 50°C) – 50°C = – 49°C 

The tip temperature is practically the same as the ambient temperature. 
(c) The rate of heat transfer, from Table 2.1 is 

 qf = M 

sinh( ) cosh( )
m k

cosh( ) sinh( )
m k

c

c

h
m L m L

h
m L m L

 
+   

 
+   

 

 where  M = c s ah Pk A (Ts – T∞) = 
2

3

4c sh D k
π

 (Ts – T∞) 

 M = ( ) ( ) ( )
2

32829 W/(m K) 0.006m 14.4 W/(m K)
4

π
(650°C + 50°C) = 55.94 

 qf = 55.94 W 
sinh(9.81) 0.2943cosh(9.81)

cosh(9.81) 0.2943sinh(9.81)

+
+

 = 55.9 W 

 

COMMENTS 

These results should be considered an estimate due to uncertainty in the air properties. 
Also, due to the presence of the surface from which the fin protrudes, the flow is not uniform as 
assumed by Equation (7.3), therefore, the heat transfer coefficient may vary. 

PROBLEM 7.14 

Repeat Problem 7.13 with glycerol at 20°C flowing over the fin at 2 m/s. The plate 
temperature is 50°C. 

From Problem 7.13: A stainless steel pin fin 5 cm long, 6-mm-OD, extends from a flat 
plate into a 175 m/s glycerol stream as shown in the accompanying sketch.  
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(a) Estimate the average heat transfer coefficient between glycerol and the fin.  
(b) Estimate the temperature at the end of the fin. (c) Estimate the rate of heat flow from 
the fin. 

U•

20°C

Pin Fin

Flat-plate Temperature
50°C

Glycerol

 

 

GIVEN 

• A stainless steel pin fin in an air stream 
• Pin length (L) = 5 cm = 0.05 m 
• Pin diameter (D) = 6 mm = 0.006 m 
• Glycerol velocity (U∞) = 2 m/s 
• Glycerol temperature (T∞) = 20°C 
• Plate temperature (Tp) = 50°C 

FIND 

(a) The average heat transfer coefficient ( ch ) 
(b) The temperature of the end of the fin (TL) 
(c) The rate of heat flow from the fin (qf) 

ASSUMPTIONS 

• Steady state 
• Turbulence in the glycerol approaching the fin is low 
• Radiative heat transfer is negligible 
• Steel is type 304 
• Steel properties are uniform 
• Variation of the thermal properties of glycerol and steel with temperature is negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 21, for glycerol at 20°C 
Thermal conductivity (k) = 0.285 W/(m K) 

Kinematic viscosity (ν) = 1175 × 10–6 m2/s 

Prandtl number (Pr) = 12,609 

From Appendix 2, Table 10, for type 304 stainless steel 

 ks = 14.4 W/(m K) at 20°C 

 

SOLUTION 

(a) The Reynolds number is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )–6 2

2 m/s 0.006m

1175×10 m /s
 = 10.21 
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Therefore, Equation (7.3) and Table 7.1 may be used. (Note that Pr/Prs = 1) 

 DNu  = ch D

k
 = C ReD

m Prn  c = 0.75  m = 0.4  n = 0.36 

 DNu  = 0.75(10.21)0.4 (12,609)0.36 = 56.88 

 ch  = DNu
k

D
 = 56.88

( )0.285W/(m K)

0.006m
 = 2701 2W/(m K)  

(b) 

 m = 
4 c

s

h

k D
 = 

( )
( ) ( )

24 2701W/(m K)

14.4 W/(m K) 0.006m
 = 354 1/m 

 m L = 354 1/m  (0.05 m) = 17.7 

 
m K

ch
 = 

( )
( )

22701W/(m K)

3541/m 14.4 W/(m K)
 = 0.53  

At x = L 

 
s

T T

T T
∞

∞

−
−

 = 
cosh(0) 0.53sinh(0)

cosh(17.7) 0.53sinh(17.7)

+
+

 = 2.69 × 10–8 

Therefore, the tip temperature is practically the same as the ambient qlycerol temperature. 
(c) The rate of heat transfer, from Table 2.1 is 

 M = ( ) ( ) ( )
2

322701W/(m K) 0.006m 14.4 W/(m K)
4

π
(50°C – 20°C) = 4.32 

 qf = 4.32 W 
sinh(17.7) 0.53cosh(17.7)

cosh(17.7) 0.556sinh(18.54)

+
+

 = 4.32 W 

PROBLEM 7.15 

Water at 180°C and at 3 m/s enters a bare, 15-m-long, 2.5-cm wrought iron pipe, if air at 
10°C flows perpendicular to the pipe at 12 m/s, determine the outlet temperature of the 
water. (Note that the temperature difference between the air and the water varies along 
the pipe.) 

GIVEN 

• Wrought-iron pipe with water flow inside and perpendicular air flow outside 
• Water entrance temperature (TW,in) = 180°C 
• Water velocity (VW) = 3 m/s 
• Pipe length (L) = 15 m 
• Pipe diameter (D) = 2.5 cm = 0.025 m 
• Air temperature (Ta) = 10°C 
• Air velocity (Va) = 12 m/s 

FIND 

• Outlet temperature of the water (TW,out) 
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ASSUMPTIONS 

• Steady state 
• Air flow approaching pipe is negligible 
• Thermal resistance of the pipe is negligible 
• The pipe thickness can be neglected 

SKETCH 

Water

Vw = 3 m/s

Tw,in = 180°C

D = 2.5 cm
Air

Va = 12 m/s Ta = 10°C

Tw,out = ?

L = 15 m

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 10°C 
Thermal conductivity (ka) = 0.0244 W/(m K) 

Kinematic viscosity (va) = 17.8 × 10–6 m2/s 

Prandtl number (Pra) = 0.71 

From Appendix 2, Table 13, for water at the entrance temperature of 180°C 
Thermal conductivity (kw) = 0.673 W/(m K) 

Kinematic viscosity (vw) = 0.173 × 10–6 m2/s 

Prandtl number (Prw) = 1.01 

Density (ρw) = 886.6 kg/m2 

Specific Heat (c) = 4396 J/(kg K) 

 

SOLUTION 

Air Side: 
The Reynolds number on the air side is 

 (ReD)air = a

a

V D

ν
 = 

( ) ( )
( )–6 2

12 m/s 0.025m

17.8×10 m /s
 = 16,853 

The Nusselt number is given by Equation 7.3 and Table 7.1 

 ( )
airDNu  = 

( )airc

a

h D

k
 = C ReD

m Prn 
0.25

s

Pr

Pr

 
  

 

where C = 0.26, m = 0.6, and n = 0.37. 
Note that the Prandtl number of air does not change appreciably between the air and water 
temperatures. Therefore, Pr/Prs = 1. 

 ( )
airDNu  = 0.26 (16,853)0.6 (0.71)0.36 = 78.7 

 ( )airch  = ( )
air

a
D

k
Nu

D
 = 78.7 

( )0.0244 W/(m K)

0.025m
 = 76.8 2W/(m K)  
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Water Side: 
The Reynolds number based on the inlet properties is 

 ReD = w

w

V D

ν
 = 

( ) ( )
( )–6 2

3m/s 0.025m

0.173×10 m /s
 = 4.33 × 105 (Turbulent) 

Applying Equation (6.63) 

 ( )
waterDNu  = 

( )waterc

w

h D

k
 = 0.023 ReD

0.8 Prn  n = 0.3 for cooling 

 ( )
waterDNu  = 0.023 (4.33 × 105)0.8 (1.01)0.3 = 746 

 ( )waterch  = ( )
waterDNu wk

D
  = 746 

( )0.673W/(m K)

0.025m
 = 20,078 2W/(m K)  

The overall heat transfer coefficient is 

 
1

U
 = ( )air

1

ch
 + ( )water

1

ch
 = ( )2

1

76.8W/(m K)
 + ( )2

1

20,078 W/(m K)
 = 0.0131 2(m K)/W  

 U  = 76.6 2W/(m K)  

Let’s assume that the water temperature changes little from the pipe inlet to outlet. Since the air 
temperature is constant and uniform, the heat transfer from the water is then analogous to the uniform 
surface temperature analysis of Section 6.2.2 and Equation (6.36) may be applied 

 
,out

,in

w a

w a

T T

T T

−
−

 = exp 
UPL

m c
 −  

 = exp 
2

4 w w

U DL

V D c

π
π ρ

 
 − 
  

 = exp 
4

w w

UL

V D cρ
 

−  
 

Solving for the water outlet temperature 

 Tw,out = Ta + (Tw,in – Ta) exp 
4

w w

UL

V D cρ
 

−  
 

 Tw,out = 10°C + (180°C –10°C) exp
( ) ( )

( ) ( ) ( ) ( ) ( )

2

3

4 76.6W/(m K) 15m

3m/s 0.025m 886.6kg/m 4396J/(kg K) (Ws)/J

 
− 
 

 

 Tw,out = 177°C 

Therefore, the assumption that the water changes little from pipe inlet to outlet is valid. 

COMMENTS 

The average water temperature is 178.5°C. This is not different enough from the inlet temperature to 
justify another iteration using the water properties at the average water temperature. 
Note that the convective thermal resistance of the air is 99.6% of the total thermal resistance. 

PROBLEM 7.16 

The temperature of air flowing through a 25-cm-diameter duct whose inner walls are at 
320°C is to be measured with a thermocouple soldered in a cylindrical steel wall of 1.2 
cm OD, whose exterior is oxidized as shown in the accompanying sketch. The air flows 
normal to the cylinder at a mass velocity of 17,600 kg/(h m2). If the temperature 
indicated by the thermocouple is 200°C, estimate the actual temperature of the air. 
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3
.5

c
m

1.2 cm

Air

17.600 kg/(h m )2

 

GIVEN 

• Cylindrical thermocouple wall in an air duct 
• Duct diameter (Dd) = 25 cm = 0.25 m 
• Duct wall temperature (Tds) = 320°C =m 593 K 
• Wall outside diameter (Dw) = 1.2 cm = 0.012 m 
• Exterior of wall is oxidized 
• Air mass velocity ( )/m A  = 17,600 kg/(h m2) 

• Thermocouple indicated temperature (Ttc) = 200°C = 473 K 

FIND 

• Air temperature (T∞) 

ASSUMPTIONS 

• Steady state 
• Thermal resistance between the thermocouple and the wall exterior surface is negligible 
• Inside of duct behaves as a black body enclosure 
• Conduction to the thermocouple wall from the duct wall can be neglected 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 7, the emissivity of oxidized steel (ε) = 0.94. 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

An iterative solution must be used since the rate of heat transfer will depend on the air properties 
which are a function of the unknown air temperature. Heat is transferred by radiation from the duct 
wall to the thermocouple wall and from the thermocouple wall to the air. Therefore, the air 
temperature will be lower then the thermocouple reading. The rate of heat transfer from the wall to the 
thermocouple must equal that from the thermocouple to the air 

 ch A (Ttc – Ta) = σ ε A (Tds
4 – Ttc

4) 

Solving for the air temperature 

 Ta = Ttc – 
ch

σ ε
 (Tds

4 – Ttc
4) 

For the first iteration, let Ta = 150°C. From Appendix 2, Table 27, for air at 150°C 

  Density (ρ) = 0.820 kg/m3 

  Thermal conductivity (k) = 0.0339 W/(m K)  

  Kinematic viscosity (ν) = 29.6 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

At the wall temperature of 200°C  Prs = 0.71 
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The air velocity (U∞) is 

 U∞ = 
m

Aρ
 = 

( )
( ) ( )

2

3

17600kg/(h m )

0.820kg/m 3600s/h
 = 5.96 m/s  

The Reynolds number based on the well diameter is 

 ReD = wU D

ν
∞  = 

( ) ( )
( )–6 2

5.96m/s 0.012m

29.6×10 m /s
 = 2417 

The Nusselt number is given by Equation (7.3) and Table 7.1 

 DNu  = ch D

k
 = C ReD

m Prn
0.25

s

Pr

Pr

 
  

 where C = 0.026  m = 0.6  n = 0.37 

 DNu  = 0.26 (2417)0.6 (0.71)0.36 (1) = 24.54 

 ch  = DNu
k

D
 = 24.54 

( )0.0339 W/(m K)

0.012 m
 = 69.3 2W/(m K)  

The air temperature is 

 Ta = 200°C – 
( ) ( )

( )
8 2 4

2

5.67 10 W/(m K ) 0.94

69.3 W/(m K)

−×
[(593 K)4 – (473 K)4] = 143°C 

The original guess for Ta is close to the above value. Another iteration using air properties at 143°C 
would not significantly improve the result. 

PROBLEM 7.17 

Develop an expression for the ratio of the rate of heat transfer to water at 40°C from a 
thin flat strip of width πD/2 and length L at zero angle of attack and a tube of the same 
length and diameter D in cross-flow with its axis normal to the water flow in the 
Reynolds number range between 50 and 1000. Assume both surface are at 90°C. 

GIVEN 

• Water flowing over a thin flat strip at zero angle of attack or a tube in crossflow 
• Water temperature (T∞) = 40°C 
• Tube diameter = D 
• Strip width = πD/2 
• Tube and strip length = L 
• Reynolds number: 50 < Re < 1000 

FIND 

• The ratio of the heat transfer from the strip and that from the cylinder. (qs/qt) 

ASSUMPTIONS 

• Steady state for both cases 
• The tube and strip temperatures (Ts) are 90°C 
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SKETCH 

Water

T
¥

= 40°C

Ts = 90°C

Strip

Water

T
¥

= 40°C

Ts = 90°C

Tube

D

pD
2

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 40°C: Prandtl number (Pr) = 4.3 
At the surface temperature of 90°C: Prs = 1.94 

SOLUTION 

Note that the heat transfer area (πD) is the same in both cases. 
Thin Strip: 
The flow over the thin strip is laminar for the Reynolds number given. The Nusselt number is given by 
Equation (4.38) 

 LNu  = 0.664 
1

2
LRe  

1

3Pr  

Tube: 
The Nusselt number for the tube is given by Equation (7.3) and Table 7.1 

 DNu   = ch D

k
 = C

mU D

ν
∞ 

   Prn 
0.25

s

Pr

Pr

 
  

 

 ReD C m 
 1 – 40 0.75 0.4 
 40 – 1 × 103 0.51 0.5 
 1 × 103 – 2 × 105 0.26 0.6 
 2 × 105 – 1 × 106 0.076 0.7 

Since the transfer areas and temperature differences are the same, the ratio of the rates of heat transfer 
is equal to the ratio of the heat transfer coefficients. The heat transfer rate from the strip will be 64% of 
that from the tube with the same Reynolds number. 

PROBLEM 7.18 

Repeat Problem 7.17 for air flowing over the same two surfaces in the Reynolds number 
range between 40,000 and 200,000. Neglect radiation. 

From Problem 7.17: Develop an expression for the ratio of the rate of heat transfer to air 
at 40°C from a thin flat strip of width πD/2 and length L at zero angle of attack and a 
tube of the same length and diameter D in cross-flow with its axis normal to the flow. 
Assume both surfaces are at 90°C. 

GIVEN 

• Air flowing over a thin flat strip at zero angle of attack or a tube in crossflow 
• Air temperature (T∞) = 40°C 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
634

• Tube diameter = D 
• Strip width = πD/2 
• Tube and strip length = L 
• Reynolds number : 40,000 < Re < 200,000 

FIND 

• The ratio of the heat transfer from the strip and that from the cylinder. (qs/qt) 

ASSUMPTIONS 

• Radiative heat transfer is negligible 
• Steady state for both cases 
• The tube and strip temperatures (Ts) are 90°C 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 40°C 

Kinematic viscosity (ν) = 17.6 × 10–6 m2/s 

Prandtl number (Pr) = 0.71 

at 90°C Prs = 0.71 

SOLUTION 

This solution follows the same procedure as the solution to Problem 7.17 
Applying Equation (4.38) 

 LNu  = 0.664 
1

2
LRe  

1

3Pr  

For the tube, from Equation (7.3) and Table 7.1 

 DNu   = ch D

k
 = C

mU D

ν
∞ 

  
Prn 

0.25

s

Pr

Pr

 
  

 

 ReD C m 
 1 – 40 0.75 0.4 
 40 – 1 × 103 0.51 0.5 
 1 × 103 – 2 × 105 0.26 0.6 
 2 × 105 – 1 × 106 0.076 0.7 

but Pr = Prs. The heat transfer rate from the strip will be 165% of that from the tube with the same 
Reynolds number. 

PROBLEM 7.19 

The instruction manual for a hot-wire anemometer states that ‘roughly speaking, the 
current varies as the one-fourth power of the average velocity at a fixed wire resistance’. 
Check this statement, using the heat transfer characteristics of thin wire in air and 
water. 

GIVEN 

• A thin current carrying wire in an air or water stream 

FIND 

• Show that the current (I) varies as the one-fourth power of the fluid velocity (V∞) at a fixed 
resistance (ReI) 

ASSUMPTIONS 

• Radiative heat transfer is negligible 
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SOLUTION 

This solution follows the same procedure as the solution to Problem 7.17 
Holding the wire resistance constant has the effect of holding the wire temperature (Ts) and therefore, 
the fluid properties constant. Ts, Tb, At, and ReI are constant. 
According to Equation (7.3) 

 DNu   = ch D

k
 = C

mU D

ν
∞ 

  
Prn 

0.25

s

Pr

Pr

 
  

 

for 40 < Re < 1000 m = 0.5 → I a U∞1/4 
Since the wire diameter is typically a few microns, we expect the Reynolds number to be very low. 
Therefore, from Table 7.1 m = 0.4 to 0.5 and m/2 = 0.2 to 0.25 

 ReD C m 
 1 – 40 0.75 0.4 
 40 – 1 × 103 0.51 0.5 
 1 × 103 – 2 × 105 0.26 0.6 
 2 × 105 – 1 × 106 0.076 0.7 

PROBLEM 7.20 

A hot-wire anemometer is used to determine the boundary layer velocity profile in the 
air flow over a scale model of an automobile. The hot-wire is held in a traversing 
mechanism that moves the wire in a direction normal to the surface of the model. The 
hot-wire is operated at constant temperature. The boundary layer thickness is to be 
defined as the distance from the model surface at which the velocity is 90% of the free 
stream. If the probe current is low when the hot-wire is held in the free stream velocity, 
U∞, What current will indicate the edge of the boundary layer? Neglect radiation heat 
transfer from the hot-wire and conduction from the ends of the wire. 

GIVEN 

• Thin, electrically-heated constant-temperature wire in air flow near an automobile model 
• Boundary layer thickness ° point when velocity (Uy) = 90% free stream velocity Vo 
• Probe current at U∞ = Io 

FIND 

• Probe current at edge of the boundary layer (Ib) 

ASSUMPTIONS 

• Radiation is negligible 
• Conduction from the ends of the hot-wire is negligible 
• Reynolds number is small 

SOLUTION 

Restating the desire result: What is the current of V = 0.9 V∞ in terms of the current Io at Vo? Since the 
diameter of the wire will be very small, the Reynolds number will be small. For 1 < Re < 40 the 
Nusselt number, use Equation (7.3) and Table 7.1 

 DNu   = ch D

k
 = C

mU D

ν
∞ 

  
Prn 

0.25

s

Pr

Pr

 
  

 

 ReD C m 
 1 – 40 0.75 0.4 
 40 – 1 × 103 0.51 0.5 
 1 × 103 – 2 × 105 0.26 0.6 
 2 × 105 – 1 × 106 0.076 0.7 
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Uy is the air velocity at a distance y from the model surface. 
The rate of electrical energy dissipation must equal the rate of convective heat transfer. The electrical 
resistance of the wire (ReI) is a function of the wire temperature only and is therefore constant in this 
case. 

For Uy = 0.9 U∞  
 I = Io (0.9)0.2 
 I = 0.979 Io 
The current will be 0.979 Io at the edge of the boundary layer. 

PROBLEM 7.21 

A platinum hot-wire anemometer operated in the constant-temperature mode has been 
used to measure the velocity of a helium stream. The wire diameter is 20 m, its length is 5 
mm, and it is operated at 90°C. The electronic circuit used to maintain the wire 
temperature has a maximum power output of 5 watts and is unable to accurately control 
the wire temperature if the voltage applied to the wire is less than 0.5 volt. Compare the 
operation of the wire in the helium stream at 20°C and 10 m/s with operation in air and 
water at the same temperature and velocity. The electrical resistance of the platinum at 
90°C is 21.6 W-cm. 

GIVEN 

• A constant temperature platinum hot-wire in a stream of helium 
• Wire diameter = 20 m = 20 × 10–6 m 
• Wire length (L) = 5 mm = 0.005 m 
• Wire temperature (Tw) = 90°C 
• Maximum electric power to wire (Pmax) = 5 W 
• Minimum voltage (Vmin) = 0.5 V 
• Helium temperature (T∞) = 20°C 
• Helium velocity (U∞) = 10 m/s 
• Resistivity (re) = 21.6 W cm = 21.6 × 10–8 W m 

FIND 

• Compare the operation of the wire in helium to that in air and water 

ASSUMPTIONS 

• Radiation is negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2 

 Fluid Helium Air Water 
 Table number 30 27 13 
 Thermal conductivity at 20°C, k (W/(mK)) 0.1471 0.0251 0.597 
 Kinematic viscosity at 20°C, × 106 (m2/s) 122.2 15.7 1.006 
 Prandtl number at 20°C, Pr 0.70 0.71 7.0 
 Prandtl number at 90°C, Prs 0.71 0.71 1.94 

 

SOLUTION 

The Nusselt number is given by Equation (7.3) and Table 7.1 

 DNu   = ch D

k
 = C

mU D

ν
∞ 

  
Prn 

0.25

s

Pr

Pr

 
  

 

 ReD C m 
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 1 – 40 0.75 0.4 
 40 – 1 × 103 0.51 0.5 
 1 × 103 – 2 × 105 0.26 0.6 
 2 × 105 – 1 × 106 0.076 0.7 

 
Helium:  C = 0.75  m = 0.4  n = 0.37 
Air:  C = 0.75  m = 0.4  n = 0.37 
Water: C = 0.51  m = 0.5 n = 0.37 
The rate of convective heat transfer must equal the electrical power dissipated. Therefore, the power 
capabilities of the unit are sufficient for these conditions in helium and air but not in water. The 
voltage for the case with air is too low for the device. Therefore, the device will perform adequately 
only for the helium flow under these conditions. 

PROBLEM 7.22 

A hot-wire anemometer consists of a 5 m diameter platinum wire, 5 mm long. 

The probe is operated at constant current of 0.03 amp. The electrical resistivity of 
platinum is 17 W cm at 20°C and increases by 0.385% per °C. 

 (a) If the voltage across the wire is 1.75 Volts, determine the velocity of the air 
flowing across it and the wire temperature if the free-stream air temperature is 
20°C. 

 (b) What is the wire temperature and voltage if the air velocity is 10 m/s? 

Neglect radiation and conduction heat transfer from the wire. 

GIVEN 

• A hot wire in air 
• Wire diameter (D) = 5 m = 5 × 10–6 m 
• Wire length (L) 5 mm = 0.005 m 
• Current (I) = 0.03 A (constant) 
• Electrical resistivity (rel) = 17 W cm = 17 × 10–8 W m at 20°C and increases 0.385% per °C. 
• Air temperature (T∞) = 20°C 

FIND 

(a) The air velocity (U∞) and the wire temperature (Tw) if the voltage across the wire (Vel) =1.75V 
(b) The wire temperature (Tw) and voltage (Vel) if the air velocity (U∞) = 10 m/s 

ASSUMPTIONS 

• Radiative heat transfer is negligible 
• Variation of Prandtl number with temperature id negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 20°C 
  Thermal conductivity (k) = 0.0251 W/(m K) 

  Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

  At 90°C: Pr = 0.71 

SOLUTION 

The electrical resistivity of the wire as a function of temperature is 

 ρel = ρel,20 [1 + 0.00385 (Tw – 20°C)]  (Tw in °C) 

The electrical resistance of the wire is 
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 Rel = el

c

L

A

ρ
 = 

2

4 e L

D

ρ
π

 = 
( )

( )26

4 0.005m

5 10 mπ −×
[17 × 10–8 Ωm] [1 + 0.00385 (Tw – 20°C)] 

 Rel = 43.29 Ω [1 + 0.00385 (Tw – 20°C)] 

(a) The voltage across the wire is given by 

 Vel = IRel = I(43.29 Ω) [1 + 0.00385 (Tw – 20°C)] 

Solving for the wire temperature 

 Tw = 
1

1
0.00385 (43.29 )

elV

I
 − Ω 

 + 20°C  

  = 
1.75 volt1

1
0.00385 0.03A(43.29 )

 − Ω 
 + 20°C = 110°C 

The rate of convective heat transfer for the wire must equal the electrical power dissipated. 

  ch π D L (Tw – T∞) = VelI 

 ch  = 
( )

el

w

V I

DL T Tπ ∞−
 = 

( )
6

1.75volt (0.03A) W/(volt A)

(5 10 m)(0.005m)(110°C 20°C)π −× −
 = 7427 2W/(m K)  

Assuming that 1 < Re < 40, and neglecting variation of Prandtl number, Equation (7.3) and Table 7.1 
give the heat transfer coefficient as 

 ch  = 0.75
k

D
 

0.4U D

ν
∞ 

  
 Pr0.37 

Solving for the air velocity 

 U∞ = 
2.50.4

0.37

0.75
cD h

Pr
k D

ν−  
    

 

 U∞ = 
( ) ( )

( )
( )

2.50.46 2 6 2
0.37

6

5 10 m 7427 W/(m K) 15.7 10 m /s
0.71

0.75 0.0251W/(m K) 5 10 m

− −
−

−

  × ×
   ×  

 = 23.6 m/s  

 Note that ReD = 
U D

ν
∞  = 

( ) ( )
( )

–6

–6 2

23.6m/s 5 10 m

15.7 10 m /s

×
×

 = 7.5 which is in the assumed range. 

(b) The Reynolds number at U∞ = 10 m/s is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )

–6

–6 2

10m/s 5 10 m

15.7 10 m /s

×
×

 = 3.18 

 DNu  = 0.75 (3.18)0.4 (0.71)0.37 = 1.05 

 ch  = DNu
k

D
 = 1.05

( )
6

0.0251W/(m K)

5 10 m−×
 = 5271 2W/(m K)  

Balancing the rate of heat transfer and electrical power dissipation 

 ch π D L (Tw – T∞) = I2 Rel = I2 (43.29 Ω) [1 + 0.00385 (Tw – 20°C)] 

 

( )25271 W/(m K) π (5 × 10–6 m) (0.005m) (Tw – 20°C) = (0.03 A)2 (43.29 Ω) [1 + 0.00385 (Tw – 20°C)] 
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  ( )0.000414 W/K (Tw – 20°C) = (0.0390 W) [1 + 0.00385 (Tw – 20°C)] 

By trial and error Tw = 168°C 

 Vel = IRel = (0.03A) (43.29 Ω) [1 + 0.00385(168°C – 20°C)] = 2.04 Volts 

COMMENTS 

Some heat transfer correlations require that air properties be evaluated at the film temperature. This 
type of correlation would make the calculation of velocity from a given voltage much more difficult 
since the film temperature changes with the wire temperature. In this case, operation in the constant 
temperature mode is much simpler because the film temperature is fixed. 

PROBLEM 7.23 

A 2.5 cm sphere is maintained at 50°C in an air stream or a water stream, both at 20°C 
and 2 m/s velocity. Compare the rate of heat transfer and the drag on the sphere for both 
fluids. 

GIVEN 
• A sphere in an air stream or a water stream 
• Sphere diameter (D) = 2.5 cm = 0.025 m 
• Sphere temperature (Ts) = 50°C 
• Fluid temperature (Tf) = 20°C 
• Fluid velocity (U∞) = 2 m/s 

FIND 
• The rate of heat transfer (q) and the drag force 

ASSUMPTIONS 
• Radiation is negligible 

SKETCH 

Air or Water

Tf = 20°C

U = 2 m/s�

D = 2.5 cm  

 

PROPERTIES AND CONSTANTS 

From Appendix 2 

 Fluid Air Water 

 Table Number 27 13 
 Density at 20°C, ρ (kg/m3) 1.164 998.2 
 Thermal conductivity at 20°C, k (W/(m K)) 0.0251 0.597 
 Kinematic Viscosity at 20°C, v × 106 (m2/s) 15.7 1.006 
 Prandtl number at 20°C, Pr 0.71 7.0 

 Absolute viscosity at 20°C, μ∞  × 106 ( )2(Ns)/m  18.240 993 

 Absolute viscosity at 50°C, μ∞  × 106
 ( )2(Ns)/m  19.515 555.1 
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SOLUTION 

The Reynolds number is 

 ReD = 
U D

ν
∞  

 For air 

  ReD = 
( ) ( )
( )–6 2

2 m/s 0.025m

15.7 10 m /s×
 = 3185 

 For water 

  ReD = 
( ) ( )

( )–6 2

2 m/s 0.025m

1.006 10 m /s×
 = 49,702 

Equation (7.11) can be applied to both cases 

 NuD = 2 + (0.4 ReD
0.5 + 0.06 ReD

 0.67) Pr0.4 
0.25

s

μ
μ

∞ 
  

 

For air 

 NuD = 2 + (4.0 (3185)0.5 + 0.06 (3185)0.67) (0.71)0.4 
0.2518.240

19.515
 
    = 32.8 

 hc = NuD 
k

D
 = 32.8 

( )0.0251W/(m K)

0.025m
 = 32.9 2W/(m K)  

For water 

 NuD = 2 + (0.4 (49,702)0.5 + 0.06 (49,702)0.7) (7.0)0.4 
0.25993

555.1
 
    = 438 

 hc = NuD 
k

D
 = 438 

( )0.597 W/(m K)

0.025m
 = 10,469 2W/(m K)  

The rate of heat transfer is  

 q = hc A ΔT = hc π D2 (Ts – T∞) 

 For air 

  q = ( )232.9 W/(m K) π (0.025 m)2 (50°C – 20°C) = 1.9 W 

 For water 

  q = ( )210,469 W/(m K) π (0.025 m)2 (50°C – 20°C) = 617 W 

The total drag coefficient can be read from Figure 7.7 and is defined in Section 7.2 as 

 CD = 
2 2

Drag force

2 4

U Dρ π∞   
     

  Drag force = 
1

8
CD ρ U∞

2 π D2 

For air, From Figure 7.7, CD = 0.4 

 Drag force = 
1

8
(0.4) ( )31.164 kg/m ( )22 m/s π (0.025 m)2 ( )2(Ns )/(kg m)  = 0.00046 N 
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For water, From Figure 7.7, CD = 0.5 

 Drag force = 
1

8
 (0.5) ( )3998.2 kg/m ( )22 m/s π (0.025m)2 ( )2(Ns )/(kg m)  = 0.49 N 

COMMENTS 

Note that the heat transfer increases by a factor of 324 in water while the drag force increases by a 
factor of 1065. 

PROBLEM 7.24 

Compare the effect of forced convection on heat transfer from an incandescent lamp, 
Problem 5.27. What will the glass temperature be for air velocities of 0.5, 1, 2, and 4 m/s? 

From Problem 5.27: Only ten percent of the energy dissipated by the tungsten filament 
of an incandescent lamp is in the form of useful visible light. Consider a  
100 W lamp with a 10 cm spherical glass bulb. Assuming an emissivity of 0.85 for the 
glass and ambient air temperature of 20°C, what is the temperature of the glass bulb? 

GIVEN 
• A spherical glass light bulb in air 
• Bulb power consumption (P) = 100 W 
• 10% of energy is in the form of visible light 
• Diameter (D) = 10 cm = 0.1 m 
• Bulb emissivity (ε) = 0.85 
• Ambient air temperature (T∞) = 20°C = 293 K 

FIND 
• The glass temperature (Ts) for air velocities (U∞) of 0.5, 1, 2, and 4 m/s 

ASSUMPTIONS 
• The bulb has reached steady state 
• The surrounding behave as a black body at T∞ 

SKETCH 

D = 0.1 m

Ts = ?

Air

T• = 20°C = 293 K

Velocity = U•

 

PROPERTIES AND CONSTANTS 
From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4). 
From Appendix 2, Table 27, for dry air at 20°C 
  Thermal conductivity (k) = 0.025 W/(m K) 

  Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 
The Reynolds number is 

 ReD = 
U D

ν
∞  

 For  U∞ = 0.5 m/s  Red = 
( ) ( )

( )–6 2

0.5m/s 0.1m

15.7 10 m /s×
 = 3185 
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The Nusselt number is given by Equation (7.9) 

 NuD = 0.37 ReD
0.6 

 hc = NuD
k

D
 = 0.37 

k

D
 ReD

0.6 

 For  U∞ = 0.5
m

s
 

  hc = 0.37 
( )0.0251W/(m K)

0.1m
 (3185)0.6 = 11.74 2W/(m K)  

The rate of convective and radiative heat loss must equal the rate of heat generation 

 qc + qr = π D2 [hc (Ts – T∞) + ε σ (Ts
4 – T∞

4))] = 0.9 (100 W) = 90 W 

For U∞ = 0.5 m/s 

qc + qr = π (0.1)2 ( ) ( ) ( ) ( )42 8 2 4 411.74 W/(m K) 293K 0.85 5.67 10 W/(m K ) 293Ks sT T−  − + × −   = 90 W 

Checking the units, then eliminating them for clarity 

  1.514 × 10–9 Ts
4 + 0.3688 Ts – 209.2 = 0 

By trial and error: Ts = 429 K = 156°C 
Following the same procedure for the other air velocities yields the following results 

Velocity, U∞ Heat transfer coefficient, hc Glass Temperature, Ts (°C) 
 (m/s) (W/m2 K))  
 0.5 11.74 141 
 1.0 17.79 130 
 2.0 26.96 104 
 4.0 40.87 81 

PROBLEM 7.25 

An experiment was conducted in which the heat transfer from a sphere in sodium was 
measured. The sphere, 1.27 cm in diameter was pulled through a large sodium bath at a 
given velocity while an electrical heater inside the sphere maintains the temperature at a 
set point. The following table gives the results of the experiment 

 Run # 1 2 3 4 5 
 Velocity (m/s) 3.44 3.14 1.56 3.44 2.16 
 Sphere Surface Temp (°C) 478 434 381 350 357 
 Sodium Bath Temp (°C) 300 300 300 200 200 
 Heater Temp (°C) 486 439 385 357 371 
 Heat Flux × 10–6 (W/m2) 14.6 8.94 3.81 11.7 8.15 

Determine how well the above data is predicated by the appropriate correlation given in 
the text. Express your results in terms of the percent difference between the 
experimentally determined Nusselt number and that from the equation. 

GIVEN 

• A sphere is pulled through a sodium bath at a given velocity 
• Sphere diameter = 1.27 cm = 0.0127 m 
• Sphere temperature is kept constant 
• Experimental data given above 

 

FIND 

• The standard deviation between the data and the appropriate correlation 
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SKETCH 

U
�Sodium

( )T
�

Ts

 

SOLUTION 

The Correlation of the heat transfer rate will be illustrated with Run #1. The film temperature  
(Tf) = (Ts + T∞)/2 = (478°C + 300°C)/2 = 389°C. 
From Appendix 2, Table 26, for sodium at 389°C 
  Thermal conductivity (k) = 71.6 W/(m K) 

  Kinematic viscosity (ν) = 3.08 × 10–7 m2/s 

  Prandtl number (Pr) = 0.0050 

The Reynolds number is 

 ReD  = 
U D

ν
∞  = 

( ) ( )
( )–7 2

3.44 m/s 0.0127 m

2.75 10 m /s×
 = 1.42 × 105 

The Nusselt number for spheres in liquid metals for 

3.6 × 104 < ReD < 2 × 105 is given by Equation (7.14) 

 DNu  = 2 + 0.386
1

2( )RePr  = 2 + 0.386 
1

5 21.42 10 (0.005) ×   = 12.28 

 ch  = DNu
k

D
 = 12.28 

( )71.6W/(m K)

0.0127 m
 = 69,230 2W/(m K)  

The heat flux from the sphere is 

 
q

A
 = ch (Ts – T∞) = ( )269,230W/(m K)  (478°C – 300°C) = 1.23 × 7 210 W/m  

Similarly for the other test runs 

 Run # 1 2 3 4 5 
 Film Temp. (°C) 389 367 341 275 279 
 k (W/(m K)) 71.6 72.6 73.8 77.0 76.8 
 ν × 107 (m2/s) 3.08 3.19 3.42 3.99 3.96 
 Pr 0.0050 0.0052 0.0055 0.0063 0.0063 
 ReD × 10–5 1.42 1.25 0.579 1.09 0.693 

 ch ( )2W/(m K)  69,230 67,690 51,649 73,463 60,868 

 q/A × 10–6 (W/m2) 12.3 9.07 4.18 11.0 9.56 
 exper. q/A × 10–6 (W/m2) 14.6 8.94 3.18 11.7 8.15 
 Percent difference (%) –15.8 +1.5 +9.7 –5.9 –17.3 

PROBLEM 7.26 

A copper sphere initially at a uniform temperature of 132°C is suddenly released at the 
bottom of a large bath of bismuth at 500°C. The sphere diameter is 1 cm and it rises 
through the bath at 1 m/s. How far will the sphere rise before its center temperature is 
300°C? What is its surface temperature at that point? (The sphere has a thin nickel 
plating to protect the copper from the bismuth.) 
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GIVEN 

• A copper sphere with a thin nickel plating rising through a bath of bismuth 
• Initial copper temperature (To) = 132°C (uniform) 
• Bismuth temperature (T∞) = 500°C 
• Ascent velocity (U∞) = 1 m/s 
• Sphere diameter (D) = 1 cm = 0.01 m 

FIND 

(a) Distance sphere will rise before its center temperature, T(o,t) = 300°C 
(b) The sphere surface temperature at that time, T(ro,t) 

ASSUMPTIONS 

• Thermal resistance of the nickel plating is negligible 
• Thermal properties of the copper can be considered uniform and constant 

SKETCH 

Bismuth Bath

T =• 500°C

U• = 1 m/s

Copper Sphere
D = 1 cm
To = v132°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 24, for Bismuth at the initial film temperature of 316°C 
  Thermal conductivity (kb) = 16.44 W/(m K) 

  Kinematic viscosity (ν) = 1.57 × 10–7 m2/s 

  Prandtl number (Pr) = 0.014 

From Appendix 2, Table 12, for copper 
  Thermal conductivity (kc) = 388 W/(m K) at its mean temperature of 216°C 

  Specific heat (c) = 383 J/(kg K) at 20°C 

  Density (ρ) = 8933 kg/m3 at 20°C 

  Thermal diffusivity (α) = 116.6 × 10–6 m2/s 

 

SOLUTION 

The Reynolds number is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )–7 2

1m/s 0.01m

1.57 10 m /s×
 = 6.37 × 104 

Applying Equation (7.14) 

 DNu  = 2 + 0.386 
1

2( )RePr  = 2 + 0.386 
1

4 26.37 10 (0.014) ×   = 13.52 

 ch  = DNu
k

D
 = 13.53 

( )16.44 W/(m K)

0.01m
 = 2.22 × 104 W/(m2 K) 
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(a) The Biot number for the sphere is 

 Bi = c

s

h r

k
 = 

( ) ( )
( )

4 22.22 10 W/(m K) 0.005m

388W/(m K)

×
 = 0.287 > 0.1 

Therefore, internal thermal resistance is significant and the chart solutions of Figure 2.39 must be 
used. 

 
(0, )

o

T t T

T T
∞

∞

−
−

 = 
300°C – 500°C

132°C – 500°C
 = 0.543 

 and  
1

Bi
 = 

1

0.287
 = 3.48 

From Figure 2.39 

 Fo = 
2

o

t

r

α
 = 0.75 

 ∴  t = 0.75 
2

or

α
 = 0.75 

( )
( )

2

–6 2

0.005m

116.6 10 m /s×
 = 0.16 s 

The distance (x) the sphere will rise during this time is 

 x = U∞ t = 1 m/s (0.16s) = 0.16 m = 16 cm 

(b) The surface temperature can be determined from Figure 2.39 

 
1

Bi
 = 3.48 and 

o

r

r
 = 1   

( , )

(0, )
oT r t T

T t T
∞

∞

−
−

 = 0.84 

 T(ro,t) = 0.86 (300°C – 500°C) + 500°C = 332°C 

 

PROBLEM 7.27 

A spherical water droplet of 1.5 mm diameter is freely falling in atmospheric air. 
Calculate the average convection heat transfer coefficient when the droplet has reached 
its terminal velocity. Assume that the water is at 50°C and the air is at 20°C. Neglect 
mass transfer and radiation. 

GIVEN 

• A spherical water droplet freely falling in atmospheric air 
• Drop diameter (D) = 1.5 mm = 0.0015 m 
• Water drop temperature (Td) = 50°C 
• Air temperature (T∞) = 20°C 

FIND 

• The average heat transfer coefficient at terminal velocity ( ch ) 
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SKETCH 

Water Drop

U• = Terminal Velocity

Air

T• = 20°C

D = 1.5 mm

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 20°C 
  Thermal conductivity (k) = 0.0251 W/(m K) 

  Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

  Density (ρa) = 1.164 kg/m3 

From Appendix 2, Table 13, for water at 50°C 

  Density (ρw) = 988.1 kg/m3 

SOLUTION 

The weight of the water droplet is 

 W = (mass) gg = (Volume) ρw gg = 
6

π
D3 ρw gg = 

6

π
(0.0015m)3 ( )3988.1 kg/m ( )29.81 m/s  

 W = 1.713 × 10–5 ( ) 2kg m /s  = 1.713 × 105 N 

Terminal velocity occurs when the droplet’s weight is balance by the viscous drag force which is given 
in Section 7.2 and Figure 7.7. 

 W = CD 
2

2
aUρ ∞ 

  

2

4

Dπ 
  

 

Solving for the velocity 

 U∞ = 

1

2

2

8W

D aC Dπ ρ
 
  

 = 
( )
( ) ( )

1
5 2 2

2 3

8 1.13 10 (kg m)/s

0.0015m 1.164 kg/mDC π

− ×
 
 

 

 U∞ = ( )
1

24.081m/s DC
−

 

But CD is a function of U∞ through the Reynolds number and Figure 7.7 by trial and error 

 U∞ (m/s) ReD CD 4.081 CD
–1/2 (m/s) 

 10 955 0.44 6.15 
 6.0 588 0.55 5.50 
 5.5 525 0.59 5.3 
 5.3 506 0.60 5.3 

Terminal velocity ≈ 5.3 m/s 
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The Nusselt number is given by Equation (7.12) as 

 DNu  = 2 + 

1

24 1.63 10
4

D
D

Re
Re− + ×    

 DNu  = 2 + 

1

24 1.6506
3 10 (506)

4
− + ×    = 13.53 

 ch  = DNu
k

D
 = 13.53 

( )0.0251W/(m K)

0.0015m
 = 226 2W/(m K)  

COMMENT 

In this solution, the effect of evaporation has been neglected. 

PROBLEM 7.28 

In a lead-shot tower, spherical 0.95-cm-diameter BB shots are formed by drops of molten 
lead which solidify as they descend in cooler air. At the terminal velocity, i.e., when the 
drag equals the gravitational force, estimate the total heat transfer coefficient if the lead 
surface is at 171°C, the surface of the lead has an emissivity of 0.63, and the air 
temperature is 16°C. Assume CD = 0.75 for the first trial calculation. 

GIVEN 

• Spherical lead-shot falling through the air at terminal velocity  
• Shot diameter (D) = 0.95 cm = 0.0095 m 
• Lead surface temperature (Ts) = 171°C = 494 K 
• Lead surface emissivity (ε) = 0.63 
• Air temperature (T∞) = 16°C 289 K 
• Assume CD = 0.75 for the first trial calculation 

FIND 

• The total average heat transfer coefficient (htotal) 

ASSUMPTIONS 

• The surroundings act as a black body enclosure at T∞ 

SKETCH 

Air

T• = 16°C

D = 0.95 cm

Ts = 171°C

U•  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 16°C 
  Thermal conductivity (k) = 0.0248 W/(m K) 

  Kinematic viscosity (ν) = 15.3 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

  Density (ρ) = 1.182 kg/m3 

From Appendix 2, Table 12, the density of lead (ρL) = 11,340 kg/m3 

From Appendix 1, Table 15, the Stephan-Boltzmann constant(σ) = 5.67 × 10–8 W/(m2 K4) 
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SOLUTION 

The weight of the lead shot is 

W = (mass)gg = (Volume) ρ gg = 
6

π
D3 ρ gg = 

6

π
 (0.0095m)3 ( )311,340kg/m ( )29.81m/s  

 W = 0.0499 2(kg m)/s  = 0.0499 N 

 
Terminal velocity occurs when the weight is balanced by the drag force which is given Section 7.2 

 W = Drag Force = CD 
2

2
aUρ ∞ 

  

2

4

Dπ 
  

 

Solving for the terminal velocity 

 U∞ = 

1

2

2

8W

D aC Dπ ρ
 
  

 =
( )

( ) ( )

1
2 2

2

8 0.0499(kg m)/s

0.0095m 1.182 kg/mDC π
 
 
 

  

 U∞ = ( )34.51m/s
1

2
DC

−
 

Using the recommended drag coefficient for the first iteration 

 U∞ = 34.51 m / s
1

2(0.75)
−

 = 39.9 m/s 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )–6 2

39.9 m/s 0.0095m

15.3 10 m /s×
 = 24,745 

From Figure 7.7, for ReD = 24,745, CD = 0.47 
Repeating this procedure for further iterations 

 Iteration # 2 3 
 CD 0.47 0.48 
 U∞ (m/s) 50.34 49.81 
 ReD 31,259 30,931 
 CD (from Figure 7.7) 0.48 0.48 

The Nusselt number is given by Equation (7.12) 

 DNu  = 2 + 

1
24 1.63 10

4
D

D
Re

Re− + ×    

 DNu  = 2 + 

1
24 1.630,391

3 10 (30,391)
4

− + ×    = 113 

 ch  = DNu
k

D
 = 113

( )0.0248W/(m K)

0.0095m
 = 295 2W/(m K)  

The total rate of heat transfer can be used to calculate the total heat transfer coefficient as follows 

 qtotal = totalh  A (Ts – T∞) = qc + qr = ch A (Ts – T∞) + ε σ A (Ts
4 – T∞

4) 
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 totalh  = ch  + 
( )

( )

4 4
s

s

T T

T T

ε σ ∞

∞

−

−
 

 totalh  = ( )2295W/(m K)  + 
( )

( )
8 2 4 4 40.63 5.67 10 W/(m K ) [(494 K) (289 K) ]

494 K – 289 K

−× −
 

 totalh  = ( )2(295 + 9.1)W/(m K)  = 304 2W/(m K)  

COMMENTS 

97% of the heat transfer is due to convection. 

PROBLEM 7.29 

A copper sphere 2.5 cm in diameter is suspended by a fine wire in the center of an 
experimental hollow cylindrical furnace whose inside wall is maintained uniformly at 
430°C. Dry air at a temperature of 90°C and a pressure of 1.2 atm is blown steadily 
through the furnace at a velocity of 14 m/s. The interior surface of the furnace wall is 
black. The copper is slightly oxidized, and its emissivity is 0.4. Assuming that the air is 
completely transparent to radiation, calculate for the steady state (a) the convective heat 
transfer coefficient between the copper sphere and the air, and (b) the temperature of the 
sphere. 

GIVEN 

• A copper sphere suspended in a furnace with air flowing over it 
• Sphere diameter (D) = 2.5 cm = 0.025 m 
• Sphere emissivity (ε) = 0.4 
• Furnace wall temperature (Tw) = 430°C = 703 K 
• Air temperature (Ta) = 90°C = 363 K 
• Air pressure (pa) = 1.2 atm 
• Air velocity (U∞) = 14 m/s 

FIND 

(a) The convective heat transfer coefficient ( )ch  

(b) The temperature of the sphere (Ts) 

ASSUMPTIONS 

• Steady state 
• The air behaves as an ideal gas 
• The furnace can be treated as a black body enclosure 
• Only the density of the air varies with temperature 

SKETCH 
Fornace Wall, Tw = 430°C

D = 2.5 cm

Air

U
¥

= 14 m/s

Ta = 90°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 90°C and 1 atm pressure 

  Density (ρ) = 0.942 kg/m3 

  Thermal conductivity (k) = 0.0300 W/(m K) 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
650

  Absolute viscosity (μ) = 21.232 × 10–6 (Ns)/m2 

  Prandtl number (pr) = 0.71 

From Appendix 1, Table 15, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The density of the air at 1.2 atm can be calculated from Boyle’s law  

 1

1.2

P

P
 = 1

1.2

ρ
ρ

    ρ1.2 = ρ1
1.2

1

P

P
 = 0.942 kg/m3 

1.2 atm

1atm
 = 1.130 3kg/m  

The kinematic viscosity is 

 ν = 
μ
ρ

 = 
( ) ( )

( )
6 2 2

3

21.232 10 (Ns)/m (kg m)/(Ns )

1.130 kg/m

−×
 = 18.8 × 10–6 2m /s  

(a) The Reynolds number is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )–6 2

14 m/s 0.025m

18.8 10 m /s×
 = 18,617 

The convective Nusselt number can be estimated using Equation (7.12) 

 DNu  = 2 + 

1

24 1.63 10
4

D
D

Re
Re− + ×    

 DNu  = 2 + 

1

24 1.618,617
3 10 (18,617)

4
− + ×    = 83.8 

 ch  = DNu
k

D
 = 83.8

( )0.03W/(m K)

0.025m
 = 100.6 2W/(m K)  

(b) In steady state, the sphere temperature will be between Ta and Tw and the convective loss to the air 
must equal the radiative gain from the furnace walls 

  ch A (Ts – T∞) = ε σ (T∞
4 – Ts

4) 

  ( )2100.6 W/(m K)  (Ts – 363 K) = 0.4 ( )8 2 45.67 10 W/(m K )−×  [(703 K)4 – Ts
4] 

 
Checking the units, then eliminating them for clarity 

  2.28 ×10–8 Ts
4 + 100.6 Ts – 42,087 = 0 

By trial and error: Ts = 412 K = 139°C 

PROBLEM 7.30 

A method for measuring the convective heat transfer from spheres has been proposed. A 
20 m diameter copper sphere with an embedded electrical heater is to be suspended in a 
wind tunnel. A thermocouple inside the sphere measures the sphere surface temperature. 
The sphere is supported in the tunnel by a type 304 stainless steel tube 5 mm outside 
diameter 3 mm inside diameter and 20 cm long. The steel tube is attached to the wind 
tunnel wall in such a way that no heat is transferred through the wall. For this 
experiment, examine the magnitude of the correction that must be applied to the sphere 
heater power to account for conduction along the support tube. The air temperature is 
20°C and the desired range of Reynolds numbers is 103 to 105. 
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GIVEN 

• A heater copper sphere supported by a steel tube in a wind tunnel 
• Sphere diameter (Ds) = 20 mm = 0.02 m 
• Tube diameters  Outside (Dto) = 5 mm = 0.005 m 
 Inside (Dti) = 3 mm = 0.003 m 
• Tube length (L) = 20 cm = 0.2 m 
• There is no heat transfer between the tube and the wall 
• Air temperature (T∞) = 20°C 
• Reynolds number range: 103 < ReDs < 105 

FIND 

• The correction to the heater power to account for conduction along the support tube 

ASSUMPTIONS 

• Steady state 
• Contact resistance between the sphere and the tube is negligible 
• The effect of the boundary layer near the wind tunnel wall on the heat transfer from the tube is 

negligible 

SKETCH 

Air

T• = 20°C

10 < Re < 103
Ds

5

Ds = 20 mm

Tube: Dto = 5 mm

Dti = 3 mm

L = 20 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 20°C 
  Thermal conductivity (k) = 0.0251 W/(m K) 

  Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 
From Appendix 2, Table 10, for type 304 stainless steel: ks = 14.4 W/(m K) 

SOLUTION 

Equation (7.9) can be used to estimate the heat transfer coefficient on the sphere 

 csh  = 0.37
s

k

D
0.6

DRe


 

 At  DRe

 = 103  

  csh  = 0.37
( )0.0251W/(m K)

0.02 m
 (103)0.6 = 29.3 2W/(m K)  

 At  DRe

 = 105  

  csh  = 0.37
( )0.0251W/(m K)

0.02 m
 (105)0.6 = 464 2W/(m K)  

The rate of heat transfer from the sphere, neglecting the influence of the tube, would be 

 qs = csh π Ds
2 (Ts – T∞) = 0.37

k

D
0.6

DRe


 π Ds
2 (Ts – T∞) 
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The heat transfer coefficient on the tube can be calculated using Equation 7.3 and Table 7.1 (Note that 
Pr/Prs ≈ 1 for air in the anticipated temperature range) 

 cth  = 0.26
to

k

D
0.6

toDRe  Pr0.37 = 0.26
to

k

D
0.6

DRe


 
0.6

to

s

D

D

 
  

 Pr0.37 

At   DR

 = 103 cth  = 0.26 

( )0.0251W/(m K)

0.005m
(103)0.6 

0.6
0.005 m

0.02 m
 
  

(0.71)0.37 = 31.6 2W/(m K)  

 At  DR

 = 105  cth  = 501 2W/(m K)  

The tube can be modeled as a fin of uniform cross-section with an adiabatic tip protruding from the 
sphere. The cross-sectional area of the tube (Af) and perimeter of the air (P) are 

 Af = 
4

π
(Dto

2 – Dti
2) = 

4

π
 [(0.005 m)2 – (0.003)2] = 1.256 × 10–5 m2 

 P = π Dto = π (0.005 m) = 0.0157 m 

The rate of heat transfer from the tube for a given sphere temperature is given Table 2.1 as 

 qt = M tanh(mL) 

 where  m = ct

s f

h P

k A
 

 M = ct s fh Pk A  (Ts – T∞) 

The fraction correction to the power data due to the tube is 

 t

s

q

q
 = 

2

tanh ct
ct s f

s f

cs s

h P
h Pk A L

k A

h Dπ

 
 
 

 

At ReDS = 103 

 ct s fh Pk A  = ( ) ( ) ( ) ( )2 5 231.6 W/(m K) 0.0157 m 14.4 W/(m K) 1.256 10 m−×  = 0.0095 W/K  

 t

s

q

q
 = 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

2

5 2

2

31.6W/(m K) 0.0157 m
0.0095 W/K tanh 0.2 m

14.4 W/(m K) 1.256 10 m

29.3W/(m K) 0.02 mπ

−

 
 × 

 = 0.258 = 25.8% correction 

 At  DRe

 = 105  

  t

a

q

q
 = 0.065 = 6.5% correction 

PROBLEM 7.31 

Estimate (a) the heat transfer coefficient for a spherical fuel droplet injected into a diesel 
engine at 80°C and 90 m/s. The oil droplet is 0.025 mm in diameter, the cylinder pressure 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
653

is 4800 kPa, and the gas temperature is 944 K. (b) Estimate the time required to heat the 
droplet to its self-ignition temperature of 300°C. 

GIVEN 

• An oil droplet injected into a diesel engine 
• Initial droplet temperature (To) = 80°C 
• Injection velocity (Ud) = 90 m/s 
• Droplet diameter (D) = 0.025 mm = 2.5 × 10–5 m 
• Cylinder pressure = 4800 kPa 
• Gas temperature (T∞) = 944 K = 671°C 

FIND 

(a) The heat transfer coefficient ( ch ) 
(b) The time (t) required for the drop to reach 300°C 

ASSUMPTIONS 

• Radiative heat transfer is negligible 
• The gas has the properties of air and behaves as an ideal gas 
• Only the density of the gas is affected by pressure 
• Variation of the thermal conductivity of the oil with temperature is negligible 
• Fuel has the same properties as unused engine oil 

SKETCH 

D = 0.025 mm

Ud = 90 m/s

Gas

T• = 671°C
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 671°C and 1 atm (101 kPa) pressure 

  Density (ρ) = 0.382 kg/m3 
  Thermal conductivity (k) = 0.0616 W/(m K) 
  Absolute viscosity (μ) = 40.121 × 10–6 Ns/m2 
  Prandtl number (Pr) = 0.73 
Extrapolating from Appendix 2, Table 16, for unused engine oil at the average temperature  of 190°C 

  Density (ρo) = 789.4 kg/m3 
  Thermal conductivity (ko) = 1.131 W/(m K) 
  Specific heat (c) = 2615 J/(kg K) 

SOLUTION 

The density of the air at 4800 kPa can be calculated from Boyle’s law 

 p1 V1 = p2 V2  1

2

P

P
 = 1

2

ρ
ρ

  ρ2 = ρ1
2

1

P

P
 = ( )30.382 kg/m  

4800kPa

101kPa
 = 18.15 3kg/m  

The Reynolds number is 

 ReD = dU Dρ
μ

 = 
( ) ( ) ( )

( )
5 3

–6 2

90m/s 2.5 10 m 18.15kg/m

40.121 10 (Ns)/m

−×
×

 = 1018 
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(a) The Nusselt number can be calculated from Equation (7.12) 

 DNu  = 2 + 

1
24 1.63 10

4
D

D
Re

Re− + ×    

DNu = 2 + 

1
24 1.61018

3 10 (1018)
4

− + ×    = 18.55 

 ch  = DNu
k

D
 = 18.55

( )
5

0.0616W/(m K)

2.5 10 m−×
 = 4.57 × 104 2W/(m K)  

(b) The Biot number for the droplet is 

 Bi = 
2
c

s

h D

k
 = 

( ) ( )
( )

4 2 54.57 10 W/(m K) 2.5 10 m

2 0.130W/(m K)

−× ×
 = 4.40 > > 0.1 

Therefore, the internal resistance of the oil drop cannot be neglected and the chart solution of Figure 
2.39 must be used. Assuming the heat transfer coefficient is constant, the ratio of the rate of heat 
transfer at time t and initially is 

 
( )

i

Q t

Q
 = 

( , )o

o

T r t T

T T
∞

∞

−
−

 = 
300°C - 671°C

80°C - 671°C
 = 0.628 

From Figure 2.39, for Bi = 4.40 

 (Bi)2 Fo = 
2

2
c

o

h t

k

α
 = 

2
c

o

h t

k cρ
 = 2.8 

Solving for the time 

 t = 
2

2

2.8 o

c

k c

h

ρ
 = 

( ) ( ) ( ) ( )
( )

3

24 2

2.8 0.13W/(m K) 789.4 kg/m 2615J/(kg K) (Ws)/J

4.57 10 W/(m K)×
 

 t = 3.6 × 10–6 s = 360 μs 

PROBLEM 7.32 

Heat transfer from an electronic circuit board is to be determined by placing a model for 
the board in a wind tunnel. The model is a 15 cm square plate with embedded electrical 
heaters. The wind from the tunnel air is delivered at 20°C. Determine the average 
temperature of the model as a function of power dissipation for an air velocity of 2.5 and 
10 m/s. The model is pitched 30°C and yawed 10° with respect to the flow direction. The 
surface of the model acts as a blackbody. 

GIVEN 

• A Model square electronic circuit board pitched 30° and yawed 10° in a wind tunnel 
• Length of a side (L) = 15 cm = 0.15 m 
• Air temperature (T∞) = 20°C = 293 K 
• Air velocity (U∞) = 2.5 m/s or 10 m/s 

FIND 

• The average surface temperature of the model (Ts) as a function of power dissipation ( Q ) 
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ASSUMPTIONS 

• Steady state 
• The surface of the model acts as a black body (ε = 1.0) 
• The wind tunnel acts as a black body enclosure at the air temperature 

SKETCH 

L
=

15
cm

q

f q = 30∞
f = 10∞

Air

T• = 20°C

U• = 2.5 or 10 m/s

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 20°C 

  Kinematic viscosity (ν) = 15.7 × 10–6 m2/s 

  Prandtll number (Pr) = 0.71 

  Density (ρ) = 1.164 kg/m3 

  Specific heat (c) = 1012 J/(kg K) 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The Reynolds number is 

 For  U∞ = 2.5 m/s 

  ReL = 
U L

ν
∞  = 

( ) ( )
( )–6 2

2.5m/s 0.15m

15.7 10 m /s×
 = 2.39 × 104 

 For U∞ = 10 m/s 

  ReL = 
( ) ( )
( )–6 2

10m/s 0.15m

15.7 10 m /s×
 = 9.55 × 104 

The pitch and yaw angles as well as the Reynolds numbers fall within the range of Equation (7.18) 

  ch

c Uρ ∞

 
 
 

2

3Pr  = 0.930 
1

2
LRe

−
 

For Uinf = 2.5 m/s 

 ch  = 0.930 c ρ U∞ 
2 1
3 2

LPr Re
− −

 = 0.930 ( )1012J/(kg K) ( )31.164 kg/m  

   ( )2.5m/s ( )
1

4 22.39 10
−

× ( )
2

30.71 − ( )(Ws)/J  

 ch  = 22.3 2W/(m K)  

For Uinf = 10 m/s 

 ch  = 44.5 2W/(m K)  

The rate of power dissipation is the sum of the convective and radiative losses 

 Q  = ch  2L2 (Ts – T∞) + σ 2L2 (Ts
4 – T∞

4) 
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At Uinf = 2.5 m/s 

 Q = ( )222.3W/(m K) 2(0.15m)2 (Ts – 293 K) + ( )8 2 45.67 10 W/(m K )−× 2(0.15m)2 [Ts
4 – (293 K)4] 

Checking the units, then eliminating for clarity 

  2.565 × 10–9 Ts
4 + 1.0035 Ts –312.8 = Q  

  ( Q  in watts, Ts in K) 

 

Similarly for U∞ = 10 m/s 

  2.565 × 10–9 Ts
4 + 2.0025 Ts – 605.5 = Q  

  ( Q  in watts, Ts in K) 

PROBLEM 7.33 

An electronic circuit contains a power resistor that dissipates 1.5 watts. The designer 
wants to modify the circuitry in such a way that it will be necessary for the resistor to 
dissipate 2.5 watts. The resistor is in the shape of a disk 1 cm in diameter and 0.6 mm 
thick. Its surface is aligned with a cooling air flow at 30°C and 10 m/s velocity. The 
resistor lifetime becomes unacceptable if its surface temperature exceeds 90°C. Is it 
necessary to replace the resistor for the new circuit? 

GIVEN 

• A heat generating resistor disk with its surface aligned with a cooling airflow 

• Heat generation rate ( GQ ) = 2.5 W 

• Disk diameter (D) = 1 cm = 0.01 m 
• Disk thickness (t) = 0.6 mm = 0.0006 m 
• Air temperature (T∞) = 30°C 
• Air velocity (U∞) = 10 m/s 
• Maximum surface temperature (Ts) = 90°C 

FIND 

• Is it necessary to replace the resistor? 

ASSUMPTIONS 

• Steady state 
• Radiation is negligible 

SKETCH 

t = 0.6 mm

D = 1 cm

Ts = 90°C Max
Air

T• = 30°C

U• = 10 m/s

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the maximum film temperature of 60°C 
  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 
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SOLUTION 

The Reynolds number based on the diameter is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )–6 2

10m/s 0.01m

19.4 10 m /s×
 = 5155 

 
t

D
 = 

0.0006 m

0.01m
 = 0.06 

The Nusselt number for the geometry is given by Equation (7.19) 

 DNu  = 0.591 
1

3Pr ReD
0.564 = 0.591 

1

3(0.71)  (5155)0.564 = 65.42 

 ch  = DNu
k

D
 = 65.42

( )0.0279 W/(m K)

0.01m
 = 182.5 2W/(m K)  

The rate of heat transfer at the maximum surface temperature of 90°C is 

 q = ch A (Ts – T∞) = ch 22
4

D D t
π π   +    

(Ts – T∞) 

 q = ( )2182.5W/(m K) 2(0.01)  +  (0.01 m) (0.0006 m)
2

π π 
  

(90°C + 30°C) = 1.93 W < Q  

Therefore, the surface temperature must be greater than 90°C to dissipate the required 2.5 Watts. The 
resistor must be replaced. 

PROBLEM 7.34 

Suppose the resistor in Problem 7.33 is rotated so that its axis is aligned with the flow. 
What is the maximum permissible power dissipation? 

From Problem 7.33: An electronic circuit contains a power resistor that dissipates 1.5 
watts. The designer wants to modify the circuitry in such a way that it will be necessary 
for the resistor to dissipate 2.5 watts. The resistor is in the shape of a disk 1 cm in 
diameter and 0.6 mm thick. Its axis aligned with a cooling air flow at 30°C and 10 m/s 
velocity. The resistor lifetime becomes unacceptable if its surface temperature exceeds 
90°C. Is it necessary to replace the resistor for the new circuit? 

GIVEN 

• A heat generating resistor disk with its axis aligned with a cooling airflow 

• Heat generation rate ( GQ ) = 2.5 W 

• Disk diameter (D) = 1 cm = 0.01 m 
• Disk thickness (t) = 0.6 mm = 0.0006 m 
• Air temperature (T∞) = 30°C 
• Air velocity (U∞) = 10 m/s 
• Maximum surface temperature (Ts) = 90°C 

FIND 
• The maximum permissible power dissipation ( GQ ) 

ASSUMPTIONS 
• Heat transfer from the edges is negligible 
• The heat flux is equal from both faces 
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SKETCH 

t
=

0
.6

m
m

D
=

1
c
m

Air

T• = 30°C

U• = 10 m/s

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the maximum film temperature of 60°C 
  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

From Appendix 2, Table 27, for dry air at the free stream temperature of 30°C 
  Thermal conductivity (k) = 0.0258 W/(m K) 

  Kinematic viscosity (ν) = 16.7 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The Reynolds number based on the film temperature is unchanged from Problem 7.33  ReDf = 5155 
The Reynolds number based on the free stream conditions is  ReDfs = 5988 
The Nusselt number for the upstream face of the disk is given by Equation (7.17) using the free stream 
properties 

 DNu  = 1.05 
1

2
DfsRe Pr0.36 = 1.05

1

2(5988) (0.71)0.37 = 71.58 

 cuh  = DNu
k

D
 = 71.58

( )0.0258W/(mK)

0.01m
 = 184.7 2W/(m K)  

The Nusselt number for the downstream face can be estimated from Equation (7.15) (using the 
properties at film temperature) because the flow behind the disk will be separated and the separated 
region behind a normal flat plate will be similar 

 DNu  = 0.20 
2

3
DfRe  = 0.20 

2

3(5155)  = 59.69 

 cdh  = DNu
k

D
 = 59.69 

( )0.0279 W/(m K)

0.01m
 = 166.5 2W/(m K)  

The maximum power dissipation for the whole chip is 

 maxQ  = ( )cd cuh h+
4

π
D2 (Ts – T∞) 

 maxQ  = ( ) ( )2 2166.5W/(m K) 184.7 W/(m K)+  
4

π
(0.01 m)2 (90°C – 30°C) = 1.65 W 

COMMENTS 

The circuit designer cannot solve the problem by reorienting the resistor. The upstream face of the disk 
has about the same heat transfer coefficient as the surface of the disk aligned with the flow. However, 
the downstream face has significantly lower heat transfer coefficient because it is in a separated flow 
regime. 
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PROBLEM 7.35 

To decrease the size of personal computer mother boards, designers have turned to a 
more compact method of mounting memory chips on the board. The single in-line 
memory modules, as they are called, essentially mount the chips on their edges so that 
their thin dimension is horizontal, as shown in the sketch below. For memory chips 
operating at 90°C, determine their maximum power dissipation if they are cooled by an 
air stream at 60°C and velocity of 10 m/s. 

Memory
Chip

7 cm
0.2 cm

2 cm

Air

 

GIVEN 

• Computer memory chip in an air stream as shown above 
• Chip temperature (Ts) = 90°C 
• Air temperature (T∞) = 60°C 
• Air velocity (U∞) = 10 m/s 

FIND 

• The maximum power dissipation ( GQ ) 

ASSUMPTIONS 

• Radiative heat transfer is negligible 
• Use of Equation (7.18) for a non-square surface will not introduce significant error 
• Heat transfer from all four edges of the chip is negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the free stream temperature of 60°C 

  Density (ρ) = 1.025 kg/m3 

  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

  Specific heat (c) = 1017 J/(kg K) 

From Appendix 2, Table 27, for dry air at the film temperature of 75°C 
  Thermal conductivity (kf) = 0.0290 W/(m K) 

  Kinematic viscosity (vf) = 21.0 × 10–6 m2/s 

  Prandtl number (Prf) = 0.71 
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SOLUTION 

Front of chip: 
The Reynolds number for the front of the chip will be based on a characteristic length that is equal to 
the length of the side of a square with the same area and on the properties evaluated at the free stream 
temperature. 

 Leq = (7 cm)(2 cm)  = 3.74 cm = 0.0374 m 

 
eqLRe  = 

eqU L

ν
∞

 = 
( ) ( )
( )–6 2

10m/s 0.0374 m

19.4 10 m /s×
 = 19,278 

Applying Equation (7.18) as the only correlation available to estimate the heat transfer coefficient on 
the front of the chip 

 cfh  = 0.930 c ρ U∞

2 1
3 2

LPr Re
− −

  

  = 0.930 ( ) ( ) ( )31017J/(kg K) 1.025kg/m 10m/s
21

––
32(19,278) (0.71) ( )(Ws)/J  

 cfh  = 87.7 2W/(m K)  

Back of the chip: 
The Reynolds number based on the properties evaluated at the film temperature is 

 
eqLRe  = 

eqU L

ν
∞

 = 
( ) ( )
( )–6 2

10m/s 0.0374 m

21.0 10 m /s×
 = 17,809 

Applying Equation (7.15) (using the properties evaluated film temperature) to estimate the Nusselt 
number on the back of the chip 

 DNu  = 0.20
2

3
DRe  = 0.20 

2

3(17,809)  = 136.3 

 cbh  = 
eqLNu

eq

k

L
 = 143.8

( )0.0290W/(m K)

0.0374 m
 = 105.7 2W/(m K)  

The maximum power dissipation is equal to the total rate of heat transfer 

 GQ  = qc = ( )cf cbh h+ Afrontal (Ts – T∞) 

 GQ  = ( )2(87.7 105.7) W/(m K)+ (0.07 m) (0.02 m) (90°C – 60°C) 

 GQ  = 8.1 W 

COMMENTS 

The rate of heat transfer would be greater if the long axis of the chip were aligned with the air velocity. 

PROBLEM 7.36 

A long, half-round cylinder is placed in an air stream with its flat face down-stream. An 
electrical resistance heater inside the cylinder maintains the cylinder surface 
temperature at 50°C. The cylinder diameter is 5 cm, the air velocity is 31.8 m/s, and the 
air temperature is 20°C. Determine the power input of the heater per unit length of 
cylinder. Neglect radiation heat transfer. 

GIVEN 

• A long, half-round cylinder in an air stream with its flat surface downstream 
• Cylinder surface temperature (Ts) = 50°C 
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• Cylinder diameter (D) = 5 cm = 0.05 m 
• Air velocity (U∞) = 31.8 m/s 
• Air temperature (T∞) = 20°C 

FIND 

• Power input to the heater ( GQ /L) 

ASSUMPTIONS 

• Steady state 
• Radiative heat transfer is negligible 
• Flow separates at the cylinder edges as shown below 

SKETCH 
Ts = 50°C

Air

T• = 20°C

U• = 30.8 m/s

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the film temperature of 35°C 
  Thermal conductivity (k) = 0.0262 W/(m K) 
  Kinematic viscosity (ν) = 17.1 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

At the surface temperature of 50°C: Prs = 0.71 

SOLUTION 

The Reynolds number based on the film temperature is 

 ReD = 
U D

ν
∞  = 

( ) ( )
( )–6 2

31.8m/s 0.05m

17.1 10 m /s×
 = 9.30 × 104 

This is within the range of the correlation of Equation (7.16), for the downstream surface 

 DNu   = 0.16 
2

3
DRe  = 0.16 

2
4 3(9.30 10 )×  = 328.4 

 cdh  = DNu
k

D
 = 328.4 

( )0.0262 W/(m K)

0.05m
 = 172.1 2W/(m K)  

For the half-round upstream face, the average Nusselt number can be estimated by numerically 
integrating the curve of Figure 7.8 for ReD = 101,300 

 DNu  = 
90

0

1

90 DNu θ
°

°  dθ = 
1

90°
(Area under the NuDθ Vs θ curve from θ = 0 to 90°) 

Performing the integration by the trapezoidal rule 

 DNu  = 
1

90°
[20° (320) + 20° (310) + 20° (280) + 20°(190) + 10° (150)] = 260 

 ch  = DNu
k

D
 = 260 

( )0.0262 W/(m K)

0.05m
 = 136.2 2W/(m K)  
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The power input to the heater must equal the rate of convective heat loss 

 QG = ( cdh  Ad + cuh  Au) (Ts – T∞) = ( )
2cd cuh DL h DL
π   +     

(Ts – T∞) 

 GQ

L
 = 

2cd cuh h
π +   D(Ts – T∞) = 2172.1 (136.2) W/(m K)

2

π  +    
 (0.05 m)  

   (50°C – 20°C) = 579 W/m  

COMMENT 

The use of Equation 7.3 and Table 7.1 rather than Figure 7.8 to estimate the upstream heat transfer 
coefficient leads to a transfer coefficient 11% lower and a final result 6% lower than those presented 
above. 

PROBLEM 7.37 

One method of storing solar energy for use during cloudy days, or at night, is to store it 
in the form of sensible heat in a rock bed. Suppose such a rock bed has been heated to 
70°C and it is desired to heat a stream of air by blowing it through the bed. If the air 
inlet temperature is 10°C and the mass velocity of the air in the bed is  
0.5 kg/(s m2), how long must the bed be in order for the initial outlet air temperature to 
be 60°C? Assume that the rocks are spherical, 2 cm in diameter, and that the bed 
void fraction is 0.5. Hint: The surface area of the rocks per unit volume of the bed is 
(6/Dp)(1 – ε). 

GIVEN 

• Packed bed of rocks with air blowing through it 
• Initial temperature of rocks (Tr) = 70°C 
• Inlet air temperature (Ta,in) = 10°C 
• Mass velocity of air ( m /A) = 0.5 kg/(s m2) 
• Outlet air temperature (Ta,out) = 65°C 
• Surface area per unit volume (As/V) = (6/Dp)(1 – ε) 

FIND 

• Length of bed required (L) 

ASSUMPTIONS 

• Rocks are spherical with diameter (D) = 2 cm = 0.02 m 
• Void fraction of the bed (ε) = 0.5 
• Rock temperature remains practically constant 

SKETCH 
Ta,out = 65°C

L = ?

x

Air
m/A = 0.5 kg/(sm2)

Ta,in = 10°C

T
D

r = 70°C
= 0.02 m

e = 0.5
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average temperature of 37.5°C 

  Density (ρ) = 1.101 kg/m3 

  Thermal conductivity (k) = 0.0263 W/(m K) 

  Kinematic viscosity (ν) = 17.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

  Specific heat (cpa) = 10147 J/(kg K) 

SOLUTION 

The Whitaker definition of the Reynolds number is 

 
pDRe  = 

(1 )
p sD U

ν ε−
 

 where  Dp = 
6(volume)

surface area
 = 

3

2

6
6

D

D

π

π

 
  

 = D (for spherical packing) 

 Us = 
m

A ρ
 = 

( )
( )

2

3

0.5kg/(s m )

1.101kg/m
 = 0.454 m/s 

 ∴  
pDRe  = 

( ) ( )
( ) ( )6 2

0.02 m 0.45m/s

17.4 10 m /s 1 0.5−× −
 = 1044 

The heat transfer coefficient is given by Equation (7.20) 

 
c ph D

k
 = 

1 ε
ε
− 21

320.5 0.2
p pD DRe Re

 
+ 

 

1

3Pr  

 
c ph D

k
 = 

1 0.5

0.5

− 21

320.5(1044) 0.2(1044)
 

+ 
  

1

3(0.71)  = 32.77 

 ch  = 32.77
( )0.0263W/(m K)

0.02 m
 = 43.1 2W/(m K)  

A local energy balance on the air flow through the bed yields 

  
m

A


cpa [T (x + Δx) – T(x)] = ch sA

V
dx [Tr – T(x)] 

 where  sA

V
 = 

6

pD
(1 – ε) = 

6

0.02 m
(1 – 0.5) = 150

1

m
 

  ( )20.5kg/(m s) ( )1014(Ws)/(kg K)  [T(x + Δx) – T(x)] = ( )243.1W/(m K) ( )1501/m dx [Tr – T(x)] 

Checking the units, then eliminating them for clarity 

 T(x + Δx) = T(x) + 12.75 Δx [Tr – T(x)] 
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Let Δx = 1 cm = 0.01 m 
Applying the above equation iteratively until the temperature reaches 65°C yields the following results 

  x (m) T(x) (°C) 
  0.00 10.00 
  0.01 17.65 
  0.02 24.32 
  0.03 30.14 
  0.04 35.22 
  0.05 39.66 
  0.06 43.53 
  0.07 46.91 
  0.08 49.85 
 Let Δx = 0.02 m 0.10 54.99 
  0.12 58.81 
  0.14 61.66 
  0.16 63.79 
  0.18 65.31 
   L = 0.18 m = 18 cm 

PROBLEM 7.38 

Suppose the rock bed in Problem 7.37 has been completely discharged and the entire bed 
is at 10°C. Hot air at 90°C and 0.2 m/s is then used to recharge the bed. How long will it 
take until the first rocks are back up to 70°C and what is the total heat transfer from the 
air to the bed? 

From Problem 7.37: One method of storing solar energy for use during cloudy days, or 
at night, is to store it in the form of sensible heat in a rock bed. Assume that the rocks are 
spherical, 2 cm in diameter, and that the bed void fraction is 0.5. Hint: The surface area 
of the rocks per unit volume of the bed is (6/Dp)(1 – ε). 

GIVEN 

• Packed bed of rocks with air blowing through it  
• Inlet air temperature (Ta,in) = 90°C 
• Mass velocity of air ( m /A) = 0.5 kg/s m2 
• Surface area per unit volume (As/V) = (6/Dp)(1 – ε) 
• Length of bed (from solution to Problem 7.37) (L) = 19 cm = 0.19 m 
• Initial temperature of rocks (Tr,i) = 10°C 

FIND 

(a) The time required (t) for Tr,max = 70°C 
(b) The rate of heat transfer (q) for that time 

ASSUMPTIONS 

• Rocks are spherical with diameter (D) = 2 cm = 0.02 m 
• Void fraction of the bed (ε) = 0.5 
• The rock has the density and thermal conductivity of granite 
• The specific heat of the rock is approximately the same as brick or concrete: c = 840 J/(kg K) 
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SKETCH 

Air

m/A = 0.5 kg/(sm2)

Ta,in = 90°C

T
D

r = 70°C
= 0.02 m

e = 0.5

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 90°C 

  Density (ρ) = 0.942 kg/m3 

  Thermal conductivity (k) = 0.0300 W/(m K) 

  Kinematic viscosity (ν) = 22.6 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

From Appendix 2, Table 11, for granite 

  Density (ρ) = 2750 kg/m3 

  Thermal conductivity (kr) = 3.0 W/(m K) 

SOLUTION 

The air velocity is given by 

 Us = 
m

Aρ


 = 
( )
( )

2

3

0.5kg/(m s)

0.942 kg/m
 = 0.531 m/s  

 ∴  
pDRe  = 

(1 )
p sD U

ν ε−
 = 

( ) ( )
( ) ( )6 2

0.02 m 0.531m/s

22.6 10 m /s 1 0.5−× −
 = 940 

Applying Equation 7.20 

 
c ph D

k
 = 

1 ε
ε
− 21

320.5 0.2
p pD DRe Re

 
+ 

 

1

3Pr  

 
c ph D

k
 = 

1 0.5

0.5

− 21
320.5(940) 0.2(940)

 
+ 

  

1

3(0.71)  = 30.8 

 ch  = 30.8
( )0.0300W/(m K)

0.02 m
 = 46.2 2W/(m K)  

The upstream rocks in the bed will heat up most quickly because they are exposed to air at the inlet 
temperature of 90°C. The Biot number for a rock is 

 Bi = 
2
c

r

h D

k
 = 

( ) ( )
( )

246.2 W/(m K) 0.02 m

2 3.0W/(m K)
 = 0.15 > 0.1 

Therefore, the internal thermal resistance of the rocks cannot be neglected and the chart solution of 
Figure 2.39 must be used. 

  
(0, )

o

T t T

T T
∞

∞

−
−

 = 
70°C – 90°C

10°C – 90°C
 = 0.25 

 
1

Bi
 = 

1

0.15
 = 6.66 
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From Figure 2.39 

 Fo = 
2

o

t

r

α
 = 3 

Solving for the time 

 t = 
2

oFo r

α
 = 

2
o r

r

Fo r c

k

ρ
 = 

( ) ( ) ( ) ( )
( )

2 33 0.1m 2750kg/m 840J/(kg K) (Ws)/J

3.0W/(m K)
 

 t = 23,100 s = 6.4 hours 

It will take 6.4 hours for the center of the upstream rocks to reach 70°C. 

COMMENTS 

Since an average solar radiation is available for more than 6 hours in sunny climates, the rock storage 
appears to be sized properly 

PROBLEM 7.39 

An automotive catalytic convertor is a packed bed in which a platinum catalyst is coated 
on the surface of small alumina spheres. A metal container holds the catalyst pellets and 
allows engine exhaust gases to flow through the bed of pellets. The catalyst must be 
heated by the exhaust gases to 300°C before the catalyst can help combust unburned 
hydrocarbons in the gases. The time required to achieve this temperature is critical 
because unburned hydrocarbons emitted by the vehicle during a cold start comprise a 
large fraction of the total emissions from the vehicle during an emission test. A fixed 
volume of catalyst is required but the shape of the bed can be modified to increase the 
heat-up rate. Compare the heat-up time for a bed 5 cm diameter and 20 cm long with one 
10cm diameter and 5 cm long. The catalyst pellets are spherical, 5 mm diameter, have a 
density of 2 g/cm3, thermal conductivity of 12 W/(m K) and specific heat of 1100 J/(kg K). 
The packed-bed void fraction is 0.5. Exhaust gas from the engine is at a temperature of 
400°C, a flow rate of 6.4 gm/s, and has the properties of air. 

GIVEN 

• A packed bed catalytic converter comprised of platinum coated alumina spheres with exhaust 
gases flowing through them 

• Two possible bed geometries  Case a: Diameter (Db) = 5 cm = 0.05 m 
     Length (L) = 20 cm = 0.2 m 

   Case b: Diameter (Db) = 10 cm = 0.1 m 
        Length (L) = 5 cm = 0.05 m 

• Sphere density (ρp) = 2 g/cm3 = 2000 kg/m3 
• Sphere diameter (Dp) = 5 mm = 0.005 m 
• Sphere thermal conductivity (kp) = 12 W/(m K) 
• Void fraction (ε) = 0.5 
• Sphere specific heat (cp) = 1100 J/(kg K) 
• Engine exhaust gas temperature (Tg) = 400°C 
• Engine exhaust mass flow rate ( m ) = 6.4 g/s = 0.0064 kg/s 
• Engine exhaust has the properties of air 

FIND 

• The heat-up time (t) for the pellet surface temperature (Tp) to reach 300°C 

ASSUMPTIONS 

• The initial temperature of the bed (To) = 20°C 
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SKETCH 

D = 5 cm

Case (a)

Air

L = 20 cm Case (b)

D = 10 cm

L = 5 cm

Air  

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 400°C 

• Density (ρ) = 0.508 kg/m3 
• Thermal conductivity (k) = 0.0485 W/(m K) 
• Absolute viscosity (μ) = 32.754 × 10–6 (Ns)/m 
• Prandtl number (Pr) = 0.72 

 

SOLUTION 

The Reynolds number is 

 
pDRe  = 

(1 )
p sD U

ν ε−
 = 

2

4 m

(1 )

p

b

D

Dπ μ ε−
 

 Case (a)  
pDRe  = 

( ) ( )
( ) ( ) ( ) ( )2 6 2

4 0.0064 kg/s 0.005m

0.05m 32.754 10 (Ns)/m (kg m)/(Ns ) 1 0.05π −× −
 = 995 

 Case (b)  
pDRe  = 249 

Applying Equation (7.20) 

 
c ph D

k
 = 

21
321

0.5 0.2
p pD DRe Re

ε
ε

 − + 
 

1

3Pr  

 Case (a)  cah  = 
( )0.0485W/(m K)

0.005m

1 0.5

0.5

− 
  

21
320.5(995) 0.2(995)

 
+ 

  

1

3(0.71)  = 310.4 W/(m2 K)   

 Case (b)  cbh  = 137.4 W/(m2 K) 

The Bio number for case (a) is 

 Bi = 
2
c p

p

h D

k
 = 

( ) ( )
( )

2310.4W/(m K) 0.005m

2 12 W/(m K)
 = 0.065 < 0.1 

Therefore, the internal resistance of the spheres is negligible in both cases and the lumped parameter 
analysis of Section 2.6.1 can be used. The upstream portion of the bed will reach 300°C first. Since 
they will be continuously exposed to 400°C air at a constant heat transfer coefficient, Equation (2.84) 
may be applied. Solving Equation 2.84 for time 

 t = –
p p

c s

c V

h A

ρ
ln

g

o g

T T

T T

− 
 − 

   where 
s

V

A
 = 

3

2
6 p

p

D

D

π

π
 = 

6
pD
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For case (a) 

 t = –
( ) ( )

( ) ( )

3

2

1100J/(kg K) 2000kg/m

310.4 W/(m K) J/(Ws)

0.005 m

6
 
  

ln 
300°C – 400°C

20°C – 400°C
 
  

 = 7.9 s  

For case (b)  t = 17.8 s 

COMMENTS 

The short configuration takes more than twice as long to heat up because of the lower heat transfer 
coefficient due to the lower gas velocity through the bed. 
Once the front row of the bed reaches 300°C, catalytic combustion will occur and quickly heat the rest 
of the packed bed. 

PROBLEM 7.40 

Determine the average heat transfer coefficient for air at 60°C flowing at a velocity of 1 
m/s over a bank of 6-cm-OD tubes arranged as shown in the accompanying sketch. The 
tube-wall temperature is 117°C. 

10.2 cm
Air

tu

7.6 cm

 

GIVEN 

• Air flow through the tube bank shown 
• Air temperature (Ta) = 60°C 
• Air velocity (Us) = 1 m/s 
• Tube outside diameter (D) = 6 cm = 0.06 m 
• Tube wall temperature (Tw) = 117°C 

FIND 

• The average heat transfer coefficient ( ch ) 

ASSUMPTIONS 

• Steady state 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 60°C 
  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

At Tw: Prs = 0.71 
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SOLUTION 

= 5.1 cm

2.1 cm

SL = 7.6 cm

9.15 cm

3.15 cm

ST
z

 

Therefore, the minimum free flow area is between adjacent tubes in a row, and the maximum air 
velocity is 

 Umax = Us
5.1

2.1
 = 2.43 m/s 

The Reynolds number is 

 ReD = maxU D

ν
 = 

( ) ( )
( )–6 2

2.43m/s 0.06m

19.4 10 m /s×
 = 7515  (Transition region) 

 T

L

S

S
 = 

10.2cm

7.6cm
 = 1.34 < 2 

Therefore, Equation (7.30) is applicable 

 DNu  = 0.35
0.2

T

L

S

S

 
  

ReD
0.60 Pr0.36

0.25

s

Pr

Pr

 
  

 = 0.35(1.34)0.2 (7515)0.60 (0.71)0.36 (1) = 69.4 

However, this Nusselt is applicable only to tube banks of ten or more rows. Since there are only tow 
rows in this case, the average Nusselt number can be estimated by multiplying the above result by 0.75 
as shown in Table 7.3. 

 DNu  = 0.75 (69.4) = 52.05 

 ch  = DNu
k

D
 = 52.05 

( )0.0279 W/(m K)

0.06m
 = 24.2 2W/(m K)  

PROBLEM 7.41 

Repeat Problem 7.40 for a tube bank in which all of the tubes are spaced with their 
centerlines 7.5 cm apart. 

From Problem 7.40: Determine the average heat transfer coefficient for air at 60°C 
flowing at a velocity of 1 m/s over a bank of 6-cm-OD tubes. The tubewall temperature is 
117°C. 

GIVEN 

• Air flow through a tube bank 
• Tube spacing (S) = 7.5 cm = 0.075 m 
• Air temperature (Ta) = 60°C 
• Air velocity (Us) = 1 m/s 
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• Tube outside diameter (D) = 6 cm = 0.06 m 
• Tube wall temperature (Tw) = 117°C 

FIND 

• The average heat transfer coefficient ( ch ) 

ASSUMPTIONS 

• Steady state 

SKETCH 

7.6 cm

Air

U• = 1 m/s

Ta = 60°C

7.5 cm

Tw = 117°C

(Not to Scale)  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at 60°C 
  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

At Tw 
 Prs = 0.71 

SOLUTION 

The longitudinal pitch for this case is given by 

 ST
2 + SL

2 = SL
2  SL = 2 2

L TS S−  = 2 2(7.5m) [(7.5m) / 2]−  = 6.50 cm = 0.065 m 

 T

L

S

S
 = 

7.5 m

6.5 m
 = 1.15 

0.75 cm0.75 cm

7.5 cm
7.5 cm

1.5 cm

3.75 cm3.75 cm

 

Therefore, the minimum free flow area is between adjacent tubes in a row, and the maximum air 
velocity is 

 Umax = Us
3.75

0.75
 = 5.0 m/s  
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The Reynolds number is 

 ReD = maxU D

ν
 = 

( ) ( )
( )–6 2

5.0m/s 0.06m

19.4 10 m /s×
 = 15,464  (Transition region) 

Applying Equation (7.30) 

 NuD = 0.35
0.2

T

L

S

S

 
  

ReD
0.60 Pr0.36

0.25

s

Pr

Pr

 
  

 = 0.35 (1.15)0.2 (15,464)0.60 (0.71)0.36 (1) = 103.8 

Adjusting the Nusselt number for the first two rows 

 NuD = 0.75 (103.6) = 77.70 

 hc = NuD
k

D
 = 77.70

( )0.0279 W/(m K)

0.06m
 = 36.1 2W/(m K)  

COMMENT 

The change in the geometry from Problem 7.40 lead to a 50% increase in the heat transfer coefficient. 

PROBLEM 7.42 

Carbon dioxide gas at 1 atmosphere pressure it to be heated from 25°C to 75°C by 
pumping it through a tube bank at a velocity of 4 m/s. The tubes are heated by steam 
condensing within them at 200°C. The tubes are 10 mm outside diameter, are in an in–
line arrangement, have a longitudinal spacing of 15 mm and a transverse spacing of 17 
mm. If 13 tube rows are required, what is the average heat transfer coefficient and what 
is the pressure drop of the carbon dioxide? 

GIVEN 

• In-line tube bank: condensing steam inside, CO2 outside 
• CO2 temperatures  In: (Tg,in) = 25°C 
  Out: (Tg,out) = 75°C 
• CO2 velocity (Us) = 4 m/s 
• Steam temperature (Ts) = 200°C 
• Tube outside diameter (D) = 10 mm = 0.01 m 
• Longitudinal spacing (SL) = 15 mm = 0.015 m 
• Transverse spacing (ST) = 17 mm = 0.017 m 
• Number of tubes (N) = 13 

FIND 

(a) The average heat transfer coefficient (hc) 
(b) The CO2 pressure drop (Δp) 

ASSUMPTIONS 

• Steady state 
• The thermal resistances of the condensing steam and the tube walls are negligible (tube wall 

temperature = Ts) 
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SKETCH 

Tg,out = 75°C

SL = 15 mm

ST = 17 mm

D = 10 mm

CO2

T ,ing = 25°C

Us = 4 m/s

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 28, for carbon dioxide at the average temperature of 50°C 

  Density (ρ) = 1.6772 kg/m3 

  Thermal conductivity (k) = 0.01836 W/(m K) 

  Kinematic viscosity (ν) = 9.64 × 10–6 m2/s 

  Prandtl number (Pr) = 0.763 

  Specific heat (c) = 884 J/(kg K) 

At the tube surface temperature of 200°C: Prs = 0.712 

SOLUTION 

8.5 mm

3.5 mm
 

The maximum CO2 velocity is 

 Umax = Us
8.5 mm

3.5 mm
 = 9.71 m/s 

The Reynolds number is 

 ReD = sU D

ν
 = 

( ) ( )
( )–6 2

9.71m/s 0.01m

9.64 10 m /s×
 = 10,077  (Transition regime) 

 T

L

S

S
 = 

17 mm

15mm
 = 1.133 

(a) The Nusselt number for this geometry is obtained from Equation (7.29) 

 DNu  = 0.27 ReD
0.63 Pr0.36 

0.25

s

Pr

Pr

 
  

 = 0.27 (10,077)0.63 (0.763)0.36 
0.250.763

0.712
 
    = 82.9 

 ch  = DNu
k

D
 = 82.9

( )0.01863W/(m K)

0.01m
 = 154.5 2W/(m K)  

(No correction is needed since N > 10) 
(b) From Equation (7.37) 

 Δp = f 
2

max

2

Uρ
N 

The pressure drop coefficient (f) is contained in Figure 7.25 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
673

 1TS

D
 −  

1LS

D
 −  

 = 
17 mm

1
10 mm
 −  

15 mm
1

10 mm
 −  

 = 0.35   x = 3 

For SL/D = 1.5 and ReD = 104, from Figure 7.25: f/x ≈ 0.5 

 f = 0.5 (3) = 1.5 

 Δp = 1.5
( ) ( )231.6772 kg/m 9.7 m/s

2
(13) ( )2(N s ) /(kg m) ( )2(Pa m )/N  = 1.5 × 103 Pa 

PROBLEM 7.43 

Estimate the heat transfer coefficient for liquid sodium at 540°C flowing over a  
10-row staggered-tube bank of 2.5 cm diameter tubes arranged in an equilateral-
triangular array with a 1.5 pitch-to-diameter ratio. The entering velocity is 0.6 m/s, 
based on the area of the shell, and the tube surface temperature is 200°C. The outlet 
sodium temperature is 310°C. 

GIVEN 

• Liquid sodium flowing over an equilateral staggered tube bank 
• Sodium temperatures  Ts,in = 540°C 
  Ts,out = 310°C 
• Number of tube rows (N) = 10 
• Tube diameter (D) = 2.5 cm 
• Pitch to diameter ratio (S/D) = 1.5 
• Entering velocity (Us) = 0.6 m/s 
• Tube surface temperature (Tt) = 200°C 

FIND 

• Estimate the heat transfer coefficient ( ch ) 

ASSUMPTIONS 

• Steady state 
• The correlation of Equation 7.38 can be applied to a pitch-to-diameter ratio of 1.5 
• Tube wall temperature is uniform and constant 

SKETCH 

S
Sodium

Ts,in = 540°C

Us = 0.6 m/s

D

S

Ts,out = 310°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 26, for sodium at the average temperature of 425°C 

  Density (ρ) = 871.2 kg/m3 

  Specific heat (c) = 1285 J/(kg K) 

  Thermal conductivity (k) = 70 W/(m K) 

  Kinematic viscosity (ν) = 2.863 × 10–7 m2/s 
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  Prandtl number (Pr) = 0.0047 

SOLUTION 

1.875 cm

0.625 cm

3.75 cm1.25 cm

 

Therefore, the minimum free flow area is between adjacent tubes in a row, and the maximum air 
velocity is 

 Umax = 0.6 m/s
1.875cm

0.625cm
 = 1.8 m/s 

 
 
 
The Reynolds number for the tube bank is 

 ReD = sU D

ν
 = 

–2

–7 2

1.8m/s (2.5 10 m)

2.863 10 m /s

×
×

 = 1,57,200 

The Reynolds number is out of the range of applicability of Equation (7.38). However, it is the only 
correlation available for liquid metals in this geometry 

 DNu  = 4.03 + 0.228 (ReD Pr)0.67 = 4.03 + 0.228[1,57,200 (0.0047)]0.67 = 23.1 

 ch  = DNu
k

D
 = 23.2 

–2

70 W/(m K)

2.5 10 m×
 = 64960 W/(m2 K) 

  65 kW/(m2 K) 

No correction is needed since N  ≥ 10. 

PROBLEM 7.44 

Liquid mercury at a temperature of 315°C flows at a velocity of 10 cm/s over a staggered 
bank of 5/8-in. 16 BWG stainless steel tubes, arranged in an equilateral triangular array 
with a pitch-to-diameter ratio of 1.375. If water at 2 atm pressure is being evaporated 
inside the tubes, estimate the average rate of heat transfer to the water per meter length 
of the bank, if the bank is 10 rows deep and has 60 tubes in it. The boiling heat transfer 
coefficient is 20,000 W/(m2 K). 

GIVEN 

• Liquid mercury flow over an equilaterally staggered tube bank 
• Inlet mercury temperature (Tm,in) = 315°C 
• Mercury velocity (Us) = 10 cm/s = 0.1 m/s 
• Tubes are 5/8 in., 26 BWG stainless steel 
• Pitch to diameter ratio (S/D) = 1.375 
• Water at 2 atm pressure is being evaporated within the tubes 
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• Number of rows of tubes (N) = 10 
• Number of tubes (Nt) = 60 

• The boiling heat transfer coefficient ( bh ) = 20,000 W/(m2 K) 

FIND 

• The average rate of heat transfer per meter length of the bank (q/L) 

ASSUMPTIONS 

• Steady state 
• Tubes are type 304 stainless steel 
• Temperature change of the mercury across the tube bank is negligible 

SKETCH 

S
Mercury

Tm,in = 315°C

Us = 0.1 m/s

D

S

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 25, for mercury at the inlet temperature of 315°C 

  Density (ρ) = 12,847 kg/m3 

  Thermal conductivity (k) = 14.02 W/(m K) 

   Kinematic viscosity (ν) = 0.0673 × 10–6 m2/s 

  Prandtl number (Pr) = 0.0083 

  Specific heat (c) = 134.0 J/(kg K) 

From Appendix 2, Table 13, the saturation temperature of water at 2 atm (2.02 × 105 Pa) is  
Tw = 120°C 
From Appendix 2, Table 42, for 5/8 in. 16 BWG tubes 
  Outside diameter (Do) 5/8 in. 0.0159 m 

  Inside diameter (Di) = 0.495 in. = 0.0126 m 

From Appendix 2, Table 10, the thermal conductivity of type 304 stainless steel (ks) = 14.4 W/(m K) 
at 20°C 

SOLUTION 

0.4297¢¢0.4297¢¢
0.1172¢¢0.1172¢¢

0.8594¢¢

0.8594¢¢0.233¢¢
0.233¢¢

 

Therefore, the minimum free flow area is between adjacent tubes in a row, and the maximum air 
velocity is 
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 Umax = Us
0.4297

0.1172
 = 0.37 m/s 

The Reynolds number is 

 ReD = sU D

ν
 = 

( ) ( )
( )–6 2

0.37 m/s 0.0159 m

0.0673 10 m /s×
 = 87,414 

Applying the correlation of Equation (7.38) 

 DNu  = 4.03 + 0.228 (ReD Pr)0.67 = 4.03 + 0.228 [87,414(0.0083)]0.67 = 22.8 

 ch  = DNu
o

k

D
 = 22.8

( )14.02 W/(m K)

0.0159 m
 = 20,147 2W/(m K)  

The thermal circuit for the problem is shown below 

Tw
Tm

Rcm Rk Rcw  

where 
Rcw = Thermal resistance of the boiling water 

 = 
1

b ih A
 = 

1

b t ih N D Lπ
 = ( ) ( )2

1

20,000W/(m K) 60 0.0126m Lπ
 = ( )5 1

2.11 10 (m K)/W
L

−  ×     

Rk = Conductive resistance of the tube wall 

 Rk = 

ln

2

o

i

s

D

D

Lkπ

 
  

 = 
( )

0.0159 m
ln

0.0126m

2 14.4 W/(m K)Lπ

 
  

 = ( ) 1
0.00257(m K)/L

L

 
    

Rcm = Convective resistance of the mercury side 

 Rcm = 
1

c ih A
 = 

1

c t oh N D Lπ
 = ( ) ( ) ( )2

1

20,147 W/(m K) 60 0.0159 m Lπ
 = ( )5 1

1.656 10 (m K)/L
L

−  ×     

 Rtotal = Rcw + Rk + Rcm = (2.11 × 10–5 + 0.00257 + 1.656 × 10–5) ( )(m K)/L
1

L

 
    

   =  ( ) 1
0.00259(m K)/W

L

 
    

The rate of heat transfer to the steam is 

 
q

L
 = 

total

T

LR

Δ
 = 

( )
315°C 120°C

0.00259(m K)/W

−
 = 75,300 W/m  

COMMENT 

Note that the thermal resistance of the tube wall is 99% of the total resistance. 

PROBLEM 7.45 

Compare the rate of heat transfer and the pressure drop for an in-line and a staggered 
arrangement of a tube bank consisting of 300 tubes, 1.8 m long and 2.5 cm OD. The tubes 
are to be arranged in 15 rows with longitudinal and transverse spacing of 5 cm The tube 
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surface temperature is 95°C and water at 35°C is flowing at a mass rate of 5400 kg/s over 
the tubes. 

GIVEN 

• Water flowing over an in-line and a staggered tube bank 
• Number of tubes (Nt) = 300 
• Length of tubes (L) = 1.8 m 
• Tube outside diameter (D) = 2.5 cm 
• Number of rows (N) = 15 
• Normal and parallel spacing = 5 cm 
• Tube surface temperature (Tt) = 95°C 
• Water inlet temperature (Tw,in) = 35°C 
• Mass flow rate of water ( m ) = 5400 kg/s 

FIND 

(a) Compare the rate of heat transfer (q) and 
(b) The pressure drop (Δp) for the two configurations 

ASSUMPTIONS 

• Steady state 
• Tube temperature is uniform 

SKETCH 

D = 2.5 cm

Water

m = 5400 kg/s

Tw,in = 35°C

SL = 5 cm

ST = 5 cm

SL = 5 cm

2.5 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 13, for water at the inlet temperature of 35°C 

  Density (ρ) = 1000 kg/m3 

  Thermal conductivity (k) = 0.63 W/(m K) 

  Absolute viscosity (μ) = 6.92 × 10–4 kg/s 

  Prandtl number (Pr) = 4.5 

  Specific heat (c) = 4174 J/(kg K) 

At the tube temperature of 95°C 

 Prs = 1.88 
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SOLUTION 

The water velocity can be calculated with the help of the sketch below. 

3
2
1

1 2 3

5 cm

W

15

20

2.5 cm

 

W = 19(5 cm) + 5 cm = 100 cm = 1 m 
Therefore, the water velocity is 

 Us = 
m

Aρ


 = 
3

5400kg/s

1000kg/m (1m)(1.8m)
 = 3 m/s 

5.6 cm

2.5 cm
1.25 cm

3.1 m
/s

 

Therefore, for the staggered configuration, the minimum free area is between adjacent tubes in a row, 
and the maximum air velocity is 

 Umax = Us
2.5cm

1.25cm
 = 6 m/s 

This is also the maximum velocity for the in-line case. 
The Reynolds number for either case is 

 ReD = maxU Dρ
μ

 = 
–2 3

–4

(6m/s) (2.5 10 m)(1000kg/m )

6.92 10 m/s

×
×

 = 2.17 × 105   

   (Turbulent) 

(a) The Nusselt number for the in-line case is given by Equation (7.32) 

 DNu  = 0.021 ReD
0.84 Pr0.36 

0.25

s

Pr

Pr

 
  

 = 0.021(2.17 × 105)0.84 (4.5)0.36 
0.254.5

1.88
 
    = 1363 

 ( )c IL
h  = DNu

k

D
 = 1363

–2

0.63W/(m K)

2.5 10 m×
 = 34.35 kW/m2 

The Nusselt number for the staggered case is given by Equation (7.33) 

 DNu  = 0.022 ReD
0.84 Pr0.36 

0.25

s

Pr

Pr

 
  

 = 0.022 (2.17 × 105)0.84 (4.5)0.36 
0.254.5

1.88
 
    = 1427 

 ( )c ST
h  = DNu

k

D
 = 1427

–2

0.63W/(m K)

2.5 10 m×
 = 35.96 kW/m2  

These heat transfer coefficient differ by only 5%, therefore, the rate of heat transfer for the two tube 
banks will be nearly equal. 
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(b) These pressure drop is given by Equation (7.37) 

 Δp = f 
( )2

max

2

Uρ
N, where N is number of rows of tubes 

In-line bank: 

  1T

o

S

D

 
−  

1L

o

S

D

 
−  

 = 1 

From Figure 7.25: x = 1, SL/D = 2,  f/x ≈ 0.19 → f = 0.19 

 (Δp)IL = 0.19
3 2(1000kg/m )(6m/s) (15)

2
 = 51300 Pa = 51.3 kPa 

Staggered tube bank: 

From Figure 7.26: x = 1.1. ST/D = 2,  f/x ≈ 0.16 → f = 0.18 

 (Δp)ST = (51.3 kPa) 
0.18

0.19

 
    = 48.6 kPa 

For nearly the same rate of heat transfer, the staggered bank has slightly lower pressure drop. 

COMMENTS 

These results are only true because the flow is turbulent. Greater difference would occur at lower 
Reynolds numbers. 

PROBLEM 7.46 

Consider a heat exchanger consisting of 12.5 mm outside diameter copper tubes in a 
staggered arrangement with transverse spacing 25 mm, longitudinal spacing 30 mm, and 
9 tubes in the longitudinal direction. Condensing steam at 150°C flows inside the tubes. 
The heat exchanger is used to heat a stream of air flowing at 5 m/s from 20°C to 32°C. 
What is the average heat transfer coefficient and pressure drop for the tube bank? 

GIVEN 

• Staggered copper tube bank with condensing steam inside tubes and air flowing over the outside 
• Tube outside diameter (D) = 12.5 mm = 0.0125 m 
• Transverse spacing (ST) = 25 mm = 0.025 m 
• Longitudinal spacing (SL) = 30 mm = 0.03 m 
• Number of rows of tubes (N) = 9 
• Steam temperature (Ts) = 150°C 
• Air velocity (Us) = 5 m/s 
• Air temperature. Ta,in = 20°C  
 Ta,out = 32°C 

FIND 

(a) The average heat transfer coefficient (hc) 
(b) The pressure drop (Δp) 

ASSUMPTIONS 

• Steady state 
• Thermal resistance of the condensing steam and the copper tube is negligible. Therefore, the tube 

surface temperature = Ts 
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SKETCH 

+

+

+

+

+

ST = 25 mm

Ts = 150°C

Air

Ta,in = 20°C

Us = 5 m/s

D = 12.5 mm  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average temperature of 26°C 

  Density (ρ) = 1.157 kg/m3 

  Thermal conductivity (k) = 0.0251 W/(m K) 

  Kinematic viscosity (ν) = 15.9 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

  Specific heat (c) = 1012 J/(kg K) 

At the tube temperature of 150°C: Prs = 0.71 

SOLUTION 

12.5 mm

6.25 mm

32.5 mm

20 mm

 

Therefore, the minimum free flow area is between adjacent tubes in a row, and the maximum air 
velocity is 

 Umax = Us
12.5

6.25
 = 10 m/s 

The Reynolds number is 

 ReD = sU D

ν
 = 

( ) ( )
( )–6 2

10m/s 0.0125m

15.9 10 m /s×
 = 7862  (Transition regime) 

 T

L

S

S
 = 

25 mm

30 mm
 = 0.833 

(a) Applying equation (7.30) 

 DNu  = 0.35 T

L

S

S

 
  

0.2 ReD
0.60 Pr0.36

0.25

s

Pr

Pr

 
  

 = 0.35 (0.833)0.2 (7862)0.60 (0.71)0.36 (1) = 64.9 
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However, this Nusselt is applicable only to tube banks of ten or more rows. Since there are only 9 
rows in this case, the average Nusselt number can be estimated by multiplying the above result by 0.99 
as shown in Table 7.3. 

 DNu  = 0.99 (64.9) = 64.3 

 ch  = DNu
k

D
 = 64.3

( )0.0251W/(m K)

0.0125m
 = 129 2W/(m K)  

(b) The pressure drop is given by Equation (7.37) 

 Δp = f 
( )2

max

2

Uρ
N 

From Figure 7.26  For T

L

S

S
= 0.833, Re = 7862 → x = 1 

 For DS

D
 = 

25

12.5
 = 2 → 

f

x
= 0.4 → f = 0.4 

 Δp = 
( ) ( )3(0.4) 1.157 kg/m 10m/s

2
(9) ( )2(N s )/(kg m) ( )2(Pa m )/N  = 208 Pa 
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Chapter 8  

PROBLEM 8.1 

In a heat exchanger, air flows over brass tubes of 1.8 cm ID and 2.1 cm OD that contain 
steam. The convective heat-transfer coefficients on the air and steam sides of the tubes 
are 70 W/(m2 K) and 210 W/(m2 K), respectively. Calculate the overall heat transfer 
coefficient for the heat exchanger (a) based on the inner tube area, (b) based on the outer 
tube area. 

GIVEN 

• Air flow over brass tubes containing steam 
• Tube diameters  Inside (Di) = 1.8 cm = 0.018 m 
  Outside (Do) = 2.1 cm = 0.021 m 

• Convective heat transfer coefficients  Air side ( )oh  = 70 W/(m2 K) 

  Steam side ( )ih  = 210 W/(m2 K) 

FIND 

• The overall heat transfer coefficient for the heat exchanger based on (a) the inner tube area (Ui) 
and (b) the outer tube area (Uo) 

ASSUMPTIONS 

• The heat transfer coefficients are uniform over the transfer surfaces 

SKETCH 

Steam

Air

D
D

o

i

= 2.1 cm
= 1.8 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10, the thermal conductivity of brass at 20°C (kb) = 111 W/(m K) 

SOLUTION 

(a) The overall heat transfer coefficient based on the inner area is given by Equation (8.3) 

 Ui = ( )
1

ln1
2

o

i

r
i r i

i o o

A A

h kL A hπ

     + +        

 

where Ai = inside area = π Di L 

 Ao = outside area = π Do L 

 ∴  Ui = ( )
1

ln1
2

o

i

D
i D i

i o o

D D

h k D h

     + +        

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

684

 Ui = 

( ) ( ) ( )
0.021m
0.018m

2 2

1

(0.018m)ln1 0.018m
2 111W/(m K)210 W/(m K) 0.021m 70 W/(m K)

       + +     

 = 58.8 2W/(m K)  

(b) The overall heat transfer coefficient based on the outer area is given by Equation (8.2) 

 Uo = ( )
1

ln 1
2

o

i

r
o ro

i i o

AA

A h kL hπ

     + +        

 = ( )
1

ln 1
2

o

i

D
o Do

i i o

DD

D h k h

     + +        

 

 Uo = 

( ) ( ) ( )
0.021m
0.018m

2 2

1

(0.021m)ln0.021m 1
2 111 W/(m K)(0.018m) 210 W/(m K) 70 W/(m K)π

     + +
  

 = 50.4 W/(m2 K) 

PROBLEM 8.2 

Repeat Problem 8.1 but assume that a fouling factor on the inside of the tube of 0.00018 
(m2 K)/W has developed during operation. 

From Problem 8.1: In a heat exchanger, air flows over brass tubes of 1.8 cm ID and 2.1 
cm OD that contain steam. The convective heat-transfer coefficients on the air and steam 
sides of the tubes are 70 W/(m2 K) and 210 W/(m2 K), respectively. Calculate the overall 
heat transfer coefficient for the heat exchanger (a) based on the inner tube area, (b) 
based on the outer tube area. 

GIVEN 

• Air flow over brass tube containing steam 
• Tube diameters  Inside (Di) = 1.8 cm = 0.018 m 
  Outside (Do) = 2.1 cm = 0.021 m 

• Convective heat transfer coefficients  Air side ( )oh  = 70 W/(m2 K) 

  Steam side ( )ih  = 210 W/(m2 K) 

• Fouling factor on the inside of the tube (Rd) = 0.0018 (m2 K)/W 

FIND 

• The overall heat transfer coefficient for the heat exchanger based on (a) the inner tube area (Ui) 
and (b) the outer tube area (Uo) 

ASSUMPTIONS 

• The heat transfer coefficients are uniform over the transfer surfaces 

SKETCH 

Steam

Air

D
D

o

i

= 2.1 cm
= 1.8 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 10, the thermal conductivity of brass (kb) = 111 W/(m K) 

SOLUTION 

From the solution to Problem 8.1  Ui = 58.76 W/(m2 K) 
 Uo = 50.36 W/(m2 K) 
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without fouling. The overall heat transfer coefficient with fouling (Ud) can be calculated by 
rearranging Equation (8.4) 

 Ud = 
1

1
dR

U
+

 

(a) Based on the inner tube area 

 Udi = 
1

1
di

i

R
U

+
 = 

( ) ( )
2

2

1
1

0.0018 (m K)/W
58.8 W/(m K)

+
 = 53.1 2W/(m K)  

(b) To base the overall heat transfer coefficient on the outer tube area, the fouling factor must also be 
based on the outer tube area 

 Rdo = o

i

A

A
Rdi = o

i

D

D
Rdi 

 Udo = 
1

1
do

o

R
U

+
 = 

1

1o
do

i o

D
R

D U
+

 = 
( ) ( )

2
2

1
2.1m 1

0.0018 (m K)/W
1.8m 50.4 W/(m K)

+
 = 45.5 2W/(m K)  

PROBLEM 8.3 

A light oil flows through a copper tube of 2.6 cm ID and 3.2 cm OD. Air is flowing over 
the exterior of the tube. The convection heat transfer coefficient for the oil is 120 W/ 
(m2 K) and for the air is 35 W/(m2 K). Calculate the overall heat transfer coefficient 
based on the outside area of the tube (a) considering the thermal resistance of the tube, 
(b) neglecting the resistance of the tube. 

GIVEN 

• Air flow over a copper tube with oil flow within the tube 

• Tube diameters  Inside (Di) = 2.6 cm = 0.026 m 

  Outside (Do) = 3.2 cm = 0.032 m 

• Convective heat transfer coefficients  Oil ( )ih  = 120 W/(m2 K) 

  Air ( )oh  = 35 W/(m2 K) 

FIND 

• The overall heat transfer coefficient based on the outside tube area (Uo), (a) considering the 
thermal resistance of the tube, and (b) neglecting the tube resistance 

ASSUMPTIONS 

• Uniform heat transfer coefficients 
• Variation of thermal properties is negligible 

SKETCH 

Oil

Air

D
D

o

i

= 3.2 cm
= 2.6 cm
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, the thermal conductivity of copper (k) = 392 W/(m K) (at 127°C) 

SOLUTION 

(a) The overall heat transfer coefficient based on the outer tube area is given by Equation (8.2) 

 Uo = ( )
1

ln 1
2

o

i

r
o ro

i i o

AA

A h kL hπ

     + +        

 

where Ai = inside area = π Di L 

 Ao = outside area = π Do L 

 ∴  Uo = ( )
1

ln 1
2

o

i

D
o Do

i i o

DD

D h k h

     + +        

 

 Uo = 

( ) ( )

0.032m
0.026m

22

1

(0.032 m)ln0.032 m 1
2 392 W/(m K) 35 W/(m K)(0.026m) 120 W/(m K)

     + +
  

 

 Uo = 
2

1

(0.01026 0.0000085 0.02857) (m K)/W+ +
 = 25.8 2W/(m K)  

(b) The thermal resistance of the tube wall can be neglected by eliminating the bracketed term in the 
denominators of the expressions above 

 Uo = 
2

1

(0.01026 0.02857) (m K)/W+
 = 25.8 2W/(m K)  

COMMENTS 

• Neglecting the thermal resistance of the tube wall has a negligible effect on the overall heat 
transfer coefficient. 

• The thermal resistance on the air side is 74% of the overall thermal resistance. 

PROBLEM 8.4 

Repeat Problem 8.3, but assume that fouling factor of 0.0009 (m2 K)/W on the inside and 
0.0004 (m2 K)/W on the outside respectively have developed. 

From Problem 8.3: A light oil flows through a copper tube of 2.6 cm ID and 3.2 cm OD. 
Air is flowing over the exterior of the tube. The convection heat transfer coefficient for 
the oil is 120 W/(m2 K) and for the air is 35 W/(m2 K). Calculate the overall heat transfer 
coefficient based on the outside area of the tube (a) considering the thermal resistance of 
the tube, (b) neglecting the resistance of the tube. 

GIVEN 

• Air flow over a copper tube with oil flow within the tube 
• Tube diameters  Inside (Di) = 2.6 cm = 0.026 m 
  Outside (Do) = 3.2 cm = 0.032 m 
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• Convective heat transfer coefficients  Oil ( )ih  = 120 W/(m2 K) 

  Air ( )oh  = 35 W/(m2 K) 

• Fouling factors  Inside (Rdi) = 0.0009 (m2 K)/W 
  Outside (Rdo) = 0.0004 (m2 K)/W 

FIND 

• The overall heat transfer coefficient based on the outside tube area (Uo), (a) considering the 
thermal resistance of the tube, and (b) neglecting the tube resistance 

ASSUMPTIONS 

• Uniform heat transfer coefficients 
• Variation of thermal properties is negligible 

SKETCH 

Oil

Air

D
D

o

i

= 3.2 cm
= 2.6 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, the thermal conductivity of copper (k) = 392 W/(m K) (at 127°C) 

SOLUTION 

From the solution to Problem 8.3 with or without tube wall resistance 

 Uo = 25.75 (m2 K)/W 

(a) The overall heat transfer with fouling can be calculated by rearranging Equation (8.4) 

 Ud = 
1

1
dR

U
+

 

where Rd = the total fouling factor 
Based on the outside tube area 

 Rd = Rdo + o

i

A

A
Rdi = Rdo + o

i

D

D
Rdi 

 Rd = ( )20.0004 (m K)/W  + 
3.2 m

2.6 m

 
  

( )20.0009 (m K)/W  = 0.001508 (m2 K)/W 

 Ud = 
( ) ( )

2
2

1
1

0.001508 (m K)/W
25.8 W/(m K)

+
 = 24.8 W/(m2 K) 

(b) The tube wall resistance is negligible as shown in the solution to Problem 8.3. 

 

 

COMMENTS 

The given fouling factors lead to a 4% decrease in the overall heat transfer coefficient based on the 
outer tube wall area. 
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PROBLEM 8.5 

Water flowing in a long aluminum tube is to be heated by air flowing perpendicular to 
the exterior of the tube. The ID of the tube is 1.85 cm and its OD is 2.3 cm. The mass flow 
rate of the water through the tube is 0.65 kg/s and the temperature of the water in the 
tube averages 30°C. The free stream velocity and ambient temperature of the air are 10 
m/s and 120°C, respectively. Estimate the overall heat transfer coefficient for the heat 
exchanger using appropriate correlations from previous chapters. State all your 
assumptions. 

GIVEN 

• Air flowing perpendicular to the exterior of an aluminum tube with water flowing within the tube 
• Tube diameters  Inside (Di) = 1.85 cm = 0.0185 m 
  Outside (Do) = 2.3 cm = 0.023 m 
• Mass flow rate of water (mw) = 0.65 kg/s 
• Average temperature of the water (Tw) = 30°C 
• Air free stream velocity (Va) = 10 m/s 
• Air temperature (Ta) = 120°C 

FIND 

• The overall heat transfer coefficient (U) 

ASSUMPTIONS 

• Steady state 
• The variation of the Prandtl number of air with temperature is negligible 
• The aluminum is pure 

SKETCH 

Air
= 120°C
= 10 m/s

T
V

a

a

D
D

o

i

= 2.3 cm
= 1.85 cm

Water
= 30°C

= 0.65 kg/s
T

m
w

w

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, thermal conductivity of aluminum (kal) = 238 W/(m K) at 75°C 
From Appendix 2, Table 13, for water at 30°C 

  Density (ρw) = 996 kg/m3 

  Thermal conductivity (kw) = 0.615 W/(m K) 

  Absolute viscosity (μw) = 792 × 10–6 (Ns)/m2 

  Prandtl number (Prw) = 5.4 

From Appendix 2, Table 27, for dry air at 120°C 
  Thermal conductivity (ka) = 0.0320 W/(m K) 

  Kinematic viscosity (ν) = 26.0 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 
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SOLUTION 

The Reynolds number on the water side is 

 ReD = w iV D

ν
 = 

4 w

i

m

Dπ μ


 = 
( )

( ) ( )–6 2 2

4 0.65 kg/s

(0.0185m) 792 10 (Ns)/m (kg m)/(Ns )π ×
 = 56,500 (Turbulent) 

The Nusselt number on the water side is given by Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 DNu  = 0.023 (56,500)0.8 (5.4)0.4 = 286 

 ih  = DNu w

i

k

D
 = 286

( )0.615 W/(m K)

0.0185m
 = 9508 2W/(m K)  

The Reynolds number on the air side is 

 ReD = a o

a

V D

ν
 = ( )6 2

(10 m/s)(0.023m)

26 10 m /s−×
 = 8846 

Applying Equation (7.3) and Table 7.1 but neglecting the Prandtl number variation 

 DNu  = 0.26 ReD
0.6 Pr0.36 = 0.26 (8846)0.6 (0.71)0.36 = 53.64 

 oh  = DNu a

o

k

D
 = 53.64

( )0.0320 W/(m K)

0.023m
 = 74.63 2W/(m K)  

The overall heat transfer coefficient based on the outer tube diameter is given by Equation (8.2) 

 Uo = ( )
1

ln 1

2

o

i

r
o ro

i i o

AA

A h kL hπ

     + +        

 

where  Ai = inside area = π Di L 

 Ao = outside area = π Do L 

 ∴  Uo = ( )
1

ln 1

2

o

i

D
o Do

i i o

DD

D h k h

     + +        

 

 Uo = 

( )
( )

( )

0.023m
0.0185m

22

1

(0.023m)ln0.023m 1

2 238 W/(m K) 74.6 W/(m K)(0.0185m) 9508 W/(m K)

 
 + +
  

 = 73.8 W/(m2 K) 

COMMENTS 

The air side thermal resistance accounts for 99% of the total resistance. The water side convective 
resistance and the conductive resistance of the tube are of the same order of magnitude. 
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PROBLEM 8.6 

Hot water is used to heat air in a double pipe heat exchanger. If the heat transfer 
coefficients on the water side and on the air side are 550 W/(m2 K) and 55 W/(m2 K), 
respectively, calculate the overall heat transfer coefficient based on the outer diameter. 
The heat exchanger pipe is 5 cm, schedule 40, made of steel (k = 54 W/m K), with water 
inside. Express your answer in W/m2 °C. 

GIVEN 

• A double pipe heat exchanger with water in inner tube and air in the annulus 

• Heat transfer coefficients  Water side ( )ih  = 550 W/(m2 K) 

  Air side ( )oh  = 55 W/(m2 K) 

• Inner pipe: 5 cm, schedule 40, made of steel 
• Pipe thermal conductivity (k) = 54 W/(m K) 

FIND 

• The overall heat transfer coefficient based on the outer diameter (Uo) in W/m°C 

ASSUMPTIONS 

• Uniform heat transfer coefficients 

SKETCH 

Air

Water

5 cm
Schedule 40

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 41, for 5 cm, schedule 40 pipe 
 Outside diameter (Do) = 5.98 cm 

 Wall thickness (t) = 0.385 cm 

SOLUTION 

Inside diameter (Di) = Do – 2t = 5.98 – 2(0.385) = 5.21 cm 

The overall heat transfer coefficient based on the outer tube diameter is given by Equation (8.2) 

 Uo = ( )
1

ln 1

2

o

i

r
o ro

i i o

AA

A h kL hπ

     + +        

 

where  Ai = inside area = π Di L 

 Ao = outside area = π Do L 

 ∴  Uo = ( )
1

ln 1

2

o

i

D
o Do

i i o

DD

D h k h

     + +        
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  Uo = ( )5.98cm–2
5.21cm

2 2

1

5.98 10 m ln5.98cm 1

2(54 W/(m K))(5.21cm)(550 W/(m K)) 55 W/(m K)

 ×
 + +
  

  

  Uo = 
–3 2 –3 2 2

1

2.087 10 (K m )/W 0.076 10 (K m )/W 0.01818(K m )/W× + × +
 

  Uo = 49.16 W/(m2 K) 

PROBLEM 8.7 

Repeat Problem 8.6, but assume that a fouling factor of 0.173 (m2 K)/kW based on the 
tube outside diameter has developed over time. 

From Problem 8.6: Hot water is used to heat air in a double pipe heat exchanger. If the 
heat transfer coefficients on the water side and on the air side are 550 W/(m2 K) and 55 
W/(m2 K), respectively, calculate the overall heat transfer coefficient per unit length 
based on the outer diameter. The heat exchanger pipe is 5 cm, schedule 40, made of steel 
(k = 54 W/(m K)), with water inside.  

GIVEN 

• A double pipe heat exchanger with water in inner tube and air in the annulus 

• Heat transfer coefficients  Water side ( )ih  = 550 W/(m2 K) 

  Air side ( )oh  = 55 W/(m2 K) 

• Inner pipe: 5 cm, schedule 40, made of steel 
• Pipe thermal conductivity (k) = 54 W/(m K) 
• Fouling factor (Rd) = 0.173 × 10–3 (m2 K)/W, based on the tube outside area 

FIND 

• The overall heat transfer coefficient based on the outer diameter (Uo) in W/m°C 

ASSUMPTIONS 

• Uniform heat transfer coefficients 
• The given fouling factor is based on the outer tube diameter (Do) 

SOLUTION 
From the solution to Problem 8.6: Uo = 49.16 W/(m2 K) without the fouling factor. The overall heat 
transfer coefficient with the fouling factor (Ud) can be found by rearranging Equation (8.4) 

  Ud = 
1

1
dR

U
+

 = 
–3 2 2

1
1

0.173 10 (m K)/W (m K)/W
49.16

× +
 

  Ud  = 48.75 W/(m2 K) 

COMMENTS 

The inclusion of the fouling factor reduces the overall heat transfer coefficient by around 1%. 

PROBLEM 8.8 

The heat transfer coefficient on the inside of a copper tube (1.9 cm ID and 2.3 cm OD) is 
500 W/(m2 K) and 120 W/(m2 K) on the outside, but a deposit with a fouling factor of 
0.009 (m2 K)/W (based on the tube outside diameter) has built up over time. Estimate the 
percent increase in the overall heat transfer coefficient if the deposit were removed. 
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GIVEN 

• Heat transfer through a copper tube 

• Heat transfer coefficients  Inside ( )ih  = 500 W/(m2 K) 

  Outside ( )oh  = 120 W/(m2 K) 

• Tube diameters  Inside (Di) = 1.9 cm = 0.019 m 
  Outside (Do) = 2.3 cm = 0.023 m 
• Fouling factor (Rd) = 0.009 (m2 K)/W 

FIND 

• Percent increase in the overall heat transfer coefficient if the deposit were removed 

ASSUMPTIONS 

• Constant thermal conductivity properties 
• The copper is pure 

SKETCH 

Di = 1.9 cm Do = 2.3 cm

ho = 120 W/(m K)2

hi = 500 W/(m K)2

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, the thermal conductivity of copper (k) = 392 W/(m K) at 127°C 

SOLUTION 

The overall heat transfer coefficient without fouling based on the outside tube area is given by 
Equation (8.2) 

 Uo = ( )
1

ln 1
2

o

i

r
o ro

i i o

AA

A h kL hπ

     + +        

 = ( )
1

ln 1
2

o

i

D
o Do

i i o

DD

D h k h

     + +        

 

 Uo = 

( )
( )

( ) ( )
0.023m
0.019m

2 2

1

(0.023m)ln0.023m 1
2 392 W/(m K)(0.019 m) 500 W/(m K) 120 W/(m K)

 
 + +
  

 = 92.9 2W/(m K)  

The overall heat transfer coefficient with fouling is given by Equation (8.4) 

 Ud = 
1

1
d

o

R
U

+
 = 

( ) ( )
2

2

1
1

0.009 (m K)/W
92.9 W/(m K)

+
 = 50.6 2W/(m K)  
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The percent increase is 

  o d

d

U U

U

−
 × 100 = 

92.9 50.6

50.6

−
 × 100 = 84% 

PROBLEM 8.9 

In a shell-and-tube heat exchanger with ih  = oh  = 5600 W/(m2 K) and negligible wall 

resistance, by what percent would the overall heat transfer coefficient (based on the 
outside area) change if the number of tubes was doubled? The tubes have an outside 
diameter of 2.5 cm and a tube wall thickness of 2 mm. Assume that the flow rates of the 
fluids are constant, the effect of temperature on fluid properties is negligible, and the 
total cross sectional area of the tubes is small compared to the flow area of the shell. 

GIVEN 

• Shell and tube heat exchanger 

• Heat transfer coefficients: ih  = oh  = 5600 W/(m2 K) 

• Negligible wall resistance 
• Tube outside diameter (Do) = 2.5 cm = 0.025 m 
• Tube wall thickness (t) = 2 mm = 0.002 m 

FIND 

• The percent change in the overall heat transfer coefficient if the number of tubes is doubled 

ASSUMPTIONS 

• Flow rates of the fluids are constant 
• The effect of temperature of fluid properties is negligible  
• The fluid flow is turbulent in the tubes (this is consistent with the high heat transfer coefficients) 

SKETCH 

Shell fluid

Tube fluid

 

SOLUTION 

The inside diameter (Di) = Do – 2t = 2.5 cm – 2(0.2cm) = 2.1 cm = 0.021 m 
The original overall heat transfer coefficient is given by Equation (8.2). Neglecting wall resistance 

 
1

oU
 = o

i i

A

A h
 + 

1

oh
 = o

i i

D

D h
 + 

1

oh
 = ( )2

2.5 1

2.1 5600 W/(m K)
 
    + ( )2

1

5600 W/(m K)
 

 Uo = 2557 W/(m2 K) 

Since the total cross sectional area of the tubes is small compared to the flow area of the shell, 
doubling the number of tubes will have little effect on the shell-side fluid velocity. Therefore, the shell 
side heat transfer coefficient will not change. Doubling the number of tubes with the same mass flow 
rate cuts the fluid velocity in the tubes in half. For turbulent flow in tube (from Section 6.5) 

  ch ∝ ReD
0.8   ch ∝ V 0.8 
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,new

,orig

c

c

h

h
 = 

0.8

new

orig

V

V

 
  

 = (0.5)0.8 = 0.574 

 ,newch  = 0.574 ( )25600 W/(m K)  = 3214 2W/(m K)  

 ∴ 
,new

1

oU
 = ( )2

2.5 1

2.1 3214 W/(m K)
 
    + ( )2

1

5600 W/(m K)
 = 1822 2W/(m K)  

 % Change = 
,newo o

o

U U

U

−
 × 100 = 

2557 1822

2557

−
 × 100 = 29% Decrease 

PROBLEM 8.10 

Water at 27°C enters a No. 18 BWG 1.6 cm condenser tube made of nickel chromium 
steel (k = 26 W/(m K)) at a rate of 0.32 L/s. The tube is 3 m long and its outside is heated 
by steam condensing at 49°C. Under these conditions, the average heat-transfer 
coefficient on the water side is 9.9 kW/(m2 K). The heat transfer coefficient on the steam 
side may be taken as 11.3 kW/(m2 K). On the interior of the tube, however, there is a 
scale forming with a thermal conductance equivalent to 5.6 kW/(m2 K). (a) Calculate the 
overall heat transfer coefficient U per square foot of exterior surface area after the scale 
has formed, and (b) calculate the exit temperature of the water. 

GIVEN 

• Water flow in nickel chromium steel condenser tube 
• Water flow rate ( )v  = 0.32 L/s 

• Tube: 1.6 cm, No. 18 BWG 
• Inlet water temperature (Tw,in) = 27°C 
• Steel thermal conductivity (k) = 26 W/(m K) 
• Tube length (L) = 3 m 
• Steam temperature (Ts) = 49°C 

• Water side heat transfer coefficient ( )ih  = 9.9 kW/(m2 K) 

• Steam side heat transfer coefficient oh  = 11.3 kW/(m2 K) 

• Interior scaling conductance (1/Ri) = 5.6 kW/(m2 K) 

FIND 

(a) The overall heat transfer coefficient (Uo) based on exterior surface area 
(b) Water exit temperature (Tw,out) 

ASSUMPTIONS 

• Negligible scaling on the outside of the tube (Ro = 0) 

SKETCH 

L = 3 m

Tw, out = ?
Water

= 27°CTw, in

Condencing Steam

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 42, for 5/8 in No. 18 BWG Tubing Do = 1.57 cm 
  Di = 1.32 cm 
From Appendix 2, Table 13, for water at an estimated average temperature of 38°C 
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 Density (ρ) = 1012 kg/m3 

 Specific heat (cp) = 4174 J/(kg K) 

SOLUTION 

(a) The overall heat transfer coefficient is given by Equation (8.6) (Ro = 0) 

 
1

dU
 = 

1

oh
 + Rk + i o

i

R A

A
 + o

i i

A

A h
 

 Rk = 

ln

2

o
o

i

r
A

r

Lkπ

 
  

 = 

ln

2

o
o

i

D
D

D

k

 
  

 

 
1

dU
 = 

1

oh
 + 

ln

2

o
o

i

D
D

D

k

 
  

 + 
1 1
1

o

i i

i

D

D h
R

 
 
 +
  
    

 

 
1

oU
 = 

1

oh
 + 

ln

2

o
o

i

D
D

D

k

 
  

 + 
1 1o

i i i

D

D R h

 + 
 

 

Uo = 
( )1.57 cm–2

1.32cm
3 2 3 2 3 2

1

1.57 10 m ln1 1.57cm 1 1
2(26 W/(m K)) 1.32cm11.3 10 W/(m K) 5.6 10 W/(m K) (9.9 10 W/(m K))

×  
+ + + × × × 

 

 Uo = 
310

(0.0885 0.0523 0.3325)+ +
W/(m2 K) 

 Uo = 2110 W/(m2 K) 

(b) The heat capacity rate of the steam is essentially infinite. The heat capacity rate of the water is 

 Cw = wm cp = v ρ cp = 0.32 × 10–3 m3/s × 1012 kg/m3 × 4174 J/(kg K)  

 Cw = 1352 W/K 

 min

max

C

C
 = 0 

The number of transfer units (NTU) is 

 NTU = 
min

o oU A

C
 = 

min

o oU D L

C

π
 = 

2 –22110 W/(m K) (1.57 10 m)3m

1352 W/K

π ×
  

 NTU = 0.23 

For Cmin/Cmax = 0, parallel and counter flow heat exchangers have the same effectiveness and Equation 
(8.25) reduces to 

 ε = 1 – e–NTU = 1 – e– 0.23 = 0.205 
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From Equation (8.21b) (Cc = Cmin) 

 ε = 
,out ,in

, in

w w

s w

T T

T – T

−
 

 Tw,out = Tw,in + ε (Ts – Tw,in) = 27°C + 0.205 (49 – 27)°C  

 Tw,out = 31.5°C 

The mean water temperature is 29.2°C. The error due to determining the water density and specific 
heat at 38°C is negligible. 

PROBLEM 8.11 

Water is heated by hot air in a heat exchanger. The flow rate of the water is 12 kg/s and 
that of the air is 2 kg/s. The water enters at 40°C and the air enters at 460°C. The overall 
heat transfer coefficient of the heat exchanger is 275 W/(m2 K) based on a surface area of 
14 m2. Determine the effectiveness of the heat exchanger if it is (a) parallel-flow type or a 
(b) cross-flow type (both fluids unmixed). Then calculate the heat transfer rate for the 
two types of heat exchangers described and the outlet temperatures of the hot and cold 
fluids for the conditions given. 

GIVEN 

• Water heated by air in a heat exchanger 
• Water flow rate ( )wm  = 12 kg/s 

• Air flow rate ( )am  = 2 kg/s 

• Inlet temperatures  Water (Tw,in) = 40°C 
  Air (Ta,in) = 460°C 
• Overall heat transfer coefficient (U) = 275 W/(m2 K) 
• Transfer area (A) = 14 m2 

FIND 

(a) The effectiveness (e) 
(b) The heat transfer rate (q) 
(c) The outlet temperature (Tw,out, Ta,out) for:  1. parallel-flow 2. cross-flow 

ASSUMPTIONS 

• Steady state 

SKETCH 

Air

WaterTw, in = 40°C

Ta, in = 460°C

1. Parallel Flow

Air
= 460°CTa, in

Water
= 40°CTw, in

Tw, out

Ta, out

2. Cross flow  
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, the specific heat of dry air (cpa) = 1059 J/(kg K) at 400°C 
From Appendix 2, Table 13, the specific heat of water (cpw) = 4178 J/(kg K) at 50°C 

SOLUTION 

The heat capacity rates are 

 For air  Ca = am cpa = ( )(2 kg/s) 1059 J/(kg K)  = 2118 W/K 

 For water  Cw = wm cpw = ( )(12 kg/s) 4178 J/(kg K)  = 50,136 W/K 

(a) The effectiveness for parallel-flow geometry is given by Equation 8.25 

 E = 

min

max min

min

max

1 exp 1

1

C UA

C C

C

C

   
− − +    

+
 

 E = 

( ) ( )2 22118 275 W/(m K) 14 m
1 exp 1

50,136 2118 W/K
2118

1
50,136

  − − +    

+
 = 0.815 

For cross-flow, the effectiveness can be taken from Figure 8.20 

 min

max

C

C
 = 

2188

50,136
 = 0.042 

 NTU = 
min

UA

C
 = 

( ) ( )
( )

2 2

2

(275 W/(m K) 14 m

2118 W/(m K)
 = 1.82 

From Figure 8.20: e ≈ 0.83 
(b) The rate of heat transfer is 

 q = E Cmin (Th,in – Tc,in) 

For parallel-flow 

 q = 0.815 ( )2118 W/K (460°C – 40°C) = 7.25 × 105 W = 725 kW 

For cross-flow 

 q = 0.83 ( )2118 W/K (460°C – 40°C) = 7.38 × 105 W = 738 kW 

(c) The outlet temperatures can be calculated from 

 q = m cp ΔT = C (Tout – Tin)  Tout = Tin + q/C 

Parallel-flow 

 Water  Tw,out = 40°C + 
57.25 10 W

50,136 W/K

×
 = 54°C 

 Air  Ta,out = 460°C – 
57.25 10 W

2118 W/K

×
 = 118°C 
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Cross-flow 

 Water  Tw,out = 40°C + 
57.38 10 W

50,136 W/K

×
 = 55°C 

 Air  Ta,out = 460°C – 
57.38 10 W

2118 W/K

×
 = 112°C 

COMMENTS 

The cross-flow arrangement improves the heat transfer rate by 1.8%. 

PROBLEM 8.12 

Exhaust gases from a power plant are used to preheat air in a cross-flow heat exchanger. 
The exhaust gases enter the heat exchanger at 450°C and leave at 200°C. The air enters 
the heat exchanger at 70°C, leaves at 250°C, and has a mass flow rate of 10 kg/s. Assume 
the properties of the exhaust gases can be approximated by those of air. The overall heat 
transfer coefficient of the heat exchanger is 154 W/(m2 K). Calculate the heat exchanger 
surface area required if (a) the air is unmixed and the exhaust gases are mixed and 
(b) both fluids are unmixed. 

GIVEN 

• Cross-flow heat exchanger – exhaust gas to air 
• Exhaust temperatures  Te,in = 450°C 
  Te,out = 200°C 
• Air temperatures  Ta,in = 70°C 
  Ta,out = 250°C 
• Air flow rate ( )am  = 10 kg/s 

• Overall heat transfer coefficient (U) = 154 W/(m2 K) 

FIND 

The heat exchanger surface area (A) if 
(a) Air is unmixed, exhaust is mixed 
(b) Both are unmixed 

ASSUMPTIONS 

• The properties of the exhaust gases can be approximated by those of air 
• The air is in the tube 

SKETCH 

Exhaust
= 450°CTe, in

Air
= 70°CTa, in

Ta, out = 250°C

Te, out = 200°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, the specific heat of air at the mean temperature of 160°C (cpa) 
= 1030 J/(kg K) 
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SOLUTION 

For counterflow, from Figure 8.12  ΔTa = Te,in – Ta,out = 450°C – 250°C = 200°C 

 ΔTb = Te,out – Ta,in = 200°C – 70°C = 130°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = 
200 C –130 C

200
ln

130

° °
 
  

 = 162°C 

(a) For cross-flow with the exhaust mixed, the LMTD must be modified according to Figure 8.15 

 P = 
,out ,in

,in ,in–
a a

e a

T T

T T

−
 = 

250 70

450 70

−
−

 = 0.47 

 Z = 
,in ,out

,out ,in–
e e

a a

T T

T T

−
 = 

450 200

250 70

−
−

 = 1.4 

From Figure 8.15, F = 0.76 

 ∴ ΔTmean = F(LMTD) = 0.76 (162°C) = 123°C 

The rate of heat transfer is 

 q = UA ΔTmean = am cpa (Ta,out – Ta,in) 

Solving for the heat exchanger surface area 

 A = 
,out ,in

mean

( )a pa a am c T T

U T

−
Δ


= 

( ) ( ) ( )
( ) ( )2

10 kg/s 1030 J/(kg K) 250°C 70°C

154 W/(m K) (123 C) J/(Ws)

−
°

 = 98 m2 

(b) For both fluids unmixed, the LMTD must be corrected using Figure 8.16: F = 0.86 

 ∴  ΔTmean = 0.86 (162°C) = 139°C 

 A = 
( ) ( ) ( )

( ) ( )2

10 kg/s 1030 J/(kg K) 250 C 70 C

154 W/(m K) (139 C) J/(Ws)

° − °
°

 = 86 m2 

COMMENTS 

The required transfer area is 15% smaller when both fluids are unmixed in this case. 

PROBLEM 8.13 

A shell-and-tube heat exchanger has one shell pass and four tube passes. The fluid in the 
tubes enters at 200°C and leaves at 100°C. The temperature of the fluid entering the shell 
is 20°C and is 90°C as it leaves the shell. The overall heat transfer coefficient based on 
the surface area of 12 m2 is 300 W/(m2 K). Calculate the heat transfer rate between the 
fluids. 

GIVEN 

• A shell-and-tube heat exchanger with one shell pass and four tube passes 
• Temperature of fluid in tube  Tt,in = 200°C 
  Tt,out = 100°C 
• Temperature of fluid in shell  Ts,in = 20°C 
  Ts,out = 90°C 
• Overall heat transfer coefficient (U) = 300 W/(m2 K) 
• Surface area (A) = 12 m2 

FIND 

• The heat transfer rate (q) 
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ASSUMPTIONS 

• Steady state 
• Exchanger geometry is counterflow as shown in Figure 8.13 

SKETCH 
Ts,out = 90°C

Ts,in = 20°C

Tt,in = 200°C

Tt,out = 100°C

 

SOLUTION 

A log-mean temperature difference for this counterflow arrangement is 

 LMTD = ΔT = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 

From Figure 8.12  ΔTa = Tt,in – Ts,out = 200°C – 90°C = 110°C 

 ΔTb = Tt,out – Ts,in = 100°C – 20°C = 80°C 

 ΔT = 
110 C – 80 C

110
ln

80

° °
 
  

 = 94.2°C 

This value must be modified to account for the shell-and-the geometry using Figure 8.13 

 P = 
,out ,in

,in ,in–
t t

s t

T T

T T

−
 = 

100 200

20 200

−
−

 = 0.556 

 Z = 
,in ,out

,out ,in–
s s

t t

T T

T T

−
 = 

20 90

100 200

−
−

 = 0.7 

From Figure 8.13, F = 0.85 

 ∴  ΔTmean = F(ΔT) = 0.85 (94.2°C) = 80.1°C 

The heat transfer rate is given by 

 q = U A ΔTmean = ( )2300 W/(m K) (12 m2) (80.1°C) = 2.88 × 105 W 

COMMENTS 

Since ΔTa is less than 50% greater than ΔTb, the mean temperature difference may be used in place of 
the LMTD without introducing significant error. Use of the mean temperature difference in this case 
leads to a heat transfer rate of 2.907 × 105 W (1% higher). 

PROBLEM 8.14 

Oil ( )2.1 kJ/(kg K)pc =  is used to heat water in a shell and tubeheat exchanger with a 

single shell and two tube passes. The overall heat transfer coefficient is 525 W/(m2 K). 
The mass flow rates are 7 kg/s for the oil and 10 kg/s for the water. The oil and water 
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enter the heat exchanger at 240°C and 20°C, respectively. The heat exchanger is to be 
designed so that the water leaves the heat exchanger with a minimum temperature of 
80°C. Calculate the heat transfer surface area required to achieve this temperature. 

GIVEN 

• Oil heats water in a heat exchanger with one shell pass and two tube passes 
• Oil specific heat (cpo) = 2.1 kJ/(kg K) = 2100 J/(kg K) 
• Overall heat transfer coefficient (U) = 525 W/(m2 K) 
• Oil mass flow rate ( )om  = 7 kg/s 

• Water mass flow rate ( )wm  = 10 kg/s 

• Inlet temperatures: Oil (To,in) = 240°   Water   (Tw,in) = 20°C 
• Minimum water outlet temperature (Tw,out) = 80°C 

FIND 

• The heat transfer area (A) required 

ASSUMPTIONS 

• Oil is in the tubes 

SKETCH 
Water

= 20°C
= 10 kg/s

T
m

w,

w

in

Oil
= 240°C
= 7 kg/s

T
m
o,

w

in

= 80°CTw, out  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at the average temperature of 50°C (cpw) 
= 4178 J/(kg K) 

SOLUTION 

The heat capacity rates are 

 Co = om cpo = (7 kg/s) ( )2100 J/(kg K)  = 14,700 W/K 

 Cw = wm cpw = (10 kg/s) ( )4178 J/(kg K)  = 41,780 W/K 

 min

max

C

C
 = 

14, 700

41, 780
 = 0.35 

The effectiveness required to achieve Tw,out = 80°C is 

 E = 
( )

( )
,out ,in

min ,in ,in–

w w w

o w

C T T

C T T

−
 = 

( ) ( )
( ) ( )

41,780 J/(kg K) 80 C 20 C

14,700 J/(kg K) 240 C – 20 C

° − °
° °

 = 0.775 

The number of transfer units, NTU, from Figure 8.19: NTU = (U A)/Cmin ≈ 2.5 

 ∴  A = NTU minC

U
 = 2.5

( )
( )2

14,700 W/K

525 W/(m K)
 = 70 m2 
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PROBLEM 8.15 

A shell-and-tube heat exchanger with two tube passes and a single shell pass is used to 
heat water by condensing steam in the shell. The flow rate of the water is 15 kg/s and it is 
heated from 60 to 80°C. The steam condenses at 140°C and the overall heat transfer 
coefficient of the heat exchanger is 820 W/(m2 K). If there are 45 tubes with an OD of 
2.75 cm, calculate the length of tubes required. 

GIVEN 

• Shell-and-tube heat exchanger with two tube passes and one shell pass 
• Water in tubes, condensing steam in shell 
• Water flow rate ( )wm  = 15 kg/s 

• Water temperatures  Tw,in = 60°C 
  Tw,out = 80°C 
• Steam temperature (Ts) = 140°C 
• Overall heat transfer coefficient (U) = 820 W/(m2 K) 
• Number of tubes (N) = 45 
• Tube outside diameter (D) = 2.75 cm = 0.0275 m 

FIND 

• The length of tubes (L) 

ASSUMPTIONS 

• Counterflow 

SKETCH 

L

Steam
= 140°CTs

T
T

w,

w,

in

out

=60°C
= 80°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, the specific heat of water at the mean temperature of 70°C (cpw) 
= 4188 J/(kg K) 

SOLUTION 

For counterflow, from Figure 8.12  ΔTa = Ts – Tw,out = 140°C – 80°C = 60°C 

 ΔTb = Ts – Tw,in = 140°C – 60°C = 80°C 

Since ΔTa is less than 50% greater than ΔTb, the mean temperature may be used 

 ΔTmean = 
1

2
(80°C – 60°C) = 70°C 

The rate of heat transfer is given by 

 q = UA ΔTmean = wm cpw (Tw,out – Tw,in) 
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Solving for the transfer area 

 A = 
( ),out ,in

mean

–w pw w wm c T T

U TΔ


 = ( ) ( ) ( )

( ) ( )2

15 kg/s 4188 J/(kg K) 80 C 60 C

820 W/(m K) (70 C) J/(Ws)

° − °
°

 = 21.9 m3 

The outside area of the tubes is 

 A = (2 passes) N π D L     L = 
2

A

N Dπ
 = 

221.9 m

2(45) (0.0275 m)π
 = 2.8 m 

If each tube is bent in half to create the two tube passes, than the total tube length is 2 L = 5.6 m 

PROBLEM 8.16 

Benzene flowing at 12.5 kg/s is to be cooled continuously from 80°C to 54°C by  
10 kg/s of water available at 15.5°C. Using Table 8.5, estimate the surface area required 
for (a) cross-flow with six tube passes and one shell pass with neither of the fluids mixed 
and (b) a counterflow exchanger with one shell pass and eight tube passes with the colder 
fluid inside tubes. 

GIVEN 

• Benzene coded by water in a heat exchanger 
• Benzene flow rate ( )bm  = 12.5 kg/s 

• Water flow rate ( )wm  = 10 mg/s 

• Benzene temperatures  (Tb,in) = 82°C 
  (Tb,out) = 54°C 
• Water inlet temperature (Tw,in) = 15.5°C 

FIND 

The surface area required for 
(a) Cross-flow, 6 tube passes, 1 shell pass, both unmixed 
(b) Counterflow, 8 tube passes, 1 shell pass, water in tubes 

SKETCH 
Water
= 15.5°CTw,in

Benzent
= 82°CTb,in = 54°CTb,out

Case (a)

Benzent
= 82°CTb,in

Water
= 15.5°CTw,in

= 54°CTb,out

Case (b)  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at 20°C (cpw) = 4182 J/(kg K) 
From Appendix 2, Table 20, the specific heat of Benzene at 68°C (cpb) = 1926 J/(kg K) 

SOLUTION 

The heat capacity rates are 

 Cb = bm cpb = (12.5 kg/s) ( )1926 J/(kg K)  = 24,075 W/K 

 Cw = wm cpw = (10 kg/s) ( )4182 J/(kg K)  = 41,820 W/K 
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 min

max

C

C
 = 

24, 075

41,820
 = 0.576 

The rate of heat transfer is 

 q = E Cmin (Tb,in – Tw,in) = bm cpb ΔTb = Cmin (Tb,in – Tb,out) 

Solving for the effectiveness of the heat exchanger 

 E = 
,in ,out

,in ,in–
b b

w w

T T

T T

−
 = 

82 C – 54 C

82 C –15.5 C

° °
° °

 = 0.42 

(a) For unmixed cross-flow, the number of transfer units is given by Figure 8.20: NTU ≈ 0.7. 
By definition 

 NTU = 
min

UA

C
    A = NTU minC

U
 

The overall heat transfer coefficient (U), from Table 8.5 is in the range of 280-850 W/(m2 K) between 
water and organic solvents. Therefore, use U = 565 + 50% W/(m2 K). 

 ∴  A = 0.7 ( )2

(24,075 W/K)

(565 50%) W/(m K)+
 = 30 m2 + 50% 

(b) NTU for counterflow from Figure 8.19 is NTU ≈ 0.75 

 ∴  A = 0.75 ( )2

(24,075 W/K)

(565 50%) W/(m K)+
 = 32 m2 + 50% 

PROBLEM 8.17 

Water entering a shell-and-tube heat exchanger at 35°C is to be heated to 75°C by an oil. 
The oil enters at 110°C and leaves at 75°C. The heat exchanger is arranged for 
counterflow with the water making one shell pass and the oil two tube passes. If the 
water flow rate is 68 kg per minute and the overall heat transfer coefficient is estimated 
from Table 8.1 to be 320 W/(m2 K), calculate the required heat exchanger area. 

GIVEN 

• Shell in tube counterflow heat exchanger water in shell, oil in tubes 
• One shell pass, two tube passes 
• Water temperatures  Tw,in = 35°C 
  Tw,out = 75°C 
• Oil temperatures  To,in = 110°C 
  Tw,out = 75°C 
• Water flow rate ( )nm  = 68 kg/min = 1.133 kg/s 

• Overall heat transfer coefficient (U) = 320 W/(m2 K) 

FIND 

• The required area (A) 

SKETCH 
Tw,ont = 75° C

To,in = 110°C

To,ont = 75°C
OiL

Tw,in = 35°C

Water  
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at the average temperature of 55°C (cpw)  
= 4180 J/(kg K) 

SOLUTION 

For counterflow from Figure 8.12  ΔTa = Tt,in – Ts,out = 110°C – 75°C = 35°C  

 ΔTb = Tt,out – Ts,in = 75°C – 35°C = 40°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = 
35 C 40 C

35
ln

40

° − °
 
  

 = 37.4°C 

The LMTD must be modified according to Figure 8.13 

 P = ,out ,in

,in ,in

o o

w o

T T

T T

−
−

 = 
75 110

35 110

−
−

 = 0.47 

 Z = ,in ,out

,out ,in

w w

o o

T T

T T

−
−

 = 
35 75

75 110

−
−

 = 1.14 

From Figure 8.13: F ≈ 0.80 

 ∴  ΔTmean = F(LMTD) = 0.80 (37.4°C) = 29.9°C 

The rate of heat transfer is 

 q = U A ΔTmean = wm cpw (Tw,out – Tw,in) 

Solving for the transfer area 

 A = 
( ),out ,in

mean

w pw w wm c T T

U T

−
Δ


 = 

( ) ( ) ( )
( ) ( )2

1.133 kg/s 4180 J/(Kg K) 75 C 35 C

320 W/(m K) (29.9 C) J/(Ws)

° − °
°

 = 19.8 m2 

PROBLEM 8.18 

Starting with a heat balance, show that the effectiveness for a counterflow arrangement 
is 

 E = 

   
    

     
        

min

max

min min

max max

1
1 exp

1
1 exp

−− −

−− −

C
NTU

C
C C

NTU
C C

 

GIVEN 

• Counterflow heat exchanger 

FIND 

• Show that the effectiveness is 

 E = 

min

max

min min

max max

1
1 exp

1
1 exp

C
NTU

C
C C

NTU
C C

−   − −     
−     − −        
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ASSUMPTIONS 

• Heat loss to surroundings in negligible 

SKETCH 

Element of
the Exchanger

Th,out

Hot Fluid

Cold Fluid

Tc,in

Th,in

Tc,out

b a

 

SOLUTION 

A heat balance on an element of the heat exchanger yields 

 dq = – Ch dTh = Cc dTc = U(Th – Tc) dA 
Rearranging 

  – h

c

C

C ( )
h

h c

dT

T T−
= – 

( )
c

h c

dT

T T−
 = 

c

U

C
dA 

 Note that if 1

2

A

A
 = 1

2

B

B
 = 1

2

C

C
 

 then 1

2

C

C
 = 1 1

2 2

A B

A B

+
+

 

Therefore 

 
c

U

C
dA = 

( )
( ) ( )

h c

c
h c h c

h

dT dT
C

T T T T
C

− −

− − −
 = 

( )

( )1

h c

c
h c

h

d T T

C
T T

C

−
 − −  

 

  
1

h cT T−
d(Th – Tc) = 

c

U

C
1 c

h

C

C

 
−  

dA 

Integrating from a to b 

  ln
,out ,in

,in ,out

h c

h c

T T

T T

− 
 − 

 = 
c

UA

C
1 c

h

C

C

 −  
 

But, from Equation (8.21) 

 E = 
min

hC

C
,out ,in

,in ,in

h h

h c

T T

T T

−
−

 = 
min

cC

C
,out ,in

,in ,in

c c

h c

T T

T T

−
−

 

From which 
 Th,out = Th,in – E (Th,in – Tc,in) 

 Tc,out = Tc,in + E (Th,in – Tc,in) 

Therefore 

 Th,out – Tc,in = Th,in – E (Th,in – Tc,in) 
min

h

C

C

 
  

– Tc,in = min1
h

C

C

 −  
E (Th,in – Tc,in) 
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 Th,in – Tc,out = Th,in – Tc,in – E (Th,in – Tc,in) 
min

c

C

C
 = min1

c

C

C

 −  
E (Th,in – Tc,in) 

Substituting these into the energy balance 

 ln

min

min

1

1

h

c

C
C

C
C

 − 
 
 −
  

E

E
 = 

c

UA

C
1 c

h

C

C

 −  
  

min

min

1

1

h

c

C
C

C
C

−

−

E

E
 = exp 1 c

c h

CUA

C C

   −    
 

Solving for effectiveness 

  min1
h

C

C
−E  exp 1 c

h c

C UA

C C

  −    
 = min1

c

C

C
−E  

  min

c

C

C
E  – min

h

C

C
E  exp 1 c

h c

C UA

C C

   − −    
 = exp 1 c

h c

C UA

C C

   − −    
 

 E = 
min min

1 exp 1

exp 1

c

h c

c

c h h c

C UA
C C

CC C UA
C C C C

  − − −    
  − − −    

 

Define NTU = UA/Cmin 

Case (a) If Cc = Cmin → Ch = Cmax 
Then: 

 E = 

min

max

min min

max max

1
1 exp[ ]

1
1 exp

C
NTU

C

C C
NTU

C C

− − −   
−     − −        

 

Case (b) If Cc = Cmax → Ch = Cmin 

 E = 

max

min max

max max

min min max

1 exp 1

– exp 1

C UA
C C

C C UA
C C C

  − − −    
  − −    

 

Multiplying the numerator and denominator by 

 exp max

min max

1
C UA

C C

  −    
 = exp max max

min min

1
C C

NTU
C C

    −        
 = exp max

min

1
C

NTU
C

  −    
 

yields the following result 

 E = 

max

min

maxmin

max min

1
exp 1

1
exp 1

C
NTU

C

CC
NTU

C C

−   − −    
−   − −    

 

 E = 

min

max

min min

max max

1
1 exp

1
1 exp

C
NTU

C

C C
NTU

C C

−   − −     
−     − −        
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PROBLEM 8.19 

In a tubular heat exchanger with two shell passes and eight tube passes, 12.6 kg/s of 
water are heated in the shell from 80°C to 150°C. Hot exhaust gases having roughly the 
same physical properties as air enter the tubes at 340°C and leave at 180°C. The total 
surface, based on the outer tube surface, is 930 m2. Determine (a) the log-mean 
temperature difference if the heat exchanger were simple counterflow type,  
(b) the correction factor F for the actual arrangement, (c) the effectiveness of the heat 
exchanger, (d) the average overall heat transfer coefficient. 

GIVEN 

• A tubular heat exchanger with 2 shell passes and 8 tube passes 
• Water in the shell, exhaust gases in the tubes 
• Exhaust gases have roughly the same physical properties as air 
• Water flow rate ( )wm  = 12.6 kg/s 

• Water temperatures  Tw,in = 80°C 
  Tw,out = 150°C 
• Exhaust temperatures  Te,in = 340°C 
  Te,out = 180°C 
• Surface are (A) = 930 m2 

FIND 

(a) LMTD if the exchanger is a simple counterflow type 
(b) Correction F for the actual arrangement 
(c) Effectiveness (e) 
(d) The overall heat transfer coefficient (U) 

SKETCH 

Water m = 12.6 kg/s

Tw,in = 80°C

Te,out = 180°C

Te,in = 340°C

Tw,out = 150°C

Exhaust Gases

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at the mean temperature of 115°C (cpw) 
= 4224 J/(kg K). 

SOLUTION 

(a) From Figure 8.12 for simple counterflow  ΔTa = Te,in – Tw,out = 340 – 150 = 190°C 
 ΔTb = Te,out – Tw,in = 180 – 80 = 100°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = 
190°C – 100°C

190
ln

100

 
  

 = 140.2°C 

(b) The LMTD must be modified as shown in Figure 8.14 

 P = 
,out ,in

,in ,in

e e

w e

T T

T T

−
−

 = 
180 340

80 340

−
−

 = 0.62 
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 Z = 
,in ,out

,out ,in

w w

e e

T T

T T

−
−

 = 
80 150

180 340

−
−

 = 0.43 

From Figure 8.14  F = 0.96 
(c) To find the effectiveness, the heat capacity rate of the exhaust must first be determined. An energy 

balance yields 

  Ce (Te,in – Te,out) = Cw (Tw,out – Tw,in) 

 where  Cw = wm cpw = 12.6 kg/s (4224 J/(kg K)) = 53.22 kW/K 

 Ch = Ce = Cw 
,out ,in

,in ,out

w w

e e

T T

T T

−
−

 = 53220
150 80

340 180

− 
  −

 = 23.3 kW/K = Cmin 

The effectiveness is given by Equation (8.21a) 

 E = 
( )

( )
,in ,out

min ,in ,in

h h h

h c

C T T

C T T

−

−
 = 

,in ,out

,in ,out

e e

e w

T T

T T

−
−

 = 
340 180

340 150

−
−

 = 0.84 = 84 % 

(d) The rate of heat transfer is 

 q = U A ΔTmean = U A F (LMTD) = Cw (Tw,out – Tw,in) 

Solving for the overall heat transfer coefficien 

 U = 
( )

( )
,out ,inw w wC T T

AF LMTD

−
 = 

2

53220 W/K (150 – 80)K

930m (0.96)(140.2K)
 = 29.7 W/(m2 K) 

PROBLEM 8.20 

In gas turbine recuperators, the exhaust gases are used to heat the incoming air and 
Cmin/Cmax is therefore approximately equal to unity. Show that for this case  
e = NTU/(1 + NTU) for counterflow and e = 1/2 (1 – e– 2NTU) for parallel flow. 

GIVEN 

• Gas turbine recuperator 
• Cmin /Cmax ≈ 1 

FIND 

Show that  (a) e = NTU/(1 + NTU) for counterflow 
 (b) e = 1/2 (1 – e– 2NTU) for parallel flow 

SKETCH 

Hot Fluid ( ) =mc Ch h

Cold Fluid ( ) =mc Cc c

Heat Transfer Surface

Hot Fluid ( ) =mc Ch h

Cold Fluid ( ) =mc Cc c

Heat Transfer Surface  

SOLUTION 

(a) From the solution of Problem 8.19: for counterflow 

 E = 
( )

( )
1 exp[ 1 * ]

1 *exp[ 1– * ]

C NTU

C C NTU

− − −
− −

 

where C* = Cmin /Cmax For C* = 1, e is undefined 
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Applying L’Hopital’s rule 

 EC* → 1 = lim C* → 1
( *)

( *)

f C

g C
 = limC* → 1

( *)

( *)

f C

g C

′
′′

 

 EC* → 1 = lim C* → 1 
exp[ (1 *) ]

* exp[ (1 *) ] exp[ (1 *) ]

NTU C NTU

C NTU C NTU C NTU

− − −
− − − − − −

 

 E = 
1

NTU

NTU+
 

(b) For parallel flow, the effectiveness is given by Equation (8.25) 

 E = 

min

max

min

max

1
1 exp[ ]

1

C
NTU

C

C
C

− − −   
 +   

 

For Cmin /Cmax = 1 

 E = 
( )1 exp 2

2

NTU− −
 = 

1

2
(1 – e– 2NTU) 

PROBLEM 8.21 

In a single-pass counterflow heat exchanger, 4536 kg/h of water enter at 15°C and cool 
9071 kg/h of an oil having a specific heat of 2093 J/(kg °C) from 93 to 65°C. If the overall 
heat transfer coefficient is 284 W/(m2 °C), determine the surface area required. 

GIVEN 

• Oil and water in a single-pass counterflow heat exchanger 
• Water flow rate ( )wm  = 4536 kg/h = 1.26 kg/s 

• Oil flow rate ( )om  = 9071 kg/h = 2.52 kg/s 

• Inlet temperatures  Water (Tw,in) = 15°C 
  Oil (To,in) = 93°C 
• Oil outlet temperature (To,out) = 65°C 
• Oil specific heat (cpo) = 2093 J/(kg °C) 
• Overall heat transfer coefficient (U) = 284 W/(m2 °C) 

FIND 

• The surface area (A) required 

ASSUMPTIONS 

• Steady state 
• Constant thermal properties 

SKETCH 

mo = 2.52 kg/s

Oil

mw = 1.26 kg/s

Water
Tw,in = 15°C

To,in = 93°C
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at 20°C (cpw) = 4182 J/(kg K) 

SOLUTION 
The outlet temperature of the water can be determined from an energy balance 

  wm cw (Tw,out – Tw,in) = om co (To,in – To,out) 

 Tw,out = Tw,in + 
o po

w pw

m c

m c




 (To,in – To,out) 

 Tw,out = 15°C + 
( ) ( )
( ) ( )
2.52 Kg/s 2093 J/(Kg K)

1.26 Kg/s 4182 J/(Kg K)
(93°C – 65°C) = 43°C 

From Figure 8.12  ΔTa = To,in – Tw,out = 93°C – 43°C = 50°C 

 ΔTb = To,out – Tw,in = 65°C – 15°C = 50°C 

 Therefore, ΔTmean = 50°C 
The rate of heat transfer is 

 q = U A ΔTmean = om cpo (To,in – To,out) 

 ∴ A = 
( ),in ,out

mean

o po o om c T T

U T

−
Δ


 = 

( ) ( ) ( )
( ) ( )2

2.52 Kg/s 2093 J/(kg k) 93 C 65 C

284 W/(m K) (50 C) J/(Ws)

° − °
°

 = 10.4 m2 

PROBLEM 8.22 

A steam-heated single-pass tubular preheater is designed to raise 5.6 kg/s of air from 
20°C to 75°C, using saturated steam at 26 bar (abs). It is proposed to double the flow rate 
of air and, in order to be able to use the same heat exchanger and achieve the desired 
temperature rise, it is proposed to increase the steam pressure. Calculate the steam 
pressure necessary for the new conditions and comment on the design characteristics of 
the new arrangement. 

GIVEN 

• Steam-heated single-pass tubular preheated heating air 
• Air flow rate ( )am  = 5.6 kg/s 

• Air temperature  Ta,in = 20°C 
  Ta,out = 75°C 
• Saturated steam pressure (ps) = 26 bar = 2.59 × 106 N/m2 

FIND 

• The steam pressure necessary for a double am with the same temperature rise 

SKETCH 
Air

Steam

Ta,out = 75°CTa,in = 20°C

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the saturation temperature (Ts) of steam at 2.59 × 106 N/m2 = 194°C 
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SOLUTION 

The heat capacity rate of the steam is virtually infinite, therefore, Cmin/Cmax = 0. The effectiveness 
must be determined using Equation (8.21b) 

  E  = 
min

cC

C
,out ,in

,in

a a

s a

T T

T T

−
−

         where Cc = Ca = Cmin 

 ∴ E  = 
75 – 20

194 – 20
 = 0.32 

Examination of e = e (NTU) when Cmin/Cmax = 0 in Figures 8.17 and 8.18 or in Equation (8.25) and the 
solution of Problem 8.19 reveals that e = e (NTU) is the same of both counterflow and parallel flow 
when Cmin/Cmax = 0. For e = 0.32, Figure 8.17 gives NTU = (U A)/Cmin ≈ 0.5. 
Doubling the flow rate of air doubles its heat capacity rate (Cmin). Therefore, the NTU is halved. For 
the new flow rate: NTU = 0.25. 

From Figure 8.17 for NTU = 0.25, Cmin/Cmax = 0 → e = 0.2 
The rate of heat transfer, from Equation (8.22) is 

 q = e Cmin (T ′s – Ts,in) = am  cpa (Ta,out – Ta,in) = Cmin (Ta,out – Ta,in) 

Solving for the steam temperature required. 

 T ′s = Ta,in + ,out ,ina aT T−
E

 = 20 + 
75 – 20

0.2
= 295°C (very high) 

The steam temperature required for the doubled air flow rate is 295°C. From Appendix 2, Table 13, for 
Ts = 295°C, the saturation pressure = 5.3248 × 105 N/m2 = 77.2 psia. 

COMMENTS 

Pressure increases rapidly with steam temperature, therefore, the solution is only practical if the equi-
pment is designed to operate safely at high pressure. This corresponds to a steam pressure of 80 bar 

PROBLEM 8.23 

A heat exchanger performs as shown below in the Figure A for safety reasons. An 
engineer suggests that it would be wise to double the heat transfer area so as to double 
the heat transfer rate. The suggestion is made to add a second, identical exchanger as 
shown in Figure B. Evaluate this suggestion, i.e., show whether or not the heat transfer 
rate would double. 

T
mC

= 300 K
= 40,000p

UA = 40,000 kJ/(hK)

T
mC

= 400 K
= 80,000 kJ/(hK)p

T
mC

= 400 K
= 80,000p

T
mC

= 300 K
= 40,000p

(a)

(b)

UA = 40,000 kJ/(hK) UA = 40,000 kJ/(hK) kJ/(hK)

kJ/(hK)

kJ/(hK)

 

GIVEN 

Case 1 
Heat exchanger as shown above. 

• Overall heat transfer coefficient times the transfer area (UA) = 40,000 kJ/(hr K) 
• Heat capacity rates  Ch = 80,000 kJ/(h K) 
  Cc = 40,000 kJ/(h K) 
• Entering temperatures  Tb,in = 400 K 
  Tc,in = 300 K 
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Case 2 
Two of the same heat exchanges as shown above in Figure B. 

 

FIND 

• Does the heat transfer rate double? 

ASSUMPTIONS 

• Heat exchangers are simple counterflow geometry 

SOLUTIONS 

Case 1 
Cmin/Cmax = (40,000)/(80,000) = 0.5 
The number of transfer units is: NTU = (UA)/Cmin = (40,000)/(40,000) = 1.0 
From Figure 8.18: e1 = 0.54 
Case 2 
For this case, the transfer area is doubled, therefore 

  UAtotal = 2(UA) = 80,000 kJ/(h K) 

  NTU = (80,000)/(40,000) = 2.0 

From Figure 8.18: e2 = 0.78 
Applying Equation 8.22 

 2

1

q

q
 = 

( )
( )

 2 min ,in ,in

 1 min ,in ,in

h c

h c

C T T

C T T

−

−

E

E
= 2

1

E

E
 = 

0.78

0.54
 = 1.44 

The rate of heat transfer does not double. It is increased by only 44%. 

PROBLEM 8.24 

In a single-pass counterflow heat exchanger, 1.25 kg/s of water enter at 15°C and cool 2.5 
kg/s of an oil having a specific heat of 2093 J/(kg K) from 95°C to 65°C. If the overall 
heat transfer coefficient is 280 W/(m2 K), determine the surface area required. 

GIVEN 

• Water cooling oil in a single-pass counterflow heat exchanger 
• Water flow rate ( )wm  = 1.25 kg/s 

• Oil flow rate ( )om  = 2.5 kg/s 

• Oil specific heat (cpo) = 2.1 kJ/(kg K) 
• Water inlet temperature (Tw, in) = 15°C 
• Oil temperature  To, in = 95°C 
  To, out = 65°C 
• Overall heat transfer coefficient (U) = 280 W/(m2 K) 

FIND 

• The surface area (A) required 

SKETCH 

mo = 2.5 kg/s

Oil

mw = 1.25 kg/s

Water
Tw,in = 15°C

To,in = 95°C To,out = 65°C

 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

714

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water (cpw) ≈ 4186 J/(kg K) 

SOLUTION 

The heat capacity rates are 

 where Cw = wm  cpw = 1.25 kg/s (4186 J/(kg K)) = 5232 W/K 

 where Co = om  cpo = 2.5 kg/s (2093 J/(kg K)) = 5232 W/K 

Therefore, Cmin/Cmax = 1.0 
The outlet temperature of the water can be determined from an energy balance 

 q = Co (To,in – To,out) = Cw (Tw,out – Tw,in) 

 Tw,out = Tw,in + (To,in – To,out) = 15 + (95 – 65) = 45°C 

From Figure 8.12, for counterflow ΔTa = To,in – Tw,out = 95 – 45 = 50°C 

  ΔTb = To,out – Tw,in = 65 – 15 = 50°C 

  (Note that ΔTa = ΔTb because Cw = Co) 

  Therefore, ΔTmeans = 50°C 

The rate of heat transfer is 

 q = U A ΔTmean = Co (To,in – To,out) 

Solving for the transfer area 

 A = ,in ,out

mean

( )o o oC T T

U T

−
Δ

 = 
2

5232 W/(m K)(95 – 65)

280 W/(m K)(50K)
 = 11.2 m2 

PROBLEM 8.25 

Determine the outlet temperature of oil in Problem 8.24 for the same initial temperatures 
of the fluids if the flow arrangement is one shell pass and two tube passes, but with the 
same total area and average overall heat transfer coefficient as the unit in Problem 8.24. 

From Problem 8.24: In a heat exchanger, 1.25 kg/s of water enter at 15°C and cool  
2.5 kg/s of an oil having a specific heat of 2093 J/(kg K) from 95°C to 65°C. If the overall 
heat transfer coefficient is 280 W/(m2 K), determine the surface area required. 

GIVEN 

• Water cooling oil in a tube and shell heat exchanger 
• Water flow rate ( )wm  = 1.25 kg/s 

• Oil flow rate ( )om  = 2.5 kg/s 

• Oil specific heat (cpo) = 2093 J/(kg K) 
• Water inlet temperature: (Tw,in) = 15°C 

• Oil inlet temperature: To,in = 95°C 

• Overall heat transfer coefficient (U) = 280 W/(m2 K) 
• One shell and two tube passes 
• Same surface area as Problem 8.24: A = 11.2 m2 

FIND 

• The oil outlet temperature (To,out) 
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SKETCH 

To,out

To,in = 95°C

Tw,in = 15°C

Water

Oil
= 2.5 kg/smo

= 1.25 kg/smw

 
PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water (cpw)  ≈ 4186 J/(kg K) 

SOLUTION 

From the solution to Problem 8.24 Cw = Co = 5232 W/K 
  Cmin/Cmax = 1.0 

The number of transfer units is 

 NTU = 
min

UA

C
 = 

2 2(280 W/(m K)) (11.2m )

5282 W/K
 = 0.59 

From Figure 8.19: e ≈ 0.34 
From Equation (8.21a) (for Ch/Cmin = 1.0) 

 E = 
,in , out

,in ,in

o o

o w

T T

T T

−
−

 

 To, out = To, in – E (To, in – Tw, on) = 95°C – 0.34 (95°C – 15°C) = 67.8°C 

COMMENTS 

The outlet oil temperature is approximately the same as the previous problem because the 
effectiveness is not improved significantly by an additional pass for small values of NTU. 

PROBLEM 8.26 

Carbon dioxide at 427°C is to be used to heat 12.6 kg/s of pressurized water from 37°C to 
148°C while the gas temperature drops 204°C. For an overall heat transfer coefficient of 
57 W/(m2 K), compute the required area of the exchanger in square feet for (a) parallel flow, 
(b) counterflow, (c) a 2-4 reversed current exchanger, and (d) crossflow, gas mixed. 

GIVEN 

• CO2 heating water in a heat exchanger 
• CO2 temperatures  Tg,in = 427°C 
  Tg,out = 427 – 204 = 223°C 
• Water temperatures  Tw,in = 37°C 
  Tw,out = 148°C 
• Water flow rate ( )wm  = 12.6 kg/s 

• Overall heat transfer coefficient (U) = 57 W/(m2 K) 

FIND 

The area (A) required for: 
  (a) parallel-flow (c) A 2- 4 reversed current exchanger 
  (b) counterflow  (d) Crossflow, gas mixed 

ASSUMPTIONS 

• In configuration (c), the gas is in the shell side 

 

SKETCH 
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Tg,in = 427°C

Tw,in = 37°C

Tg,out = 423°C

Tw,out = 148°C

CO2

Water

mw = 12.6 kg/s

Tg,in = 427°C

Tw,in = 37°C

Tg,out = 423°C

Tw,out = 148°C

CO2

Water

mw = 12.6 kg/s

CO2 Tg,in

Tg,out

Tw,out

Tw,in

Water Water

Tw,in

CO2

Tg,in

Tg,out

Tw,out

(a) (b)

(c) (d)
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at the mean temperature of 92°C (cpw) = 
4205 J/(kg K) 

SOLUTION 

(a) For parallel flow, from Figure 8.11 ΔTa = Tg, in – Tw,in = 427°C – 37°C = 390°C 
  ΔTb = Tg,out – Tw,out = 223°C – 148°C = 75°C 

 LMTD = 
–a b

a

b

T T
T

T

Δ Δ
Δ
Δ

 = 
390 C – 75°C

390
ln

75

°
 
  

 = 191°C 

The rate of heat transfer is 

 q = U A (LMTD) = wm  cpw (Tw,out – Tw,in)s 

Solving for the transfer area 

 A = ,in( ,out )

(LMTD)
w pw wm C Tw T

U

−
 = 

( ) ( ) ( )
( ) ( )2

12.6 kg/s 4205 J/(kg K) 148°C – 37°C

57 W/(m K) (191 C) J/(Ws)°
  

 = 541 m2 = 5827 ft2 

(b) For counterflow, from Figure 8.12 ΔTa = Tg,in – Tw,out = 427°C – 148°C = 279°C 
 ΔTb = Tg,out – Tw,in = 223°C – 37°C = 186°C 

 LMTD = 
–a b

a

b

T T
T

T

Δ Δ
Δ
Δ

 = 
279 C – 186°C

279
ln

186

°
 
  

= 229°C 

Similarly 

 A = 
( ) ( ) ( )

( ) ( )2

12.6 kg/s 4205 J/(kg K) 148°C – 37°C

57 W/(m K) (229°C) J/(Ws)
 = 450 m2 = 4850 ft2 
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(c) The counterflow LMTD must be corrected using Figure 8.14 for this configuration 

 P = 
,out , in

,in ,in

w w

g w

T T

T T

−
−

 = 
148 37

427 37

−
−

 = 0.28 

 = ,in ,out

,out ,in

g g

w w

T T

T T

−
−

 = 
427 223

148 37

−
−

 = 1.84 

From Figure 8.14 F ≈ 0.97 

 ∴ ΔTmean = F(ΔT) = 0.97 (229°C) = 222°C 

 A = 
( ) ( )

( ) ( )2

12.6 kg/s 4205 J/(kg K) (148°C – 37°C)

57 W/(m K) (222°C) J/(Ws)
 = 465 m2 = 5003 ft2 

(d) The counterflow LMTD must be modified using Figure 8.15 for crossflow, gas mixed. 
 For P = 0.28, Z = 1.84 → F = 0.93 

 ∴ ΔTmean = F(ΔT) = 0.93 (229°C) = 213°C 

 A = 
( ) ( ) ( )

( ) ( )2

12.6 kg/s 4205 J/(kg K) 148°C – 37°C

57 W/(m K) (213°C) J/(Ws)
= 484 m2 = 5210 ft2 

COMMENTS 

A simple counterflow heat exchanger requires the least transfer area for this case. 

PROBLEM 8.27 

An economizer is to be purchased for a power plant. The unit is to be large enough to 
heat 7.5 kg/s of pressurized water from 71 to 182°C. There are 26 kg/s of flue gases (cp = 
1000 J/(kg K)) available at 426°C. Estimate (a) the outlet temperature of the flue gases, 
(b) the heat transfer area required for a counterflow arrangement if the overall heat 
transfer coefficient is 57 W/(m2 K). 

GIVEN 

• Counterflow heat exchanger - flue gases heating water 
• Water flow rate ( )wm = 7.5 kg/s 

• Water temperatures  Tw,in = 71°C 
  Tw,out = 182°C 
• Gas flow rate ( gm ) = 26 kg/s 

• Gas specific heat (cpg) = 1000 J/(kg K) 
• Gas inlet temperature (Tg,in) = 426°C 
• Overall heat transfer coefficient (U) = 57 W/(m2 K) 

FIND 

(a) Outlet gas temperature Tg,out 
(b) Heat transfer area (A) required 

SKETCH 

Tg,in = 426°C

Tw,in = 71°CTw,out = 182°C

Gas

Water

mw = 7.5 kg/s

mg = 26 kg/s
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at the mean temperature of 126.5°C (cpw)  
= 4240 J/(kg K) 

SOLUTION 

The heat capacity rates are 

 Cw = wm  cpw = 7.5 kg/s ( )4240 J/(kg K) = 31,801 W/K 

 Cg = gm  cpg = 26 kg/s ( )1000 J/(kg K) = 26,000 W/K 

(a) A heat balance yields 

  Cg (Tg,in – Tg,out) = Cw (Tw,out – Tw,in) 

Solving for the outlet gas temperature 

 Tg,out = Tg,in – w

g

C

C
Tw,out – Tw,in) = 426°C – 

31,801

26,000
  (182°C – 71°C) = 290°C 

(b) From Figure 8.12 for counterflow ΔTa = Tg,in – Tw,out = 426°C – 182°C = 244°C 
 ΔTb = Tg,out – Tw,in = 290°C – 71°C = 219°C 

 ΔTmean = LMTD = 
–a b

a

b

T T
T

T

Δ Δ
Δ
Δ

 = 
244 C – 219°C

244
ln

219

°
 
  

 = 231°C 

The rate of heat transfer is 

 q = U A ΔTmean = Cw(Tw,out – Tw,in) 

 A = ,out ,in

mean

( )w w wC T T

U T

−
Δ

 = 
( ) ( )

( ) ( )2

31,801 W/K 182 C 71 C

57 W/(m K) 231 C

° − °
°

 = 268 m2 

PROBLEM 8.28 

Water is heated while flowing through a pipe by steam condensing on the outside of the 
pipe. (a) Assuming a uniform overall heat transfer coefficient along the pipe, derive an 
expression for the water temperature as a function of distance from the entrance.  
(b) For an overall heat transfer coefficient of 570 W/(m2 K), based on the inside diameter 
of 5 cm, a steam temperature of 104°C, and water-flow rate of 0.063 kg/s, calculate the 
length required to raise the water temperature from 15.5 to 65.5°C. 

GIVEN 

• Water flowing through a pipe steam condensing on the outside 

FIND 

(a) An expression for the water temperature as a function of distance from the entrance, Tw (x) 
(b) For Overall heat transfer coefficient (U) = 570 W/(m2 K) 
  Inside diameter (D) = 5 cm = 0.05 m 
  Steam temperature (Ts) = 104°C 
  Water flow rate ( wm ) = 0.063 kg/s 
  Water temperatures: Tw,in = 15.5°C Tw,out = 65.5°C 
Find the length (L) required 
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ASSUMPTIONS 

• A uniform overall heat transfer coefficient 

SKETCH 
Condensing Steam = 104° CTs

x

Water

Tw,in = 15.5° C

mw = 0.063 kg/s

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at the mean temperature of 40°C (cpw) = 
4175 J/(kg K) 

SOLUTION 

(a) Consider an element of the exchanger as shown below 

x
T1

x + x

T

D
2

q

 

An energy balance on the element yields 

  wm  cpw ΔT = U A [Ts – T(x)] 

        where   ΔT = T2 – T1 = 1
dT

T x
dx

 + Δ    – T1 = 
dT

dx
 Δx 

 and   A = π D Δx 

As Δx → 0, T1 → T 

 ∴   wm  cpw 
dT

dx
 = U π D (Ts – T) 

  
1

sT T
 
  −

dT = – 
w pw

U D

m c

π


dx 

Integrating from 0 to X 

  ln 
,in

( )w s

w s

T x T

T T

− 
 − 

 = – 
w pw

U D

m c

π


x 

 Tw(x) = Ts + (Tw,in – Ts) exp 
w pw

U Dx

m c

π 
−  

 

(b) Solving for the distance X 

 x = – w pwm C

U Dπ


 ln 
,in

( )w s

w s

T x T

T T

− 
 − 

 

 L = – 
( ) ( )

( ) ( )2

0.063 kg/s 4175 J/(kg k)

570 W/(m K) J/(Ws) (0.05m)π
 ln 

65.5 C 104 C

15.5 C 104 C

° − ° 
  ° − °

 = 2.45 m 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

720

PROBLEM 8.29 

At a rate of 0.32 liters/s, water at 27°C enters a No. 18 BWG 1.6 cm a condenser tube 
made of nickel chromium steel (k = 26 W/(m K)). The tube is 3 m long and its outside is 
heated by steam condensing at 50°C. Under these conditions, the average heat transfer 
coefficient on the water side is 10 kW/(m2 K), and the heat transfer coefficient on the 
steam side may be taken as 11.3 kW/(m2 K). On the interior of the tube, however, there is 
a scale having a thermal conductance equivalent to 5.6 kW/(m2 K). (a) Calculate the overall 
heat transfer coefficient U per square meter of exterior surface area. (b) Calculate the 
exit temperature of the water. 

GIVEN 

• A nickel chromium steel condenser tube with water inside and condensing steam outside 
• Water flow rate v  = 0.32 liters/s 
• Water inlet temperature (Tw,in) = 27°C 
• Tube: No. 18 BWG 1.6 cm 
• Steel thermal conductivity (kst) = 26 W/(m K) 
• Tube length (L) = 3 m 
• Steam temperature (Ts) = 50°C 

• Average water- side transfer coefficient ( )ih  = 10 kW/(m2 K) 

• Average steam transfer coefficient ( )oh  = 11.3 kW/(m2 K) 

• Interior scaling conductance (1/Ri) = 5.6 kW/(m2 K) 

FIND 

(a) The overall heat transfer coefficient (U) based on exterior surface area 
(b) The outlet water temperature (Tw,in) 

SKETCH 

Condensing Steam
= 50° CTs

= 0.32 L/sV

Water
= 26° CTw,in

 

PROPERTIES AND CONSTANT 

From Appendix 2, Table 42, for No. 18 BWG 5/8 in tube 
  Inside Diameter (Di) = 1.32 cm 

  Outside Diameter (Do) = 1.56 cm 

From Appendix 2, Table 13, the density of water at 26°C (ρ) = 998 kg/m3 = 0.998 kg/L; the specific 
heat (cpw) = 4186 J/(kg K) 

SOLUTION 

(a) The overall heat transfer coefficient can be calculated from Equation (8.5) 

 
1

dU
 = 

1

oh
 + Ro + Rk + i o

i

R A

A
 + o

ii

A

A h
 

where Ro = exterior scaling resitance = 0 

  Ao = π Do L 

  Ai = π Di L 

 Rk = 
( )ln

2

o

i

D
o DA

Lkπ
= 

( )ln

2

o

i

D
o DD

k
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1

oU
 = 

2

1

11300(m K)/W
 + 

–2 1.56cm
1.56 10 m ln

1.561.32cm

2(26 W/(m K)) 1.32

 ×   
+   

   
2

1

5600 W/(m K)
 + 

2

1.56 1

1.32 10000 W/(m K)
 

  Uo = 2365 W/(m2 K) 

(b) The number of transfer units is 

 NTU = 
min

UAc

C
 = o

w pw

U D L

m c

π


 = o

pw

U D L

v c

π
ρ

 

 NTU = 
2 –2(2365W/(m K)) (1.56 10 m)(3m)

(0.32L/s) (0.998kg/L) (4186J/(kg K))

π ×
 = 0.26 

Since the heat capacity rate of the steam is essentially infinite, Cmin/Cmax = 0. 

From Figure 8.17 or 8.18 (both are the same for Cmin/Cmax = 0): e ≈ 0.20 
From Equation (8.12b) 

 E = 
min

cC

C
,out ,in

,in

w w

s w

T T

T T

−
−

 = ,out ,in

,in

w w

s w

T T

T T

−
−

 

 Tw,out = Tw,in + E (Ts – Tw,in) = 27°C + 0.20 (50°C – 27°C) = 31.6°C 
PROBLEM 8.30 

It is proposed to preheat the water for a boiler with flue gases from the boiler stack. The 
flue gases are available at 150°C, at the rate of 0.25 kg/s and specific heat of 1000 J/(kg K). 
The water entering the exchanger at 15°C at the rate of 0.05 kg/s is to be heated at 90°C. 
The heat exchanger is to be of the reversed current type, one shell pass and 4 tube passes. 
The water flows inside the tubes which are made of copper (2.5 cm-ID, 3.0 cm-OD). The 
heat transfer coefficient at the gas side is 115 W/(m2 K), while the heat transfer 
coefficient on the water side is 1150 W/(m2 K). A scale on the water side offers an 
additional thermal resistance of 0.002 (m2 K)/W. (a) Determine the overall heat transfer 
coefficient based on the outer tube diameter. (b) Determine the appropriate mean 
temperature difference for the heat exchanger. (c) Estimate the required tube length. 
(d) What would be the outlet temperature and the effectiveness if the water flow rate 
would be doubled, giving a heat transfer coefficient of 1820 W/(m2 K)? 

GIVEN 

• Reverse current heat exchanger - 1 shell pass , 4 tube passes 
• Water in tubes, flue gases in shell 
• Copper tubes  Inside diameter (Di) = 2.5 cm = 0.025 m 
  Outside diameter (Do) = 3.0 cm = 0.03 m 
• Specific heat of gases (cpg) = 1000 J/(kg K) 
• Gas inlet temperature  Tg,in = 150°C 
• Water temperatures  Tw,in = 15°C 
  Tw,out = 90°C 
• Gas flow rate ( )gm  = 0.25 kg/s 

• Water flow rate ( )wm  = 0.05 kg/s 

• Tubes are copper 

• Gas side heat transfer coefficient ( )ch  = 115 W/(m2 K) 

• Water side heat transfer coefficient ( )ih  = 1150 W/(m2 K) 

• Scaling resistance on the water side (Ri) = 0.002 (m2 K)/W 
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FIND 

(a) The overall heat transfer coefficient (Uo) based on the outside tube diameter 
(b) The appropriate mean temperature difference (ΔTmean) 
(c) The required tube length (L) 
(d) The outlet temperature and effectiveness if the water flow rate were doubled, making  

ih = 1820 W/(m2 K) 

SKETCH 
Gases

= 150°CTg,in

= 90°CTw,out

= 15°CTw,in

Water

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at the average temperature of 52.5°C (cpw) = 
4179 J/kg K 
From Appendix 2, Table 12, the thermal conductivity of copper (k) = 392 W/(m K) at 127°C 

SOLUTION 

(a) The overall heat transfer coefficient is given by Equation (8.5) 

 
1

dU
 = 

1

oh
 + Ro + Rk + i o

i

R A

A
 + o

ii

A

A h
 

where   Ro = 0 

Ao = π Do L 

Ai = π Di L 

 Rk = 
( )ln

2

o

i

D
o DA

k Lπ
= 

( )ln

2

o

i

D
o DD

k
 

 
1

dU
 = 

1

oh
 + 

( )ln

2

o

i

D
o DD

k
 + Ri 

o

i

D

D
 + o

ii

D

D h
 

1

dU
 = ( )2

1

115 W/(m K)
 + 

( )

3
0.03m ln

2.5
2 392 W/(m K)

 
  

 + ( )20.002 (m K)/W  
3

2.5
 + ( ) ( )2

3cm

1150 W/(m K) 2.5cm
 

 Ud = 82.3 W/(m2 K) 

(b) The outlet temperature of the gases can be determined from an energy balance 

  sm  cpg (Tg,in – Tg,out) = wm  cpw (Tw,out – Tw,in) 

 Tg,out = Tg,in – w pw

g pg

m c

m c




 (Tw,out – Tw,in) 

 Tg,out = 150°C – 
( ) ( )
( ) ( )
0.05 kg/s 4179 J/(kg K)

0.25 kg/s 100 J/(kg K)
 (90°C – 15°C) = 87°C 
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From Figure 8.12 for a simple counterflow heat exchanger 

 ΔTa = Tg,in – Tw,out = 150°C – 90°C = 60°C 

 ΔTb = Tg,out – Tw,in = 87°C – 15°C = 72°C 

 LMTD = 
–a b

a

b

T T
T

T

Δ Δ
Δ
Δ

= 
60 C – 72°C

60
ln

72

°
 
  

 = 66°C 

This must be corrected using Figure 8.13 

 P = ,out ,in

,in ,in

w w

g w

T T

T T

−
−

 = 
90 15

150 15

−
−

 = 0.56 

 Z = ,in ,out

,out ,in

g g

w w

T T

T T

−
−

 = 
150 87

90 15

−
−

 = 0.84 

From Figure 8.13, F = 0.78 

 ∴ ΔTmean = F(LMTD) =0.78 (66°C) = 51°C 

(c) The rate of heat transfer is 

 q = U Ao ΔTmeans = wm  cpw (Tw,out – Tw,in) 

  L = 
mean

w pw

o

m C

D U Tπ Δ


(Tw,out – Tw,in) = 
( ) ( )

( )2

0.05 kg/s 4179 J/(kg K)

(0.03m) 82.3 W/(m K) (51 C)°
 (90°C – 15°C) = 39.6 m 

Length of each tube pass = L/4 = 9.9 m 

(d) For a doubled water flow rate, hi = 1820 W/(m2 K) similarly to part (a) 

 
1

dU
= ( )2

1

115 W/(m K)
+ ( )2

3
0.03mln

2.5
2 392 W/(m K)

 
  

 + 2(0.002 (m K)/W)
3

2.5
 
    + ( )2

3cm

1820 W/(m K) (2.5cm)
 

 Ud = 85.0 W/(m2 K) 

The heat capacity rates are 

 Cw = wm  cpw = (0.1 kg/s) ( )4179 J/(kg K)  = 418 W/K 

 Cg = gm  cpg = (0.25 kg/s) ( )1000 J/(kg K)  = 250 W/K 

  Cmin/Cmax = 250/418 = 0.60 

The number of transfer units is 

 NTU = o

min

UA

C
 = 

min

oU D L

C

π
 = 

( ) ( ) ( )
( )

2

2

85.0 W/(m K) 0.03m 39.6m

250 W/(m K)

π
= 1.27 
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From Figure 8.19 e ≈ 0.57 
The outlet temperature can be calculated from Equation (8.21b) 

 E = ,out ,in

min ,in ,in

w w w

g w

C T T

C T T

−
−

 

 Tw,out = Tw,in + E min

w

C

C
(Tg,in + Tw,in) = 15°C + 0.57

250

418
 
 (150°C – 15°C) = 61°C 

PROBLEM 8.31 

Water is to be heater from 10 to 30°C, at the rate of 300 kg/s by atmospheric pressure 
steam in a single-pass shell-and-tube heat exchanger consisting of  1-in schedule 40 steel 
pipe. The surface coefficient on the steam side is estimated to be 11,350 W/(m2 K). A 
pump is available which can deliver the desired quantity of water provided the pressure 
drop through the pipes does not exceed 103.4 kPa. Calculate the number of tubes in 
parallel and the length of each tube necessary to operate the heat exchanger with the 
available pump. 

GIVEN 

• Single-pass shell-and-tube heat exchanger 
• Water is heated by atmosphere steam 
• Water temperatures  Tw,in = 10°C 
  Tw,out = 30°C 
• Water flow rate ( )wm  = 300 kg/s 

• Inner tube: 1 in schedule 40 steel pipe 
• Maximum water pressure drop (Δp) = 15 psi = 103.4 kPa 

• Steam side heat transfer coefficient ( )oh  = 11,350 W/(m2 K) 

FIND 

(a) The number of tubes in parallel (N) 
(b) The length of each tube (L) 

ASSUMPTIONS 

• The tube is smooth 
• The tube is 1% carbon steel 
• Uniform pipe surface temperature 
• Fully developed flow in pipe 
• Water flow is turbulent to insure good heat transfer 

SKETCH 

Water
= 10°C

= 300 kg/s
T

m
w,

w

in

Steam
1 in Schedule 40

= 30°CTw,out

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 41, for 1″ schedule 40 pipe 
 Inside diameter (Di) = 1.049 in = 0.0266 m 
 Outside diameter (Do) = 1.315 in = 0.0334 m 
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From Appendix 2, Table 13, the saturation temperature of steam at 1 atm = 100°C 
From Appendix 2, Table 13, for water at the average temperature of 20°C 

  Absolute viscosity (μ) = 993 × 10–6 N s/m2 

  Density (ρ) = 998.2 kg/m3 
  Specific heat (cpw) = 4182 J/(kg K) 
  Thermal conductivity (kw) = 0.597 W/(m K) 

  Prandtl number (Pr) = 7.0 

From Appendix 2, Table 10, the thermal conductivity of 1% carbon steel (ks) = 43 W/(m K). 

SOLUTION 

The Reynolds number for the water flow through the pipes is 

 ReD = iVD

v
 = 

4

i

m

N Dπ μ


 = 
( )

( ) ( ) ( )6 2 2

4 300 kg/s

0.0266m 993 10 (Ns)/m (kg m)/(Ns )N π −×
 = (1.45 × 107) 

1

N
 

The friction factor for turbulent flow through smooth tubes for 105 < Re < 106 is given by Equation 
(6.59) 

 f = 1.84 Re–0.2 = 1.84 (1.45 × 107 N–1)–0.2 = 0.068 N 0.2 

The pressure drop through the tube is given by Equation (6.13) 

 Δ p = f 
i

L

D

2

2 c

V

g

ρ
= 1.84

0.24

i

m

N Dπ μ

−
 
  



i

L

D 2
i

p 4m

2 4 Dcg π ρ
 
  


 =11.16

1.8m

π
 
 
 0.2

4.8D

μ
ρ

LN–1.8 

 
1.8

L

N
 = 0.0896 Δp 

1.8

m

π 
  

4.8

0.2

Dρ
μ

  = 0.0896 (103400 N/m2) ( )2(kg m)/(s N)  

   
1.8

300 kg/s

π 
  

( )
( ) ( )

48

– 6 2 2

993 kg/s (0.0266m)

993×10 (Ns)/m (kg m)/(s N)  
  

 
1.8L

N
 = 8.26 × 10–4 m → L = (2.75 × 10–4) N1.8 

The heat capacity rate of the condensing steam is essentially infinite, therefore, Cmin/Cmax = 0. The 
effectiveness, from Equation (8.21b)is 

 E = 
min

wC

C
,out ,in

,in

w w

s w

T T

T T

−
−

 = ,out ,in

,in

w w

s w

T T

T T

−
−

 = 
30 C 10°C

1000°C 10 C

° −
− °

 = 0.22 

From Figure 8.17 or 8.18, NTU ≈ 0.25 

 NTU = 
min

UA

C
 = o o

w pw

U A

m c
 = o o

w pw

U N D L

m c

π


 

The overall heat transfer coefficient (Uo) is given by Equation (8.2) 

 UO  =
1

1
ln

2

o

i

r
ro

o
i i s o

A
A

A h k L h

       + +           

 = 
1

1
ln

2

o

i

D
Do

o
i i s o

D
D

D h k L h

       + +           

 

For fully developed turbulent flow with constant surface temperature, the Nusselt number in the pipe is 
given by Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 
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 ih  = DNu w

i

k

D
 = 0.023 w

i

k

D

0.84

i

m

N Dπ
 
  


 Pr0.4 

Substituting these and L = 2.75 × 10–4 N1.8 m into the expression for NTU 

 NTU  = 
( )

( )
( )

4 1.8

0.87 1 0.4

2.75 10 m

1
ln

0.023 2
1.45 10 ( )

o

i

o

D
Do

w pw o
w s o

i
i

N D N

D
m c D

k k L h
D N Pr

D

π −

−

×
 
     + +          ×       



 

 0.25 = ( )300 kg/s 4182 J/(kg K)   

  
( )

( ) ( )

4 1.8

0.87
0.4

(0.0334 m) 2.75 10 m N

0.03340 1
300 kg/s 4182J/(kg k) 0.0266 0.597 W/(mK) 1.45 10

(0.023) 7
0.0266m N

π −×

     ×
    

 

  
( )( )

( ) ( )2

0.0034
0.0334ln 10.0026

2 43 W/(mK) 11,350W/(m K)




+ + 


 

Canceling all units 

 0.25 = 
11 2.8

6 0.8 4

2.30 10

2.084 10 1.77 10

N

N− −
×

× + ×
 

By trial and error, N = 220 
 
Therefore 

 L = 2.75 × 10–4 (220)1.8 = 4.5 m 

 

PROBLEM 8.32 

Water flowing at a rate of 12.6 kg/s is to be cooled from 90 to 65°C by means of an equal 
flow rate of cold water entering at 40°C. The water velocity with the such that the overall 
coefficient of heat transfer U is 2300 W/(m2 K). Calculate the square meters of heat-
exchanger surface needed for each of the following arrangements: (a) parallel flow, (b) 
counterflow, (c) a multi-pass heat exchanger with the hot water making one pass through 
a well-baffled shell and the cold water making two passes through the tubes, and (d) a 
crossflow heat exchanger with both sides unmixed. 

 

GIVEN 

• Warm water cooled by cold water in a heat exchanger 
• Both flow rates ( cm = wm ) = 12.6 kg/s 

• Water temperatures  Th,in = 90°C 
  Th,out = 65°C 
  Tc,in = 40°C 
• Overall heat transfer coefficient (U) = 2300 W/(m2 K) 
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FIND 

The transfer area (A) for 
(a) Parallel flow  (c) Tube-and-shell; 1 hot shell pass, 2 cold tube passes 

(b) Counterflow  (d) Crossflow - both unmixed 

ASSUMPTIONS 

• The specific heat is constant 

SKETCH 
Warm water

Th,in = 90°C Th,out = 65°C

Tc,in = 40°C Cold water

(a)

Warm water
Th,in Th,out

Cold water

(b)

Tc,in

Warm
water
Th,in

Th,out

Cold
water Cold

water
Tc,in

Warm
water

Th,in

Th,out
(c) (d)  

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, the specific heat of water in the temperature range of interest (cp) 
 = 4187 J/(kg K) 

SOLUTION 

 Since  hm  = cm  and cph = cpc  min

max

C

C
 = 1.0 

 Also  ΔTh = ΔTc  Tc,out = Tc,in + ΔTh = 40°C + 25°C = 65°C 

The effectiveness of the heat exchanger, from Equation (8.21a) is 

 E = ,in ,out

,in ,in

h h

h c

T T

T T

−
−

 = 
90 C 65 C

90 C 40 C

° − °
° − °

 = 0.50 

(a) Figure 8.16 shows that infinite NTU would be required to reach e = 0.5 for Cmin/Cmax = 1 with a 
parallel flow configuration. Therefore, parallel flow is not practical. For Cmin/Cmax = 1, Equation 
(8.25) reduces to 

 E = 
1

2
(1 – e–2NTU)   For  E = 0.5: e–NTU = 0 NTU → ∞  
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However, for practical purposes, e = 0.5 at NTU = 2.5 

 ∴ A = NTU minC

U
 = 2.5 

( )
( )2

52,756 W/K

2300 W/(m K)
 = 57.3 m3 

(b) From Figure (8.18), for e = 0.5 and Cmin/Cmax = 1.0: NTU = 1.1 

 NTU = 
min

UA

C
 where Cmin = m  8 cp = (12.6 kg/s) ( )4187 J/(kg K) = 52.756 W/K 

Solving for the area 

 A = NTU minC

U
 = 1.1

( )
( )2

52,756 W/K

2300 W/(m K)
 = 25.2 m2 

(c) From Figure (8.19), NTU = 1.3 

 A = 1.3 
( )

( )2

52,756 W/K

2300 W/(m K)
 = 29.8 m2 

(d) From Figure (8.20), NTU = 1.2 

 A = 1.2 
( )

( )2

52,756 W/K

2300 W/(m K)
 = 27.5 m2 

PROBLEM 8.33 

Water flowing at a rate of 10 kg/s through 50 double-pass tubes in a shell and tube heat 
exchanger heats air that flows through the shell side. The length of the brass tubes is 6.7 
m and they have an outside diameter of 2.6 cm and an inside diameter of 2.3 cm. The 
heat transfer coefficient of the water and air are 470 W/(m2 K) and 210 W/(m2 K), 
respectively. The air enters the shell at a temperature of 15°C and a flow rate of 1.6 kg/s. 
The temperature of the water as it enters the tubes is 75°C. Calculate (a) the heat 
exchanger effectiveness, (b) the heat transfer rate to the air, and (c) the outlet 
temperature of the air and water. 

GIVEN 

• Shell-and-tube heat exchanger - one shell, two tube passes 
• Water in brass tubes, air in shell 
• Water flow rate ( )wm  = 10 kg/s 

• Number of double passes (N) = 50 
• Tube length (L) = 6.7 m 
• Tube diameters  Do = 2.6 cm = 0.026 m 
  Di = 2.3 cm = 0.023 m 

• Heat transfer coefficient  Water ( )ih  = 470 W/(m2 K) 

  Air ( )oh  = 210 W/(m2 K) 

• Air inlet temperature (Ta,in) = 15°C 
• Air flow rate ( )am  = 1.6 kg/s 

• Water inlet temperature (Tw,in) = 75°C 

FIND 

(a) Effectiveness (e) 
(b) The heat transfer rate (q) 
(c) Outlet temperatures (Ta,out, Tw,out) 
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ASSUMPTIONS 

•  Tube length includes both passes 

SKETCH 

Air, = 1.6 kg/s
= 15°C

m
T

a

a,in

= 75°CTw,in

Water
= 10 kg/smw

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water at 75°C (cpw) = 4190 J/(kg K) 
From Appendix 2, Table 27, the specific heat of air at 15°C (cpa) = 1012 J/(kg K) 
From Appendix 2, Table 10, the thermal conductivity of brass (kb) = 111 W/(m K) 

SOLUTION 

The heat capacity rates are 

 Cw = wm  cpw = (10 kg/s) ( )4190 J/(kg K)  = 41,900 W/K 

 Ca = am  cpa = (1.6 kg/s) ( )1012 J/(kg K)  = 1619 W/K 

 min

max

C

C
 = 

1619

41,900
= 0.039 

(a) The overall heat transfer coefficient is given by Equation (8.2) 

  Uo = 
1

1
ln

2

o

i

r
ro

o
i i o

A
A

A h kL hπ

     + +          

 = 
1

1
ln

2

o

i

D
Do

o
i i o

D
D

D h kL hπ

     + +          

 

 Uo = 

( )
( )
( ) ( )2 2

1
(0.026m) (0.026m) ln (0.026m /0.023m) 1

2 111 W/(m K)(0.023m) 470 W/(m K) 210 W/(m K)
+ +

 = 139 W/(m2 K) 

The transfer area is A = N(π Do L) = 50[π (0.026 m)(6.7 m)] = 27.36 m2 
The Number of transfer units is 

 NTU = 
min

UA

C
 = 

( )
( )

2 2

2

139 W/(m K) (27.36m )

1619 W/(m K)
 = 2.35 

From Figure 8.19 for Cmin/Cmax = 0.04 and NTU = 2.35, e ≈ 0.88 = 88% 
(b) The rate of heat transfer is given by Equation (8.22) 

 q = E Cmin (Th,in – Tc,in) = 0.88 ( )21619 W/(m K)  (75°C – 15°C) = 85,480 W 

(c) For the water  

 q = Cw (Tw,in – Tw,out)  

 ∴  Tw,out = Tw,in – 
w

q

C
 = 75°C – 

( )
85,480 W

41,90 (W/ K)
 = 73°C 
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For the air 

 q = Ca (Ta,out – Ta,in) 

 ∴  Ta,out = Ta,in + 
a

q

C
 = 15°C + 

( )
85,480W

1619 (W/ K)
 = 68°C50 

PROBLEM 8.34 

An air-cooled low-pressure-steam condenser is shown below. 
Air Enters in at 22.8°C

Axial Flow
Fan

Tube Bank

*

Air Leaves out at 45.6 °C

Steam
55°C

 

The tube bank is four rows deep in the direction of air flow. There are 80 tubes total. The 
tubes have ID = 2.2 cm and OD 2.5 cm and are 9 m long. The tubes have circular fins on 
the outside. The tube-plus-fin area is 16 times the bare tube area (i.e., the fin area is 15 
times the bare tube area, neglect the tube surface covered by fins). The fin efficiency is 
0.75. Air flows past the outside of the tubes. On a particular day, the air enters at 22.8°C 
and leaves at 45.6°C. The air flow rate is 3.4 × 105 kg/h. 

The steam temperature is 55°C and has a condensing coefficient of 104 W/(m2 K). The 
steam-side fouling coefficient is 104 W/(m2K). The tube wall conductance per unit area is 
105 W/(m2K). The air-side fouling resistance is negligible. The air-side-film heat transfer 
coefficient is 285 W/(m2K). (Note this value has been corrected for the number of 
transverse tube rows.) 

(a) What is the log-mean temperature difference between the two streams? 
(b) What is the rate of heat transfer? 
(c) What is the rate of steam condensation? 
(d) Estimate the rate of steam condensation if there were no fins. 

 

GIVEN 

• The condenser shown above 
• Number of tubes (N) = 80 
• Number of rows (Nr) = 4 (in air flow direction) 
• Tube diameters  Di = 2.2 cm = 0.022 m 
  Do = 2.5 cm = 0.025 m 
• Tube length (L) = 9 m 
• Air temperature  Ta,in = 22.8°C 
  Ta,out = 45.6°C 
• Air flow rate ( )am  = 3.4 × 105 kg/h = 94.4 kg/s 

• Steam temperature = 55°C (constant) 
• Fin area = 15 (tube area) 
• Fin efficiency (ηf) = 0.75 
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• Steam side   Transfer coefficient ( )ih  = 104 W/(m2 K) 

  Fouling coefficient (1/Ri) = 104 W/(m2 K) 
• Tube wall conductance per unit area (1/Rk) = 105 W/(m2 K) 

• Air side: Transfer coefficient ( )oh  = 285 W/(m2 K) 

• Fouling resistance on the air side is negligible 

FIND 

(a) The log-mean temperature difference (LMTD) 
(b) The rate of heat transfer (q) 
(c) The rate of steam condensation ( )cm  

(d) Estimate the rate of steam condensation if there were no fins ( )2cm  

ASSUMPTIONS 

• Air side transfer coefficient is the same with or without fins 
• Tube surface covered by the fins is negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the average temperature of 34.2°C, the specific heat (cpa) = 
1013 J/(kg K) 

From Appendix 2, Table 13, for steam at a saturation temperature of 55°C, the heat of vaporization 
(hfg) = 2600 (kJ/kg) 

SOLUTION 

(a) From Figure 8.10  ΔTa = Ts – Ta,in = 55°C – 22.8°C = 32.2°C 
 ΔTb = Ts – Ta,out = 55°C – 45.6°C = 9.4°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = ( )
32.2 C 9.4 C

32.2
ln

9.4

° − °
 = 18.5°C 

 

 (b) The overall heat transfer coefficient is given by Equation (8.6) for the base tube area 

 
,bare

1

dU
 = 

1

oh
 + Ro + Rk +

i o

i

R A

A
+ o

i i

A

A h
 = 

1

oh
+ 0 +

1

1

kR
 
  

+
1 1

1
o

i i

i

D

D h

R

 
 

+ 
  

      

 

 
,bare

1

dU
 = ( )2

1

285 W/(m K)
 + ( )5 2

1

10 W/(m K)
 + ( ) ( )4 2 4 2

2.5 1 1

2.2 10 W/(m K) 10 W/(m K)

   +      
 

 Ud,bare = 267 W/(m2 K) 

The rate of heat transfer for the bare tubes above is 

 qb = U A (LMTD) = Ud(N π DoL)(LMTD) 

 qb = ( )2267 W/(m K) 80 π (0.025 m) (9 m) (18.5°C) = 2.79 × 105 W 

If the entire fin area was at the same temperature as the exterior of the tube wall, the rate of heat 
transfer from the fin would be 

 Q′f = U Afin (LMTD) = Ud (15 At) LMTD = 15 qb 

The actual rate of heat transfer from the fins is 

 qf = ηf q′f = 15 ηf qb 
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The total rate of heat transfer is 

 q = qb + qf = qb (1 + 15ηf) = 2.79 × 105 [1 + 15(0.75)] = 3.42 × 106 W 

(c) The rate of condensation is 

 cm  = 
fg

q

h
 = 

( )
( ) ( )

63.42 10 W J/(Ws)

2600 kJ/kg 1000 J/kJ

×
 = 1.32 kg/s 

(d) If there were no fins, the rate of heat transfer would be that from the bare tube alone. Therefore 

 2cm  = b

fg

q

h
 = 

( )
( ) ( )

52.79 10 W J/(Ws)

2600 kJ/kg 1000 J/kJ

×
 = 0.11 kg/s 

COMMENTS 

The rate of condensate flow without the fins is only 8% of that with fins. 

PROBLEM 8.35 

Design (i.e., determine the overall area and a suitable arrangement of shell and tube 
passes) for a tubular-feed water heater capable of heating 2,300 kg/h of water from 21 to 
90°C. The following specification are given (a) saturated steam at 920 kPa absolute 
pressure is condensing on the outer tube surface, (b) heat transfer coefficient on steam 
side is 6800 W/(m2 K), (c) tubes are of copper, 2.5 cm, 2.3 cm ID, 24 m long, and 
(d) water velocity is 0.8 m/s. 

GIVEN 

• A tubular-feed water heater, condensing saturated steam on outside 
• Water flow rate ( )wm  = 2300 kg/h = 0.639 kg/s 

• Water temperatures  Tw,in = 21°C 
  Tw,out = 90°C 
• Steam temperature = 920 kPa absolute 

• Heat transfer coefficient on steam side ( )oh  = 6800 W/(m2 K) 

• Tubes are copper  Di = 2.3 cm = 0.023 m 
  Do = 2.5 cm = 0.025 m 
• Water velocity (V) = 0.8 m/s 

FIND 

• The transfer area (A) and a suitable arrangement of shell and tube passes 

SKETCH 

Assuming a single shell pass and two tube passes 
Steam

Tw,out = 90°C
Water

Tw,in = 21°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, the thermal conductivity of copper at 127°C (k) = 392 W/(m K) 
From Appendix 2, Table 13, the saturation temperature of steam at 920 kPa (Ts) = 176°C 
From Appendix 2, Table 13, for water at the average temperature of 56°C 

  Density (ρ) = 984.9 kg/m3 
  Specific area (cpw) = 4181 J/(kg K) 
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  Thermal conductivity (kw) = 0.653 W/(m K) 

  Kinematic viscosity (ν) = 0.510 × 106 m2/s 
  Prandtl number (Pr) = 3.23 

SOLUTION 

The Reynolds number for the water flow is 

 ReD = iVD

ν
 = 

6 2

(0.8 m/s) (0.023m)

(0.510 10 m /s)−×
 = 3.61 × 104 

For turbulent flow in a tube, the Nusselt number is given by Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 DNu  = 0.023 (6.31 × 106)0.8 (3.23)0.4 = 163 

 ih  = DNu wk

D
 = 163

( )0.653 W/(m K)

0.023m
 = 4617 2W/(m K)  

The overall heat transfer coefficient is given by Equation (8.2) 

 Uo = 
1

1
ln

2

o

i

r
ro

o
i i o

A
A

A h kL hπ

     + +          

 = 
1

1
ln

2

o

i

D
Do

o
i i o

D
D

D h k h

     + +          

 

 Uo = 

( )
( )

( ) ( )
0.025
0.023

2 2

1
(0.025m) ln(0.025m) 1

2 392 W/(m K)(0.023m) 4617 W/(m K) 6800 W/(m K)
+ +

 = 2596 2W/(m K)  

From Figure 8.9  ΔTa = Ts – Tw,in = 176°C – 21°C = 155°C 

 ΔTb = Ts – Tw,out = 176°C – 90°C = 86°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = ( )
155 C 86 C

155
ln

86

° − °
 = 117°C 

The LMTD must be corrected using Figure (8.12) 

 P = 
,out ,in

,in ,in

w w

s w

T T

T T

−
−

 = 
90 21

176 21

−
−

 = 0.445 

 Z = ,in ,out

,out ,in

s s

w w

T T

T T

−
−

 = 0 

From Figure (8.12), F = 1.0. Due to the constant temperature of the condensing steam, this 
arrangement is as effective as a pure counterflow heat exchanger. 
The rate of heat transfer is given by 

 q = Uo Ao (LMTD) = wm cpw (Tw,in – Tw,out) 

Solving for the outer tube area required 

 Ao = 
( )
( )

,in ,outw pw w w

o

m c T T

U LMTD

−
 = 

( ) ( ) ( )
( ) ( )2

0.639 kg/s 4181 J/(kg K) 90 C 21 C

2596 W/(m K) (177 C) J/(Ws)

° − °
°

 = 0.61 m2 
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The number of tubes (N) required for the water to have the given velocity and flow rate is given by 

 wm  = V ρ Aflow = V ρ N
4

π
Di

2 

 N = 
2

4 w

i

m

V Dρπ


 = 
( )

( )3 2

4 0.639 kg/s

(0.8 m/s) 984.9 kg/m (0.023m)π
 = 1.95 ≈ 2 

If there are two tubes each making two passes, the length of each pass (Lp) is determined from 

 Ao = (2 tubers) (2 passes) Lp π Do 

 Lp = 
4

o

o

A

Dπ
 = 

20.61m

4 (0.025m)π
 = 1.94 m 

  The tube length is 2 Lp = 3.88 m 

  The tube length is 2 Lp = 3.88 m 

Heat exchanger specifications: 
– Shell and tube design with two tubes 
– One shell pass, two tube passes 
– Length of each tube pass = 1.87 m 
– Length of each tube = 3.88 m 

PROBLEM 8.36 

Two engineers are having an argument about the efficiency of a tube-side multipass heat 
exchanger compared to a similar exchanger with a single tube-side pass. Mr. Smith 
claims that for a given number of tubes are rate of heat transfer, more area is required in 
a two-pass exchanger than in a one-pass, because the effective temperature difference is 
less. Mr. Jones, on the other hand, claims that because the tube-side velocity and hence 
coefficient is higher, less area is required in a two-pass exchanger. 

With the conditions given below, which is correct? Which case would you recommend, of 
what changes in the exchanger would you recommend? 

  Exchanger specifications 
  – 200 tube passes total 
  – 1 inch O.D copper tubes, 16 B.W.G. 
  Tube-side fluid 
  Water entering at 16°C, leaving at 28°C, with a rate of 225,000 kg/h. 
  Shell-side fluid 
  Mobiltherm 600, entering at 50°C, leaving at 33°C. 
  Shell side coefficient = 1700 W/(m2 K) 

GIVEN 

• Tube and shell heat exchanger - water in tubes, Mobiltherm 600 in shell 
• Number of tube passes (Np) = 200 
• Tubes are 1 in copper 16 B.W.G. 
• Water flow rate ( )wm  = 225,000 kg/h = 62.5 kg/s 

• Water temperatures  Tw,in = 16°C 
  Tw,out = 28° 
• Mobiltherm temperatures  Tm,in = 50°C 
  Tm,out = 33°C 

• Shell side heat transfer coefficient ( )oh  = 1700 W/(m2 K) 
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FIND 

• Which required less transfer area:  (a) single tube pass  (b) Two tube passes? 

ASSUMPTIONS 

• Thermal resistance of copper tube wall is negligible 

SKETCH 

Mobiltherm
Mobiltherm

Water
Water

Case (a) Case (b)  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 42, for 1 in 16 B.W.G. tubes, the diameters are 
  Di = 0.870 in = 0.0221 m 

  Do = 1.0 in = 0.0254 m 

From Appendix 2, Table 13, for water at the average temperature of 22°C 
  Thermal conductivity (k) = 0.601 W/(m K) 

  Kinematic viscosity (ν) = 0.957 × 10–6 m2/s 

  Prandtl number (Pr) = 6.6 

  Density (ρ) = 998 kg/m3 

  Specific heat (cpw) = 4180 J/(kg K) 

From Appendix 2, Table 22, the specific heat of Mobiltherm 600 at its average temperature of 42°C 
(cpm) = 1654 J/(kg K) 

SOLUTION 

For case (a) number of flow passages (N) = Total passes/(passes per tube) = 200/1 = 200. 
For case (b) N = 200/2 = 100. 
The water velocity (V) is determined by 

 V = 
m

Aρ


 = ( ) 2

4

4 i

m

N D
πρ


 = 

2

4

i

m

N Dπ


 

Case (a)  

 Va = 
( )

( )3 2

4 62.5 kg/s

200 998 kg/m (0.0221m)π
 = 0.816 m/s 

Case (b)  

 Vb = 2 Va = 2 ( )0.816 m/s  = 1.63 m/s 

The Reynolds number is 

 ReD = iVD

ν
 

Case (a) 

 ReDa = 
( ) ( )

( )6 2

0.0816 m/s 0.0221m

0.957 10 m /s−×
 = 18,851 
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Case (b) 

 ReDb = 2 ReDa = 37,701 

The Nusselt number for turbulent flow in a tube is given by Equation (6.63) 

 NuD = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

Case (a) 

 DaNu  = 0.023 (18,851)0.8 (6.6)0.4 = 129 

 iah  = DaNu
i

k

D
 = 129

( )0.601W/(m K)

0.0221m
 = 3502 W/(m2 K) 

Case (b) 

 DbNu  = 0.023 (37,701 × 106)0.8 (6.6)0.4 = 224 

 ibh  = 224
( )0.601 W/(m K)

0.0221m
 = 6108 2W/(m K)  

The overall heat transfer coefficient, neglecting the tube wall resistance is 

 
1

oU
 = o

i i

D

D h
 + 

1

oh
 

Case (a) 

 
1

oU
 = 

0.0254

0.0221
 
   ( )2

1

3502 W/(m K)
 + ( )2

1

1700 W/(m K)
  Uo = 1091 2W/(m K)  

 
Case (b) 

 
1

oU
 = 

0.0254

0.0221
 
   ( )2

1

6108 W/(m K)
 + ( )2

1

1700 W/(m K)
  Uo = 1288 2W/(m K)  

The Log-mean temperature difference for counterflow, from Figure 8.9 is 

 ΔTa = Tm,in – Tw,out = 50°C – 28°C = 22°C 

 ΔTb = Tm,out – Tw,in = 33°C – 16°C = 17°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = ( )
22 C 17 C

22
ln

17

° − °
 = 19.4°C 

For case (a): ΔTmean = LMTD = 19.4°C 
For case (b):  The LMTD must be corrected using Figure 8.13 

 P = 
,out ,in

,in ,in

w w

m w

T T

T T

−
−

 = 
28 16

50 16

−
−

 = 0.35 

 Z = 
,in ,out

,out ,in

m m

w w

T T

T T

−
−

 = 
50 33

28 16

−
−

 = 1.41 
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From Figure 8.13, F = 0.91 

 ∴  ΔTmean = F(LMTD) = 0.91 (19.4°C) = 17.7°C 

The rate of heat transfer is 

 q = Uo Ao ΔTmean = wm cpw(Tw,out – Tw,in) 

 ∴ Ao = 
( ),out ,in

mean

w pw w w

o

m c T T

U T

−
Δ


 

Case (a) 

 Ao = 
( ) ( ) ( )

( ) ( )2

62.5 kg/s 4180 J/(kg K) 28 C 16 C

1091 W/(m K) (19.4 C) J/(Ws)

° − °
°

 = 148 m2 

Case (b) 

 Ao = 
( ) ( ) ( )

( ) ( )2

62.5 kg/s 4180 J/(kg K) 28 C 16 C

1288 W/(m K) (17.7 C) J/(Ws)

° − °
°

 = 138 m2 

COMMENTS 

For these operating conditions, the double-pass heat exchanger requires about 8% less area because 
although the mean temperature difference for the double pass is 9% less than that for the single pass, 
the overall heat transfer coefficient is 18% greater. 

PROBLEM 8.37 

A horizontal shell-and-tube heat exchanger is used to condense organic vapors. The 
organic vapors condense on the outside of the tubes. Water is used as the cooling medium 
on the inside of the tubes. The condenser tubes are 1.9 cm O.D., 1.6 cm ID copper tubes, 
2.4 m in length. There are a total of 768 tubes. 

The water makes four passes through the exchanger. 

Test data obtained when the unit was first placed into service are as follows 

  Water rate = 3700 l/min 

  Inlet water temperature = 29°C 

  Outlet water temperature = 49°C 

  Organic-vapor condensation temperature = 118°C 

After 3 months of operation, another test, made under the same conditions as the first, 
i.e., same water rate and inlet temperature and same condensation temperature, showed 
that the exit water temperature was 46°C. 

(a)  What is the tube-side-fluid (water) velocity? 

(b)  What is the effectiveness, e, of the exchanger at the time of the first and second test. 

(c)  Assuming no changes in either the inside transfer coefficient on the condensing 
coefficient and negligible shell-side fouling, and no fouling at the time of the first 
test, estimate the tube-side fouling coefficient at the time of the second test. 

GIVEN  

• A shell-and-tube exchanger, organic vapors condensing in shell, water in copper tubes 
• Tube diameters  Do = 1.9 cm = 0.019 m 
  Di = 1.6 cm = 0.016 m 
• Tube length (L) = 2.4 m 
• Number of tubes (N) = 768 
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• Number of tube passes (Np) = 4 
• Water flow rate ( )wv  = 3700 1/min = 3.7 m3/min 

• Water temperatures  Tw,in = 29°C 
  Tw,out = 49°C 
• Organic vapor condensation temperature (Tc) = 118°C 
• After 3 months: Tw,out = 46°C 

FIND 

(a) Water velocity (Vw) 
(b) The effectiveness (e) at the time of both tests 
(c) Fouling coefficient (1/Ri) at the time of the second test 

ASSUMPTIONS 

• No fouling at the time of the first test 
• No change in the inside and outside heat transfer coefficients 
• Negligible shell-side fouling 
• Length given is the length of one tube - all four passes 

SKETCH 

Organic Vapors

Water

(One Tube)  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 40°C 

  Density (ρ) = 992 kg/m3 

  Specific heat (cpw) = 4175 J/(kg K) 

  Thermal conductivity (k) = 0.633 W/(m K) 

  Kinematic viscosity (ν) = 0.658 × 10–6 m2/s 

  Prandtl number (Pr) = 4.3 

From Appendix 2, Table 12, the thermal conductivity of copper (kc) = 392 W/(m K) at 127°C. 

SOLUTION 

(a) The water velocity is 

 Vw = 
flow

wv

A


 = 

2

4

w

i

v

N D
π


 = 
( )3

2

4 3.7 m /min

(768) (0.016m) (60 s/min)π
 = 0.40 m/s 

(b) The heat capacity rate of the condensing vapor is essentially infinite. The heat capacity rate of the 
water is 

 Cw = wm cpw = wv ρ cpw = ( ) ( )
3

3(3.7 m /min)
992 kg/m 4175 J/(kgK)

(60 s /min)
 = 255,450 W/K 
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From Equation (8.12b) with Cc = Cmin 

 E = 
,out ,in

,in

w w

c w

T T

T T

−
−

 

 No scaling  E = 
49 29

118 29

−
−

 = 0.22 = 22% 

 With scaling  E = 
46 29

118 29

−
−

 = 0.19 = 19% 

(c) For Cmin/Cmax = 0, the effectiveness of parallel and counterflow exchangers is the same and 
Equation (8.25) reduces to 

 E = 1 – e–NTU  NTU = 
min

o oU A

C
 = –ln(1 – E) 

Solving for the overall heat transfer coefficient 

 Uo = – min

o

C

A
ln(1 – E) = – min

o

C

N D Lπ
ln(1 – E) 

No scaling 

 Uo = – 
( ) ( )

(255,450 W/ K)

(768) 0.019m 2.4mπ
 ln(1 – 0.22) = 577 2W/(m K)  

Similarly for scaling  Uo = 489 W/(m2 K) 
From Equation 8.4 

 RD = 
1

dU
 – 

1

U
 = ( )2

1

489 W/(m K)
 – ( )2

1

577 W/(m K)
 = 0.000312 2W/(m K)  

 
1

DR
 = 3206 2W/(m K)  

PROBLEM 8.38 

A shell-and-tube heat exchanger is to be used to cool 25.2 kg/s of water from 38°C to 
32°C. The exchanger has one shell-side pass and two tube side passes. The hot water 
flows through the tubes and the cooling water flows through the shell. The cooling water 
enters at 24°C and leaves at 32°C. The shell-side (outside) heat transfer coefficient is 
estimated to be 5678 W/(m2 K). 

Design specifications require that the pressure drop through the tubes be as close to  
13.8 kPa as possible and that the tubes be 18 BWG copper tubing 1.24 mm wall 
thickness, and each pass is 4.9 m long. Assume that the pressure losses at the inlet and 
outlet are equal to one and one half of a velocity heat ρV2/gc, respectively. 

For these specifications, what tube diameter and how many tubes are needed? 

GIVEN 

• A water-to-water shell-and-tube exchanger, hot water in tubes, cooling water in shell 
• One shell and two tube passes 
• Hot water flow rate ( )hm  = 25.2 kg/s 

• Water temperatures  Hot: Th,in = 38°C Th,out = 32°C 
  Cold: Tc,in = 24°C  Tc,out = 32°C 
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• Shell-side transfer coefficient ( )oh  = 5678 W/(m2 K) 

• Pressure drop (Δp) = 13.8 kPa 
• Tube wall thickness (t) = 1.24 mm = 0.00124 m 
• Tube length per pass (Lp) = 4.9 m 

FIND 

• The tube diameter (Do) and number of tubes (N) 

ASSUMPTIONS 

• Pressure losses at inlet and outlet (Δpii) = 1.5 (ρ V2/gc) 
• Variation of thermal properties with temperature is negligible 
• Fouling resistance is negligible 
• Thermal resistance of the tube walls is negligible 

SKETCH 

Cooling Water

Tc,in = 24°C

Th,out = 32°C
Th,in = 38°C

Tc,out = 32°C

Hot
Water

Lp

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 30°C 

  Density (ρ) = 995.7 kg/m3 

  Specific heat (cp) = 4176 J/(kg K) 

  Thermal conductivity (k) = 0.615 W/(m K) 

  Kinematic viscosity (ν) = 0.805 × 10–6 m2/s 

  Prandtl number (Pr) = 5.4 

SOLUTION 

From Figure 8.9  ΔTa = Th,in – Tc,out = 38°C – 32°C = 6°C 

 ΔTb = Th,out – Tc,in = 32°C – 24°C = 8°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = 
6 C 8 C

6
ln

8

° − °
 
  

 = 7°C 

This must be corrected using Figure 8.13 

 P = 
,out ,in

,in ,in

h h

c h

T T

T T

−
−

 = 
32 38

24 38

−
−

 = 0.43 

 Z = 
,in ,out

,out ,in

c c

h h

T T

T T

−
−

 = 
24 32

32 38

−
−

 = 1.33 

From Figure 8.13, F = 0.78 

 ∴  ΔTmean = F(LMTD) = 0.78 (7°C) = 5.5°C 
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An iterative solution is required. For a first guess, let the tubing be 1′′ OD. From Appendix 2, Table 
42, for 1′′ BWG 18 tubing: Di = 0.902 in = 0.0229 m; Do = 0.0254 m. Assume from Table 8.1 that the 
overall heat transfer coefficient Uo = 1700 W/(m2 K). The rate of heat transfer is 

 q = Uo Ao ΔTmean = hm cph (Th,in – Th,out) 

  Uo [N π Do (2Lp)] ΔTmean = hm cph (Th,in – Th,out) 

 N = 
2

h ph

o o p

m c

U D Lπ
 ,in ,out

mean

h hT T

T

−
Δ

 = 
( ) ( )

( ) ( ) ( )2

25.2 kg/s 4176 J/(kg K) 38 C – 32°C

55°C1700 W/(m K) 0.0254 m 2 4.9 mπ
°

 = 86 tubes 

The water velocity in the tubes for 86 tubes is 

 V = 
i

m

Aρ


 = 
2

4

i

m

N Dρ π


 = 
( )

( ) ( )23

4 25.2 kg/s

995.7 kg/m (86) 00229 mπ
 = 0.715 m/s 

The Reynolds number is 

 ReD = iVD

ν
 = ( )6 2

(0.715 m/s) (0.0229 m)

0.805 10 m /s−×
 = 20,326 (Turbulent) 

From Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 DNu  = 0.023 (20,326)0.8 (5.4)0.4 = 248 

 ih  = DNu
i

k

D
 = 248

( )0.615 W/(m K)

0.0229 m
 = 6655 2W/(m K)  

The overall heat transfer coefficient, neglecting fouling and tube wall thermal resistance, from 
Equation (8.2), is 

 
1

oU
 = 

1

oh
 + o

i

D

D

1

ih
 = ( )2

1

5678 W/(m K)
 + ( )2

254 1

229 6655 W/(m K)
 
    

 Uo = 2917 W/(m2 K) 

The pressure drop through the tube is obtained by adding the inlet and outlet pressure drops to 
Equation 6.13 

 Δp = 
2

1.5
2i c

VL
f

D g

ρ 
+  

  (where L = 2 Lp = 9.8 m) 

The friction factor f, is given by Equation (6.59) for turbulent flow 

 f = 
0.2

0.184

DRe
 = 

0.2

0.184

(20, 326)
 = 0.0253 

 Δp = 
9.8m

(0.0243) 1.5
0.0229 m

   +      
( ) ( )23995.7 kg /m 0.715m /s

1
( )2(s N)/(kg m)   

 =  6275 2N/m  = 6.3 kPa 

There is about half of the required pressure drop. Therefore, smaller tubes should be used. For a 
second iteration, let the tubes be 3/4” 18 BWG tubes 
From Appendix 2, Table 42 
 Di = 1.66 cm = 0.0166 m  Do = 1.19 cm = 0.019 m 
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Following the same procedure shown above but using Uo = 2000 W/(m2 K) yields 

  N = 98 tubes 

  V = 1.19 m/s 

  ih  = 5452 W/(m2 K) 

  Uo = 2582 W/(m2 K) 

  Δp = 22.4 kPa 

Performing the procedure for the same tubes but using the Uo derived above ( )22502 W/(m K) yields 

  N = 76 

  V = 1.53 m/s 

This will give an even higher pressure drop, therefore, use the 1″ 18 BWG tubes. 

PROBLEM 8.39 

A shell-and-tube heat exchanger with the characteristics given below is to be used to heat 
27,000 kg/h of water before it is sent to a reaction system. Saturated steam at 2.36 atm 
absolute pressure is available as the heating medium and will be condensed without 
subcooling on the outside of the tubes. From previous experience, the steam-side 
condensing coefficient may be assumed constant and equal to 11,300 W/(m2 K). 

If the water enters at 16°C, at what temperature will it leave the exchanger? Use 
reasonable estimates for fouling coefficients. 

Exchanger specifications 

   - Tubes – 2.5 cm OD, 2.3 cm ID, horizontal copper tubes in six vertical rows 

   - Tube length = 2.4 m 

   - Total number of tubes = 52 

   - Number of tube-side passes = 2 

GIVEN 

• Shell-and-tube heat exchanger - water in copper tubes, saturated steam is shell 
• Water flow rate ( )wm  = 27,000 kg/h = 7.5 kg/s 

• Steam pressure = 2.36 atm = 239 kPa 

• Steam-side coefficient ( )oh  = 11,300 W/(m2 K) 

• Water entrance temperature: Tw,in = 16°C 
• Tube diameters  Do = 2.5 cm = 0.025 m 
  Di = 2.3 cm = 0.023 m 
• Tube length (L) = 2.4 m 
• Number of tubes (N) = 52 
• Number of tube passes = 2 

FIND 

• The water exit temperature (Tw,out) 

ASSUMPTIONS 

• Length given is total tube length for both passes 
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SKETCH 

Steam

Tw,in = 16°C
Water

mw = 7.5 kg/s
 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the temperature of saturated steam at 239 kPa (Ta) = 125°C 
From Appendix 2, Table 13, for water at 20°C 
  Thermal conductivity (k) = 0.597 W/(m K) 

  Kinematic viscosity (ν) = 1.006 × 10–6 m2/s 

  Prandtl number (Pr) = 7.0 

  Density (ρ) = 998.2 kg/m3 

  Specific heat (cp) = 4182 J/(kg K) 

From Appendix 2, Table 12, the thermal conductivity of copper (kc) = 392 W/(m K) at 127°C 

SOLUTION 

Tube side transfer coefficient 
The water velocity is 

 V = 
flow

wm

Aρ


 = 
2

4

i

m

N Dρ π


 = 
( )

( )3 2

4 7.5 /kg s

998.2 kg /m (52) (0.023m)π
 = 0.348 m/s 

The Reynolds number is  

 ReD = iVD

ν
 = ( )6 2

(0.348 m/s) (0.023m)

1.006 10 m /s−×
 = 7956 (Turbulent) 

From Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 DNu  = 0.023 (7956)0.8 (7.0)0.4 = 66.1 

 ih  = DNu
i

k

D
 = 66.1

( )0.597 W/(m K)

0.023m
 = 1716 2W/(m K)  

From Table 8.2: A reasonable fouling factor on the water side (Ri) ≈ 0.0002 (m2 K)/W and on the 
steam side (Ro) ≈ 0.00009 (m2 K)/W. 
The overall heat transfer coefficient is given by Equation (8.5) 

 
1

dU
 = 

1

oh
 + Ro + Rk + i o

i

R A

A
 + o

i i

A

A h
 = 

1

oh
 + Ro + 

ln

2

o
o

i

c

D
D

D

k

 
  

 + 
1o

i
i i

D
R

D h

 
+  

 

 
1

dU
 = ( )2

1

11,300 W/(m K)
 + ( )20.00009 (m K)/W  + 

( )
(0.025m) ln (25/23)

2 392 W/(m K)
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   + ( ) ( )
2

2

25 1
0.0002 (m K)/W

23 1716 W/(m K)

   +      
 

 Ud = 969 W/(m2 K) 

The heat capacity rate of the condensing steam is essentially infinite. The heat capacity rate of the 
water is 

 Cw = wm cpw = (7.5 kg/s) ( )4182 J/(kg K)  = 31,365 W/K 

The number of transfer units is 

 NTU = 
min

o oU A

C
 = o o

w

U N D L

C

π
 = 

( )2969 W/(m K) (52) (0.025m)(2.4 m)

31,365 W/K

π
 = 0.30 

For Cmin/Cmax = 0, NTU = 0.30. From Figure 8.19, e = 0.24 
The outlet temperature can be calculated from Equation (8.21b). Note: Cc = Cmin. 

 E = 
,out ,in

,in

w w

s w

T T

T T

−
−

 

 Tw,out = Tw,in + E (Ts – Tw,in) = 16°C + 0.24 (125°C – 16°C) = 42°C 

PROBLEM 8.40 

Determine the appropriate size of a shell-and-tube heat exchanger with two tube passes 
and one shell pass to heat 8.82 kg/s of pure ethanol from 15.6 to 60°C. The heating 
medium is saturated steam at 152 kPa condensing on the outside of the tubes with a 
condensing coefficient of 15,000 W/(m2K). Each pass of the exchanger has 50 copper 
tubes with an OD of 1.91 cm and a wall thickness of 0.211 cm. For the sizing, assume the 
header cross-sectional area per pass is twice the total inside tube cross-sectional area. 
The ethanol is expected to foul the inside of the tubes with a fouling coefficient of  
5678 W/(m2 K). 

After the size of the heat exchanger, i.e., the length of the tubes, is known, estimate the 
frictional pressure drop using the inlet loss coefficient of unity. Then estimate the 
pumping power required with a pump efficiency of 60% and the pumping cost per year 
with $0.10 per kw-hr. 

GIVEN 

• Shell-and-tube heat exchanger, ethanol in copper tubes, steam in shell 
• One shell pass and two tube passes 
• Ethanol flow rate em  = 8.82 kg/s 

• Ethanol temperatures  Te,in = 15.6°C 
  Te,out = 60°C 
• Steam pressure = 152 kPa 
• Number of tubes (N) = 50 
• Tube outside diameter (Do) = 1.91 cm = 0.0191 m 
• Tube wall thickness (t) = 0.211 cm = 0.00211 m 
• Header area per pass = 2 (total inside cross-sectional area) 
• Tube side fouling coefficient (1/Ri) = 5678 W/(m2 K) 

• Shell-side transfer coefficient ( )oh  = 15,000 W/(m2 K) 
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FIND 

(a) Size: length of one pass (Lp) 
(b) The frictional pressure drop (Δp) 
(c) The pumping power required (Pp) with a pump efficiency (ηp) = 60% 
(d) Pumping cost per year for energy cost of $0.10/kw-hr 

ASSUMPTIONS 

• The variation of thermal properties with temperature is negligible 
• Shell side fouling is negligible 

• The tubes are smooth 
• Entrance pressure drop effects are negligible 

SKETCH 
Steam

Te,out = 60°C
Te,in = 15.6°C

Ethanol

Lp

 

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the temperature of saturated steam at 152 kPa (Ts) = 110°C 
From Appendix 2, Table 21, for ethanol (ethy1 alcohol) at 20°C 

  Density (ρ) = 790 kg/m3 

  Thermal conductivity (k) = 0.182 W/(m K) 

  Absolute viscosity (μ) = 12.0 × 10–4 (Ns)/m2 

  Prandtl number (Pr) = 16.29 

  Specific heat (cp) = 2470 J/(kg K) 

From Appendix 2, Table 12, the thermal conductivity of copper (kc) = 392 W/(m K) at 127°C 

SOLUTION 

The inside diameter of the tubes is 

 Di = Do – 2t = 1.91 cm – 2(0.211 cm) = 1.49 cm = 0.0149 m 

The Reynolds number for the ethanol flow is 

ReD = iVD

ν
 = 

4

i

m

N Dπ μ


 = 
( ) ( ) ( )4 2 2

4(8.82 kg/s)

(52) 0.0149 m 12.0 10 (Ns)/m (kg m)/(Ns )π −×
 = 12,078 (Turbulent) 

From Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn  where n = 0.4 for heating 

 DNu  = 0.023 (12,078)0.8 (16.29)0.4 = 129.4 

 ih  = DNu
i

k

D
 = 129.4

( )0.182 W/(mK)

0.0149 m
 = 1581 2W/(m K)  
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The overall heat transfer coefficient with fouling is given by Equation (8.5) 

 
1

dU
 = 

1

oh
 + Ro + Rk + i o

i

R A

A
 + o

i i

A

A h
 = 

1

oh
 + 0 + 

ln

2

o
o

i

c

D
D

D

k

 
  

 + 
1o

i
i i

D
R

D h

 
+  

 

 
1

dU
= ( )2

1

15,000 W/(m K)
 + 

( )
( )

191
(0.0191m)ln

149
2 392 W/(m K)

 + ( ) ( )2 2

191 1 1

149 5678 W/(m K) 1581 W/(m K)

   +      
 

 Ud = 901 W/(m2 K) 

The heat capacity rate of the steam is essentially infinite. The heat capacity rate of the ethanol is 

 Ce = em cp = (8.82 kg/s) ( )2470 J/(kg K)  = 21,785 W/K 

From Figure 8.9  ΔTa = Ts – Te,out = 110°C – 15.6°C = 94.4°C 

 ΔTb = Ts – Te,in = 110°C – 60°C = 50°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = ( )
94.4 C 50 C

94.4
ln

50

° − °
 = 69.9°C 

Because Z = 0; F = 1 and ΔTmean = LMTD. 
The rate of heat transfer is 

 q = Uo Ao ΔTmean = Ce (Te,out – Te,in) 

  Uo (N π Do L) ΔTmean = Ce (Te,out – Te,in) 

Solving for the length 

 L = 
,out ,in

mean

e ee

o o

T TC

U N D Tπ
−

Δ
 = 

( )
( ) ( )2

21,785 W/K 60 C 15.6 C

69.9 C901 W/(m K) (52) 0.0191mπ
° − °

°
 = 4.92 m 

 Lp = 
4.92 m

2
 = 2.46 m 

The effectiveness, from Equation (8.21b) is 

 E = 
,out ,in

,in

e e

s e

T T

T T

−
−

 = 
60 C 15.6 C

110°C –15.6°C

° − °
 = 0.47 

From Figure 8.19, NTU ≈ 0.7 

 NTU = 
min

o oU A

C
 = 

min

o oU N D L

C

π
 

Solving for the length 

 L = min

o o

NTU C

U N Dπ
 = 

( )
( ) ( )2

0.7 21,785 /W K

901 W/(m K) (52) 0.0191mπ
 = 5.42 m 

The length of one pass = L/(# of passes) = (5.42 m)/2 = 2.71 m 
This method relies on reading the low end of Figure 8.18 and is probably less accurate than the LMTD 
method. 
(b) From Equation (6.13) the pressure drop is 

 Δp = f 
2

2i c

VL

D g

ρ
 = f 

2

2

4

2
e

i c i

mL

D g N D

ρ
πρ

 
  


 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

747

Where the friction factor, f, is given for turbulent flow by Equation (6.59) 

 f = 0.184 ReD
–0.2 = 0.184 (12,078)–0.2 = 0.0281 

  Δp = 0.0281 
4.92 m

0.0149 m

( )3790 kg/m

2

( )
( )

2

3 2

4 8.82 kg/s

52 790 kg/m (0.0149 m)π
 
  

( )2(s N)/(kg m)  = 5557 N/m2 

(c) The pumping power required is 

 Pp = 
p

v p

η
Δ

 = e

p

m

η ρ


Δp = 
( )
( )3

8.82 kg/s

0.6 790 kg/m
 5557 2N/m ( )(Ws)/(N m)  = 103 W 

(d) The cost to run the pump is 

 Cost = 
$0.10

kWh
 
   (103 W)

1kW 24 h 365days

1000 W day year
     

         
 = $91/year 

PROBLEM 8.41 

A counterflow regenerator is used in a gas turbine power plant to preheat the air before 
it enters the combustor. The air leaves the compressor at a temperature of 350°C. 
Exhaust gas leaves the turbine at 700°C. The mass flow rates of air and gas are 5 kg/s. 
Take the cp of air and gas to be equal to 1.05 kJ/(kg K). Determine the required heat 
transfer area as a function of the regenerator effectiveness, if the overall heat transfer 
coefficient is 75 W/(m2 K). 

GIVEN 

• Counterflow air-to-gas heat exchanger 
• Entering temperatures  Ta,in = 350°C 
  Tg,in = 700°C 
• Mass flow rates: am  = gm  = 5 kg/s 

• Specific heats: cpa = cpg = 1.05 kJ/(kg K) = 1050 J/(kg K) 
• Overall heat transfer coefficient (U) = 75 W/(m2 K) 

FIND 

• The heat transfer area (A) as a function of the effectiveness (e) 

SKETCH 

Tg,in = 700°C

Gas

Air
Ta,in = 350°C

 

SOLUTION 

From Equations (8.22) and (8.16) 

 q = E Cmin (Tg,in – Ta,in) = U A ΔT    A = 
( )min ,in ,inh aC T T

U T

−
Δ

E
 

Since ma cpa = mg cpg, the temperature difference between the gas and air remain constant and  
ΔT = Tg,in Ta,out . The heat capacity rates are equal, therefore, Equation (8.21b) reduces to 

 E = 
,out ,in

,in ,in

a a

g a

T T

T T

−
−

  Ta,out = Ta,in + E (Tg,in – Ta,in) 
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 ∴  ΔT = Tg,in – Ta,in – E (Tg,in – Ta,in) = (Tg,in – Ta,in) (1 – E) 

 
Substituting this into the expression for area 

 A = min

(1 )

C

U −
E

E
 = 

(1 )
pm c

U −

E
E

 

 A = 
1
 
  −
E

E
( ) ( )
( ) ( )2

5 kg/s 1050 J/(kg K)

75 W/(m K) J/(W s)
 = 70 m2 

1
 
  −
E

E
 

This is tabulated and plotted below 
 e A (m2) 
 0 0 
 0.1 7.8 
 0.2 17.5 
 0.3 30 
 0.4 47 
 0.5 70 
 0.6 105 
 0.7 163 
 0.8 280 
 0.9 630 
 1.0 ∞ 

700

600

500

400

300

200

100

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Transfer Area vs. Effectiveness

T
ra

n
s
fe

r
A

re
a

(s
q

m
)

Effectiveness  

COMMENTS 

This problem can also be solved by calculating the number of transfer units for a given area then 
reading the effectiveness off Figure 8.18. 

PROBLEM 8.42 

Determine the heat transfer area requirements of Problem 8.41 if a 1-2 shell and tube, an 
unmixed crossflow, and a parallel flow heat exchanger are used, respectively. 

From Problem 8.41: A regenerator is used in a gas turbine power plant to preheat the air 
before it enters the combustor. The air leaves the compressor at a temperature of 350°C. 
Exhaust gas leaves the turbine at 700°C. The mass flow rates of air and gas are 5 kg/s. 
Take the cp of air and gas to be equal to 1.05 kJ/(kg K). Determine the required heat 
transfer area as a function of the regenerator effectiveness, if the overall heat transfer 
coefficient is 75 W/(m2 K). 

GIVEN 

• An air-to-gas heat exchanger 
• Entering temperatures  Ta,in = 350°C 
  Tg,in = 700°C 
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• Mass flow rates: ma = mg = 5 kg/s 
• Specific heats: cpa = cpg = 1.05 kJ/(kg K) = 1050 J/(kg K) 
• Overall heat transfer coefficient (U) = 75 W/(m2 K) 

FIND 

The heat transfer area (A) as a function of the effectiveness (e) for 
(a) A 1-2 shell and tube heat exchanger 
(b) An unmixed crossflow heat exchanger 
(c) A parallel flow heat exchanger 

ASSUMPTIONS 

• For case (a) the air is in the tubes 

 

SKETCH 

Gas Tg,in = 700°C

Gas

Tg,in = 700°C

Ta,in = 350°C
Air

Case (a)

Gas

Tg,in = 700°C

Ta,in = 350°C Air

Case (c)

Air

Tg,in = 300°C

Case (b)  

SOLUTION 

As shown in the solution to Problem 8.41 for counterflow 

 ΔT = (Tg,in – Ta,in)(1 – e) 

This must be corrected for case (a) and (b) by Figures 8.13 and 8.16 where 

 P = 
,out ,in

,in ,in

a a

g a

T T

T T

−
−

 

From Equation (8.21b) 
 Ta,out = Ta,in + e (Tg,in – Ta,in) 
Therefore 
 P = e 
Since  Cg = Ca, Z = 1 
The solution for parts (a) and (b) are the same as for Problem 8.41 expect that the mean temperature 
(ΔT) must be multiplied by the factor F with the following results 

 A = 
(1 )

w pm c

UF −

E
E

 = 
270 m

1F

 
  −
E

E
 

where F is from Figure 8.13 for part (a) and from Figure 8.16 for part (b) where P = e and  
Z = 1.0. 
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(c) For parallel flow 

 ΔT = LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 

 
where ΔTa = Tg,in – Ta,in 
 ΔTb = Tg,out – Ta,out = [Tg,in – E (Tg,in – Ta,in)] – [Ta,in + E (Tg,in – Ta,in)] 
  = (Tg,in – Ta,in)(1 – 2 E ) 
 ΔTa – ΔTb = (Tg,in – Ta,in)(2 E) 

 a

b

T

T

Δ
Δ

 = 
1

1 2− E
 

 ∴  LMTD = 
( ),in ,in2

1
ln

1 2

g aT T−
 
  −

E

E

 

From Equation (8.22) and (8.16) 

 q = E Cmin (Tg,in – Ta,in) = U A 
( ),in ,in2

1
ln

1 2

g aT T−
 
  −

E

E

 

 A = min 1
ln

2 1 2

C

U

 
  − E

 = 
( ) ( )

( )2

5 kg/s 1050 J/(kg K)

2 75 W/(m K)

1
ln

1 2
 
  − E

 = 35 m2 ln
1

1 2
 
  − E

 

Tabulating these results 

 e F(a)* F(b)** A(a) (m2) A(b) (m2) A(c) (m2) 
 0 1.0 1.0 0 0 0 
 0.1 1.0 1.0 7.7 7.7 7.7 
 0.2 0.99 0.98 17.9 17.9 17.9 

 0.3 0.97 0.97 30.4 30.9 32.1 
 0.4 0.92 0.94 50.7 49.6 56.3 
 0.5 0.8 0.91 87.5 76.9 ∞ 

 0.57 0.5 0.86 186 108 
 0.6 NA 0.84  125 
 0.7 NA 0.70  233 

 0.8 NA 0.5  560 
 0.9 NA NA 
 1.0 NA NA 

* From Figure 8.13 
** From Figure 8.16 
NA - Data not available from the figures 

PROBLEM 8.43 

A small space heater is constructed of 1.25 cm, 18-gauge brass tubes, 0.6 m long. The 
tubes are arranged in equilateral, staggered triangles on 3.6 cm centers, four rows of 15 
tubes each. A fan blows 0.95 m3/s of atmospheric pressure air at 21°C uniformly over the 
tubes (see sketch). Estimate: (a) heat transfer rate (b) exit temperature of the air (c) rate 
of steam condensation, assuming that saturated steam at 15 kPa inside the tubes as the 
heat source. State your assumptions. Work parts a, b, and c of this problem by two 
methods. First use the LMTD, which requires a trial-and-error or graphical solution then 
use the effectiveness methods. 
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Air

Duct Wall

1 2 3 4

0.6 m

3.6 cm

 

GIVEN 

• A small heater made of 4 rows of 15 tubes each as shown above 
• Tubes: 1.25 cm., 18 gauge brass 
• Tube length (L) = 0.6 m 
• Distance between tube centers (ST) = 3.75 cm 

• Air flow rate ( )V  = 0.95 m3/s 

• Air inlet temperature (Ta,in) = 21°C 
• Saturated steam inside the tubes at pressure (ps) = 15 kPa g = 115 kPa 
• Duct width (w) = 0.6 m 

FIND 

Using both the LMTD method and e method find:  (a) The heat transfer rate (q) 
 (b) Air exit temperature (Ta,out) 

 (c) Rate of steam condensation ( )cm  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 42, 18 gauge tubes have a wall thickness (t) = 0.125 cm 
From Appendix 2, Table 10, the thermal conductivity of brass (kb) = 111 W/(m K). 
From Appendix 2, Table 13, the temperature of saturated steam at 115 kPa: Ts = 102.8°C and the heat 
of evaporation (hfg) = 2265 kJ/kg. 
From Appendix 2, Table 27, for air at an estimated mean temperature of 40°C 
  Specific heat (cpa) = 1013 J/(kg K) 

  Kinematic viscosity (ν) = 1.73 × 10–5 m2/s 

  Prandtl number = 0.71 

  Thermal conductivity (ka) = 0.026 W/(m K) 

  Density (ρ) = 1.122 kg/m3 

At the steam temperature of 102.8°C, Prs = 0.71. 
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SOLUTION 

The tube diameters are  Do = 1.25 cm 
 Di = Do – 2t = 1 cm 

From Table 8.1, the heat transfer coefficient for the condensing steam (hi) ≈ 5000 – 30,000 W/(m2K), 
hi = 17000 W/(m2 K). 
The heat transfer coefficient for the air flow over the tube bank can be calculated as shown in 
Chapter 7. The Reynolds number for this geometry is 

 ReD = maxV D

ν
 = 

min

a ov D

A ν


 = 
( )[16 ]

a o

T o o

v D

S D D Lν− +


 

 ReD = 
( )

( ) ( )
3 –2

–2 –2 –2 –5 2

(0.95 m /s) 1.25 10 m

[16 3.75 10 1.25 10 m 1.25 10 m] 0.6m 1.73 10 m /s

×
× − × + × ×

  

 ReD = 2770 (Transition Regime) 

The Nusselt number is given by Equation (7.30) 

 DNu  = 0.35
0.2

T

L

S

S

 
  

 ReD
0.6 Pr0.36

0.25

s

Pr

Pr

 
  

 

 where  SL = Longitudinal spacing = 2 21
(2 )

2 T TS S−  = 3.25 cm 

 ∴ DNu  = 0.35
0.23.75

6.5
 
   (2770)0.6 (0.71)0.36 = 32.2 

 ∴ oh  = DNu a

o

k

D
 = 32.2

–2

0.026 W/(m K)

1.25 10 m×
 = 66 W/(m2 K) 

The overall heat transfer coefficient is given by Equation (8.2) 

 
1

oU
 = o

i i

A

A h
 + 

ln

2

o
o

i

r
A

r

kLπ

 
  

 + 
1

oh
 = o

i i

D

D h
 + 

ln

2

o
o

i

D
D

D

k

 
  

 + 
1

oh
 

  
1

oU
 = ( )2

1.25cm

1cm 17000 W/(m K)
 + 

( )

–2 1.25cm
(1.25 10 m)ln

1cm

2 0.026 W/(m K)

 ×   
×

 + 
2

1

66 W/(m K)
 

  Uo = 65.6 W/(m2 K) 

LMTD method 

From Figure 8.9  ΔTa = Ts – Ta,in = 102.8 – 21 = 81.8°C 

 ΔTb = Ts – Ta,out 

To find the LMTD, the air outlet temperature must be known, therefore, an iterative solution is 
required. For the first iteration, let Ta,out = 38°C. 

 ΔTb = 102.8 – 38 = 64.8°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = 
81.8°C 64.8°C

81.8
ln

64.8

−
 
  

 = 73°C 
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The total transfer area is 

 A = (Number of tubes) πDoL = (4)(15) π (0.0125 m) (0.6 m) = 1.41 m2 

The rate of heat transfer is given by Equation (8.16) 

 q = U A ΔT = U A (LMTD) = 65.6 W/(m2 K) (1.41 m2) (73°C) = 6752 W 

The outlet air temperature can be calculated from 

 q = am cpa (Ta,out – Ta,in) = av ρ cpa (Ta,out – Ta,in) 

 ∴ Ta,out = Ta,in + 
a pa

q

v cρ
 = 21°C + ( ) ( ) ( )3 3

6752 W

0.95 m /s 1.122 kg/m 1013 J/(kg K)
  

  Ta,out = 27.25°C 

Following a similar procedure for a second iteration yields 
 Mean air temperature = 24°C 

 ρ = 1.18 kg/m3 
 cpa = 1008 J/(kg K) 
 LMTD = 62°C 
 (a) q = 7329 W 
 (b) Ta,out = 27.4°C 
The rate of steam condensation is given by 

 cm  = 
fg

q

h
 = 

3

7329 W

2265 10 J/kg×
 = 3.23 × 10–3 kg/s 

The effectiveness method 
The heat rate of the steam is essentially infinite. The heat rate of the air is 

  Ca = am cpa = av ρa cpa = (0.95 m3/s) (1.18 kg/m3) 1008 J/(kg K)  

  Ca = 1130 W/K 

 Now  mixed

unmixed

C

C
 = 0 

The number of transfer units is 

 NTU = 
min

U A

C
 = 

( ) ( )2 265.6 W/(m K) 1.41m

1130 W/K
 = 0.082 

For cross flow, one fluid mixed and other fluid unmixed (steam), 

from Figure 8.21, e ≈ 0.06. 
(a) 

 q = e Cmin (Th,in – Tc,in) = 0.06 (1130 W/K) (102.8°C – 21°C) = 5546 W 

Applying Equation (8.21b) 

 e = 
,out ,in

min ,in

a aa

s a

T TC

C T T

−
−

 

 ∴ Ta,out = Ta,in + e (Ts – Ta,in) = 21 + 0.06 (102.8 – 21)°C = 25.9°C 

(c) The steam condensation rate is 

 cm  = 
fg

q

h
 = 

3

5546 W

2265 10 J/kg×
 = 2.45 × 10–3 kg/s 
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COMMENTS 

Although the effectiveness method is more direct for this type of problem, its accuracy is poor due to 
the low value of NTU. The LMTD method requires an iterative procedure but gives much better 
accuracy. 
The heat transfer coefficient for the condensing steam will be discussed in more detail in 
Chapter 10. For this problem, the thermal resistance of the condensing steam is less than 1% of the 
total thermal resistance, therefore, a rough estimate is adequate. 

PROBLEM 8.44 

A one-tube pass cross-flow heat exchanger is considered for recovering energy from the 
exhaust gases of a turbine-driven engine. The heat exchanger is constructed of flat plates, 
forming an egg-crate pattern as shown in the sketch below. The velocities of the entering 
air (10°C) and exhaust gases (425°C) are both equal to 61 m/s. Assuming that the 
properties of the exhaust gases are the same as those of the air, estimate for a path length 
of 1.2 m the overall heat transfer coefficient U, neglecting the thermal resistance of the 
intermediate metal wall. Then determine the outlet temperature of the air, comment on 
the suitability of the proposed design, and if possible, suggest improvements. State your 
assumptions. 

10 cm

10 cm

120 cm

120 cm

10 cm

Air

Exhaust
Gaser

 

GIVEN 

• The heat exchanger shown above 
• Air and exhaust velocities (Va = Ve) = 61 m/s 
• Inlet temperatures  Air (Ta,in) = 10°C 
  Exhaust (Te,in) = 425°C 
• Path length (L) = 1.2 m 

FIND 

(a) The overall heat transfer coefficient (U) 
(b) The outlet temperature of the air (Ta,out)  

ASSUMPTIONS 

• Steady state 
• Exhaust gas properties are the same as air 
• Thermal resistance of the metal walls is negligible 
• Thermal properties can be evaluated at the average temperature 
• Heat losses from the exterior walls are negligible 
• Dividing walls within one side of the exchanger do not participate in the heat transfer process 
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for air at the average inlet temperature of about 200°C 

• Density (ρ) = 0.723 kg/m3 
• Thermal conductivity (k) = 0.0370 W/(m K) 
• Kinematic viscosity (ν) = 35.5 × 10–6 m2/s 
• Prandtl number (Pr) = 0.71 
• Specific heat (cp) = 1035 J/(kg K) 

SOLUTION 

(a) The Reynolds number at the flow is 

 
hDRe  = hVD

ν
 

 where     Dh = Hydraulic diameter = 
4 A

P
= 

24(0.1m)

4(0.1m)
 = 0.1 m 

 
hDRe  = ( )– 6 2

(61 m/s)(0.1m)

35.5×10 m /s
 = 1.72 × 105 (Turbulent) 

The Nusselt number for turbulent flow through ducts is given by Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating, 0.3 for cooling 

For the air being heated 

 DNu  = 0.023 (1.72 × 105)0.8 (0.71)0.4 = 309.5 

 ah  = DNu
h

k

D
 = 309.5 

( )0.0370 W/(mK)

0.1m
 = 114.5 2W/(m K)  

For the exhaust being cooled 

 DNu  = 0.023 (1.72 × 105)0.8 (0.71)0.3 = 320.3 

 eh  = 118.5 W/(m2 K) 

The overall heat transfer coefficient is 

 
1

U
 = 

1

eh
 + 

1

ah
 = ( )2

1

114.5 W/(m K)
 + ( )2

1

118.5 W/(m K)
 

 U = 58.2 W/(m2 K) 

(b) The heat capacity of both fluids is 

C = m cp = V ρ Ac cp = (60 m/s) ( )30.723 kg/m (1.2 m) (0.1 m) ( )2118.5 W/(m K) ( )(Ws)/J  = 5477 W/K 

The number of transfer units is 

 NTU = 
min

tU A

C
 = 

( )
( )

2

2

58.2 W/(m K) (1.2 m)(1.2 m)

5477 W/(m K)
 = 0.015 
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From Figure 8.20, e ≈ 1% 
Rearranging Equation (8.21b) (Cmin/Cmax = 1) 

 Ta,out = Ta,in + E (Te,in – Ta,in) = 10°C + 0.01 (425°C – 10°C) = 14°C 

COMMENTS 

The accuracy of the air outlet temperature is low because the effectiveness is very low and difficult to 
read on Figure 8.20. Greater accuracy could be achieved by using the LMTD and iterating. 
The small effectiveness is due to the small NTU. The NTU can be increased by using small ducts to 
increase the overall heat transfer coefficient or redesign the exchanger to increase the transfer area. 

PROBLEM 8.45 

A shell-and-tube counterflow heat exchanger is to be designed for heating an oil from  
27°C to 82°C. The heat exchanger has two tube passes and one shell pass. The oil is to  
pass through 0 K schedule 40 pipes at a velocity of 1 ms–1 and steam is to condense at 
102°C on the outside of the pipes. The specific heat of the oil is 1800 J/(kg K) and its mass 
density is 925 kg/m3. The steam-side heat transfer coefficient is approximately  
10 kW/(m2 K), and the thermal conductivity of the metal of the tubes is 30 W/ (m K). The 
results of previous experiments giving the oil-side heat transfer coefficients for the same 
pipe size at the same oil velocity as those to be used in the exchanger are shown below 

ΔT (°C)  75 64 53 42 20 
 Toil (°C) 27 38 49 60 71 82 

hc1 (W/(m2 K)) 80 85 100 140 250 540 

(a) Find the overall heat transfer coefficient U, based on the outer surface area at the 
point where the oil is 38°C (b) Find the temperature of the inside surface of the pipe 
when the oil temperature is 38°C (c) Find the required length of the tube bundle. 

 

GIVEN 

• A shell-and-tube counterflow heat exchanger - oil in tubes, steam is shell 
• Oil temperatures  To,in = 27°C 
  To,out = 82°C 
• Tubes: 1.5 in schedule 40 pipes 
• Oil velocity (Vo) = 1 m/s 
• Steam temperature (Ts) = 102°C 
• Oil specific heat (cpo) = 1800 J/(kg K) 
• Oil density (ρ) = 925 kg/m3 
• Steam side heat transfer coefficient ( sh ) = 10 kW/(m2 K) 
• Thermal conductivity of the tube material (kt) = 30 W/(m K) 
• Experimental data above was taken at the same oil velocity 

FIND 

(a) The overall heat transfer coefficient (Uo) at the point where the oil is 38°C 
(b) The inside pipe surface temperature (Twi) when the oil temperature is 38°C 
(c) The required length of the tube bundle 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 41, for 1.5 in schedule 40 pipe 
  Di = 4 cm 

  Do = 4.8 cm 
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SOLUTION 

(a) The overall heat transfer coefficient based on the outside tube area is given by Equation (8.2) 

 
1

oU
 = o

ii

A

A h
 + 

ln

2

o
o

i

r
A

r

k Lπ

 
  

 + 
1

oh
 = o

ii

D

D h
 + 

ln

2

o
o

i

D
D

D

k

 
  

 + 
1

sh
 

 
1

oU
 = 

2

4.8cm

4cm 85W/(m K)×
 + 

–2 4.8cm
4.8 10 mln

4cm

2 (30 W/(m K))

 ×   
 +

2

1

10000 W/(m K)
 

 
1

oU
 = (0.0141 + 0.00015 + 10–5) (m2 K)/W 

 Uo = 70.2 W/(m2 K) 

(b) The rate of heat transfer from the oil to the inner pipe surface must equal the rate of heat transfer 
between the oil and the steam. 

  cih  Ai (Twi – To) = U Ao (Ts – To) 

 Twi = To + o

cii

D U

D h
(Ts – To) = 38°C + ( )4.8

4 ( )70.2

85
(102°C – 38°C) = 101.4°C 

(c) The heat capacity rate of the steam is essentially infinite, therefore, Cmin/Cmax = 0 
The effectiveness is given by Equation (8.12b) (Cc = Cmin). 

 E = 
min

cC

C
 = ,out ,in

,in

o o

s o

U T

T T

−
−

 = 
82 27

102 27

−
−

 = 0.733 

From Figure 8.19 NTU = 1.4 

 NTU = 
min

o oU A

C
 = o o

o po

U A

m C
 = o o

o c po

U A

V A cρ
 = 

2

4

o o

o i po

U D L

V D c

π
πρ

 

 ∴ L = 
2

4
o po i

o o

NTU V c D

U D

ρ
=

( ) ( ) ( )
( )

3 2

2

1.4 1 m/s 925 kg/m 1800 J/(kg K) (0.04m)

4 70.2 W/(m K) (0.048m)

×
 = 276 m 

The length of each pass of a double tube pass would need to be L/2 = 138 m. 

PROBLEM 8.46 

A shell-and-tube heat exchanger in an ammonia plant is preheating 1132 cubic meters of 
atmospheric pressure nitrogen per hour from 21 to 65°C using steam condensing at 
138,000 N/m2. The tube in the heat exchanger have an inside diameter of 2.5 cm. In order 
to change from ammonia synthesis to methanol synthesis, the same heater is to be used to 
preheat carbon monoxide from 21 to 77°C, using steam condensing at 241,000 N/m2. 
Calculate the flow rate which can be anticipated from this heat exchanger in kg of 
carbon monoxide per second. 

 

GIVEN 

• Shell-and-tube heat exchanger - nitrogen in tubes, condensing steam in shell 

• Nitrogen volumetric flow rate ( )nV  = 1132 m3/h = 0.3144 m3/s 
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• Nitrogen temperatures  Tn,in = 21°C 
  Tn,out = 65°C 
• Steam pressure = 138,000 N/m2 
• Tube inside diameter (Di) = 2.5 cm 
• Same heat exchanger is then used with carbon monoxide: 
• Carbon monoxide temperatures  Tc,in = 21°C 
  Tc,out = 77°C 
• New steam pressure = 241 N/m2 

FIND 

• The flow rate of carbon dioxide ( )cm  

ASSUMPTIONS 

• Two or a multiple of two shell passes 
• Thermal resistance of the condensing steam and the tube wall are a small fraction of the total 

thermal resistance 

SKETCH 

T
T

n,

c,

out

out

= 65°C
= 77°C

Nitrogen

Or Co

T = Tn, c,in in = 21°C

Condensing Steam

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the saturation temperature of steam (Ts) is  
  Ts = 107°C at 138,000 N/m2 

  Ts = 125°C at 241,000 N/m2 

  32, the saturation temperature of steam (Ts) is 

From Appendix 2, Table 32, for nitrogen at the average temperature of 43°C 

  Density (ρn) = 1.096 kg/m3 
  Specific heat (cpn) = 1042 J/(kg K) 
  Thermal conductivity (kn) = 0.02734 W/(m K) 

  Absolute viscosity (μn) = 18.5 × 10–6 (Ns)/m2 
From Appendix 2, Table 29, for the CO at its average temperature of 49°C 
  Specific heat (cpc) = 1042 J/(kg K) 
  Thermal conductivity (kc) = 0.0268 W/(m K) 

  Absolute viscosity (μc) = 18.83 × 10–6 (N s)/m2 

SOLUTION 

The data with nitrogen will be used to calculate the overall heat transfer coefficient which will then be 
modified and applied to the carbon monoxide case. 
With nitrogen 
The heat capacity rate of the steam is essentially infinite, therefore, Cmin/Cmax = 0. 
Applying Equation (8.22b) Cmin = Cc 

 E = ,out ,in

,in

n n

s n

T T

T T

−
−

 = 
65 21

107 21

−
−

 = 0.51 

From Figure 8.20, NTU = U A/Cmin = 0.75 
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The heat capacity rate of the nitrogen is 

 Cn = Cmin = nm  cpn = nv  ρn cpn = (0.3144 m3/s) ( )31.096 kg/m ( )1042 J/(kg K) ( )(Ws)/J = 359.1 W/K 

 ∴ U A = NTU (Cmin) = 0.75 ( )359.1 W/K  = 269.3 W/K 

With CO 
Assuming that the flow of either gas is turbulent, the overall heat transfer coefficient is 

 UO ∝ hi ∝ k Re0.8 Since Pr ≈ 0.71 for either gas 

  so Uo ∝ k 
0.8m

μ
 
  


 

Since the properties of the two gases are very close, Uc ≈ Un 
The effectiveness of the heat exchanger with the carbon monoxide is 

 E = ,out ,in

,in

n n

s n

T T

T T

−
−

 = 
77 C 21 C

125°C 21 C

° − °
− °

 = 0.54 ≈ E n 

 ∴ cm  ≈ nm = ρ nv  = (1.096 kg/m3) ( )30.3144 m /s  = 0.34 kg/s 

PROBLEM 8.47 

In an industrial plant a shell-and-tube heat exchanger is heating pressurized dirty water 
at the rate of 38 kg/s from 60 to 110°C by means of steam condensing at 115°C on the 
outside of the tubes. The heat exchanger has 500 steel tubes (ID = 1.6 cm, OD = 2.1 cm) in 
a tube bundle which is 9 m long. The water flows through the tubes while the steam 
condenses in the shell. If it may be assumed that the thermal resistance of the scale on the 
inside pipe wall is unaltered when the mass rate of flow is increased and that changes in 
water properties with temperature are negligible, estimate (a) the heat transfer 
coefficient on the water side and (b) the exit temperature of the dirty water if its mass 
rate of flow is doubled. 

GIVEN 

• Shell-and-tube heat exchanger - dirty water in steel tubes, steam condensing in shell 
• Water flow rate ( )wm  = 38 kg/s 

• Water temperatures  Tw,in = 60°C 
  Tw,out = 110°C 
• Steam temperature (Ts) = 115°C 
• Number of tubes (N) = 500 
• Tube diameters  Di = 1.6 cm = 0.016 m 
  Do = 2.1 cm = 0.021 m 
• Tube bundle length (L) = 9 m 

FIND 

(a) The heat transfer coefficient on the water side ( )ih  

(b) The exit temperature of the dirty water (Tw,out) if the mass flow rate ( )wm  is doubled 

ASSUMPTIONS 

• The thermal resistance of the scale in the pipe is unaltered when the mass flow rate is increased 
• Changes in water properties with temperature are negligible 
• Two, or a multiple of two, passes 
• The dirty water has the same thermal properties as clean water 
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SKETCH 

Steam , = 115°CTs

Tw,out = 110°C

Tw,in = 60°C
Water

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at the average temperature of 85°C 
  Specific heat (cpw) = 4198 J/(kg K) 

  Thermal conductivity (k) = 0.675 W/(m K) 

  Absolute viscosity (μ) = 337 × 10–6 (N s)/m2 

  Prandtl number (Pr) = 2.04 

From Appendix 2, Table 10, the thermal conductivity of 1% carbon steel (ks) = 43 W/(m K) (at 20°C) 

SOLUTION 

(a) The Reynolds number for flow in the tubes is 

 ReD = iVD

v
 = 

4

i

m

N Dπ μ


 = ( ) ( )– 6 2 2

4 (38 kg/s)

(500) (0.016 m) 337 10 (Ns) /m (kg m)/(Ns )π ×
 = 17,946 (Turbulent) 

Applying Equation (6.63) for turbulent flow in tubes 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

 DNu  = 0.023 (17,946)0.8 (2.04)0.4 = 77.4 

 ih  = DNu
k

D
 = 77.4 

( )0.675 W/(m K)

0.016m
  = 3265 2W/(m K)  

(b) The scaling resistance can be calculated from the water temperature data 
From Figure (8.9) 

  ΔTa = Ts – Tw,in = 115°C – 60°C = 55°C 

  ΔTb = Ts – Tw,out = 115°C – 110°C = 5°C 

 LMTD = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = 
55 C 5 C

55
ln

5

° − °
 
  

 = 21°C 

This must be corrected for use in a shell-and-tube heat exchanger according to Figure 8.13. But since Z 
= 0 for condensers, F = 1 and ΔTmean = LMTD, the rate of heat transfer is 

 q = Uo Ao Δ Tmean = wm  cpw (Tw,out – Tw,in) 

 ∴ Uo = 
mean2

w pw

o

m c

N D L Tπ Δ


 (Tw,out – Tw,in) 

 ∴ Uo = 
( ) ( ) ( )38 kg/s 4198 J/(kg) (Ws)/J

2(500) (0.021m)(9 m)(21 C)π °
(110°C – 60°C) = 640 W/(m2 K) 

Applying Equation (8.5) (Ro = 0) 
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1

oh
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Solving for the sum of the scaling, conductive, and outer convective resistances 

1

oh
 + Rk + i o

i

R D

D
= 

1

oU
 – o

ii

D

D h
 = ( )2

1

640 W/(m K)
 –

2.1

1.6

 
    ( )2

1

3265 W/(m K)
 = 0.000116 2(m K)/W  

For a double flow rate, the Reynolds number is doubled: ReD = 35,592 

 ∴ DNu  = 0.023 (35,892)0.8 (2.04)0.4 = 135 

 ih  = DNu
k

D
 = 135 

( )0.675 W/(m K)

0.016m
 = 5685 2W/(m K)  

The new overall heat transfer coefficient is 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

 DNu  = 0.023 (17,946)0.8 (2.04)0.4 = 77.4 

 ih  = DNu
k

D
 = 77.4 

( )0.675 W/(m K)

0.016m
 = 3265 2(m K)/W  

From Figure 8.19, e = 1 
From Equation (8.12b) 

 Tw,out = Tw,in + E (Ts – Tw,in) = 60°C + 1 (115°C – 60°C) = 115°C 

PROBLEM 8.48 

Liquid benzene (specific gravity = 0.86) is to be heated in a counterflow concentric-pipe 
heat exchanger from 30 to 90°C. For a tentative design, the velocity of the benzene 
through the inside pipe (ID = 2.7 cm; OD = 3.3 cm) can be taken as 8 m/s. Saturated 
process steam at 1.38 × 106 N/m2 is available for heating. Two methods of using this 
steam are proposed (a) Pass the process steam directly through the annulus of the 
exchanger; this would require that the letter be designed for the high pressure. (b) 
Throttle the steam adiabatically to 138,000 N/m2 before passing it through the heater. In 
both cases, the operation would be controlled so that saturated vapor enters and 
saturated water leaves the heater. As an approximation, assume that for both cases the 
heat transfer coefficient for condensing steam remains constant at 12,800 W/(m2 K), that 
the thermal resistance of the pipe wall is negligible, and that the pressure drop for the 
steam is negligible. If the inside diameter of the other pipe is 5 cm, calculate the mass 
rate of flow of steam (kg/s per pipe) and the length of heater required for each 
arrangement. 

GIVEN 

• A concentric pipe, counterflow heat exchanger - benzene in inner tube; saturated steam in annulus 
• Specific gravity of benzene (s.g.) = 0.86 
• Benzene temperatures  Tb,in = 30°C 
  Tb,out = 90°C 
• Pipe diameters  Dii = 2.7 cm = 0.027 m 
  Dio = 3.3 cm = 0.033 m 

 Do = 5 cm = 0.05 m 

• Benzene velocity (Vb) = 2.5 m/s 
• Saturated steam pressure = 1.38 × 106 N/m2 
• Saturated vapor enters condenser and saturated water leaves 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

762

FIND 

The mass flow rate of steam ( )sm  and the length of the heater (L) for 

(a) Passing steam directly through condenser, and 
(b) Steam throttled adiabatically to 138,000 N/m2 before the heater 

ASSUMPTIONS 

• The heat transfer coefficient on the steam side ( )oh  = 12,800 W/(m2 K) 

• The thermal resistance of the pipe wall is negligible 
• The pressure drop for the steam is negligible 

SKETCH 

Dii = 2.7 cm

Dio = 3.3 cm

Do = 5 cm

Steam

Benzene

Tb,in = 30°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the saturation temperature and heat of vaporization of steam at 

 1.38 × 106 N/m2 (Tsa) = 194°C hfga = 1963 kJ/kg 

 1.38 × 105 N/m2 (Tsb) = 108°C hfgb = 2236 kJ/kg 
From Appendix 2, Table 20, for benzene at the average temperature of 60°C 
  Specific heat (cp) = 1908 J/(kg K) 
  Thermal conductivity (k) = 0.149 W/(m K) 

  Kinematic viscosity (ν) = 0.485 × 10–6 m2/s 
  Prandtl number (Pr) = 4.6 

  Density (ρ) = 859 kg/m3 

SOLUTION 

The Reynolds number of the benzene flow is 

 ReD = b iiV D

v
 = ( )6 2

(2.5 m/s) (0.027 m)

0.485×10 m /s−  = 1.39 × 105 (Turbulent) 

The Nusselt number can be calculated using Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.4 for heating 

 DNu  = 0.023 (1.39 × 105)0.8 (4.6)0.4 = 551 

 ih  = DNu
i

k

D
 = 551 

( )0.149 W/(m K)

0.027 m
 = 3044 2W/(m K)  

The overall heat transfer coefficient, neglecting wall resistance is 

 
1

dU
 = 

1

oh
 + o

ii

A

A h
 =  

1

oh
 + o

ii

D

D h
 = ( )2

1

12,800 W/(m K)
 + 

3.3

2.7

 
   ( )2

1

3041 W/(m K)
 

 Uo = 2085 W/(m2 K) 
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(a) Ts = 194°C and Cmin/Cmax = 0 
From Equation (8.21b) (Cc = Cmin) 

 E = ,out ,in

,in

b b

s b

T T

T T

−
−

 = 
90 30

194 30

−
−

 = 0.37 

From Figure 8.17 or 8.18 NTU = 0.5 

 NTU = 
min

UA

C
 = o io

b p

U D L

m c

π


 = 
2

4

o io

b ii p

U D L

V D c

π
πρ

 

 ∴  L = 
2

4
b ii p

o io

NTU V D c

U D

ρ
=

( ) ( ) ( )
( ) ( )

3 2

2

0.5 859 kg/m 2.5 m/s (0.027 m) 1908 J/(kg K)

4 2085 W/(m K) J/(Ws) (0.033m)
 = 5.4 m 

The rate of heat transfer is 

 q = E Cmin (Ts – Tb,in) = sm  hfga 

 sm  = min

fga

C

h

E
 (Ts – Tb,in) = 

2

4o ii p

fga

V D c

h

πρE
(Ts – Tb,in) 

 sm  = 
( ) ( ) ( )

( ) ( )
3 20.37 859 kg/m 2.5 m/s (0.027) 1908 J/(kg K)

1963 kJ/kg 1000 J/(kJ)
 (194°C – 30°C) = 0.073 kg/s 

(b) Ts = 108°C Cmin/Cmax = 0 e = (90 – 30)/(108 – 30) = 0.77 
From Figure 8.17 or 8.18 NTU ≈ 1.5 
If Uo remains the same and Cmin is the same as case (a), then 

 L = 
(a)

(b)

NTU

NTU
 L (a) = 

1.5

0.5
 (5.4 m) = 16.2 m 

 sm  = 
( ) ( ) ( )

( ) ( )

3 20.77 859 kg/m 2.5 m/s (0.027) 1908 J/(kg K)
4

2236 kJ/kg 1000 J/(kJ)

π

 (108°C – 30°C) = 0.063 kg/s 

COMMENTS 

Throttling the steam reduces the flow rate of steam required by 14% but increases the size of the 
condenser by 300%. Economic considerations are needed to choose between the two options. 

PROBLEM 8.49 

Calculate the overall heat transfer coefficient and the rate of heat flow from the hot 
gasses to the cold air in the cross flow tube-bank of heat exchanger shown in the 
accompanying illustration for the following operating conditions 

  Air flow rate = 0.4 kg/s. 

  Hot gas flow rate = 0.65 kg/s. 

  Temperature of hot gasses entering exchanger = 870°C. 

  Temperature of cold air entering exchanger = 40°C. 

  Both gases are approximately at atmospheric pressure. 
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5 cm
2.5 cm

0.3 m

22.5 cm

2.5 cm
5 cm

40 tubes

27.5 cm

2.5 cm
2.26 cm

Tube detail

Air in

Hot Gas in

Section A–A

Air
in

A A

Minimum Flow Area
Shown by Heavy LineHeat Exchanger, Top View

 

GIVEN 

• The crossflow tube bank heat exchanger shown above 
• Air flow rate ( )am  = 0.4 kg/s 

• Gas flow rate ( )gm  = 0.65 kg/s 

• Entrance temperatures 
 Air (Ta,in) = 40°C 
 Gas (Tg,in) = 870°C 
• Both gases are at 1 atm pressure 

FIND 

(a) The overall heat transfer coefficient 
(b)  The rate of heat transfer (q) 

ASSUMPTIONS 

• The hot gases have the same thermal properties as air 
• No scaling 
• Thermal resistance of the tube walls can be neglected 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for dry air at the entering temperatures 

Temperature 40°C 870°C 
 Thermal conductivity, k (W/(m K))
 0.0263 0.074 
 Specific heat, cp (J/(kg K)) 1013.5
 1122 

 Density, ρ (kg/m3) 1.13 0.321 

 Absolute viscosity, μ (kg/ms) 1.92 × 10–

5 4.56 × 10–5 
Prandtl number 0.71 0.73 
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SOLUTION 

(a) Heat transfer coefficient inside tubes ( )ih  
The Reynolds number in the tubes is 

 ReD = g i

g

V D

v
 = 

4

i

m

Dπ μ


 =
( )

( )–2 5

4 0.65 kg/s

(2.26 10 m) 4.56 10 kg/msπ −× ×
 = 8 × 105 (Turbulent) 

The Nusselt number for turbulent flow in a tube is given by Equation (6.63) 

 DNu  = 0.023 ReD
0.8 Prn where n = 0.3 for cooling 

 DNu  = 0.023 (8 × 105)0.80 (0.73)0.3 = 1104.6 

 ih  = DNu
i

k

D
 = 1104.6 

–2

0.074 W/(m K)

2.26 10 m×
 = 3617 W/(m2 K) 

Heat transfer coefficient outside the tubes ( )oh  

The velocity of the air based on the minimum flow area is 

 Vmax = 
min

m

Aρ


 

From the sketch 

 Amin = [7(S′ L – Do) + 2.5 cm]L where   S′L = 2 2(2.5) (2.5)+  = 3.53 cm 

 ∴ Amin = [7(3.53 – 2.5) + 2.5] × 10–2 m × 0.3 m = 0.0291 m2 

 ∴ Vmax = 
3 2

(0.4 kg/s)

(1.13 kg/m )(0.0291m )
 = 12.16 m/s 

The Reynolds number based on the minimum flow area is 

 ReD = maxV D

v
 = ( )

–2 3

5

12.16m/s (2.5 10 m)(1.13kg/m )

1.92 10 kg m/s−
×
×

 = 1.79 × 104 (Turbulent) 

Applying Equation (7.34) 

 NuD = 0.019 ReD
0.84 = 0.019 (1.79 × 104)0.84 = 71 

 ho = NuD 
o

k

D
 = 71

–2

0.0263W/(m K)

(2.5 10 m)×
 = 74.7 W/(m2 K) 

The overall heat transfer coefficient, neglecting the thermal resistance of the tube wall, is 

 
1

dU
 = 

1

oh
 + o

ii

A

A h
 = 

1

oh
 + o

ii

D

D h
 = ( )2

1

74.7 W/(m K)
 + 

2.5

2.26 ( )2

1

3617 W/(m K)
 

  Uo = 73 W/(m2 K) 

(b) The heat capacity rates are 

 Ca = am  cpa = (0.4 kg/s) (1013.5 J/(kg K)) = 405 W/K 

 Cg = gm  cpg = (0.65 kg/s) (1122 J/(kg K)) = 729.3 W/K 

  mixed

unmixed

C

C
= a

g

C

C
= 0.55 
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The number of transfer units is 

 NTU = 
min

o oU A

C
 = 

min

o oU N D L

C

π
 = 

2 –2(73W/m )(40) (2.5 10 m)(0.3m)

405W/K

π ×
 = 0.17 

From Figure 8.21, e ≈ 0.18 
The rate of heat transfer is given by Equation (8.22) 

 q = E Cmin (Tg,in – Ta,in) = 0.18 (405 J/K) (870 – 40) = 60.5 kW 

PROBLEM 8.50 

An oil having a specific heat of 2100 J/(kg K) enters an oil cooler at 82°C at the rate of 
2.5 kg/s. The cooler is a counterflow unit with water as the coolant, the transfer area 
being 28 m2 and the overall heat transfer coefficient being 570 W/(m2 K). The water 
enters the exchanger at 27°C. Determine the water rate required if the oil is to leave the 
cooler at 38°C. 

GIVEN 

• Counterflow heat exchanger - water cools oil 
• Oil specific heat (cpo) = 2100 J/(kg K) 
• Oil temperatures  To,in = 82°C 
  To,out = 38°C 
• Oil flow rate ( )om  = 2.5 kg/s 

• Transfer area (A) = 28 m2 
• The overall heat transfer coefficient (U) = 570 W/(m2 K) 
• Water inlet temperature (Tw,in) = 27°C 

FIND 

• The water flow rate ( )wm  

SKETCH 

To,in = 82°C.

Oil

mo = 2.5 kg/s

Water

mw = ?

To,out = 38°C

Tw,in = 27°C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the specific heat of water (cpw) = 4175 J/(kg K) at 40°C 

SOLUTION 

The heat rate of the oil is 

 Co = om  cpo = (2.5 kg/s) ( )2100 J/(kg K)  = 5250 W/K 

Assuming Co = Cmin, the effectiveness, from Equation (8.21a) is 

 E = ,in ,out

,in ,in

o o

o w

T T

T T

−
−

 = 
82 38

82 27

−
−

 = 0.80 

Combining Equations (8.22) and (8.15) 

 q = e Cmin (To,in – Tw,in) = U A (LMTD) 
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Solving for the log mean temperature difference 

 LMTD  = minC

U A

E
(To,in – Tw,in) = 

( )
( )2 2

0.8 5250 W/K

570 W/(m K) (28m )
 (80°C – 27°C) = 14.5°C 

 LMTD  = 
ln

a b

a

b

T T
T

T

Δ − Δ
Δ 

  Δ

 = ,in ,out ,out ,in

,in ,out

,out ,in

( ) ( )

ln

o w w w

o w

o w

T T T T

T T

T T

− − −
 −
 − 

 

 14.5°C  = ,out

,out

(82 C ) (38 C 27 C)

82
ln

38 27

w

w

T

T

° − − ° − °
− 

  −

 = ,out

,out

71 C

82
ln

11

w

w

T

T

° −
− 

 

 

By trial and error Tw,out = 63°C 
The flow rate of water can be calculated from an energy balance 

  om  cpo (Co,in – To,out) = wm  cpw (Tw,out – Tw,in) 

 wm  = om  po

pw

c

c

 
  

,in ,out

,out ,in

o w

o w

T T

T T

− 
 − 

 = (2.5 kg/s)
2100

4175

 
  

82 38

63 27

− 
  −

= 1.54 kg/s  

The heat capacity rate of the water is 

 Cw = wm  cpw = 1.54 kg/s ( )4175 J/(kg K)  = 6417 W/K 

Therefore, the assumption that Co = Cmin is valid. 

PROBLEM 8.51 

Dry air is cooled from 65 to 38°C, while flowing at the rate of 1.25 kg/s in a simple 
counterflow heat exchanger, by means of cold air which enters at 15°C and flows at a 
rate of 1.6 kg/s. It is planned to lengthen the heat exchanger so that 1.25 kg/s. of air can 
be cooled from 65 to 26°C with a counterflow current of air at 1.6 kg/s entering at 15°C. 
Assuming that the specific heat of the air is constant, calculate the ratio of the length of 
the new heat exchanger to the length of the original. 

GIVEN 

A simple adiabatic air-to-air counter flow heat exchanger 
Case 1 

• Warm air temperatures  Th,in = 65°C 
  Th,out = 38°C 
• Air flow rates  hm  = 1.25 kg/s 

  cm  = 1.6 kg/s 

• Cold air inlet temperature (Tc,in) = 15°C 
After lengthening heat exchanger 
Case 2 

• Warm air temperatures  Th,in = 65°C 
  Th,out = 26°C 
• Air flow rates  hm  = 1.25 kg/s 

  cm  = 1.6 kg/s 

• Cold air inlet temperature (Tc,in) = 15°C 

FIND 

• The ratio of the length of the new heat exchanger to the length of the original 
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ASSUMPTIONS 

• The specific heat of air is constant 
• The overall heat transfer coefficient (U) is the same in both cases 

SKETCH 

Th,in = 65°C.

Water Air

mh = 1.25 kg/s

Cold Air

mc = 1.6 kg/s

Th,out = 38°C or 26°C

Tc,in = 15°C

 

SOLUTION 

For both cases 

 min

max

C

C
 = h

c

C

C
 = 

h p

c p

m c

m c




 = h

c

m

m




 = 
1.25

1.6
 = 0.78 

The effectiveness, from Equation (8.21a), is 

 E  = 
min

hC

C
,in ,out

,in ,in

h h

h c

T T

T T

−
−

 

Case 1 

 e1 = 
65 – 38

65 – 15
 = 0.54 

Case 2 

 e2 = 
65 – 26

65 – 15
 = 0.78 

From Figure 8.18  NTU1 = 1.1  NTU2 = 2.5 

 1

2

NTU

NTU
 = 

2 2

min 2

1 1

min1

U A
C
U A
C

  But U1 = U2  and  Cmin1 = Cmin2 

 ∴  2

1

A

A
 = 2

1

NTU

NTU
 = 

2.5

1.1
 = 2.3 

Since the area is directly proportional to the length. 

 2

1

L

L
 = 2.3 

PROBLEM 8.52 

Saturated steam at 1.35 atm condenses on the outside of a 2.6 m length of copper tubing 
heating 5m kg/hr of water flowing in the tube. The water temperatures, measured at 10 
equally spaced stations along the tube length are 

 Station  1  2  3 4 5  6  7
 8 9 10 11 
Temp °C  18  43  57 67 73 78  82
 85 88 90 92 
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Calculate (a) average overall heat transfer coefficient Uo based on the outside tube area; 
(b) average water-side heat transfer coefficient hw (assume steamside coefficient at 
hs = 11,000 W/(m2 K)), (c) local overall coefficient Ux based on the outside tube area for 
each of the 10 sections between temperature stations, and (d) local waterside coefficients 
hwx for each of the 10 sections. Plot all items vs. tube length. Tube dimensions: ID = 2 cm, 
OD = 2.5 c. Temperature station 1 is at tube entrance and station 11 is at tube exit. 

GIVEN 

• Saturated steam condensing on copper tubing with water flowing within 
• Steam pressure = 1.35 atm = 136,755 N/m2 
• Tube length (L) = 2.6 m 
• Water flow rate ( )wm  = 5 kg/h = 0.00139 kg/s 

• Water temperatures given above as a function of distance along pipe 
• Tube diameters  Di = 2 cm = 0.02 m 
  Do = 2.5 cm = 0.025 m 

FIND 

(a) Average overall heat transfer coefficient based on the outside tube area (Uo) 

(b) Average water-side transfer coefficient ( )wh  
(c) Local overall coefficient (Ux) for each of the 10 sections 
(d) Local water-side coefficient hwx for each of the 10 sections 
Plot all items vs. tube length 

ASSUMPTIONS 

• The steam-side heat transfer coefficient sh  = 11,000 W/(m2 K) 

• No scaling resistance 
• Variation of the specific heat of water is negligible 

SKETCH 

1 2 3 4 5 6 7 8 9 10
= 2.6 mL

Water

Station

Condensing Steam

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for saturated steam at 136,755 N/m2: Ts = 107°C 
For water at the average temperature of 55°C, the specific heat (cpw) = 4180 J/(kg K) 
From Appendix 2, Table 12, the thermal conductivity of copper (k) = 392 W/(m K) at 127°C 

SOLUTION 

(a) The heat capacity rate of the water is 

 Cw = wm cpw = (0.00139 ( )kg/s 4180 J/(kg K)  = 5.81 W/K 

Since the heat capacity rate of the steam is essentially infinite, Cmin/Cmax = 0. 
The effectiveness of the heat exchanger is given by Equation (8.21b) (Cc = Cmin). 

 E = ,out ,in

,in

w w

s w

T T

T T

−
−

 = 
92 18

107 18

−
−

 = 0.83 
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For Cmin/Cmax = 0, the effectiveness for parallel or counterflow are the same and Equation (8.25) 
reduces to 

 e = 1 – e–NTU  NTU = –ln(1 – e) = –ln(1 – 0.83) = 1.77 

 NTU = 
min

o oU A

C
  Uo = min

o

NTU C

A
 = min

o

NTU C

D Lπ
 = 

( )
( ) ( )

1.77 5.81 W/K

0.025m 2.6mπ
 = 50.4 2W/(m K)  

(b) From Equation (8.2) 

 
1

oU
 = o

i i

A

A h
 + 

ln

2

o
o

i

r
A

r

kLπ

 
  

 + 
1

oh
 = o

i w

D

D h
 + 

ln

2

o
o

i

D
D

D

k

 
  

 + 
1

sh
 

 ∴  
1

wh
 = 

ln
1 1

2

o
o

i i

o s

D
D

D D

D U k h

   
   

− − 
 
 

 

 
1

wh
 = ( )

( )

( ) ( )2 2

2.5
0.025m ln

1 12
2 392 W/(m K)50.4 W/(m K) 11,000 W/(m K)

   
  − − 

  

 

(c) Treating the first section as a separate heat exchanger and following the procedure of part (a) 
Cmax/Cmin = 0, e = (43 – 18)/(107 – 18) = 0.28, NTU = –ln(1 – 0.28) = 0.33 

 ∴  Ux = min

o

NTU C

A
 = min

o

NTU C

D Lπ
 = 

( )
( ) ( )
0.33 5.81 W/K

0.025m 0.26mπ
 = 93.9 2W/(m K)  

This procedure must be repeated for each section. The results are tabulated below section (d). 
(d) Following the procedure of section (b), the only value that changes is the overall heat transfer 

coefficient 

 
1

1

wh
 = ( )

2
2

2 1
0.000098 (m K)/W

2.5 93.9 W/(m K)

 
−  

 

 hw1 = 118.5 W/(m2 K) 

 

Repeating parts (c) and (d) for each section yields 

 Section  1 2  3  4  5  6 
 7 8 9 10 

 x (m) 0.13 0.39 0.65 0.91 1.17 1.43 1.69 1.95 2.21 2.47 
 Ux (W/(m2 K)) 93.9 70.2 63.5 46.2 45.3 42.2 36.4 41.7 31.6 35.6 
 hwx (W/(m2 K)) 118.5 88.4 79.9 58.0 56.9 53.0 45.7 52.3 39.6 44.7 

 
where x = distance from inlet to midpoint of section. 
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Plotting this data on a single graph 
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PROBLEM 8.53 

Calculate the water side heat transfer coefficient and the coolant pressure drop per unit 
length of tube for the core of a compact air-to-water intercooler for a 3.7 MW gas 
turbine plant. The water flows inside of a flattened aluminum tube having the cross-
section shown below 

1.6 cm

0.2 cm

 

The inside diameter of the tube before it was flattened was 1.23 cm with a wall thickness 
(t) of 0.025 cm. The water enters the tube at 15.6°C and leaves at 26.7°C at a velocity of 
1.34 m/s. 

GIVEN 

• Water flow in a flattened tube as shown above 
• Inlet temperature (Ti) = 15.6°C 
• Outlet temperature (To) = 26.7°C 
• Water velocity (V) = 1.34 m/s 

FIND 

(a) The heat transfer coefficient on the inside of the tubes ( )ch  

(b) The pressure drop per unit length (Δp/L) 

ASSUMPTIONS 

• Steady state 
• Fully developed flow 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at the average temperature of 21.1°C 
  Thermal conductivity (k) = 0.599 W/(m K) 

  Kinematic viscosity (ν) = 0.979 × 10–6 m2/s 

  Density (ρ) = 998.0 kg/m3 

  Prandtl number (Pr) = 6.80 
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SOLUTION 

The hydraulic diameter of the flattened tube is 

 Dh = 
4A

P
 = 

( ) ( )
( )

24[ 1.6 cm – 0.2 cm 0.2 cm (0.1cm) ]

1.23cm

π
π

+
 = 0.322 cm = 0.00322 m 

The Reynolds number based on the hydraulic diameter is 

 
hDRe  = hVD

ν
 = 

( )
( )6 2

(1.34 m/s) 0.00322 m

0.979 10 m /s−×
 = 4407 (turbulent) 

(a) The Nusselt number for turbulent flow is given by Equation (6.63) 

 Nu  = 0.023 0.8
hDRe  Pr0.4 = 0.023 (4407)0.8 (608)0.4 = 40.7 

 ch  = Nu
h

k

D
 = 40.7

( )0.599 W/(m K)

0.00322 m
 = 7580 2W/(m K)  

(b) The friction factor for turbulent flow in smooth tubes is given by Equation (6.59) 

 f = 0.184 0.2
hDRe −  = 0.184 (4407)–0.2 = 0.0344 

The pressure drop is given by Equation (6.13) 

 
P

L

Δ
 = 

2

2h c

Vf

D g

ρ
 = 

( ) ( )
( ) ( )

23

2 2

0.0344 998.0 kg/m 1.34 m /s

0.0322m 2 (kg m)/(s N) N / (m Pa)
 = 9560 Pa/m 

PROBLEM 8.54 

An air-to-water compact heat exchanger is to be designed to serve as an intercooler for a 
3.7 MW gas turbine plant. The exchanger is to meet the following heat transfer and 
pressure drop performance specifications 
Air-side Operating Conditions 
  Flow rate 25.2 kg/s 
  Inlet Temperature 400 K 
  Outlet Temperature  300 K 

  Inlet Pressure(p1) 2.05 × 105 N/m2 

  Pressure Drop Ratio (Δp/p1)  
Water-side Operating Conditions 
  Flow rate 50.4 kg/s 
  Inlet Temperature 289 K 
The exchanger is to have a cross-flow configuration with both fluids unmixed. The heat 
exchanger surface proposed for the exchanger consists of flattened tubes with continuous 
aluminum fins specified as a 11.32– 0.737 – SR surface in Ref. 10. The heat exchanger is 
shown schematically below. 
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The measured heat transfer and friction characteristic for this exchanger surface are 
shown in the graph below 

f

Best Interpretation
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c
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f
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Geometrical details for the proposed surface are 

Air-side Flow passage hydraulic radius (rh) = (0.0878 cm) 

  Total transfer area/total volume (aair) = (886 m2/m3) 

  Free flow area/frontal area (s) = 0.780 

  Fin area/total area (At/A) = 0.845 

  Fin metal thickness (t) = 0.00033 ft (0.0001 m) 

  Fin length (1/2 distance between tubes, Lf) = 0.225 in (0.00572 m) 

Water side Tubes as given in Problem 8.53 

  Water-side transfer area/total volume (aH2O) = 42.1 ft2/ft3 

The design should specify the core size, the air flow frontal area, and the flow length. The 
water velocity inside the tubes is 4.4 ft/s (1.34 m/s). See problem 8.53 for the calculation 
of the water side heat transfer coefficient. 

Note: (i) the free-flow area is defined such that the mass velocity, G, is the air mass flow 
rate per unit free flow area, (ii) the core pressure drop is given by Δp = fG2L/2ρrh where 
L is the length of the core in the air flow direction, (iii) the fin length, Lf, is defined such 
that Lf = 2A/P where A is the fin cross-sectional area for heat conduction and P is the 
effective fin perimeter. 

GIVEN 

• Air-to-Water Intercooler with the geometry and requirements specified above 
• From Problem 8.53: Water side convective heat transfer coefficient (hc,H2O) = 7580 W/(m2 K) 

FIND 

(a) The air flow frontal area (Aair) 
(b) The flow length (L) 
(c) The core size 
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ASSUMPTIONS 

• Steady state 
• Entrance effects are negligible 
• Flow acceleration effects are negligible 
• Negligible fouling resistance 
• Negligible variation in thermal resistance 
• The thermal resistance of the tube wall is negligible 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 27, for air at the mean temperature of 77°C 
  Specific heat (c) = 1019 J/(kg K) 

  Density (ρ) = 0.977 kg/m3 

  Prandtl number (Pr) = 0.71 

  Absolute viscosity (μ) = 20.6 × 106 (N s)/m2 

From Appendix 2, Table 13, for water at 20°C, c = 4182 J/(kg K) 
From Appendix 2, Table 12, the thermal conductivity of aluminum at 320 K (ka) = 238 W/(m K) 

SOLUTION 

The outlet water temperature is given by the conservation of energy 

  H2Om  cH2O (Tin – Tout)H2O = airm cair (Tin – Tout)air 

 Tout,H2O = Tin,H2O + 
( )

( )
air

H2O

mc

mc




 (Tin – Tout)air = 289 K + 
( )
( )

25.2 1019

50.4 4182
(400 K – 300 K) = 301 K 

The effectiveness required for the specified performance is given by Equation (8.21a) 

 E = 
( )

( )
,in ,out

min ,in ,in

h h h

h c

C T T

C T T

−

−
 

Since Ch = Cmin 

 E = 
( )
( )

,in ,out

,in ,in

h h

h c

T T

T T

−

−
 = 

400 K 300 K

400 K – 289 K

−
 = 0.90 

The heat capacity rate ratio is 

 min

max

C

C
 = air

H2O

C

C
 = 

( )
( )

air

H2O

mc

mc




 = 
( )
( )

25.2 1019

50.4 4182
 = 0.122 

From Figure 8.20 for cross-flow heat exchangers with e = 0.9 and Cmin/Cmax = 0.122, NTUmax  
= 2.75 = Uair Aair/Cmin. 

The solution will require iteration. For the first iteration, let ReD = 104 = 4 rh G/μ 
Solving for the mass velocity 

 G = 
4

d

h

Re

r

μ
 = 

( ) ( )
( )

4 610 20.6 10 kg /ms

4 0.000878m

−×
 = 58.7 2kg / (m s)  

From the graphical data at Re = 104 

  
2

3

p

h
Pr

Gc
 ≈ 0.0045 f  ≈ 0.018 
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 ∴ h  = 0.0045 Gcp 
2

3Pr
−

 = (0.0045) ( )258.7 kg / (m s) ( )1019 (W s) / (kg K)
2

3(0.71)
−

 = 337 2W /(m K)  

 Since G = 
free flow.

am

A


 

 Afree flow = am

G


 = 

2

25.2 kg / s

58.7 kg / (m s)
 = 0.429 m2 

 Afrontal = 
free flowA

σ
 = 

20.429 m

0.78
 = 0.55 m2 

We must calculate the fin efficiency per Chapter 2 

 m = ah P

kA
 = 

2 a

f f

h

k L
 = 

( )
( ) ( )

22 337 W/(m K)

283 W/(m K) 0.0001m
 = 154 m–1 

 m Lf = 154 m–1 (0.0572 m) = 0.883 

The fin efficiency from Equation (2.65) is 

 ηf = 
( )tanh f

f

mL

mL
 = 0.80 

The total fin efficiency can be calculated from Equation (2.68) 

 ηf = 1 – 
fA

A
(1 – ηf) = 1 – 0.845 (1 – 0.80) = 0.83 

and the overall heat transfer coefficient from Equation (2.69) is 

   Uair = 

1

H2O
H2O

air

1 1

t ah h
αη
α

−
 
 

+       

 = ( ) ( ) ( )

1

2
2

1 1
42.10.83 337 W/(m K) 7580 W/(m K)
270

−
 
 + 
  

 

 Aair = 
a pa

air

NTU m c

U


 = 

( )
( )2

(2.75)(25.2 kg/s) 1019 Ws/(kg K)

227 W/(m K)
 = 311 m2 

  Heat exchanger volume V = air

air

A

α
 = 

2

2 3

311m

886 m / m
 = 0.35 m3 

  Core length L = 
frontal

V

A
 = 

3

2

0.35 m

0.55 m
 = 0.64 m 

The core pressure drop is 

 Δp = f 
2

2 h

G L

rρ
 = 

( ) ( )
( )

22

3

0.018 58.5 kg/(m s)

2 0.977 kg/m

0.64 m

0.000878 m
 = 22,980 2N/m  
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1

p

p

Δ
 = 

22, 980

205, 000
 = 11% > 7.6% (Too High) 

Repeating this procedure until Δp/p1 = 7.6% yields the following results 
Re = 8400 Afree = 0.513 m2 Aair = 342 m2 

h 
2
3Pr /G cp = 0.0047 Afrontal = 0.657 m2 V = 0.386 m3 

f = 0.019 ηf = 0.821 L = 0.587 m 

G = 49.14 kg/(m2 s) ηoa = 0.849 Δp = 15,685 N/m2 

h = 295 W/(m2 K) Uair = 207 W/(m2 K) 
1

p

p

Δ
Δ

 = 0.077 as required 

PROBLEM 8.55 

Microchannel compact heat exchangers can be used to cool high heat flux micro-
electronic devices. The sketch below shows a schematic view of a typical microchannel 
heat sink. Micro-fabrication techniques can be used to mass produce aluminum channels 
and fins with the following dimensions: 

 Wc = Ww = 50 micrometers 
 b = 200 micrometers 
 L = 1.0 cm 
 t = 100 micrometers 

Assuming there are a total of 100 fins and that water at 30°C is used as the cooling 
medium at a Reynolds number of 2000 estimate 

(a) The water flow rate through all the channels 

(b) The Nusselt number 

(c) The heat transfer coefficient 

(d) The effective thermal resistance between the IC elements forming the heat source 
and the cooling water 

(e) The rate of heat dissipation allowable if the temperature difference between 
source and water is not to exceed 100 K 

IC Elements Forming Surface Heat Source

Microchannel Heat Sink

Cover Plats

Microfold Block

Inlet Flow Outlet Flow
Side View

IC Elements Forming Surface Heat Source

Microchannel Heat Sink

Cover Plats

Microfold Block

Section A–A

t
b

wc ww

A

A

L

 

GIVEN 

• An aluminum microchannel heat exchanger as shown above 
• wc = ww = 50 micrometers 
• b = 200 micrometers 
• L = 1.0 cm 
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• t = 100 micrometers 
• Total number of fins (N) = 100 
• Cooling water temperature (Tw) = 30°C 
• Reynolds number (Re) = 2000 

FIND 

(a) The water flow rate ( )m  through all the channels 

(b) The Nusselt number ( )Nu  

(c) The heat transfer coefficient ( )ch  
(d) The effective thermal resistance (Reff) between the IC elements forming the heat source and the 

cooling water 
(e) The rate of heat dissipation (Qheatsink) allowable if the temperature difference between source and 

water (TIC – Tfluid) is not to exceed 100 K 

ASSUMPTIONS 

• Steady state 
• Uniform and constant heat generation 
• The heat generation chip is the same size as the heat exchanger 
• A conducting paste has been applied between the heat sink and the IC to eliminate contact 

resistance 
• The cover plate is an insulator 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 30°C 

  Absolute viscosity (μ) = 792.4 × 10–6 (N s)/m2 

  Thermal conductivity (k) = 0.615 W/(m K) 

  Specific heat (cp) = 4176 J/(kg K) 

From Appendix 2, Table 12 
The thermal conductivity of aluminum at 30°C (kw) = 238 W/(m K) 

SOLUTION 

A cross-section of the flow channel is shown schematically below 

Heat Source (IC)

Heat Sink

Insulated

LC

A =

Flow
Channel

A = Lb

Lwc

2

 

Since we assume there is no contact resistance between the IC and the heat sink, the top of the heat 
sink is at the IC temperature, TIC. Heat is transferred by conduction through the heat sink directly from 
the IC to the area on top of the flow channel (area Lwc/2) to the coolant and also along the tall portion 
of the heat sink to area Lb to the coolant. This latter part of the heat sink acts as a fin because the 
temperature of this part of the heat sink will decrease as we move down from the IC to the cover plate. 
As described in Chapter 2, this temperature decrease can be accounted for by the fin efficiency. Given 
the average heat transfer coefficient, ch  in the flow channel and the temperature of the heat sink at the 
top of the flow channel, TTOP, we can write the rate of heat transfer to the coolant for the half flow 
channel shown in the sketch above as 
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 q = ch L
2
c

f
w

bη +  
(TTOP – Tfluid) 

where ηf is the fin efficiency of the heat sink. 
The temperature drop from the IC to the top of the flow channel can be estimated by 

  
( ) ( )IC TOP2

w w
w

w w
k L T T

t

+ −
 = q 

solving for TTOP 

 TTOP = TIC – 
( )

2

w w c

tq

k w w L+
 

We can now eliminate TTOP from the equation for q 

 q = 

( )

( )

IC fluid2

2
2

1

c
c

f

c
c

f

w w c

w
h L T T

b

w
h L t

b

k w w L

η

η

  − + 
 
 + 

+
+

 

so the effective thermal resistance is given by 

  Reff 
IC fluidT T

q

−
 = 

( )

2
2

1

2

c
c

f

w w c

c
c

f

w
h t

b

k w w
w

Lh
b

η

η

 
 + 

+
+

 
 + 

 

We find the average heat transfer coefficient as follows. The hydraulic diameter of the channel is 

 Dh = 
4 cA

P
 = 

4

2( )
c

c

bw

b w+
 = 

( ) ( )
( )

4 5

4 –5

4 2 10 5 10

2 2 10 5 10

− −

−
× ×
× + ×

 = 8 × 10–5 m 

(a) The total mass flow rate can be calculated from the definition of the Reynolds number 

 
hDRe  = hD ρ

μ
U∞ = h

c

D m

Nbw

ρ
μ ρ

 
  


 = h

c

D m

Nbw μ


 

m = c

h

ReNbw

D

μ
= 

( ) ( ) ( ) ( ) ( )4 5 6 2
2

5

2000 100 2 10 m 5 10 m 792.4 10 (N s) / m (kg m)/(Ns )

8 10 m

− − −

−
× × ×

×
= 0.020 kg/s 

(b) The aspect ratio of the channels is b/wc = 200/50 = 4. The length-to-hydraulic diameter ratio is 
L/Dh = (0.01 m)/(8 × 10–5 m) = 125, therefore, the flow in the channels should be fully developed 
and we find the Nusselt number, from Table 6.1. If we assume that the fin efficiency will be high, 
then it is safe to assume that the flow chanenl is isothermal at any cross section. (In this argument, 
we are neglecting the fact that the channel is insulated from below). Therefore, we need NuH1 which 
is 5.33. 

(c)  hc = 
h

k

D
 Nu = 

( )
( )5

0.615 W/(m K)

8 10−×
(5.33) = 40,974 2W/(m K)  
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The fin efficiency can be determined from Equation (2.71) 

 ηf = 

2

2

tanh c f

c f

h PL

kA

h PL

kA

 

For this fin we have 

 ch  = 40,974 2W/(m K)  

 P = 2L 

 Lf = 200 × 10–6 m 

 A = ww L 

First, calculate 

 
2

c fh PL

kA
 = 

( ) ( )
( ) ( )

22 6

6

40,974 W/(m K) 2 200 10 m

238 W/(m K) 50 10 m

L

L

−

−
×

×
 = 0.524 

and then 

 ηf = 
( )tanh 0.524

0.524
 = 0.92 

Our assumption that the flow channel all is isothermal is fairly good. 
(d) We can now quantify the effective thermal resistance. First calculate the quantity 

 ch
2

c

f

w

bη
 
 + 

 = 40,974 ( )2W/(m K) (25 × 10–6 m + (200 × 10–6 m) (0.92)) = 8.56 W/(m K)  

so 

 Reff = 

( ) ( ) ( )
( ) ( )

( )

6

6

8.56 W/(m K) 2 100 10 m
1

238 W/(m K) 100 10 m
8.56 W/(m K) (0.01m)

−

−
×+

×
 = 12.5 K/W 

 (e) The heat transfer for the half channel is therefore 

 q = 
( )

( )
100 K

12.5 K/W
 = 7.98 W 

and for the entire heat sink 

 Qheatsink = 7.98 × 2 × 100 = 1597 W 
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Chapter 9 

PROBLEM 9.1 

For an ideal radiator (hohlraum) with a 10 cm diameter opening, located in black 
surroundings at 16°C, (a) calculate the net radiant heat transfer rate for hohlraum 
temperatures of 100°C and 560°C, (b) the wavelength at which the emission is a 
maximum, (c) the monochromatic emission at λmax, and (d) the wavelengths at which the 
monochromatic emission is 1 per cent of the maximum value. 

GIVEN 

• An ideal radiator (hohlraum) in black surroundings 
• Radiator opening diameter (D) = 10 cm = 0.1 m 
• Surrounding temperature (Ts) = 16°C = 289 K 
• Hohlraum temperatures  Th1 = 100°C = 373 K 
  Th2 = 560°C = 833 K 

FIND 

(a) The net radiant heat transfer rate (qr) 
(b) The wavelength at which the emission is maximum (λmax) 
(c) The monochromatic emission at λ max (Eλmax) 
(d) The wavelengths at which the monochromatic emission is 1% Eλmax 

SKETCH 

10 cm

Hohlraum

Th1 = 373 K

Th2 = 833 K

Black
Surroundings

Ts = 298 K

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

All parts of the problem will first be solved for Th = 373 K 
(a) The net radiative transfer between any two black surfaces is given by Equation (9.47) 
 q

12
 = A1 F12 (Eb1 – Eb2) 

where A1 = (π/4)D2 
  F12 = 1, since surface 1 is surrounded by surface 2. 

  From Equation (9.3) Eb7 = σ Th
4 and Eb2 = σ Ts

4 

 q
12

 = 
4

π
 D2 σ (Th

4 – Ts
4) = 

4

π
(0.1 m)2 ( )8 2 45.67 ×10 W/(m K )−  [(373 K)4 – (289 K)4] = 5.51 W 

(b) The wavelength at which the maximum emission occurs for a black body is given by Equation (9.2) 

 λmax Th = 2.898 × 10–3 m K 

 λmax = 
32.898 10 m K

hT

−×
 =

32.898 10 m K

373K

−×
 = 7.77 × 10–6 m = 7.77 μ m  
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(c) The monochromatic emission is given by Equation (9.1) 

 Ebλ = 
/

2

1

5 ( 1)
TC

C

e
λλ −

 

 where C1 = 3.7415 × 10–16 W m2 

 C2 = 1.4388 × 10–2 m K 

 Ebλmax = 
16 2

2
6 5

6

3.7415 10 Wm

1.4388 10 m K
(7.77 10 m) exp 1

(7.77 10 m)(373K)

−

−
−

−

×
   ×× −   × 

 = 9.29 × 107 W/m3 

(d) 1% Ebλmax = Ebλ = 9.29 × 105 W/m3 

  ( )2

1

5 1
C

T

C

eλλ −

 = 9.29 × 105 W/m3 

  
16 2

2
5

3.7415 10 Wm

1.4388 10 m K
exp 1

( ) (373K)
λ

λ

−

−
×

   × −    

 – 9.29 × 105 W/m3 = 0 

(There will be one solution below λmax and one above λmax) 

By trial and error λ1 = 2.55 μ m 

 λ2 = 51.4 μ m  

Repeating the above proceduur for Th = 833 K (a) 211 W (c) 5.15 × 109 W/m2 

 (b) 3.48 μ m  (d) λ1 = 1.14 μ m 

     λ2 = 23.05 μ m 

PROBLEM 9.2 

A tungsten filament is heated to 2700 K. At what wavelength is the maximum amount of 
radiation emitted? What fraction of the total energy is in the visible range (0.4 to 0.75 μ m)? 
Assume that the filament radiates as a gray body. 

GIVEN 

• Heated tungsten filament  
• Filament temperature (Tf) = 2700 K 

FIND 

(a) Wavelength at which the maximum radiation is emitted (λmax) 
(b) Percentage of radiation in the visible ranger (0.4 to 0.75 μ m) 

ASSUMPTIONS 

• The filament radiates as a gray body 

SKETCH 

Tf = 2700 K
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SOLUTION 

(a) Since the tungsten is a gray body, the maximum emission occurs at the same wavelength as a black 
body. From Equation (9.2) 

 λmax = 
32.898 10 m K

T

−×
 = 

32.898 10 m K

2700K

−×
 = 1.07 × 10–6 = 1.07 μ m  

(b) Gray body radiation is proportional to the black body radiation at all wavelengths. Therefore, the 
percentage of the gray body radiation in the visible spectrum is the same as the percentage of 
black body radiation in the visible spectrum. 

For the limits of the visible range λ1 T = (0.4 × 10–6 m) (2700 K) = 1.08 × 10–3 m K 

  λ2 T = (0.75 × 10–6 m) (2700 K) = 2.025 × 10–3 m K 

From Table 9.1 

  1
4

(0 )bE T

T

λ
σ
→

 = 0.0011 

  2
4

(0 )bE T

T

λ
σ
→

= 0.071 

The percent within the visible spectrum is 

  1 2
4

( )bE T T

T

λ λ
σ

→
= 0.071 – 0.0011 = 0.07 = 7.0% 

PROBLEM 9.3 

Determine the total average hemispherical emissivity and the emissive power of a surface 
that has a spectral hemispherical emissivity of 0.8 at wavelengths less than 1.5 μm. 0.6 
from 1.5 to 2.5 μm, and 0.4 at wavelengths longer than 2.5 μm. The surface temperature 
is 7777 K. 

GIVEN 

• A surface at temperature (T) = 1111 K 
• Spectral hemispherical emittance (ελ) = 0.8 for λ < 1.5 μm (ε1) 
 = 0.6 for 1.5 μm < λ < 2.5 μ m (ε2) 

 = 0.4 for λ > 2.5 μ m  (ε3) 

FIND 

(a) The total average hemispherical emittance, ε (T) 
(b) The emissive power, E(T) 
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SKETCH 

The hemispherical emittance is shown graphically below 

1.0

0.8

0.6

0.4

0.2

( )ell

el

1.5 2.5

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)  

SOLUTION 

(a) The total average hemispherical emittance is given by Equation (9.31) 

 ε (T) = 0

0

( ) ( , )

( , )

b

b

E T d

E T d

λ λ

λ

ε λ λ λ

λ λ

∞

∞



 = 0
4

( ) ( , )bE T d

T

λ λε λ λ λ

σ

∞


 

For λ1 = 1.5 μ m  λ1 T = (1.5 × 10–6 m) (1111 K) = 1.67 × 10–3 m K 

For λ2 = 2.5 μ m  λ2 T = (2.5 × 10–6 m) (1111 K) = 2.78 × 10–3 m K 

Interpolating from Table 9.1 

  1
4

(0 )bE T

T

λ
σ
→

 = 0.0266 

  2
4

(0 )bE T

T

λ
σ
→

= 0.2234 

 ∴  1 2
4

( )bE T T

T

λ λ
σ

→
 = 0.2234 – 0.0266 = 0.1968 

 ∴  2
4

( )bE T

T

λ
σ

→ ∞
 = 1 – 2

4

(0 )bE T

T

λ
σ
→

 = 1 – 0.2234 = 0.7766 

Therefore 

 ε (T) = ε
1

1
4

(0 )bE T

T

λ
σ
→  + ε

2
 

1 2
4

( )bE T T

T

λ λ
σ

→  + ε
3

2
4

( )bE T

T

λ
σ

→ ∞  

 ε (T) = 0.8 (0.0266) + 0.6 (0.1968) + 0.4 (0.7766) = 0.45 
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(b) From Equation (9.31) 

 ε (T) = 
( )

( )b

E T

E T
 = 

4

( )E T

Tσ
 

 E (T) = ε (T) σ T4 = 0.45 ( )8 2 45.67 ×10 W/(m K )−  (1111 K)4 = 3.89 × 104  W/m2 

PROBLEM 9.4 

Shown that (a) Ebλ/T 5 = f(λT). Also, for λT = 5000 μm K, calculate Ebλ/T 5. 

GIVEN 

• λT = 5000 μ m K = 0.005 m K 

FIND 

Shown that 

(a) E
bλ 

/T 6 = f(λT) 

(b) Calculate E
 bλ 

/T 5 for the λT given 

SOLUTION 

(a) Starting with Equation (9.1) 

 E
 bλ

 = 
2

1

5 1
C

T

C

eλλ
 
 −

 

Where C1 = 3.7415 × 10–16 W m2 

 C2 = 1.4388 × 10–2 m K 

 
5

bE

T
λ  = 

2

1

5( ) 1
C

T

C

T e λλ
 
  −

 = f(λ T) 

(b) At λ T = 0.005 m K 

 
5

bE

T
λ  = 

16 2

2
5

3.7415 10 Wm

1.4388 10 m K
(0.005m K) exp 1

(0.005m K)

−

−
×

   × −    

 = 7.14 × 10–6  W/(m3 K5) 

PROBLEM 9.5 

Compute the average emittance of anodized aluminum at 100°C and 650°C from the 
spectral curve in Fig. 9.16. Assume ελ = 0.8 for λ > 9 μm 

GIVEN 

The spectral curve of Figure 9.16 for anodized aluminum 

FIND 

The average emittance (ε) at (a) 100°C = 373 K, and, (b) 650°C = 923 K 
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SKETCH 

a
b
c

: Polished Aluminum
: Anodised Aluminum
: Polished Copper

1.0

0.8

0.6

0.4

0.2

0
0.5 1 2 3 4 5 6 7 8 9

Wavelength, l
mm

a

b

c

e
a

l
l

=

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 10–8 W/(m2 K4) 

SOLUTION 

The average emittance is given by Equation (9.31) 

ε(T) = 0

0

( ) ( , )

( , )

b

b

E T d

E T d

λ λ

λ

ε λ λ λ

λ λ

∞

∞



 = 0
4

( ) ( , )bE T d

T

λ λε λ λ λ

σ

∞


= 
1

0
4

( ) ( , )bE T d

T

λ
λ λε λ λ λ

σ
 + ελ(λ) 1

4

( )bE T

T

λ
σ

→ ∞
 

The second term can be calculated from the following expression 

  1
4

( )bE T

T

λ
σ

→ ∞
 = 1 – 1

4

(0 )bE T

T

λ
σ
→

 

At T = 923 K  λ1 T = (9 × 10–6 m) (923 K) = 8.31 × 10–3 m K 

From Table 9.1 

  1
4

(0 )bE T

T

λ
σ
→

 = 0.8677 

 ∴  ελ (λ) 1
4

( )bE T

T

λ
σ

→ ∞
 = 0.8 (1 – 0.8677) = 0.1058 

The first term for the average emittance can be approximated by divided Figure 9.16 into 12 segments. 

  

1

0

0

( ) ( , )

( , )

b

b

E T d

E T d

λ
λ λ

λ

ε λ λ λ

λ λ
∞




 ≈
12

0n =
 ελn Ebλn Δλn 

where ελn = The average ε for the nth segment 

 Ebλn = 
2

1

5 1
C

at
n

C

eλλ
 
 −

 

  λn = λ at the center of segment n 

  C1 = 3.7415 × 10–16 W/m2 
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C2 = 1.4388 × 10–16 m K 
Δλn = The width of segment n 

The values of these quantities are tabulated below for T = 923 K 

(λ = wavelength at the end of the segment). 

 n λ(μm) λn(μm) ελn  ελn Eλn Δλn (W/m2) 

  0.5  
 1 1 0.75 0.12 0.2362 
 2 2 1.5 0.06 90.673 
 3 2.5 2.25 0.07 222.73 
 4 3 2.75 0.41 1689.9 
 5 3.3 3.15 0.51 1318.6 
 6 4 3.65 0.27 1546.6 
 7 5 4.5 0.17 1113.8 
 8 6 5.5 0.18 835.44 
 9 7 6.5 0.22 709.18 
 10 8 7.5 0.58 1307.8 
 11 8.5 8.25 0.86 749.58 
 12 9 8.75 0.88 649.88 

Sum 10234.4 W/m2 

Therefore, for T = 923 K 

 ε = 
2

4

10234 W/m

Tσ
 + 0.1058 = ( )

2

8 2 4 4

10234 W/m

5.67 10 W/(m K ) (923K)−×
 + 0.1058 = 0.35 

Repeating this procedure for T = 100°C = 373 K yields, ε = 0.677 

PROBLEM 9.6 

A large body of nonluminous gas at a temperature of 1100°C has emission bands between 
2.5 and 3.5 μm and between 5 and 8 μm. At 1100°C, the effective emittance in the first band 
is 0.8 and in the second 0.6. Determine the emissive power of this gas in W/m2. 

GIVEN 

• A large body of nonluminous gas 
• Gas temperature (T) = 1100°C = 1373 K 
• Emission bands: 2.5 μ m < λ1 < 3.5 μ m  5 μ m < λ2 < 8 μ m 
• Effective emittances: ε1 = 0.8; ε2 = 0.6 

FIND 

• The emissive power (E) in W/m2 

SKETCH 

The effective emittance can be represented graphically as shown below 
0.8

0.6

0.4

0.2

2.5 3.5 5 8

l ( m)m

e
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PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The total emittance is given by Equation (9.31) 

 ε (T) = 0

0

( ) ( , )

( , )

b

b

E T d

E T d

λ λ

λ

ε λ λ λ

λ λ

∞

∞



 = 0
4

bE d

T

λ λε λ

σ

∞


 = ε1 11 12
4

( )bE T T

T

λ λ
σ

→
* + ε

2
 21 22

4

( )bE T T

T

λ λ
σ

→
 

where λ11 T = (2.5 × 10–6 m) (1373 K) = 3.4 × 10–3 m K 

λ12 T = (3.5 × 10–6 m) (1373 K) = 4.8 × 10–3 m K 
λ21 T = (5 × 10–6

 m) (1373 K) = 6.9 × 10–3 m K 

 λ22 T = (8 × 10–6 m) (1373 K) = 11.0 × 10–3 m K 

From Table 9.1 

  11
4

(0 )bE T

T

λ
σ
→

 = 0.3618 

  12
4

(0 )bE T

T

λ
σ
→

 = 0.6076 

  21
4

(0 )bE T

T

λ
σ
→

 = 0.8022 

  22
4

(0 )bE T

T

λ
σ
→

 = 0.9320 

  11 12
4

( )bE T T

T

λ λ
σ

→
 = 0.6076 – 0.3618 = 0.2458 

  21 22
4

( )bE T T

T

λ λ
σ

→
 = 0.9320 – 0.8022 = 0.1298 

 ε = 0.8(0.2458) + 0.6(0.1298) = 0.2745 

 ∴ E = ε Eb = ε σ T 4 = 0.2745 ( )8 2 45.67 10 W/(m K )−× (1373)4 = 5.53 × 104
 W/m2

 

PROBLEM 9.7 

A flat plate is in a solar orbit 150,000,000 km from the sun. It is always oriented normal 
to the rays of the sun and both sides of the plate have a finish which has a spectral 
absorptance of 0.95 at wavelengths shorter than 3 μ m and a spectral absorptance of 0.06 
at wavelengths longer than 3 μm. Assuming that the sun is a 5550 K blackbody source 
with a diameter of 1,400,000 km, determine the equilibrium temperature of the plate. 

GIVEN 

• A flat plate in solar orbit oriented normal to the rays of the sun 
• Distance from the sun (R) = 150,000,000 km = 1.5 × 1011 m 
• Spectral absorplatace (ελ) of both sides ελ1 = 0.95 for λ1 < 3 μ m 
 ελ2 = 0.06 for λ1 > 3 μ m 

FIND 

• The equilibrium temperature of the plate (Tp) 
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ASSUMPTIONS 

• The sun is a black body at Ts = 5550 K 
• Sun diameter (Ds) = 1,400,000 km = 1.4 × 109 m 

SKETCH 

Ds

Sun

R
Plate

0.95

e

0.06

3 mm

l  

SOLUTION 

From Equation (9.31) 

 ε = 
0

0

0

b

b

E d

E d

λ λ

λ

ε λ

λ

∞

∞

 


 = 0

4

( ) ( , )bE T d

T

λ λε λ λ λ

σ

∞


 

 ε = ελ1
1

4

(0 )bE T

T

λ
σ

→  + ελ2 
1

4

( )bE T

T

λ
σ

→ ∞  

For the sun λ1 T = (3 × 10–6 m) (5550 K) = 16.7 × 10–3 m K 
From Table 9.1 

  1
4

(0 )bE T

T

λ
σ
→

 = 0.9764 

  1
4

( )bE T

T

λ
σ

→ ∞
 = 1 – 0.9764 = 0.0236 

The absorptance of the plate is given by Equation (9.33) 

 αp = 0

0 b

G d

G d

λ λσ λ

λ

∞

∞



 = 0
4

bE d

T

λ λε λ

σ

∞


 (Since αλ = ελ) 

 αp = ελ1 
1

4

(0 )bE T

T

λ
σ

→
 + ελ2 

1
4

( )bE T

T

λ
σ

→ ∞
= 0.95 (0.9764) + (0.06) (0.0236) = 0.9290 

Let qp = the flux incident on the plate 
Energy leaving the sun surface = energy crossing sphere of radius R 

  σ Ts
4 A

S
 = q

p
 AR 

  σ Ts
4 π D2

s = q
p
 4 π R2 

  q
p
 – σ Ts

4 
2

24
sD

R
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Performing the energy balance on the plate 
Energy absorbed from sun = energy emitted form both sides of the plate 

 α q
P
 = 2 σ TP

4 εP 

 α σ Ts
4

2

24
sD

R  = 2 σ TP
4

1 2

1 1
4 4

(0 ) ( )b p b P

P P

E T E T

T Tλ λ

λ λε ε
σ σ
→ → ∞ 

+    

 TP = 

1
44 2

1 1
1 24 4

(0 ) ( )
8

s s

b p b P

P P

T D
E T E T

R
T T

λ λ

σ
λ λε ε

σ σ

 
 → → ∞  +    

 

 
4

8
STα

= 
2

2
sD

R
 

40.9290(5550K)

8

29

11

1.4 10

1.5 10

 ×
  ×

= 9.60 × 109 K4 

 ∴ T
P
 = 

1
49 4

1 1
4 4

9.60 10 K
(0 ) ( )

(0.95) (0.06)b p b P

P P

E T E T

T T

λ λ
σ σ

 ×
 → → ∞  +    

 

This can be solved iteratively. For a first guess, let TP = 500 K. 

 λ1 Tp = (3 × 10–6 m) (500 K) = 1.5 × 10–3 m K 

  1
4

(0 )b P

P

E T

T

λ
σ
→

= 0.01376 

  1
4

( )b P

P

E T

T

λ
σ

→ ∞
 = 1 – 0.01376 = 0.98624 

 Tp = 

1
9 4 49.60 10

0.95(0.01376) 0.06(0.98624)

K ×
 + 

 = 604 K 

Repeating this procedure 

Tp (K) λ Tp (m K) 1
4

(0 )b P

P

E T

T

λ
σ
→

 Tp (K) 

604 0.00181 0.0407 562 
562 0.00169 0.0286 579 
579 0.00173 0.0325 573 
573 0.00172 0.0315 575 

 Tp = 575 K = 302°C 

COMMENTS 

Note that the total absorptance (α) = 0.929 but the total emittance (ε) = 0.088. 

PROBLEM 9.8 

By substituting Equation 9.1 for Ebλ (T) in Equation 9.4 and performing the integration 
over the entire spectrum, derive a relationship between σ and the constants C1 and C2 in 
Equation 9.1. 
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GIVEN 

• Equation 9.1 

 E
bλ

 = 
2

1

5 1
C

T

C

eλλ
 
 −

 

where C1 = 3.7415 × 10–16 W m2 C2 = 1.4388 × 10–2 m K 
• Equation 9.4 

  
0

∞
 Ebλ dλ = σ T4 = Eb 

FIND 

• A relationship between σ and C1 and C2 

SOLUTION 

  
0

∞
 Ebλ dλ = 

2

1

0
5 1

C

T

C

eλλ

∞

 
 −

  dλ = σ T 4 

This can be solved using the transformation of variables. 

 Let ζ = 2C

Tλ
   and   dλ = 

2

2

T

C

λ 
−  

d 2C

Tλ
 
  

 = 
2

2T

C

λ 
   ( )2C

λ
− d 

2C

Tλ
 
  

 

 σ T 4 = 1

0
5 2 1

C

e

T
λ

λ

∞

 
−  

  dλ = 
5 5

2

0
2

C T

T Cλ
∞    
        

2

1

5 1
C

T

C

eλλ
 
 −

2

2

T

C

λ 
   ( )2C

λ
−  

2C

Tλ
 
  

 

 σ T 4 = – 1
4
2

C

C
 T4  

3

0 1eζ
ζ∞

− dζ 

From a table of integrals 

  
3

0 1eζ
ζ∞

−  dζ = – 
4

15

π
 

  ∴ σ T 4 = 
4

1
4
215

C

C

π
 T 4 

 σ = 
4

1
4
215

C

C

π
 = 

16 2 4

2 4

(3.7415 10 Wm )

15(1.4388 10 mK)

π−

−
×

×
 = 5.67 × 10–8 W/(m2 K4) 

PROBLEM 9.9 

Determine the ratio of the total hemispherical emissivity to the normal emissivity for a 
nondiffuse surface if the intensity of emission varies as the cosine of the angle measured 
from the normal. 

GIVEN 

• A nondiffuse surface 
• Intensity of emission varies as the cosine of the angle measured from normal 
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FIND 

• The ratio of the total hemispherical emissivity (ε) to the normal emissivity (εn) 

SKETCH 

q

q = – q

en
eq

p
2

p
2

Surface

p pp

 

SOLUTION 

From Equation (9.35), the intensity of emission varies with cosθ, then the emissivity must be 
proportional to cosθ 

 εθ = εn cosθ 

The average hemispherical value is 

 ε = 
1

π
2

2

π

π− εn cosθ dθ = 2

2

sinn
π

π
ε θ
π −

 = 2

π
 εn sin 

2

π
 = 2

π
εn 

The ratio ε/εn is given by 

 
n

ε
ε

 = 
2

π
 = 0.637 

PROBLEM 9.10 

Derive an expression for the geometric shape factor F1–2 for a rectangular surface A1, 1 
by 20 m placed parallel to and centered 5 m above a 20-m-square surface A2. 

GIVEN 

• Rectangular surface A1 and square surface A2 
• A1 is parallel to and centered 5 m above A2 
•  Dimensions of A1 = 1 m × 20 m 
• A2 is 20 m square 

FIND 

• The shape factor F12 

SKETCH 

1 m

A1

A2

20
m

X
2

Y2

5 m

Y1

20 m

X1
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SOLUTION 

From Equation (9.53) 

 A1 F12 = 
1 2

1 2
2

cos cos
A A r

θ θ
π   dA2 dA1 

Given a differential element dA1, at x,y,z = (x1, y1, –5 m) 
Given a differential element dA2, at x,y,z = (x2, y2 0) 
The distance between elements (r) is: r2 = (x1 – x2)

2 + (y1 – y2)
2 + (5 m –0)2 

Since the surfaces are parallel: cos θ1 = cos θ2 = (5 m)/r 
The double integral can be expanded into the following quadruple integral: 

 A1 F12 = 
1 1 2 2

20 m 1m 20 m 20 m

= 0 = 0 = 0 = 0x y x y    2

5m 5m

r r
rπ

   
      

 dy2 dx2 dy1 dx1 

 A1 F12 = 
1 1 2 2

20 m 1m 20 m 20 m

= 0 = 0 = 0 = 0

25
x y x yπ     2 2 1 1

2 2 2 2
1 2 1 2

   

[( ) ( ) 25m ]

dy dx dy dx

x x y y− + − +
 

This can be simplified somewhat by trigonometric substitutions, however, it is fairly simple to solve 
numerically as it is. Let all the dx terms equal Δx, where 20/Δx and 1/Δx are both integers. The integral 
can then be approximated by 

 
425 x

π
Δ

  
1

20/

1

x

ix

Δ

=


1

1/

1

x

iy

Δ

=


2

20/

1

x

ix

Δ

=


2

20/

1

x

iy

Δ

=
 [(x1 – x2)

2 + (y1 – y2)
2 + 25 m2]–2 

where x1 = (ix1)(Δx) – Δx/2 x2 = (ix2)(Δx) – Δx/2 

 y1 = (iy1)(Δx) – Δx/2 y2 = (iy2)(Δx) – Δx/2 

This is implemented in the Pascal program shown below 

 var dx,dx2,sum,r4,.real; 
  ix1,ix2,iy1,iy2,nx1,nx2,ny1,ny2.integer;  
  x1,x2,y1,y2:real; 
 begin 
  dx = 1.00; 
  dx2 = dx/2; 
  nx1 = trunc(20/dx); 
  nx2 = trunc(20/dx); 
  ny1 = trunc(1/dx); 
  ny2 = trunc(20/dx); 
  sum = 0.00; 
 for ix1 = 1 to nx1 do 
  begin 
 x1 = ix1

*
dx-dx2; 

 write1n(x 1:8.3); 
 for iy1 = 1 to ny 1 do 
 begin 
  y1 = iy1

*
dx–dx2; 

  for ix2 = 1 to nx2 do 
  begin 
   x2 = ix2

*
dx–dx2; 

   for iy2 = 1 to ny2 do 
   begin 
    y2 = iy2

*
dx–dx2; 

    r4 = (x1–x2)
*
(x1–x2) + (y1 – y2)

* 
(y1 – y2) + 25; 
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    r4 = 1/r4/r4; 
     sum = sum + r4; 
    end; 
   end; 
  end; 
 end; 
 sum = sum

* 
25/3.14159265/20

*
dx

*
dx

*
dx

*
dx;  

 writen(
*
F12 = Sum:8.4);  

 end. 

Running this program yields the following result 
 F12 = 0.427 
Comment: If the geometry is approximated as two-dimensional so that the view factor can be 
calculated using the crossed string method, we get F12 = 0.97, a significant error. 

PROBLEM 9.11 

Determine the shape factor F1–4 for the geometrical configuration shown below. 

L

L

L

L

2

1

3

4

 

GIVEN 

• Geometrical configurations shown above 
• The shape factor F1–4 

SOLUTION 

Let A5 =A1 + A2 and A6 = A3 + A4 

Applying Equation (9.55) 

 A12 F12–34 = A12 F12–3 + A12 F12–4 = A3 F3–12 + A4 F4–12 

  A3 F3–12 = A3 F3–1 + A3 F3–2 

  A4 F4–12 = A4 F4–1 + A4 F4–2 

Combining these equations A12 F12–34 = A3 F3–1 + A3 F3–2 + A4 F4–1 + A4 F4–2 

By symmetry F1–4 = F2–3 = F4–1 = F3–2 and F3–1 = F1–3 = F2–4 = F4–2 

Also A1 = A2 = A3 = A4 and A12 = 2A1 

Therefore A12 F12–34 = 2A1 (F1–3 + F1–4) 

Solving for F1–4 F1–4 = F12–34 – F1–3 

The shape factors F1–3 and F12–34 can be determined from Figure 9.27. 

For F1–3  Y = Z = 

2

L

L 
  

 = 2 → F1–3 = 0.15 

For F12–34  Y = Z = 
L

L
 = 1 → F12–34 = 0.20 
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  F1–4 = 0.20 – 0.15 = 0.05 

PROBLEM 9.12 

Determine this shape factor F1–2 for the geometrical configuration shown 
2L

L

L
L

3

 

GIVEN 

• The geometrical configuration shown above 

FIND 

• The shape factor F1–2 

SOLUTION 

From Equation (9.55)  F1–23 = F1–2 + F1–3 
By symmetry  F1–2 = F1–3 

Therefore,  F1–23 = 2 F1–2 →   F1–2 = 0.5 F1–23 

The shape factor (F1–23 is given in Figure 9.28 

 
y

D
 = 

2L

L
 = 2 and 

x

D
 = 

L

L
  = 1 

From Figure 9.28  F1–23 = 0.30 

 F1–2 = 0.5(0.30) = 0.15 

PROBLEM 9.13 

Using basic shape-factor definitions, estimate the equilibrium temperature of the planet 
Mars which has a diameter of 6600 kms and revolves around the sun at a distance of  
225 × 106 kms. The diameter of the sun is 1.384 × 106 kms. Assume that both the planet 
Mars and the sun act as blackbodies with the sun having an equivalent blackbody 
temperature of 5600 K. Then repeat your calculations assuming that the albedo of Mars 
(the fraction of the incoming radiation returned to space) is 0.15. 

GIVEN 

• The planet Mars revolving around the sun 
• Diameter of Mars (Dm) = 6600 kms 
• Distance from the sun (Rms) = 2.25 × 108 kms 
• Diameter of the sun (Ds) = 1.384 × 106 kms 
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FIND 

(a) The equilibrium temperature of Mars (Tm) 
(b) Tm assuming that the albedo of Mars = 0.15 

ASSUMPTIONS 

• Both Mars and the sun act as blackbodies 
• The sun has an equivalent blackbody temperature (Ts) of 5600 K 

SKETCH 

Ts = 5600 K

Rms = 2.25 10 kms8¥

Sun, A1 Mars, A2

Dm = 6600 kms

Ds = 1.384 10 kms¥ 6

Tm = ?

 

PROPERTIES AND CONSTANTS 

The Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The energy from the sun that is incident on Mars can be calculated by integrating Equation (9.50) 

 q1–2 = Eb1 
1 2

1 2
2

cos cos

A A r

θ θ
π   dA2 dA1 

where θ1 and θ 2 are the angles shown in Figure 9.24. For this case, since Dm << Rms and Ds << Rms, the 
following approximations can be used cos θ 1 and cos θ 2 = 1, r = Rms. 

 dA1 = 
4

π
Ds

2    dA2    = 
4

π
Dm2 

Also from Equation (9.3) Eb1 = σ Ts
4 

 ∴ q1–2 = σ Ts
4 

2

ms

s mD D

R
 
   16

π
 

 q1–2 = 5.67 × 10–8 W/(m2 K4) (5600 K)4  
29 6

11

(1.384 10 m)(6.6 10 m)

2.25 10 m

 × ×
 ×  16

π
 

 q1–2 = 1. 8 × 1016 W 

Case (a) 
If Mars behaves as a blackbody, it will absorb all the sun’s energy incident on it. For equilibrium, the 
energy radiated by Mars must equal the incident solar energy 

 qm = A2 Eb2 = π Dm
2 σ Tm

4 = q1–2 

Solving for the temperature of Mars 

 Tm = 

1

41 2

2
m

q

Dπ σ
− 

  
= 

1
16 4

6 2 –8 2

1.8 10 W

(6.6 10 m) (5.67 10 W/(m K))π
 ×
 × × 

= 219 K  

 Tm = – 54°C 
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Case (b) 
For an albedo of 0.15, Mars absorbs only 85% of the incident solar radiation, therefore 

 Tm = 
0.25

1 2
2

0.85

m

q

Dπ σ
− 

  
= 219

1

4(0.85)  = 210.3 K = – 62.7°C 

PROBLEM 9.14 

A 4-cm-diameter cylindrical enclosure of black surfaces, as shown in the accompanying 
sketch, has a 2-cm hole in the top cover. Assuming the walls of the enclosure are at the 
same temperature, determine the percentage of the total radiation emitted from the walls 
which will escape through the hole in the cover. 

2 cm

4 cmA2

4 cm

2 cm

4 cmA2

4 cm

A4

2 cm

4 cmA2

4 cm

2 cm

4 cmA2

4 cm

2 cm

4 cmA2

4 cm

2 cm

4 cmA2

4 cm  

GIVEN 

• Cylindrical enclosure of black surfaces shown above 
• Cylinder diameter (D) = 4 cm = 0.04 m 
• Diameter of hole in top (Dh) = 2 cm = 0.02 m 

FIND 

• The percentage of the total radiation emitted from the wall which will escape through the hole in 
the cover (Fe4). 

ASSUMPTIONS 

• The walls of the enclosure are at the same temperature 

SOLUTION 

The total area of the interior of the enclosure (Ae) is 

 Ae = A1 + A2 + A3 = 
4

π D2 + π D L + 
4

π  (D2 – Dh
2) 

 Ae = π ( )2
2 20.04m 1

(0.04m) (0.04m) [(0.04m) (0.02m) ]
4 4

 
+ + −  

 = 0.0023 π m2 

The shape factor between A4 and the enclosure is unity F4e = 1. From Equation (9.46) 

 Ae Fe4 = A4 F4e = A4 

 ∴ Fe4 = 4

e

A

A
 = 

2

4
h

e

D

A

π
 = 

2

2

(0.02m)

4(0.0023 m )

π
π

 = 0.044 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
798

PROBLEM 9.15 

Show that the temperature of the re-radiating surface Tr in Figure 9.37 is 

 TR = 

1
4 4 4

1 1 1 2 2 2

1 2 2

R R

R R

A F T A F T

AF A F

 +
  +

 

GIVEN 

• Figure 9.37 shown below 

FIND 

• Show that the temperature of the re-radiating surface TR, is 

 TR = 

1
4 4 4

1 1 1 2 2 2

1 2 2

R R

R R

A F T A F T

AF A F

 +
  +

 

ASSUMPTIONS 

• Steady state 
• The re-radiating surface temperature is uniform 

SKETCH 

T2

T1

(a)
Reradiating Walls

Reradiating Ceilling

R =
1

A F1 1 – 2
=

1
A F2 2 – 1

R =
1

A F1 1 – R
=

1
A FR R – 1 R =

1
A FR R – 2

=
1

A F2 2 – R

ER

Eb1 Eb2

(b)  

SOLUTION 

The following equation can be written from the thermal circuit 

 qR–2 = A2 F2R (ER – Eb2) = σ A2 F2R (TR
4 – T2

4) 

 qr–1 = A1 F1R (ER – Eb1) = σ A1 F1R (TR
4 – T1

4) 

For steady state, heat flows must sum to zero 

  qR–2 + qR–1 = 0 

  σ (A2 F2R TR
4 – A2 F2

R T2
4 + A1 F1R TR

4 – A1 F1R T1
4) = 0 

  TR
4 (A1 F1R + A2 F2R) = A1 F1R T1

4 + A2 F2R
 T2

4 

 TR = 

1
4 4 4

1 1 1 2 2 2

1 2 2

R R

R R

A F T A F T

AF A F

 +
  +
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PROBLEM 9.16 

In the construction of a space platform, two equally sized structural members with 
surfaces that may be considered black are placed relative to each other as shown 
schematically below. Assuming that the left member attached to the platform is at 500 K 
while the other is at 400 K and that the surroundings may be treated as though black at 0 
K, calculate (a) the rate at which the warmer surface must be heated to maintain its 
temperature, (b) the rate of heat loss from the cooler surface to the surroundings, (c) the 
net rate of heat loss to the surroundings for both members. 

T2 = 400 K

4m

A2A1

2
m

1 m

T1 = 500 K

 

GIVEN 

• Two black surfaces as shown above on a space platform 

FIND 

(a) The rate of heating of the warmer surface (q1) 
(b) Net rate of heat loss to the surroundings (qs) 
(c) The rate of heat loss from the cooler surface to the surroundings (q2s) 

ASSUMPTIONS 

• Steady state 
• The surroundings behave as a blackbody enclosure at Ts = 0 K 
• The plate also lose heat from their back surface 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The shape factor F can be read off Figure 9.29 line 3 

  Ratio = (2 m)/(1 m) = 2 →  F12 ≈ 0.51 

By symmetry, F21 = F12. 
Since neither A1 nor A2 can see itself F11 = F22 = 0. 
The shape factors for any given surface must sum to unity 

 F11 + F12 + F1s = 1   →   F1s = 1 – F12 = 0.49 

 F21 + F12 + F2s = 1   →   F2s = 1 – F21 = 1 – F12 = 0.49 
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(a) The rate of heating of A1 must equal the net rate of heat transfer from A1 which is the sum of the net 
heat transfer rate to A2 and the heat transfer to the surroundings 

 q1 = q12 + q1s = σ A1 [F12 (T1
4 – T2

4) + F1s T1
4 + T1

4] = σ A1 [(F12 + F1s + 1) T1
4 – F12 T2

4] 

 q1 = σ A1 (2T1
4 – F12 T2

4) = ( )8 2 45.67 ×10 W/(m K )− (2 m) (4 m) 

   [2(500 K)4 – 0.51(400 K)4] = 5.08 × 104 W 

(b) The rate of heat loss of A2 to its surroundings is given by Equation (9.47) 

 q2s = A2 F2s (Eb2 – Ebs) + A2 Eb2 = A2 (F2s + 1) σ T2
4
 

 q2s = (2 m) (4 m) (1.49) ( )8 2 45.67 ×10 W/(m K )− (400 K)4 = 17300 W 

(c) The net rate of heat loss to the surroundings equals the total heat loss from both members. Less q12 

 qnet = 50800 + 17300 – σ A1 F12 (T1
4 – T2

4) = 59543 W 

PROBLEM 9.17 

A radiation source is to be built, as shown in the diagram, for an experimental study of 
radiation. The base of the hemisphere is to be covered by a circular plate having a 
centered hole of radius R/2. The underside of the plate is to be held at 555 K by heaters 
embedded in its surface. The heater surface is back.  The hemispherical surface is well-
insulated on the outside. Assume gray diffuse processes and uniform distribution of 
radiation. (a) Find the ratio of the radiant intensity at the opening to the intensity of 
emission at the surface of the heated plate. (b) Find the radiant energy loss through the 
opening in watts for R = 0.3 m. (c) Find the temperature of the hemispherical surface. 

2
Insulated Surface

A2

A3

Surface Heater

R

555 K

 

GIVEN 

• A radiation source as shown above 
• Radius of hole = R/2 
• Temperature of underside of plate (T2) = 555 K 
• Underside of plate is black 
• Hemispherical surface is well insulated on the outside 

FIND 

(a) The ratio of the radiant intensity at the opening to the intensity at the surface of the heated plate 
(G1/ Eb2) 

(b) The radiant energy loss through the opening (q1) in watts for R = 0.3 m 
(c) The temperature of the hemispherical surface (T3) 

ASSUMPTIONS 

• Gray diffuse processes 
• Uniform distribution of radiation 
• Radiation entering A1 is negligible, i.e., A1 as a black body at 0 K 

Heat loss through insulation is negligible 
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PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, The Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The problem consists of radiative exchang between two black surfaces and a gray surface. It can be 
solved by simplifying Equation (9.69) which applies to gray surfaces 
  A1 G1 = J1 A1 F11 + J2 A2 F21 + J3 A3 F31 

  A2 G2 = J1 A1 F12 + J2 A2 F22 + J3 A3 F32 

  A3 G3 = J1 A1 F13 + J2 A2 F23 + J3 A3 F33 

The radiosities, from Equation (9.66) are 

  J1 = ρ1 G1 + ε1 Eb1 

  J2 = ρ2 G2 + ε2 Eb2 

  J3 = ρ3 G3 + e3 Eb3 

Let the opening the surface 1, the heater surface be surface 2, and the hemisphere be surface 3. 
Since A1 and A2 cannot see themselves or each other: F11 = F22 = F12 = F21 = 0 

Since A1 and A2 are black  ε1 = ε2 = 1 and ρ1 = ρ2 = 0 

Neglecting radiation entering A1  Eb1 = 0 →   J1 = 0 
In steady state, surface A3 has no net heat gain or loss  q3 = 0. Applying Equation (9.67) 

 0 = A3 (J3 – G3) →   J3 = G3 
Incorporating these simplifications into the above equations 
  (1) A1 G1 = G3 0A3 F31 

  (2) A2 G2 = G3 A3 F32 

  (3) A3 G3 = Eb2 A2 F23 + G3 A3 F33 →  A3 G3 = (Eb2 A2 F23)/(1 – F33) 

(a) Combining Equations (1) and (3) 

 1

2b

G

E
 = 2

1

A

A
23 31

331

F F

F−
 

The shape factors must sum to unity: F31 + F32 + F33 = 1 

 ∴ 1

2b

G

E
 = 2

1

A

A
23 31

31 32

F F

F F+
 

From examination of the geometry, it is clear that F13 = 1 and F23 = 1 

And from Equation 9.46 A1 F13 = A3 F31 →  F31 = 1

3

A

A
 

 A2 F23 = A3 F32 →  F32 = 1

3

A

A
 

 1

2b

G

E
 = 2

1

A

A

1

3

1 2

3 3

A

A
A A

A A

 
  

   +      

= 2

1 2

A

A A+
 = 

2
2

2
2
R

R

R

π

π

  
−      

 = 1 – 
1

4
 = 

3

4
 

(b) The radiation energy loss at the opening is given by the irradiance of surface 1 

 q1 = G1 A1 = 1

2b

G

E
 
  

Eb2 A1= 1

2b

G

E
 
  

σ T2
4 

4

π
R2

 

 q1 = 
3

4

 
   ( )8 2 45.67 ×10 W/(m K )− (555 K)4 

4

π
 (0.3m)2 = 285 W 
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(c) From Equation (1) 

 G3  = 1 1

31 3

G A

F A
 = 1

2b

G

E
 
  

Eb2 
1

3

A

A
3

1

A

A
 
  

 = 
3

4
 σ T2

4 

Since J3 = G3, Equation 9.66 yields 

 G3 = ρ3 G3 + ε3 Eb3   →   G3 = 3

31

ε
ρ−

 Eb3 

But A3 is opaque, so θ3 = 0 and from Equations (9.23) and (9.30) 

 (1 – ρ3) = ε 3 

 ∴ G3 = Eb3 = σ T3
4 

Combining these two equations 

 σ T3
4 = 

3

4
 σ T2

4 

 T3 = 
0.25

4
2

3

4
T

 
    = 

0.25
43

(555K)
4

 
    = 516 K 

 

PROBLEM 9.18 

A large slab of steel 0.1 m thick has in it a 0.1 m-diam hole, with axis normal to the 
surface. Considering the sides of the hole to be black, specify the rate of radiative heat 
loss from the hole in W. The plate is at 811 K, the surroundings are at 300 K. 

 

GIVEN 

• A large slab of steel with a hole whose axis is normal to the surface 
• Slab thickness (S) = 0.1 m 
• Hole diameter (D) = 0.1 m 
• Plate temperature (T1) = 811 K 
• Temperature of surrounding (T∞) = 300 K 

 

FIND 

• The rate of radiative heat loss from the hole (qr) 

 

ASSUMPTIONS 

• The sides of the hole are black 
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SKETCH 

D = 0.1 m

S = 0.1 m

A3

A2

A1

T1 = 811 k

Hole  

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

From Equation (9.69), for A2 A2 G2 = J1 A1 F12 + J2 A2 F22 + J3 A3 F32 

From Equation (9.66) J1 = ρ1 G1 + ε1 Eb1 

  J2 = ρ2 G2 + ε2 Eb2 

  J3 = ρ3 G3 + ε3 Eb3  

Since all surfaces behave as blackbodies  ρ1 = ρ2 = ρ3 = 0 and ε1 = ε2 = ε3 = 1 
Therefore 
 J1 = Eb1   J2 = Eb2    and    J3 = Eb3 = Eb2 (by symmetry) 

Substituting these into the above equation yields 

 A2 G2 = Eb1 A1 F12 + Eb2 (A2 F22 + A3 F32) 

Since A2 cannot see itself  F22 = 0 

 G2 = Eb1 
1

2

A

A
 F12 + Eb2 

3

2

A

A
 F32 

By symmetry F12 = F13 
The sum of the shape factors from one surface must be unity 

 F11 + F12 + F13 = 1 → F11 + 2 F12 = 1 

 F21 + F22 + F23 = 1 → F21 = 1 – F23 

From Equation (9.46) 

 A1 F12 = A2 F21 →  F12 = 
2

1

A

A
 F21 = 

2

1

A

A
 (1 – F23) 

 and  A2 F23 = A3 F32 →  F32 = 
2

3

A

A
 F23 

 G2 = Eb1
1

2

A

A
2

23
1

(1 )
A

F
A

 
−  

+ Eb2 
3

2

A

A
2

23
3

A
F

A

 
  

 = Eb1 (1 – F23) + Eb2 F23 

   = σ [T1
4(1 – F23) + T∞

4 F23] 
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The shape factor F23 can be determined from Figure (9.29) for D/S = 0.1 m/0.1 m = 1.0, and for disks 
with direct radiation, curve 1 applies and the shape factor F23 ≈ 0.19. 

 G2 = 5.67 × 10–8  W/(m2 K4) [(811 K)4 (1 – 0.19) + (300 K)4 (0.19)] = 1.996 × 104 W/m2 

The rate of heat transfer through A2 is given by Equation (9.67) 

 q2 = A2 (J2 – G2) = 
4

π D2 (Eb2 – G2) = 
4

π D2 (σ T2
4 – G2) 

 q2 = 
4

π (0.1 m)2
 ( )[ ]8 2 4 4 4 25.67 10 W/(m K ) (300 K) 1.996 10 W/m−× − ×  = –151 W 

The negative sign indicates net heat loss through A2. By symmetry, the total energy leaving the hole is 

 qtotal = q2 + q3 = 2 q2 = 2(151 W) = 302 W 

PROBLEM 9.19 

A 15 cm black disk is placed halfway between two black 3 m diameter disks which are 7 
m apart with all disk surfaces parallel to each other. If the surroundings are 0 K, 
determine the temperature of the two larger disks required to maintain the smaller disk 
at 540°C. 

GIVEN 

• A black disk (A1) halfway between two other black disks (A2 & A3) 
• Diameter of A1 (D1) = 15 cm = 0.15 m 
• Diameter of A2 and A3: (D2 = D3) = 3 m 
• Distance between A2 and A3 (2L) = 7 m 
• Surrounding temperature (T∞) = 0 K 
• Temperature of A1 (T1) = 540°C = 813 K 

FIND 

• The temperature A2 and A3 required 

ASSUMPTIONS 

• A2 and A3 are at the same temperature (T2 = T3) 
• Steady state conditions 

SKETCH 

L

A1

T1 = 813 K
D1 = 0.15 m

A3

A
T T
D D

2

2 3

3

= = ?
= = 3 m

T• = OK

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The shape factor for the geometry is given in Table 9.3 as 

 F12 = 
2

1

2a
2 2 2 2 2 2 2 2 2( ) 4L a b L a b a b + + − + + −   
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where a = D1/2 and 0.075 m      b = D2/2 = 1.5 m      L = 3.5 m 
By symmetry F13 = F12 = 0.155. 
The sum of the shape factors, including the shape factor with the surroundings must be unity 

F12 + F13 + F1∞ = 1 → F1∞ = 1 – 2 (F12) = 1 – 2 (0.155) = 0.690 

The net rate of heat transfer from A1 to A2 is given by Equation (9.47) 

 q1– 2 = A1 F12 (Eb1 – Eb2) = σ A1 F12 (T1
4 – T2

4) 
Similarly 

 q1–3 = σ A1 F13 (T1
4 – T 3

4) = σ A1 F12 (T1
4 – T2

4) 

 q1– ∞ = σ A7 F1∞ (T1
4 – T∞

4) = σ A1 F1∞ T1
4 

For steady state, these rates of heat transfer must sum to zero 

  q1–2 + q1–3 + q1–∞ = 0 

  σ A1 [2 F12 (T1
4
 – T2

4) + F1∞ T1
4] = 0 

Solving for T2 
The net rate of heat transfer from A1 to A2 is given by Equation (9.47) 

 q1–2 = A1 F12(Eb1 – Eb2) = σ A1 F12 (T1
4 – T2

4) 

PROBLEM 9.20 

Show that the effective conductance. A1 1 2F −  for two black parallel planes of equal area 

connected by re-radiating walls at a constant temperature is 

 A1 1 - 2F  = A1
– 

  
1 21

2

+ F
 

GIVEN 

• Two black parallel planes of equal area connected by re-radiating walls at a constant temperature 

FIND 

• Show that 

 A1 F1–2 = A1 
1 21

2

F −+ 
    

SKETCH 

Re - Radiating
Walls

,A TR R

A1

A2

 

SOLUTION 

From Equation (9.79) 

 A1 F1–2 = A1 1 2
1

1 2 2

1
1

R R

F
A

F A F

−

− −

 + 
+ 

  

 

Since A1 and A2 cannot see themselves, F1–1 = F2–2 = 0. 
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The shape factors from a single surface must sum to unity 

F1–1 + F1–2 + F1–R = 1 → F1–R = 1 – F1–2 

F2–1 + F2 – 2 + F2–R = 1 → F2 – R = 1 – F2–1 

From equation (9.46) A1 F1–2 = A2 F2–1 →  F1–2 = F2–1 →  F2–R = F1–R = 1 – F1–2 
Substituting this and A1 = A2 into the expression for A1 F12 

 A1 F1–2 = A1 1 2

1 2 1 2

1
1 1

1 1

F

F F

−

− −

 + 
+ − − 

 = A1 1 2

1 2

1
2

1

F

F

−

−

 +  
  −  

 = A1 
1 2

1 2

1

2

F
F −

−
− +  

  

   = A1
1 21

2

F −+ 
  

 

PROBLEM 9.21 

Calculate the net radiant-heat-transfer rate if the two surfaces in Problem 9.10 are black 
and connected by a refractory surface of 500-sq-m area. A1 is at 555 K and A2 is at 278 K. 
What is the refractory surface temperature? 

From Problem 9.10: Derive an expression for the geometric shape factor F1–2 for a 
rectangular surface A1. 1 by 20 m placed parallel to and centered 5 m above a 20-m-
square surface A2. 

GIVEN 

• Rectangular surfaces A1 and A2 connected by a refractory surface A3 
• A1 is parallel to and centered 5 m above A2 
• Dimensions of A1 = 1 m × 20 m 
• A2 is 20 m2 
• A3 is 500 m2 
• Temperature of A1 (T1) = 555 K 
• Temperature of A2 (T2) = 278 K 
• A1 and A2 are black 

FIND 

(a) The net radiating heat transfer rate (q1) 
(b) The refractory surface temperature (T3) 

SKETCH 

A

T
1

2

1

: 1 m 20 m = 20 m

= 555 K

¥

A3
2= 500 m

A2
2: 20m 20 m = 400 m¥

T2 = 278 K

End
View :

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

From the solution to Problem 9.10 
 F12 = 0.427 
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For the black surfaces A1 and A2 

 ρ1 = ρ2 = 0    and     ε1 = ε2 = 1 
From Equation (9.66) 
 J1 = Eb1    and     J2 = Eb2 
Since q3 = 0, from Equation (9.67) 
 J3 = G3 
From Equation (9.66) 

 G3 = 3

31

ε
ρ−

 Eb3 = Eb3 

Since neither A1 nor A2 can see themselves, F11 = F22 = 0 
With these simplifications, Equation (9.69) reduces to 

 [1] A1 G1 = Eb2 A2 F21 + Eb3 A3 F31 

 [2] A2 G2 = Eb1 A1 F12 + Eb3 A3 F32 

 [3] A3 G3 = Eb1 A1 F13 + Eb2 A2 F 23 + Eb3 A3 F33 

From Equation [3] Eb3 = 1 1 13 2 2 23

3 33(1 )
b bR A F F A F

A F

+
−

 

The shape factors are calculated below 

 A2 F21 = A1 F12 →  F21 = 1

2

A

A
F12 = 

2

2

20m

400m
 (0.427) = 0.0214 

 F11 + F12 + F13 = 1 →  F13 = 1 – F12 = 1 – 0.427 = 0.573 

 A3 F31 = A1 F13 →  F31 = 
1

3

A

A
F13 = 

2

2

20m

500m
 (0.573) = 0.0229 

 F21 + F22 + F31 = 1 →  F23 = 1 – F21 = 1 – 0.0214 = 0.9786 

 A3
 F32 = A2 F23 →  F32 = 2

3

A

A
F23 = 

2

2

400m

500m
 (0.9786) = 0.7829 

 F31 + F32 + F33 = 1 →  F33 = 1 – F31 – F32 = 1 – 0.0229 – 0.7829 = 0.1942 

Solving part (b) first 

 Eb3 = σ T3
4 = 

4 4
1 1 13 2 2 23

3 33(1 )

T A F T A F

A F

σ σ+
−

 

 T3 = 
0.254 4

1 1 13 2 2 23

3 33(1 )

T A F T A F

A F

 +
  −

 

 T3 = 
0.254 2 4 2

2

(555K) (20m )(0.573) (278K) (400m )(0.9786)

500m (1 0.1942)

 +
 − 

 = 304 K 

(a) The rate of heat loss from A1 is given by Equation (9.67) 

 q1 = A1 (J1 – G1) = A1 (Eb1 – G1) 
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From Equation [1] 

 G1 = 
4 4

2 2 21 3 3 31

1

(T A F T A F

A

σ +
 

 ∴ q1 = σ (T1
4 A1 – T2

4 A2 F21 – T3
4 A3 F31) 

 

 q1 = ( )8 2 45.67 10 W/(m K )−× [(555 K)4 (20 m2) – (278 K)4 (400 m2)  

   (0.0214) – (304 K)4 (500 m2) (0.0229)] 

 q1 = 99,150 W (loss) 

As a check 

 q2 = A2 (Eb2 – G2) = σ [T2
4 A2 – T1

4 A1 F12 – T3
4 A3 F32] = – 100,040 W (gain) 

PROBLEM 9.22 

A black sphere (2.5 cm diam) is placed in a large infrared heating oven whose walls are 
maintained at 370°C. The temperature of the air in the oven is 90°C and the heat-
transfer coefficient for convection between the surface of the sphere and the air is 30 
W/(m2 K). Estimate the net rate of heat flow to the sphere when its surface temperature 
is 35°C. 

GIVEN 

• A black sphere in a large infrared heating oven 
• Sphere diameter (D) = 2.5 cm = 0.025 m 
• Oven wall temperature (T2) = 370°C = 643 K 
• Oven air temperature (T∞) = 90°C = 363 K 
• Convective heat transfer coefficient (hc) = 30 W/(m2 K) 
• Sphere surface temperature (T1) = 35°C = 308 K 

FIND 

• The net rate of heat flow to the sphere (qtotal) 

ASSUMPTIONS 

• The oven walls are diffuse 

SKETCH 
Oven

T• = 363 K
A2

T2 = 643 K

A1

T1 = 308 K

D = 0.025 m

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 
2 4

W

m  K
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SOLUTION 

Since the sphere is black: ρ1 = 0; ε1 = 1 

From Equation (9.66) J1 = Eb1    and   J2 = ρ2 G2 + ε2 Eb2 
From Equation (9.69) [1] A1 G1 = J1 A1 F11 + J2 A2 F21 
 [2] A2 G2 = J1 A1 F12 + J2 A2 F22 

Since A1 cannot see itself, F11 = 0 

Also F 12 = 1 → A1 F12 = A2 F21 →  F21 = 1

2

A

A
 

Solving for J2 

 J2 = ρ2 
1

1 12 2 22
2

b
A

E F J F
A

   +      
 + ε2 Eb2 

 J2 = 

1
1 2 2 2

2

2 221

b b
A

E E
A

F

ρ ε

ρ

  +  
−

 

 ∴  A1 G1 = 

1
2 21 1 2 2 2

2

2 221

b b
A

A F E E
A

F

ρ ε

ρ

   +      
−

 

From Equation (9.67) 

 q1 = A1 (J1 – G1) = A1 Eb1 – 

1 1
2 1 2 2 2

2 2

2 221

b b
A A

A E E
A A

F

ρ ε

ρ

     +          
−

 

since ε2 = (1 – ρ2), this simplifies to 

 q1 = 1 2 1 2

2 22

(1 )( )

1
b bA E E

F

ρ
ρ

− −
−

 

Since A2 is very large compared to A1: F22 ≈ 1.0 and q1 = A1(Eb1 – Eb2) = σ A1(T1
4 – T2

4) 
The total rate of heat transfer is the sum of the convective and radiative heat transfer 

 qtotal = qc + q1 = A1 [hc (T∞ – T1) + σ (T2
4 – T1

4)] 

qtotal = p (0.025 m)2 ( ) ( )[ ]2 8 2 4 4 430 W/(m K) (363K 308K) 5.67 10 W/(m K ) [(643K) (308 K) ]−− + × −  

 qtotal = 21 W 

PROBLEM 9.23 

The wedge-shaped cavity shown in the accompanying sketch consists of two long strips 
joined along one edge. Surface 1 is 1 m wide and has an emittance of 0.4 and a 
temperature of 1000 K. The other wall has a temperature of 600 K. Assuming gray 
diffuse processes and uniform flux distribution, calculate the rate of energy loss from 
surface 1 and 2 per meter length. 

45°

b

A3

A

A T2 2, = 600 K

A T1 1, = 1000 K

C,d
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GIVEN 

• The wedge shaped cavity shown above 
• Width of A1 (W1) = 1 m 
• Emittance of A1 (ε1) = 0.4 
• Temperature of A1 (T1) = 1000 K 
• Temperature of A2 (T2) = 600 K 
• A2 is black 

FIND 

• The rate of energy loss from A1 and A2 per meter length (q1/L and q2/L) 

ASSUMPTIONS 

• Enclosure temperature (Te) = 0 K 
• Gray diffuse processes 
• Uniform flux distribution 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

Width of A3 (W3) = 1 m 

Width of A2 (W2) = 2 2(1m) (1m)+  = 2m  

The crossed-string methods can be used to calculate F12. From Equation (9.54) 

 F12 = 
1

( ) ( )

2 W

ab cb ab cd+ − +
 = 

(1m 2 m) (1m 0)

2(1m)

+ − −
 = 

2

2
 

From Equation (9.46) 

 A1 F12 = A2 F21 → F21 = 1

2

A

A
 
  

 F12 

Since neither A1 nor A2 can see itself, F11 = F22 = 0 

Since A2 is black: ρ2 = 0 and ε2 = 1 

From Equation (9.66) J1 = ρ1 G1 + ε1 Eb1 = ρ1 G1 + ε1 σ T1
4 

 J2 = Eb2 = σ T2
4 

From Equation (9.69) for A1 

 A1 G1 = J1 A1 F11 + J2 A2 F21 = Eb2 A2 F21 = σ T2
4 A1 F21 

Solving for G1 

 G1 = σ T2
4 1

2

A

A
F12 =  ( )–8 2 4 4 2(1m) 2

5.67 10 W/(m K ) (600K ) 3674 W/m
2( 2 m)

L

L

 
× =     

From Equation (9.67) 
 q1 = A1 (J1 – G1) = A1 [(ρ1 G1 + ε1 σ T1

4) – G1] 
Since ρ1 = 1 – ε1 

1q

L
 = W1 ε1 (G1 + σ T1

4) = (1m) (0.4) ( ) ( )[ ]2 8 2 4 43674 W/(m K) 5.67 10 W/(m K ) (1000 K)−+ ×  

 1q

L
 = 

W
24,150

m
 (loss) 
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From Equation (9.69) for A2 

 A2 G2 = J1 A1 F12 + J2 A2 F22 = (ρ1 G1 + ε1 σ T1
4) A1 F12 

 G2 = (ρ1 G1 + ε1 σ T1
4) 

1

2

A

A

 
  

 F12 

From Equation (9.67) 

 q2 = A2 (J2 – G2) = W2 L 
14

2 1 1 1 1 12
2

( )b

A
E G T F

A
ρ ε σ 

− + 
 

 

Since ρ1 = 1 – ε1 

 2q

L
 = W2 

14 4
2 12 1 1 1 1

2

[(1 ) ]
A

T F G T
A

σ ε ε σ   
− − +    

 

 1q

L
 = ( 2 m)  

( ) ( ) ( )8 2 4 4 3 8 2 4 41 2
5.67 10 W/(m K ) (600 K) [(1 0.4) 3674 W/(m K) 0.4 5.67 10 W/(m K ) (1000 K) ]

22
− −  × − − + ×   

 2q

L
 = –7204 W/m (gain) 

PROBLEM 9.24 

Derive an equation for the net rate of radiant heat transfer from surface 1 in the system 
shown in the accompanying sketch. Assume that each surface is at a uniform 
temperature and that the geometrical shape factor F1–2 is 0.1. 

A0

A2A1

A = 1 sq. M1
e1 = 0.5

A = 1 sq. M2
e2 = 0.7

A is Large0e0 = 1  

GIVEN 

• The system shown above 

FIND 

• An expression for the net rate of radiant heat transfer from surface 1 (q1) 

ASSUMPTIONS 

• Steady state 
• A1 and A2 are gray, A0 is black 
• Each surface is at a uniform temperature 
• The shape factor F12 = 0.1 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67× 10–8 W/(m2 K4) 

SOLUTION 

All of the shape factors for the problem can be expressed in terms of F12 using Equation (9.46) and the 
fact that all shape factors from a given surface must sum to unity. 
Also 

A1 = A2 and 1

0

A

A
 = 2

0

A

A
 ≈ 0 

 A1 F12 = A2 F21 →  F21 = F12 = 0.1 
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 F10 + F11 + F12 = 1 and F11 = 0 →  F10 = 1 – F12 = 0.9 

 F20 + F21 + F22 = 1 and F22 = 0 →  F20 = 1– F21 = 0.9 

 A1 F10 =  A0 F01 →  F01 = 1

0

A

A
 
  

 F10 ≈ 0 

 A2 F20 = A0 F02 →  F02 = 2

0

A

A
 
  

 F20 ≈ 0 

 F00 + F01 + F02 = 1 →  F00 = 1 
The net rate of heat transfer from surface 1 is given by Equation (9.67) 

 q1 = A1 (J1 – G1) 

Where the radiosity (J1) and the irradiation (G1) can be calculated using Equations (9.69) and (9.66) 

 [1] A1 G1 =  J0 A0 F01 + J1 A1 F11 + J2 A2 F21 = J2 A2 F21 

 [2] A2 G2 = J0 A0 F02 + J1 A1 F12 + J2 A2 F22 = J1 A1 F12 

 [3] J1 = ρ1 G1 + ε1 Eb1 

 [4] J2 = ρ2 G2 + ε2 Eb2 

Substituting [4] into [1] 

A1 G1 = (ρ2 G2 + ε2 Eb2) A2 F21 

Substituting [2] and [3] into this Equation 

 A1 G1 = [ρ2(ρ1 G1 + ε1 Eb1) 
1

2

A

A
 
  

 F12 + ε2 Eb2] A2 F21 

 G1 = 2 1 1 1 12 21 2 2 2 21

1 2 1 1 21 12

b bE A F F E A F

A A F F

ρ ε ε
ρ ρ

+
−

 

 q1 = A1 (J1 – G1) =  A1[(ρ1 G1 + e1 Eb1) – G1] = A1[ε1 Eb1 + G1 (ρ1 – 1)] A1(ε1 Eb1 – G1ε1) 

 q1 = A1 e1 (Eb1 – G1) = A1 ε1 
2 1 1 1 12 21 2 2 2 21

1
1 2 1 1 21 12

b b
b

E A F F E A F
E

A A F F

ρ ε ε
ρ ρ

+   −    − 
 

where ρ1 = 1 – ε1 = 0.5 ρ2 = 1 – ε2 = 0.3 and Ebi = σ Ti
4 

 ∴ q1 = ε1 σ 
4 4

4 2 1 1 12 21 1 2 2 21 2
1 1

2 1 21 121

A F F T A F T
A T

F F

ρ ε ε
ρ ρ

   +
−   − 

 

 q1 = (0.5) ( )8 2 45.67 10 W/(m K )−×  

  
2 4 2 4

2 4 1 2
1

(0.3) (0.5) (1m )(0.1) (0.1) (0.7) (1m )(0.1)
(1m )

1 (0.5) (0.3)(0.1) (0.1)

T T
T

   +
−   − 

 

 q1 = ( )8 42.83 10 W/K−× T1
4 – ( )9 41.98 10 W/K−× T2

4 

PROBLEM 9.25 

Two 1.5 m-square and parallel flat plates are 0.3 m apart. Plate A1 is maintained at a 
temperature of 1100 K and A2 at 500 K. The emittances of the plates are 0.5 and 0.8, 
respectively. Considering the surroundings black at 0 K and including multiple inter-
reflections, determine (a) the net radiant exchange between the plates and (b) the heat 
input required by surface A1 to maintain its temperature. The outer-facing surfaces of 
the plates are adiabatic. 
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GIVEN 

• Two square parallel flat plates, 0.3 m 
• Temperature of A1 (T1) = 1100 K 
• Temperature of A2 (T2) = 500 K 
• Emittances  ε1 = 0.5  
  ε2 = 0.8 
• Surroundings are black at (T3) = 0 K 

FIND 

Including multiple inter-reflections, determine 
(a) The net radiant exchange (q1–2) 

(b) The heat input at surface A1 (q1) required to maintain its temperature 

SKETCH 
e1

1

1
2

= 0.5
= 1100 K
= 2.25 m

T
A

e2 = 0.8
= 500 K
= 2.25 m2

T
A

2

2

1.5 m

A
T

3

3 = 0 K
= 4(1.5 0.3) = 1.8 m¥ 2

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The gap between the plates can be considered to be a blackbody square cylindrical surface as shown in 
the sketch. 

 ρ3 = 0   and   ε3 = 1 →  From Equation (9.66) J3 = Eb3 = σ T3
4 = 0 

Also, since neither A1 nor A2 can see itself, F11 = F22 = 0. 

From Equation (9.46) A1 F12 = A2 F21 →  F12 = F21 (This is apparent from the symmetry of the 
problem). 
The radiosities J1 and J2 are needed to calculate the rate of radiant heat transfer and can be determined 
using Equations (9.69) and (9.66) 

From Equation (9.69) [1] A1 G1 = J1 A1 F11 + J2 A2 F21 + J3 A3 F31 = J2 A2 F21 

 [2] A2 G2 = J1 A1 F12 + J2 A2 F22 + J3 A3 F32 = J1 A1 F12 

  [3] A3 G3 = J1 A1 F13 + J2 A2 F23 + J3 A3 F33 = J1 A1 F13 + J2 A2 F23 

From Equation (9.66) [4] J1 = ρ1 G1 + ε1 Eb1 

 [5] J2 = ρ2 G2 + ε2 Eb2 

 [6] J3 = 0 

Substituting Equations [4] and [5] into [1] and [2] A1 G1 = (ρ2 G2 + ε2 Eb2) A2 F21 

 A2 G2 = (ρ1 G1 + ε1 Eb1) A1 F12 
Substituting G1 from the first equation into the second and using F21 = F12 yields 

 A2 G2 = 
2

1 12 2 2 2 2 1 1
1

( )b b

A
F G E E

A
ρ ρ ε ε 

+ +  
 A1 F12 
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since A1 = A2   and   Ebi = σ Ti
4 

 G2 = 
4 4

12 2 2 12 1 1 1
2

12 2 1

( )

1 ( )

F T F T

F

σ ε ρ ε
ρ ρ

+
−

 

The shape factor F12 can be determined from Figure 9.28: for x/D = y/D= 5  →  F12 = 0.71 
Also 

ρ1 = 1 – ε1 = 0.5 and ρ2 = 1 – ε2 = 0.2 

∴  G2 = (5.67 × 10–8 W/(m2 K4))(0.71)
4 4

2

0.8(500K) (0.71) (0.5) (0.5)(1100K)

1 (0.71) (0.5) (0.2)

 +
 − 

 

   G2 = 
43.0185 10

0.9496

×
W/m2 = 31,787 W/m2 

From Equation [5]  

 J2 = ρ2 G2 + ε2 Eb2 = ρ2 G2 + ε2 σ T2
4 

  J2 = 0.2 (31787 W/m2) + 0.8 (5.67 × 10–8 W/(m2 K)) (500 K)4  

  J2 = 9192 W/m2 

From Equation [1]  

 G1 = F21 J2 = F12 J2 = (0.71) (9192 W/m2)  

  G1 = 6526 W/m2 

and from Equation [4] 

 J1 = ρ G1 + ε1 σ T1
4 = 0.5(6526 W/m2)+ 0.5(5.67 × 10–8 W/(m2 K4))(1100 K)4 

 J1 = 44770 W/m2  
(a) The net radiant exchange is given by Equation (9.73) 

 q1–2 = (J1 – J2) A1 F12 = (44770 – 9192) W/m2 (2.25 m2) (0.71)  

 q1–2 = 56836 W 

(b) The required input to surface A1 is equal to the rate of radiative loss from  surface A1 which is 
given by Equation (9.67) 

 q1 = A1 (J1 – G1) = 2.25 m2 (44770 – 9192) W/m2  

 q1 = 80050 W 

PROBLEM 9.26 

Two concentric spheres 0.2 m and 0.3 m in diameter, with the space between them 
evacuated, are to be used to store liquid air (133 K). If the surfaces of the spheres have 
been flashed with aluminum and the liquid air has a talent heat of vaporization of 209 
kJ/kg, determine the number of kilograms of liquid air evaporated per hour. 

GIVEN 

• Two concentric spheres with the space between them evacuated and liquid air in the inner sphere 
• Diameters  D1 = 0.2 m   
  D2 = 0.3 m 
• Liquid air temperature (Ta) = 133 K 
• Room temperature (T∞) = 293 K 
• Surfaces of the spheres have been flashed with aluminum 
• Heat of vaporization of liquid air (hfg) = 209 kJ/kg = 209,000 J/kg 
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FIND 

• The number of kilograms of liquid air evaporated per hour ( )m  

ASSUMPTIONS 

• Steady state 
• Convective thermal resistance between the liquid air and interior sphere is negligible 
• Thermal resistance of the sphere walls is negligible 
• Natural convection on the exterior is negligible 
• The room behaves as a blackbody enclosure 
• The thickness of the sphere walls in negligible 

SKETCH 

m

Liquid
A,R
= 133 KTA

T• = 293 K

A , D T = T1 1 1= 0.2 m , = 133 Ka

A , D2 2 = 0.3 m

Evacuated  

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Table 9.2, the hemispherical emissivity of the spheres will be approximated by that for oxidized 
aluminum at 310 K: ε = ε1 ε 2 = 0.11 

SOLUTION 

Since A2 completely surrounds A1 and A1 cannot see itself, F12 = 1.0 and F11 = 0 
From Equation (9.46) 

 A2 F21 = A1 F12 →  F21 = 1

2

A

A
 = 

2
1
2
2

D

D

π
π

 = 
2

1

2

D

D
 
  

= 
2

0.2

0.3

 
    = 0.444 

The shape factors from a given surface must sum to unity 

 F21 + F22 = 1 →   F22 = 1 – F21 = 0.556 
Also 

ρ = ρ1 = ρ2 = 1 – ε = 0.89 
The net rate of heat transfer from A1 to A2 must equal the rate of heat transfer from the exterior sphere 
to the surroundings 

 q = q12 = σ ε A2 (T2
4 – T∞

4) [1] 
The rate of heat transfer between the spheres is given by Equation (9.75) 

 q12 = A1 F 12 (Eb1 – Eb2) = A1 F 21 σ (T1
4 – T2

4) [2] 

where f12 is given in Equation (9.76) for concentric spheres. 

 F 12 = 
1 1 1

1 2 2

1

1 1 1
A

A

ε ε
ε ε

     − + + −          

 

 
1

2

A

A
 = 

2
1
2
2

D

D

π
π

 = 
2

1

2

D

D
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 F 12 = 
2

1

1 0.11 0.2 1 0.11
1

0.11 0.3 0.11

     − −+ +            

 = 0.0788 

 A1 F 12 σ (T1
4 – T2

4) = σ ε A2 (T2
4 – T∞

4) 

Solving Equations [1] and [2] for T2 

 T2 = 

0.25
4 41 12

1
2

1 12

2

1

A
T T

A

A

A

ε

ε

∞
     +       
   +        

F

F
 

 where 1

2

A

A
12

ε
F

 = 
2

0.2

0.3

 
  

0.0788

0.11
 = 0.3185 

 T2 = 
0.254 40.3185(133K) (293K)

1 0.3185

 +
  +

 = 274 K 

The rate of evaporation of the liquid air is 

 m  =
fg

q

h
 = 

4 4
2 2( )

fg

A T T

h

σ ε ∞ −
 = 

( )
( ) ( ) ( )

8 2 4 2 4 45.67 10 W/(m K ) (0.11) (0.3m) [(293K) (274K) ]

209,000J/kg (Ws)/J h/3600s

π−× −
 

 m  = 0.053 kg/h  

COMMENT 

The rate of evaporation would be reduced to 0.024 kg/h if the two aluminum surfaces in the evacuated 
space could remain polished so that ε1 = ε 2 = 0.04. 

PROBLEM 9.27 

Determine the steady-state temperatures of two radiation shields placed in the evacuated 
space between two infinite planes at temperatures of 555 K and 278 K. The emissivity of 
all surfaces is 0.8. 

GIVEN 

• Two radiant shields placed in the evacuated space between two infinite planes 
• Temperature of the planes  T1 = 555 K 
  T4 = 278 K 
• Emissivity of all surface (ε) = 0.8 

FIND 

• The steady state temperatures of the shields (T2, T3) 

ASSUMPTIONS 

• All surfaces are gray and diffuse 

SKETCH 
Surface 1 (A ) T = 555 K1 1

Shield 2 (A )2

Shield 3 (A )3

Surface 4 (A ) T = 278 K4 4  
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SOLUTION 

Since the space is evacuated, convection and conduction are negligible. Since the surfaces are simply 
infinite planes, equivalent conductance A1 f12 can be used. 
The net rate of heat transfer from A1 to A2 is given by Equation (9.75) 

 q12 = A1 F 12 (Eb1 – Eb2) 

For steady state q12 = q23 = q34 
Also, because of all the emittances and areas are identical 
 F 12 = F 23 = F 34 

Therefore Eb1 – Eb2 = Eb2 – Eb3 = Eb3 – Eb4 

 Eb2 = 0.5 (Eb1 + Eb3)    and   Eb3 = 0.5(Eb2 + Eb4) 
Solving for Eb2 

 Eb2 = 
1

2 1 2 4
1

( )
2b b bE E E + +  

  →    Eb2 = 
4

3 1 4
1 1

2 4b bE E +  
 = σ T2

4 

 T2 = 
0.25

4 4
1 4

1
(2 )

3
T Tσ σ

σ
 +  

= 
0.25

4 4
1 4

1
(2 )

3
T T +  

= 
0.25

4 41
[2(555K) (278K) ]

3
 +  

 = 505 K 

 Similarly  T3 = 

0.25
4 4

4 1
1

(2 )
3

T T +  
 = 

0.25
4 41

[2(278K) (555K) ]
3
 +  

 = 434 K 

PROBLEM 9.28 

Three thin sheets of polished aluminum are placed parallel to each other so that the 
distance between them is very small compared to the size of the sheets. If one of the outer 
sheets is at 280°C, and the other outer sheet is at 60°C, calculate the temperature of the 
intermediate sheet and the net rate of heat flow by radiation. Convection may be ignored. 

GIVEN 

• Three thin sheets of polished aluminum parallel to each other 
• The distance between the sheets is small compared to the size of the sheets 
• Outer sheet temperatures   T1 = 280°C = 553 K 
   T2 = 60°C = 333 K 
• Convection may be ignored 

FIND 

(a) The temperature of the intermediate sheet 
(b) The net rate of heat flow by radiation 

ASSUMPTIONS 

• Steady state 
• All surfaces are gray 
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SKETCH 

5

L > > S

A , T1 1 = 553 K

A , T2 2 = ?

A , T3 3 = 333 K

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, The Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Table 9.2, the emissivity of polished aluminum at the average temperature of 443K 
(ε = ε1 = ε2 = ε3) = 0.05 

SOLUTION 

The plates may be approximated by infinite parallel planes, therefore, the shape factors are, F12 = F21 = 
F23 = F32 = 1.0 
(a) For steady state, the net heat flow from surface 2, from Equation (9.75) must be zero 

 q2 = q21 + q23 = A2 F21 (Eb2 – Eb1) + A2 F23 (Eb2 – Eb3) = 0 
 
By symmetry 

f21 = f23 

Therefore 2 Eb2 – Eb1 – Eb3 = 0  →   2 T7
4 = T7

4 + T7
4 

Solving for T2    

 T2 = 
0.254 4

1 3

2

T T +
  

 = 
0.254 4(553K) (333K)

2

 +
  

 = 480 K 

(b) From Equation (9.78) for infinitely large parallel plates 

 F12 = 

1 2

1
1 1

1
ε ε

+ −
 = 

1
2

1
ε

−
 = 

1
2

1
0.05

  − 

 = 0.0256 

The rate of heat transfer is 

 q = q12 = A1 F12 (Eb1 – Eb2) 

 
q

A
 = F12 σ (T1

4 – T2
4) = 0.0256 ( )8 2 45.67 10 W/(m K )−× [(553 K)4– (480 K)4] = 59 2W/m   

PROBLEM 9.29 

Determine the rate of heat transfer between two 1 by 1 m parallel flat plates placed 0.2 m 
apart and connected by re-radiating walls. Assume that plate 1 is maintained at 1500 K 
and plate 2 at 500 K. (a) Plate 1 has an emissivity of 0.9 over the entire spectrum and 
plate 2 has an emissivity of 0.1. (b) Plate 1 has an emissivity of 0.1 between 0 and 2.5 μ m 
and an emissivity of 0.9 at wavelengths longer than 2.5 μ m, while plate 2 has an 
emissivity of 0.1 over the entire spectrum. (c) The emissivity of plate 1 is the same as in 
part (b), and plate 2 has an emissivity of 0.1 between 0 and 4.0 μ m and an emissivity of 
0.9 at wavelengths larger than 4.0 μ m. 
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GIVEN 

• Two parallel flat plates connected by re-radiating walls 
• Plates dimensions: 1 m × 1 m 
• Distance between plates (s) = 0.2 m 
• Plate temperatures  T1 = 1500 K 
  T2 = 500 K 

FIND 

The rate of heat transfer between plates if 

(a) The emissivity of plates 1 (ε7)= 0.9 and the emissivity of plates 2 (ε2) = 0.1 
(b) ε1 = 0.1 for 0 < λ < 2.5 μ m; ε1 = 0.9 for λ > 2.5 μ m; ε2 = 0.1 
(c) ε1 is same as (b); ε2 = 0.1 for 0 < λ < 4.0 μ m, and ε2 = 0.9 for λ > 4.0 μ m 

ASSUMPTIONS 

• Convective heat transfer is negligible 
• The re-radiating surface is gray 
• Steady state conditions 

SKETCH 

A = A = A =1 2
21 m

0.2 m

1 m

A1 1e
T1 = 1500 K

AR

A ,

T
2 2

2

e
= 500 K

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67× 10–8 W/(m2 K4) 

SOLUTION 

The shape factor F12 is given by Figure 9.28 x/D = y/D = (1 m)/(0.2 m) = 5  →   F12 ≈ 0.71 

From Equation (9.46) A1 F12 = A2 F21 →   F21 = F21 = 0.71 
Since neither A1 nor A2 can see itself, A11 = A22 = 0 
The shape factors from a given surface must sum to zero 

  F11 + F12 + F1R = 1 →  F1R = 1 – F12 = 0.29 

  F21 + F22 + F2R = 1 →  F2R = 1 – F21 = 0.29 

The rate of heat transfer is given by Equation (9.80) 

 q12 = A1 F 12 σ (T1
4 – T2

4) 

where A1 F12 is given by Equation (9.79) 

 A1F12 = 

1 1 2 2 1 12

1
1 1 1 1 1

1 1
A A A Fε ε
   − + − +      
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 where A1 12F  = A1 12
1

1 2 2

1

1

R R

F
A

F A F

 +
 

+ 
 

 = 1 m2 
1

0.71
1 1

0.29 0.29

 +
 +  

 = 0.855 m2 

(a) For ε1 = 0.1, ε2 = 0.9 

 A1 F12 = ( ) ( ) 1

2 2 2

1 1 1 1 1
1 1

0.1 0.91m 1m 0.855m

−
 − + −  

 = 0.0973 m2 

 q12 = (0.0973 m2) ( )8 2 45.67 10 W/(m K )−× [(1500 K)4 – (500 K)4] = 2.76×104 W 

(b) For ε1 = 0.1, ε2 = 0.1 

 A1 F 12 = 
1

2 2

1 1 1
1

0.11m 0.855m

−
   − +   

 = 0.052 m2 

Following the procedure demonstrated in Section 9.7.2 

For band 1: 0 < λ < 2.5 μ m, A1 f12 = 0.052 m2 

 λ T1 = (2.5× 10–6 m) (1500 K) = 3.8 × 10–3 m K  

From Table 9.1 
4

(0 )bE T

T

λ
σ

→
 = 0.4434 

 λ T2 = (2.5 × 10–6 m) (500 K) = 1.3 × 10–3 m K 

From Table 9.1 
4

(0 )bE T

T

λ
σ

→
 = 0.004963 

 
2.5m

12 0
q  = A1 F 12 (ε1 = 0.1, ε2 = 0.1) 4 41 2

1 24 4
1 2

(0 ) (0 )b bE T E T
T T

T T

λ λσ σ
σ σ

→ → − 
 

 

 
2.5m

12q ∞ =  0.052 m2 ( )8 2 45.67 10 W/(m K )−×  [0.4434 (1500 K)4 – 0.004963 (500 K)4] = 6618 W 

For band 2: 2.5 μ < λ 

  12 2.5m
q

∞
 = A1 F12 (ε1 = 0.9, ε2 = 0.1) 4 41 2

1 24 4
1 2

( ) ( )b bE T E T
T T

T T

λ λσ σ
σ σ

→ ∞ → ∞ − 
 

 

 12 tq
∞

 = 0.0973 m2 ( )8 2 45.67 10 W/(m K )−× [(1 – 0.4434)(1500 K)4 – (1 – 0.004963) (500 K)4] 

 12 2.5m
q

∞
 = 15,202 W 

The total rate of heat transfer is the sum of the rate of heat transfer in the two bands 

 q12,total = 
2.5m

12 0
q  + 12 2.5m

q
∞

 = 6618 W + 15,202 W = 2.18 × 104 W 

(c) For this case, the spectrum must be broken into three bands 
  0 < λ < 2.5 μ m ε1 = 0.1, ε2 = 0.1, A1 f12 = 0.052 m2 
  2.5 μ m > λ , 4 μ m ε1 = 0.9, ε2 = 0.1, A1 f12 = 0.0973 m2 
  4 μ m < l ε1 0.9, ε2 = 0.9 
For λ > 4 μ m 

 A1 F12 = 
1

2 2

2 1 1
1

0.91m 0.855m

−
   

− +    
 = 0.719 m2 
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At λ = 4 μ m 

 λ T1 = (4 × 10–6 m) (1500 K) = 6 × 10–3 m K 

From Table 9.1: 1
4

1

(0 )bE T

T

λ
σ

→
 = 0.7379 

 λ T2 = (4× 10–6 m) (500 K) = 2 × 10–3 m K 

From Table 9.1: 2
4

2

(0 )bE T

T

λ
σ

→
 = 0.0667 

Band 1 

Same as part (b) 
2.5m

12 0
q = 6618 W 

Band 2 

2.5 μ m < l < 4 μ m 

 
4

12 2.5
q =  A1 F12 (ε1 = 0.9,ε2 = 0.1)  

4 41 1 2 2
1 24 4 4 4

1 1 2 2

(0 4 ) (0 2.5 ) (0 2.5 ) (0 2.5 )b b b bE T E T E T E T
T T

T T T T
σ σ

σ σ σ σ
→ → → →    − −        

   

 
2.5m

12 0
q  = 0.0973 m2 ( )8 2 45.67 10 W/(m K )−×  [(0.7379 – 0.4434) (1500 K)4 

   – (0.0667 – 0.004963) (500 K)4] 

 
2.5m

12 0
q  = 27908 W 

Band 3 
λ > 4 μ m 

 12 4
q

∞
 = A1 F12 (ε1 = 0.9,ε2 = 0.9) 1 24 4

1 24 4
1 2

(0 4 ) (0 4 )
1 1b bE T E T

T sT
T T

σ
σ σ

→ →    − − −        
 

 12 4
q

∞
 = 0.719 m2 ( )8 2 45.67 10 W/(m K )−× [(1 – 0.7379) (1500 K)4 – (1 – 0.0667 (500 K)4] 

 
2.5m

12 0
q  = 204,006 W 

 q12,total = (6618 + 27908 + 204,006) W = 2.39 × 105 W 
PROBLEM 9.30 

A small sphere (2.5 cm diam) is placed in a heating oven whose cavity is a 0.3 m cube 
filled with air at 101 kPa (abs), contains 3 per cent water vapor at 810 K, and whose 
walls are at 1370 K. The emissivity of the sphere is equal to 0.44 – 0.00018 T, where T is 
the surface temperature in K. When the surface temperature of the sphere is 810 K, 
determine (a) the total irradiation received by the walls of the oven from the sphere,  
(b) the net heat transfer by radiation between the sphere and the walls of the oven, and 
(c) the radiant heat transfer coefficient. 

GIVEN 

• A small sphere in a 0.3 cm cubic heat oven filled with air 
• Sphere diameter (D) = 2.5 cm 
• Air pressure = 1 atm = 101 kPa 
• Air contains 3% water vapor 
• Air temperature (Tm) = 810 K 
• Oven wall temperature (T2) = 1370 K 
• Sphere emissivity (ε1) = 0.44 – 0.00018 T (T in K) 
• Sphere surface temperature (T1) = 810 K 
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FIND 

(a) Total irradiation received by the walls from the sphere (q2) 
(b) The net heat transfer by radiation between the sphere and the walls (q12) 
(c) The radiant heat transfer coefficient (hr) 

ASSUMPTIONS 

• The gas is a gray body 
The oven walls are black (ε2 = 1) 

• The sphere is near the center of the oven 

SKETCH 

Gas (M)
= 810 KTm

D = 2.5 cm

0.3 cm

A2: T2 = 1370 K

e2 = 1

A1: T1 = 870 K

e1 = 0.44 – 0.00018 T (T in K)

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

(a) At T1 = 810 K ε1 = 0.44 – 0.00018 (810) = 0.294 
The surface area of the sphere is 

 A1 = π (2.5 × 10–2 m)2= 1.96 × 10–3 m2  

Since the air and the oven completely enclose the sphere, F12 = 1.0 and F1g = 1.0 
From Section 9.7.3, the portion of the total radiation leaving the sphere that is received by the walls 
(q1R2) = J1 A1 F12τm where τm is the transmissivity of the air and the radio sity of the sphere, J1, is given 
by Equation 9.72 

 J1 = Eb1 – q1
1

1 1

1

A

ε
ε

−  

Since the air temperature is the same as the sphere temperature, there will be no net heat transfer 
between the air and the sphere and the heat transfer from the sphere (q1) will be the same as the net 
heat transfer between the sphere and the walls (q12). Simplifying Equation (9.109) with the shape 
factors above and 

A1 << A2, ε2 = 1 yields 

 q1–2 = 

( )

4 4
1 2

1
1

1 1 1

( )
1 1

mm

T T

A A ε

σ
ε

ε τ

−
− +

+

 

The beam length to calculate τm and εm can be found in Table 9.7. Since the sphere is near the center of 
the cube, one half the beam length for a cube will be used 

 Leff = cube

2

L
 = 

2
(edgelength)

3
2

 
  

 = 0.1 m 
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The partial pressure of the water vapor is 
PH2O = 3% pair = 0.03(1 atm) = 0.03 atm 

The emissivity of the water vapor (εm) can be calculated from Figure 9.46 where Tm = 811 K 

 PH2O L = (0.03 atm) (0.1 m) = 0.0030 atm m   εm = 0.012 

By Kirchoff’s radiation law 

αm = εm = 0.012 

Also τm = 1 – εm = 1 – 0.012 = 0.988 

 q1–2 = 
( )8 2 4 4 4

–3 2
–3 2

5.67 10 W/(m K ) [(810K) (1370K) ]
1 0.294 1

0.294(1.96 10 m ) 1
1.96 10 m 0.988

0.012

−× −
− +

 × × +  

 = – 143 W 

(b) The net radiation between the sphere and walls is 143 W from the walls to the sphere. 

(a)  J1 = (5.67 × 10–8 W/(m2 K4)) (810 K)4 – (– 143 W) 
–3 2

1 0.294

(1.96 10 m )0.294

−
×

 

  J1 = 199.6 kW/m2 

 q1R2 = J1 A1 F12 τm = 199.6 × 103 W/m2 (1.96 × 10–3 m2) (1.0) (0.988)  

 = 386.5 W 

(c) The radiative heat transfer coefficient must satisfy the following equation 

 q12 = rh  A1 ΔT = rh  A1 (T2 – T1) 

 rh  = 12

1 2 1( )

q

A T T−
 = 

–3 2

143W

(1.96 10 m )(1370K – 810K)×
 = 130.3 W/(m2 K) 

PROBLEM 9.31 

A 0.61 m radius hemisphere (811 K surface temperature) is filled with a gas mixture at 
533 K and 2-atm pressure containing 6.67 percent CO2 and water vapor at 0.5 percent 
relative humidity. Determine the emissivity and absorptivity of the gas, and the net rate 
of radiant heat flow to the gas. 

GIVEN 

• A hemisphere filled with a gas mixture 
• Hemisphere radius (r) = 0.61 m 
• Hemisphere surface temperature (T1) = 811 K 
• Gas temperature (Tm) = 533 K 
• Gas pressure (pT) = 2 atm 
• Gas mixture: 6.67% of CO2 and water vapor at R.H. = 0.5% 

FIND 

(a) The emissivity (εm) and absorptivity (τm) of the gas 
(b) The net rate of radiant heat flow to the gas (q1–m) 

ASSUMPTIONS 

• The hemisphere surface is black (ε1 = 1) 
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SKETCH 

r = 0.61 M

Gas (M)
= 533 KTm

A T1 1: = 811 K

e1 = 1.0

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

From Appendix 2, Table 13, the saturation pressure of water at 533 K (Psat,H2O) = 4.694 × 106 N/m2 

 

SOLUTION 

(a) The path length for the hemisphere is 

 L = 3.4 
volume

area
 = 3.4 

3

2 2

1 4
2 3

2

r

r r

π
π π

 
  

+
 = 3.4 ( )2/9  r = 0.461 m 

For a relative humidity of 0.5% , the partial pressure of the water vapor is 

 pH2O = (R.H.) (psat,H2O) = (0.005) ( )5 246.940 10 N/m×
2

1atm

101,330 N/m
 
  

 = 0.232 atm 

 p
H2O

 L = (0.232 atm) (0.461 m) = 0.107 atm m 

From Figure 9.46, for 1 atm pressure (εH2O)pT=1 = 0.18 
This must be corrected for the total pressure 

 H2O

2
tp p+

 = 
0.232atm + 2atm

2
 = 1.116 atm 

In Figure 9.48, CH2O ≈ 1.5 
Repeating this procedure for the CO2 
Partial pressure 

 p
CO2

 = p
T
 (6.67%) = 2 atm (0.0667 m) = 0.733 atm  

 pCO2 L = (0.133 atm)(0.461 m) = 0.061 atm m 

From Figure 9.47, (εCO2)pT = 1 ≈ 0.085 

From Figure 9.49, CCO2 ≈ 1.25 

The emissivity of the mixture (ε m) is given by Equation (9.114) 

 εm = CH2O (εH2O)pT = 1 + CCO2 (εCO2)pT = 1 – Δε 

where Δe is determined by interpolating between values from Figure 9.50 

 H2O

CO2 H2O

p

p p+
 = 

0.232

0.1334 0.232+
 = 0.635 

 pCO2 L = pH2O L = (0.061 + 0.107 atm m = 0.168 atm m 

At Tm = 400 K Δε ≈ 0.006   and   at Tm = 811 K: Δ ε ≈ 0.007 
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Therefore 

At Tm = 811 K: Δε ≈ 0.0063 

 εm = 1.5(0.18) + (1.25)(0.085) – 0.0063 = 0.37 

 τm = 1 – εm = 1 – 0.37 = 0.63 

(b) To evaluate the rate of heat transfer, the emissivity and absorptivity must be evaluated at the 
surface temperature 

 At Ts = 811 K:   p
H2O

 L = (0.107 atm m) 
H2O

sT

T
 = 0.107 atm m) 

811

533

 
    = 0.163 atm m 

From Figure (9.46), ε′H2O ≈ 0.19 
From Equation (9.115) 

 aH2O = CH2O ε′H2O 

0.45
H2O

s

T

T
 
  

 = 1.5(0.19) 
0.45

533

811

 
    = 0.236 

At Ts =811 K: PCO2 L = (0.061 atm m) 
811

533

 
    = 0.093 

From Figure (9.47), ε′CO2 ≈ 0.11 

 αCO2 = 1.25(0.11) 
0.65533

811
 
    = 0.105 

The total absorptivity is the sum of the H2O and CO2 absorptivities 

 αG = 0.236 + 0.105 = 0.341 

The rate of heat transfer is given by Equation (9.117) 

 qr = σ AG (εG TG
4 – αG Ts

4) = σ (2πr2 + πr2) (εm Tm
4 – αG T7

4) 

 qr = ( )–8 2 45.67 10 W/(m K )× [3π(0.61 m)2][0.37(533 K)4 – 0.34(811 K)4] 

 qr = – 2.33 × 104 W (from the surface to the gas) 

PROBLEM 9.32 

Two infinitely large black plane surfaces are 0.3 m apart and the space between them is 
filled by an isothermal gas mixture at 811 K and atmospheric pressure consisting of 25% 
CO2, 25% H2O, and 50% N2 by volume. If one of the surfaces is maintained at 278 K and 
the other at 1390 K respectively, calculate 

(a) the effective emissivity of the gas at its temperature 

(b) the effective absorptivity of the gas to radiation from the 1390 K surface 

(c) the effective absorptivity of the gas to radiation from the 278 K surface 

(d) the net rate of heat transfer to the gas per square meter of surface area 

GIVEN 

• Two infinitely large black plane surfaces with an isothermal gas mixture between them 
• Distance between surfaces (s) = 0.3 m 
• Gas mixture temperature (Tm) = 811 K 
• Gas mixture pressure = 1 atm 
• Gas contents: 25% CO2, 25% H2O, 50 % N2 by volume 
• Surface temperatures  T1 = 278 K 
  T2 = 1390 K 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
826

FIND 

(a) The effective emissivity of the gas at its temperature (εmix) 
(b) The effective absorptivity of the gas to radiation from A1 
(c) The effective absorptivity of the gas to radiation from A2 
(d) The net rate of heat transfer to the gas per square meter of surface are (qm/A) 

ASSUMPTIONS 

• Steady state 
• Convection is negligible 

SKETCH 

s = 0.3 m

A : T1 1 = 78 K

Gas : : 811 KTm

A : T2 2 = 1390 K  

SOLUTION 

(a) The partial pressures of the CO2 and H2O are both 0.25 atm. The equivalent mean hemi- spherical 
beam length, L, is from Table 9.7 

 L = 2s = 0.6m 

 p
CO2

 L = p
H2O

 L = 0.25 atm (0.6m) = 0.15 atm m 

From Figure 9.46 (εH2O)pT ≈ 0.18 From Figure 9.47 (εCO2)pT ≈ 0.11 

 pCO2 L + pH2O L = 2(0.15 atm m) = 0.30 atm m  and H2O

H2O CO2+

p

p p
 = 

0.25

0.50
 = 0.5 

From Figure 9.50 Δε ≈ 0.014 
From Equations (9.114), (9.113a), and (9.113b) 

 εmix = CH2O(εH2O)p
T
 + CCO2(εCO2)p

T
 – Δε = (1) 0.18 + (1) 0.11 – 0.014 = 0.276 

(b) To find the absorptivity to radiation from A1, the emittances of the H2O and CO2 must first be 
evaluated at T1 = 278 K. 

Using the procedure shown above with: p
H2O

 L
H2O

sT

T

 
  

 = 0.15
278K

811K
 
  

 = 0.051 

From Figure 9.46, ε′ H2O ≈ 0.11 From Figure 9.47, ε′ CO2 ≈ 0.085 
Applying Equation (9.115) 

 αH2O = CH2O ε′ H2O

0.45
H2O

s

T

T

 
  

 = (1) (0.11) 
0.45811

278
 
    = 0.178 

Applying equation (9.116) 

 αCO2 = CCO2 ε′ CO2

0.65
CO2

s

T

T

 
  

 = (1) (0.085) 
0.65811

278
 
    = 0.171 

 α1 = αH2O + αCO2 = 0.178 + 0.171 = 0.349 

(c) Repeating this procedure for T2 = 1390 K and pH2O L (Ts/TH2O) = 0.257 
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From Figure 9.46, ε′ H2O ≈ 0.17  From Figure 9.47, ε′ CO2 ≈ 0.14 

 αH2O = (0.17) 
0.45811

1390
 
    = 0.133   and  αCO2 = (0.14) 

0.65811

1390
 
    = 0.099 

 α2 = 0.133 + 0.099 = 0.232 

(d) The rate of heat flow from the gas to A1 is given by Equation (9.117) 

1rq

A
σ (εmix Tm

4 – α1 T1
4)= ( )8 2 45.67 10 W/(m K )−× [0.276 (811 K)4 – 0.349 (278 K)4] = 6651 2W/m  

The rate of heat flow from the gas to A2 is 

2rq

A
σ (εmix Tm

4 – α2 T2
4)= ( )8 2 45.67 10 W/(m K )−× [0.276(811 K)4 – 0.232(1390 K)4] = 42,336 2W/m  

The net rate of heat transfer from the gas is 

 mq

A
 = 1rq

A
 + 2rq

A
 = (6651 – 42,336) W = –35684 W (gain to gas) 

PROBLEM 9.33 

A manned spacecraft capsule has a shape of a cylinder 2.5 m in diameter and 9 m long. The 
air inside the capsule is maintained at 20°C and the convection-heat-transfer coefficient on 
the interior surface is 17 W/(m2 K). Between the outer skin and the inner surface is a 15 cm 
layer of glass-wool insulation having a thermal conductivity of 0.017 W/(m K). If the 
emissivity of the skin is 0.05 and there is no aerodynamic heating or irradiation from 
astronomical bodies, calculate the total heat transfer rate into space at 0 K. 

GIVEN 

• A glass-wool insulated cylinder in space filled with air 
• Diameter (D) = 2.5 cm 
• Length (L) = 9 m 
• Air temperature (Ta) = 20°C = 293 K 
• Interior convective heat transfer coefficient (hc) = 17 W/(m2 K) 
• Insulation thickness (t) = 15 cm = 0.15 m 
• Thermal conductivity of insulation (k) = 0.017 W/(m K) 
• Emissivity of the skin (ε) = 0.05 
• No aerodynamic heating or irradiation from astronomical bodies 

FIND 

• The total rate of heat transfer into space at T∞ = 0 K 

ASSUMPTIONS 

• Steady state 
• Thermal resistance of the capsule walls is negligible compared to that of the insulation 

SKETCH 

D = 2.5 m

L = 9 m

T• = 0 K
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PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

Since D >> t the effect of the cylinder’s curvature can be neglected. The total surface area is 

 A = π D L + 2 
4

π
D2 = π D 

2

D
L +    = π  (2.5m)(9m + 1.25m) = 80.5 m2 

The thermal circuit for the problem is shown below 

TskinTwall

T = OKTa

RkRc Rr

qc qk
qr  

where Rc = convective thermal resistance 
 Rk = conductive thermal resistance of the insulation 
 Rr = radiative thermal resistance 
 qc = convective heat transfer rate to the interior wall = hcA (Ta – Twall) 
 qk = conductive heat transfer rate to the insulation = (k/t)A(Twall – Tskin) 

 qr = radiative heat transfer from the skin = σ ε Tskin
4 

For steady state, all three rates of heat transfer must be equal 

 hc(Ta – Twall) = 
k

t
(Twall –Tskin) = σ ε Tskin

4 

solving for the wall temperature 

 Twall = 
skin

1

a
c

c

k
T T

th
k

th

+

+
 Let B = 

c

k

th
 = ( )2

0.017 W/(m K)

0.15m 17 W/(m K)
 = 0.00667 

 ∴  ch skin

1
a

a
T BT

T
B

+ −  +
 = σ ε Tskin

4 

  σ ε Tskin
4 – ch skin

1
a

a
T BT

T
B

+ −  +
 = 0 

  ( )8 2 45.67 10 W/(m K )−×  (0.05)Tskin
4 – ( )217 W/(m K)

( )skin293K 0.00667
293K

1 0.00667

T+ −  +
 = 0 

Checking the units, then eliminating them for clarity 

  2.835 × 10–9 Tskin
4 + 0.1126 Tskin – 33.0 = 0 

By trial and error 
Tskin = 227 K 

 q = σ ε A Tskin
4 = ( )8 2 45.67 10 W/(m K )−× (0.05) (80.5m2) (227 K)4 = 610 W 
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PROBLEM 9.34 

A 1 m × 1 m square solar collector is placed on the roof of a house. The collector receives 
a solar radiation flux of 800 W/m2. Assuming that the surroundings act as a blackbody at 
an effective sky temperature of 30°C, calculate the equilibrium temperature of the 
collector (a) assuming its surface is black and the conduction and convection are 
negligible, and (b) assuming that the collector is horizontal and loses heat by natural 
convection. 

GIVEN 

• A square solar collector on the roof of a house 
• Collector dimensions = 1 m × 1 m 
• Solar flux on collector (qs) = 800 W/m2 

FIND 

The equilibrium temperature of the collector (T1) assuming 

(a) The collector surface is black (ε1 = 1) and conduction and convection are negligible 
(b) The collector is horizontal and loses heat by natural convection 

ASSUMPTIONS 

• Steady state conditions 
• The surroundings act as a blackbody at an effective sky temperature (T2) = 30°C = 303 K 
• The surrounding air temperature (T∞) = T2 = 303 K 

SKETCH 

1 m

qs = 800 w/m2
A

T

1

= 1

= ?

e1

1

Sky: = 303 K

= 1

T2

2e

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

(a) For equilibrium, the heat loss flux by radiation to the sky must equal the incident solar flux 

 qs = σ ε1 (T1
4 – T2

4) 

Solving for the collector temperature 

 T1 = 
0.25

4
2

1

sq
T

σ ε
 +  

 = 
( )

( ) ( )
( )

0.252
4

8 2 4

800W/m
303K

5.67 10 W/(m K ) 1−
 

+ × 
 = 387 K = 114°C 

(b) The heat loss flux by radiation and convection must equal the incident solar flux 

 qs = σ ε1 (T1
4 – T2

4) + hc (T1 – T∞) 

The natural convection heat transfer coefficient depends on the collector temperature, T1. Therefore, an 
iterative solution is required. Natural convection will tend to lower the collector temperature calculated 
in part (a). For the first iteration, let T1 = 363 K. 
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From Appendix 2, Table 27, for dry air at the film temperature of (363 K + 303 K) = 333 K 

  Thermal expansion coefficient (β) = 0.00300 1/K 

  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

The Raleigh number is 

 RaL = GrL Pr = 
( ) 3

2

g T L Prβ
ν

Δ
 = 

( )( ) ( ) ( ) ( )
( )

3

6 2

9.8m/s 0.0031/K 363K 303K 1m 0.71

19.4 10 m / s−
−

×
 = 3.33 × 109 

The Nusselt number for a horizontal plate with upper surface heated in this Raleigh number range is 
given by Equation (5.16) 

 LNu  = 0.15 
1

3
LRa  = 0.15 

1
9 3(3.33 10 )×  = 224 

 ch  = L
k

Nu
L

 = 224 
( )0.0279 W/(m K)

1m
 = 6.25 2W/(m K)  

Using this in the energy balance 

 800 2W/m  = ( )8 2 45.67 10 W/(m K )−× (1) [T1
4 – (303 K)4] + ( )26.25W/(m K) (T1 – 303 K) 

  5.67 × 10–8 T1
4 + 6.25 T1 – 3171.7 = 0 

By trial and error T1 = 358 K 
The properties of air will not change enough to justify another iteration. 

 

PROBLEM 9.35 

A thin layer of water is placed in a pan 1 m in diameter in the desert. The upper surface 
is exposed to 300 K air and the convection heat transfer coefficient between the upper 
surface of the water and the air is estimated to be 10 W/(m2 K). The effective sky 
temperature depends on atmospheric conditions and is often assumed to be 0 K for a 
clear night and 200 K for a cloudy night. Calculate the equilibrium temperature of the 
water on a clear night and a cloudy night. 

GIVEN 

• A thin layer of water in a circular pan in the desert 
• Pan diameter (D) = 1 m 
• Air temperature (T∞) = 300 K 
• Convective heat transfer coefficient (hc) = 10 W/(m2 K) 
• Effective sky temperature (T2) = 0 K for a clear night, 200 K for a cloudy night 

FIND 

• The equilibrium temperature of the water (T1) (a) on a clear night and (b) on a cloudy night 

ASSUMPTIONS 

• Steady state conditions 
• The effect of the sides of the pan is negligible 
• Heat transfer to the ground is negligible 
• Edge losses are negligible 
• Neglect losses due to evaporation 
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SKETCH 
Sky : = 0 K or 200 KT2

Air : = 300 KT•

Water , = ?T1

D = 1 m
 

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

From Table 9.2, the emissivity of water (ε) ≈ 0.96 

SOLUTION 

For equilibrium, the heat gain by convection to the water must equal the heat loss by radiation 

 ch (T∞ – T1) = ε σ (T1
4 – T2

4) 

 
(a) For T2 = 0 K 

  ε σ T1
4 – ch (T∞ – T1) = 0 

  (0.96) ( )8 2 45.67 10 W/(m K )−×  T1
4 – ( )210W/(m K)  (300 K – T1) = 0 

Checking units, then eliminating for clarity 

  5.443 × 10–8 T1
4 + 10 T1 – 3000 = 0 

By trial and error T1 = 271 K = –2°C (water will freeze) 
(b) For T2 = 200 K 

  5.443 × 10–8 T1
4 + 10 T1 – 3087.1 = 0 

  T1 = 277 K = 4°C 

PROBLEM 9.36 

Liquid nitrogen is stored in a dewar made of two concentric spheres with the space 
between them evacuated. The inner sphere has an outside diameter of 1 m and the space 
between the two spheres is 0.1 m. The surfaces of both spheres are gray with an 
emissivity of 0.2. If the saturation temperature for nitrogen at atmospheric pressure is 78 
K and its latent heat of vaporization is 2 × 105 J/kg, estimate its boil-off rate under the 
following conditions 

(a)  The outer sphere is at 300 K. 

(b)  The outer surface of the surrounding sphere is black and loses heat by radiation to 
surroundings at 300 K. Assume convection is negligible. 

(c)  Repeat item (b) but include the effect of heat loss by natural convection. 

GIVEN 

• Liquid nitrogen in two concentric spheres with the space between them evacuated 
• Inner sphere diameter (Di) = 1 m 
• Space between spheres (s) = 0.1 m 
• Both surfaces are gray with equal emissivites (ε1 = ε2) = 0.2 
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• Saturation temperature of nitrogen (Tn) = 78 K 
• Latent heat of vaporization of nitrogen (hfg) = 2 × 105 J/kg 

FIND 

The boil-off rate ( )m  under the following conditions 

(a) Outer sphere temperature (T2) = 300 K 
(b) Outer surface of outer sphere is black (εo = 1) and loses heat by radiation to surroundings at (Ts) = 

300 K, convection is negligible, and 
(c) Repeat part (b) but include natural convection 

ASSUMPTIONS 

• Steady state 
• Thermal resistance of the sphere walls is negligible 
• Thermal resistance between the nitrogen and the inner sphere is negligible (T1 = Tn) 

SKETCH 

Nitrogen
= 78 K
= 1m

T
D

n

1

M

A1

A2 Ts = 300 K

S = 0.1 m
 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

D2 = D1 + 0.2  = 1.2 m 
(a) The heat transfer is given by Equation (9.75) 

 q12 = A1 F12 (Eb1 – Eb2) = π Di
2 F12 σ (T1

4 – T2
4) 

where f12 for concentric spheres is given by Equation (9.76) 

 F12 = 
11 2

1 2 2

1

1 1
1

A

A

ε ε
ε ε
− −+ +

 = 
( )

( )

2

2

1

1 0.2 1m 1 0.2
1

0.2 0.21.2m

π
π
 − −+ +   

 = 0.129 

 q12 = π (1 m)2 (0.129) ( )8 2 45.67 10 W /(m K )−×  [(78 K)4 – (300 K)4] 

 q12 = – 185.3 W (heat gained by nitrogen) 

The boil-off rate of nitrogen is given by 

 m  = 12

fg

q

h
 = 

( )( )
5

185.3W J/(W s) 3600s/h

2 10 J/kg×
 = 3.3 kg/h 
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(b) A heat balance on the outer sphere yields 
 q12 = q2s 

 A1 F12 σ (T1
4 – T2

4) = A2 σ (T2
4 – Ts

4) 

 T2 = 

1

2

1

2

0.25
4 4

12 1

121

A
s A

A

A

T T +
 
 +  

F

F
 = 

( ) ( )

( )

0.252
44

2

2

2

(1m)
(300K) 0.129 78K

(1.2m)

(1m)
1 0.129

(1.2m)

π
π
π

π

 
+ 

 
 

+ 
 

 = 294 K 

 ∴  q12 = π(1m)2(0.129) ( )8 2 45.67 10 W/(m K )−× [(78 K)4 – (294 K)4] = –170.8W 

 m  = 12

fg

q

h
 = 

( ) ( )
5

170W J/(Ws) 3600s/h

2 10 J/kg×
 = 3.1 kg/h 

(c) A heat balance on the sphere yields: q12 = q2s + qc 

 A1 F12 σ (T1
4 – T2

4) = A2 σ (T2
4 – Ts

4) + hc A2 (T2 – Ts) 
The natural convection heat transfer coefficient, hc, depends on the temperature T2, therefore, an 
iterative solution is required. For the first iteration, let T2 = 296 K. 
From Appendix 2, Table 27, for dry air at the film temperature of (296 K + 300 K)/2 = 295 K = 25°C 

  Thermal expansion coefficient (β) = 0.00336 1/K 
  Thermal conductivity (k) = 0.0255 W/(m K) 
  Kinematic viscosity (ν) = 16.2 × 10–6 m2/s 
  Prandtl number (Pr) = 0.71 

The Nusselt number for 3-D bodies is given by Equation (5.25) 

 Nu+ = 5.75 + 0.7511
( )

+Ra

F Pr

 
  

0.252 

 where  F(Pr) = 

16
9 9

160.49
1

Pr

 
  +    

  

 = 2.876 

 L+ = 
0.5

horz4

A

A

π
 
  

 = 
2

2
0.5

2
2

4
4

D

D

π
π

π
   
   

 = π D = π (1.2m) = 3.77 m 

The Rayleigh number is 

 Ra+ = Gr+Pr = 
( ) ( )3

2

g T L Prβ
ν

+Δ
 = 

( ) ( ) ( ) ( ) ( )

( )

32

26 2

1
9.8m/s 0.00336 4 K 3.77 m 0.71

K

16.2 10 m /s−×
 = 1.91 × 1010 

Although this is outside of the Rayleigh number range for the above correlation, the correlation will be 
used to estimate the Nusselt number for lack of a better method 

 Nu+ = 5.75 + 0.75 
0.252101.91 10

2.876

 ×
  

 = 229 

 hc = Nu+ 
+

K

L
 = 229 

( )0.0255W/(m K)

3.77 m
 = 1.55 2W/(m K)  
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Using this value in the heat balance 

π (1m)2(0.129) ( )8 2 45.67 10 W/(m K )−× [(78 K)4 – T2
4] = π (1.2m)2  

  ( ) ( )8 2 4 4 4 2
2 25.67 10 W/(m K ) [ (300 K) ] 1.55W/(m K) ( 300 K)T T− × − + −   

  2.795 × 10–7 T2
4 + 7.01 T2 – 4182 = 0 

By trial and error 
T2 = 295 K 

The effect of natural convection is negligible 
m  = 3.1 kg/h 

PROBLEM 9.37 

A Package of electronic equipment is enclosed in a sheet-metal box which has a 0.3 m 
square base and is 0.15 m high. The equipment uses 1200 W of electrical power and is 
placed on the floor of a large room. The emissivity of the walls of the box is 0.80 and the 
room air and the surrounding temperature is 21°C. Assuming that the average 
temperature of the container wall is uniform, estimate that temperature. 

GIVEN 

• A sheet metal box of electronics in a large room 
• Box dimensions: 0.3 m × 0.3 m × 0.15 m high 
• Power dissipation of electronics ( )Gq = 1200 W 

• Emissivity of the walls of the box (ε) = 0.80 
• Room air and surrounding temperature (T∞) = 21°C = 294 K 

FIND 

• The average temperature of the container walls (Tb) 

ASSUMPTIONS 

• The average temperature of the container walls is uniform 
• Steady state 
• The room behaves as a blackbody enclosure 
• Heat loss from the bottom of the box is negligible 

SKETCH 

Metal Box

T• = 21°C

Room

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
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SOLUTION 

The heat loss by natural convection and radiation from the box must equal the rate of electrical power 
dissipation. 

  qc,T + qc,sides + qr = Gq  

  (Atop hc,top + Asides hc,sides) (Tb – T∞) + σ ε (Atop + Asides) (Tb
4 – T∞

4) 

The natural convection heat transfer coefficients are dependent on Tb, therefore, an iterative solution 
must be used. The initial guess for the box temperature will be based on the box temperature 
neglecting convection 

 qr = Gq  

  σ ε (Atop + Asides) (Tb
4 – T∞

4) = Gq  

 Tb = 
( )

0.25

4

top sides

Gq
T

A Aσ ε ∞
 

+ + 


 

 Tb = ( ) ( ) ( )
0.25

4
8 2 4 2 2

1200 W
294K

5.67 10 W/(m K ) 0.80 0.09m 0.18m−

 
+ 

× + 
 = 570 K 

Natural convection will cause the box temperature to be lower than this value. For a first guess, let Tb 
= 500 K 
From Appendix 2, Table 27, for dry air at the film temperature of 397 K (124°C) 

  Thermal expansion coefficient (β) = 0.00254 1/K 

  Thermal conductivity (k) = 0.0322 W/(m K) 

  Kinematic viscosity (ν) = 26.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

The Grashof number, based on the length of a side of the top of the box is 

 Gr
L
 = 

( ) 3

2
bg T T Lβ
ν

∞−
 = 

( )
( )

2 3

6 2

1
9.8m/s 0.00254 (500 K – 294 K)(0.3m)

K
26.4 10 m /s−

 
  

×
 = 1.98 × 108 

The Nusselt number for the top of the box is given by Equation (5.16) 

 LNu  = 0.15 
1

3( )LGr Pr  = 0.15 
1

8 3[(1.98 10 ) (0.71)]×  = 78.0 

 ,topch  = LNu
k

L
 = 78.0

( )0.0322 W/(m K)

0.3m
 = 8.37 2W/(m K)  

The Grashof number for the sides of the box is 

 Gr
H
 = 

( ) 3

2
bg T T Hβ

ν
∞−

 = 
( )

( )

2 3

26 2

1
9.8m/s 0.00254 (500 K – 294 K)(0.15m)

K

26.4 10 m /s−

 
  

×
 = 2.48 × 107 
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The Nusselt number is given by Equation (5.12b) 

 HNu  = 0.68 
1

2Pr  ( )
1
4

1
4

HGr

0.952 Pr+
 = 0.68

1

2(0.71)  
( )

( )

1
4

1
4

72.48 10

0.952 0.71

×
+

= 35.62 

 ,sidesch  = HNu
k

H
 = 35.62

( )0.0322 W/(m K)

0.15m
 = 7.65 2W/(m K)  

Substituting these into the energy balance 

  ( ) ( )2 2 2 2(0.09 m ) 8.37 W/(m K) (0.18m ) 7.65W/(m K) +   (Tb – 294 K)  

   + ( )8 2 45.67 10 W/(m K )−×  (0.8)(0.27 m2) [Tb
4 – (294 K)4] = 1200 W 

Checking the units, then eliminating for clarity 

  1.225 × 10–8 Tb
4 + 2.130 Tb – 1918 = 0 

By trial and error: Tb = 510 K 
Performing another iteration yields the following results 
  Film temperature = 402 K 

  k = 0.0325 W/(m K) 

  β = 0.00251 1/K 

  ν = 27.1 × 10–6 m2/s 

  Pr = 0.71 

hc,top = 8.41 W/(m2 K) 

hc,sides = 7.69 W/(m2 K) 

Tb = 510 K = 237°C 

COMMENTS 

Note that neglecting natural convection leads to an error of 60 K. 

PROBLEM 9.38 

An 0.2 m OD oxidized steel pipe at a surface temperature of 756 K passes through a large 
room in which the air and the walls are at 38°C. If the heat transfer coefficient by 
convection from the surface of the pipe to the air in the room is 28 W/(m2 K), estimate 
the total heat loss per meter length of pipe. 

GIVEN 

• An Oxidized steel pipe passes through a large room 
• Pipe outside diameter (D) = 0.2 m 
• Pipe surface temperature (Ts) = 756 K 
• Air and wall temperature (T∞) = 38°C = 311 K 
• Convective heat transfer coefficient (hc) = 28 W/(m2 K) 

FIND 

• The total heat loss per meter of pipe (q/L) 
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ASSUMPTIONS 

• Steady state 
• The walls of the room are black (εw = 1.0) 
• The H2O and CO2 in the room air are negligible 

SKETCH 

Ts = 765 K

T• = 311 K

Room

Pipe
D = 0.2 m

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

From Table 9.2, the emissivity of oxidized steel (εs) ≈ 0.80 

SOLUTION 

The total rate of heat transfer is the sum of the convective and radiative rates 

 q = hc At (Ts – T∞) + σ εs A (Ts
4 – T∞

4) 

where A = π D L 

 
q

L
 = π D [hc(Ts – T∞) + σ εs (Ts

4 – T∞
4)] 

q

L
 = π (0.2m) ( ) ( )2 8 2 4 4 428W/(m K) (756 K 311K) 5.67 10 W/(m K ) (0.80) (756 K) (311K)−  − + × −    

 q/L = 1.68 × 104 W/m 

PROBLEM 9.39 

A 6 mm thick sheet of polished 304 stainless steel is suspended in a comparatively large 
vacuum-drying oven with black walls. The dimensions of the sheet are 30 cm 
× 30cm, and its specific heat is 565 J/(kg K). If the walls of the oven are uniformly at 
150°C and the metal is to be heated from 10 to 120°C, estimate how long the sheet should 
be left in the oven if (a) heat transfer by convection may be neglected and (b) the heat 
transfer coefficient is 3 W/(m2 K). 

GIVEN 

• A sheet of polished stainless steel in a large vacuum drying oven with black walls 
• Sheet thickness (s) = 6 mm = 0.006 m 
• Sheet dimensions = 30 cm × 30 cm = 0.3 m × 0.3 m 
• Specific heat of the sheet (c) = 565 J/(kg K) 
• Oven wall temperature (Tw) = 150°C = 423 K 
• Sheet temperatures  Initial (Tsi) = 10°C = 283 K 
  Final (Tsf) = 120°C = 393 K 
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FIND 

• How long the sheet should be left in the oven if (a) convection may be neglected and, (b) the 
convective heat transfer coefficient (hc) = 3 W/(m2 K) 

SKETCH 

Oven

Tw = 423 K

S = 6 mm

30 cm

30 cm

Tsi = 283 K

Tsf = 393 K

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Appendix 2, Table 10, the thermal conductivity of type 304 stainless steel (ks) = 14.4 W/(m K) 
and its density (ρs) = 7817 kg/m3 
From Table 9.2, the emissivity of polished stainless steel at the average temperature of 65°C  
(338 K) (εg) = 0.15 

SOLUTION 

(a) Neglecting convection, the rate of heat transfer is given by 

 qr = σ ε A (Tw
4 – Ts

4) 

The radiative heat transfer coefficient is given by Equation (9.118) 

 hr = 
( )

r

w s

q

A T T−
 = σ ε 

4 4
w s

w s

T T

T T

 −
 − 

 

For the final conditions 

 hrf = ( )8 2 45.67 10 W/(m K )−× (0.15) 
4 4(423) (393K)

(423K 393K)

 −
 − 

 = 2.31 2W/(m K)  

For the initial conditions 

 hrf = 1.56 2W/(m K)  

The Biot number based on half of the sheet thickness is 

 Bimax = 
,max

2
r

s

h s

K
 = 

( )
( )

22.31W/(m K) (0.006m)

2 14.4 W/(m K)
 = 0.0005 < < 0.1 
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Therefore, the internal thermal resistance of the steel sheet may be neglected. The temperature change 
of the sheet over a small time step is given by 

 ΔT  = 
q T

m c

Δ
 = 

( )4 4

(volume)
w sA T T T

c

σ ε
ρ

− Δ
 = 

( )4 42 w sT T T

s c

σ ε
ρ

− Δ
 

 ΔT = 
( ) ( )
( ) ( )

8 2 4

3

2 5.67 10 W /(m K ) (0.15) J/(Ws)

7817 kg/m (0.006m) 565J/(kg K)

−×
[(423 K)4 – Ts

4] Δt = (0.0206 – 6.42 × 10–13 Ts
4) Δt 

As the plate heats up, the rate of heat transfer will diminish. Therefore, the following numerical 
solution will be followed until Ts = Tsf: 

 1. Let Δt = 20 min = 1200 s 

 2. Calculate ΔT using Tsi 

 3. Update Ts: Ts = Tsi + ΔT 

 4. Use the new Ts to calculate a new ΔT and repeat the procedure 
 t (min) ΔT (K) Ts (K) 

 0 --- 282 
 20 19.8 301.8 
 40 18.3 320.1 
 60 16.6 336.6 
 80 14.8 351.4 
 100 12.9 364.3 
 120 11.1 375.4 
 140 9.4 384.4 
 160 7.8 392.5 
 162 0.6 393.1 

The time required = 162 min = 2.7 hours. 
(b) The rate of heat transfer by radiation and convection is 

 q = qc + qr = hc A (Tw – Ts) + σ ε A (Tw
4 – Ts

4) 

 ΔT = 
( )c rq q T

mc

+ Δ
 = 

4 42 ( ) 2 ( )c w s w sh T T T T

s c

σ ε
ρ

− + −
Δt 

 ΔT = 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

42 8 2 4 4

3

2 3W/(m K) 423K 2 5.67 10 W/(m K ) 0.15 423K

7817 kg/m 0.006m 565J/(kg K) (Ws)/J

s sT T−  − + × −  Δt 

 ΔT = (–6.419 × 10–13 Ts
4 – 0.000226 Ts + 0.1163) ( )K/s Δt 

Following the procedure of part (a), Let Δt = 10 min initially 
 t (min) ΔT (K) Ts (K) 
 0 --- 282 
 10 29.1 311.1 
 20 24.0 335.1 
 30 19.5 354.6 
 40 15.6 370.2 
 50 12.3 382.5 
 60 9.7 392.1 
 61 0.88 393.1 

Time required = 61 min = 1.02 hour. 
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PROBLEM 9.40 

Calculate the equilibrium temperature of a thermocouple in a large air duct if the air 
temperature is 1367 K, the duct-wall temperature 533 K, the emissivity of the 
thermocouple 0.5, and the convective heat transfer coefficient, hc, is 114 W/(m2 K). 

GIVEN 

• A thermocouple in a large air duct 
• Air temperature (Ta) = 1367 K 
• Duct wall temperature (Td) = 533 K 
• The emissivity of the thermocouple (εtc) = 0.5 
• The convective heat transfer coefficient (hc) = 114 W/(m2 K) 

FIND 

• The equilibrium temperature of the thermocouple (Ttc) 

ASSUMPTIONS 

• Conduction along the thermocouple is negligible 
• The walls of the duct are black 
• The CO2 and H2O in the air are negligible 

SKETCH 

Air
= 1367 KTa

Tnermolovple
= ?

= 0.5

Ttc

tce

Td = 533 K

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

In steady state, the heat gain by convection must equal the heat loss by radiation 

  hc A (Ta – Ttc) = σ εtc A (Ttc
4 – Td

4) 

  ( )2114 W/(m K)  (1367K – Ttc) = ( )8 2 45.67 10 W/(m K )−× (0.5) [Ttc
4 – (533 K)4] 

Checking in units, then eliminating them for clarity 

  2.835 × 10–8 Ttc
4 + 114 Ttc – 158,126 = 0 

  By trial and error 

  Ttc = 1066 K. 

COMMENTS 

Assuming the purpose of the thermocouple is to measure the temperature of the air flowing in the duct, 
we have an error of 301 K. This so-called thermocouple radiation error can be reduced by increasing 
the convective heat transfer coefficient via higher air velocity, by reducing the thermocouple 
emissivity, or by the addition of a radiation shield, see problem 9.41. 
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PROBLEM 9.41 

Repeat Problem 9.40 with the addition of a radiation shield with emissivity ε, = 0.1. 

From Problem 9.40: Calculate the equilibrium temperature of a thermocouple in a large 
air duct if the air temperature is 1367 K, the duct-wall temperature 533 K, the emittance 
of the couple 0.5, and the convective heat transfer coefficient, hc, is 114 W/(m2 K). 

GIVEN 

• A thermocouple surrounded by a radiation shield in a large air duct 
• Air temperature (Ts) = 1367 K 
• Duct wall temperature (Td) = 533 K 
• The emissivity of the thermocouple (εtc) = 0.5 
• The convective heat transfer coefficient (hc) = 114 W/(m2 K) 
• Shield emissivity (εs) = 0.1 

FIND 

• The equilibrium temperature of the thermocouple (Ttc) 

ASSUMPTIONS 

• Conduction along the thermocouple is negligible 
• The walls of the duct are black 
• The CO2 and H2O in the air are negligible 
• The heat transfer coefficient on the inside and outside of the shield is hc 
• The conductive thermal resistance of the shield is negligible 
• The view factor between the shield and the thermocouple ≈ 1 
• The surface area of the shield is large compared to that of the thermocouple 

Shield and thermocouple are gray 
• The thermocouple and shield can be approximated by infinitely long concentric cylinders 
• Convective heat transfer between the shield and thermocouples is negligible 

SKETCH 

Air
= 1367 KTa

Thermocouple
= ?

= 0.5

Ttc

tce

Td = 533 K

Shield,

= 0.1

Ts

se
 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/ (m2 K4) 

SOLUTION 

Let As = the inside area of the shield ≈ the outside area of the shield. 
A heat balance on the radiation shield yields 

  qs + csh 2 As (Ta – Ts) = σ εs As (Ts
4 – Td

4) 

Where qs is the radiative heat transfer to the shield from the thermocouple which is given by Equation 
(9.74) for long concentric cylinders 

 qs = 
( )

11
tc btc bs

tc s

tc s s

A E E
A

A

ε
ε ε

−
− +   

      but 
tc

s

A

A
 << 1          ∴ qs= Atc εtc σ (Ttc

4 – Ts
4) 
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Substituting this into the energy balance and dividing by As 

  
tc

s

A

A
εtc σ (Ttc

4 – Ts
4) + 2 csh (Ta – Ts) = σ εs (Ts

4 – Td
4) 

 ∴   2 hcs (Ta – Ts) ≈ σ εs (Ts
4 – Td

4) 

This shown that since the thermocouple is small compared to the shield, the effect of the thermocouple 
wire on the shield temperature can be neglected 

  2 ( )2114 W/(m K) (1367K – Ts) = ( )8 2 45.67 10 W/(m K )−× (0.1) [Ts
4 – (533 K)4] 

  5.67 × 10–7 Ts
4 + 228 Ttc – 312,134 = 0 

By trial and error 
Ts = 1298 K. 

Performing a heat balance on the thermocouple 

  ch Atc (Ts – Ttc) = σ εtc Atc (Ttc
4 – Ts

4) 

  ( )2114 W/(m K) (1367K – Ttc) = ( )8 2 45.67 10 W/(m K )−× (0.5) [Ttc
4 – (1298 K)4] 

  2.835 × 10–8 Ttc
4 + 114 Ttc – 236,311 = 0 

By trial and error 
Ttc = 1319 K. 

COMMENTS 

The thermocouple error has been reduced from 301 K to 48 K by use of the radiation shield. 

PROBLEM 9.42 

A thermocouple is used to measure the temperature of a flame in a combustion chamber. 
If the thermocouple temperature is 1033 K and the walls of the chamber are at 700 K, 
what is the error in the thermocouple reading due to radiation to the walls? Assume all 
surfaces are black and the convection coefficient is 568 W/(m2 K) on the thermocouple. 

GIVEN 

• A thermocouple in a combustion chamber flame 
• Thermocouple temperature (Ttc) = 1033 K 
• Chamber wall temperature (Tw) = 700 K 
• Convection coefficient (hc) = 568 W/(m2 °C) 
• All surfaces are black (ε = 1.0) 

FIND 

• The error in the thermocouple reading due to radiation to the walls 

ASSUMPTIONS 

• Conduction along the thermocouple is negligible 
• Steady state 
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SKETCH 

Tw w= 700 K, = 1e

Ttc = 1033 K

= 1e
Thermocouple

Flame
Tf

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

In steady state, the rate of heat gain by convection from the flame must equal the heat loss by radiation 
to the walls: 

  hc A (Tf – Ttc) = σ ε A (Ttc
4 – Tw

4) [ε = 1] 

Solving for the flame temperature 

 Tf = Ttc + 
ch

σ
(Ttc

4 – Tw
4) = 1033 K + 

( )
( )

8 2 4

2

5.678 10 W/(m K )

568W/(m K)

−×
 [(1033K)4 – (700K)4] = 1123 K 

 Error = Tf – Ttc = 1123 – 1033 = 90 K 

PROBLEM 9.43 

A metal plate is placed in the sunlight. The incident radiant energy G is 780 W/m2. The 
air and the surroundings are at 10°C. The heat transfer coefficient by natural convection 
from the upper surface of the plate is 17 W/(m2 K). The plate has an average emissivity 
of 0.9 at solar wavelengths and 0.1 at long wavelengths. Neglecting conduction losses on 
the lower surface, determine the equilibrium temperature of the plate. 

GIVEN 

• A metal plate is sunlight 
• Incident radiant energy (G) = 780 W/m2 
• Temperature of air and surroundings (T∞) = 10°C = 283 K 
• Natural convection heat transfer coefficient (hc) = 17 W/(m2 K) 
• Plate emissivity (ε) = 0.9 at solar wavelengths, 0.1 at long wavelengths 

FIND 

• The equilibrium temperature of the plate (Tp) 

ASSUMPTIONS 

• Steady state 
• Conduction losses on the lower surface of the plate are negligible 
• The surroundings behave as a blackbody enclosure 

SKETCH 

G = 780 W/m2

Ts = ?

Insulation
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PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The plate will absorb the solar radiation with the absorptivity (α) = ε = 0.9 according to Kirchoff’s 
Law. However, it will radiate to its surroundings at longer infrared wavelengths with ε = 0.1. The heat 
gain from solar radiation must equal the heat flux loss by radiation and convection at steady state 

 α G = hc (Tp – T∞) + σ ε (Tp
4 – T∞

4) 

 (0.9) ( )2780W/m  = ( )217 W/(m K) (Tp – 283K) + ( )8 2 45.67 10 W/(m K )−× (0.1) [Tp
4 – (283 K)4] 

  5.67 × 10–9 Tp
4 + 17 Tp – 5549.37 = 0 

By trial and error 
Tp = 323 K = 50°C 

PROBLEM 9.44 

A 0.6-m-square section of panel heater is installed in the corner of the ceiling of a room 
having a 2.7 m × 3.6 m floor area with an 2.4 m ceiling. If the surface of the heater, made 
from oxidized iron, is at 147°C and the walls and the air of the room are at 20°C in the 
steady state, determine (a) the rate of heat transfer to the room by radiation, (b) the rate 
of heat transfer to the room by convection (hc = 11 W/(m2 K), (c) the cost of heating the 
room per day if the cost of electricity is Rs.3.50 per kWh. 

GIVEN 

• A 0.6 m square panel heater in the corner of the ceiling of a room 
• Room dimensions: 2.7 m × 3.6 m × 2.4 m 
• Heater has oxidized iron surface 
• Surface temperature (Ts) = 147°C = 420 K 
• Room air and walls (T∞) = 20°C = 293 K 
• Convective heat transfer coefficient = 11 W/(m2 K) 

FIND 

(a) Rate of radiative heat transfer to the room (qr) 
(b) Rate of convective heat transfer to the room (qc) 
(c) Cost of heating the room at Rs.3.50/(kW/h) 

ASSUMPTIONS 

• The walls of the room are black (εw = 1) 
• Steady state conditions 
• Effect of H2O and CO2 in the air is negligible 
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SKETCH 

Heater
= 420 KTs

3.6 m

2.
7

m

2.4 m

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

From Table 9.2, the emissivity of cast oxidized iron at 420 K (εs) = 0.64 

SOLUTION 

(a) Since the view factor of the heater to the room is unity, the rate of heat transfer by radiation is 

 qr = σ εs A (Ts
4 – T∞

4) 

where A = area of heater = 0.36 m2 

 qr = (5.67 × 10–8 W/(m2 K4)) (0.64) [(420 K)4 – (293 K)4] (0.36 m2) = 310 W 

(b) The rate of heat transfer by convection is 

 qc = hc A (Ts – Tair) = (11 W/(m2 K)) (0.36 m)2 (420 – 293)K = 503 W 

(c) Cost = (qr + qc) (energy cost) 

 Cost = 
(310 W 503W)

1000 W/kW

+
 × (24 hr/day) (Rs.3.50/kW hr) 

  = Rs.68.3/day 

 

PROBLEM 9.45 

In a manufacturing process, a fluid is transported through a cellar maintained at a 
temperature of 300 K. The fluid is contained in a pipe having an external diameter of 0.4 
m and whose surface has an emissivity of 0.5. To reduce heat losses, the pipe is 
surrounded by a thin shielding pipe having an ID of 0.5 m and an emissivity of 0.3. The 
space between the two pipes is effectively evacuated to minimize heat losses and the 
inside pipe is at a temperature of 550 K. (a) Estimate the heat loss from the liquid per 
meter length, (b) If the fluid inside the pipe is an oil flowing at a velocity of 1 m/s, 
calculate the length of pipe for a temperature drop of 1 K. 

GIVEN 

• Fluid in concentric pipes, with the space between the pipes evacuated, running through a cellar 
space 

• Cellar temperature (T∞) = 300 K 
• External diameter of inner pipe (D1) = 0.4 m 
• Emissivity of outer pipe surface (ε1) = 0.5 
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• Inside diameter of outer pipe (D2) = 0.5 m 
• Emissivity of inner pipe (ε2) = 0.3 
• Inside pipe temperature (T1) = 550 K 

 

FIND 

(a) The heat loss from the liquid per meter length (q/L) 
(b) The length of pipe for a temperature drop of 1 K if the fluid is oil flowing at a velocity (V) =  

1 m/s 

 

ASSUMPTIONS 

• Steady state 
• Convection between the pipes is negligible 
• The thermal resistance of the pipe walls is negligible 
• The thickness of the outer pipe wall is negligible (Inside surface area ≈ Outside surface area) 
• Area of the cellar is large compared to the pipe so that cellar behaves as a blackbody enclosure at 

T∞ 
• Oil has the thermal properties of unused engine oil 
• The temperature of the inner pipe is constant 

SKETCH 

D1 = 0.4 m

e2 = 0.3

T1

1

= 550 K

= 0.5e

D2 = 0.5 m

T• = 300 K

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
Extrapolating Appendix 2, Table 16, for unused engine oil at 550 K 

  Density (ρ) = 742 kg/m3 

  Specific heat (c) 2998 J/(kg K) 

SOLUTION 

The rate of heat transfer between the pipes is given by Equation (9.75) 

 q12 = A1 F12 (Eb1 – Eb2) = A1 F12 σ (T1
4 – T2

4) 

where F12 is given for infinite concentric cylinders by Equation (9.76) 

 F12 = 
11 2

1 2 2

1

1 1
1

A

A

ε ε
ε ε
− −+ +

 = 
( )

( )

1

0.4m1 0.5 1 0.341
0.5 0.30.5m

4

L

L

π

π

 
− − + +  

  

 = 0.259 
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The rate of heat transfer from the outer pipe to the surroundings is the sum of the rates of convective 
and radiative heat transfer 

 q2∞ = ch A2 (T2 – T∞) = σ ε2 A2 (T2
4 – T∞

4) 

An energy balance on the outer pipe yields 

  q
12

 = q
2∞

 

  F12 σ (T1
4 – T2

4) = ch
2

1

A

A
(T2 – T∞) + σ ε2

2

1

A

A
(T2

4 – T∞
4) 

  0.259 ( )8 2 45.67 10 W/(m K )−×  [(550 K)4 – T2
4]  

  = 
0.5

0.4ch  
    (T2 – 300K) + ( )8 2 45.67 10 W/(m K )−× (0.3) 

0.5

0.4
 
   [T2

4 – (300 K)4] 

Checking the units, then eliminating them for clarity 

  3.595 × 10–8 T2
4 + 1.25 hc T2 – 375 hc – 375 hc – 1516 = 0 

Since the value of the natural convection heat transfer coefficient, hc, depends on T2, an iterative 
solution must be used. For the first iteration, let T2 = 400 K. 
The Grashof number is 

 Gr
D
 = 

( ) 3

2
a

g T Dβ
ν
Δ

 = 
( )

( )
2 3

26 2

9.8 m/s (0.002831/K)(100 K)(0.5m)

21.5 10 m /s−×
 = 7.5 × 108 

 Gr
D
 Pr = 7.5 × 108 (0.71) = 5.32 × 108 

The Nusselt number for this geometry is given by Equation (5.20) 

 DNu  = 0.53 
1

4( )DGr  Pr  = 0.53 
1

8 4(5.32 10 )×  = 80.5 

 ch  = DNu
k

D
 = 80.5

( )0.0293W/(m K)

0.5m
 = 4.72 2W/(m K)  

Substituting this value into the energy balance yields 

  3.595 × 10–8 T2
4 + 5.896 T2 – 3285 = 0 

By trial and error 
T2 = 400 K 

(a) The rate of heat transfer from the liquid is 

 
q

L
 = π D1 F12 σ (T1

4 – T2
4) = π (0.4 m) (0.259) ( )8 2 45.67 10 W/(m K )−×  [(550 K)4 – (400 K)4] 

 
q

L
 = 1216 W/m  

(b) The length of pipe for a temperature drop (ΔT) of 1 K can be determined from the following 

 
q

L
 = 

m c T

L

Δ
 = cV A c T

L

ρ Δ
 = 

2
14

V D c T

L

πρ   Δ 
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Solving for L 

 L = 
2

1

4

V D c T
q
L

π ρ Δ
 
 

 = 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

23742 kg/m 1m/s 0.4 m 2998 J/(kg K) 1K

4 1216W/m J/(Ws)

π
 = 230 m 

PROBLEM 9.46 

45 kgs of carbon dioxide is stored in a high-pressure cylinder 25 cm in diameter (OD), 1.2 
m long and 1.2 cm thick. The cylinder is fitted with a safety rupture diaphragm designed 
to fail at 140 bar (gauge) (with the specified charge, this pressure will be reached when 
the temperature increases to 50°C). During a fire, the cylinder is completely exposed to 
the irradiation from flames at 1097°C (ε = 1.0). For the specified conditions, c = 2.5 
kJ/(kg K) for CO2. Neglecting the convective heat transfer, determine the time the 
cylinder may be exposed to this irradiation before the diaphragm will fail if the initial 
temperature is 21°C and (a) the cylinder is bare oxidized steel (ε = 0.79),  
(b) the cylinder is painted with aluminum paint (ε = 0.30). 

GIVEN 

• CO2 in a high pressure cylinder exposed to flames 
• Mass of CO2 = 45 kg 
• Cylinder dimensions  Outside Diameter (D) = 25 cm 
   Length (L) = 1.2 m 
   Thickness (s) = 1.2 cm 
• Rupture diaphragm fails at 140 bar (gauge) (Tgf = 323 K) 
• Temperature of flames (Tf) = 1097°C = 1370 K (εf = 1.0) 
• Specific heat of CO2 (cv) = 2.5 kJ/(kg K) 
• Initial temperature (Tgf) = 21°C = 294 K 

FIND 

The time for the diaphragm to fail if the cylinder is 

(a) bare oxidized steel (εs = 0.79) or 
(b) painted with aluminum paint (εs = 0.30) 

ASSUMPTIONS 

• Convective heat transfer is negligible 
• Cylinder is 1% carbon steel 
• Irradiation is constant and uniform over the entire cylinder 
• Quasi-steady state 

• Thermal resistance between the gas and the cylinder is negligible (Ts = Tg) 
• Variation of specific heat of gas and cylinder with temperature is negligible 

SKETCH 

D = 25 cm

L = 1.2 m

Surrounded
By

Flames
= 1097 °CTf
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PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Appendix 2, Table 10, for 1% carbon steel at 20°C 

  Density (ρs) = 8020 kg/m3 

  Specific heat (cs) = 473 J/(kg K) 

SOLUTION 

The exterior surface area of the cylinder is 

 As = π D L + 2 
4

π
D2 = 

2

π
D (2 L + D) = 

2

π
(0.25 m) [2(1.2 m) + 0.25 m] = 1.04 m2 

The mass of steel in the cylinder is 

 ms = ρs (volume) = ρs As s = (8020 kg/m3) (1.04 m2) (1.2 × 10–2 m) = 100 kg 

Performing an energy balance on the gas 

  heat input = rate of increase in enthalpy 

  σ εs As (Tf
4 – Tg

4) = (mg cv + ms cs) 
gdT

d t
 [Tg = Ts] 

Solving for the rate of change of the gas temperature 

 
gdT

d t
 = s s

g v s a

A

m c m c

σ ε
+

 (Tf
4 – Tg

4) 

 
gdT

d t
 = 

–8 2 4 2(5.67 10 W/(m K )) (1.04m )

(45kg)(2500J/(kg K)) + (100kg) (473J/(kg K))
sε×

 [(1370 K)4 – Tg
4] 

 
gdT

d t
 = 3.69 × 10–13 εs (3.523 × 1012 – Tg

4) K/s 

Case (a) 
Initially  

 
gdT

d t
 = 3.69 × 10–13 (0.79)[3.523 × 1012 – (294)4] K/s = 1.03 K/s 

Finally  

 
gdT

d t
 = 3.69 × 10–13 (0.79)[3.523 × 1012 – (323 K)4] K/s = 1.024 K/s 

The rate of change of the gas temperature is essentially constant, and hence the time required for the 
gas to reach 50°C is 

 t = 
50°C 21°C

1.024°C/s

−
 = 28.3 seconds 

Case (b) 

 
gdT

d t
 = 3.69 × 10–13 (0.30)[3.523 × 1012 – (294 K)4] K/s = 0.39 K/s or °C/s 

∴ t = 
50°C 21°C

0.39°C/s

−
 = 74 seconds 
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PROBLEM 9.47 

A hydrogen bomb may be approximated by a fireball at a temperature of 7200 K 
according to a report published in 1950 by the Atomic Energy Commission. 
(a) Calculate the total rate of radiant-energy emission in watts, assuming that the gas 
radiates as a blackbody and has a diameter of 1.5 km, (b) If the surrounding atmosphere 
absorbs radiation below 0.3 μ m, determine the per cent of the total radiation emitted by 
the bomb which is absorbed by the atmosphere, (c) Calculate the rate of irradiation on a 
1 m2 area of the wall of a house 40 km from the center of the blast if the blast occurs at 
an altitude of 16 km and the wall faces in the direction of the blast, (d) Estimate the total 
amount of radiation absorbed assuming that the blast lasts approximately 10 sec and 
that the wall is covered by a coat of red paint, (e) If the wall were made of oak whose 
flammability limit is estimated to be 650 K and that had a thickness of 1 cm, determine 
whether or not the wood would catch on fire. Justify your answer by an engineering 
analysis stating carefully all assumptions. 

GIVEN 

• A hydrogen bomb fireball 
• Fireball temperature (T1) = 7200 K 
• Surrounding atmosphere absorbs radiation below 0.3 μm 
• The blast occurs at an altitude (H) of 16 km = 16,000 m 

FIND 

(a) The total rate of radiant-energy emission in watts (qr) 
(b) The percent of the total radiation absorbed by te atmosphere 
(c) The rate of irradiation on a 1 m2 area of the wall of a house 40 km (40,000 m) from the center of 

the blast and facing the blast (G2) 
(d) Total amount of radiation absorbed if the blast lasts 10 seconds and the wall is covered with red 

paint 
(e) If the walls are oak with a flammability limit of 650 K and a thickness (s) of 1 cm, will the wood 

catch fire? 

ASSUMPTIONS 

• The gas radiates as a blackbody 
• Diameter of the fireball (D) = 1.5 km 
• The air and surrounding temperature (T∞) = 10°C 
• The surroundings behave as a blackbody enclosure 
• The heat transfer from the oak walls to its surroundings during the 10 seconds of irradiation can be 

neglected 
• The house wall is initially at the surroundings temperature 

SKETCH 

D = 1.5 km

T1 = 7200 K

H = 16 km L

T• = 10°C

A T2 2: = ?

40 km

q
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PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

From Table 9.2  the emissivity of red paint at short wavelengths (ε2s) = 0.74 

 the emissivity of red paint at long wavelengths (ε21) = 0.97 
From Appendix 2, Table 11, for oak  Specific heat (c) = 2390 J/(kg K) 
 Thermal conductivity (ks) = 0.19 W/(m K) 

 Density (ρ) ≈ 700 kg/m3 

 Thermal diffusivity (αth) ≈ 0.011 × 10–5 m2/s 

SOLUTION 

(a) The total rate of radiation emission is the blackbody emissive power, from Equation (9.3), times 
the area 

 q
1
 = Eb1 A = σ T1

4 π D2 = ( )8 2 45.67 10 W/(m K )−× (7200 K)4 π (1500 m)2 = 1.08 × 1015 W 

(b) For λ = 0.3 μ m, Tλ = (7200 K)(0.3 × 10–6 m) = 2.16 × 10–3 m K 
The fraction of energy absorbed is the fraction, e of the total radiation below 0.3 μm which can be read 
directly from Table 9.1 

  % absorbed by atmosphere = 1
4

(0 )bE T

T

λ
σ

→
 × 100 = (0.09406)(100) = 9.4% 

(c) The distance between the house and the fireball center (L) is 

 L = ( ) ( )2 216km 40km+  = 43 km 

The energy calculated in part (a) will spread evenly in all directions from the fireball. Therefore, the 
flux at the distance L = q1/AsL where AsL is the surface area of a sphere of radius L 

 1
24

q

Lπ
 = 

( )

15

2

1.08 10 W

4 43,000mπ
×

 = 46,480 2W/m  

However, the atmosphere will absorb 9.4% of this energy. 

  Energy flux at wall = 46,480 ( )246,480W/m  (1 – 0.094) = 42,110 2W/m  

The angle between this flux and the (normal to the) wall surface, θ, is given by 

 tanθ = 
16km

40km
  θ = 21.8° 

Therefore, the irradiation on the wall is 

 G2 = (42,110  W/m2) cosθ = 39,100 W/m2 

(d) By Kirchoff’s law, the absorptivity (α2) = ε2 

  Energy absorbed= G2 ε2 t = 39,100 ( ) ( )239,100 W/m J/(Ws)  (0.74) (10s) ( )kJ/(1000J)  = 289 2kJ/m  

(e) The radiative heat transfer coefficient (hr) is given by 

 G2 = rh (Tf  – Ts) → rh  = 2

f s

G

T T−
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Since Ts << Tf, the heat transfer coefficient will not vary much as the Tf changes. To estimate hr, let  
Tf = 500 K 

 ∴  rh  = 
( )239,100 W/m

7200 K 500 K−
 = 5.84 2W/(m K)  

The Biot number for the wall is 

 Bi = 
2
rh s

k
 = 

( )
( )

25.84 W/(m K) (0.01m)

2 0.19 W/(m K)
 = 0.154 > 0.1 

Therefore, the internal thermal resistance of the oak is significant and the chart solution for Figure 2.37 
will be used to estimate the surface temperature of the oak after 10 seconds: (L = s/2 =  
(0.01 m)/2 = 0.005 m) 
The Fourier number is 

 Fo = 
2

th t

L

α
 = 

( )5 2

2

0.011 10 m /s (10s)

(0.005m)

−×
 = 0.044 

 
1

Bi
 = 6.5 

From Figure 2.37 

 
(0, ) t

o t

T t T

T T

−
−

 ≈ 1.0 

(The center of the oak is still at the initial temperature after 10 s). 
From Figure 2.32(b) for x/L = 1.0 

 
( , )

(0, )
f

f

T L t T

T t T

−
−

 = 
( , ) f

o f

T L t T

T T

−
−

 = 0.92 

where T(L,t) = the surface temperature of the wall after 10 seconds of exposure to the radiation. 

 ∴  T(L,t) = Tf + 0.92 (To – Tf) = 7200K + 0.92 (283K – 7200K) = 836K 

Therefore, the walls will catch on fire. 
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PROBLEM 9.48 

An electric furnace is to be used for batch heating a certain material (specific heat of 670 
J/(kg K)) from 20 to 760°C. The material is placed on the furnace floor which is 2m × 4m 
in area as shown in the accompanying sketch. The side walls of the furnace are made of a 
refractory material. Parallel to the plane of the roof, but several inches below it, a grid of 
round resistor rods is installed. The resistors are 13 mm in diameter and are spaced 5 cm 
center to center. The resistor temperature is to be maintained at 1100°C, under which 
conditions the emissivity of the resistor surface is 0.6. If the top surface of the stock may 
be assumed to have an emissivity of 0.9, estimate the time required for heating a 6 metric  
ton batch. External heat losses from the furnace may be neglected, the temperature 
gradient through the stock may be considered negligibly small, and steady-state 
conditions may be assumed. 

4 m

A , T2 2

Stock A1
AR

1.3 m

2 m

 

 

 

GIVEN 

• Batch heating of material in the furnace shown above 
• Specific heat of material (c) = 670 Jkg K 
• Material temperatures  Initial (T1i) = 20°C = 293 K 
  Final (Thf) = 760°C = 1033 K 
• Furnace dimensions: 2 m × 4 m × 1.3 m high 
• Side walls are refractory material 
• Resistor rod diameter (Dr) = 13 mm = 0.013 m 
• Resistor center to center distance (s) = 5 cm = 0.05 m 
• Resistor temperature (T2) = 1100°C = 1373 K 
• Emissivity of the resistor surface (ε2) = 0.6 
• Emissivity of the material surface (ε1) = 0.9 
• Mass of material (m) = 6 metric tons = 6000 kg 

FIND 

• The time required (t) for heating the 6 metric ton batch 

ASSUMPTIONS 

• Quasi-steady state conditions 
• External heat losses are negligible 
• Temperature gradient through the material is negligible (negligible internal thermal resistance) 
• Material is gray 
• Convective heat transfer is negligible 
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PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The shape factor F21 can be read off Figure 9.30: For s/D = 50/13 = 3.85 and one row: F21 ≈ 0.60. Note 
that A1 = A2, therefore, F21 = F12. 

The sum of the shape factors from a given surface must sum to unity 

 F11 + F12 + F1R = 1 → F1R = 1 – F12 

 F21 + F12 + F2R = 1 → F2R = 1 – F21 = 1 – F12 

The rate of radiative heat transfer, between two gray surfaces connected by re-radiating surfaces is 
given by Equation (9.80) 

 q
12

 = A1 F21 σ (T2
4 – T1

4) 

where A2 f21 is given by Equation (9.79), note that A1 = A2 = A 

 A1 F21 =  

2 1 21

1

1 1 1 1 1
1 1

A A AFε ε
   − + − +      

 

 where  A 21F  = A 21

2 1

1
1 1

R R

F

F AF

 
 

+ 
 +
 

 = A 12
12

1

2

F
F

− +  
 

 A F21 = 
12

12
1 2

1

11 1
1 1

2

F
F

ε ε
−     − + − + +          

 = 
(4m)(2m)

1 1 1 0.6
1 1 0.6

0.9 0.6 2

−     − + − + +      

 

 A F21 = (8m2) (0.634) = 5.07 m2 

The temperature changes in the material is given by 

 ΔT1 = 21q t

mc

Δ
 = 

( )4 4
21 2 1A T T t

m c

σ − ΔF
 

 ΔT1 = 
( ) ( )

( ) ( )

2 8 2 4 4 4
15.07 m 5.67 10 W/(m K ) (373K)

(6000kg) 670 J/(kg K) (Ws)/J

T t−  × − Δ   

 ΔT1 = ( ) ( )14 3 4
10.2541(K/s) 7.15 10 1/(K s) T− − ×  Δt 

As T1 increases, the rate of heat transfer will decrease. Therefore, the equation above will be solved for 
a chosen time increment and the temperature T1 will then be updated. This procedure will be repeated 
until T1 = 760°C = 1033 K. 
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Let Δt = 5 min = 300 s initially 

 Time (min) ΔT1 (K) T1 (K) 

  0 ---- 293 
  5 76.1 369.1 
  10 75.8 444.9 
  15 75.4 520.3 
  20 74.7 595.0 
  25 73.5 668.5 
  30 72.0 740.5 
  35 69.8 810.3 

 Let Δt = 1 min 40 67.0 877.3 
  45 63.5 940.8 
  50 59.4 1000.2 
  51 11.0 1011.2 
  52 10.8 1021.9 
  53 10.6 1032.5 

The time required ≈ 53 min. 

PROBLEM 9.49 

A rectangular flat water tank is placed on the roof of a house with its lower portion 
perfectly insulated. A sheet of glass whose transmission characteristics are tabulated 
below is placed 1 cm above the water surface. Assuming that the average incident solar 
radiation is 630 W/m2, calculate the equilibrium water temperature for a water depth of 
12 cm if the heat transfer coefficient at the top of the glass is 8.5 W/(m2 K) and the 
surrounding air temperature of 20°C. Disregard intereflections. 

  τλ of glass = 0 for wavelength from 0 to0.35 μm 
    = 0.92 for wavelength from 0.35 to 2.7 μm 
    = 0 for wavelength larger than 2.7 μm 
  ρλ of glass = 0.08 for all wavelengths 

GIVEN 

• A glass covered water tank on the roof of a house 
• Lower portion of tank is perfectly insulated 
• Distance between glass cover and water surface (δ) = 1 cm = 0.01 m 
• Average incident solar radiation (Is) = 630 W/m2 
• Water depth = 12 cm = 0.12 m 
• Heat transfer coefficient on the top of the glass (hco) = 8.5 W/(m2 K) 
• Surrounding air temperature (T∞)  = 20°C = 293 K 
• Transmissivity of glass (λλ) = 0 for 0 < λ < 0.35 μ m 
 = 0.92 for 0.35 < λ < 2.7 μ m 
 = 0 for λ > 2.7 m m 
• Reflectivity of Glass (ρλ) = 0.08 

FIND 

• The equilibrium temperature of the water (Tw) 
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ASSUMPTIONS 

• The effect of inter-reflections is negligible 
• The water temperature is uniform (internal resistance of the water is negligible) 
• Steady state conditions 
• Is value given is normal to the glass surface 
• The water absorbs all the radiation reaching it 
• Water behaves as a blackbody 
• The conductive thermal resistance of the glass is negligible 
• The sky behaves as a blackbody enclosure at Tsky = 0 K 
• The sun is blackbody at 6000 K (see Table 9.2) 
• The shape factor between the surface and the glass can be taken to be unity 
• The air properties are the same as dry air properties 
• The glass acts as a black surface for the reradiated energy 

SKETCH 

1 cm

Is = 630 W/m2

Glass

T• = 20°C = 293 K

InsulationWater

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The thermal circuit for the problem is shown below 

Tsky = OK

T• = 293 K qrgsky

I qs – cgw

Ts
Tw

qsg qsgw

qsgw

qsw

 

where qr = radiative heat transfer flux 
 qc = convective heat transfer flux 
 qs = solar radiation 

The radiative heat transfer from the water through the glass to the sky (qrw,sky) ≈ 0 because the majority 
of the radiation from the water will be at long wavelengths for which the transmissivity of the glass is 
zero. 
An expression can be written for each of the heat fluxes 

 qrgsky = σ εg (Tg
4 – Tsky

4) = σ Tg
4 

 qrwg = σ εw (Tw
4 – Tg

4) = σ (Tw
4 – Tg

4) 

 qeg∞ = hco (Tg – T∞) 

 qcwg = h∞ (Tw – Tg) 

 qcg = (1 – ρλ)(1 – τλ) Is = 
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  (1 – ρ) ( ) ( ) ( )(0 0.35) (0.35 2.7) (2.7 0)
(0 0.35) (0.35 2.7) (2.7 0)4 4 4

1 1 1b b b
s s s

E E E
I I I

T T T
τ τ τ

σ σ σ
− − →

− − →
 − + − + − 
 

 

 qsw = (1 – ρλ)τλ Isλ = (1 – ρλ)τ(0.35 → 2.7) 
(0.35 2.7)

4

bE

Tσ
−

 Is 

Only the last two expressions are frequency dependent. From Table 9.1 

 For λΤ = (0.35 × 10–6 m)(6000 K) = 2.1 × 10–3 m K 

  
4

(0 0.35 )bE T

Tσ
→

 = 0.08382 

 For λΤ = (2.7 × 10–6 m)(6000 K) = 16.2 × 10–3 m K 

  
4

(0 2.7 )bE T

Tσ
→

 = 0.9746 

 
4

(0.35 2.7 )bE T T

Tσ
→

 = 0.9746 – 0.08382 = 0.8908 

 ∴ qsw = (1 – 0.08)(0.92)(0.8908) ( )2630 W/m  = 475 2W/m  

 qsg = (1 – 0.08)[(1)(0.08382)(630) + (1 – 0.92)(0.8908)(630) + (1)(1 – 0.9746)(630)] = 105 2W/m  

The natural convection Nusselt number between the glass and water is given by Equation (5.30) 

 Nuδ  = 1 + 1.44
1708

1
Raδ

 
− 

 



 + 

1

3
1

5830

Raδ
 
  −   
 



 1700 < Raδ < 108 

where the notation [ ]· indicates that if the quantity inside the brackets is negative, the quantity is to be 
taken as zero. The Rayleigh number is given by 

 Raδ = Grδ Pr = 
( ) 3

2
w

a

g T T Prδβ δ
ν
−

 

Since both Tw and Tg are unknown, an iterative solution must be used. For the first iteration, let  
Tw = 80°C and Tg = 40°C. 
From Appendix 2, Table 27, for dry air at the average temperature of (Tw + Tg)/2 = 60°C 

  Thermal expansion coefficient (β) = 0.00300 1/K 

  Thermal conductivity (k) = 0.0279 W/(m K) 

  Kinematic viscosity (ν) = 19.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

 Raδ = 
( )

( )

2 3

26 2

1
9.8m/s 0.003 (40 C)(0.01m) (0.71)

K

19.4 10 m /s−

 
°  

×
 = 2219 

 Nuδ  = 1 + 1.44
1708

1
2219

 −  


 + 

1

32219
1

5830

 
  −   
 



 = 1 + 0.3316 + 0 =1.33 
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 ch δ  = 
k

Nuδ δ
 = 1.33

( )0.0279 W/(m K)

0.01m
 = 3.72 2W/(m K)  

An energy balance on the glass plate yields 

  Qsg + qcwg + qrwg = qrgsky + qcg∞ 

  Qsg + ch δ (Tw – Tg) + σ (Tw
4 – Tg

4) = σ Tg
4 + hco (Tg – T∞) 

Rearranging 

  ( )ch h δ∞ +  Tg = qsg + coh T∞ + ch δ Tw + σ (Tw
4 – 2Tg

4) 

 [1]  Tg = K1 + K2 Tw + K3 (Tw
4 – 2 Tg

4) 

where 

 K1 = 
sg co

co c

q h T

h h δ

∞+

+
 = 

( ) ( )
( )

2 2

2

105 W/m 8.5W/(m K) (293K)

8.5 3.72 W/(m K)

+
+

 = 212.4 K 

 K2 = c

co c

h

h h
δ

δ+
 = 

3.72

8.5 3.72+
 = 0.3044 

 K3 = 
ch h δ

σ

∞ +
 = 

( )
( )( )

8 2 4

2

5.67 10 W/(m K )

8.5 3.72 W/(m K)

−×
+

 = 4.64 × 10–9 31/K  

An energy balance on the water yields 

 qsw = qrwg + qcwg = σ (Tw
4 – Tg

4) + ch δ  (Tw – Tg) 
Rearranging 
 [2]  Tw = K4 – K5 (Tw

4 – Tg
4) + Tg 

where 

 K4 = sw

c

q

h δ
 = 

( )
( )

2

2

475W/m

3.72 W/(m K)
 = 127.7 K 

 K5 = 
ch δ

σ
 = 

( )
( )

8 2 4

2

5.67 10 W/(m K )

3.72 W/(m K)

−×
 = 1.524 × 10–8 31/K  

These two simultaneous 4th order equations may by solved iteratively as follows: 
1. Guess values of Tw and Tg 
2. Iterative equation [2] to generate a new value of Tw 
3. Using this value of Tw, iterate equation [1] to generate a new rate for Tg. 
4. Repeat the procedure until the difference between the values of Tw and Tg for successive iterations 

is below a chosen tolerance. 
This procedure is implemented in the Pascal program shown below 
 var 
 Tw1,Tw,Tg1,Tg,Diff_g,Diff_w:real; 
 Const 
 K1 = 212.4; 
 K2 = 0.3044; 
 K3 = 4.64E-9; 
 K4 = 127.7; 
 K5 = 1.524E-8; 
 gain = 0.4; 
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 Begin 
 {Let Tw1 = 353 K and Tg1 = 313 K be the initial guesses} 
 Tw:=0.0; 
 Tg:=0.0; 
 Tw1:=353.0; 
 Tg1:=313.0; 
 Repeat 
 Repeat 
 {Iterate equation [2] to calculate a new Tw} 
 Tw:=K4 – K5*(Tw1*Tw1* Tw1* Tw1 – Tg1* Tg1* Tg1* Tg1)+ Tg1; 
 Diff_w:=Tw-Tw1; 
 Tw1:=Tw1+gain*Diff_w; 
 Until abs(Diff_w) < 0.1; 
 Repeat 
 {Iterate equation [1] to calculate a new Tg} 

Tg:=K1 + K2*Tw + K3*(Tw* Tw* Tw* Tw – 2.0*Tg1* Tg1* Tg1 Tg1); 
 Diff_g:=Tg-Tg1; 
 Tg1:=Tg1+gain*Diff_g; 
 Until abs(Diff_g) < 0.1; 
 Tw:=K4 – K5*(Tw1* Tw1* Tw1* Tw1* – Tg1* Tg1* Tg1* Tg1*) + Tg1; 
 Diff_w:=abs(Tw-Tw1); 
 Tw1:=Tw; 
 Until Diff_w < 0.1; 
 Writeln(‘ Tw = ′,Tw:6.1, K Tg = ′,Tg:6.1, ′ K′); 
 end. 

(Note: the gain factor slows down the convergence but is often necessary for non-linear problems) 
The output from the first run of this program is 

  Tw = 345.4 K Tg = 304.2 K 
 
These values are different enough from the initial guesses that another iteration will be performed: 

  Mean temperature = 324.8 K 

  β = 0.00308 1/K 

  k = 0.0273 W/(m K) 

  ν = 18.66 × 10–6 m2/s 

  Pr = 0.71 

  Raδ = 2536 

  ch δ  = 4.01 W/(m2 K) 

  K1 = 207.42 K 

  K2 = 0.3205 

  K3 = 4.532 × 10–9 1/K3 

  K4 = 118.45 K 

  K5 = 1.414 × 10–8 1/K3 

Running the program again, the new constants and the above temperatures as the initial guesses yields: 

  Tw = 344.5 K Tg = 304.1 K 

  The water temperature is approximately 71.5°C. 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
860

COMMENTS 

Consistent with our assumption, he glass temperature is low enough so that all radiation emitted from 
the glass will be beyond 2.7 μm so that the glass can be considered black. 

PROBLEM 9.50 

Mercury is to be evaporated at 317°C in a furnace. The mercury flows through a  
2.5 cm BWG No. 18 gauge 304 stainless-steel tube, which is placed in the center of the 
furnace whose cross section, perpendicular to the tube axis, is a square 20 cm × 20 cm. 
The furnace is made of brick having an emissivity of 0.85, with the walls maintained 
uniformly at 977°C. If the convective heat transfer coefficient on the inside of the tube is 
2.8 kW/(m2 K) and the emittance of the outer surface of the tube is 0.60, calculate the 
rate of heat transfer per foot of tube, neglecting convection within the furnace. 

GIVEN 

• Mercury flow through a tube in the center of a furnace 
• Mercury temperature (Tm) = 317°C = 590 K 
• Tube specification: 1 in BWG no 18 gauge stainless steel 
• Furnace cross section is 20 cm × 20 cm 
• Furnace emissivity (ε2) = 0.85 
• Furnace wall temperature (T2) = 977°C = 1250 K 
• Tube interior heat transfer coefficient (hci) = 2800 W/(m2 K) 
• Tube exterior emissivity (ε1) = 0.60 

FIND 

• The rate of heat transfer per foot of tube 

ASSUMPTIONS 

• Steady state 
• Convection within the furnace is negligible 

SKETCH 

20 cm

20 cm
Furnace Wall, A2

T2 = 1250 K

e2 = 0.85

Tube, 1A

e1 = 0.60
 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Appendix 2, Table 42, for 1 in 18 BWG tubes 
  Inside diameter (Di) = 2.29 cm 

  Outside diameter (Do) = 2.54 cm 

From Appendix 2, Table 10, for type 304stainless steel,the thermal conductivity (ks) = 14.4 W/(m K) 

SOLUTION 

The tube and furnace can be thought of as two infinitely long concentric gray cylinders. The rate of 
radiative heat transfer is given by Equation (9.75) 

 q12 = A1 F12 (Eb1 – Eb2) = σ A2 F12 (T1
4 – T2

4) 
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From Equation (9.76) 

 F12 = 
11 2

1 2 2

1

1 1
1

A

A

ε ε
ε ε
− −

+ +
 

 where  
1

2

A

A
 = 

(2.54cm)

4(20cm)

π
 = 0.1 

 F12 = 
1

1 0.6 1 0.85
1 0.1

0.6 0.85

− −+ +
 = 0.594 

The thermal circuit for this problem is shown below 

Tm Twi T1 T2

Rk
Rci Rr

qc qk q12

 

where 
  Rci = Convective thermal resistance inside the tube 
  Rk = Conductive thermal resistance of the tube wall 
  Rr = Radiative thermal resistance 
  qc = Convective heat transfer to the tube wall interior = hci Ai (Tm –Twi) 

  qk = Conductive heat transfer through the tube wall = 
2

ln

s

o

i

k L

D

D

π
 
  

(Twi – T1) 

  q1–2 = Radiative heat transfer = σ A1 f12 (T1
4 – T2

4) 

For steady state, these three heat transfer rates must be equal 

 hci Ai (Tm – Twi) = 
2

ln

s

o

i

k L

D

D

π
 
  

(Twi – T1) = σ A1 F12 (T1
4 – T2

4) 

Solving for Tw1 from the first part of the equation 

 Twi = 
( )

( )

1
2

ln

2

ln

o

i

o

i

s
ci i m D

D

s
ci i D

D

k L
h A T T

k
h A

π

π

+

+
  

Substituting this into the second part of the equation to solve for T1 yields 

  cih Ai 
( )

( )

1
2

ln

2

ln

o

i

o

i

s
ci i m D

D
m

s
ci i D

D

k L
h A T T

T
k

h A

π

π

 + 
 − 

+ 
  

 – σ A1 F12 (T1
4 – T2

4) = 0 

Here 
2

ln

s

o

i

k L

D

D

π
 
  

 = 
( )2 14.4 W/(m K)

2.54cm
ln

2.29cm

Lπ
 
  

 = 873 L W/K 
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and cih Ai = cih π Di L = 2800 W/(m2 K)π (2.29 × 10–2 m)L = 200 L W/K 

  200 L W/K 1(200 ) (590) (893 ) ( )
590K

(200 873 )

L L T

L L

+ − + 
– 5.67 × 10–8 W/(m2 K4) 

   [π (2.54 × 10–2 m)L](0.595) [T1
4 – (1250 K)4] = 0 

Checking the units and then eliminating them for clarity 

  –2.69 × 10–9 T1
4 – 162.72 T1 + 102575 = 0 

By trial and error 

T1  630 K 

 
q

L
 = σ 1A

L
F12 (T1

4 – T2
4) = 5.67 × 10–8 W/(m2 K4) [π (2.5 × 10–2 m)] (0.595)[(630 K)4 – (1250 K)4] 

 
q

L
 = – 6048 W/m 

COMMENTS 

Negative sign in the answer indicates heat is transferred to the mercury. Note that f12 ≈ ε1, because A2 
>> A1. For A1/A2 = 0 Equation (9.76) reduces to f12 = ε1. 

PROBLEM 9.51 

A 2.5 cm diameter cylindrical refractory crucible for melting lead is to be built for 
thermocouple calibration. An electrical heater immersed in the metal is shut off at some 
temperature above the melting point. The fusion-cooling curve is obtained by observing 
the thermocouple emf as a function of time. Neglecting heat losses through the wall of the 
crucible, estimate the cooling rate (W) for the molten lead surface (melting point 
327.3°C, surface emissivity 0.8) if the crucible depth above the lead surface is (a) 2.5 cm, 
(b) 17 cm. Assume that the emissivity of the refractory surface is unity and the 
surroundings are at 21°C. (c) Noting that the crucible would hold about 0.09 kg of lead 
for which the heat of fusion is 23,260 J/kg, comment on the suitability of the crucible for 
the purpose intended. 

GIVEN 

• A cylindrical refractory crucible filled with molten lead 
• Cylinder diameter (D) = 2.5 cm 
• Melting point of lead (T1) = 327.2°C = 600.3 K 
• Surface emissivity of lead (ε1) = 0.8 
• Mass of lead in crucible (m) ≈ 0.09 
• Heat of fusion of lead (hfg) = 23,260 J/kg 

FIND 

The cooling rate (q) if the crucible depth above the lead surface (L) is 
(a) 2.5 cm = 0.025 m 
(b) 17 cm = 0.17 m 
(c) Comment on the suitability of the crucible for thermocouple calibration 
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ASSUMPTIONS 

• Heat loss through the wall of the crucible is negligible 
• The emissivity of the refractory surface (crucible wall above the lead) is unity (ε2 = 1) 
• The surroundings behave as a blackbody enclosure 
• The temperature of the refractory surface is uniform at TR 

SKETCH 

Lead

M = 0.09 Kg

L

A : = 1 T = T2 2e •

Refractory Sureface : A , TR R

Lead Surface : A1
T1 = 645.3 K

T• = 294 K

D = 7.5 cm  

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

From Appendix 2, Table 27, for air at the film temperature of (T1+ T∞)/2 = 447.2 K = 174.2 C 

  Thermal expansion coefficient (β) = 0.00226 1/K 

  Thermal conductivity (k) = 0.0354 W/(m K) 

  Kinematic viscosity (ν) = 32.4 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The total cooling rate is the sum of natural convection and radiation 

 q = hc A1 (T1 – T∞) + q
12

 

where q12 is the radiative heat transfer between the two surfaces connected by a refractory wall and is 
given by Equation (9.80) 

 q
12

 = A1 f12 σ (T1
4 – T2

4) 

where A1 f12 is given by Equation (9.79) (Note that ε2 = 1.0 and A2 = A1) 

 A1 F12 = 

1 1 2 2 1 12

1

1 1 1 1 1
1 1

A A A Fε ε
   − + − +      

 = 

1 1 1 12

1

1 1 1
1

A A Fε
 − +  

 

 where  A1 12F  = A1 12
1

1 2 2

1

1

R R

F
A

F A F

 
 
 +
 +  

 = A1 12

1 2

1
1 1

R R

F

F F

 
 
 
 +
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The shape factor is given in Table 9.3 #6 by letting a = b = D/s and 

 F12 = 
22 2 4

2 2
2

2

2 2 4

D D D
L L

D

  
 + − + −    

 

 For Case (a)  F12 = 
22 2 4

2 2
2

(2.5) (2.5) (2.5)2
(2.5) (2.5)

2 2 4(2.5)

  
 + − + −    

 = 0.17 

 For Case (b)  F12 = 
22 2 4

2 2
2

(2.5) (2.5) (2.5)2
(17) (17)

2 2 4(2.5)

  
 + − + −    

 = 0.0053 

By symmetry 
F21 = F12 

The shape factors from a given surface must sum to unity 

 F11 + F12 + F1R = 1 → F1R = 1 – F12 

 F21 + F12 + F2R = 1 → F2R = 1 – F21 = 1– F12 

 ∴ A1 12F  = A1
12

12
1

2

F
F

− +  
 

 A1 F12 = 
1

121
12

1 1
1

1

2

A

F
Fε

 − +  −   +  

 

 q = A1 ( ) ( )4 4
1 1 2

121
12

1 1
1

1

2

ch T T T T

F
F

σ

ε

∞

 
 
 
 − + −
  − +   −  +
 

 

The heat transfer coefficient, hc, can be calculated from Equation (5.15) or (5.16) 

 RaD = GrD Pr = 
( ) 3

1
2

g T T D Prβ
ν

∞−
 

 RaD = 
( )

( )
2 3

26 2

9.8 m/s (0.002261/K)(600.3K – 294 K)(0.025m) (0.71)

32.4 10 m /s−×
 = 7.17 × 104 

Although this is slightly below its lower Rayleigh number range, Equation (5.15) will be used to 
estimate the Nusselt number 

 DNu  = 0.54 
1

4
DRa  = 0.54

1
4 4(7.17 10 )×  = 8.84 

 ch  = DNu
k

D
 = 8.84

( )0.0354 W/(m K)

0.025m
 = 12.5 2W/(m K)  
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(a)  

 q = 
4

π
(0.025 m)2 ( )( )212.5W/(m K) 600.3K 294K


 −


  

   
( ) ( ) ( )

8 2 4
4 45.67 10 W/(m K )

[ 600.3K 294 K ]
1 1

1
1 0.170.8 0.17

2

−



×+ − 

  − +  − + 

 

 q = 3.26 W 

(b) F12 = 0.0053 → q = 3.4 W 
(c) The time required for the lead to solidify at the cooling rate (q) of 3.62 W is given by 

 t = 
fgm h

q
 = 

( )
(0.09 kg) (23,260J/kg)

3.62 W J/(Ws)
 = 579 s = 9.6min 

The technician would have about 9.6 minutes to do the calibration. This should be enough time to 
accomplish the task. 

PROBLEM 9.52 

A spherical satellite circling the sun is to be maintained at a temperature of 25°C. The 
satellite rotates continuously and is covered partly with solar cells having a gray surface 
with an absorptivity of 0.1. The rest of the sphere is to be covered by a special coating 
which has an absorptivity of 0.8 for solar radiation and an emissivity of 0.2 for the 
emitted radiation. Estimate the portion of the surface of the sphere which can be covered 
by solar cells. The solar irradiation may be assumed to be 1,420 W/m2 of surface 
perpendicular to the rays of the sun. 

GIVEN 

• A spherical satellite partially covered with solar cells is orbiting the sun 
• Satellite temperature (Ts) = 25°C = 298 K 
• Solar cell absorptivity (αc) = 0.1 
• Absorptivity of the rest of the satellite (α2s) = 0.8 
• Emissivity of the rest of the satellite (εs) = 0.2 

FIND 

• The portion of the surface which can be covered by solar cells 

ASSUMPTIONS 

• Ambient temperature (T∞) = 0 K 
• Quasi steady state 
• Solar irradiation (Iso1) = 1420 W/m2 of the surface perpendicular to the rays of the sun 
• Satellite and cell surfaces are gray 
• Surface temperature of the satellite is uniform 
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SKETCH 

Solar Cells

= 0.1ac

T• = OK

Ts

s

s

= 298 K

= 0.2

= 0.8

e
a

Isol = 1420 W/m2

 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

Let x be the fraction of the total satellite surface area (AT) which is covered by solar cells. By 
definition, the absorptivity is the fraction of the total irradiation absorbed by a body 

 α = 

in

sol

q

A
I

 

 ∴  qin = α Iso1 A = Iso1 (αs As + αc Ac) = Iso1 (αc × AT + αs (1 – x) AT) 

 qin = Iso1 AT [αs + (αc – αs) x] 

The rate of radiation from he satellite is the emissive power of the satellite from Equation (9.34) 
multiplied by its area 

 qout = E A = ε σ A Ts
4 = σ Ts

4 (εc × AT + εs (1 – x) AT) = σ AT Ts
4 [εs + (εc – εs) x] 

For steady state  qin = qout 

 Iso1 AT [αs + (αc – αs) x] = σ AT Ts
4 [εs + (εc – εs) x] 

Solving for the fraction covered by solar cells 

 x = 

( )

( ) ( )

sol
4

sol
4

s s
s

c s c s
s

I

T
I

T

α ε
σ

ε ε α α
σ

  −  
 − − −  

 

 sol
4

s

I

Tσ
 = 

( )
( )

2

8 2 4 4

1420W/m

5.67 10 W/(m K ) (298K)−×
 = 3.176 

 εc = 1 – αc = 1 – 0.1 = 0.9 

 x = 
( )

( ) ( )
3.176 0.8 0.2

0.9 0.2 3.176 0.1 0.8

−
− − −

 = 0.801 

80.1% of the satellite can be covered by solar cells. 
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PROBLEM 9.53 

An electrically heated plate, 10 cm square, is placed in a horizontal position 5 cm below a 
second plate of the same size as shown schematically below. 

5 cm

10 cm
10

cm

Receiver 2

Heated Plate 1

 

The heating surface is gray (emissivity = 0.8) while the receiver has a black surface. The 
lower plate is heated uniformly over its surface with a power input of 300 W. Assuming 
that heat losses from the backs of the radiating surface and the receiver are negligible 
and that the surroundings are at a temperature of 27°C, calculate the following 

(a) The temperature of the receiver 

(b) The temperature of the heated plate. 

(c) The net radiation heat transfer between the two surfaces. 

(d) The net radiation loss to the surroundings. 

(e) Estimate the effect of natural convection between the two surfaces on the rate of 
heat transfer. 

GIVEN 

• A square heated plate below a second plate of equal size as shown above 
• Plate size = 10 cm × 10 cm = 0.1 m × 0.1 m 
• Distance between plates (L) = 5cm = 0.05 m 
• Heated surface (A1) is gray with an emissivity (ε1) = 0.8 
• Receiver (A2) is black (ε2 = 1.0) 
• Heater power input ( )Gq  = 300 W 

FIND 

(a) The temperature of the receiver (T2) 
(b) The temperature of the heated transfer (T1) 
(c) The net radiation heat transfer (q12) 
(d) The net radiation loss to the surroundings (qs) 
(e) Estimate the effect of natural convection 

ASSUMPTIONS 

• Steady state 
• Heat losses from the back of each plate are negligible 
• Temperature of surroundings (T3) = 27°C = 300 K 
• The surroundings behave as a blackbody enclosure 

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

In steady state, the net rate of heat transfer from the heater must be equal to the power input 

 q1 = Gq  = 300 W 

The net rate of heat transfer to the receiver in steady state must be zero: q2 = 0 
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Also, since the receiver and the surroundings are black 

 J2 = Eb2 = σ T2
4  and  J3 = Eb3 = σ T3

4 

The shape factor F12 can be read from Figure 9.28 

From Figure 9.28 x/D = y/D = 10/5 = 2 → F12 = 0.43 
Since A1 = A2, from Equation (9.46) F21 = F12 (This is also clear from the symmetry of the problem). 
Since neither A1 nor A2 can see itself, F11 = F22 = 0 
The shape factors from any given surface must sum to unity 

 F11 + F12 + F13 = 1 → F13 = 1 – F12 = 0.57 

 F21 + F12 + F23 = 1 → F23 = 1 – F21 = 1 – F12 = 0.57 
From Equation (9.46) 

F31 = 
1

3

A

A
 F13 = 

1

3

A

A
 (1 – F12) = F32 

The net rate transfer from a gray surface is given be Equation (9.67) 
 [1] q1 = A1 (J1 – G1) 

 [2] q2 = A2 (J2 – G2) = A2 (σ T2
4 – G2) = 0 

From Equation (9.69) 

 [3] A1 G1 = J1 A1 F11 + J2 A2 F21 + J3 A3 F31 = A2 F12 σ T2
4 + A1(1 – F12) σ T3

4 

 [4] A2 G2 = J1 A1 F12 + J2 A2 F22 + J3 A3 F32 = J1 A1 F12 + A1(1 – F12) σ T3
4 

Combining Equations [2] and [4] 

 σ T2
4 = G2 = J1 F12 + (1 – F12) σ T3

4 

 [5]  J1 = 
12F

σ 
  

 [T2
4 – (1 – F12) T3

4] 

Substituting Equation [5] and Equation [3] into [1] 

 q1 = A1 ( ) ( )4 4 4 4
2 12 3 12 2 12 3

12

1 1T F T F T F T
F

σ σ σ    − − − + −     
 

Solving for T2 

 T2 = 

( )
0.25

4 1
12 3

12 1

12
12

1
1 1

( )

1

q
F T

F A

F
F

σ
     − + +         
 − 
 

 

 T2  = 
( )

0.25
4

8 2 4

1 300 W
(1 0.43) 1 (300K)

0.43 5.67 10 W/(m K ) (0.1m)(0.1m)
1

0.43
0.43

−
     − + +     × 

    −      

 

 T2 = 732 K = 459°C 

(b) From Equation [3] 

 G1 = σ [F12 T2
4 + (1 – F12) T3

4] = 5.67 × 10–8 2 4W/(m K )  [0.43 (732 K)4  

   + (1 – 0.43)(300 K)4] = 7261.7 2W/m  
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From Equation [5] 

 J1 = 
8 2 45.67 10 W/(m K )

0.43

−×
 [(732 K)4 – (1 – 0.43) (300 K)4] = 37,249 2W/m  

Applying Equation (9.66) J1 = ρ1 G1 + ε1 Eb1 = (1 – ε1) G1 + ε1 σ T1
4 

 T1 = ( )
0.25

1 1 1
1

1
[ 1 ]J Gε

ε σ
 − − 
 

 

 T1 = ( ) ( )
0.25

2 2
8 2 4

1
(37,249 W/m ) (1 0.43)(7261.7 W/m )

0.43 5.67 10 W/(m K )−
 

− − × 
 

 T1 = 1080 K = 807°C 

(c) The net rate of heat transfer between A1 and A2 is given by Equation (9.73) 

 q12 = (J1 – J2) A1 F12 = (J1 – σ T2
4) A1 F12 

  q12 = ( )2 8 2 4 437,249 W/m 5.67 10 W/(m K ) (732K)− − ×  (0.1m) (0.1m) (0.43) = 90.2 W 

(d) Applying the conservation of energy of both plates and the surroundings yields 

 q1 + q2 + q3 = 0 → q3 = – q1 – q2 = –300 W – 0 = –300 W 

The surroundings gain 300 watts from the plates. 
(e) An estimate of the natural convection heat transfer will be made by treating the heater and receiver 

as a horizontal enclosed space, heated from below with the surface temperature calculated above. 
From Appendix 2, Table 27, for dry air at the average temperature of (459°C + 807°C)/2 = 633°C 

  Thermal expansion coefficient (β) = 0.00116 1/K 

  Thermal conductivity (k) = 0.0599 W/(m K) 

  Kinematic viscosity (ν) = 108 × 10–6 m2/s 

  Prandtl number (Pr) = 0.73 

The Rayleigh number is 

 Raδ = Grδ Pr = 
( ) 3

2
a

g T Prβ δ
ν

Δ
 = 

( ) ( ) ( )
( )

2 3

26 2

9.8m/s 0.001161/K 807 C – 459°C (0.05m) (0.73)

108 10 m /s−

°

×
 = 30,949 

Applying Equation (5.30a) 

 Nuδ  = 1 + 1.44
1708

1
Raδ

 − 
 



 + 

1

3
1

5830

Raδ
 
  −   
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where [ ] indicates that the quantity in the brackets should be taken to be zero if it is negative. 

 Nuδ  = 1 + 1.44
1708

1
30, 949

 −  



 + 

1

330,949
1

5830

 
  −   
 



 = 3.11 

 ch  = Nuδ
k

δ
 = 3.11

0.0599 W/(m K)

0.05m
 =3.72 2W/(m K)  

The rate of heat transfer by convection is given by 

 q = ch A (ΔT) = ( )23.72 W/(m K) (0.1m)(0.1m)(807°C – 459°C) = 13 W 

COMMENTS 

The natural convection heat transfer rate is only about 4% of the total heat transfer rate. Therefore, the 
estimate of natural convection is probably adequate. 
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Chapter 10 

PROBLEM 10.1 

Water at atmospheric pressure is boiling in a pot with a flat copper bottom on an electric 
range which maintains the surface temperature at 115°C. Calculate the boiling heat 
transfer coefficient. 

GIVEN 

• Water at atmospheric pressure boiling in a copper bottom pot 
• Surface temperature of the pot bottom (Ts  ) = 115°C 

FIND 

• The boiling heat transfer coefficient (hb) 

ASSUMPTIONS 

• Temperature of the pan bottom is uniform 
• The copper is polished 

SKETCH 

Copper
Bottom

= 115° CTs

Boiling
Water

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for saturated water at 1 atm (Tsat = 100°C) 

  Density (ρl) = 958.4 kg/m3 

  Specific heat (cl) = 4211 J/(kg K) 

  Absolute viscosity (μl) = 277.5 × 10–6 (Ns)/m2 

  Prandtl number (Prl) = 1.75 

  Heat of vaporization (hfg) = 2257 kJ/kg = 2.257 × 106 J/kg 

From Appendix 2, Table 34, the density of steam at 100° (ρ v) = 0.5977 kg/m3 

From Table 10.2, Surface tension at 100°C (σ) = 0.0589 N/m 
From Table 10.1, The coefficient, Csf, for water on emery polished copper = 0.0128 

SOLUTION 

Assuming the boiling is nucleate boiling, the heat flux, q″, is given by Equation (10.2) 

 l x
n

fg l

c T

h Pr

Δ
= 

0.33

( )
c

s f
l fg l

gq
C

h g ν

σ
μ ρ ρ
 ″
 − 
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where ΔTx = Ts – Tsat = 115°C – 100°C = 15°C 
gc = 1.0 (in the SI system) 
n = 1.0 for water 
g = 9.8 m/s2 

Rearranging 

 q″ = 
3

l x
n

fg l s f

c T

h Pr C

Δ 
  

 

( )

l fg

c

l

h

g

g ν

μ
σ

ρ ρ−

 

 q″ =  
( )

( )
3

6

4211 J/(kg K) (15 C)

2.257 10 J/kg (1.75) (0.0128)

° 
  ×

 

( ) ( ) ( ) ( )
( ) ( )

( )

6 2 2 6

2

2 3

277.5 10 (N s)/m (kg m)/(s N) 2.257 10 J/kg (Ws)/J

0.0589 N/m (kg m) /(s N)

9.8 m/s (958.4 0.5977)kg/m

−× ×

−

  

  = 4.87 × 105 2W/m  

The critical heat flux for nucleate boiling is given by Equation (10.4) 

 q″ c = 
24

π
 ρν

0.5 hfg 
1

4[ ( ) ]l cg gνσ ρ ρ−  

 q″ c = 
24

π ( )0.530.5977 kg/m  ( )62.257 10 J/kg× ( )(Ws)/J  

   ( ) ( )[ ]
1

2 2 3 40.0589J/kg (kg m)/(s N) (9.8m/s ) (958.4 0.5977)kg/m−  

 q″ c = 1.11 × 106 2W/m  

Since q″ < q″ c, the nucleate boiling assumption is valid. 
By definition 

 hb = 
x

q

T

″
Δ

 = 
( )5 24.87 10 W/m

15K

×
 = 3.25 × 104 2W/(m K)  

PROBLEM 10.2 

Predict the nucleate-boiling heat transfer coefficient for water boiling at atmospheric 
pressure on the outside surface of a 1.5 cm OD vertical copper tube 1.5 m long. Assume 
the tube-surface temperature is constant at 10 K above the saturation temperature. 

GIVEN 

• Water boiling at atmospheric pressure on the outside surface of vertical copper tube 

• Tube outside diameter (D) = 1.5 cm = 0.015 m 

• Tube length (L) = 1.5 m 

• Tube surface temperature above saturation temperature (ΔTx) = 10 K 

FIND 

• The nucleate-boiling heat transfer coefficient (hb) 
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ASSUMPTIONS 

• The water is at saturation temperature 

SKETCH 

D =1.5 cm

DT = 10 Kx
Water

at
1 ATM

L = 15 m

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for saturated water at 1 atm (Tsat = 100°C) 

  Density (ρl) = 958.4 kg/m3 

  Specific heat (cl) = 2411 J/(kg K) 

  Absolute viscosity (μl) = 277.5 × 10–6 (Ns)/m2 

  Prandtl number (Prl) = 1.75 

  Heat of vaporization (hfg) = 2257 kJ/kg = 2.257 × 106 J/kg 

From Appendix 2, Table 34, the density of steam at 100°C (ρv) = 0.5977 kg/m3 

From Table 10.2, Surface tension at 100°C (σ) = 0.0589 N/m 
From Table 10.1, The coefficient, Csf, for water on copper = 0.0130 

SOLUTION 

As stated near the end of Section 10.2.2, ‘the geometric shape of the heating surface has no 
appreciable effect on the nucleate boiling mechanism’. 

Assuming the boiling is nucleate boiling, the heat flux q″, is given by Equation (10.2) 

 l x
n

fg l

c T

h Pr

Δ
  = Csf 

0.33

( )
c

l fg l

gq

h g ν

σ
μ ρ ρ
 ″
 − 

 

where ΔTx = Ts – Tsat = 10 K 
gc = 1.0 (in the SI system) 
n = 1.0 for water 
g = 9.8 m/s2 

Rearranging 

 q″ = 
3

l x
n

fg l s f

c T

h Pr C

Δ 
  

( )

l fg

c

l

h

g

g ν

μ
σ

ρ ρ−

 

 q″ = 
( )

( )
3

6

4211J/(kg K) (10°C)

2.257 10 J/kg (1.75) (0.0130)
 
  ×
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( ) ( ) ( ) ( )
( )

( )

6 2 2 6

2

2 3

277.5 10 (N s)/m (kg m)/(s N) 2.257 10 J/kg (Ws)/J

0.0589 N/m (kg m)/(s N)

9.8m/s (958.4 0.5977) kg/m

−× ××

−

  

  = 1.37 × 105 2W/m  

The critical heat flux for nucleate boiling is given by Equation (10.4) 

 q″ c = 
24

π 
    ρν

0.5 hfg 
1

4[ ( ) ]l cg gνσ ρ ρ−  

 q″ c = 
24

π 
  

( )0.530.5977 kg/m ( )62.257 10 J/kg× ( )(Ws)/J   

   ( ) ( ) ( )[ ]
1

2 2 3 40.0589J/kg (kg m)/(s N) 9.8m/s (958.4 0.5977)kg/m−   

 q″ c = 1.11 × 106 2W/m  

Since q″ < q”c, the nucleate boiling assumption is valid. 
By definition 

 hb = 
x

q

T

″
Δ

 = 
( )5 21.37 10 W/m

10 K

×
 = 1.37 × 104 2W/(m K)  

PROBLEM 10.3 

Estimate the maximum heat flux obtainable with nucleate pool boiling on a clean surface 
for (a) water at 1 atm on brass, (b) water at 10 atm on brass. 

GIVEN 

• Nucleate pool boiling on a clean surface 

FIND 

• The maximum heat flux obtainable for (a) water at 1 atm on brass; and 
 (b) water at 10 atm on brass 

ASSUMPTIONS 

• Water is at saturation temperature 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water from Table 10.2 for surface tension 

 Pressure (atm) 1  10 

 Saturation Temperature (°C) 100 180.4 

 Liquid density, ρl (kg/m3) 958.4 886.1 

 Heat of Vaporization, hfg (J/kg) 2.257 × 106 2.013 × 106 

 Vapor density, ρv = 1/vg (kg/m3) 0.5977 5.22 

 Surface tension, σ (N/m) 0.0589 0.0422 

SOLUTION 

The maximum heat flux for nucleate boiling is given by Equation 10.4 

 q″ c = 
24

π 
    ρv

0.5 hfg 
1

4[ ( ) ]l v cg gσ ρ ρ−  
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Case (a) 

  q″ c = 
24

π 
  

( )0.530.5977 kg/m ( )62.257 10 J/kg× ( )(Ws)/J   

   ( ) ( ) ( )[ ]
1

2 2 3 40.0589J/kg (kg m)/(s N) 9.8m/s (958.4 0.5977)kg/m−  

 q″ c = 1.11 × 106  2W/m  

Case (b) 

 q″ c = 
24

π 
  

( )0.535.22kg/m ( )62.013 10 J/kg×  ( )(Ws)/J  

    ( ) ( ) ( )[ ]
1

2 2 3 40.0422J/kg (kg m)/(s N) 9.8m/s (886.1 5.22) kg/m−  

 q″ c = 2.63 × 106 2W/ m  

PROBLEM 10.4 

Determine the excess temperature at one-half of the maximum heat flux for the fluid-
surface combinations in Problem 10.3. 

From Problem 10.3: Estimate the maximum heat flux obtainable with nucleate pool 
boiling on a clean surface for (a) water at 1 atm on brass, (b) water at 10 atm on brass. 

GIVEN 

• Nucleate pool boiling on a clean surface 

FIND 

The excess temperature (ΔTx) at one half of the maximum heat flux for 
(a) water at 1 atm on brass 
(b) water at 10 atm on brass 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water Table 10.2 for surface tension 

 Pressure (atm) 1 10 

 Saturation Temperature (°C) 100 180.4 

 Liquid density, ρl (kg/m3) 958.4 886.1 

 Heat of Vaporization, hfg (J/kg) 2.257 × 106 2.013 × 106 

 Vapor density, ρv = 1/Vg (kg/m3) 0.5977 5.22 

 Surface tension, σ (N/m) 0.0589 0.0422 

 Specific heat, c1 (J/kg K) 4211 4398 

 Absolute viscosity, μl (Ns/m2) 277.5 × 10–6 151.7 × 10–6 

 Prandtl number, Pr 1.75 1.01 

From Table 10.1, the coefficient, Csf, for water on brass = 0.0060 

SOLUTION 

Solving Equation (10.2) for the excess temperature 

 ΔTx = 
n

sf fg l

l

C h Pr

c
 

0.33

( )
c

l fg l

gq

h g ν

σ
μ ρ ρ
 ″
 − 

  

where n = 10 for water. 
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(a) From the solution to Problem 110.3, q″max = 1.11 × 106 W/m2. 
For q″ = q″max/2 = 5.55 × 105 W/m2, and water at 1 atm on brass 

 ΔTx = 
( )
( )

6(0.0060) 2.257 10 J/kg (1.75)

4211J/(kg K)

×
    

( )
( ) ( ) ( )

( )
( )

0.33
5 2 2

6 2 6 2 2 3

5.55 10 W/m J/(W s) 0.0589 N/m (kg m)/(s N)

277.5 10 (Ns)/m 2.257 10 J/(kg) (kg m)/(s N) 9.8m/s (958.4 0.5977)kg/m−

 ×
 
 × × − 

 

 ΔTx = 7.3 K 

(b) From the solution to Problem 10.3, q″max = 2.63 × 106 W/m2. 
For q″ = q″max/2 = 1.315 × 106 W/m2; and water at 10 atm on brass 

 ΔTx = 
( )
( )

6(0.0060) 2.013 10 J/kg (1.01)

4398J/(kg K)

×
 

 
( )

( ) ( ) ( )
( )

( )

0.33
6 2 2

6 2 6 2 2 3

1.315 10 W/m J/(W s) 0.0422 N/m (kg m)/(s N)

151.7 10 (Ns)/m 2.013 10 J/kg (kg m)/(s N) 9.8m/s (886.1 5.22)kg/m−

 ×
 
 × × − 

 

 ΔTx = 5.8 K 

PROBLEM 10.5 

In a pool boiling experiment with water boiling on a large horizontal surface at 
atmospheric pressure, a heat flux of 4 × 105 W/m2 was measured at an excess 
temperature of 14.5 K. What was the boiling surface material? 

GIVEN 

• Water at atmospheric pressure boiling on an unknown surface 
• Heat flux and excess temperature 

FIND 

(a) The boiling surface 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the properties of water at 100°C are 

  Density (ρl) = 958.4 kg/m3 

  Specific heat (cl) = 4211 J/(kg K) 

  Absolute viscosity (μl) = 277.5 × 10–6 kg/ms 

  Prandtl number (Prl) = 1.75 

  Heat of vaporization (hfg) = 2.257 × 106 J/kg 

  Vapor density (ρv) = 0.598 kg/m3 

Table 10.2 gives 

  Surface tension (σ) = 58.9 × 10–3 N/m 
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SOLUTION 

With the given data, we can find the coefficient Csf for the surface and then by using Table 10.1, 
determine what surface was used. Solving Equation (10.2) for Csf: 

 Csf = l x
n

fg l

c T

h Pr

Δ
 

0.33

( )
c

l fg l

gq

h g ν

σ
μ ρ ρ

−
 ″
 − 

 

For water, n = 1 in this equation. 
So 

 Csf = 
( )
( )6

4211 J/(kg K) (14.5K)

2.257 ×10 J/kg (1.75)
  

 
( )

( ) ( )
( )

( )
0.335 2

6 6 2 3

4 10 W/m 0.0589 N/m

277.5 10 kg/(ms) 2.257 10 J/kg 9.81m/s (958.4 0.598) kg/m

−

−
 ×
 × × − 

 = 0.013 

From Table 10.1, mechanically-polished stainless steel was most likely the boiling surface used in the 
experiment. 

PROBLEM 10.6 

Compare the critical heat flux for a flat horizontal surface with that for a submerged 
horizontal wire of 3 mm diameter in water at saturation temperature and pressure. 

GIVEN 

• Flat, horizontal surface and a submerged, horizontal wire 

FIND 

(a) Critical heat flux for both geometries 

ASSUMPTIONS 

• The water is at atmospheric pressure 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13 

  Liquid density (ρl) = 958.4 kg/m3 

  Vapor density (ρv) = 0.598 kg/m3 

and Table 10.2 gives 

  Surface tension (σ) = 0.0589 N/m 

SOLUTION 

From Table 10.3, entry #5, the ratio of critical heat fluxes for two geometries is 

 max ,wire

max,Z

q

q

″
″

 = 0.94 

1

4

b

R

L

−
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The bubble length scale, Lb is calculated from 

 Lb =
( )l vg

σ
ρ ρ−

 = 
( ) ( )

( ) ( )
2

2 3

0.0589 N/m (kg m)/(s N)

9.81m/s (958.4 0.598) kg/m−
 = 0.0025 m = 2.5 mm 

Since 
b

R

L
 = 

1.5

2.5
 = 0.6, we have 

 max ,wire

max,Z

q

q

″
″

 = 0.94 
1

4(0.6)  = 1.068 

The wire has about 7% higher critical heat flux than the horizontal plate. 

PROBLEM 10.7 

For saturated pool boiling of water on a horizontal plate, calculate the peak heat flux at 
pressures of 10, 20, 40, 60, and 80 percent of the critical pressure pc and plot your 
rsesults as q″max/pc versus p/pc. The surface tension of water may be taken as  
σ = 0.0743 (1 – 0.0026 T), where σ is in newtons per meter and T in degrees Celsius. The 
critical pressure of water is 22.09 MPa. 

GIVEN 

• Saturated pool boiling of water on a horizontal plate 
• Surface tension of water (σ) = 0.0743 (1 – 0.0026 T) (Where σ is in N/m and T is in °C) 
• The critical pressure (pc) = 22.09 MPa = 2.209 × 104 kPa 

FIND 

• The peak heat flux, q″max for pressures of 10, 20, 40, 60, and 80 percent of the critical pressure, pc 

ASSUMPTIONS 

• Steady state 
• The plate is clean 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for saturated water 

Percent of, pc 10 20 40 60 80 

Pressure, p (kPa) 2209 4418 8836(a) 13,254(a) 17,672(a) 

Saturation Temperature 
Tsat (°C) 

217 256 302 332 355 

Liquid density, ρl 
(kg/m3) 

844.6 789.7 709.7 634.0 550.9 

Vapor density, ρv 
(kg/m3) 

11.1 22.3 47.9 80.7 128.5 

Heat of vaporization, 

hfg × 10–6 (J/kg) 

1.8635 1.6768 1.3844 1.1093 0.803 

(a) data from steam tables 
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SOLUTION 

The peak heat flux is given by Equation 10.4 

 q″ c = 
24

π 
    ρv

0.5 hfg 
1

4[ ( ) ]l v cg gσ ρ ρ−  

For p = 0.1 pc: 

 q″ c  = 
24

π 
  

( )0.5311.1 kg/m  ( )61.8635 10 J/kg×  ( )(Ws)/J   

  ( ) ( ) ( )[ ]
1

2 2 3 40.0743[1 0.0026(217)]N/m (kg m)/(s N) 9.8 m/s (844.6 11.1kg/m− −  

 q″ c = 3.28 × 106 2W/ m  

 max

c

q

P

″
 = 

( )6 2

4

3.28 10 W/m

2.209 10 kPa

×

×
 = 148 

2W/m

kPa
 

Repeating this procedure for the rest of the cases 

Percent of pc 10 20 40 60 80 

 q″max × 10–6 (W/m2) 3.28 3.83 4.00 3.56 2.63 

 q″max/pc (W/m2 kPa) 148 173 181 161 119 

 
These results are plotted below 
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COMMENTS 

Note the similarity of the graph to Figure 10.9. 

PROBLEM 10.8 

A 0.6-cm-thick flat plate of stainless steel, 7.5 cm wide and 0.3 m long, is immersed 
horizontally at an initial temperature of 980°C in a large water bath at 100°C and at 
atmospheric pressure. Determine how long it will take this plate to cool to 540°C. 
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GIVEN 

• A flat stainless steel plate is immersed horizontally in water 
• Plate thickness (s) = 0.6 cm = 0.006 m 
• Plate width (w) = 7.5 cm = 0.075 m 
• Plate length (L) = 0.3 m 
• Initial plate temperature (Tpi) = 980°C = 1253 K 
• Pressure = 1 atm 
• Water bath temperature (Tb) = 100°C (saturation) = 373 K 

FIND 

• Time for plate to cool to Tpf = 540°C = 813 K 

ASSUMPTIONS 

• The heat fluxes from the bottom and top of the plate are equal 
• The plate is polished 

SKETCH 

Stainless Steel Plate

Water Heat 100°C

7.5 cm
0.3 cm

0.6 cm

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at the pool temperature of 100°C 

  Density (ρ) = 958.4 kg/m3 

  Thermal conductivity (k) = 0.682 W/(m K) 

  Absolute viscosity (μ) = 277 × 10–6 (Ns)/m2 

  Prandtl number (Pr) = 1.75 

  Specific heat (c) = 4211 J/(kg K) 

  Heat of vaporization (hfg) = 2.257 × 106 J/kg 

From Appendix 2, Table 34, for steam at 100°C 

  kv = 0.0249 W/(m K) cv = 2034 J/(kg K) μv = 12.10 × 10–6 (Ns)/m2 

 ρ = 0.5977 kg/m3 

From Table 10.2, The surface tension, σ, for water @ 100°C = 0.0589 N/m 
From Table 10.1, The coefficient, Csf, for water on mechanically polished stainless steel = 0.0132 
From Table 9.2, the emissivity of polished stainless steel at the average temperature of  
(980°C + 540°C)/2 = 760°C (ε) = 0.22 

From Appendix 1, Table 5, the Stephen-Botzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 
From Appendix 2, Table 10, for type 304 stainless steel 

(ksteel) = 14.4 W/(m K) ρsteel = 7817 kg/m3 csteel = 461 J/(kg K). 
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SOLUTION 

As the plate cools, the heat flux from the plate will diminish. Therefore, the heat flux will be assumed 
to be constant over a small time step, then the plate temperature will be updated. This procedure will 
be repeated until the plate temperature drops to 540°C. 

The initial excess temperatures, ΔTx = Tpi – Tsat = 980°C – 100°C = 880°C. 

Assuming nucleate boiling, the heat flux is given by Equation (10.2) 

 l x
n

fg l

c T

h Pr

Δ
 = Csf 

0.33

( )
c

l fg l

gq

h g ν

σ
μ ρ ρ
 ″
 − 

 

Solving for the heat flux 

 q″ = 
3

l x
n

fg l sf

c T

h Pr C

Δ 
  

( )

l fg

c

l

h

g

g ν

μ
σ

ρ ρ−

 

q″ = ( )
( )

3

6

4211J/(kg K) (880°C)

2.257 10 J/kg (1.75) (0.0132)
 
  ×

( ) ( ) ( )
( )

( )

6 2 2 6

2

2 3

277.5 10 (Ns)/m (kg m)/(s N) 2.257 10 J/kg (Ws)/J

0.0589 N/m (kg m)/(s N)

9.8 m/s (958.4 0.5977)kg/m

−× ×

−

 

 = 8.96 × 1010 2W/m  

The critical heat flux for nucleate boiling is given be Equation (10.4) 

 q″ c = 
24

π ρv
0.5 hfg 

1

4[ ( ) ]l v cg gσ ρ ρ−  

 q″ c = 
24

π 
  

( )0.530.5977 kg/m ( )62.257 10 J/kg× ( )(Ws)/J   

   ( ) ( ) ( )[ ]
1

2 2 3 40.0589 J/kg (kg m)/(s N) 9.8m/s (958.4 0.5977) kg/m−  

Since q″ > q″c, The nucleate boiling assumption is invalid and film boiling will occur. Note that at the 
final plate temperature, Tb,f  = 540°C, ΔTx = 440°C, and q″ = 1.12 × 1010 > q″c . Therefore, film boiling 
will occur during the entire cooling period. 
For film boiling on flat horizontal surfaces, the conduction heat transfer coefficient is given by 
Equation (10.7) 

 ch  =  ( )0.59 0.69
D

λ+  

1
3 4( ) [ 0.68 ]l v v v fg v x

v x

g k h c T

T

ρ ρ ρ
λ μ

 − + Δ 
 

Δ  
  

 where λ = 2π
1

2

( )
c

l c

g

g

σ
ρ ρ

 
 − 

= 2π ( ) ( )
( )

1
2 2

2 3

(kg m)/(s N) 0.0589 N/m

9.8 m/s (958.4 0.5977) kg/m

 
 − 

= 0.01574 m 
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For a flat plate, D → ∞, therefore λ/D → 0 

 ch  = 
( ) ( )( )

( )

32 3 3

6 2

9.8 m/s (958.4 0.5977)kg/m 0.5977 kg/m 0.0249 W/(m K)

0.01574m 12.1 10 (Ns)/m xT−

 −

 × Δ

 

   
( )

1
6 42.257 10 J/kg 0.68 2034 J/(kg K) xT × + Δ 


 

 ch  = 15.32 

1
6 42.257 10 1383.1 x

x

T

T

 × + Δ
 Δ 

 2W/(m K)  (ΔTx in °C) 

Initially 

 ch  = 15.32 

1
6 42.257 10 1383.1(880 C)

(880 C)

 × + °
 ° 

 = 121.4 2W/(m K)  

The radiation heat transfer coefficient is given by Equation (10.9) 

 rh  = σ ε 
4 4

sat

sat

p

p

T T

T T

 −
 − 

 = ( )8 2 45.67 10 W/(m K )−×  (0.22) 
4 4(373K)

(373K)
p

p

T

T

 −
 − 

 

Initially 

 rh  = ( )8 2 41.247 10 W/(m K )−×  
4 4(1253K) (373K)

(1253K) (373K)

 −
  −

 = 34.7 2W/(m K)  

The total heat transfer coefficient is given by Equation (10.8) 

 htotal = ch  + 0.75 rh  = [121.4 + (0.75) (34.7)] 2W/(m K)  = 147.4 2W/(m K)  

The initial rate of heat transfer is 

 q = totalh  A (Tp – Tb) = totalh  2H L (Tp – Tb) 

 q = ( )2147.4 W/(m K)  2 (0.075 m)(0.3 m) (980°C – 100°C) = 5838 W 

The initial Biot number is 

 Bi = total

steel2

h s

k
 = 

( )
( )

2147.4 W/(m K) (0.006m)

2 14.4 W/(m K)
 = 0.03 < 0.1 

Therefore, the internal resistance of the steel is negligible. The change in the plate temperature is given 
by 

 ΔT = 
steel steel

q t

m c

Δ
 = 

steel steel(volume)

q t

cρ
Δ

 = 
steel steel

q t

H L s cρ
Δ

 

For Δt = 5 s 

 ΔT = ( ) ( ) ( )3

5838W(5s)

(0.075m)(0.3m)(0.006m) 7817 kg/m 461 J/(kg K) (W s)/J
 = 60 K 
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Therefore, after 5 s 

 Tp = Tpi – ΔT = 980°C – 60°C = 920°C 

Repeating this procedure: for Δt = 5 s 

Time (s) Tp (°C) htotal (W/m2 K) q (W) ΔT (K) 

0 980 147.4 5838 60 
5 920 145.7 5378 55.3 
10 864.7 144.6 4858 49.9 
15 814.8 143.8 4626 47.5 
20 767.2 143.4 4307 44.3 
25 723.0 143.4 4019 41.3 
30 681.7 143.5 3757 38.6 
35 643.1 143.9 3518 36.2 
40 606.9 144.6 3299 33.9 
45 573.0 145.4 3096 31.8 
50 540 

The plate will cool to 540°C in approximately 50 seconds. 

PROBLEM 10.9 

Calculate the maximum heat flux attainable in nucleate boiling with saturated water at 2 
atm pressure in a gravitational field equivalent to one-tenth that of the earth. 

GIVEN 

• Nucleate boiling with saturated water 
• Pressure = 2 atm 
• Gravitational field = 1/10 that of earth 

FIND 

• The maximum heat flux (q″max) 

ASSUMPTIONS 

• Steady state conditions 
• Nucleate pool boiling 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 2 atm (2.0264 × 105 N/m2) 
  Saturation temperature (Ts): 120.5°C 

  Water density, (ρl): 943.5 kg/m3 
  Heat of vaporization, (hfg): 2201 J/kg 

  Vapor density, (ρv = 1/vg): 1.13 kg/m3 

From Table 10.2, the surface tension (σ) = 0.0547 N/m 
Acceleration due to gravity on earth (ge) = 9.8 m/s2 

SOLUTION 

The maximum heat flux is given by Equation (10.4) 

 q″max = 
24

π
 ρv

0.5 hfg 
1

4[ ( ) ]l v cg gσ ρ ρ−  

where  g = 
1

10
 
   gearth = 0.98 2m/s  

 q″max = 
24

π 
  

( )0.531.13 kg/m ( )62.201 10 J/kg× ( )(Ws)/J  
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   ( ) ( ) ( )[ ]
1

2 2 3 40.0547 J/kg (kg m)/(s N) 0.98 m/s (943.5 1.13)kg/m−  

 q″max = 8.17 × 105 2W/m  

PROBLEM 10.10 

Prepare a graph showing the effect of subcooling between 0 and 50°C on the maximum 
heat flux calculated in Problem 10.9. 
From Problem 10.9: Calculate the maximum heat flux attainable in nucleate boiling with 
saturated water at 2 atm pressure in a gravitational field equivalent to one-tenth that of 
the earth. 

GIVEN 
• Nucleate boiling with saturated water 
• Pressure = 2 atm 
• Gravitational field = 1/10 that of earth 
• From Problem 10.9, the maximum heat flux (q″max,sat) = 8.17 × 105 W/m2 

FIND 

• Prepare a graph showing the effect of sub cooling (Tsat – Tliquid) between 0 and 50°C on q″max 

ASSUMPTIONS 

• Steady state conditions 
• Nucleate pool boiling 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 2 atm (2.0264 × 105 N/m2) 
  Saturation temperature (Ts): 120.5°C 

  Water density, (ρl): 943.5 kg/m3 

  Heat of vaporization, (hfg): 2201 J/kg 

  Vapor density, (ρv = 1/vg): 1.13 kg/m3 

  Thermal conductivity (kl) = 0.685 W/(m K) 

  Thermal diffusivity (αl) = 0.171 × 10–6 m2/s 

From Table 10.2, the surface tension (σ) = 0.0547 N/m 
Acceleration due to gravity on earth (ge) = 9.8 m/s2 

SOLUTION 

For subcooling, the effect on the maximum heat flux is given by Equation (10.5) 

 q″max = q″max,sat 

1
2 4sat liquid2 ( ) 24

1
( )

l v

fg v c l vl

k T T

h g g

ρ
π ρ σ ρ ρπ α τ

 −    +    −   
 

 where τ = 
3

π 
    2π  

1

2

( )
c

l v

g

g

σ
ρ ρ

 
 − 

1
2 4

( )
v

c l vg g

ρ
σ ρ ρ

 
 − 

 

 τ = 
3

π 
   2π  

( )
( )

1
2 2

2 3

(kg m)/(s N) 0.0547 N/m

0.98 m/s (943.5 1.13)kg/m

 
 − 

 

  
( )

( ) ( ) ( )

1
23 4

2 2 3

1.13 kg/m

(kg m)/(s N) 0.0547 N/m 0.98 m/s (943.5 1.13) kg/m

 
 
 − 

 = 0.008055 s 
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 q″max = ( )5 28.17 10 W/ m×  

  
( )
( ) ( ) ( ) ( )

sat liquid

6 36 2

2 0.685 W/(m K) ( ) 24
1

2.201 10 J/kg 1.13 kg/m (Ws)/J0.171 10 m /s (0.008055s)−

−  
+   ×  ×  

T T

ππ
 

   
( )

( ) ( )
23

2 2 3

1.13 kg/m

(kg m)/(s N) 0.0547 N/m 0.98 m/s (943.5 1.13)kg/m

 
 
 − 

 

 q″max = ( )5 28.17 10 W/m×  [1 + 0.02551 (Tsat – Tliquid)] 

This is tabulated and graphed fro different values of (Tsat – Tliquid) below 

Tsat – Tliquid (°C)   q″max × 10–6 (W/m2) 

0  0.817 
5  0.921 
10  1.03 
15  1.13 
20  1.23 
25  1.34 
30  1.44 
35  1.55 
40  1.65 
45  1.75 
50  1.86 
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PROBLEM 10.11 

A thin-walled horizontal copper tube of 0.5 cm OD is placed in a pool of water at 
atmospheric pressure and 100°C. Inside the tube, an organic vapor is condensing and the 
outside surface temperature of the tube is uniform at 232°C. Calculated the average heat 
transfer coefficient on the outside of the tube. 

GIVEN 

• A horizontal copper tube in a pool of water at atmospheric pressure 
• Tube outside diameter (D) = 0.5 cm = 0.005 m 
• Water temperature (Tw) = 100°C = 373 K 
• Tube outside surface temperature (Tt) = 232°C = 505 K (uniform) 

FIND 

• The average heat transfer coefficient (htotal) 
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ASSUMPTIONS 

• Steady state 
• The copper tube is polished 

SKETCH 

D = 0.5 cm

Water = 100° CTw Tt = 232 °C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 1 atm, 100°C (saturation temperature) 

  Density (ρl) = 958.4 kg/m3 

  Specific heat (cl) = 4211 J/(kg K) 

  Absolute viscosity (μl) = 277.5 × 10–6 (Ns)/m2 

  Prandtl number (Pr) = 1.75 

  Heat of vaporization (hfg) = 2257 kJ/kg = 2.257 × 106 J/kg 

From Appendix 2, Table 34, for steam at 100°C 

  Density ρv = 0.5977 kg/m3 

  Specific heat (cv) = 2034 J/(kg K) 

  Thermal conductivity (kv) = 0.0249 W/(m K) 

  Absolute viscosity (μv) = 12.10 × 10–6 (Ns)/m2 

From Table 10.2, the surface tension (σ) = 0.0589 N/m 
From Table 10.1, for water on polished copper, the constant Csf = 0.0128 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

From Table 9.2, the emissivity of polished copper (ε) ≈ 0.04. 

SOLUTION 

The excess temperature ΔTx = Tt = Tsat = 232°C – 100°C = 132°C. This high an excess temperature 
will probably lead to film boiling. This can be checked by calculating the nucleate boiling heat flux 
and comparing it to the critical flux. The nucleate boiling heat flux is given by Equation (10.2) 

 l x
n

fg l

c T

h Pr

Δ
 = Csf 

0.33

( )
c

l fg l

gq

h g ν

σ
μ ρ ρ
 ″
 − 

 

Rearranging 

 q″ = 

1

0.33l x
n

fg l sf

c T

h Pr C

 
  Δ 

  
 

( )

l fg

c

l v

h

g

g

μ
σ

ρ ρ−
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 q″ =
( )

( )

1

0.33

6

4211 J/(kg K) (132°C)

2.257 10 J/kg (1.75) (0.0128)

 
   

  ×
 

  
( ) ( ) ( )

( )
( )

6 2 2 6

2

2 3

277.5 10 (Ns)/m (kg m)/(s N) 2.257 10 J/kg (W s)/J

0.0589 N/m (kg m)/(s N)

9.8 m/s (958.4 0.5977)kg/m

−× ×

−

 3.57 × 108 2W/m  

The critical heat flux for nucleate boiling is given by Equation (10.4) 

 q″c = 
24

π 
    ρv

0.5 hfg 
1

4[ ( ) ]l v cg gσ ρ ρ−   

 q″ c = 
24

π 
  

( )0.530.5977 kg/m ( )62.257 10 J/kg× ( )(Ws)/J   

   ( ) ( ) ( )[ ]
1

2 2 3 40.0589 J/kg (kg m)/(s N) 9.8 m/s (958.4 0.5977)kg/m−  

 q″c = 1.11 × 106 2W/m  

Since q″ > q″max, film boiling will exist. The conductive heat transfer coefficient for film boiling on 
tubes is given by Equation (10.6) 

 ch  = 0.62 

1
3 4( ) [ 0.68 ]l v v v fg pv x

v x

g k h c t

D t

ρ ρ ρ
μ

 − + Δ
  Δ

 

 ch  = 0.62 
( ) ( ) ( )

( ) ( )
32 3 3

6 2 2

9.8 m/s (958.4 0.5977)kg/m 0.5977 kg/m 0.0249 W/(m K)

(0.005m) 12.10 10 (Ns)/m (kg m)/(s N) (132°C)−

 −

 ×

 

   
( ) ( )[ ]

1
6 42.257 10 J/kg 0.68 2034 J/(kg K) (132°C) (W s)/J × +


 

 ch  = 250 2W/(m K)  

The radiative heat transfer coefficient is given by Equation (10.9) 

 rh  = σr ε 
4 4

t w

t w

T T

T T

 −
  −

 = ( )8 2 45.67 10 W/(m K )−×  

   (0.04) 
4 4(505K) (373K)

(505K) (373K)

 −
  −

 = 0.78 2W/(m K)  

The total heat transfer coefficient is given by Equation (10.8) 

 htotal = ch  + 0.75 rh  = [250 + (0.75) (0.78)] 2W/(m K)  = 251 2W/(m K)  

COMMENTS 

Note that the contribution of radiation is very small due to the low emissivity of the polished copper 
surface. 
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PROBLEM 10.12 

In boiling (and condensation) heat transfer, the convection coefficient, h, is expected to 
depend on the difference between surface and saturation temperature ΔT = Tsurface – 
Tsaturation, the body force arising from the density difference between liquid and vapor, 
g(ρl – ρv), the latent heat, hfg, the surface tension, σ, a characteristic length of the system, 
L, and the thermophysical properties of the liquid or vapor: ρ, c, k, μ. Thus we can write 

h = h(ΔT, g(ρl – ρv), hfg, σ, L, ρ, c, k, μ) 

Determine (a) the number of dimensionless groups necessary to correlate experimental 
data, and (b) appropriate dimensionless groups that should include the Prandtl number, 
the Jakob number, and the Bond number (gΔρL2/σ). 

GIVEN 

• Heat transfer coefficient as a function of several dimensional quantities 

FIND 

(a) The number of dimensionless groups necessary to correlate experimental data 
(b) The appropriate dimensionless groups including Pr, Ja, and Bo 

SOLUTION 

(a) We have 10 physical quantities and 4 dimensions (Mass, Length, Time, and Temperature) 
therefore, there must be 10 – 4 = 6 dimensionless groups necessary to correlate experimental data 
for boiling or condensation. 

(b) We are given four of these dimensionless groups 

 π1 = Nu = 
hL

k
 

 π 2 = Pr = 
c

k

μ
 

 π 3 = Ja = 
fg

c T

h

Δ
 

 π 4 = Bo = 
2g Lρ

σ
Δ

 

so there must be two other dimensionless groups. 
For either of these dimensionless groups, we can write 

 π = ΔTa (gΔρ)b hfg 
cσ d Le ρf cg kh μ i 

or in terms of the dimension of each of the physical quantities we have 

 [π] = [T]a
2 2

bM

L t
 
  

2

2

c
L

t

 
   2

dM

t
 
  

 [L]e 
3

fM

L
 
  

2

2

g
L

T t

 
 
  3

hML

T t
 
  

iM

Lt
 
  

 

In order for either of the two new groups to be dimensionless, the following four equations in the 
powers (a, b, …) must be satisfied 

  [T]0  a – g – h = 0 (1) 

  [L]0   –2b + 2c + e – 3f + 2g + h – i = 0 (2) 
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  [t ]0  –2b – 2c – 2d – 2g – 3h – i = 0 (3) 

  [M]0  b + d + f + h + i = 0 (4) 
Since there are 4 equations in 9 unknowns, we are free to select 5 of these powers. The following table 
will help determine which powers to select 

 π2 π3 π4 π5 π6 
 Pr Ja Bo   

a 0 1 0   
b 0 0 1   
c 0 –1 0   
d 0 0 –1   
e 0 0 2   
f 0 0 0   
g 1 1 0   
h –1 0 0   
i 1 0 0   

 

For π5, let’s set a = c = d = g = 0 and f = 1 to ensure that our solution vector is not proportional to 
those for the previous π,s. Then equation (1) gives h = 0, equation (2) gives – 2b + e – 3 – i = 0, 
equation (3) gives –2b – i = 0 and equation (4) gives b + 1 + i = 0. These can be solved to find  
b = 1, i = –2, and e = 3. So we have 

 π5 = 
3

2

g Lρ ρ
μ

Δ
 

For π6, let’s a = d = i = 1, and c = g = 0. This will ensure that this vector is not proportional to the 
others. The four equations can then be solved to give h = 1, b =  – 3, f = 0, and e = –6, giving 

 π6 = 
3 6( )

T k

g L

σ μ
ρ

Δ
Δ

 

PROBLEM 10.13 

Environmental concerns have recently motivated the search for replacements for 
chlorofluorocarbon refrigerants. An experiment has been devised to determine the 
feasibility of such a replacement. A silicon chip is bonded to the bottom of a thin copper 
plate as shown in the sketch below. The chip is 0.2 cm thick and has a thermal 
conductivity of 125 W/(m K). The copper plate is 0.1 cm thick and there is no contact 
resistance between the chip and the copper plate. This assembly is to be cooled by boiling 
a saturated liquid refrigerant on the copper surface. The electronic circuit on the bottom 
of the chip generates heat uniformly at a flux of q″ = 5 × 104 W/m2. Assume that the sides 
and the bottom of the chip are insulated. Calculate the steady state temperature at the 
copper surface and the bottom of the chip, as well as the maximum heat flux in pool 
boiling, assuming that the boiling coefficient, Csf, is the same as for n-pentane on lapped 
copper. The physical properties of this new coolant are: Tsat = 60°C, cp = 1100 J/(kg K), 
hfg = 8.4 × 104 J/kg, ρl = 1620 kg/m3, ρv = 13.4 kg/m3, σ = 0.081 N/m, μl = 4.4 × 10–4 
kg/(ms) and Prl = 9.0. 

GIVEN 

• A new refrigerant boiling on top of a copper plate, cooling a silicon chip 
• The refrigerant is a saturated liquid 
• Properties of the refrigerant and Csf 
• No contact resistance between the copper plate and the chip 
• Uniform heat flux produced by the chip is 5 × 104 W/m2 
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FIND 

(a) Steady state temperature at the copper surface 
(b) Steady state temperature at the bottom of the chip 
(c) Maximum heat flux in pool boiling 

SKETCH 

Boiling Refrigerant

Bonded Surface

Silicon Chip

(insulation removed)

Copper Plate

0.1 cm

q"0
4 2= 5 x 10 W/m

0.2 cm

 

PROPERTIES AND CONSTANTS 

From Table 10.1, the boiling coefficient, Csf, for n-pentane boiling on lapped copper is  
Csf = 0.0049 

SOLUTION 

The right side of the sketch above shows the thermal circuit. The heat generated at the bottom of the 
chip is transferred by conduction up through the chip and through the copper plate and is then 
transferred to the boiling refrigerant on top of the chip. 
Assuming that the heat flux does not exceed the critical heat flux, we can determine the temperature 
drop as the excess temperature. ΔTx = Tcopper – Tsat, from Equation (10.2) 

 l x
n

fg l

c T

h Pr

Δ
 = Cfs 

0.33

( )
e

l fg l

gq

h g ν

σ
μ ρ ρ
 ″
 − 

 

Since the refrigerant is not water, n = 1.7, so the right side of the above equation is 

  (0.0049) 
( )

( ) ( )
( ) ( )

( )

0.33
4 2 2

4 4 2 3

5 10 W/m 1 (kg m)/(Ns ) 0.081 N/m

4.4 10 kg/(ms) 8.4 10 J/kg 9.81 m/s (1620 – 13.4) kg/m−

 ×
 
 × × 

 = 0.007093 

and 

 ΔTx = 
( )

( )
4 1.7(0.007093) 8.4 10 J/kg (9 )

1100 J/(kg K)

×
 = 22.7 K 

(a) Therefore, Tcopper = Tsat + ΔTx = 60°C + 22.7 = 82.7°C. 
Now, the thermal conductivity of copper at ~90°C is, from Figure 1.6, kcopper = 400 W/(m K), so the 
thermal resistance of the copper is 

 Rcopper = 
copper

t

k

 
    = 

( )
310 m

400 W/(m K)

−
 = 2.5 × 10–6 2(m K)/W  

The temperature drop across the copper plate is  

 ΔTcopper = qo″ Rcopper = ( )4 25 10 W/m×  ( )6 22.5 10 (m K)/W−×  = 0.125K 

The thermal resistance of the chip is 

 Rchip = 
chip

t

k

 
    = 

( )
3(2 10 m)

125 W/m

−×
 = 1.6 × 10–5 2(m K)/W  
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So the temperature drop across the chip is 

 ΔTchip = qo″ Rchip = ( )4 25 10 W/m×  ( )5 21.6 10 (m K)/W−×  = 0.8 K 

(b) and the temperature of the bottom of the chip is therefore Tchip =  82.7+ 0.125+ 0.8 = 83.65°C. 
The maximum heat flux can be calculated from Equation (10.4) 

 q″max = 
24

π 
  

1

2
vρ   hfg 

1

4[ ( – )]c l vggσ ρ ρ  

or 
(c) 

 q″max = 
24

π 
  

( )
1

3 213.4 kg/m ( )48.4 10 J/kg×  

  ( ) ( ) ( ) ( )[ ]
1

2 2 3 40.081 N/m 9.81 m/s 1(kg m)/(Ns ) (1620 13.4) kg/m− = 240,590 2W/m  

(Using Lienhard’s recommendation, this critical heat flux would be about 11% larger.) 

Since ΔTx is proportional to (heat flux)0.33, we can recalculate the chip temperature as follows 

  T ′chip = 60 + 22.7 
0.33240,590

50,000
 
  

+ 0.125 + 0.8 = 99.0°C 

This temperature could be compared to the maximum permissible chip operating temperature to 
determine the maximum permissible chip power dissipation. 

PROBLEM 10.14 

It has recently been proposed by Andraka el al. of Sandia National Laboratories, 
Albuquerque, in Sodium Reflux Pool-Boiler Solar Receiver On-Sun Test Results 
(SAND89-2773, June 1992), that the heat flux from a parabolic dish solar concentrator 
could be delivered effectively to a Stirling engine by a liquid-metal pool boiler. The 
sketch below shows a cross-section of the pool boiler receiver assembly. Solar flux is 
absorbed on the concave side of a hemispherical absorber dome, boiling molten sodium 
metal on the convex side of the dome. The sodium vapor condenses on the engine heater 
tube as shown near the top of the figure. Condensing sodium transfers its latent heat to 
the engine working fluid which circulates inside the tube. Calculations indicate that a 
maximum heat flux of 75 W/cm2 delivered by the solar concentrator to the absorber 
dome is to be expected. 

After the receiver had been tested for about 50 hours, a small spot on the absorber dome 
suddenly melted and the receiver failed. Is it possible that the critical flux for the boiling 
sodium was exceeded? Use the following properties for the sodium: ρ  = 0.056 kg/m3, 

ρl = 779 kg/m3, hfg = 4.039 × 106 J/kg, σl = 0.138 N/m, μl = 1.8 × 10–4 kg/ms. 

 

GIVEN 

• Sodium pool-boiler solar receiver 
• Failure after about 50 hours operation 
• Expected peak heat flux was 75 W/cm2 = 750,000 W/m2 

FIND 

(a) Whether the critical heat flux could have been exceeded 

ASSUMPTIONS 

• To first order, the absorber dome can be treated as flat, horizontal surface 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
892

PROPERTIES AND CONSTANTS 

As given in the problem statement, the pertinent properties of the sodium vapor and liquid are 

  Heat of vaporization (hfg) = 4.039 × 106 J/kg 

  Vapor density (ρv) = 0.056 kg/m3 

  Liquid density (ρl) = 779 kg/m3 

  Surface tension (σ) = 0.138 N/m 

SOLUTION 

The critical heat flux can be calculated from Equation (10.4) 

 q″max,Z = 
24

π 
    

1

2
vρ  hfg 

1

4[ ( – ) ]l v cg gσ ρ ρ  

For the property values listed above we have 

 q″max,Z = 
24

π 
    ( )

1
3 20.056 kg/m ( )64.039 10 J/kg×   

  ( ) ( ) ( ) ( )[ ]
1

2 3 2 40.138 N/m 9.81 m/s (779 0.056) kg/m (kg m)/(Ns )− = 712,970 2W/m  

If we use Lienhard and Dhir’s recommendation that the factor π/24 be replaced by 0.149, the critical 
heat flux would be 

 q″max,Z = 712,970 
0.149

24
π

 
  
    

= 811,550 2W/m  

which exceeds the expected maximum flux. Therefore, exceeding the critical heat flux is a possible 
factor in the failure of the receiver. 

COMMENTS 

The correlation for critical heat flux used above has not necessarily been tested with liquid metals so 
the result should be used with some caution. 

PROBLEM 10.15 

Calculate the peak heat flux for nucleate pool boiling of water at 3 atm and 110°C on 
clean copper. 

GIVEN 

• Nucleate pool boiling of water on clean copper 
• Pressure = 3 atm 
• Water temperature (Tw) = 390°C 
Find 

• The peak heat flux (q″max) 

ASSUMPTIONS 

• Steady state 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for saturated water at 3 atm (3.04 × 105 Pa) pressure 
  Saturation temperature (Tsat) = 133°C 

  Liquid density (ρl) = 932.3 kg/m3 
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  Vapor density (ρv = 1/vg) = 1.55 kg/m3 

  Thermal conductivity (kl) = 0.684 W/(m K) 

  Heat of vaporization (hfg) = 2164 kJ/kg = 2.164 × 106 J/kg 

  Thermal diffusivity (αl) = 0.172 × 10–6 m2/s 

  Absolute viscosity (μl) = 213.0 × 10–6 (Ns)/m2 

  Prandtl number (prl) = 1.30 

From Table 10.2, the surface tension at 133°C (σ) = 0.0522 N/m 

SOLUTION 

The maximum heat flux for water at saturation temperature is given by Equation (10.4) 

 q″max,sat = 
24

π 
    ρv

0.5 hfg 
1

4[ ( ) ]l v cg gσ ρ ρ−  

 q″max,sat = 
24

π 
  

( )0.531.55 kg/m ( )62.164 10 J/kg×  ( )(Ws)/J   

   ( ) ( ) ( )[ ]
1

2 2 3 40.0522 J/kg (kg m)/(s N) 9.8 m/s (932.3 1.55)kg/m−  

 q″max,sat = 1.65 × 106 2W/m  

The maximum heat flux for a subcooled liquid is given by Equation (10.5) 

 q″max = q″max,sat 

1
2 4sate liquid2 ( ) 24

1
( )

l v

fg v c l vl

k T T

h g g

ρ
π ρ σ ρ ρπ α τ

 −    +    −   
 

 where τ = 
3

π 
    2π  

1

2

( )
c

l v

g

g

σ
ρ ρ

 
 − 

 

1

4
2

( )
v

c l vg g

ρ
σ ρ ρ

 
 − 

 

 t = 
3

π 
   2π  

( ) ( )
( )

1
2 2

2 3

(kg m)/(s N) 0.0522 N/m

9.8 m/s (932.3 1.55)kg/m

 
 − 

  

  
( )

( ) ( ) ( )

1
23 4

2 2 3

1.55 kg/m

(kg m)/(s N) 0.0522 N/m 9.8m/s (932.3 1.55) kg/m

 
 
 − 

= 0.00167 s 

 q″max = ( )6 21.65 10 W/m×  

 
( )

( ) ( ) ( ) ( )6 36 2

2 0.684 W/(m K) (133°C 110°C) 24
1

2.164 10 J/kg 1.55 kg/m (Ws)/J0.172 10 m /s (0.00167s) ππ −

−  +   ××  

   
( )

( ) ( ) ( )

1
23 4

2 2 2

1.55 kg/m

(kg m)/(s N) 0.0522 N/m 9.8 m/s (932.3 – 1.55)kg/m


  
  
   

 

 q″max = 2.69 × 106 2W/m  
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PROBLEM 10.16 

Calculate the heat transfer coefficient for film boiling of water on a 1.3 cm horizontal 
tube if the tube temperature is 550°C and the system is placed under pressure of 1/2 atm. 

GIVEN 

• Film boiling of water on a horizontal tube 
• Tube outside diameter (D) = 1.3 cm = 0.013 m 
• Tube temperature (Tt) = 550°C 
• Pressure = 1/2 atm = 50,660 N/m2 

FIND 

• The heat transfer coefficient (hc) 

ASSUMPTIONS 

• Steady state 
• Tube temperature is uniform and constant 
• The viscosity, specific heat, and thermal conductivity of the vapor can be approximated by those 

of steam at 1 atm pressure 
• Radiation across the vapor film is negligible 

SKETCH 

D = 1.3 cm

Water = 1/2 atmP Tt = 550 °C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 50,660 N/m2 
  Saturation temperature (Tsat): 81.5°C 

  Water density, (ρl): 970.6 kg/m3 

  Heat of vaporization, (hfg): 2304 kJ/kg = 2.304 × 106 J/kg 

  Vapor density, (ρv = 1/vg): 0.3070 kg/m3 

Extrapolating from Appendix 2, Table 34, for steam at 1 atm and 81.5°C 

  Absolute viscosity (μv) = 10.49 × 10–6 (Ns)/m2 

  Thermal conductivity (kv) = 0.0257 W/(m K) 

  Specific heat (cv) = 1965 J/(kg K) 

SOLUTION 

The heat transfer coefficient for film boiling on tubes is given by Equation (10.6) 

 ch  = 0.62 

1
3 4( ) [ 0.68 ]l v v v fg pv x

v x

g k h c T

D T

ρ ρ ρ
μ

 − + Δ
  Δ

 

 ch  = 0.62  
( ) ( ) ( )

( ) ( )
32 3 3

6 2 2

9.8 m/s (970.6 0.3070) kg/m 0.3070 kg/m 0.0257 W/(m K)

(0.013m) 10.49 10 (Ns)/m (kg m)/(s N) (550°C 81.5°C)−

 −


× −
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( )[ ] ( )

1
6 42.304 10 J/kg 0.68 1965 J/(kg K) (550°C 81.5°C) (W s)/J × + −


 

 ch  = 135 2W/(m K)  

PROBLEM 10.17 

A metal-clad electrical heating element of cylindrical shape, as shown in the sketch 
below, is immersed in water at atmospheric pressure. The element has a 5 cm diameter 
and heat generation produces a surface temperature of 300°C. Estimate the heat flux 
under steady state conditions and the rate of heat generation per unit length. 

GIVEN 

• Cylindrical, electrical heating element 
• Heat generation produces a 300°C surface temperature 

FIND 

(a) Heat flux 
(b) Rate of heat generation 

ASSUMPTIONS 
• The system operates at atmospheric pressure 
• The heater surface is black 

SKETCH 

Water Pool

Heating Element 300°C

5 cm

 

 

PROPERTIES AND CONSTANTS 

Inspection of the boiling curve in Figure (10.1) indicates that at 300°C surface temperature, the heating 
system must operate in the film boiling regime. Hence, a vapor layer covers the surface of the heater 
and it is appropriate to evaluate the physical properties at the mean film temperature of (100 + 300)/2 
= 200°C. 
From Appendix 2, Table 34 

  Vapor density (ρv) = 0.4673 kg/m3 

  Specific heat (cpv) = 1982 J/(kg K) 

  Absolute viscosity (μv) = 1.61 × 10–5 kg/(ms) 

  Thermal conductivity (kv) = 0.032 W/(m K) 

From Appendix 2, Table 13 

  Heat of vaporization (hfg) = 2.257 × 106 J/kg 

  Liquid density (ρl) = 958.4 kg/m3 
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SOLUTION 

We find the convection heat transfer coefficient from Equation (10.6) 

 ch  = 0.62 

1
3 4( ) [ 0.68 ]l v v v fg pv x

v x

g k h c T

D T

ρ ρ ρ
μ

 − + Δ
 

Δ 
 

so 

 ch  = 0.62 
( ) ( ) ( )( )

( )
32 3 3

5

9.81 m/s (958.4 0.4673) kg/m 0.4673 kg/m 0.032 W/(m K)

(0.05m) 1.61 10 kg/(ms) (200K)−

 −


×
 

   
( ) ( )[ ]

1
6 42.257 10 J/kg 0.68 1982 J/(kg K) (200 K) × +




 = 135 2W/(m K)  

The radiation heat transfer coefficient can be determined from Equation (10.9) 

 rh  = σεs 
4 4

sat

sat

s

s

T T

T T

 −
  −

 = ( )8 4 25.67 10 W/(K m )−× (1) 
4 4 4(573 373 )(K )

(573 – 373)(K)

 −
  

 = 25.1 2W/(m K)  

The total heat transfer coefficient is from Equation (10.8) 

 totalh  = ch  + 0.75 rh  = ( )2135.0 W/(m K)  + 0.75 ( )225.1 W/(m K)  = 154 2W/(m K)  

(a) The heat flux is then 

 q″ = totalh  ΔT = ( )2154 W/(m K)  (200 K) = 30,761 W/m2 

(b) The rate of heat generation per unit length is 

 qL = totalh  ΔTπD = ( )2154 W/(m K)  (200 K) (π) (0.05 m) = 4838 W/m  

PROBLEM 10.18 

Calculate the maximum safe heat flux in the nucleate-boiling regime for water flowing at 
a velocity of 15 m/s through a 1.2-cm-ID copper tube 0.31 m long if the water enters at 1 
atm pressure and 100°C saturated liquid. 

GIVEN 

• Nucleate boiling of water flowing through a tube 
• Water velocity (V) = 15 m/s 
• Tube inside diameter (D) = 1.2 cm = 0.012 m 
• Tube length (L) = 0.31 m 
• Water pressure (p) = 1 atm 
• Water temperature (Tw) = 100°C 

FIND 

• The maximum safe heat flux in the nucleate boiling regime (q″max) 

ASSUMPTIONS 

• Steady state 
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SKETCH 

Water
= 15 m/s
= 100 °C

V
Tw

D = 1.2 cm

L = 0.31 m  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for water at 100°C, 1 atm 

  Density (ρl) = 958.4 kg/m3 

  Thermal conductivity (kl) = 0.682 W/(m K) 

  Absolute viscosity (μl) = 277.5 × 10–6 (Ns)/m2 

  Prandtl number (Prl) = 1.75 

  Specific heat (cl) = 4211 J/(kg K) 

  Kinematic viscosity (νl) = 0.294 × 10–6 m2/s 

  Heat of vaporization (hfg) = 2.275 × 106 J/kg 

  Enthalpy of saturated vapor (hg) = 2.676 × 106 J/kg 

  Enthalpy of saturated liquid (hb) = 0.419 × 106 J/kg 

From Appendix 2, Table 34, for steam at 100°C: ρv = 0.5977 kg/m3 
From Table 10.2: Surface tension at 100°C (s) = 0.0589 N/m 
From Table 10.1: For water on copper, Csf = 0.0130 

SOLUTION 

Assuming that by ‘safe’ we mean that the critical heat flux is not exceeded, we can use the Griffith 
correlation, Figure 10.17. The critical pressure is Pc = 218.3 atm, P/Pc = 1/218.3 = 0.0046. From the 
figure, the ordinate is therefore 6000 

 6000 = max
1

2 3

41.5

( ) l v l
g b v

l l l

q

k
h h g F

c

ρ ρρ
μ ρ

″

 −   −         

 

Since Ts = Tb, the parameter F simplifies to 

 F = 1 + 10–6 
l

UD

v
 
  

 = 1 + 10–6 
( )

6 2

15 m/s (0.012m)

0.249 10 m /s−
 
  ×

 = 1.612 

The maximum heat flux is then given by 

 q″max = 
6000

41.5
 (hg – hb) ρv 

1
2 3

l v l

l l l

k
g

c

ρ ρ
μ ρ

 −   
        

 F 

 = 
6000

41.5
 
   (2.676 – 0.419) ( )610 J/kg  ( )30.5977 kg/m  

  ( ) ( ) ( )
( ) ( )

1
23 3

2
6 2 3

(958.4 0.5977) kg/m 0.682 W/(m K)
9.8m/s

277.5 10 (N s)/m 958.4 kg/m 4211 J/(kg K)−
 −  
   × 

 1 

 q″max = 3.108 × 106 W/m2 
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PROBLEM 10.19 

During the 1980s, solar thermal electric technology was commercialized with the 
installation of 350 MW of electrical power capacity in the California desert. The 
technology involved heating a heat transfer oil in receiver tubes placed at the focus of 
line-focus, parabolic trough solar concentrators. The heat transfer oil was then used to 
generate steam which, in turn, powered a steam turbine/electrical generator. Since the 
transfer of heat from the oil to the steam creates a temperature drop and a resulting loss 
in thermal efficiency, alternatives have been considered. In one alternative, steam would 
be generated directly inside the receiver tubes. Consider an example in which a heat flux 
of 50,000 W/m2 is absorbed on the outside surface of a 12.7 mm i.d., stainless steel 316 
tube with a wall thickness of 1.245 mm. Inside the tube, saturated liquid water at 300°C 
is flowing at a rate of 100 kg/hr. Determine the maximum tube wall temperature if the 
steam quality is to be increased to 0.5. Assume μv = 2.0 × 10–5 kg/(ms). Neglect any heat 
losses from the outside of the receiver tube. 

GIVEN 

• 12.7 mm i.d. tube with flowing, boiling water inside 
• 50,000 W/m2 heat flux at tube o.d. 
• 100 kg/hr water enters the tube at saturated liquid conditions, 300°C 
• Absolute viscosity of the steam is μv = 2 × 10–5 kg/(ms) 
• Tube heat losses are negligible 

FIND 

(a) Tube wall temperature if steam quality is to be 0.5 at tube exit 

ASSUMPTIONS 

• The method of Chen is applicable 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for Tsat = 300°C we have 

  Heat of vaporization (hfg) = 1.403 × 106 J/kg 

  Saturation pressure (Psat) = 8.592 × 106 N/m2 

  Vapor density (ρv) = 46.3 kg/m3 

  Liquid density (ρl) = 712.5 kg/m3 

  Liquid absolute viscosity (μl) = 92.2 × 10–6 kg/(ms) 

  Liquid Prandtl number (Prl) = 0.98 

  Liquid thermal conductivity (kl) = 0.564 W/(m K) 

  Liquid specific heat (cl) = 5694 J/(kg K) 

and from Table 10.2 

  Surface tension (σ) = 0.0143 N/m 

SOLUTION 

We will follow the method of Chen described in Section 10.3.2. The tube flow area is Af = πDi
2/4 = 

0.000127 m2 and the tube outside radius is ro = 12.7/2 mm + 1.245 = 7.6 mm. Then  

 G = 
f

m

A


 = ( )100 kg/h ( )

2

1
h/3600s

(0.000127 m )
 = 218.7 2kg/(m s)  
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The heat flux at the inner tube wall is 

 q″i = q″o o

i

r

r
 = 50,000

7.6
12.7

2

 = 59,842 2W/ m  

The convective component of the heat transfer coefficient is 

 hc = 0.023 
0.8(1 )

l

G D

μ
− × 

  
Prl

0.4 lk

D
F 

We are interested in conditions at the end of the tube where the quality, x, is 0.5. 

hc = 0.023 
( )

( )
0.82

6

218.7 kg/(sm ) (1 0.5) (0.0127 m)

92.2 10 kg/(ms)−
 −
 × 

0.980.4 
( )0.564 W/(m K)

(0.0127 m)
 F = 2229F 2W/(m K)  

To find F, we must first find X from 

 
1

ttX
 = 

0.9

1

x

x
 
  −

0.5
l

v

ρ
ρ

 
  

 
0.1

v

l

μ
μ

 
  

 

 
1

ttX
 = 

0.90.5

1 0.5
 
  −

0.5712.5

46.3
 
 

0.15

6

2 10

92.2 10

−

−
 ×
  ×

= 3.37 or Xtt = 0.297 

then F is 

 F = 2.35 
0.7361

0.213
ttX

 +  
 = 6.01 

and the convective heat transfer coefficient is 

 hc = 2229 F = ( )22229 W/(m K)  (6.01) = 13,391 2W/(m K)  

Now, the boiling heat transfer coefficient is given by Equation (10.12) 

 hb = 0.00122 
0.79 0.45 0.49 0.25

0.5 6 0.29 6 0.24 0.24

(0.564) (5694) (712.5) (1)

(0.0143) (92.2 10 ) (1.403 10 ) (46.3)−
 
  × ×

 ΔTx
0.24 Δpsat

0.75 S 

In this equation, we check for SI units and ΔPsat is in N/m2. We have 

 hb = 1.567 ΔTx
0.24 Δpsat

0.75 S 

To find S, we need ReTP 

 ReTP = 
(1 )

l

G x D

μ
−

 F1.25 × 10–4 

so 

 ReTP = 
( )

( )
2

6

218.7 kg/(sm ) (1 0.5)(0.0127 m)

92.2 10 kg/(ms)−
−

×
 (6.01)1.25 × 10–4 = 14.17 

and we find S from 

  S = (1 + 0.12 ReTP
1.14)–1 = 0.2886 

So the expression for the boiling heat transfer coefficient is 

 hb = (1.567) (0.288)ΔTx
0.24 Δpsat

0.75 = 0.4522ΔTx
0.24 Δpsat

0.75 
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From Table 13, we can approximate the relationship between saturation pressure and temperature 

 sat

sat

p

T

Δ
Δ

 = 
( )5 2(85.917 64.191) 10 N/m

20K

− ×
 = 108,630 2(N/m ) /K  

So         Δpsat  ≈ 108,630 ΔTsat 

when ΔTsat is expressed in K and ΔPsat is expressed in N/m2. Assuming that the excess temperature, 
ΔTx is small, the above expression can be used to find Δpsat by substituting ΔTx for ΔTsat in the above 
expression. Given this, we can further simplify the expression for the boiling heat transfer coefficient 

 hb = 0.4522ΔTx
0.24 (108,630 ΔTx)

0.75 = 2706ΔTx
0.99 ≈ 2706ΔTx 

According to Chen, the two heat transfer coefficients can be added 

 h = hc + hb = 13,319 + 2706ΔTx 

Since the heat flux can be written as 

 q″ = hΔTx 

we have the following relationship between the heat flux and the excess temperature 

 q″ = 13391 ΔTx + 2706 ΔTx
2 = 59,842 

Solving this quadratic equation for the excess temperature we find 

 ΔTx = 2.84 K 

So we were justified in assuming that the excess temperature is small. 

Finally, we need to calculate the temperature drop across the tube wall. From Equation (2.39) 

 L2πroq″ = wall( ) / ln /(2 )o

i

r
T kL

r
π  Δ     

 

From Figure 1.6, the thermal conductivity of the 316 stainless steel is kss = 17 W/(mK). 

Solving for the wall temperature drop 

 ΔTwall = 

ln o
o o

i

ss

r
r q

r

k

 ″   
 = 

( ) ( )
( )

2(0.0076m) 50,000 W/m ln 7.5/6.35

17 W/(m K)
 = 3.72 K 

The total temperature drop from the tube wall outer surface to the boiling water is 

 ΔTtotal = 2.8 + 3.7 = 6.5 K 

and the tube wall outer surface temperature is therefore 

 Ttube,outer = 300 + 6.5 = 306.5°C, say 307°C 

PROBLEM 10.20 

Calculate the average heat transfer coefficient for film-type condensation of water at 
pressures of 10 kPa and 101 kPa for (a) a vertical surface 1.5 m high (b) the outside 
surface of a 1.5-cm-OD vertical tube 1.5 m long (c) the outside surface of a 1.6-cm-OD 
horizontal tube 1.5 m long and (d) a 10-tube vertical bank of 1.6-cm-OD horizontal tubes 
1.5 m long. In all cases, assume that the vapor velocity is negligible and that the surface 
temperatures are constant at 11°C below saturation temperature. 
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GIVEN 

• Film condensation of water 

FIND 

The average heat transfer coefficient at pressure of 10 kPa and 101 kPa for 
(a) A vertical surface of height (H) = 1.5 m 
(b) The outside surface of a vertical tube  Outside diameter (D) = 1.6 cm = 0.016 m 
  Height (H) = 1.5 m 
(c) The outside surface of a horizontal tube  Outside diameter (D) = 1.6 cm = 0.016m 
  Length (L) = 1.5 m 
(d) A 10 tube vertical bank of horizontal tubes  Outside diameter (D) = 1.6 cm 
  Length (L) = 1.5 m 
ASSUMPTIONS 

• Steady state 
• Vapor velocity is negligible 
• Surface temperatures (Ts) are constant at 11°C below saturation temperature 
• Film thickness is much smaller than the pipe diameter 
• Laminar condensate flow 

SKETCH 

A = 1.5 cm

L = 1.5 m

D = 1.6 cm

D = 1.6 cm

1
2
3
.
.
.
.
.
.
10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(a) (b) (c) (d)  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the saturation temperatures for water at 
  101 kPa (Tsv1) = 100°C, therefore Ts = Tsv – 11°C = 89°C  

  10 kPa (Tsv2) = 45.3°C, therefore, Ts = 34.3°C 

The film temperatures, as given in Section 10.4.1 are  
  Tfilm1 = Ts + 0.25 (Tsv – Ts) = 89°C + 0.25 (11°C) = 91.8°C 

  Tfilm2 = 34.3°C+ 0.25 (11°C) = 37.1°C 

From Appendix 2, Table 13, for water at the film temperatures 

Film Temperature, °C 91.8 37.1 

 Density, ρl (kg/m3) 963.8 993.3 
 Thermal conductivity, k (W/(m K)) 0.678 0.628 

 Absolute viscosity, μl × 106 (Ns/m2) 310.0 693.8 

 Vapor density, ρv = 1/vg (kg/m3) 0.4468 0.0427 

 Heat of vaporization, hfg × 10–6 (J/kg) 2.278 2.413 

 Specific heat, cpl (J/(kg K)) 4204 4175 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
902

SOLUTION 

The solution will first be worked for p = 101 kPa 
(a) The average heat transfer coefficient on a vertical plate is given by Equation (10.21) 

 ch  = 0.943 

1
3 4( )

( )
l l v fg

l sv s

g h k

L T T

ρ ρ ρ
μ

 − ′
 

− 
 

 where h′fg = hfg + 
3

8
 cpl (Tsv – Ts) = ( )62.278 10 J/(kg)× + 

3

8
( )4204 J/(kg K) (11°C) 

    = 2.295 × 106  J/kg 

Rohsenow’s analysis showed that h′fg should be replaced by hfg + 0.68 cpl (Tsv – Ts) if cpl 

(Tsv – Ts)/hfg < 1 

 
( )pl sv s

fg

c T T

h

−
′

 = 
( )

( )6

4204 J/(kg K) (11°C)

2.295 10 J/kg×
 = 0.0201 < 1 

Therefore, the Rohsenow results will be used 

h″fg = hfg + 0.68cp1 (Tsv – Ts) = ( )62.278 10 J/(kg)
+

×  0.68 ( )4204 J/(kg K) (11°C) = 2.309 × 106 J/kg  

 ch  = 0.943  

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1
33 3 2 6 4

6 2 2

963.8 kg/m (963.8 0.4463) kg/m 9.8 m/s 2.309 10 J/kg (Ws)/J 0.678 W/(m K)

310.0 10 (Ns)/m (kg m)/(s N) (1.5m)(11°C)−
 − ×
 × 

 

 ch  = 5641 2W/(m K)  

(b) For vertical tubes large in diameter compared to the film thickness, the heat transfer coefficient is the 
same as a vertical flat plate. Therefore, hc = 5651 W/(m2 K). 

(c) The heat transfer coefficient for horizontal tubes is given by Equation (10.23) 

 ch  = 0.725 

1
3 4( )

( )
l l v fg

l sv s

g h k

D T T

ρ ρ ρ
μ

 − ′
 

− 
 

ch = 0.725   

( ) ( ) ( ) ( ) ( )
( ) ( )

1
33 3 2 6 4

6 2 2

963.8 kg/m (963.8 0.4463)kg/m 9.8m/s 2.309 10 J/kg (Ws)/J 0.678W/(m K)

310.0 10 (Ns)/m (kg m)/(s N) (0.016m)(11°C)−
 − ×
 × 

 

 ch  = 13,495 2W/(m K)  

(d) The heat transfer coefficient on the tube bank is given by Equation (10.24) 

 ch  = 0.778 
( )

1 0.2 ( 1)p sv s

fg

c T T
N

h

− + − 
 

 

1
3 4( )

( )
l l v fg

l sv s

g h k

N D T T

ρ ρ ρ
μ

 − ′
 

− 
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  Provided 
( 1) ( )p sv s

fg

N c T T

h

− −
 < 2 

  
( )

6

(10 1) 4204 J/(kg K) (11°C)

2.278 10 J/kg

−
×

 = 0.183 < 2 

 ch  = 0.728 [1 + 0.2 (0.183)] 

  
( ) ( ) ( ) ( ) ( )

( ) ( )

1
33 3 2 6 4

6 2 2

963.8 kg/m (963.8 0.4463) kg/m 9.8 m/s 2.309 10 J/kg (Ws)/J 0.678 W/(m K)

310.0 10 (Ns)/m (kg m)/(s N) 10(0.016m)(11°C)−
 − ×
 × 

 

 ch  = 7899 2W/(m K)  

Repeating this procedure for p = 10 kPa and tabulating all of the heat transfer coefficients 
in W/(m2 K) 

Pressure (kPa) 101 10 

 Case (a)  5641 4484 
 Case (b)  5641 4484 
 Case (c)  13,495 10,728 
 Case (d)  7899 6265 

PROBLEM 10.21 

The inside surface of a 1 m long vertical 5 cm-ID tube is maintained at 120°C. For 
saturated steam at 350 kPa condensing inside, estimate the average heat transfer 
coefficient and the condensation rate, assuming the steam velocity is small. 

GIVEN 

• Steam condensing inside a vertical tube 
• Tube length (L) = 1 m 
• Tube inside diameter (D) = 5 cm = 0.05 m 
• Tube surface temperature (Ts) = 120°C 
• Steam pressure (p) = 350 kPa 

FIND 

• The average heat transfer coefficient (hc) 

ASSUMPTIONS 

• Steady state 
• The steam velocity is small 
• Film condensation occurs 

SKETCH 
Steam : = 350 k PaP

Ts = 120° C

L = 1 m

D = 5 cm  
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for saturated water at 350 kPa 
  Saturation temperature (Tsv) = 138.6°C 

  Liquid density (ρl) = 927.5 kg/m3 

  Vapor density (ρv = 1/vg) = 1.87 kg/m3 

  Thermal conductivity (kl) = 0.684 W/(m K) 

  Heat of vaporization (hfg) = 2148 kJ/kg = 2.148 × 106 J/kg 

  Absolute viscosity (μl) = 203.4 × 10–6 (Ns)/m2 

  Specific heat (cpl) = 4255 J/(kg K) 

SOLUTION 

The condensate layer thickness (δ) at the bottom of the tube (x = L) can be estimated using Equation 
(10.17) 

 δ = 

1

44 ( )

( )
l sv s

l l v fg

k T T

g h

μ
ρ ρ ρ

× − 
 − ′ 

 

 where h′fg = hfg + 
3

8
cpl (Tsv – Ts) 

 h′fg = ( )62.148 10 J/kg×  + 
3

8
 ( )4255 J/(kg K)  (138.6°C – 120°C) = 2.178 × 106 J/kg  

 δ  = ( ) ( ) ( ) ( )
( ) ( ) ( )

1
6 2 2 4

2 3 3 6

4 203.4 10 (N s)/m (kg m)/(s N) 0.684 W/(m K) J/(Ws) (1m)(138.6°C 120°C)

9.8 m/s 927.5 kg/m (927.5 1.87) kg/m 2.178 10 J/kg

− × −
 − × 

  

     = 1.5 × 10–4 m 

Since the condensate layer is much smaller than the tube diameter, Equation (10.21) can be used to 
estimate the average heat transfer coefficient. 

 ch = 0.943  

1
3 4( )

( )
l l v fg

l sv s

g h k

L T T

ρ ρ ρ
μ

 − ′
 

− 
 

Rohsenow’s analysis showed that h′fg should be replaced by h′fg + 0.68 cpl (Tsv – Ts) if cpl  

(Tsv – Ts)/h′fg < 1 

 
( )pl sv s

fg

c T T

h

−
′

 = 
( )

( )6

4255 J/(kg K) (138.6°C 120°C)

2.178 10 J/kg

−
×

 = 0.0360 < 1 

 h′fg = hfg + 0.68 cpl (Tsv – Ts) = 2.148 × 106 J/ kg  

    + 0.68 ( )4255 J/(kg K) (138.6°C – 120°C) = 2.202 × 106 J/ kg  

ch  = 0.943 

( ) ( ) ( ) ( ) ( )
( ) ( )

1
33 3 2 6 4

6 2 2

927.5 kg/m (927.5 1.87) kg/ m 9.8m/s 2.202 10 J/kg (Ws)/J 0.684 W/(m K)

203.4 10 (N s)/m (kg m)/(s N) (1m)(138.6°C 120°C)−
 − ×
 × − 

 

 ch  = 5933 2W/(m K)  
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The above analysis assumes the condensate layer is laminar. This assumption can be checked by 
checking the Reynolds number at the bottom of the tube. With the aid of Equation (10.14), the 
Reynolds number can be written as 

 Reδ = 
4 c

lμ
Γ

 = 
2 3

2

4

3
l

l

gρ δ
μ

 

Substituting Equation (10.17) for δ yields 

 Reδ = 
2

2

4

3
l

l

gρ
μ

 

3

4

2

4 ( )l l sv s

l fg

k L T T

g h

μ
ρ

− 
 ′ 

= 985 < 2000 

Therefore, the laminar assumption is valid. 

PROBLEM 10.22 

A horizontal 2.5 cm-OD tube is maintained at a temperature of 27°C on its outer surface. 
Calculate the average heat transfer coefficient if saturated steam at 12 kPa is condensing 
on this tube. 

GIVEN 

• Saturated steam condensing on a horizontal tube 
• Tube outside diameter (D) = 2.5 cm = 0.025 m 
• Tube outer surface temperature (Ts) = 27°C 
• Steam pressure (p) = 12 kPa 

FIND 

• The average heat transfer coefficient (hc) 

ASSUMPTIONS 

• Steady state 
• Film condensation occurs 

SKETCH 

Saturated Steam : = 12 k PaP
D = 2.5 cm Ts = 27° C

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for saturated water at 12 kPa 
  Saturation temperature (Ts) = 49.3°C 

  Liquid density (ρl) = 988.4 kg/m3 

  Vapor density (ρv = 1/vg) = 0.0797 kg/m3 

  Thermal conductivity (kl) = 0.646 W/(m K) 

  Heat of vaporization (hfg) = 2384 kJ/kg = 2.384 × 106 J/kg 

  Absolute viscosity (μl) = 562.1 × 10–6 (Ns)/m2 

  Specific heat (cl) = 4178 J/(kg K) 
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SOLUTION 

The heat transfer coefficient for this geometry is given by Equation (10.23) 

 ch  = 0.725 

1
3 4( )

( )
l l v fg

l sv s

gh k

D T T

ρ ρ ρ
μ

 − ′
 

− 
 

 where h′fg = hfg + 3/8 cpl (Tsv – Ts) = ( )2.384 J/kg + (3/8)× ( )4178 J /(kg K) (49.3°C – 27°C)  

  = 2.419 × 106 J/kg  

  ch = 0.725 

  
( ) ( ) ( ) ( ) ( )

( ) ( )

1
33 3 2 6 4

6 2 2

988.4 kg/m (988.4 0.0797) kg/ m 9.8 m/s 2.419 10 J/kg (Ws)/J 0.646 W/(m K)

562.1 10 (N s)/m (kg m)/(s N) (0.025m)(49.3°C 27°C)−
 − ×
 × − 

 

  = 8613 2W/(m K)  

PROBLEM 10.23 

Repeat Problem 10.22 for a tier of six horizontal 2.5 cm OD tubes under similar thermal 
conditions. 

From Problem 10.22: Horizontal tubes are maintained at a temperature of 27°C on its 
outer surface. Calculate the average heat transfer coefficient if saturated steam at 12 kPa 
is condensing on this tube. 

GIVEN 

• Saturated steam condensing on horizontal tubes 
• Tube outside diameter (D) = 2.5 cm = 0.025 m 
• Tube outer surface temperature (Ts) = 27°C 
• Steam pressure (p) = 12 kPa 
• Number of tubes (n) = 6 

FIND 

• The average heat transfer coefficient (hc) 

ASSUMPTIONS 

• Steady state 
• Film condensation occurs 

SKETCH 

Saturated Steam
= 12 kPaP

D = 2.5 cm

Ts = 27° C
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for saturated water at 12 kPa 
  Saturation temperature (Ts) = 49.3°C 

  Liquid density (ρl) = 988.4 kg/m3 

  Vapor density (ρv = 1/vg) = 0.0797 kg/m3 

  Thermal conductivity (kl) = 0.646 W/(m K) 

  Heat of vaporization (hfg) = 2384 kJ/kg = 2.384 × 106 J/kg 

  Absolute viscosity (μl) = 562.1 × 10–6 (Ns)/m2 

  Specific heat (cl) = 4178 J/(kg K) 

SOLUTION 

The average heat transfer coefficient for the tube bank is given by Equation (10.24) 

 ch  = 0.728 
( )

1 0.2 (N 1)p sv s

fg

c T T

h

− + − 
 

 
( )

( )

1
3 4

l l v fg

l sv s

gh k

N D T T

ρ ρ ρ
μ

 − ′
 

−  
 

where  h′fg = hfg +
3

8
cpl(Tsv – Ts) = ( )62.384 10 J/kg× + ( )4178 J/(kg K) (49.3°C – 27°C)  

 = 2.419 × 106 J/kg  

 Provided 
( 1) ( )p sv s

fg

N c T T

h

− −
 < 2 

  
( )

( )6

(6 1) 4178 J/(kg K) (49.3°C 27°C)

2.384 10 J/kg

− −
×

 = 0.1954 < .2 

 ch  = 0.728 [1 + 0.2 (0.1954)]  

  
( ) ( ) ( ) ( ) ( )

( ) ( )

1
33 3 2 6 4

6 2 2

988.4 kg/m (988.4 0.0797)kg/m 9.8 m/s 2.419 10 J/kg (Ws)/J 0.646 W/(m K)

562.1 10 (N s)/m (kg m)/(s N) 6(0.025m)(49.3°C 27°C)−
 − ×
 × − 

 

 ch = 5742 2W/(m K)  

PROBLEM 10.24 

Saturated steam at 34 kPa condenses on a 1 m tall vertical plate whose surface 
temperature is uniform at 60°C. Compute the average heat transfer coefficient and the 
value of the coefficient 1/3, 2/3, and 1 m from the top. Also, find the maximum plate 
height for which the condensate film will remain laminar. 

GIVEN 

• Saturated steam condensing on a vertical plate 
• Steam pressure (p) = 34 kPa 
• Plate height (L) = 1 m 
• Plate surface temperature (Ts) = 60°C (uniform) 

FIND 

(a) The average heat transfer coefficient (hc) 
(b) The local heat transfer coefficient (hα) at x = 1/3 L, 2/3 L, and L 
(c) The maximum height for which the condensate film will remain laminar 
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ASSUMPTIONS 

• Steady state 
• Film condensation occurs 

SKETCH 

Saturated
Steam

= 34 k PaP

Ts = 60°C

L = 1m

X

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, for saturated water at 34 kPa 
  Saturation temperature (Ts) = 71.8°C 

  Liquid density (ρl) = 976.6 kg/m3 

  Vapor density (ρv = 1/vg) = 0.21 kg/m3 

  Thermal conductivity (kl) = 0.668 W/(m K) 

  Specific heat (cl) = 4188 J/(kg K) 

  Heat of vaporization (hfg) = 2329 kJ/kg = 2.329 × 106 J/kg 

  Absolute viscosity (μl) = 3.998 × 10–4 (N s)/m2 

SOLUTION 

(a) The average heat transfer coefficient is given by Equation (10.21) 

 ch  = 0.943 

1
3 4( )

( )
l l v fg

l sv s

gh k

L T T

ρ ρ ρ
μ

 − ′
 

− 
 

 where h′fg = hfg + 
3

8
 cpl(Tsv – Ts) 

 h′fg = (2.329 × 106 J / Kg) + ( )4188 J/(kg K) (71.8°C – 60°C) = 2.348 × 106 J/(kg K)  

For Equation (10.21), Rohsenow recommends hfg be replaced by hfg + 0.68 cp1 (Tsv – Ts) if cpl  
(Tsv – Ts)/h′fg < 1 

 
( )pl sv s

fg

C T T

h

−
′

 = 
( )

6

4188J/kg K (11.8°C)

2.348 10 J/kg×
 = 0.021 < 1 

 h′fg = hfg + 0.68 cpl (Tsv – Ts) = (2.329 × 106 J/kg) + 0.68 ( )4188 J/(kg K) (11.8°C)  

 = 2.363 × 106 J/ kg  

 ch  = 0.943 

  
( ) ( ) ( ) ( ) ( )

( ) ( )

1
33 3 2 6 4

4 2 2

976.6 kg/m (976.6 0.21) kg/m 9.8 m/s 2.363 10 J/kg (Ws)/J 0.668 W/(m K)

3.998 10 (Ns)/m (kg m)/(s N) (1m)(11.8°C)−
 − ×
 × 

 

 ch  = 5763 2W/(m K)  
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(b) The local heat transfer coefficient is given by Equation (10.18) 

  hx = 

1
3 4

1

( )

4 ( )
l l v fg

sv s

gh k

x T T

ρ ρ ρ
μ

 − ′
 

− 
 = ch  

1

4

4

L

x
 
  

 
1

0.943

 
    

 At x = 
1

3
L 

 hx = ( )25763 W/(m K)  

1

43

4

 
    

1

0.943

 
    = 5687 2W/(m K)  

 At x = 
2

3
L 

 hx  = ( )25763 W/(m K)

1

43

8

 
  

1

0.943

 
    = 4782 2W/(m K)  

 At x = L 

 hx = ( )25763 W/(m K)  

1

41

4

 
    

1

0.943

 
    = 4321 2W/(m K)  

(c) Turbulence occurs when Reδ = 
4 c

lμ
Γ

 = 2000 

Combining the definition of the Reynolds number with Equation (10.14) 

 Reδ = 
2 3

2

4

3
l

l

gρ δ
μ

 

Solving this for the critical film thickness 

 δc = 

1
2 3

2

3

4
c l

l

Re

g
δ μ

ρ
 
 
 

 = 
( ) ( )

( ) ( )

1
24 2 2 2 3

2 2

3(2000) 3.998 10 (Ns)/m (kg m)/(s N)

4 976.6 kg/ m 9.8 m/s

− ×
 
  

 = 0.000295 m 

Solving Equation (10.17) for the distance x down a flat plate at which the film thickness is δ: 

 x = 
4 ( )

4 ( )
l l v fg

l sv s

g h

k T T

δ ρ ρ ρ
μ

− ′
−

 

 x = 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 3 6

4 2 2

(0.000295m) 9.8 m/s 976.6 kg /m 976.6 0.21 kg/m 2.363 10 J/kg

4 3.998 10 (N s)/m (kg m)/(s N) 0.668 W/(m K) J/(Ws)  (11.8°C)−
− ×

×
 = 13.2 m 

PROBLEM 10.25 

At a pressure of 490 kPa, the saturation temperature of sulfur dioxide (SO2) is 32°C, the 
density is 1350 kg/m3, the heat of vaporization is 343 kJ/kg, the absolute viscosity is 3.2 × 
10–4 (Ns)/m2, the specific heat is 1445 J/(kg K) and the thermal conductivity is 
0.192 W/(m K). If the SO2 is to be condensed at 490 kPa on a 20–cm flat surface, inclined 
at an angle at 45°, whose temperature is maintained uniformly at 24°C, calculate (a) the 
thickness of the condensate film 1.3 cm from the bottom, (b) the average heat transfer 
coefficient for the entire plate, and (c) the rate of condensation in kilograms per hour. 

GIVEN 

• SO2 condensing on a flat surface inclined 45° 
• Pressure (p) = 490 kPa 
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• SO2 properties  Saturation temperature (Tsv) = 32°C 
 Liquid density (ρl) = 1350 kg/m3 
 Heat of vaporization (hfg) = 343 kJ/kg = 343, 000 J/kg 
 Absolute viscosity (μl) = 3.2 × 10–4 (Ns)/m2 
 Specific heat (cpl = 1445 J/(kg K)) 
 Thermal conductivity (k) = 0.192 W/(m K) 

• Surface temperature (Ts) = 24°C (uniform) 
• Length of inclined edge of surface (L) = 20 cm = 0.2 m 

FIND 

(a) Condensate film thickness (δ) at 1.3 cm from the bottom (x = L – 1.3 cm = 0.187 m) 
(b) The average heat transfer coefficient (hc), and 
(c) The rate of condensation (m) in kg/h 

ASSUMPTIONS 

• Steady state 
• Laminar condensate flow 
• Vapor density is negligible compared to the liquid density  
• Interfacial shear and momentum effects are negligible 

SKETCH 

Ts = 24°C
Saturated

SO
= 32° C

2

Tsv

45°Y

L
=

20
cm

 
SOLUTION 

(a) Assuming the condensate element shown in Figure 10.17 is on an inclined plane at an angleψ with 
the horizontal, the force balance on the element becomes 

  (δ – y) (ρl – ρv) g sinψ = μl 
du

dy
 

The constant sin ψ can be carried through the derivation shown in Section 10.4.1 to yield the following 
version of Equation (10.17) 

 δ = 

1

44 ( )

sinψ ( )
l sv s

l l v fg

k x T T

g h

μ
ρ ρ ρ

− 
 − ′ 

 

 where h′fg = hfg + 
3

8
 cpl (Tsv – Ts) 

  h′fg = 343,000 J/kg  + 
3

8
 ( )1445 J/(kg K) (32°C – 24°C) = 347,335 J/kg  

Neglecting the vapor density, the condensate film thickness at x = 0.187 m is 

δ = 
( ) ( ) ( ) ( )

( ) ( ) ( )

1
4 2 2 4

22 3

4 3.2 10 (N s)/m (kg m)/(s N) 0.192 W/(m K) J/(Ws) (0.187 m)(8°C)

9.8m/s (sin 45°) 1350 kg/m 347,335J/kg

− ×
 
  

= 9.57 × 10–5 m 
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(b) The average heat transfer coefficient is given by Equation (10.22a) 

 ch = 0.943 

1
3 4( ) sinψ

( )
l l v fg

l sv s

gh k

L T T

ρ ρ ρ
μ

 − ′
 

− 
 

ch  = 0.943 
( ) ( ) ( ) ( ) ( )

( )

1
2 33 2 4

4 2 2

1350 kg/m 9.8 m/s 347,335J/kg (Ws)/J 0.0192 W/(m K)

3.2 10 (Ns)/m (kg m)/(s N)(0.2 m)(8°C)−

 
 
 × 

= 2631 2W/(m K)  

(c) An energy balance yields 

 m hfg = ch  A (Tsv – Ts) = hc L w (Tsv – Ts) 

 
m

w


 = 

( )c sv s

fg

h L T T

h

−
 = 

( ) ( ) ( )
( )

22631 W/(m K) J/(Ws) 3600 s/h (0.2 m)(8°C)

343,000J/kg
 

 
m

w


 = 44.2 kg/h  per meter width 

PROBLEM 10.26 

Repeat Problem 10.25 part (b) and (c) but assume that condensation occurs on a  
5 cm cm-OD horizontal tube. 

From Problem 10.25: At a pressure of 490 kPa, the saturation temperature of sulfur 
dioxide (SO2) is 32°C, the density is 1350 kg/m3, the heat of vaporization is 343 kJ/kg, the 
absolute viscosity is 3.2 × 10–4 (Ns)/m2, the specific heat is 1445 J/(kg K) and the thermal 
conductivity is 0.192 W/(m K). If the SO2 is to be condensed at 490 kPa on a 20-cm flat 
surface, inclined at an angle of 45°, whose temperature is maintained uniformly at 24°C, 
calculate (a) the thickness of the condensate film 1.3 cm from the bottom, (b) the average 
heat transfer coefficient, and (c) the rate of condensation in kilograms per hour. 

GIVEN 

• SO2 condensing on a horizontal tube 
• Tube outside diameter (D) = 5 cm = 0.05 m 
• Pressure (p) 490 kPa 

• SO2 properties  Saturation temperature (Tsv) = 32°C 
Liquid density (ρl) = 1350 kg/m3 
Heat of vaporization (hfg) = 343 kJ/kg = 343,000 J/kg 
Absolute viscosity (μl) = 3.2 × 10–4 (N s)/m2 
Specific heat (cpl) = 1445 J/(kg K) 
Thermal conductivity (k) = 0.192 W/(m K) 

• Surface temperature (Ts) = 24°C (uniform) 

FIND 

(a) Condensate film thickness (δ) at 1.3 cm from the bottom (x = L – 1.3 cm = 0.187 m) 
(b) The average heat transfer coefficient (hc) 
(c) The rate of condensation ( m ) in kg/h 

ASSUMPTIONS 

• Steady state 
• Laminar condensate flow 
• Vapor density is negligible compared to the liquid density 
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SKETCH 

Saturated SO
= 32° C

2

Tsv
D = 5 cm Ts = 24° C

 

SOLUTION 

(a) (See solution for (a) in Problem 10.25.) 
(b) The average heat transfer coefficient is given by Equation (10.23) 

 ch  = 0.725 

1
3 4( )

( )
l l v fg

l sv s

gh k

D T T

ρ ρ ρ
μ

 − ′
 

− 
 

 where  h′fg = hfg + 
3

8
cpl (Tsv – Ts) 

 h′fg = ( )343,000 J/kg  + 3/8 ( )1445 J/(kg K) (32°C – 24°C) = 347,000 J/kg  

Neglecting the vapor density compared to the liquid density 

ch  = 0.725 
( ) ( ) ( ) ( ) ( )

( ) ( )

1
33 2 4

4 2 2

1350 kg/m 9.8 m/s 347,335J/kg (Ws)/J 0.192 W/(m K)

3.2 10 (N s)/m (kg m)/(s N) (0.05m)(8°C)−
 
 × 

= 3120 2W/(m K)  

 (c) An energy balance yields 

 m hfg = ch A (Tsv – Ts) = ch π D L (Tsv – Ts) 

 
m

L


 = 

( )c sv s

fg

h D T T

h

π −
 = 

( ) ( ) ( )
( )

23131 W/(m K) J/(Ws) 3600 s/h (0.05m)(8°C)

343,000 J/kg

π
 

 
m

w


 = 41.2 kg/h  per meter length 

PROBLEM 10.27 

In Problem 10.12, it was indicated that the Nusselt number for condensation depends on 
the Prandtl number and four other dimensionless groups including the Jacob number, 
the Bond number, and a nameless group resembling the Grashof number, ρg (ρl –
ρv)L

3/μ2. Give a physical explanation of each of these 3 groups and explain when you 
expect Bo and Ja to exert a significant influence and when their respective influence is 
negligible. 

GIVEN 

• Three of the dimensionless groups upon which the condensation Nusselt number depends 

FIND 

(a) Physical explanation for the three groups 
(b) When Ja and Bo are important 
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SOLUTION 

The Jacob number is  

 Ja = 
p

fg

c T

h

Δ
 

and it scales the maximum sensible heat that the liquid can absorb to the latent heat absorbed by the 
liquid during boiling. For most liquids, Ja is small. For large values of the excess temperature, ΔTx, Ja 
could become significant. 
The Bond number is 

 Bo = 
2g Lρ

σ
Δ

 

and it scales the gravitational force to the surface tension force. For water at atmospheric pressure, as 
an example, 

 Bo ~ 
( ) ( )

( )
2 3 29.81 m/s 1000 kg/m

100 N/m

L
 = 98 L2 

when L is given in meters. So, if the length scale for a given problem is the order of 0.1 m = 10 cm, the 
Bond number is order 1 and these forces are comparable. Clearly, for problems involving large length 
scales, the Bond number will be >> 1. 
The nameless dimensionless group is 

 N?? = 
3

2

g Lρ ρ
μ

Δ
 

and, like the Grashof number, it scales the buoyant force to the viscous force. For water at atmospheric 
pressure, we find that N?? >> 1 if L ~ 0.1 m, so for typical cases, the buoyant forces will be much 
larger than the viscous forces. 

PROBLEM 10.28 

Saturated methyl chloride at 4.3 bar (abs) condenses on a horizontal bank of tubes, ten-
by-ten, 5 cm OD, equally spaced, 10 cm apart center-to-center on rows and columns. If 
the surface temperature of the tubes is maintained at 7°C by water pumped through 
them, calculate the rate of condensation of methyl chloride in kg/ms. 

The properties of saturated methyl chloride at 4.3 bar are shown below 

  Saturation temperature = 16°C 

  Heat of vaporization = 390 kJ/ kg 

  Liquid density = 936 kg/m3 

  Liquid specific heat = 1.6 kJ/(kg K) 

  Liquid absolute viscosity = 2 × 10–4 kg/ms 

  Liquid thermal conductivity = 0.17 W/(m K) 

GIVEN 

• Saturated methyl chloride condensing on a ten-by-ten bank of horizontal tubes 
• Pressure = 4.3 bar 
• Tube outside diameter (D) = 5 cm = 0.05 m 
• Tube center-to-center spacing (s) = 10 cm = 0.10 m 
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• Methyl chloride properties given above 
• Tube surface temperature (Ts) = 7°C 

FIND 

• The rate of condensation ( m /L) in kg/ms 

ASSUMPTIONS 

• Steady state 
• Laminar flow condensation 
• Interfacial shear is negligible 
• Tube surface temperature is uniform and constant 
• Vapor density is negligible compared to the liquid density 

SKETCH 

Methyl
Chloride

Ts = 7°C

D = 5 cm

S = 10 cm

 

SOLUTION 

The average heat transfer coefficient for a vertical row of tubes including liquid subcooling is given by 
Equation (10.24) 

 ch  = 0.728 
( )

1 0.2 ( 1)p sv s

fg

c T T
N

h

− + − 
 

 

1
3 4( )

( )
l l v fg

l sv s

gh k

N D T T

ρ ρ ρ
μ

 − ′
 

− 
 

Where N = the number of tubes in a vertical row = 10 

 where h′fg = hfg  + 
3

8
 cpl (Tsv – Ts) 

 h′fg = 390 × 103 J/kg + 
3

8
(1.6 × 103 J/kg) (16°C – 7°C) = 395.4 kJ/kg 

Assuming the vapor density is negligible compared to the liquid density 

 ch  = 0.728 
( )

( )
1.6kJ/(kg K) (16°C 9°C)

1 0.2 (10 1)
390 kJ/kg

− + −  
  

   

1
2 3 3 2

–4 –2

9.81 (936) 395.4 10 (0.17)

2 10 10 (5 10 ) (16 7)

 × × × ×
 × × × × × − 

 = 1611 W/(m2 K) 

 ch  = 1611 W/(m2 K) 

The rate of heat transfer is 

 q = ch  At (Tsv – Ts) = ch  Ntotal π D T (Tsv – Ts) 
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The rate of condensate flow is given by 

 m  =  
fg

q

h
 

 
m

L


 = c

fg

h

h
 Ntotal π D (Tsv – Ts) = 

2

3

1611W/(m K)( )(100)

390 10 J/kg

π
×

(5 × 10–2 m)(16°C – 9°C) = 0.584 kg/m 

 
m

L


 = 0.584 kg/ms 

PROBLEM 10.29 

A vertical rectangular water duct 1 m high and 0.1 m deep is placed in an environment of 
saturated steam at atmospheric pressure. If the outer surface of the duct is about 50°C, 
estimate the rate of steam condensation per unit length. 

GIVEN 

• Water-cooled rectangular duct, 1 m high, 0.1 m deep 
• Duct surface is 50°C 
• Steam environment 

FIND 

(a) Rate of steam condensation per unit length of the duct 

ASSUMPTIONS 

• The steam is at 1 atmosphere pressure 
• Condensation from the horizontal duct surfaces can be neglected 
• Laminar film condensation on the vertical surfaces (must be checked) 

SKETCH 

Water

1 m

Steam at Atmospheric
Pressure

Steam Condensate

0.1 m
Tsurface = 50°C  

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the properties of saturated liquid at the mean temperature of 75°C are 

  Density (ρl) = = 974.9 kg/m3 

  Specific heat (cl) = 4190 J/(kg K) 

  Thermal conductivity (kl) = 0.671 W/(m K) 

  Absolute viscosity (μl) = 3.77 × 10–4 kg/ms 

  Heat of vaporization (hfg) = 2.257 × 106 J/kg 

From Appendix 2, Table 34, the properties of the saturated vapor at the saturation temperature of 
100°C are 

  Density (ρv) = 0.597 kg/m3 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
916

SOLUTION 

The mean flow of condensate per unit duct length is from Equation (10.14) 

 Γc = 
3( )

3
l l v

l

gρ ρ ρ δ
μ

−
 

and the film thickness can be found from Equation (10.17) 

 δ = 

1

44 ( )

( )
l l sv s

l l v fg

k T T

g h

μ
ρ ρ ρ

× − 
 − ′ 

 

where 

 h′fg = hfg + 0.68 clΔT =  ( )62.257 10 J/kg×  + (0.68) ( )4190 J/(kg K) (100 – 50)(K) = 2.4 × 106 J/kg  

Calculating the condensate film thickness at the bottom edge of the duct, we have 

 δ = 
( ) ( )

( ) ( )

1
4 4

2 3 3 6

(4) 3.77 10 kg/(ms) 0.671W/(mK) (1m)(50 K)

9.81m/s 974.9kg/m (974.9 0.597) (kg/m )(2.4 10 J/kg)

− ×
 − × 

 = 2.18 × 10–4 m 

Now, we can calculate the film flow per unit duct length 

 Γ = ( )
3 3 4 3 2

4

(974.9 kg/m )(974.9 0.597)(kg/m )(2.18 10 m) (9.81m/s )

(3) (3.77 10 kg/(ms)

−

−
− ×

×
 = 0.085 kg/ms  

Doubling this to account for both sides of the duct, we have 0.171 kg/m s for the rate of condensate 
flow, per unit duct length. 
To confirm that the Reynolds number for the condensate film flow is laminar 

 Re = 
4 c

lμ
Γ

 = 
( )

( )4

(4) 0.085kg/(ms)

3.77 10 kg/(ms)−×
 = 902 

PROBLEM 10.30 

A 1 m long tube-within-a-tube heat exchanger, as shown in the sketch, is used to 
condense steam at 2 atmospheres in the annulus, and water flows in the inner tube, 
entering at 90°C. The inner tube is made of copper with an OD of 1.27 cm and an ID of 
1.0 cm. (a) Estimate the water flow rate required to keep its outlet temperature below 
100°C. (b) Estimate the pressure drop and the pumping power for the water in the heat 
exchanger, neglecting inlet and outlet losses. 

GIVEN 

• Tube-within-a-tube condenser 
• Cooling water flowing in the inner tube 
• Steam at 2 atm condensing inside the annulus 

FIND 

(a) Coolant water flow rate to maintain coolant outlet temperature below 100°C 
(b) Coolant pressure drop and pumping power 

ASSUMPTIONS 

• Steady conditions 
• The heat exchanger is horizontal 
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SKETCH 

Steam Condensing
= 2 atmp 1 m

1.27 cm
1.0 cm

Water
= 90° CTin

Water

out = 90° CT

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the properties of water at 2 atm are 
  Saturation temperature, Tsv = 121°C 

  Liquid density, ρl = 944 kg/m3 

  Liquid specific heat, cpl = 4232 J/(kg K) 

  Liquid thermal conductivity, kl = 0.685 W/(mK) 

  Liquid viscosity, μl = 2.35 × 10–4 kg/(ms) 

  Heat of vaporization, hfg = 2.202 × 106 J/kg 

  Vapor density, ρv = 1.12 kg/m3 

SOLUTION 

(a) We can use Equation (10.23) to calculate the average condensing heat transfer coefficient for a 
horizontal tube 

 ch  = 0.725 

1
3 4( )

( )
l l v fg

l sv s

gh k

D T T

ρ ρ ρ
μ

 − ′
 

− 
 

where 

 h′fg = hfg + 0.68 cpl (Tsv – Ts) 

Assuming that the average coolant temperature is 95°C and neglecting temperature drop across the 
copper tube, we have Ts = 95°C. Then 

 h′fg = ( )62.202 10 J/kg× + (0.68) ( )4232 J/(kg K) (121 – 95)(K) = 2.277 × 106 J/kg  

 
The average condensing heat transfer coefficient is then 

ch = 0.725
( ) ( ) ( ) ( )

( )

1
33 3 2 6 4

4

944 kg/m (944 – 1.12) kg/m 9.81 m/s 2.277 10 J/kg 0.685 W/(m K)

(0.0127 m) 2.35 10 kg/(ms) (121 95) (K)−
 ×
 × − 

 

      = 12,282 2W/(m K)  

Performing a heat balance on the cooling water 

  m cpl(Twater,out – Twater,in) = ch π DL(Tsv – Ts) 

we can solve for the coolant mass flow 

 m  = 
( )

( )
212,282 W/(m K) ( ) (0.0127 m)(1m)(121 95) (K)

4232 J/(kg K) (100 90) (K)

π −
−

 = 0.30 kg/s  
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(b) To determine the pressure drop and pumping power, we need to determine the Reynolds number 
for the coolant flow 

 Rew = 
4

l

m

D


π μ

 

At the average bulk coolant temperature of 95°C, Table 13 gives 

 μl = 2.97 × 10–4 kg/(ms) 

 ρl = 961 kg/m3 

 Rew = 
( )

( )4

(4) 0.30 kg/s

( ) 2.97 10 kg/(ms) (0.01m)π −×
 = 128,610 

Assuming the tube is smooth, the friction from Figure 6.18 is 

 F = 0.0165 

and Equation (6.13) gives the pressure drop 

 Δp = f 
2

2 c

L U

D g

ρ
 

The mean flow velocity for the coolant is 

 U = 
2

4

m

Dρπ


= 
( )

( ) ( )3 2

0.3 kg/s

961 kg/m (0.01m) /4π
 = 3.97 m/s  

The pressure drop is then 

 Δp = (0.0165) ( )1m/(0.01m)
( ) ( )

( )
23

2

961 kg/m 3.97 m/s

(2) (kg m)/(s N)
 = 12,500 2N/m  

The pumping power can be determined from Equation (6.19) 

 Ppumping = Δp 
m

ρ


 = 12,500 N/m2 
( )

( )3

0.30 kg/s

961 kg/m
 = 3.9 (N m)/s  = 3.9 W 

PROBLEM 10.31 

A one-pass condenser-heat exchanger, shown in the sketch, has 64 tubes arranged in a 
square array with 8 tubes per line. The tubes are 1.22 m long, made of copper with an 
outside diameter of 1.27 cm, in a shell at atmospheric pressure. Water flows inside the 
tubes whose outside wall temperature is 98°C. Calculate (a) the rate of steam 
condensation, (b) the temperature rise of the water if the flow rate per tube is  
0.0454 kg/s. Express your answer in SI units. 

GIVEN 

• One-pass condenser heat exchanger with 64 tubes in a square array 

FIND 

(a) Rate of steam condensation 
(b) Water temperature rise 
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SKETCH 

Shell

Water

N = 8

N = 8

4 p

 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13, the properties of saturated water at the film temperature of 99°C are 

  Density (ρl) = 958 kg/m3 

  Absolute viscosity (μl) = 2.78 × 10–4 kg/(ms) 

  Thermal conductivity (kl) = 0.682 W/(mK) 

  Specific heat (cl) = 4211 J/(kg K) 

  Heat of vaporization (hfg) = 2.257 × 106 J/kg 

SOLUTION 

Converting the remaining problem parameters we have 
  Wall temperature: 98°C 

  Saturation temperature: 100°C 

  Tube o.d.: 0.0127 m 

  Tube length: 1.22 m 

  Water flow rate: 0.0454 kg/s 

From Equation (10.24), we can obtain the average heat transfer coefficient 

 ch  = 0.728[1 + 0.2(N – 1)Ja] 

1
3 4( )

( )
l l v fg

l sv s

g k h

N D T T

ρ ρ ρ
μ

 − ′
 

− 
 

where 

 Ja = 
( )sv s

fg

cp T T

h

−
 = 

( )
( )6

4211 J/(kg K) (2 K)

2.257 10 J/kg×
 = 0.00373 

and 

 h′fg = hfg + cpl (Tsv – Ts) = 2.257 × 106 J/ kg + ( )4211 J/(kg K) (2K) = 2.265 × 106 J/kg 
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Neglecting the vapor density compared to the liquid density, the quantity in the right bracket in the 
equation for the heat transfer coefficient is 

  
( )

( )

4
32 3 2 6 4

4

(9.81m/s ) (958kg/m ) 0.68W/(mK) (2.265 10 J/kg)

(8) (0.0127 m) 2.78 10 kg/(ms) (2 K)−
 ×
 × 

= 18,355 2W/(m K)  

so 

 ch  = (0.728)[1 + (0.2)(7)(0.00373)][18,355] = 13,432 2W/m  

The tube surface area is 

 NπDL = (64)(π)(0.0127 m)(1.22 m) = 3.12m2 

The rate of heat transfer is therefore 

 q = ch  A (Tsv – Ts) = (13,432 W/m2K)(3.12m2)(2K) = 83,688 W 

(a) The flow rate of condensate is then 

 cm  = 
fg

q

h′
 = 

6

83,688W

2.265 10 (Ws)/kg×
 = 0.03695 kg/ s  

The heat transfer per tube is 83,688/64 W = 1308 W and this must equate to the increase in sensible 
heat in the cooling water, giving for the water temperature rise 
(b)  

 ΔTw = 
( ) ( )

1308W

0.0454 kg/s 4211 J/(kgK)
 = 6.8K 

PROBLEM 10.32 

Show that the dimensionless equation for ice formation at the outside of a tube of radius 
ro is 

 T∗  = 
*2

2

r
 ln r∗ + ( )1 1

2 * 4R
 (r∗2 – 1) 

where 

 r∗ = o

o

r

r

ε +
 R∗ = o oh r

k
 t∗ = 

2

( )f

o

T T kt

p Lr
∞−

 

Assume that the water is initially at the freezing temperature Tf, that the cooling medium 
inside the tube surface is below the freezing temperature at a uniform temperature T∞, 
and that ho is the total heat transfer coefficient between the cooling medium and the 
pipe-ice interface. Also show the thermal circuit. 

GIVEN 

• Water freezing on the outside of a tube 
• Tube radius = ro 
• Cooling medium temperature = T ∞ (uniform) 
• Heat transfer coefficient between the cooling medium and the pipe-ice interface = ho 

FIND 

• Draw the thermal circuit and show that the dimensionless equation for ice formation is as shown 
above 
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ASSUMPTIONS 

• Steady state 
• The thermal capacitance of the ice layer is negligible 
• T∞ is constant 
• The water is at the freezing temperature, Tf 
• The properties of the ice are uniform 

SKETCH 
Ice Layer

r0 + E

Tfr

Cooling
Medium

T•
ro

Tf

To

 

SOLUTION 

The thermal circuit is shown below 

T•

Ro RK

To

Tfr
 

where 

 Ro = 
1

o oh A
 = 

1

2o oh r Lπ
 

 Rk = 

ln

2

o

o

r

r

Lk

ε

π

+ 
  

 

The rate of heat transfer is given by 

 q = 
total

T

R

Δ
 = 

fr

o k

T T

R R
∞−

+
 = 2 π L ro 1

ln

fr

o o

o o

T T

r r

h k r

ε
∞−

+ +   

 

This is the heat flow rate which removes the latent heat of fusion necessary for freezing the ice as 
shown by Equation (10.34) 

 q = A ρ Lf 
d

dt

ε
 = 2 π (ro + ε) L ρ Lf 

d

dt

ε
 

where ρLf is the latent heat. 

Combining these two equations 

  ro 1
ln

fr

o o

o o

T T

r r

h k r

ε
∞−

+ +   

 = (ro + ε) ρLf 
d

dt

ε
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Rearranging and using dε = ro d o

o

r

r

ε+ 
  

 

 
2

( )fr

o f

k T T

r Lρ
∞−

 dt = ln o

o o o

rk

r h r

ε+   +     
 o

o

r

r

ε+ 
  

d o

o

r

r

ε+ 
  

 

  Let t∗ = 
2

( )f

o

T T kt

Lrρ
∞−

  →  dt∗ = 
2 2

( )fr

o

T T k

L rρ
∞−

dt 

 r∗ = o

o

r

r

ε +
 

 R∗  = o oh r

k  

Expressing the above equation in terms of these dimensionless parameters: 

 dt∗ = *
*

1
ln + 

 
r

R
 r∗ dr∗ 

Integrating 

 
*

0
t

dt∗ = ( )*

1

1
ln *

*
+

r
r

R
 r∗ dr∗ 

 t∗ = 
*2

*2

r

R *

1

2R
+ r∗2 ( )ln * 1

2 4
−r

 + 
1

4
 

 t∗ = 
*2

2

r
 ln r∗ + 

*

1 1

42
 − 
 R

 (r∗2 – 1) 

PROBLEM 10.33 

In the manufacture of can ice, cans having inside dimensions of 27.5 cm × 55 cm ×  
125 cm with 2.5 cm inside taper are filled with water and immersed in brine at a 
temperature of –12°C. [For details of the process see (81).] For the purpose of a 
preliminary analysis, the actual ice can be considered as an equivalent cylinder having 
the same cross-sectional area as the can, and end effects may be neglected. The overall 
conductance between the brine and the inner surface of the can is 225 W/(m2 K). 
Determine the time required to freeze the water and compare with the time necessary if 
the brine circulation rate were increased to reduce the thermal resistance of the surface 
to one-tenth of the value specified above. The latent heat of fusion of ice is 334 kJ/kg, its 
density is 912.5 kg/m3, and its thermal conductivity is 2.2 W/(m K). 

GIVEN 

• Ice formation within a can immersed in a brine solution 
• Can dimensions: 27.5 cm × 55 cm × 125 cm (with 2.5 cm taper) 
• Brine temperature (T∞) = – 12°C 
• Overall heat transfer coefficient between the brine and the outer surface of the can (ho) =  

225 W/ (m2 K) 
• Ice properties 
 Latent heat of fusion (Lf) = 334 kJ/kg 
 Density (ρ) = 912.5 kg/m3 
 Thermal conductivity (k) = 2.2 W/(m K) 
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FIND 

The time required to freeze the water in the can for 
(a) the given ho, and (b) for one-tenth the resistance 

ASSUMPTIONS 

• Steady state 
• The capacitance of the layer can be neglected 
• The brine temperature is constant and uniform 
• The can can be treated as a cylinder having the same cross-sectional area 
• End effects are negligible 

SKETCH 

 

SOLUTION 

The effective radius of the equivalent cylinder is 

 ro = 
1

2
4 A

π
 = 

1

2

–2 –24(27.5 10 m)(55 10  m)

π
× ×

 = 0.22 m 

The thermal circuit for the problem is shown below 

Ro Rk

TA
To  

where 

 Ro = 
1

o oh A
 = 

1

2o oh r Lπ
 

 Rk = 

ln

2

o

o

r

r

Lk

ε

π

+ 
  

 

The rate of heat transfer is given by 

 q = 
total

T

R

Δ
 = 

fr

o k

T T

R R
∞−

+
 = 2 π L ro 1

ln

fr

o o

o o

T T

r r

h k r

ε
∞−

+ +   

 

This is the heat flow rate which removes the latent heat of fusion necessary for freezing, as shown by 
Equation (10.34) 

 q = A ρ Lf 
d

dt

ε
 = – 2 π (ro + ε) L ρ Lf 

d

dt

ε
 

where ρLf is the latent heat. 
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Combining these equations 

 
2

( )fr

o f

k T T

r Lρ
∞−

 dt = – ln o

o o o

rk

r h r

ε+   +     
o

o

r

r

ε+ 
  

d o

o

r

r

ε+ 
  

 

Let 

 t∗ = 
2

( )f

o

T T kt

Lrρ
∞−

→  dt∗ = 
2 2

( )fr

o

T T k

L rρ
∞−

dt  r∗ = o

o

r

r

ε +
  R∗ = o oh r

k
  

 dt∗ = – *
*

1
ln + 

 
r

R
 r∗ dr∗ 

Integrating 

 
*

0
t

dt∗ = 
*

1
r *

*

1
ln + 

 
r

R
 r∗ dr∗ 

 t∗ = 
*2

*2

r

R
 – 

*

1

2R
 + r∗2 

*ln 1

2 4

 
− 

 
r

 + 
1

4
 
    

 t∗ = 
*2

2

r
ln r∗ + 

*

1 1

42
 − 
 R

 (r∗2 – 1) 

All the ice is frozen when ε = ro → r* = 0 
At r* = 0 

 t* = 
1

2 *R
 + 

1

4
 

  
2

( )fr

o f

k T T

r Lρ
∞−

 t = 
1

2 o oh r
k

 
  

 + 
1

4
 
    

 t = 
2

( )
o f

fr

r L

k T T

ρ

∞−
1

2 4o o

k

h r
 +  

 

(a) For ho = 225 W/(m2 K) 

 t = 
( ) ( )

( )

2 3 3(0.22m) 912.5 kg /m 334 10 J/kg

2.2 W/(m K) (0 – (–12°C))

×
 ( )2

2.2 W/(m K) 1

42 225 W/(m K) (0.22m)
 +  

 = 152 × 103 s 

 t = 42.25 hours 

(b) If the thermal resistance is one tenth of part (a), that is the same as saying the heat transfer 
coefficient is increased ten-fold: ho = 2250 W/(m2 K), we get 

 t = 39.15 hours 

PROBLEM 10.34 

Estimate the time required to freeze vegetables in thin, tin cylindrical containers  
15 cm in diameter. Air at –12°C is blowing at 4 m/s over the cans, which are stacked to 
form one long cylinder. The physical properties of the vegetables before and after 
freezing may be taken as those of water and ice, respectively. 

GIVEN 

• The freezing of vegetables in thin tin cylindrical cans with air flowing over the cans 
• Container diameter (D) = 15 cm = 0.15 m 
• Air temperature (T∞) = –12°C 
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• Air velocity (U∞) = 4 m/s 
• Vegetables have the same properties as water and ice 

FIND 

• The time (t) to freeze the vegetables 

ASSUMPTIONS 

• Air temperature is constant 
• Thermal resistance of the tin can is negligible 
• Thickness of the tin can is negligible 
• Thermal capacitance of the frozen vegetable layer is negligible 

SKETCH 

ro – e

Tfr

To

Frozen
Veggie

Air
= – 12° C
= 4 m/s

T
U
•

•

r po = /2 = 0.075 m
D

2

 

PROPERTIES AND CONSTANTS 

Converting the ice property values given in the problem statement of Problem 10.33 to SI units 

  Latent heat of fusion (Lf) = 333.780 J/kg 

  Density (ρ) = 918 kg/m3 

  Thermal conductivity (k) = 2.22 W/(m K) 

Extrapolating for Appendix 2, Table 27, for dry air at –12°C 

  Thermal conductivity (ka) = 0.0229 W/(m K) 

  Kinematic viscosity (νa) = 12.8 × 10–6 m2/s 

  Prandtl number (Pr) = 0.71 

SOLUTION 

The thermal circuit for the problem is shown below 

To

Ro RK Tfr  

where 

 Ro = 
1

o oh A
 = 

1

2o oh r Lπ
 

 Rk = 

ln

2

o

o

r

r

Lk

ε

π

+ 
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The Reynolds number of the air flow is 

 ReD =  
a

U D

ν
∞  = 

( )
( )6 2

4 m/s (0.15m)

12.8 10 m /s−×
= 4.69 × 104 

The Nusselt number for the geometry is given by Equation (7.3) 

 DNu  = o

a

h D

k
 = C ReD

m Prn 
0.25

s

Pr

Pr
 
  

 

where, for ReD = 4.69 104 
 C = 0.26, m = 0.6, and n = 0.37 

Since the surface temperature is between T∞ and Tfr, the Prandtl number evaluated at the surface 
temperature (Prs) will be 0.71 and Pr/Prs = 1.0 

 DNu  = 0.26 (4.69 × 104)0.6 (0.71)0.37 = 145.9 

 oh  = DNu  ak

D
= 145.9 

( )0.0229 W/(m K)

0.15m
 = 22.3 2W/(m K)  

The rate of heat transfer is given by 

 q = 
total

T

R

Δ
 = 

o

fr

k

T T

R R
∞−

+
 = 2 π L ro 1

ln

fr

o o

o o

T T

r r

h k r

ε
∞−

+ +   

 

This is the heat flow rate which removes the latent heat of fusion necessary for freezing, as shown by 
Equation (10.34) 

 q = A ρ Lf 
d

dt

ε
 = – 2 π (ro + ε) L ρ Lf 

d

dt

ε
 

where ρLf is the latent heat. 
Combining these Equations 

 
2

( )fr

o f

k T T

r Lρ
∞−

dt = – ln o

o o o

rk

r h r

ε+   +     
o

o

r

r

ε+ 
  

d o

o

r

r

ε+ 
  

 

 Let  t∗ = 
2

( )f

o

T T kt

Lrρ
∞−

 → dt∗ = 
2 2

( )fr

o

T T k

L rρ
∞−

dt  r∗ = o

o

r

r

ε +
  R∗ = o oh r

k
 

 dt∗ =  – ( )1
ln *

*
+ r

R
 r∗ dr∗ 

Integrating 

 
*

0
t

dt∗ = 
*

1
r *

*

1
ln + 

 
r

R
r∗ dr∗ 

 t∗ = 
*2

*2

r

R
 – 

*

1

2R
 + r∗2 ( )ln * 1

2 4
−r

 + 
1

4
 

 t∗ = 
2*

2

r
ln r∗ + 

*

1 1

42
 − 
 R

 (r∗2 – 1) 
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All the ice is frozen when ε = ro → r* = 0 
At r* = 0 

 t* = 
1

2 *R
 + 

1

4

 
    

  
2

( )fr

o f

k T T

r Lρ
∞−

 t = 
1

2 o oh r
k

 
  

 + 
1

4

 
    

 t = 
2

( )
o f

fr

r L

k T T

ρ

∞−
1

2 4o o

k

h r
 +  

 

 t = 64,698 s (0.6636 + 0.25) = 59,113 s = 16.4 h 

PROBLEM 10.35 

Estimate the time required to freeze a 3 cm thickness of water due to nocturnal radiation 
with ambient air and initial water temperature at 4°C. Neglect evaporation effects. 

GIVEN 

• Water exposed to nocturnal radiation and air 
• Initial water temperature (Twi) and ambient air temperature (T∞) = 4°C 

FIND 

• The time (tf) required to freeze an ice layer of thickness (εf) = 3 cm = 0.03 m 

ASSUMPTIONS 

• The thermal capacitance of the ice is negligible 
• The energy required to lower the temperature of the water to the freezing point is negligible 

compared to the latent heat of fusion 
• Natural convection from the upper and lower surfaces of the ice layer is negligible 
• Effective sky temperature (Ts) = 0 K 
• Ice surface behaves as a blackbody (εr = 1.0) 

SKETCH 

e

To

Tfr

TCE

Water

Air T• = 4° C

Twi = 4° C
 

PROPERTIES AND CONSTANTS 

Converting the ice property values given in the problem statement of Problem 10.33 to SI units: 
  Latent heat of fusion (Lf) = 333,780 J/kg 

  Density (ρ) = 918 kg/m3 

  Thermal conductivity (k) = 2.22 W/(m K) 

From Appendix 1, Table 5, the Stephan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4) 

SOLUTION 

The analysis of Section 10.6 can be applied to this problem by substituting the radiative heat transfer 
coefficient, hr, for ho. 
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However, hr is a function of the ice surface temperature, To 

 hr = 
4 4( )o s

o s

T R

T T

σ −
−

 = σ To
3 

As ice first begins to form, the surface temperature is the same as the freezing temperature (To – Tfr) 
and the radiative heat transfer coefficient is 

 hri = σ Tft
3 = ( )8 2 45.67 10 W/(m K )−×  (273 K)3 = 1.154 2W/(m K)  

The final surface temperature can be calculated by equating the rate of conduction through the ice 
layer with the rate of radiation from the surface of the ice 

 
k

ε
 = (Tfr – To) = σ To

4 

  
2.22W/(m K)

0.03m
 (273 K – To) = ( )8 2 45.67 10 W/(m K )−×  To

4 

By trial and error, To = 269 K 
Therefore, the final value of hr is 

 hrf = σ To
3 = ( )8 2 45.67 10 W/(m K )−×  (269 K)3 = 1.104 2W/(m K)  

Since the variation of hr is only about 5%. hr will be considered constant at the average value of 1.13 
W/(m2 K). The time required is given by Equation (10.39) 

 ε + = –1 + 1 2t++  

where 

 ε+ = rh

k

ε
 = 

( )
( )

21.13 W/(m K) (0.03m)

2.22 W/(m K)
 = 0.0153 

 t+ = t hr
2 

fr s

f

T T

L kρ
−

 

Solving for t 

  t = 
22h ( )

f

r fr s

L k

T T

ρ
−

[(ε + + 1)2 –1]  

  = 
( ) ( ) ( ) ( )

( )
3

22

918 kg/m 333,780 J/kg (Ws)/J 2.22 W/(m K)

2 1.13 W/(m K) (273K 0 K)−
 [0.0153 + 1)2 – 1] 

 t = 30,084 s = 8.4 h 

PROBLEM 10.36 

The temperature of a round cooling pond, 100 m in diameter, is 7°C on a winter day. If 
the air temperature suddenly drops to –7°C, calculate the thickness of ice formed after 
three hours. 

GIVEN 

• A round cooling pond on a winter day 
• Initial temperature (Tl) = 7°C 
• Air temperature (T∞) drops to –7°C 
• Pond diameter (D) = 100 m 
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FIND 

• The thickness of ice (ε) formed after 3 hours 

ASSUMPTIONS 

• The thermal capacitance of the ice layer is negligible 
• Radiative heat transfer is negligible 
• Bulk water temperature remains constant at 7°C 
• Air temperature is constant at –7°C 
• The air and water are still 

SKETCH 
To

Tfr

ICE

Water

Air T• = – 7° C

Ti = 7° C
 

PROPERTIES AND CONSTANTS 

Converting the ice property values given in the problem statement of Problem 10.33 to SI units 
  Latent heat of fusion (Lf) = 333,780 J/kg 

  Density (ρ) = 918 kg/m3 

  Thermal conductivity (k) = 2.22 W/(m K) 

Extrapolating from Appendix 2, Table 27, for dry air at the estimated film temperature of –3.5°C 

  Density (ρa) = 1.267 kg/m3 

  Thermal expansion coefficient (βa) = 0.00370 1/K 

  Thermal conductivity (ka) = 0.0235 W/(m K) 

  Kinematic viscosity (νa) = 13.6 × 10–6 m2/s 

  Prandtl number (Pra) = 0.71 

From Appendix 2, Table 13, for water at the estimated film temperature of 3.5°C 

  Density (ρw) = 1000 kg/m3 

  Thermal expansion coefficient (βw) = –0.12 × 10–4 1/K 

  Thermal conductivity (kw) = 0.565 W/(m K) 

  Kinematic viscosity (νw) = 1.611 × 10–6 m2/s 

  Prandtl number (Prw) = 12.1 

SOLUTION 

The convective heat transfer coefficient on the air side (ho) and the water side (hε) must be calculated 
before the analysis of Section 10.6 can be applied. 
Water side 
The characteristic length for the pond is 

 L = sA

P
 = 

2

4
D

D

π

π
 = 

4

D
 = 25 m 

The Rayleigh number based on this length is 

 RaL = GrL Pr = 
3

2

( )w l fr

w

g T T L Pr

v

β −
 

 RaL = 
( ) ( ) ( ) ( )

( )
32 4

26 2

9.8 m/s 0.12 10 1/K (7°C 0°C) 25m 12.1

1.611 10 m /s

−

−

− × −

×
 = – 6.12 × 1013 



 
 

© 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
930

The minus sign indicates that even though we are cooling the water from above, the buoyancy effect is 
like that for the heating from above case. 
Although this is out of its Rayleigh number range, Equation (5.17) will be used, for lack of a more 
appropriate correlation, to estimate the Nusselt number  

 LNu  = 0.27 RaL

1

4  = 0.27 (6.12 × 1013)
1

4  = 755 

 ch  = LNu  
k

L
 = 755 

( )0.565 W/(m K)

25m
 = 17.1 2W/(m K)  

Air side 
The heat transfer coefficient on the air side (ho) will depend on the ice surface temperature (To) which 
changes as the ice thickens. The transfer coefficient will be approximated as constant with the surface 
temperature equal to the freezing temperature. With these simplifications, the Rayleigh number is 

 RaL = 
( ) ( )

( )
2 3

26 2

9.8 m/s 0.003701/K (7°C)(25m) (0.71)

13.6 10 m /s−×
 = 1.52 × 1013 

Once again, the correlation of Equation (5.16) will be extended to estimate the Nusselt number  

 LNu  = 0.15 RaL

1

3  = 0.15 (1.52 × 1013)
1

3  = 3718 

 oh = LNu
k

L
 = 3718 

( )0.0235W/(m K)

25m
 = 3.5 W/(m2 K) 

Applying Equation (10.14) 

 t+ = –
2

1

( )R T+ +  ln 1
1

R T

R T

ε+ + +

+ +
 

+  +
 + 

R T

ε +

+ +  

where 

 ε+ = oh

k

ε
 

 R+ = c

o

h

h
 = 

17.1

3.5
 = 4.89 

 T+ = 
l fr

fr

T T

T T∞

−
−

 = 
7 0

0 7

−
+

 = 1.0 

 t+  = t ho
2 fr

f

T T

L kρ
∞−

= (3hr) ( )3600 s/h ( )223.5 W/(m K)  

( ) ( ) ( ) ( )3

(0°C 7°C)

918 kg/m 333,780 J/ kg (Ws)/J 2.22 W/(m K)

+
 = 0.00136 

 0.00136 = – 
2

1

(4.89)
 ln  

4.89

1 4.89

ε + 
1+ + 

 + 
4.89

ε +
 

By trial and error 

 ε+ = 0.008 

 ∴ ε  = ε+ 
o

k

h
= 0.008 

( )
2

2.22 W/(m K)

3.5 W/(m K)
 = 0.0051 m = 5.1 mm 
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PROBLEM 10.37 

On a rainy Monday afternoon, Sherlock Holmes gets a call from a wealthy banker to 
arrange a breakfast appointment for the following day to discuss the collection of a loan 
from farmer Joe. When Holmes arrives at the home of the banker at 9 a.m. Tuesday, he 
finds the body of the banker in his kitchen. The farmer’s house is located on the other 
side of a lake, approximately 10 km from the banker’s home. Since there is no convenient 
road between the home of the farmer and that of the banker, Holmes phones the police to 
question the farmer. The police arrive at the farmer’s home within the hour and 
interrogate him about the death of the banker. The farmer claims to have been home all 
night. The tires on his truck were dry and he explains that his boots were moist and 
soiled because he had been fishing at the lake early in the morning. The police then 
phone Holmes to eliminate farmer Joe as a murder suspect because he could not have 
been at the banker’s home since Holmes spoke to him. Holmes then calls the local 
weather bureau and learns that, although the temperature had been between 2°C and 
5°C for weeks, it had dropped to –30°C quite suddenly on Monday night. Remembering 
that a 3 cm layer of ice can support a man, Holmes takes out his slide rule and heat 
transfer text, lights his pipe, makes a few calculations, and then phones the police to 
arrest farmer Joe. Why? 

GIVEN 

• Murder suspect with flakey alibi 

FIND 

(a) How Sherlock Holmes was able to disprove the alibi 

SOLUTION 

Holmes has evidently surmised that with the cold snap, the lake could have frozen to a sufficient 
thickness of 3 cm. to support the farmer on his way to murder the banker. In addition, the frozen lake 
would have precluded the farmer from fishing that morning. Basically, we need to determine if a 10 
km lake, originally at 5°C or cooler, could have frozen to a thickness of 3 cm overnight after exposure 
to an air temperature of –30°C. 
We can use Equation (10.63) to determine the ice thickness as a function of time. The following 
parameters are given 
  Liquid temperature, T1 = 5°C (this is conservative since the range was 2°C to 5°C) 

  Freezing temperature, Tfr = 0°C 

  Air temperature, T∞ = –30°C 

The properties of ice from Appendix 2, Table 11 are 

  Heat of fusion, Lf = 3.3 × 105 J/kg 

  Thermal conductivity, kice = 2.2 W/(mK) 

  Density, ρice = 913 kg/m3 

In addition to the above parameters, we need to calculate the heat transfer coefficient at the air-ice 
interface, oh  and at the ice-water interface hε . For the air-ice interface, we assume conservatively that 
there is no wind. Also note that the ice is warmer than the air and faces up, so we can use Equation 
(5.15) or (5.16) to determine oh . 
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At the mean temperature of (0 + –30)/2 = –15°C, we have for the air properties from Appendix 2, 
Table 27 (via extrapolation from data at 0°C and 20°C to –15°C) 

  gβ/v2 = 2.22 × 108 (K m3)–1 

  Prandtl number, Pr = 0.71 

  thermal conductivity, kair = 0.023 W/(mK) 

Further, let us assume that the lake is approximately circular, 10 km in diameter. The length scale 
required in Equation (5.15) or (5.16) is 

 L = 
area of lake

perimeter of lake
 = 

4 2

4

(10 m)

4
10 m

π

π
 = 2500 m 

So, the Rayleigh number is 

  RaL = 
3

2

g T L Pr

v

β Δ
= (2.22 × 108 (m3 K)–1) (30K)(2500m)3(0.71) = 7.38 × 1019 

which is well beyond the restriction on Equation (5.16). In lieu of a correlation equation for such a 
large Rayleigh number, we will use Equation (5.16) and take note of the assumption. 
Then the mean Nusselt number is 

 LNu = 0.15
1

3
LRa  = 6.28 × 105 

and the heat transfer coefficient is 

 oh  =  airk

L
LNu  = 

( ) 50.023 W/(m K) (6.28 10 )

(2500m)

×
 = 5.8 2W/(m K)  

Equation (5.16) shows that the heat transfer coefficient is independent of L as long as we are in the 
turbulent regime. That is, oh  = 5.8 W/(m2K) regardless of the Rayleigh number in the turbulent 

regime and we expect that this value of oh  would be a reasonable estimate for the 10 km lake surface. 

At the bottom surface of the ice, we have a cooled surface facing down, therefore, the same equations 
apply. For water at the mean temperature of(0 + 5)/2 = 2.5°C, we have from Appendix 2, Table 13 

  gβ/ν2 = 0.551 × 109 (m3 K)–1 (from 10°C data) 

  Prandtl number, Pr = 12.6 

  thermal conductivity, kwater = 0.563 W/(mK) 

so 

 RaL = 
3

2

g T L Pr

v

β Δ
 = (0.551 × 109(m3 K)–1) (5K)(2500m)3(12.6) = 5.42 × 1020 

The Nusselt number is 

 NuL = 0.15 
1

3
LRa = 1.22 × 106 

and the heat transfer coefficient is 

 ch  = waterk

L
LNu  = 

( ) 60.563W/(m K) (1.22 10 )

(2500m)

×
 = 275 2W/(m K)  

The same comments on oh  apply to .hε  
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Now, to use Equation (10.63) we need the following parameters 

 R+ = c

o

h

h
 = 

275

2.8
 = 47.4 

 T+ = 
l fr

fr

T T

T T∞

−
−

 = 
5 0

0 ( 30)

−
− −

 = 0.166 

 R+T+ = (47.4)(0.166) = 7.89 

To calculate how long is needed to freeze the 3 cm layer, we have ε = 0.03 m, so 

 ε+ = 
ice

oh

k

ε
 = 

( )
( )

25.8 W/(m K) (0.03m)

2.2 W/(m K)
 = 0.079 

Equation (10.63) then given for the generalized time 

 t+ = – 
2

1

7.89
 ln 

(7.89)(0.079)
1

1 7.89
 +  +

 + 
0.079

7.89
 = 0.0089 

The definition of the generalized time is 

 t+ = 
2
oth

ice ice

fr

f

T T

L kρ
∞−

 = 0.0089 

Solving for the dimensional time we have 
or 

  t = 
( ) ( ) ( ) ( )

( ) ( )

3 5

22

(0.0089) 913 kg/m 3.3 10 (Ws)/kg 2.2 W/(m K)

5.8 W/(m K) 0 ( 30) (K)

×

− −
 = 5861 s = 1.63 h 

Therefore, less than 2 hours would be required for the lake to freeze and this is the information that led 
Sherlock Holmes to ask for the arrest of Farmer Joe. 

PROBLEM 10.38 

Estimate the cross-sectional area required for a 30 cm long methanol-nickel heat pipe to 
transport 30 W at atmospheric pressure. 

GIVEN 

• Methanol-nickel heat pipe 
• 30 cm long 
• Atmospheric pressure 

FIND 

(a) Cross-sectional area required to transport 30 W 

ASSUMPTIONS 

• The type of wick to be used is a threaded artery wick 
• 100°C operation 

SOLUTION 

Table 10.6 gives 

 q″axial = 0.45 2W/cm  = 0.45 × 104 W/m2 

Since the total heat transported by the heat pipe is 

 q = q″ axial A 
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where A is the desired cross-sectional area, we have 

 A = 
axial

q

q″
 

 A = 
4 2

30 W

0.45 10 W/m×
 = 66.7 × 10–4 m2 = 66.7 cm2 

The heat pipe diameter is  

 Do = 
4 A

π
= 

24 66.7cm

π
×

 = 9.21 cm 

 Do = 9.21 cm 

PROBLEM 10.39 

Design a heat pipe cooling system for a spherical satellite that dissipates 5000 W/m3, has 
a surface area of 5 m2, and cannot exceed a temperature of 120°C. All the heat must be 
dissipated by radiation into space. State all your assumptions. 

GIVEN 

• Spherical satellite, 5 m2 surface area 
• Dissipates 5000 W/m3 
• Maximum temperature of 102°C 
• All heat rejection is by radiation to space 

FIND 

(a) A design for a heat pipe cooling system 

ASSUMPTIONS 

• Temperature drop between the satellite interior and the heat pipe evaporator is < 20°C 
• Neglect vapor pressure drop in the heat pipe 

SOLUTION 

Since the satellite has a 5 m2 surface area, the radius of the spherical satellite is 

 4πrs
2 = 5m2  rs = 0.631m3 

from which the satellite volume is 

 Vsatellite = 
4

3
πrs

3 = 1.05m3 

and the total power dissipated by the satellite, and therefore by the heat pipe cooling system, is 

 q = ( )35000 W/m (1.05m3) = 5260 W 

Since we have assumed that the temperature drop between the satellite interior and the heat pipe 
evaporator is less than 20°C, we can safely operate the heat pipe at 100°C. 
From Figure 10.23, water has the highest figure of merit, M, at the desired temperature of 373 K and it 
should operate satisfactorily at the desired temperature. From that figure we find 

 M = 
l l fg

l

hσ ρ
μ

 = 4 × 104 2kW/ cm  
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Since we have neglected vapor neglected vapor pressure drop, and since there is no gravitational head, 
Equation (10.40) simplifies to 

 
2 cosl

cr

σ θ
 = effl

l w w fg

L q

K A h

μ
ρ

 

Let’s try a 200 mesh nickel wick. Table 38 in Appendix 2 gives the pore size, rc = 0.004 cm and the 
wick permeability, Kw = 0.62 × 10–10 m2. Let us also assume perfect wetting of the wick by the water, 
giving θ = 0. 
Rearranging the previous equation to solve for the geometry of the heat pipe 

 eff

w

L

A
 = 

2l l fg w

l c

h K

r q

σ ρ
μ

 = M 
2 w

c

K

r q
 

 eff

w

L

A
= ( )4 3 24 10 10 W/cm× × 2

0.004cm
 
  

10 2(0.62 10 m )

5260W

−×
 

4 2

2

10 cm

m
 = 2.4 cm–1 

For a reasonably sized heat pipe, let Leff = 30 cm. Then the total wick cross-sectional area required is 
Aw = 30 cm/ 2.4 cm–1 = 12.5 cm2. Assuming that we need N pipe of diameter D and thickness t, we 
have 

 12.5 cm2 = π DtN 

If the exterior surface of the heat pipe condenser section is black, the following equation gives the 
required surface area of the condenser section 

 q = Acond σ (T 4cond – T 4space) 

This equation assumes that the heat pipes are separated sufficiently that they all have a near-unity 
shape factor with respect to space. 
Using Tcond = 100°C = 373 K and assuming Tspace = 0 K and we can solve for the condenser surface 
area as follows 

 Acond = ( )8 2 4 4

5260W

5.67 10 W/(m K ) (373K)−×
 = 4.79 m2 

If the condenser length is Lcond, then 

 NπDLcond = 4.79 m2 

Let Lcond = 10 cm giving NπD = 47.9 m = 4790 cm. Since we found previously that πDtN = 12.5 cm2, we 
can solve for the wick thickness t 

 t = 
212.5cm

4790cm
 = 0.0026 cm 

Choose a pipe diameter of 3 cm, then 

 N = 
47.9m

(0.03m)π
 = 508 pipes required 

Since Leff = L + (Lcond + Levap)/2, letting the evaporator and condenser lengths be the same, 10 cm, we 
find L = 20 cm and the overall length is 20 + 10 + 10 = 40 cm. We summarize the cooling system 
below 
  Pipe diameter = 3 cm 

  Pipe length = 40 cm 

  Condenser length = 10 cm 
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  Evaporator length = 10 cm 

  Adiabatic section length = 20 cm 

  Wick: 0.0026 cm thickness of 200 mesh nickel powder 

  Working fluid: water 

  Pressure: atmospheric 

  Number of pipes required: 508 

PROBLEM 10.40 

Compare the axial heat flux achievable by a heat pipe using water as the working fluid 
with that of a silver rod. Assume that both are 20 cm long, that the temperature 
difference for the rod from end to end is 100°C and that the heat pipe operates at 
atmospheric pressure. State your other assumptions. 

GIVEN 

• Silver rod and a heat pipe, both 20 cm long 
• End-to-end temperature difference of 100°C 
• Heat pipe operates at atmospheric pressure 

FIND 

(a) Axial heat flux for both rods 

ASSUMPTIONS 

• Neglect heat pipe vapor pressure drop 
• Horizontal operation for the heat pipe 
• Perfect wetting of the heat pipe fluid, θ = 0 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 12, the conductivity for silver at 63°C is ksilver = 424 W/(mK) 

SOLUTION 

The axial heat flux for the silver rod is 

 q″ = 
k T

L

Δ
 =  

( )424 W/(m K) (100 K)

0.2 m
 = 212,000 2W/m  

With the above assumptions, Equation (5.40) simplifies to 

 
2 l

cr

σ
 = effl

l w w fg

L q

K A h

μ
ρ

 

At the operating conditions, water is a satisfactory working fluid. From Figure 10.23, for an operating 
temperature near 100°C, we have for the figure of merit, M 

 M = l l fg

l

hρ σ
μ

 = 4 × 104 kW/cm2 

Rearranging Equation (5.40) to find the heat transport 

 q = M 
eff

2 w w

c

K A

r L
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We have to make some assumptions about the wick material and thickness. Let’s try 120 mesh nickel, 
with thickness t = 0.01 cm. Table 38 gives for the wick pore radius rc = 0.019 cm and for the wick 
permeability, Kw = 3.5 × 10–10 m2. We must also assume a length for the condenser and evaporator 
sections. Since the total length is 20 cm, a reasonable length for the condenser and evaporator is 8 cm. 
Then L = 20 – 8 – 8 = 4 cm and 

 Leff = L + (Lcond + Levap)/2 = 12 cm 

Unlike the silver rod, we must select a diameter for the heat pipe, Let’s try D = 2 cm giving a total 
corss-sectional area of Apipe = π22/4 = 3.14 cm2. The wick cross-sectional area is 

 Aw = πDt = (π) (2cm) (0.01 cm) = 0.0628 cm2 

We can now calculate the heat transport 

 q = ( )7 24 ×10 W/cm
10 2 2(2) (3.5 10 m )(0.0628cm )

(0.019cm)(12cm)

−× 4 2

2

10 cm

m

 
    = 77 W 

The heat flux for the heat pipe is therefore 

 q″pipe = 
2

77 W

3.14cm
 = 245,000 2W/m  

This is slightly more than the heat flux for the silver rod so the performance of the two methods of heat 
transport seems similar. However, the heat pipe provides two advantages: (i) it will undoubtedly cost 
much less, and (ii) it is isothermal, that is, the temperature difference from one end to the other will be 
very small. This means that we can afford some temperature drop at either end of the heat pipe to get 
the heat from the heat source into the evaporator section and out of the condenser section to the heat 
sink. 
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