
AN INTEGRATED APPROACH TO ROBOTIC NAVIGATION

UNDER UNCERTAINTY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Bin Wu

May 2011

This dissertation is online at: http://purl.stanford.edu/dq739bm0780

© 2011 by Bin Wu. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

http://purl.stanford.edu/dq739bm0780

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Tze Lai, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Thomas Cover, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Peter Glynn

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Autonomous robot navigation has been gaining popularity in the field of robotics

research due to its important and broad applications. Sequential Monte Carlo meth-

ods, also known as particle filters, are a class of sophisticated Bayesian filters for

nonlinear/non-Gaussian model estimation, and have been used for the simultaneous

localization and mapping (SLAM) problem in robot navigation in lieu of extended

Kalman filters. However, the current particle filters, and their derivatives such as the

particle-based SLAM filters for robotic navigation, still need further improvement to

have better trade-off between performance and complexity in order to be used for

online applications. Also, the current robot navigation approaches often focus on one

aspect of the problem, lacking an integrated structure.

In this work, we designed better sampling proposal distributions for particle filters,

and demonstrated their superiority in simulation. Then, we applied our new particle

filters to design and implement improved particle-based SLAM filters for the appli-

cation of the SLAM problem in robot navigation, and tested using both simulation

and outdoor experimental datasets. Finally, we incorporated the new particle-based

SLAM filters in the design of a new framework for solving robotic navigation problems

under uncertainty in a continuous environment. The framework balances between ex-

ploration and exploitation, and integrates global planning algorithms, local navigation

routines, and exploration procedures in order to achieve the global goal, overcoming

many common drawbacks of current approaches.

iv

Acknowledgements

This work would not be made possible if it were not for the following people who

gave me guidance, offered me collaboration, and provided me with help.

First of all, I would like to express my greatest gratitude to my advisor, Prof.

Tze Leung Lai, for his advice and guidance. Since Prof. Lai took me on board three

years ago, I have learned a lot from him, and in particular, many insights from Prof.

Lai have enlightened my thinking and inspired me with new ideas in solving the hard

problems in my research.

Many thanks to Prof. Thomas Cover and Prof. Peter Glynn for their time being

on my committee, and also reading and giving comments on my dissertation. I also

want to thank Prof. Papanicolaou for being the Chair of my PhD oral defense.

I am thankful to Prof. Yuguo Chen from UIUC for his collaboration on some of

the material included in this work. Without him, some of my work would not have

been publishable.

Also, I’d like to express my gratitude to all my friends for their support over the

years. Among them, I want to particularly thank Su Chen, Ling Chen, Shaojie Deng,

and Kevin Sun, who are amazing statisticians, for their suggestions and comments on

my work. Also, I would like to thank Sukwon Chung for proofreading my dissertation.

Finally, I would like to thank my parents for their love and support over the years!

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Background . 2

1.2 Bayesian Filtering . 4

1.3 Robotic Navigation . 5

1.3.1 POMDP Framework . 6

1.3.2 SLAM Framework . 7

1.4 Dissertation Organization . 7

2 Sequential Control in Partially Observable Domain 9

2.1 Introduction . 9

2.2 POMDP Framework . 11

2.2.1 Markov Decision Process . 11

2.2.2 The POMDP Model . 13

2.2.3 Value Functions . 15

2.2.4 Value Function α-Representation 16

2.3 Curse of Dimensionality . 17

2.3.1 Approximate Value Iteration Methods 17

2.3.2 Heuristic Search Methods . 17

2.3.3 Belief Space Compression Methods 18

2.4 Online Suboptimal Control . 18

vi

2.4.1 Receding Horizon Control . 19

2.4.2 Belief-Based Myopic Control 21

2.5 Comparative Studies . 22

2.5.1 Results and Discussion . 22

3 Particle-Based SLAM Filters for Nonlinear Filtering 24

3.1 Introduction . 24

3.2 Nonlinear Filtering via Non-Particle Filters and Sequential Monte Carlo 27

3.2.1 Non-Particle Bayesian Filtering Methods 29

3.2.2 Sequential Monte Carlo Methods 31

3.2.3 A Comparative of Different Nonlinear Filters 36

3.3 Simultaneous Localization and Mapping 37

3.3.1 Definition of SLAM . 37

3.3.2 FastSLAM . 40

3.4 Spherical Simplex Unscented Particle Filters 42

3.4.1 The Spherical Simplex Unscented Transformation 43

3.4.2 Spherical Simplex Unscented Kalman Filters 46

3.4.3 SSUKF-Based Proposal Distribution 48

3.5 Spherical Simplex Unscented Particle-Based SLAM Filters 50

3.5.1 System Dynamics . 51

3.5.2 State Estimation . 52

3.5.3 Feature Estimation . 55

3.6 Experimental Results . 57

3.6.1 Experiment 1: Simulated Environment 57

3.6.2 Experiment 2: Car Park Dataset 59

4 Integrated Robotic Navigation under Uncertainty 66

4.1 Introduction . 66

4.2 Global Planning . 67

4.2.1 Classical Path Planning . 68

4.2.2 Path Planning under Uncertainty 70

4.3 Local Navigation . 70

vii

4.3.1 Obstacle Avoidance . 71

4.4 Robotic Exploration . 75

4.4.1 Coastal Navigation . 75

4.4.2 Frontier-Based Exploration . 76

4.4.3 Information-Based Exploration 76

4.5 Integrated Navigation under Uncertainty in an Unknown Environment 77

4.5.1 Limitations of Current Approaches 77

4.5.2 New Framework . 79

4.5.3 Problem Statement . 80

4.5.4 System Control . 81

4.5.5 Global Navigation . 83

4.5.6 Obstacle Avoidance . 84

4.5.7 Point-Based Exploration . 88

4.5.8 The Integrated Navigation Algorithm 92

4.6 Experimental Results . 94

4.6.1 Experimental Setup . 94

4.6.2 Result and Analysis . 94

5 Conclusion and Future Work 100

Bibliography 102

viii

List of Tables

2.1 Experimental results for the two Hallway domains. The BBMC achieves

similar level of performance as other complicated strategies, but are

significantly faster. 23

3.1 The mean square errors of various particle filters using different pro-

posal distributions. The result of the commonly used extended Kalman

filter (EKF), a non-particle approach, is quoted as a reference here. . 37

3.2 The performance comparison of different particle-based SLAM filters.

The criteria used are the mean and standard deviation of the mean

square error (MSE) with the unit being meters. 59

4.1 Results of Integrated Navigation. 95

ix

List of Figures

2.1 Convex majorant of linear reward functions of different actions. . . . 16

3.1 The diagram shows the comparison between the states estimated by

various algorithms. 38

3.2 The diagram shows the performance comparison among various algo-

rithms. The number of simulated particles is chosen to be 20, 40, 80,

200, and 1000 for each set respectively. 39

3.3 The simulated environment where the SLAM algorithms are tested for

experiment 1. 58

3.4 The MSE for the robot pose estimation with noise of various level for

experiment 1. 60

3.5 The MSE for the map feature estimationwith noise of various level for

experiment 1. 61

3.6 The Car Park dataset. The FastSLAM 2.0 is used as the SLAM filter

to carry out the estimation for the robot pose and landmark locations,

which are compared with the actual locations. 63

3.7 The Car Park dataset. The U-PBSLAM is used as the SLAM filter to

carry out the estimation for the robot pose and landmark locations,

which are compared with the actual locations. 64

3.8 The Car Park dataset. The SSU-PBSLAM is used as the SLAM filter

to carry out the estimation for the robot pose and landmark locations,

which are compared with the actual locations. 65

x

4.1 The diagram shows the relation among the three subfields: global plan-

ning, local navigation, and exploration. The goal is to solve problems

within the area covered by all three subfields as indicated by VII. . . 80

4.2 An illustration of the control block to realize global path planning un-

der uncertainty constraints while ensuring robust local obstacle avoid-

ance navigation. 82

4.3 The obstacle avoidance diagram illustrates situations the robot will

encounter during local navigation and the corresponding actions to

take during the course. 85

4.4 (a) High Safety (HS) situation. The robot maximizes its speed and keep

its angle towards the global goal. (b) Low Safety Far Angle (LSFA)

Situation. The robot slows down but keeps its original orientation.

(c) Low Safety Close Angle (LSCA) Situation. The robot slows down

and adjust its direction to at least bypass the landmark at the critical

angle. (d) Dangerous Region (DR) Situation. The robot slows down

to its minimal speed and turn as sharply as it can to steer away from

the landmark. 86

4.5 In all plots, the green stars indicate the landmarks. The red circle

around the landmarks indicate those landmarks that are close in range.

The red dash straight line from the robot front end points to the steer-

ing direction. The pink dots around the robots are the spatial testing

points, whose density can be adjusted. (a) Robot explores and tries to

circumvent the landmarks. (b) Robot further moves and passes along

the landmarks. (c) Robot meets new cluster of landmarks, but see a

gap that can go towards the goal. (d) Robot turns and goes through

the gap. 96

4.6 The final path of the robot. The landmarks located in the middle part

of the map are so dense that there is no chance to find a safe path

across them. The robot finds a safe path and goes through the big gap

shown in the lower half of the plot. 97

xi

4.7 The final path of the robot. Because the opening of the landmarks in

the middle is not big enough, the robot considers going through the

middle gap to be unsafe due to its own physical dimensions, so it turns

and finds another safer path, i.e., going through the bigger gap located

in the lower half of the plot. 98

4.8 The final path of the robot. As the gap in the middle part widens, the

robot sees an oppotunity and find a closer safe path to reach the goal

location, instead of going the detour. 99

xii

Chapter 1

Introduction

With technologies advancing rapidly over the past decades, building intelligent robots

that can accomplish tasks without human aid has fascinated many engineering re-

searchers, especially those in the Artificial Intelligence (AI) community. Among vari-

ous applications of robots, ranging from gigantic industrial robots that build cars and

equipments to human-sized nursing robots that provide personal care at home, one

area that has drawn particular interest and large amount of resources is autonomous

robot navigation, due to its important and broad applications ranging from unmanned

detection in military operations and planetary exploration in space missions, to auto-

matic automobile driving in urban transportation. The Defense Advanced Research

Projects Agency Grand Challenge [119], which requires technologies that can create

fully autonomous ground vehicles (AGV) capable of unmanned driving to complete

a predefined course, together with the recent media coverage of Google successfully

testing unmanned vehicles driving on a freeway, are examples of the research effort

that has been dedicated to push this area forward.

One of the key techniques in autonomous robot navigation is the Bayesian es-

timation, which has wide applications in various research fields. The main usage

of Bayesian filters is to estimate the state of the system, such as the location and

orientation of the robot and also the information of the surroundings, so that the

robot can make control decision on the next move. With the increasingly stringent

requirements from practical applications, bayesian filters for nonlinear applications

1

CHAPTER 1. INTRODUCTION 2

are of high demand. Sequential Monte Carlo methods, also known as particle filters,

are a class of sophisticated statistical techniques for nonlinear/non-Gaussian model

estimation, gaining tremendous attention and popularity in the past decade due to its

superior performance over other methods such as the widely used extended Kalman

filter.

This dissertation concerns the design of good particle-based Bayesian filters that

can be applied to the robot navigation, and building a new framework that incor-

porates the filters for solving robotic navigation problems under uncertainty in a

continuous environment.

1.1 Background

Autonomous robot navigation has a wide range of application in the real world. In

fact, with the computer technology ever advancing, one of the dreams humans have

is to build autonomous robots that can replace human beings to accomplish a lot

of tasks that are either mission impossible for humans or can bring convenience and

efficiency. Autonomous navigation is one of the goals that autonomous robots can

accomplish, and is the main topic in this dissertation.

It will be intriguing to discuss a little about the applications of autonomous robot

navigation. On the ground, the most talked about civil application is an autonomous

vehicle that can drive automatically from the starting location to the destination.

Imagine in the morning, you get into your car, say the name of your workplace whose

address has been stored in the memory, and just relax and read newspapers while

the vehicle automatically drive you the workplace safely. In the air, the autonomous

airplanes fly flawlessly along the predetermined path and send passengers to their

destinations. Also, the unmanned airplanes can also be used for scientific research

when information about the atmosphere at heights unreachable by humans. For plan-

etary exploration, the rovers, which include those to be sent to planets in the solar

system and those already sent to Mars, need the ability to navigate autonomously

as they may lose contact with earth for a certain amount of time as the interplane-

tary communication at such vast distance is itself a big challenge. There are many

CHAPTER 1. INTRODUCTION 3

other potential applications, which make the research of the autonomous navigation

promising.

The robotic navigation problem in the real world has a lot of issues to overcome.

We can roughly group those issues into a few categories. The first type of issues are

caused by unpredictability, also called uncertainty. For example, after the robot exe-

cutes the control commands, which normally consist of velocity control and steering

angle control, the actual velocity may deviate from the desired values, due to causes

such as bumpy road surface, and the steering angle may be different too, which might

be caused by, say, the mechanical system errors. Besides control errors, the sensors

the robot uses to detect the distance to the surrounding objects are imperfect, due to

causes such as its intrinsic system errors and the manufacturing defection, resulting

the erroneous detection data that will potentially mislead the robot in navigation

decision-making. All there errors are often modeled as noise components, and are

unpredictable in advance to the process.

The second type of issues arise from the unobservability. This happens because

the robot doesn’t know exact its own location. In other words, the robot has no idea

of its own state, including its location and orientation, except for some corrupted

measurement data taken with respect to the landmarks. The measurements only

provide the relative distance and angle of the landmarks with respect to the robot. As

the robot doesn’t know the location of the landmarks, the measurement data doesn’t

provide direct information about the state of the robot. In other words, the robot

cannot observe directly its own location and orientation. The fact that the indirect

information available are also corrupted by noise makes the task of determining its

own state even more challenging.

The third type of issues are related to dimensionality. The existing methods in

the literature often solve problems with small scale so that the environment can be

discretized. This limits the application of the algorithms to real-world problems which

are often of large scale and continuous. As the dimension of the problem increases,

the computational complexity often increases dramatically. Therefore, coping with

the dimensionality is one of the key challenges in the autonomous robot navigation.

CHAPTER 1. INTRODUCTION 4

1.2 Bayesian Filtering

With all the challenging issues to be solved, a robust mathematical framework that

can model the dynamics of the system and capture the uncertainty is needed. Natu-

rally, Bayesian framework became the popular choice due to its simple mathematical

structure and tremendous modeling power. The foundation of Bayesian framework

is the Bayes’ theorem, which has important application in statistical inference. The

system process is often modeled as a state-space model (SSM), which means the de-

sired variables are often denoted as the state and its evolution is set to be connected

in a Markov chain with some control inputs exerted on the states. The state at given

a time is not directly observable, but its twisted version, often corrupted by noise,

is observable, which is called a measurement. There are two probabilities defined for

the model, a transition probability, which describes the statistical evolution of the

Markov chain, and a observation probability.

The main idea of SSM is to model a set of desired parameters to be a state

vector, and evaluate them using certain mathematical tools based on the statistical

properties of the system. The probabilistic nature of the system comes from various

sources of noise, including the system noise, which is usually inevitable and generated

during the state evolving process, and measurement noise, which is often caused by

the inefficiency or limitation of the measurement acquiring devices and the random

noise from the environment. Therefore, in most of the cases, two models are needed

to facilitate the state estimation: First, a process model, or system model, which

gives the state for the next time step given the current state and control, and a

measurement model, which gives the measurement based on the current state. These

two equations forms a rigorous framework for general dynamic state estimation for

time-varying system. Then, the estimation of the state is carried out by mainly

two interweaved steps, a prediction step, where the state is predicted given all the

past observations up to the last time step, and an update step, which updates the

predicted state by incorporating the latest measurement at current time step. These

two steps are carried out recursively over time, giving a sequential estimation of the

state variable.

CHAPTER 1. INTRODUCTION 5

For special cases, where both the process and measurement models are linear and

Gaussian, an optimal solution to the estimation problem is given by the Kalman filter.

For nonlinear cases, a linearization technique based on Taylor expansion is employed,

which results in the extended Kalman filter. It linearizes the process and measurement

equations using Jacobian matrices, and then apply the Kalman filter. There are also

other techniques to cope with the nonlinearity. For example, the Gaussian sum filters

use a bunch of Gaussians to approximate the posterior distribution of the state; the

unscented filters choose deterministically a set of so-called sigma points based on the

statistical properties of the state, and map those sigma points through the nonlinear

equations. The transformed sigma points can be used to calculate the statistical

parameters of the system, which originally have to be transformed directly through

the nonlinear equations. In other words, the unscented filter picks a set of points that

are easier to apply the nonlinear equations than the probability density of the state.

Besides those filters just introduced, sequential Monte Carlo methods, also called

particle filters, approach the Bayesian estimation problem in a different way. They

use a set of particles to approximately represent the probability distribution, thus

obtained the name. The advantage of particle filters over other non-particle meth-

ods is that they can solve nonlinear and non-Gaussian problems, due to the fact

that they are sampling-based filters. On the other hand, the sampling-based nature

imposes more computational burden, as the number of particles increases. As the

iterative sampling process carries on, it often happens that most of the particles will

have negligible weights, which is called particle degeneracy. This can be alleviated

by resampling, a step that reselects and shuffles the particles according to certain

probability distribution determined by the weights.

1.3 Robotic Navigation

Autonomous robot navigation is one of the most promising fields in the research of

artificial intelligence (AI). With the rapidly rising demands from the applications,

ranging from unmanned urban vehicles and unmanned aircrafts to space rovers land-

ing on Mars, the requirements for the technology for autonomous robot navigation

CHAPTER 1. INTRODUCTION 6

are becoming more and more challenging. For example, the autonomous vehicle on

the ground needs to be capable of driving to the destination while avoiding the traffic

and collision with other cars or obstacles. The rover sent to Mars sometimes needs

to navigate though tough terrains with little assistance as it takes a long time for the

communication signals to transmit between Mars and Earth.

From the technical point of view, autonomous robot navigation mainly concerns

the design of robots with abilities in three key aspects: the ability to generate opti-

mal global paths to maneuver itself to a target location in a real-time environment,

the ability to reactively correct its local course by circumventing obstacles to avoid

collision, and the ability to explore unknown territories. Extensive research effort has

been devoted to all three aspects, which were initially treated separately and whose

boundaries became blurred later due to the development of novel techniques that

can handle more complex problems in real-world applications. In addition, the robot

should also be able to cope with uncertainty while still accomplishing desired tasks.

Two frameworks are developed to solve navigation problems under uncertainty, as

shown below.

1.3.1 POMDP Framework

In recent years, there has been increasing interest in modeling the planning prob-

lem under uncertainty by using the framework of Partially Observable Markov De-

cision Process (POMDP), a generalization of a Markov Decision Process (MDP). It

originated in the operations research community, and later gained recognition and

popularity in the other communities such as Artificial Intelligence and Automated

Planning. The main idea of the framework is to represent the process using a hid-

den Markov Model and interpret the tasks in terms of certain reward function, thus

the planning problem becomes how to find the optimal policy during the execution

process to maximize or minimize the reward by employing techniques from dynamic

programming and reinforcement learning including value iteration, policy iteration,

Q-learning and so on. So far, a vast amount of research has been dedicated to this

field, and significant progress has been made. The limitations of POMDP include the

CHAPTER 1. INTRODUCTION 7

system often being discrete and the dimension not being too high.

1.3.2 SLAM Framework

The simultaneous localization and mapping (SLAM) is a challenging research field

in robotic navigation. It concerns the design of algorithms that enable the robot to

build a map for the surroundings while localizing itself within the same environment.

The navigation process is often continuous, during which the robot does not know

exactly its own state, including its location and orientation, or the location of the

landmarks. The only information the robot has are the control signals, including the

velocity and steering angle, and the measurements, which are the relative locations

of the landmarks with respect to the robot and are often corrupted by noise. There-

fore, how to use the limited information to estimate the robot pose and landmark

locations forms the SLAM problem, the solution to which has been a cornerstone in

the roadmap of building autonomous robots.

1.4 Dissertation Organization

In this work, we designed new particle-based SLAM filters for robotic navigation

problems. Then, we built an integrated framework based on the newly designed

SLAM filters for robotic navigation under uncertainty in a continuous environment.

In Chapter 2, we first introduce the POMDP framework, which is widely used in

robotic navigation problem. We then describe our online control strategy that was

designed to achieve same level of performance but with much less computational com-

plexity, compared to other complicated approaches currently existing in the literature.

This is verified by the simulation study carried out at the end of the chapter.

In Chapter 3, we begin by introducing the Bayesian framework for state estimation

and some of the widely used non-particle algorithms, such as Kalman filters. Then

we introduce the sequential Monte Carlo methods (a.k.a. particle filters), which are

followed by the new approach designed to improve the performance of particle filters

and verified by simulation studies. The SLAM framework is introduced, followed by

CHAPTER 1. INTRODUCTION 8

the particle-based SLAM filter, the FastSLAM filters. Then, we extend the improved

particle filters and apply to the SLAM problem in order to build the particle-based

SLAM filters. The design and implementation will be discussed in details. The new

algorithms are tested on both the simulation data and the outdoor experimental

dataset.

In Chapter 4, we first introduce the literature of robotic navigation, including

the work on global planning, local navigation, and exploration. Then, we discuss

the limitations of the current approaches, and propose a new framework for robotic

navigation under uncertainty. In particular, it considers the trade-offs between explo-

ration and exploitation, and provides a new approach to integrate global planning,

location navigation, and exploration. The particle-based SLAM filters proposed in

Chapter 3 are used to cope with uncertainty.

In Chapter 5, we summarize the work in this dissertation, and sketch some ideas of

future work, including our continuing effort to design better SLAM filters and build

hybrid systems that can approach robotic navigation from a more comprehensive

perspective.

Chapter 2

Sequential Control in Partially

Observable Domain

2.1 Introduction

Sequential planning has been a popular topic for a wide range of applications such as

artificial intelligence, where a robot is required to accomplish assigned task partially

with or completely without human assistance. A good example will be robotic navi-

gation where a robot seeks to reach a certain goal location by planning its traveling

path sequentially. In most of the real world applications, the environment that the

robot interacts with is imperfect, mixed by all kinds of uncertainties arising from both

systematic errors and random errors. The systematic errors include an incomplete

map, a misrepresented location of a landmark, or a functional deficiency in the robot’s

range detector, while the random errors are usually caused by noise, which subject

to certain probability distribution we can or cannot track. The goal is to overcome

these uncertainties by taking advantage of their recognizable patterns, including their

probabilistic characteristics, and accomplish the task by making sequential plans. In

other words, the question becomes how to do the control given uncertainties.

The classic planning is generally carried out by agents in fully observable en-

vironments with conditions usually assumed to be deterministic and discrete. In

order to take into account the uncertainty, the traditional planning framework no

9

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN10

longer applies. The Partially Observable Markov Decision Process (POMDP) has

since emerged as a powerful mathematical framework that accounts for the uncer-

tainty from various sources during the planning process. Since POMDP framework

tries to solve the planning problem by providing a general action policy, it requires

large computational effort thus becomes more difficult to carry out as the dimension

of the problem scales up.

Over the years, a lot of research effort has been devoted to 1) finding approximate

solutions in order to increase the dimension of the problems solvable by POMDP,

and 2) seeking efficient online planning algorithms instead of offline ones [97]. As

the POMDP literature growing rapidly, various approaches have been proposed to

solve the POMDP problem with increasing dimension and complexity. Meanwhile,

many benchmark problems have also been designed to compare the performance of

different methods. In most of these problems, the task is to reach a fixed location

while maximizing rewards. In terms of their discrete and continuous nature in the

state space and action space, they can be categorized as follows:

Discrete Navigation Environments This means that the state space of the

problem is discrete and usually discretization will be required before applying the

POMDP methods. The configuration domains are usually of grid type with tens

to hundreds of states in total. The action space can be discrete, with a few action

choices for the robot to move between adjacent grids, such as stay, move forward, turn

back, turn left, and turn right [16,54,65,82,86,94,95,107,108,111,130], or continuous,

as in the bicycle simulator with the actions represented by continuous orientation

angles [78,92].

Continuous Navigation Environments This means the state space is contin-

uous. The action and observation spaces can be discrete or continuous [18,85,96].

In this chapter, we will first introduce the concept of Markov Decision Process,

and extend its definition to Partially Observable Markov Decision Process. After

talking about the properties of POMDP, we will give a quick overview of existing

approaches to solve the POMDP problem. Then, the new suboptimal approach will be

introduced and its performance will be compared with existing approaches. Though

the experimental examples we choose are not of large dimensions, the purpose is to

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN11

show that the suboptimal solution performs similarly to other complicated strategies,

while incurring significantly less computational time, thus is more suitable for online

applications. This is to lay the foundation for the more interesting problem we will

investigate in Chapter 4, where we consider a challenging real-world robotic navigation

problem in a continuous domain.

2.2 POMDP Framework

A Markov decision process (MDP) is used to model the interaction between an agent

and a stochastic environment [112]. It assumes that the agent has full access to

knowing the exact state at each time step. In many applications, the environment

is only partially observable to the agent, which stems from causes such as imperfect

sensor readings, thus the agent only has a noised reading of its state. In other words,

the underlying dynamics follows a MDP process, but the agent cannot directly observe

the underlying state. For these cases, the Partially Observable Markov Decision

Process models uncertainty resulting from the imperfect interaction between the agent

and the environment [112]. In stead of obtaining the true states of the system as in

MDP, a POMDP model computes and maintain the so-called belief states, which is

the probability distribution over the set of state and implies how confident the agent

is in determining its true state.

In this section, we will first introduce the Markov Decision Process and then

extend it to the POMDP framework.

2.2.1 Markov Decision Process

The Basic Definition

A Markov Decision Process is a 4-tuple system: (S,A,T,R). They are

• States S: The state of the system is denoted as s, and the finite set of all

possible values are defined as the state set S.

• Actions A: Each action of the agent takes to progress in the environment is

denoted as a. The finite set of all available actions is defined as the action set A.

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN12

• Transition Probability T (s
′
, a, s) : S × A× S → [0, 1]. Given an action at = a

and the current state st = s, the probability of transitioning into state s
′
at time t+1

is defined by the conditional probability

T (s
′
, a, s) = Pr(st+1 = s

′|st = s, at = a) (2.1)

As it’s a probability, it suggests that
∑

s′∈S T (s
′, a, s) = 1, ∀(s, a).

• Reward Function R(s, a) : S × A → ℜ. It assigns a real value in order to

quantify the utility or benefit of performing action a at state s. The goal of the

planning is to maximize the total rewards over the entire course of the actions.

Value Iteration

Due to stochastic nature of the problem, we can only calculate the expected rewards

of the future performance. Mathematically, this can be defined as the summation of

all rewards in the future discounted at a given rate γ, 0 ≤ γ < 1 :

E[
T∑
t=0

γtRt] (2.2)

At each state, we define policy π as the function mapping from the state s to the

action a, i.e., S → A. The goal of the MDP problem is to find the optimal policy

π∗, which maximizes the total rewards. One way to achieve this goal is to use value

function V π, which is defined as the total discounted rewards starting from current

sate s and given action a according to policy π. Since the action is also a function of

the current state, the value function is a mapping from states to rewards: V π : S → ℜ.
Using the definition of expected rewards from equation 2.2, the value function can be

expressed as

V π(s) = R(s, π(s)) + E[
∞∑
t=1

γtR(st, π(st))] (2.3)

If we define the optimal value function to be V ∗(s) = V π∗
(s) and its associated

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN13

optimal policy as π∗, the optimal value function satisfies the Bellman equation:

V ∗(s) = max
a∈A

[R(s, a) + γ
∑
s′∈S

p(s′|s, a)V ∗(s′)] (2.4)

which is due to the Principle of Optimality [9].

In order to efficiently calculate the optimal value function and its associated opti-

mal policies, the value iteration is one of the most popular algorithms adapted from

dynamic programming:

Vn(s) = max
a∈A

[R(s, a) + γ
∑
s′∈S

p(s′|s, a)Vn−1(s
′)] (2.5)

This iteration rule is repeated for all states s until the right-hand side value function

converges to be the same as the left-hand side, which is then the optimal value

function [12].

2.2.2 The POMDP Model

The POMDP model is a generalization of the MDP model described in section 2.2.1.

On one hand, they are similar, in the sense that they both deal with the system with

dynamics evolving according to a Markov process. On the other hand, they differ in

the perception of the state: in MDP, the state of the system is fully observable, i.e., its

value is completely known; whereas for POMDP, only an observation or measurement

of the state usually corrected by noise is available, so the distribution of the possible

state values, sometimes called the belief [118], is maintained instead of the state.

This is the key difference between MDP and POMDP, and is the main reason why a

POMDP problem is much more complex and difficult to solve than a MDP problem.

The Basic Definition

A partially observable Markov decision process is a 6-tuple system (S,A,T,R,Z,O),

where:

• States S: The state of the system is denoted as s, and the finite set of all

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN14

possible values is defined as the state set S.

• Actions A: Each action of the agent takes to progress in the environment is

denoted as a. The finite set of all available actions is defined as the action set A.

• Transition Probability T (s′, a, s) : S × A× S → [0, 1]. Given an action at = a

and the current state st = s, the probability of transitioning into state s
′
at time t+1

is defined by the conditional probability

T (s
′
, a, s) = Pr(st+1 = s

′|st = s, at = a) (2.6)

As it’s a probability, it suggests that
∑

s′∈S T (s
′, a, s) = 1, ∀(s, a).

• Reward Function R(s, a) : S × A → ℜ. It assigns a real value in order to

quantify the utility or benefit of performing action a at state s. The goal of the

planning is to maximize the total rewards over the entire course of the actions.

• Observations Z: The observation of the agent state is denoted as z. The finite

set of all possible observations is defined as the observation set Z.

• Observation function O(s, a, z) : S × A × Z → [0, 1]. Given an action at = a

and the current state st = s, the probability of observation z for the state s at time

t+ 1 is defined by the following conditional probability

O(s, a, z) = Pr(zt+1 = z|st = s, at = a) (2.7)

Note that
∑

z∈Z O(s, a, z) = 1,∀(s, a).

Objective Functions

Given a POMDP model, the goal is to find the optimal control policy that maximizes

the total rewards over a certain time horizon. The objective function can be defined

according to the following two cases [45]:

• Finite-Horizon Model:

maxE

(
T∑
t=0

rt

)
(2.8)

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN15

• Infinite-Horizon Model with a discount factor γ, 0 < γ < 1:

maxE

(
T∑
t=0

γtrt

)
(2.9)

2.2.3 Value Functions

For POMDP model, the belief state, which is a sufficient statistic to preserve the

necessary information [45], is used in order to capture the statistical information of

the system while keeping the operational simplicity. Similar to MDP, we define the

value function for POMDP in term of belief state as

V π(b) = Eπ

[
T∑
t=0

γtr(bt, π(bt)) | b0 = b

]
(2.10)

where r is a one-step reward given belief state b and action at = π(bt).

Bellman’s Equation

For the case of a discrete state space, the optimal value function when T = ∞ can

be expressed in terms of the Bellman optimality equation V ∗ = HV ∗ in which H is

the Bellman backup operator [45,112]:

V ∗(b) = max
a∈A

{
∑
s∈S

r(s, a)b(s) + γ
∑
z∈Z

∑
s∈S

P (o|s, a)b(s)V ∗(b′)}, (2.11)

where b′ is the updated belief given by

b′(s) =
P (z|s, a)
P (z|b, a)

∑
s′∈S

P (s|a, s′)b(s′). (2.12)

Therefore, the optimal policy π∗ can be expressed as

π∗(b) = argmax
a∈A

{
∑
s∈S

r(s, a)b(s) + γ
∑
z∈Z

∑
s∈S

P (z|s, a)b(s)V ∗(b′)}. (2.13)

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN16

2

3

4

5

1

 Optimal Value Function

 Belief space

E

x
p

ec
te

d
 T

o
ta

l
R

ew
ar

d

 0 b(s) 1

Figure 2.1: Convex majorant of linear reward functions of different actions.

2.2.4 Value Function α-Representation

For the finite-horizon case T < ∞, the value function can be represented by a set of

multi-dimensional hyperplanes formed by α-vectors, each of which is associated with

a specific action. For any given belief point, the largest value of the α-vectors at that

point is the optimal value and the associated action is the optimal action. Therefore,

the optimal value function is piecewise linear and convex [109], as shown by the thick

line in Figure 2.1. Computational algorithms use this property of the value function

together with the belief points and the α-vectors to make the value iteration process

efficient. The enumeration algorithm [73] is the most direct way of computing the

value function by calculating all the possibilities. The one-pass algorithm [109] selects

arbitrary belief points, constructs the associated α-vector and finds its dominating

regions; the process is carried out iteratively until the entire belief space is covered.

The witness algorithm starts with a witness point and a suboptimal α-vector, and

keeps generating new vectors until the vector is optimal over that witness point.

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN17

2.3 Curse of Dimensionality

The preceding approach becomes increasingly difficult with increasing dimension of

the α-vectors. When the state space is continuous and high-dimensional, discretiza-

tion becomes prohibitively difficult and approximations are needed [54,82]. Various

approximations have been used to tackle the so-called curse of dimensionality, and

have led to various methods that can be grouped into the following classes:

2.3.1 Approximate Value Iteration Methods

These methods approximate the value function by using only a selected set of belief

points, instead of all possible ones, to obtain approximate solutions of the dynamic

programming problem [45]. The point-based value iteration method [82] is a represen-

tative method of this kind. At each step, it uses exploratory stochastic trajectories

to sample belief points, with at most one new belief point for each previous belief in

order to control the size, and then updates both the value and gradient at those points

during each value update. The randomized point-based value iteration method called

Perseus [110,111] does the value update at each step by randomly selecting a small

set of points that is sufficient to improve the values of all belief points. There are also

other approximating methods such as the MDP approximation, which considers the

most likely state as the true state and determines the action of the MDP, grid-based

approximation which approximates the continuous belief space by a finite set of grid

points and uses an interpolation-extrapolation scheme to estimate the value at any

given belief point, and Monte Carlo POMDP [117] which approximates the value

function by samples generated by Monte Carlo simulations.

2.3.2 Heuristic Search Methods

These methods solve the POMDP problem by heuristic search. The heuristic search

value iteration method [107,108] stores both the upper and lower bounds on the

optimal value function and chooses the set of belief points for local update by tree

search based on heuristics. The policy-iteration method introduced in [44] represents

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN18

a policy as a finite-state controller, and uses the belief tree to iteratively search the

belief space to improve the controller.

2.3.3 Belief Space Compression Methods

Belief compression is a class of techniques that project the high-dimensional belief

space to a low-dimensional subspace. The object is to find a good approximation

to the optimal value function by restricting to the subspace, instead of computing

the value function on the original belief space. This simplifies the calculation at a

cost of information loss due to compression. In [87], the value-directed compression

technique was introduced. Characterizing lossless compression and linear compres-

sion with a dynamic Bayesian network and a Krylov subspace, they derived an upper

bound for lossy compression, and designed an optimization routine that minimizes the

error bound for linear lossy compression and an associated structured POMDP model

for efficient implementation. Another approach based on exponential family principal

components analysis (E-PCA) was introduced in [98]. A key component of an E-PCA

model representing the reconstructed data, besides a low-dimensional weight vector

and a basis matrix, is the link function associated with the exponential family. The

parameters of an E-PCA model are obtained by minimizing a loss function called

generalized Bregman divergence between the low-dimensional and high-dimensional

representations, which, by choosing an exponential link function, is equivalent to min-

imizing the unnormalized Kullback-Leibler divergence. By planning in the projected

low-dimensional space, approximation to the optimal policy can be found even when

the POMDP models have significantly large dimension.

2.4 Online Suboptimal Control

The existing approaches are limited by so-called curse of dimensionality [54] and

curse of history [82]. As the dimension of the problem keeps increasing, the optimal

solution to the POMDP problem becomes computationally expensive and practically

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN19

intractable. So, on the contrary to the existing approaches, we try to seek an alterna-

tive way of solving the POMDP problem by providing a fast and suboptimal solution.

While for small-dimension problems, the performance of the suboptimal solution un-

derperforms the optimal solution, its advantage will show up as the dimension of the

problem becomes greater due to its low computational complexity. For any real-world

problem, where the system is continuous instead of discrete, the existing approaches

will become useless while the suboptimal solution can still solve the problem and give

decent performance. In this section, we will design our online suboptimal control

strategy based on the POMDP framework and the receding horizon control.

2.4.1 Receding Horizon Control

Receding horizon control (RHC) is a local planning strategy, in the sense that it looks

into the near future while ignoring the long-term global effects. A lot of research

findings, e.g. Leung et al. (2006a, 2006b), have shown that RHC works well in path

planning involving local obstacle avoidance given physical constraints of the robot and

provides informative navigation control decisions based on sensor observation. The

basic idea behind RHC is to obtain an optimal control sequence up to the horizon T

by minimizing an objective function while obeying certain constraints, and then to

execute the first command that will lead the system one step ahead to a new state.

In other words, the optimization process is carried out within a window size T that

keeps shifting towards the future, with only the first of the resulting control sequence

executed at each time. The planning process is recursively computed at every time

step, so any new information including environmental change can be incorporated as

feedback into the future planning.

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN20

Mathematical Definition

Mathematically, the control problem amounts to finding a series of actions at times

(t0, t0 + 1, ..., t0 + T − 1) such that

minimize :

t0+T−1∑
t0

r(xt, at) (2.14)

subject to : at ∈ A, (2.15)

xt+1 = g(xt, at), (2.16)

xt0 = x0 (2.17)

where r(·) is the objective function at each time step and g(·) is the transition function

that governs the state evolution given the past state and action. Although a series

of actions are obtained by solving this optimization problem, only the first control

action at0 will be executed at time step t0. This process is repeated for each time step

in the future.

The most important advantage of RHC is that it is like a feedback control such

that the system is capable of adapting to new information and uncertainty and pro-

cess online as the system evolves. On the other hand, the performance of the RHC

controller may suffer from a short-sighted outlook, which results in its inability to plan

beyond the given time horizon and may lose the potential future benefits. Therefore,

a method incorporating both the global knowledge and the advantage of RHC in local

planning is desirable in improving the performance of robot navigation.

Related Work

Refinements of RHC [20] have been developed to use a shrinking window, with one

side fixed at the future ending time point and another side moving one step a time

resulting in a decreasing window size, instead of a moving window of constant time

horizon as in RHC. A Lyapunov function-based nonlinear RHC has been combined

with navigation functions and randomized optimization algorithms to solve the robot

navigation problem with state and input constraints [83,116]. Mixed-integer linear

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN21

programming has been embedded in the RHC framework to solve the navigation

problem in an a priori unknown environment [29].

2.4.2 Belief-Based Myopic Control

For real-world applications, online algorithms generally execute a lookahead search

in order to find the optimal action to take at each time step [97]. When the number

of step is one, it is called the myopic policy. As a special case of RHC, it emphasizes

on the short-term rewards. As the number of steps is only one, it is computationally

more efficient and faster than multi-step RHC, which generally involves constructing

a tree-type search process thus takes more computational resources [97].

Besides the benefit of computationally efficient, myopic policy also is proved to

be a good and suboptimal policy as base policy [5], and the optimal policy is equal

to the myopic rule added by some disturbance [43]. For fully observable cases, i.e.,

the Markov decision problems, the myopic policy, or the 1-step RHC policy, can be

expressed mathematically as:

πmyopic(s∗t) = argmax
at∈A

r(st, at) (2.18)

When the states are only partially observable, the myopic policy above should be

modified by incorporate the belief state. At each time step, the belief state represents

the probability distribution of the actual state over the possible locations, we can

obtain the most likely state (MLS). Mathematically, this can be expressed as

s∗t = argmax
st∈S

bt(st) (2.19)

where s∗t is the most likely state at time t, st is the true state, bt(st) is the belief state

at time t as a function of the true state. If there are multiple states that achieves the

same maximum probability, we are randomly pick one with equal probability. In other

words, assuming there are n states, s1t , ..., s
n
t , with the same maximum probability,

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN22

we do the following:

u ∼ U[0, 1] (2.20)

s∗t = sit, where (i− 1)/n < u ≤ i/n (2.21)

Then, applying the myopic strategy based on the MLS, we have

πBBMC(s∗t) = argmax
at∈A

r(s∗t , at) (2.22)

where because of the nature of this method, we call it belief-based myopic control.

We will demonstrate the performance of this control policy in the next section. The

application of this control rule will be extended to continuous case in Chapter 4.

2.5 Comparative Studies

In this experiment, we will test our control strategy using two domains introduced

in [65], the Hallway and Hallway2. The details of the experiments set up can be

found in [65]. We choose these two domains because the number of states for each

domain is large enough to demonstrate our point, but not so large that the imple-

mentation will be too complex. We will show that our newly proposed Belief-Based

Myopic Control (BBMC) can reach suboptimal performance, comparable to those

complicated scheme, but with much faster speed of several order of magnitude and

simpler implementation complexity. This provides possibility for on-line planning in

robotic navigation, particularly the problem we will address in Chapter 4.

2.5.1 Results and Discussion

The simulation platform uses a Mac OS X Version 10.6.5 operating system with 2.66

GHz Intel Core 2 Duo CPU and 4GB 1067MHz DDR3 RAM. The discounting factor

is γ = 0.95. The reward is computed by averaging over 1000 simulation runs. Each

simulation will terminate after 251 steps, and the success rate is computed by dividing

the total number of successful simulations with the total number of simulations.

CHAPTER 2. SEQUENTIAL CONTROL IN PARTIALLY OBSERVABLE DOMAIN23

Problem (state/action/observations) Goal% Reward Time(s)
Hallway(57s 5a 20o)
QMDP [Littman et al., 1995] 47.4 0.14 0.012
PBUA[Poon, 2001] 100 0.53 450
PBVI[Pineau et al. 2003] 96 0.53 288
BPI [Poupart et al., 2003] n.a. 0.51 185
Perseus [Spaan et al., 2004] n.a. 0.51 35
HSVI1 [Smith et al., 2004] 100 0.52 10836
HSVI2 [Smith et al., 2005] n.a. 0.52 2.4
BBMC 100 0.41 0.0027
Hallway2(89s 5a 17o)
QMDP [Littman et al, 1995] 25.9 0.052 0.02
PBUA[Poon, 2001] 100 0.35 27898
PBVI[Pineau et al 2003] 98 0.34 360
BPI [Poupart et al, 2003] n.a. 0.32 790
Perseus [Spaan et al, 2004] n.a. 0.35 56
HSVI1 [Smith et al, 2004] 100 0.35 10010
HSVI2 [Smith et al, 2005] n.a. 0.35 1.5
BBMC 100 0.17 0.023

Table 2.1: Experimental results for the two Hallway domains. The BBMC achieves
similar level of performance as other complicated strategies, but are significantly
faster.

The simulation results are shown in Table 2.1. We see that the value-iteration-

based algorithms, such as PBVI [82], HSVI1 [107], and HSVI2 [108], achieve good

performance but are generally very slow, thus they are not suitable for online appli-

cations.

From the experiments, we see that BBMC is extremely fast thus good for online

planning, with a little tradeoff of suboptimal performance in terms of rewards. More-

over, we see that the success rate of BBMC is 100%, which means it is very robust, in

addition to its extremely fast speed. This indicates that its extension to continuous

problems in real world is possible. We will use this myopic control strategy for the

continuous navigation problem in Chapter 4.

Chapter 3

Particle-Based SLAM Filters for

Nonlinear Filtering

3.1 Introduction

The problem of state estimation for a stochastic dynamic system based on noisy mea-

surement data has drawn significant amount of research interest and effort, and has

applications in many fields such as engineering, applied statistics, econometrics and

so on. A popular and effective method to solve this type of problems is the Bayesian

approach. In the Bayesian framework, the dynamic system can be represented as a

Bayesian model, where the hidden states are connected as a Markov chain often in a

continuous manner, contrary to a hidden Markov model where the hidden states are

discrete. In the general cases, the so-called state-space model (SSM) has been widely

adopted as an effective mathematical tool to describe a physical system evolving over

time. The model utilizes a discrete-time formulation of the problems, which simplifies

the model complexity and provides modeling convenience.

With the system representation in place, the central idea of the Bayesian approach

is to represent the statistical properties of the system using the posterior probability

density function conditioned on all available measurement information. Also, in many

cases, the estimation is carried out recursively on-line, i.e., the state is estimated

right after new measurement is available, which provides benefits such as real-time

24

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING25

update for the time-varying system and reduction in data storage complexity. But

the challenging part is that it is generally hard to evaluate the distribution in an

analytical form. With a few simplified assumptions such as Gaussian noise and linear

system, the Bayesian model has its simplified form called the linear dynamic system,

for which the Kalman filter provides the optimal and the most efficient solution.

We will also introduce a few variations of Kalman filters, which are all non-particle

filters. We will then introduce the sequential Monte Carlo methods, a.k.a. particle

filters, which are the foundation for SLAM algorithms.

With the expanding application of Bayesian estimation, many practical problems

often demand algorithms that can be applied in non-linear and non-Gaussian situa-

tions in order to model accurately the underlying state dynamics of a physical system.

Moreover, it has become increasingly crucial for the algorithms to have the capabil-

ity of processing data on-line efficiently. A series of algorithms, such as extended

Kalman filters (EKF) and Gaussian sum filters, have been proposed in literature,

but they suffer from various limitations [31,59]. For example, they can only be eval-

uated after analytical approximation of the true distribution. In recent years, with

the tremendous advancement in computing power, a series of simulation-based Monte

Carlo methods have been gaining popularity in solving Bayesian estimation problems.

They are titled Sequential Monte Carlo Methods, or Particle Filters. These methods

use a set of so-called particles to approximate the posterior distribution of the hidden

states. The process is carried out sequentially (on-line), thus the name.

One of the research fields where statistical filters play an important role is robotic

navigation. Over the past decade, the cornerstone for building fully autonomous

robots and one of the key successes that have been achieved in the robotics commu-

nity is the development of solutions to the Simultaneous Localization and Mapping

(SLAM) problem. It solves the problem of building a map of the environment where

a robot is located and localizing itself concurrently. The history of SLAM dates

back to 1986 when it was first introduced at the IEEE Robotics and Automation

Conference [33]. Since then, many researchers have devoted a lot of time and effort

into this field, seeking solutions with low computational complexity and good con-

vergence behavior. SLAM is a framework rather than a single algorithm and can be

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING26

implemented in many ways. The most common representation of the SLAM prob-

lem is to use the state-space model, which defines both the pose of the robot and

the positions of the map features as one state vector. This naturally leads to the

use of the extended Kalman filter (EKF) to solve the SLAM problem. In recent

years, with the development of particle filters, or sequential Monte Carlo methods,

an efficient SLAM procedure, called FastSLAM, has been developed by using the

Rao-Blackwellized particle filter [74]. It utilizes an important property that the map

landmarks become independent when conditioned on the trajectory, so that the full

distribution of the robot pose and landmarks can be decomposed into independent

components and evaluated separately, with the particle filter covering the robot pose

and the EKF estimating the landmark locations.

The POMDP problems discussed in Sections 2.3 to 2.5 are relatively simple be-

cause they involve finite-state Markov chains, for which the posterior distribution of

the states have explicit formulas. Dynamic programming (DP) can be applied to solve

the POMDP problem by defining the posterior as the state, i.e., the belief state. The

particle (sequential Monte Carlo) filters considered in this chapter deal with much

more general state spaces and use simulated samples to represent the posterior dis-

tribution of the states. As the dimension of the problem scales up and the domain

becomes continuous, as are most of the problems in the real world, approximate dy-

namic programming (ADP), will be needed to address the challenge [10]. Thrun et

al. [118] use reinforcement learning, a form of ADP, to learn value functions in the

belief space, with the belief representation and propagation accomplished by Monte

Carlo simulation (a.k.a., the particle filter). Bartroff and Lai (2010) [5] use rollout

with the myopic policy as the base policy to tackle the stochastic control problem in

cancer clinical trial designs. In Section 2.5, we have demonstrated that the myopic

rule works well in a class of robotic control problems (POMDP) with much less com-

putational complexity than DP that can be applied to relatively simple finite-state

Markov chains. For the robotic applications to be considered in Chapter 4, we use

myopic (or receding horizon control) policies built around an efficient particle-based

SLAM filter to tackle the much more difficult filtering problem for the unobserved

states.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING27

In this Chapter, the filtering solutions to the SLAM problem, which we will call

SLAM filters for abbreviation, will be introduced. In Section 3.2.2, we will give back-

ground introduction to the non-particle filters and also particle filters. In Section 3.3,

the SLAM problem will be introduced, and the FastSLAM algorithms [74,75] will be

briefly mentioned. In Section 3.4, we will adopt the spherical simplex transformation

to form the spherical simplex unscented particle filters, in order to design and im-

plement a new class of particle-based SLAM filters in Section 3.5. The new SLAM

filters will serve as the foundation and one of the key tools to be used for the design

of a new framework to solve a challenging problem to be discussed in Chapter 4: the

integrated robotic navigation under uncertainty in continuous domain.

3.2 Nonlinear Filtering via Non-Particle Filters and

Sequential Monte Carlo

In the Bayesian framework, for a set of states (x0, x1, ..., xk) and associated observa-

tions (z0, z1, ..., zk), the key is to estimate p(x0, x1, ..., xk|z0, z1, ..., zk), the posterior

distribution, from which all relevant information about the system states given obser-

vation can be obtained. In many practical applications, it requires that such posterior

be estimated online. In other words, instead of directly estimating the full posterior

distribution, the so-called filtering distribution p(xk|z0, z1, ..., zk) is computed recur-

sively over time. Therefore, the Bayesian framework for state estimation concerns

estimating the filtering distribution recursively. It is also known as recursive Baysian

estimation or a Bayes filter.

State-Space Model

For a generic nonlinear dynamic system, its sequence of states evolution over discrete

time k can be denoted as xk : k ∈ N . Given probability distribution for the initial

state p(x0), the following models govern the statistical evolution of the system state:

• System Model:

xk = f(xk−1, uk, wk) (3.1)

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING28

• Measurement Model:

zk = h(xk) + vk (3.2)

where f(·) and g(·) are transition and observation functions respectively, which are

possibly nonlinear, uk is the input control at time k, wk ∼ N(0, Qk) is the process

noise, and vk ∼ N(0, Rk) is the measurement noise. Both noise processes are multi-

variate normal, and are assumed to be mutually independent.

Bayesian Estimation

As the state vector xk being a random variable, the most complete description for

the statistical properties of xk is its a posteriori distribution p(xk|z1:k). The Bayesian
estimation, based on the Bayes’ Rule, provides a rigorous framework for dynamic

state posterior estimation in a recursive fashion.

Mathematically, at time k, the current state prior conditioned on different past

observations can be categorized into three types [4,21,31] :

• Prediction

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.3)

• Update

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

(3.4)

• Smoothing

p(xk|xk+1, z0:T) =
p(xk|z0:k)p(xk+1|xk)∫
p(xk|z0:k)p(xk+1|xk)dxk

(3.5)

The recursive relation shown by Equations (3.3)-(3.4) forms the foundation of

Bayesian estimation. The prediction equation (3.3) is sometimes called Chapman-

Kolmogorov equation [4]. Oftentimes, the integrals in the above equations are hard

to evaluate analytically, therefore, in Section 3.2.1, we will introduce some approxi-

mating methods for Bayesian estimation

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING29

3.2.1 Non-Particle Bayesian Filtering Methods

Before we introduce particle filters, we will first review some of the widely used

non-particle filtering methods. These methods often require certain conditions, such

as Gaussian noise or linearity for the state equations, in order to approximate the

integration in Equations (3.3)-(3.4) to achieve optimal or suboptimal performance.

They have the advantage of being faster than particle-based methods, but cannot

handle complicated situations involving nonlinearity or non-Gaussian noise.

Extended Kalman Filters

The Kalman filter (KF) [55] is a mathematical method used to estimate the sys-

tem state given measurements corrupted by noise and other inaccuracies. Its basic

assumption is that the posterior density function at every time step is Gaussian,

therefore the KF only utilizes the first two moments of the state, i.e. the mean and

the covariance, to capture the state propagation. Also, KF requires that the system

and measurement equations are both linear. Then, the integrals in the recursive re-

lation 3.3 and 3.4 can be solved analytically. They ensure that the KF provides the

optimal solution to the state estimation problem in the Gaussian-linear environment.

As Kalman filter is a Bayesian filter, it carries out the state estimation recursively,

in contrast to the batch estimation techniques which calculates the full posterior dis-

tribution. For each time step, the estimation consists of two steps: prediction and

update. The prediction step generates estimates of the current state (mean and vari-

ance) based on the state estimation from the last step and current control signal. It

equivalently produces the state values with no noise input. The update step incor-

porates the noisy measurement and updated the previous state estimation from the

prediction step. Essentially, the observations calibrate the state estimates and shift

them towards their true values.

Under circumstances where the system model function f(xk, uk, wk) and the mea-

surement model equation h(xk−1) are nonlinear, the Kalman filter will have to be

modified to handle the nonlinearity, which results in the popular extended Kalman

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING30

filter (EKF). The basic idea of EKF is to linearize the system equation and mea-

surement equation using Jacobian matrices so that the traditional Kalman filter can

be applied. It is an approximating method, and inherits the advantages of Kalman

filter. On the other hand, it also suffers from the linearization step as it is sometimes

difficult to calculate and often introduces errors.

Gaussian Sum Filters

The Gaussian sum filters can date back to the 1970’s [1,2]. The recent work for the

application of particle filters, which are yet to be introduced, includes [61]. The rough

idea of Gaussian sum filters is to use a bank of Gaussians to approximate the original

density functions. The Bayesian relations introduced in Section 3.2 can be therefore

modified for the Gaussian sum form. With the basic idea in mind, the technical

details are straightforward and can be found in the above mentioned papers.

Unscented Kalman Filters

Julier and Uhlmann first introduced a general method for nonlinear transformation of

probability distributions called unscented transformation (UT) [50]. It was founded

based on the intuition that ”it is easier to approximate a probability distribution than

it is to approximate an arbitrary nonlinear function or transformation” [49]. The

goal of the unscented transformation is to develop a statistical solution as close to

the exact solution, which only exists analytically for system with special structures

such as linearity and Gaussian processes. It avoids the error-prone partial deriva-

tive calculation, which is often needed for calculating higher order terms in matrix

Taylor expansion, e.g., in EKF. Instead, the UT constructs a set of points, called

sigma points, deterministically chosen according to the mean and covariance, and

then applies the nonlinear transformation to each point to compute desired statis-

tics. This means that those sigma points carry over the statistical information of the

system through the nonlinear transformation, which is hard to calculate directly on

the probability distributions. Essentially, the UT selects a set of sigma points that

can statistically represent the whole distribution to some extent, and then apply the

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING31

nonlinear transformation to these points, which is easier to compute, rather than to

the distribution. By applying the unscented transformation to the nonlinear filtering,

Julier and Uhlmann developed the unscented Kalman filter (UKF) [53]. It captures

the mean and covariance of the propagating states and avoids the computation of

Jacobians, thus is more computationally accurate and stable than EKF. The details

can be found in the original work.

3.2.2 Sequential Monte Carlo Methods

Sequential Monte Carlo Methods, also known as Particle filters, are a class of simulation-

based statistical estimation techniques widely used for state estimation in nonlinear

state-space models. The theoretical foundation of particle filters is Bayesian estima-

tion. The key idea of particle filters is to use a set of randomly generated samples

with associated weights to represent the desired posterior distribution of the state

variable conditioned on all observations. The advantage of particle filters is their

ability to deal with nonlinearity and non-Gaussianity, with the cost of more compu-

tational complexity. With the seminal paper by Gordon et al. [42], the research in

particle filters has progressed significantly, as shown in [4,21,31] and the most recent

work of [32]. In the literature, the sequential Monte Carlo methods are also known as

bootstrap filtering, the condensation algorithm, particle filtering, interacting particle

approximations, and survival of the fittest, according to [4] and its associated refer-

ences. The generic particle filter has been proven to have superior performance [31],

and its variations, such as auxiliary Particle filter [84], have been developed and

applied in various applications.

Sequential Importance Sampling (SIS)

The sequential importance sampling (SIS) is a Monte Carlo method based on impor-

tance sampling, and forms the basis for the generic particle filter, which employs a

resampling step after SIS. The key idea is to represent a desired distribution in terms

of a weighted average of samples generated from a importance density, or proposal dis-

tribution. The weights are associated with the particles and will be updated at each

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING32

time step. The initial form of the algorithm was mentioned as early as in 1989 [39],

and then recaptured and developed in [31] and reviewed in [4,21]. Here, we revisit

this algorithm and give some of the details referring to [4,21,31].

Using n Monte Carlo samples, the posterior distribution conditioned on past ob-

servations over time can be represented by the following equation [4]:

p(x0:k|z1:k) =
n∑

i=1

wi
kδ(x0:k − xi

0:k). (3.6)

where the weights are computed by the principle of importance sampling [4,21]:

wi
k =

p(xi
0:k|z1:k)

q(xi
0:k|z1:k)

(3.7)

where q(·) is the proposal distribution, or importance density. After carrying out a

series of mathematical manipulations, we can obtain

wi
k = wi

k−1

p(zk|xi
k)p(x

i
k|xi

k−1)

q(xk|xi
0:k−1, z0:k)

(3.8)

In order to distinguish the weights before and after normalization, we use w̃i
k to denote

the weight of particle i at time step k before normalization, and wi
k to denote the

weight after normalization.

In a lot of applications, we often simply assume the importance density is only

dependent on the past state estimation xk−1 and current observation zk. Therefore,

we have

q(xk|xi
0:k−1, z0:k) = q(xk|xi

0:k−1, zk), (3.9)

and thus the weight recursive relation becomes

wi
k = wi

k−1

p(zk|xi
k)p(x

i
k|xi

k−1)

q(xk|xi
k−1, zk)

(3.10)

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING33

Degeneracy Problem

After a few iterations of the SIS algorithm, most of the particles will have negligible

weights. In the literature of particle filter, this is called degeneracy problem. A

measure of degeneracy called effective sample size Neff can be calculated as [4,31]:

Neff =
1

N∑
i=1

(wi
k)

2

(3.11)

where wi
k is the weight after normalization.

There are two basic methods to alleviate the degeneracy: 1. Choosing a good

importance density, and 2. Resampling [4,31]. For the first method, there are two

frequently used importance densities: one is the optimal importance density, which

minimizes the variance of the weights, and another one is to use the prior distribution,

which can greatly simplify the calculation. The details can be found in [4]. The second

method will be discussed in the next part.

Resampling

When the effective sample size Neff falls under certain threshold value, which means

the degeneracy problem has become significant, we need to carry out resampling to

mitigate the degeneracy. The resampling is to eliminate the particles with small

weights and sample with replacement to redistribute the particles. In the seminal

paper by Gordon et al. [42], a Bootstrap resampling scheme was proposed. The

basic idea is to generate N new samples from the current N samples according to a

distribution whose probability mass function is proportional to the weights associated

with the current N samples.

The three most popular resampling algorithms in literature are systematic resam-

pling, residual resampling, and multinomial resampling. We will take the systematic

sampling, originally proposed in [59], as an example. It constructs a CDF according

to the weights of the N samples, and then sample from the distribution uniformly.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING34

The detailed algorithm can be found in [4]. For details about all the three algo-

rithms, please refer to [32]. All the schemes mentioned above serve the same purpose

of reducing degeneracy, but they also have other drawbacks. As mentioned in [4],

resampling limits the opportunity to parallelize, introduces sample impoverishment,

and causes smoothed estimates based on the particles’ paths degenerate. So it should

be employed with caution.

Sequential Importance Resampling

The sequential importance resampling (SIR), or particle filtering, incorporates both

the SIS step and resampling step. The resampling is carried out adaptively, depending

on the value of the effective size Neff . The detailed algorithm can be found in [4,31].

Rao-Blackwellized Filter

Despite of the powerful performance of particle filters, there are two limiting factors

that prohibit the further application of particle filters in more complicated situations

in practice [102]: 1. The number of particles needed to asymptotically approach the

performance of optimal filter tends to be infinity, which results in high computational

cost. 2. The number of particles increases with the state dimension in order to achieve

decent state estimation. Therefore, a popular marginalization technique called Rao-

Blackwellization (RB) is employed to reduce the computational cost for the particle

filters.

The Rao-Blackwellization method [22] is one of the variance reduction methods

applied to improve the performance of the Monte Carlo simulation. For particle

filtering, Rao-Blackwellization implies a class of “hybrid filters where a part of the

calculations is realised analytically and the other part using MC methods” [31]. More

specifically, the idea is to partition the state vector into two parts:

xk =

[
x1
k

x2
k

]
(3.12)

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING35

and then the posterior distribution can be decomposed into two parts:

p(x1
k, x

2
k|z0:k) = p(x1

k|z0:k)p(x2
k|x1

k, z0:k) (3.13)

Then, the first part of the posterior p(x1
k|z0:k) can be obtained by particle filtering,

and the second part p(x2
k|x1

k, z0:k) conditioned on x1
k can be analytically marginalized.

In special cases such as the dynamics of the second part conditioned on the first

part is linearly Gaussian, then the Kalman filter can be used to evaluate the second

part. The details of Rao-Blackwellization and the Rao-Blackwellizated particle filter

(RBPF) can be found in [31,56].

Improving the Proposal Distribution

The performance of particle filters critically depends on the choice of proposal distri-

butions [4]. The most frequently used method is to apply the prior distribution as

the proposal. But it doesn’t incorporate the measurement, thus may not be able to

cover the highly probable area of the true posterior distribution. The optimal density,

which minimizes variance, is sometimes hard to evaluate analytically [4].

Some of the techniques proposed in literature include using an EKF to approx-

imate the optimal proposal distribution. To be more specific, for each particle, the

proposal distribution is approximated by a Gaussian and is propagated by its first two

moments, the mean and covariance, estimated by the EKF. At each time step, the

system takes a sample from the Gaussian with the estimated mean and covariance.

Merwe et al. replaced the EKF with a unscented Kalman filter [90], which result in

improved performance with the advantages of the unscented filters over the extended

Kalman filters as discussed in Section 3.2.1. In Section 3.4, we will introduce the

adoption of the spherical simplex unscented Kalman filter as the proposal distribu-

tion, which has lower computational cost than the unscented one. The simulation

study in the following section will compare the performance of each algorithm.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING36

3.2.3 A Comparative of Different Nonlinear Filters

We consider the following nonlinear system

xk = fk(xk−1, k) + wk (3.14)

zk =
x2
k

20
+ vk (3.15)

where

fk(xk−1, k) =
x2
k−1

2
+ 25

xk−1

1 + x2
k−1

+ 8 cos(1.2k) (3.16)

and wk ∼ N(0, Qk) is the process noise, and vk ∼ N(0, R − k) is the measurement

noise, with Qk = 10 and Rk = 1. Both noise processes are normal, and are assumed

to be mutually independent.

We performed S = 100 independent simulations with T = 60 time steps. For

particle filters, we employed N = 200 particles. For the unscented filters used for

proposal density, we used the following scaling factors α = 0.1, β = 2, and κ = 0.

We compare the estimation and prediction performance of the filters based on

the mean square errors between the predicted states and the actual realized states.

Mathematically, for S independent simulations with each being T time steps, the

metric can be defined as:

MSEx =
1

S

S∑
s=1

(
1

T

T∑
t=1

(xt − x̂s
t)

2

)
(3.17)

Essentially, the part in the parentheses is the mean-square-error (MSE) between the

estimated state and the real state for the sth simulation. When we average it out

over the S simulation runs, we obtain the mean of the MSE, which is the MSEx in

the above equation.

Table 3.1 summarizes the performance of different filters. The extended Kalman

filter (EKF), a non-particle based filter, is used as a reference. The generic particle

filter using the prior as the proposal distribution is used as a benchmark. Figure 3.1

shows one of the realizations of the actual states and the estimated states by vari-

ous filtering methods. We see that the most commonly used particle filter using the

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING37

prior as the proposal distribution cannot capture the state evolution correctly during

roughly the second half of the process, due to its lack of the ability to incorporate

observations during the sampling process. The particle filter using EKF as the pro-

posal distribution performs worse than the other three, because it only achieves a

first order approximation. The PF-UKF and PF-SSUKF have similar performance,

but PF-SSUKF has the advantage of having less computational complexity. Figure

3.2 shows the MSE comparison in terms of a bar plot for scenarios with different

number of particles. We see that the performance of PF-SSUKF is consistent for

various number of particles.

Algorithms MSE MSE
mean var

EKF (The extended Kalman filter) 19.63 9.32
PF-Prior (Prior distribution as proposal) 9.88 2.42
PF-EKF (EKF as proposal) 5.65 2.38
PF-UKF (UKF as proposal) 4.97 1.72
PF-SSUKF (SSUKF as proposal) 4.94 1.46

Table 3.1: The mean square errors of various particle filters using different proposal
distributions. The result of the commonly used extended Kalman filter (EKF), a
non-particle approach, is quoted as a reference here.

3.3 Simultaneous Localization and Mapping

3.3.1 Definition of SLAM

SLAM is a robot navigation framework that addresses the problem of building a map

for an environment where the robot is located and localizing itself within the map

concurrently. In a territory with landmarks, the robot measures its relative locations

to the landmarks through laser sensors. Based on the measurements and its history

of controls over time, together with its known initial location, the robot estimates

its path and the surrounding landmarks within the global reference frame. In our

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING38

0 10 20 30 40 50 60
-30

-20

-10

0

10

20

30

Time

Filter estimates (posterior means) vs. True state

Noisy obs

True x

PF

PF-EKF

PF-UKF

PF-SSUKF

Figure 3.1: The diagram shows the comparison between the states estimated by
various algorithms.

discussion, we sometimes mention “features” in a map, which are just synonymous

to landmarks.

Mathematically, SLAM estimates the full posterior distribution over the robot

pose and landmark locations in a recursive fashion over time, given sensor readings

corrupted by noise and systematic errors such as sensor inaccuracy. That is, it esti-

mates the density function:

p(xt,m|z0:t,u0:t,x0) (3.18)

where xt is the state vector describing the location and orientation of the robot at time

t and equal to (x, y, θ), m contains the time-invariant locations of all the landmarks,

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING39

1 2 3 4 5
0

2

4

6

8

10

12

Number of Particles: 20, 40, 80, 200, 1000

M
S

E

Mean Square Eror Plot

PF

PF-EKF

PF-UKF

PF-SSUKF

Figure 3.2: The diagram shows the performance comparison among various algo-
rithms. The number of simulated particles is chosen to be 20, 40, 80, 200, and 1000
for each set respectively.

z0:t = (z0, ..., zt) are the collection of observed locations of the landmarks from the

robot up to time t, u0:t = (u0, ..., ut) are the set of control actions carried out over

that period, and x0 is the initial state. Although the estimated states of the robot,

including both the robot pose and landmark locations, differ from the true values, the

robot uses accumulated information it gathered over time to calibrate the estimate.

It is imperative to have both a good motion model and a good observation model.

To be more specific, a motion model describes the probabilistic relation between the

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING40

current robot state xt and the past state xt−1 and the control action ut:

p(xt|xt−1,ut). (3.19)

An observation model describes the sensor measurement of the surrounding environ-

ment from the robot governed by some probabilistic law:

p(zt|xt,m). (3.20)

The measurement task can be accomplished by range finders, which measure the range

to the nearby objects along a beam (laser range finders) or within a cone (ultrasonic

sensors). They are among the most popular sensors in robotics, as introduced in [118].

Therefore, SLAM is a nonlinear filter in this hidden Markov model.

Note that for all the discussion in this chapter, we assume known data association

for the observed landmarks. The case of unknown data association is a research topic

different from the focus of this work. For related materials, please refer to [74] and

the SLAM literature.

3.3.2 FastSLAM

FastSLAM is a recursive sampling-based algorithm that estimates the full posterior

distribution over robot pose and landmark locations using a set of particles, and

is based on an exact factorization of the posterior into a product of a distribution

over robot paths and the landmark distributions conditioned on the robot path, with

logarithmic complexity with respect to the number of landmarks in the map [75]. The

first version of FastSLAM samples the robot location from the process model, or the

prior distribution of the robot, without taking into account the measurements [75].

This leads to inferior performance for the obvious reason. So in an improved version

of FastSLAM, the measurements are incorporated, but it complicates the problem

dramatically [74]. The extended Kalman filter is used in order to approximate the

sampling distribution, i.e., the proposal distribution, and the performance is improved

significantly over the previous version.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING41

FastSLAM 1.0

The above effort in solving the SLAM problem uses the EKF by assuming the lin-

ear Gaussian assumption [30]. FastSLAM [75] is a particle-based approach, which

assumes that each particle sample is of the following form:

Xk
t = ⟨xk

t , µ
k
1,t,Σ

k
1,t, ..., µ

k
M,t,Σ

k
M,t⟩ (3.21)

where µk
i,t and Σk

i,t are the mean and covariance of the ith landmark estimate at time

t associated with the kth particle. As the EKF approach directly estimates the joint

full posterior, FastSLAM, on the other hand, carries out an exact factorization of the

full posterior into a product of a distribution over robot paths represented by a set

of particles, and conditional landmark distributions estimated by the EKF. Its key

theoretical foundation is the factorization

p(x0:t,m|z0:t,u0:t,x0) = p(x0:t|z0:t,u0:t,x0)
M∏
i=1

p(mi|xi
0:t, z0:t) (3.22)

where M is the number of landmarks observed so far and mi is the location of the

ith landmark for i = 1, 2, ...,M . This is a consequence of the following lemma: when

the map estimate is based on the whole trajectory x0:t, the map landmarks become

independent and therefore can be estimated separately, which gives linear complexity

in estimation, instead of a quadratic one [33]. For (3.22), the Rao-Blackwellized

particle filter can be used to represent the robot pose distribution (i.e., the first term

in the equation) by weighted particle samples, whereas the M landmark distributions

are independent Gaussian and therefore can be estimated by the EKF. Note that

the FastSLAM algorithm extends the path posterior by drawing samples from the

following proposal distribution

xk
t ∼ p(xt|xk

t−1,ut), (3.23)

where xk
t−1 is the posterior estimate of the robot pose at time t− 1, ut is the action

taken at time t, and k indicates the k-th particle. Details can be found in [75].

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING42

The associated importance weight can be approximated by a Gaussian given the

observation [118].

For feature update, the mean µk
i,t and covariance Σk

i,t of the posterior over the

ith observed feature, p(mi|xi
0:t, z0:t), where i = 1, ...,M , can be estimated based on

the mean and covariance at time t− 1 using the standard extended Kalman filter by

treating the map locations as the state and incorporating the new observation [118].

FastSLAM 2.0

Montemerlo et al. (2003) proposed to draw the robot pose at time t from the following

improved proposal distribution

xk
t ∼ p(xt|xk

t−1,ut, zt) (3.24)

where zt is the observation at time t. The introduction of the extra parameter com-

plicates the problem significantly. Using the EKF-style linearization, the sampling

distribution can be approximated by a Gaussian through complicated mathematical

derivation. Then, the importance weight, again, can be approximated by a Gaussian,

but with more complication form. The feature update, similar to the previous Fast-

SLAM, is estimated using EKF. For details, please see [76,118]. This algorithm is

known as FastSLAM 2.0, and the FastSLAM described in the preceding paragraph is

sometimes called FastSLAM 1.0.

3.4 Spherical Simplex Unscented Particle Filters

The unscented filtering discussed in Section 3.2.1 has been applied and generalized to

a family of Kalman filters, called sigma-point Kalman filters (SPKF) [124]. Here, we

adopt a new sigma point selection strategy developed in [48], which gives the same

level of performance but with much less computational cost.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING43

3.4.1 The Spherical Simplex Unscented Transformation

The new sigma point selection strategy we will adopt and apply to improve particle

filters is called the spherical simplex unscented transformation (SSUT) proposed in

[48], which defines a simplex of n+2 points that lie on a hypersphere, with the radius

that bounds the points proportional to
√
n and the weight applied to each point

proportional to 1
n
, where n is the dimension of the system. As the computational

cost is directly proportional to the number of sigma points selected, the new strategy

imposes much less computational complexity.

The scaled unscented transformation In the original unscented transfor-

mation proposed in [49], the covariance matrix will potentially be non-positive under

some circumstances. Julier addressed this problem and came up with a solution called

the sigma point scaling method, which leads to the scaled unscented transformation

that ”guarantees the second order accuracy in mean and covariance, giving the same

performance as a second order truncated filter but without the need to calculate any

Jacobians or Hessians” [51]. The basic idea is to scale the distance between any

sigma point Xi and the zeroth sigma point by a factor, which will be carefully cho-

sen in order to improve the performance. This technique can also be applied to the

SSUT, so below, we will briefly introduce this technique and quote the material from

the original work. For more background on unscented transformation, please refer

to [50,52,53,124]

The sigma point scaling method calculates the transformation of a scaled set of

sigma points Xi’s by introducing α, a positive scaling factor, as proposed in [51] :

X
′

i = X0 + α(Xi −X0) (3.25)

W
′

i =

{
W0/α

2 + (1− 1/α2) i = 0

Wi/α
2 i ̸= 0

(3.26)

Note that the higher order effects can be significantly reduced by decreasing the value

of α [51]. In other words, the scaling parameter α can be used to tune the system

performance based on the specific situation. With the introduction of α, we define a

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING44

new parameter λ to replace the original κ in the following way:

λ = α2(L+ κ)− L. (3.27)

so that Equation 3.25 holds. To avoid confusion with the newly introduced scaling

parameter α, λ can be called the secondary scaling factor. Then the selection scheme

of the sigma-point set is given by

X0 = x̄ i = 0 (3.28)

Xi = x̄+
(√

(L+ λ)Px

)
i

i = 1, ..., L (3.29)

Xi = x̄−
(√

(L+ λ)Px

)
i

i = L+ 1, ..., 2L (3.30)

and the new weights are

wm
0 = w0 (3.31)

wc
0 = w0 + (1− α2 + β) (3.32)

wm
i = wc

i = wi, i ̸= 0 (3.33)

where w0 = λ
L+λ

, wi =
1

2(L+λ)
for i ̸= 0, m and c indicate the corresponding weights

associated with the mean and covariance calculation respectively. Note that the third

parameter β is introduced here to correct the weight of the zeroth order covariance

matrix, thus we can call it a covariance correction factor. For the case of Gaussian

distribution, the optimal choice is β = 2 [51]. For κ, its value isn’t critical, and a

good default choice is 0 [124].

For n-dimensional systems, the sigma points can be calculated according to the

SSUT Algorithm, which is quoted from the original work and shown below. As

pointed out in [52]: “This algorithm has two notable features. First, the weight

on each sigma point (apart from the zeroth point) is the same and is proportional

to 1−W0

n+1
. Second, all of the sigma points (apart from the zeroth point) lie on the

hypersphere of radius Nx/(1−W0).”

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING45

The SSUT Algorithm

1. Choose value 0 ≤ W0 ≤ 1.

2. The sequence of weights are chosen as follows:

Wi =
1

n+ 1
(1−W0) (3.34)

3. The scaled version of the weights for both mean and covariance can be obtained

according to Equation 3.26:

wi =

{
W0/α

2 + (1− 1/α2) i = 0

Wi/α
2 i ̸= 0

(3.35)

4. Initialize the spherical simplex matrix by the following:

Y 1
0 = 0, Y 1

1 = − 1√
2W1

, Y 1
2 =

1√
2W1

(3.36)

5. The rest of the entries of the matrix can be constructed by:

Y j
i =

[
Y j−1
0

0

]
i = 0[

Y j−1
i

− 1
j(j+1)W1

]
i = 1, ..., j[

0j−1

j
j(j+1)W1

]
i = j + 1

(3.37)

6. Compute the sigma points Xi for i = 1, ..., n.

Xi = x̄+
√

PxYi (3.38)

where
√
Px is a matrix square root of Px, the covariance matrix of x, and Yi is the

ith column from the spherical simplex matrix computed above.

7. A further modified version of the weights in order to partially capture even

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING46

higher order can be obtained by introducing β [52]:

wm
0 = w0

wc
0 = w0 + (1− α2 + β)

wm
i = wc

i = wi, i ̸= 0

(3.39)

where w′
is are defined by Equation 3.35, and m and c indicate the corresponding

weights are associated with the mean and covariance calculation respectively. Essen-

tially, this only changes the zeroth weight for the covariance matrix. Note that β is

called the covariance correction factor, and has the optimal value of 2, as it has been

introduced in Section 3.4.1

3.4.2 Spherical Simplex Unscented Kalman Filters

The unscented Kalman filter proposed in [53] can be modified to form the spherical

simplex unscented Kalman filter (SSUKF). Note that we augment the state with con-

trol noise while treating the measurement noise as an additive term in the covariance

calculation in Equation 3.49. The complete spherical simplex unscented Kalman filter

algorithm is shown in the SSUKF Algorithm below.

The SSUKF Algorithm

• Initialization

x̄0 = E[x0], P0 = E[(x0 − x̄0)(x0 − x̄0)
T] (3.40)

x̄a
0 = [x̄0, 0]

T , P a
0 =

[
P0 0

0 Q0

]
(3.41)

• For k = 1, 2, ...,

1. State Augmentation:

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING47

x̄a
k =

[
x̄k

w̄noise
k

]T
=

[
x̄k

0

]T
, P a

k =

[
Pk 0

0 Qk

]
(3.42)

2. Sigma-Points and Weights Calculation:

The SSUT Algorithm ⇒ Xa
k , wc

i , and wm
i . (3.43)

3. Prediction Step

Xx
k|k−1 = f(Xx

k−1, uk, X
w
k−1) (3.44)

x̄k|k−1 =
La+1∑
i=0

wm
i X

x
i,k|k−1 (3.45)

P x
k|k−1 =

La+1∑
i=0

wi(X
x
i,k|k−1 − x̄k|k−1)(X

x
i,k|k−1 − x̄k|k−1)

T (3.46)

4. Measurement-update Step

Zk|k−1 = h(Xx
k|k−1) (3.47)

z̄k|k−1 =
La+1∑
i=0

wm
i Zi,k|k−1 (3.48)

P z
k|k−1 =

La+1∑
i=0

wc
i (Zi,k|k−1 − z̄k|k−1)(Zi,k|k−1 − z̄k|k−1)

T +Rk (3.49)

P xz
k|k−1 =

La+1∑
i=0

wc
i (X

x
i,k|k−1 − x̄k|k−1)(Zi,k|k−1 − z̄k|k−1)

T (3.50)

Kk = P xz
k|k−1(P

z
k|k−1)

−1 (3.51)

x̄k = x̄k|k−1 +Kk(zk − z̄k|k−1) (3.52)

Pk = P x
k|k−1 −KkP

z
k|k−1K

T
k (3.53)

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING48

Note that wnoise is the noise term, wm and wc are the weights for mean and

covariance respectively. The original state is denoted as x, the augmented state is xa,

and the sigma points are denoted as X. The state component and noise component

of vector X are denoted as Xx and Xw respectively. We now explain in more details

the reasoning behind the algorithm. Applying the SSUT, we can create L+ 2 sigma

points and their associated weights, {Xa
k , wk}. The next step, i.e., the time update

step in the Kalman filter, is to generate a new set of sigma points for the next time

step k + 1 conditioned on current time step k through the process model f(·), as
shown in Equation 3.44. Then, the predicted mean and covariance can be computed

using Equations 3.45 - 3.46. Note that only the x-component of the augmented state

Xa
k , denoted as Xx

k , is needed for the calculation.

3.4.3 SSUKF-Based Proposal Distribution

The proposal distribution of a particle filter can be approximated by a Gaussian dis-

tribution with mean x and covariance P . Thus the SSUKF can be applied to estimate

the mean and covariance recursively for each particle. The detailed implementation

for the SSUKF-based particle filter, i.e., the spherical simplex unscented particle filter

(SSUPF), is shown below.

The SSUPF Algorithm

• Initialization

◦ For each particle i = 1, ..., N ,

⋆ Sample particle from the initial prior distribution

xi
0 ∼ p(x0) (3.54)

• For k = 1, 2, ...,

◦ Importance Sampling

⋆ Sampling for each particle i = 1, ..., N

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING49

1. SSUKF Filtering Step for Proposal distribution

(x̄i
k, P

i
k) = SSUKF (xi

k−1, P
i
k−1, uk−1, zk) (3.55)

2. Sampling from proposal distribution

xi
k ∼ q(xk|x0:k−1, z0:k) ∼ N(x̄i

k, P i
k) (3.56)

3. Calculate associated important weight:

w̃i
k ∼ wi

k−1

p(yk|xi
k)P (xi

k|xi
k−1)

q(xk|xi
k−1, yk)

(3.57)

⋆ Normalize Importance Weights

wi
k =

w̃i
k

N∑
j=1

w̃j
k

(3.58)

◦ Resampling

⋆ If Neff > Nthresh, do not resample:

xi
k = x̃i

k, i = 1 : N (3.59)

⋆ Otherwise, resample:

1. For i = 1 : N ,

sample new index j(i) for each i (see Section 3.2.2). (3.60)

2. For i = 1 : N ,

xi
k = x̃

j(i)
k , i = 1 : N (3.61)

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING50

3.5 Spherical Simplex Unscented Particle-Based SLAM

Filters

In Section 3.4, we introduced the spherical simplex unscented transformation pro-

posed in [48], and applied it to improve the performance of particle filters, which

are named the spherical simplex unscented particle filters. As we know, the spherical

simplex unscented transformation (SSUT) can achieve the similar performance as the

unscented transformation (UT), while using much less computational resources due

to the fact that the SSUT uses much less sigma-points. In this section, we will apply

the same technique to the particle-based SLAM filters to improve the performance.

The new class of algorithms are entitled spherical simplex unscented particle-based

SLAM filters, or SSU-PBSLAM filters.

In the SLAM literature, there is some independent work that applies the unscented

transformation (UT) to the SLAM problem. For example, unscented Kalman filter

was implemented to solve the SLAM problem [3,67], much similar to the EKF-SLAM.

But it is not a particle-based approach. There was an effort to incorporate the UT to

particle-based SLAM [58,126]. Besides the difference of implementing more computa-

tionally efficient SSUT rather than UT, our approach constructs in an additive form

to incorporate the measurement noise in the covariance update step for both robot

pose and feature estimation, instead of using the augmented form, which requires

larger state dimension thus more computational complexity. In addition to that, our

approach implements the feature update step by properly constructing a new state in

order to transform both the pose and feature location so as to obtain the transformed

observation. This is because the original transformation transforms one variable, but

for an observation, it implicitly represents two variables, the robot pose and landmark

location, so both need to be transformed in order to obtain the correct transformed

observation. Transforming only the feature location will cause inferior estimation of

the landmark estimation, which will propagate the estimation error to the robot pose

estimation and then iterate back to the feature estimation thus amplify the errors

accumulatively. We will address how to correctly design this important step in the

following sections.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING51

3.5.1 System Dynamics

Before we dig into the design of the SSU-PBSLAM, we first introduce the system

dynamic models to form the basis for later discussions, which include the process

model, a.k.a vehicle motion model for SLAM problem, and measurement model.

At any time t, the vehicle pose xt consists of its location (xt, yt) and its orientation

θ, namely,

xt =

xt

yt

θt

 (3.62)

We will first define the vehicle motion dynamics. At any given time t, the control

signal of the vehicle consists of two components, the speed of the vehicle v0t and its

steering angle η0t , where the superscript 0 indicates the original control signals at time

t before corrupted by Gaussian noise with zero mean and covariance wt. Then, the

corrupted version of the control signals carried out are denoted as vt and ηt. Note

that the steering angle is the angle the vehicle tries to turn in the next time step,

which is different from its orientation θt. Both angles are defined within the range

(−π, π]. For each time step, the vehicle motion model is defined as,

xt+∆t = f(xt−1,ut,wt) =

xt + vt ·∆t · cos(ηt + θt)

yt + vt ·∆t · sin(ηt + θt)

θt + vt ·∆t · sin(ηt)/LB

 (3.63)

where LB is the length of the vehicle base.

Given the estimated map m up to time t and the estimated state xt, the vehicle

measurement model is defined as

zt+∆t = h(xt) =

 √(xt − xf)2 + (yt − yf)2

arctan

(
yt − yf
xt − xf

)
− θt

+ vt (3.64)

where (xf , yf) is the coordinate of a given feature (i.e. landmark), and vt is the

additive observation noise.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING52

The model introduced here are the simplified forms of the vehicle models. These

models will be used for the simulation study to be carried out in Section 3.6.1. For

applications in the real world, such as the outdoor experiment to be introduced in

Section 3.6.2, both the motion model and measurement models of the vehicle are

much more complicated, and will be introduced in that section.

3.5.2 State Estimation

In order to apply spherical simplex unscented transformation, we need to augment the

state, due to the nonlinear nature of the system components. To be more specific,

since the process equation, a.k.a, the transition function, is nonlinear, the process

noise introduced mainly by the control signals is thus not additive. This means that

we have to incorporate the control signals into the state. On the other hand, the

measurement noise is often additive, therefore we do not include the measurement

noise in the state. Instead, we incorporate the covariance of the measurement in an

additive form in one of the covariance matrix calculation equations.

State Prediction

1. State Augmentation:

The implementation of the unscented transformation to the Kalman filter incor-

porates the process noise wk and measurement noise vk. Here, for the SLAM applica-

tion, we incorporate the control signal to both the state and its associated covariance

matrix:

xa
t =

[
xt

ut

]
=

xt

yt

θt

vt

ηt

, P a

t =

[
Pt 0

0 Qt

]
=

P x
t 0 0 0 0

0 P y
t 0 0 0

0 0 P θ
t 0 0

0 0 0 Qv
t 0

0 0 0 0 Qη
t

(3.65)

where vt and ηt are the speed control and steering control respectively, Pt and Qt

are the covariance matrices for the original state and the control signals respectively.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING53

Note that we assume that the process noise comes from the control noise, thus the

noise covariance is the same as that of the control signal. In most of the cases, we

assume the components of the augmented states are uncorrelated with each other,

which results a diagonal covariance matrix. Note that the total dimension of the

augmented state vector xa
t is La = Lx + Lu = 3+ 2 = 5, where Lx = 3 is the original

state dimension and Lu = 2 is the control dimension.

2. Generate sigma points and weights.

After having the augmented state, we generate a series of sigma points based on

the spherical simplex unscented transformation introduced in Section 3.4.1. To be

more specific, we generate the sigma points according to

Xa
i = x̄a

t +
√

P a
t Yi (3.66)

where Yi is the ith column from the spherical simplex matrix computed using the

SSUT algorithm. The associated weights wc
i and wm

i for i = 1, ..., La + 2 can be

calculated using Equation 3.39 of the SSUT algorithm.

3. Prediction Step

The predicted vehicle location for the next time step is computed using the fol-

lowing equations:

Xx
t+∆t|t = f(Xx

t , X
u
t) (3.67)

x̄t+∆t|t =
La+1∑
i=0

wm
i X

x
i,t+∆t|t (3.68)

P x
t+∆t|t =

La+1∑
i=0

wi(X
x
i,t+∆t|t − x̄t+∆t|t)(X

x
i,t+∆t|t − x̄t+∆t|t)

T (3.69)

where f(·) is the vehicle motion function.

State Update

1. State Augmentation:

For the state update step, we further incorporate the estimated feature positions

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING54

up to time t to the already augmented state and its associated covariance matrix:

xa,up
t =

xt

ut

xf,o
t

 , P a,up
t =

Pt 0 0

0 Qt 0

0 0 P f,o
t

 (3.70)

where up indicates it is for the update step only, xf,o
t is a Lf×1 column vector denoting

the position of the feature observed at time t. P f,o
t is the estimated covariance matrix

for the observed features at time t. The total dimension of the augmented state vector

xa,up
t is La,up = La + Lf,o = 5 + 2 = 7.

2. Generate sigma points and weights.

Again, we generate a series of sigma points and the associated weights based on

the spherical simplex unscented transformation introduced in Section 3.4.1. Please

note that as the dimension of the augmented state in this case is increased, the total

number of sigma points will also be different from the prediction step.

3. Measurement-update Step

Given the measurement, the system updates the vehicle location from the pre-

dicted values obtained during the prediction step using the following equations:

Zt+∆t|t = h(Xx
t+∆t|t, X

xf

t+∆t|t) (3.71)

z̄t+∆t|t =
La+1∑
i=0

wm
i Zi,t+∆t|t (3.72)

P z
t+∆t|t =

La+1∑
i=0

wc
i (Zi,t+∆t|t − z̄t+∆t|t)(Zi,t+∆t|t − z̄t+∆t|t)

T +Rt+∆t (3.73)

P xz
t+∆t|t =

La+1∑
i=0

wc
i (X

x
i,t+∆t|t − x̄t+∆t|t)(Zi,t+∆t|t − z̄t+∆t|t)

T (3.74)

Kt+∆t = P xz
t+∆t|t(P

z
t+∆t|t)

−1 (3.75)

x̄t+∆t = x̄t+∆t|t +Kt+∆t(zt+∆t − z̄t+∆t|t) (3.76)

Pt+∆t = P x
t+∆t|t −Kt+∆tP

z
t+∆t|tK

T
t+∆t (3.77)

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING55

When there are multiple observations obtained at the same time, we apply the

above update procedures to each observation, generating a new set of sigma points

and weights based on the current observation and updating the mean and covariance

matrix iteratively. In other words, the mean and covariance will be updated from

the mean and covariance updated from the previous observation. After incorporat-

ing all the observations, the output will provide more accurate estimated mean and

covariance for the sampling procedure.

3.5.3 Feature Estimation

When there is a new feature observed, we will first judge whether or not it has been

observed before. If not, it is a newly observed feature. Then the feature will be

added to the map, and it’s initial mean and covariance are estimated using the basic

method from the FastSLAM 2.0 algorithm [74]. If it has already observed and is the

ith feature in the map, we then need to update its location. During this process, we

treat the ith feature location xf
i,t as the ’state’, as opposed to the robot pose. Then,

the process model for the feature state is just

xf
i,t = xf

i,t−∆t, (3.78)

simply because the features don’t move. Then, the measurement model for the feature

state is

zfi,t = h(xt,x
f
i,t) + vt (3.79)

We see that the process noise is zero, while the measurement noise still exists. There-

fore, we do not need to include the control signals in the augmented state. The

measurement noise covariance is still included as an additive term in the covariance

calculation step.

1. State Augmentation:

We further incorporate the robot pose x into the state and also augment the

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING56

associated covariance matrix:

xa,f
t =

[
xf
i,t

xt

]
, P a,f

t =

[
P f
i,t 0

0 Pt

]
(3.80)

where f indicates it’s for the feature update step only, xf
i,t is a Lf × 1 column vector

denoting the position of the ith feature observed at time t. P f
i,t is the estimated

covariance matrix for the observed features at time t. The total dimension of the

augmented state vector xa,f
t is La,f = Lx + Lf,o = 3 + 2 = 5.

2. Generate sigma points and weights.

Again, we generate a series of sigma points Xf
t and the associated weights wf

based on the spherical simplex unscented transformation introduced in Section 3.4.1.

3. Measurement-update Step

We denote the mean and covariance matrix of the feature observed at time t as x̄f
t

and P f
t respectively. Given the measurement, the system updates the feature location

from the previous values using the following equations:

Zt+∆t|t = h(Xf,x
t+∆t|t, X

f,xf

t+∆) (3.81)

z̄t+∆t|t =
La+1∑
i=0

wm
i Zi,t+∆t|t (3.82)

P z
t+∆t|t =

La+1∑
i=0

wc
i (Zi,t+∆t|t − z̄t+∆t|t)(Zi,t+∆t|t − z̄t+∆t|t)

T +Rt+∆t (3.83)

P zxf z
t+∆t|t =

La+1∑
i=0

wc
i (X

f,xf

i,t+∆t|t − x̄f
t)(Zi,t+∆t|t − z̄t+∆t|t)

T (3.84)

Kt+∆t = P xfz
t+∆t|t(P

z
t+∆t|t)

−1 (3.85)

x̄f
t+∆t = x̄f

t +Kt+∆t(zt+∆t − z̄t+∆t|t) (3.86)

P f
t+∆t = P f,xf

t+∆t|t −Kt+∆tP
z
t+∆t|tK

T
t+∆t (3.87)

Note that there is no prediction step, because the features are static. In other words,

Equation 3.78 implies that x̄f
t+∆t|t = x̄f

t . The updated feature location is just the first

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING57

two dimensions of the augmented feature state. If multiple features are observed at

the same time, they will be updated independently.

3.6 Experimental Results

3.6.1 Experiment 1: Simulated Environment

We first test our algorithms for a robot vehicle in a simulated environment as shown

in Figure 3.3. The red circles are the way points, which guide the vehicle to reach the

goal location. To be more specific, at any time t, the vehicle will point to a way point,

after reaching a given range of that way point, say, 1m, the vehicle will point to the

next way point. This process continues until it reaches the goal. Note that the way

point essentially act as the control mechanism for the vehicle in this case. It starts

at the center of the map, and finish at the point in the lower part of the map. The

blue line is the true robot path, and the red line is the estimated path. The green

dots indicate the static landmarks, and the red dots are the estimated locations of

the landmarks.

The dimension of the vehicle is 2m × 4m. The maximum range of the laser is

30m. The measurement is carried out every 8 time steps, while the control signals

are executed every step. Between the observations, only state prediction is carried

out when there is no observation. The standard deviation for the velocity control

signal is 0.3m/s, and that for steering angle is 3π/180rad. The maximum velocity of

the vehicle is set to be 10m/s.

In Table 3.2, we show the performance of the FastSLAM 2.0, U-PBSLAM, and

SSU-PBSLAM. FastSLAM 2.0 has been introduced in Section 3.3.2. For the un-

scented particle-based SLAM filter (U-PBSLAM), we implemented the algorithm by

ourselves using the unscented particle filter, which is similar to earlier work such

as [58,126] but differs in implementation details. The simulations were carried out for

10 times in order to obtain the mean and standard deviation of the mean-square-error

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING58

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

100

Landmarks

Waypoints

Waypoint Direct Paths

True Vehicle Path

Estimated Vehicle Path

Estimated Landmarks

Figure 3.3: The simulated environment where the SLAM algorithms are tested for
experiment 1.

(MSE), which is defined in Equation 3.17. Again, as we noted right below that equa-

tion, the part in the parentheses is the MSE for the sth simulation, so with 10 runs,

we can obtain the mean and standard deviation of the MSE. We show the results

for both the vehicle pose and the landmarks. Figure 3.4 and Figure 3.5 visualize the

results by showing the mean of MSE for both the vehicle pose and landmark loca-

tions using bar plot respectively. Indeed, we see that the SSU-PBSLAM algorithm

has at least or superior performance compared with other two algorithms, with its

computational advantage over the U-PBSLAM algorithm.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING59

Algorithms Robot Pose Landmark Locations
mean std mean std

FastSLAM 2.0 5.63 0.90 6.61 1.12
U-PBSLAM 4.26 0.48 4.60 0.68
SSU-PBSLAM 4.25 0.63 4.54 0.88

Table 3.2: The performance comparison of different particle-based SLAM filters. The
criteria used are the mean and standard deviation of the mean square error (MSE)
with the unit being meters.

3.6.2 Experiment 2: Car Park Dataset

In this experiment, we test our algorithms on the dataset of an outdoor environment.

The dataset was obtained on the top level of the car park building the University of

Sidney, thus was often referred to as the University Car Park Dataset. It is available

publicly online [77]. In the experiment, the landmarks are artificially made using

60mm steel poles covered with reflective tape, which facilitates the feature extraction

and provides more accurate observations. The actual positions of the robot vehicle

during the process were measured by the Global Positioning System (GPS) for the

purpose of comparison.

Before proceeding to processing the data, we first briefly introduce the information

and dynamics of the vehicle referring to [77], where the pictures of the vehicle and

more detailed information are available. The vehicle used in the experiment is a

pick-up truck, and has the following physical parameters: the distance from the front

wheels to the back wheels is L = 2.83m; the distance from the center of the axle

to the wheel is H = 0.76m; the laser sensor is located at the front of the vehicle,

b = 0.5m on the left from the center; and it is a = 3.78m away from the back axle.

The speed v in the data set was measured by an encoder located at the back left

wheel of the vehicle, so we need to convert this speed to the speed at the center of

the back axle with the following equation:

vc =
v

1− H

L
tan(ηt)

(3.88)

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING60

1 2 3
0

2

4

6

8

10

12

Noise level: low, medium, high

M
S

E
MSE for Robot Pose Estimation

FastSLAM 2.0
U−PBSLAM
SSU−PBSLAM

Figure 3.4: The MSE for the robot pose estimation with noise of various level for
experiment 1.

where vc is the speed at the center of the back axle of the vehicle, v is the measured

speed in the data set, and ηt is the steering angle which is one of the control signals.

If we define the state of the vehicle to be xt = (xt, yt, ϕ)
T , where (x, y) and ϕ are the

location and orientation of the vehicle respectively, the process model of the vehicle

is

xt+∆t =

xt + vc∆t

(
cos(ϕ)− 1

L
tan(ηt)(a sin(ϕ) + b cos(ϕ))

)
yt + vc∆t

(
sin(ϕ) +

1

L
tan(ηt)(a cos(ϕ)− b sin(ϕ))

)
ϕ+∆t

vc
L

tan(ηt)

 (3.89)

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING61

1 2 3
0

2

4

6

8

10

12

14

Noise level: low, medium, high

M
S

E
MSE for Map Feature Estimation

FastSLAM 2.0
U−PBSLAM
SSU−PBSLAM

Figure 3.5: The MSE for the map feature estimationwith noise of various level for
experiment 1.

And the observation model of the vehicle is given by

[
zr

zβ

]
= h(xt) =

 √
(x− xf)2 + (y − yf)2

arctan

(
y − yf
x− xf

)
− ϕ+

π

2

 (3.90)

where (xf , yf) is the coordinate of a given feature (i.e. landmark).

In order to compare the performance of the various particle-based SLAM algo-

rithms, we try to eliminate the errors caused by unknown data association. To do

this, we use a well-tuned EKF filter, which uses nearest neighbor χ2 test for unknown

data association, to run though the same dataset and record the observed landmark

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING62

index with its associated observation. Then when we run the particle-based SLAM

filters, the observations are all matched with the landmark index. Here is another

benefit from this operation: as proposed in [74], each particle carries out the data

association procedure independently with the particle with wrong data association

more likely to be eliminated during the resampling process, so the total number of

landmarks identified in each particle may vary, which will cause trouble in calculating

the expected location of the landmarks.

Figure 3.6-3.8 show the performance of the various particle-based SLAM algo-

rithms, using EKF, UKF, and SSUKF as proposal distribution approximation respec-

tively. Note that FastSLAM2.0 uses EKF to approximate its proposal distributions.

The SSU-PBSLAM has the best performance (much better than FastSLAM 2.0, and

slightly better or at least on the same level compared with the U-PBSLAM but with

less computational complexity), as we can see that the estimated vehicle path and

landmark locations are closer to the actual positions.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING63

−10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

East Meters

N
or

th
 M

et
er

s

Path

GPS
Estimated
Est. Beac.
Beacons

Figure 3.6: The Car Park dataset. The FastSLAM 2.0 is used as the SLAM filter
to carry out the estimation for the robot pose and landmark locations, which are
compared with the actual locations.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING64

−10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

East Meters

N
or

th
 M

et
er

s

Path

GPS
Estimated
Est. Beac.
Beacons

Figure 3.7: The Car Park dataset. The U-PBSLAM is used as the SLAM filter
to carry out the estimation for the robot pose and landmark locations, which are
compared with the actual locations.

CHAPTER 3. PARTICLE-BASED SLAM FILTERS FORNONLINEAR FILTERING65

−10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

East Meters

N
or

th
 M

et
er

s

Path

GPS
Estimated
Est. Beac.
Beacons

Figure 3.8: The Car Park dataset. The SSU-PBSLAM is used as the SLAM filter
to carry out the estimation for the robot pose and landmark locations, which are
compared with the actual locations.

Chapter 4

Integrated Robotic Navigation

under Uncertainty

4.1 Introduction

Robotic navigation has profound applications in real world problems. As vast amount

of research effort has been devoted to this field, the progress is exhilarating. For

example, unmanned vehicles such as Mars rover has successfully accomplished a lot

of tasks on the tough surface of Mars, sending back huge amount of scientifically

valuable data. The DARPA Challenge is another example of successful advancement

in the unmanned navigation, which keeps gaining momentum of steady development.

From a technical point of view, robotic navigation can be categorized into three

main areas: global planning, local navigation, and exploration. These three areas

function differently, but are closely interweaved. With more strenuous requirements

from the practical applications, the robot should also possess the ability to handle

uncertainty, which is ubiquitous in the real world and arises from various sources such

as sensor measurement errors, and domains in a continuous setting, which is how the

real world behaves. The existence of uncertainty tremendously complicates the navi-

gation problem, so coping with the uncertainty has been one of the most important

problems to tackle in the robotic navigation research. The continuous domain, which

the POMDP framework introduced in Chapter 2 practically fails to handle, has been

66

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY67

a hurdle limiting the real applications of a lot of theoretical techniques.

In this chapter, we will provide a new framework to integrate the global planning,

local navigation, and exploration, with the aid of a good particle-based SLAM filter,

to solve the robotic navigation under uncertainty in a continuous domain. The robot

plans to reach a global destination without any a priori knowledge of the environment,

while avoiding collision with local landmarks. Due to the existence of uncertainties,

the SLAM filter will be kept running in the background to keep track of the robot pose

and landmark locations. Under certain circumstances, for example, the robot enters a

landmark-dense area, then exploration will be carried out to localize the surrounding

landmarks with better estimation accuracy in order to find a safe path. So the new

framework balances between exploration and exploitation, with an suboptimal control

strategy designed to lead the robot to reach goal location on a global setting while

also achieving local objectives.

The chapter is organized as follows: Section 4.2 to 4.4 review the literature for

global planning, local navigation, and exploration respectively. Section 4.5 discusses

the drawbacks of current approaches in literature, formulates a new and more chal-

lenging robot navigation problem, and introduces our new framework to solve this

problem. Section 4.6 shows the experimental study carried out in a simulated environ-

ment to verify our method, as no experimental dataset is available for the challenging

problem we formulate.

4.2 Global Planning

Global path planning addresses the task of an autonomous robot, such as an Un-

manned Ground Vehicle [40,46,114,119], an unmanned aircraft or rotorcraft [28,37],

or a Mars Rover [120], acquiring information of the environment and planning a

collision-free trajectory to navigate to a destined location under certain physical con-

straints. It is complementary to local planning, which is concerned more with the

issue of vehicle stability and safety in response to the presence of local obstacles by

generating new paths in order to avoid collision. Early work of global path planning

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY68

assumes the robot to have complete knowledge of the environment and its own loca-

tion. The assumption is invalid when the algorithms are used in the real world, where

the environmental information is generally only partially available or completely un-

available in advance. More recent work has focused on how to generate a global path

in the presence of sensor noise and map incompleteness. In this section, we mainly

review classical path planning algorithms, and will briefly mention planning with un-

certainty, because the frameworks, SLAM and POMDP, have been discussed in the

previous chapters.

4.2.1 Classical Path Planning

The classical path planner usually represents the world using the so-called configura-

tion space, which contains all the possible configurations associated with the position

and orientation of the robot. In other words, each possible combination of the robot’s

position and orientation is mapped to a single point in the configuration space. The

key to the classical planner is to choose an optimal representation of the configuration

space, with the smallest dimension and lowest complexity, in order to facilitate fast

planning. Below, we will give a brief review for the various methods used for classical

path planner. Details can be found in more comprehensive surveys such as [40,41].

Cell Decomposition Methods

The cell decomposition methods are the most popular approaches with wide appli-

cations in robotics. These methods discretize the configuration space into smaller

convex polygons, called cells, and use path search methods to search through cells

and find the optimal path to the goal. Sometimes, a regular grid is laid over the con-

figuration space to break the space into cells, with predefined shape and size which are

easier for path search but do not match the exact boundaries of the physical objects.

This is called approximate cell decomposition, in contrast to exact cell decomposition,

which generates cells exactly according to the physical boundaries. There is also

adaptive cell decomposition, which starts with coarse grids and recursively refines the

size for cells partially occupied until the resolution is good enough, thus requiring less

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY69

memory and processing time.

Roadmap Methods

The roadmap method fits the configuration space with roadmaps, i.e., graphs that con-

tain nodes representing reachable robot poses, and edges which are one-dimensional

curves, representing the free space between the nodes in accordance to certain topo-

graphical properties. A comparison between cell decomposition and roadmap methods

is discussed in [125]. The key to the roadmap method is how to select the nodes in the

graph so that the least number of nodes can be used to represent most of the charac-

teristics of the configuration space. The graph search algorithms are employed to find

the optimal path. Traditional roadmap methods to find the shortest path include vis-

ibility graphs, which connect the nodes of polygonal obstacles, and Voronoi roadmap,

which uses Voronoi borders as edges. The probabilistic roadmap (PRM), a recent

advance in the roadmap method, generates feasible paths by random sampling from

the entire configuration space and discards those associated with obstacle regions. It

can solve path planning problems with higher dimensions and greater complexity, but

has the drawbacks of slow convergence rate and potential non-optimal performance.

PRM was applied to solve path planning under uncertainty in [60]. A variation of

PRM, called rapidly exploring random tree (RRT), was originally developed in [63].

The key idea of the method is to explore the configuration space rapidly by expand-

ing search trees incrementally, instead of random sampling. Besides the capability of

handling high-dimensional space, it is particularly well-suited for planning problems

with differential constraints [64].

Potential Field Methods

The potential field method approaches the navigation problem from a completely

different perspective. In lieu of graph searching in the configuration space, it assigns

a mathematical function called the potential field to either the physical space or

the configuration space so that the robot can move from higher-value locations to

lower-value ones like the movement in a gravitational field. The function consists of

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY70

attractive forces exerted by the goal location and repulsive forces generated by the

local obstacles. Early algorithms of this type include the virtual force field [13] that

was designed for local obstacle avoidance. By integrating the methods of certainty

grids used for obstacle representation and potential fields devised for navigation and

by considering the entire path, one can achieve global planning and avoid being

trapped in local minima [6]. A subset of the methods, called the harmonic potential

field method, uses Laplace’s equation to constrain the generation of a navigation

potential function and thereby finds the potential path by solving a Laplace boundary

value problem [25,69,100,128].

4.2.2 Path Planning under Uncertainty

Classical planning is generally carried out by robots in fully observable environments

with conditions usually assumed to be deterministic and discrete. To incorporate

uncertainty from various sources, probability-based frameworks with the aid of sta-

tistical tools such as the extended Kalman filter (EKF) and the particle filter (or

sequential Monte Carlo) have been developed since the 1980’s. One framework that

solves the autonomous robot navigation problem under uncertainty is Simultaneous

Localization and Mapping, or simply SLAM, which builds a map of the environment

where the robot is located and localizing itself concurrently thus obtains the name.

It has been introduced and discussed in Chapter 3. In recent years, the partially ob-

servable Markov decision process (POMDP) has emerged as a powerful framework for

path planning, which has been discussed in Chapter 2. Since the POMDP framework

tries to solve the planning problem by providing a general policy, it requires large

computational effort and becomes increasingly difficult to carry out as the dimension

of the problem scales up.

4.3 Local Navigation

A global path planner computes a geometric trajectory that passes around known

static obstacles and reaches the goal. In comparison, local navigation follows the

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY71

global path and determines the next motion command based on local observations in

real time in order to generate a new path by overwriting the original global path in

response to regional change in environment such as new obstacles. When the envi-

ronment becomes more dynamic or unknown in advance to the robot, the traditional

path planner fails to cope with the obstacles that are “not in the plan”. Reactive nav-

igation, a local navigation framework that bridges path planning and sensor-based

control and makes control decisions based on newly observed local conditions, is capa-

ble of dealing with unknown and dynamic scenarios and becomes imperative for robot

navigation. In summary, global planning needs complete information of the environ-

ment in advance and plans the path before advancing, while local navigation stays

reactive to the local environmental change in realtime and corrects predetermined

global path on a local setting to avoid collision.

Global planning strategies have admittedly high computational cost, and it is not

feasible to update or re-calculate the entire path. On the contrary, local techniques

have low computational complexity, which is particularly important when the knowl-

edge of the environment is updated frequently based on new sensor information. We

describe here a number of obstacle avoidance techniques.

4.3.1 Obstacle Avoidance

Potential Field Method

The potential field method is a well known local path planning technique using the

concept of artificial potential fields [57]. It has been discussed in section 4.2.1 as

a global path planning method, but as already mentioned there, it was originally

developed for local obstacle avoidance navigation. Basically, in a local regime, the

robot’s movement follows the gradient of a repulsive force field generated by the

obstacles which push the robot away, in contrast to the goal location which attracts

the robot with attractive potential force. While the potential field method has the

advantage of relatively low computational cost, its disadvantage is the possibility of

getting trapped in local minima. The virtual force field method [13] mentioned in

section 4.2.1 integrates the concepts of both the potential fields and certainty grids,

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY72

but for local navigation, it has substantial shortcomings such as “instability and

inability to pass through narrow passages like doors (local minima problem)” and the

“repulsive forces from the both sides of the doorway” pushing the robot away [8].

Polar Histogram Methods

The polar histogram methods proposed by Borenstein and coauthors in the 1990’s are

purely local obstacle avoidance algorithms and provided an important improvement

over previous techniques. The first approach of this type, called vector field histogram

[14], constructs a one-dimensional polar histogram for the polar obstacle density in

all directions calculated by using a certainty grids model, and then selects the moving

direction with the lowest polar obstacle density. A subsequent improved version [121]

was proposed to take into account the effects arising from the width and trajectory of

the mobile robot, using a threshold hysteresis to reduce path oscillation, and executing

better direction selection using a cost function. A further improved version [122] is

capable of handling situations where purely local algorithms fail, with look-ahead

verification performed by a heuristic search method in conjunction with appropriate

cost and heuristic functions.

Velocity-Based methods

Another class of methods based on the admissible robot velocities consists of the steer

angle field approaches [7]. An example is the curvature-velocity method [106], which

works in the velocity space and assumes that the robot travels along arcs instead

of having sharp turns. The curvature-distance to the obstacles are approximated to

facilitate maximizing the objective function. The most representative algorithm of

this class of methods is the dynamic window approach (DWA) [36] for static environ-

ment and later extended to multiple moving objects in unknown environment [23].

It searches a dynamic window constructed using attainable velocities within the next

short time frame constrained by robot kinetics, including possible accelerations for

feasible translational and rotational velocities, to maximize an objective function con-

sisting of goal realization progress, forward velocity, and distance to obstacles. The

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY73

dynamic window is centered at the current velocity and is rectangle-shaped as a result

of the independence of translational and rotational velocities. Like other local tech-

niques, the DWA is also susceptible to local minima, so the global dynamic window

approach [17] was developed to overcome this drawback by adding a global feature to

the DWA. A global and minima-free navigation function based on a wave propagation

technique labeling cells in the occupancy grid with distance to the goal is incorpo-

rated with reactive local DWA to form a local minima-free potential function. This

procedure allows the robot to plan navigation trajectory with no a priori knowledge.

Relative Velocity Paradigm

The relative velocity paradigm [35], or velocity obstacle approach, transforms the ab-

solute velocities of the maneuvering robot and moving obstacles to relative velocities

of the obstacles with respect to the robot, and thereby converts the dynamic planning

problem to a static one. The feasible velocity is chosen by avoiding the directions

within the absolute collision cone associated with multiple obstacles. Some improve-

ments [88] were made for applications to design robotic intelligent wheelchairs fully

capable of transporting elderly and disabled people. Recently, a new method called

reciprocal velocity obstacle [123] was proposed for multi-agent navigation. The nov-

elty of this approach lies in the fact that, in addition to the relative velocity concept,

it also assumes that all the agents make a similar collision-avoidance reasoning. It

was proved to be able to execute safe navigation with collision-free trajectories for

hundreds of agents densely populated in an environments with both static and mov-

ing obstacles. In addition, a subsequent refinement [8] was developed to navigate

the robot at a constant speed towards the goal location as much as it can until an

obstacle is close, and then to change the direction of the robot to avoid collision.

Nearness Diagram (ND) Navigation

A reactive navigation method called nearness diagram (ND) navigation [71,72] is

based on the situated-activity paradigm of behavioral design that identifies situations

and apply corresponding actions. More specifically, the paradigm gives guidance on

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY74

designing the navigation method on a symbolic level, and then uses the “divide and

conquer” strategy to decompose the situations and solves them by determining as-

sociated actions. It can robustly achieve navigation in very dense, cluttered, and

complex scenarios. Similar to ND navigation, the fuzzy logic navigation is also a type

of behavior-based local planning methodology. It uses a set of linguistic fuzzy rules

to deal with various situations and to imitate human reasoning without generating

control commands by complex equations. More specifically, the fuzzy logic algorithm

decomposes the problem into simpler tasks (independent behaviors), each of which

has a set of fuzzy logic rule statements designed for the goal of achieving a predefined

objective, and uses a command fusion to combine the outputs associated with vari-

ous behaviors. Its robustness of dealing with variability and uncertainty is well suited

for mobile robot navigation especially in unknown environments [93,129]. A layered

design of fuzzy logic with primitive basic behaviors on one layer and the supervision

on another layer has been proved successful in indoor robot obstacle avoidance nav-

igation with the presence of static obstacles [34]. An adaptive fuzzy control system

with a learning algorithm using a weighting scheme enables the robot to navigate in

an environment with both static and dynamic obstacles without a priori map infor-

mation and was tested on a robotic wheelchair equipped with laser sensor [70]. A

dual fuzzy logic controller was designed to reduce the proneness to getting trapped

in U-shaped obstacles [79].

Spline-Based Methods

In recent years, a series of spline-based algorithms were introduced for obstacle avoid-

ing path planning [26,27,66]. These methods use splines to traverse the given points

in the field and iteratively refine the path by adjusting and bending the spline to avoid

obstacles, which leads to a collision-free path in real time in an unstructured envi-

ronment [11,62,80,81,91,103,115]. The elastic-band framework [89] was proposed to

model a collision-free path as an elastic band in the presence of artificial forces exerted

by the obstacles; the elastic band can deform in shape to respond to newly detected

changes in the environment such as unexpected and moving obstacles. A modified

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY75

version of this method [101] was introduced for path planning for cars with colli-

sion avoidance systems. It was also extended to dynamic path planning and obstacle

avoidance for emergency situations in lane change maneuvers [47], vehicle-following

system [38], and robot navigation in an intelligent environment with distributed wire-

less visual sensors [24].

4.4 Robotic Exploration

Several approaches have been proposed in the robotics literature to control the robot’s

movement along a path that minimizes the mapping and localization uncertainty. In

this section, we consider three such approaches, namely, coastal navigation, frontier-

based exploration, and information-based exploration.

4.4.1 Coastal Navigation

A POMDP-type method called coastal navigation [99] was inspired by traditional

navigation of ships which travel along the coastlines to determine its location if direct

localization tools are not available. The method aims at reaching the goal location

with maximum probability by seeking the balance between traditional planners, which

are tractable but lack robustness, and POMDP-type planners, which are reliable

but have insurmountable computational complexity. An important idea of coastal

navigation is to augment the state by adding to the original state S, which is the

pose X consisting of the location (x, y) and direction θ, the uncertainty of the pose

represented by the entropy

H(pX) = −
∫
X

p(x)log(p(x))dx. (4.1)

Thus the augmented state becomes S = (x, y, θ,H(x, y, θ)). This essentially models

the uncertainty of the robot’s position as a state variable. After modifying the tran-

sition rule and Bellman’s equation accordingly for the particular application, value

iteration is employed to search the augmented pose-uncertainty state space in order

to generate trajectories. In order to avoid intractability like POMDP, it makes a

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY76

crucial assumption that may be too strong in many applications: the conditional

probability distribution of the robot’s pose is Gaussian with its mean being the cur-

rent pose, which is equivalent to compressing a multi-dimensional belief space to a

one-dimensional space. By incorporating the uncertainty into the state, it enables

the robot to find the path that minimizes the positional uncertainty so that it is less

likely to get lost during the navigation process. A limitation of the method is that it

assumes a known map of the environment.

4.4.2 Frontier-Based Exploration

The frontier-based exploration, proposed in [127], centers around the idea that in or-

der to gain the most information about the partially known world, the robot should

move to the successive frontiers, or boundaries between known open space and un-

known territory. The strategy is to make the robot navigate to the nearest reachable,

unvisited frontier, update the information of the new surroundings, and then navi-

gate to the next nearest reachable and unvisited frontier, and to repeat the process.

The planner is a grid-based navigation system using the so-called evidence grid, and

employs a depth-first graph search to find the closest collision-free path to the desti-

nation, using an obstacle avoidance routine to prevent the robot from collision with

an obstacle not pre-determined in the grid map. For each destination, it will either

be reached then classified as visited, or not accessed within a certain time frame and

denoted as inaccessible.

4.4.3 Information-Based Exploration

As the task of exploration is to gather information of the environment, it is essential

to choose a metric to measure the information. The control rule is to navigate the

robot in a path that will minimize the chosen information metric. One popular metric

is entropy [15,104,105,113], as defined in Equation (4.1) with the pose X replaced by

the system state ξt = (Xt,m) combining both Xt, the robot pose at time t, and m,

the positions of the map features. For SLAM, the probability distribution of the state

is conditioned on past observations z0:t and actions u0:t−1, so the probability pξ in the

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY77

entropy definition becomes the posterior distribution pξt|z0:t,u0:t−1 . For the EKF SLAM,

the linearity and Gaussian noise assumption leads to Gaussian approximation of the

posterior: pξ ∼ N(µ,Ψ) [105]. Maximizing the information about a state estimate is

equivalent to minimizing the determinant of the state variance det(Ψ). This leads to

the D-optimality as defined in the optimal design theory. In addition, the determinant

of the square covariance matrix is equal to the product of its eigenvalue λi’s. Thus, the

D-optimality criterion is equivalent to minimizing
∏n

i=1 λi. In contrast to D-optimality

where the product of the eigenvalues of the covariance matrix is used, A-optimality

uses the sum of the eigenvalues, or equivalently, the trace of the covariance matrix

trace(Ψ) to measure the average uncertainty of the model [105].

4.5 Integrated Navigation under Uncertainty in an

Unknown Environment

We briefly summarize some common limitations of current approaches, and then

introduce a framework to circumvent them in navigation problems and to integrate

global planning with local navigation and exploration.

4.5.1 Limitations of Current Approaches

Discrete vs Continuous, and Linear vs Nonlinear

Most of the work done so far in the three aspects of the navigation problems described

above requires some discretization in the state, action, or observation space. Not

much has been done when all three spaces are continuous. A relatively simple case

concerning only global navigation with no obstacle and the mapping and localization

of the robot has been considered in [96]. For exploration, the Global-A optimal

approach [105] was tested on a simulated environment of a 200×200 grid. As the real

world is continuous, how to shift from discrete environments to continuous ones is one

of the key challenges yet to be resolved. Due to the daunting mathematical challenge

imposed by nonlinear systems, most of the work has been focused on linear systems

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY78

or on linearizing nonlinear systems. The particle filter can be used for nonlinear

systems, but its full potential has not been realized.

Computational Complexity, and Off-line vs On-line

The POMDP framework is a powerful tool to solve the robotic navigation problem

under uncertainty, but has intractable computational complexity as the dimension

of the problem scales up. Most solutions are not applicable to scenarios with over

1000 states [82]. Although Du et al. (2010) have been able to handle somewhat large

number of states within reasonable time, their method is still not able to really solve

real-world problems that have larger state spaces.

The majority of the path planning algorithms are off-line algorithms, i.e., they

compute the plan before the robot starts moving. This is one of the biggest drawbacks

of the traditional planning algorithms because of its lack of consideration for the

dynamics of the environment, which requires the robot to navigate reactively and

plan on-line. On the contrary, on-line algorithms, which are the results of more recent

research, “generally consist of a look-ahead search to find the best action to execute

at each time step in an environment” [97], and are therefore capable of adjusting to

the environment adaptively. Much work still needs to be done for on-line algorithms

in order to track the changing dynamics of the real environment.

Uncertainty

Another limitation of current global and local navigation algorithms is that uncer-

tainty is often not taken into account. In other words, full observability of the robot’s

environment by perfect sensing with no uncertainty is usually assumed. In addition

to that, the condition of known robot location is imposed. This is the case for most

of the classical planners, and also for most of the obstacle avoidance routines. SLAM

does address the problem of uncertainty and is capable of both mapping and localiza-

tion, but it does not generate control signals for navigation and is not concerned with

obstacle avoidance. The POMDP framework takes into account the uncertainty too,

but it only applies to global planning and does no mapping. How to incorporate the

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY79

uncertainty into the broader navigation framework with all three aspects involved is

an important and challenging problem in robotic navigation research.

Prior Knowledge

Almost all the papers addressing the path planning problem assume a priori knowl-

edge of the map, i.e., the robot knows about the terrain in advance. But this sel-

dom holds in practical applications, such as planetary exploration like Mars Rovers.

Therefore a robust path planner applicable to unknown environments and adapt-

able to environmental changes is yet to be developed for future autonomous robot

navigation.

4.5.2 New Framework

As we discussed earlier, there are three aspects of the robotic navigation problem:

global planning (reaching a goal), local navigation (obstacle avoidance), and explo-

ration (SLAM and handling uncertainty), as shown in Figure 4.1. These three sub-

fields have their own constraints and solution frameworks, although they are closely

related to each other and coexist in real-world problems. Past research effort has

been focused on problems concerning one of these three subfields, as indicated by

I, II, and III in the figure. Some work has been done to add global thinking to

the local navigation [17], covering the area IV in the figure, but discretization of the

environment is required. Martinez-Cantin et al. (2007) have tried to solve planning

and exploration under uncertainty, but they only considered three landmarks that

lead to a six-dimensional optimization problem, and ignored local navigation [68].

Little effort has been devoted to explicitly address the problems involving all the

three subfields, i.e. V II in Figure 4.1, which has a lot of real-world applications. For

example, ground rescue mission requires accurate mapping of the terrain and precise

localization of the rescue unit, when positioning systems are not available, in order

to reach the target location within minimum time. Planetary rovers such as the Mars

rovers have limited time for each mission, so they need to get as much information

about the planet surface as they can within a given time constraint, while trying

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY80

 Exploration Local Navigation

I

 Global Planning

IV

III

V
VII

VIII

Figure 4.1: The diagram shows the relation among the three subfields: global plan-
ning, local navigation, and exploration. The goal is to solve problems within the area
covered by all three subfields as indicated by VII.

to reach the predetermined goal location. Here, we provide a framework for solving

the sequential planning problem concerning global planning, location navigation and

exploration in the presence of uncertainty in a continuous environment.

4.5.3 Problem Statement

We consider the following navigation problem: in a continuous environment with

feature-based landmarks, plan a trajectory for a robot with continuous action control

and no a priori knowledge of the environment, so that it can minimize the traveling

time to the goal location, while accomplishing other tasks such as mapping the land-

marks seen along the way, localizing itself, selectively exploring local landmark-dense

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY81

area, and actively avoiding collision with the landmarks. Formally, we can define this

as the following control problem:

min J(x,m,u, t) (4.2)

subject to h(x,m) > dc (4.3)

ẋ = g(xt−1,ut) (4.4)

xt0 = x0 (4.5)

where x is the robot pose, m is the map estimation, u is the action, J(·) is the cost

function, i.e., the total traveling time in our case, h(·) is the environmental constraint

function that monitors the distances between the robot and all the landmarks in the

map so that they will not fall below the critical range dc which will potentially cause

collision, g(·) is the physical motion constraint function of the robot, and x0 is the

initial condition.

Compared to problems considered in the literature, the new problem involves

continuous spaces (for state, action and observation), and requires exploration and

local navigation (obstacle avoidance) on top of the global navigation which is the

main goal. Note that throughout this section, the landmarks are just the obstacles,

thus the two words are synonymous.

4.5.4 System Control

The diagram of the system control block is shown in Figure 4.2. Basically, the system

switches between three modes: the global navigation mode, the obstacle avoidance

(OA) mode, and the exploration mode, depending on the specific condition. When

a new obstacle is observed within a certain range, the OA routine is launched to

achieve a local sub-goal, which is to avoid collision with the obstacle and to pass

around it. If the number of close landmarks exceeds a certain threshold, the robot will

enter the local exploration mode to gather more information about the surroundings,

with the immediate goal set to find a safe path to navigate out of the landmark-

populated region. The SLAM filter will be used during exploration to carry out

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY82

No

Many?

 Sensor Data

Yes
 Local

 Exploration

Control

CommandsObstacle?

Yes

Global

Navigation

Controller

No

Landmark

Detection

Obstacle

Avoidance

Figure 4.2: An illustration of the control block to realize global path planning under
uncertainty constraints while ensuring robust local obstacle avoidance navigation.

better estimation of the robot pose and map locations, and will be kept running in

background for other modes. If there is no nearby obstacles, the robot will be set in

the global navigation mode to optimize the global planning objective, i.e., traveling

towards the goal location as quickly as possible. Since collision avoidance is critical

in protecting the robot, there is an emergency routine used to navigate the robot

away from any landmark that is too close to the robot, in order to prevent collision.

This routine is embedded in both the OA mode and the exploration mode. It has the

highest priority once it is activated, and can overwrite the commands from the other

modes. The control signal is dependent on robot dynamics including the velocity and

orientation of the robot relative to the landmark, and safety constraints, i.e. whether

or not the robot is within the safe region, where the robot is free to travel at any

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY83

speed, the slow-down region, where the robot must travel at a lower speed due to its

close distance to the landmark, or the dangerous region, where the emergency routine

will be turned on to lead robot to a safer place. The definition of these regions will

be talked about in details in Section 4.5.6.

The myopic control, which is an one-step special case of receding horizon control

(RHC), is used for both global and local navigation, because, as discussed in Chapter

2, the myopic policy can perform on the similar level to other complicated control

strategies, while incurring significantly less computational cost. When it is in the

exploration mode, the robot temporarily forgets about the global goal, and focuses

on finding a collision-free path in order to get out of the landmark-dense area, as

opposed to the obstacle avoidance mode, in which the robot still remembers the

global goal, thus will choose the myopic action that will not only most effectively

avoid landmarks, but also lead the robot towards the target location.

These techniques will be discussed in more depths in the following sections. Al-

though described separately, they are all integrated and interweaved together to

achieve the global goal, which is to arrive at the target location as quickly as possible

with no collision in a continuous environment.

4.5.5 Global Navigation

In Newtonian mechanics, we know that the traveling time is defined by

T =

∫
dt =

∫
dS⃗

v⃗
(4.6)

where S⃗ is the displacement vector, and v⃗ is the velocity vector.

If we adopt the spherical coordinate centered at the goal location and project the

vectors in the radial coordinate, we can have

T =

∫
dSr

vr
(4.7)

This means that if we want to minimize the total traveling time T , the myopic control

rule will choose the speed and angle such that the robot’s instant velocity component

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY84

pointing to the goal location, i.e., the radial component of its velocity, is maximized

at that moment.

4.5.6 Obstacle Avoidance

As the robot gets close to a landmark-sparse region, the robot will turn on the reactive

obstacle avoidance (OA) routine to pass the landmarks. In this section, we focus on

how to control the robot to avoid collision when there is one close landmark, while the

multiple-landmark case will be discussed in the section on point-based exploration.

For a landmark-dense region, the OA routine will get into trouble, as the robot will

not be able to choose the correct control action, simply due to the complexity of the

local environment. In this case, the robot needs to explore the local area and get

more accurate information about the location of the landmarks in order to find a safe

path to get out. This is the exploration mode, which will be discussed in Section

4.5.7.

We adapt the situated-activity paradigm of design method, which was introduced

to collision avoidance literature in [71,72], to illustrate our OA routine design. The

overall control flow for the obstacle avoidance routine is shown in Figure 4.3. We

will explain in details each of the situations that the robot will encounter during the

process, and then talk about the associated actions to take to avoid collision. Please

note that, in the OA routine, the global goal is still in consideration. In other words,

for example, if there are a few control options equally good for obstacle avoidance, we

will choose the one that will best achieve the global goal among the available options.

The Situations

For each landmark, we define three regions around it. For an area with distance

larger than df , where df is the minimum distance for free navigation, we call it safety

region. For area with distance smaller than dc, where dc is the critical distance to avoid

collision, we call it dangerous region. The area between these two regions are called

slow-down region, i.e., the robot should be vigilant about the close landmark and not

navigate full speed in this region. These regions have been illustrated in Figure 4.4.

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY85

Sensor Data
Angle close?

Yes

Obstacle

close?

Yes

Situations

No

Slow-Down

Region

 LSFA

 LSCA

Dangerous

 Region

Really close

Actions

 High Safety

 Ctrl Signal

MSKA

SSKA

SSAA

SSAA

Safe

Region

No

Figure 4.3: The obstacle avoidance diagram illustrates situations the robot will en-
counter during local navigation and the corresponding actions to take during the
course.

As shown in Figure 4.3, there are totally four situations, which will completely cover

all the possibilities of the interaction between the robot and the landmark, based on

the physical parameters such as distance and angle.

High Safety (HS) Situation When the robot is within the safety region, as

shown in Figure 4.4a, the robot is far from the nearest landmark, thus can move at

full speed without worrying about collision.

Low Safety Far Angle (LSFA) Situation As the robot moves close to a

landmark, it enters the slow-down region. If the forward trajectory of the robot is

pointing outside the dangerous region, as shown in Figure 4.4b, the robot does not

have the risk of entering the dangerous region of the landmark. We define the critical

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY86

Landmark

Slow-Down Region

Safety Region

Dangerous

RegionVmax

(a) HS

Landmark

Vmax

Slow-Down Region

Safety Region

Dangerous

Region

(b) LSFA

Landmark

Vslow

Slow-Down Region

Safety Region

Dangerous

Region

Original direction

min steering angle

(c) LSCA

Landmark

Slow-Down Region

Safety Region

Dangerous

Region

(d) DR

Figure 4.4: (a) High Safety (HS) situation. The robot maximizes its speed and keep
its angle towards the global goal. (b) Low Safety Far Angle (LSFA) Situation. The
robot slows down but keeps its original orientation. (c) Low Safety Close Angle
(LSCA) Situation. The robot slows down and adjust its direction to at least bypass
the landmark at the critical angle. (d) Dangerous Region (DR) Situation. The robot
slows down to its minimal speed and turn as sharply as it can to steer away from the
landmark.

angle, which is tangible to the edge of the dangerous area from the robot’s location,

as

ηc = arcsin

(
dc
d

)
(4.8)

where d is the distance between the robot and the landmark and dc is the minimum

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY87

safety distance or critical distance already defined earlier. Similarly, for the specific

landmark, we define the angle of the robot with respect to the landmark η as the

angle between its current direction and the connected line between the robot and

landmark. When η < ηc, we say the angle η is close. Otherwise, we say it is far. Note

that both η and ηc are landmark-dependent.

Low Safety Close Angle (LSCA) Situation This situation is similar to the

LSFA one, but with the difference that the forward trajectory of the robot is pointing

inside the dangerous region, as shown in Figure 4.4c. In other words, if the robot

keeps moving in the current direction, it will go into the dangerous region of the

landmark and may cause potential collision. In this situation, the angle η is smaller

than the critical angle ηc, thus the robot is moving alone a path close to the landmark.

We call this a close angle.

Dangerous Region (DR) Situation When the distance between the robot

and the landmark becomes smaller than the critical distance dc, the robot is within

the dangerous region and has high risk of collision. See Figure 4.4d.

The Actions

For each situations, the action associated with the corresponding situations provides

the control signals including speed and steering angle to command the robot to avoid

collision and move towards the goal location. As myopic rule is adapted as the control

policy, the control commands are designed accordingly.

HS Situation - Maximize Speed & Keep Angle (MSKA) The robot can

move at full speed and keep its direction towards to global goal location, as shown in

Figure 4.4a. Note that it doesn’t matter whether or not the forward trajectory will

go through the dangerous region of the landmark.

LSFA Situation - Slow-Down Speed & Keep Angle (SSKA) Since the

forward trajectory of the robot is pointing outside the dangerous region, as shown in

Figure 4.4b, the robot does not have to change its course of direction. But it does

need to slow down to navigate carefully in order to pass the landmark.

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY88

LSCA Situation - Slow-Down Speed & Adjust Angle (SSAA) Besides

slowing down the speed in this situation, the robot should also adjust its angle to

avoid entering the dangerous region in the near future. The minimal angle to turn

is the difference between the current angle and the critical angle, as shown in Figure

4.4c, in order to let the robot bypass the landmark safely.

DR Situation - Slow-Down Speed & Adjust Angle (SSAA) Similar actions

as those for the LSCA situation, with the differences that, as the robot just enters

the dangerous region, it will slow down to the mimimal speed it can achieve, much

slower than the speed taken in the LSCA situation, and turn the maximal angle it

can possibly turn, in order to steer away from the landmark as soon as possible. This

is the emergency routine and has been illustrated in Figure 4.4d.

4.5.7 Point-Based Exploration

In Section 4.5.6, we discussed the obstacle avoidance routine for the case in which the

robot encounters a landmark. In this section, we will talk about the case in which

the robot enters a landmark-dense region, as opposed to the landmark-sparse region

in the previous section.

In landmark-dense local area, the robot needs to slow down and explore the sur-

roundings, in order to determine a safe path free of landmarks and navigate out of the

region. During the exploration process, the robot will put identifying local landmark

locations as the top priority, instead of the global goal. In other words, the robot will

temporarily forget about the global goal to focus on local exploration. This means

that the robot may even move in directions that may temporarily lead the robot

further away from the goal under extreme situations in order to navigate safely out

of the obstacle-occupied region.

Due to existence of measurement uncertainty and also the robot system uncer-

tainty, the FastSLAM algorithms discussed in Chapter 3 are utilized to estimate the

landmark locations and the robot pose. Please note that by FastSLAM we mean a

class of particle-based SLAM algorithms, including FastSLAM 2.0, Uncented Fast-

SLAM, and Spherical Simplex Unscented FastSLAM.

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY89

Entering Exploration Mode

If c landmarks are observed to be close, i.e., within df distance from the robot, the

angles of the robot ηi with respect to each landmark will be calculated. If no angle

is close, i.e., smaller than the critical angle ηic associated with the ith observed close

landmark, the robot can keep on moving in the original direction at its maximum

speed. If there are n close angles, two cases will be considered.

First, if n ≤ nth, where nth is a predetermined threshold with some small integer

value, it means the number of landmarks that are blocking the way is relatively small.

In this case, we can calculate the steering angle for each landmark, and then choose

the one closest to the direction of the global goal location.

Then, if n > nth, it means there are quite many landmarks which are close in both

distance and angle to the robot. In this case, the robot will enter the exploration

mode, setting the top priority to be exploring the local environment. It will estimate

the local landmark locations as accurate as possible, in order to find a safe path to

get out of this landmark-dense region.

Spatial Testing Points

Once the robot enters the exploration mode, the SLAM routine will be put on spot

and its estimation of the robot pose and landmark locations will be closely monitored.

For operational modes other than exploration, the SLAM filter can be kept running

in background. As the goal of the exploration is to find a safe path, we define a set of

so-called Spatial Testing Points (STP), at which we will calculate the probability of

existence of any landmarks. Before showing the formal definition, we will first carry

out some mathematical calculations to facilitate the definition.

In the FastSLAM algorithm, we assume N particles, with each particle containing

the robot pose and means and covariance matrices of M landmarks, as defined in

Equation 3.21. Here we present again the definition of each particle:

Xk
t = ⟨xk

t , µ
k
1,t,Σ

k
1,t, ..., µ

k
M,t,Σ

k
M,t⟩ (4.9)

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY90

Then the mean of the robot pose at time t will be

x̄t =
N∑
k=1

xk
t · wk (4.10)

where wk is the weight for the kth particle. For the ith close landmark, we assume

the distance measured is ri. Then, we give the definition for the STPs:

Definition (Spatial Testing Points). Given c close landmarks detected and n out of

c are close in terms of both distance and angle, if n > nth, a set of Spatial Testing

Points at time t are defined on c semicircles centered at the estimated robot location

(x̄, ȳ), with the points on the same semicircle separated equally by δ radians and

the radius equal to the distance between the robot and the associated landmark ri.

Mathematically, the jth point on the ith semicircle, xij
stp = (xij

t , y
ij
t), is defined as

xij
t = x̄t + ri · cos

(
(j − 1)δ − π

2

)
(4.11)

yijt = ȳt + ri · sin
(
(j − 1)δ − π

2

)
(4.12)

The c testing points lined up on the same angle (j − 1)δ − π
2
forms the jth spatial

testing path.

The spatial testing path provides a safe direction for the robot to move in the next

time step. Due to the discrete nature of the definition of such path, we can increase

the density of the testing points, i.e., decrease δ, in order to achieve more subtle

steering angle selection. But this comes at a cost of larger computational complexity.

In the next part, we will talk about how to use these testing points to find a safe

path.

Safety Zone Testing

For each testing point, we impose two criteria, the safety confidence and safe dis-

tance. The first criterion takes into account the effect of uncertainty and calculates

the probability density of having no landmark (HNL) at a specific testing point from

the posterior distribution estimated by SLAM filter. The second criterion evaluates

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY91

the distance between the testing point and the landmarks, based on the estimated

landmark locations. A path can be classified as safe for time t only when the joint

probability density of HNL of each testing point on that path is higher than a given

threshold pth and the distances from each testing point on the path to all the land-

marks are larger than dc, the critical range or equivalently the radius of the dangerous

zone. Please note that whether a short-term path is safe is time-dependent, because

the status will change as new information is gathered. Below, we will elaborate the

tests in more details.

Assuming data association relation j(i), we can obtain the index of the ith close

landmark has index j(i) in each particle. This index j(i) can also be regarded as

the overall index of the landmark among all the landmarks, or the identifier of the

landmark. Note that data association isn’t the main topic of this dissertation, so we

will skip the details related to data association.

For the lth testing point on the qth semicircle, which we simply call the (q, l)th

testing point, the probability density of having ith close landmark in the kth particle

can be calculated using a 2D multivariate Gaussian density function:

pql,kj(i),t = (2π)−1|Σk
j(i),t|1/2 exp

(
(xql

stp − µk
j(i),t)

T (Σk
j(i),t)

−1(xql
stp − µk

j(i),t)
)

(4.13)

The weighted average of such probability from the N particles can be computed as

pqlj(i),t =
N∑
k=1

pql,kj(i),t · wk (4.14)

Because the landmarks are independent given the robot pose, the probability of having

no landmark at the (q, l)th point is

pqlt =
c∏

i=1

(
1− pqlj(i),t

)
(4.15)

where c is the number of landmarks observed to be close, i.e., within df distance from

the robot, as defined earlier. Note that we only consider those landmarks close in

range, which can save computational time and is also reasonable due to the fact that

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY92

those far landmarks are almost impossible to have impact on the local path selection.

After introducing the first criterion, the safety confidence represented by pqlt for

the (q, l)th testing point at time t, we now talk about the second criterion, the safety

distance. First, the mean of the ith close landmarks at time t can be calculated by

the weighted average of the mean in each particle obtained by Kalman filters (EKF,

UKF, and etc):

x̄f
j(i),t =

N∑
k=1

µk
j(i),t · wk (4.16)

Then the safety distance between the (q, l)th testing point and ith close landmarks

can be computed by

dqlj(i),t =
√

(x̄f
j(i),t − xql

t)
2 + (ȳfj(i),t − yqlt)

2 (4.17)

For the (q, l)th testing point at time t, it can be categorized as safe for the time being

if

pqlt > pth & dqlj(i),t > dc, for all i ∈ 1, ..., c (4.18)

In other words, if the testing point has high probability density of having no landmark

and is far from all the landmarks. Then, the lth spatial testing path will be declared

as safe at time t, if all the c testing points on it are safe, i.e., Equation 4.18 holds for

all l ∈ 1, ..., c.

4.5.8 The Integrated Navigation Algorithm

We now integrate the previous sections and present a complete algorithm to solve

the problem proposed in Section 4.5.3. The integration is based on the control block

introduced in Section 4.5.4.

For each landmark, there is a critical angle ηc given the robot’s location when the

robot is close, i.e., within df distance (slow-down region) from the landmark. Note

that for all control commands, the steering angle change in one time step is limited by

the maximal angular speed and the maximum steering angle the robot can achieve.

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY93

The Integrated Navigation Algorithm

• Initialization

• While the goal is not reached yet

Assume the current steering angle pointing to the goal is G = Gg

If no landmark observed,

we set V = Vmax, and keep G.

else (there are landmarks observed)

if no close landmark within df ,

V = Vmax and keep G.

else (there are close landmarks)

Case 1: all close landmarks have far angles (outside critical angles.)

V = Vmax and keep G.

Case 2: some close landmarks also have close angles (η < ηc.)

slow down: V = Vmedium

n = number of landmarks within df and with η < ηc

if n ≤ nth,

calculate steering angle Gi for each landmark

choose the one closest to Gg, the goal direction.

else (n > nth, enter local exploration mode!)

set up spatial testing points

calculate safety confidence for each testing point

calculate safety distance for each testing point

find the safety path

if multiple directions are found, choose the one closest to Gg.

For any case above, if robot enters the dangerous region of any landmark

overwrite above control commands and set V = Vslow and G = Gmax

to turn away from the landmark slowly.

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY94

4.6 Experimental Results

In this section, we will demonstrate the idea of integrated navigation proposed in

the previous sections in a simulated environment, where a robot tries to reach a

designated goal location in an unknown and landmark-populated environment under

system and measurement uncertainties.

4.6.1 Experimental Setup

The robot is a triangle-shaped vehicle with length of 4m and width 2m. Its speed

ranges from 1m/s to 10m/s. The medium and slow speeds in the speed limit cases are

6m/s and 3m/s respectively. For the demonstration purpose, we set the maximum

steering angel to be 80π/180 radians, and the maximal steering angular speed to be

2π/s. The control signal is carried out every 0.025s, which is set to be the time for

one time step. The laser measurement is executed every 8 time steps, and can reach

area as far as 30 meters. The radius of the slow-down region for each landmark,

df , is set to 10m. The critical distance dc is set to 3m. Note that the robot only

observes the landmarks within the semicircle range in the forward moving direction.

For the SLAM filters, we use 100 particles in the simulation. The minimum number of

effective particles ratio to trigger resampling is 0.75. The control signals are executed

every 0.025s, and the measurements are carried out every 8 control time steps, i.e.,

every 0.2s.

4.6.2 Result and Analysis

Figure 4.5 shows the process of how the robot navigate in the environment especially

during the exploration mode. In Figure 4.5a, the robot has entered the exploration

mode after observing several landmarks close in terms of both distance and angle, as

indicated by the red circles in the figure. The spatial testing points are drawn in the

plot in pink dots. After a series of calculations discussed in Section 4.5.7, the robot

determines the three discrete directions roughly pointing to the south are safe. It

chooses the third one from the left as it’s the closest to the goal orientation. The red

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY95

dashed line indicates the actual steering angle, as the control signal is corrupted by

system noise. Then, the robot turns and navigates along the landmarks as shown in

Figure 4.5b. Up to some point, the robot sees a set of new landmarks that are close in

terms of both distance and angle, as show in Figure 4.5c. This time, the robot figures

there are two sets of discrete directions are safe, one towards the southwest, and one

towards the northeast, which is pointing through the gap between the landmarks.

Then, the global goal comes into play and leads the robot to decide on steering

towards the direction indicated by the red dashed line. Eventually, the robot turns,

and navigate through the gap and goes towards the goal location. The final trajectory

the robot takes to reach the goal location is shown in Figure 4.6, with the simulation

results shown in Table 4.1. Figure 4.7 and Figure 4.8 show two different scenarios

from Figure 4.6: the landmark configuration in Figure 4.7 has slightly wider gap in

the middle, and that in Figure 4.8 has a much wider gap. The robot in 4.7 still

chooses the gaps located in the lower half of the plot, as the middle gap is not wide

enough to be considered as a safe path. But in Figure 4.8, the robot went through

the middle gap, as it determined that the gap was wide enough to form a safe path,

thus it could avoid detours such as going through the gap below.

Quantities to Evaluate Value
Total Traveling Time (s) 10.28
Total Distance (m) 63.20
MSE of Robot Path Estimation 0.0163
MSE of Landmark Estimation 0.0120

Table 4.1: Results of Integrated Navigation.

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY96

(a) (b)

(c) (d)

Figure 4.5: In all plots, the green stars indicate the landmarks. The red circle around
the landmarks indicate those landmarks that are close in range. The red dash straight
line from the robot front end points to the steering direction. The pink dots around
the robots are the spatial testing points, whose density can be adjusted. (a) Robot
explores and tries to circumvent the landmarks. (b) Robot further moves and passes
along the landmarks. (c) Robot meets new cluster of landmarks, but see a gap that
can go towards the goal. (d) Robot turns and goes through the gap.

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY97

Figure 4.6: The final path of the robot. The landmarks located in the middle part
of the map are so dense that there is no chance to find a safe path across them. The
robot finds a safe path and goes through the big gap shown in the lower half of the
plot.

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY98

Figure 4.7: The final path of the robot. Because the opening of the landmarks in
the middle is not big enough, the robot considers going through the middle gap to be
unsafe due to its own physical dimensions, so it turns and finds another safer path,
i.e., going through the bigger gap located in the lower half of the plot.

CHAPTER 4. INTEGRATEDROBOTIC NAVIGATION UNDER UNCERTAINTY99

Figure 4.8: The final path of the robot. As the gap in the middle part widens, the
robot sees an oppotunity and find a closer safe path to reach the goal location, instead
of going the detour.

Chapter 5

Conclusion and Future Work

Bayesian estimation is an important state estimation technique for robotic navigation.

The particle filters are capable of dealing with nonlinear and non-Gaussian systems,

but there are issues such as degeneracy that need to be improved. We designed new

particle-based SLAM filters in Chapter 3. We are continuing our effort to develop

better SLAM filters and are exploring the use of Gaussian sum particle filters that

have been shown to be quite effective in [61] even though the number of mixands ”has

to be determined by trial and error” and there is no systematic way to determine the

mean and variance of each Gaussian component.

In Chapter 4, we reviewed the existing frameworks and recent advances for solving

the three aspects of the robotic navigation problem: global planning (Section 4.2),

local navigation (Section 4.3), and exploration (Section 4.4). In global planning,

frameworks capable of coping with uncertainty have become increasingly popular,

such as the POMDP and SLAM. For local navigation, a number of methods have been

proposed for obstacle avoidance, and a special case of receding horizon control, called

myopic control, has been proved to be effective and is gaining ground in this area. In

Chapter 2, we demonstrated that myopic control has similar level of performance as

other complicated strategies but has significantly less computational complexity. To

achieve effective exploration, several approaches have been developed, which are able

to seek paths that maximize the information of the environment.

Although the research in autonomous robot navigation has made significant progress,

100

CHAPTER 5. CONCLUSION AND FUTURE WORK 101

most of the work only focuses on one of the three aspects discussed above. The ap-

plications in the real world impose significant challenges and require the capability

of solving navigation problems involving all three aspects and providing innovative

solutions that are nearly optimal. Therefore, it is essential that global planning algo-

rithms, local navigation routines, and exploration procedures be integrated together

in order to achieve the global goal.

Section 4.5 has sketched a new framework for solving the navigation problem

in a continuous environment with feature-based landmarks. The goal is to reach a

destined location as quickly as possible while actively maintaining a certain level of

confidence in the estimated environment and avoiding direct collision with obstacles.

The framework leads to an integrated approach that balances between exploration

and exploitation and has control blocks for each of the three navigation aspects. It

also overcomes many of the common drawbacks of current approaches discussed in

Section 4.5.1.

A promising direction of the future work in autonomous robot navigation is to

design hybrid systems which are capable of handling all aspects of robotic naviga-

tion requirements. This is important as human beings are extending the presence

in the universe and a lot of missions impose stringent requirements on the robots.

The design of hybrid systems is technically challenging, but its application is promis-

ing. Moreover, how to interconnect the various aspects of robotic navigation and

coordinate harmoniously the task goals is hard but exciting topics to develop.

In this work, we have presented a general framework for integrated robotic navi-

gation. For future work, we can improve the framework by the following: 1. Achieve

better local obstacle avoidance by designing better reactive algorithms that can react

faster and take better actions that can help achieve the global goal. 2. Design better

exploration algorithms that can achieve the same level of effectiveness in exploring the

surroundings but with less time. 3. Design better filters to cope with uncertainties.

It is noteworthy to point out that, as uncertainty is ubiquitous in real-world

problems, “probabilistic techniques will continue to be the most robust approach

to state estimation problems” and “will serve as a powerful tool for understanding

problems and the approximation of their optimal solutions” [19].

Bibliography

[1] D. Alspach and H. Sorenson. Nonlinear bayesian estimation using gaussian sum

approximations. IEEE Transaction on Automatic Control, 17(4):439–448, 1972.

[2] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Englewood Ciffs, NJ:

Prentice-Hall, 1979.

[3] J. Andrade-cetto, T. Vidal-calleja, and A. Sanfeliu. Unscented transformation

of vehicle states in slam. In In Proc. IEEE Int. Conf. Robot. Automat, pages

324–329, 2005.

[4] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions

on Signal Processing, 50(2):174–88, 2002.

[5] J. Bartroff and T. L. Lai. Approximate dynamic programming and its appli-

cations to the design of phase i cancer trials. Statistical Science, 25(2):245257,

2010.

[6] A. Elnagar; A. Basu. Global path planning using artificial potential fields. In

IEEE International Conference on Robotics and Automation, pages 316 – 321,

1989.

[7] Rudolf Bauer, Wendelin Feiten, and Gisbert Lawitzky. Steer angle fields: An

approach to robust manoeuvring in cluttered, unknown environments. Robotics

and Autonomous Systems, 12(3-4):209 – 212, 1994.

102

BIBLIOGRAPHY 103

[8] M. Becker, C. M. Dantas, and W. P. Macedo. Obstacle avoidance procedure for

mobile robots. In ABCM Symposium Series in Mechatronics, volume 2, pages

250–257, 2006.

[9] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ, 1957.

[10] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena

Scientific, 2nd edition, 2000.

[11] C. Guarino Lo Bianco and A. Piazzi. Optimal trajectory planning with quintic

g2-splines. In Proceedings of the IEEE Intelligent Vehicles Symposium 2000,

pages 620–625, Oct 2000.

[12] J. Blythe. An overview of planning under uncertainty, pages 85–110. Springer-

Verlag, Berlin, Heidelberg, 1999.

[13] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots.

IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 1989.

[14] J. Borenstein and Y. Koren. The vector field histogram - Fast obstacle avoidance

for mobile robots. IEEE Journal of Robotics and Automation, 7:278–288, 1991.

[15] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F.

Durrant-Whyte. Information based adaptive robotic exploration. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 540–545, 2002.

[16] R. I. Brafman. A heuristic variable grid solution method for POMDPs. In

Proceedings of the National Conference on Artificial Intelligence, 1997.

[17] O. Brock and O. Khatib. High-speed navigation using the global dynamic win-

dow approach. In IEEE International Conference on Robotics and Automation,

pages 341–346, 1999.

BIBLIOGRAPHY 104

[18] A. Brooks. Parametric POMDPs for Planning in Continuous State Spaces.

PhD dissertation, Australian Centre for Field Robotics, University of Sydney,

2007.

[19] W. Burgard. Probabilistic approaches to robot navigation. IEEE Robotics and

Automation Magazine, 15(2):8–13, 2008.

[20] C.V. Caldwell, E.G. Collins, and S. Palanki. Integrated guidance and con-

trol of AUVs using shrinking horizon model predictive control. In Oceans’06

MTS/IEEE, pages 1–6, Boston, MA, 2006.

[21] O. Cappé, S. J. Godsill, and E. Moulines. An overview of existing methods and

recent advances in sequential monte carlo. IEEE Proceedings, 95(5):899–924,

2007.

[22] GEORGE CASELLA and CHRISTIAN P. ROBERT. Rao-Blackwellisation of

sampling schemes. Biometrika, 83(1):81–94, 1996.

[23] Daniel Castro, Urbano Nunes, and Antonio Ruano. Obstacle avoidance in local

navigation. In IEEE Mediterranean Conference on Control and Automation,

2002.

[24] Y. Cheng, P. Jiang, and Y.F. Hu. A distributed snake algorithm for mobile

robots path planning with curvature constraints. In IEEE International Con-

ference on Systems, Man and Cybernetics, pages 2056 – 2062, 2008.

[25] C. I. Connolly, J. B. Burns, and R. Weiss. Path planning using laplace’s equa-

tion. In Proceedings of the 1990 IEEE International Conference on Robotics

and Automation, pages 2102–2106, 1990.

[26] John Connors and Gabriel Elkaim. Analysis of a spline based, obstacle avoiding

path planning algorithm. In IEEE Vehicle Technology Conference, pages 2565

– 2569, 2007.

BIBLIOGRAPHY 105

[27] John Connors and Gabriel Elkaim. Manipulating b-spline based paths for ob-

stacle avoidance in autonomous ground vehicles. In ION National Technical

Meeting, pages 1081–1088, 2007.

[28] Konstantinos Dalamagkidis, Kimon P. Valavanis, and Les A. Piegl. Autonomous

autorotation of unmanned rotorcraft using nonlinear model predictive control.

Journal of Intelligent and Robotic Systems, 57(1-4):351–369, 2010.

[29] M. Deittert, A. Richards, and G. Mathews. Receding horizon control in un-

known environments: Experimental results. In IEEE International Conference

on Robotics and Automation, pages 3008–3013, Anchorage, AK, May 2010.

[30] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. A

solution to the simultaneous localization and map building (SLAM) problem.

IEEE Transactions on Robotics and Automation, 17(3):229–241, 2001.

[31] A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo methods for

bayesian filtering. Statistics and Computing, 10(3):197–08, 2000.

[32] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing:

fifteen years later. Technical report, Department of Statistics, University of

British Columbia, Vancouver, Dec 2008.

[33] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: Part

I. IEEE Robotics and Automation Magazine, 13(2):99–110, 2006.

[34] A. Fatmi, A. A. Yahmadi, L. Khriji, and N. Masmoudi. A fuzzy logic based

navigation of a mobile robot. World Academy of Science, Engineering and

Technology, 22, 2006.

[35] P. Fiorini and Z. Shiller. Motion planning in dynamic environments using the

relative velocity paradigm. In Proceedings of IEEE International Conference

on Robotics and Automation, volume 1, pages 560 – 565, 1993.

[36] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision

avoidance. IEEE Robotics and Automation Magazine, 4(1):23–33, 1997.

BIBLIOGRAPHY 106

[37] E. W. Frew, Langelaan J, and Joo S. Adaptive receding horizon control for

vision-based navigation of small unmanned aircraft. In Proceedings 2006 Amer-

ican Control Conference, pages 2160–2165, Minneapolis, MN, June 2006.

[38] S.K. Gehrig and F.J. Stein. Collision avoidance for vehicle-following systems.

IEEE Transactions on Intelligent Transportation Systems, 8(2):233 – 244, 1993.

[39] J. Geweke. Bayesian inference in econometric models using monte carlo inte-

gration. Econometrica, 57(6):1317–39, November 1989.

[40] J. Giesbrecht. Global path planning for unmanned ground vehicles. Technical

report, Defense RnD Canada - Suffield, December 2004.

[41] C. Goerzen, Z. Kong, and B. Mettler. A survey of motion planning algorithms

from the perspective of autonomous uav guidance. Journal of Intelligent and

Robotic Systems, 57(1-4):65–100, 2010.

[42] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to

nonlinear/non-gaussian bayesian state estimation. IEE Proceedings F on Radar

and Signal Processing, 140(2):107–113, April 1993.

[43] J. Han, T. L. Lai, and V. Spivakovksy. Approximate policy optimization and

adaptive control in regression models. Computational Economics, 27:433–452,

2006.

[44] Eric A. Hansen. Solving POMDPs by searching in policy space. In Proceed-

ings of the Fourteenth International Conference on Uncertainty In Artificial

Intelligence, pages 211–219, 1998.

[45] M. Hauskrecht. Value-function approximations for partially observable markov

decision processes. Journal of Artificial Intelligence Research, 13:33–94, 2000.

[46] M. Hebert, C. Thorpe, and A. Stentz. Intelligent Unmanned Ground Vehi-

cles: Autonomous Navigation Research at Carnegie Mellon. KluwerAcademic

Publishers, 1997.

BIBLIOGRAPHY 107

[47] J. Hilgert, K. Hirsch, T. Bertram, and M. Hiller. Emergency path planning for

autonomous vehicles using elastic band theory. In IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, volume 2, pages 1390 – 1395,

2003.

[48] S. Julier. The spherical simplex unscented transformation. In The Proceedings

of the IEEE American Control Conference, pages 2430–2434, 2003.

[49] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte. A new method for the non-

linear transformation of means and covariances in filters and estimators. IEEE

Transactions on Automatic Control, 45(3):477–482, 2000.

[50] S. Julier and J. K. Uhlmann. A general method for approximating nonlinear

transformations of probability distributions. Technical report, 1996.

[51] S. J. Julier and I. Industries. The scaled unscented transformation. In Proceed-

ings of the American Control Conference, volume 6, pages 4555–4559, 2002.

[52] S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear estimation.

In Proceedings of the IEEE, pages 401–422, 2004.

[53] Simon J. Julier and Jeffrey K. Uhlmann. A new extension of the kalman filter

to nonlinear systems. In Int. Symp. Aerospace/Defense Sensing, Simul. and

Controls, pages 182–193, 1997.

[54] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting

in partially observable stochastic domains. Artificial Intelligence, 101:99–134,

1998.

[55] R. E. Kalman. A new approach to linear filtering and prediction problems.

T-ASME, 1960:35–45, March 1960.

[56] Z. Khan, T. Balch, and F. Dellaert. A rao-blackwellized particle filter for eigen-

tracking. Computer Vision and Pattern Recognition, IEEE Computer Society

Conference on, 2:980–986, 2004.

BIBLIOGRAPHY 108

[57] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research, 5:90–98, April 1986.

[58] C. Kim, R. Sakthivel, and W. K. Chung. Unscented fastslam: A robust and effi-

cient solution to the slam problem. IEEE Transactions on Robotics, 24(4):808–

820, 2008.

[59] G. Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state

space models. Journal of Computational and Graphical Statistics, 5(1):1–25,

1996.

[60] M. Kneebone and R. Dearden. Navigation planning in probabilistic roadmaps

with uncertainty. In Proceedings of the Nineteenth International Conference on

Automated Planning and Scheduling, 2009.

[61] Jayesh H. Kotecha and Petar M. Djuric. Gaussian sum particle filtering. IEEE

Transactions on Signal Processing, 51:2602 – 2612, 2003.

[62] E. Koyuncu and G. Inalhan. A probabilistic B-spline motion planning algorithm

for unmanned helicopters flying in dense 3d environments. In The IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 815–821,

2008.

[63] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.

TR 98-11, Computer Science Dept., Iowa State University, Oct. 1998.

[64] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress

and prospects. In Proceedings Workshop on the Algorithmic Foundations of

Robotics, 2000.

[65] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for

partially observable environments: Scaling up. Technical report, Department

of Computer Science, Brown University, Providence, RI, July 1995.

BIBLIOGRAPHY 109

[66] E. Magid, D. Keren, E. Rivlin, and I. Yavneh. Spline-based robot navigation.

In The IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 2296–2301, 2006.

[67] R. Martinez-Cantin and J. A. Castellanos. Unscented slam for large-scale out-

door environments. In In Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, pages 328–333, 2005.

[68] R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. Castellanos. Active policy

learning for robot planning and exploration under uncertainty. In Proceedings

of Robotics: Science and Systems, Atlanta, GA, USA, June 2007.

[69] A. A. Masoud. A harmonic potential field approach for navigating a rigid,

nonholonomic robot in a cluttered environment. In Proceedings of The IEEE

International Conference on Robotics and Automation, pages 7–13, 2009.

[70] M.A.O. Mendez and J.A.F. Madrigal. Fuzzy logic user adaptive navigation con-

trol system for mobile robots in unknown environments. In IEEE International

Symposium on Intelligent Signal Processing, pages 1–6, 2007.

[71] J. Minguez and L. Montano. Nearness diagram (ND) navigation: Collision

avoidance in troublesome scenarios. IEEE Transactions on Robotics and Au-

tomation, 20:45 – 59, 2004.

[72] J. Minguez, J. Osuna, and L. Montano. A “divide and conquer” strategy based

on situations to achieve reactive collision avoidance in troublesome scenarios. In

IEEE International Conference on Robotics and Automation, volume 4, pages

3855–3862, 2004.

[73] G. E. Monahan. A survey of partially observable Markov decision processes:

theory, models and algorithms. Management Science, 28(1), 1982.

[74] M. Montemerlo. FastSLAM: A Factored Solution to the Simultaneous Localiza-

tion and Mapping Problem with Unknown Data Association. PhD dissertation,

Robotics Institute, Carnegie Mellon University, Pittsburgh, July 2003.

BIBLIOGRAPHY 110

[75] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored

solution to the simultaneous localization and mapping problem. In Proceedings

of The AAAI National Conference on Artificial Intelligence, pages 593–598,

Edmonton, Canada, 2002.

[76] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An

improved particle filtering algorithm for simultaneous localization and mapping

that provably converges. In Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence, pages 1151–1156. IJCAI, 2003.

[77] E. Nebot. University car park dataset. ACFR - The University of Sidney.

http://www-personal.acfr.usyd.edu.au/nebot/car_park.htm/.

[78] A. Ng and M. Jordan. Pegasus: A policy search method for large MDPs and

POMDPs. In Proceedings of the Sixteenth Conference on Uncertainty in Arti-

ficial Intelligence, pages 406–415, 2000.

[79] K. Park and N. Zhang. Behavior-based autonomous robot navigation on chal-

lenging terrain: A dual fuzzy logic approach. In Annual Foreign Ownership,

Control or Influence Conference, pages 239–244, 2007.

[80] A. Piazzi and C. Guarino Lo Bianco. Optimal trajectory planning with quintic

G2-splines. In Proceedings of the IEEE intelligent Vehicles Symposium, pages

198–203, Oct 2000.

[81] A. Piazzi, M. Romano, and C. Guarino Lo Bianco. G3-splines for the path

planning of wheeled mobile robots. In Proceedings of the European Control

Conference, Cambridge (UK), Sep 2003.

[82] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: an anytime

algorithm for pomdps. In Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI), 2003.

[83] J. L. Piovesan and H. G. Tanner. Randomized model predictive control for robot

navigation. In Proceedings of The IEEE International Conference on Robotics

and Automation, pages 1817–1822, 2009.

BIBLIOGRAPHY 111

[84] M. K. Pitt and N. Shephard. Filtering via simulation: auxiliary particle filter.

Journal of the American Statistical Association, 94:590–599, 1999.

[85] J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart. Point-based value iter-

ation for continuous POMDPs. Journal of Machine Learning Research, 7:2329–

2367, 2006.

[86] P. Poupart. Exploiting structure to efficiently solve large scale partially observ-

able Markov decision processes. PhD dissertation, Department of Computer

Science, University of Toronto, 2005.

[87] P. Poupart and C. Boutilier. Value-directed compression of POMDPs. InAnnual

Conference on Neural Information Processing Systems, pages 1547–1554, 2002.

[88] E. Prassler, J. Scholz, M. Strobe1, and P. Fiorini. An intelligent (semi-) au-

tonomous passenger transportation system. In IEEE/IEEJ/JSAI International

Conference on Intelligent Transportation Systems, pages 374 – 379, 1999.

[89] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and con-

trol. In Proceedings of the International Conference on Robotics and Automa-

tion, pages 802–807, 1993.

[90] R. R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan. The unscented

particle filter (cued/f-infeng/tr-380). Technical Report CUED/F-INFENG/TR

380, Cambridge University Engineering Department, Cambridge, England, Au-

gust 2000.

[91] S. Rajesh, K. Sandeep, and R.K. Mittal. Robot motion planning on rough

terrain using multiresolution second generation wavelets and non-uniform B-

splines. In IEEE International Conference on Industrial Technology, pages 967–

972, 2006.

[92] J. Randlov and P. Alstrm. Learning to drive a bicycle using reinforcement

learning and shaping. In Proceedings of the Fifteenth International Conference

on Machine Learning, 1998.

BIBLIOGRAPHY 112

[93] Patrick Reignier. Fuzzy logic techniques for mobile robot obstacle avoidance.

Robotics and Autonomous Systems, 12(3-4):143–153, 1994.

[94] S. Ross and B. Chaib-draa. AEMS: an anytime online search algorithm for ap-

proximate policy refinement in large POMDPs. In Proceedings of the 20th In-

ternational Joint Conference on Artificial Intelligence, pages 2592–2598, 2007.

[95] S. Ross, B. Chaib-draa, and J. Pineau. Bayes-adaptive POMDPs. In Advances

in Neural Information Processing Systems, 2007.

[96] S. Ross, B. Chaib-draa, and J. Pineau. Bayesian reinforcement learning in

continuous POMDPs with application to robot navigation. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages 2845–

2851, Pasadena, CA, 2008.

[97] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms

for POMDPs. Journal of Artificial Intelligence Research, 32:663–704, 2008.

[98] N. Roy. Finding Approximate POMDP solutions Through Belief Compression.

PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,

September 2003.

[99] N. Roy and S. Thrun. Coastal navigation with mobile robots. In Advances in

Neural Processing Systems, pages 1043–1049, 1999.

[100] K. Sato. Collision avoidance in multi-dimensional space using Laplace potential.

In Proc. 15th Conf. Robotics Soc. Jpn., pages 155–156, 1987.

[101] T. Sattel and T. Brandt. Ground vehicle guidance along collision-free trajec-

tories using elastic bands. In Proceedings of the American Control Conference,

pages 4991 – 4996, 2005.

[102] T. Schon, F. Gustafsson, and P. Nordlund. Marginalized particle filters for

mixed linear nonlinear state-space models. IEEE Trans. on Signal Processing,

53:2279–2289, 2005.

BIBLIOGRAPHY 113

[103] E. Shan, B. Dai, J. Song, and Z. Sun. A dynamic RRT path planning algorithm

based on B-spline. In International Symposium on Computational Intelligence

and Design, pages 25–29, 2009.

[104] R. Sim and N. Roy. Active exploration planning for SLAM using extended

information filters. In Proceedings of Conference on Uncertainty in Artificial

Intelligence, 2004.

[105] R. Sim and N. Roy. Global A-optimal robot exploration in SLAM. In Pro-

ceedings of The IEEE International Conference on Robotics and Automation,

2005.

[106] R. Simmons. The curvature-velocity method for local obstacle avoidance. In

International Conference on Robotics and Automation, April 1996.

[107] T. Smith and R. G. Simmons. Heuristic search value iteration for POMDPs. In

Proceeding of International Conference on Uncertainty in Artificial Intelligence,

2004.

[108] T. Smith and R. G. Simmons. Point-based pomdp algorithms: Improved anal-

ysis and implementation. In Proceeding of International Conference on Uncer-

tainty in Artificial Intelligence, 2005.

[109] E. J. Sondik. The optimal control of partially observable Markov decision pro-

cesses. PhD dissertation, Stanford University, 1973.

[110] M. Spaan and N. Vlassis. A point-based pomdp algorithm for robot planning. In

Proceedings of the IEEE International Conference on Robotics and Automation,

New Orleans, Louisiana, April 2004.

[111] M. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for

POMDPs. Journal of Artificial Intelligence Research, 24:195–220, 2005.

[112] M. T.J. Spaan. Approximate planning under uncertainty in partially observ-

able environments. PhD dissertation, Universiteit van Amsterdam, Amsterdam,

Netherlands, 2006.

BIBLIOGRAPHY 114

[113] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration

using Rao-Blackwellized particle filters. In Robotics: Science and Systems Con-

ference, pages 65–72, 2005.

[114] A. Stentz, A. Kelly, P. Rander, H. Herman, O. Amidi, R. Mandelbaum, G. Sal-

gian, and J. Pedersen. Real-time, multi-perspective perception for unmanned

ground vehicles. In Proceedings of AUVSI’s Unmanned Systems Symposium,

July 2003.

[115] F. Suryawan, J. De Dona, and M. Seron. On splines and polynomial tools for

constrained motion planning. In 18th Mediterranean Conference on Control

and Automation, June 2010.

[116] H. Tanner and J. Piovesan. Randomized receding horizon navigation. IEEE

Transactions on Automatic Control, 55(11):2640–2644, August 2010.

[117] S. Thrun. Monte carlo POMDPs. In Advances in Neural Information Processing

Systems, pages 1064–1070, 2000.

[118] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cam-

bridge, MA, 2005.

[119] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,

P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci,

V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen,

C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Brad-

ski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. Stanley:

The robot that won the DARPA Grand Challenge. Journal of Field Robotics,

23(9):661C692, 2006.

[120] P. Tompkins, A. Stentz, and D. Wettergreen. Global path planning for mars

rover exploration. In Proceedings of The IEEE Aerospace Conference, March

2004.

BIBLIOGRAPHY 115

[121] I. Ulrich and J. Borenstein. VFH+: Reliable obstacle avoidance for fast mo-

bile robots. In IEEE International Conference on Robotics and Automation,

volume 2, pages 1572–1577, 1998.

[122] I. Ulrich and J. Borenstein. VFH*: local obstacle avoidance with look-ahead

verification. In IEEE International Conference on Robotics and Automation,

volume 3, pages 2505–2511, 2000.

[123] J. van den Berg, M. C. Lin, and D. Manocha. Reciprocal velocity obstacles for

real-time multi-agent navigation. In IEEE International Conference on Robotics

and Automation, pages 1928–1935, 2008.

[124] R. van der Merwe. Sigma-Point Kalman Filters for Probabilistic Inference in

Dynamic State-Space Models. PhD thesis, OGI School of Science & Engineering,

Oregon Health & Science University, Portland, OR, USA, April 2004.

[125] Miloš Šeda. Roadmap methods vs. cell decomposition in robot motion plan-

ning. In Proceedings of the 6th WSEAS International Conference on Signal

Processing, Robotics and Automation, pages 127–132, 2007.

[126] X. Wang and H. Zhang. 2007 ieee international conference on robotics and

automation, icra 2007, 10-14 april 2007, roma, italy. In ICRA. IEEE, 2007.

[127] B. Yamauchi. Frontier-based exploration using multiple robots. In Proceedings

of the Second International Conference on Autonomous Agents, AGENTS ’98,

pages 47–53, New York, NY, USA, 1998.

[128] Y. Yanoshita and S. Tsuda. Space robot path planning for collision avoidance.

In Proceedings of the International MultiConference of Engineers and Computer

Scientists, 2009.

[129] P. G. Zavlangas, S. G. Tzafestas, and K. Althoefer. Fuzzy obstacle avoidance

and navigation for omnidirectional mobile robots. In European Symposium on

Intelligent Techniques, 2000.

BIBLIOGRAPHY 116

[130] R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm

for POMDPs. In Proceedings of the 17th International Joint Conference on

Artificial Intelligence, Seattle, WA, 2001.

