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Preface

The Purpose of This Book

This book provides a rigorous course in the calculus of functions of a real vari-
able. It is intended for students who have previously studied calculus at the
elementary level and are possibly entering their first upper-level mathematics
course. In many undergraduate programs, the first course in analysis is expected
to provide students with their first solidtraining in mathematical thinking and
writing and their first real appreciation of the nature and role of mathematical
proof. Therefore, a beginning analysis text needs to be much more than just a
sequence of rigorous definitions and proofs. The book must shoulder the respon-
sibility of introducing its readers to a new culture, and it must encourage them to
develop an aesthetic appreciation of this culture.

This book is meant to serve two functions (and two audiences): On the one
hand, it is intended to be a gateway to analysis for students of mathematics and
for certain students majoring in the sciences or technology. It is also intended,
however, for other groups of students, such as prospective high school teachers,
who will probably see their course in analysis as the hardest course that they
have ever taken and for whom the most important role of the course will be as an
introduction to mathematical thinking.

At the same time, this book is meant to be a recruiting agent. It is my desire
to motivate talented students to develop their interest in mathematics and to pro-
vide them with an incentive to continue their studies after the present course has
ended. Each topic is presented in a way that extends naturally to more advanced
levels of study, and it should not be necessary for students to “unlearn” any of
the material of this book when they enter more advanced courses in analysis and
topology.

The approach in this book is particularly gentle in its first few chapters, but
it gradually becomes more demanding. By the time one reaches the last few
chapters, both the pace and depth have been increased. Those who reach the later
chapters are probably in the second term of a two-term sequence in mathemat-
ical analysis, and I expect students who use this book for a second course (the
survivors of a first course) to be generally stronger than those who take analysis
for one term only. These later chapters cover quite a lot of ground and contain
a number of innovative sections on topics that are not usually covered in a book
at this level. A third level of coverage is provided by the optional chapters that
appear only in the on-screen version of this book. These are the chapters that

xi



xii Preface

are marked in green in the on-screen Contents documents. However, even in the
more demanding chapters, I have preserved my commitment to strong motivation
and clean, well-explained proofs.

Global Structure of the Book
The book is divided into two main parts: Part I and Part II.

Part I
Part I introduces the notion of mathematical rigor and consists of Chapters 1, 2,
3, and 4 as illustrated in the following figure. The lighter boxes in this figure
represent chapters in the main body of the book and the darker boxes represent
chapters that can be reached only in the on-screen version.

     A Note
 to the Reader

1
The Emergence

of Rigorous Calculus

2
Mathematical

Grammar

3
Strategies

for Writing Proofs

4
Elements of
Set Theory

4
A More Detailed
Presentation of

Set Theory

Chapter 1,The Emergence of Rigorous Calculus, presents a very brief view
of the history of rigorous calculus and of the notion of rigor in mathematics.

Chapter 2,Mathematical Grammar, provides an introduction to the reading
and writing of mathematical sentences and to some of the special words that we
use in a mathematical argument.

Chapter 3,Strategies for Writing Proofs, is a sequel to the chapter on math-
ematical grammar. The message of this chapter is that the nature of an assertion
that one wishes to prove can often suggest a strategy for the proof. Students who
study this chapter will find it easier to solve problems later in the text.

Chapter 4,Elements of Set Theory, presents a brief elementary review of the
set-theoretic and function concepts that are used throughout the text. The on-
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screen text offers an alternative chapter,Set Theory, which covers the material
much more carefully and goes on to present some advanced topics.

An instructor may choose to base a significant part of the course on Part I
of the text or to let the course skim through this part. Some instructors may
choose to skip Part I altogether and proceed directly to Part II, where the study
of mathematical analysis begins.

Part II
Part II presents an introductory coursein mathematical analysis as illustrated
in the following figure. The lighter boxes in this figure represent chapters in
the main body of the book and the darker boxes represent chapters that can be
reached only in the on-screen version. Notice that some of the interdependence
arrows in the figure are dotted to remind us that we have a choice of using
either a printed chapter or its alternative on-screen partner as the prerequisite
to later material. For example, we can use either of the two Chapters 11 as the
prerequisite to Chapter 13.

6
The Topology

of Metric Spaces

6
Elementary Topology

of the Real Line

5
The Real Number

System

7
Limits of Sequences

in Metric Spaces

7
Limits of Sequences

8
Limits and Continuity

of Functions

8
Limits and Continuity

in Metric Spaces

9
Differentiation

18
Calculus of

Several Variables

16
Integration

of Functions
of Two Variables

14
Sequences and Series

of Functions

12
Infinite Series

10
The Exponential and

Logarithmic Functions

11
The Riemann

Integral

13
Improper Integrals

17
Sets of Measure Zero

17
Sets of Measure Zero

Stieltjes Version

15
Calculus of a

Complex Variable

11
The Riemann-Stieltjes

Integral

Chapter 5,The Real Number System, introduces the real number system and
the notion of completeness that plays a prominent role throughout the succeeding
chapters.

Chapter 6,Elementary Topology of the Real Line, introduces some of the
simple topological properties of the number systemR. These properties are used
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extensively in the subsequent chapterson limits, continuity, differentiation, and
integration. The on-screen text offers an alternative chapter,The Topology of
Metric Spaces, for those who prefer a more advanced approach to the material.

Chapter 7,Limits of Sequences, presents an introduction to the theory of
limits. I believe that it is easier to study limits of sequences before one studies
limits of functions of a real variable. The on-screen text offers an alternative
chapter,Limits of Sequences in Metric Spaces, for those who read the more
general version of Chapter 6.

Chapter 8,Limits and Continuity of Functions, presents an introduction to the
theory of limits and continuity of functions of a real variable. The on-screen text
offers a more general chapter,Limits and Continuity in Metric Spaces, for those
who desire the more general approach.

Chapter 9,Differentiation, presents an introduction to differentiation of func-
tions of a real variable. The core of this chapter is the mean value theorem,
whose proof rests heavily on the properties of continuous functions developed in
Chapter 8.

Chapter 10,The Exponential and Logarithmic Functions, presents a rigorous
definition of exponents and logarithms and derives their principal properties.

Chapter 11,The Riemann Integral, begins with a discussion of the integration
of step functions. Although this discussion lengthens the chapter a little, I believe
that the increase in length is worthwhile. The discussion of step functions and
elementary sets is easy to read and takes little classroom time. Moreover, it
provides simple, clean, and precise notation in which to present the mainstream
of Riemann integration. This notation allows us to give short clean proofs of
several theorems later in the chapter that look quite formidable in many other
texts. The composition theorem for Riemann integrability is a case in point.
Finally, the efficient notation developed in this chapter facilitates the proof of the
Arzela bounded convergence theorem in Chapter 14. The on-screen text offers
an alternative chapter,The Riemann-Stieltjes Integral, for those who elect to read
Chapter 12 before Chapter 11 and who prefer a Stieltjes integral.

Chapter 12,Infinite Series, presents an introduction to the theory of infinite
series. Those who wish to study this chapter before the chapter on Riemann
integration may do so.

Chapter 13,Improper Integrals, presents a brief theory of improper integrals
that runs parallel to some of the material in Chapter 12.

In Chapter 14,Sequences and Series of Functions, I have departed a little
from some of the traditions that are canonized in most other books. This de-
parture stems from the availability of the Arzela bounded convergence theorem.
Because this theorem is presented here with a fairly simple proof, I have been
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able to place the concept of uniform convergence in a slightly different perspec-
tive, still important but not quite as important as it is in most texts. The fact
that we do not require uniform convergence of a sequence(fn) of functions to
guarantee an equality of the form

∫ b

a

lim
n→∞

fn = lim
n→∞

∫ b

a

fn

opens the door to some beautiful and powerful theorems that appear, in Chapter
16, in a more powerful form than one would find in most texts. Among these are
the theorems on differentiating under an integral sign and interchange of iterated
Riemann integrals.

Chapter 15,Calculus of a Complex Variable, is optional and is available in
the on-screen version of the book.

Chapter 16,Integration of Functions of Two Variables, is concerned with
iterated Riemann integrals of functions defined on a rectangle inR2. The key
theorems of the chapter are the theorem on differentiation under an integral
sign and the beautiful and elegant Fichtenholz theorem on the interchange of
iterated Riemann integrals. The latter theorem, which has been much neglected
in analysis texts, is truly a theorem about Riemann integration. It has no analog
for Lebesgue integrals and is not a special case of Fubini’s theorem.

Chapter 17,Sets of Measure Zero, is optional and is available in the on-
screen version of the book. This chaptertakes the reader to the doorstep of the
modern theory of integration and presents a number of interesting theorems about
Riemann integration that are beyond our reach in Chapter 11. Among these are
the sharp form of the composition theorem for Riemann integrability and the
most natural form of the change of variable theorem. The on-screen text offers
an alternative chapter, giving a version for Stieltjes integrals of the measure zero
concept.

Chapter 18,Calculus of Several Variables, is optional and is available in the
on-screen version of the book. This chapter develops many of the central topics
in the calculus of several variables, including partial differentiation, integration
on curves, the inverse and implicit function theorems, and the change of variable
theorem for multiple integrals.

The On-Screen Version of This Book

This book is supplied both as a traditionally printed and bound textbook and also
in a version that is designed for on-screen reading using the software productSci-
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entific Notebook1 Version 4.0 or later. Both the on-screen version andScientific
Notebook are supplied in the compact disk that is bundled with the book. Once
installed,Scientific Notebook will run for 30 days and will then be converted
automatically into its free viewer version calledScientific Viewer, which will run
permanently in your computer.

Scientific Viewer is all you need for the reading of the on-screen version of
this book. However, if you want to be able to revise a document and save the
changes, and if you want to be able to read the interactive topics in this book
using one of the computer algebra systems with whichScientific Notebook comes
bundled, then you need to have the full version ofScientific Notebook. Those who
have an earlier version ofScientific Notebook and who do not wish to upgrade
at present should consider installingScientific Viewer 4.0 for reading this text
and using their presentScientific Notebook when they want to do computing
operations. For information about purchasingScientific Notebook or unlocking
the timelocked version in your computer, go to the MacKichan Software website,
http://www.mackichan.com, or telephone them at (206) 780-2799.

Disclaimer
The author of this text has no business connection with MacKichan Software
Inc. and does not represent that company in any opinions or perspectives of the
software products that are presented in this text.

I am, nevertheless, greatly indebted to MacKichan Software Inc. for the
wonderful job that they have done, for the unique opportunities that they have
provided the mathematical community with their truly unique products, and for
the help that they have provided to me personally in the writing of my books.

Why an On-Screen Version?
Both the printed version and the on-screen version can play an important role in
the reading of this book, and readers are encouraged to make use of both of them.
The importance of a traditionally printed and bound text speaks for itself. There
is, of course, nothing quite like thumbing through a printed text and there is no
doubt that, at times, the reader’s best course of action is to read the printed text.
However, the on-screen version of the text presents special features that could
never be found in a printed text, and there are times when the reader would gain
by taking advantage of these special features.

The basic core of the book is containedin the printed version. The on-screen
version contains all of the material in theprinted version, but, taking advantage
of the powerful communication and word processing features ofScientific Note-
book, the on-screen version also contains a large number of hyperlinks that can
1 Scientific Notebook is a product of MacKichan Software Inc.
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whisk the reader to many other items that do not appear in the printed text.

The on-screen version of the text contains the following features:

1. It includes a large number of alternative approaches and extensions of the
text that can be accessed by clicking on hyperlinks. I have also provided
hyperlinks that lead to hints or solutions to exercises, and, on many of the
occasions on which the reader is told in the text that an assertion is “easy to
see”, I have provided a link to a full explanation of that assertion. In this way
I have managed to make the on-screen text more friendly than any printed
text could be. Some of the hyperlinks in this book lead to files located
on the reader’s hard drive, but others will take advantage of the Internet
communication features ofScientific Notebook and will take the reader to
targets in the World Wide Web. Links of the latter type allow me to be
responsive to feedback receivedfrom students and instructors.

2. Hyperlinks in the on-screen version also allow for instant cross referencing.
A single click takes us to the target of a cross reference and one more click
returns us to the point at which the reference was made.

3. The on-screen version of the text contains a very useful set of Contents
documents that will enable you to reach any chapter, section, or subsection
that you want to see. Every header in the book also contains a link back to
the appropriate position in the Contents documents, thus providing you with
an instant roadmap of the book at any time.

4. The navigation bar inScientific Notebook provides a list of headers in the
document you are reading, and you can reach any item in this list by clicking
on it.

5. The on-screen version of the text includes an index document. By clicking
on any entry in the index, the reader can jump to the appropriate position in
the text.

6. The on-screen version of the text will contain a variety of links to sound
messages and sound movies. Many of the movies are presented as mini-
lectures that show part or all of a proof as it is being written and explained
by the author. In this way, they simulatethe lecture room experience with the
added advantage that you can fast forward them or drag the cursor back to
repeat any portions of the movie that you want to hear again.

Additional Material Provided in the On-Screen Version
One of the important roles of the on-screen version is to allow me to include
a wide variety of exercises, proofs, and topics without compromising the ease
with which a first course in real analysis can be selected from the printed book.
The printed book remains uncluttered and contains the basic bill of fare of an
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introductory course, but the on-screenversion provides the option to read much
more, even in those chapters that also appear in the printed version.

For example, there are links to extra blocks of exercises that are not included
in the printed text, there are links to proofs that were omitted in the printed book,
and there are some extra optional sections to which reference may be made in
later optional sections. Furthermore, theon-screen version of the text contains
several additional chapters that do not appear in the printed version:

1. The chapter on set theory in the printed text contains only a minimum of
material. However, at the beginning of that chapter, the on-screen version
provides a link to a more extensive presentation that includes the concept of
countability, the equivalence theorem, and some more advanced topics such
as the axiom of choice, Zorn’s lemma, the well ordering principle, and the
continuum hypothesis.

2. At the beginning of the chapter on topology of the real line, the on-screen
version provides a link to the topology of metric spaces.

3. At the beginning of the chapter on limits of sequences inR, the on-screen
version provides a link to the theory of limits of sequences in metric spaces.

4. At the beginning of the chapter on Riemann integration, the on-screen
version provides a link to an alternative chapter on Riemann-Stieltjes
integration.

5. The on-screen version provides a link to an optional chapter that introduces
the calculus of a complex variable. Topics included in this optional chapter
include the fundamental theorem of algebra, some elementary properties of
power series, and the exponential and trigonometric functions of a complex
variable. However, this chapter makes no attempt to reach any of the
theorems that form the basic bill of fare in a first course in complex analysis.

6. The on-screen version provides a link to an optional chapter that introduces
the concept of a set of measure zero in the line and that makes it possible
to prove a variety of theorems about Riemann integrals that could not be
reached in the main integration chapter. Another link offers an alternative
to this chapter that presents the measure zero concept for Riemann-Stieltjes
integrals.

7. The on-screen version provides a link to a chapter that develops many
of the central topics in the calculus of several variables, including partial
differentiation, integration on curves, the inverse and implicit function
theorems, and the change of variable theorem for multiple integrals.

My intention is to make this book serve as a reference long after the first
course in analysis has ended.
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Interaction with Readers
An important advantage of an on-screentext is that is can be a constantly chang-
ing product that allows me to be responsive to requests that may be made by my
readers. I encourage my readers to write to me at

lewins@mindspring.com

with comments and requests.

1. You may point out errors or omissions in the text that I can repair in the
periodic update files that I shall be providing on my website. Instructions for
updating your copy of the book can be found on page xxxi.

2. You may request additional “mini-lecture” versions of proofs.
3. If your instructor permits, then you will be given a version of the text in

which the links that appear at the beginning of each set of exercises
lead to documents that contain more extensive sets of solutions than those
that exist in the standard solutions documents.

Based on my experiences with my own students, I am hopeful that some of
my readers will feel encouraged to learn to write their mathematics inScientific
Notebook documents. By acquiring this skillthey will become more organized in
their study and will keep better records of their work. Such readers will be able to
contact me by E-mail enclosingScientific Notebook documents as attachments.
If you wish to send me a document to which you have added pictures, please
remember to save it as a rap file before you send it.Please use a utility

such as PKZIP2 to compress any large file before you upload it.

Interactive Reading with Scientific Notebook

Readers who have the full version ofScientific Notebook, rather than the free
viewer version, also have a copy of a powerful computer algebra system (such as
Maple3 or MuPAD4) with which Scientific Notebook comes bundled. The oper-
ation of this computer algebra system withinScientific Notebook is particularly
simple and does not require the reader to be familiar with any special syntax.
Access to the computing features allows the reader to experiment and to increase
his/her understanding of the work. Items that are meant to be read interactively

with Scientific Notebook are marked by theScientific Notebook logo .

2 PKZIP is a trademark of PKWARE, Inc. For details, go to
http://www.pkware.com/Welcome.html
3 Maple is a trademark of Waterloo Maple Software.
4 MuPAD is a trademark of Sciface Software, GmbH and Co.
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In spite of the obvious value of interactive reading that makes use of the
computing features ofScientific Notebook, this text does not go out of its way
to present interactive reading on every page. Certainly, there are topics in this
text for which the use of computing features is relevant and useful, but there are
even more topics in which an attempt to use such computing features would be
artificial and counterproductive.

The philosophy of this book is that, where the nature of the material being
studied makes the computing features useful, these features should be exploited.
However, where the material would not benefit from these computing features,
the features have no place. Under no circumstances is the material of this book
specifically chosen in order to provideopportunities to use the computing fea-
tures ofScientific Notebook. In this sense, my book is not a “reform” text.

Instructor’s Manual

The instructor’s manual for this book is provided as a PDF file suitable for
printing, and also in a form that is designed for reading on-screen. The man-
ual elaborates on the material of the book, contains suggestions for alternative
approaches, and contains solutions to most of the exercises for which a solution
is not already provided in the text. Bona fide instructors may obtain instructions
for downloading and using the instructor’s manual by writing to

solutions@cambridge.org

The on-screen version of the instructor’s manual is contained in a single exe-
cutable file, the running of which will upgrade an existing installation of the
book to an instructor version rather than a student version. Thus, the book must
already be in place when the instructor’s manual is installed. Installation of the
instructor’s manual will require a password that will be supplied to instructors by
Cambridge University Press at the address solutions@cambridge.org.

As explained earlier, those exercises for which a solution or a hint is provided

in the text are marked with the icon . When one clicks on the link that
appears at the beginning of a block of exercises, one sees those solutions written
in blue. The solutions to the other exercises appear ingreen and are visible
only in an instructor installation of the book. My intention is to make it easy for
instructors to supply their students with those green solutions that they wish to
make available.
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Preparation of This Book

This book is a sequel to the textAn Introduction to Mathematical Analysis by
Jonathan Lewin and Myrtle Lewin, whose first edition was published by Random
House Inc. in 1988 and second edition was published by McGraw-Hill Inc. in
1993. I am deeply indebted to Myrtle Lewin for the many important contributions
that she made to that book; they were contributions whose reach extends to the
present work.

Both the printed version and the on-screen version of this work were prepared
with Scientific WorkPlace 4.1, which is MacKichan Software’sflagship product.
Scientific WorkPlace can be thought of asScientific Notebook together with sup-
port for LATEX typesetting. The page structure of the printed text is derived from
an adaptation that I made of a document style supplied by MacKichan for use
with the Scientific WorkPlace style editor. I would like to express my appreci-
ation to the folks at MacKichan Software and, in particular, to Jon Stenerson
and Jeanie Olivas, for the patient help that they gave me when I was working on
this document style. I would also like to express my profound appreciation to
Roger Hunter, Patti Kearney, Barry MacKichan, George Pearson, Jon Stenerson,
and Steve Swanson of MacKichan Software for the valuable help and advice that
they have given me in the preparation of the on-screen version of this book.

I would like to express my equally profound appreciation to my very dear
friend, Natalie Kehr, who has worked through much of the manuscript, both hard
copy and on-screen, and has sent me hundreds of error corrections and thoughtful
suggestions. Time and time again, she pushed me, ever so tactfully, to undertake
tasks that I had declared to be impossible. The result is a manuscript of a far
higher quality than I would have been motivated to create alone.

I would like to express my appreciation to Eric Kehr (son of Natalie Kehr)
for the valuable assistance that he provided me in order to produce an animated
graph of the ruler function.

Last, but not least, I would like to express my appreciation to my good friend
Dennis Burkey, who significantly improved and simplified the installation of this
book by writing the program that places a shortcut to the Contents document on
your desktop. Dennis also wrote the programs that you can access from the CD
to perform automatic uninstallation of the movies and, thereby, made this book
available to those who do not have unlimited free disk space.

Jonathan Lewin
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Reading This Book On-Screen

What do I Need to Read This Book On-Screen?

The on-screen version of this book is designed to be read with Version 4.0 or
later of the software productScientific Notebook that is made by MacKichan
Software Inc. Alternatively, you can use the free reader version,Scientific Viewer,
of Scientific Notebook or you can use MacKichan Software’sflagship product,
Scientific WorkPlace. In order to run these products you need to be running
Windows 95, Windows 98, Windows ME, Windows NT 4.0, Windows 2000, or
Windows XP.

When registered with the serial number that comes with this book, the full
version ofScientific Notebook that is provided on your book CD will run on
your computer for 30 days. After your 30-day trial period is over, you have two
options:

1. You can register your installation ofScientific Notebook a second time, using
a permanent serial number purchased from MacKichan Software.Scientific
Notebook will then run permanently on your computer. For details go to the
MacKichan Software website

http://www.mackichan.com

or telephone them at (206) 780-2799.
2. You can let the temporary registration ofScientific Notebook expire, in

which case your installation will be converted automatically into the free
productScientific Viewer that will allow you to read this book on-screen and
will work permanently in your computer. However,Scientific Viewer will
not allow you to save any changes that you make in documents and will not
provide you access to the computer algebra systems that come bundled with
Scientific Notebook. You will have the option of registering the product at
any time in order to restore these features.

What Is Scientific Notebook?

Scientific Notebook is a combination word processor and computer algebra sys-
tem. It combines the features of a powerful and friendly scientific word processor
with the computing features of the powerful computing enginesMuPAD5 and

5 MuPAD is a product of SciFace Software, Gmb H and Co.
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xxiv Reading This Book On-Screen

Maple6 that are bundled withScientific Notebook. This link to a computer alge-
bra system makes it possible for aScientific Notebook user to work directly with
mathematical expressions that have been written into a document, expressions
that have exactly the same form as those that one would write with pencil and
paper.

The purpose of this chapter is to give you a quick training in the use of those
features ofScientific Notebook that you will need to read this book and a brief
overview of some of the computing features.

Getting Started

Using the Movie and Installation CD

The Welcome Screen
When you insert the CD that is bundled with this book you will see a welcome
screen and you will view a short sound movie that tells you how the CD may
be used. The welcome screen contains four main menu items: take the tour,
installingScientific Notebook, book installation and installing movies.

Taking the Tour
When you click on this item your computer will play a sound movie that takes
you on a tour of the on-screen version of the book.

Installing Scientific Notebook
Unless you already have a MacKichan Software product, Version 4.0 or later,
installed in your computer, you should begin by clicking on the option to install
Scientific Notebook. You will be taken to aScientific Notebook installation page
that provides you with the option of installing a 30-day timelocked copy ofSci-
entific Notebook 4.1. This page also shows the serial number that you should use
when installingScientific Notebook. After the installation ofScientific Notebook
is complete you should restart your computer. Then you should runScientific
Notebook and follow the instructions for its registration so that its features will
be activated.

Installing the Book
OnceScientific Notebook is up and running, you should reinsert the CD, and, this
time, you should click on the menu item in the welcome screen that takes you
to the book installation page. Follow the instructions for installing the book into
your computer.
6 Maple is a product of Waterloo Maple Software.
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I strongly recommend that you click on the option for placing a shortcut to
the on-screen Contents document on your desktop. If you select that option, then
you will be able to begin each reading session by clicking on this shortcut.

Installing the Movies
After you have completed the book installation you should click on the menu
item in the welcome screen that takes you to the movie installation page from
which you can install the source files for the movies, one chapter at a time. Note
that a movie cannot be played unless it has been installed. If, at any time, you
find that the movie files are taking up too much space in your computer, insert
your CD, go to the movie installation page, and click on the option to uninstall
the movies from any chapter you are not presently reading.

Setting Your Screen View

Your enjoyment of the on-screen version of this book will be increased if you
optimize your screen view. This section contains some suggestions that you may
use for this purpose.

Setting Your Zoom Factor (Screen Font Size)
The ideal size for the screen fonts in your particular installation ofScientific
Notebook depends on the screen resolution at which you run your session of
Windows. The default sizes have been chosen to suit a screen resolution of 1024
by 768. If your screen resolution is higher, then you may want a larger screen
font size; and if your resolution is lower, then you may want smaller screen
fonts. Please note that adjusting your screen fonts is done only for your comfort
in reading documents on the computer screen. In no way will a change in the size
of your screen fonts affect the way in which your printed documents appear.

There are two main ways in which you can adjust the zoom factor in any
given document:

• If you have chosen to show theStandard toolbar, then you will see the zoom

factor button . By clicking on the little down arrow on the right of
this button you can bring up a menu of screen font sizes. You can change to
any of these by pointing at them and clicking the mouse, and you can also
type in your own size selection.

• At the top of your computer screen you will see several menus, one of which
is labelledView. Click on this menu and it opens showing
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You can choose quickly between any of the three screen font sizes shown
in this menu by pointing and clicking. If you chooseCustom, you will be
presented with the opportunity of typing in your size selection.

Appearance of Graphics in Your Documents
The default view of pictures inScientific Notebook displays a frame around each
picture. While such a frame does no harm, this book is designed to look its best
when those frames are not shown. Click on yourTools menu

and then click onUser Setup and select the page in the user setup labeled
Graphics.

In theScreen Attributes part of this page, selectPicture Only.
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Navigating in the On-Screen Book

In order to read this book efficiently on the computer screen you have to be able
to find your way around and move from point to point quickly and painlessly.
As in most Windows products, you can use arrow keys to scroll through your
documents line by line, thePage Up andPage Down keys to move up and
down by one screen at a time, and the vertical scroll bar at the right of your
screen to make larger jumps. However, your most valuable tool for navigating
through this book is the system of hypertext links (hyperlinks) that it contains.
The thousands of hyperlinks in this book will whisk you instantly to the material
you want to see.

Using the On-Screen Contents Document
With the help of the hyperlinks that it contains, the on-screen Contents document
provides you with the ability to jump, instantly, from anywhere in the book to any
topic that you want to see, and then to jump back again. Not only does the Con-
tents document provide you with links to the beginnings of all chapters, sections,
and subsections, but the headers of all those items in the text also contain links
back to the appropriate positions in the Contents document. Thus, the Contents
document provides you with an instant roadmap of the text, and it also allows
you to thumb through the on-screen text in much the same way that one canflip
through the pages of a printed book.

If you have placed a shortcut to the Contents document on your desktop, you
may want to begin each session by opening the Contents document and jumping
from there to the item you wish to read.

Appearance and Use of Hyperlinks
Each hyperlink appears either with a yellow background or a green background.
I have made an effort to use yellow hyperlinks for the utility links between the
various book features and for links to material that is covered in the printed
version of the book. The green links lead to material that appears only in the
on-screen version of the book.

This color coding applies to the vast majority of hyperlinks, but you will find
a few exceptions. In some cases, where the target of a link is closely related to
material in the printed text, it is not easy to decide what color the link should
be. Furthermore, there are some technical limitations to the choice of hyperlink
colors, and so a few links do have the wrong color.

In some documents you may find it necessary tohold down your control
key when you click on a link.

After operating a hyperlink, you can return to where you had been by clicking
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on the button in your link or history toolbar.

Using the On-Screen Index
The index to the on-screen version of this book is a single document that contains
the index entries in alphabetical order. Each item appears with a brief description
and one or more hyperlinks to positions in the text where that item appears. You
will also find a variety of links to biographical information that is located on the
World Wide Web. To reach the index you can click any of the many links to it
that appear in the book.

Using the Navigation Toolbar
Another useful way of navigating in any large document is to use theNavigate
andLink toolbars.

If these toolbars do not appear in your screen, click on theView menu at the top
of your screen. When it opens you will see

Click onToolbars and you will see the toolbar menu. Open it and make sure that
the toolbars that you want to see are checked.

If you click on the down arrow in yourNavigate toolbar, it will show you a
list of document headers and you can click on any of these headers to jump to it.

Links to Hints and Solutions of Exercises

At the beginning of each set of exercises you will see a hyperlink on which
you can click to jump to the hints and solutions. Those exercises for which either
a hint or a complete solution is providedin the solutions document are marked
with the icon . You will also be invited to send questions, comments, and
suggestions to the author. You may write to the author at

lewins@mindspring.com
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Figure 0.1.

Alternative Approaches to the Material
Some of the links take you to documents that extend the material as it appears in
the text or provide an alternative approach to it. Such links can also take you to a
variety of interesting exercises that do not appear in the main body of the book.

A link to extra material or to an alternative approach to the material will
appear with the icon or . A link to an item that contains material that
is likely to be significantly more difficult than the material in the text will appear

with the icon .7

A link to a sound message will appear with the icon .

Playing the Movies
This book contains about 50 sound movie “mini-lectures” that let you view a
portion of the text in lecture form withsome of the atmosphere that exists with
an instructor in a classroom. At any time while a movie is playing, you can press
your spacebar to make it pause, and youcan drag the cursor back and forth to
make the movie play at any point that you wish to see. Each movie appears with

the icon . Next to this icon, you will see the image
Wouldn't play??

   Click here! that links

to a reminder that a movie must be installed before it can be played.

If you can spare a few hundred megabytes of disk space, then you may wish to
install all of the movies from the CD after you have installed the book. Otherwise,
keep the CD handy. Each time you begin reading any chapter, you should insert
the CD and click on the option to install the movies that belong to that chapter.
The CD also gives you the option of uninstalling the movies from any chapter.

7 Why a skull and crossbones? Well, I think that even a mathematics book should be permitted
a bit of humour from time to time.
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Reading and Writing in Scientific Notebook

The text editing component ofScientific Notebook is a word processing system
that has the ability to distinguish betweentext andmathematics. At any time,
Scientific Notebook is either intext mode or it is in mathematics mode. You
can see which mode is active at any given time by looking at your standard tool
bar

If the button is showing there, thenScientific Notebook is in text mode and
any symbols that you type will be treated as text. Such symbols will usually be
black but, depending on their position in the document and the typeface being
used, they may also appear in other colors. If the mathematics tool bar shows the

symbol , thenScientific Notebook is in mathematics mode and any symbols
you type will be typeset according to mathematical conventions and also recog-
nized as mathematics for the purposes of mathematical operations. There are
many ways to change the mode ofScientific Notebook from text to mathematics

and back again. One way is to point the mouse at the symboland click it to

change to mathematics mode and to point at the symboland click to change
to text mode.

Interactive Reading with Scientific Notebook

If you are reading this text with the full version ofScientific Notebook, rather
than the free viewer version, or if you are reading this book with the MacKichan
Softwareflagship productScientific WorkPlace, then your software comes bun-
dled with a computer algebra system such asMaple or MuPAD. The operation
of the computer algebra system withinScientific Notebook is particularly simple
and does not require you to be familiar withany special syntax. If you have set
up your copy ofScientific Notebook to display the Computing toolbar,

then you can perform some of the most common computing operations with a
single mouse click. Alternatively, you may click on theCompute item at the
top of your screen to open the pull-down menu, which gives you a brief listing
of the operations that you can perform. As you can see, many of the items have
submenus that can be opened by clicking on the arrow to the right. For example,
if you move the cursor down toCalculus, then you see
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Each of the computing operations can be performed by the simple operation of
pointing at one of these menu items and clicking. Thus, for example, if you place
your cursor in the expression

∫ 1

0

√
1− x2dx and then click on the itemEvaluate

in the Compute menu, you will see∫ 1

0

√
1− x2dx =

1

4
π.

Updating Your Copy of the Book

To see a readme document that provides the latest release information, click on
the hyperlink

Latest Release
Information

that appears in the on-screen text.

If you would like to update your copy of the on-screen book to the latest
version available, you can use the link

Update the Book

provided there, which will allow you to download a self-extracting file. Be
warned that downloading time may be considerable if you have a slow Internet
connection. When you have downloaded the file, run it to extract its contents and
extract to thesame folder in which your present copy of the book is located.



xxxii Reading This Book On-Screen

To see a list of frequently asked questions and the answers to these questions,
click on the following hyperlink:

Troubleshooting
Guide

Summing Up

Both the printed bound copy and the on-screen version of this book will have a
role to play as you study the material that is contained in this book. Each version
has its own advantages and disadvantages. Try to preserve a balance between the
two versions as you read this book so that you can benefit from the features that
each of them provides.



A Note to the Reader

Mathematical analysis is the critical andcareful study of calculus that rests upon
some of the ground-breaking discoveries that were made during the nineteenth
century, discoveries that made it possible, for the first time, to appreciate the
nature of our number system and the concepts of limit, continuity, derivative, and
integral.

If you are a typical reader of this book, then you have already completed some
courses in a “first calculus” sequence, and the wordslimit, continuity, derivative,
and integral are already familiar to you. But there is an important difference
between the way you will see these concepts in this book and the way they are
presented in most elementary calculus courses. There, the purpose was to get on
with the material as quickly as possible so as to give you a bird’s-eye view of the
subject and to allow you to see some of its applications. Here, on the other hand,
we shall strive forunderstanding. Now that you already have your bird’s-eye
view, it is time to go back and make a careful and critical study of thecentral
ideas of calculus.

Although you will encounter many exciting new ideas in this book, it is not
our purpose to study the complete spectrum of calculus topics. In fact, your
elementary calculus courses covered many more topics than we shall study here.
And yet you will be working hard. Very hard! Do not be discouraged by the
prospect of the hard work that lies before you. The fruits of your labors as you
study this book will more than repay you for the efforts that you will make. Your
reward will be the thrill of genuine understanding and, as your understanding of
mathematics increases, so will your appreciation of its beauty. You will experi-
ence in mathematics the kind of stimulation and pleasure that we associate with
the great masterpieces in art, literature, and music. Perhaps you will come to feel
that mathematical analysis is the greatest masterpiece of them all.

1





PART I

Background Material

This part of the text contains a brief history of the emergence of rigorous calculus,
an introduction to mathematical grammar, an introduction to the art of reading
and writing mathematical proofs, and a brief introduction to the theory of sets
and functions. Use as little or as much of this material as you need.
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Chapter 1
The Emergence of Rigorous Calculus

1.1 What Is Mathematical Analysis?

Mathematical analysis8 is the critical and careful study of calculus with an em-
phasis on understanding of its basic principles. As opposed todiscrete mathe-
matics orfinite mathematics, mathematical analysis can be thought of as being a
form of infinite mathematics. As such, it must rank as one of the greatest, most
powerful, and most profound creations of the human mind.

The infinite! No other question has ever moved so profoundly the spirit of man — David Hilbert

(1921).

Now, as you may expect, great, profound, and powerful thoughts do not
often appear overnight. In fact, it took the best part of 2500 years from the
time the first calculus-like problems tormented Pythagoras, until the first really
solid foundations of mathematical analysis were laid in the nineteenth century.
During the seventeenth and eighteenth centuries calculus blossomed, becoming
an important branch of mathematics and, at the same time, a powerful tool, able
to describe such physical phenomena as the motion of the planets, the stability
of a spinning top, the behavior of a wave, and the laws of electrodynamics. This
period saw the emergence of almost all of the concepts that one might expect to
see in an elementary calculus course today.

But if the blossoms of calculus were formed during the seventeenth and
eighteenth centuries, then its roots were formed during the nineteenth. Calculus
underwent a revolution during the nineteenth century, a revolution in which its
fundamental ideas were revealed and in which its underlying theory was properly
understood for the first time. In this revolution, calculus was rewritten from its
foundations by a small band of pioneers, among whom were Bernhard Bolzano,
Augustin Cauchy, Karl Weierstrass, Richard Dedekind, and Georg Cantor. You
will see their names repeatedly in this book, for it was largely as a result of their
efforts that the subject that we know today asmathematical analysis was born.
Their work enabled us to appreciate the nature of our number system and gave us
our first solid understanding of the concepts of limit, continuity, derivative, and

8 Note to instructors: This chapter is not designed for in-class teaching. It is intended to be a
reading assignment, possibly in conjunction with other material that the student can find in the
library.
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integral. This is the great and profound theory to which you, the reader of this
book, are heir.

In this chapter we shall focus on threeearth-shaking events that have taken
place during the past 2500 years and which helped to pave the way for the emer-
gence of rigorous mathematics as we know it today. These events are sometimes
known as thePythagorean crisis, theZeno crisis, and theset theory crisis.

1.2 The Pythagorean Crisis
In about 500B.C.E. an individual in the Pythagorean school noticed that, accord-
ing to the Greek concepts of number and length, it is impossible to compare the
length of a side of a square with the length of its diagonal. The Greek concept
of length required that, in order to compare two line segmentsAB andCD, we
need to be able to find a measuring rod that fits exactly a whole number of times
into each of them. If, for example, the measuring rod fits6 times intoAB and10
times intoCD, as shown in Figure 1.1, then we have

AB

CD
=

6

10
.

More generally, if the measuring rod fits exactlym times intoAB and exactlyn

A B
C D

Figure 1.1

times intoCD, then we have

AB

CD
=

m

n
.

Note that this kind of comparison requires that the ratio of any two lengths must
be a rational number.

The crisis came when the young Pythagorean drew a square with a side of
one unit as shown in Figure 1.2 and applied the theorem of Pythagoras to find
the length of the diagonal. As we know, the length of this diagonal is

√
2 units.

From the fact that the number
√
2 is irrational he concluded that the equation

√
2

1
=

m

n

is impossible ifm andn are integers and that, consequently, it is impossible to
compare the side of this square with its diagonal.
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1 unit

Figure 1.2

From our standpoint today, we can see that this discovery reveals the inade-
quacy of the rational number system and of the Greek concept of length; but to
them, the discovery was a real shocker. Just how much of a shock it was can be
gauged from the writings of the Greek philosopher Proclus, who tells us that the
Pythagorean who made this terrible discovery suffered death by shipwreck as a
punishment for it.

1.3 The Zeno Crisis

1.3.1 The Paradoxes of Zeno
In the fifth centuryB.C.E., Zeno of Elea came up with four innocent-sounding
statements that plagued the philosophers all the way up to the time of Bolzano
and Cauchy early in the nineteenth century. These four statements are known as
theparadoxes of Zeno, and the first three of these appear in Bell [4] as follows:

1. Motion is impossible, because whatever moves must reach the middle of its
course before it reaches the end; but before it has reached the middle, it must
have reached the quarter mark, and so on, indefinitely. Hence the motion can
never start.

2. Achilles running to overtake a crawling tortoise ahead of him can never
overtake it, because he must first reach the place from which the tortoise
started; when Achilles reaches that place, the tortoise has departed and so
is still ahead. Repeating the argument, we easily see that the tortoise will
always be ahead.

3. A moving arrow at any instant is either at rest or not at rest, that is, moving.
If the instant is indivisible, the arrow cannot move, for if it did, the instant
would immediately be divided. But time is made up of instants. As the arrow
cannot move in any one instant, it cannot move in any time. Hence it always
remains at rest.
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Much has been said about these paradoxes, and, quite obviously, we are not
going to do them justice here. But let’s talk about the third paradox for a moment.
At any one instant of time, the arrow does not move. Does that really mean that
the arrow will not find its target? Would Zeno have been prepared to stand in
front of the arrow? We think not. Then what was Zeno trying to tell us? Zeno’s
statement warns us that velocity can be meaningful in any physical sense only as
anaverage velocity over a period of time. If an arrow covers a distance of 60 feet
during the course of a second, we can say that the arrow has an average velocity
of 60 feet per second. But Zeno’s statement warns us that our senses can make
nothing out of a notion ofvelocity of the arrow at any one instant.

1.3.2 Stating Zeno’s Third Paradox in Terms of Slope
To state Zeno’s third paradox in terms of slope, we shall suppose thatA is the
point (x1, f(x1)) on the graph of a functionf , and thatB is some other point
(x1 +∆x, f(x1 +∆x)), as shown in Figure 1.3. As usual, the slope of the line

A

B

∆y

x∆
y = f(x)

Figure 1.3

segmentAB is defined to be to be the ratio∆y/∆x, where

∆y = f(x1 +∆x)− f(x1).

This ratio∆y/∆x is the average slope of the graph off between the points
A andB. However, Zeno’s third paradox serves as a warning that there is no
obvious physical meaning to the notion ofslope of the graph at the point A.

“But” you may ask, “isn’t this what calculus is all about? Are the paradoxes
of Zeno trying to tell us to abandon the idea of a derivative?” They are not.
But what we should learn from these paradoxes is that if we want todefine the
derivative of the functionf at the pointA to be

lim
h→0

f(x+ h)− f(x)

h
,

then that’s just fine with Zeno. Only we can’t blame Zeno if this derivative that
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we havedefined doesn’t measure how the functionf increases atA, because, as
Zeno quite rightly tells us, the functionf can’t change its value at any one point.
We may therefore think of Zeno’s paradoxes as telling us that (referring to Figure
1.3) even though we may speak of the slope∆y

∆x
of the line segmentAB, and even

though we maydefine the derivative off atA and call it dy
dx

and have

∆y

∆x
→ dy

dx
as ∆x → 0,

we may not think ofdy
dx

as the ratio of two quantitiesdy anddx, the amounts by
which y andx increase at the pointA, because, as Zeno quite rightly tells us,
there areno increases iny andx at the pointA.

1.3.3 The Rigorous Reformulation
Mathematics prior to the dawn of the nineteenth century was much less pre-
cise than mathematics as we know it today. The core of pre-nineteenth century
mathematics was the calculus that had been developed by Newton, Leibniz, and
others during the seventeenth century. That calculus represented a magnificent
contribution. It gave us the notation for derivatives and integrals that we still use
today and provided a mathematical basis for the understanding of such physical
phenomena as the motion of the planets, the motion of a spinning top and the
vibration of a violin string. But the calculus of Newton and Leibniz did not rest
on a solid foundation.

The problem with Newtonian calculus is that it was not based on an adequate
theory of limits. In fact, prior to the nineteenth century, there was not much
understanding that calculus needs to be based on a theory of limits at all. Nor
was there much understanding of the nature of the number systemR and the role
of what we call today thecompleteness of the number systemR. In a sense,
the calculus of Newton and Leibniz didnot pay sufficient heed to the paradoxes
of Zeno. Although Newton and Leibniz themselves may have had some ap-
preciation of the fundamental ideas uponwhich the concepts of derivative and
integral depend, many of those who followed them did not. Until the end of the
eighteenth century the majority of mathematicians based their work upon an im-
possible mythology. During this time, proofs of theorems in calculus commonly
depended on a notion of “infinitely small” numbers, numbers that were zero for
some purposes yet not for others. These were known asevanescent numbers,
differentials, or infinitesimals, and, undeniably, their use provided a beautiful,
revealing, and elegant way of looking at many of the important theorems of
calculus. Even today we like to use the notion of an infinitesimal to motivate
some of the theorems in calculus, and scientists use them even more frequently
than mathematicians. But it is one thing to use the idea of an infinitesimal to
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motivate a theory, and it is quite another matter to base virtually the entire theory
upon them. Today, the concept of an infinitesimal can actually be made precise in
a modern mathematical theory that is known asnonstandard analysis, but there
was no precision in the way infinitesimals were used in the eighteenth century.

During the eighteenth century, the voices of critics began to be heard. In
1733, Voltaire [32] described calculus as

The art of numbering and measuring exactly a thing whose existence can-
not be conceived.

Then, in 1734, Bishop George Berkeley, the philosopher, wrote an essay,
Berkeley [5], in which he rebuked the mathematicians for the weak foundations
upon which their calculus had been based, and he no doubt took great pleasure
in asking

Whether the object, principles, and inferences of the modern analysis are
more distinctly conceived, or more evidently deduced than religious mys-
teries and points of faith.

Some mathematicians composed weak answers to Berkeley’s criticism, and
others tried vainly to make sense of the idea of infinitely small numbers, but
it was not until the early nineteenth century that any real progress was made.
The turning point came with the work of Bernhard Bolzano, who gave us the
first coherent definition of limits and continuity and the first understanding of the
need for a complete number system. Then came the work of Cauchy, Weierstrass,
Dedekind, and Cantor that placed calculus on a rigorous foundation and settled
many important questions about the nature of the number systemR. The work of
these pioneers has made possible the understanding that we have promised you.

1.4 The Set Theory Crisis

Following the work of the nineteenth-century pioneers, the mathematical com-
munity began to believe that true understanding was at last within its grasp. All
of the fundamental concepts seemed tobe rooted solidly in Cantor’s theory of
sets. But the collective sigh of relief had hardly died away when a new kind of
paradox burst upon the scene. In 1897, the Italian mathematician Burali-Forti
discovered what is known today as theBurali-Forti paradox, which shows that
there are seriousflaws in Cantor’s theory of sets, upon which our understanding
of the real number system had been based. Then, a few years later, Bertrand
Russell discovered his famous paradox. Like Burali-Forti’s paradox, Russell’s
paradox demonstrates the presence offlaws in Cantor’s set theory.
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To see just how much these paradoxes stunned the mathematical community,
one might want to look at Frege [9],Grundgesetze der Arithmetik (The Fun-
damental Laws of Arithmetic), which was written by the German philosopher
Gottlob Frege and published in two volumes, the first in 1893 and the second
in 1903. This book was Frege’s life work, and it was his pride and joy. He
had bestowed upon the mathematical community the first sound analysis of the
meaning of number and the laws of arithmetic and, although the book is quite
technical in places, it is worth skimming through, if only to see the sarcastic way
in which Frege speaks of the “stupidity” of those who had come before him.
An example of this sarcasm is Frege’s description of his attempt to induce other
mathematicians to tell him what the numberone means. “One object,” would
be the reply. “Very well,” answered Frege, “I choose themoon! Now I ask you
please to tell me:Is one plus one still equal to two?” As things turned out, the
second volume of Frege’s book came out just after Russell had sent Frege his
famous paradox. There was just enough space at the end of Frege’s book for the
following acknowledgment:

A scientist can hardly encounter anything more undesirable than to have
the foundation collapse just as the work is finished. I was put in this po-
sition by a letter from Mr. Bertrand Russell when the work was almost
through the press.

As Frege said, the foundation collapsed. It would not be stretching the truth
too much to say that all of mathematics perished in the fire storm that was ignited
by the paradoxes of Russell and Burali-Forti. The mathematics that we know
today is what emerged from that storm like a phoenix from the ashes, and it
depends upon a new theory of sets that is known asZermelo-Fraenkel set theory
which was developed in the first few decades of the twentieth century. Within
the framework of Zermelo-Fraenkel set theory, we can once again make use of
Frege’s important work.

One question that remains is whether we are now safe from new paradoxes
that might ignite a new fire storm, and the answer is that we don’t know. A theo-
rem of Gödel guarantees that, unless someone actually discovers a new paradox
that destroys Zermelo-Fraenkel set theory, we shall never know whether such a
paradox exists. Thus it is entirely possible that you, the reader of this book, may
stumble upon a snag that shows that mathematics as we know it does not work.
But don’t hold your breath. The chances of your encountering a new paradox are
very remote.



Chapter 2
Mathematical Grammar

In this chapter you will learn how to read and understand the language in which
mathematical proofs are written. Just like any other language, the language of
mathematics contains its own specialwords and rules of grammar that govern
the way in which these words may be combined into sentences. This chapter will
acquaint you with many of these words, and it will teach you how the rules of
grammar apply to them.

2.1 The Quantifiers For Every and There Exists

2.1.1 Unknowns in a Mathematical Statement
Some mathematical statements refer only to predefined mathematical objects.
For example, the statement1 + 1 = 2 refers only to the numbers1 and2 and
the operation+. However, mathematical statements can also refer to objects that
have not already been introduced. We shall call such objectsunknowns in the
statement. To understand how unknowns can appear, look at the following simple
question about elementary algebra:

Is it true that

(x+ y)2 = x2 + y2? (2.1)

Perhaps the answer “no” is hovering on your lips. If so, you are being a little
hasty, for is it not true that

(3 + 0)2 = 32 + 02?

As you can see, the truth or falsity of Equation (2.1) depends on the values of
x andy that we are talking about. Until we receive more information aboutx and
y, we cannot say whether or not Equation (2.1) is true. Here are some analogs of
the above question that can be answered specifically:

• Is it true that, ifx = 2 andy = 3, then Equation (2.1) is true? No!
• Is it true that there exist numbersx andy such that Equation (2.1) holds?

Yes!
• Is it true that for every numberx there exists a numbery such that Equation

(2.1) holds? Yes!

12
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• Is it true that there exists a numberx such that for every numbery Equation
(2.1) holds? Yes!

• Is it true that for all numbersx andy Equation (2.1) holds? No!

If you look at any one of these five questions, you will see that each of the
symbolsx andy was introduced either by saying “for every” or by saying “there
exists”. The symbols in these questions have been what we callquantified. The
statements that follow exhibit some more examples of quantified symbols.

1. Every tall man in this theater is wearing a hat. In this statement, “tall man”
is introduced withfor every.

2. No tall man in this theater is wearing a hat. This statement can be interpreted
as saying that every man wearing a hat in this theater fails to be tall.

3. Some tall men in this theater are wearing hats. This statement introduces
“tall man” with there exists. It says that there exists at least one tall man in
this theater who is wearing a hat.

4. Not all of the tall men in this theater are wearing hats. This statement can
be interpreted as saying that there exists at least one tall man in this theater
who is not wearing a hat. Interpreted this way, the statement introduces “tall
man” with there exists.

5. For every positive integer n there is a prime number p such that p > n. This
statement contains two unknowns,n andp. The unknownn is introduced
with for every and then, aftern has been introduced, the unknownp is
introduced withthere exists.

2.1.2 The Quantifiers
The phrasefor every is called theuniversal quantifier and, depending on the
context, it appears sometimes simply asevery, sometimes asall, and sometimes
as the symbol∀. The phrasethere exists is called theexistential quantifier,
and, depending on the context, it sometimes appears asthere is, we can find, it is
possible to find, there must be, there is at least one, some, or as the symbol∃.

2.1.3 Exercises on the Use of Quantifiers
Except in Exercise 2, decide whether the sentence that appears in the exercise is
meaningful or meaningless. If the sentence is meaningful, say whether what it
says is true or false.

1. (a)
√
x2 = x.

(b) For every real numberx we have
√
x2 = x.

(c) For every positive numberx we have
√
x2 = x.

2. (a) Point at the expression
√
x2 and click on theEvaluate button .
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(b) Point at the expression
√
x2 and click on theSimplify button .

(c) Point at the equation
√
x2 = x, open the Compute menu, and click

onCheck Equality.

(d) Point at the equationx = −2 and click on the button to supply
the definitionx = −2 to Scientific Notebook. Then try aCheck Equality
on the equation

√
x2 = x.

3. For every numberx and every numbery there is a numberz such that
z = x+ y.

4. For every numberx there is a numberz such that for every numbery
we havez = x+ y.

5. For every numberx and every numberz there is a numbery such that
z = x+ y.

6. sin2 x+ cos2 x = 1.

7. For every numberx we havesin2 x+ cos2 x = 1.

8. For every integern > 1, if n2 ≤ 3, then the number57 is prime.

2.1.4 Order of Appearance of Unknowns in a Statement
As we have seen, if a statement contains some unknowns, then its truth or falsity
depends on the way in which these unknowns have been quantified. If a statement
contains more than one unknown, then the order in which these unknowns appear
can also be very important. The following examples illustrate how we can change
the meaning of a statement by changing the order in which two unknowns are
introduced.

1. If two unknowns are introduced with∀, one directly after the other, then
the order in which they are introduced is not important. For example, the
following two statements say exactly the same thing.

(a) For every positive number x and every negative number y, the number
xy is negative.

(b) For every negative number y and every positive number x, the number
xy is negative.

2. If two unknowns are introduced with∃, one directly after the other, then
the order in which they are introduced is not important. For example, the
following two statements say exactly the same thing.

(a) There exists a positive integer m and a positive integer n such that√
m2 + n3 is an integer.

(b) There exists a positive integer n and a positive integer m such that
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√
m2 + n3 is an integer.

3. If one unknown in a sentence is introduced with∀ and another is introduced
with ∃, then the order in which they appear is very important. For example,
compare the following two sentences:

(a) For every positive number x there exists a positive number y such that
y < x.

(b) There exists a positive number y such that for every positive number x
we have y < x.

Although these statements may look similar, they do not say the same thing.
As a matter of fact, the first one is true and the second one is false.

4. In this example we look at some sentences that contain three unknowns.

(a) For every number x and every number z, there exists a number y such
that x+ y = z.

(b) For every number x there exists a number y such that for every number z
we have x+ y = z.

(c) There exists a number y such that for every number x and every number
z we have x+ y = z.

If you look at these statements carefully, you will see that the first one is true
and the other two are false.

5. In this example we look at two more statements with three unknowns. Try
to decide whether they are true or false. We shall provide the answers in
Subsection 3.8.1.

(a) For every number x there exists a positive number δ such that for every
number t satisfying the inequality |t− x| < δ we have |t2 − x2| < 1.

(b) There exists a positive number δ such that for every number x and
for every number t satisfying the inequality |t− x| < δ we have
|t2 − x2| < 1.

6. In this example we look at some statements that contain four unknowns.
Try to decide whether they are true or false. We shall provide some of the
answers in Section 3.8.

(a) For every number ε > 0 and for every number x ∈ [0, 1] there exists a
positive integer N such that for every integer n ≥ N we have

nx

1 + n2x2
< ε.

(b) For every number x ∈ [0, 1] and for every number ε > 0 there exists a
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positive integer N such that for every integer n ≥ N we have

nx

1 + n2x2
< ε.

(c) For every number ε > 0 there exists a positive integer N such that for
every number x ∈ [0, 1] and for every integer n ≥ N we have

nx

1 + n2x2
< ε.

2.1.5 Exercises on Order of Appearance of Unknowns
For each of the following pairs of statements, decide whether or not the state-
ments are saying the same thing. Except in the first two exercises, say whether
or not the given statements are true.

1. (a) Every person in this room has seen a good movie that has started playing
this week.

(b) A good movie that has started playing this week has been seen by
every person in this room.

2. (a) Only men wearing top hats may enter this hall.
(b) Only men may enter this hall wearing top hats.
(c) Men wearing top hats only may enter this hall.
(d) Men wearing only top hats may enter this hall.
(e) Men wearing top hats may enter this hall only.

3. (a) For every nonzero numberx there is a numbery such thatxy = 1.

(b) There is a numbery for which the equationxy = 1 is true for every
nonzero numberx.

4. (a) For every numberx ∈ [0, 1) there exists a numbery ∈ [0, 1) such
thatx < y.

(b) There is a numbery ∈ [0, 1) satisfyingx < y for every number
x ∈ [0, 1).

5. (a) For every numberx ∈ [0, 1] there exists a numbery ∈ [0, 1] such that
x < y.

(b) There is a numbery ∈ [0, 1] satisfyingx < y for every number
x ∈ [0, 1].

6. (a) For every numberx ∈ [0, 1) there exists a numbery ∈ [0, 1) such that
x ≤ y.

(b) There is a numbery ∈ [0, 1) satisfyingx ≤ y for every number
x ∈ [0, 1).
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7. (a) For every numberx ∈ [0, 1] there exists a numbery ∈ [0, 1] such that
x ≤ y.

(b) There is a numbery ∈ [0, 1] satisfyingx ≤ y for every number
x ∈ [0, 1].

8. (a) For every odd integerm it is possible to find an integern such thatmn
is even.

(b) It is possible to find an integern such that for every odd integerm
the numbermn is even.

9. (a) For every numberx it is possible to find a numbery such thatxy = 0.
(b) It is possible to find a numbery such that for every numberx we

havexy = 0.
10. (a) For every numberx it is possible to find a numbery such thatxy 	= 0.

(b) It is possible to find a numbery such that for every numberx we
havexy 	= 0.

11. (a) For every numbera and every numberb there exists a numberc
such thatab = c.

(b) For every numbera there exists a numberc such that for every
numberb we haveab = c.

12. (a) For every numbera and every numberc there exists a numberb such
thatab = c.

(b) For every numbera there exists a numberb such that for every
numberc we haveab = c.

13. (a) For every nonzero numbera and every numberc there exists a
numberb such thatab = c.

(b) For every nonzero numbera there exists a numberb such that for
every numberc we haveab = c.

2.2 Negating a Mathematical Sentence

When you are trying to read and understand a mathematical statementP , you will
often find it useful to ask yourself what it would mean to say that the statement
P is false. The assertion that the given statementP is false is called thenegation
or denial of the statementP and is written as¬P .

Thus, for example, ifP is the assertion that the number4037177 is prime,
then the statement¬P is the assertion that the number4037177 is composite. As
a matter of fact, since

4037177 = 17× 19× 29× 431,
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we know that the statementP is false and that the statement¬P is true. In
general, ifP is any mathematical statement, then one of the statementsP and
¬P will be true and the other will be false.

2.2.1 Negations and the Quantifiers
Suppose that a given statementP asserts thatEveryone in this room can speak
French. The denial ofP does not claim that no one in the room can speak French.
To deny the assertion that everyone in the room can speak French, all we have to
do is find one person in the room who cannot speak French.

More generally, if a statementP contains the quantifier “for every”, saying
that every objectx of a certain type has a certain property, then the denial ofP
says that there exists at least one object of this type that fails to have the required
property.

On the other hand, if a statementP says that at least one person in this room
has a dirty face, then the denial ofP says that every person in the room has a
clean face. Note how the quantifiers “for every” and “there exists” change places
as we move from a statement to its denial.

2.2.2 Some Exercises on Negations and the Quantifiers
Write a negation for each of the following statements or say that the statement is
meaningless.

1. All roses are red.

2. In Sam’sflower shop there is at least one rose that is not red.

3. In everyflower shop there is at least one rose that is not red.

4. I believe that all roses are red.

5. There is at least one person in this room who thinks that all roses are
red.

6. Every person in this room believes that all roses are red.

7. At least half of the people in this room believe that all roses are red.

8. Every man believes that all women believe that all roses are red.

9. You were at least an hour late for work every day last week.

10. It has never rained on a day on which you have remembered to take
your umbrella.

11. You told me that it has never rained on a day on which you have
remembered to take your umbrella.

12. You lied when you told me that it has never rained on a day on which
you have remembered to take your umbrella.
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13. I was joking when I said that you lied when you told me that it has
never rained on a day on which you have remembered to take your umbrella.

14. This, Watson, if I mistake not, is our client now.9

15. (a) For every real numberx there exists a real numbery such that

2x2 + xy − y2

x3 − y3
=

2

3 (x− y)
+

5y + 4x

3 (x2 + xy + y2)
.

Is this statement true?
(b) There exists a real numberx such that for every real numbery we

have

2x2 + xy − y2

x3 − y3
=

2

3 (x− y)
+

5y + 4x

3 (x2 + xy + y2)
.

Is this statement true?
(c) For every real numberx and every real numbery 	= x we have

2x2 + xy − y2

x3 − y3
=

2

3 (x− y)
+

5y + 4x

3 (x2 + xy + y2)
.

Is this statement true?

2.3 Combining Two or More Statements

Two or more given statements can be combined into a single statement using one
or more of the conjunctions and conditionals

and or if only if ⇒ ⇐ ⇐⇒
In this section we study the way in which these combined statements may be
formed and some of the relationships between statements of this type.

2.3.1 The Conjunction and

If P andQ are given statements, then the assertion

P andQ

says that both of the statementsP andQ are true. This assertion is sometimes
written asP ∧Q.

9 The purpose of this exercise is to invite you to discuss a rather strange statement that was
made by Sherlock Holmes in one of the stories by Sir Arthur Conan Doyle. Is Holmes’ statement
meaningful?
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For example, ifP is the statement

Every tall man in this theater is wearing a hat.

andQ is the statement

Every man wearing a hat in this theater is inconsiderate.

then the statementP ∧Q says that

Every tall man in this theater is wearing a hat and every man wearing a
hat in this theater is inconsiderate.

From the statementP ∧ Q we can deduce that every tall man in this theater
is inconsiderate.

2.3.2 The Conjunction or

If P andQ are given statements, then the assertion

P orQ

says that at least one of the statementsP andQ is true. This assertion is often
written asP ∨Q.

For example, ifP is the statement

You have a cracked radiator.

andQ is the statement

Your water pump needs replacing.

then the sentenceP andQ says

Either you have a cracked radiator or your water pump needs replacing.

Note that the conditionP ∨Q includes the possibility that bothP andQ are true.
Thus, if you hear the words

Either you have a cracked radiator or your water pump needs replacing.

then you are going to have at least one job performed on your car but there is also
the possibility that both your radiator and your water pump need to be replaced.

2.3.3 Some Examples on the Use of and and or

1. The equationx2 − 3x− 4 = 0 is equivalent to the condition

x = −1 or x = 4.
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It would be quite wrong to write the solution of the equation asx = −1 and
x = 4 because the equation does not requirex to be equal to both of the
numbers−1 and4. If x is equal to either one of the numbers−1 and4, the
equation will hold.

2. The inequalityx2 − 3x− 4 ≤ 0 is equivalent to the condition

−1 ≤ x and x ≤ 4.

In order for this quadratic inequality to hold we have to haveboth of the
conditions−1 ≤ x andx ≤ 4.

3. The inequalityx2 − 3x− 4 ≥ 0 is equivalent to the condition

x ≤ −1 or x ≥ 4.

4. In this example we assume thatm andn are integers. The condition for the
numbermn to be even is equivalent to the condition

m is even or n is even.

Note thatmn will certainly be even in the event that both of the integersm
andn are even, but the condition thatmn is even does notrequire that both
of m andn are even. All it requires is that at least one of the integersm and
n is even.

5. Again in this example we assume thatm andn are integers. The condition
for the numbermn to be odd is equivalent to the condition

m is odd and n is odd.

6. In this example we assume thatx andy are nonzero numbers. The condition
for the equation|x+ y| = |x|+ |y| to hold is that

eitherx < 0 andy < 0, orx > 0 andy > 0.

2.3.4 The Conditional if

If P andQ are given statements, then the sentence

If P , thenQ

says that, in the event thatP is true, the sentenceQ must also be true. One of
the most important facts about the sentence “IfP , thenQ” is that it places no
demands onQ whenP is false. The sentence “IfP , thenQ” can be thought of
as saying that

I don’t know whether or not P is true and I don’t care. However, if the
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statement P does happen to be true, then the statement Q must also be
true.

The condition “IfP , thenQ” can be written in several equivalent ways. One
of these is

Q if P ,

because the latter statement also says thatQ must hold true in the event thatP is
true. We can also write the condition “IfP , thenQ” in the form

P only if Q,

because the latter condition says that the only way thatP can be true is thatQ
is also true. The condition “IfP , thenQ” can also be written without using the
word “if” because it says that

eitherP is false orQ is true.

The following table lists some of the many equivalent ways in which we can
write the condition “IfP , thenQ”:

If P , thenQ P impliesQ

Q if P P ⇒ Q

P only if Q Q is implied byP

P is a sufficient condition forQ Q ⇐ P

Q is a necessary condition forP Either¬P orQ

(¬Q) ⇒ (¬P ) (¬P ) ∨Q

Finally, the sentenceP if and only ifQ can be written in any of the following
equivalent forms:

P is necessary and sufficient forQ P iff Q

(P ⇒ Q) ∧ (Q ⇒ P ) P ⇔ Q

The assertionP ⇔ Q tells us that either the statementsP andQ are both true or
they are both false.

2.3.5 Negations and the Conjunctions and Conditionals
Suppose thatP andQ are given mathematical statements.
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1. Since the conditionP ∧Q asserts that both of the statementsP andQ must
be true, the denial of this condition says that one (or both) of the statements
P andQ is false. Thus the denial of the conditionP ∧Q says that eitherP
is false orQ is false.

2. Since the conditionP ∨Q says that at least one of the statementsP andQ
must be true, the denial of this condition says that neither of the statements
P andQ is true. In other words, the denial of the conditionP ∨Q says that
P is false andQ is false.

3. Since the conditionP ⇒ Q says that eitherP is false orQ is true, the
denial of the conditionP ⇒ Q says thatP is true andQ is false. Thus, for
example, the denial of the assertion

If you eat that grape, you will die.

says that

You will eat that grape and you will not die.

2.3.6 Contrapositives and Converses
As we know, ifP andQ are mathematical statements, then the assertionP ⇒ Q
says that eitherP is false orQ is true. We shall now make the observation that
the assertion(¬Q) ⇒ (¬P ) says exactly the same thing. In fact, the assertion
(¬Q) ⇒ (¬P ) says that either¬Q is false or¬P is true; in other words, it says
that eitherQ is true orP is false.

Thus, ifP andQ are mathematical statements, then the assertionsP ⇒ Q
and(¬Q) ⇒ (¬P ) are logically equivalent to each other. We are therefore at
liberty to look at whichever of these two assertions looks easier to understand.
The assertion(¬Q) ⇒ (¬P ) is called thecontrapositive form of the assertion
P ⇒ Q.

Of course, the statementsP ⇒ Q andQ ⇒ P do not say the same thing.
We call the statementQ ⇒ P theconverse of the statementP ⇒ Q.

Look, for example, at the statement:All roses are red. This statement can
be thought of as saying that if an object is a rose, then it must be red. The
contrapositive form of this statement says that all things that are not red must fail
to be roses. The converse of this statement says that all red things are roses.

2.3.7 A Word of Warning
The statement “IfP , thenQ” is often confused with the slightly more complex
sentence “P , and thereforeQ”. The meaning of the latter sentence is as follows:

The statement P is known to be true and we also know that P implies Q.
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Therefore we can assert that the statement Q must be true.

To help us understand the distinction between “IfP , thenQ” and “P , and
thereforeQ” we shall takeP to be the statement:It is raining outside andQ to
be the statement:You will get wet. The sentence “IfP , thenQ” says:

If it is raining outside, then you will get wet.

This sentence does not assert that it israining. It says only that in the event
that it is raining, you will get wet. This sentence is always true on a dry day. On
the other hand, the sentence “P , and thereforeQ” says:

It is raining outside and therefore you will get wet.

This sentencedoes assert that it is raining andalso that you will get wet. The
latter sentence is always false on a dry day.

2.3.8 Some Exercises on the Use of Conditionals
In the exercises that follow you should assume thatP , Q, R, andS are given
statements that may be either true or false.

1. Write down the denial, the converse, and the contrapositive form of
each of the following statements:

(a) All cats scratch.
(b) If what you said yesterday is correct, then Jim has red hair.
(c) If a triangle �ABC has a right angle at C, then

(AB)2 = (AC)2 + (BC)2 .

(d) If some cats scratch, then all dogs bite.
(e) It is with regret that I inform you that someone in this room is smoking.
(f) If a function is differentiable at a given number, then it must be

continuous at that number.
(g) Every boy or girl alive is either a little liberal or else a conservative.

2. Write down a denial of each of the following statements.

(a) All cats scratch and some dogs bite.
(b) Either some cats scratch or, if all dogs bite, then some birds sing.
(c) He walked into my office this morning, told me a pack of lies and punched

me on the nose.
(d) No one has ever seen an Englishman who is not carrying an umbrella.
(e) For every number x there exists a number y such that y > x.
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3. In each of the following exercises we assume thatf andg are given
functions. Write down a denial of each of the following statements:

(a) Whenever x > 50, we have f(x) = g(x).
(b) There exists a number w such that f(x) = g(x) for all numbers x > w.
(c) For every number x there exists a number δ > 0 such that for every

number t satisfying the condition |x− t| < δ we have |f(x)− f(t)| < 1.
(d) There exists a number δ > 0 such that for every pair of numbers x and t

satisfying the condition |x− t| < δ we have |f(x)− f(t)| < 1.
(e) For every number ε > 0 and for every number x, there exists a number

δ > 0 such that for every number t satisfying |x − t| < δ, we have
|f(t)− f(x)| < ε.

(f) For every positive number ε there exists a positive number δ such that for
every pair of numbers x and t satisfying the condition |x− t| < δ we
have |f(x)− f(t)| < ε.

4. Explain why the statement¬ (P ⇒ Q) is equivalent to the statement
P ∧ (¬Q).

5. Explain why the statement¬ (P ⇔ Q) is equivalent to the assertion that
either (P is true andQ is false) or (P is false andQ is true).

6. Explain why the statement¬ (P ∨Q) is equivalent to the statement
(¬P ) ∧ (¬Q).

7. Explain why the statement¬ (P ⇒ (Q ∨R)) is equivalent to the assertion
thatP is true and that both of the statementsQ andR are false.

8. Explain why the converse of the statementP ⇒ (Q ∨R) is equivalent to
the condition(R ⇒ P ) ∧ (Q ⇒ P ).

9. Write the assertionP ⇒ (Q ∨R) as simply as you can in its contrapositive
form.

10. Write the assertion(P ∧Q) ⇒ (R ∨ S) as simply as you can in its
contrapositive form.



Chapter 3
Strategies for Writing Proofs

3.1 Introduction

The purpose of this chapter is to teach you how to study mathematical proofs
that have been provided for you and how to think up proofs of your own. As you
will see, these two tasks are almost the same because, in the process of reading
a proof, you are constantly filling in details in order to justify the assertions that
the author has made. Thus the key to learning a proof isunderstanding. A time
honored practice that students have employed in order to “learn” a proof without
having to go to the trouble of actually understanding it is to commit it to memory.
Don’t make that mistake! Memorizing a proof that you do not understand makes
about as much sense as studying a greatmusical composition by memorizing the
notes and musical symbols such as�, �, and� that appear on a piece of paper,
without having the slightest idea of what these symbols mean or what melody is
written there.

Nor should you be content, when you are studying a proof, with the knowl-
edge of how each individual step follows from the one before it. Every proof has
a theme, a master plan, that suggests to us what the individual steps should be.
You have understood a proof only when you have looked into it deeply enough to
perceive that theme. Sometimes, when you are reading a proof, it will take some
careful digging to unearth its underlying theme, especially when the proof is very
polished. One of the difficulties that faces you is that the proof you are reading
is a completed article. It works. It is valid. But it doesn’t always reveal all of
the thoughts that led to its discovery and the thoughts that guided your teacher to
write it in the form that lies before you.

To help yourself to discover the underlying theme of a proof and to anticipate
the way in which it may be laid out, you may want to ask yourself the following
two kinds of question:

• What are we trying to prove here? What does this statement mean to me?
How else can I write this statement? What would it mean to say that this
statement is not true? What other proofs do I know that are used to prove
statements like this one?

• What is the given information? Whatdoes the given information tell me?
How does one usually go about using this kind of given information? What
other proofs do I know that use this kind of information.

26
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Sometimes, when a proof is difficult, you will not be able to anticipate it.
Read the proof one step at a time and, whenyou understand the individual steps,
go back to the job of trying to anticipateit. You will gradually come to understand
the bridge between the given information and the required statement that the
proof provides. As your understanding of the proof solidifies, make sure that you
understand whereall of the given information is used. If any of this information
wasn’t used, then either the theorem can be improved or (more likely) you are
misunderstanding something.

When you really understand a proof, you will feel able to explain it to others.
In fact, you willwant to do so; in much the same way that you might look around
for someone to whom you could tell a good joke that you have just heard. One
of the best ways to learn a proof is toimagine that you are going to teach it
to someone else. As you study it, write it down on a blank piece of paper
and imagine that you are, in fact, explaining it to another person. You have
understood the proof if and only if you have the feeling that you did a really fine
job of explaining it.

The way we approach the task of proving a particular mathematical state-
ment depends on the nature of that statement and, in particular, on the way the
grammatical symbolsif, and, or, ⇒, ∀, and∃ appear. Exactly where these words
appear and how they appear plays a major role when we devise our proof writing
strategy.

3.2 Statements that Contain the Word and
If P andQ are mathematical statements, then, as you know, the statementP ∧Q
asserts that both of the statementsP andQ are true. In this section we shall
discuss some strategies for proving a statement of the formP ∧Q, and we shall
also discuss some strategies for using information that is phrased in this form.

3.2.1 Proving a Statement of the Form P ∧Q

If P andQ are mathematical statements, then, in order to prove the statement
P ∧ Q, we have two tasks to perform: We need to show thatP is true, and we
also need to show thatQ is true. This kind of proof can be broken down into two
steps.

• Step 1: Show that the statementP is true.
• Step 2: Show that the statementQ is true.

Suppose, for example, that you want to prove that neither of the integers
1037173 nor 4087312111 is prime. We have two tasks to perform. We need to
show that the number1037173 is not prime, and then we need to show that the
integer4087312113 is not prime. To accomplish these two tasks we can observe
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first that

1037173 = 223× 4651,

and then we can observe that

4087312111 = 587× 6963053.

Watch for the wordand in statements that you want to prove. The appearance
of and is often an indication that your problem can be broken down into several
simpler parts. Even if you fail to solve the problem as a whole, you may still suc-
ceed with some of these parts. Remember: A partial solution of a mathematical
problem is better than no solution at all.

3.2.2 Using Information of the Form P ∧Q

Suppose that we are given information of the formP ∧ Q and that we want to
prove a statementR. We cannot easily break this kind of proof into several parts.
We have been given the truth of each of the statementsP andQ, and we need to
use this information to obtain the statementR.

3.2.3 Example of a Proof Using Information Containing and

To illustrate this kind of proof we shall prove an elementary fact about integers.
As you know, if an integera is even, thena has the form2n for some integern
and if a is odd, thena has the form2n + 1. We shall now prove the following
statement:

If a and b are odd integers, then their product ab is also odd.

Proof. Suppose thata andb are odd integers. We begin by using the fact thata
is odd to writea in the form2m + 1 for some integerm. Next we use the fact
thatb is odd to writeb in the form2n+ 1 for some integern. We observe that

ab = (2m+ 1) (2n+ 1) = 2 (2mn+m+ n) + 1,

and we conclude thatab is odd.�

3.2.4 Some Exercises on Statements Containing and

1. Prove the following assertions:

(a) If a, b, c, x, andy are positive numbers andax = b andby = c, then
axy = c.

(b) If two integersm andn are both even, thenmn has a factor4.
(c) If an integerm is even and an integern has a factor3, thenmn has a

factor6.
2. “Ladies and gentlemen of the jury” said the prosecutor, “We shall
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demonstrate beyond a shadow of doubt that, on the night of June 13, 1997,
the accused, Slippery Sam Carlisle, didwillfully, unlawfully and maliciously
kill and murder the deceased, Archibald Bott, by striking him on the head
with a blunt instrument”. Outline a strategy that the prosecutor might use to
prove this charge. How many separate assertions must the prosecutor prove
in order to carry out his promise to the jury?

3. One of the basic laws of arithmetic tells us that ifa andb are any two
numbers satisfying the conditiona < b, and ifx > 0, thenax < bx. Show
how this law may be used to show that if0 < u < 1 and0 < v < 1, then
0 < uv < 1.

4. In this exercise, if we are given three nonnegative integersa, b, andc,
then the integer that consists ofa hundreds,b tens andc units will be written
as�a, b, c�. Given nonnegative integersa, b, andc, prove the assertion
P ∧ Q ∧ R ∧ S, whereP , Q, R andS are, respectively, the following
assertions:

P . If the number�a, b, c� is divisible by3, thena+ b+ c is also divisible
by 3.

Q. If the numbera+ b+ c is divisible by3, then�a, b, c� is also divisible
by 3.

R. If the number�a, b, c� is divisible by9, thena+ b+ c is also divisible
by 9.

S. If the numbera+ b+ c is divisible by9, then�a, b, c� is also divisible
by 9.

3.3 Statements that Contain the Word or

Suppose thatP andQ are mathematical statements. As you know, the statement
P ∨ Q asserts that at least one of the statementsP andQ must be true. The
statementP ∨ Q does not guarantee that both of the statementsP andQ are
true, although they might be. In this section we shall discuss some strategies for
proving a statement of the formP ∨Q, and we shall also discuss some strategies
for using information that is phrased in this form.

3.3.1 Proving a Statement of the Form P ∨Q

If P andQ are mathematical statements, then, in order to prove the statement
P ∨ Q, we need to show that at least one of the statementsP andQ is true. In
other words, we need to show that if either of the statementsP andQ happens
to be false, then the other one must be true. Among the ways in which one may
approach a proof of this type, the following two are worth mentioning:
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1. Try to prove that the statementP is true. If you succeed, you are done. If
you can’t see whyP is true, or if you suspect thatP may be false, try to
prove thatQ is true.

2. This approach is a slight refinement of the first approach. If you know
that the statementP is false, then add the information thatP is false to the
information that you already have and try to prove thatQ is true.

3.3.2 Example of a Proof of a Statement Containing or

We now return to the example that we saw in Subsection 3.2.3. Suppose thatm
andn are two given integers. The following statements all say the same thing:

1. If bothm andn are odd, thenmn must also be odd.
2. If mn is even, then eitherm is even orn is even.
3. If mn is even andm is odd, thenn must be even.

In Subsection 3.2.3, we proved this statement in its first form. Now we shall
prove it in its second form and you can decide which of the two proofs you prefer.

Suppose then thatmn is even. We need to explain why eitherm or n must
be even. For this purpose we shall show that ifm happens to be odd, then the
numbern has to be even. (In other words, we are really proving the statement in
its third form.) Suppose thatm is odd. Using this assumption, choose an integer
a such thatm = 2a+ 1 and, using the fact thatmn is even, choose an integerb
such thatmn = 2b. Thus

(2a+ 1)n = 2b,

from which we deduce that

n = 2 (b− an) ,

and we have shown thatn must be even.

3.3.3 Using Information of the Form P ∨Q

Suppose that we want to prove a statementR using given information of the form
P ∨Q, whereP andQ are mathematical statements. In order to construct such
a proof you need to accomplish two tasks:

(a) Show that ifP is true, thenR is true. You can do this by assuming thatP is
true and showing thatR is true.

(b) Show that ifQ is true, thenR is true. You can do this by assuming thatQ is
true and showing thatR is true.

A proof of this type can therefore be separated into different cases.
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3.3.4 Example of a Proof Using Information Containing or

If x = cos 20◦ or x = − cos 40◦ or x = − cos 80◦, then

8x3 − 6x− 1 = 0. (3.1)

Proof. In order to prove this statement we need to perform three tasks. We need
to show thatx = cos 20◦ is a solution of Equation (3.1). Then we need to show
thatx = − cos 40◦ is a solution of Equation (3.1). Finally we need to show that
x = − cos 80◦ is a solution of Equation (3.1). To perform the first of these three
tasks we deduce from the trigonometric identity

cos 3θ = 4 cos3 θ − 3 cos θ

that, ifx = cos 20◦, then

8x3 − 6x− 1 = 2
(
4 cos3 20◦ − 3 cos 20◦

)− 1

= 2 cos 60◦ − 1 = 0.

We leave the second and third of these three tasks as exercises.�

3.3.5 Some Exercises on Statements Containing or

1. Given thatm andn are integers and that the numbermn is not divisible
by 4, prove that eitherm is odd orn is odd.

2. Given thatm andn are integers, that neitherm norn is divisible by4
and that at least one of the numbersm andn is odd, prove that the number
mn is not divisible by4.

3. Prove that ifx = − cos 40◦ or x = − cos 80◦, then

8x3 − 6x− 1 = 0.

4. A theorem in elementary calculus, known as Fermat’s theorem, says that
if a functionf defined on an interval has either a maximum or a minimum
value at a numberc inside that interval, then eitherf ′(c) = 0 or f ′(c) does
not exist. Give a brief outline of a strategy for approaching the proof of this
theorem.

5. A well-known theorem on differential calculus that is known asL’Hôpital’s
rule may be stated as follows:

Suppose that f and g are given functions, that c is a given number, that

lim
x→c

f ′(x)

g′(x)
= L,
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and that one or the other of the following two conditions holds

(a) Both f(x) and g(x) approach 0 as x → c.
(b) g(x) → ∞ as x → c.
Then

lim
x→c

f(x)

g(x)
= L.

Describe how the proof of L’Hôpital’s rule can be broken down into two
parts. For each part of the proof, say what is being assumed and what is
being proved.

3.4 Statements of the Form P ⇒ Q

As you know, ifP andQ are mathematical statements, thenP ⇒ Q says that in
the event thatP is true, the statementQ must also be true. The assertionP ⇒ Q
can also be looked upon as a statement containing the wordor because it says
that eitherP is false orQ is true. In this section we shall discuss the strategy for
proving a statement of the formP ⇒ Q and the strategy for using information
that is phrased in the formP ⇒ Q.

3.4.1 Proving a Statement of the Form P ⇒ Q

If P andQ are mathematical statements, then to prove the statementP ⇒ Q we
need to show that eitherP is false or thatQ is true. We can therefore follow the
procedure given in Subsection 3.3.1and use one of the following methods:

• Assume thatP is true and use this to show thatQ must be true.
• Assume thatQ is false and use this to show thatP must be false. In other

words, prove the contrapositive form of the statementP ⇒ Q.

3.4.2 Using Information of the Form P ⇒ Q

Suppose that we want to prove a statementR using given information of the
form P ⇒ Q, whereP andQ are mathematical statements. Since the given
informationP ⇒ Q can be interpreted as saying that eitherP is false orQ is
true, we can use the method described in Subsection 3.3.3. Another approach to
this sort of proof is to reason that the conditionP ⇒ Q is interesting only when
P is true. If you know (or can prove) thatP is true, then you can deduce from
the conditionP ⇒ Q thatQ is true and use the fact that bothP andQ are true
to show thatR is true.

On the other hand, if you know thatP is false, then the statementQ is
irrelevant. In this case, use the fact thatP is false to show thatR is true.
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3.4.3 Example of a Proof Using Information Containing ⇒
We shall takeP to be the statement thatx 	= 1 andQ to be the statement that
x = 3. Suppose that we are given thatP ⇒ Q and that we want to prove that
the equation

x2 − 4x+ 3 = 0

holds. In the event that the statementP is true we know thatx = 3, and we can
verify that the equation holds in this case. In the event that the statementP is
false we havex = 1, and, once again, we can verify that the equation holds.

3.4.4 Exercises on the Symbol ⇒
1. (a) Outline a strategy for proving an assertion that has the form

P ⇒ (Q ∧R).

(b) Write down the assertionP ⇒ (Q ∧R) in its contrapositive form
and outline a strategy for proving it in this form.

2. (a) Outline a strategy for proving an assertion that has the form
P ⇒ (Q ∨R).

(b) Write down the assertionP ⇒ (Q ∨R) in its contrapositive form and
outline a strategy for proving it in this form.

3. (a) Outline a strategy for proving an assertion that has the form
(P ∧Q) ⇒ R.

(b) Write down the assertion(P ∧Q) ⇒ R in its contrapositive form
and outline a strategy for proving it in this form.

4. (a) Outline a strategy for proving an assertion that has the form
(P ∨Q) ⇒ R.

(b) Write down the assertion(P ∨Q) ⇒ R in its contrapositive form and
outline a strategy for proving it in this form.

5. (a) Outline a strategy for proving an assertion that has the form
(P ∨ (Q ⇒ P )) ⇒ R.

(b) Write down the assertion(P ∨ (Q ⇒ P )) ⇒ R in its contrapositive
form and outline a strategy for proving it in this form.

3.5 Statements of the Form ∃x (P (x))

As you know, ifP (x) is a statement about an unknownx, then the assertion
∃x (P (x)) says that there is at least one objectx for which the statementP (x)
is true. In this section we shall discussthe strategy for proving a statement of
the form∃x (P (x)) and the strategy for using information that is phrased in the
form ∃x (P (x)).
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3.5.1 Proving A Statement of the Form ∃x (P (x))

How does one prove that something exists? Legend has it that the Greek philoso-
pher Diogenes traveled from place to place with a lantern in his hand looking
for one honest man. By finding one he could certainly have proved that such a
man exists. Diogenes’ attempt to find an honest man demonstrates one very good
way of proving that an object exists: Find one. We use this kind of proof very
commonly in mathematics. Suppose, for example, that we want to prove that
there exists a prime number between80 and90. We can achieve this proof by
demonstrating that the number83 is prime.

Although the method of giving an example is the most common way of prov-
ing existence, it has the drawback that we have to be able to find that example.
This may be very hard to do. It may even be impossible. Fortunately we also
have other ways of proving existence. Even though we may not know of any
examples of a certain kind of object, sometimes there will be indirect evidence
that the object exists. For example, if you are sitting in a crowded restaurant, you
do not have to be able to see and identify a smoker in order to know that someone
is smoking. All you have to do is try to breathe.

There are many important theorems in mathematics that assert the existence
of an object even when it is hard or impossible to lay our hands on one. We look
at two examples:

1. The well-known theorem in differential calculus that we call themean value
theorem, and which is illustrated in Figure 3.1, can be stated as follows:

a bc

Figure 3.1

Suppose that a function f is continuous on an interval [a, b] (where a < b)
and that the derivative f ′(x) exists for every x ∈ (a, b). Then there is at least
one number c ∈ (a, b) such that
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f ′(c) =
f(b)− f(a)

b− a
. (3.2)

The importance of the mean value theorem lies in the fact that, although there
must exist a numberc that makes Equation (3.2) hold, we usually cannot lay
our hands on such a number. Had we been able to do so, the mean value
theorem would not have been nearly asinteresting. As it happens, the mean
value theorem makes a very deep statement about the nature of our number
system. It tells us that, even though we may not be able to find the numberc
explicitly, it exists anyway.

2. A real numberx is said to bealgebraic if it is a solution of an equation of
the form

anx
n + an−1x

n−1 + · · · a2x2 + a1x+ a0 = 0,

wheren is a positive integer, and the numbersa0, . . . an are integers, and
an 	= 0. A number that is not algebraic is said to betranscendental.
Although there are many common examples of transcendental numbers,
including such numbers as2

√
2, log2 3, e, π, andeπ, it is by no means easy

to prove that any given number is transcendental. It is therefore hard to
prove that transcendental numbers exist if the method of proof is to exhibit
an example of one. In the latter part of the nineteenth century, Georg Cantor
came up with a different kind of proof of the existence of transcendental
numbers that is based upon his theory of sets. What Cantor showed is that
the setR of all real numbers has a property that is calleduncountability but
that the setA of algebraic numbers does not have this property. Therefore,
he reasoned, the setsR andA cannot be equal to each other and so there
must be real numbers that are not algebraic. Thus we can use Cantor’s proof
to guarantee the existence of transcendental numbers even if we have never
seen one.

To sum up, if we can lay our hands on an example of a certain kind of object,
then we know that the object exists. This method is the most satisfying way
of proving existence, but it isn’t always possible. Sometimes we have to use
an indirect method to prove an existence theorem and, as you may expect, the
existence theorems that require indirect proofs are usually the most interesting
ones.

3.5.2 Using Information of the Form ∃x (P (x))

In the last subsection we discussedproofs of statements of the type∃x (P (x)).
Now we shall assume that a statement of this type has been given and we shall
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discuss the possible ways of using this information. What we have assumed is
that there exists at least one objectx with certain properties. For this fact to be of
any interest to us we must have a need for an object of this type. Our procedure
is to choose an objectx with the desired properties and to use it for whatever
purpose it is needed. If the statement∃x (P (x)) has been given, and if we need
an objectx satisfying the conditionP (x), then we need to write

choose x such that the condition P (x) is true.

To illustrate this kind of proof we shall prove the following fact about differ-
ential calculus:

Suppose that f is a continuous function on an interval [a, b] and that
f ′(x) = 0 for every number x ∈ (a, b). Then f(a) = f(b).

Proof. The mean value theorem guarantees that there exists at least one number
c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

and so wechoose a numberc ∈ (a, b) such that this equation holds. From the
fact thatf ′(x) = 0 for everyx ∈ (a, b) we certainly havef ′(c) = 0. Therefore

f(b)− f(a)

b− a
= 0,

and we conclude thatf(a) = f(b). �

3.5.3 A Note of Caution
When you are writing a mathematicalproof, do not make the common mistake
of thinking that, just because a condition of the form∃x (P (x)) is given, such an
objectx has been chosen for you automatically. You do not have such an object
x in your hands until you have written:

Choose x such that the condition P (x) is true.

Consider the following pair of sentences:

There exists a number x such that 0 < x < 1.
Clearly, x2 < x.

The second of these two sentences is meaningless. If you were to write these
sentences in an examination, the examiner would respond with something like:
“What is x?” You cannot answer thatx is “the number” introduced in your first
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sentence because all the first sentence says is that there is a number between0
and1.

On the other hand it, would be perfectly legitimate to say:

There exists a number x such that 0 < x < 1.
Furthermore, for every x ∈ (0, 1) we have x2 < x.

Alternatively, you could say:

Using the fact that (0, 1) is nonempty, choose x ∈ (0, 1).
Note that x2 < x.

3.6 Statements of the Form ∀x (P (x))

As you know, ifP (x) is a statement about an unknownx, then the assertion
∀x (P (x)) says that the conditionP (x) is true forevery objectx. In this section
we shall discuss the strategy forproving a statement of the form∀x (P (x)) and
the strategy for using information that is phrased in the form∀x (P (x)).

3.6.1 Inductive and Deductive Reasoning
A statement of the type∀x (P (x)) cannever be proved by giving an example.
All an example can tell us is that there is one objectx for whichP (x) is true. It
says nothing to guarantee thatP (x) is true forevery x. Thus, for example, you
cannot conclude that the identity

3

√
3
√
3x+ (2x2 + 1)

√
4− x2

6
√
3

+
3

√
3
√
3x− (2x2 + 1)

√
4− x2

6
√
3

= x

holds for all numbersx ∈ [−2, 2] merely by observing that it holds whenx = 0.
Even if we were to find thousands of numbersx in [−2, 2] for which this identity
is true, in the absence of a general proof we would still not know for sure that the
identity holds forall x ∈ [−2, 2].

Outside of mathematics there is a type of reasoning calledinductive rea-
soning, which is used to validate statements of the type∀x (P (x)). The idea of
inductive reasoning is thatP (x) probably holds for allx if it is known to hold for
a representative selection of objectsx. For example, if every time you have used
a certain laundry detergent you have broken out in a rash, you could reasonably
conclude that this detergent is causing your problem. Every time you use the
detergent and see the rash appear you feel a little more confident that your theory
is correct.

Inductive reasoning plays an important role in such walks of life as science,
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medicine, and even law. Doctors must use inductive reasoning to make decisions
upon which our very lives depend. Courts must render decisions based on induc-
tive reasoning. There is, in fact, abranch of mathematics, known asstatistics,
that is devoted to the problem of measuring how confidently one may assert a
statement that was obtained using inductive reasoning. But inductive reasoning
can never be used to make a conclusion in mathematics.

3.6.2 Proving a Statement of the Form ∀x (P (x))

In order to verify an assertion of the type∀x (P (x)) we need to show that the
conditionP (x) holds for every memberx of some specified set. If that set is
infinite, then we can’t live long enough to test the conditionsP (x) one at a time,
but, fortunately, there is a more efficient approach. We prove that the condition
P (x) holds for what we call anarbitrary value ofx that we introduce using the
word suppose.

3.6.3 Example of a Proof of a Statement Containing for every
For every number x ∈ [−2, 2] we have

3

√
3
√
3x+ (2x2 + 1)

√
4− x2

6
√
3

+
3

√
3
√
3x− (2x2 + 1)

√
4− x2

6
√
3

= x.

Proof. Because we want to prove that a condition is true for every numberx in
the interval[−2, 2], we begin our proof by writing

Supposex ∈ [−2, 2].

In writing this opening sentence we do not have to know that there are any
numbers in the interval[−2, 2]. What we are saying is that, in case there are
any, suppose thatx is an arbitrary one of them, coming without any restrictions,
so that anything we might be able to prove aboutx would apply just as well to
any other number in the interval. In other words, letx be an arbitrary number in
the interval[−2, 2] that has come to challenge us to prove that

3

√
3
√
3x+ (2x2 + 1)

√
4− x2

6
√
3

+
3

√
3
√
3x− (2x2 + 1)

√
4− x2

6
√
3

= x.

Now that we have this challenger in our hands we can begin our proof. To obtain
the desired result we shall first show that

3

√
3
√
3x+ (2x2 + 1)

√
4− x2

6
√
3

=
x

2
+

1

2

√
4− x2

3
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and

3

√
3
√
3x− (2x2 + 1)

√
4− x2

6
√
3

=
x

2
− 1

2

√
4− x2

3
.

Once these two equations have been established, the desired result will follow at
once. To establish the first of these two equations we expand and simplify the
expression (

x

2
+

1

2

√
4− x2

3

)3

to obtain (
x

2
+

1

2

√
4− x2

3

)3

=
3
√
3x+ (2x2 + 1)

√
4− x2

6
√
3

.

The second equation can be obtained similarly by showing that(
x

2
− 1

2

√
4− x2

3

)3

=
3
√
3x− (2x2 + 1)

√
4− x2

6
√
3

.

Before leaving this topic we should notice that, although the proof we have just
given is valid, it is not very satisfying. It guarantees that the equation

3

√
3
√
3x+ (2x2 + 1)

√
4− x2

6
√
3

+
3

√
3
√
3x− (2x2 + 1)

√
4− x2

6
√
3

= x

holds for everyx ∈ [−2, 2], but it doesn’t tell us how we could have anticipated
this equation. It doesn’t motivate it. If you would like to see a better approach, go
to the on-screen text and click on the icon , which will take you to some ex-
ercises in the optional document on cubic equations. Of course, those exercises
should not be attempted unless you decide to read that optional document.

3.6.4 Using Information of the Form ∀x (P (x))

Information of the type∀x (P (x)) can be useful to us only when there are certain
objectsx that are of particular interest to us and for which we would like to know
that the conditionP (x) is true. We can then say that because the conditionP (x)
is true forevery x, certainlyP (x) will be true for those objectsx that are of
interest to us.

Suppose, for example, that I am standing in a used car lot and I want to buy
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a used car. The knowledge that all used car sales personnel are honest is very
comforting to me. It tells me that I can place my implicit trust in the gentleman
who is assisting me.

3.6.5 Example of a Proof Using Information Containing for every

We shall revisit the proof that appears in Subsection 3.5.2. There, we were given
a functionf that is continuous on an interval[a, b] and for whichf ′(x) = 0 for
everyx ∈ (a, b), and we proved thatf(a) = f(b). We began by choosing a
numberc ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Then we made use of the fact thatf ′(x) = 0 for every x ∈ (a, b). Among all the
numbersx ∈ (a, b), the numberc is of particular interest to us. Sincef ′(x) = 0
for everyx ∈ (a, b), we know thatf ′(c) = 0. Therefore

f(b)− f(a)

b− a
= 0,

and we deduce thatf(a) = f(b).

3.6.6 Exercises on Statements Containing Quantifiers

1. Physicist’s proof that all odd positive integers are prime:1 is prime.10 3
is prime. 5 is prime. 7 is prime. 9 is experimental error.11 is prime.
13 is prime. We have now taken sufficiently many readings to verify the
hypothesis. Comment!

2. You know that there are1000 people in a hall. Upon inspection you
determine that999 of these people are men. What can you conclude about
the1000th person?

3. Theproduct rule for differentiation says that for every numberx and all
functionsf andg that are differentiable atx, we have

(fg)′ (x) = f ′(x)g(x) + f(x)g′(x).

Write down the opening line of a proof of the product rule. Your opening
line should start:Suppose that ...

4. Given thatP (x) andQ(x) are statements that contain an unknownx
and thatS is a set, outline a strategy for proving the assertionP (x) ⇒ Q(x)
for everyx ∈ S. Write down the opening line of your proof.

10 Mathematicians are divided on the issue of whether or not the number1 should be called
prime.
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5. Given thatP (x) is a statement that contains an unknownx and thatS
is a set, write down an opening line of a proof of the assertion thatP (x) is
true for everyx ∈ S.

6. You are given thatP (x) andQ(x) are statements that contain an
unknownx, thatS is a set, thatP (x) is true for everyx ∈ S, and that
P (x) ⇒ Q(x). Is it possible to deduce thatQ(x) is true for every memberx
of the setS?

7. You are given thatP (x) andQ(x) are statements that contain an
unknownx, thatS is a set, thatP (x) is true for everyx ∈ S, and that
P (x) ⇒ Q(x). Is it possible to deduce thatQ(x) is true for at least one
memberx of the setS?

8. Write down the contrapositive form of the statement that for every
memberx of a given setS we haveP (x) ⇒ Q(x).

9. Write down the denial of the statement that for everyx we have
P (x) ⇒ Q(x).

10. Prove that, for every numberx in the interval[−2, 2], if we define

u =
3

√
3
√
3x+ (2x2 + 1)

√
4− x2

6
√
3

and

v =
3

√
3
√
3x− (2x2 + 1)

√
4− x2

6
√
3

,

then

u2 + v2 = 1 + uv.

Hint: With an eye on the proof in Subsection 3.6.3, show thatu3+v3 = u+v.

3.7 Proof by Contradiction

The idea of proof by contradiction is that if we can deduce a contradiction by
assuming that a certain statementP is false, thenP must be true. Proof by
contradiction is usually most useful when the statementP that we are considering
seems rather intangible but its denial¬P is nice and concrete. IfP is this kind
of statement, it is sometimes hard to find a direct proof thatP is true. However,
the assumption thatP is false may place some very concrete information in our
hands. If we can show that this information leads to a contradiction, then we have
proved indirectly thatP is true.
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For an example of a statementP of this type, suppose thatx is a given number
and takeP to be the statement thatx is irrational.11 SinceP asserts that it is
impossible to find integersm andn such thatx = m

n
, a direct proof of the

statementP must tell us why it is impossible to find such integersm andn. How
does one prove that it is impossible to do something? Now consider the statement
¬P . The statement¬P says that itis possible to find integersm andn such that
x = m

n
. If we are assuming the statement¬P , then at least we know how to

begin our proof:

Choose integers m and n such that x =
m

n
.

As you may expect from this discussion, we often use proof by contradiction
to prove that a given real number is irrational.

3.7.1 Some Examples of Proof by Contradiction

1. In this example we shall show that the numberlog2 6 is irrational. To prove
this assertion by the method of proof by contradiction we begin:

To obtain a contradiction, assume thatlog2 6 is rational.

Using the assumption thatlog2 6 is a positive rational number, choose
positive integersm andn such that

log2 6 =
m

n
.

We observe that2m/n = 6 and therefore

2m = 6n.

But the right side of the latter identity has a factor3 while the left side does
not, and so the two sides cannot beequal. Since the assumption thatlog2 6 is
rational led us to a contradiction, we conclude thatlog2 6 must be irrational.

2. In this example we again concern ourselves with the irrationality of a
number. This time we show that the number

√
2 is irrational. To obtain a

contradiction we shall assume that
√
2 is rational. Choose positive integers

m andn such that √
2 =

m

n
.

We now cancel out any factors that are common to the numerator and

11 Recall that a number is rational if it can be expressed in the form of a ratiom

n
, wherem andn

are integers.
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denominator of the fractionm/n yielding a fractionp/q in whichp andq are
positive integers that have no common factor. Since

√
2 = p/q, we have

p2 = 2q2.

Now, sinceq has no common factor withp we see thatq has no common
factor withp2. But, on the other hand, sinceq is a factor of2q2, we know
thatq is a factor ofp2. Thereforeq = 1 and we see thatp2 = 2. The latter
condition is certainly impossible because there is no integer whose square
is 2. Since the assumption that

√
2 is rational leads to a contradiction, we

conclude that
√
2 must be irrational.

3.7.2 Drawbacks of Proof by Contradiction
Although the method of proof by contradiction can be very useful when we are
proving certain kinds of statements, some members of the mathematical commu-
nity are less than enthusiastic about using it. They argue that it is better to give
a positive reason why a statementP must be true rather than to conclude thatP
must be true because the statement¬P leads to a contradiction. Therefore, they
feel that whenever we can see a direct way of showing that a statementP is true,
we should use it.

Then there are the logical purists who point out that, if we can deduce a
contradiction by assuming that a certain statementP is false, then this leaves
open the remote possibility that we may also be able to deduce a contradiction by
assuming thatP is true. In this event, we would conclude that there is an inherent
contradiction in mathematics. Therefore, the logical purists point out, if we can
deduce a contradiction by assuming that a statementP is false, we need to say
that, as long as there is no inherent contradiction in mathematics,P must be true.

3.7.3 Exercises on Proof by Contradiction

1. Prove that the following numbers are irrational:

(a) log10 5.
(b) log12 24.

(c) 3
√
4.

(d) Any solution of the equation8x3 − 6x− 1 = 0.
2. Given thatm andn are integers and thatmn does not have a factor3, prove

that neitherm norn can have a factor3.
3. Suppose that we know thatx2 − 2x < 0 and that we wish to prove that

0 < x < 2. Write down the first line of a proof of this assertion that uses
the method of proof by contradiction. Do this in such a way that your proof
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splits into two cases and complete the proof in each of these cases.
4. Suppose thatf is a given function defined on the interval[0, 1] and

suppose that we wish to prove that this functionf has the property that there
exists a numberδ > 0 such that, whenevert andx belong to the interval
[0, 1] and|t− x| < δ, we have|f(t)− f(x)| < 1. Write down the first line
of a proof of this assertion that uses the method of proof by contradiction.

5. Suppose that{x1, x2, · · ·xn} is a subset of a vector space12 V and that we
wish to prove that the set{x1, x2, · · ·xn} is linearly independent. Write
down the first line of a proof of this assertion that uses the method of proof by
contradiction. (Try to be specific. Don’t just suppose that the set is linearly
dependent.)

3.8 Some Further Examples

This section contains a few extra examples in which we prove or disprove state-
ments of the form∀x (P (x)). The proofs contained here will help you to develop
skills that will be useful to you when you read some of the later chapters.

3.8.1 A Fact About Inequalities
In this subsection we discuss the two statements that appeared in Example 5 of
Subsection 2.1.4. We begin by proving that the first of the statements is true.
This statement is as follows:

For every number x there exists a positive number δ such that for every
number t satisfying the inequality |t− x| < δ we have |t2 − x2| < 1.

Proof. Since we want to prove that a condition holds for every numberx, we
begin this proof by writing:

Suppose thatx is any real number.

Now that we have a challengerx in our hands we need to prove that there exists
a positive numberδ such that for every numbert satisfying|t− x| < δ we have
|t2 − x2| < 1. We shall demonstrate the existence of such a numberδ by finding
one.

To help us find this number, we observe that ifδ > 0, then for any numbert
satisfying|x− t| < δ we have∣∣x2 − t2

∣∣ = |x− t| |x+ t| = |x− t| |(t− x) + 2x|
≤ |x− t| (|x− t|+ 2 |x|) < δ (δ + 2 |x|) .

12 Skip this exercise if you have not had a course in linear algebra.



3.8 Some Further Examples 45

So, to guarantee the inequality|t2 − x2| < 1, all we have to do is find a positive
numberδ for which

δ (δ + 2 |x|) ≤ 1,

and, with this thought in mind, we define

δ =
1

1 + 2 |x| .

Note thatδ ≤ 1 and so

δ (δ + 2 |x|) ≤ 1

1 + 2 |x| (1 + 2 |x|) = 1.

Now that bothx andδ have been introduced, we want to show that for every
numbert satisfying the inequality|t− x| < δ we have|t2 − x2| < 1. We
therefore continue the proof by writing:

Suppose thatt is any number satisfying|t− x| < δ.

And we complete the proof by observing that∣∣t2 − x2
∣∣ < δ (1 + 2 |x|) ≤ 1.

We shall now show that the second of the two statements that appeared in
Example 5 of Subsection 2.1.4 is false. This statement is as follows:

There exists a positive number δ such that for every number x and for every
number t satisfying the inequality |t− x| < δ we have |t2 − x2| < 1.

Proof. To see that this statement is false, suppose thatδ is any positive
number. Definex = 1/δ and

t = x+
δ

2
.

Then, although|t− x| = δ/2 < δ, we have

t2 − x2 = xδ +
δ2

4
> 1. �

3.8.2 Another Fact About Inequalities
In this subsection we prove Statement 6a that appeared in Example 6 in Subsec-
tion 2.1.4:
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For every number ε > 0 and for every number x ∈ [0, 1] there exists a
positive integer N such that for every integer n ≥ N we have

nx

1 + n2x2
< ε.

Proof. Since we want to prove that a condition holds for everyε > 0, we begin
the proof by writing:

Suppose thatε > 0.

Now that we have this challengerε in our hands we need to prove that for every
numberx ∈ [0, 1] there exists a positive integerN such that for every integer
n ≥ N we have

nx

1 + n2x2
< ε.

We therefore continue the proof by writing:

Suppose thatx ∈ [0, 1].

Now that we have this challengerx in our hands we need to show that there exists
a positive integerN such that for every integern ≥ N we have

nx

1 + n2x2
< ε,

and we shall demonstrate the existence of such a numberN by finding one. In
the event thatx = 0, the desired inequality holds for all values ofn and we
simply defineN = 1. We see that

nx

1 + n2x2
= 0 < ε

for all n ≥ N . In the event that0 < x ≤ 1, we choose an integerN > 1
εx

and
we observe that for alln ≥ N ,

nx

1 + n2x2
≤ nx

0 + n2x2
=

1

nx
≤ 1

Nx
< ε.�

3.8.3 Yet Another Fact About Inequalities
In this subsection we show that the assertion 6c that we saw in Example 6 in
Subsection 2.1.4 is false. This statement says:

For every number ε > 0 there exists a positive integer N such that for every
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number x ∈ [0, 1] and for every integer n ≥ N we have

nx

1 + n2x2
< ε.

To prove that this statement is false we shall prove that its denial is true. We
therefore need to prove the following statement:

There exists a number ε > 0 such that for every positive integer N there
exists a number x ∈ [0, 1] and there exists an integer n ≥ N such that

nx

1 + n2x2
≥ ε.

We shall demonstrate the existence of such a numberε by finding one. As a
matter of fact, we shall show that the number1/2 is an example of such a number
ε. We begin by writing:

Defineε = 1/2.

Now we must show that for every positive integerN there exists a numberx ∈
[0, 1] and there exists an integern ≥ N such that

nx

1 + n2x2
≥ ε,

and so we continue by writing:

Suppose thatN is any positive integer.

To complete the proof we need to demonstrate the existence of a numberx ∈
[0, 1] and an integern ≥ N such that

nx

1 + n2x2
≥ ε,

and we shall do so by finding two such numbers. We definen = N andx =
1/N , and we observe that

nx

1 + n2x2
=

1

1 + 1
= ε.�

3.8.4 Some Additional Exercises
In each of the following exercises, decide whether the statement is true or false
and then write a carefully wordedproof to justify your assertion.
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1. For every numberx ∈ [0, 1] there exists a positive integerN such that
for every numberε > 0 and every integern ≥ N we have

nx

1 + n2x2
< ε.

2. For every numberx ∈ [0, 1] and every numberε > 0 there exists a
numberδ > 0 such that for every numbert ∈ [0, 1] satisfying|t− x| < δ
we have|t2 − x2| < ε.

3. For every numberε > 0 and every numberx ∈ [0, 1] there exists a
numberδ > 0 such that for every numbert ∈ [0, 1] satisfying|t− x| < δ
we have|t2 − x2| < ε.

4. For every numberε > 0 there exists a numberδ > 0 such that for every
numberx ∈ [0, 1] and every numbert ∈ [0, 1] satisfying|t− x| < δ we
have|t2 − x2| < ε.

5. For every numberε > 0 and every numberx there exists a number
δ > 0 such that for every numbert satisfying|t− x| < δ we have
|t2 − x2| < ε.

6. For every numberε > 0 there exists a numberδ > 0 such that for every
numberx and every numbert satisfying|t− x| < δ we have|t2 − x2| < ε.

7. For every numberx ∈ (0, 1] there exists a numberδ > 0 such that for
every numbert ∈ (0, 1] satisfying|t− x| < δ we have∣∣∣∣1t − 1

x

∣∣∣∣ < 1.

8. There exists a numberδ > 0 such that for every numberx ∈ (0, 1] and
every numbert ∈ (0, 1] satisfying|t− x| < δ we have∣∣∣∣1t − 1

x

∣∣∣∣ < 1.

9. For every numberp ∈ (0, 1] there exists a numberδ > 0 such that for
every numberx ∈ [p, 1] and every numbert ∈ [p, 1] satisfying|t− x| < δ
we have ∣∣∣∣1t − 1

x

∣∣∣∣ < 1.

10. (a) If either0 < θ < π or π < θ < 2π, then

arctan (tan (θ/2)) + arctan (tan (π/2− θ)) =
π − θ

2
.
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(b) Ask Scientific Notebook to solve the equation

arctan (tan (θ/2)) + arctan (tan (π/2− θ)) =
π − θ

2
.

Are you satisfied with the answer that it gives?
11. If x is any rational number, then

lim
n→∞

(
lim

m→∞
(cos (n!πx))m

)
= 1.

12. If x is any irrational number, then

lim
n→∞

(
lim

m→∞
(cos (n!πx))m

)
= 0.



Chapter 4
Elements of Set Theory

This chapter provides a brief introduction to those concepts from elementary set
theory that we shall need in the rest of the book. Since many of these concepts
may already be familiar to you, you should read as much or as little of this chapter
as you need. If you are reading the on-screen version of this book, you can find
a more extensive presentation of the set theory (that includes the concepts of
countability and set equivalence, the Schröder-Bernstein equivalence theorem,
and some more advanced topics) by clicking on the icon .

4.1 Introduction

In the latter part of the nineteenth century Georg Cantor revolutionized mathe-
matics by showing that all mathematical ideas can trace their origins to a single
concept: the concept of aset. On the face of it, Cantor’s notion of a set was very
simple: A set is a collection of objects. But the theory of sets that he created
out of this idea was so profound that it has become the foundation stone of every
branch of mathematics. Using Cantor’s theory, mathematicians were able at last
to provide precise definitions of important mathematical concepts such as real
numbers, points in space, and continuous functions. In addition, Cantor’s theory
of sets provided a startling insight intothe nature of infinity. Perhaps the most
significant of his discoveries was the fact that some infinite magnitudes are larger
than others.

Our notion of a set in this book will be the same one that Cantor used. We
shall think of a set as being a collection of objects, and, when it suits us, we shall
replace the wordset by class, family, or collection. All of these words will have
the same meaning. So, for example, the symbol

{2,−1, 7}

stands for the set whose members are the numbers2, −1, and7. When an object
x belongs to a given setS we writex ∈ S. For example,2 ∈ {2,−1, 7}.

However, before we go any further with this topic we are going to pause
briefly to confront some of the logicalflaws that lurk in Cantor’s definition of a
set as a collection of objects. These are theflaws that we mentioned in Section
1.4 and which forced Frege to admit that the foundation of his monumental book
had collapsed just as it went to press.

50
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4.1.1 Bertrand Russell’s Paradox
The trouble with Cantor’s theory of sets is that when we are collecting objects
together to make a set we have to allow for the possibility that some of the objects
that we are collecting might be sets themselves. For example, the set

{3, 8, {2, 3}}
contains the number3, the number8, and the set{2, 3} whose members are the
numbers2 and3. Notice how the set{2, 3} is a member of the set{3, 8, {2, 3}}.
It is therefore entirely possible that a setA may be one of itsown members. Look
at the following two examples:

1. Suppose thatE is the set of all cows. SinceE is not a cow, it is not one of
its own members.

2. Suppose thatE is the set of all of those things that we could ever talk about
that are not cows. Since this setE is not a cow, we see that this setE is one
of its own members.

Mathematicians prefer to avoid sets that are members of themselves. They
feel that if we are going to collect some objects together to make a setA, then
all of those objects ought to be well known to usbefore we collect them together.
Now what if one of those objects is the setA itself? We would need to know
what the setA is even before we have collected its members together to define it.
So mathematicians dislike the idea of sets that are members of themselves. Note,
however, that this dislike is not the devastating paradox of Bertrand Russell. It
is merely a warning that something nasty is going on and that a paradox may be
lurking somewhere.

We shall call a setA self-possessed if A is one of its own members. In other
words,A is self-possessed if and only ifA ∈ A. Bertrand Russell’s idea was to
consider the setS of all of those setsA that are not self-possessed. He then asked
himself a question:

Is this set S self-possessed?

He discovered that, no matter how one answers this question, the answer
leads to a contradiction. In other words, not only does the assumption thatS
is self-possessed lead to a contradiction, but so does the assumption thatS isn’t
self-possessed. To see how the two contradictions may be obtained one may
reason as follows:

• Suppose thatS is self-possessed; in other words, suppose thatS belongs to
S. ThusS is a self-possessed member ofS. But from the definition ofS we
see that the members ofS have to be sets that are not self-possessed, and we
have arrived at a contradiction.
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• Suppose thatS is not self-possessed. Since every set that isn’t self-possessed
must belong toS, the setS must belong toS, and we conclude thatS is
self-possessed. Once again we have arrived at a contradiction.

It is this double contradiction that propels us into the vicious circle known as
Bertrand Russell’s paradox, the paradox that threw the mathematical world into
an uproar in the year 1901.

4.1.2 The Zermelo-Fraenkel Axioms
The message of Russell’s paradox is that it is the very existence of the setS
described in Subsection 4.1.1 that forces a contradiction upon us. Russell’s para-
dox warns us that not every collection of objects should be thought of as aset,
especially if some of its members are already sets. For this reason, the modern
theory of sets rejects Cantor’s definition of a set as being simply a collection of
objects, and replaces this notion by an abstract idea that is based on a system of
axioms. The most common of these systems of axioms is known as theZermelo-
Fraenkel system.

Since the modern theory of sets is an advanced topic, we shall not present
it here. We shall continue to think of a set as a collection of objects, but we
shall keep at the back of our minds the warning that not every such collection
should be allowed. Fortunately, the Zermelo-Fraenkel axioms provide us with
all of the sets that appear in algebra, analysis, topology, and other branches of
mathematics. All of the sets that we shall mention from now on in this book can
be verified as legitimate in a Zermelo-Fraenkel system, and we shall therefore
cease to worry about paradoxes.

4.2 Sets and Subsets

To begin this section we shall extend our language a little. As we have said, a set
is a collection of objects. Any object that belongs to a given setS is said to be
a member of S, anelement of S, or apoint of the setS. If x is a member of
a setS, then we writex ∈ S and say thatx belongs to S or is contained in S.
We also say thatS contains x. If an objectx does not belong to a setS, then we
write x /∈ S. Two setsA andB are equal when they contain precisely the same
objects. Theempty set ∅ is the set that has no members at all.13

4.2.1 Subsets of a Given Set
If A andB are two given sets, then we say thatA is asubset ofB or, alternatively,
thatA is included in B if every member ofA is also a member ofB. WhenA

13 The symbol∅ can be read aloud as “emptyset”.
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is a subset ofB we writeA ⊆ B, and we also write this condition asB ⊇ A
and say thatB includes A. Figure 4.1 shows how we may picture the condition
A ⊆ B. Note that two setsA andB are equal if and only if both of the conditions
A ⊆ B andB ⊆ A hold. In the event thatA ⊆ B and the setsA andB are not
equal, we say thatA is properly included in B and thatA is aproper subset
of B.

If A andB are any two sets, then the denial of the conditionA ⊆ B says that
there existsx ∈ A such thatx /∈ B. In the event thatA = ∅, we certainly can’t
find a memberx ∈ A such thatx /∈ B because there are no members ofA to
find. We therefore conclude that∅ ⊆ B for every setB.

A

B

Figure 4.1

4.2.2 Equality of Sets
Two setsA andB are equal when they contain precisely the same members.
Thus ifA andB are two given sets, then the conditionA = B says that every
member ofA must belong toB and every member ofB must belong toA. In
other words,A = B is equivalent to the condition thatA ⊆ B and alsoB ⊆ A.

4.2.3 The Power Set of a Given Set
Given any setA, the family of all subsets ofA is called the power set ofA and
is written asp (A). For a simple example, observe that

p ({1, 2, 3}) = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} .

4.2.4 Set Builder Notation
We have already used notation such as{2, 7,−3}, which stands for the set whose
members are the numbers2, 7, and−3. This is a form of what is known asset
builder notation. There is also another form of set builder notation. Suppose that
P (x) is a statement that contains a single unknownx. The notation{x | P (x)}



54 Chapter 4 Elements of Set Theory

stands for the set of all of those objectsx for which the statementP (x) is true.
This notation is particularly useful to describe subsets of a given set. The follow-
ing examples illustrate this notation:

1. Writing the set of all real numbers14 asR and takingP (x) to be the
condition−3 ≤ x < 2, we have

{x ∈ R | P (x)} = {x ∈ R | −3 ≤ x < 2} = [−3, 2) .

2. TakingP (x) to be the condition8x3 − 6x− 1 ≥ 0, we have

{x ∈ R | P (x)} =
{
x ∈ R | 8x3 − 6x− 1 ≥ 0

}
.

3. In this example we refer to the setQ of all rational numbers. The set{
x ∈ Q | x < 0 or x2 < 2

}
is the set of all of those rational numbers that are less than

√
2.

4.2.5 The Union of Two Sets
Suppose thatA andB are given sets. The symbolA∪B stands for the set of all
of those objects that belong to at least one of the two setsA andB and is called
theunion of A andB. Thus

A ∪B = {x | x ∈ A or x ∈ B} .

4.2.6 The Intersection of Two Sets
Suppose thatA andB are given sets. The symbolA ∩ B stands for the set of
all of those objects that belong toboth of the setsA andB and is called the
intersection of the setsA andB. Thus

A ∩B = {x | x ∈ A andx ∈ B} .

In the event thatA∩B = ∅, we say that the setsA andB aredisjoint from each
other.

4.2.7 The Difference of Two Sets
Suppose thatA andB are given sets. Thedifference A \B of the sets is defined
by

A \B = {x ∈ A | x /∈ B} .

14 In this chapter we draw freely from the setR of real numbers, the setQ of rational numbers,
the setZ of integers, and the setZ+ of natural numbers for our examples. A more careful
presentation of these sets can be found in the chapters that follow.
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Another way of looking atA \B is to say that

A \B = {x | x ∈ A and x /∈ B} .

B
AA B A B

A B

A
A

B

Figure 4.2

Figure 4.2 shows how we may picture the union, intersection and difference
of two setsA andB.

4.2.8 The Cartesian Product of Two Sets
If A andB are any two sets, then theirCartesian product A × B is the set of
all ordered pairs(x, y) that havex ∈ A andy ∈ B. In other words,

A×B = {(x, y) | x ∈ A andy ∈ B} .

4.2.9 Some Common Sets

1. The set of all real numbers is usually written asR orR.
2. The set of all rational numbers is usually written asQ orQ.
3. The set of all integers is usually written asZ orZ.
4. The set of all positive integers is usually written asZ+, orZ+, orN, orN.
5. If a andb are real numbers anda ≤ b, then we shall use the standard interval

notation

[a, b] = {x ∈ R | a ≤ x ≤ b}
[a, b) = {x ∈ R | a ≤ x < b}
(a, b] = {x ∈ R | a < x ≤ b}
(a, b) = {x ∈ R | a < x < b} .

As you may know, an interval of the form[a, b] is called aclosed interval
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and an interval of the form(a, b) is called anopen interval. We can also
define intervals of infinite length: Ifa is any real number, then we define

[a,∞) = {x ∈ R | a ≤ x}
(a,∞) = {x ∈ R | a < x}

(−∞, a] = {x ∈ R | x ≤ a}
(−∞, a) = {x ∈ R | x < a} ,

and finally, the symbol(−∞,∞) is the setR of all real numbers. Note that
if a is any real number then the interval(a, a) is the empty set∅.

6. The setR×R of all ordered pairs of real numbers is called theEuclidean
plane and is also written asR2.

4.2.10 Exercises on Set Notation

1. Given objectsa,b, andy and given that{a, b} = {a, y}, prove that
b = y.

2. Prove that ifa, b, x, andy are any given objects and if{a, b} = {x, y},
then eithera = x andb = y, or a = y andb = x.

3. Prove that ifa, b, x, andy are any given objects and if

{{a} , {a, b}} = {{x} , {x, y}} ,
thena = x andb = y.

4. Describe the setp (∅).
5. Describe the setp (p (∅)).
6. Given thatA = {a, b, c, d}, list all of the members of the setp (A).
7. Given thatA = {a, b}, list all of the members of the setp (p (A)).

8. Use theEvaluate operation inScientific Notebook to evaluate the sets
{1, 2, 3} ∩ {2, 3, 4} and{1, 2, 3} ∪ {2, 3, 4}.

4.2.11 The DeMorgan Laws
Suppose thatA, B, andC are given sets. The following simple identities are
known as theDeMorgan laws:

1. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
2. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
3. A \ (B ∪ C) = (A \B) ∩ (A \ C).
4. A \ (B ∩ C) = (A \B) ∪ (A \ C).

Proof. We shall prove law 2 and leave the proofs of the other three laws as
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exercises. The proof that we are about to give is highly detailed. When you
prove the other three laws, write your proofs first in as much detail as is given
here. Then rewrite them more briefly.

To prove law 2 we shall begin by proving that

A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C) .

We want to prove that every member of the left side must belong to the right
side. Since we want to prove a “for every” statement, we begin our proof with
the words

Suppose thatx ∈ A ∩ (B ∪ C).

We know thatx ∈ A and also thatx ∈ B ∪ C. In other words, we know that
x ∈ A and eitherx ∈ B or x ∈ C. Thus eitherx ∈ A andx ∈ B or otherwise
x ∈ A andx ∈ C. Since the first of these two possibilities says thatx ∈ A ∩B
and the second possibility says thatx ∈ A∩C, we therefore know thatx belongs
to at least one of the two setsA ∩B andA ∩ C; in other words,

x ∈ (A ∩B) ∪ (A ∩ C) .

We have therefore shown that

A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C) ,

and we shall now complete the proof of law 2 by showing that

(A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) .

We want to prove that every member of the left side must belong to the right
side. Since we want to prove a “for every” statement, we begin our proof with
the words

Suppose thatx ∈ (A ∩B) ∪ (A ∩ C).

We know thatx must belong to at least one of the setsA ∩B andA ∩ C. Since
the given information says that one or the other of two conditions must hold, we
proceed according to the method described in Subsection 3.3.3. We have two
tasks to perform:

(a) We need to show that ifx ∈ A ∩B, thenx ∈ A ∩ (B ∪ C).
(b) We need to show that ifx ∈ A ∩ C, thenx ∈ A ∩ (B ∪ C).

To perform the first of these two tasks we suppose thatx ∈ A ∩ B. Since
x ∈ A andx ∈ B, we know thatx ∈ A and thatx belongs to at least one of the
setsB andC. So in this case we certainly havex ∈ A ∩ (B ∪ C).
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To perform the second of these two tasks we suppose thatx ∈ A ∩ C. Since
x ∈ A andx ∈ C, we know thatx ∈ A and thatx belongs to at least one of the
setsB andC. So in this case we certainly havex ∈ A ∩ (B ∪ C).

4.2.12 Exercises on Set Operations

1. Express the set[−2, 3] \ (0, 1] as the union of two intervals.
2. Given two setsA andB, prove that the conditionA ⊆ B is equivalent to the

conditionA ∪B = B.
3. Given two setsA andB, prove that the conditionA ⊆ B is equivalent to the

conditionA ∩B = A.
4. Given two setsA andB, prove that the conditionA ⊆ B is equivalent to the

conditionA \B = ∅.
5. Illustrate the identity

A \ (B ∪ C) = (A \B) ∩ (A \ C)

by drawing a figure. Then write out a detailed proof.
6. Illustrate the identity

A \ (B ∩ C) = (A \B) ∪ (A \ C)

by drawing a figure. Then write out a detailed proof.
7. Given thatA, B, andC are subsets of a setX, prove that the condition

A ∩B ∩ C = ∅ holds if and only if

(X \A) ∪ (X \B) ∪ (X \C) = X.

8. Given setsA, B, andC, determine which of the following identities are
true.

(a) A ∩ (B \ C) = (A ∩B) \ (A ∩ C).
(b) A ∪ (B \ C) = (A ∪B) \ (A ∪ C).
(c) A ∪ (B \ C) = (A ∪B) ∩ (A \ C).
(d) A ∪ (B \ C) = (A ∪B) \ (A ∩ C).
(e) A \ (B \ C) = (A \B) \C.
(f) A \ (B \ C) = (A \B) \ (A \ C).
(g) A \ (B \ C) = (A \B) ∩ (A \ C).
(h) A \ (B \ C) = (A \B) ∪ (A \ C).
(i) A \ (B \ C) = (A \B) ∪ (A ∩ C).
(j) A \ (B \ C) = (A \B) ∩ (A ∪ C).
(k) A = (A ∩B) ∪ (A \B).
(l) p (A ∪B) = p (A) ∪ p (B).
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(m)p (A ∩B) = p (A) ∩ p (B).
(n) A× (B ∪ C) = (A×B) ∪ (A× C).
(o) A× (B ∩ C) = (A×B) ∩ (A× C).
(p) A× (B \ C) = (A×B) \ (A× C).

9. Is it true that ifA andB are sets andA = A \B, then the setsA andB
are disjoint from each other?

10. Given thatA is a set with10 members,B is a set with7 members, and that
the setA∩B has4 members, how many members does the setA∪B have?

11. Give an example of a setA that contains at least three members and that
satisfies the conditionA ⊆ p (A).

12. For which setsA do we haveA ∈ p (A)?

4.3 Functions

4.3.1 Intuitive Definition of a Function
In this brief presentation of set theorywe shall be content with an intuitive view
of a functionf defined on a setA as a rule that assigns to each memberx of the
setA a unique object written asf(x) and called thevalue of the functionf atx.

If f is a function with domainA and iff(x) ∈ B for everyx ∈ A, then we
say thatf is a functionfrom A to B and we writef : A → B. Whenf is a
function fromA toB we also say thatf maps A toB. Figure 4.3 shows how we
may picture this idea.

A
B

f
x

f (x)

Figure 4.3

4.3.2 Domain of a Function
If f is a function defined on a setA, then the setA is said to be thedomain of the
functionf . Thus the domain of a functionf is the set of all objectsx for which
the symbolf(x) is defined.
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4.3.3 Range of a Function
If f is a function defined on a setA, then the set

{f(x) | x ∈ A}
is called therange of the functionf . Note that iff : A → B, then the range of
f has to be a subset of the setB.

4.3.4 Some Examples of Functions

1. Suppose that we have defined

f(x) = x2

for every numberx. Thenf is a function defined on the setR of all real
numbers. The setR is the domain off and the range off is [0,∞).

2. Suppose that we have defined

f(x) = x2

for every numberx ∈ [−1, 3]. Thenf is a function defined on[−1, 3] and
this interval is the domain off . The range off is the interval[0, 9].

3. Suppose thatC is a bag of jelly beans, any one of which can be yellow,
green, red, or blue. Suppose that for everyx ∈ C, the symbolf(x) is defined
to be the color of the jelly beanx. Thenf is a function defined onC and
the range off is the set that contains the four words, yellow, green, red, and
blue.

4.3.5 Restriction of a Function to a Set
Suppose thatf : A → B and thatE is any subset ofA. Therestriction of f to
E is defined to be the functiong fromE toB defined byg(x) = f(x) for every
x ∈ E. Furthermore, theimage f [E] of E under f is defined by

f [E] = {f(x) | x ∈ E} .
Figure 4.4 shows how we may picture this idea. Note that ifA is the domain of a
functionf , then the range off is the setf [A].

4.3.6 Preimage of A Set
Suppose thatf : A → B. If E is any subset ofB, then thepreimage of E
under f is the setf−1 [E] defined by

f−1 [E] = {x ∈ A | f(x) ∈ E} .

Figure 4.5 illustrates the idea of a preimage.
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A

B

f
E

f [E]

Figure 4.4

A B

f
Ef - 1[E]

Figure 4.5

Note that the idea of a preimage does not depend on the idea of an inverse
functionf−1, which will be defined in Subsection 4.3.12.

4.3.7 One-One Functions
A given functionf is said to beone-one if it is impossible to find two different
membersx1 andx2 in the domain off for whichf(x1) = f(x2). Another way
of saying that a given functionf is one-one is to say that wheneverx1 andx2

belong to the domain off andx1 	= x2 we must havef(x1) 	= f(x2). One-one
functions are sometimes calledinjective.

Since no two different real numbers can have the same cube, we see that
if f(x) = x3 for everyx ∈ R, then the functionf is one-one. However, if
f(x) = x2 for everyx ∈ R, thenf is not one-one becausef(2) = f(−2). If f
is a function from a set of real numbers intoR, then we can picture the condition
thatf be one-one as saying that no horizontal line can meet the graph off more
than once. Figure 4.6 illustrates the graph of a one-one function. Notice how
some horizontal lines meet the graph ofthis function exactly once while others
don’t meet it at all.
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x

y

Figure 4.6

4.3.8 Monotone Functions
Suppose thatS is a set of real numbers and thatf : S → R. We say that
the functionf is increasing if whenevert andx belong toS and t < x we
havef(t) ≤ f(x). We can picture an increasing function as one whose graph
never falls as we move from left to right. The graph of this type of function
is illustrated in Figure 4.7. If the graph off actually rises as we move from

y = f(x)

Figure 4.7

left to right, then we say that the functionf is strictly increasing. Thus the
functionf is strictly increasing if whenevert andx belong toS andt < x we
havef(t) < f(x). Decreasing functions and strictly decreasing functions are
defined similarly. A function that is either increasing or decreasing is said to be
monotone, and a function that is either strictly increasing or strictly decreasing
is said to bestrictly monotone.

We see at once that a strictly monotone function is always one-one. However,
a one-one function does not have to be strictly monotone. Figure 4.6 illustrates
the graph of a one-one function that fails to be monotone.

4.3.9 Functions onto a Given Set
Suppose thatf is a function from a setA to a setB. The rangef [A] of f is a
subset ofB. In the event that the range off is the entire setB, we say that the
functionf is onto the setB. In other words,f is onto the setB if f [A] = B.
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Another way of saying this is to say that for every membery of B there is at least
one memberx of A such thaty = f(x).

Suppose, for example, thatf(x) = x2 for everyx ∈ R. Althoughf : R →
R, the functionf is not onto the setR. On the other hand,f is onto the interval
[0,∞).

4.3.10 A Remark About Terminology
In Subsection 4.3.7 we mentioned that a one-one function is sometimes called an
injective function. When we say that a given function is injective we are saying
that the function is of a certain special type. In other words, the wordinjective is
an adjective. We can say that a particular function is injective in exactly the same
way that we can say that a leaf is green.

However, unlike the concept of a one-one function, the concept that we stud-
ied in Subsection 4.3.9 does not describe a property of functions. When we say
that a given functionf is onto a given setB we are not only talking about the
functionf ; we are talking about the functionf and the setB. For example, if
f(x) = x2 for every real numberx, thenf fails to be onto the setR of real
numbers even though it is onto the set[0,∞).

We can ask whether a given functionf is onto a given setB but we can never
ask whether or not a given function isonto; because such a question makes no
sense. It makes no more sense than it would make if you were to ask me whether
I am sittingon. I would have to answer such a question by asking: “Sitting on
what?” The point of this remark is that the wordonto is not an adjective. It is
a preposition and we need to keep in mind that one of the fundamental rules of
grammar prohibits the use of a preposition at the end of a sentence.

In some mathematical writing, the wordsurjective is used to describe the
fact that a given function is “onto” some unspecified set. This wordsurjective is
misleading because it looks like an adjective even though it is not one, and it will
not be used in this book.

4.3.11 Composition of Functions
If f is a function from a setA to a setB andg is a function fromB to a setC,
then thecomposition g ◦ f of f andg is the function fromA toC defined by

(g ◦ f) (x) = g (f(x))

for everyx ∈ A. Figure 4.8 illustrates this idea. For example, iff(x) = x2 for
everyx ∈ R andg(x) = 1+2x for everyx ∈ [0,∞), then(g ◦ f) (x) = 1+2x2

for everyx ∈ R and(f ◦ g) (x) = (1 + 2x)2 for everyx ∈ [0,∞).
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Figure 4.8

4.3.12 Inverse Functions
Suppose thatf is a one-one function from a setA onto a setB. Given any
membery of B there is one and only one memberx of A such thaty = f(x). If
for each membery of the setB we defineg(y) to be the one and only one member
x of A for which y = f(x), then we have defined a functiong : B → A. This
functiong is called theinverse function of f and is written asf−1.

Note thatf−1 (f(x)) = x for all x ∈ A andf (f−1(y)) = y for all y ∈ B.

Note finally that ifE is any subset ofB, then the expressionf−1 [E] could be
interpreted both as the preimage of the setE under the functionf and also as the
image under the functionf−1 of the setE. Fortunately, these two interpretations
yield the same set.

4.3.13 Inverse Functions Are also One-One
Suppose that f is a one-one function from a set A onto a set B. Then the function
f−1 is also one-one. Moreover, (f−1)

−1
= f .

Proof. To show thatf−1 is one-one we need to show that ify1 andy2 belong to
B andf−1(y1) = f−1(y2), theny1 = y2. Suppose thaty1 andy2 belong toB
andf−1(y1) = f−1(y2). Then we have

y1 = f
(
f−1(y1)

)
= f
(
f−1(y2)

)
= y2.

Finally, givenx ∈ A, the symbol(f−1)
−1

(x) stands for the member ofB that
f−1 sends tox. But sincef−1 (f(x)) = x we know that this member ofB is
f(x). Thereforef(x) = (f−1)

−1
(x) and we conclude that(f−1)

−1
= f . �
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4.3.14 Some Examples of Inverse Functions

1. If we definef(x) = x2 for everyx ∈ [0,∞), thenf is a one-one function
from [0,∞) onto[0,∞) and for everyy ∈ [0,∞) we havef−1(y) =

√
y.

2. If we definef(x) = tanx for everyx ∈ (−π/2, π/2), thenf is a one-one
function from(−π/2, π/2) ontoR and for every real numbery we have
f−1(y) = arctan y.

3. Suppose thata ∈ R \ {−1, 1}. We begin with the observation that ifx is
any number unequal to1/a andy 	= −1/a, then the equations

y =
x− a

1− ax

and

x =
y + a

1 + ay
.

are equivalent statements. On the other hand, it is easy to see that if either
x = 1/a or y = −1/a, then both of these equations are impossible. From
this observation we deduce that the functionf defined by

f(x) =
x− a

1− ax

for all x ∈ R \ {1/a} is a one-one function fromR \ {1/a} onto the set
R \ {−1/a}. Furthermore, for everyy ∈ R \ {−1/a}, we have

f−1(y) =
y + a

1 + ay
.

4. This example makes use of a little elementary calculus. Given any numbera
satisfying−1 < a < 1, we define the functionfa on the interval[−1, 1] by
defining

fa(x) =
x− a

1− ax

for every numberx ∈ [−1, 1]. From the observations that we made in
Example 3 we know that each of these functionsfa is one-one. Since these
functions are rational functions, they are also continuous on the interval
[−1, 1].

Now suppose that−1 < a < 1. Becausefa is one-one and because
fa (−1) = −1 andfa(1) = 1, the numberfa(x) cannot be equal to−1
or 1 for anyx in the open interval(−1, 1). It therefore follows from the
elementary properties of continuous functions that eitherfa(x) < −1 for
everyx ∈ (−1, 1), or−1 < fa(x) < 1 for everyx ∈ (−1, 1), or fa(x) > 1
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for everyx ∈ (−1, 1). But fa(0) = −a ∈ (−1, 1), and so we conclude that

fa : [−1, 1] → [−1, 1] .

Finally, to see thatfa is onto the interval[−1, 1] we observe that if
y ∈ [−1, 1], thenf−a(y) ∈ [−1, 1] and it is easy to see thaty = fa (f−a(y)).
We deduce that for eacha, the functionfa is one-one from[−1, 1] onto
[−1, 1] and thatf−a is the inverse function offa.

4.3.15 Exercises on Functions

1. Given thatf(x) = x2 for every real numberx, simplify the following
expressions:

(a) f [[0, 3]].
(b) f [(−2, 3]].
(c) f−1 [[−3, 4]].

2. Point at the equationf(x) = x2 and then click on the button in
your computing toolbar. Then work outthe expressions in parts (a) and (b)
of Exercise 1 by pointing at them and clicking on the evaluate button.

3. Supply each of the definitionsf(x) = x2 andg(x) = 2 − 3x to
Scientific Notebook and then askScientific Notebook to solve the equation

(f ◦ g) (x) = (g ◦ f) (x).
4. Supply the definition

f(x) =
x− 2

1− 2x

to Scientific Notebook. In this exercise we shall see how to evaluate the
composition of the functionf with itself up to20 times starting at a variety
of numbers. Open the Compute menu, click onCalculus, and move to the
right and selectIterate.In the iterate dialogue box
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fill in the function asf , the starting value as3, and the number of iterations
as20. Repeat this process with different starting values. Can you draw a
conclusion from what you see?

5. Given thatf(x) = x2 for all x ∈ R andg(x) = 1 + x for all x ∈ R,
simplify the following expressions:

(a) (f ◦ g) [[0, 1]].
(b) (g ◦ f) [[0, 1]].
(c) (g ◦ g) [[0, 1]].

6. (a) Given thatf(x) = (3x− 2) / (x+ 1) for all x ∈ R \ {−1}, determine
whether or notf is one-one and find its range.

(b) Point at the equation

y =
3x− 2

x+ 1

and askScientific Notebook to solve forx. How many values ofx are
given? Is this result consistent with the answer that you gave in part (a)
of the question?

7. Suppose thatf : A → B and thatE ⊆ A. Is it true thatE = f−1 [f [E]]?
What if f is one-one? What iff is ontoB?

8. Suppose thatf : A → B and thatE ⊆ B. Is it true thatE = f [f−1 [E]]?
What if f is one-one? What iff is ontoB?

9. Suppose thatf : A → B and thatP andQ are subsets ofB. Prove the
identities

f−1 [P ∪Q] = f−1 [P ] ∪ f−1 [Q]

f−1 [P ∩Q] = f−1 [P ] ∩ f−1 [Q]

f−1 [P \Q] = f−1 [P ] \ f−1 [Q] .

10. Suppose thatf : A → B and thatP andQ are subsets ofA. Which of
the following statements are true? What iff is one-one? What iff is onto
B?

f [P ∪Q] = f [P ] ∪ f [Q] .

f [P ∩Q] = f [P ] ∩ f [Q] .

f [P \Q] = f [P ] \ f [Q] .
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11. Given thatf is a one-one function fromA toB and thatg is a one-one
function fromB toC, prove that the functiong ◦ f is one-one fromA toC.

12. Given thatf is a function fromA ontoB and thatg is a function fromB
ontoC, prove that the functiong ◦ f is a function fromA ontoC.

13. Given thatf : A → B, thatg : B → C, and that the functiong ◦ f is
one-one, prove thatf must be one-one. Give an example to show that the
functiong does not have to be one-one.

14. Given thatf is a function fromA ontoB, thatg : B → C, and that the
functiong ◦ f is one-one, prove that both of the functionsf andg have to be
one-one.

15. Given any setS, theidentity function iS onS is defined byiS(x) = x for
everyx ∈ S. Prove that iff is a one-one function from a setA onto a setB,
thenf−1 ◦ f = iA andf ◦ f−1 = iB.

16. Suppose thatf : A → B.

(a) Given that there exists a functiong : B → A such thatg ◦ f = iA, what
can be said about the functionsf andg?

(b) Given that there exists a functionh : B → A such thatf ◦ h = iB, what
can be said about the functionsf andh?

(c) Given that there exists a functiong : B → A such thatg ◦ f = iA and
that there exists a functionh : B → A such thatf ◦ h = iB, what can be
said about the functionsf , g, andh?

17. As in Example 4 of Subsection 4.3.14, we define

fa(x) =
x− a

1− ax

whenevera ∈ (−1, 1) andx ∈ [−1, 1].

(a) Prove that ifa andb belong to(−1, 1), then so does the number

c =
a+ b

1 + ab
.

Hint: A quick way to do this exercise is to observe thatc = f−b(a).
(b) Givena andb in (−1, 1) and

c =
a+ b

1 + ab
,

prove thatfb ◦ fa = fc.



PART II

Elementary Concepts of Analysis

This part of the text introduces the basic principles of analysis and provides a
careful introduction to the concepts of limit,continuity, derivative, integral, and
infinite series. We begin with a chapter on the real number system upon which
all of these concepts depend.
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Chapter 5
The Real Number System

The real number system or “real line” R is the lifeblood of calculus, and so
the level at which we can understand calculus is dependent upon how well we
understand the systemR. Since real numbers play a central role in every branch
of mathematics, you are already familiar with the number line, but that familiarity
may not be a sufficiently strong foundation upon which to build the theory of
calculus. This chapter will allow you to deepen your understanding of the number
line and, in so doing, will open the door to the chapters that follow.

5.1 Introduction to the System R

5.1.1 Philosophical Introduction to the System R

In approaching the concept of a number we are confronted by some important
questions:What are numbers? Do they exist in the physical world? Did we
find them or did we have to invent them? There are two main philosophical
approaches to this question:

1. The real numbers arethere. They were there long before our species first
began to roam this planet, and they will be there long after we are gone.
Don’t ask what they are. Work with them. Study them. Study them in order
to verify that the systemR has the properties that we want to use in other
branches of mathematics. Then get on with the job of doing mathematics.

2. Real numbers do not have any existence in the physical world. They are just
figments of our imaginations. In order to use them in mathematics we must
invent them and ask ourselves:

� How are real numbers defined, and what do we need to assume in order
to be able to define them?

� What fundamental properties of the number system R can we deduce
from our definitions?

� What role is played by these fundamental properties as we develop
algebra, calculus (analysis), topology, and other fields of mathematics?

Modern mathematics usually takes the point of view that we have toinvent
the real numbers, but we cannot undertake this process of invention with empty
hands. The most common starting pointfor the real number system and all of
the mathematics that depends upon it is a fundamental system of axioms known

71
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as theZermelo-Fraenkel system of axioms. Starting with these axioms, it is
possible todefine the systemZ+ of positive integers and to extendZ+ to obtain
the systemZ of integers and the systemQ of rational numbers. Once the system
Q of rational numbers has been constructed, one may construct the systemR of
real numbers by a method known as the method ofDedekind cuts.

Unfortunately, all of this construction takes considerably more time than can
be allocated in the courses for which this book has been written. It must be left
for a more advanced course. Therefore, instead of attempting todefine the real
number system, we shall assume its existence and we shall write down a list of
its fundamental properties that can be used to deduce all of its other properties.

5.1.2 Intuitive Introduction to the System R

Most of us come to understand the idea of a real number quite gradually as we
progress from childhood to adulthood. We become aware of the positive inte-
gers first. Then, as our need for numbers develops, we become aware of more
complicated numbers like negative numbers and rationals. As little children we
become aware of positive integers when westart counting precious commodities
like candies. The process of hoarding candies teaches us about addition and mul-
tiplication. When we eat the candies we learn that subtraction can be performed
under certain restricted conditions. (You can’t eat what you don’t have.) The
process of sharing them forces us to confront the operation of division. The idea
of a rational number enters our consciousness the first time we have two candy
bars to be shared among three people. Somewhat more difficult is the notion of
a negative number, but even these are injected into our young lives. Do negative
numbers really exist, or are they merely figments of our imaginations? Ask any
little kid who has already spent next week’s allowance.

When we have accepted both fractions and negative numbers into our lives,
our concept of a number is that of arational number. Recall that a number is said
to berational if it can be written as a ratiom/n, wherem andn are integers. The
set of rational numbers is usually written asQ. For a while, the number system
Q seems to be perfectly adequate, but eventually its defects come to light. Not
only is the systemQ inadequate for advanced mathematics, but it doesn’t even
support all of the activity that makes up the basic bill of fare of middle and high
school mathematics courses. For a nice description of this basic bill of fare, look
at the following excerpt from the song of the “Modern Major General” in Gilbert
and Sullivan’sPirates of Penzance:

I am very well acquainted, too, with matters mathematical,

I understand equations, both the simple and quadratical,

About binomial theorem I’m teeming with a lot of news,

With many cheerful facts about the square of the hypotenuse.
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The moment we began to solve quadratic equations like

x2 − 2x− 5 = 0, (5.1)

irrational numbers entered our lives. And one of the cheerful facts about the
square of the hypotenuse introduced the number

√
2 into geometry resulting in

death by shipwreck (see Section 1.2). This part of the “Modern Major General’s”
song refers to a richer number system than the systemQ of rational numbers.
To gain some idea of what kind of numbers are needed, look at Equation (5.1)
again. As you know, its solution isx = 1±√

6. Now consider the slightly more
complicated equation

x6 − 2x3 − 5 = 0.

This equation is also a quadratic equation. It is quadratic inx3, and its solution
is

x =
3

√
1 +

√
6 or x =

3

√
1−

√
6.

The numbers needed by a “Modern Major General” are the numbers that we
call surds. These are the numbers that one can assemble starting with positive
integers and using the operations+, −, ×, ÷, and n

√. Numbers of this type can
be pretty complicated. For example,

17

√√√√√√√√√√√

(
3 +
√

5−
√
3

2+ 3
√
7

) 7
√
2 +

√
9− 5

√
1

1+
5√
5
+
√
2

20− 3
√
5




3 + 7

√
4−

√
3

8− 3
√

3+
√
5
− 11

√√√√3+

√
2+

3√
5

6+5
4√
7

8−
√

7+5
√

3

6+4
3√
2

+
12

√
6− 1 + 4

√
3

4 + 5
√
4 +

√
5
.

The number system of surds is a much richer number system than the systemQ

of rational numbers. In the system of surds we can add, subtract, multiply, and
divide just as we can add, subtract, multiply, and divide rational numbers. But
we can do one more thing: We can apply a radical signn

√ to any positive surd
and to yield another surd. This extra property of the system of surds enables us to
solve quadratic equations; for if a, b, andc are surds anda 	= 0, then the solution

x =
−b±√

b2 − 4ac

2a

of the quadratic equation

ax2 + bx+ c = 0
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is a surd as long asb2−4ac ≥ 0. Surds can also be used to solve some equations
that are too hard for most modern major generals. For example, it can be shown
that the solution of the equation

x6 − 6x2 − 6 = 0

is

x = ±
√

3
√
2 +

3
√
4.

From the perspective of elementary mathematics, the system of surds seems to
allow us to do anything we might want to do with numbers. It seems to contain
all of the numbers that could possibly exist, and, indeed, many people who have
not studied advanced mathematics are unaware that thereare any other kinds of
numbers.

But there are! One such number iscos 20◦. The complexity of the number
cos 20◦ may come as a surprise because it looks deceptively simple. For example,
cos 20◦ is the length of the sideAB in �ABC as shown in Figure 5.1. Thus,

20

1

cos20
A B

C

Figure 5.1

from a geometric point of view, the numbercos 20◦ seems to be quite simple.
Now if we substituteθ = 20◦ in the familiar trigonometric identity

4 cos3 θ − 3 cos θ = cos 3θ,

we obtain

4 cos3 20◦ − 3 cos 20◦ = cos 60◦,

which we can write as

4 cos3 20◦ − 3 cos 20◦ =
1

2
,

and from this fact we can see that the numberx = cos 20◦ is one of the solutions
of the equation
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8x3 − 6x− 1 = 0. (5.2)

Therefore the numbercos 20◦ also seems to possess some algebraic simplicity.

However, in spite of its apparent simplicity, the equation8x3 − 6x− 1 = 0
can be shown to be very complicated, and it is known that (within the system of
real numbers) its solutions arenot surds.15 What this means is that, within the
system of real numbers, there is no formula for solving cubic equations. If we are
allowed to use complex numbers, then there is a formula that gives the solutions
of the cubic equation

ax3 + bx2 + cx+ d = 0

as follows:

x = 3

√(
9cba−27da2−2b3

54a3
+

√
(12ac3−3c2b2−54abcd+81a2d2+12b3d)

18a2

)

− 3ca− b2

9a2 3

√(
9cba−27da2−2b3

54a3
+

√
(12ac3−3c2b2−54abcd+81a2d2+12b3d)

18a2

) − 1

3

b

a

or

x = −1

2
3

√(
9abc−27a2d−2b3

54a3
+

√
(12ac3−3c2b2−54abcd+81a2d2+12b3d)

18a2

)

+
3ac− b2

18a2 3

√(
9abc−27a2d−2b3

54a3
+

√
(12ac3−3c2b2−54abcd+81a2d2+12b3d)

18a2

) − 1

3

b

a

+
i
√
3

2
3

√(
9abc−27a2d−2b3

54a3
+

√
(12ac3−3c2b2−54abcd+81a2d2+12b3d)

18a2

)

15 The proof of this assertion relies on some advanced topics in abstract algebra.
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+
i
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3
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√
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+

√
(12ac3−3c2b2−54abcd+81a2d2+12b3d)

18a2

)

−i
√
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54a3
+

√
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Looking at this formula, we can understand why the “Modern Major General”
studiously avoided any mention of cubic equations in his song. If this formula is
applied to the equation8x3 − 6x− 1 = 0, then the solutions come out as

x =

(
3

√(
4 + 4i

√
3
))2

+ 4

4 3

√(
4 + 4i

√
3
)
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x = −
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√
3
)
+ i

√
3 3

√(
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√
3
)

2
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3
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or

x =
2− 2i

√
3− 3

√(
4 + 4i

√
3
)
+ i

√
3 3

√(
4 + 4i

√
3
)

2

(
3

√(
4 + 4i

√
3
))2 .

The interesting thing about these solutions is that, although they are allreal
numbers, we needcomplex numbers to express them as surds. What we have
here are three real numbers that are not surds in the system of real numbers but
which are surds if we widen our scope to the system of complex numbers.

Thus the system of surds is inadequate, even for elementary mathematics.
There is a still larger system of numbers called the system ofalgebraic numbers.
These are the numbers that are solutions of equations of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0,

where the numbersan, · · · , a0 are integers andan 	= 0. It can be shown that all
surds are algebraic numbers but many algebraic numbers, likecos 20◦, are not
surds. Unfortunately, even the system of algebraic numbers falls short because
there are real numbers that fail to be algebraic. Such numbers are calledtran-
scendental. It is possible (but not easy) to show that the numberse,π, eπ, 2

√
2,

andlog3 4 are all transcendental.

The real number systemR is therefore much richer and much more com-
plicated than one may suspect. Modern mathematics (and almost every major
theorem of calculus) depends strongly on a “completeness property” of the sys-
temR that guarantees that the real numbers as we know them areall of the real
numbers that need to be. We can think of this property as saying that if the real
numbers are laid out on a “number line” in the traditional way, thenevery point
on that number line must be occupied bya real number. This condition is by no
means satisfied by the rational number system, which is full of little punctures
where the irrationals should be. In a certain sense we can say that only a very few
points on the number line are occupied by rational numbers, by surds, or even by
algebraic numbers. Speaking of the set of rational numbers, Cantor put it this
way:

The rationals are spotted on the line like stars in a black sky. The dense
blackness is the firmament of the irrationals.

You can find a precise description of Cantor’s spectacular statement in the
more detailed presentation of set theorythat is provided as an alternative to
Chapter 4. We shall begin our study of the real number system in the next section,
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which begins a list of the basic axioms from which all of the other properties of
the systemR can be deduced.

5.1.3 Some Exercises on Surds

1. Given thata, b, andc are surds; thata 	= 0; and thatb2 − 4ac ≥ 0, explain
why the solutions of the equation

ax2 + bx+ c = 0

are surds.
2. A detailed discussion of the material of this exercise can be found in the

document on cubic equations .

(a) Verify by direct multiplication that, for any numbersu, v andx,

(u+ v + x)
(
u2 + v2 + x2 − uv − ux− vx

)
= u3 + v3 + x3 − 3uvx.

(b) Given numbersx, a, andb, show that the expressionx3 + ax+ b can be
written in the form

x3 + ax+ b = x3 + u3 + v3 − 3uvx

by solving the simultaneous equations

3uv = −a

u3 + v3 = b.

Now show that as long as27b2 + 4a3 ≥ 0 these equations can be solved
giving

u =
3

√
3
√
3b+

√
27b2 + 4a3

6
√
3

and

v =
3

√
3
√
3b−√

27b2 + 4a3

6
√
3

.

(c) Deduce that ifa andb are surds and27b2 + 4a3 ≥ 0, then the solutions
of the cubic equation

x3 + ax+ b = 0 (5.3)

are also surds. Why doesn’t this fact contradict the claim made earlier
that the solutions of Equation (5.2) are not surds?
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(d) How many real solutions doesEquation (5.3) have in the case
27b2 + 4a3 > 0? What if 27b2 + 4a3 = 0?

3. UseScientific Notebook to find the exact form of the solutions of the
equation

125x3 − 300x2 + 195x− 28 + 4
√
7 = 0

and show graphically that onlyone of these solutions is real.

5.2 Axioms for the Real Number System

In this section we list a set of axioms from which all of the properties of the
number systemR may be deduced.

5.2.1 The Raw Material
The raw material for the real number system consists of the following ingredients:

• Theset R of real numbers.
• Two different special numbers called0 and1.
• The arithmetical operations+ and× of addition and multiplication. The

operation+ associates a single numbera+ b (called thesum of a andb) to
any given ordered pair(a, b) of real numbers. The operation× associates a
single numbera× b (called theproduct of a andb and also written asab) to
any given ordered pair(a, b) of real numbers.

• The order relation<. Given any real numbersa andb, the statementa < b is
either true or it is false.

In the following subsections we list the fundamental facts about the numbers
0 and1, the arithmetical operations, and the order relation<. All other properties
of the real number system can be deduced from these fundamental facts that we
call theaxioms for the real number system.

1. The Associative Laws
If a, b, andc are any numbers, then

a+ (b+ c) = (a+ b) + c

and

a (bc) = (ab) c.
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2. The Commutative Laws
If a, b, andc are any numbers, then

a+ b = b+ a and ab = ba.

3. The Roles of 1 and 0
Given any numberx we have

1x = x and 0 + x = x.

4. Additive and Multiplicative Inverses
We state two properties here, one foraddition and one for multiplication.
The properties stated here make subtraction and division possible in the real
number system.

(a) Given any numbera, there is at least one numberb such thata+ b = 0.
(b) Given any numbera 	= 0, there is at least one numberb such thatab = 1.

5. The Distributive Law
This property of arithmetic provides a relationship between the operations+
and×. It says that ifa, b, andc are any numbers, then

a (b+ c) = ab+ ac.

6. Properties of the Order <
(a) Given any real numbersa andb, eithera < b or b < a or a = b, and not

more than one of these three conditions can hold.
(b) Given any real numbersa, b andc, if a < b andb < c, thena < c.
(c) If a, b, andx are any real numbers anda < b, then we have

a+ x < b+ x.
(d) If a, b, andx are any real numbers anda < b andx > 0, then we have

ax < bx.
As usual, ifa andb are real numbers, then the assertiona > b means that
b < a, the assertiona ≤ b means that eithera < b or a = b, and the assertion
a ≥ b means that eithera > b or a = b.

7. The Axiom of Completeness
The axiom of completeness is a precise way of saying that if the real numbers
are laid down on a “number line” in the traditional way, thenevery point
on that number line is occupied by a number. You will see this axiom in
Subsection 5.7.1.
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5.3 Arithmetical Properties of R

All of the standard rules of algebra can be deduced from the axioms that appear
in Section 5.2. For example, it is possible to deduce that ifa andb are any real
numbers, then

(−a) (−b) = ab.

If you would like to see how these properties are deduced, click on the icon.

5.4 Order Properties of R

The operations+ and×, whose properties are described in the first five axioms
in Subsection 5.2, give us the ability to add, subtract, multiply, and divide, but it
is the order relation< that makes the theory of limits possible. The order< gives
the system of real numbers a geometricflavor and allows us to think of the real
numbers as being strung out on a “number line”. When this line is horizontal,
our usual convention is to make a numberx lie to the left of a numbery when
x < y.

x y

In this section we shall explore some of the relationships between the order
< in R and the arithmetical operations+ and×. As usual, we call a real number
x positive if x > 0 andnegative if x < 0.

5.4.1 Additive Inverses and the Order in R

Suppose that x is any real number.

1. If x < 0, then −x > 0.
2. If x > 0, then −x < 0.

Proof. If x < 0, thenx + (−x) < 0 + (−x) and so0 < −x. Part 2 can be
deduced in the same way.�

5.4.2 Multiplying an Inequality by a Negative Number
Suppose that a, b, and x are real numbers; that a < b; and that x < 0. Then
ax > bx.

Proof. Since−x > 0, we havea (−x) < b (−x) and so−ax < −bx. Therefore

−ax+ ax+ bx < −bx+ ax+ bx,

and we obtainbx < ax. �
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5.4.3 Squares Are Nonnegative
For every real number x we have x2 ≥ 0.

Proof. If x > 0, thenxx > 0x and sox2 > 0. If x < 0, then, since−x > 0 and
x2 = (−x)2, we again havex2 > 0. Finally, if x = 0, thenx2 = 0. �

5.4.4 Absolute Value
Given any real numberx, theabsolute value of x is the number|x| defined by

|x| =
{

x if x ≥ 0
−x if x < 0.

Note that ifx is any number, then|x| ≥ 0 and|−x| = |x|. Note also that ifx is
any real number, then|x|2 = x2.

5.4.5 Distance Between Numbers
The inequalities that are most useful to usin mathematical analysis often involve
absolute value because the absolute value gives us a notion ofdistance. We
can think of the distance between two numbersx andy as being the number
|x− y|. This interpretation of absolute value allows us to view many inequalities
geometrically. For example, the inequality|x− a| < δ says that the distance
from x to a is less thanδ. By thinking about the inequality|x− a| < δ in this
way we can easily see that it is equivalent to the conditiona− δ < x < a+ δ.

a − δ a + δa
In the special casea = 0, this statement tells us that the inequality|x| < δ is
equivalent to the inequality−δ < x < δ.

5.4.6 The Triangle Inequality
The simplest form of thetriangle inequality says that ifx andy are any given
real numbers, then

|x+ y| ≤ |x|+ |y| .
To see why this inequality holds we observe that

− |x| ≤ x ≤ |x| and − |y| ≤ y ≤ |y| .
Adding, we obtain

− |x| − |y| ≤ x+ y ≤ |x|+ |y| ,
which we can write as

− (|x|+ |y|) ≤ x+ y ≤ |x|+ |y| ,
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and we deduce from Subsection 5.4.5 that

|x+ y| ≤ |x|+ |y| .

A more interesting form of the triangle inequality says that ifa, b, andc are
any given real numbers, then

|a− c| ≤ |a− b|+ |b− c| .
This inequality follows from the first one:

|a− c| = |(a− b) + (b− c)| ≤ |a− b|+ |b− c| .
This inequality says that the distance froma to c cannot be more than the distance
from a to b plus the distance fromb to c. Our reason for calling this statement
the triangle inequality is that its two-dimensional analog can be interpreted as
saying that the sum of the lengths of any two sides of a triangle is not less than
the length of the third side.

5.4.7 Exercises on Inequalities

1. Prove that ifx andy are positive real numbers, then their productxy is
positive.

2. Prove that ifx andy are negative real numbers, then their productxy is
positive.

3. Given real numbersa andb, prove that

|a| − |b| ≤ |a− b| .
4. Given real numbersa andb, prove that

||a| − |b|| ≤ |a− b| .

5. In each of the following cases, find the numbersx for which the given
inequality is true. Compare your answers with the answers given byScientific
Notebook.

(a) |2x− 3| ≤ |6− x|.
(b) ||x| − 5| < |x− 6|.
(c) |2 |x| − 5| ≤ |4− |x− 1||.

6. Prove that ifa, b, c, x, y, andz are any real numbers, then

(ax+ by + cz)2 ≤ (a2 + b2 + c2
) (

x2 + y2 + z2
)

.
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7. Given thata, b, andc are positive numbers and thatc < a+ b, prove that

c

1 + c
<

a

1 + a
+

b

1 + b
.

5.5 Integers and Rationals

Natural numbers, integers, and rational numbers are not mentioned in the axioms
that appear in Section 5.2 and so, in acareful development of the real number
system from these axioms, the setsZ+, Z, andQ of positive integers, integers
and rational numbers need to be defined. However, the process of defining in-
tegers and rational numbers depends on some concepts from the theory of sets
that are beyond the scope of this book. So, instead of giving precise definitions,
we shall assume familiarity with the setsZ+, Z, andQ, and we shall assume the
following basic facts about them:

1. The least positive integer is1.
2. The sum, difference, and product of two integers is always an integer.
3. As usual, a real numberx is said to be rational if it is possible to find integers

m andn such thatn 	= 0 andx = m/n. The setQ of rational numbers
is closed under the operations of addition, subtraction, multiplication, and
division, as long as we exclude division by zero.

5.5.1 Exercises on Integers and Rational Numbers

1. (a) Explain why the numbers3
2
+ 2

7
and 3

2
× 2

7
are both rational.

(b) Explain why the number2.345 is rational.
(c) Explain why the sum, difference, product, and quotient of rational

numbers must always be rational.
2. For each of the following statements, say whether the statement is true or

false and justify your assertion:

(a) If x is rational andy is irrational, thenx+ y is irrational.
(b) If x is rational andy is irrational, thenxy is irrational.
(c) If x is irrational andy is irrational, thenx+ y is irrational.

5.6 Upper and Lower Bounds

The concepts of upper and lowers bounds that we shall study in this section will
be used when we introduce the axiom of completeness for the real number system
in Section 5.7.
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5.6.1 Definition of Upper and Lower Bounds
Suppose thatA is a set of real numbers and thatα ∈ R. We say that the number
α is anupper bound of the setA if no member ofA can be greater thanα. In
other words,α is an upper bound ofA if we havex ≤ α for everyx ∈ A. The
idea of a lower bound is defined similarly. We say thatα is a lower bound of A
if no member ofA can be less thanα. In other words,α is a lower bound ofA if
we havex ≥ α for everyx ∈ A.

Notice that ifα is an upper bound of a setA, then so is every number that
is greater thanα. Similarly, if α is a lower bound ofA, then so is every number
that is less thanα.

5.6.2 Some Examples and Remarks

1. 3 is an upper bound of[0, 3) but2.99 is not.
2. A numberα is an upper bound of the set[0, 1] if and only if α ≥ 1.

Therefore the set of upper bounds of[0, 1] is [1,∞).
3. In this example we describe the upper bounds of the interval[0, 1). We begin

by observing that any numberα ≥ 1 is an upper bound of the interval[0, 1).
Next we observe that ifα < 0, thenα is not an upper bound of[0, 1). Finally
we consider the case0 ≤ α < 1. In this case,α fails to be an upper bound
of the interval[0, 1) because the numbers betweenα and1 are members
of [0, 1) that are greater thanα. For example, the number(α+ 1) /2 is a
member of[0, 1) greater thanα.

0 α 1α+1
2

We conclude that the set of upper bounds of the interval[0, 1) is [1,∞). By
comparing this fact with Example 2, we make the interesting observation that
the two intervals[0, 1) and[0, 1] have precisely the same upper bounds.

4. The set of lower bounds of the set{2} ∪ [3, 4] is the interval(−∞, 2].
5. Since no member of the empty set∅ can be greater than3, the number3 is

an upper bound of∅. As a matter of fact, every real number is both an upper
bound and a lower bound of∅.

6. Suppose thatA is a nonempty set of real numbers, thatα is a lower bound of
A, and thatβ is an upper bound ofA. We must haveα ≤ β.

Proof. Using the fact thatA is nonempty we choose16 a memberx of A.
Sinceα is a lower bound ofA we haveα ≤ x, and sinceβ is an upper bound
of A we havex ≤ β. Thereforeα ≤ β. �

16 Note this use of the wordchoose in a mathematical argument. The word choose is used when
we already know that a given set is nonempty and we want to refer to one of its members.
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Notice that we needed to know thatA 	= ∅ in order to write this proof. As
we saw in Example 5, a lower bound of∅ can be greater than an upper bound
of ∅.

7. Suppose thatA is a set of real numbers that has more than one member, that
α is a lower bound ofA, and thatβ is an upper bound ofA. We must have
α < β. We leave the proof of this fact as an exercise.

5.6.3 Bounded Sets
If A is a set of real numbers, and if there exists a numberα that is an upper bound
of A, then we say that the setA is bounded above. If there exists a numberα
that is a lower bound of a given setA, then we say thatA is bounded below. If a
given set is bounded both above and below, then we say that the set isbounded.

5.6.4 Suprema and Infima
As we have seen, ifα is an upper bound of a setA, then so is every number
greater thanα. On the other hand, ifα is an upper bound of a setA, then a
number that is less thanα may or may not be an upper bound ofA. If α is an
upper bound of a given setA and no number less thanα is an upper bound ofA,
then the set of upper bounds ofA is the interval[α,∞) and we see thatα is the
least possible upper bound of the setA. The least upper bound of a setA, if it
exists, is called thesupremum17 of the setA and is written assupA.

In the same way, ifα is a lower bound of a setA, then so is every number
less thanα. If no lower bound ofA can be greater thanα, then the set of lower
bounds ofA is the interval(−∞, α] andα is the greatest lower bound ofA. The
greatest lower bound of a setA, if it exists, is called theinfimum of A and is
written asinf A.

Thus, when we say that a numberα is the supremum of a setA, what we are
really saying is that the numberα is an upper bound ofA but, given any number
β < α, the numberβ fails to be an upper bound ofA.

Another way of expressing the conditionα = supA is to say that for every
memberx of A we havex ≤ α, but, given any numberβ < α, there exists at
least one memberx of A such thatx > β.

As an exercise you should now write down the corresponding conditions for
a number to be the infimum of a set. The exercises that follow will also help you
to understand the concepts of upper bound and lower bound.

17 The plural ofsupremum is suprema, just as the plural of maximum is maxima.
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5.6.5 Some Examples of Suprema and Infima

1. The supremum of the interval[0, 1] is the number1. The supremum of the
interval[0, 1) is also the number1.

2. A set may or may not have a largest member. For example, the interval[0, 1]
does have a largest member, the number1, while the interval[0, 1) does not
have a largest member. In the event that a given setA has a largest member,
that largest member is alsosupA.

3. Look again at the interval[0, 1). Even though this interval does not
have a largest member, it still has a supremum. In fact, as we have seen,
sup [0, 1) = 1.

5.6.6 Exercises on Upper and Lower Bounds

1. Suppose thatA is a nonempty bounded set of real numbers that has no
largest member and thata ∈ A. Explain why the setsA andA \ {a} have
exactly the same upper bounds.

2. (a) Give an example of a setA that has a largest membera such that the sets
A andA \ {a} have exactly the same upper bounds.

(b) Give an example of a setA that has a largest membera such that the sets
A andA \ {a} do not have exactly the same upper bounds.

3. (a) Given thatS is a subset of a given interval[a, b], explain why, for
every memberx of the setS, we have

|x| ≤ |a|+ |b− a| .
(b) Given that a setS of numbers is bounded and that

T = {|x| | x ∈ S} ,

prove that the setT must also be bounded.
4. Given thatA is a set of real numbers and thatsupA ∈ A, explain why

supA must be the largest member ofA.
5. Given thatA is a set of real numbers and thatinf A ∈ A, explain whyinf A

must be the smallest member ofA.
6. Is it possible for a set of numbers to have a supremum even though it

has no largest member?
7. Given thatα is an upper bound of a setA and thatα ∈ A, explain why

α = supA.
8. Explain why the empty set does not have a supremum.
9. Explain why the set[1,∞) does not have a supremum.
10. Given that two setsA andB are bounded above, explain why their union
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A ∪B is bounded above.
11. (a) If a man says truthfully that he sells more BMWs than anyone in the

Southeast, what can you deduce about him?
(b) Given thatα = supA and thatx < α, what conclusions can you

draw about the numberx?
(c) Given thatα = inf A and thatx > α, what conclusions can you draw

about the numberx?
12. If A andB are sets of real numbers, then the setsA + B andA − B are

defined18 by

A+B = {x | ∃a ∈ A and∃b ∈ B such thatx = a+ b}
and

A−B = {x | ∃a ∈ A and∃b ∈ B such thatx = a− b} .

(a) Work outA+B andA−B in each of the following cases:

I. A = [0, 1] andB = [−1, 0].
II. A = [0, 1] andB = {1, 2, 3}.
III.A = (0, 1) andB = {1, 2, 3}.

(b) Prove that if two setsA andB are bounded, then so areA + B and
A−B.

5.7 The Axiom of Completeness

The precise statement of the axiom of completeness is as follows:

5.7.1 Statement of the Axiom of Completeness
Whenever a set of real numbers is nonempty and bounded above, it has a supre-
mum.

5.7.2 Discussion of the Axiom of Completeness
To understand what the axiom is saying we return to the intervals[0, 1] and[0, 1)
that we studied in Examples 2 and 3 of Subsection 5.6.2. We saw that each
of these intervals has a supremum of1. The closed interval[0, 1] has a largest
member because1 is its largest member. However, even though the interval[0, 1)
has no largest member, the number1 is still its supremum.

We can think of the supremum of a set as being at the “top” of the set. If a
set of numbers has a largest member, then that largest member is the supremum.

18 Do not confuse the setA−B that is being defined here with the set differenceA \B.
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However, as long as a set of numbers is nonempty and bounded above, it will
have a supremum even if it does not have a largest member. We can think of
the axiom of completeness as saying that whenever a setA of real numbers is
nonempty and bounded above, the point on the number line at the “top” of the
setA is occupied by a number: the supremum of the setA.

5.7.3 Infimum Version of the Axiom of Completeness
Suppose that a set A of real numbers is nonempty and bounded below. Then A
has an infimum.

Proof. We defineB to be the set of all lower bounds ofA. SinceA is
bounded below, we know that the setB is nonempty. In order to show thatA
has a greatest lower bound, we need to show that the setB has a largest member.
The idea of the proof is to show thatB is bounded above and then to show that
supB is the largest member ofB. To show thatsupB is the largest member of
B, all we have to show is thatsupB ∈ B.

We begin by showing that every member ofA must be an upper bound ofB.
Suppose thaty ∈ A.19 For every memberx of B, sincex is a lower bound ofA
andy ∈ A, we havex ≤ y. This shows that every membery of A is an upper
bound ofB, and, sinceA is nonempty, we conclude thatB is bounded above.

We now defineα = supB. In order to show thatα ∈ B, we need to show
thatα is a lower bound ofA. But given any membery of A, it follows from
the fact thaty is an upper bound ofB andα is theleast upper bound ofB that
α ≤ y. Thusα is a lower bound ofA, as required.�

5.7.4 Exercises on Supremum and Infimum

1. Suppose thatA is a nonempty bounded set of real numbers that has no
largest member and thata ∈ A. Prove thatsupA = sup (A \ {a}).

2. Given thatA andB are sets of numbers, thatA is nonempty, thatB is
bounded above, and thatA ⊆ B, explain whysupA andsupB exist and
why supA ≤ supB.

3. Given thatA is a nonempty bounded set of numbers, explain why
inf A ≤ supA.

4. It is given thatA andB are nonempty bounded sets of real numbers,
that for everyx ∈ A there existsy ∈ B such thatx < y, and for every
y ∈ B there existsx ∈ A such thaty < x. Prove thatsupA = supB.

5. Suppose thatA andB are nonempty sets of real numbers and that for every

19 Note the use of the words “suppose that” here. In order to show that every membery of a set
A has a certain property we write: Suppose thaty ∈ A. We never use the word “choose” for this
purpose.
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x ∈ A and everyy ∈ B we havex < y. Prove thatsupA ≤ inf B.
Give an example of setsA andB satisfying these conditions for which
supA = inf B.

6. Suppose thatA andB are nonempty sets of real numbers and that
supA = inf B. Prove that for every numberδ > 0 it is possible to find a
memberx of A and a membery of B such thatx+ δ > y.

7. Suppose thatA andB are nonempty sets of real numbers, that
supA ≤ inf B, and that for every numberδ > 0 it is possible to find a
memberx of A and a membery of B such thatx + δ > y. Prove that
supA = inf B.

8. Suppose thatA is a nonempty bounded set of real numbers, thatA has
no largest member, and thatx < supA. Prove that there are at least two
different members ofA lying betweenx andsupA.

9. Suppose thatA is a nonempty bounded set of real numbers, thatδ > 0,
and that for any two different membersx andy of A we have|x− y| ≥ δ.
Prove thatA has a largest member. You can find a hint to the solution of this
exercise in Theorem 5.9.1.

10. Suppose thatS is a nonempty bounded set of real numbers, thatα = inf S
andβ = supS, and that every number that lies between two members ofS
must also belong toS. Prove thatS must be one of the four intervals[α, β],
[α, β), (α, β], (α, β). See Theorem 5.8.1 for a solution of this exercise.

11. Suppose thatA is a nonempty bounded set of real numbers, thatα = inf A,
and thatβ = supA. Suppose that

S = {x− y | x ∈ A andy ∈ A} .

Prove thatsupS = β − α. You will find a solution to this exercise in
Subsection 5.8.3.

12. Suppose thatA is a set of numbers and thatA is nonempty and bounded
above. Suppose thatq is a given number and that the setC is defined as
follows:

C = {q + x | x ∈ A} .
Prove that the setC is nonempty and bounded above and that

supC = q + supA.

13. Suppose thatA andB are nonempty bounded sets of numbers and that
the setsA+B andA−B are defined as in Exercise 12 of Subsection 5.6.6.



5.8 Some Consequences of the Completeness Axiom 91

Prove that

sup (A+B) = supA+ supB

and

sup (A−B) = supA− inf B.

5.8 Some Consequences of the Completeness Axiom

5.8.1 A Condition for a Set to Be an Interval
The concept of an interval was introduced in Example 5of Subsection 4.2.9. In
this section we provide a way of determining whether or not a given set is an
interval, even when we don’t have any information about endpoints.

Suppose that S is a set of real numbers. The following two conditions are
equivalent:

1. The set S is an interval.
2. Whenever s and t belong to S and x is a number satisfying s < x < t, we

have x ∈ S.

Proof. It is obvious that ifS is an interval, thenS satisfies condition 2. The main
thrust of this theorem is that condition 2 implies condition 1. We now suppose
thatS satisfies condition 2, and, to show thatS must be an interval, we shall
consider several cases:

Case 1: Suppose thatS is bounded below but not above. We definea = inf S
and what we want to show is that eitherS = [a,∞) orS = (a,∞).

Certainly, no member of the setS can be less thana becausea is a lower
bound ofS. ThereforeS ⊆ [a,∞). Therefore, in order to show thatS is one
of the two intervals[a,∞) and (a,∞), all we have to do is show that every
numberx > a must belong toS. For this purpose, suppose20 thatx is a number
satisfyingx > a. Sincea is the greatest lower bound ofS, we know thatx is not
a lower bound ofS, and, using this fact, we choose21 a members of S such that
s < x. Using the fact thatS is not bounded above, we now choose a membert
of S such thatx < t. From condition 2 we deduce thatx ∈ S.

Case 2: Suppose thatS is bounded above but not below. In this case, if
b = supS, then eitherS = (−∞, b) or S = (−∞, b]. The proof of this

assertion will be left as an exercise.

20 See Subsection 3.6.2 for a discussion of the use of the wordsuppose in a mathematical proof.
21 See Subsection 3.5.2 for a description of the use of the wordchoose in a mathematical proof.
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Case 3: Suppose thatS is unbounded both above and below. In this case we
can show thatS = R. The proof of this assertion will be left as an exercise.

Case 4: Suppose that the setS is bounded. In the event thatS is
empty we have nothing to prove, because the empty set is an interval, and so we
assume, from now on, thatS 	= ∅. We definea = inf S andb = supS. Since
S ⊆ [a, b], in order to show thatS is one of the four intervals[a, b], [a, b), (a, b]
and(a, b) we need only show that(a, b) ⊆ S.

For this purpose, suppose thatx ∈ (a, b). Using the facts thata < x anda
is the greatest lower bound ofS we choose a members of S such thats < x.
Using the fact thatx < b and thatb is the least upper bound ofS we choose a
membert of S such thatx < t. Sinces < x < t, it follows from condition 2
thatx ∈ S, thus completing the proof that(a, b) ⊆ S. �

5.8.2 The Diameter of a Set
If A is a nonempty bounded set of real numbers, then we define thediameter of
A to be the number

supA− inf A.

5.8.3 Alternative Expression for the Diameter of a Set
Suppose that A is a nonempty bounded set of real numbers. Then

supA− inf A = sup {|x− t| | t ∈ A andx ∈ A} .

Proof. We define

C = {|x− t| | t ∈ A andx ∈ A} .

Given any memberst andx of the setA, if t ≤ x, we deduce from the fact that
x ≤ supA andt ≥ inf A that

|x− t| = x− t ≤ supA− inf A;

and if t > x, we have

|x− t| = t− x ≤ supA− inf A.

We deduce that the numbersupA− inf A is an upper bound of the setC. Now,
to prove that the numbersupA − inf A is the least upper bound ofC, suppose
that

α < supA− inf A.
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Since

α+ inf A < supA

we know that the numberα + inf A cannot be an upper bound ofA and, using
this fact, we choose a numberx ∈ A such that

α+ inf A < x.

Since

inf A < x− α,

we know that the numberx − α cannot be a lower bound ofA and, using this
fact, we choose a numbert ∈ A such thatt < x− α. From the latter inequality
we obtain

α < x− t ≤ |x− t| .
Thus no number less thansupA − inf A can be an upper bound ofC, and we
have shown thatsupA− inf A is the least upper bound ofC. �

5.9 The Archimedean Property of the System R

In its classical form, the Archimedean property of the number systemR says that
the setZ+ of positive integers is not bounded above. Although this statement may
appear to be obvious, it is not. Certainly, it is obvious that no positive integern
can be an upper bound ofZ+; for if n is any positive integer, thenn + 1 is a
larger one. But it is less obvious that ifx is any real number, then there must
exist positive integers that are larger thanx. As you will see in this section, the
Archimedean property ofR depends on the axiom of completeness. Without
this axiom, the Archimedean property may actually be false. There are algebraic
systems that resemble the real number system and that satisfy all of the axioms
that we have stated forR, with the exception of the completeness axiom, and
which do not have the Archimedean property. In such systems, the set of positive
integersis bounded above.

5.9.1 Sets of Integers that Are Bounded Above
Every nonempty set of integers that is bounded above must have a largest mem-
ber.

Proof. Suppose thatS is a nonempty set of integers and thatS is bounded above.
We definew = supS, and, to prove thatS has a largest member, we shall show
thatw ∈ S. To obtain a contradiction we assume thatw does not belong toS.

Using the fact thatw− 1, being less thanw, cannot be an upper bound ofS,
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we choose a memberm of S such thatw − 1 < m. From the fact thatw /∈ S
we see that

w − 1 < m < w.

Now we use the fact thatm is not an upper bound ofS to choose a membern of
S such thatm < n. Thus

w − 1 < m < n < w.

From this inequality we see that

0 < n−m < 1,

which is impossible becausen−m is a positive integer.�

5.9.2 Sets of Integers that Are Bounded Below
Every nonempty set of integers that is bounded below must have a smallest mem-
ber.

Proof. We leave the proof of this property as an exercise.

5.9.3 Unboundedness of the Set Z
The set Z of integers is unbounded both above and below.

Proof. This property ofZ follows at once from the fact thatZ has neither a
smallest nor a largest member.�

5.9.4 A Fact About Reciprocals of Natural Numbers
Given any positive number x, it is possible to find a positive integer n such that
1
n
< x.

Proof. Suppose thatx > 0 and, using the fact that the number1
x

is not an upper
bound of the setZ+, choose a positive integern such thatn > 1

x
. We see that

1
n
< x. �

5.9.5 Denseness of the Set Q of Rational Numbers
By turning back to the statement of Cantor that appears in Subsection 5.1.2,
we can see that in a certain sense, which we shall not make precise here, the
overwhelming majority of real numbers are irrational. However, the set of ratio-
nal numbers is still large enough to ensure that between any two different real
numbers there must be some rational numbers. This property of the setQ is
known as thedenseness of the set of rational numbers. The precise statement of
this denseness is as follows:

Suppose that a and b are any real numbers and that a < b. Then the set
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Q ∩ (a, b) is nonempty; in other words, there exists a rational r such that
a < r < b.

Proof. Using Theorem 5.9.4, we choose a positive integern such that

0 <
1

n
< b− a.

Note that

a+
1

n
< b.

We shall prove the theorem by finding an integerm such that

a <
m

n
< b.

We begin by defining

S =
{
x ∈ Z | x

n
> a
}
= {x ∈ Z | x > na} .

Since the setZ is unbounded above, we know thatS 	= ∅. Therefore, sinceS is
bounded below, it follows from Theorem 5.9.2 thatS has a least member that we
shall callm.

ba +
1
n

m
nam−1

n
Thus

m

n
> a but

m− 1

n
≤ a.

From the fact that

m− 1

n
≤ a

we see that

m

n
=

m− 1

n
+

1

n
≤ a+

1

n
< b,

and so

a <
m

n
< b,

as promised.�
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5.9.6 Exercises on the Archimedean Property of the System R

1. Prove that ifA is the set of all rational numbers in the interval[0, 1], then
supA = 1.

2. Suppose that

A =

{
1

1
,
1

2
,
1

3
, · · ·
}

=

{
1

n
| n ∈ Z+

}
.

Prove thatinf A = 0.
3. A nonempty setG of real numbers is said to be asubgroup of R if whenever

x andy belong toG, then so do the numbersx+ y andx− y.

(a) Determine which of the following sets are subgroups ofR.

∅ {1, 0,−1} Q Z

Z+ Q+ {2n | n ∈ Z} {2n | n ∈ Z+}
{0} R R \Q {

m+ n
√
2 | m ∈ Z andn ∈ Z

}
(b) Explain why every subgroup ofR must contain the number0. Show that

if G is any subgroup ofR other than{0}, thenG must contain infinitely
many positive numbers.

(c) Suppose thatG is a subgroup ofR other than{0}, that

p = inf {x ∈ G | x > 0} ,

and that the numberp is positive. Prove that eitherp ∈ G or the setG
must contain at least two different members betweenp and3p/2.

(d) Suppose thatG is a subgroup ofR other than{0}, that

p = inf {x ∈ G | x > 0} ,

and that the numberp is positive. Prove thatp is the smallest positive
member ofG and that

G = {np | n ∈ Z} .

(e) Suppose thatG is a subgroup ofR other than{0}, and that

0 = inf {x ∈ G | x > 0} .

Prove that ifa andb are any real numbers satisfyinga < b, then it is
possible to find a memberx of the setG such thata < x < b.

4. This exercise invites you to explore the so-calleddivision algorithm, which
describes the process by which an integerb can be divided into an integera
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to yield a quotientq and a remainderr.22

Suppose thata andb are positive integers and that

S = {n ∈ Z | nb ≤ a} .
(a) Prove thatS 	= ∅ and thatS is bounded above.
(b) Prove that if the largest member ofS is calledq and we define

r = a− qb, thena = qb+ r and0 ≤ r < b.

5.10 Boundedness of Functions

5.10.1 Supremum, Infimum, Maximum, and Minimum of a Function
A real-valued functionf defined on a setS is said to bebounded if the range of
f is bounded. In other words, the functionf is bounded if and only if the set

{f(x) | x ∈ S}
is a bounded set of real numbers, and we give similar definitions ofbounded
above andbounded below. If a functionf is bounded above on a nonempty set
S, then we define itssupremum sup f by the equation

sup f = sup {f(x) | x ∈ S}
and we define theinfimum inf f similarly. In the event that the range off has a
maximum value, then this maximum value is called themaximum value of the
functionf and theminimum value off is defined similarly.

5.10.2 Some Exercises on Suprema and Infima of Functions

1. Given thatf(x) = 1/x wheneverx > 0, prove that the functionf is
unbounded above. Prove that for every numberδ > 0 the restriction off to
the interval[δ,∞) is bounded.

2. Give an example of a bounded function on the interval[0, 1] that has a
minimum value but does not have a maximum value.

3. A functionf is said to beincreasing on a setS if the inequalityf(t) ≤ f(x)
holds whenevert andx belong toS andt ≤ x. Prove that every increasing
function on the interval[0, 1] must have both a maximum and a minimum
value.

4. Prove that iff andg are bounded above on a nonempty setS, then

sup (f + g) ≤ sup f + sup g.

22 For a more detailed but elementary account of this material, see Lewin [22].
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5. Give an example of two bounded functionsf andg on the interval[0, 1]
such that

sup (f + g) < sup f + sup g.

6. Given thatf is a bounded function on a nonempty setS and thatc is a
real number, prove that

sup (cf) =

{
c sup f if c > 0

c inf f if c < 0.

7. Prove that iff is a bounded function on a nonempty setS, then

|sup f | ≤ sup |f | .

5.11 Sequences, Finite Sets, and Infinite Sets

5.11.1 Definition of a Sequence
The usual definition of asequence in a set S is that it is a function fromZ+ into
S. A slightly more general and more useful notion of a sequence in a setS is that
it is a functionf whose domain is the set of all integers greater than or equal to a
given integerk such thatf (n) ∈ S for eachn.

5.11.2 Examples of Sequences

1. We could definef (n) = 2n− 1 for every integern ≥ 4.
2. We could definef (n) =

√
n− 6 for every integern ≥ 6.

3. We could definef (n) = (n+ 6)! for every integern ≥ −6.

5.11.3 Traditional Notation for Sequences
If f is a sequence defined on the set of all integersn ≥ k, wherek is a given
integer, and if, for each integern in the domain off we have writtenf (n) in the
form xn, then a traditional notation for the sequencef is (xn).

In other words, the notation(xn) stands for the function whose value at each
integern in its domain isxn. So, for example, if we have defined

xn = (n− 6)!

for every integern ≥ 6, then we have defined a sequence(xn).

There is, of course, nothing special about the lettern of the alphabet. The
sequence that we have called(xn) could just as well have been called(xm), or
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(xi), or (xj) and so on. In following this tradition we need to be careful not to
confuse the symbolxn, which stands for the value of the sequence at a given
integern, and the symbol(xn) that stands for the sequence itself. We often call
xn thenth term of the sequence(xn)

5.11.4 Some Further Examples of Sequences

1. If for each integern > 4 we define

xn =
(−1)n

n− 4
,

then(xn) is a sequence inR. As a matter of fact, we could also say that this
sequence(xn) is in the setQ of rational numbers.

2. If for each integern ≥ 1 we defineEn to be the interval[0, n], then(En) is
a sequence of subsets ofR.

3. If we define a functionfn : R → R for each integern ≥ 1 by

fn(x) =
(−1)n sinnx

(2n+ 1)!

for every real numberx, then(fn) is a sequence of functions fromR toR.

5.11.5 Bounded Sequences.
In keeping with our notation for functions we say that a given sequence(xn) of
real numbers isbounded if the range of the sequence(xn) is bounded. In other
words, if the domain of the sequence(xn) is the set of all integersn ≥ k, where
k is some integer, then we say that the sequence(xn) is bounded if and only if
the set

{xn | n ≥ k}
is bounded.

Similar definitions can be given to the concept ofbounded above andbounded
below.

5.11.6 Supremum and Infimum of a Sequence
If a given sequence(xn) is bounded above, then thesupremum of the sequence
(xn) is defined to be the supremum of itsrange. The infimum of a sequence is
defined similarly.

5.11.7 One-One Sequences
A sequence(xn) in a setS is one-one if for any two different integersm andn
in the domain of the sequence we havexm 	= xn.
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5.11.8 Monotone Sequences
A sequence(xn) of real numbers is said to beincreasing if we havexn ≤ xn+1

for everyn in the domain of the sequence. If for each suchn we havexn <
xn+1, then we say that the sequence(xn) is strictly increasing. Decreasing and
strictly decreasing sequences are defined similarly.

A sequence that is either increasing or decreasing is said to bemonotone,
and a sequence that is either strictly increasing or strictly decreasing is said to be
strictly monotone. Note that a strictly monotone sequence is always one-one.

5.11.9 Finite Sets and Infinite Sets
Suppose thatS is a given set. IfS is nonempty, we can choose a member ofS
and call itx1. There are now two possibilities: EitherS = {x1} or it is possible
to choose a numberx2 in the setS \ {x1}. If x2 has been chosen, then there are
again two possibilities: EitherS = {x1, x2} or it is possible to choose a number
x3 in the setS \ {x1, x2}.

If we attempt to continue this process, there are two possibilities: Either the
process will terminate because, for some positive integern, we have

S = {x1, x2, x3, · · · , xn}
or otherwise the process continues indefinitely and the numberxn is defined for
every positive integern. Thus either it is possible to express the setS in the form

S = {x1, x2, x3, · · · , xn}
for some positive integern, in which case we say that the setS is finite, or we
can find a one-one sequence(xn) in the setS, in which case we say that the setS
is infinite. You can find a more detailed discussion of finite sets in the optional,
more detailed approach to set theory. Toreach this discussion, click on the icon

.

5.12 Sequences of Sets
Not every sequence has to be a sequence of numbers. For example, we saw in
Subsection 5.11.4 that if

An = [0, n]

for every positive integern, then(An) is a sequence of sets. In this section we
give a brief discussion of sequences of this type.

5.12.1 Union and Intersection of a Sequence of Sets
Suppose thatAn is a given set for each positive integern. If n is any positive
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integer, then the symbol

n⋃
j=1

Aj

stands for the set of all those objectsx that belong to the setAj for at least
one integerj satisfying1 ≤ j ≤ n. The union of the entire sequence(An)
is defined to be the set of all those objectsx that belong toAn for at least one
positive integern. The union of the sequence(An) is written as

∞⋃
n=1

An.

If n is any positive integer, then the symbol

n⋂
j=1

Aj

stands for the set of all those objectsx that belong to the setAj for every integer
j satisfying1 ≤ j ≤ n. Theintersection of the entire sequence(An) is defined
to be the set of all those objectsx that belong toAn for every positive integern.
The intersection of the sequence(An) is written as

∞⋂
n=1

An.

5.12.2 Contracting and Expanding Sequences of Sets
If (An) is a sequence of sets, then we say that the sequence(An) is contracting
if we haveAn+1 ⊆ An for everyn in the domain of the sequence. If we have
An ⊆ An+1 for everyn in the domain of the sequence, then we say that the
sequence isexpanding

5.12.3 Exercises on Sequences of Sets

1. Evaluate

∞⋃
n=1

[
1

n
, 1

]
.
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2. Evaluate
∞⋃
n=1

[
1 +

1

n
, 5− 2

n

]
.

3. Evaluate
∞⋂
n=1

(
1− 1

n
, 2 +

1

n

)
.

4. Explain why if(An) is an expanding sequence of subsets ofR, then the
sequence(R \An) is a contracting sequence.

5. Suppose that(An) is a sequence of sets.

(a) Prove that if we define

Bn =
∞⋃
j=n

Aj

for eachn, then the sequence(Bn) is a contracting sequence of sets.
(b) Prove that if we define

Bn =
∞⋂
j=n

Aj

for eachn, then the sequence(Bn) is an expanding sequence of sets.
(c) Prove that if we define

Bn =
n⋂

j=1

Aj

for eachn, then the sequence(Bn) is an contracting sequence of sets.
(d) Prove that if we define

Bn =
n⋃

j=1

Aj

for eachn, then the sequence(Bn) is an expanding sequence of sets.

6. Prove that if(An) is a sequence of subsets ofR, then

R \
∞⋃
n=1

An =
∞⋂
n=1

(R \An) .
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5.13 Mathematical Induction

The principle of mathematical induction is an important technique for proving the
truth of each of a sequence(pn) of mathematical statements and for justifying the
idea of a recursively defined sequence. Ifyou would like to read a section on this
topic, click on the icon .

5.14 The Extended Real Number System

5.14.1 Introduction to the Extended Real Number System
In elementary calculus we often use the infinity symbols∞ and−∞. For exam-
ple, we may say that

lim
x→3

1

|x− 3| = ∞
and that

∞∑
n=1

1

n
= ∞.

In order to use the symbol∞, we didn’t actually have to have an object called∞
in our number system. As you may recall, the statement

lim
x→3

1

|x− 3| = ∞

simply means that we can make the number1/ |x− 3| as large as we like by
makingx close enough to the number3.

Sometimes, however, we find it convenient to work with the two symbols
−∞ and∞ as if they were numbers. Using these extra symbols, we can some-
times simplify the statements of certain theorems and we can sometimes reduce
the number of separate cases that have tobe considered in their proofs. In intro-
ducing these extra symbols we are extending our number system slightly, giving
us what we call theextended real number system.

[−∞,∞] = R ∪ {−∞,∞} .

5.14.2 Arithmetic in the Extended Real Number System
We define

∞+∞ = ∞×∞ = (−∞) (−∞) = ∞
−∞−∞ = (−∞)∞ = ∞ (−∞) = −∞.
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If x is a real number, then we define

∞+ x = x+∞ = ∞
−∞+ x = x−∞ = −∞

x

∞ =
x

−∞ = 0

and

∞× x =

{ ∞ if x > 0
−∞ if x < 0

and

(−∞)× x =

{ −∞ if x > 0
∞ if x < 0.

One important advantage of this arithmetic that includes the infinity symbols is
that it simplifies the statements of the arithmetical rules for limits that we shall
study in Section 7.5. For example, one of these rules tells us that if

lim
x→a

f(x) = λ and lim
x→a

g(x) = µ,

then, under the right conditions, we should have23

lim
x→a

(f(x) + g(x)) = λ+ µ.

In the event thatλ = µ = ∞, this rule tells us that if

lim
x→a

f(x) = ∞ and lim
x→a

g(x) = ∞,

then

lim
x→a

(f(x) + g(x)) = ∞+∞ = ∞,

which is a true statement. The arithmetical rules for limits do not work under all
conditions, however. For example, if

lim
x→a

f(x) = ∞ and lim
x→a

g(x) = −∞,

then the limit

lim
x→a

(f(x) + g(x))

23 The Greek letterλ is called lambda and is the Greek equivalent of the letter L. The next letter
in the Greek alphabet isµ, which is pronounced “mu”.
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is quite unpredictable, and this is why we have left the expression∞ − ∞
undefined. For similar reasons, we have also left the expressions

−∞+∞, and 0×∞, and ∞× 0, and
∞
∞

all undefined. Combinations of limits that lead to one of these undefined ex-
pressions are known asindeterminate forms, and, as you may know, these
indeterminate forms require special techniques, such as L’Hôpital’s rule. We
shall study L’Hôpital’s rule in Section 9.6.

5.14.3 The Order < in the Extended Real Number System
We extend the usual order< to the extended real number system[−∞,∞] by
agreeing that−∞ < ∞ and that for every real numberx we have−∞ < x and
x < ∞.

5.14.4 Suprema and Infima in [−∞,∞]

Suppose thatS is a set of real numbers and thatS is unbounded above. Even
thoughS has no upper bound inR, we can still think of∞ as being an upper
bound ofS in the extended real number system; and, in this way, we can say that
supS = ∞. Similarly, we can express the fact that a given setS of real numbers
is unbounded below by saying thatinf S = −∞.

5.14.5 Some Exercises on the Extended Real Number System

1. Thinking of the rule for sums of limits

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x)

that you saw in elementary calculus, give some examples to show why the
expression∞+ (−∞) should not be defined.

2. Thinking of the rule for products of limits

lim
x→a

(f(x)g(x)) =
(
lim
x→a

f(x)
)(

lim
x→a

g(x)
)

that you saw in elementary calculus, give some examples to show why the
expression∞× 0 should not be defined.

3. Thinking of the rule for quotients of limits

lim
x→a

(
f(x)

g(x)

)
=

lim
x→a

f(x)

lim
x→a

g(x)

that you saw in elementary calculus, give some examples to show why the
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expression∞
∞

should not be defined.
4. Given thatA andB are intervals and thatA ∩ B 	= ∅, prove that the set

A ∪B is an interval.
5. Given thatA, B, andC are intervals and that the setsA ∩B andB ∩ C are

nonempty, prove thatA ∪B ∪ C is an interval.

5.15 The Complex Number System (Optional)

An introduction to the complex number system can be found in the on-screen
version of the book by clicking on the icon .



Chapter 6
Elementary Topology of the Real Line

This chapter presents the topological background that is needed for a study of
analysis of functions of a single real variable. If you prefer to replace this chapter
by a more extensive discussion that presents the topology of metric spaces, you
can do so from the on-screen version of this book by clicking on the icon.

6.1 The Role of Topology

At the heart of mathematical analysis lies the notion of a limit and, in a sense,
everything that we shall be doing from now on will be concerned with limits
of one form or another. In Chapter 7 we shall discuss limits of sequences and
then in Chapter 8 we shall apply what we have learned to the study of limits and
continuity of functions. This, in turn, will prepare us for the study of derivatives
and integrals, which is our main objective.

The key word in the title of this chapter istopology. When we speak of the
topology of a mathematical system we mean those features of the system that
make it possible to define limits and continuity. Since the main focus of our
attention in this book is the systemR of real numbers, we need to ask ourselves
just what it is about the systemR that makes it possible to define a limit of a
sequence(xn) or of a functionf : R → R. We hinted at the answer to this
question in Section 5.4, where we introduced the properties of the order relation
< in R. As we said there, it is the order relation< that makes the theory of limits
possible. As we said in Section 5.4, the order relation< allows us to picture our
number system as a line. With this picture in mind, we can define absolute value
and we can think of the number|x− y| as being thedistance between two given
numbersx andy. The notion of distance plays a major role in the theory of
limits.

The topological structure of the number lineR that we shall discuss in this
chapter is a special case of the topological structure of more general mathematical
systems in which the notion of a distance exists. For example, there is a notion
of distance in the Euclidean planeR2 where we define the distance between two
points(x1, y1) and(x2, y2) to be

√
(x2 − x1)

2 + (y2 − y1)
2,

and this definition is easy to extend to higher dimensional spaces. You can

107
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find a discussion of such spaces in the optional material on metric spaces that
was mentioned at the beginning of this chapter. Finally, we mention that there
are abstract mathematical systems that have a topological structure even though
no notion of distance is defined in them. Such systems are known asgeneral
topological spaces. As we have said, we are concerned with the number lineR

in this book. We leave the study of moregeneral systems for a more advanced
course.

6.2 Interior Points and Neighborhoods
The definition of distance in the number line provides us with a way of saying
that certain numbers that belong to a given setU are located “deep inside”U and
away from its “boundary”. A number of this type will be called aninterior point
of U , and when a numberx is an interior point of a setU we shall say that the set
U is aneighborhood of x. The concepts of interior point and neighborhood will
be very useful when we develop the theory of limits of sequences and functions.

6.2.1 Definitions of Interior Point and Neighborhood
Suppose thatx is a real number and thatU is a set of real numbers. The number
x is said to be aninterior point of the setU if it is possible to find a number
δ > 0 such that

(x− δ, x+ δ) ⊆ U.

In the event thatx is an interior point of the setU , we say that the setU is a
neighborhood of the numberx.

6.2.2 Some Examples of Interior Points

1. Suppose thata andb are real numbers and thata < b. Then every
numberx in the interval(a, b) is an interior point of(a, b). To see this,
suppose thatx ∈ (a, b). We need to find a numberδ > 0 such that
(x− δ, x+ δ) ⊆ (a, b), and, for this purpose, we defineδ to be the smaller
of the two numbersx− a andb− x. The following figure illustrates the case
in whichδ = x− a.

Certainlyδ > 0. Now, sinceδ ≤ b− x, we see that

x+ δ ≤ x+ (b− x) = b
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and sinceδ ≤ x− a, we see that

x− δ ≥ x− (x− a) = a.

Therefore(x− δ, x+ δ) ⊆ (a, b), as promised.
2. If a andb are real numbers anda ≤ b, then neither of the numbersa andb is

an interior point of the interval[a, b].
3. Since every interval of positive length contains some rational numbers, no

number can be an interior point of the setR \ Q of irrational numbers.
Since every interval of positive length contains some irrational numbers, no
number can be an interior point of the setQ of rational numbers.

Before stating the next theorem we observe that ifx is any number, then
larger sets are more likely to be neighborhoods ofx than smaller sets. More
precisely, ifU is a neighborhood ofx, then any setV that includesU as a subset
must also be a neighborhood ofx. The next theorem goes in the other direction
by discussing the intersection of neighborhoods of a given number.

6.2.3 Intersection of Finitely Many Neighborhoods
The intersection of finitely many neighborhoods of a given number is a neighbor-
hood of that number.

Proof. Suppose that the sets

U1, U2, . . . , Un

are all neighborhoods of a given numberx. For eachj = 1, 2, . . . , n we use the
fact thatUj is a neighborhood ofx to choose a numberδj > 0 such that

(x− δj, x+ δj) ⊆ Uj.

Now we defineδ to be the smallest of all of these numbersδj. Thenδ > 0, and
since

(x− δ, x+ δ) ⊆ (x− δj, x+ δj) ⊆ Uj

for eachj we have

(x− δ, x+ δ) ⊆
n⋂

j=1

Uj. �

6.2.4 Intersection of Infinitely Many Neighborhoods
Although the intersection of finitely many neighborhoods of a numberx must
always be a neighborhood ofx, the intersection of infinitely many neighbor-
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hoods of a numberx can fail to be a neighborhood ofx. For an example of this
behavior, observe that ifn is any positive integer, then the interval

(− 1
n
, 1
n

)
is a

neighborhood of the number0. It is easy to see that

∞⋂
n=1

(
−1

n
,
1

n

)
= {0} ,

which is not a neighborhood of0.

6.2.5 Exercises on Neighborhoods

1. Complete the following sentence:“A set U fails to be a neighborhood of a
number x when for every number δ > 0, ...”

2. Explain carefully why the assertion

∞⋂
n=1

(
−1

n
,
1

n

)
= {0}

that was made in Subsection 6.2.4 is true. You will need to make use of
Theorem 5.9.4.

3. Given thatx is an interior point ofU and thatU ⊆ V , explain whyx must
be an interior point ofV .

4. Suppose thatx is a real number and thatU ⊆ R. Prove that the
following two conditions are equivalent:

(a) The setU is a neighborhood of the numberx.
(b) It is possible to find two numbersa andb such that

x ∈ (a, b) ⊆ U.

5. Suppose thatx andy are two different real numbers. Prove that it is
possible to find a neighborhoodU of x and a neighborhoodV of y such that
U ∩ V = ∅.

6. Given thatS is a set of real numbers and thatx is an upper bound ofS,
explain whyS cannot be a neighborhood ofx.

7. Given that a setS of real numbers is nonempty and bounded above,
explain why neitherS norR \ S can be a neighborhood ofsupS.

8. Suppose thatA andB are sets of real numbers and thatx is an interior
point of the setA ∪B. Is it true thatx must either be an interior point ofA
or an interior point ofB?

9. Suppose thatA andB are sets of real numbers and thatx is an interior point
both ofA and ofB. Is it true thatx must be an interior point of the set
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A ∩B?
10. Suppose thatx andy are real numbers and thatU is a neighborhood of

y. Prove that the setV defined by

V = {x+ u | u ∈ U}
is a neighborhood of the numberx+ y.

6.3 Open Sets and Closed Sets

6.3.1 Definition of an Open Set
A setU of real numbers is said to beopen if every member ofU is an interior
point ofU . In other words, a setU is said to be open ifU is a neighborhood of
every one of its members.

A setU of real numbers fails to be open when there is at least one numberx
in U such thatx is not an interior point ofU .

6.3.2 Definition of a Closed Set
A setH of real numbers is said to beclosed if the setR \H is open.

Thus ifH is a set of real numbers andU = R \ H, then, since each of the
setsH andU is the complement of the other, the setH is closed if and only ifU
is open.

6.3.3 A Word of Warning
The wordsopen andclosed may be a little misleading because they may lead you
to believe that a set of real numbers must either be open or it must be closed and
that, in order to show that a given set is closed, all we have to do is to show that
the set isn’t open.

But nothing could be further from the truth. In fact, most sets of real numbers
are neither open nor closed and there aresome sets that are both open and closed.
You will see examples of such sets soon. Thus, if we want to show that a given
setH is closed, we are not trying to show thatH isn’t open. To show thatH is
closed, we need to show that its complementR \H is open.

6.3.4 Some Examples of Open Sets and Closed Sets
As you will see from the examples in thissubsection, many sets are neither open
nor closed, some sets are open but not closed, some sets are closed but not open
and some sets are both open and closed.

1. The setR of all real numbers is open. To see why, suppose thatx is any real
number. In order to prove thatx must be an interior point of the setR, we
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need to prove that there exists a numberδ > 0 such that

(x− δ, x+ δ) ⊆ R.

Following the technique discussed in Subsection 3.5.1, we prove the
existence of such a numberδ by giving an example of one. As a matter of
fact, since

(x− 1, x+ 1) ⊆ R,

we can give an example by takingδ = 1.
2. In order for a given setS to fail to be open there has to be at least one

member ofS that fails to be an interior point ofS. Such a setS must
therefore be nonempty, and so we conclude that the empty set∅ is open and
that its complementR is closed.

3. In Example 1 of Subsection 6.2.2 we saw that every member of an open
interval of the form(a, b) is an interior point of that interval. Therefore every
open interval is an open subset ofR. In the same way we can see that open
intervals of the form(−∞, a) and(a,∞) must also be open sets.

4. Suppose thata andb are real numbers and thata ≤ b. Since the set[a, b] is
not a neighborhood of either of the numbersa andb, we deduce that[a, b] is
not an open set. On the other hand, the set

R \ [a, b] = (−∞, a) ∪ (b,∞)

is clearly open, and so the closed interval[a, b] is a closed subset ofR.
5. Suppose thata andb are real numbers and thata < b. Since the set[a, b)

fails to be a neighborhood of its membera, the set[a, b) is not open. The
complement of[a, b) is the set

R \ [a, b) = (−∞, a) ∪ [b,∞) ,

which fails to be a neighborhood of its memberb. We conclude that the set
[a, b) is neither open nor closed.

6. In Example 3 of Subsection 6.2.2 we saw that neither the setQ of rational
numbers nor the setR \Q of irrational numbers can be a neighborhood of
any number. Therefore the setQ is neither open nor closed.

7. In this example we shall observe that the setZ of integers is closed. We
need to show thatR \ Z is open, and, in order to demonstrate this fact, we
suppose thatx ∈ R \ Z. If n is the largest integer that does not exceedx,
then we have

n < x < n+ 1.
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Since the set(n, n+ 1) is a neighborhood ofx, it follows at once that the
larger setR \ Z is also a neighborhood ofx. ThusR \ Z is open and we
conclude thatZ is closed.

8. Suppose that

S =

{
1

n
| n ∈ Z+

}
.

Since no real number can be an interior point ofS, we know thatS cannot be
open. Furthermore,0 ∈ R \S, but for every numberδ > 0 there are positive
integersn such that

1

n
∈ (0− δ, 0 + δ) .

Therefore, although0 is a member ofR \ S, the number0 is not an interior
point ofR \ S, and so the setR \ S also fails to be open. We conclude that
the setS is neither open nor closed.

9. If

S =

{
1

n
| n ∈ Z+

}
∪ {0} ,

thenS is closed but not open. We leave the proof of this assertion as an
exercise.

6.4 Some Properties of Open Sets and Closed Sets

In this section we explore some simple properties of open sets and closed sets
that follow from the definitions.

6.4.1 Unions and Intersections of Open Sets and Closed Sets

1. The intersection of finitely many open sets is open.
2. The union of any sequence of open sets is open.
3. The union of finitely many closed sets is closed.
4. The intersection of any sequence of closed sets is closed.

Proof.

1. To prove part 1 of the theorem, suppose that

{U1, U2, · · · , Un}
is a finite family of open sets and suppose thatx is a number that lies in the
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intersection of this family. In other words,

x ∈
n⋂

j=1

Uj.

We need to explain why the set
⋂n

j=1 Uj is a neighborhood ofx. But this fact
follows from Theorem 6.2.3 and the fact that each setUj, being an open set
that contains the numberx, must be a neighborhood ofx.

2. To prove part 2 of the theorem, suppose that(Un) is a sequence of open sets,
and suppose that the union of all these open sets has been calledU . To show
that this setU is open, suppose thatx ∈ U . This means thatx must belong
to the setUn for at least one value ofn, and, using this fact, we choose24

an integern such thatx ∈ Un. SinceUn is a neighborhood ofx and since
Un ⊆ U , we deduce thatU is a neighborhood ofx.

3. To prove part 3 of the theorem, suppose that

{H1, H2, · · · , Hn}
is a finite family of closed sets. Then for eachj = 1, 2, · · · ,n the setR \Hj

is open, and since

R \
n⋃

j=1

Hj =
n⋂

j=1

(R \Hj) ,

which is open by part 1 of the theorem, we deduce that the set
⋃n

j=1Hj is
closed.

4. To prove part 4 of the theorem, suppose that(Hn) is a family of closed sets.
Then for every positive integern, the setR \Hn is open, and since

R \
∞⋂
n=1

Hn =
∞⋃
n=1

(R \Hn) ,

which is open by part 2 of the theorem, we deduce that the set
⋂

∞

n=1Hn is
closed.�

6.4.2 Existence of a Largest Member
Every nonempty closed set that is bounded above must have a largest member.

Proof. Suppose thatH is a nonempty closed set and thatH is bounded above. In
order to prove thatH has a largest member, we shall show thatsupH belongs to

24 See Subsection 3.5.2 to see how the wordchoose is used in a mathematical proof.
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H. We writeα = supH, and, to obtain a contradiction, we assume thatα does
not belong toH. Then, of course,α belongs to the open setR \H, and, using
this fact, we chooseδ > 0 such that

(α− δ, α+ δ) ⊆ R \H.

Since no member ofH can be greater thanα and since no member ofH can
belong to the interval(α− δ, α+ δ), we see that the numberα − δ is an upper
bound ofH, contradicting the fact thatα is theleast upper bound ofH. �

In the same way we can show that every nonempty closed set that is bounded
below must have a least member. We leave the proof of this fact as an exercise.

6.4.3 The Sets that Are both Open and Closed
One of the consequences of the completeness of the number systemR is that sets
that are both open and closed are quite rare. As the following theorem shows, the
setsR and∅ are the only sets of this type.

The sets R and ∅ are the only subsets of R that are both open and closed.

Proof. Suppose thatS is an open closed subset ofR and, to obtain a contradic-
tion, suppose that the setS is nonempty and that the setR \ S is also nonempty.
Using the fact that these two sets are nonempty, we choose a membera of the set
S and a memberb of the setR \ S. We may assume, without loss of generality,
thata < b. We now define

E = S ∩ (−∞, b) .

From the fact that both of the setsS and(−∞, b) are open, we deduce that the
setE is open. But sinceb /∈ S, we also have

E = S ∩ (−∞, b] ,

and we deduce from the fact that bothS and(−∞, b] are closed that the setE is
closed.

We observe thatE is nonempty becausea ∈ E and that the numberb is an
upper bound ofE. Thus by Theorem 6.4.2 we know thatE has a largest member,
which we shall callα. Using the fact thatE is open we now choose a number
δ > 0 such that

(α− δ, α+ δ) ⊆ E,

which is impossible sinceα is the largest member ofE. �
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6.4.4 Exercises on Open Sets and Closed Sets

1. Explain why, ifU is open andH is closed, then the setU \H must be
open.

2. Explain why, ifU is open andH is closed, then the setH \ U must be
closed.

3. Give an example of an infinite family of open sets whose intersection fails to
be open.

4. Give an example of an infinite family of closed sets whose union fails to be
closed.

5. Give an example of two setsA andB, neither of which is open but for
which the setA ∪B is open.

6. Given a setH of real numbers, prove that the following conditions are
equivalent:

(a) The setH is closed.
(b) For every numberx ∈ R \H it is possible to find a numberδ > 0 such

that

(x− δ, x+ δ) ∩H = ∅.
7. (a) Given any numberx, prove that the singleton{x} is closed.

(b) Use part a and the fact that every finite set is a finite union of singletons
to deduce that every finite set is closed.

8. Given thatQ ⊆ H and thatH is closed, prove thatH = R.
9. Given thatH is closed, nonempty, and bounded below, prove thatH must

have a least member.
10. Prove that no open set can have a largest member.
11. Given a real numberx and a setS of real numbers, prove that the following

two conditions are equivalent:

(a) The numberx is an interior point ofS.
(b) It is possible to find an open setU such thatx ∈ U ⊆ S.

12. Prove that ifS is any set of real numbers, then the set of all interior points of
S must be open.

13. This exercise refers to the sum of two sets as it was defined in Exercise
12 in Subsection 5.6.6. Prove that ifA is any set of real numbers andU is an
open set, then the setA+ U must be open.
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6.5 The Closure of a Set

The closure of a given subsetS of R is the set that contains all of the numbers
that are, in a certain sense, “close” to the setS. Any setS is a subset of its closure
and, as you will see soon, a setS is equal to its closure if and only if it is closed.

6.5.1 Definition of Closure
Suppose thatS is a set of real numbers and thatx is any real number. We say
that the numberx is close to the setS if for every numberδ > 0 we have

(x− δ, x+ δ) ∩ S 	= ∅.

If S is a set of real numbers, then the set ofall those numbers that are close toS
is called theclosure of the setS and is written asS.

6.5.2 Some Examples Illustrating Closure

1. For every numberδ > 0 it is clear that

(1− δ, 1 + δ) ∩ [0, 1) 	= ∅,

and we deduce that the number1 lies in the closure of the set[0, 1).
If x > 1 and if we choose any positive numberδ that does not exceed the

positive numberx− 1, then it is clear that

(x− δ, x+ δ) ∩ [0, 1) = ∅.

Thus if x > 1, thenx cannot lie in the closure of the interval[0, 1) and
we see similarly that no negative number lies in the closure of this interval.
We have therefore shown that the closure of the interval[0, 1) is the closed
interval[0, 1].

2. Suppose thatx is any real number and thatδ > 0. Since the interval
(x− δ, x+ δ) must contain some rationals, we deduce thatx ∈ Q. Thus
Q = R. In a similar manner we can see thatR \Q = R.

3. Given any numberx and givenδ > 0 we have

(x− δ, x+ δ) ∩ ∅ = ∅,

and so∅ = ∅.
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6.5.3 Describing Closure in Terms of Neighborhoods
Suppose that S is a set of real numbers and that x is a given number. Then the
following two conditions are equivalent:

1. The number x lies in the set S.
2. For every neighborhood U of the number x we have U ∩ S 	= ∅.

Proof. To prove that condition 2 implies condition 1 we assume that condition
2 holds. To prove thatx ∈ S, we suppose25 that δ > 0. Since the interval
(x− δ, x+ δ) is a neighborhood ofx, we know that

(x− δ, x+ δ) ∩ S 	= ∅,

and we conclude thatx ∈ S.

Now to prove that condition 1 implies condition 2 we assume that condition
1 holds. To prove that condition 2 holds we suppose thatU is a neighborhood of
the numberx. From the definition of a neighborhood we know that there exists a
numberδ > 0 such that

(x− δ, x+ δ) ⊆ U ,

and we choose such a numberδ. Since

(x− δ, x+ δ) ∩ S 	= ∅,

we see at once thatU ∩ S 	= ∅. �

6.5.4 Two Simple Facts About Closure

1. Suppose thatS is a set of real numbers. Ifx is any member ofS andδ > 0,
then the set

(x− δ, x+ δ) ∩ S

must be nonempty because it contains the numberx itself. We deduce that
S ⊆ S.

2. Suppose thatA andB are sets of real numbers and thatA ⊆ B. If x is any
number that lies inA andδ > 0, then, since

∅ 	= (x− δ, x+ δ) ∩A ⊆ (x− δ, x+ δ) ∩B,

it follows thatx ∈ B. ThereforeA ⊆ B.

25 See Subsection 3.6.2 for the use of the wordsuppose in a mathematical proof.
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6.5.5 The Closure of Any Set is Closed
Suppose that S is a set of real numbers. Then the set S is closed.

Proof. To prove that the setS is closed we need to explain why the set
R\S is open. In other words, we need to explain why every number that belongs
to the setR \ S must be an interior point ofR \ S. Suppose thatx ∈ R \ S.
Using the fact thatx is not close to the setS we choose a numberδ > 0 such
that

(x− δ, x+ δ) ∩ S = ∅.

Now if y is any number that belongs to the interval(x − δ, x + δ), then, since
(x− δ, x+ δ) is a neighborhood ofy and since(x− δ, x+ δ) does not intersect
with S, we see thaty cannot be close to the setS. We have therefore shown that

(x− δ, x+ δ) ⊆ R \ S,

and we conclude thatx is indeed an interior point ofR \ S. �

6.5.6 Theorem on Closed Sets and Closures
Suppose that S is a set of real numbers. Then the following two conditions are
equivalent:

1. The set S is closed.
2. We have S = S.

Proof. In the event thatS = S, it follows from the fact thatS is closed that the
setS must be closed.

Suppose now that the setS is closed. We already know thatS ⊆ S. To show
thatS ⊆ S we shall show thatR \ S ⊆ R \ S. Suppose thatx ∈ R \ S. Since
S is closed, the setR \S is a neighborhood ofx, and since this neighborhood of
x does not intersect with the setS, we see at once thatx cannot belong toS. �

6.5.7 Exercises on Closure

1. Suppose that

S = [0, 1) ∪ (1, 2) .

(a) What is the set of interior points ofS?
(b) Given thatU is the set of interior points ofS, evaluateU .
(c) Give an example of a setS of real numbers such that, ifU is the set of

interior points ofS, thenU 	= S.
(d) Give an example of a subsetS of the interval[0, 1] such thatS = [0, 1]
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but, if U is the set of interior points ofS, thenU 	= [0, 1].

2. Given that

S =

{
1

n
| n ∈ Z+

}
,

evaluateS.
3. Given thatS is a set of real numbers, thatH is a closed set, and thatS ⊆ H,

prove thatS ⊆ H.
4. Given two setsA andB of real numbers, prove that

A ∪B = A ∪B.

5. Given two setsA andB of real numbers, prove that

A ∩B ⊆ A ∩B.

Do the two sides of this inclusion have to be equal? What ifA andB are
open? What if they are closed?

6. Prove that ifS is any set of real numbers, then the setR \ S is the set of
interior points of the setR \ S.

7. Given thatα is an upper bound of a given setS of real numbers, prove that
the following two conditions are equivalent:

(a) We haveα = supS.
(b) We haveα ∈ S.

8. Is it true that ifA andB are sets of real numbers and

A = B = R,

thenA ∩B = R?
9. Prove that ifA andB are open sets and

A = B = R,

thenA ∩B = R. What if only one of the two setsA andB is open?
10. Two setsA andB are said to beseparated from each other if

A ∩B = A ∩B = ∅.

Which of the following pairs of sets are separated from each other?

(a) [0, 1] and[2, 3].
(b) (0, 1) and(1, 2).
(c) (0, 1] and(1, 2).
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(d) Q andR \Q.
11. Prove that ifA andB are closed and disjoint from one another, thenA and

B are separated from each other.
12. Prove that ifA andB are open and disjoint from one another, thenA andB

are separated from each other.
13. Suppose thatS is a set of real numbers. Prove that the two setsS andR \ S

will be separated from each other if and only if the setS is both open and
closed. What then do we know about the setsS for whichS andR \ S are
separated from each other?

14. This exercise refers to the notion of a subgroup ofR that was introduced
in Exercise 3 of Subsection 5.9.6. That exercise should be completed before
you start this one.

(a) Given thatH andK are subgroups ofR, prove that the setH +K
defined in the sense of Exercise 12 of Subsection 5.6.6 is also a subgroup
of R.

(b) Prove that ifa, b, andc are integers and if

a
√
2 = b

√
3 + c,

thena = b = c = 0.
(c) Prove that ifm, n, p, andq are integers, then it is impossible to have

√
2−m

n
=

√
3− p

q
;

and deduce that ifα is any real number and ifH = {nα | n ∈ Z}, then
the subgroupH + Z cannot contain both of the numbers

√
2 and

√
3.

(d) Suppose thatG is a subgroup ofR other than{0}, that

p = inf {x ∈ G | x > 0} ,

and that the numberp is positive. Prove that the setG is closed.
(e) Prove that ifG is a subgroup ofR other than{0} and thatG has no least

positive member, thenG = R.
(f) Suppose thatα is an irrational number, that

H = {nα | n ∈ Z} ,

and thatG = H + Z. Prove that although the setsH andZ are closed
subgroups ofR and although the setG is also a subgroup ofR, the setG
is not closed.
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6.6 Limit Points

6.6.1 Introduction to Limit Points
A limit point of a given setS of real numbers is a number that lies close to the set
S in a sense that is a little stronger than the kind of closeness that we defined in
Section 6.5. As we saw, the condition that must be satisfied in order for a number
to be close to a setS is that for every numberδ > 0 the interval(x− δ, x+ δ)
contains at least one member of the setS. The stronger condition that must be
satisfied in order for a numberx to be a limit point of a given setS is that for
every numberδ > 0 the interval(x− δ, x+ δ) contains at least one member of
the setS other than the numberx itself.

It turns out that a number that satisfies the latter condition is a number where
the setS is very “crowded”. What we mean by this is that every neighborhood of
a limit point of a set must contain infinitely many different members of that set.

6.6.2 Definition of a Limit Point
Suppose thatS is a set of real numbers and thatx is any real number. We say
that the numberx is alimit point of the setS if for every numberδ > 0 we have

(x− δ, x+ δ) ∩ S \ {x} 	= ∅.
Equivalently,x is a limit point ofS if and only if for every neighborhoodU of x
we have

U ∩ S \ {x} 	= ∅.
The set of all limit points of a given setS is written asL (S). Limit points of

a set are sometimes calledaccumulation points of the set.

6.6.3 Comparing the Set of Limit Points and the Closure of a Set
If S is a set of real numbers andx is a real number, then the condition thatx be
a limit point ofS requires the set

(x− δ, x+ δ) ∩ S \ {x}
to be nonempty for everyδ > 0. This condition is more demanding than the
condition thatx merely be close to the setS, which requires the slightly larger
set

(x− δ, x+ δ) ∩ S

to be nonempty for everyδ > 0. We see, therefore, thatL (S) ⊆ S. Further-
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more, if a numberx does not belong to a setS, then, since

(x− δ, x+ δ) ∩ S \ {x} = (x− δ, x+ δ) ∩ S

for everyδ > 0, the conditionsx ∈ S andx ∈ L (S) are also exactly the same.
Thus only numbers that belong to the setS can be inS without belonging to
L (S).

As you will see in the examples that follow, a member of a set may or may not
be a limit point of the set and a limit point of a set may or may not be a member
of the set. However, since every number in a setS must belong toS, and since
a number that does not belong toS will belong toS if and only if it belongs to
L (S), we have

S = S ∪ L (S) .

We conclude that since a setS of real numbers is closed if and only ifS = S, a
setS is closed if and only if every limit point ofS belongs toS.

6.6.4 Some Examples of Limit Points

1. If

S = (0, 1) ∪ {2} ,

then

S = [0, 1] ∪ {2} and L (S) = [0, 1] .

Note that2 is a member ofS but is not a limit point ofS. Note that the
numbers0 and1 are limit points ofS even though they do not belong toS.
The numbers that lie in the open interval(0, 1) are both members ofS and
limit points ofS.

2. If

S =

{
1

n
| n ∈ Z+

}
,

then0 is the only limit point ofS. In other words,L (S) = {0}.
3. L (Z) = ∅.
4. L (Q) = R.

6.6.5 An Important Fact About Limit Points
Suppose that S is a set of real numbers and that x is a real number.

1. If the number x has a neighborhood that contains only finitely many numbers
in the set S, then x cannot be a limit point of S.
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2. If x is a limit point of S, then every neighborhood of x must contain
infinitely many different numbers that belong to the set S.

Proof. Part 2 of this theorem follows immediately from part 1, so our
task is to prove part 1. Suppose thatx has a neighborhoodU for which the set
U ∩ S is finite. Using the fact that the setU ∩ S \ {x} is also finite, we write it
in the form

U ∩ S \ {x} = {y1, y2, · · · , yn} .
The way in which we shall show thatx is not a limit point of the setS is to give
an example of a positive numberδ such that the interval(x− δ, x+ δ) doesn’t
contain any of the numbersy1, y2, · · · , yn. This requirement will ensure that the
set

U ∩ (x− δ, x+ δ)

does not contain any member of the setS \{x}. With this idea in mind we define
δ to be the smallest of all the numbers

|x− y1| , |x− y2| , |x− y3| , · · · , |x− yn| .

x

y1y2y3 y4y5 y6

x + δx − δ

Since none of the numbersy1, y2, · · · , yn can be equal tox, we know thatδ > 0.
Since the set

U ∩ (x− δ, x+ δ)

is a neighborhood ofx that contains no numbers at all in the setS \ {x}, the
numberx can’t be a limit point ofS. �

6.6.6 Corollary: Finite Sets Never Have Limit Points
No finite set can have a limit point.

6.6.7 Exercises on Limit Points

1. Prove thatL (Z) = ∅.
2. Prove thatL (Q) = R.
3. Prove thatL

({
1
n
| n ∈ Z+

})
= {0}.

4. (a) Give an example of an infinite set that has no limit point.
(b) Give an example of a bounded set that has no limit point.
(c) Give an example of an unbounded set that has no limit point.
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(d) Give an example of an unbounded set that has exactly one limit point.
(e) Give an example of an unbounded set that has exactly two limit points.

5. Prove that ifA andB are sets of real numbers and ifA ⊆ B, then
L (A) ⊆ L (B).

6. Prove that ifA andB are sets of real numbers, then

L (A ∪B) = L (A) ∪ L (B) .

7. Is it true that ifA andB are sets of real numbers, then

L (A ∩B) = L (A) ∩ L (B) ?

What if A andB are closed? What ifA andB are open? What ifA andB
are intervals?

8. Is it true that ifD = R, thenL (D) = R?
9. Given that a setS of real numbers is nonempty and bounded above but that

S does not have a largest member, prove thatsupS must be a limit point of
S. State and prove a similar result aboutinf S.

10. Given any setS of real numbers, prove that the setL (S) must be
closed.

11. Prove that if a setU is open, thenL (U) = U .

12. Suppose thatS is a set of real numbers, thatL (S) 	= ∅, and that
δ > 0. Prove that there exist two different numbersx andy in S such that
|x− y| < δ.

6.7 Neighborhoods of Infinity

When we added the two infinity symbols∞ and−∞ in Section 5.14 to the
number systemR to make the extended real number system[−∞,∞] we were
motivated by our desire to make statements of the form

lim
x→a

f(x) = λ

include the possibilities thata andλ may be infinite. For example, ifα = ∞,
then we are saying that

lim
x→a

f(x) = ∞.

The concept of a neighborhood will be useful when we give a precise definition
of limits of this type, and it will help us to draw an analogy between the definition
of a finite limit and the definition of an infinite limit.
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6.7.1 Defining Neighborhoods of ∞ and −∞
A setU of real numbers is said to be aneighborhood of ∞ if there exists a real
numberw such that

(w,∞) ⊆ U.

Similarly, a setU of real numbers is said to be a neighborhood of−∞ if there
exists a real numberw such that

(−∞, w) ⊆ U.

6.7.2 Some Examples of Neighborhoods of ∞
1. The setR of all real numbers is a neighborhood both of∞ and of−∞.
2. The interval[2,∞) is a neighborhood of∞.
3. The interval[2,∞] is not a set of real numbers and so it does not fit the

definition of a neighborhood of∞.
4. The setQ of rational numbers is not a neighborhood of∞.
5. The setQ∪ [2,∞) is a neighborhood of∞.

6.7.3 Some Simple Facts About Neighborhoods of ∞
1. Any set of real numbers that includes a neighborhood of∞ is also a

neighborhood of∞. The same applies to neighborhoods of−∞.
2. If U andV are neighborhoods of∞, then so is the setU ∩ V .
3. If U is a neighborhood of∞ andS is unbounded above, thenU ∩ S 	= ∅.



Chapter 7
Limits of Sequences

This chapter presents the theory of limits of sequences of real numbers. If you
chose to read the more general presentation of topology of metric spaces in place
of the topology of the real line, and if you prefer to read the theory of limits of
sequences in this more general situation, you can do so in the on-screen version
of this book by clicking on the icon .

If you would like to review the introduction to sequences, you can find it in
Section 5.11 on page 98. As you can see there, if(xn) is a given sequence, then
for some integerk, the domain of(xn) is the set of all integersn ≥ k. In order to
simplify our notation we shall adopt the convention that if the domain of a given
sequence has not been mentioned explicitly, thenk = 1.

Now that we have laid the topological groundwork of the real number system,
we can begin the study of limits. In this chapter we shall be looking at limits of
sequences. Then, in Chapter 8, we shall study limits and continuity of functions.

7.1 The Concepts “Eventually” and “Frequently”

According to the definitions in Section 5.11, a sequence(xn) is said to be in a
given setS if xn ∈ S for every integern in its domain. We shall now broaden
this concept a little and say what it means for a sequence to beeventually in a
given setS and what it means for a sequence to befrequently in S. These notions
will play a fundamental role when we discuss limits of sequences.

7.1.1 Definitions of “Eventually” and “Frequently”
A sequence(xn) is said to beeventually in a given setS if there exists an integer
N such thatxn ∈ S for every integern ≥ N .

A sequence(xn) is said to befrequently in a given setS if the condition
xn ∈ S holds for infinitely many integersn in the domain of the sequence.

7.1.2 Some Examples Illustrating “Frequently” and “Eventually”

1. If we define

xn =

{
1 if 1 ≤ n ≤ 20
0 if n > 20,

then the sequence(xn) is eventually in any set that contains the number0.

127
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2. If we define

xn = 1 + (−1)n

for every positive integern, then the sequence(xn) is frequently in the set
{0} and frequently in the set{2} and is eventually in any set that includes
the set{0, 2}.

3. Suppose that

xn =
1

n

for every positive integern and thatε > 0. Then the sequence(xn) is
eventually in the interval(0, ε) becausexn ∈ (0, ε) for every integern > 1

ε
.

7.1.3 Some Simple Observations About “Eventually” and “Frequently”

1. If a sequence is in a setS, then it is eventually in the setS.
2. If a sequence is eventually in a setS, then it is frequently in the setS.
3. A sequence(xn) is frequently in a setS if and only if the set of those

integersn for whichxn ∈ S is unbounded above.
4. If (xn) is a sequence of real numbers andS is a set of real numbers, then the

sequence(xn) is eventually inS if and only if it is not frequently inR \ S.
5. If (xn) is a sequence of real numbers andS is a set of real numbers, then

the sequence(xn) is frequently inS if and only if (xn) is not eventually in
R \ S.

7.1.4 A Word of Warning
Given a sequence(xn) of real numbers and a setS ⊆ R, the condition that(xn)
be frequently in the setS requires that there should be infinitely many integersn
for whichxn ∈ S. Do not make the common mistake of phrasing this condition
by saying that “infinitely manyxn’s belong to the setS”. This phrasing is wrong
because, among other things, it suggests that there should be infinitely many
different numbers of the formxn that belong toS. But this need not be so. For
example, a constant sequence will be eventually (and therefore frequently) in any
set that contains its constant value.

7.2 Subsequences
If you wish to include the topic of subsequences in your reading, click on the
icon .
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7.3 Limits and Partial Limits of Sequences

7.3.1 Definition of a Limit
Given a sequence(xn) of real numbers and givenx ∈ [−∞,∞], we say thatx
is a limit of the sequence(xn) if for every neighborhoodU of x the sequence
(xn) is eventually inU . We write this condition asxn → x asn → ∞.

Note that the lettern in this definition is unimportant. We could, for example,
say thatxm → x asm → ∞ or thatxj → x asj → ∞. Sometimes, when the
symboln is understood, we write the conditionxn → x asn → ∞ briefly as
xn → x.

In the event thatxn → x asn → ∞ andx is a real number, then we say that
x is afinite limit of the sequence(xn). If xn → x asn → ∞ andx is either∞
or−∞, then we callx aninfinite limit of the sequence(xn).

7.3.2 Definition of a Partial Limit
Given a sequence(xn) of real numbers and givenx ∈ [−∞,∞], we say thatx
is a partial limit26 of the sequence(xn) if for every neighborhoodU of x, the
sequence(xn) is frequently inU .

As with limits, we call a partial limit afinite partial limit if it is a real number
and aninfinite partial limit if it is either∞ or−∞.

7.3.3 A Closer Look at Finite Limits
Suppose that (xn) is a sequence of real numbers and that x is a real number. The
following conditions are equivalent:

1. xn → x as n → ∞.
2. For every number ε > 0 the sequence (xn) is eventually in the interval

(x− ε, x+ ε).
3. For every number ε > 0 there exists an integer N such that the condition

xn ∈ (x− ε, x+ ε)

holds for every integer n ≥ N .
4. For every number ε > 0 there exists an integer N such that the inequality

|xn − x| < ε

26 Partial limits are somtimes known ascluster points (Kelley [15]), sometimes aslimit points
(Gelbaum and Olmsted,[10]) and sometimes assubsequential limits (Rudin[26]). The name
partial limit has been adopted in this book because the termscluster point andlimit point might
be confused with limit points of a set and the termsubsequential limit is not appropriate when the
theory of limits is generalized to more general spaces.
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holds for every integer n ≥ N .

Proof. From the definition of the concept “eventually” we see at once that the
conditions 2 and 3 are equivalent to each other. Furthermore, given anyn we
have

xn ∈ (x− ε, x+ ε) if and only if |xn − x| < ε ,

xx −  x + xn

and therefore the conditions 3 and 4 are equivalent to each other.

Therefore, to complete the proof, all we have to show is that the condi-
tions 1 and 2 are equivalent to each other.

First we shall show that condition 1 implies condition 2 and, for this purpose,
assume that condition 1 holds. To provethat condition 2 holds, suppose that
ε > 0. Since the interval(x− ε, x+ ε) is a neighborhood of the numberx, we
see at once from condition 1 that(xn) is eventually in(x− ε, x+ ε).

Now, to prove that condition 2 implies condition 1, we assume that condition
2 holds. To prove that condition 1 must hold, we suppose thatU is a neigh-
borhood of the numberx. Using the definition of a neighborhood we choose a
numberε > 0 such that

(x− ε, x+ ε) ⊆ U.

From condition 2 we know that the sequence is eventually in(x− ε, x+ ε) and
therefore(xn) is eventually in the larger setU . �

7.3.4 A Closer Look at Finite Partial Limits
Suppose that (xn) is a sequence of real numbers and that x is a real number. The
following conditions are equivalent:

1. The number x is a partial limit of the sequence (xn).
2. For every number ε > 0 the sequence (xn) is frequently in the interval

(x− ε, x+ ε).
3. For every number ε > 0 there are infinitely many integers n for which

xn ∈ (x− ε, x+ ε) .

4. For every number ε > 0 there are infinitely many integers n for which
|xn − x| < ε.

The proof of this theorem is almost the same as the proof of the corresponding
theorem about limits, and we leave it as an exercise.
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7.3.5 A Closer Look at Infinite Limits
We shall state this theorem for limits with the value∞ and leave the statement
and proof of the corresponding theorem for limits with value−∞ as an exercise.

Suppose that (xn) is a sequence of real numbers. The following conditions
are equivalent:

1. xn → ∞ as n → ∞.
2. For every number w the sequence (xn) is eventually in the interval (w,∞).
3. For every number w there exists an integer N such that for every integer

n ≥ N we have xn ∈ (w,∞).
4. For every number w there exists an integer N such that for every integer

n ≥ N we have xn > w.

Proof. It is easy to see that the conditions 2, 3, and 4 are equivalent to one
another, and so, as in the case of Theorem 7.3.3, we shall complete the proof
by showing that condition 1 implies condition 2 and that condition 2 implies
condition 1.

Suppose that condition 1 holds and, toprove that condition 2 holds, suppose
thatw is a real number. Since the interval(w,∞) is a neighborhood of∞, it
follows at once that the sequence(xn) is eventually in(w,∞). Thus condition 1
implies condition 2.

Now suppose that condition 2 holds and, to prove that condition 1 holds,
suppose thatU is a neighborhood of∞. Choose a numberw such that(w,∞) ⊆
U . From condition 2 we know that(xn) is eventually in(w,∞), and so(xn)
must be eventually in the larger setU . Thus condition 1 implies condition 2 and
our proof is complete.�

7.3.6 A Closer Look at Infinite Partial Limits
Suppose that (xn) is a sequence of real numbers. The following conditions are
equivalent:

1. The extended real number ∞ is a partial limit of the sequence (xn).
2. For every number w the sequence (xn) is frequently in the interval (w,∞).
3. For every number w there are infinitely many integers n for which

xn ∈ (w,∞).
4. For every number w there are infinitely many integers n for which xn > w.
5. The sequence (xn) is unbounded above.

Proof. The proof that the first four conditions are equivalent to one another is
almost identical to the proof of the corresponding theorem about infinite limits
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and will be left as an exercise. Furthermore, it is clear that any of these four
conditions guarantees that the sequence(xn) is unbounded above.

We shall complete the proof by showing that if the sequence(xn) is
unbounded above, then condition 4 must hold. Suppose that(xn) is unbounded
above and suppose thatw is any real number. To obtain a contradiction, assume
that there are at most finitely many integersn for whichxn > w. Using the fact
that this finite set of integers is bounded above, choose an integerN such that
every integern for whichxn > w must satisfyn ≤ N . We see at once that ifα
is the largest member of the finite set

{w, x1, x2, x3, · · · , xN} ,

thenα is an upper bound of the sequence(xn), contradicting our assumption that
the sequence(xn) is unbounded above.�

7.3.7 Some Examples of Limits and Partial Limits

1. Every constant sequence has a limit. Suppose thatx is a given real number
and thatxn = x for every positive integern. It is clear thatxn → x as
n → ∞.

2. Every eventually constant sequence has a limit. Suppose thatx is a given
real number, that(xn) is a given sequence, and that for some integerN we
havexn = x for every integern ≥ N . Again it is clear thatxn → x as
n → ∞.

3. Suppose that

xn =

{
1 if n is even
3 if n is odd.

We shall show that the sequence(xn) does not have a limit. Since(xn)
is not eventually (in fact, not ever) in the neighborhood(3,∞) of ∞ we
know that∞ is not a limit of (xn) and in the same way we can see that
−∞ is not a limit of(xn). Now, to show that the sequence(xn) does not
have a finite limit, suppose thatx is a real number. To observe thatx is not
a limit of the sequence(xn) we observe that the interval

(
x− 1

2
, x+ 1

2

)
,

is a neighborhood ofx. Furthermore, since it is impossible for both of the
numbers1 and3 to belong to the interval

(
x− 1

2
, x+ 1

2

)
it is clear that the

sequence(xn) is not eventually in
(
x− 1

2
, x+ 1

2

)
, and we conclude thatx is

not a limit of the sequence(xn).
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4. Suppose that

xn =

{
1 if n is even
3 if n is odd.

If U is any neighborhood of1, then, since there are infinitely many even
integers in the domain of the sequence, the sequence is frequently inU .
Therefore the number1 is a partial limit of(xn). In a similar way we can see
that3 is also a partial limit of(xn). On the other hand, ifx is any number
unequal to1 or 3, then we can choose a neighborhoodU of x that does
not contain either of the numbers1 and3, and, since the sequence is not
frequently inU , we conclude thatx is not a partial limit of(xn). Thus the
numbers1 and3 are the only partial limits of(xn).

5. Suppose that

xn =
1

n

for every positive integern. We shall show thatxn → 0 asn → ∞. For
this purpose we shall show that(xn) satisfies condition 4 of Theorem 7.3.3.
Suppose thatε > 0. Choose an integerN > 1/ε. Then whenevern ≥ N
we have

|xn − 0| = 1

n
≤ 1

N
< ε.

− 0 1
n

1
N

Thus the sequence(xn) satisfies condition 4 of Theorem 7.3.3 and we
conclude thatxn → 0 asn → ∞.

6. Suppose thatxn = n for every positive integern. We shall use Theorem
7.3.5 to show thatxn → ∞ asn → ∞. Suppose thatw is any real number
and choose a positive integerN such thatN > w. For every integern ≥ N
we have

xn = n ≥ N > w.

7. Suppose that

xn =




2 if n is a multiple of3
1
n

if n is one more than a multiple of3
n if n is two more than a multiple of3.

We can make the following observations about the sequence(xn):
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(a) If U is any neighborhood of2, then, sincex3n ∈ U for eachn, we
conclude that(xn) is frequently inU . Therefore2 is a partial limit of
(xn).

(b) Suppose thatε > 0 choose an integerN such that

3N + 1 >
1

ε
.

For every integern ≥ N we have

|x3n+1 − 0| = 1

3n+ 1
≤ 1

3N + 1
< ε,

and it follows from Theorem 7.3.4 that0 is a partial limit of(xn).
(c) Since the sequence(xn) is unbounded above, it follows from Theorem

7.3.6 that∞ is a partial limit of(xn).
(d) Finally, suppose thatx is any extended real number other than0, 2, and

∞. If x < 0, we defineU = (−∞, 0).

x 0
If x > 2, we defineU = (2, x+ 2).

2 x 2+ x
If 0 < x < 2, then we choose a positive integerN such that1/N < x
and we defineU = (1/N, 2).

0 x 21
N

In each of these cases we have found a neighborhoodU of x such that
(xn) is not frequently inU and sox cannot be a partial limit of(xn).

We have therefore shown that the partial limits of(xn) are0, 2, and∞.
8. Suppose that

xn =
n

n− 3

for every integern > 3. We shall use Theorem 7.3.3 to show thatxn → 1 as
n → ∞. Suppose thatε > 0. Now for eachn we have

|xn − 1| =
∣∣∣∣ n

n− 3
− 1

∣∣∣∣ = 3

n− 3
,
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and therefore the inequality|xn − 1| < ε requires that

3

n− 3
< ε,

which is equivalent to the condition

n > 3 +
3

ε
.

This tells us how to finish the proof. We choose an integerN such that

N > 3 +
3

ε
,

and we observe that whenevern ≥ N we have|xn − 1| < ε.
9. Suppose that

xn =
2n2 + n− 3

n2 + 3n+ 2

for every positive integern. We shall use Theorem 7.3.3 to show thatxn → 2
asn → ∞. Suppose thatε > 0. Now for eachn we have

|xn − 2| =
∣∣∣∣2n2 + n− 3

n2 + 3n+ 2
− 2

∣∣∣∣ = 5n+ 7

n2 + 3n+ 2
.

Now, as long asn ≥ 2, we have7 ≤ 5n and so

5n+ 7

n2 + 3n+ 2
≤ 5n+ 5n

n2 + 3n+ 2
=

10n

n2 + 3n+ 2
<

10n

n2
=

10

n
.

Therefore, as long asn ≥ 2, the inequality|xn − 2| < ε will hold as long as

10

n
< ε,

which is equivalent to the condition

n >
10

ε
.

This tells us how to finish the proof. We choose an integerN such that
N ≥ 2 andN > 10/ε, and we observe that whenevern ≥ N we have
|xn − 2| < ε.

10. For each positive integern, if n can be written in the form

n = 2m3k
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for some positive integersm andk, we define

xn =
m

k
.

In the event thatn cannot be written in the form2m3k, we definexn = 0.
Observe that the range of the sequence(xn) is the set of all nonnegative
rational numbers. IfU is a neighborhood of any nonnegative real number or
a neighborhood of∞, then, sinceU must contain infinitely many positive
rational numbers, it is clear thatxn ∈ U for infinitely many values ofn. We
conclude that the set of partial limits of the sequence(xn) is [0,∞].

7.3.8 Some Exercises on Limits and Partial Limits

1. Given that

xn = 3 +
1

n

for each positive integern, prove that3 is a limit of (xn).
2. Given that

xn = 3 +
2

n

for each positive integern, prove that3 is a limit of (xn).

3. Given thatxn = 1/n for each positive integern and thatx 	= 0, prove
thatx is not a partial limit of(xn).

4. Given that

xn =




(−1)n n3 if n is a multiple of3
0 if n is one more than a multiple of3
4 if n is two more than a multiple of3,

prove that the partial limits of(xn) are−∞, ∞, 0, and4.

5. Give an example of a sequence of real numbers whose set of partial
limits is the set{1} ∪ [4, 5].

6. Given that

xn =
3 + 2n

5 + n

for every positive integern, prove thatxn → 2 asn → ∞.
7. Given that

xn =

{
1
2n

if n is even
1

n2+1
if n is odd
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prove thatxn → 0 asn → ∞.
8. Suppose that(xn) is a sequence of real numbers and thatx ∈ R. Prove that

the following conditions are equivalent:

(a) xn → x asn → ∞.
(b) For every numberε > 0 the sequence(xn) is eventually in the interval

(x− 5ε, x+ 5ε).
9. Prove that

n2 + 3n+ 1

2n2 + n+ 4
→ 1

2
asn → ∞.

10. For each positive integern, if n can be written in the form

n = 2m3k,

wherem andk are positive integers andm ≤ k, then we definexn = m
k

.
Otherwise we definexn = 0. Prove that the set of partial limits of the
sequence(xn) is [0, 1].

7.4 Some Elementary Facts About Limits and Partial Limits

7.4.1 Uniqueness of Limits
We shall now make the observation that a sequence can never have more than
one limit. In fact, as we shall see, if a sequence has a limitα, then no number
unequal toα can be even a partial limit of the sequence.

Suppose that (xn) is a sequence of real numbers, that x ∈ [−∞,∞], and
that xn → x as n → ∞. Suppose that y ∈ [−∞,∞] and that y 	= x. Then y
cannot be a partial limit of the sequence (xn).
Proof. We shall assume, without loss of generality, thaty < x. (The other case
is analogous.) Choose a real numberw such thaty < w < x.

xy w
Sincexn → x and since the interval(w,∞) is a neighborhood ofx, we know
that the sequence(xn) is eventually in(w,∞). Therefore(xn) cannot be fre-
quently in the interval(−∞, w), and, since the latter interval is a neighborhood
of y, we deduce thaty is not a partial limit of(xn). �

7.4.2 Limit Notation
As we have just seen, if(xn) is a sequence of real numbers andx ∈ [−∞,∞]
and ifxn → x asn → ∞, thenx can be the only limit of(xn). From now on,
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when a sequence(xn) has a limit, we shall not merely refer toa limit of (xn).
We shall refer tothe limit of the sequence and we shall write the limit as

lim
n→∞

xn.

7.4.3 Convergent and Divergent Sequences
A sequence(xn) of real numbers is said to beconvergent if (xn) has a limit and
this limit is a real number. If a sequence(xn) is convergent and if

lim
n→∞

xn = x,

then we say that the sequence(xn) converges to the numberx.

A sequence that fails to be convergent is said to bedivergent. Note that there
are two distinct ways in which a given sequence(xn) can be divergent:

1. The sequence may have its limit at∞ or at−∞.
2. The sequence may have no limit at all.

Note, for example, that any sequence that has more than one partial limit must
be divergent.

7.4.4 Boundedness of Convergent Sequences
Every convergent sequence is bounded.

Proof. One way of proving this theorem is to observe that if(xn) is a convergent
sequence of real numbers, then it follows from Theorem 7.4.1 that neither−∞
nor ∞ can be a partial limit of(xn). It therefore follows from Theorem 7.3.6
that the sequence(xn) must be bounded.

But it is also worth proving this theorem directly. Suppose that(xn) is con-
vergent and that its limit isx. Since the interval(x− 1, x+ 1) is a neighborhood
of x, we know that(xn) is eventually in(x− 1, x+ 1), and, using this fact, we
choose an integerN such thatxn ∈ (x− 1, x+ 1) whenevern ≥ N . Since the
set

{x1, x2, x3, · · · , xN} ∪ (x− 1, x+ 1) ,

being the union of two bounded sets, is bounded, we conclude that the sequence
(xn) is bounded.�

7.4.5 Partial Limits and Limits of Subsequences
If your reading of the on-screen version of this book has included the material
on subsequences that can be found at , then you may wish to look at the
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connection between partial limits and limits of subsequences that is provided at
.

7.4.6 The Sandwich Theorem
Suppose that (xn), (yn), and (zn) are sequences of real numbers and that the
inequality

xn ≤ yn ≤ zn

holds for all sufficiently large integers n. Suppose that x is a real number and
that both of the sequences (xn) and (zn) converge to x. Then the sequence (yn)
must also converge to x.

Proof. In order to show thatyn → x asn → ∞ we shall show that, for
every numberε > 0, the sequence(yn) is eventually in the interval

(x− ε, x+ ε) .

Suppose thatε > 0.

Using the fact that the inequality

xn ≤ yn ≤ zn

holds for all sufficiently large integersn, choose an integerN1 such that this
inequality holds for all integersn ≥ N1. Now, using the fact thatxn → x as
n → ∞ and the fact that the interval(x− ε, x+ ε) is a neighborhood ofx,
choose an integerN2 such thatxn ∈ (x− ε, x+ ε) for all integersn ≥ N2.
Finally, using the fact thatzn → x asn → ∞, choose an integerN3 such that
zn ∈ (x− ε, x+ ε) for all integersn ≥ N3.

We now defineN to be the largest of the three integersN1,N2, andN3. Then
for every integern ≥ N we know that all three of the conditions

xn ≤ yn ≤ zn
xn ∈ (x− ε, x+ ε)

zn ∈ (x− ε, x+ ε)

must hold and we obtain

x− ε < xn ≤ yn ≤ zn < x+ ε,

x −  x + xxn yn zn
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which tells us that

yn ∈ (x− ε, x+ ε) .

Thus the sequence(yn) is eventually in(x− ε, x+ ε) and we have shown that
yn → x asn → ∞. �

7.4.7 Another Kind of Sandwich Theorem
In this subsection we describe a way in which sequences can be used to measure
how far one set of numbers lies below another. This technique will be useful to
us in the chapters that follow.

Suppose that A and B are nonempty sets of real numbers and that for all
numbers t ∈ A and x ∈ B we have t ≤ x. Then the following conditions are
equivalent:

1. supA = inf B.
2. It is possible to find a sequence (tn) in the set A and a sequence (xn) in the

set B such that xn − tn → 0 as n → ∞.

Furthermore, if supA = inf B and if sequences (tn) and (xn) have been
chosen as in condition 2, then we have

lim
n→∞

tn = lim
n→∞

xn = supA.

Proof. We mention first that since every member ofA is a lower bound
of B and every member ofB is an upper bound ofA and since the setsA andB
are nonempty, it is clear thatA must be bounded above andB must be bounded
below. Furthermore,supA ≤ inf B.

To prove that condition 1 implies condition 2, assume thatsupA = inf B.
For every positive integern we use the fact that the numbersupA− 1

n
is not an

upper bound ofA and the fact thatinf B+ 1
n

is not a lower bound ofB to choose
a membertn of the setA and a memberxn of the setB such that

supA− 1

n
< tn and xn < inf B +

1

n
.

Since

0 ≤ xn − tn < inf B +
1

n
−
(
supA− 1

n

)
=

2

n

for eachn, it follows from the sandwich theorem thatxn − tn → 0 asn → ∞.

Now assume that condition 2 holds and choose sequences(tn) and(xn) in
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the setsA andB, respectively, such thatxn − tn → 0 asn → ∞. Since

0 ≤ supA− tn ≤ inf B − tn ≤ xn − tn

for each positive integern, it follows from the sandwich theorem (Theorem 7.4.6)
thattn → inf B andtn → supA asn → ∞. Thereforeinf B = supA, and we
see finally that

lim
n→∞

xn = lim
n→∞

(xn − tn + tn) = lim
n→∞

(xn − tn)+ lim
n→∞

tn = 0+supA = supA.

7.4.8 Exercises on the Elementary Properties of Limits

1. The purpose of this exercise is to useScientific Notebook to gain an
intuitive feel for the limit behavior of a rather difficult sequence.

(a) Point at the equation

xn =
nn

√
n

(n!) en

and then click on the button to supply the definition toScientific
Notebook. When you see the screen

make the selection “A function argument” so thatScientific Notebook
knows that you are defining a sequence.

(b) Point at the expressionxn and click on the button to
display the sequence graphically. Revise your graph and set the do-
main interval as[1, 500]. Double click into your graph to make the buttons

appear in the top right corner and click on the bottom button to select it.
Trace your graph with the mouse and show graphically that

lim
n→∞

nn
√
n

(n!) en
≈ 0.3989.
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(c) Point at the expression

lim
n→∞

nn
√
n

(n!) en

and askScientific Notebook to evaluate it numerically. Compare the
result with the limit value that you found graphically.

(d) Point at the expression and askScientific Notebook to evaluate it
exactly to show that the limit is1/

√
2π.

2. Prove that5n/n! → 0 asn → ∞.

3. Prove thatn!/nn → 0 asn → ∞.

4. Given that(xn) is a sequence of real numbers, thatx > 0, and that
xn → x asn → ∞, prove that there exists an integerN such that the
inequalityxn > 0 holds for all integersn ≥ N .

5. Given thatxn ≥ 0 for every positive integern and thatx is a partial limit of
the sequence(xn), prove thatx ≥ 0.

6. Suppose that(xn) is a sequence of real numbers and thatx ∈ R. Prove that
the following conditions are equivalent:

(a) xn → x asn → ∞.
(b) |xn − x| → 0 asn → ∞.

7. Suppose that(xn) is a sequence of real numbers, thatx ∈ R, and that
xn → x asn → ∞. Prove that|xn| → |x| asn → ∞.

8. Suppose that(xn) is a sequence of real numbers, thatx ∈ R, and that
xn → x asn → ∞. Suppose thatp is an integer and that for every positive
integern we have

yn = xn+p.

Prove thatyn → x asn → ∞.
9. Given thatan ≤ bn for every positive integern and given thatan → ∞,

prove thatbn → ∞.
10. Suppose that(an) and(bn) are sequences of real numbers, and that

|an − bn| ≤ 1 for every positive integern, and that∞ is a partial limit of the
sequence(an). Prove that∞ is a partial limit of(bn).

11. Two sequences(an) and (bn) are said to beeventually close if for
every numberε > 0 there exists an integerN such that the inequality
|an − bn| < ε holds for all integersn ≥ N .

(a) Prove that if two sequences(an) and(bn) are eventually close, and if a
real numberx is the limit of the sequence(an), thenx is also the limit of
the sequence(bn).
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(b) Prove that if two sequences(an) and(bn) are eventually close, and if
a real numberx is a partial limit of the sequence(an), thenx is also a
partial limit of the sequence(bn).

12. Suppose that(an) and(bn) are sequences of real numbers, thatan → a and
bn → b asn → ∞, and thata < b. Prove that there exists an integerN such
that the inequalityan < bn holds for all integersn ≥ N .

13. Give an example of two sequences(an) and(bn) of real numbers satisfying
an > bn for every positive integern even though the sequence(an) has a
partial limit a that is less than a partial limitb of the sequence(bn).

14. (a) Prove that if a real numberx is a limit point of the range of a given
sequence(xn), thenx must be a partial limit of(xn).

(b) Give an example of a sequence(xn) and a real numberx that is a partial
limit of (xn) but is not a limit point of the range of(xn).

(c) Prove that if a sequence(xn) of real numbers is one-one and if a number
x is a partial limit of the sequence(xn), thenx must be a limit point of
the range of(xn).

7.5 The Algebraic Rules for Limits

The algebraic rules for limits are the theorems that display a relationship be-
tween the behavior of limits and the algebraic operations (addition, subtraction,
multiplication, and division) in the number systemR.

7.5.1 Product of a Bounded Sequence and a Sequence with Limit Zero
Suppose that (xn) and (yn) are sequences of real numbers, that the sequence
(xn) is bounded, and that the sequence (yn) converges to 0. Then xnyn → 0 as
n → ∞.

Proof. We begin by using the boundedness of the sequence(xn) to choose a
numberb such that|xn| < b for every integern in the domain of(xn). Now, to
prove thatxnyn → 0, suppose thatε > 0. Using the fact thatyn → 0 and the
fact thatε/b is a positive number, choose an integerN such that

|yn| < ε

b

for all integersn ≥ N . If necessary, replaceN by a larger integer so that every
integern ≥ N will be in the domain of(xn). Then for every integern ≥ N we
have

|xnyn − 0| = |xnyn| < b
(ε
b

)
= ε,

and so we have shown thatxnyn → 0 asn → ∞. �
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7.5.2 The Algebraic Rules for Finite Limits
Suppose that (xn) and (yn) are sequences of real numbers that converge, respec-
tively, to numbers x and y. Then we have:

1. xn + yn → x+ y.
2. xn − yn → x− y.
3. xnyn → xy.
4. xn/yn → x/y as long asy 	= 0.

Proof of Part 1. Suppose thatε > 0. We need to show that forn sufficiently
large we have

|(xn + yn)− (x+ y)| < ε.

The key to the proof is the inequality

|(xn + yn)− (x+ y)| = |(xn − x) + (yn − y)| ≤ |(xn − x)|+ |(yn − y)| .
We begin by using the fact thatxn → x and the fact thatε/2 is a positive number
to choose an integerN1 such that|xn − x| < ε/2 for all integersn ≥ N1. In a
similar fashion we choose an integerN2 such that|yn − y| < ε/2 for all integers
n ≥ N2. We now defineN to be the larger of the two numbersN1 andN2, and
for every integern ≥ N we observe that

|(xn + yn)− (x+ y)| ≤ |(xn − x)|+ |(yn − y)| < ε

2
+

ε

2
= ε.

This completes the proof of part 1.�

The proof of part 2 will be left as an exercise.

Proof of Part 3. Sinceyn → y, it follows from part 2 thatyn − y → 0. Since
the convergent sequence(xn) is bounded (by Theorem 7.4.4), we deduce from
Theorem 7.5.1 thatxn (yn − y) → 0. Sincexn − x → 0 and the sequence
with the constant valuey is bounded, it also follows from Theorem 7.5.1 that
y (xn − x) → 0. Now for eachn we have

xnyn − xy = xn (yn − y) + y (xn − x) ,

and it therefore follows from Part 1 thatxnyn − xy → 0, in other words, that
xnyn → xy. �

Proof of Part 4. We assume thaty 	= 0. Now since

xn

yn
= xn

(
1

yn

)

whenever these expressions are defined, the fact thatxn/yn → x/y will follow
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from part 3 as soon as we have shown that1/yn → 1/y. Thus to complete the
proof we need to show that1/yn → 1/y.

We begin by using the fact thaty 	= 0 to choose a numberδ such that

0 < δ < |y| .

−|y| |y|
−δ 0 δ

Using the fact that the setR \ [−δ, δ] is a neighborhood of the numbery, we
now choose an integerN such that the inequality|yn| > δ holds for all integers
n ≥ N . We note that for all suchn we haveyn 	= 0, and so the number1/yn is
defined. Furthermore, ifn ≥ N , we have|1/yn| < 1/δ and so, if we restrict the
domain of the sequence(1/yn) to the set of integersn ≥ N , we can assert that
the sequence(1/yn) is bounded. Now for every integern ≥ N we have

1

yn
− 1

y
= (y − yn)

(
1

yny

)
.

Sincey − yn → 0 and since the sequence(1/yny) is bounded, the fact that
1/yn − 1/y → 0 follows from Theorem 7.5.1.�

7.5.3 The Algebraic Rules for Limits, General Form
The difference between this theorem and the preceding one is that we now allow
the possibility that some of the limits of the sequences may be infinite.

Suppose that (xn) and (yn) are sequences of real numbers, that x and y
belong to [−∞,∞], and that xn → x and yn → y as n → ∞. Then each of the
following statements is true as long as its right-hand side is defined:

1. xn + yn → x+ y.
2. xn − yn → x− y.
3. xnyn → xy.
4. xn/yn → x/y.

This theorem is actually an efficient way of stating a whole host of different
results. In part 1, for example,x andy might both be real numbers, or we might
havex = ∞, in which casey can be anything except−∞. In part 3, the symbols
x andy might stand for real numbers, or we might havex = ∞, in which case
y can be anything except0. The benefit of the extended real number system
is that it allows us to unify all of these results and to make them resemble the
finite cases that were handled in Theorem7.5.2. We shall discuss just three of
the extra cases that are included in this more general version of the theorem and
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leave a discussion of the others as an exercise. You should write out the proofs
of sufficiently many of these infinite limit cases to make sure that you understand
them all.

Proof of Part 1 when x = ∞. Sincey 	= −∞, the sequence(yn) must be
bounded below. Choose a lower boundα of (yn). Sincey+∞ = ∞, we need to
show thatxn + yn → ∞. For this purpose we shall use Theorem 7.3.5. Suppose
thatw is a real number and, using the fact thatxn → ∞, choose an integerN
such that for all integersn ≥ N we have

xn > w − α.

Then for each suchn we have

xn + yn > w − α+ α = w,

and we have shown thatxn + yn → ∞. �

Proof of Part 3 when x > 0 and y = ∞. Sincex×∞ = ∞, we need to show
thatxnyn → ∞. We begin by choosing a numberδ such that0 < δ < x. (For
example, one may defineδ = x/2.)

0 δ x
To show thatxnyn → ∞, suppose thatw is any real number. In view of Theorem
7.3.5, we need to show thatxnyn > w for all sufficiently large integersn. Using
the fact that the interval(δ,∞) is a neighborhood ofx and the fact thatxn → x,
we choose an integerN1 such thatxn > δ for all integersn ≥ N1. Now we
choose an integerN2 such thatyn > |w| /δ for every integern ≥ N2 and we
defineN to be the larger of the two numbersN1 andN2. Then for every integer
n ≥ N we have

xnyn >
δ |w|
δ

= |w| ≥ w,

and the proof is complete.�

Proof of Part 4 when y = ∞. Because of the identity

xn

yn
= xn

(
1

yn

)

and part 3, all we have to show is that1/yn → 0. Suppose thatε > 0 and, using
the fact that the interval(1/ε,∞) is a neighborhood of∞, choose an integerN
such that for every integern ≥ N we haveyn > 1/ε. For every integern ≥ N
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we see that

−ε < 0 <
1

yn
< ε.

The condition1/yn → 0 therefore follows from Theorem 7.3.3.�

7.5.4 Some Exercises on The Algebraic Rules for Limits

1. Write out proofs of those cases of Theorem 7.5.3 that were not proved above.
2. Given that(xn) and(yn) are sequences of real numbers, that(xn) converges

to a numberx, and that a real numbery is a partial limit of the sequence
(yn), prove thatx+ y is a partial limit of the sequence(xn + yn).

3. State and prove some analogs of Exercise 2 for subtraction, multiplication,
and division.

4. Give an example of two sequences(xn) and(yn) and a partial limitx of
(xn) and a partial limity of (yn) such thatx+ y fails to be a partial limit of
the sequence(xn + yn).

5. Give an example of two divergent sequences(xn) and(yn) such that the
sequence(xn + yn) is convergent.

6. Give an example of two sequences(xn) and(yn) such thatxn → 0, and
yn → ∞, and

(a) xnyn → 0.
(b) xnyn → 6.
(c) xnyn → ∞.
(d) The sequence(xnyn) is bounded but has no limit.

7. Given two sequences(xn) and(yn) of real numbers such that both of the
sequences(xn) and(xn + yn) are convergent, is it true that the sequence
(yn) must be convergent?

8. Given that(xn) is a sequence of real numbers and thatxn → 0, prove
that

x1 + x2 + x3 + · · ·+ xn

n
→ 0.

9. Given that(xn) is a sequence of real numbers, thatx is a real number,
and thatxn → x, prove that

x1 + x2 + x3 + · · ·+ xn

n
→ x.

10. Given that(xn) and (yn) are sequences of real numbers and that
xn − yn → 0, prove that(xn) and(yn) have the same set of partial limits.
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11. Suppose that(xn) and(yn) are sequences of real numbers, that
xn − yn → 0, and that the number0 fails to be a partial limit of at least one
of the sequences(xn) and(yn). Prove that

xn

yn
→ 1

asn → ∞.
12. Give an example to show that the requirement in Exercise 11 that0 not be a

partial limit of at least one of the two sequences is really needed.
13. Suppose that(xn) and(yn) are sequences of real numbers, that

xn/yn → 1, and that at least one of the sequences(xn) and(yn) is bounded.
Prove thatxn − yn → 0. Give an example to show that the conclusion
xn − yn → 0 can fail if both(xn) and(yn) are unbounded.

14. Suppose that(xn) and(yn) are sequences of real numbers, thatyn → 1, and
that for eachn we havezn = xnyn. Prove that the sequences(xn) and(zn)
have the same set of partial limits.

7.6 The Relationship Between Sequences
and the Topology of R

In this section we shall reveal a connection that exists between the theory of
limits of sequences and the topology of the number lineR. We shall observe that
any person who had a complete list showing which numbers were limits of which
sequences could use this information to determine which sets are open and which
sets are closed.

7.6.1 The Relationship Between Limits and Closure

1. If (xn) is a sequence in a set S of real numbers, then every finite partial
limit of (xn) must belong to the set S.

2. If (xn) is a sequence that is frequently in a set S of real numbers, and if
(xn) converges to a number x, then x ∈ S.

3. If S is a set of real numbers and x ∈ S, then there exists a sequence (xn) in
S such that (xn) converges to the number x.

Proof of Part 1. Suppose that(xn) is a sequence in a setS of real numbers and
thatx is a finite partial limit of the sequence(xn). To show thatx ∈ S, suppose
thatU is a neighborhood ofx. Since the sequence(xn) is frequently inU , it is
clear thatU ∩ S 	= ∅. �

Proof of Part 2. Suppose that(xn) is a sequence that is frequently in a setS
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of real numbers and that(xn) converges to a numberx. To show thatx ∈ S,
suppose thatU is a neighborhood ofx and choose an integerN such thatxn ∈ U
for every integern ≥ N . Since(xn) is frequently in the setS, there are integers
n ≥ N for whichxn ∈ S; and since for all such integersn we havexn ∈ S∩U ,
we must haveU ∩ S 	= ∅. �

Proof of Part 3. Suppose thatS is a set of real numbers and thatx ∈ S.
We know that ifn is any positive integer, then the interval(

x− 1

n
, x+

1

n

)
,

being a neighborhood ofx, must intersect with the setS, and, using this fact, we
choose a number that we shall callxn such that

xn ∈
(
x− 1

n
, x+

1

n

)
∩ S.

In this way we have chosen a sequence(xn) in the setS and since

|xn − x| < 1

n

for eachn we see at once thatxn → x. �

7.6.2 Corollary: Closed Sets and Limits of Sequences
Suppose that S is a set of real numbers. The following conditions are equivalent:

1. The set S is closed.
2. No sequence in S can have a partial limit in R \ S.
3. No sequence that is frequently in S can have a limit in R \ S.

Proof. SinceS is closed if and only ifS = S, the result follows at once from
Theorem 7.6.1.�

7.6.3 Unbounded Sets and Limits of Sequences
Suppose that S is a set of real numbers. Then the following conditions are
equivalent:

1. The set S is unbounded above.
2. There exists a sequence (xn) in the set S such that xn → ∞ as n → ∞.

Proof. To show that condition 2 implies condition 1, assume that condition 2
holds and choose a sequence(xn) in S such thatxn → ∞ asn → ∞. If w is
any real number, then it follows at once from the fact that the sequence(xn) is
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eventually in the interval(w,∞) thatw is not an upper bound ofS. ThereforeS
is not bounded above.

Now to show that condition 1 implies condition 2, assume that condition 1
holds. For each positive integern we use the fact that the numbern is not an
upper bound ofS to choose a number that we shall callxn such thatxn > n.
The sequence(xn) that we have made in this way is in the setS and it is clear
thatxn → ∞. �

7.6.4 Exercises on Sequences and the Topology of R

1. Prove that a setS of real numbers is unbounded below if and only if there
exists a sequence(xn) in S such thatxn → −∞.

2. Suppose thatS is a nonempty set of real numbers and thatα is an upper
bound ofS. Prove that the following conditions are equivalent:

(a) We haveα = supS.
(b) There exists a sequence(xn) in S such thatxn → α asn → ∞.

3. Given a sequence(xn) that is frequently in a setS of real numbers, and
given a partial limitx of the sequence(xn), is it necessarily true thatx ∈ S?

4. Prove that a setU of real numbers is open if and only if every sequence that
converges to a member ofU must be eventually inU .

5. Given thatS is a set of real numbers and thatx is a real number, prove that
the following conditions are equivalent:

(a) The numberx is a limit point of the setS.
(b) There exists a sequence(xn) in the setS \ {x} such thatxn → x.

6. Prove that if(xn) is a sequence of real numbers, then the set of all partial
limits of (xn) is closed.

7. Suppose thatA andB are nonempty sets of real numbers and that for every
numberx ∈ A and every numbery ∈ B we havex < y. Prove that the
following conditions are equivalent:

(a) We havesupA = inf B.
(b) There exists a sequence(xn) in the setA and a sequence(yn) in the set

B such thatyn − xn → 0 asn → ∞.
8. Suppose thatS is a nonempty bounded set of real numbers. Prove that there

exist two sequences(xn) and(yn) in the setS such that

yn − xn → supS − inf S

asn → ∞.
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7.7 Limits of Monotone Sequences

In this section we begin our study of those properties of limits that depend upon
the completeness of the real number system. The thrust of this section is the fact
that a monotone sequence, as defined in Subsection 5.11.8, always has a limit
and will converge if and only if it is bounded.

7.7.1 The Monotone Sequence Theorem

1. Every monotone sequence of real numbers has a limit in [−∞,∞].
2. A monotone sequence of real numbers is convergent if and only if it is

bounded.
3. The limit of an increasing sequence is its supremum and the limit of a

decreasing sequence is its infimum.

Proof. We shall prove part 3. The first two parts of the theorem will then
be clear. In proving part 3 we shall consider an increasing sequence and we shall
leave the analogous proof for decreasing sequences as an exercise.Suppose
then that(xn) is an increasing sequence of real numbers and definex to be the
supremum of this sequence. Note that this definition ofx means that, in the event
that the sequence(xn) is unbounded above, we havex = ∞. See Subsection
5.14.4. We need to show thatxn → x. For this purpose, suppose thatU is a
neighborhood ofx and choose a numberw < x such that the interval(w, x) is
included inU .

x1 x2 x3 xN xn xw
Using the fact thatw, being less than the supremum of the sequence(xn), cannot
be an upper bound of(xn), we now choose an integerN such thatxN > w.
Then for eachn ≥ N we have

xn ≥ xN > w,

from which it follows thatxn ∈ U . Thus the sequence(xn) is eventually in the
neighborhoodU and the proof is complete.�

7.7.2 Geometric Sequences
If c is a given number and if we definexn = cn for each integern ≥ 0, then
the sequence(xn) is called ageometric sequence. In this subsection we shall
discuss the limit behavior of sequences of this type.

The Case c > 1: Suppose thatc > 1 and thatxn = cn for each integern ≥ 0.
Since the sequence(xn) is increasing, it must have a limit. We shall now show



152 Chapter 7 Limits of Sequences

that this limit must be∞. Write

x = lim
n→∞

xn

and, to obtain a contradiction, assume that the numberx is finite. Using the fact
thatx/c < x and thatx is the least upper bound of the sequence(xn), choose an
integerk such thatxk > x/c. We observe that

xk+1 = cxk > c
(x
c

)
= x,

which contradicts the fact that the numberx is an upper bound of the sequence
(xn).

The Case c < −1: If c < −1, then, as we have just seen,(−c)n → ∞.
Therefore, since the sign ofcn alternates, the sequence(cn) has the two partial
limits ∞ and−∞.

The Case |c| < 1: Since1/ |c| > 1, we know that(1/ |c|)n → ∞; in other
words,1/ |c|n → ∞. We deduce from the algebraic rules for limits (Theorem
7.5.2) that|c|n → 0 and since|c|n → 0 we must also havecn → 0.

The Case c = 1 or c = −1: We leave consideration of these cases as an exercise.

7.7.3 A More Complicated Monotone Sequence
Suppose that(xn) is a sequence of real numbers satisfying the conditionx1 = 0
and the condition

xn+1 =
3

√√
21 + 9xn

9

for every positive integern. We shall show that this sequence is convergent and
find its limit.

1. Exploring the Sequence
In order to motivate the method that we shall use to study the limit behavior
of the sequence(xn), we shall first explore a few of its terms with the aid of
a computer: We begin by observing that

x2 =
3

√√
21

9
≈ .798 53

x3 =
3

√√√√√
21 + 9 3

√√
21
9

9
≈ 1.093 5
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x4 =

3

√√√√√√
21 + 9

3

√
√
21+9

3

√√
21

9

9

9
≈ 1.170 3.

Using the on-screen version of this book, you can obtain approximations to
the first few terms of this sequence quite efficiently as follows: Point at the
equation

f(x) =
3

√√
21 + 9x

9
,

open the Compute menu, click onDefine and then click onNew Definition.
Then point at the Compute menu again, click onCalculus, and then on
Iterate. You will see the iterate dialogue box shown in Figure 7.1. Fill in

Figure 7.1

f as the iteration function,0 as the starting value, and choose how many
iterations you want. When you click on OK you will see the column of
function values representing the number of terms of the sequence that you
requested:

Iterates:

0
.798 53
1.093 5
1.170 3
1.188 7
1.193
1.194
1.1942
1.1943
1.1943
1.1943
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Now that we have explored a few terms of the sequence, we can guess
that the sequence is probably increasing and that its limit is approximately
1.1943. It is certainly reasonable to guess thatxn < 2 for everyn.

2. Proving that the Sequence Is Increasing
We shall use mathematical induction to prove that the sequence(xn) is
increasing: For each positive integern, we definep (n) to be the assertion
thatxn < xn+1. Since the assertionp (1) says that

0 <
3

√√
21

9
,

it is clear that the assertionp(1) is true. Now suppose thatn is any integer
for which the assertionp (n) is true. To show thatp (n+ 1) is also true, we
observe that

xn+2 =
3

√√
21 + 9xn+1

9
>

3

√√
21 + 9xn

9
= xn+1.

It therefore follows by mathematical induction thatxn < xn+1 for every
positive integern.

3. Proving that the Sequence Is Bounded
We shall use mathematical induction to show thatxn < 2 for every positive
integern. For each positive integern we definep (n) to be the assertion that
xn < 2. The assertionp(1) is clearly true. Now suppose thatn is any integer
for which the assertionp (n) is true. To show thatp (n+ 1) is also true we
observe that

xn+1 =
3

√√
21 + 9xn

9
<

3

√√
21 + 9 (2)

9
<

3

√
72

9
= 2.

It therefore follows by mathematical induction thatxn < 2 for every positive
integern.

4. Conclusions About the Limit
We deduce that the sequence(xn), being increasing and bounded, must be
convergent and we shall call its limitx. Now from the equation

xn+1 =
3

√√
21 + 9xn

9



7.7 Limits of Monotone Sequences 155

we obtain

lim
n→∞

xn+1 = lim
n→∞

3

√√
21 + 9xn

9
,

which yields

x =
3

√√
21 + 9x

9
;

in other words,

9x3 − 9x−
√
21 = 0.

By sketching the graph of this cubic polynomial (see Figure 7.2) we can see

-10

-5

0

5

10

15

20

-1 -0.5 0.5 1 1.5x

Figure 7.2

that this equation has just one real solution that is a little more than1. As a
matter of fact, the exact value of this solution can be shown to be

x =

3

√
18
(√

21 + 3
)2

+ 6

3
3

√
12
√
21 + 36

.

You can obtain this value fromScientific Notebook by asking it for an exact
solution to the equation9x3 − 9x−√

21 = 0. However, if you would like
to see how equations of this sort can be solved algebraically, then you can
use the on-screen version of this book to take you to some reading material
by clicking on the icon .

7.7.4 Exercises on Monotone Sequences

1. Given thatc > 1, use the following method to prove thatcn → ∞:
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(a) Writeδ = c− 1, so thatc = 1 + δ, and then use mathematical induction
to prove that, ifn is any positive integer, thencn ≥ 1 + nδ.

(b) Explain why1 + nδ → ∞ and then use Exercise 9 in Subsection 7.4.8
to show thatcn → ∞.

2. Given thatc > 1, use the following method to prove thatcn → ∞:

(a) Explain why the sequence(cn) is increasing and deduce that it has a
limit.

(b) Call the limitx and show that ifx is finite, then the equation

cn+1 = ccn

leads to the equationx = cx, which implies thatx = 0. But x cannot be
equal to zero? Why not?

3. Suppose that|c| < 1 and that, for every positive integern,

xn =
n∑

i=1

ci−1.

Explain why

xn → 1

1− c
.

4. Suppose that(xn) is a given sequence of real numbers, thatx1 = 0, and that
the equation

8x3
n+1 = 6xn + 1

holds for every positive integern.

(a) UseScientific Notebook to work out the first 20 terms in the
sequence(xn).

(b) Prove thatxn < 1 for every positive integern.
(c) Prove that the sequence(xn) is strictly increasing.

(d) Deduce that the sequence(xn) is convergent and discuss its limit.
Assuming an unofficial knowledge of the trigonometric functions, prove
that the limit of the sequence(xn) is cos π

9
.

5. In this exercise we study the sequence(xn) defined by the equation

xn =

(
1 +

1

n

)n

for every integern ≥ 1. You will probably want to make use of the binomial
theorem when you do this exercise.
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(a) Ask Scientific Notebook to make a 2D plot of the graph of the
functionf defined by the equation

f (n) =

(
1 +

1

n

)n

for 1 ≤ n ≤ 100.
(b) Prove thatxn < 3 for everyn.

(c) Prove that the sequence(xn) is increasing.
(d) Deduce that the sequence(xn) converges to a number between2 and3.

Have you seen this number before?
6. This exercise concerns the sequence(xn) defined by the fact thatx1 = 1

and that, for eachn ≥ 1, we have

xn+1 =
5
√
4xn − 2.

(a) UseScientific Notebook to work out the first 20 terms in the
sequence(xn).

(b) Prove that1 ≤ xn < 2 for everyn.
(c) Prove that the sequence(xn) is strictly increasing.

(d) Prove that the sequence has a limitx that satisfies the equation
x5 − 4x + 2 = 0. Ask Scientific Notebook to make a 2D plot of the
expressionx5 − 4x+ 2 on the interval[−2, 2] and to solve the equation

x5 − 4x+ 2 = 0

x ∈ [1, 2]

numerically. Compare the answer obtained here with the results that you
obtained in part a.

7. (a) Given that

f(x) =
x

2
+

9

2x

for every numberx > 0, prove thatf(x) ≥ 3 for eachn and that the
equationf(x) = 3 holds if and only ifx = 3.

(b) Given thatx1 = 4 and, for eachn ≥ 1, we have

xn+1 =
xn

2
+

9

2xn
,

prove that the sequence(xn) is decreasing and that the sequence
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converges to the number3.
8. This exercise is a study of the sequence(xn) for whichx1 = 0 and

xn+1 =
1

2 + xn

for every positive integern. We note that this sequence is bounded below by
0 and above by1/2.

(a) Supply the definition

f(x) =
1

2 + x

to Scientific Notebook. Then open yourCompute menu, click on
Calculus, and choose to iterate the functionf ten times, starting at
the number0. Evaluate the column of numbers that you have obtained
accurately to ten decimal places and, in this way, show the first ten
members of the sequence(xn).

(b) Show that

xn+2 =
2 + xn

5 + 2xn

for every integern ≥ 1, and then show that the sequence(x2n−1) is
increasing and that the sequence(x2n) is decreasing and that these two
sequences have the same limit

√
2− 1.

(c) Deduce thatxn → √
2− 1 asn → ∞.

7.8 The Cantor Intersection Theorem

In this section we shall discuss an important topological property of the number
systemR, a property that depends strongly upon the completeness of the real
number system and is known as theCantor intersection theorem. This theorem
will be used to prove some important facts about sequences in Section 7.9, facts
that will be the key to some important facts about continuous functions in Chapter
8. These facts about continuous functions will, in turn, be the key to the mean
value theorem, which is the foundation stone of differential calculus. In addition,
the Cantor intersection theorem will beused to simplify the proof of an important
theorem about integrals that appears as Theorem 14.3.3.

7.8.1 Introduction to the Cantor Intersection Theorem
The Cantor intersection theorem refers to a contracting sequence (see Subsection
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5.12.2) of sets of real numbers, and it tells us that, under certain conditions, if
(Sn) is a contracting sequence of nonempty sets, then the intersection

∞⋂
n=1

Sn

is also nonempty. Before we state the Cantor intersection theorem, we shall look
at some examples that show that the intersection of a contracting sequence of
nonempty sets can sometimes be empty.

1. We define

Sn =

(
0,

1

n

]
for every positive integern. Although the sequence(Sn) is contracting and
all the setsSn are nonempty, their intersection is empty.

2. We define

Sn = [n,∞)

for every positive integern. Once again, the sequence(Sn) is contracting
and all of the setsSn are nonempty, but their intersection is empty.

7.8.2 Statement of the Cantor Intersection Theorem
Suppose that (Hn) is a contracting sequence of nonempty, closed, bounded sets
of real numbers. Then the intersection of the sets Hn is nonempty.

Proof. As we know from Theorem 6.4.2, every one of the setsHn must have a
least member which we shall callxn. For eachn, it follows from the fact that

xn+1 ∈ Hn+1 ⊆ Hn

and the fact thatxn is theleast member ofHn that

xn ≤ xn+1,

and we therefore know that the sequence(xn) is increasing. From the fact that
Hn ⊆ H1 for eachn we deduce that(xn), being a sequence in the bounded set
H1, must be bounded, and we conclude from Theorem 7.7.1 that the sequence
(xn) is convergent. We now define

x = lim
n→∞

xn.

We shall show that the intersection of all the setsHn is nonempty by observing
that the numberx that we have just defined belongs to this intersection. In fact,
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if n is any positive integer, then, sincexj ∈ Hn wheneverj ≥ n, the sequence
(xj) is eventually inHn and, since the setHn is closed, it follows from Theorem
7.6.2 thatx ∈ Hn. �

7.8.3 Exercises on the Cantor Intersection Theorem

1. Suppose that(Hn) is a sequence (not necessarily contracting) of closed
bounded sets and that for every positive integern we have

n⋂
i=1

Hi 	= ∅.

Prove that
∞⋂
i=1

Hi 	= ∅.

2. Suppose thatH is a closed bounded set of real numbers and that(Un) is an
expanding sequence of open sets.

(a) Explain why the sequence of setsH \ Un is a contracting sequence of
closed bounded sets.

(b) Use the Cantor intersection theorem to deduce that ifH \ Un 	= ∅ for
everyn, then

∞⋂
n=1

(H \ Un) 	= ∅.

(c) Prove that if

H ⊆
∞⋃
n=1

Un,

then there exists an integern such thatH ⊆ Un.
3. Suppose that(Un) is a sequence of open sets (not necessarily expanding)

and thatH is a closed bounded set and that

H ⊆
∞⋃
n=1

Un.

Prove that there exists a positive integerN such that

H ⊆
N⋃

n=1

Un.
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4. The Cantor intersection theorem depends upon the completeness of the real
number system. Where in the proof of the theorem is the completeness used?

7.9 The Existence of Partial Limits

In this section we shall study some important facts about limits of sequences,
facts that depend upon the completeness of the number systemR. A key theo-
rem is Theorem 7.9.2. Note how its proof makes use of the Cantor intersection
theorem (Theorem 7.8.2). In the chapters that follow we shall encounter several
important properties of continuous functions, derivatives and integrals, that also
depend upon the completeness of the number systemR. When we study those
properties, the results contained in this section will enable us to shorten and
simplify many of our proofs.

7.9.1 Sequences in a Closed Bounded Set
Suppose that H is a set of real numbers. Then the following conditions are
equivalent:

1. The set H is closed and bounded.
2. Every sequence that is frequently in the set H has a partial limit that belongs

to H.
3. Every sequence in the set H has a partial limit that belongs to H.

Proof that Condition 1 Implies Condition 2. Suppose that the setH is closed
and bounded and that(xn) is a sequence that is frequently inH. For each positive
integern we shall write

En = {xn, xn+1, xn+2, · · · } = {xj | j ≥ n} .
Using the fact that the sequence

(
H ∩En

)
is a contracting sequence of non-

empty closed bounded sets and the Cantor intersection theorem, we choose a
numberx such that

x ∈
∞⋂
n=1

H ∩En.

To complete the proof, we need to see why this numberx is a partial limit of the
sequence(xn). Suppose thatε > 0. For every positive integern it follows from
the fact thatx ∈ En that there are integersj ≥ n for which

xj ∈ (x− ε, x+ ε) ,

and from this observation we observe that the sequence(xn) is frequently in the
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interval(x− ε, x+ ε). �

Proof that Condition 2 Implies Condition 3. This assertion is clear.�

Proof that Condition 3 Implies Condition 1. We assume that every sequence in
the setH has a partial limit inH. We need to prove that the setH is both closed
and bounded. There cannot be a sequence inH that has a limit at∞ because
(by the uniqueness theorem for limits) such a sequence would not have a partial
limit in H. Therefore it follows from Theorem 7.6.3 that the setH is bounded
above, and it follows analogously thatH is bounded below. Finally, to prove that
H is closed we suppose that a numberx belongs toH and we shall show that
x ∈ H. Using Theorem 7.6.1, we choose a sequence(xn) in H that converges
to x. Sincex is the only partial limit of(xn) and(xn) must have a partial limit
in H, we see thatx ∈ H, as promised.�

7.9.2 Existence of Partial Limits of a Bounded Sequence
Every bounded sequence has a finite partial limit.

Proof. Suppose that(xn) is a bounded sequence and choose a lower boundα and
an upper boundβ of (xn). Since(xn) is in the closed bounded interval[α, β],
the sequence(xn) must have a partial limit in this interval.�

7.9.3 Sequences that Have Limits
We already know from Theorem 7.4.1 that if a sequence has a limit, then it cannot
have more than one partial limit in the extended real number system[−∞,∞].
We now show that the converse of this statement is also true:

Suppose that (xn) is a sequence of real numbers, that x ∈ [−∞,∞], and
that x is the only extended real number that is a partial limit of the sequence
(xn). Then we have xn → x as n → ∞.

Proof. In order to prove thatxn → x asn → ∞, we shall consider three cases:

Case 1: Suppose that x = ∞. Since−∞ is not a partial limit of the sequence
(xn), the sequence(xn) must be bounded below. Choose a lower boundα of the
sequence(xn). Now, to prove thatxn → ∞, suppose thatw is a real number.
We need to show that the sequence(xn) is eventually in the interval(w,∞). To
obtain a contradiction, assume that(xn) is not eventually in the interval(w,∞).
Then(xn) must be frequently in the interval[α,w],

and it follows from Theorem 7.9.1 that the sequence(xn) has a partial limit in
[α,w], which contradicts our assumption that∞ is the only partial limit of(xn).
�
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Case 2: Suppose that x = −∞. We leave the proof of this case as an exercise.

Case 3: Suppose that x Is a Real Number. We begin with the obser-
vation that since neither−∞ nor∞ is a partial limit of the sequence(xn), the
sequence must be bounded. Choose a lower boundα and an upper boundβ of the
sequence(xn). Now suppose thatε > 0.We need to show that the sequence(xn)
is eventually in the interval(x− ε, x+ ε). To obtain a contradiction, assume
that the sequence(xn) is frequently in the complement of this interval, in other
words, that(xn) is frequently in the set

H = [α, β] ∩ (R \ (x− ε, x+ ε)) = [α, β] \ (x− ε, x+ ε) .

In the following figure, the setH is depicted by the heavy line.

Since the setH is closed and bounded, we deduce from Theorem 7.9.1 that the
sequence(xn) has a partial limit inH, contradicting the fact thatx is the only
partial limit of (xn). �

7.9.4 The Bolzano-Weierstrass Theorem
The Bolzano-Weierstrass theorem is similar in nature to the Cantor intersection
theorem (Theorem 7.8.2) and, like the Cantor intersection theorem, it depends
upon the completeness of the real number system. From an intuitive point of
view, the statement of the Bolzano-Weierstrass theorem is quite simple. We can
picture it as telling us that the only way in which infinitely many numbers can be
crammed into a bounded piece of the number line is to give them very crowded
living conditions somewhere. The precisestatement of the Bolzano-Weierstrass
theorem is as follows:

Every bounded infinite set of real numbers must have at least one limit point.

Proof. Suppose thatS is a bounded infinite set. Using the property of infinite
sets that we discussed in Subsection 5.11.9, choose a one-one sequence(xn) in
the setS. Using Theorem 7.9.2, choose a finite partial limitx of the sequence
(xn). Since every neighborhood ofx contains the numbersxn for infinitely
many values ofn, and since the sequence(xn) is one-one, we know that every
neighborhood of the numberx contains infinitely many different numbers that
belong to the setS. Thereforex is a limit point ofS. �
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7.9.5 Exercises on the Bolzano-Weierstrass Theorem

1. The Bolzano-Weierstrass theorem does not tell us that if a setS is bounded
and infinite, then at least one member ofS must be a limit point ofS. Give
an example of a bounded infinite setS such that no member ofS is a limit
point ofS.

2. Prove that ifH is a closed bounded infinite set, then

H ∩ L (H) 	= ∅.
3. This exercise suggests a different proof of the Bolzano-Weierstrass theorem:

(a) Prove that ifE is a nonempty bounded set with no least member, then
inf E is a limit point ofE.

(b) Prove that if a bounded setS has a nonempty subset that does not have a
least member, thenS has a limit point.

(c) Given thatS is a bounded infinite set and that every nonempty subset of
S has a least member, find an example ofa strictly increasing sequence
in the setS. By considering the limit of this sequence, prove thatS must
have a limit point.

7.9.6 Some Further Exercises on Limit Points
Readers of the on-screen version of this text who have a familiarity with the
concept of countability can find some exercises that relate to this concept by
clicking on the icon .

7.9.7 Cauchy Sequences
You can reach this optional topic from the on-screen version of the text by click-
ing on the icon .

7.10 Upper and Lower Limits

You can find this optional topic in the on-screen version of the text by clicking
on the icon .



Chapter 8
Limits and Continuity of Functions

This chapter presents the theory of limitsand continuity of functions of a single
real variable. If you chose to read the more general presentation of limits of
sequences in metric spaces, and if you prefer to read the theory of limits of
functions in that more general situation, then you can do so in the on-screen
version of the book by clicking on the icon .

8.1 Limits of Functions

8.1.1 Introduction to Limits of Functions
The theory of limits of functions is the cornerstone of calculus because these are
the limits upon which the notion of a derivative depends. Almost every course in
elementary calculus begins with this topic, but, as you have seen, this book did
not. Instead, we laid the foundations for the study of limits of functions in our
earlier study of the topology of the systemR and limits of sequences. Now, as we
study limits and continuity of functions, we shall draw upon the knowledge that
we gained from those earlier chapters and use it to shorten and simplify many of
our proofs. In this way, we shall be able to take a deeper look at the limits and
continuity of functions than would have been possible in an elementary course.

According to the intuitive notion of a limit as it usually appears in elementary
calculus, the conditionf (x) → λ asx → a means that the numberf(x) can
be made to lie as close as we like to the numberλ as long we take the number
x unequal to the numbera but close enough toa.Notice how this idea makes
no demand at all about the valuef(x) whenx = a.This means that the number
f(a) itself might be very far away fromλ and, in fact, there is no need forf(a)
even to be defined. To understand why we are so insistent that the numberf(a)
should play no role at all in the concept off(x) → λ asx → a, we shall take
a brief preview of the important limit upon which the definition of a derivative is
based.

The derivativef ′(a) of a given functionf at a numbera can be thought of as

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

165
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What we are really doing here is defining a new functionq by the equation

q(x) =
f(x)− f(a)

x− a

for every numberx in the domain of the functionf exceptx = a (which must,
of course, be excluded). The definition of a derivative requires that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a
q(x).

Thus the type of limit that we need when we define derivatives is a limit ata of a
functionq that is definitely not defined ata.

So, to repeat what we have said: When we speak of a limit of a functionf at
a numbera, we don’t make any demands about the value (if any) of the number
f(a).If the domain of our functionf is written asS, thenS is a set of real
numbers and we may or may not havea ∈ S.We shall now state the definition of
a limit precisely.

8.1.2 Definition of a Limit of a Function
Suppose thatS is a set of real numbers and thatf : S → R.Given a numbera
that is a limit point ofS and given a real numberλ, we say thatλ is alimit of the
functionf at the numbera and we write

f(x) → λ as x → a

if, for every neighborhoodV of the numberλ, it is possible to find a neigh-
borhoodU of the numbera such that the conditionf(x) ∈ V holds for every
numberx in the setU ∩ S \ {a}.

Another way of stating this definition is to say that for every neighborhood
V of the numberλ it is possible to find a neighborhoodU of the numbera such
that

f [U ∩ S \ {a}] ⊆ V .

8.1.3 Limits Can Be Taken Only at Limit Points
In Definition 8.1.2 we stipulated that iff : S → R anda andλ are real numbers,
then the condition

f(x) → λ as x → a

can make sense only whena is a limit point ofS.In order to understand the need
for this restriction, we shall consider what happens when the numbera is not a
limit point of S:
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Suppose thatS is a set of real numbers and thata is a number that is not a
limit point of S. Suppose thatf is any function defined on the setS and thatλ
is any number. We shall now observe that, even though the functionf and the
numberλ are completely arbitrary, the requirements of the definition of a limit
are satisfied: For every neighborhoodV of the numberλ, there is a neighborhood
U of a such that the conditionf(x) ∈ V holds for every numberx ∈ U∩S\{a}.
In fact, all we have to do is choose a neighborhoodU of a such that

U ∩ S \ {a} = ∅.

Since there aren’t any numbersx in the setU ∩ S \ {a}, it is certainly true that
f(x) ∈ V for everyx ∈ U ∩ S \ {a}.

Thus if V is a neighborhood ofλ, the existence of a neighborhoodU of a
such thatf(x) ∈ V for everyx ∈ U ∩S \{a} is interesting only if the numbera
is a limit point of the setS.For this reason, the definition of a limit of a function
is restricted to numbers that are limitpoints of the domain of that function.

8.1.4 Epsilon-Delta Form of the Definition of a Limit
In this subsection we show how the definition of a limit can be phrased in terms
of inequalities instead of neighborhoods. The inequality form of the condition

λ

λ − 

λ + 

f

aa − δ a + δ

Figure 8.1

f (x) → λ asx → a is illustrated in Figure 8.1. It says that wheneverε > 0, it
is possible to find a numberδ > 0 that enables us to force the graph of thef to
lie between the two horizontal linesy = λ− ε andy = λ+ ε, by takingx 	= a
and taking our point on the graph between the two vertical linesx = a − δ and
x = a+ δ.
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Although the forms of the definition that refer to inequalities look a little
more clumsy, they are frequently moreuseful when we are dealing with a known
function. The inequality forms of thelimit concept can be stated as follows:

Suppose that f is a function defined on a set S of real numbers, that a is a
limit point of S, and that λ is a real number. Then the following conditions are
equivalent:

1. f(x) → λ as x → a.
2. For every neighborhood V of the number λ there exists a number δ > 0

such that the condition f(x) ∈ V holds for every number x ∈ S \ {a} that
satisfies the inequality |x− a| < δ.

3. For every number ε > 0 there exists a neighborhood U of the number a such
that the inequality |f(x)− λ| < ε holds for every number x ∈ U ∩ S \ {a}.

4. For every number ε > 0 there exists a number δ > 0 such that the inequality
|f(x)− λ| < ε holds for every number x ∈ S \ {a} that satisfies the
inequality |x− a| < δ.

We shall prove the equivalence of conditions 1 and 4 and leave the other parts
of the proof of this theorem as exercises.

Proof that Condition 1 Implies Condition 4. We assume thatf(x) → λ as
x → a and, to prove that condition 4 holds, we suppose thatε is a given positive
number. Using the fact that the interval(λ− ε, λ+ ε) is a neighborhood of the
numberλ, we choose a neighborhoodU of the numbera such that the condition

f(x) ∈ (λ− ε, λ+ ε)

holds for every numberx ∈ U∩S \{a}. Using the fact thatU is a neighborhood
of the numbera, we choose a numberδ > 0 such that

(a− δ, a+ δ) ⊆ U .

We now observe that the condition

f(x) ∈ (λ− ε, λ+ ε)

holds for every number

x ∈ (a− δ, a+ δ) ∩ S \ {a} .

This is just another way of saying that the inequality|f(x)− λ| < ε holds for
every numberx ∈ S \ {a} that satisfies the inequality|x− a| < δ. �

Proof that Condition 4 Implies Condition 1. We assume that condition 4 holds
and, to prove thatf(x) → λ asx → a, we suppose thatV is a neighborhood of
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the numberλ. Choose a numberε > 0 such that

(λ− ε, λ+ ε) ⊆ V .

Now we use condition 4 to choose a numberδ > 0 such that the inequality
|f(x)− λ| < ε holds for every numberx ∈ S \ {a} that satisfies the inequality
|x− a| < δ and we define

U = (a− δ, a+ δ) .

We see at once that the conditionf(x) ∈ V holds for every numberx ∈ U ∩S \
{a}. �

8.1.5 Some Examples of Limits of Functions

1. In this example we shall show thatx2 + 1 → 5 asx → 2. We define

f(x) = x2 + 1

for every real numberx, and, to prove thatf(x) → 5 asx → 2, we suppose
that ε > 0. We need to find a numberδ > 0 such that the inequality
|f(x)− 5| < ε will hold for every numberx that is unequal to2 and that
satisfies the inequality|x− 2| < δ. Now, if x is any real number, then we
have

|f(x)− 5| = ∣∣x2 + 1− 5
∣∣ = |x− 2| |x+ 2| .

Of the two factors|x− 2| and|x+ 2|, the one that is small whenx is close
to 2 is the factor|x− 2|.The other factor,|x+ 2|, is approximately4. We
shall now observe that the factor|x+ 2| will not exceed5 if we keepx
reasonably close to2.In fact, if we stipulate that|x− 2| < 1, then it is easy
to see that|x+ 2| < 5.

1 2 3

As long as|x− 2| < 1 we therefore have

|f(x)− 5| ≤ 5 |x− 2| ,
and we can therefore guarantee the inequality|f(x)− 5| < ε by requiring
that

|x− 2| < ε

5
.

We can now continue our proof by definingδ to be the smaller of the
two numbers1 andε/5. Whenever a numberx satisfies the inequality
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|x− 2| < δ we know that both of the inequalities|x− 2| < 1 and
|x− 2| < ε/5 must hold, and therefore

|f(x)− 5| ≤ 5 |x− 2| < 5
(ε
5

)
= ε.

We have now obtained more than we actually need. We have shown that the
inequality|f(x)− 5| < ε holds for every numberx satisfying the inequality
|x− 2| < δ, regardless of whether or notx = 2. Throwing away what
we know about the numberf (2), we can now observe that the inequality
|f(x)− 5| < ε holds for every numberx 	= 2 that satisfies the inequality
|x− 2| < δ.

2. In this example we define

f(x) =

{
x2 + 1 if x 	= 2
17 if x = 2,

and, once again, we shall show thatf(x) → 5 asx → 2.Once again we
suppose thatε > 0, and we need to find a numberδ > 0 such that the
inequality|f(x)− 5| < ε will hold for every numberx that is unequal to
2 and that satisfies the inequality|x− 2| < δ. Our proof will be an almost
exact parallel to the one that appearsin the preceding example, except that
we must take care to avoid the possibility thatx = 2.

Now if x 	= 2, then we have

|f(x)− 5| = ∣∣x2 + 1− 5
∣∣ = |x− 2| |x+ 2| .

As long as|x− 2| < 1 andx 	= 2, we therefore have

|f(x)− 5| ≤ 5 |x− 2| ,
and, as before, we can guarantee the inequality|f(x)− 5| < ε by requiring
thatx 	= 2 and|x− 2| < ε/5. We defineδ to be the smaller of the two
numbers1 andε/5. Given any numberx 	= 2 that satisfies the inequality
|x− 2| < δ we have

|f(x)− 5| ≤ 5 |x− 2| < 5
(ε
5

)
= ε.

3. In this example we shall look at a more complicated rational function than
the one that appeared in the preceding examples, and we shall see that the
process of finding a limit of such a function is not as hard as one might
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expect. We shall show that

x3 − 2x2 + x− 3

x4 + 3x2 + 5
→ − 1

33

asx → 2. The graph of this rational function is illustrated in Figure 8.2.

-0.6

-0.4

-0.2

0
-4 -2 2 4

Figure 8.2

Before we begin, we need to do a little algebra: For any numberx
we have

∣∣∣∣x3 − 2x2 + x− 3

x4 + 3x2 + 5
−
(
− 1

33

)∣∣∣∣ =

∣∣∣∣ 133 (x− 2) (x3 + 35x2 + 7x+ 47)

x4 + 3x2 + 5

∣∣∣∣
≤ 1

165
|x− 2| ∣∣x3 + 35x2 + 7x+ 47

∣∣ .
Now whenever|x− 2| < 1 we have∣∣x3 + 35x2 + 7x+ 47

∣∣ ≤ 33 + (35)
(
32
)
+ (7) (3) + 47 = 410,

and so, if|x− 2| < 1, then∣∣∣∣x3 − 2x2 + x− 3

x4 + 3x2 + 5
−
(
− 1

33

)∣∣∣∣ ≤ 410

165
|x− 2| = 82

33
|x− 2| .

Now we can begin: Suppose thatε > 0.We defineδ to be the smaller of
the two numbers1 and33ε/82, and we observe that wheneverx 	= 2 and
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|x− 2| < δ we have∣∣∣∣x3 − 2x2 + x− 3

x4 + 3x2 + 5
−
(
− 1

33

)∣∣∣∣ ≤ 82

33
|x− 2| < 82

33

(
33ε

82

)
= ε.

4. In this example we see an example of a function that does not have a limit at
the number2. We define

f(x) =

{
1 if x > 2
−1 if x < 2,

and, to obtain a contradiction, we assume thatλ is a real number and that
f(x) → λ asx → 2. Using this assumption and the fact that1 is a positive
number we choose a numberδ > 0 such that the inequality

|f(x)− λ| < 1

holds wheneverx 	= 2 and|x− 2| < δ. Choose numberst andx such that

2− δ < t < 2 < x < 2 + δ.

2 − δ 2 + δ2t x

Sincef(x) = 1 andf(t) = −1, we see thatf(x)− f(t) = 2. But we also
know that

|f(x)− f(t)| = |f(x)− λ+ λ− f(t)|
≤ |f(x)− λ|+ |λ− f(t)| < 1 + 1 = 2,

and we have reached the desired contradiction.
5. In this example we define

f(x) =

{
1 if x ∈ (0, 2) andx is rational
−1 if x ∈ (0, 2) andx is irrational.

Using the technique of the preceding example, one may show that this
function has no limit at the number2. We leave the details as an exercise.

6. In this example we define

f(x) = sin
1

x

for every numberx > 0. The graph of this function is illustrated in Figure
8.3. Using the method that was demonstrated in Example 4, one may show
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Figure 8.3

that this function has no limit at the number0. We leave the details as an
exercise.

7. In this example we definef(x) = 1 for every numberx in the set

[0, 1] ∪ {2} .

0 1 2

No matter what numberλ we take, the conditionf(x) → λ asx → 2 is
impossible because the number2 is not a limit point of the domain of the
function.

8. In this example we shall explore the properties of an interesting function
f : [0, 1] → R that is known as theruler function. One of the interesting
features of this function is that, even though it takes a positive value at
every rational number, its limit at every number is zero. Given any number
x ∈ [0, 1] we define

f(x) =


 0 if x is irrational

1
n

if x = m
n

, wherem andn are integers with no common factor.

The following table illustrates some values of the functionf.

x 1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

f(x) 1
8

1
4

1
8

1
2

1
8

1
4

1
8

1
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The graph of this function is illustrated in Figure 8.4.
From the on-screen version of this text you can view an animation27 of this

Figure 8.4

graph by clicking on the icon . Now suppose thata is any number in
the interval[0, 1].We want to show thatf(x) → 0 asx → a. Suppose that
ε > 0. We now define

S = {x ∈ [0, 1] | f(x) ≥ ε} .

If x is any number in the setS, thenx must be a rational number that can
be expressed in the formm/n, wherem andn are positive integers with no
common factor and

1

n
= f(x) ≥ ε,

in other words,

n ≤ 1

ε
.

Since there are only finitely many positive integers that do not exceed1/ε
and since there can be only finitely many rational numbers in[0, 1] that have
a given denominatorn, we deduce that the setS must be finite.

Now, because the finite setS \ {a} is closed, the set

U = R \ (S \ {a})
27 I wish to express my appreciation to Eric Kehr for the valuable help he provided me in the
task of producing this animation.
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is a neighborhood of the numbera.Furthermore, the inequality

|f(x)− 0| < ε

holds for every number

x ∈ [0, 1] ∩ U \ {a} .

8.1.6 Some Exercises on Limits of Functions

1. Write careful proofs of each ofthe following assertions:

(a) x3 − 3x → 2 asx → −1.

(b)
1

x
→ 1

3
asx → 3.

(c)
x3 − 8

x2 + x− 6
→ 12

5
asx → 2.

2. Given that

f(x) =

{
x if 0 < x < 2

x2 if x > 2,

prove thatf(x) → 1 asx → 1 and that this functionf has no limit at the
number2.

3. Given that

f(x) =

{
x if x is rational
x2 if x is irrational,

prove thatf(x) → 1 asx → 1 and that this functionf has no limit at the
number2.

4. Given that

f(x) =
x2 − 9

|x− 3|
for every numberx 	= 3, prove thatf has no limit at the number3. Ask
Scientific Notebook to draw the graph of this function.

5. Given thatS is a set of real numbers, thatf : S → R, thatλ is a real
number, and thata is a limit point ofS, prove that the following conditions
are equivalent:

(a) f(x) → λ asx → a.
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(b) For every numberε > 0 there exists a numberδ > 0 such that the
inequality|f(x)− λ| < 3ε holds for every numberx in the setS \ {a}
that satisfies the inequality|x− a| < δ.

(c) For every numberε > 0 there exists a numberδ > 0 such that the
inequality|f(x)− λ| < 3ε holds for every numberx in the setS \ {a}
that satisfies the inequality|x− a| < 5δ.

6. Given thatS is a set of real numbers, thatf : S → R, thatλ is a real
number, and thata is a limit point ofS, prove that the following conditions
are equivalent:

(a) f(x) → λ asx → a.
(b) For every numberε > 0 there exists a neighborhoodU of the numbera

such that the inequality|f(x)− λ| < ε holds for every numberx in the
setU ∩ S \ {a}.

(c) For every neighborhoodV of the numberλ there exists a numberδ > 0
such that the conditionf(x) ∈ V holds for every numberx in the set
S \ {a} that satisfies the inequality|x− a| < δ.

7. Given thatS is a set of real numbers, thatf : S → R, thatλ is a real
number, and thata is an interior point ofS, prove that the following
conditions are equivalent:

(a) f(x) → λ asx → a.
(b) For every numberε > 0 there exists a numberδ > 0 such that the

inequality|f(x)− λ| < ε will hold for every numberx \ {a} that
satisfies the inequality|x− a| < δ.

8. Suppose thatS is a set of real numbers, thata is a limit point ofS, that
f : S → R, and thatλ is a real number. Prove that iff(x) → λ asx → a,
then|f(x)| → |λ| asx → a. Compare this exercise with Exercise 7 of
Subsection 7.4.8.

9. Suppose thatS is a set of real numbers, thata is a limit point ofS, that
f : S → R, and thatλ is a real number. Complete the following sentence:
The function f fails to have a limit of λ at the number a when there exists a
number ε > 0 such that for every number δ > 0 ......

8.2 Limits at Infinity and Infinite Limits

In this section we show how the notionf(x) → λ asx → a can be broadened to
include the possibilities thata or λ (or both) could be infinite. As we shall see,
the definition stated in terms of neighborhoods is very similar to the definition
that we saw for finite limits.
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8.2.1 Limits at ∞
Suppose thatS is a set of real numbers and thatS is unbounded above. Suppose
that f : S → R. Given any real numberλ, we say thatλ is a limit of the
functionf at infinity if for every neighborhoodV of the numberλ there exists a
neighborhoodU of ∞ such that the conditionf(x) ∈ V holds for every number
x in the setU ∩ S.

If you prefer, you can express the latter set asU ∩ S \ {∞}. Since∞ does
not belong toS, the expressionsU ∩ S andU ∩ S \ {∞} are exactly the same.

8.2.2 Some Alternative Ways of Looking at Limits at ∞
Suppose that S is a set of real numbers and that S is unbounded above. Suppose
that f : S → R and that λ is a real number. Then the following conditions are
equivalent:

1. f(x) → λ as x → ∞.
2. For every neighborhood V of the number λ there exists a real number w

such that the condition f(x) ∈ V will hold for every number x ∈ S that
satisfies the inequality x > w.

3. For every number ε > 0 there exists a real number w such that the
inequality

|f(x)− λ| < ε

will hold for every number x ∈ S that satisfies the inequality x > w.

Proof that Condition 1 Implies Condition 3. We assume thatf(x) → λ as
x → ∞, and, to prove that condition 3 must hold, we suppose thatε > 0.Using
the fact that the interval(λ− ε, λ+ ε) is a neighborhood of the numberλ, we
choose a neighborhoodU of ∞ such that the condition

f(x) ∈ (λ− ε, λ+ ε)

holds for every numberx ∈ U ∩ S. Using the fact thatU is a neighborhood of
∞, we now choose a numberw such that(w,∞) ⊆ U . We now observe that ifx
is any number in the setS that satisfies the inequalityx > w, then the inequality

|f(x)− λ| < ε

must hold.
We leave the rest of proof of this theorem as an exercise.

8.2.3 Limits at −∞
We leave as an exercise the task of writing the definition of a limit at−∞ and
exploring some alternative forms of this definition.
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8.2.4 Infinite Limits
Suppose thatS is a set of real numbers, thatf : S → R, and thata is a limit
point ofS. We say thatf(x) → ∞ asx → a if, for every neighborhoodV of
∞, there exists a neighborhoodU of a such that the conditionf(x) ∈ V holds
for every numberx in the setS ∩ U \ {a}.

8.2.5 Some Alternative Ways of Looking at Infinite Limits
Suppose that S is a set of real numbers, that f : S → R, and that a is a limit
point of S. Then the following conditions are equivalent:

1. f(x) → ∞ as x → a.
2. For every real number w there exists a neighborhood U of a such that the

inequality f(x) > w holds for every number x in the set S ∩ U \ {a}.
3. For every real number w there exists a number δ > 0 such that the inequality

f(x) > w holds for every number x in the set S \ {a} that satisfies the
inequality |x− a| < δ.

We leave the proof of this assertion as an exercise.

8.2.6 Infinite Limits at ∞
Suppose thatS is a set of real numbers and thatS is unbounded above. Suppose
thatf : S → R. We say thatf(x) → ∞ asx → ∞ if for every neighborhood
V of ∞ there exists a neighborhoodU of ∞ such that the conditionf(x) ∈ V
holds for every numberx in the setS ∩ U .

8.2.7 An Alternative Way of Looking at Infinite Limits at ∞
Suppose that S is a set of real numbers and that S is unbounded above. Suppose
that f : S → R. Then the following conditions are equivalent:

1. f(x) → ∞ as x → ∞.
2. For every real number w there exists a real number p such that the inequality

f(x) > w holds for every number x in the set S that satisfies the inequality
x > p.

We leave the proof of this assertion as an exercise.

8.2.8 The General Case
The time has come to end this orgy of separate cases and to write a single defini-
tion that unifies all of those that appeared previously.

Suppose thatS is a set of real numbers and thatf : S → R. Suppose thata
andλ are extended real numbers. In the event thata ∈ R we suppose thata is
a limit point ofS, and in the event thata = ∞ we assume thatS is unbounded
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above, and in the event thata = −∞ we assume thatS is unbounded below. The
conditionf(x) → λ asx → a means that for every neighborhoodV of λ there
exists a neighborhoodU of a such that the conditionf(x) ∈ V holds for every
x in the setU ∩ S.

From now on we shall agree that if we say thatf is a function defined on a
setS of real numbers andf(x) → λ asx → a, thena andλ are extended real
numbers and, ifa ∈ R, thena is a limit point ofS, and ifa = −∞ then the set
S is unbounded below, and ifa = ∞, then the setS is unbounded above.

8.2.9 Some Examples of Limits at Infinity and Infinite Limits

1. Suppose that

f(x) =
x

(x− 3)2

for every numberx 	= 3. We shall show thatf(x) → ∞ asx → 3.
To motivate the proof that we are about to write we notice that, if

|x− 3| ≤ 1, we have

f(x) =
x

|x− 3| |x− 3| ≥
2

|x− 3| ≥
1

|x− 3| .

Now we begin: Suppose thatw is any real number. We need to find a number
δ > 0 such that the inequalityf(x) > w will hold for all numbersx 	= 3 that
satisfy the inequality|x− 3| < δ. Since the conditionf(x) > w requires
that1/δ ≥ w, we define

δ =
1

1 + |w| ,

and we observe that the inequalityf(x) > w holds for every numberx 	= 3
that satisfies the inequality|x− 3| < δ.

2. (a) If

f(x) =
x

x− 3

for all numbersx > 3, thenf(x) → ∞ asx → 3.We leave the proof of

this assertion as an exercise.
(b) If

f(x) =
x

x− 3

for all numbersx < 3, thenf(x) → −∞ asx → 3.
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(c) If

f(x) =
x

x− 3

for all numbersx 	= 3, then the functionf has no limit at the number3.
3. Suppose that

f(x) =
2x3 − x2 + 3x+ 1

x3 + 2x2 + 4

for numbersx > 0. We shall observe thatf(x) → 2 asx → ∞. Before we
prove this fact we observe that ifx is any positive number, we have

|f(x)− 2| =

∣∣∣∣2x3 − x2 + 3x+ 1

x3 + 2x2 + 4
− 2

∣∣∣∣
=

∣∣∣∣5x2 − 3x+ 7

x3 + 2x2 + 4

∣∣∣∣ ≤ |5x2 − 3x+ 7|
x3

.

Now as long asx ≥ 1 we have∣∣5x2 − 3x+ 7
∣∣ ≤ 5x2 + 3x+ 7 ≤ 5x2 + 3x2 + 7x2 = 15x2,

and so forx ≥ 1 we have

|f(x)− 2| ≤ 15x2

x3
=

15

x
.

Now we begin: Suppose thatε > 0. We definew to be the larger of the two
numbers1 and15/ε. We see at once that wheneverx > w we have

|f(x)− 2| ≤ 15

x
< ε.

4. Suppose that

f(x) =
x3 − x2 − 27x+ 29

x2 + 3x− 10

for all numbersx > 2. We shall show thatf(x) → ∞ asx → ∞. We begin

by expressingf(x) in partial fractions. For eachx > 2 we have

f(x) =
x3 − x2 − 27x+ 29

x2 + 3x− 10
= x− 4− 3

x− 2
− 2

x+ 5
.

Now as long asx > 5, neither of the fractions 3
x−2

and 2
x+5

can exceed1,
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and so ifx > 5, we have

f(x) > x− 4− 1− 1 = x− 6.

Now to prove thatf(x) → ∞ asn → ∞, suppose thatw is any real number.
We definep to be the larger of the numbers5 andw + 6 and we observe that
the inequality

f(x) > x− 6 ≥ w + 6− 6 = w

holds wheneverx ≥ p.
Another way of doing this problem is to make the observation that ifx > 2,

then

x3 − x2 − 27x+ 29

x2 + 3x− 10
=

x− 1− 27
x
+ 29

x2

1 + 3
x
− 10

x2

and that, consequently, we have

f(x) >
x− 3

1 + 1
2

if x is sufficiently large. We leave the details as an exercises.

8.3 One-Sided Limits

8.3.1 Introduction to One-Sided Limits
Suppose thatS is a set of real numbers, thatf : S → R, thatλ is an extended real
number, and thata is a real number that is a limit point of the set(−∞, a)∩S.As
we know, the conditionf(x) → λ asx → a is equivalent to the condition that for
every neighborhoodV of λ there exists a numberδ > 0 such that the condition
f(x) ∈ V holds for every numberx ∈ S \ {a} that satisfies the inequality
|x− a| < δ.

We shall now restrict the functionf to the part of the setS that lies to the left
of the numbera, and we call this restricted functiong. More precisely, we define

g(x) = f(x)

for every numberx in the setS ∩ (−∞, a). The conditiong(x) → λ asx → a
is equivalent to the condition that for every neighborhoodV of λ there exists
a numberδ > 0 such that the conditiong(x) ∈ V holds for every number
x ∈ S ∩ (−∞, a) that satisfies the inequality|x− a| < δ.Another way of
stating this condition is to say that for every neighborhoodV of λ there exists a
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numberδ > 0 such that the conditionf(x) ∈ V holds for every numberx ∈ S
that satisfies the inequality

0 < a− x < δ.

If g(x) → λ asx → a, then we say thatλ is a limit from the left at a of the
functionf and we write

f(x) → λ asx → a− .

In the same way, ifa is a limit point of the setS ∩ (a,∞), then we say thatλ is
a limit from the right ata of the functionf and we write

f(x) → λ asx → a+

if for every neighborhoodV of λ there exists a numberδ > 0 such that the
conditionf(x) ∈ V holds for every numberx ∈ S that satisfies the inequality

0 < x− a < δ.

8.3.2 Linking One-Sided and Two-Sided Limits
Suppose that S is a set of real numbers, that f : S → R, that λ is an extended
real number, and that a is a limit point of both of the sets (−∞, a) ∩ S and
S ∩ (a,∞).Then the following conditions are equivalent:

1. f(x) → λ as x → a.
2. The number λ is a limit of f from the left at a and is also a limit of f from

the right at a.

We leave the proof of this theorem as an exercise.

8.3.3 Some Further Exercises on Limits

1. Given that

f(x) =

{
1 if x < 2

0 if x > 2,

prove thatf has a limit from the left at2 and also has a limit from the right
at2 but does not have a limit at2.

2. Given that

f(x) =
1

|x− 3|
for all numbersx 	= 3, explain whyf has a limit (an infinite limit) at3.
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3. Given that

f(x) =
1

x− 3

for all numbersx 	= 3, explain whyf has an infinite limit from the left at3
and also has an infinite limit from the right at3 but does not have a limit at3.

4. Prove that

x3 − 8

x2 + x− 6
→ ∞

asx → ∞.
5. Prove that

x4 − 4x3 − x2 + x+ 7

x3 − 2x2 − 2x− 3
→ ∞

asx → ∞.
6. Prove that

3x2 + x− 1

5x2 + 4
→ 3

5
asx → ∞.

7. Given that

f(x) =

{
1 if x is rational

0 if x is irrational,

explain whyf does not have a limit from the right at2.
8. Suppose thata is an interior point of a setS of real numbers and that

f : S → R. Suppose thatf(x) → 0 asx → a− and thatf(x) → 1 as
x → a+. Prove that the functionf does not have a limit at the numbera.

8.4 The Relationship Between Limits of Functions
and Limits of Sequences

In this section we shall see that the concepts of limit of a function and limit of
a sequence are closely related. Then in the next section we shall use this close
relationship to obtain a free ride through many of the basic properties of limits of
functions by tying them to the analogous statements about sequences.

The key to the relationship between limits of functions and limits of se-
quences is Section 7.6, and it would therefore be a good idea to review that
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section now. At the same time it might be a good idea to take a look at Exercise
5 of Subsection 7.6.4.

8.4.1 Connecting the Two Limit Notions
Suppose that S is a set of real numbers, that f : S → R, that a is a limit point
of S, and that λ is a real number. Then the following conditions are equivalent:

1. f(x) → λ as x → a.
2. For every sequence (xn) in the set S \ {a}, if xn → a as n → ∞, then

f(xn) → λ as n → ∞.

We shall prove this theorem by showingfirst that if condition 1 is true, then
so is condition 2. Then we shall show that if condition 1 is false, then condition
2 must also be false.

Proof that Condition 1 Implies Condition 2. We assume thatf(x) → λ
asx → a. To prove that condition 2 must hold, we suppose that(xn) is a
sequence in the setS \ {a} and thatxn → a asn → ∞.We must now show that
f(xn) → λ asn → ∞. Suppose thatε > 0. Using the fact thatf(x) → λ as
x → a, we now choose a numberδ > 0 such that the condition

|f(t)− λ| < ε

holds whenevert ∈ S \ {a} and |t− a| < δ. Using the fact thatxn → a as
n → ∞, we now choose an integerN such that the condition|xn − a| < δ
holds for everyn ≥ N and we observe that the inequality

|f(xn)− λ| < ε

holds whenevern ≥ N . �

Proof that if Condition 1 Is False, then Condition 2 Is False:
Using the fact that the conditionf(x) → λ asx → a is false, we choose a
numberε > 0 such that for every positive numberδ there is at least one number
x ∈ (a− δ, a+ δ) ∩ S \ {a} for which |f(x)− λ| ≥ ε.

For each positive integern we use the fact that1/n > 0 to choose a number
that we shall callxn in the set(

a− 1

n
, a+

1

n

)
∩ S \ {a}

such that|f(xn)− λ| ≥ ε. In this way we have found a sequence(xn) in S\{a}
such thatxn → a even though the corresponding sequence(f(xn)) fails to have
a limit value ofλ. We deduce that condition 2 is false.�
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8.4.2 An Analog for Limits at Infinity
Suppose that S is a set of real numbers, that S is unbounded above, that f : S →
R, and that λ is a real number. Then the following conditions are equivalent:

1. f(x) → λ as x → ∞.
2. For every sequence (xn) in the set S, if xn → ∞ as n → ∞, then

f(xn) → λ as n → ∞.

The proof that condition 1 implies condition 2 is analogous to the proof just
given for limits at a numbera and will be left as an exercise.

Proof that if Condition 1 Is False, then Condition 2 Is False. Using the
fact that the conditionf(x) → λ asx → ∞ is false, we choose a numberε > 0
such that for every real numberv there is at least one numberx ∈ (v,∞) ∩ S
for which |f(x)− λ| ≥ ε. For each positive integern we choose a number that
we shall callxn ∈ S such thatxn > n and such that|f(xn)− λ| ≥ ε. In this
way we have found a sequence(xn) in S such thatxn → ∞, even though the
corresponding sequence(f(xn)) fails to have a limit value ofλ. We deduce that
condition 2 is false.�

8.4.3 Analogs for Infinite Limits
The two preceding theorems have natural analogs for infinite limits. For example:

Suppose that S is a set of real numbers, that f : S → R, and that a is a limit
point of S. Then the following conditions are equivalent:

1. f(x) → ∞ as x → a.
2. For every sequence (xn) in the set S \ {a}, if xn → a as n → ∞, then

f(xn) → ∞ as n → ∞.

We leave the proof of this fact as an exercise.

8.4.4 A Stronger Connection Between Functions and Sequences
As before, we suppose thatS is a set of real numbers, thatf : S → R, and that
a andλ are extended real numbers. Ifa ∈ R, we assume thata is a limit point of
S; if a = ∞, we assume thatS is unbounded above; and ifa = −∞, we assume
thatS is unbounded below. Under these conditions, Theorem 8.4.1 tells us that
the conditionf(x) → λ asx → a will be assured if we know that whenever
(xn) is a sequence in the setS \ {a} andxn → a asn → ∞, thenf(xn) → λ
asn → ∞.

There is, however, a stronger theorem that tells us that the conditionf(x) →
λ asx → a will be assured if we know that whenever(xn) is a sequence in the
setS \ {a} andxn → a asn → ∞, if the sequence(f(xn)) has any limit at all,
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then this limit must beλ. An alternative way of stating this theorem is as follows:

If the function f does not have a limit value of λ at a, then there must exist
a sequence (xn) in the set S \ {a} and a number µ 	= λ such that xn → a as
n → ∞ and f(xn) → µ as n → ∞.

This stronger theorem is a little harder to prove and will not be proved here.
If you chose in Section 7.2 to read the optional material on subsequences, then
you can reach the theorem by clicking on the icon . If you have not read the
material on subsequences, then you canstill read the proof of this theorem but
the proof will be a little longer andcan be reached by clicking on the icon .

8.5 Some Facts About Limits of Functions

In this section we study some elementary properties of limits of functions. Some
of these facts are analogous to theorems about sequences that we studied in
Chapter 7, and although these can be deduced directly from the definition of
this kind of limit, we shall deduce them much more quickly by making use of the
corresponding facts about limits of sequences and the relationship between the
two kinds of limits that we observed in Theorem 8.4.1. In this sense we can think
such theorems as coming to us “for free”.

8.5.1 The Uniqueness of Limits of Functions
Suppose that S ⊆ R, and that f : S → R. Suppose that f(x) → λ as x → a.
Then the number λ is the only possible limit value of the function f at a.

Proof. Using our understanding that ifa ∈ R, thena is a limit point ofS; that if
a = ∞, thenS is unbounded above; and that ifa = −∞, thenS is unbounded
below, choose a sequence(xn) in the setS \ {a} such thatxn → a asn → ∞.

If λ andµ are extended real numbers that are both limit values of the function
f ata, then it follows from Theorem 8.4.1 thatf(xn) → λ asn → ∞ and also
f(xn) → µ asn → ∞. By the uniqueness theorem for limits of sequences
(Theorem 7.4.1) we know thatλ = µ. Thus the functionf can have not more
than one limit value at the numbera. �

8.5.2 Limit Notation for Functions
Suppose thatS is a set of real numbers, thatf : S → R, and thatf(x) → λ as
x → a. Since we know that the limit valueλ is unique, we can give it a name.
We write it as

lim
x→a

f(x).

Of course, the symbolx plays no special role in the latter expression. We could
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just as well have written

λ = lim
t→a

f(t)

or even

λ = lim
a

f.

If λ is the limit off from the left ata, then we write

λ = lim
x→a−

f(x) = lim
a−

f = f(a−),

and we employ a similar notation for limits from the right.

8.5.3 The Sandwich Theorem for Limits of Functions
Suppose that f , g, and h are functions defined on a given set S of real numbers
and that a is an extended real number. Suppose that the inequality

f(x) ≤ g(x) ≤ h(x)

holds for every number x ∈ S \ {a}. Suppose finally that the limits

lim
x→a

f(x) and lim
x→a

h(x)

exist and are equal to each other. Then the function g also has a limit at a and
we have

lim
x→a

f(x) = lim
x→a

g(x) = lim
x→a

h(x).

Proof. Suppose that(xn) is a sequence in the setS \ {a} and thatxn → a as
n → ∞. We deduce from Theorem 8.4.1 that

lim
n→∞

f(xn) = lim
n→∞

h(xn).

Since the inequality

f(xn) ≤ g(xn) ≤ h(xn)

holds for every positive integern, we deduce from the sandwich rule for se-
quences (Theorem 7.4.6) that

lim
n→∞

f(xn) = lim
n→∞

g(xn) = lim
n→∞

h(xn).

Using Theorem 8.4.1 once again we deduce that

lim
x→a

f(x) = lim
x→a

g(x) = lim
x→a

h(x).
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8.5.4 Algebraic Rules for Limits of Functions
Suppose that f and g are functions defined on a set S of real numbers and that
f(x) → λ as x → a and g(x) → µ as x → a. Then each of the following
conditions holds as long as the appropriate limit value is defined:

1. f(x) + g(x) → λ+ µ as x → a.
2. f(x)− g(x) → λ− µ as x → a.
3. f(x)g(x) → λµ as x → a.
4. f(x)/g(x) → λ/µ as x → a. The sense in which this fourth assertion

is made is that there exists a neighborhood U of the number a such that
g(x) 	= 0 whenever x ∈ U ∩S \{a} and that we have restricted the function
f/g to the set U ∩ S \ {a}.

Proof. Suppose that(xn) is a sequence in the setS \ {a} and thatxn → a as
n → ∞. We deduce from Theorem 8.4.1 that

f(xn) + g(xn) → λ+ µ

f(xn)− g(xn) → λ− µ

f(xn)g(xn) → λµ

asn → ∞. Now we need to explain why, if the ratioλ/µ is defined, the function
f/g is defined at every numberx in some neighborhood of the numbera.In
order for the ratioλ/µ to exist we must haveµ 	= 0, and therefore the condition
g(x) → µ asx → a guarantees that there is a neighborhoodU of a such that
g(x) 	= 0 wheneverx ∈ U ∩ S \ {a}. The functionf/g is defined at every
numberx in the setU ∩ S \ {a}. Sincexn ∈ U ∩ S \ {a} for all sufficiently
largen, we know that

f(xn)/g(xn) → λ/µ.

All of the limit rules for functions therefore follow at once from the correspond-
ing rules for sequences seen in Subsection 7.5.3.

8.6 The Composition Theorem for Limits

8.6.1 Introduction to the Composition Theorem

Suppose thatf is a function from a setA of real numbers into a setB of
real numbers and thatg is a function fromB into a setC of real numbers. As we
know from Subsection 4.3.11, the compositiong ◦ f of the functionsf andg is
defined by the equation

(g ◦ f) (x) = g (f(x))
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for every numberx ∈ A. Suppose now thata, b, andc are extended real numbers;

thatf(x) → b asx → a; and thatg(y) → c asy → b.See Figure 8.5. A natural

f

g

a
b

c

A B

C

g  f

Figure 8.5

question to ask is whether(g ◦ f) (x) → c asx → a.At first sight, the answer
seems to beyes. One might argue that if a numberx in the setA \ {a} is
sufficiently close toa, thenf(x) will be a member of the setB lying close to
b and sog (f(x)) ought to be close toc. However, this reasoning is not valid
because the fact thatg(y) → c asy → b does not guarantee that we can make
g(y) close toc for all numbersy in the setB that are sufficiently close tob.What
the condition thatg(y) → c asy → b actually says is that we can makeg(y)
close toc for all numbersy in the setB \ {b} that are sufficiently close tob.

Unfortunately, ifx is a number in the setA\{a}, there is no reason to expect
that the numberf(x) should belong to the setB \{b}. It is quite possible to have
f(x) = b, and this possibility compels us to state the composition theorem more
carefully. Before we state the composition theorem we shall look at a simple
example that shows what can go wrong with the composition theorem if we don’t
approach it carefully enough.

8.6.2 Illustrating the Limitations of the Composition Theorem
In this example we shall take

A = B = C = R

and we shall definef(x) = 1 for every numberx and

g(y) =

{
0 if y 	= 1

2 if y = 1.
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We see that

lim
x→3

f(x) = 1

and

lim
y→1

g(y) = 0.

However, sinceg (f(x)) = 2 for every numberx, we have

lim
x→3

g (f(x)) = 2 	= 0.

8.6.3 Statement of the Composition Theorem for Limits
Suppose that f is a function from a set A of real numbers into a set B of real
numbers and that g is a function from B into a set C of real numbers. Suppose
that a, b, and c are extended real numbers; that f(x) → b as x → a; and that
g(y) → c as y → b.Then the assertion

g (f(x)) → c as x → a

will be true if and only if at least one of the following two conditions holds:

1. There exists a neighborhood U of a such that the inequality f(x) 	= b holds
for every number x in the set A ∩ U \ {a}.

2. The number b lies in the set B and g(b) = c.

Part 1 of the Proof. We assume that condition 1 holds and we want to
show thatg (f(x)) → c asx → a. Using condition 1 we choose a neighborhood
U1 of a such that for every numberx in the setU1 ∩A \ {a} we havef(x) 	= b.
See Figure 8.6.

To prove thatg (f(x)) → c asx → a, suppose thatW is any neighborhood
of the numberc and, using the fact thatg(y) → c asy → b, choose a neighbor-
hoodV of b such that the conditiong(y) ∈ W will be satisfied for every number
y in the setV ∩B \ {b}.

Having chosen this neighborhoodV of b, we now use the fact thatf(x) → b
asx → a to choose a neighborhoodU2 of a such that the conditionf(x) ∈ V
holds for every numberx in the setA ∩ U2 \ {a}.

We define

U = U1 ∩ U2

and we observe thatU is a neighborhood of the numbera and that the condition
g (f(x)) ∈ W holds for every numberx in the setU ∩A \ {a}.
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Figure 8.6

Part 2 of the Proof. We assume that condition 2 holds, and we want to show that
g (f(x)) → c asx → a. Suppose thatW is any neighborhood of the number
c and, using the fact thatg(y) → c asy → b, choose a neighborhoodV of b
such that the conditiong(y) ∈ W will be satisfied for every numbery in the set
V ∩ B \ {b}.Sincec = g(b), the conditiong(y) ∈ W also holds wheny = b.
Therefore the conditiong(y) ∈ W holds for every numbery in the setV ∩B.

Using the fact thatf(x) → b asx → a, we now choose a neighborhood
U of a such that the conditionf(x) ∈ V holds for every numberx in the set
U∩A\{a}.We observe that the conditiong (f(x)) ∈ W holds for every number
x in the setU ∩A \ {a}.

Part 3 of the Proof. We assume that neither condition 1 nor condition 2 holds.
This time we need to explain why the assertion thatg (f(x)) → c asx → a is
false.

Since condition 1 is false, there must exist numbersx in the setA for which
f(x) = b and thereforeb ∈ B. We can now deduce from the fact that con-
dition 2 is false thatg(b) 	= c, and, using the fact thatg(b) 	= c, we choose a
neighborhoodW of the numberc that does not contain the numberg(b).Now, to
see that the assertiong (f(x)) → c asx → a is false, we observe that ifU is
any neighborhood of the numbera, then, since condition 1 is false, there exist
numbersx in the setU ∩A \ {a} for whichf(a) = b and, for any such number
x, we have

g (f(x)) = g(b) /∈ W .
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8.7 Continuity

8.7.1 Introduction to the Concept of Continuity
When we defined the notionf(x) → λ asx → a in Section 8.1 we were careful
to point out that the numberf(a) plays no role at all in the definition. As you
may recall, the notionf(x) → λ asx → a does not even require the numbera
to belong to the domain of the functionf .

There are times, however, when the numbera does belong to the domain of
the functionf and when the limit valueλ of f ata is exactly equal to the number
f(a). This extra good behavior distinguishes between the concept of continuity
that we are about to study in the present section and the notion of a limit that we
have been studying up until now. We begin with the precise definition.

8.7.2 Continuity of a Function at a Given Number
Suppose thatS is a set of real numbers, thatf : S → R and thata ∈ S. We say
that the functionf is continuous at the numbera if for every neighborhoodV
of the numberf(a) there exists a neighborhoodU of the numbera such that the
conditionf(x) ∈ V holds for every numberx ∈ U ∩ S.

Note that this definition doesnot require the numbera to be a limit point of
the domainS of the functionf , but it does requirea to belong toS.

8.7.3 Epsilon-Delta Condition for Continuity
By analogy with the theorems on limits that we saw in Subsection 8.1.4 we have
the following equivalent forms of the definition of continuity of a function:

Suppose that S is a set of real numbers, that f : S → R, and that a ∈ S.
Then the following three conditions are equivalent:

1. The function f is continuous at the number a.
2. For every number ε > 0 there exists a number δ > 0 such that the condition

f(x) ∈ (f(a)− ε, f(a) + ε)

holds for every number x in the set (a− δ, a+ δ) ∩ S.
3. For every number ε > 0 there exists a number δ > 0 such that the inequality

|f(x)− f(a)| < ε

holds for every number x in the set S that satisfies the inequality

|x− a| < δ.

Proof. The proof of this theorem is similar to the proof of the analogous assertion
for limits that we saw in Subsection 8.1.4 and will be left as an exercise.
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8.7.4 Continuity of a Function on a Set
Suppose thatS is a set of real numbers and thatf : S → R. We say that the
functionf is continuous on the setS if, for every numberx ∈ S, the functionf
is continuous atx.

8.7.5 The Relationship Between Limits and Continuity
In this subsection we make a more careful comparison between the concept of a
limit and the concept of continuity than we made in the introduction.

Suppose that S is a set of real numbers, that f : S → R, and that a ∈ S.

1. If the number a is not a limit point of the set S, then the function f is
automatically continuous at a.

2. If the number a is a limit point of the set S, then the following two conditions
are equivalent:

(a) The function f is continuous at the number a.
(b) We have f(x) → f(a) as x → a.

Proof of Part 1. Suppose thatV is a neighborhood of the numberf(a). Using
the fact thata is not a limit point of the setS, we choose a neighborhoodU of a
such that the setU ∩S \{a} is empty. Then for every numberx in the setU ∩S
we have

f(x) = f(a) ∈ V .

Proof of Part 2: Condition a Implies Condition b. We assume that the number
a is a limit point of the setS and thatf is continuous ata. To prove thatf(x) →
f(a) asx → a, suppose thatV is a neighborhood of the numberf(a). Using
the fact thatf is continuous ata, choose a neighborhoodU of a such that the
conditionf(x) ∈ V holds for every numberx in the setU∩S.Then the condition
f(x) ∈ V certainly holds for every numberx in the setU ∩ S \ {a} and so
f(x) → f(a) asx → a. �

Proof of Part 2: Condition b Implies Condition a. We assume that the number
a is a limit point of the setS and thatf(x) → f(a) asx → a. To prove thatf
is continuous at the numbera, suppose thatV is a neighborhood of the number
f(a). Using the fact thatf(x) → f(a) asx → a, we choose a neighborhood
U of a such that the conditionf(x) ∈ V holds for every numberx in the set
U ∩ S \ {a}. Since the conditionf(x) ∈ V is also true whenx = a we know
thatf(x) ∈ V for every numberx in the setU ∩ S, and so we have shown that
f is continuous at the numbera. �
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8.7.6 The Relationship Between Limits of Sequences and Continuity of
Functions
By analogy with the relationship between limits of sequences and limits of func-
tions that we saw in Section 8.4, we have the following relationship between
limits of sequences and the concept of continuity:

Suppose that S is a set of real numbers, that f : S → R and that a ∈ S.
The following conditions are equivalent:

1. The function f is continuous at the number a.
2. Given any sequence (xn) in the set S that converges to the number a we

have f(xn) → f(a) as n → ∞.
3. Given any sequence (xn) in the set S that has the number a as a partial

limit, the number f(a) will be a partial limit of the sequence (f(xn)).

Proof that Condition 1 Implies Condition 2. We assume that the functionf is
continuous ata and that(xn) is a sequence inS that converges toa, and we need
to show thatf(xn) → f(a) asn → ∞. Suppose thatε > 0.

Using the fact thatf is continuous at the numbera we choose a number
δ > 0 such that the inequality|f(x)− f(a)| < ε holds for every numberx
in the setS that satisfies the inequality|x− a| < δ. Now we use the fact that
xn → a asn → ∞ to choose an integerN such that the inequality|xn − a| < δ
holds whenevern ≥ N . We see that the inequality|f(xn)− f(a)| < ε holds
whenevern ≥ N .

Proof that Condition 1 Implies Condition 3. We leave this proof as an exercise.

Proof that if Condition 1 Is False, then Both Conditions 2 and 3 Are False.
We assume that condition 1 is false, in other words, thatf fails to be continuous at
the numbera. Choose a numberε > 0 such that it is impossible to find a number
δ > 0 such that the inequality|f(x)− f(a)| < ε holds for every numberx in
the setS that satisfies the inequality|x− a| < δ.

What we know about this numberε is that, ifδ is any positive number, then
there must exist a numberx in the setS that satisfies the inequality|x− a| <
δ even though|f(x)− f(a)| ≥ ε. For every positive integern we use the
fact that1/n > 0 to choose a numberxn ∈ S such that|xn − a| < 1/n and
|f(xn)− f(a)| ≥ ε. In this way we have found a sequence(xn) in the setS
that converges toa and the fact that|f(xn)− f(a)| ≥ ε for everyn prevents the
numberf(a) from being a partial limit of the sequence(f(xn)). Therefore both
of the conditions 2 and 3 are false.�
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8.7.7 Algebraic Combinations of Continuous Functions
Suppose that f and g are functions from a set S of real numbers into R, that
a ∈ R, and that both of the functions f and g are continuous at the number a.
Then the functions f + g, and f − g, and fg are also continuous at the number
a and, in the event that g(x) 	= 0 for every x ∈ S, the function f/g is also
continuous at the number a.

This theorem follows simply from the algebraic rules for limits of sequences
that we saw in Theorem 7.5.2 and the relationship between continuity and limits
of sequences that we saw in Theorem 8.7.6. We leave the proof as an exercise.

8.7.8 Polynomials and Rational Functions
We deduce at once from the preceding theorem that all polynomials are contin-
uous and that rational functions are continuous at every number at which their
denominators are not zero.

8.7.9 The Composition Theorem for Continuity
Suppose that A and B are sets of real numbers, that f : A → B, and that
g : B → R. Suppose that f is continuous at a number x ∈ A and that g is
continuous at the number f(x). Then the composition function g◦f is continuous
at the number x.

Proof. Suppose that(xn) is a sequence in the setA that converges to the number
x.Sincef is continuous at the numberx, we know from Theorem 8.7.6 that
f(xn) → f(x) asn → ∞.Using Theorem 8.7.6 again and the fact that the func-
tion g is continuous at the numberf(x), we deduce thatg (f(xn)) → g (f(x))
asn → ∞, and using Theorem 8.7.6 once more we deduce that the function
g ◦ f is continuous at the numberx. �

Notice how much simpler the composition theorem for continuity is than the
corresponding theorem, Theorem 8.6.3, for limits of functions.

8.7.10 Some Exercises on Continuity

1. Given that

f(x) =
x− 1

x2 + 3

for every numberx, prove that the functionf is continuous at the number2.
2. Given that

f(x) =

{
x sin 1

x
if x 	= 0

0 if x = 0,
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prove that the functionf is continuous at the number0. Hint: Use the
fact that|f(x)| ≤ |x| for every numberx and use the sandwich theorem
(Theorem 8.5.3). The graph of this function is illustrated in Figure 8.7.

Figure 8.7

3. Given thatf is the ruler function defined in Example 8 of Subsection
8.1.5, explain whyf is continuous at every irrational number in the interval
[0, 1] and discontinuous at every rational number in[0, 1].

4. Suppose thatf andg are functions from a given setS of real numbers into
R and that the inequality

|f(t)− f(x)| ≤ |g(t)− g(x)|
holds for all numberst andx in S.Prove thatf must be continuous at every
number at which the functiong is continuous.

5. Given thatf is a continuous function from a setS intoR, prove that the
function|f | is also continuous fromS intoR.

6. Suppose thata andb are real numbers, thata < b, and that

f : [a, b] → R.

Prove that the following conditions are equivalent:

(a) The functionf is continuous at the numbera.
(b) For every numberε > 0 there exists a numberδ > 0 such that for every

numberx in the interval[a, b] that satisfies the inequalityx− a < δ we
have|f(x)− f(a)| < ε.

7. Given thatf is continuous on a closed setH and that(xn) is a convergent
sequence in the setH, prove that the sequence(f(xn)) is also convergent.
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Prove that this assertion is false if we omit the assumption thatH is closed.
8. Prove that if a setS has no limit points, then every functionf : S → R is

continuous onS.
9. Prove that ifS is a set of real numbers and if no limit point ofS belongs to

the setS, then every functionf : S → R is continuous onS.
10. Suppose thatf andg are functions from a setS toR and thatf is continuous

at a given numbera at which the functiong fails to be continuous.

(a) What can we say about the continuity of the functionf + g at the number
a?

(b) What can we say about the continuity of the functionfg at the numbera?
(c) What can we say about the continuity of the functionfg at the numbera

if f(a) = 0 andg is a bounded function?
(d) What can be said about the continuity of the functionfg if f(a) 	= 0?

11. Give an example of two functionsf andg that are both discontinuous at a
given numbera such that their sumf + g is continuous ata.

12. Given thatf is a continuous function from a closed setH into R and
thata ∈ H, prove that the set

E = {x ∈ H | f(x) = f(a)}
is closed. Hint: Consider the behavior of a convergent sequence in the setE.

13. Given thatf andg are continuous functions fromR toR and that

E = {x ∈ R | f(x) = g(x)} ,

prove that the setE must be closed.
14. Given thatf andg are continuous functions fromR to R and that

f(x) = g(x) for every rational numberx, prove thatf = g.

15. Given thatf : Z+ → R, thatf(1) = 1, and that the equation

f(x+ t) = f(x) + f(t)

holds for all positive integersx andt, prove thatf(x) = x for every positive
integerx.

16. Given thatf : Z → R, thatf(1) = 1, and that the equation

f(x+ t) = f(x) + f(t)

holds for all integersx andt, prove thatf(x) = x for every integerx.

17. Given thatf : Q → R, thatf(1) = 1, and that the equation

f(x+ t) = f(x) + f(t)
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holds for all rational numbersx andt, prove thatf(x) = x for every rational
numberx.

18. Given thatf is a continuous function fromR to R, thatf(1) = 1, and that
the equation

f(x+ t) = f(x) + f(t)

holds for all rational numbersx andt, prove thatf(x) = x for every real
numberx.

19. Given thatf is an increasing function fromR toR, thatf(1) = 1, and
that the equation

f(x+ t) = f(x) + f(t)

holds for all rational numbersx andt, prove thatf(x) = x for every real
numberx.28

Some additional exercises on continuity can be found by clicking on the icon
.

8.8 The Distance Function of a Set

This interesting and useful example of a continuous function can be found by
clicking on the icon .

8.9 The Behavior of Continuous Functions
on Closed Bounded Sets

One of the most important properties of continuous functions in the study of
differential calculus is the fact that every continuous functionf on a closed
bounded interval[a, b] must have both a maximum value and a minimum value.
In other words, iff is continuous on[a, b], then there must exist numbersc and
d in [a, b] such that

f(c) ≤ f(x) ≤ f(d)

28 Notice how the fact that this functionf is increasing makes it automatically continuous. This
exercise is actually the simplest in a long line of interesting theorems that say, roughly speaking,
that a functionf satisfying the identity

f (x+ y) = f (x) + f (y)

for all numbersx andy will either be continuous or it will be very badly behaved. See Boas [6]
for some more detailed results of this type. Some abstract results of this type can be found in
Lewin [18] .
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for everyx ∈ [a, b]. See Figure 8.8. The main purpose of this section is to

(a,f(a))
(b,f(b))

(c,f(c))

(d,f(d))

Figure 8.8

provide a proof of this assertion. In doing so, we shall extend the theorem slightly
and prove that every function that is continuous on a nonempty, closed, bounded
set of real numbers must have both a maximum and a minimum value. There are
two important ingredients in the proof of this important fact:

1. In Theorem 6.4.2 we observed that every nonempty closed bounded set of
real numbers has both a largest and a smallest member.

2. In Theorem 7.9.1 we learned that a setH of real numbers is closed and
bounded if and only if every sequence inH has a partial limit inH.

8.9.1 Continuous Image of a Closed Bounded Set
Suppose that H is a closed bounded set of real numbers and that f is a function
that is continuous on the set H. Then the range of the function f is also closed
and bounded.

Proof. Suppose that(yn) is a sequence in the setf [H].For eachn we choose a
numberxn in the setH such thatyn = f(xn), and, in so doing, we have chosen
a sequence in the setH. Using the fact thatH is closed and bounded, we now
choose a partial limitx of the sequence(xn) such thatx ∈ H. We now deduce
from Theorem 8.7.6 that the numberf(x) is a partial limit of the sequence(yn).
Since every sequence in the setf [H] has a partial limit inf [H], this set must be
closed and bounded.�

8.9.2 Maxima and Minima of a Continuous Function
Suppose that f is a continuous function on a nonempty closed bounded set H.
Then the function f has both a maximum and a minimum value.

Proof. The result follows at once from Theorem 6.4.2 and the fact that the set
f [H] is closed and bounded.�
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8.9.3 Some Exercises on Continuous Functions on Closed Bounded Sets

1. Give an example of a functionf that is continuous on a closed setH such
that the rangef [H] of the functionf fails to be closed.

2. Give an example of a functionf that is continuous on a closed setH such
that the rangef [H] of the functionf fails to be bounded.

3. Give an example of a functionf that is continuous on a bounded setH such
that the rangef [H] of the functionf fails to be closed.

4. Give an example of a functionf that is continuous on a bounded setH such
that the rangef [H] of the functionf fails to be bounded.

5. Prove that if a setH of real numbers is unbounded above andf(x) = x for
every numberx in H, thenf is a continuous function onH andf fails to
have a maximum.

6. Prove that ifH is a set of real numbers and a numbera is close toH
but does not belong toH, and if we define

f(x) =
1

|x− a|
for everyx ∈ H, thenf is a continuous function onH but f has no
maximum.

8.10 The Behavior of Continuous Functions on Intervals

8.10.1 Introduction to Functions on Intervals
The concept of an interval was first introduced in Example 5 of Subsection 4.2.9.
Then in Section 5.8.1 we encountered a criterion for determining whether or not
a given set is an interval. In this section we shall use that criterion in order to
study the behavior of functions that are continuous on intervals. We shall see,
among other things, that if a function is continuous on an interval, then its range
is also an interval.

We shall also have something to say about one-one functions. In our intro-
duction to one-one functions seen in Subsection 4.3.8, we saw the example that
was illustrated in Figure 4.6 and that warns us that not every one-one function is
monotone. We can obtain another example of this type by defining

f(x) =

{
x if 0 ≤ x < 1

3− x if 1 ≤ x ≤ 2

as illustrated in Figure 8.9. This exampleshows that even if both the domain and
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Figure 8.9

the range of a given one-one function are intervals, the function does not have to
be monotone. As you can see, the function in this example is a one-one function
from the interval[0, 2] onto the interval[0, 2], but it is not monotone and it is not
continuous at the number1.

On the other hand, we shall see in Theorem 8.10.7 that if a function is one-
one and continuous on an interval, then it must be strictly monotone. Then in
Theorem 8.10.9 we shall see that a monotone function defined on an interval is
continuous if and only if its range is also an interval.

8.10.2 Bolzano’s Intermediate Value Theorem
Suppose that f is a continuous function on an interval [a, b], and that w is a
number that lies between f(a) and f(b). Then there is at least one number c in
the interval [a, b] for which f(c) = w. This theorem is illustrated in Figure 8.10.

Proof. We shall assume, without loss of generality, that

f(a) < w < f(b).

We begin by defining

S = {x ∈ [a, b] | f(x) < w} .

The setS is nonempty becausea ∈ S and is bounded above because it is included
in the interval[a, b]. We definec = supS.

For each positive integern we use the fact that the numberc− 1/n is not an
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(a,f (a))

(b,f (b))

(c,f (c))
y = w 

Figure 8.10

upper bound ofS to choose a memberxn of S such that

c− 1

n
< xn ≤ c.

a bc − 1/n xn c

Sincexn → c asn → ∞ and sincef(xn) < w for everyn, we have

f(c) = lim
n→∞

f(xn) ≤ w.

From the fact thatf(c) ≤ w andf(b) > w, we deduce thatc 	= b.Therefore,
starting at a sufficiently large positive integern, the sequence of numbersc+1/n
is a sequence in the interval[a, b] that converges toc.Since none of the numbers
c+ 1/n can belong to the setS, we have

f(c) = lim
n→∞

f

(
c+

1

n

)
≥ w,

which completes the proof thatf(c) = w. �

8.10.3 Existence of nth Roots
Suppose that w is a positive number and that n is a positive integer. Then there
exists a unique positive number x such that w = xn.

Proof. We define

f(t) = tn

for every numbert ≥ 0.Since this functionf is strictly increasing, there cannot
be more than one numberx for which w = f(x).Therefore, to complete the
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proof, all we need to do is show that there is at least one numberx such thatw =
f(x), and we shall obtain this fact from Bolzano’s intermediate value theorem.
We definea = 0 andb = 1 + w.Sincef is continuous on the interval[a, b] and
since

f(a) = 0 < w < w + 1 ≤ (w + 1)n = f(b),

the Bolzano intermediate value theorem guarantees the existence of a number
x ∈ [a, b] such thatf (x) = w. �

8.10.4 Continuous Image of an Interval
Suppose that f is a continuous function on an interval S. Then the range of f is
also an interval.

Proof. In order to prove that the setf [S] is an interval we shall use Theorem
5.8.1. Suppose thatp andq are members of the setf [S] and thatw is a number
satisfying the inequality

p < w < q.

Choose numbersa andb in the intervalS such thatf(a) = p andf(b) = q.In
the event thata < b, the fact thatw ∈ f [S] follows at once from the Bolzano
intermediate value theorem applied to the functionf on the interval[a, b]. In the
event thatb < a, we obtainw ∈ f [S] by applying the Bolzano intermediate
value theorem tof on the interval[b, a]. �

8.10.5 The Concept of a Switch
The concept of a switch that is defined in this subsection is useful when we want
to prove that a given function is monotone.

Suppose thatf is a function defined on a setS of real numbers. An ordered
triple (a, b, c) of numbers that belong toS is said to be aswitch of the function
f if a < b < c and either one of the following conditions holds:

1. f(a) < f(b) andf(b) > f(c).
2. f(a) > f(b) andf(b) < f(c).

Figure 8.11 illustrates the two ways in which a switch can occur.

8.10.6 Existence of a Switch when a Function Is not Monotone
Suppose that S is a set of real numbers, that f is a function defined on S and
that the function f is not monotone. Then the function f has a switch.

Proof. Using the fact that the functionf is not monotone, we choose numbersa
andb in the setS such thata < b andf(a) < f(b) and choose numbersc and
d in the setS such thatc < d andf(c) > f(d). To obtain a contradiction we
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a b ca b c

Figure 8.11

assume that the functionf has no switch. We now break the proof down into the
six cases that are illustrated in Figure 8.12.

a b c d
a b c d< ≤ <

a bc d
a c b d≤ < ≤

a bc d
c a b d< < ≤

a bc d
a c d b≤ < ≤

a bc d
c a d b< ≤ ≤

a bc d
c d a b< < <

Figure 8.12

For example, in the first case, sincef(a) < f(b) andf has no switch, we
must havef(b) ≤ f(c).Thereforef(a) < f(c) and, becausef has no switch,
we must havef(c) ≤ f(d), which contradicts the choice of the numbersc and
d. The other five cases can be handled similarly.�

8.10.7 Monotonicity of One-One Functions
Every one-one function that is continuous on an interval must be strictly monotone.

Proof. Suppose thatf is a one-one continuous function on an intervalS.We shall
show thatf is monotone. Once we have shown thatf is monotone, it will follow
at once from the fact thatf is one-one thatf is strictly monotone. In order to
show thatf is monotone, all we have to do is show thatf does not have a switch.

To obtain a contradiction, assume thatf does have a switch inS. Choose
a switch(a, b, c) of the functionf . We know that one of the following two
conditions occurs:
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1. f(a) < f(b) andf(b) > f(c).
2. f(a) > f(b) andf(b) < f(c).

We shall assume that the first of theseconditions occurs and leave consid-
eration of the second one as an exercise. Choose a numberα that is less
thanf(b) but greater than both of the two numbersf(a) andf(c), as illustrated
in Figure 8.13. We now apply Bolzano’s intermediate value theorem (Theorem

(a,f(a))

(b,f(b))

(c,f(c))

a t b x c

y = α

Figure 8.13

8.10.2) to choose a numbert betweena andb and a numberx betweenb andc
such that

f(t) = α = f(x).

This choice of numberst andx contradicts our assumption that the functionf is
one-one.�

8.10.8 One-Sided Limits of a Monotone Function
In this subsection we shall learn that a monotone function always has one-sided
limits and that it is continuous at a number if and only if it does not “jump” there.
This concept is illustrated in Figure 8.14.

Suppose that f is an increasing function on an set S and that a is a real
number.

1. If a is a limit point of the set S ∩ (−∞, a), then the function f has a
(possibly infinite) limit from the left at a and

lim
x→a−

f(x) = sup {f(x) | x ∈ S and x < a} .
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Figure 8.14

2. If a is a limit point of the set S ∩ (a,∞), then the function f has a (possibly
infinite) limit from the right at a and

lim
x→a+

f(x) = inf {f(x) | x ∈ S and x > a} .

3. If a is a limit point of both of the sets S ∩ (−∞, a) and S ∩ (a,∞) and
a ∈ S, then we have

lim
x→a−

f(x) ≤ f(a) ≤ lim
x→a+

f(x),

and f will be continuous at the number a if and only if

lim
x→a−

f(x) = lim
x→a+

f(x).

Proof. We shall prove part 1 and leave part 2 as an exercise.Part 3 follows
at once from parts 1 and 2.

To prove part 1 we assume that the numbera is a limit point of the setS ∩
(−∞, a). We now define

λ = sup {f(x) | x ∈ S andx < a}
with the understanding thatλ may be equal to∞ and what we need to show is
thatf(x) → λ asx → a−. Sincef(x) ≤ λ wheneverx ∈ S andx < a, in
order to show thatf(x) → λ asx → a−, we need to show that for every number
w < λ the inequalityf(x) > w will hold wheneverx ∈ S andx < a andx is
sufficiently close toa. Suppose thatw < λ. Using the fact thatw is not an upper
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bound of the set

{f(x) | x ∈ S andx < a} ,

we choose a numberc ∈ S such thatc < a andf(c) > w.

ac x
Then for every numberx in the interval(c, a) we have

w < f(c) ≤ f(x),

and sof(x) → λ asx → a−. �

8.10.9 Monotone Continuous Functions
Suppose that f is a monotone function defined on an interval S. Then the follow-
ing conditions are equivalent:

1. The function f is continuous on S.
2. The range of f is an interval.

Proof. We know from Bolzano’s theorem (Theorem 8.10.2) that iff is continu-
ous onS, then the range off is an interval. On the other hand, iff fails to be
continuous at any numbera ∈ S, then it follows at once from Theorem 8.10.8
that the range off cannot be an interval.�

8.11 Inverse Function Theorems for Continuity

8.11.1 Introduction to Inverse Function Theorems
As we saw in Subsection 4.3.12, iff is a one-one function from a setA onto a
setB, then the inverse functionf−1 is a one-one function from the setB onto
the setA and for everyx ∈ A we have

f−1 (f(x)) = x.

In the event thatA andB are sets of real numbers andf is continuous on the set
A, a reasonable question to ask is whether the functionf−1 has to be continuous
on the setB. The answer isno! However, there are some important situations in
which the inverse function of a continuous one-one function will automatically
be continuous, and the description of any one of these is known as an inverse
function theorem for continuity. In Section 9.3.8 we shall also see an inverse
function theorem for derivatives.
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8.11.2 An Example of a Discontinuous Inverse Function
With an eye on Figure 8.15 we define

f(x) =

{
x if 0 ≤ x ≤ 1

x− 1 if 2 < x ≤ 3.

The functionf is a one-one continuous function from the set[0, 1] ∪ (2, 3] onto

Figure 8.15

the interval[0, 2].Notice that the domain of this functionf is not an interval and
it is not a closed set.

8.11.3 Inverse Function Theorem for Functions on Closed Bounded Sets
Suppose that f is a one-one continuous function from a closed bounded set H
onto a set K.Then the function f−1 is continuous from K onto H.

Proof. The proof will make use of the connection between continuity and lim-
its of sequences that appears in Theorem 8.7.6. Suppose thaty ∈ K and, to
prove that the functionf−1 is continuous at the numbery, suppose that(yn) is a
sequence in the setK that converges toy. We need to show that

f−1(yn) → f−1(y)

asn → ∞. We definex = f−1(y), and, for each positive integern, we define

xn = f−1(yn).

So what we need to show is thatxn → x asn → ∞, and in order to achieve
this goal we shall make use of Theorem 7.9.3. We shall establish the condition
xn → x asn → ∞ by showing that the numberx is the only partial limit of the
sequence(xn). Suppose thatt is any partial limit of the sequence(xn). Since
H is closed and bounded, we know thatt ∈ H, and so it follows from Theorem
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8.7.6 thatf(t) is a partial limit of the sequence(yn). But the only partial limit of
the convergent sequence(yn) is its limit y, and so

f(t) = y = f(x);

and it follows from the fact thatf is one-one thatt = x. Thusx is the only
partial limit of the sequence(xn), as we have promised, andxn → x asn → ∞.
�

8.11.4 Inverse Function Theorem for Functions on Intervals
Suppose that f is a one-one continuous function from an interval A onto a set
B.Then the function f−1 is continuous from B onto A.

Proof. Since the setA is an interval, we know from Theorem 8.10.4 that the
setB is an interval. We know from Theorem 8.10.7 that the functionf must be
strictly monotone. Sincef−1 is a strictly monotone function from the intervalB
onto the intervalA, it follows from Theorem 8.10.9 thatf−1 is continuous onB.
�

8.11.5 Exercises on Continuity of Functions on Intervals

1. Given thatS is a set of positive numbers and thatf(x) =
√
x for all

x ∈ S, prove thatf is a one-one continuous function onS. Prove thatS is
an interval if and only if the setf [S] is an interval.

2. Prove that there are three real numbersx satisfying the equation

x3 − 4x− 2 = 0.

3. Is it true that, if a setS of real numbers is not an interval, then there must
exist a one-one continuous function onS whose inverse function fails to be
continuous?

4. Is it true that, if a setS of real numbers is not an interval and is not
closed, then there must exist a one-one continuous function onS whose
inverse function fails to be continuous?

5. Is it true that, if a setS of real numbers is not an interval and is not bounded,
then there must exist a one-one continuous function onS whose inverse
function fails to be continuous?

6. Prove that iff is a continuous function from the interval[0, 1] into
[0, 1], then there must be at least one numberx ∈ [0, 1] such thatf(x) = x.
This assertion is the one-dimensional form of theBrouwer fixed point
theorem.
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8.12 Uniform Continuity

In this section we introduce a notion calleduniform continuity that resembles
continuity but is a little stronger. We can think of the condition of uniform
continuity as saying that a given function is continuous at “about the same rate”
throughout its domain. The notion of uniform continuity will be a useful tool
when we come to the theory of integration in Chapter 11.

8.12.1 Introduction to Uniform Continuity
Suppose thatf is a function defined on a setS of real numbers. We begin
our discussion of uniform continuity by comparing the following two sets of
conditions:

1. (a) For every numberx ∈ S the functionf is continuous atx.
(b) For every numberx ∈ S and for every numberε > 0 there exists a

numberδ > 0 such that the inequality

|f(t)− f(x)| < ε

holds for every numbert in the setS for which |t− x| < δ.
(c) For every numberε > 0 and for every numberx ∈ S there exists a

numberδ > 0 such that the inequality

|f(t)− f(x)| < ε

holds for every numbert in the setS for which |t− x| < δ.
2. (a) For every numberε > 0 there exists a numberδ > 0 such that for every

numberx ∈ S the inequality

|f(t)− f(x)| < ε

holds for every numbert in the setS for which |t− x| < δ.
(b) For every numberε > 0 there exists a numberδ > 0 such that the

inequality

|f(t)− f(x)| < ε

holds for every numberx ∈ S and every numbert in the setS for which
|t− x| < δ.

The three conditions 1a, 1b, and 1c are obviously equivalent to one another,
and what each of them says is that the functionf is continuous on the setS.The
conditions 2a and 2b are also obviously equivalent to one another, but they are
not equivalent to the conditions 1a, 1b, and 1c. To help sort out the distinction
between the two concepts, you may wish to make a review of Subsection 2.1.4.
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Both sets of conditions require an inequality of the form

|f(t)− f(x)| < ε

to hold whenever the numberst andx are close enough to each other to satisfy
an inequality of the form|t− x| < δ, but the two sets of conditions differ from
one another in the way in which they introduce the numberδ.

In the conditions 1a, 1b, and 1c, the numberδ comes forward to answer the
challenge posed by a specific numberε > 0 and a specific numberx ∈ S. Both
ε andx must be in our hands before we can say that there exists a numberδ
such that for every numbert ∈ S satisfying the inequality|t− x| < δ, we have
|f(t)− f(x)| < ε.

However, in the conditions 2a and 2b, the numberδ responds to the challenge
posed by the numberε acting alone. Onceε has been prescribed, the numberδ
comes forward to say that, for all numberst andx that belong to the setS and
satisfy the inequality|t− x| < δ, we have|f(t)− f(x)| < ε.

8.12.2 Definition of Uniform Continuity
Suppose thatf is a function defined on a setS of real numbers. We say thatf
is uniformly continuous on the setS if for every numberε > 0 it is possible to
find a numberδ > 0 such that the inequality

|f(t)− f(x)| < ε

holds for all numberst andx in the setS that satisfy the inequality|t− x| < δ.

8.12.3 Failure of Uniform Continuity

Suppose thatf is a function defined on a setS of real numbers. The
assertion that the functionf fails to be uniformly continuous onS denies that for
every numberε > 0 it is possible to find a numberδ > 0 such that the inequality

|f(t)− f(x)| < ε

will hold for all numberst andx in the setS that satisfy the inequality|t− x| <
δ. Denying that a condition holds for every numberε > 0 is the same as saying
that there exists at least one numberε > 0 for which the condition does not hold.

Therefore, the assertion thatf fails to be uniformly continuous on the setS
says that it is possible to find a numberε > 0 such that for every positive number
δ there exist numberst andx in the setS such that|t− x| < δ and

|f(t)− f(x)| ≥ ε.
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8.12.4 The Relationship Between Limits of Sequences and Uniform
Continuity of Functions
One of the tools that we used in our study of continuity was the relationship
given in Subsection 8.7.6 between continuity and limits of sequences. We shall
now explore a similar and very useful relationship between uniform continuity
and limits of sequences.29

Suppose that f is a function from a set S of real numbers into R. Then the
following conditions are equivalent:

1. If the function f is uniformly continuous on S, then, given any two
sequences (xn) and (tn) in S such that tn − xn → 0 as n → ∞, we have
f(tn)− f(xn) → 0 as n → ∞.

2. If the function f fails to be uniformly continuous on S, then it is possible
to find two sequences (xn) and (tn) in S and a number ε > 0 such that
tn − xn → 0 as n → ∞ and |f(tn)− f(xn)| ≥ ε for every n.

Proof: To prove part 1 of the theorem, we assume thatf is uniformly contin-
uous onS. Suppose that(tn) and(xn) are sequences inS and thattn − xn → 0
asn → ∞. In order to show thatf(tn)− f(xn) → 0 asn → ∞, suppose that
ε > 0.

Using the fact thatf is uniformly continuous onS we choose a number
δ > 0 such that whenevert andx are members ofS and|t− x| < δ we have
|f(t)− f(x)| < ε. Now, using the fact thattn − xn → 0 asn → 0 we choose
an integerN such that the inequality

|tn − xn| < δ

holds whenevern ≥ N . Then whenevern ≥ N we have

|f(tn)− f(xn)| < ε.

Now, to prove part 2 of the theorem, we assume thatf fails to be uniformly
continuous on the setS. Using the remarks that appeared in Subsection 8.12.3,
we choose a numberε > 0 such that for every positive numberδ there must exist
numberst andx in S for which |t− x| < δ even though

|f(t)− f(x)| ≥ ε.

For each positive integern we use the fact that1/n > 0 to choose numbers that

29 The author is indebted to Sean Ellermeyer for his suggestion that the present material be
elevated from its former status ofexercise to a theorem in the text.
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we shall calltn andxn in the setS such that

|tn − xn| < 1

n

even though

|f(tn)− f(xn)| ≥ ε.

In this way we have found two sequences(tn) and(xn) in S such thattn−xn →
0 and

|f(tn)− f(xn)| ≥ ε

for everyn. �

8.12.5 Some Examples and Observations Illustrating Uniform
Continuity

1. Suppose thatf(x) = x2 for x ∈ [0, 1].As we know, this polynomial is
continuous on[0, 1], but we shall now go a little further and show thatf
is actually uniformly continuous on[0, 1]. Our proof will be based on the
observation that ift andx are any numbers in the interval[0, 1], then

|f(t)− f(x)| = ∣∣t2 − x2
∣∣ = |t− x| |t+ x| ≤ 2 |t− x| .

Now suppose thatε > 0 and defineδ = ε/2. Whenevert andx are numbers
in the interval[0, 1] and|t− x| < δ we have

|f(t)− f(x)| ≤ 2 |t− x| < 2
(ε
2

)
= ε.

2. Suppose thatf(x) = x2 for every real numberx. Although this polynomial
f is continuous on the setR, it is not uniformly continuous. To show that
f is not uniformly continuous onR we definexn = n andtn = n + 1/n
for every positive integern. We observe that, even thoughtn − xn → 0 as
n → ∞, we have

f(tn)− f(xn) =

(
n+

1

n

)2

− n2 = 2 +
1

n2

for eachn, and so we cannot havef(tn)− f(xn) → 0 asn → ∞.
Intuitively we can say that the reason why this functionf fails to be
uniformly continuous onR is that the graph becomes too steep as we move
far away from the origin. See Figure 8.16.
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Figure 8.16

3. In this example we define

f(x) = sin
1

x

for every numberx > 0. The graph of this function is illustrated in Figure
8.17. Althoughf is continuous on the interval(0,∞), it is not uniformly

Figure 8.17

continuous. To show thatf fails to be uniformly continuous we define

xn =
1

nπ

tn =
1

nπ + π
2

for every positive integern.We see at once thattn − xn → 0 asn → ∞, but
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for eachn we have

|f(tn)− f(xn)| =
∣∣∣sin(nπ +

π

2

)
− sinnπ

∣∣∣ = 1,

and so we do not havef(tn)− f(xn) → 0 asn → ∞.
4. Suppose thatf is any function from the setZ of integers intoR. We shall

see thatf is automatically uniformly continuous onZ. Suppose thatε > 0
and defineδ = 1.Wheneverx andt are integers and|t− x| < δ we have
t = x, and so

|f(t)− f(x)| = 0 < ε.

5. In this example we define

S =

{
1

n
| n ∈ Z+

}
and for every positive integern we define

f

(
1

n

)
= (−1)n .

Since no member of the setS is a limit point ofS, we see at once from
Theorem 8.7.5 thatf is continuous onS. However, if we define

tn =
1

2n

and

xn =
1

2n+ 1

for every positive integern, we see thattn − xn → 0 asn → ∞ but
f(tn)− f(xn) does not approach0 asn → ∞.

8.12.6 The Principal Theorem on Uniform Continuity
Suppose that f is a continuous function on a closed bounded set S.Then f is
uniformly continuous on S.

Proof. To obtain a contradiction, we suppose thatf fails to be uniformly
continuous onS. Using the relationship, Theorem 8.12.4, between uniform con-
tinuity and convergence of sequences, we choose two sequences(tn) and(xn) in
S such thattn − xn → 0 asn → ∞ and such that

|f(tn)− f(xn)| ≥ ε
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for everyn. Using the fact that the sequence(xn) is a sequence in the closed
bounded setS and Theorem 7.9.1 on existence of partial limits, we choose a
partial limit x of (xn) such thatx ∈ S.

Now we use the fact that the functionf is continuous at the numberx to
choose a numberδ > 0 such that whenevert ∈ S and|t− x| < δ we have

|f(t)− f(x)| < ε

2
.

The next step is to find a value ofn for which both of the numberstn andxn

belong to the interval(x− δ, x+ δ).

x − δ x + δ

xn tn

x − δ/2 x + δ/2x
For this purpose we use the facttn − xn → 0 asn → ∞ to choose an integerN
such that the inequality

|tn − xn| < δ

2

holds whenevern ≥ N . Now, using the fact that the sequence(xn) is frequently
in the interval(x− δ/2, x+ δ/2), we choose an integern ≥ N such that

xn ∈
(
x− δ

2
, x+

δ

2

)
.

We observe that

|tn − x| = |tn − xn + xn − x|

≤ |tn − xn|+ |xn − x| < δ

2
+

δ

2
= δ.

Now that we have found a value ofn for which both of the numberstn andxn

belong to the interval(x− δ, x+ δ), we observe that

|f(tn)− f(xn)| = |f(tn)− f(x) + f(x)− f(xn)|
≤ |f(tn)− f(x)|+ |f(x)− f(xn)| < ε

2
+

ε

2
= ε,

which contradicts the way in which the numberstn andxn were chosen.�

8.12.7 Exercises on Uniform Continuity

1. Is it true that ifS is an unbounded set of real numbers andf(x) = x2 for
every numberx ∈ S, then the functionf fails to be uniformly continuous?
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2. Given that

f(x) =

{
1 if 0 ≤ x < 2

0 if 2 < x ≤ 3,

prove thatf is continuous but not uniformly continuous on the set
[0, 2) ∪ (2, 3].

3. Given thatf(x) = sin (x2) for all real numbersx, prove thatf is not
uniformly continuous on the setR. See Figure 8.18.
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1

2 4 6 8 10x

Figure 8.18

4. Ask Scientific Notebook to make some 2D plots of the functionf
defined by the equation

f(x) = sin (x log x)

for x > 0. Plot the function on each of the intervals[0, 50], [50, 100],
[100, 150], and[150, 200]. Revise your plot and increase its sample size if
it appears to contain errors. Why do these graphs suggest thatf fails to be
uniformly continuous on the interval(0,∞)? Prove that this function does,
indeed, fail to be uniformly continuous.

5. (a) A functionf is said to beLipschitzian on a setS if there exists a
numberk such that the inequality

|f(t)− f(x)| ≤ k |t− x|
holds for all numberst andx in S. Prove that every Lipschitzian function
is uniformly continuous.

(b) Given thatf(x) =
√
x for all x ∈ [0, 1], prove thatf is uniformly

continuous but not Lipschitzian on[0, 1].
6. (a) Suppose thatf is uniformly continuous on a setS, that(xn) is a
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sequence in the setS, and that(xn) has a partial limitx ∈ R. Prove that
it is impossible to havef(xn) → ∞ asn → ∞.

(b) Did you assume thatx ∈ S in part a? If you did, go back and do the
exercise again. You have no information thatx ∈ S. If you didn’t
assume thatx ∈ S, you can sit this question out.

(c) Suppose thatf is uniformly continuous on a bounded setS and that(xn)
is a sequence inS. Prove that it is impossible to havef(xn) → ∞ as
n → ∞.

(d) Prove that iff is uniformly continuous on a bounded setS, then the
functionf is bounded.

7. (a) Given thatS is a set of real numbers, thata ∈ S \ S and that

f(x) =
1

x− a

for all x ∈ S, prove thatf is continuous onS but not uniformly
continuous.

(b) Given thatS is a set of real numbers and thatS fails to be closed, prove
that there exists a continuous function onS that fails to be uniformly
continuous onS.

(c) Is it true that ifS is an unbounded set of real numbers, then there exists a
continuous function onS that fails to be uniformly continuous onS?

8. Is it true that the composition of a uniformly continuous function with a
uniformly continuous function is uniformly continuous?

9. (a) Suppose thatf is uniformly continuous on a setS and that(xn) is a
convergent sequence inS. Prove that the sequence(f (xn)) cannot have
more than one partial limit.

(b) In part a, did you assume that the limit of the sequence(xn) belongs to
S? If so, go back and do the problem again.

(c) Prove that iff is uniformly continuous on a setS and(xn) is a
convergent sequence inS, then the sequence(f(xn)) is also convergent.
Do not assume that the limit of(xn) belongs toS.

(d) Suppose thatf is uniformly continuous on a setS, thatx is a real number
and that(xn) and(tn) are sequences inS that converge to the number
x.Prove that

lim
n→∞

f(xn) = lim
n→∞

f(tn).

(e) Suppose thatf is uniformly continuous on a setS and thatx ∈ S \ S.
Explain how we can use part d to extend the definition of the functionf
to the numberx in such a way thatf is continuous on the setS ∪ {x}.
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(f) Prove that iff is uniformly continuous on a setS, then it is possible
to extendf to the closureS of S in such a way thatf is uniformly
continuous onS.

10. Suppose thatf is a continuous function on a bounded setS. Prove that the
following two conditions are equivalent:

(a) The functionf is uniformly continuous onS.
(b) It is possible to extendf to a continuous function on the setS.

11. Given thatf is a function defined on a setS of real numbers, prove that the
following conditions are equivalent:

(a) The functionf fails to be uniformly continuous on the setS.
(b) There exists a numberε > 0 and there exist two sequences(tn) and(xn)

in S such thattn − xn → 0 asn → ∞ and

|f(xn)− f(tn)| ≥ ε

for everyn.



Chapter 9
Differentiation

This chapter begins the study of differential calculus. You will find many topics
here that you have seen before and that you will now have the opportunity to
place on a sound logical footing.

9.1 Introduction to the Concept of a Derivative

9.1.1 The Derivative as Seen in Elementary Calculus
From your courses in elementary calculus you know that iff is a given function
andx is a given number, then thederivative of the functionf at the numberx is
the numberf ′(x) defined by the equation

f ′(x) = lim
t→x

f(t)− f(x)

t− x

as long as the latter limit exists. Another way in which this limit is traditionally
written is

lim
h→0

f(x+ h)− f(x)

h
.

These two ways of describing the limit are equivalent to one another.

As you know, the limit

lim
t→x

f(t)− f(x)

t− x

is motivated by looking at a figure like Figure 9.1. If(x, f(x)) and(t, f(t)) are
two different points on the graph of a given functionf , then the number

f(t)− f(x)

t− x

is the slope of the line segment that runs from(x, f(x)) to (t, f(t)). The limit of
this expression ast approachesx gives us a meaning to the notion ofslope of the
graph off at the point(x, f(x)), a notion that has many important applications.
The applications of differentiation stem from the following key facts:

1. If the derivative of a function is zero everywhere in an interval, then the
function must be constant in that interval.

220
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Figure 9.1

2. If the derivative of a function is positive everywhere in an interval, then the
function must be strictly increasing in that interval.

3. If the derivative of a function is negative everywhere in an interval, then the
function must be strictly decreasing in that interval.

On the face of it, no properties of the derivative can be simpler than these. For
example, if the derivative of a function is positive in an interval, then the slope
of the graph must be positive and so the graph must be rising from left to right.
But looks can be deceiving. These three facts about differentiation are anything
but simple. They depend upon the full force of the work that we have done so
carefully on the preceding chapters, and,in depending upon that material, they
depend upon the completeness of the number systemR.

9.1.2 What Happens in an Incomplete Number System?
In order to appreciate the way in which the three basic properties of derivatives
listed in Subsection 9.1.1 depend upon the completeness of the number system
R, we shall imagine, for the moment, that we live in the days of Pythagoras and
that the only numbers we know about are the rational numbers.

In this Pythagorean world, we can stilldefine limits, we can still talk about
continuous functions, and we can stilldefine derivatives. What we can’t do
is prove any theorem that depends upon the existence of suprema and infima.
We have lost the Cantor intersection theorem, the theorems on the existence of
partial limits of sequences, and, most important of all, we have lost the theorems
on continuous functions that appeared in Sections 8.9 and 8.10. As you will
see in this chapter, those theorems play a fundamental role when we prove the
properties of derivatives listed in Subsection 9.1.1. Without a complete number
system, the apparently obvious facts listed in Subsection 9.1.1 are actually false.
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To see how they can fail, we consider the functionf defined by the equation

f(x) =

{
1 if x < 0 or x2 < 2

6 if x > 0 andx2 > 2.

The graph of this function is illustrated in Figure 9.2. Since our Pythagorean
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Figure 9.2

concept of a number, which includes rational numbers only, omits the number√
2, we can assert thatf ′(x) = 0 for every “number”x even though the function

f is not constant. In a similar way we can exhibit a function whose derivative is
constantly equal to1 even though the function fails to be increasing.

Thus, in the Pythagorean world, a function can have an everywhere zero
derivative without being constant, it can have an everywhere positive derivative
without being increasing, and it can have an everywhere negative derivative with-
out being decreasing. We now leave the Pythagorean world and return to the
complete number systemR of the present day. Our sojourn there has taught us
that the key facts about differentiation are not trivial and that, when we prove
them, we shall have to make use of the completeness of the number system.

9.2 Derivatives and Differentiability

9.2.1 Definition of a Derivative
Suppose thatf is a function defined on a setS of real numbers and suppose that
x is a number that belongs toS and is also a limit point ofS. Thederivative
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f ′(x) of the functionf at the numberx is the limit

lim
t→x

f(t)− f(x)

t− x

as long as the latter limit exists.

In the event that the latter limit exists(and is finite), we say that the function
f is differentiable at the numberx. If f is differentiable at every numberx ∈ S,
then we say thatf is differentiable on the setS and, in this event, the function
f ′ whose value at every numberx ∈ S is f ′(x) is a function with domainS.

If f is differentiable on a setS and if the functionf ′ is differentiable at a
numberx ∈ S, then the value of the derivative off ′ at the numberx is written as
f ′′(x) and is called thesecond derivative of the functionf at the numberx. The
third and subsequent derivatives are defined similarly. Ifn is a positive integer,
then thenth derivative off is written asf (n). In keeping with this notation, we
write f (0) for the functionf itself.

9.2.2 Derivative of a Function Defined on an Interval
The general definition of a derivative that we have just seen provides us with
three important special cases involving functions defined on an interval:

1. Suppose thatf is a function defined on an intervalS, thatx ∈ S, and thatx
is not an endpoint of the intervalS.

x
In this case the limit

lim
t→x

f(t)− f(x)

t− x

is a regular two-sided limit andf ′(x) is called thetwo-sided derivative of f
at the numberx.

2. Suppose thatf is a function defined on an intervalS, thatx ∈ S, and thatx
is the left endpoint ofS.

x
In this case the numberf ′(x) is thederivative from the right of the function
f at the numberx.

3. Suppose thatf is a function defined on an intervalS, thatx ∈ S, and thatx
is the right endpoint ofS.

x
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In this case the numberf ′(x) is thederivative from the left of the function
f at the numberx.

9.2.3 Some Examples of Derivatives

1. Suppose thatc is a given real number and thatf(x) = c for every numberx.
Then, given any numberx we have

lim
t→x

f(t)− f(x)

t− x
= lim

t→x

c− c

t− x
= lim

t→x
0 = 0.

Therefore the derivative of a constant function must be zero. Do not confuse
this simple fact with the substantiallymore difficult fact that we mentioned
in Subsection 9.1.1, that a function with a zero derivative must be constant.

2. Suppose thatf(x) = x for every numberx. Then, given any numberx we
have

f ′(x) = lim
t→x

f(t)− f(x)

t− x
= lim

t→x

t− x

t− x
= 1.

3. Suppose thatn is a positive integer and thatf(x) = xn for every numberx.
Then, given any numberx we have

f ′(x) = lim
t→x

tn − xn

t− x

= lim
t→x

(t− x) (tn−1 + tn−2x+ tn−3x2 + · · ·+ txn−2 + xn−1)

t− x

= lim
t→x

(
tn−1 + tn−2x+ tn−3x2 + · · ·+ txn−2 + xn−1

)
= nxn−1.

4. In the preceding example we saw that ifn is a positive integer and
f(x) = xn for every numberx, thenf ′(x) = nxn−1 for every numberx.
We now extend this statement to include the case in whichn is a negative
integer. Suppose thatn is a negative integer and thatf(x) = xn for every
numberx 	= 0. We writem = −n and note thatm is a positive integer.
Now, given any numberx 	= 0, we have

f ′(x) = lim
t→x

tn − xn

t− x
= lim

t→x

1
tm

− 1
xm

t− x

= − lim
t→x

tm − xm

tmxm (t− x)
= − 1

xmxm
mxm−1 = nxn−1.

5. In this example we suppose thatr is a positive rational number and that
f(x) = xr for all numbersx > 0. We shall show that ifx is any positive
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number, thenf ′(x) = rxr−1. We begin by choosing positive integersm and
n such thatr = m/n. Now, given any positive numberx we have

f ′(x) = lim
t→x

tr − xr

t− x
= lim

t→x

tm/n − xm/n

t− x

= lim
t→x

(
t1/n
)m − (x1/n

)m
(t1/n)

n − (x1/n)
n

= lim
t→x

(
t1/n − x1/n

) ((
t1/n
)m−1

+
(
t1/n
)m−2 (

x1/n
)
+ · · ·+ (x1/n

)m−1
)

(t1/n − x1/n)
(
(t1/n)

n−1
+ (t1/n)

n−2
(x1/n) + · · ·+ (x1/n)

n−1
)

= lim
t→x

(
t1/n
)m−1

+
(
t1/n
)m−2 (

x1/n
)
+ · · ·+ (x1/n

)m−1

(t1/n)
n−1

+ (t1/n)
n−2

(x1/n) + · · ·+ (x1/n)
n−1

=
mx(m−1)/n

nx(n−1)/n
= rxr−1.

6. In this example we suppose thatr is a negative rational number and once
again we takef(x) = xr for x > 0. By using the technique of Example 4,
one may show thatf ′(x) = rxr−1 for every numberx > 0. We leave the

details as an exercise.
7. In this example we take

f(x) =

{
x2 if x is rational

0 if x is irrational.

For every numbert 	= 0 we have

∣∣∣∣f(t)− f(0)

t− 0

∣∣∣∣ =
∣∣∣∣f(t)t

∣∣∣∣ ≤ |t| ,

and so it follows from the sandwich theorem (Theorem 8.5.3) thatf ′(0) = 0.
8. In this example we take

f(x) =

{
x if x is rational

0 if x is irrational.
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For every numbert 	= 0 we have

f(t)− f(0)

t− 0
=

{
1 if t is rational

0 if t is irrational,

and it is clear that the limit

lim
t→x

f(t)− f(0)

t− 0

fails to exist.
9. In this example we define

f(x) =

{
x sin 1

x
if x 	= 0

0 if x = 0.

For every numbert 	= 0 we have

f(t)− f(0)

t− 0
=

t sin 1
t
− 0

t
= sin

1

t
,

and so it follows from Example 6 of Subsection 8.1.5 thatf ′(0) does not
exist. The graph of the functionf is illustrated in Figure 9.3.

Figure 9.3
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9.3 Some Elementary Properties of Derivatives

9.3.1 Differentiability and Continuity
Suppose that a function f is differentiable at a number x. Then f is continuous
at x.

Proof. If S is the domain of the functionf , then for every numbert ∈ S \ {x}
we have

f(t) =
f(t)− f(x)

t− x
(t− x) + f(x)

and the latter expression approaches

f ′(x)× 0 + f(x) = f(x)

ast → x. �

9.3.2 The Sum Rule
Suppose that f and g are functions defined on a set S and that both f and g are
differentiable at a number x. Then the function f + g is also differentiable at the
number x and we have

(f + g)′ (x) = f ′(x) + g′(x).

Proof. For every numbert ∈ S \ {x} we have

(f + g) (t)− (f + g) (x)

t− x
=

f(t)− f(x)

t− x
+

g(t)− g(x)

t− x

and the latter expression approachesf ′(x) + g′(x) ast → x. �

9.3.3 The Constant Multiple Rule
This rule will become obsolete as soon as we have stated the product rule in the
next subsection, but it is worth stating anyway:

Suppose that f is a function defined on a set S, that c is a given number, and
that the function f is differentiable at a number x ∈ S. Then the function cf is
also differentiable at the number x and we have

(cf)′ (x) = cf ′(x).

We leave the proof of this rule as an exercise.

9.3.4 The Product Rule
Suppose that f and g are functions defined on a set S and that both f and g are
differentiable at a number x. Then the function fg is also differentiable at the
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number x and we have

(fg)′ (x) = f ′(x)g(x) + f(x)g′(x).

Proof. For every numbert ∈ S \ {x} we have

f(t)g(t)− f(x)g(x)

t− x
=

f(t)g(t)− f(x)g(t) + f(x)g(t)− f(x)g(x)

t− x

=

(
f(t)− f(x)

t− x

)
g(t) + f(x)

(
g(t)− g(x)

t− x

)
.

Since Theorem 9.3.1 guarantees thatg(t) → g(x) ast → x, we have

lim
t→x

f(t)g(t)− f(x)g(x)

t− x
= f ′(x)g(x) + f(x)g′(x).

9.3.5 The Quotient Rule
Suppose that f and g are functions defined on a set S, that both f and g are

differentiable at a number x, and that g(x) 	= 0. Then the function
f

g
is also

differentiable at the number x and we have(
f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

(g(x))2
.

Proof. Using the fact that the functiong is continuous at the numberx, we
choose a numberδ > 0 such thatg(t) 	= 0 whenevert ∈ S and|t− x| < δ.
Now whenevert ∈ S \ {x} and|t− x| < δ we have

f(t)
g(t)

− f(x)
g(x)

t− x
=

f(t)g(x)− f(x)g(t)

(t− x) g(t)g(x)

=
f(t)g(x)− f(x)g(x)− f(x)g(t) + f(x)g(x)

(t− x) g(t)g(x)

=

(
f(t)−f(x)

t−x

)
g(x)− f(x)

(
g(t)−g(x)

t−x

)
g(t)g(x)

and the latter expression approaches

f ′(x)g(x)− f(x)g′(x)

(g(x))2
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ast → x. �

9.3.6 Differentiability and Limits of Sequences
Suppose that f is a function defined on a set S, that x ∈ S, and that the number
x is a limit point of S. Suppose that w is a given real number. Then the following
conditions are equivalent:

1. The function f is differentiable at the number x and f ′(x) = w.
2. For every sequence (xn) in the set S \ {x} that converges to x we have

f(xn)− f(x)

xn − x
→ w

as n → ∞.

Proof. This theorem follows at once from the relationship between limits of
sequences and limits of functions that we saw in Section 8.4.�

9.3.7 The Chain Rule
By analogy with the composition theorem for limits that we saw in Section 8.6
and the composition theorem for continuity that we saw in Subsection 8.7.9, the
chain rule is the composition theorem for derivatives.

Suppose that f is a function defined on a set S, that f(x) lies in a given set
T for every number x ∈ S, and that g is a function defined on T. Suppose that
x ∈ S, that f is differentiable at the number x, and that g is differentiable at the
number f(x). See Figure 9.4.

Then the composition function g ◦ f is continuous at the number x and we
have

(g ◦ f)′ (x) = g′ (f(x)) f ′(x).

Proof. We begin by defining a functionφ on the setT as follows:

φ(y) =

{
g(y)−g(f(x))

y−f(x)
if y ∈ T \ {f(x)}

g′ (f(x)) if y = f(x).

Sinceφ(y) → g′ (f(x)) asy → f(x), we see that the functionφ is continuous
at the numberf(x). Sincef is continuous at the numberx, it follows from the
composition theorem for continuity (Theorem 8.7.9) that

lim
s→x

φ (f(s)) = φ (f(x)) = g′ (f(x)) .

Now for every numbers in the setS \ {x}, regardless of whetherf(s) = f(x)
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S T

x
f(x)

g(f(x))

f

g

Figure 9.4

or f(s) 	= f(x),

g (f(s))− g (f(x))

s− x
= φ (f(s))

(
f(s)− f(x)

s− x

)

and so it follows that

lim
s→x

g (f(s))− g (f(x))

s− x
= lim

s→x
φ (f(s))

(
f(s)− f(x)

s− x

)
= g′ (f(x)) f ′(x).

9.3.8 Differentiation of Inverse Functions, Motivation
Suppose thatf is a one-one continuous function on an intervalS and thatg is the
inverse function off . If both of the functionsf andg are differentiable at each
number in their domains, then, since

g (f(x)) = x

for every numberx ∈ S, it follows from the chain rule that

g′ (f(x)) f ′(x) = 1

for all x ∈ S. Thus

g′ (f(x)) =
1

f ′(x)
.

In the next subsection we shall go one step further and observe that iff is a
one-one continuous function on an interval andg is its inverse function, then
the functiong is automatically differentiable at the numberf(x) wheneverf is
differentiable atx andf ′(x) 	= 0.
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9.3.9 Theorem on Differentiation of Inverse Functions
The theorem contained in this subsection depends upon the results about con-
tinuous functions on intervals that we saw in Section 8.10. In particular, we
need to know that a continuous one-one function on an interval has to be strictly
monotone and that the inverse function of such a function is also continuous.

Suppose that f is a one-one continuous function on an interval S and that g
is the inverse function of f . Suppose that f is differentiable at a given number
x ∈ S and that f ′(x) 	= 0. Then the function g must be differentiable at the
number f(x) and we have

g′ (f(x)) =
1

f ′(x)
.

Proof. We write the range of the functionf asT . Note thatT is an interval and
thatg is a continuous function fromT ontoS. We shall prove the theorem by
using Theorem 9.3.6. Suppose that(yn) is a sequence inT \ {f(x)} and that
yn → f(x) asn → ∞. We need to show that

g(yn)− g (f(x))

yn − f(x)
→ 1

f ′(x)

asn → ∞. For each positive integern we definexn = g(yn). In this way
we have defined a sequence(xn) in the setS \ {x}, and, since the functiong is
continuous at the numberf(x), we have

lim
n→∞

xn = lim
n→∞

g(yn) = g (f(x)) = x.

Therefore, sincef is differentiable at the numberx we have

lim
n→∞

g(yn)− g (f(x))

yn − f(x)
= lim

n→∞
xn − x

f(xn)− f(x)

= lim
n→∞

(
f(xn)− f(x)

xn − x

)−1

=
1

f ′(x)
,

as promised.�

9.3.10 Exercises on Derivatives

1. Given thatf(x) = |x| for every numberx, prove thatf ′(0) does not exist.

2. Given thatf(x) = |x| for all x ∈ [−2,−1] ∪ [0, 1], prove thatf ′(0)
does exist.



232 Chapter 9 Differentiation

3. Given thatf(x) = x |x| for every numberx, determine whether or notf ′(0)
exists.

4. This exercise concerns the functionf defined by the equation

f(x) =

{
x2 sin 1

x
if x 	= 0

0 if x = 0.

You should assume all of the standard formulas for the derivatives of the
functionssin andcos.

(a) Ask Scientific Notebook to make a 2D plot of the expressionx2 sin 1
x

on the interval[−.2, .2] and then drag each of the expressionsx2 and
−x2 into your plot. Revise the plot and give the components different
colors.

(b) Prove that the functionf is differentiable onR but that the functionf ′ is
not continuous at the number0.

5. This exercise concerns the functionf defined by the equation

f(x) =

{
x3 sin 1

x
if x 	= 0

0 if x = 0.

(a) Ask Scientific Notebook to make a 2D plot of the expressionx3 sin 1
x

on the interval[−.05, .05] and then drag each of the expressionsx3 and
−x3 into your plot. Revise the plot and give the components different
colors.

(b) Prove that the functionf ′ is continuous at the number0 but does not
have a derivative there.

6. Suppose thatf is a function defined on an open interval(a, b) and that
x ∈ (a, b).

(a) Prove that iff ′(x) exists, then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

(b) Prove that if the limit

lim
h→0

f(x+ h)− f(x)

h

exists, thenf ′(x) exists and is equal to this limit.
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(c) Prove that iff ′(x) exists, then

f ′(x) = lim
h→0

f(x+ h)− f(x− h)

2h
.

(d) Prove that iff ′(x) exists, then

f ′(x) = lim
t→x

(
lim
u→x

f(t)− f(u)

t− u

)
.

9.4 The Mean Value Theorem

The mean value theorem that we shall study in this section is the bridge to the
fundamental facts about derivatives thatwe listed in Subsection 9.1.1. This theo-
rem depends upon the completeness of the real number system.

The mean value theorem is deducedfrom an important result calledRolle’s
theorem, which tells us that if a function satisfies certain conditions, then its
derivative has to be zero somewhere. By making use of a simple technique known
as Fermat’s theorem, we shall show that the derivative of a given function must
have a zero value somewhere by considering the numbers where the function
takes a maximum or minimum value. Therefore, the key to Rolle’s theorem is
Theorem 8.9.2, which guarantees the existence of maxima and minima, and it
is by making use of that theorem that we are invoking the completeness of the
number systemR.

9.4.1 Fermat’s Theorem
Suppose that f is a function defined on an interval S and that f is differentiable
at a number x ∈ S.

1. If x is not the right endpoint of S and f ′(x) > 0, then f cannot have a
maximum value at the number x.

2. If x is not the right endpoint of S and f ′(x) < 0, then f cannot have a
minimum value at the number x.

3. If x is not the left endpoint of S and f ′(x) < 0, then f cannot have a
maximum value at the number x.

4. If x is not the left endpoint of S and f ′(x) > 0, then f cannot have a
minimum value at the number x.

5. If x is not an endpoint of S and f has either a maximum or a minimum
value at x, then we must have f ′(x) = 0.

Proof. We shall prove part 1 and leave the other parts as exercises. Suppose that
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x is not the right endpoint of the intervalS and thatf ′(x) > 0. See Figure 9.5.
Using the fact that the interval(0,∞) is a neighborhood of the numberf ′(x),

x x + δt

f

Figure 9.5

we choose a numberδ > 0 such that whenevert ∈ S and|x− t| < δ we have

f(t)− f(x)

t− x
> 0.

Using the fact thatx is not the right endpoint of the intervalS, we choose a
numbert ∈ S such thatx < t < x+ δ. Sincet− x > 0 and

f(t)− f(x)

t− x
> 0,

we see thatf(t) > f(x) and sof(x) cannot be the maximum value of the
functionf . �

9.4.2 Rolle’s Theorem
Suppose that a and b are real numbers and that a < b. Suppose that f is a
function that is continuous on the interval [a, b], that f is differentiable30 at every
number x in the interval (a, b), and that f(a) = f(b). Then there is at least one
number c ∈ (a, b) such that f ′(c) = 0.

Proof. We illustrate this proof in Figure 9.6. If the numberf(a) is both the
maximum and the minimum value of the functionf , thenf has to be constant on
[a, b] andf ′(x) = 0 for every numberx ∈ [a, b]. Otherwise, either the maximum
or the minimum value off must fail to occur at ata, and must therefore occur at

30 There is some overlap in these assumptions. Iff is differentiable on(a, b), thenf is
automatically continuous on(a, b). To ensure thatf is continuous on[a, b], all we need to assume
is thatf is continuous from the right ata and from the left atb.
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a c b

Figure 9.6

a numberc 	= a. Sincef(a) = f(b), it is clear thatc 	= b, and it follows from
Fermat’s theorem (Theorem 9.4.1) thatf ′(c) = 0. �

9.4.3 The Mean Value Theorem
Suppose that a and b are real numbers and that a < b. Suppose that f is a
function that is continuous on the interval [a, b], and that f is differentiable at
every number x in the interval (a, b). Then there is at least one number c ∈ (a, b)
such that

f ′(c) =
f(b)− f(a)

b− a
. (9.1)

This theorem is illustrated in Figure 9.7. The theorem tells us that there must be at

a c b

Figure 9.7

least one point(c, f(c)) on the graph off where the slope of the graph is equal
to the slope of the straight line that runs from the point(a, f (a)) to the point
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(b, f(b)). Note that iff(a) = f(b), then Equation (9.1) becomesf ′(c) = 0, and
so the mean value theorem reduces to Rolle’s theorem.

Proof. For every numberx ∈ [a, b] we define

h(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a) .

Like f , the functionh is continuous on the interval[a, b] and, likef , the function
h is differentiable at every numberx ∈ (a, b). As a matter of fact, ifx ∈ (a, b),
then

h′(x) = f ′(x)− f(b)− f(a)

b− a
. (9.2)

However, unlike the functionf , the functionh takes the same value at the two
numbersa andb because

h(a) = h(b) = 0.

Using Rolle’s theorem we choose a numberc ∈ (a, b) such thath′(c) = 0 and,
substitutingx = c in Equation (9.2), we obtain

f ′(c) =
f(b)− f(a)

b− a
. �

9.4.4 The Cauchy Mean Value Theorem
In this subsection we look at a slightly more general form of the mean value
theorem that is known as theCauchy mean value theorem.

Suppose thatf andg are continuous functions on an interval[a, b] that are
differentiable at every numberx ∈ (a, b). Suppose thatg′(x) 	= 0 for every
x ∈ (a, b). Then there exists a numberc ∈ (a, b) such that

f ′(c)
g′(c)

=
f(b)− f(a)

g(b)− g(a)
.

Proof. We note first that, becauseg′(x) 	= 0 for all x ∈ (a, b), Rolle’s theorem
guarantees thatg(a) 	= g(b). We now define

h(x) = f(x)− f(a)−
(
f(b)− f(a)

g(b)− g(a)

)
(g(x)− g(a))

for every numberx ∈ [a, b]. The functionh is continuous on the interval[a, b],
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and for every numberx ∈ (a, b) we have

h′(x) = f ′(x)−
(
f(b)− f(a)

g(b)− g(a)

)
g′(x).

Furthermore,h(a) = h(b) = 0. Using Rolle’s theorem we choose a number
c ∈ (a, b) such thath′(c) = 0 and we observe that

f ′(c)
g′(c)

=
f(b)− f(a)

g(b)− g(a)
. �

9.4.5 Exercises on the Mean Value Theorem

1. (a) Given thatf is a function defined on an intervalS and thatf ′(x) = 0
for everyx ∈ S, prove thatf must be constant onS.

(b) Given thatf is a function defined on an intervalS and that
f ′(x) > 0 for everyx ∈ S, prove thatf must be strictly increasing onS.

(c) Given thatf is a function defined on an intervalS and thatf ′(x) < 0 for
everyx ∈ S, prove thatf must be strictly decreasing onS.

2. Suppose thatf andg are functions defined on an intervalS and that
f ′(x) = g′(x) for every numberx ∈ S. Prove that there exists a real number
c such that the equation

f(x) = g(x) + c

holds for every numberx ∈ S.
3. Suppose thatf is continuous on an interval[a, b] and differentiable on the

interval (a, b) and thatf(a) = f(b). Suppose thata < c < b and that
f ′(x) > 0 whena < x < c andf ′(x) < 0 whenc < x < b. Prove thatf(c)
is the maximum value of the functionf .

4. Given thatf is a strictly increasing differentiable function on an intervalS,
is it true thatf ′(x) must be positive for everyx ∈ S?

5. Prove that iff is a differentiable function on an intervalS and
f ′(x) 	= 0 for everyx ∈ S, then the functionf must be one-one.

6. Given thatf is differentiable on an intervalS and that the functionf ′

is bounded onS, prove thatf must be Lipschitzian (see Exercise 5a of
Subsection 8.12.7) onS.

7. Given thatf is a function defined on an intervalS and that the inequality

|f(t)− f(x)| ≤ |t− x|2

holds for all numberst andx in S, prove thatf must be constant.
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8. Suppose thatf andg are functions defined onR and thatf ′(x) = g(x) and
g′(x) = −f(x) for every real numberx.

(a) Prove thatf ′′(x) = −f(x) for every numberx.
(b) Prove that the functionf2 + g2 is constant.31

9. Given thatf is differentiable on the interval(0,∞) and thatf ′(x) → λ
asx → ∞, prove that

f(x+ 1)− f(x) → λ

asx → ∞.
10. Given thatf is continuous on[a, b] and differentiable on(a, b), and

thatf ′(x) approaches a limitw ∈ R asx → a, prove thatf must be
differentiable at the numbera and thatf ′(a) = w.

11. Prove that iff is differentiable on an interval[a, b] andf ′(a) < 0
andf ′(b) > 0, then there must be at least one numberc ∈ (a, b) for which
f ′(c) = 0.

12. Prove that iff is differentiable on an intervalS, then the range of the
functionf ′ must be an interval.

13. Suppose thatf is differentiable on the interval[0,∞), thatf(0) = 0
and thatf ′ is increasing on[0,∞). Prove that if

g(x) =
f(x)

x

for all x > 0, then the functiong is increasing on(0,∞).
14. Suppose thatf is defined on an open intervalS and thatf ′′(x) < 0 for every

numberx ∈ S. Suppose thata ∈ S. Prove that ifx ∈ S andx > a, then

f(x) < f(a) + (x− a) f ′(a).

In other words, explain why, to the right of the point(a, f (a)), the graph of
f lies below the tangent line to the graph at(a, f (a)).

15. Suppose thatf is defined on an open intervalS and thatf ′′(x) < 0 for every
numberx ∈ S. Suppose thata andb belong toS and thata < b. Suppose
that

g(x) = f(x)− f(a)−
(
f(b)− f(a)

b− a

)
(x− a)

for all x ∈ [a, b].

31 Be careful to distinguish the notationf2, which meansff , from the notationf (2) that stands
for the second derivative off .
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(a) Prove that there exists a numberc ∈ (a, b) such thatg′(c) = 0.
(b) Prove that the functiong′ is strictly decreasing on the interval[a, b].
(c) Prove that the functiong is strictly increasing on[a, c] and strictly

decreasing on[c, b].
(d) Prove thatg(x) > 0 for everyx ∈ (a, b).
(e) Prove that the straight line segment that joins the points(a, f(a)) and

(b, f(b)) lies under the part of the graph off that lies between the two
points(a, f(a)) and(b, f(b)).

16. A functionf defined on an intervalS is said to beconvex onS if, whenever
a, x andb belong toS anda < x < b, we have

f(x)− f(a)

x− a
≤ f(b)− f(x)

b− x
.

Prove that iff is differentiable on an intervalS, thenf is convex onS if and
only if the functionf ′ is increasing.

17. Prove that iff is a convex function on an open intervalS, thenf must
be continuous onS.

18. By clicking on the icon you can reach some exercises that
introduce Newton’s method for approximating roots of an equation.

9.5 Taylor Polynomials

In this section we discuss a method by which a given functionf can be approxi-
mated by polynomials that have the same behavior asf at a given numberc. We
begin with a brief discussion of polynomials.

9.5.1 Some Observations About Polynomials
As you may know, a functionf is said to be apolynomial if it is possible to find
a nonnegative integern and numbersa0, a1, a2, · · · , an such that the equation

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n =
n∑

j=0

ajx
j (9.3)

holds for every real numberx. Our first observation is that iff is such a polyno-
mial, then the coefficientsa0, a1, · · · , an are uniquely determined by the behavior
of the functionf at the number0.

We begin by puttingx = 0 in Equation (9.3) to obtainf(0) = a0. Now we
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differentiate both sides of Equation (9.3) to obtain the identity

f ′(x) = 1a1 + 2a2x
1 + 3a3x

2 + · · ·+ nanx
n−1, (9.4)

and by puttingx = 0 in Equation (9.4) we obtainf ′(0) = 1a1. Differentiating
once more we obtain the identity

f ′′(x) = 2× 1a2 + 3× 2a3x
1 + · · ·+ n (n− 1) anx

n−2,

and by puttingx = 0 we obtainf ′′(0) = 2!a2. Continuing in this way, we see
that if j is a nonnegative integer, then

aj =
f (j)(0)

j!
.

We conclude that a polynomialf can be expressed in the form shown in
Equation (9.3) in only one way and that ifx is any real number, we have

f(x) =
n∑

j=0

f (j)(0)

j!
xj.

The largest value ofj for which the coefficientf (j)(0)/j! is nonzero is called the
degree of the polynomialf .

This technique for finding the coefficients of a polynomial can be applied a
little more generally. Suppose thatf is a polynomial of degreen having the form

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

for every numberx, and suppose thatc is any real number. Given any numberx
we have

f(x) = a0 + a1 ((x− c) + c) + a2 ((x− c) + c)2 + · · ·+ an ((x− c) + c)n ,

and, by expanding each of these terms in powers of(x− c), we see that there are
numbersb0, b1, · · · , bn such that the equation

f(x) = b0 + b1 (x− c) + b2 (x− c)2 + · · ·+ bn (x− c)n

holds for every numberx. By substitutingx = c we obtainf(c) = b0, and, by
differentiating repeatedly and substitutingx = c, we obtain the equation

bj =
f (j)(c)

j!



9.5 Taylor Polynomials 241

for every nonnegative integerj. Thus ifx is any number, we have

f(x) =
n∑

j=0

f (j)(c)

j!
(x− c)j .

9.5.2 Taylor Polynomials of a Function
Suppose thatf is a given function that has derivatives of all orders at a given
numberc. For each nonnegative integern, thenth Taylor polynomial of the
functionf centered at the numberc is the polynomialpn that is defined by the
equation

pn(x) =
n∑

j=0

f (j)(c)

j!
(x− c)j

= f(c) +
f ′(c)
1!

(x− c) + f (2)(c)
(x− c)2

2!
+ · · ·+ f (n)(c)

(x− c)n

n!

for every numberx. Thenth Taylor polynomial of a function centered at0 is
also called thenth Maclaurin polynomial of the function.

The important property of the Taylor polynomialpn is that it is an exact fit to
the functionf at the numberc in the sense that

pn(c) = f(c)

p′(c) = f ′(c)
...

p(n)(c) = f (n)(c).

From the discussion that appears in Subsection 9.5.1 we see that if the functionf
is itself a polynomial of degree not exceedingn, then thenth Taylor polynomial
of f is precisely the functionf .

9.5.3 Some Examples of Taylor Polynomials
Some of the examples in this subsection arephrased as exercises that are designed
to be done while reading the on-screen version of the text.

1. Suppose that

f(x) = 2− 4x+ 3x2 + 7x3 + 5x4

and thatpn is thenth Taylor polynomial off centered at0. Then for every
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numberx we havep0(x) = 2,

p3(x) = 2− 4x+ 3x2 + 7x3,

andpn(x) = f(x) whenevern ≥ 4.
If qn is thenth Taylor polynomial off centered at1, then for every number

x we haveq0(x) = 13,

q3(x) = 13 + 43 (x− 1) + 54 (x− 1)2 + 27 (x− 1)3 ,

andq4(x) = f(x) whenevern ≥ 4.

2. In this example we shall show how to useScientific Notebook to
evaluate the ninth Taylor polynomial centered at1 of the functionf defined
by the equation

f(x) =
x2 + 1√
x2 + x+ 1

for every numberx. If you are reading the on-screen version of this book,
point at the expression

x2 + 1√
x2 + x+ 1

,

open theCompute menu and click onPower Series. Fill in the dialogue
box as shown in Figure 9.8. You will obtain the equation

Figure 9.8

x2+1√
x2+x+1

=
(
2
3

√
3
)
+
(
1
3

√
3
)
(x− 1) +

(
5
36

√
3
)
(x− 1)2+(− 5

72

√
3
)
(x− 1)3 +

(
17
576

√
3
)
(x− 1)4 +

(− 11
1152

√
3
)
(x− 1)5 +(

49
41 472

√
3
)
(x− 1)6 +

(
115

82 944

√
3
)
(x− 1)7 +

(− 6205
3981 312

√
3
)
(x− 1)8 +(

8251
7962 624

√
3
)
(x− 1)9 +O

(
(x− 1)10

)
.

For now, we shall ignore the last term that appears asO
(
(x− 1)10

)
. After
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deleting the last term we see that the ninth Taylor polynomial of the function
f has the value(

2

3

√
3

)
+

(
1

3

√
3

)
(x− 1) +

(
5

36

√
3

)
(x− 1)2 +(

− 5

72

√
3

)
(x− 1)3 +

(
17

576

√
3

)
(x− 1)4 +

(
− 11

1152

√
3

)
(x− 1)5 +(

49

41 472

√
3

)
(x− 1)6 +

(
115

82 944

√
3

)
(x− 1)7 +(

− 6205

3981 312

√
3

)
(x− 1)8 +

(
8251

7962 624

√
3

)
(x− 1)9

at each numberx.
3. Working on-screen, point at the expression

arctanx√
1 + x+ x2

and calculate its ninth Taylor polynomial centered at1. Then highlight your
answer and click onEvaluate Numerically to obtain a numeric form of this
Taylor polynomial.

4. Working on-screen, sketch the graph

y =
arctanx√
1 + x+ x2

and drag in the graphs of some of its Maclaurin polynomials. Do not make
your domain too large and make your graphs in different colors so that you
can see what you have drawn. Repeat the process using Taylor polynomials
with center1.

5. If you are reading the on-screen version of this text, you can see an
animated sequence of graphs that illustrate the Maclaurin polynomials of the
functionf defined by the equation

f(x) = x sin
(
x2 + 3x+ 1

)
for every numberx. To see the animation, click on the icon .

9.5.4 Some Exercises on Taylor Polynomials

1. Suppose thatf is a polynomial whose degree does not exceed a given
positive integerk and thatf (j)(0) = 0 for everyj = 0, 1, 2, · · · , k. Prove
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thatf is the constant function zero.
2. Suppose thatf andg are two polynomials whose degrees do not

exceed a given positive integerk and thatf (j)(0) = g(j)(0) for every
j = 0, 1, 2, · · · , k. Prove thatf(x) = g(x) for every numberx.

3. Prove that iff is a polynomial whose degree does not exceed a given
positive integerk andn is an integer satisfyingn ≥ k, then thenth Taylor
polynomial off is f itself.

4. Given a nonnegative integern and that

f(x) = (1 + x)n

for every numberx, work out thenth Taylor polynomial off and obtain a
simple proof of thebinomial theorem

(1 + x)n =
n∑

j=0

(
n

j

)
xj.

As you may know, the expression
(
n
j

)
, which is called then, j binomial

coefficient, is defined by the equation(
n

j

)
=

n (n− 1) (n− 2) · · · (n− j + 1)

j!
=

n!

(n− j)!j!

whenevern andj are integers and0 ≤ j ≤ n. We shall define binomial
coefficients more generally In Example 3 of Subsection 12.7.9.

9.5.5 A Version of Rolle’s Theorem for Higher Derivatives
Suppose that a and b are real numbers, that a < b, and that n is a nonnegative
integer. Suppose that g is a function whose nth derivative g(n) is continuous on
the interval [a, b] and is differentiable at every number x in the interval (a, b),
and that the following two conditions are satisfied:

1. Whenever 0 ≤ j ≤ n we have g(j)(a) = 0.
2. We have g(b) = 0.

Then there is at least one number c ∈ (a, b) such that g(n+1)(c) = 0.
Proof. In the event thatn = 0, the statement of this theorem reduces to Rolle’s
theorem. In the general case, we prove the theorem by applying Rolle’s theorem
n + 1 times. First we apply Rolle’s theorem to the functiong on the interval
[a, b] to choose a numberc1 such thatg′(c1) = 0. Next we use the fact that
g′(a) = g′(c1) = 0 and we apply Rolle’s theorem to the functiong′ on the
interval[a, c1] to choose a numberc2 such thatg′′(c2) = 0.
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a bc
1

c
2c

3
c

n
c

n −  1
c

n +  1

Continuing in this way we construct a strictly decreasing sequence of numbers

c1, c2, c3, · · · , cn, cn+1

and we complete the proof by noting that ifc = cn+1, theng(n+1)(c) = 0. �

9.5.6 A Version of the Mean Value Theorem for Higher Derivatives
Suppose that a and b are real numbers, that a < b, and that n is a nonnegative
integer. Suppose that f is a function whose nth derivative f (n) is continuous on
the interval [a, b] and is differentiable at every number x in the interval (a, b).

Then there is at least one number c ∈ (a, b) such that

f(b) =
n∑

j=0

f (j)(a)

j!
(b− a)j +

f (n+1)(c)

(n+ 1)!
(b− a)n+1 .

Proof. We definep to be thenth Taylor polynomial off centered ata. Now we
need to show that there is a numberc ∈ (a, b) such that

f(b) = p(b) +
f (n+1)(c)

(n+ 1)!
(b− a)n+1 .

We begin by defining

g(x) = f(x)− p(x)− k (x− a)n+1

for x ∈ [a, b], where the numberk is chosen in such a way thatg(b) = 0. As a
matter of fact,

k =
f(b)− p(b)

(b− a)n+1 . (9.5)

Now we apply Theorem 9.5.5 to the functiong on the interval[a, b] to choose a
numberc ∈ (a, b) such thatg(n+1)(c) = 0. Since the degree of the polynomialp
does not exceedn, we have

g(n+1)(x) = f (n+1)(x)− 0− k (n+ 1)!

for everyx ∈ (a, b), and substitutingx = c we obtain

0 = f (n+1)(c)− k (n+ 1)!. (9.6)

Combining Equations (9.5) and (9.6) we obtain
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f(b) = p(b) +
f (n+1)(c)

(n+ 1)!
(b− a)n+1 .

9.6 Indeterminate Forms

9.6.1 Introduction to Indeterminate Forms
The algebraic rules for limits given in Theorem 8.5.4 tell us that if we have two
limits

lim
x→a

f(x) = λ and lim
x→a

g(x) = µ

then the conditions

lim
x→a

(f(x) + g(x)) = λ+ µ

lim
x→a

(f(x)− g(x)) = λ− µ

lim
x→a

(f(x)g(x)) = λµ

lim
x→a

(
f(x)

g(x)

)
=

λ

µ

hold whenever the expressions on the right are defined. When the expressions on
the right are not defined, the process of deciding whether or not the limits exist
and what they are is considerably more difficult. Limits of this type are known
asindeterminate forms.

In this section we shall discuss some techniques for evaluating indeterminate
forms, among which is an important result that is known as L’Hôpital’s rule.32

As you probably know from your elementary calculus courses, many indetermi-
nate forms can be evaluated very easily with the help of L’Hôpital’s rule. But
L’Hôpital’s rule is not a silver bullet, and its importance is often overrated. We
begin this section with some examples of indeterminate forms that are easier to
evaluate without the help of L’Hôpital’s rule.

9.6.2 Some Examples of Indeterminate Forms

1. The limit expression

lim
x→∞

(√
x2 + x+ 1−

√
x2 − x+ 1

)
32 Although first published by L’Hôpital, thistheorem was in fact discovered by Johann
Bernouli, who communicated it to L’Hôpital in a letter.
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is indeterminate but we can see that the limit exists because, for every
numberx 	= 0, the expression

√
x2 + x+ 1−√

x2 − x+ 1 equals(√
x2 + x+ 1−√

x2 − x+ 1
) (√

x2 + x+ 1 +
√
x2 − x+ 1

)
√
x2 + x+ 1 +

√
x2 − x+ 1

=
2x√

x2 + x+ 1 +
√
x2 − x+ 1

=
2√

1 + 1
x
+ 1

x2
+
√
1− 1

x
+ 1

x2

and the latter expression approaches1 asx → ∞.
2. This example makes use of the functionlog that is introduced in Chapter

10.33 From the fact thatlog′ x = 1/x for all x > 0 we know that the function
log is increasing. We deduce from Theorem 8.10.8 that

lim
x→∞

log x = sup {log x | x > 0} ,

and, since the functionlog is unbounded above, we conclude that
limx→∞ log x = ∞. Therefore the limit expression

lim
x→∞

log (x− 1)

log x

is indeterminate. Now, given any numberx > 1 we have

1− log (x− 1)

log x
=

log x− log (x− 1)

log x
=

log
(

x
x−1

)
log x

.

Since the numerator of the latter expression approacheslog 1 = 0 asx → ∞
andlog x → ∞ asx → ∞, we can use the algebraic rules, Theorem 8.5.4,
to obtain

lim
x→∞

(
1− log (x− 1)

log x

)
= 0

and we conclude that

lim
x→∞

log (x− 1)

log x
= 1.

33 In this book we adopt the convention that the symbolslog andln mean the same thing. Both
of them stand for the natural logarithm.
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3. If q is any real number, then the limit expression

lim
x→∞

x

(
1− (x− 1)q

xq

)

is indeterminate. To evaluate this limit we observe that ifx > 1, we have

x

(
1− (x− 1)q

xq

)
=

xq − (x− 1)q

xq−1
.

We now definef(x) = xq for all x > 0, and, for any given numberx > 1,
we apply the mean value theorem tof on the interval[x− 1, x] to obtain a
numberc ∈ (x− 1, x) such that

xq − (x− 1)q =
f(x)− f(x− 1)

x− (x− 1)
= f ′(c) = qcq−1.

Thus

xq − (x− 1)q

xq−1
= q
( c
x

)q−1

.

If q ≥ 1, then we have

q

(
x− 1

x

)q−1

≤ x

(
1− (x− 1)q

xq

)
≤ q
(x
x

)q−1

,

and ifq < 1, we have

q

(
x− 1

x

)q−1

≥ x

(
1− (x− 1)q

xq

)
≥ q
(x
x

)q−1

for all x > 1. In either case, since the two outer expressions approachq as
x → ∞, it follows from the sandwich theorem (Theorem 8.5.3) that

lim
x→∞

x

(
1− (x− 1)q

xq

)
= q.

4. If q is any real number, then the limit expression

lim
x→∞

x (log x)

(
1− 1

x
− (x− 1) (log (x− 1))q

x (log x)q

)
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is indeterminate. To evaluate this limit we observe that ifx > 1, we have

x (log x)

(
1− 1

x
− (x− 1) (log (x− 1))q

x (log x)q

)

=
(x− 1) [(log x)q − (log (x− 1))q]

(log x)q−1 .

We now definef(x) = (log x)q for all x > 1, and, for any given number
x > 2, we apply the mean value theorem tof on the interval[x− 1, x] to
obtain a numberc ∈ (x− 1, x) such that

(log x)q − (log (x− 1))q =
f(x)− f(x− 1)

x− (x− 1)
= f ′(c) =

q (log c)q−1

c
,

and so

(x− 1) [(log x)q − (log (x− 1))q]

(log x)q−1 = q

(
log c

log x

)q−1(
x− 1

c

)
.

If q ≥ 1, then we have

q

(
log (x− 1)

log x

)q−1(
x− 1

x

)
≤ (x− 1) [(log x)q − (log (x− 1))q]

(log x)q−1 ≤ q,

and ifq < 1, we have

q

(
x− 1

x

)
≤ (x− 1) [(log x)q − (log (x− 1))q]

(log x)q−1 ≤ q

(
log (x− 1)

log x

)q−1

for all x > 2. In either case, since the two outer expressions approachq as
x → ∞, it follows from the sandwich theorem (Theorem 8.5.3) that

lim
x→∞

x (log x)

(
1− 1

x
− (x− 1) (log (x− 1))q

x (log x)q

)
= q.

9.6.3 L’Hôpital’s rule
Suppose that f and g are differentiable on an interval S, that either a ∈ S or
a is an endpoint of S, and that the expression f ′(x)/g′(x) approaches a limit
value λ as x → a. Suppose that one of the following two conditions holds:

1. f(x) → 0 as x → a and g(x) → 0 as x → a.
2. |g(x)| → ∞ as x → a.
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Then we have

lim
x→a

f(x)

g(x)
= λ.

Note that botha andλ are permitted to be infinite. You can find a proof of
L’Hôpital’s rule by clicking on the icon . In the following subsection we
provide a proof of a special case of L’Hôpital’s rule that contains many of the
ingredients of the main theorem.

9.6.4 A Simple Form of L’Hôpital’s Rule
Suppose that c and a are real numbers satisfying c < a, that f and g are dif-
ferentiable functions on the interval (c, a), and that the expression f ′(x)/g′(x)
approaches a limit value λ as x → a. Suppose that

lim
x→a

f (x) = lim
x→a

g (x) = 0.

Then we have

lim
x→a

f(x)

g(x)
= λ.

Proof. The fact thatf ′(x)/g′(x) → λ asx → a guarantees thatg′(x) 	= 0
wheneverx is close enough toa. Choose a numberb < a such thatg′(x) 	= 0
wheneverb < x < a.

c b ax
n

t
n

We definef (a) = g (a) = 0 and observe that the functionsf andg are continu-
ous on the interval[b, a]. Now, to prove thatf(x)/g(x) → λ asx → a, suppose
that (xn) is a sequence in the interval(b, a) and thatxn → a asn → ∞. We
need to show thatf(xn)/g(xn) → λ asn → ∞. For eachn, we apply the
Cauchy mean value theorem (Theorem 9.4.4) to the functionsf andg on the
interval[xn, .a] to choose a numbertn ∈ (xn, a) such that

f ′(tn)
g′(tn)

=
f(xn)− f(a)

g(xn)− g(a)
.

Sincetn → a asn → ∞, we see that

f(xn)

g(xn)
=

f(xn)− f(a)

g(xn)− g(a)
=

f ′(tn)
g′(tn)

→ λ

asn → ∞, as required.�



9.6 Indeterminate Forms 251

9.6.5 Some Exercises on Indeterminate Forms

1. Evaluate each of the following limits. In each case, useScientific
Notebook to verify that your limit value is correct.

lim
x→0

(
x− sinx

x3

)
lim
x→0

(
tanx− x

x− sinx

)

lim
x→0

(
tanx− sinx

x3

)
lim
x→0

(
log (1 + x)

x

)

lim
x→0

(
(1 + x)1/x

)
lim
x→0

(
e− (1 + x)1/x

x

)

lim
x→∞

(
x100

exp
[
(log x)2

]
)

lim
x→π/2

(sinx)tanx

lim
x→∞

(
x

log x

x

)
lim
x→∞

xlog x

(x+ 1)log(x+1)

lim
x→0

(
ex − log (1 + x)− 1

x2 (x+ 2)

)
lim
x→∞

(
4
√
x4 − 5x3 + 8x2 − 2x+ 1− x

)

2. Given thatα > 0, evaluate the limit

lim
x→∞

x

(
(2x+ 2)α − (2x+ 1)α

(2x+ 2)α

)
.

3. Evaluate the limits

lim
x→∞

((log (x+ 1))α − (log x)α)

lim
x→∞

(
log (x+ 1)

log x

)x

lim
x→∞

(
log (x+ 1)

log x

)x log x

.

For the latter two limits, check the limit value withScientific Notebook.
4. (a) Prove that if0 < a < b andx ≥ 1, then

xax−1 ≤ bx − ax

b− a
≤ xbx−1.
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(b) Prove that

lim
x→∞

(
(log (x+ 1))log x − (log x)log x

)
= ∞.

(c) Prove that

lim
x→∞

(
(log (x+ 1))log log x − (log x)log log x

)
= 0.

5. Prove that ifq is any given number, then

lim
x→∞

xq

(
1− q log x

x

)x

= 1.

6. Suppose that we want to evaluate the limit

lim
x→∞

3

1 + x+ x2
.

Would it be correct to use L’Hôpital’s rule by takingf (x) = 3 and
g(x) = 1 + x+ x2 for everyx and then arguing that

lim
x→∞

3

1 + x+ x2
= lim

x→∞
f(x)

g(x)
= lim

x→∞
f ′(x)
g′(x)

= lim
x→∞

0

1 + 2x
= 0?

The answer is certainly correct, but is the reasoning correct? Have we made
a valid use of L’Hôpital’s rule?

7. Should L’Hôpital’s rule be used to evaluate the limits

lim
x→∞

esinx

x
and lim

x→∞
xesinx

log x
?



Chapter 10
The Exponential and Logarithmic

Functions

10.1 The Purpose of This Chapter

Although the exponential and logarithmic functions have appeared fairly exten-
sively in the preceding chapters, their appearance was restricted to illustrative
examples. They were never part of the central narrative and were never used
in the development of the theory. However, as you continue your reading of this
text, the role played by these functions will begin to change, and, eventually, they
will become part of the fabric of what we are studying.

The purpose of this chapter is to placethe exponential and logarithmic func-
tions on a sound footing. Up until now we have not seen a precise definition
of expressions of the typeax or loga x. If you look back at the axioms for the
real number systemR that appeared in Section 5.2, you will see that they contain
nothing at all about exponential expressions. Thus, we need to supply a definition
for the expressionax. We need to establish the familiar identities such as

atax = at+x.

We need to show that ifa is any positive number that is unequal to1, and if

f(x) = ax

for every real numberx, then the functionf is a strictly monotone differentiable
function fromR onto the interval(0,∞). It will then follow that the inverse
function of this functionf , which is written asloga, is a strictly monotone
differentiable function from(0,∞) ontoR. As you know, the functionloga is
called the logarithm with basea. Finally, we need to show that there is a positive
numbere that has the special property that if we defineexp(x) = ex for every
numberx, then

exp′(x) = expx

for every numberx and

log′e(x) =
1

x

for every positive numberx.

253
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Some further remarks that are mainly of interest to instructors can be reached
by clicking on the icon .

If you wish, you may regard this chapter as being optional. If you decide to
skip this chapter, then you should assume the familiar properties of the functions
exp andlog as they are listed in the preceding paragraphs.

10.2 Integer Exponents
This section is being provided for the sake of completeness. It should be read
very rapidly and, perhaps, parts ofit should be skipped altogether.

10.2.1 Positive Integer Exponents
If a is any number andn is any positive integer, then the expressionan is, as
usual, defined to be the product ofa with itself n times. Ifa andb are any real
numbers andm andn are positive integers, then the following rules hold:

1. a1 = a.
2. aman = am+n.
3. anbn = (ab)n.
4. (am)n = amn.
5. If we definef(x) = xn for every real numberx ≥ 0, then the functionf is a

strictly increasing continuous function from the interval[0,∞) onto[0,∞).

We recall from Subsection 7.7.2 that ifc > 1 and if we definexn = cn for
every positive integern, then the geometric sequence(xn) is strictly increasing
andxn → ∞ asn → ∞. On the other hand, if−1 < c < 1, then the sequence
(xn) converges to zero.

10.2.2 General Integer Exponents
Suppose thata is any nonzero number and thatn is an integer. In the event that
n > 0, the expressionan has already been defined. We now definea0 = 1 and,
in the event thatn < 0, we define

an =
1

a−n
.

We see easily that ifa andb are nonzero numbers andm andn are any integers,
then the first four equations that appearin Subsection 10.2.1 must hold. The fifth
statement also has an analog for negative exponents: Ifn is a negative integer,
and if we definef(x) = xn for every real numberx > 0, then the functionf is
a strictly decreasing continuous function from the interval(0,∞) onto(0,∞).
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10.3 Rational Exponents

In this section we introduce rational exponents and we extend the rules for expo-
nents that we saw for integers in Section 10.2 to include rational exponents. We
begin by looking at an elementary fact about radicals upon which the definition
of rational exponents is based.

10.3.1 An Elementary Fact about Radicals
Suppose that a > 0; that m, n, p, and q are integers; and that the integers n and
q are positive. Suppose finally that m/n = p/q. Then we must have(

n
√
a
)m

= n
√
am =

(
q
√
a
)p

= q
√
(ap).

Proof. In view of the fact that the functionf in Condition 5 of Subsection 10.2.1
is one-one, we can obtain the desired result by showing that((

n
√
a
)m)nq

=
(

n
√
am
)nq

=
((

q
√
a
)p)nq

=
(

q
√
(ap)
)nq

.

It is easy to see that each of the preceding four numbers is equal toamq. For
example, remembering thatnp = mq, we see that((

n
√
a
)m)nq

=
(

n
√
a
)mnq

=
((

n
√
a
)n)mq

= amq

and (
q
√
(ap)
)nq

=
((

q
√
(ap)
)q)n

= (ap)n = apn = amq.

We leave the remaining two identities as an exercise. �

10.3.2 Defining Rational Exponents
As you know, there are certain instances in which an expressionax can exist
whena < 0 even ifx is not an integer. For example,

(−1)1/3 = 3
√−1 = −1.

However, we shall ignore these special cases, and, for the purpose of defining an
expression of the formax whenx is rational, we shall require the numbera to be
positive.

Given any positive numbera and any rational numberx we defineax by
choosing two integersm andn such thatn > 0 andx = m/n and defining

ax =
(

n
√
a
)m

= n
√
(am).

In view of the preceding technical lemma, this definition ofax is not dependent
on our choice of integersm andn satisfying the conditionx = m/n.
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10.3.3 The Laws of Rational Exponents
Suppose that a and b are positive numbers and that t and x are any rational
numbers. Then the following conditions hold:

1. atax = at+x.
2. axbx = (ab)x.
3. (at)

x
= atx.

4. If a > 1 and x > 0, then ax > 1.
5. If a > 1 and t < x, then at < ax.

We leave the proof of this theorem as an exercise.

10.3.4 A Continuity Theorem for Constant Rational Exponents
Suppose that c is any rational number and that

f(x) = xc

for every positive real number x. Then the function f is continuous on the interval
(0,∞).

Proof. Choose integersm andn such thatn > 0 andc = m/n. Since the
functiong defined by the equation

g(x) = xn

for all x > 0 is strictly increasing and continuous from(0,∞) onto (0,∞), it
follows from a form of the inverse function theorem (Theorem 8.11.4) that the
inverse functiong−1 of g is continuous. Since

f(x) =
(
g−1(x)

)m
for every numberx > 0, the continuity off follows at once from the composition
theorem for continuity (Theorem 8.7.9).�

10.3.5 The Behavior of nth Roots as n → ∞
If a is any positive number, then

lim
n→∞

a1/n = 1.

Proof.34 We shall prove the theorem for the casea ≥ 1. Once this has been

34 As you may have noticed, we studied much more interesting limits than this one in Section
9.6, and if we could use the techniques of that section here, the present theorem would be trivial.
However, in Section 9.6, we made extensive use of exponential and logarithmic functions, and so
we cannot use that material here as we develop the theory of those functions.
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done, the casea < 1 will follow from the identity

a1/n =
1

(a−1)1/n
.

Suppose thata ≥ 1. From part 5 of Theorem 10.3.3 we know that the sequence(
a1/n
)

is decreasing and it therefore follows from the monotone sequence theo-
rem (Theorem 7.7.1) that this sequence converges to its infimum, which we shall
write asb. Since the number1 is a lower bound of the sequence

(
a1/n
)

we know
that b ≥ 1. However, ifb were greater than1, it would follow from Theorem
7.7.2 thatbn → ∞ asn → ∞, contradicting the fact thatbn ≤ a for everyn.
Thusb = 1 and the proof is complete.�

10.3.6 Exponential Function with Rational Domain
Suppose that a > 1 and that

f(x) = ax

for every rational number x.

1. The function f is strictly increasing on the set Q of rational numbers.
2. If x is any real number, we have

sup {f(s) | s ∈ Q ands < x} = inf {f(t) | t ∈ Q andx < t} .

3. The function f is continuous on the set Q of rational numbers.

Proof. The fact thatf is strictly increasing follows at once from part 5 of Theo-
rem 10.3.3. Now suppose thatx is any real number. In view of one of the forms
of the sandwich theorem (Theorem 7.4.7) we can prove the assertion 2 by finding
sequences(sn) and(tn) of rational numbers such thatsn < x < tn for eachn
and such that

lim
n→∞

(f(tn)− f(sn)) = 0.

For this purpose we choose rational numberssn andtn for eachn such that

sn < x < tn and tn − sn <
1

n
.

For eachn we have

0 < f(tn)− f(sn) = f(sn) [f(tn − sn)− 1] ≤ f(t1)
(
a1/n − 1

)
.

Since the latter expression approaches0 asn → ∞, it follows that

lim
n→∞

(f(tn)− f(sn)) = 0.
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We observe finally that, in view of Theorem 8.10.8, the fact thatf is continuous
at every rational number follows from assertion 2.�

10.4 Real Exponents

In this section we introduce real exponents and we extend the rules for exponents
to include all real exponents. We shall also show that whenevera is a positive
number unequal to1, the exponential function basea is strictly monotone and
continuous, and we shall introduce the functionloga.

10.4.1 Definition of Real Exponents
Given any real numbera > 1 and any numberx we define

ax = sup {as | s ∈ Q ands < x} = inf
{
at | t ∈ Q andx < t

}
.

In view of Theorem 10.3.6, this definition ofax does not conflict with the mean-
ing of ax whenx is rational.

If a is a positive real number anda < 1, we define

ax =

(
1

a

)−x

.

Finally, if a = 1, then we defineax = 1 for every real numberx.

10.4.2 Continuity of the Exponential Function
Suppose that a is any positive number unequal to 1 and that we have defined

f(x) = ax

for every real number x. Then the function f is a strictly monotone continuous
function from R onto the interval (0,∞).

Proof. Suppose first thata > 1. It is clear thatf is a strictly increasing function
on the setR, and from Theorems 10.3.6 and 8.10.8 we see thatf is continuous
at every real number. Since the range off is an interval andinf f = 0 and
sup f = ∞, we conclude that the range off is the interval(0,∞).

Now that we know that the theorem holds fora > 1, we can deduce it at once
for the case0 < a < 1 by using the identity

ax =

(
1

a

)−x

. �
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10.4.3 Logarithms
Given any positive numbera 	= 1, the functionloga, which is called the loga-
rithm with basea, is defined to be the inverse function of the functionf that is
defined by the equation

f(x) = ax

for all x ∈ R. Thus ifx = au, thenu = loga x.

From a form of the inverse function theorem (Theorem 8.11.4) we deduce
that the functionloga is a strictly monotone continuous function from the interval
(0,∞) ontoR.

10.4.4 The Laws of Real Exponents
Suppose that a and b are positive numbers and that t and x are any real numbers.
Then the following conditions hold:

1. atax = at+x.
2. axbx = (ab)x.
3. (at)

x
= atx.

Proof. Choose sequences(tn) and(xn) of rational numbers such thattn → t
andxn → x asn → ∞. From the continuity of the exponential function with
basea we see that

atax = lim
n→∞

(
atnaxn

)
= lim

n→∞
(
atn+xn

)
= at+x.

In the same way we see that

axbx = lim
n→∞

(axnbxn) = lim
n→∞

((ab)xn) = (ab)x .

To prove the third assertion we observe first that, ifn is any positive integer,
then it follows from Theorem 10.3.4, the rules for rational exponents, and the
continuity of the exponential function that(

at
)xn = lim

m→∞
(
atm
)xn = lim

m→∞
(
atmxn

)
= atxn.

Using the continuity of the exponential function again we obtain(
at
)x

= lim
n→∞

(
at
)xn = lim

n→∞
(
atxn
)
= atx. �

10.4.5 The Laws of Logarithms
Now that we have established a proper foundation for the exponential function,
the laws of logarithms can be proved by the same methods that are used in a
precalculus course.
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Suppose that a and b are positive numbers unequal to 1, that t and x are
positive numbers and that c is any real number. Then the following conditions
hold:

1. loga (tx) = loga t+ loga x.

2. loga

(
t

x

)
= loga t− loga x.

3. loga (x
c) = c (loga x)

4. loga x =
logb x

logb a
.

5. ax = bx logb a.

You can reach a proof of these assertions by clicking on the icon.

10.5 Differentiating the Exponential Function:
Intuitive Approach

A movie preview of this section can be seen by clicking on the link .

10.5.1 Introduction
If a is a positive number andf(x) = ax for every real numberx, then the
problem of finding the derivativef ′(x) of the functionf at a given numberx is
the problem of finding the limit

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

ax+h − ax

h
= lim

h→0
ax
(
ah − 1

h

)
.

Thus the problem of differentiating the exponential function with basea boils
down to the problem of finding the limit

lim
h→0

ah − 1

h
.

If we call this limit φ (a), then for every real numberx we have

f ′(x) = lim
h→0

ax
(
ah − 1

h

)
= ax lim

h→0

(
ah − 1

h

)
= φ(a)ax.

In particular,f ′(0) = φ(a) so thatφ(a) is the slope of the graphy = ax at the
point (0, 1), as illustrated in Figure 10.1.
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y = ax

y  =
  
φ(a)x 

+ 1

x

y

Figure 10.1

In this section we discuss the limitφ(a) intuitively. In the next section we
shall see a rigorous proofthat the limit exists, and we shall also see that some-
where between2 and3 there is a value ofa for which the numberφ(a) = 1.
This special value ofa is callede. What is important about the numbere is that
if f(x) = ex for every numberx, then given any numberx we have

f ′(x) = φ(e)ex = ex.

The remainder of this section contains some important interactive material that
should best be read in the on-screen version of this book.

10.5.2 A Numerical Approach to the Limit φ(a)

The on-screen version of this book provides you with the opportunity of moti-
vating the limitφ(a) by askingScientific Notebook to evaluate the expression

ah − 1

h

numerically for some chosen value ofa and a variety of values ofh that are close
to 0. For example, the fact that

2.01 − 1

.01
= .69556
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tells us thatφ (2) is approximately0.696. Since

2.0001 − 1

.0001
= .69317,

we see that a better approximation toφ (2) is 0.693. You will use theformula
feature ofScientific Notebook to explore expressions of this type interactively.

10.5.3 A Graphical Approach to the Limit φ(a)

The on-screen version of this book provides you with the opportunity of draw-
ing a graph of the form

y =
ax − 1

x

for a chosen value ofa and then to watch the graph change automatically as the
value ofa changes. For example, whena = 2, the graph becomes

y =
2x − 1

x

and is illustrated in Figure 10.2. As you can see, this graph meets they-axis just

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1.5 -1 -0.5 0 0.5 1

Figure 10.2

below the point(0, 0.7) and illustrates the fact that the limit

φ (2) = lim
x→0

2x − 1

x

is a little below0.7. By zooming into your graph and adjusting the value ofa
you will be able to see the behavior of the quantityφ(a) asa varies and you will
be able to search for a value ofa for whichφ(a) = 1.
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Finally, you will be invited to click on the link that will play a sound
movie that further illustrates the interactive exercise in which you have engaged.

10.5.4 Another Graphical View of the Limit

In the on-screen version of the text you will be invited to supply the definition

φ(a) = lim
h→0

ah − 1

h

to Scientific Notebook and then to draw the graph of the functionφ. By choosing
the domain interval as[−1, 5] and overriding the default setting in the plot prop-
erties dialogue box to preventy from being less than−1 (see Figure 10.3) you

Figure 10.3

will make your graph appear as in Figure 10.4. This figure helps us understand
that there must be a value ofa between2 and3 for whichφ(a) = 1.

10.6 Differentiating the Exponential Function:
Rigorous Approach

In this section we show that ifa is a positive number, then the limitφ(a) defined
in Section 10.5 does indeed exist and thatthere is precisely one positive number
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Figure 10.4

a for whichφ(a) = 1. In order to establish the existence of the limit

lim
h→0

ah − 1

h
,

we shall show first that if we define

g(x) =
ax − 1

x
,

then the functiong is increasing. The existence of the one-sided limits ofg will
then follow from Theorem 8.10.8, and all we shall have to do is compare the
limits from the left and right at0.

We begin with a technical lemma that will help us to prove that the function
g is increasing.

10.6.1 A Useful Inequality
If a > 0 and n is a positive integer, then

an+1 − 1

n+ 1
≥ an − 1

n
.

Proof. Suppose thata > 0 and thatn is a positive integer. The desired inequality
is equivalent to the assertion that

nan+1 − (n+ 1) an + 1 ≥ 0.

For each positive integern we define

xn = nan+1 − (n+ 1) an + 1.
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We need to see thatxn ≥ 0 for eachn. For this purpose we note the obvious fact
thatx1 ≥ 0 and we can see that the sequence(xn) is increasing by observing for
eachn that

xn+1 − xn = (n+ 1) an (a− 1)2 ≥ 0.

Thereforexn ≥ 0 for eachn. �

10.6.2 An Extension of the Preceding Inequality
Suppose that a > 0, that t and x are positive rational numbers, and that t ≤ x.
Then we have

at − 1

t
≤ ax − 1

x
.

Proof. Choose positive integersm, n, andq such thatt = m/q andx = n/q,
and defineb = a1/q. The desired inequality is equivalent to the assertion that

bm − 1

m
≤ bn − 1

n
,

which is clear, in view of Lemma 10.6.1.�

10.6.3 A Further Extension of the Inequality
Suppose that a > 0, that t and x are positive real numbers, and that t ≤ x. Then
we have

at − 1

t
≤ ax − 1

x
.

Proof. Choose sequences(tn) and(xn) of rational numbers such that0 < tn < t
andx < xn for eachn and such thattn → t andxn → x asn → ∞. We observe
that

at − 1

t
= lim

n→∞
atn − 1

tn
≤ lim

n→∞
axn − 1

xn
=

ax − 1

x
. �

10.6.4 Exponential Functions are Differentiable
Suppose that a > 0.

1. The limit

φ(a) = lim
h→0

ah − 1

h

exists.
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2. If we define f(x) = ax for every real number x, then for every number x we
have

f ′(x) = φ(a)ax.

3. Unless a = 1 we have φ(a) 	= 0.

Proof. The existence of the one-sided limit

lim
h→0+

ah − 1

h

follows at once from Theorems 10.6.3 and 8.10.8. We write this one-sided limit
asφ(a). Now, given any numberh < 0, since

ah − 1

h
= ah

(
a−h − 1

−h

)

and since the exponential functionf is continuous at0 we see that

lim
h→0−

ah − 1

h
= lim

h→0−
ah
(
a−h − 1

−h

)
= 1φ(a) = φ(a).

Thus the numberφ(a) is the two-sided limit:

φ(a) = lim
h→0

ah − 1

h

and we have proved assertion 1. Assertion 2 follows at once from assertion 1.
Finally, if a 	= 1, then, because the functionf is not constant, we see from
assertion 2 thatφ(a) 	= 0. �

10.6.5 Natural Exponents and Logarithms
Now that we have shown that the exponential functions are differentiable, it is
time to say a little more about the numberφ(a) for any given positive number
a. We shall begin by relating the numberφ(a) to the numberφ (2). If a is any
positive number, then by using the chain rule to differentiate both sides of the
equation

ax = 2x log2 a

we obtain

φ(a)ax = φ (2) 2x log2 x log2 a,

from which we conclude that

φ(a) = φ (2) log2 a.
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Therefore the conditionφ(a) = 1 will hold if and only if φ (2) log2 a = 1; in
other words,

a = 21/φ(2).

Therefore there is precisely one positive numbera for whichφ(a) = 1, and we
definee to be this number. Sinceφ(e) = 1 we know that iff is the exponential
function with basee, then

f ′(x) = 1ex.

The exponential function with basee is called thenatural exponential function
and is written asexp. Thus

exp′(x) = exp(x)

for every real numberx. The logarithm with basee is known as the natural
logarithm and is written aslog and also asln . Note that ifx > 0 andt = log x,
then, sincex = exp (t), it follows from Theorem 9.3.9 that

log′ x =
1

exp′ t
=

1

exp (t)
=

1

x
.

We have now derived all of the familiar identities on the calculus of the exponen-
tial and logarithmic functions that appear in an elementary calculus course.

10.6.6 Some Exercises on the Exponential and Logarithmic Functions

1. Given thata is a positive number and thatf(x) = ax for every real number
x, prove that

f ′(x) = ax log a

for every numberx. In other words, prove that the number we calledφ(a) in
the preceding sections is justlog a.

2. Given thata is a positive number and thata 	= 1, and given that
f(x) = loga x for everyx > 0, prove that

f ′(x) =
1

x (log a)

for every numberx > 0.
3. Given thatf andg are differentiable functions and thatf is positive, use the

fact that

f(x)g(x) = exp [g(x) (log (f(x)))]

for eachx to find a formula for the derivative of the functionf g.
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4. Given thatf is differentiable onR, thatf(0) = 1, and thatf ′ = f , prove
that the functionf/ exp is constant and then conclude thatf = exp.

5. Suppose thatf : R → R and thatf ′′(x) = f(x) for every real numberx.

(a) Given thatg = f ′ + f , prove thatg′ = g and deduce that there exists a
real numbera such thatg′(x) = 2aex for every numberx.

(b) Given thath(x) = f(x)ex for every real numberx, prove that the
equationh′(x) = 2ae2x holds for every numberx and deduce that there
is there is a numberb such that the equation

f(x) = aex + be−x

holds for every real numberx.
6. Suppose thatf : R → R and that for all numberst andx we have

f(t+ x) = f(t)f(x).

(a) Prove that eitherf(x) = 0 for every real numberx or f(x) 	= 0 for
every real numberx.

(b) Prove that iff is not the constant zero, thenf(0) = 1 and thatf(x) > 0
for every numberx.

(c) Prove that iff is not the constant zero and ifa = f(1), then for every
rational numberx we havef(x) = ax. Deduce that iff is continuous on
the setR, then the equationf(x) = ax holds for every real numberx.
Compare this exercise with the last few exercises in Subsection 8.7.10.

7. Suppose thatα is a nonzero real number and that

S = {x ∈ R | 1 + αx > 0} .

(a) Prove that if

g(x) = αx− (1 + αx) log (1 + αx)

for all x ∈ S, theng(x) < 0 for every nonzero numberx ∈ S.

(b) Prove that if

f(x) =
log (1 + αx)

x

for every nonzero numberx ∈ S and iff(0) = α, then the functionf
is continuous and strictly decreasing onS. Deduce that the inequality
f(x) < α holds for every positive numberx ∈ S.
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(c) Prove that the inequality

(1 + αx)1/x < eα

holds for every positive numberx ∈ S.
8. (a) By applying Theorem 9.5.6 to the functionexp on the interval[0, 1],

show that ifn is a positive integer, then there must exist a number
c ∈ (0, 1) such that

e = 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
+

ec

(n+ 1)!
.

(b) Deduce that ifn is a positive integer, then

0 < e−
n∑

j=0

1

j!
<

e

(n+ 1)!
.

(c) By puttingn = 2 in the latter inequality, prove thate < 3.
(d) Prove that ifn is a positive integer, we have

0 < e−
n∑

j=0

1

j!
<

3

(n+ 1)!

and deduce that

lim
n→∞

n∑
j=0

1

j!
= e.

(e) Prove that the numbere is irrational.

9. Prove that if(xn) is a sequence of positive numbers and if

lim
n→∞

xn+1

xn
= α,

then

lim
n→∞

n
√
xn = α.

Deduce that

lim
n→∞

n
n
√
n!

= e.



Chapter 11
The Riemann Integral

This chapter presents the theory of Riemann integration. If you would prefer to
replace this chapter with a more extensive presentation that includes Riemann-
Stieltjes integration, you can reach the alternative presentation from the on-screen
version of this book by clicking on the icon .

11.1 Introduction to the Concept of an Integral

11.1.1 What Is an Integral?
When you studied elementary calculus, you acquired a good intuitive feel for the
idea that an integral of the form∫ b

a

f(x)dx

is the “signed area” of the region illustrated in Figure 11.1 that lies between the
lines x = a andx = b, thex-axis, and the curvey = f(x). As you know,

a b
x

−

+
+ +

−

y = f(x)

Figure 11.1

each portion of area above thex-axis is taken as positive and each portion of area
below thex-axis is taken as negative.

However, even though you may havebecome quite skillful in the art of
evaluating integrals and using them in mathematics, science, engineering, or
economics, you have probably not yet seen a precise definition of an integral,
and you have not seen how the theory of integration can be placed on a sound
logical foundation. That is what we are going to do in this chapter. We shall

270
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explore the very meaning of the wordintegral. After a very brief look at the work
of Eudoxus and Archimedes, we shall jump to the nineteenth century and study
the theory of integration as it was developed by Cauchy, Darboux, and Riemann,
and which has come to be known as Riemann integration. Perhaps we should
mention that, although this theory of Riemann integration is logically sound and
is able to serve many of the applications of mathematics to other disciplines, it
is not all that mathematicians want it to be. There are several modern theories of
integration that are more sophisticatedand more satisfactory and which we shall
mention briefly from time to time. But we shall leave their detailed study for a
more advanced course.

11.1.2 What Is Area?
In view of the simple picture that we have just seen that describes an integral of
the form

∫ b

a
f(x)dx as being a combination of areas, you may, perhaps, wonder

why we still have to provide a meaning for the idea of an integral. After all,
if
∫ b

a
f(x)dx stands for the signed area illustrated in Figure 11.1, then, on the

face of it, it looks as though we have already given the integral a solid definition.
But, in attempting to define an integral in terms of area we run into a snag: The
definition requires us to have a prior understanding of the concept of area. Do we
have such an understanding? The answer isno! The following philosophy sums
up the approach to area that you may have found in your elementary mathematics
courses:

Area is there! Area has a meaning that is absolute and that has nothing to
do with what you or I may think it means. We don’t need to define the area
of a given region. We can see it.

But this philosophy is quite wrong. We can’t “see” area. All we can see is a
piece of paper. Until we have given a clear definition of the concept of area, it is
by no means clear what we mean by the area shown in Figure 11.1.

In the simplest situations, we can assign a meaning to the idea of area by
using a concept of “paving”. If, for example, we decide to measure length in
feet, then the unit of area is a square foot, which is the area of a square with a side
of 1 foot. A given plane region can be said to have an area of a certain number
of square feet if we can “pave” that region with paving stones, each of which is
a square with a side of1 foot. Thus, for example, if we have a rectangle with a
length of4 feet and a width of3 feet as illustrated in Figure 11.2, then, because
the rectangle can be paved with12 one-by-one squares, the rectangle has an area
of 12 square feet.This example motivates the well-known formula for the area of
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Figure 11.2

a rectangle:

area of a rectangle= its length times its width.

However, even for rectangles, this simple“paving” approach to area is too restric-
tive. Suppose, for example, that we have a rectangle with a length of

√
13 + 1

and a width of
√
13− 1, as illustrated in Figure 11.3. If we believe that the area

13 + 1

13 − 1

Figure 11.3

of this rectangle should be its length times its width, then this area must be

(√
13 + 1

)(√
13− 1

)
= 13− 1 = 12.

But this rectangle cannot be paved with one-by-one squares. In fact, it cannot
be paved with equal squares ofany size. To see why such paving is impossible,
suppose that we have managed, somehow, to pave the

√
13 + 1 by

√
13− 1 rec-

tangle withm rows andn columns of squares of a given fixed size, as illustrated
in Figure 11.4, wherem andn are integers. We see at once that this supposition
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m

n

Figure 11.4

leads to a contradiction because it implies that

m

n
=

√
13− 1√
13 + 1

=

(√
13− 1

) (√
13− 1

)
(√

13 + 1
) (√

13− 1
) = 7

6
− 1

6

√
13,

which is impossible because the latter number is irrational.

Thus the notion of area is more complicated than one might think. The simple
“paving” approach fails even if we confine ourselves to rectangles which, from
the standpoint of area, are the simplest of all geometric figures. If we extend our
discussion to more complicated geometric figures, the problem becomes harder
still. As you know from elementary calculus, the area of the region illustrated in
Figure 11.5 is

Figure 11.5
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∫ 3

−3

(
3− x2

3

)
dx = 12,

but there is no way in which this region with a curved boundary can be paved
with squares.

For a slightly more extensive discussion of the area concept, click on the icon
.

11.1.3 The Simplest Type of Integral
In the light of the examples that appearin Subsection 11.1.2, we have to accept
that the notion of area is anything but simple. We shall agree todefine the area of
a rectangle as its length times its width, but we are clearly still a long way from
understanding what we mean by an integral, even of the easiest kind of function.
Quadratic functions are out of the question, and even sloping straight lines are
still beyond our reach. In fact, the only kind of function that seems to have an
“obvious” integral at this stage is a function like the one illustrated in Figure
11.6. Functions of this type are known asstep functions and will be introduced

y = 2

y = 1

y = − 2

y = 3

y = 1

−3 0 1.5 4 6 9.4

Figure 11.6

precisely in the next section. If we write the function whose graph appears in
Figure 11.6 asf , then we should expect that∫ 9.4

−3

f(x)dx = (3) (2) + (1.5) (1) + (2.5) (−2) + (2) (3) + (3.4) (1) = 11.9.

Notice that it shouldn’t matter how the functionf is defined at the four numbers
where its graph jumps.

Notice also that the process of integrating a step function ispure algebra,
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because all we need are the operations ofarithmetic: addition, subtraction, mul-
tiplication, and division. We do not require such notions aslimit, supremum, or
infimum, which constitute the bread and butter of calculus. These limit notions
begin to appear, however, the moment we want to extend the theory of integration
to a wider class of functions. There are several different ways of extending the
theory to a wider class of functions, and each of these ways yields its own theory
of integration. Thus, every theory of integration contains the theory of integration
of step functions at its core and then extends this theory to a wider class of
functions by some sort of limit process as a function is approximated ever more
closely by step functions. The way in which different theories of integration
differ from one another is precisely how the approximation of a given function
by step functions takes place.

We therefore begin this chapter with some sections on the theory of integra-
tion of step functions. Hopefully, you should be able to proceed relatively quickly
through these sections to Section 11.5, where we begin our actual study of the
Riemann integral.

11.2 Partitions and Step Functions

11.2.1 Definition of a Partition

• Suppose thata andb are real numbers and thata ≤ b. A partition P of
the interval[a, b] is a finite strictly increasing sequence(x0, x1, · · · , xn) as
illustrated in Figure 11.7, wheren is a nonnegative integer,x0 = a, and
xn = b. If P is the partition(x0, x1, · · · , xn) of the interval[a, b], then the

a b

x0 x1 x2 x3 x4 xn−1 xn

Figure 11.7

numbersx0, x1, · · · , xn are called thepoints, and, forj = 1, 2, · · · , n, the
intervals[xj−1, xj] and(xj−1, xj) are respectively called theclosed intervals
and theopen intervals of the partitionP.

• A partitionQ of an interval[a, b] is said to be arefinement of a partitionP
if every point ofP is also a point ofQ. If P andQ are any partitions of an
interval [a, b], then thecommon refinement is the partition whose points
are the numbers that are either points ofP or points ofQ. The common
refinement of partitionsP andQ is written asP ∪Q, even though the latter
expression is not a union in quite the usual sense. Remember that a partition
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is not merely the set of its points; it is a finite sequence running from its least
point to its greatest.

• If P is the partition(x0, x1, · · · , xn) of an interval[a, b], then the largest of
the lengths of the intervals ofP is called themesh of P and is written as
‖P‖.

• The intervals of a partition do not have to have the same length, but, when
they do, we call the partitionregular. If P is the partition(x0, x1, · · · , xn) of
[a, b] andP is regular, then we say thatP is theregular n-partition of the
interval[a, b], and in this case we have

xj = a+
j (b− a)

n

for eachj = 0, 1, · · · , n. Note that ifP is the regularn-partition of [a, b],
then

‖P‖ =
b− a

n
.

11.2.2 Some Examples of Partitions

1. The regular2-partition of [0, 1] is the sequence
(
0, 1

2
, 1
)
. The regular

3-partition of [0, 1] is the partition
(
0, 1

3
, 2
3
, 1
)
. The common refinement of

these two partitions is the partition(
0,

1

3
,
1

2
,
2

3
, 1

)
.

The regular6- partition of[0, 1] is the partition(
0,

1

6
,
1

3
,
1

2
,
2

3
,
5

6
, 1

)
.

We illustrate these partitions in Figure 11.8.
2. If a = b, then the only partition of the interval[a, b] is the regular0-partition

(a) that has one point and no intervals.
3. If n is a positive integer„ then the regular2n+1-partition of an interval is a

refinement of the regular2n-partition and has one-half the mesh.

11.2.3 Definition of a Step Function
Suppose that

P = (x0, x1, · · · , xn)
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0 1
2-partition

0 1
3-partition

0 1
common refinement

0 1
6-partitition

Figure 11.8

is a partition of a given interval[a, b] and thatf is a function defined on[a, b].
We say that the functionf steps within the partition P if f is constant in each
of the open intervals(xj−1, xj) of P.

Note that a functionf that steps within a partitionP can take any values
it likes at the points ofP. But between any two consecutive points ofP, the
functionf must be constant. Note also that if a functionf steps within a given
partitionP, thenf will certainly step within any refinement ofP.

A function f defined on an interval[a, b] is said to be astep function on
the interval [a, b] if it is possible to find a partitionP of [a, b] such thatf steps
within P.

Thus iff is a step function on an interval[a, b], then there exists a partition

P = (x0, x1, · · · , xn)

of [a, b], and, for eachj = 1, 2, · · · , n, there exists a numberαj such thatf takes
the constant valueαj on the open interval(xj−1, xj).

In addition to defining a step function on a particular interval, we also speak
of a step function. A function f defined on the setR of real numbers is said
to be astep function if it is possible to find an interval[a, b] and a partitionP
of [a, b] such thatf steps withinP and such thatf(x) = 0 for every number
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x ∈ R \ [a, b]. For example, if

f(x) =




0 if x < 1

1 if 1 ≤ x ≤ 2

−1 if 2 < x < 4

2 if 4 ≤ x < 5

3 if 5 ≤ x < 7

0 if x ≥ 7,

thenf is a step function. The graph of this function is illustrated in Figure 11.9.

-1

0

1

2

3

-2 2 4 6 8 10

Figure 11.9

11.2.4 Some Exercises on Step Functions

1. True or false? Iff is a step function on an interval[a, b] and[c, d] is a
subinterval of[a, b], thenf is a step function on[c, d].

2. True or false? Iff is a step function, then, given any interval[a, b], the
functionf is a step function on[a, b].

3. Give an example of a step function on the interval[0, 2] that does not
step within any regular partition of[0, 2].

4. Explain why a step function must always be bounded.
5. Prove that iff andg are step functions on an interval[a, b], then so are

their sumf + g and their productfg.
6. Prove that iff andg are step functions, then so are their sumf + g and their

productfg.
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7. Prove that a continuous step function on an interval must be constant on that
interval.

11.3 Integration of Step Functions

11.3.1 The Sum of a Step Function over a Partition
Suppose that a functionf defined on an interval[a, b] steps within a partition

P = (x0, x1, · · · , xn)

of [a, b], taking the constant valueαj in each open interval(xj−1, xj). Thesum
Σ (P, f) of f over the partitionP is defined by the equation

Σ (P, f) =
n∑

j=1

αj (xj − xj−1) .

So, for example, iff is the function defined on the interval[−2, 10] whose graph
is shown in Figure 11.9, and if

P = (−2, 1, 2, 4, 5, 7, 10) ,

thenΣ(P, f) =

0 (1− (−2))+1 (2− 1)+(−1) (4− 2)+2 (5− 4)+3 (7− 5)+0 (10− 7) .

Now suppose that

Q = (−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) .

The partitionQ is a refinement of the partitionP and, of course,f steps within
Q. Now write out the summationΣ(Q, f) and convince yourself that

Σ(Q, f) = Σ (P, f) .

11.3.2 Summing over a Refinement of a Given Partition
Suppose that a functionf defined on an interval[a, b] steps within a partition

P = (x0, x1, · · · , xn)

of [a, b] and suppose that, for eachj = 1, 2, · · · , n, the constant value off in
the open interval(xj−1, xj) is calledαj. Now suppose that a new partitionQ of
[a, b] is made by adding one extra pointt. For somej we have

xj−1 < t < xj,
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and we illustrate this fact in the following figure.
a b

x0 x1 x2 xn−1 xnxj−1 xjt

Since all of the terms of the summationΣ(Q, f) are identical to terms in the
summationΣ(P, f) except for the two terms that are drawn from the interval
(xj−1xj), we see that

Σ(Q, f)− Σ(P, f) = αj (t− xj−1) + αj (xj − t)− αj (xj − xj−1) = 0,

and so

Σ(Q, f) = Σ (P, f) .

Thus if a refinementQ of the given partitionP is made by adding just one new
point, then the sums off overP andQ are the same. We can now extend this
observation to any refinementQ of the given partitionP. If Q is any refinement
of P, then, sinceQ can be obtained fromP in finitely many steps, in which we
add just one new point, and since the addition of one point does not affect the
sum, we see again that

Σ(Q, f) = Σ (P, f) .

11.3.3 Uniqueness of Sums over Partitions
Suppose that a functionf defined on an interval[a, b] steps within each of two
partitionsP andQ of [a, b]. By what we saw in Subsection 11.3.2 we know that

Σ(P, f) = Σ (P ∪Q, f) = Σ (Q, f) .

In the light of this uniqueness property of sums over partitions, we can now
make the following definition:

11.3.4 Integral of a Step Function
Suppose thatf is a step function on an interval[a, b]. Theintegral of the func-
tion f over the interval[a, b], which we write as

∫ b

a
f , is defined to be the sum

Σ (P, f), whereP is any partition of[a, b] within which the functionf steps.

An alternative notation for the symbol
∫ b

a
f is
∫ b

a
f(x)dx.

11.3.5 Integral of a Constant Function
Suppose thatf takes the constant valueα on an interval[a, b]. If we defineP to
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be the partition whose only points area andb, thenf steps withinP and

∫ b

a

f = Σ(P, f) = α (b− a) .

Although the numberα and the function whose constant value isα are not the
same thing, we shall follow tradition and use the symbolα to denote this function.
Thus ∫ b

a

α = α (b− a) .

Incidentally, ifa = b, then any functionf defined on the interval[a, b] must be
constant and we have ∫ a

a

f = 0.

11.3.6 Linearity of the Integral of Step Functions
Suppose that f and g are step functions on an interval [a, b] and that c is a given
number.

1. The function f + g is a step function on [a, b] and

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

2. The function cf is a step function on [a, b] and

∫ b

a

(cf) = c

∫ b

a

f .

Proof. Choose partitionsP andQ of the interval[a, b] such thatf steps within
P andg steps withinQ, and express the common refinementP ∪Q of P andQ
as

P ∪Q = (x0, x1, · · · , xn) .

For eachj = 1, 2, · · · , n, we write the constant values of the functionsf andg
in the interval(xj−1, xj) asαj andβj, respectively. Since the functionf + g
takes the constant valueαj + βj in each interval(xj−1, xj), we know thatf + g
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is a step function and that∫ b

a

(f + g) =
n∑

j=1

(
αj + βj

)
(xj − xj−1)

=
n∑

j=1

αj (xj − xj−1) +
n∑

j=1

βj (xj − xj−1) =

∫ b

a

f +

∫ b

a

g.

This proves the first part of the theorem. We leave the proof of the second part as
an exercise. �

11.3.7 Nonnegativity of the Integral of Step Functions
If f is a nonnegative step function on an interval [a, b], then∫ b

a

f ≥ 0.

We leave the proof of this assertion as an exercise.

As a corollary to this nonnegativity property, we observe that iff andg are
step functions on an interval[a, b] andf ≤ g, then, sinceg − f is nonnegative,
we have ∫ b

a

g −
∫ b

a

f =

∫ b

a

(g − f) ≥ 0.

and so ∫ b

a

f ≤
∫ b

a

g.

11.3.8 Integral of an Absolute Value
Suppose thatf is a step function on an interval[a, b] that takes the constant value
αj in each of the open intervals(xj−1, xj) of a partition

P = (x0, x1, · · · , xn) .

Since the function|f | takes the constant value|αj| in each interval(xj−1, xj),
we know that|f | is also a step function and we have∣∣∣∣

∫ b

a

f

∣∣∣∣ =
∣∣∣∣∣

n∑
j=1

αj (xj − xj−1)

∣∣∣∣∣ ≤
n∑

j=1

|αj| (xj − xj−1) =

∫ b

a

|f | .
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11.3.9 Additivity of the Integral of Step Functions
Suppose that a ≤ b ≤ c and that f is a function defined on the interval [a, c].

a b c
1. The function f is a step function on the interval [a, c] if and only if f is a

step function on both of the intervals [a, b] and [b, c].
2. In the event that f is a step function on these intervals, we have

∫ c

a

f =

∫ b

a

f +

∫ c

b

f .

Proof. Suppose thatf is a step function on the interval[a, c] and choose a par-
tition P of [a, c] within which f steps. By refining the partitionP, if necessary,
we can ensure that the numberb is one of its points. Suppose that

P = (x0, x1, · · · , xn)

and thatb = xk.
a b

x0 x1 x2 xn−1 xn

c

xk

We now define partitionsP1 andP2 of the intervals[a, b] and[b, c], respectively,
as follows:

P1 = (x0, x1, · · · , xk) and P2 = (xk, xk+1, · · · , xn) ,

and we observe that∫ c

a

f = Σ(P, f) = Σ (P1, f) + Σ (P2, f) =

∫ b

a

f +

∫ c

b

f .

It remains to show that iff is a step function on both of the intervals[a, b] and
[b, c], thenf is a step function on[a, c]. We leave the proof of this assertion as

an exercise. �

11.3.10 Integrating a Step Function on the Entire Line
Suppose thatf is a step function. Recall that this means that there exists an
interval [a, b] such thatf is a step function on the interval[a, b] and such that
f(x) = 0 for everyx ∈ R \ [a, b]. Our first task in this subsection is to show
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that if [a, b] and[c, d] are both intervals of this type, then∫ b

a

f =

∫ d

c

f .

To establish this equality, suppose thatf is a step function on each of two inter-
vals [a, b] and[c, d] and thatf(x) = 0 wheneverx lies outside of either one of
these two intervals. Choose a numberp that is less than both of the numbersa
andc and choose a numberq that is greater than both of the numbersb andd.

p qa bc d

Using the additivity property, we observe that∫ q

p

f =

∫ a

p

f +

∫ b

a

f +

∫ q

b

f

= 0 (a− p) +

∫ b

a

f + 0 (q − b) =

∫ b

a

f ,

and we see similarly that ∫ q

p

f =

∫ d

c

f .

If f is a step function, then the integral off on the entire line, which we write as∫∞
−∞ f , is defined to be ∫ b

a

f ,

where[a, b] is any bounded interval outside of whichf takes the constant value
zero. In view of the observation that we made a moment ago, it makes no differ-
ence which such interval[a, b] we choose. So, for example (see Figure 11.10),
if

f(x) =




−3 if −1 < x < 2

2 if 2 ≤ x ≤ 5

0 if x > 5

0 if x ≤ −1

then
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-3

-2

-1

0

1

2

-4 -2 2 4 6

Figure 11.10

∫ ∞

−∞
f =

∫ 13

−4

f =

∫ 5

−1

f = (−3) (2− (−1)) + 2 (5− 2) = −3.
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11.3.11 Exercises on Integration of Step Functions

1. Given thatf is the function defined by the equation

f(x) =




0 if x < 1

1 if 1 ≤ x ≤ 2

−1 if 2 < x < 4

2 if 4 ≤ x < 5

3 if 5 ≤ x < 7

0 if x ≥ 7

whose graph appears in Figure 11.9, evaluate
∫∞
−∞ f .

2. Prove that iff is a step function, then so is the function|f | and we have∣∣∣∣
∫ ∞

−∞
f

∣∣∣∣ ≤
∫ ∞

−∞
|f | .

3. Given thatf is a function defined onR and that the set of numbersx for
whichf(x) 	= 0 is finite, explain whyf must be a step function and why∫ ∞

−∞
f = 0.

4. Given thatf is a nonnegative step function and that∫ ∞

−∞
f = 0,

prove that the set of numbersx for whichf(x) 	= 0 must be finite.
5. Given thatf andg are step functions and thatc is a real number, prove that∫ ∞

−∞
cf = c

∫ ∞

−∞
f

and ∫ ∞

−∞
(f + g) =

∫ ∞

−∞
f +

∫ ∞

−∞
g.
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11.4 Elementary Sets

11.4.1 Introduction to Elementary Sets
In this section we present an elementary discussion of the concept of thelength
of a set of real numbers. In the event thatthe set is an interval, the concept is
quite simple because the obvious meaning of the length of an interval[a, b] is the
numberb − a. However, even if a set is not an interval, it may be possible to
assign a length to it. For example, if

E = [0, 1] ∪ [2, 5] ,

0 1 2 5

then the natural meaning for the length ofE is the number

m (E) = (1− 0) + (5− 2) = 4.

At a more advanced level of study than the one that we are undertaking here,
the concept of length can be extended from these humble beginnings to yield
a functionm that is known asone-dimensional Lebesgue measure that was
introduced by Henri Lebesgue in 1902 in his classic memoir,Integrale longueur
aire. This function assigns to every setS of real numbers a nonnegative number
m (S) that is the natural meaning of the notion oflength of the setS. The function
m, or, more precisely, the restriction of the functionm to a special family of
sets known as theLebesgue measurable sets, plays a fundamental role in the
modern theories of integration. For some further information about the history of
the measure concept, see Kline [16], pages 1040–1051, and you might possibly
want to look at the work of Hawkins to which Kline refers on page 1051.

We, however, shall restrict our discussion of Lebesgue measure to a much
smaller family of sets than the family ofLebesgue measurable sets. The sets
upon which we shall focus our attention are calledelementary sets, and it will
turn out that a set of real numbers is elementary if and only if it can be expressed
as the union of finitely many bounded intervals. Thus, for example, the set

E = [0, 1] ∪ [2, 5]

that we discussed a moment ago is an elementary set. You will see why after we
have given the precise definition in Subsection 11.4.3.

11.4.2 Characteristic Function of a Set
If S is a set of real numbers, then thecharacteristic function χS of the setS is
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defined by the equation

χS(x) =

{
1 if x ∈ S

0 if x ∈ R \ S.

11.4.3 Definition of an Elementary Set
A set E of real numbers is said to be anelementary set if its characteristic
functionχE is a step function.

Thus a setE of real numbers is elementary if and only if there exists an
interval[a, b] and a partition

P = (x0, x1, · · · , xn)

of [a, b] such that the functionχE is zero at every numberx that does not belong
to the interval[a, b] and the functionχE steps within the partitionP.

More specifically, we can say that a setE of real numbers is elementary if
and only if there exists an interval[a, b] and a partition

P = (x0, x1, · · · , xn)

of [a, b] such thatE ⊆ [a, b] and for everyj = 1, 2, · · · , n the open interval
(xj−1, xj) is either a subset ofE or is disjoint fromE, depending on whether the
constant value ofχE in the interval(xj−1, xj) is 1 or 0.

11.4.4 Some Facts About Elementary Sets

1. Every bounded interval is an elementary set.
2. The intersection of two elementary sets is an elementary set.
3. The union of two elementary sets is an elementary set.
4. The difference A \ B of two elementary sets A and B is an elementary set.

(See Subsection 4.2.7 for the definition of set difference.)
5. A set E is elementary if and only if it is the union of finitely many bounded

intervals.

Proof. Statement 1 is obvious. Now suppose thatA andB are elementary sets.
Since

χA∩B = (χA) (χB) ,

and since the product of two step functions must be a step function, the setA∩B
is elementary. Since

χA∪B = χA + χB − (χA) (χB) ,
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we see that the setA ∪B must be elementary. Since

χA\B = χA − (χA) (χB) ,

we see thatA \B must be elementary.

We have thus completed the proof of statements 2, 3, and 4, and it is also
clear at this stage that the union and intersection of finitely many elementary sets
must be elementary. In particular, the union of finitely many bounded intervals
must be an elementary set.

Suppose, finally, thatE is an elementary set. We need to prove thatE can
be expressed as the union of finitely many bounded intervals. Choose an interval
[a, b] and a partition

P = (x0, x1, · · · , xn)

of [a, b] such thatE ⊆ [a, b] and for everyj = 1, 2, · · · , n the open interval
(xj−1, xj) is either a subset ofE or is disjoint fromE. SinceE is the union
of some (possibly none) of the intervals(xj−1, xj) and some (possibly none) of
the points ofP, we see thatE can be expressed as the union of finitely many
bounded intervals.�

11.4.5 Motivating the Lebesgue Measure of an Elementary Set
In the introduction to this section we suggested that if

E = [0, 1] ∪ [2, 5] ,

then the Lebesgue measure (length) of this setE should be given by

m (E) = (1− 0) + (5− 2) .

Now look at the graph of the functionχE that is illustrated in Figure 11.11. We

0

1

2

-2 -1 1 2 3 4 5 6 7

Figure 11.11
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see at once that∫ ∞

−∞
χE =

∫ 1

0

1 +

∫ 5

2

1 = (1− 0) + (5− 2) ,

and this equation suggests the definition of the Lebesgue measure of an elemen-
tary set.

11.4.6 Definition of Lebesgue Measure of an Elementary Set
If E is an elementary set, then we define theLebesgue measure m (E) of the
setE by the equation

m (E) =

∫ ∞

−∞
χE.

11.4.7 Some Properties of Lebesgue Measure

1. If a andb are numbers anda ≤ b, then

m ([a, b]) = m ([a, b)) = m ((a, b]) = m ((a, b)) = b− a.

2. If E andF are elementary sets, then itfollows from the inequality

χE∪F ≤ χE + χF

and nonnegativity (Theorem 11.3.7), that

m (E ∪ F ) ≤ m (E) +m (F ) .

3. If E andF are elementary sets that do not intersect with each other, then it
follows from the equation

χE∪F = χE + χF

and linearity that

m (E ∪ F ) = m (E) +m (F ) .

4. If E andF are elementary sets andE ⊆ F , then it follows from the fact that

F = E ∪ (F \E)

thatm (F ) = m (E) +m (F \E) and therefore

m (F )−m (E) = m (F \E) .
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5. If E andF are elementary sets andE ⊆ F , then it follows from
the inequalityχE ⊆ χF and nonnegativity (Theorem 11.3.7) that
m (E) ≤ m (F ).

11.4.8 Approximation by Closed Sets and Open Sets
Suppose thata andb are real numbers and thata ≤ b. Given any numberε > 0,
if we define

H =
[
a+

ε

5
, b− ε

5

]
(understood to be the empty set in the event thata + ε/5 > b − ε/5) and if we
define

U =
(
a− ε

5
, b+

ε

5

)
,

a +


5
a −



5 b −



5 b +


5ba

thenH is a closed elementary set andU is an open elementary set. We see also
that

H ⊆ [a, b] ⊆ U

and thatm (U \H) < ε.

For the moment we shall say that a given elementary setE can be approxi-
mated if for every numberε > 0 there exists a closed elementary subsetH of E
and an open elementary setU ⊇ E such thatm (U \H) < ε. The preceding
argument shows that every bounded interval can be approximated. We shall now
show that if two elementary sets can beapproximated, so can their union. From
this fact it will follow that the union of finitely many elementary sets that can be
approximated is an elementary set that can also be approximated. Since every
elementary set is the union of finitely many bounded intervals, it will follow that
every elementary set can be approximated.

Suppose then thatE1 andE2 are elementary sets that can be approximated
and suppose thatε > 0. Using the fact thatE1 andE2 can be approximated, we
choose closed elementary setsH1 andH2 and open elementary setsU1 andU2

such that

H1 ⊆ E1 ⊆ U1 and H2 ⊆ E2 ⊆ U2

and such that

m (U1 \H1) <
ε

2
and m (U2 \H2) <

ε

2
.
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Since

H1 ∪H2 ⊆ E1 ∪E2 ⊆ U1 ∪ U2

and

m ((U1 ∪ U2) \ (H1 ∪H2)) ≤ m ((U1 \H1) ∪ (U2 \H2))

≤ m (U1 \H1) +m (U2 \H2) < ε,

we see that the setE1 ∪E2 can be approximated.

We have therefore proved the following properties of elementary sets:

1. If E is any elementary set and if ε > 0, then there exists a closed elementary
subset H of E and an open elementary set U that includes E such that
m (U \H) < ε.

2. If E is any elementary set and if ε > 0, then there exists a closed elementary
subset H of E and an open elementary set U that includes E such that

m (H) > m (E)− ε and m (U) < m (E) + ε.

Note that the second of these two assertions follows from the first one and
the identity

m (U)−m (H) = m (U \H) .

11.4.9 Integration over an Elementary Set
If f is a step function andE is an elementary set, then theintegral of f over E,
which we write as

∫
E
f , is defined to be the integral∫ ∞

−∞
fχE.

Note that ifE is an interval[a, b], then, given any step functionf , since

f(x)χE(x) =

{
f(x) if x ∈ [a, b]

0 if x ∈ R \ [a, b]
we have ∫

E

f =

∫ b

a

f .

In the same way we can see that iff is a step function and

E = [0, 1] ∪ [2, 5] ,
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then ∫
E

f =

∫ 1

0

f +

∫ 5

2

f .

11.4.10 Some Properties of Integrals on Elementary Sets

1. If f is a step function andA andB are elementary sets that are disjoint from
each other, then it follows from the equation

fχA∪B = fχA + fχB

that ∫ ∞

−∞
fχA∪B =

∫ ∞

−∞
fχA +

∫ ∞

−∞
fχB,

and so ∫
A∪B

f =

∫
A

f +

∫
B

f .

2. If f is a step function andE is an elementary set, and if, for some number
α, we have|f(x)| ≤ α for everyx ∈ E, then it follows from nonnegativity
(Theorem 11.3.7) and the inequality

|fχE| ≤ αχE

that∣∣∣∣
∫
E

f

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
fχE

∣∣∣∣ ≤
∫ ∞

−∞
|fχE| ≤

∫ ∞

−∞
αχE = α

∫ ∞

−∞
χE = αm (E) .

11.4.11 Exercises on Elementary Sets

1. Given thatA andB are elementary sets, prove that

m (A ∪B) = m (A) +m (B)−m (A ∩B) .

2. Prove that ifE is an elementary set andm (E) = 0, thenE must be finite.
3. Explain why the set of all rational numbers in the interval[0, 1] is not

elementary.
4. Prove that ifE is an elementary subset of[0, 1] and if every rational number

in the interval belongs toE, then the set[0, 1] \E must be finite.

5. Give an example of a setA of numbers such that, ifE is any elementary
subset ofA, we havem (E) = 0 and ifE is any elementary set that includes
A, we havem (E) ≥ 1.
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6. Given thatE is an elementary set that is not closed and thatF is a
closed elementary subset ofE, prove thatm (E \ F ) > 0.

7. Given thatf is a step function, thatE is an elementary set, and that
f(x) = 0 wheneverx ∈ R \E, prove that∫

E

f =

∫ ∞

−∞
f .

8. Given thatf andg are step functions, thatE is an elementary set, and that
f(x) ≤ g(x) wheneverx ∈ E, prove that∫

E

f ≤
∫
E

g.

9. Given thatf is a nonnegative step function, thatA andB are elementary
sets, and thatA ⊆ B, prove that∫

A

f ≤
∫
B

f .

10. Given thatf is a step function and thatE is an elementary set, prove
that ∣∣∣∣

∫
E

f

∣∣∣∣ ≤
∫
E

|f | .

11. Given thatA andB are elementary sets, prove that∫
A

χB =

∫
B

χA = m (A ∩B) .

The on-screen version of this book contains a special group of exercises that
are designed to be done as a special project. These exercises require you to have
read some of the chapter on infinite series (Chapter 12). To reach this group of
exercises, click on the icon .

11.5 Riemann Integrability and the Riemann Integral

11.5.1 Introduction to the Riemann Integral

At the heart of the theory of Riemann integration lies a technique that
was discovered by Eudoxus and then developed into a sophisticated theory by
Archimedes, somewhere around the year 250B.C.E. Archimedes calculated the
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areas and volumes of a number of geometric figures by approximating them both
from inside and from outside by polygonalfigures, as illustrated in Figure 11.12.
He reasoned that ifA is a plane region and ifs andS are two polygons satisfying

Figure 11.12

the conditions ⊆ A ⊆ S, then

area (s) ≤ area (A) ≤ area (S)

and therefore, given any numberε > 0, we can guarantee that botharea (s) and
area (S) must approximatearea (A) with an error less thanε, simply by making

area (S)− area (s) < ε.

The analog of this idea for functions would be as follows: Suppose thatf is a
bounded function defined on an interval[a, b] and thats andS are step functions
on [a, b] satisfying the inequalitys ≤ f ≤ S. Then, whatever the symbol

∫ b

a
f

ought to mean, we should have∫ b

a

s ≤
∫ b

a

f ≤
∫ b

a

S,

and, givenε > 0, we can guarantee that the numbers
∫ b

a
s and

∫ b

a
S approximate∫ b

a
f with an error less thanε by making∫ b

a

S −
∫ b

a

s < ε.

For a functionf that happens to be nonnegative, Figures 11.13 and 11.14 illus-
trate the numbers

∫ b

a
s and

∫ b

a
S, respectively.
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a b

Figure 11.13

a b

Figure 11.14

11.5.2 Definition of Integrability and the Integral
Suppose thatf is a bounded function defined on an interval[a, b]. If s andS are
step functions on the interval[a, b] and

s ≤ f ≤ S,

then it follows from nonnegativity (Theorem 11.3.7) that∫ b

a

s ≤
∫ b

a

S.
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Therefore

sup

{∫ b

a

s | s is a step function ands ≤ f

}

≤ inf

{∫ b

a

S | S is a step function andf ≤ S

}
.

In the event that

sup

{∫ b

a

s | s is a step function ands ≤ f

}

= inf

{∫ b

a

S | S is a step function andf ≤ S

}
,

we say that the functionf is Riemann integrable on the interval[a, b] and we
define ∫ b

a

f = sup

{∫ b

a

s | s is a step function ands ≤ f

}

= inf

{∫ b

a

S | S is a step function andf ≤ S

}
.

Usually we shall refer to a Riemann integrable function more briefly as aninte-
grable function. Note that every step function is integrable and that the definition
just given does not conflict with the definition of the integral of a step function
that was given earlier.

11.5.3 A Necessary and Sufficient Condition for Integrability
Suppose that f is a bounded function on an interval [a, b]. Then the following
conditions are equivalent:

1. The function f is integrable.
2. There exist two sequences (sn) and (Sn) of step functions such that

sn ≤ f ≤ Sn

for each n and such that

lim
n→∞

∫ b

a

(Sn − sn) = lim
n→∞

(∫ b

a

Sn −
∫ b

a

sn

)
= 0.

Furthermore, for any choice of sequences (sn) and (Sn) satisfying the latter
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condition we have∫ b

a

f = lim
n→∞

∫ b

a

sn = lim
n→∞

∫ b

a

Sn.

3. There exist two sequences (gn) and (hn) of functions that are integrable on
[a, b] such that gn ≤ f ≤ hn for each n and such that

lim
n→∞

(∫ b

a

hn −
∫ b

a

gn

)
= 0.

Proof. The equivalence of conditions 1 and 2 follows at once from Theorem
7.4.7, and condition 2 clearly implies condition 3. Now suppose that condition
3 holds and choose two sequences(gn) and(hn) of functions that are integrable
on [a, b] such thatgn ≤ f ≤ hn for eachn and such that

lim
n→∞

(∫ b

a

hn −
∫ b

a

gn

)
= 0.

For eachn we use the fact thatgn andhn are integrable to choose step functions
sn ≤ gn andSn ≥ hn such that∫ b

a

sn >

∫ b

a

gn − 1

n
and

∫ b

a

Sn <

∫ b

a

hn +
1

n
.

Since

0 ≤
∫ b

a

Sn −
∫ b

a

sn <

∫ b

a

hn −
∫ b

a

gn +
2

n

for eachn, we conclude from the sandwich theorem that

lim
n→∞

(∫ b

a

Sn −
∫ b

a

sn

)
= 0,

and we have shown that condition 3 implies condition 2.�

11.5.4 Squeezing a Function on an Interval
Suppose thatf is a bounded function on an interval[a, b]. A pair of sequences
(sn) and(Sn) of step functions is said tosqueeze the functionf on the interval
[a, b] if we have

sn ≤ f ≤ Sn
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for eachn and we have

lim
n→∞

∫ b

a

(Sn − sn) = 0.

From this definition and the preceding theorem we can make the following con-
clusion:

Suppose that f is a bounded function on an interval [a, b]. Then the following
conditions are equivalent:

1. The function f is integrable.
2. There exists a pair of sequences (sn) and (Sn) of step functions that

squeezes f on [a, b]. Furthermore, for any such pair of sequences we have∫ b

a

f = lim
n→∞

∫ b

a

sn = lim
n→∞

∫ b

a

Sn.

11.6 Some Examples of Integrable and
Nonintegrable Functions

11.6.1 A Linear Function
We can at last find the area of a triangle. In this example we shall consider the
integral ∫ 1

0

xdx.

We definef(x) = x for 0 ≤ x ≤ 1 and, for each positive integern, we define
Pn to be the regularn-partition of the interval[0, 1]. Thus

Pn =

(
0

n
,
1

n
, · · · , n

n

)
.

Now, for eachn we define two step functionssn andSn by making

sn(x) = Sn(x) = x

wheneverx is a point of the partitionPn and, in each interval(
j − 1

n
,
j

n

)

of the partitionPn, we makesn andSn take the constant values(j − 1) /n and
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j/n, respectively. The graphs of the functionssn, f , andSn are illustrated for
the casen = 15 in Figure 11.15. For eachn we have

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 11.15

∫ 1

0

(Sn − sn) =
n∑

j=1

(
j

n
− j − 1

n

)
1

n
=

1

n
,

and so

lim
n→∞

∫ 1

0

(Sn − sn) = 0.

We deduce from Theorem 11.5.3 thatf is integrable on the interval[0, 1] and
that ∫ 1

0

xdx = lim
n→∞

∫ 1

0

Sn = lim
n→∞

n∑
j=1

j

n

1

n
= lim

n→∞
1

2

(
1 +

1

n

)
=

1

2
.

11.6.2 A Quadratic Function
In this example we takef(x) = x2 for 0 ≤ x ≤ 1 and, once again, we takePn

to be the regularn-partition of the interval[0, 1] for eachn. Now, for eachn we
define two step functionssn andSn by making

sn(x) = Sn(x) = x2

wheneverx is a point of the partitionPn and, in each interval(
j − 1

n
,
j

n

)
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of the partitionPn, we makesn andSn take the constant values(j − 1)2 /n2 and
j2/n2, respectively. The graphs of the functionssn, f , andSn are illustrated for
the casen = 15 in Figure 11.16. For eachn we have

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 11.16

∫ 1

0

(Sn − sn) =
n∑

j=1

((
j

n

)2

−
(
j − 1

n

)2
)

1

n
=

1

n
,

and so

lim
n→∞

∫ 1

0

(Sn − sn) = 0.

We deduce from Theorem 11.5.3 thatf is integrable on the interval[0, 1] and
that∫ 1

0

x2dx = lim
n→∞

∫ 1

0

Sn = lim
n→∞

n∑
j=1

(
j

n

)2
1

n
= lim

n→∞

(
1

3
+

1

2n
+

1

6n2

)
=

1

3
.

11.6.3 Monotone Functions Are Integrable
We shall confine our attention to increasing functions and leave the analogous
case for decreasing functions as an exercise.

Suppose thatf is an increasing function on an interval[a, b]. For each posi-
tive integern we definePn to be the regularn-partition of [a, b]. Thus, if for a
given value ofn we write

Pn = (x0, x1, · · · , xn) ,
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then for eachj = 0, 1, · · · , n we have

xj = a+
j (b− a)

n
.

Now, by analogy with the approach that wetook in the two preceding examples,
we define two step functionssn andSn by making

sn(x) = Sn(x) = f(x)

wheneverx is a point of the partitionPn and, in each interval(xj−1, xj) of the
partitionPn, we makesn andSn take the constant valuesf(xj−1) andf(xj),
respectively. The graphs of the functionssn, f , andSn are illustrated for the
casen = 16 in Figure 11.17. For eachn we havesn ≤ f ≤ Sn and

Figure 11.17

∫ b

a

(Sn − sn) =
n∑

j=1

(f(xj)− f(xj−1))
b− a

n

=
b− a

n

n∑
j=1

(f(xj)− f(xj−1)) =
(b− a) (f(b)− f(a))

n
,

and so

lim
n→∞

∫ b

a

(Sn − sn) = 0.

We deduce from Theorem 11.5.3 thatf is integrable on the interval[a, b]. �

11.6.4 A Nonintegrable Function
In this example we look at a functionf on the interval[0, 1] that is too discontin-
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uous to be integrable. We define

f(x) =

{
1 if x ∈ [0, 1] ∩Q

0 if x ∈ [0, 1] \Q.

Note that this function is discontinuous at every number in the interval[0, 1].
Now, to see thatf fails to be integrable, suppose thats is any step function on
the interval[0, 1] that satisfies the inequalitys ≤ f and choose a partition

P = (x0, x1, · · · , xn)

of [0, 1] such thats steps withinP. If we call the constant value ofs in each
interval(xj−1, xj) by the nameαj, then, since there must exist irrational numbers
in each interval(xj−1, xj), it follows from the inequalitys ≤ f thatαj ≤ 0 for
eachj. Therefore ∫ 1

0

s =
n∑

j=1

αj (xj − xj−1) ≤ 0.

In a similar way we can show that ifS is a step function on[0, 1] that satisfies
the inequalityf ≤ S, then ∫ 1

0

S ≥ 1,

and so we conclude thatf is not integrable.

11.6.5 The Role of the Cantor Set in Riemann Integration
This optional topic can be reached from the on-screen version of the book by
clicking on the icon .

11.6.6 Some Exercises on the Riemann Integral

1. Prove that the integral ∫ 4

1

3x2dx

exists and has the value63.
2. In this exercise we takef(x) =

√
x for x ∈ [0, 1]. Given a positive

integern, we shall takePn to be the partition of[0, 1] defined by the equation

Pn =

(
02

n2
,
12

n2
,
22

n2
, · · · , n

2

n2

)
.
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Prove that if we define a step functionSn on [0, 1] by making

Sn(x) =
√
x

wheneverx is a point of the partitionPn and givingSn the constant value
j/n in each interval (

(j − 1)2

n2
,
j2

n2

)

of the partitionPn, then∫ 1

0

√
xdx = lim

n→∞

∫ 1

0

Sn =
2

3
.

3. Prove that

++

∫ 1

0

3
√
xdx =

3

4
.

11.7 Some Properties of the Riemann Integral

In this section we shall explore the analogs for Riemann integrals of the prop-
erties of linearity, nonnegativity, andadditivity that we saw in Section 11.3 for
integration of step functions. Each of these properties will be deduced using the
corresponding statement for step functions.

11.7.1 Linearity of the Riemann Integral
Suppose that f and g are integrable functions on an interval [a, b] and that c is
a real number.

1. The function f + g is integrable on [a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

2. The function cf is integrable on [a, b] and∫ b

a

cf = c

∫ b

a

f .

Proof. Using the fact thatf andg are integrable on[a, b], we choose a pair of
sequences(sn) and(Sn) that squeezesf on [a, b] and a pair of sequences(s∗n)
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and(S∗
n) that squeezesg on [a, b]. Thus, for eachn we have

sn ≤ f ≤ Sn and s∗n ≤ g ≤ S∗
n

and

lim
n→∞

∫ b

a

(Sn − sn) = lim
n→∞

∫ b

a

(S∗
n − s∗n) = 0.

Since

sn + s∗n ≤ f + g ≤ Sn + S∗
n

for eachn and since

lim
n→∞

∫ b

a

((Sn + S∗
n)− (sn + s∗n)) = lim

n→∞

∫ b

a

(Sn − sn)+ lim
n→∞

∫ b

a

(S∗
n − s∗n) = 0,

we know that the functionf + g is integrable. Finally∫ b

a

(f + g) = lim
n→∞

∫ b

a

(Sn + S∗
n) = lim

n→∞

(∫ b

a

Sn +

∫ b

a

S∗
n

)
=

∫ b

a

f+

∫ b

a

g.

Now, to prove the second assertion, we observe that ifc ≥ 0, we have

csn ≤ cf ≤ cSn

for eachn and if c < 0, we have

cSn ≤ cf ≤ csn

for eachn. So, in both of these cases, the pair of sequences(csn) and (cSn)
squeezescf on [a, b] and socf is integrable on[a, b]. Finally,∫ b

a

cf = lim
n→∞

∫ b

a

csn = lim
n→∞

c

∫ b

a

sn = c

∫ b

a

f .

11.7.2 Nonnegativity of the Riemann Integral
Suppose that f and g are integrable functions on an interval [a, b].

1. If f ≥ 0, then
∫ b

a
f ≥ 0.

2. If f ≤ g, then
∫ b

a
f ≤ ∫ b

a
g.

Proof. To prove the first assertion, suppose thatf ≥ 0. Since the constant zero
function0 is a step function that does not exceedf , it follows from the definition
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of an integral that

0 ≤
∫ b

a

0 ≤
∫ b

a

f .

The second assertion follows automatically from the first one and linearity be-
cause iff ≤ g, theng − f ≥ 0. �

11.7.3 Additivity of the Riemann Integral
Suppose that a ≤ b ≤ c and that f is a function defined on the interval [a, c].

a b c

1. The function f is integrable on the interval [a, c] if and only if f is integrable
on both of the intervals [a, b] and [b, c].

2. In the event that f is integrable on these intervals, we have∫ c

a

f =

∫ b

a

f +

∫ c

b

f .

Proof. Suppose thatf is integrable on the interval[a, c] and choose a pair of
sequences(sn) and(Sn) that squeezesf on the interval[a, c]. From the inequal-
ities∫ b

a

(Sn − sn) ≤
∫ c

a

(Sn − sn) and

∫ c

b

(Sn − sn) ≤
∫ c

a

(Sn − sn)

it follows that this pairof sequences squeezesf on the intervals[a, b] and[b, c]
and sof is integrable on[a, b] and on[b, c]. Furthermore,∫ c

a

f = lim
n→∞

∫ c

a

sn = lim
n→∞

(∫ b

a

sn +

∫ c

b

sn

)

= lim
n→∞

∫ b

a

sn + lim
n→∞

∫ c

b

sn =

∫ b

a

f +

∫ c

b

f .

Finally, we need to explain why, iff is integrable on each of the intervals[a, b]
and[b, c], thenf must be integrable on[a, c]. We leave the task of writing this

explanation as an exercise. �

11.7.4 Reversing the Limits of Integration
If a andb are real numbers anda < b, and iff is integrable on the interval[a, b],
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then we define ∫ a

b

f = −
∫ b

a

f .

A benefit of this definition is that it makes the additivity condition∫ c

a

f =

∫ b

a

f +

∫ c

b

f

independent of the order in which the numbersa, b, andc appear. Suppose, for
example, thatb < c < a and thatf is integrable on the interval[b, a]. The
additivity condition tells us that∫ a

b

f =

∫ c

b

f +

∫ a

c

f .

Therefore

−
∫ b

a

f =

∫ c

b

f −
∫ c

a

f ,

from which we obtain ∫ c

a

f =

∫ b

a

f +

∫ c

b

f .

Another benefit of this definition is the following result, which follows from the
nonnegativity property:

Suppose that a and b are real numbers and that f is integrable on the interval
that runs from the smaller of these two numbers to the larger. Suppose that k is
a positive number and that |f(x)| ≤ k for every number x in the interval. Then,
applying the nonnegativity property to the inequality

−k ≤ f ≤ k,

we obtain ∣∣∣∣
∫ b

a

f

∣∣∣∣ ≤ k |b− a| .

11.8 Upper, Lower, and Oscillation Functions

In this section we shall focus our attention upon step functions that step
within a particular given partition. We shall observe that iff is a bounded func-
tion defined on an interval[a, b], and ifP is a given partition of[a, b], then, of all
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the step functionsS ≥ f that step within this partitionP, one of them is least,
and of all the step functionss ≤ f that step withinP, one of them is greatest.
These two special step functions will be called theupper and lower functions
of f over the partitionP, and the difference between them will be called the
oscillation function off overP. With the help of these special step functions
we shall present two particularly useful conditions for a given function to be
integrable. We call these conditions thefirst andsecond criteria for integrability.

11.8.1 Definition of the Functions u (P, f), and l (P, f), and w (P, f)

Suppose thatf is a bounded function on an interval[a, b] and that

P = (x0, x1, · · · , xn)

is a partition of[a, b].
a b

x0 x1 x2 x3 x4 xn−1 xn

Theupper function u (P, f) of the functionf over the partitionP is defined
to be the step function whose value at every pointxj of the partitionP is f(xj)
and whose constant value in each open interval(xj−1, xj) of the partitionP is
the number

sup {f(x) | xj−1 < x < xj} .

Thelower function l (P, f) of the functionf over the partitionP is defined
to be the step function whose value at every pointxj of the partitionP is f(xj)
and whose constant value in each open interval(xj−1, xj) of the partitionP is
the number

inf {f(x) | xj−1 < x < xj} .

The constant values ofu (P, f) andl (P, f) in each interval(xj−1, xj) are illus-
trated in Figure 11.18.

We define theoscillation function w (P, f) of the functionf over the parti-
tionP by the equation

w (P, f) = u (P, f)− l (P, f) .

Thusw (P, f) takes the value0 at each pointxj of the partitionP, and, in each
open interval(xj−1, xj) of the partitionP, the constant value ofw (P, f) is

sup {f(x) | xj−1 < x < xj} − inf {f(x) | xj−1 < x < xj} .
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xj−1 xj

y = supf x ∣ xj−1 < x < xj 

y = inff x ∣ xj−1 < x < xj 

Figure 11.18

11.8.2 The important properties of the step functions l (P, f), and
u (P, f), and w (P, f)

Suppose thatf is a bounded function on an interval[a, b] and that

P = (x0, x1, · · · , xn)

is a partition of[a, b].

1. We have the inequality

l (P, f) ≤ f ≤ u (P, f) .

2. The functionu (P, f) is the least step functionS ≥ f that steps within the
partitionP. andl (P, f) is the greatest step functions ≤ f that steps within
the partitionP. Thus, ifs andS are any step functions that step within the
partitionP and ifs ≤ f ≤ S, then we have

s ≤ l (P, f) ≤ f ≤ u (P, f) ≤ S.

3. From the discussion that appears in Subsection 5.8.3 we see that the constant
value ofw (P, f) in each interval(xj−1, xj) is the diameter of the set

{f(x) | xj−1 < x < xj} .

In other words, the constant value ofw (P, f) in each interval(xj−1, xj) is

sup {|f(t)− f(x)| | t andx belong to(xj−1, xj)} .

11.8.3 The First Criterion for Integrability
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Suppose that f is a bounded function defined on an interval [a, b]. Then the
following conditions are equivalent:

1. The function f is integrable on the interval [a, b].
2. For every number ε > 0 there exists a partition P of the interval [a, b] such

that ∫ b

a

w (P, f) < ε.

Proof. To prove that condition 1 implies condition 2, we assume thatf is inte-
grable on the interval[a, b]. Suppose thatε > 0.

Using Theorem 11.5.3, we choose a pair of sequences(sn) and(Sn) of step
functions that squeezesf on [a, b]. Choose a positive integern such that∫ b

a

(Sn − sn) < ε.

Choose a partitionP of [a, b] such that bothsn andSn step withinP. Then,
since

sn ≤ l (P, f) and u (P, f) ≤ Sn,

we have∫ b

a

w (P, f) =

∫ b

a

(u (P, f)− l (P, f)) ≤
∫ b

a

(Sn − sn) < ε.

Now, to prove that condition 2 implies condition 1 we assume that condition
2 is true. For every positive integern we use the fact that1/n > 0 to choose a
partitionPn of the interval[a, b] such that∫ b

a

w (Pn, f) <
1

n
,

and for eachn we define

sn = l (Pn, f) and Sn = u (Pn, f) .

Since the pair of sequences(sn) and(Sn) squeezesf on the interval[a, b], we
conclude thatf is integrable on[a, b]. �

11.8.4 The Second Criterion for Integrability
Suppose that f is a bounded function defined on an interval [a, b]. Then the
following conditions are equivalent:
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1. The function f is integrable on the interval [a, b].
2. For every number ε > 0 there exists a partition P of the interval [a, b] such

that, if we define

E = {x ∈ [a, b] | w (P, f) (x) ≥ ε} ,

then we have m (E) < ε.

Proof. To prove that condition 1 implies condition 2, we assume thatf is inte-
grable on[a, b] and thatε > 0. Using Theorem 11.8.3 and the fact thatε2 > 0,
we choose a partitionP of [a, b] such that

∫ b

a

w (P, f) < ε2,

and we define

E = {x ∈ [a, b] | w (P, f) (x) ≥ ε} .

Sincew (P, f) is a step function, we see thatE is an elementary set and we have

ε2 >

∫ b

a

w (P, f) ≥
∫
E

w (P, f) ≥
∫
E

ε = εm (E) ,

from which we deduce thatm (E) < ε.

Now, to prove that condition 2 implies condition 1, we assume that condition
2 is true. Using the fact thatf is bounded, choose a numberk such that|f(x)| <
k for everyx ∈ [a, b]. Since the inequality

|f(t)− f(x)| ≤ |f(t)|+ |f(x)| ≤ 2k

holds for allt andx in the interval[a, b], we know that ifP is any partition, then
w (P, f) ≤ 2k. For eachn we use the fact that1/n > 0 to choose a partition
Pn of the interval[a, b] such that if

En =

{
x ∈ [a, b] | w (Pn, f) (x) ≥ 1

n

}
,

thenm (En) < 1/n. In this way we have separated the interval[a, b] into the
“small” setEn and the set[a, b] \ En, where the functionw (Pn, f) is “small”.
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For eachn we have∫ b

a

w (Pn, f) =

∫
En

w (Pn, f) +

∫
[a,b]\En

w (Pn, f)

≤
∫
En

2k +

∫
[a,b]\En

1

n
≤ 2km (En) +

∫ b

a

1

n

<
2k

n
+

b− a

n
,

and since the latter expression approaches0 asn → ∞, we deduce that condition
2 of Theorem 11.8.3 is satisfied and, consequently, thatf is integrable on[a, b].
�

11.8.5 Some Exercises on Riemann Integrability

1. Suppose that

f(x) =

{
1 if x has the form1

n
for some positive integern

0 otherwise.

Prove thatf is integrable on the interval[0, 1] and that
∫ 1

0
f = 0.

2. Suppose thatf is defined on the interval in such a way that, whenever
x ∈ [0, 1] andx has the form1

n
for some positive integern, we have

f(x) = 0 and wheneverx belongs to an interval of the form
(

1
n+1

, 1
n

)
for

some positive integern we have

f(x) = 1 + (−1)n .

Draw a rough sketch of the graph of this function and explain why it is
integrable on the interval[0, 1].

3. Given thatf is a bounded function on an interval[a, b], prove that the
following conditions are equivalent:

(a) The functionf is integrable on the interval[a, b].
(b) For every numberε > 0 there exist step functionss andS on the interval

[a, b] such thats ≤ f ≤ S and∫ b

a

(S − s) < ε.

(c) For every numberε > 0 there exist step functionss andS on the interval
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[a, b] such thats ≤ f ≤ S and such that if

E = {x ∈ [a, b] | S(x)− s(x) ≥ ε} ,

we havem (E) < ε.

4. Suppose thatf is a bounded function on an interval[a, b] and that for
every numberε > 0 there exists an elementary subsetE of [a, b] such that
m (E) < ε and such that the functionf(1− χE) is Riemann integrable on
[a, b]. Prove thatf must be Riemann integrable on the interval[a, b].

5. (a) Suppose thatf is a nonnegative function defined on an interval[a, b] and
that for every numberε > 0 the set

{x ∈ [a, b] | f(x) ≥ ε}

is finite. Prove thatf must be integrable on[a, b] and that
∫ b

a
f = 0.

(b) Prove that iff is the ruler function that wasintroduced in Example 8 of
Subsection 8.1.5, thenf is an integrable function on the interval[0, 1],
even thoughf is discontinuous at every rational number in the interval.

6. Given thatf is a bounded nonnegative function defined on an interval[a, b],
prove that the following conditions are equivalent:

(a) The functionf is integrable on the interval[a, b] and
∫ b

a
f = 0.

(b) For every numberε > 0 there exists an elementary setE such that
m (E) < ε and such that

{x ∈ [a, b] | f(x) ≥ ε} ⊆ E.

If you are reading the on-screen version of this book, you can find a special
group of exercises that are designed to be done as a special project. These
exercises require you to have read some of the chapter on infinite series and
they depend upon the special group of exercises on elementary sets that was
mentioned in Subsection 11.4.11. The main purpose of these exercises is to invite
you to prove the following interesting fact about integrals:

If f is a nonnegative integrable function on an interval [a, b], where a < b,

and if
∫ b

a
f = 0, then there must be at least one number x ∈ [a, b] for

which f(x) = 0.

To reach this special group of exercises, click on the icon .
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11.9 Riemann Sums and Darboux’s Theorem (Optional)

11.9.1 Introduction to Riemann Sums
In the approach to Riemann integration that is taken in most elementary calculus
courses, an integral of the form

∫ b

a
f is defined to be a limit (in some sense that

is not always specified clearly) of sums of the type

n∑
j=1

f(tj) (xj − xj−1) ,

where

P = (x0, x1, · · · , xn)

is a partition of the interval[a, b] and for eachj we have

xj−1 ≤ tj ≤ xj.

xj−1 xjtj

Such sums are calledRiemann sums of the functionf over the partitionP and
will be introduced precisely in this section. The main theorem of this section is
the statement known asDarboux’s theorem, which tells us that iff is integrable
on an interval[a, b], then we can make the Riemann sums off over a partition
lie as close as we like to

∫ b

a
f by making the mesh (see Subsection 11.2.1) of the

partitionP small enough. We shall make use of Darboux’s theorem when we
prove the theorems on interchange of repeated Riemann integrals in Section 16.6
of Chapter 16.

Another key task of this section is to revisit the criteria for integrability that
appear in Section 11.8. As you know, these criteria tell us that if a functionf is
integrable on an interval[a, b], then it is possible to find a partitionP of [a, b] for
which the functionw (P, f) is in some sense small. In this section we shall go a
step further and show that iff is integrable on an interval[a, b], then the function
w (P, f) will be small in the sense of the two criteria forall partitionsP that
have sufficiently small mesh.

Depending on how much time you can devote to the study of this chapter,
there are three main ways in which you can choose to approach this optional
section:

• Skip the section entirely.
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• Read the section as it appears in the hard-copy text and omit the proofs that
you would have to access from the on-screen version by clicking on a link.

• Read the section from the on-screen version of the text and use the links that
are provided there to jump to the proofs of all of the theorems.

11.9.2 Definition of a Riemann Sum
Suppose thatf is a bounded function defined on an interval[a, b] and that

P = (x0, x1, · · · , xn)

is a partition of[a, b]. A Riemann sum of the functionf over the partitionP is
defined to be a number that can be expressed in the form

n∑
j=1

f(tj) (xj − xj−1) ,

where, for eachj = 1, 2, · · · , n, the numbertj is chosen in such a way that

xj−1 ≤ tj ≤ xj.

xj−1 xjtj

For example, we could choosetj = xj−1 for eachj, in which case the sum
becomes

n∑
j=1

f(xj−1) (xj − xj−1)

and is called theleft sum of the functionf over the partitionP. If we choose
tj = xj for eachj, then the sum becomes

n∑
j=1

f(xj) (xj − xj−1)

and is called theright sum of f overP. The arithmetic mean of the left and right
sums is

n∑
j=1

(
f(xj−1) + f(xj)

2

)
(xj − xj−1) ,

which is called thetrapezoidal sum off overP. If we choosetj to be midway
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betweenxj−1 andxj for eachj, then the sum becomes

n∑
j=1

f

(
xj−1 + xj

2

)
(xj − xj−1)

and is known as themidpoint sum of f overP.

If you would like to experiment with these sums and one or two others and
to explore their accuracy with the help ofScientific Notebook, click on the icon

. A preview of this interactive process can be seen in the movie .

11.9.3 Darboux’s Theorem
Suppose that f is integrable on an interval [a, b] and that ε > 0. Then there
exists a number δ > 0 such that, for every partition

P = (x0, x1, · · · , xn)

of the interval [a, b] satisfying the inequality ‖P‖ < δ and for every possible
choice of numbers tj ∈ [xj−1, xj] for each j = 1, 2, · · · , n, we have∣∣∣∣∣

∫ b

a

f −
n∑

j=1

f(tj) (xj − xj−1)

∣∣∣∣∣ < ε.

11.9.4 An Extension of the Criteria for Integrability
Suppose that f is integrable on an interval [a, b]. Then the following extended
versions of the criteria for integrability must hold:

1. For every number ε > 0 there exists a number δ > 0 such that for every
partition P of [a, b] for which ‖P‖ < δ we have∫ b

a

w (P, f) < ε.

2. For every number ε > 0 there exists a number δ > 0 such that for every
partition P of [a, b] for which ‖P‖ < δ, if we define

E = {x ∈ [a, b] | w (P, f) (x) ≥ ε} ,

then m (E) < ε.



11.10 The Role of Continuity in Riemann Integration 317

11.9.5 Another Criterion for Integrability
Suppose that f is a bounded function on an interval [a, b]. Suppose that I is a
given number and, for each positive integer n, suppose that Pn is the regular
n-partition of the interval [a, b]. For each n and for j = 0, 1, · · · , n we shall
write the jth point of the partition Pn as x (j, n). Thus

x (j, n) = a+
j (b− a)

n
.

The following conditions are equivalent:

1. The function f is Riemann integrable on the interval [a, b] and
∫ b

a
f = I .

2. For every possible way of choosing a number t (j, n) in the interval
[x (j − 1, n) , x (j, n)] for each n and j we have

lim
n→∞

b− a

n

n∑
j=1

f (t (j, n)) = I.

To see the proofs of the theorems in this section, click on the icon.

11.10 The Role of Continuity in Riemann Integration

In this section we shall observe that continuity plays a major role in Riemann
integrability, and we shall introducesome theorems that tell us that a given
bounded function will be integrable on a given interval as long as it is contin-
uous at sufficiently many numbers in the interval. We begin by observing that
continuous functions are always integrable.

11.10.1 Integrability of Continuous Functions
Suppose that f is a continuous function on an interval [a, b]. Then f is integrable
on [a, b].

Proof. In order to show thatf is integrable, we shall show thatf satisfies the
second criterion for integrability that appears in Theorem 11.8.4. Suppose that
ε > 0. Using the fact thatf is uniformly continuous on[a, b], choose a number
δ > 0 such that whenevert andx belong to the interval[a, b] and|t− x| < δ
we have|f(t)− f(x)| < ε/2.

Now choose a partitionP of the interval[a, b] whose mesh (see Subsection
11.2.1) is less thanδ. (For example, we could chooseP to be the regularn-
partition of [a, b] with n sufficiently large.) Now, whenevert andx are numbers
that belong to the same interval of this partition, it follows from the fact that



318 Chapter 11 The Riemann Integral

|t− x| < δ that|f(t)− f(x)| < ε/2. From this fact we deduce that

{x ∈ [a, b] | w (P, f) (x) ≥ ε} = ∅,

and so, of course, the latter set has measure less thanε. �

11.10.2 The Lebesgue Criterion for Riemann Integrability
In order to prove that the functionf in the preceding theorem is integrable on the
interval [a, b], all we needed to show was that ifε > 0, then there is a partition
P of [a, b] for which the measure of the set

{x ∈ [a, b] | w (P, f) (x) ≥ ε}
is less thanε. In fact, we showed much more than this. We showed that the latter
set will actually be empty for every partition that has sufficiently small mesh.

As one might suspect, the preceding theorem can be improved greatly. There
is a theorem, known as theLebesgue criterion for Riemann integrability, that
tells us that a given bounded functionf on an interval[a, b] will be Riemann
integrable on[a, b] if and only if the set of numbersx ∈ [a, b] at whichf is
discontinuous is, in some sense, small enough. The notion of “small enough”
that is required by the Lebesgue criterion is expressed by saying that the set
of numbers at whichf fails to be continuous hasmeasure zero. A study of
this concept lies beyond the scope of the present chapter, but, after you have
read this chapter, the chapter on infiniteseries and the chapter on sequences and
series of functions, you can reach a specialchapter that presents the measure zero
concept by clicking on the icon . That special chapter also presents several
other interesting facts about Riemann integration that lie beyond the scope of the
present chapter.

In our next theorem we study a simpler, but still very useful, form of the
Lebesgue criterion for Riemann integrability that we shall call thejunior Lebesgue
criterion.

11.10.3 The Junior Lebesgue Criterion for Riemann Integrability
Suppose that f is a bounded function defined on an interval [a, b]. Then a suf-
ficient condition for the function f to be integrable on [a, b] is that for every
number ε > 0 there exists an elementary set E such that m (E) < ε and such
that f is continuous at every number in the set [a, b] \E.

Proof. Just as in the proof of Theorem 11.10.1, our method of show-
ing thatf is integrable will be to show thatf satisfies the second criterion for
integrability that appears in Theorem 11.8.4.

Suppose thatε > 0. Choose an elementary setE such thatm (E) < ε
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and such thatf is continuous at every number in the set[a, b] \ E. Now, us-
ing Theorem 11.4.8, choose an open elementary setU such thatE ⊆ U and
m (U) < ε. Sincef is continuous on the closed bounded set[a, b] \U , we know
from Theorem 8.12.6 thatf is uniformly continuous on this set. Using this fact,
we choose a numberδ > 0 such that whenevert andx are numbers in the set
[a, b] \ U and|t− x| < δ we have|f(t)− f(x)| < ε/2.

Choose a partitionP1 of [a, b] such that‖P1‖ < δ and choose a partitionP2

of [a, b] such that the step functionχU steps withinP2. We now defineP to be
the common refinement ofP1 andP2 and we writeP in the form

P = (x0, x1, · · · , xn) .

What is important about this partitionP is that, for eachj = 1, 2, · · · , n, the
interval (xj−1, xj) is either included in the setU or is disjoint fromU , de-
pending on whether the constant value ofχU in (xj−1, xj) is 1 or 0. Further-
more, if (xj−1, xj) is disjoint fromU , the inequalityxj − xj−1 < δ guarantees
that |f(t)− f (x)| < ε/2 for all numberst andx in (xj−1, xj). Thus, when
(xj−1, xj) is disjoint fromU , the constant value ofw (P, f) in the interval
(xj−1, xj) does not exceedε/2.

Therefore, if we define

A = {x ∈ [a, b] | w (P, f) (x) ≥ ε} ,

we haveA ⊆ U and it follows thatm (A) < ε. �

11.10.4 A Remark on the Junior Lebesgue Criterion
Unlike the more sophisticated Lebesgue criterion that can be reached by click-
ing on the icon , the junior Lebesgue criterion is not both necessary and
sufficient for Riemann integrability. It is merely sufficient. In other words, it is
possible for a functionf that fails to satisfy the junior Lebesgue criterion to be
integrable. In Exercise 5b of Subsection 11.8.5 you were invited to prove that
the ruler function that had been introduced in Example 8 of Subsection 8.1.5 is
integrable on[0, 1] even though it is discontinuous at every rational number in
the interval. The ruler function does not satisfy the junior Lebesgue criterion for
integrability, because any elementary set that contains all of the rational numbers
in [0, 1] must contain all but finitely many of the numbers in the interval[0, 1]
and must therefore have measure one.

11.10.5 Some Exercises on the Junior Lebesgue Criterion

1. True or false? Every step function satisfies the junior Lebesgue criterion.
2. Suppose that(xn) is a convergent sequence in an interval[a, b] and that
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f is a bounded function on[a, b] that is continuous at every member of[a, b]
that does not lie in the range of the sequence(xn). Prove thatf is integrable
on [a, b].

3. Suppose that(xn) is a sequence in an interval[a, b], that(xn) has only
finitely many partial limits, and thatf is a bounded function on[a, b] that is
continuous at every member of[a, b] that does not belong to the range of the
sequence(xn). Prove thatf is integrable on[a, b].

4. This exercise does not ask you for a proof. Suppose that(xn) is a
sequence in an interval[a, b] and thatf is a bounded function on[a, b] that
is continuous at every member of[a, b] that does not belong to the range of
the sequence(xn). Do you think that the functionf has to be integrable on
[a, b]? What does your intuition tell you?

11.11 The Composition Theorem for Riemann Integrability

We begin this section on the composition theorem with two simple special cases
that will help to motivate the main result, and which are of importance in their
own right.

11.11.1 Integrability of the Absolute Value Function
Suppose that f is integrable on an interval [a, b]. Then the function |f | is also
integrable and we have ∣∣∣∣

∫ b

a

f

∣∣∣∣ ≤
∫ b

a

|f | .

Proof. Once again, our method of showing at a function is integrable will be to
show that it satisfies the second criterionfor integrability that appears in Theorem
11.8.4.

Suppose thatε > 0 and, using the fact thatf is integrable, choose a partition
P of [a, b] such that if

E = {x ∈ [a, b] | w (P, f) (x) ≥ ε} ,

thenm (E) < ε. Now, since the inequality

||f(t)| − |f(x)|| ≤ |f(t)− f(x)|
holds for all numberst andx in the interval, we see that if

E∗ = {x ∈ [a, b] | w (P, |f |) (x) ≥ ε} ,
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thenE∗ ⊆ E and som (E∗) < ε. Now that we have shown that the function|f |
is integrable we can use the nonnegativity property and the inequality

− |f | ≤ f ≤ |f |
to show that ∣∣∣∣

∫ b

a

f

∣∣∣∣ ≤
∫ b

a

|f | . �

11.11.2 Integrability of the Square of a Function
Suppose that f is integrable on an interval [a, b]. Then the function f2 is also
integrable on [a, b].

Proof. Using the fact thatf is bounded we choose a positive numberk such that
|f(x)| ≤ k for all x ∈ [a, b]. Note that ift andx are any numbers in the interval
[a, b], we have∣∣f2(t)− f2(x)

∣∣ = |f(t)− f(x)| |f(t) + f(x)| ≤ 2k |f(t)− f(x)| .
Thus ifP is any partition of[a, b], we have

w
(P, f2

) ≤ 2kw (P, f) .

To show that the functionf2 satisfies the second criterion for integrability that
appears in Theorem 11.8.4, suppose thatε > 0. We defineα to be the smaller
of the two numbersε andε/2k and, using the fact thatf is integrable, choose a
partitionP of [a, b] such that if we define

E = {x ∈ [a, b] | w (P, f) (x) ≥ α} ,

thenm (E) < α. We deduce that if

E∗ =
{
x ∈ [a, b] | w (P, f2

)
(x) ≥ ε

}
,

thenm (E∗) < ε. �

11.11.3 The Product of Integrable Functions
If f and g are integrable on an interval [a, b], then so is fg.

Proof. Since we already know that sums and differences, squares and constant
multiples of integrable functions are integrable, the result follows from the iden-
tity

fg =
(f + g)2 − (f − g)2

4
. �
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11.11.4 Statement of the Composition Theorem for Integrability
Suppose that f is integrable on an interval [a, b] and that h is continuous and
bounded on the range of f. Then the composition h ◦ f of the functions f and h
is integrable on [a, b].

Unfortunately, this form of the composition theorem seems to be very hard to
prove. You can find a proof by clicking on the icon , which will take you to
the special chapter on sets of measure zero.

In our next theorem we study a simpler, but still very useful, form of the
composition theorem for Riemann integrability that we shall call thejunior
composition theorem.

11.11.5 The Junior Composition Theorem for Integrability
Suppose that f is integrable on an interval [a, b] and that h is uniformly contin-
uous on the range of f. Then the composition h ◦ f of the functions f and h is
integrable on [a, b].

Proof. We writeg = h ◦ f , in other words,

g(x) = h (f(x))

for everyx ∈ [a, b]. The functiong is bounded. To see why, look at the solution
to Exercise 6d of Subsection 8.12.7. Once again, our method of showing that
a function is integrable will be to show that it satisfies the second criterion for
integrability that appears in Theorem 11.8.4.

Suppose thatε > 0 and, using the fact thath is uniformly continuous on the
range off , choose a numberδ > 0 such that whenevery andz are in the range
of f and|y − z| < δ we have

|h(y)− h (z)| < ε

2
.

We now defineα to be the smaller of the two numbersε andδ and, using the
integrability off , we choose a partition

P = (x0, x1, · · · , xn)

of the interval[a, b] such that, if

E = {x ∈ [a, b] | w (P, f) (x) ≥ α,} ,

thenm (E) < α. Now for anyj = 1, 2, · · · , n, unless the interval(xj−1, xj) is
included inE, we know that for all numberst andx in (xj−1, xj) we have

|f(t)− f(x)| < α ≤ δ,
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and for such numberst andx we have

|h (f(t))− h (f(x))| < ε

2
.

Thus, in any interval(xj−1, xj) that is not included inE, the constant value of
w (P, g) cannot exceedε/2. Thus if

A = {x ∈ [a, b] | w (P, g) (x) ≥ ε} ,

thenA is an elementary set,A ⊆ E and

m (A) ≤ m (E) < α ≤ ε. �

11.11.6 Some Exercises on the Composition Theorem

1. Given two functionsf andg defined on a setS, we define the functions
f ∨ g andf ∧ g as follows:

f ∨ g(x) =

{
f(x) if f(x) ≥ g(x)

g(x) if f(x) < g(x)

and

f ∧ g(x) =

{
f(x) if f(x) ≤ g(x)

g(x) if f(x) > g(x).

Given Riemann integrable functionsf andg on an interval[a, b], make the
observations

f ∨ g =
f + g + |f − g|

2
and

f ∧ g =
f + g − |f − g|

2

and deduce that the functionsf ∨ g andf ∧ g are also integrable on[a, b].
2. Given thatf is a nonnegative integrable function on an interval[a, b], explain

why the function
√
f is integrable.

3. Given thatf is integrable on an interval[a, b], thatf(x) ≥ 1 for every
x ∈ [a, b], and that

g(x) = log (f(x))

for everyx ∈ [a, b], explain why the functiong must be integrable on[a, b].
4. Suppose thatf is integrable on an interval[a, b] and thatα ≤ f(x) ≤ β for

everyx ∈ [a, b]. Show how the junior version of the composition theorem
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for integrability can be used to show that ifh is any continuous function on
the interval[α, β] the functionh ◦ f is integrable on[a, b].

11.12 The Fundamental Theorem of Calculus

In this section we explore the importantlink between differential calculus and
integral calculus.

11.12.1 Continuity of an Integral
Suppose that f is integrable on an interval [a, b] and suppose that we have de-
fined

F (x) =

∫ x

a

f

for every number x in [a, b]. Then the function F is uniformly continuous on the
interval [a, b].

Proof. Choose a positive numberk such that the inequality|f(x)| ≤ k holds
for every numberx ∈ [a, b]. We shall now demonstrate that ifx andt are any
numbers in the interval[a, b], then

|F (x)− F (t)| ≤ k |x− t| .
Suppose thatx andt belong to[a, b]. We may assume, without loss of generality,
thatt ≤ x. Now

|F (x)− F (t)| =

∣∣∣∣
∫ x

a

f −
∫ t

a

f

∣∣∣∣ =
∣∣∣∣
∫ x

t

f

∣∣∣∣
≤
∫ x

t

|f | ≤
∫ x

t

k = k |x− t| . �

11.12.2 Differentiating an Integral
We shall now study the theorem that, in elementary calculus, is stated tradition-
ally in the form

d

dx

∫ x

a

f(t)dt = f(x).

In its precise form, the theorem can be stated as follows:

Suppose that f is integrable on an interval [a, b] and suppose that we have
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defined

F (x) =

∫ x

a

f

for every number x in [a, b]. Suppose that c ∈ [a, b] and that f is continuous at
the number c. Then the function F is differentiable at c and we have F ′(c) =
f(c).

Proof. We begin by observing that ifx is any number in the interval[a, b] and
x 	= c, we have

F (x)− F (c)

x− c
− f(c) =

1

x− c

∫ x

c

(f − f(c)) .

We shall show that the latter expression approaches0 asx → c. For this purpose,
suppose thatε > 0.

Using the fact thatf is continuous at the numberc, choose a numberδ >
0 such that for every numberx in the interval[a, b] satisfying the inequality
|x− c| < δ we have

|f(x)− f(c)| < ε.

From the version of nonnegativity that appears in Subsection 11.7.4, we see that∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ = 1

|x− c|
∣∣∣∣
∫ x

c

(f − f(c))

∣∣∣∣ ≤ 1

|x− c|ε |x− c| = ε,

and so

lim
x→c

(
F (x)− F (c)

x− c
− f(c)

)
= 0,

as promised.�

11.12.3 Integrating a Derivative
Suppose thatf is a differentiable function on an interval[a, b] and that its deriv-
ativef ′ is integrable on[a, b]. Then∫ b

a

f ′ = f(b)− f(a).

Proof. We shall prove the theorem by showing that ifs andS are any two step
functions on the interval[a, b] satisfying the inequality

s ≤ f ′ ≤ S,
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we have ∫ b

a

s ≤ f(b)− f(a) ≤
∫ b

a

S.

For this purpose, suppose thats andS are step functions on[a, b] and thats ≤
f ′ ≤ S. Choose a partition

P = (x0, x1, · · · , xn)

of the interval[a, b] such that both of the step functionss andS step withinP.
In each interval(xj−1, xj) of the partition we shall call the constant values of the
functionss andS by the namesαj andβj, respectively. For eachj = 1, 2, · · · , n
we now apply the mean value theorem (Theorem 9.4.3) to the functionf on the
interval[xj−1, xj] to choose a numbertj ∈ (xj−1, xj) such that

f(xj)− f(xj−1) = (xj − xj−1) f
′(tj).

Now, since

αj ≤ f ′(tj) ≤ βj

for eachj, we see that∫ b

a

s =
n∑

j=1

αj (xj − xj−1) ≤
n∑

j=1

f ′(tj) (xj − xj−1)

≤
n∑

j=1

βj (xj − xj−1) =

∫ b

a

S.

Thus ∫ b

a

s ≤
n∑

j=1

(f(xj)− f(xj−1)) ≤
∫ b

a

S

and we conclude that∫ b

a

s ≤ f(b)− f(a) ≤
∫ b

a

S. �
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11.12.4 Integration by Parts
Suppose that f and g are differentiable functions on an interval [a, b] and that
their derivatives f ′ and g′ are integrable on [a, b]. Then∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g.

Proof. We observe first that since the functionsf ′g andfg′, being products of
integrable functions, are integrable by Theorem 11.11.3, the functionf ′g + fg′

is integrable on[a, b]. We now defineh = fg. We deduce from Theorem 11.12.3
that ∫ b

a

h′ = h(b)− h(a),

and since the product rule (Theorem 9.3.4) implies that

h′ = f ′g + fg′,

we have ∫ b

a

(f ′g + fg′) = f(b)g(b)− f(a)g(a),

which is the conclusion of the theorem.�

11.13 The Change of Variable Theorem

11.13.1 Introduction to the Change of Variable Theorem
Just as the integration by parts formula that we have just seen can be thought
of as an integral version of the product rule for differentiation, so too can the
change of variable theorem be thought ofas an integral version of the chain rule.
To motivate the theorem, we shall look at an example of the sort of integral that
is evaluated with the help of the theorem in elementary calculus.

Suppose that we wanted to evaluate the integral∫ √
2π−1

√
π−1

2t sin
(
1 + t2

)
dt.

In elementary calculus we evaluate this integral by making the substitutionx =
1 + t2. From the equation

dx

dt
= 2t
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we deduce that, inside the integral sign, the symbol2tdt can be replaced by the
symboldx provided that we change the limits ofintegration correctly and replace
the expression1 + t2 by x. Thus∫ √

2π−1

√
π−1

2t sin
(
1 + t2

)
dt =

∫ 1+(
√
2π−1)

2

1+(
√
π−1)

2
sinxdx =

∫ 2π

π

sinxdx = −2.

A more precise way of describing this change of variable is to define a function
u on the interval [√

π − 1,
√
2π − 1

]
by the equation

u(t) = 1 + t2

for eacht in the interval and to note that the expression2tdt is the same as
u′(t)dt. Thus the given integral is∫ √

2π−1

√
π−1

sin (u(t))u′(t)dt =
∫ u(

√
2π−1)

u(
√
π−1)

sinxdx =

∫ 2π

π

sinxdx = −2.

The change of variable theorem provides the theoretical basis for this technique
and may be stated as follows:

11.13.2 The General Change of Variable Theorem
Suppose that u is a differentiable function on an interval [a, b] and that its deriv-
ative u′ is integrable on [a, b]. Then, given any function f that is integrable on
the range of u, we have∫ b

a

f(u(t))u′(t)dt =
∫ u(b)

u(a)

f(x)dx.

Although this general form of the theorem has a simple and natural statement, it
is unfortunately very difficult to prove, and it will not be proved in this chapter.

You can reach a proof by clicking on the icon .

In this section we study two importantspecial cases of the general theorem
that are much easier to prove and are sufficient for most common applications of
the theorem.

11.13.3 The Continuous Version of the Change of Variable Theorem
Suppose that u is a differentiable function on an interval [a, b] and that its deriv-
ative u′ is integrable on [a, b]. Then, given any function f that is continuous on
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the range of u, we have∫ b

a

f(u(t))u′(t)dt =
∫ u(b)

u(a)

f(x)dx.

Proof. The first observation we need to make is that, sinceu is continuous on
[a, b] and f is continuous on the range ofu, the compositionf ◦ u of these
functions is continuous and therefore integrable on[a, b]. Since the function
u′ is also integrable on[a, b] we know from Theorem 11.11.3 that the function
(f ◦ u)u′ is integrable on[a, b]. We therefore know that the integral∫ b

a

f(u(t))u′(t)dt

makes sense. Sinceu is continuous on[a, b], we know from Theorem 8.10.4 that
the range ofu is an interval. Call it[α, β]. For every numberx in the interval
[α, β] we now define

F (x) =

∫ x

α

f .

Sincef is continuous on the interval[α, β], we know from Theorem 11.12.2 that
F ′(x) = f(x) for everyx ∈ [α, β]. We now define

h(t) = F (u(t))

for every numbert ∈ [a, b]. From the chain rule we see that ift ∈ [a, b], then

h′(t) = F ′(u(t))u′(t) = f(u(t))u′(t),

and it follows from Theorem 11.12.3 that∫ b

a

f(u(t))u′(t)dt =

∫ b

a

h′(t)dt = h(b)− h(a) = F (u(b))− F (u(a))

=

∫ u(b)

α

f −
∫ u(a)

α

f =

∫ u(b)

u(a)

f

and so

∫ b

a

f(u(t))u′(t)dt =
∫ u(b)

u(a)

f(x)dx. �
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11.13.4 The Monotone Version of the Change of Variable Theorem
Suppose that u is a monotone differentiable function on an interval [a, b] and
that its derivative u′ is integrable on [a, b]. Then, given any function f that is
integrable on the range of u, we have∫ b

a

f(u(t))u′(t)dt =
∫ u(b)

u(a)

f(x)dx.

Proof. We shall assume that the functionu is increasing on[a, b] and

leave the analogous caseu decreasing as an exercise. We begin with the
observation that the range of the functionu is the interval[u(a), u(b)]. In order
to prove the theorem we shall first consider the case in which the functionf is a
step function on the interval[u(a), u(b)]. Choose a partition

P = (x0, x1, · · · , xn)

of the interval[u(a), u(b)]within which the functionf steps and call the constant
value off in each interval(xj−1, xj) by the nameαj.

u(a) u(b)
x0 x1 x2 xj xn−1 xn

For eachj = 0, 1, 2, · · · , n, the set of real numberst in the interval[a, b] for
which

u(t) = xj

is a closed subinterval of[a, b] that we shall write as[sj, tj]. We note that

a = s0 ≤ t0 < s1 ≤ t1 < s2 ≤ t2 < · · · < sn−1 ≤ tn−1 < sn ≤ tn = b.

b
s0 t0 s1 t1 sj tj sn−1 tn−1 sn tn

a

For eachj we observe from the fact thatu is constant on the interval[sj, tj] that

f(u(t))u′(t) = 0

for everyt ∈ (sj, tj). Furthermore, ift is any number betweentj−1 andsj, we
have

xj−1 < u(t) < xj,
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and so, for such numberst we have

f(u(t))u′(t) = αju
′(t).

We deduce that the function(f ◦ u) u′ is integrable on each of the intervals
[sj, tj] and on each of the intervals[tj−1, sj], and we have

∫ b

a

f(u(t))u′(t)dt =
n∑

j=0

∫ tj

sj

f(u(t))u′(t)dt+
n∑

j=1

∫ sj

tj−1

f(u(t))u′(t)dt

=
n∑

j=0

0 +
n∑

j=1

∫ sj

tj−1

αju
′(t)dt =

n∑
j=1

αj

∫ sj

tj−1

u′(t)dt

=
n∑

j=1

αj (u(sj)− u(tj−1)) =
n∑

j=1

αj (xj − xj−1)

=

∫ u(b)

u(a)

f(x)dx.

We can now handle the general case. Using the fact thatf is integrable on the
interval [u(a), u(b)], choose a pair of sequences of step functions that squeezes
f on the interval[u(a), u(b)]. In other words,

sn ≤ f ≤ Sn

for eachn and

lim
n→∞

∫ u(b)

u(a)

(Sn − sn) = 0.

For eachn it follows from the fact that the functionu′ is nonnegative that

(sn ◦ u)u′ ≤ (f ◦ u)u′ ≤ (Sn ◦ u)u′

and, by the case that we have already considered, we deduce that

∫ b

a

(Sn ◦ u− sn ◦ u)u′ =
∫ u(b)

u(a)

(Sn − sn) → 0

asn → ∞.

It follows from Theorem 11.5.3 that the function(f ◦ u)u′ is integrable on
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the interval[u(a), u(b)] and that∫ b

a

f(u(t))u′(t)dt = lim
n→∞

∫ b

a

sn(u(t))u
′(t)dt

= lim
n→∞

∫ u(b)

u(a)

sn(x)dx =

∫ u(b)

u(a)

f(x)dx. �

11.13.5 Exercises on the Change of Variable Theorem

1. (a) Given thatf is a continuous function on the interval[−1, 1], prove
that ∫ 2π

0

f (sinx) cosxdx = 0.

(b) Given thatf is a continuous function on the interval[0, 1], prove that∫ π/2

0

f (sinx) dx =

∫ π

π/2

f (sinx) dx.

(c) Given thatα > 0, prove that∫ π/2

0

sinα xdx = 2α
∫ π/2

0

sinα x cosα xdx.

2. Given thatu is a differentiable function on an interval[a, b] and that its
derivativeu′ is integrable on[a, b], and given thatu(a) = u(b) and thatf is
integrable on the range ofu, prove that∫ b

a

f(u(t))u′(t)dt = 0.

3. Given thatf is integrable on an interval[a, b] and thatc is any number, prove
that ∫ b

a

f(t)dt =

∫ b+c

a+c

f(t− c)dt

4. Given thata, b, andc are real numbers; thatac < bc; and thatf is a
continuous function on the interval[ac, bc], prove that∫ bc

ac

f(t)dt = c

∫ b

a

f(ct)dt.
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5. (a) Suppose thatf is a continuous function on an interval[a, b], thatg is
integrable on[a, b], and that

∫ b

a
g > 0. Prove that the ratio

∫ b

a
fg∫ b

a
g

lies between the minimum and maximum values off and deduce that
there exists a numberc ∈ [a, b] such that

∫ b

a

fg = f(c)

∫ b

a

g.

This fact is sometimes called themean value theorem for integrals.
(b) Given thatf is continuous on an interval[a, b], prove that there exits a

numberc ∈ [a, b] such that

∫ b

a

f = f(c) (b− a) .

6. (a) Given thatf is a nonnegative continuous function on an interval[a, b],
wherea < b, and that

∫ b

a
f = 0, prove thatf is the constant zero

function.
(b) Given thatf is a continuous function on an interval[a, b], wherea < b,

and that
∫ x

a
f = 0 for everyx ∈ [a, b], prove thatf is the constant zero

function.
7. The on-screen text provides a link to one proof of the “u decreasing” form

of the change of variable theorem. In this exercise we consider another proof
of this result:

(a) Given thatf is an integrable function on an interval[a, b] and that
g(t) = f (−t) whenever−b ≤ t ≤ −a, give a direct proof thatg is
integrable on the interval[−b,−a] and that

∫ −a

−b

g(t)dt =

∫ b

a

f(x)dx.

(b) Suppose thatu is a decreasing differentiable function on an interval[a, b]
and that the derivativeu′ of u is integrable on[a, b]. Apply the form of
Theorem 11.13.4 proved above to the functionv defined by the equation
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v(t) = −u (t) for −b ≤ t ≤ −a to show that the equation∫ b

a

f(u(t))u′(t)dt =
∫ u(b)

u(a)

f(x)dx

holds for every functionf that is integrable on the interval[u(b), u(a)].

To reach some additional exercises thatinvite you to develop some important
inequalities, click on the icon .

11.14 Integration of Complex Functions (Optional)

To reach this optional section from the on-screen version of the book click on the
icon .



Chapter 12
Infinite Series

This chapter will present the theory of numerical series, the notion of conver-
gence of a series, and the standard tests for convergence, some of which you
have probably seen before. Your study of this chapter will pave the way to the
notion of expansion of functions in series that appears in Chapter 14.

12.1 Introduction to Infinite Series

12.1.1 Motivating the Concept of a Series
In this chapter we study the idea of an infinite sum

a1 + a2 + a3 + · · ·+ an + · · · =
∞∑
j=1

aj,

where(an) is a given sequence of numbers. Before we begin our formal study of
this interesting topic we shall toy with some examples that hint at what we can
do and what we cannot do with infinite sums.

1. The infinite repeating decimal0.258 can be thought of as the infinite sum

258

1000
+

258

(1000)2
+

258

(1000)3
+ · · ·+ 258

(1000)n
+ · · · .

If we call this numbers, then, since

1000s = 258+
258

1000
+

258

(1000)2
+

258

(1000)3
+ · · ·+ 258

(1000)n
+ · · · = 258+ s,

we conclude that

0.258 =
258

999
.

A brief discussion of decimals will be given in Section 12.5 where a link is
also provided to a more detailed presentation of this topic.

2. Suppose thatc is any number and thats is the infinite sum

1 + c+ c2 + c3 + · · ·+ cn + · · · .
335
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Since

cs = c+ c2 + · · ·+ cn + · · ·
= 1 + c+ c2 + · · ·+ cn + · · · − 1 = s− 1

we deduce that

s =
1

1− c
.

If we takec = 1/2 in this identity, we obtain the identity

1 +
1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · · = 2,

which is a well-known fact. However, if we putc = 2, then we obtain the
absurd result

1 + 2 + 22 + 23 + · · · = −1,

which warns us that we cannot work with an infinite sum until we know that
it exists, what it means and how it behaves.

3. Suppose thats is the infinite sum

1− 1 + 1− 1 + 1− · · ·+ (−1)n−1 + · · · .
We shall look at this sum in several ways. First we see that

1− 1 + 1− 1 + 1− · · · = (1− 1) + (1− 1) + (1− 1) + · · · = 0.

Next we change the bracketing and observe that

1− 1 + 1− 1 + 1− · · · = 1− (1− 1)− (1− 1)− · · · = 1.

Finally we substitutec = −1 in the identity

1 + c+ c2 + c3 + · · ·+ cn + · · · = 1

1− c

and obtain

1− 1 + 1− 1 + 1− · · ·+ (−1)n−1 + · · · = 1

2
.

Which of these three values is correct? Actually, none of them. This infinite
sum simply doesn’t make sense.



12.1 Introduction to Infinite Series 337

4. In this example we shall attempt to add up all of the numbers in the infinite
array

1 −1 0 0 0 0 0 0 0 0 · · ·
1 1 −1 −1 0 0 0 0 0 0 · · ·
1 1 1 −1 −1 −1 0 0 0 0 · · ·
1 1 1 1 −1 −1 −1 −1 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
. ..

We shall perform this summation in two ways. First we add the numbers in
each row and place the totals in an extra column to the right of the array. The
sum of the numbers in this column is

0 + 0 + 0 + · · · = 0.

1 −1 0 0 0 0 0 0 0 0 · · · 0

1 1 −1 −1 0 0 0 0 0 0 · · · 0

1 1 1 −1 −1 −1 0 0 0 0 · · · 0

1 1 1 1 −1 −1 −1 −1 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
. . .

...
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ · · ·

Second, we add the numbers in each column and place the totals in an extra
row at the bottom of the array. The sum of the numbers in this row is

∞+∞+∞+ · · · = ∞.

We have therefore found two different ways of adding the numbers in the
array that lead to two dramatically different answers.

5. In this example we shall use the identity

1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · · = 1
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as we attempt to add up all of thenumbers in the infinite array

−1 1
2

1
4

1
8

1
16

1
32

1
64

1
128

· · ·
0 −1 1

2
1
4

1
8

1
16

1
32

1
64

· · ·
0 0 −1 1

2
1
4

1
8

1
16

1
32

· · ·
0 0 0 −1 1

2
1
4

1
8

1
16

· · ·
0 0 0 0 −1 1

2
1
4

1
8

· · ·
...

...
...

...
...

...
...

...
. . .

We shall perform this summation in two ways. First we add the numbers in
each row and place the totals in an extra column to the right of the array. The
sum of the numbers in this column is

0 + 0 + 0 + · · · = 0.

−1 1
2

1
4

1
8

1
16

1
32

1
64

1
128

· · · 0

0 −1 1
2

1
4

1
8

1
16

1
32

1
64

· · · 0

0 0 −1 1
2

1
4

1
8

1
16

1
32

· · · 0

0 0 0 −1 1
2

1
4

1
8

1
16

· · · 0

0 0 0 0 −1 1
2

1
4

1
8

· · · 0
...

...
...

...
...

...
...

...
. . .

...

−1 −1
2

−1
4

−1
8

− 1
16

− 1
32

− 1
64

− 1
128

· · ·
Second, we add the numbers in each column and place the totals in an extra
row at the bottom of the array. The sum of the numbers in this row is

−1− 1

2
− 1

4
− 1

8
− · · · = −2.

We have therefore found two different ways of adding the numbers in the
array that lead to two different answers.

These examples serve as a warningthat infinite sums need to be defined
carefully. We need to know when they exist and we need to know exactly what
these sums mean when they exist and how they behave. Once this has been done
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we shall be able to give some genuine examples of infinite sums. The following
are just a few of the facts that you will encounter in various parts of this book:

If −1 < c < 1, then

1 + c+ c2 + · · ·++cn + · · · =
∞∑
j=0

cj =
1

1− c
,

1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)j−1

j
+ · · · =

∞∑
j=1

(−1)j−1

j
= log 2,

1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)j−1

2j − 1
+ · · · =

∞∑
j=1

(−1)j−1

2j − 1
=

π

4
,

1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
+ · · · =

∞∑
j=1

1

j2
=

π2

6
,

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

j
+ · · · =

∞∑
j=1

1

j
= ∞.

If x is any real number, then

∞∑
j=0

xj

j!
= ex.

12.1.2 The Basic Definitions
If (an) is a given sequence of numbers, then the symbol

∑
an stands for the

sequence whose first term isa1, whose second term isa1 + a2, whose third term
is a1 + a2 + a3, and whosenth term is

n∑
j=1

aj

for eachn. The symbol
∑

an is known as theseries associated with the se-
quence (an) and is also called theseries with nth term an. Note that every time
we use the wordseries we are actually referring to the series associated with a
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given sequence. We shall never refer to “a series” as if it were something in its
own right.

In the event that the domain of a given sequence(an) of numbers starts at an
integerk, the series withnth terman would have the form

ak, ak + ak+1, ak + ak+1 + ak+2, · · · ,
n∑

j=k

aj, · · ·

but, in order to keep the notation as simple as possible, we shall usually take
k = 1 and regard a series

∑
an as being

a1, a1 + a2, a1 + a2 + a3, · · · ,
n∑

j=1

aj, · · ·

with the understanding that we can start at any given integerk if it suits us to do
so.

Given a sequence(an) we shall call each number

n∑
j=1

aj

thenth partial sum of
∑

an. If the limit

lim
n→∞

n∑
j=1

aj

exists, this limit is called thesum of the series
∑

an and is written as

∞∑
j=1

aj.

Of course, the letterj has no special role here. We could just as well write

lim
n→∞

n∑
j=1

aj =
∞∑
j=1

aj =
∞∑
p=1

ap =
∞∑
n=1

an.

Finally, if the limit

lim
n→∞

n∑
j=1

aj
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exists and is a finite real number, we say that the series
∑

an is convergent.
Otherwise, we say that

∑
an is divergent. Thus there are two ways in which a

series
∑

an can diverge. Either the limit

lim
n→∞

n∑
j=1

aj

is±∞ or this limit doesn’t exist at all.

12.1.3 Some Examples of Series

1. Suppose thatan = 1 for every positive integern. Since

∞∑
j=1

aj = lim
n→∞

n∑
j=1

aj = lim
n→∞

n = ∞,

we conclude that
∑

an is divergent.
2. Suppose that

an =

{
1 if 1 ≤ n ≤ 5

0 if n > 5.

Since

∞∑
j=1

aj = lim
n→∞

5∑
j=1

1 = lim
n→∞

5 = 5,

we conclude that
∑

an is convergent.
3. Suppose thatan = (−1)n for eachn. Since

n∑
j=1

aj =

{
−1 if n is odd

0 if n is even,

we see that the limit

lim
n→∞

n∑
j=1

aj

does not exist and so
∑

an is divergent. Since
∑

an has no sum, the symbol∑∞
j=1 aj has no meaning.
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4. Suppose that

an = log

(
1 +

1

n

)
for every positive integern. Since

n∑
j=1

aj =
n∑

j=1

log

(
j + 1

j

)
=

n∑
j=1

log (j + 1)−
n∑

j=1

log j = log (n+ 1) ,

we conclude that
∞∑
j=1

aj = lim
n→∞

n∑
j=1

aj = ∞,

and therefore
∑

an is divergent.
5. Suppose that

an =
1

n (n+ 1)

for eachn. Since
∞∑
j=1

aj = lim
n→∞

n∑
j=1

aj = lim
n→∞

n∑
j=1

(
1

j
− 1

j + 1

)
= lim

n→∞

(
1− 1

n+ 1

)
= 1,

we conclude that
∑

an is convergent.
6. Suppose that−1 < c < 1. From the algebraic identity

(1− c)
(
1 + c+ c2 + · · ·+ cn−1

)
= 1− cn

we conclude that
∞∑
j=1

cj−1 = lim
n→∞

n∑
j=1

cj−1 = lim
n→∞

(
1− cn

1− c

)
=

1

1− c
.

To evaluate the latter limit we madeuse of Subsection 7.7.2. As you may
know, the series

∑
cn−1 is known as thegeometric series with common

ratio c.
7. Thenth partial sum of the series

∑
1/n2 is the number

n∑
j=1

1

j2
=

1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
,
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but, because there is no simple formula for this expression, it is not obvious
what happens to this sum asn → ∞. Eventually you will see that the sum of
this series isπ2/6.

12.1.4 Exploring Series Graphically and Numerically with Scientific
Notebook

This subsection is designed to be read interactively with the on-screen ver-

sion of the text. To reach this material, click on the icon .

12.1.5 Some Elementary Exercises on Series

1. Find thenth partial sum of the series∑ n− 3

n (n+ 1) (n+ 3)
.

Deduce that this series is convergent and find its sum.
2. (a) Find the derivative of thenth partial sum of the series

∑
xn.

(b) Find thenth partial sum of the series
∑

nxn−1. Deduce that if|x| < 1,
we have

∞∑
n=1

nxn−1 =
1

(1− x)2
.

3. Given that|x| < 1 and that

sn =
n∑

j=1

(3j − 1)x2j

for every positive integern, obtain the identity

sn
(
1− x2

)
= 2x2 +

3x4 − 3x2n+4 − (3n− 1)x2n+2 − x2n+4

1− x2

and deduce that
∞∑
j=1

(3j − 1)x2j = 2x2 +
3x4

1− x2
.

12.2 Elementary Properties of Series
In this section we show that series have the same sort of properties of linearity,
nonnegativity, and additivity that we saw for integrals in Chapter 11.
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12.2.1 Linearity of Series
Suppose that (an) and (bn) are given sequences, that c is a given number and
that both

∑
an and

∑
bn converge. Then we have:

1. The series
∑

(an + bn) is convergent and

∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn.

2. The series
∑

can is convergent and

∞∑
n=1

can = c
∞∑
n=1

an.

Proof. To prove the first assertion we observe that

∞∑
n=1

(an + bn) = lim
n→∞

n∑
j=1

(aj + bj) = lim
n→∞

(
n∑

j=1

aj +
n∑

j=1

bj

)
=

∞∑
n=1

an+
∞∑
n=1

bn.

The proof of assertion 2 is similar.�

12.2.2 Nonnegativity of Series
Suppose that an ≤ bn for every n and that both

∑
an and

∑
bn are convergent.

Then we have
∞∑
n=1

an ≤
∞∑
n=1

bn.

Proof. Sincebn ≥ an for eachn, we have

∞∑
n=1

bn −
∞∑
n=1

an =
∞∑
n=1

(bn − an) = lim
n→∞

n∑
j=1

(bj − aj) ≥ 0. �

12.2.3 Additivity of Series
Suppose that (an) is a sequence and that N > 1 is an integer. Then the con-
vergence of

∑
an is independent of whether we start summing at n = 1 or at

n = N ; and if these series are convergent, we have

∞∑
n=1

an =
N−1∑
n=1

an +
∞∑

n=N

an.
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Proof. Whenevern ≥ N we have

n∑
j=1

aj =
N−1∑
j=1

aj +
n∑

j=N

aj,

and the result follows at once by lettingn → ∞. �

12.3 Some Elementary Facts About Convergence

12.3.1 The nth Term Criterion for Divergence
If the nth term an of the series

∑
an does not approach zero as n → ∞, then

the series
∑

an must diverge.

Proof. Suppose that
∑n

i=1 ai → L asn → ∞. Then since
∑n−1

i=1 ai → L as
n → ∞ we see that

lim
n→∞

an = lim
n→∞

[
n∑

i=1

ai −
n−1∑
i=1

ai

]
= L− L = 0. �

This criterion lets us see at once that certain series are divergent.

12.3.2 Some Examples to Illustrate the nth Term Criterion

1. Suppose that

an =
n3 cos (nπ/7)

1 + n+ n2 + (−1)n n3

for eachn. Since the sequence(an) does not converge to0 the series
∑

an
must be divergent.

2. Suppose that(an) is a given sequence and that for some integerN we have
an = 0 whenevern ≥ N . Since the equation

n∑
j=1

aj =
N∑
j=1

aj

holds whenevern ≥ N , we see that

∞∑
n=1

an = lim
n→∞

n∑
j=1

aj = lim
n→∞

N∑
j=1

aj =
N∑
j=1

aj,

and so
∑

an is convergent.
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3. We saw in Example 4 of Subsection 12.1.3 that the series
∑

log (1 + 1/n)
is divergent. From the fact that

lim
n→∞

log

(
1 +

1

n

)
= log 1 = 0

we see that there is no guarantee that a given series
∑

an will converge, just
becausean → 0 asn → ∞. What we know is that, unless the sequence(an)
converges to0, the series

∑
an has no chance of converging.

12.4 Convergence of Series with Nonnegative Terms

12.4.1 The Comparison Principle
The theory of convergence of a series

∑
an is easier when each terman is

nonnegative than it is when some of the numbersan are positive and some
are negative. The trouble with a general series is that the sequence of partial
sums

∑n
i=1 ai increases when we add positive terms and decreases when we add

negative terms. Therefore, to show thata sequence of partial sums converges, we
may have to work quite hard to show that it doesn’t jump around too much. For
example, it is quite a difficult job to show that the series∑ sinn

3
√
n

is convergent.

If, however, the conditionan ≥ 0 holds for eachn, then the sequence of
partial sums

∑n
j=1 aj is increasing and we know from Theorem 7.7.1 that the

limit

lim
n→∞

n∑
j=1

aj

must exist and must be the least upper bound of the sequence of partial sums∑n
j=1 aj. Thus, ifan ≥ 0 for everyn, then the series

∑
an will be convergent

if and only if the sequence of partial sums
∑n

j=1 aj is bounded above.

One way of showing that a sequence
(∑n

j=1 aj
)

is bounded above is to find

a known bounded sequence(pn) such that

n∑
j=1

aj ≤ pn
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for eachn. Alternatively, we can show that a sequence
(∑n

j=1 aj
)

is unbounded

above if we can find sequence(pn) that is known to be unbounded above such
that

n∑
j=1

aj ≥ pn

for eachn. In each of these cases we are determining the convergence or diver-
gence of the given series

∑
an by the so-calledcomparison principle.

Take careful note that the comparison principle that we shall be using in this
section can be applied only to series withnonnegative terms. It has no analog for
series whose terms frequently change sign.

In our first application of the comparison principle we compare a series with
an integral to obtain a useful fact known as theintegral test.

12.4.2 The Integral Test
Those who are reading this chapter before having read the chapter on integration
should click on the icon for a version of the integral test that does not refer
explicitly to an integral.

Suppose that f is a nonnegative decreasing function defined on the interval
[1,∞). Then the following conditions are equivalent:35

1. The series
∑

f (n) is convergent.
2. The sequence of integrals

∫ n

1
f(x)dx is bounded above.

Proof. Given anyj = 2, 3, · · · , n, the inequality

f (j) ≤ f(x) ≤ f (j − 1)

holds for all numbersx ∈ [j − 1, j]. This inequality is illustrated in Figure 12.1.
From this inequality we see that

f (j) ≤
∫ j

j−1

f(x)dx ≤ f (j − 1)

for eachj and, summing, we obtain

n∑
j=2

f (j) ≤
∫ n

1

f(x)dx ≤
n−1∑
j=1

f (j) .

35 As usual, the left endpoint1 of this interval is unimportant. We could just as well have started
at any integerk.
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1 2 3 4 j n

f(2)

f(3)

f(j)

f(1)

j+11j n−1

f(n−1)

Figure 12.1

Thus the sequence of sums
∑n

j=1 f (j) is bounded above if and only if the se-
quence of integrals

∫ n

1
f(x)dx is bounded above.�

12.4.3 The p-Series: An Application of the Integral Test
Given any numberp, the series ∑ 1

np

is called ap-series. We shall use the integral test to show that this series con-
verges ifp > 1 and diverges ifp ≤ 1. For convenience we separate our proof
into three cases:

Case 1: Suppose thatp = 1. From the fact that

lim
n→∞

∫ n

1

1

x
dx = lim

n→∞
log n = ∞,

we see at once that
∑

1/n diverges.

Case 2: Suppose thatp > 1. From the fact that

lim
n→∞

∫ n

1

1

xp
dx = lim

n→∞

(
1

1− p
n1−p − 1

1− p

)
=

1

p− 1
,

we see that
∑

1/np converges.
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Case 3: Suppose thatp < 1. In the event thatp ≤ 0, the series
∑

1/np

certainly diverges because1/np does not approach0 asn → ∞. In the event
that0 < p < 1, we deduce from the fact that

lim
n→∞

∫ n

1

1

xp
dx = lim

n→∞

(
1

1− p
n1−p − 1

1− p

)
= ∞

that
∑

1/np diverges.

We have therefore shown that thep-series
∑

1/np converges whenp > 1
and diverges whenp ≤ 1. �

12.4.4 A Refinement of the p-Series
At first sight, thep-series

∑
1/np seems to show a boundary between conver-

gence and divergence atp = 1. But this isn’t so. An easy application of the
integral test can be used to show that the series∑ 1

n (logn)p

converges ifp > 1 and diverges ifp ≤ 1. Note that ifp is positive, the terms of
the latter series are smaller than the terms of

∑
1/n. We can use the integral test

again to obtain a further refinement of thep-series: The series∑ 1

n (logn) (log log n)p

converges ifp > 1 and diverges ifp ≤ 1. This refinement process can be taken
as far as you like, and it illustrates the fact that it is impossible to put a finger on
a series that is a boundary between convergence and divergence.

12.4.5 A Sharper Version of the Integral Test
A sharper version of the integral test tells us that iff is a decreasing positive
function, then, regardless of whether

∑
f (n) is convergent or divergent, the

limit

lim
n→∞

(
n∑

j=1

f (j)−
∫ n

1

f(x)dx

)

must exist and be finite.

You can reach a discussion of this form of the integral test and some interest-
ing exercises that make use of it by clicking on the icon .
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12.4.6 The Comparison Test
The comparison test tells us that, under certain conditions, if(an) and(bn) are
sequences of nonnegative numbers, and if one of the series

∑
an and

∑
bn con-

verges, then so does the other. The value of this sort of theorem is that it allows
us to test a given series by comparing it with another whose behavior is already
known to us. For example, we can often determine the convergence or divergence
of a given series by comparing it with ap-series

∑
1/np or a geometric series∑

cn.

Suppose that(an) and(bn) are sequences of nonnegative numbers.

1. If it is possible to find a positive number k such that an ≤ kbn for all n, and
if
∑

bn converges, then
∑

an must converge.
2. If the sequence (an/bn) is bounded and if

∑
bn converges, then

∑
an must

converge.
3. If the sequence (an/bn) is convergent and if

∑
bn converges, then

∑
an

must converge.
4. If it is possible to find a positive number δ such that an/bn ≥ δ for all n,

and if
∑

an converges, then
∑

bn must converge.
5. If the sequence (an/bn) has a positive limit (possibly ∞), and if

∑
an

converges, then
∑

bn must converge.

Proof. Part 1 follows at once from the comparison principle discussed in Sub-
section 12.4.1 and the inequality

n∑
j=1

aj ≤ k
n∑

j=1

bj

that holds for eachn. Parts 2 and 3 follow at once from part 1. Part 4 follows
from the fact that ifδ > 0 andan/bn ≥ δ for everyn, then the sequence(bn/an)
is bounded, and part 5 follows at once from part 4.�

12.4.7 Some Exercises on The Comparison Test
Test each of the following series for convergence.

1.
∑ 1

n3/2 + n
.

2.
∑ 1

n3/2 − n
.

3.
∑ n√

n4 − n2 + 2
.
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4.
∑ n logn√

n5 − n2 + 2
.

5.
∑ 1

n(1+(logn)/n)
.

6.
∑ 1

n(1+(logn)2/n)
.

7.
∑ 1

n(1+((logn)
(log logn))/n)

.

8.
∑(

n

n+ 1

)n logn

.

9.
∑(

n

n+ 1

)n(logn)2

.

10.
∑(

1

log n

)3

.

11.
∑(

1

log n

)n

.

12.
∑(

1

log n

)logn

.

13.
∑(

1

log log n

)logn

.

14.
∑(

1

log n

)log logn

.

15.
∑(

1

log log log n

)logn

.

16.
∑(

1

log log n

)log logn

.

17.
∑((

1

log log n

)log logn
)log logn

.

18.
∑(

1

log log n

)((log logn)(log logn))
.

19.
∑(

sin x
n

)α
, wherex andα are given positive numbers.
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20. Prove that if(an) is a sequence of positive numbers and
∑

an converges,
then so does the series

∑
a2n.

21. In this exercise we encounter a series that diverges very slowly. We begin by
defining

L(x) =

{
log x if x ≥ e

1 if x < e.

The graph of this function is illustrated in Figure 12.2. Ifk is any positive

0

0.5

1

1.5

2

2.5

-20 -10 10 20

Figure 12.2

number, we shall writeLk for the composition of the functionL with itself
k times. Thus, ifx is a given number, thenL3(x) = L (L (L(x))). We also
defineL0(x) = x for everyx.

(a) Given any numberx, explain why we must haveLk(x) = 1 for all
sufficiently large values ofk. For a given positive integern, give a simple
meaning to the “infinite product”

∞∏
k=0

Lk (n) = L0 (n)L1 (n)L2 (n) · · · .

(b) For each positive integern we define

an =
1∏∞

k=0 L
k (n)

.

Using the integral test (or otherwise), show that the series
∑

an is
divergent.
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12.5 Decimals

A decimal (with base10) is a series of the form∑ an
10n

,

where, for eachn, the numberan lies in the set{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The
numbersan are called thedigits of the decimal. Since

∞∑
n=1

9

10n
= 1,

it follows from the comparison test that every decimal converges. It is not hard
to show that every numberx in the interval[0, 1] can be expressed as a decimal

x =
∞∑
n=1

an
10n

and that, if we eliminate those decimals whose digits are all equal to9 from some
position onward, the representation of a number as a decimal is unique. You can
reach a more complete discussion ofdecimals by clicking on the icon .

12.6 The Ratio Tests

One of the most useful ways of testing a given series
∑

an for convergence is to
look at the size of the ratios

an+1

an

asn varies. The basic message of this section is that the smaller these ratios are,
the more likely it is that the series

∑
an will converge. We begin by exhibiting a

condition on these ratios that guarantees that a given series
∑

an must diverge.

12.6.1 A Ratio Version of the Criterion for Divergence
Suppose that (an) is any sequence of real numbers.

1. If ∣∣∣∣an+1

an

∣∣∣∣ ≥ 1. (12.1)

for all n large enough, then the series
∑

an must diverge.
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2. If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1, (12.2)

then the series
∑

an must diverge.

Proof. If the inequality (12.1) holds for all sufficiently largen, then, for all such
n, we have|an+1| ≥ |an| and therefore we cannot havean → 0 asn → ∞.

If the inequality (12.2) holds, then we certainly have∣∣∣∣an+1

an

∣∣∣∣ > 1

for all sufficiently largen. �

12.6.2 Some Examples to Illustrate the Ratio Criterion for Divergence

1. In this example we test the series
∑

an where, for eachn, we define

an =
4n (n!)2

(2n)!
.

From the fact that for eachn

an+1

an
=

2n+ 2

2n+ 1
> 1

and the ratio version of the criterion for divergence, we deduce that
∑

an
diverges.

2. In this example we test the series
∑

an where, for eachn, we define

an =
nn

enn!
.

Using L’Hôpital’s rule (Theorem 9.6.3) one may see that

lim
n→∞

an+1

an
=

e

2
> 1,

and so the series
∑

an diverges.

12.6.3 Discussion of Series whose Ratios Are Less than One
In view of Theorem 12.6.1, one might reasonably ask whether the inequality∣∣∣∣an+1

an

∣∣∣∣ < 1
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for all n is enough to guarantee that the series
∑

an is convergent. The answer
is no! All this inequality says is that the sequence(|an|) is strictly decreasing.
Thus, for example, ifan = 1/n for eachn, then, even though the inequality

an+1

an
< 1 (12.3)

holds for alln, the series
∑

an diverges.

The message of the ratio tests that appear in this section is that, if(an) is
a decreasing sequence of positive numbers, then the series

∑
an will converge

as long as the ratiosan+1/an are not “too close” to1. Each of the ratio tests
provides its own interpretation of how close is “too close”. The first ratio test
that we shall study is the ratio test of d’Alembert, which tells us that

∑
an will

converge as long as the ratioan+1/an remains below a constantα that is less
than1. This test is the most primitive of the ratio tests.

an+1/an
α 1

After d’Alembert’s test we shall study the more powerful ratio test of Raabe,
in which the latter requirement is relaxed. Raabe’s test tells us that

∑
an will

converge if for some constantp > 1 and all sufficiently largen we have

an+1

an
≤ 1− p

n
.

an+1/an 1 − p/n 1

There are even more powerful ratio tests. For example, it can be shown that
∑

an
will converge if

an+1

an
≤ 1− 1

n
− p

n log n

for some constantp > 1 and all sufficiently largen. Going a step further, one
may prove that

∑
an will converge if

an+1

an
≤ 1− 1

n
− 1

n log n
− p

n (logn) (log logn)

for some constantp > 1 and all sufficiently largen, and, as you may guess,∑
an will converge if the ratio

an+1

an
does not exceed

1− 1

n
− 1

n log n
− 1

n (logn) (log logn)
− p

n (logn) (log logn) (log log logn)
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for some constantp > 1 and all sufficiently largen. This sequence of ratio tests
can be taken as far as we like, but, unfortunately, the more powerful tests are not
as easy to prove as they are to state. Theirproofs, while not actually difficult, are
rather technical. If, after reading this chapter, you would like to read about the
deeper ratio tests, you can do so by clicking on the icon .

12.6.4 The Ratio Comparison Test
This theorem that we are about to state is the key to the section because it tells
us why ratios are so important. Note that, because this theorem and those that
follow it are versions of the comparison test, they require the terms of the series

to be positive.

Suppose that an and bn are positive for n sufficiently large and that for all
sufficiently large n we have

an+1

an
≤ bn+1

bn
. (12.4)

If the series
∑

bn converges, then the series
∑

an must also converge.

Proof. Choose an integerN such that the inequality (12.4) holds for alln ≥ N .
Then for alln ≥ N we have

an+1

bn+1
≤ an

bn
,

and so, starting at the integerN , the sequence(an/bn) is decreasing. Therefore

an
bn

≤ aN
bN

for all n ≥ N. Since

an ≤
(
aN
bN

)
bn

whenevern ≥ N , we deduce from the comparison test (Theorem 12.4.6) that if∑
bn converges, then so does

∑
an. �

12.6.5 d’Alembert’s Ratio Test (Sometimes Called the Ratio Test)
Suppose that an > 0 for each n.

1. If there exists a number α < 1 such that

an+1

an
≤ α

for each n,
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an+1/an
α 1

then the series
∑

an converges.
2. If

lim
n→∞

an+1

an
< 1,

then the series
∑

an must converge.

Proof of Part 1. Suppose thatα < 1 and that the inequality

an+1

an
≤ α

holds for eachn. Now definebn = αn for eachn. The series
∑

bn is a con-
vergent geometric series. Now we observe that for alln sufficiently large we
have

an+1

an
≤ α =

bn+1

bn
,

and so it follows from the ratio comparison test (Theorem 12.6.4) that
∑

an
converges.�

Proof of Part 2. Suppose that

lim
n→∞

an+1

an
< 1

and choose a numberα such that

lim
n→∞

an+1

an
< α < 1.

Since the inequality
an+1

an
≤ α

must hold for all sufficiently large, part 2 follows at once from part 1.�

Note that d’Alembert’s test is really an efficient way of comparing a given
series with a geometric series.

12.6.6 Some Examples to Illustrate d’Alembert’s Test

1. In order to test the series ∑ (2n)!

5n (n!)2
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we write

an =
(2n)!

5n (n!)2

for eachn. Then, since

lim
n→∞

an+1

an
= lim

n→∞
2

5

2n+ 1

n+ 1
=

4

5
< 1,

the series
∑

an converges by d’Alembert’s test.
2. In this example we demonstrate the fact that d’Alembert’s test cannot be

used to test the series ∑ (2n)!

4n (n!)2
.

We define

an =
(2n)!

4n (n!)2

for eachn and we observe that, for eachn,

an+1

an
=

2n+ 1

2n+ 2
.

Sincean+1/an < 1 for eachn, we do not have an automatic guarantee that∑
an diverges. Furthermore, sincean+1/an → 1 asn → ∞, neither part

of d’Alembert’s test can be used to show that
∑

an converges. We shall
analyze this series in a moment using Raabe’s form of the ratio test.

12.6.7 Raabe’s Ratio Test
Suppose that an > 0 for each n.

1. If there exists a number p > 1 such that

an+1

an
≤ 1− p

n

for each n,

an+1/an 1 − p/n 1

then the series
∑

an converges.
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2. If there exists a number p < 1 such that

an+1

an
≥ 1− p

n

for each n,

an+1/an1 − p/n 1

then the series
∑

an diverges.
3. If

lim
n→∞

n

(
1− an+1

an

)
= p,

then the series
∑

an converges if p > 1 and diverges if p < 1.

Proof. The proof of Raabe’s test makes use of Example 3 in Subsection 9.6.2, in
which we showed that ifq is any real number, then

lim
x→∞

x

(
1− (x− 1)q

xq

)
= q.

To prove part 1 assume thatp > 1 and that the inequality

an+1

an
≤ 1− p

n

holds for alln. Choose a numberq such that1 < q < p and, for eachn ≥ 2,
define

bn =
1

(n− 1)q
.

We note that the series
∑

bn is convergent. Now, since

lim
n→∞

n

(
1− bn+1

bn

)
= lim

n→∞
n

(
1− (n− 1)q

nq

)
= q,

we see that for alln sufficiently large we have

n

(
1− bn+1

bn

)
< p.

Since the latter inequality can be written as

1− p

n
<

bn+1

bn
,
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we see that, for alln sufficiently large,

an+1

an
≤ 1− p

n
<

bn+1

bn
,

and so the convergence of the series
∑

an follows from the ratio comparison test
(Theorem 12.6.4).

The proof of part 2 of the theorem is similar and is left as an exercise.

Finally, suppose that

lim
n→∞

n

(
1− an+1

an

)
= p.

If p > 1, we choose a numberq such that1 < q < p. In this case, since the
inequality

n

(
1− an+1

an

)
> q

holds for all sufficiently largen, the convergence of
∑

an follows from part 1
of the theorem. In a similar way we can show that ifp < 1, the series

∑
an

diverges.�

12.6.8 Some Examples to Illustrate Raabe’s Test

1. In this example we test the series

∑ (2n)!

4n (n!)2

using Raabe’s test. We define

an =
(2n)!

4n (n!)2

and we observe that, since

lim
n→∞

n

(
1− an+1

an

)
= lim

n→∞
n

(
1− 1

2

2n+ 1

n+ 1

)
=

1

2
< 1,

the series
∑

an diverges.
2. This example will be useful to us when we study the binomial series in

Section 14.6. Suppose thatα is a given real number and that for eachn we



12.6 The Ratio Tests 361

have

an =

∣∣∣∣α (α− 1) (α− 2) · · · (α− n+ 1)

n!

∣∣∣∣ .
In the event thatα is a nonnegative integer we havean = 0 for all n > α and
the series

∑
an clearly converges; so from now on we assume thatα is not a

nonnegative integer. Whenevern > α we see that

an+1

an
=

∣∣∣∣α− n

n+ 1

∣∣∣∣ = n− α

n+ 1
,

and so

lim
n→∞

n

(
1− an+1

an

)
= 1 + α.

We deduce from Raabe’s test that the series
∑

an converges ifα > 0 and
diverges ifα < 0.

12.6.9 A More Powerful Raabe Test
Suppose that an > 0 for each n.

1. If there exists a number p > 1 such that

an+1

an
≤ 1− 1

n
− p

n log n

for each n, then the series
∑

an converges.
2. If there exists a number p < 1 such that

an+1

an
≥ 1− 1

n
− p

n log n

for each n, then the series
∑

an diverges.
3. If

lim
n→∞

n (log n)

(
1− 1

n
− an+1

an

)
= p,

then the series
∑

an converges if p > 1 and diverges if p < 1.

Proof. You can find the proof by clicking on the icon .
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12.6.10 Exploring the Ratio Tests with Scientific Notebook

To see how the computing features ofScientific Notebook can be used to

enhance your understanding of the ratio tests, click on the icon.

12.6.11 A Criterion for the nth Term of a Series to Converge to Zero
As we have seen, the message of the ratio tests is that if(an) is a decreasing
sequence of positive numbers, then the series

∑
an will converge as long as the

ratio an+1/an is not too close to the number1. The closer this ratio is to1,
the more slowly the sequence(an) will decrease. In thissubsection we shall
demonstrate that, even though the ratioan+1/an may be too close to1 to allow
convergence of the series

∑
an, the ratioan+1/an may still satisfy a weaker

criterion that guarantees thatan → 0 asn → ∞. This knowledge will be useful
to us when we come to Subsection 12.7.9. The precise statement of the weaker
criterion is as follows:

Suppose that (an) is a sequence of positive numbers and that for each positive
integer n we have defined

bn = 1− an+1

an
.

1. If the sequence (an) is decreasing, then it will converge to zero if and only if
the series

∑
bn diverges.

Proof. We assume that(an) is decreasing. We observe first that ifn ≥ 2, we
have

an = a1 (1− b1) (1− b2) (1− b3) · · · (1− bn−1) ,

and so

log an = log a1 +
n−1∑
j=1

log (1− bj) .

Sincean → 0 asn → ∞ if and only if log an → −∞ asn → ∞, the
condition thatan → 0 asn → ∞ is equivalent to the condition that

lim
n→∞

n−1∑
j=1

(− log (1− bj)) = ∞.

The latter condition says that the series
∑

(− log (1− bn)) is divergent. We
now consider two cases:
Case 1: Suppose that the sequence(bn) does not converge to zero. In this
case the series

∑
bn diverges. Furthermore, since the sequence of numbers
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− log (1− bj) also does not converge to zero, the series
∑

(− log (1− bn))
is divergent andan → 0 asn → ∞.
Case 2: Suppose that the sequence(bn) does converge to zero. In this case
we deduce from the fact that

lim
x→0

− log (1− x)

x
= 1

that

lim
n→∞

− log (1− bn)

bn
= 1,

and it follows from the comparison test (Theorem 12.4.6) that the series∑
(− log (1− bn)) diverges if and only if

∑
bn diverges. In other words,

an → 0 asn → ∞ if and only if
∑

bn diverges.�
2. If there exists a positive number p such that the inequality

n

(
1− an+1

an

)
≥ p

holds for every n, then an decreases to 0 as n → ∞.
Proof. Suppose thatp > 0 and that the inequality

n

(
1− an+1

an

)
≥ p

holds for alln. Since1 − an+1/an is always positive the sequence(an)
must be decreasing. Furthermore, sincenbn ≥ p for eachn the series

∑
bn

diverges by the comparison test.�

3. If the limit

lim
n→∞

n

(
1− an+1

an

)
exists and is positive, then an decreases to 0 as n → ∞.
This part of the theorem follows at once from Part 2.�

12.6.12 Some Exercises on the Ratio Tests
Test the following series for convergence. In the event that the series diverges,
determine whether or not itsnth term approaches0 asn → ∞.

1.
∑ ((2n)!)3

((3n)!)2
.
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2.
∑ 3(n

2)

n!
.

3.
∑ 3(n logn)

n!
.

4.
∑ (logn)n

en (log 2) (log 3) · · · (log n) .

5.
∑(

α (α− 1) (α− 2) · · · (α− n+ 1)

n!

)2

, whereα is a given number

6.
∑∣∣∣∣α (α− 1) (α− 2) · · · (α− n+ 1)

n!

∣∣∣∣
p

, whereα andp are given

numbers andp (α+ 1) 	= 1.

7. (a)
∑ nα

n!
, whereα is a given number.

(b)
∑ nαn

n!
, whereα is a given number.

(c)
∑ nn−logn

n!
.

8.
∑ (2n)!

4n (n!)2
xn, wherex is a given positive number.

9.
∑ n!

x (x+ 1) (x+ 2) · · · (x+ n− 1)
, wherex is a given positive number.

10. (a)
∑ enn!

nn
.

(b)
∑ nn

enn!
.

11.
∑(

(2n)!

4n (n!)2

)p

, wherep is a given number.

12.
∑(

π
n
2

2n(n+1)e
n(n+3)

2 n11/12

)∏n
j=1

(2j+1)2j+
1
2

(jj)(j!)
.

13.
∑∣∣∣∣α (α+ 1) (α+ 2) · · · (α+ n− 1)

β (β + 1) (β + 2) · · · (β + n− 1)

∣∣∣∣, whereα andβ are given

numbers.
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14.
∑(

α (α+ 1) (α+ 2) · · · (α+ n− 1)

β (β + 1) (β + 2) · · · (β + n− 1)

)2

, whereα andβ are given

numbers.

15. Cauchy’s root test says that if(an) is a sequence of nonnegative numbers
and if n

√
an → α asn → ∞, then the series

∑
an converges ifα < 1 and

diverges ifα > 1.

(a) Prove Cauchy’s root test.
(b) Review Exercise 9 of Subsection 10.6.6 and then prove that if Cauchy’s

root test can be used to test a given series for convergence, then so can
d’Alembert’s ratio test.

16. Prove the following more powerful root test:
If an ≥ 0 for all n and if

n

log n

(
1− (an)

1/n
)
→ p

as n → ∞, then the series
∑

an converges if p > 1 and diverges if p < 1.
This form of the root test is one of the results that are developed in the special
document on ratio and root tests that can be reached by clicking on the icon

.

12.7 Convergence of Series Whose Terms May Change Sign

12.7.1 Introductory Remarks About General Series
In the introduction to the comparison principle that we saw in Subsection 12.4.1,
we observed that a series

∑
an is considerably easier to test for convergence if

all of the numbersan are nonnegative. As you know, ifan ≥ 0 for eachn, then
all we have to show to establish the convergence of

∑
an is that the sequence of

partial sums
n∑

j=1

aj

is bounded above. We relied heavily on this fact in our study of such series.
However, the theory of general series has an altogether differentflavor because,
in the theory of general series, the comparison principle is lost. To show that a
general series is convergent we have to do much more than just establish that the
sequence of its partial sums is bounded. We have to show why this sequence of
partial sums actually converges to some real number. In this sense, the theory of
general series is harder than the theory of nonnegative series.
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At this point, the one thing that we know about general series is that if a given
sequence(an) fails to converge to zero, then the series

∑
an must be divergent.

Thus, if we want to test a given series
∑

an, the first thing to do is to determine
whether or notan → 0 asn → ∞; if not, then

∑
an is divergent.

In the event that the sequence(an) does converge to zero, we have to work
much harder. Our initial strategy will be to ignore the given series

∑
an and

to look instead at the series
∑ |an|, which can be tested using the comparison

principle. We shall see in a moment that if the series
∑ |an| happens to con-

verge, then the given series
∑

an must also be convergent. However, if the
series

∑ |an| is divergent, then we are facing a fundamentally different kind of
problem, which we shall confront later in the section.

12.7.2 Absolute Convergence
If (an) is a given sequence of real numbers, then we say that the series

∑
an

converges absolutely if the series
∑ |an| is convergent.

12.7.3 Absolute Convergence Implies Convergence
Every absolutely convergence series is convergent.

Proof. Suppose that(an) is a given sequence of numbers and that the series∑ |an| is convergent. Since the inequality

0 ≤ an + |an| ≤ 2 |an|
holds for everyn, it follows from the comparison test (Theorem 12.4.6) that the
series

∑
(an + |an|) is convergent. Thus, since

an = (an + |an|)− |an|
for eachn, it follows from the linearity property of series (Theorem 12.2.1) that
the series

∑
an is also convergent.�

12.7.4 Conditional Convergence
Not every convergent series is absolutely convergent. In the event that a given
series is convergent but fails to be absolutely convergent, we say that the series is
conditionally convergent.

We mention, once again, that the comparison principle cannot be used to
deduce conditional convergence. Forthis purpose we use the following more
delicate theorem that is known asDirichlet’s test.

12.7.5 Dirichlet’s Test
Suppose that (an) is a decreasing sequence of positive numbers and that an →
0 as n → ∞. Suppose that (bn) is a sequence of real numbers and that the
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set of partial sums of the series
∑

bn is bounded. Then the series
∑

anbn is
convergent.

Proof. For eachn we define

Bn =
n∑

j=1

bj.

Using the fact that the sequence(Bn) is bounded, we choose a numberK such
that|Bn| ≤ K for everyn. We now observe that for eachn we have

n∑
j=1

ajbj = a1B1 + a2 (B2 −B1) + a3 (B3 −B2) + · · ·+ an (Bn −Bn−1)

= B1 (a1 − a2) +B2 (a2 − a3) + · · ·+Bn−1 (an−1 − an) + anBn.

We therefore need to show that, asn → ∞, both of the expressions

n−1∑
j=1

Bj (aj − aj+1)

andanBn approach finite limits. To establish the existence of the first of these
two limits we need to show that the series

∑
Bn (an − an+1) is convergent. As

a matter of fact, we can show that the latter series is absolutely convergent. For
this purpose we observe that for eachn we have

|Bn (an − an+1)| ≤ K |an − an+1| = K (an − an+1) ,

and so the absolute convergence of
∑

Bn (an − an−1) will follow from the com-
parison test (Theorem 12.4.6) if we can show that the series

∑
(an − an+1) is

convergent. But this is easy: For eachn,

n∑
j=1

(aj − aj+1) = a1 − an+1,

and the latter expression approachesa1 asn → ∞.

Finally, we need to see that the sequence(anBn) converges. In fact, the limit
of this sequence is zero, which we can see at once from the sandwich theorem
(Theorem 7.4.6) the inequality

|anBn| ≤ Kan,

and the fact thatan → 0 asn → ∞. �
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12.7.6 An Inequality Related to Dirichlet’s Test
The theorem we present in this subsection tells us something about the magnitude
of the sum of a series whose convergence hasbeen established by Dirichlet’s test,
and it gives us some idea of the size of the error involved if the sum is replaced
by annth partial sum.

Suppose that (an) is a decreasing sequence of positive numbers and that(bn)
is a sequence of real numbers. Suppose that K ≥ 0 and that, for some positive
integer N , we have ∣∣∣∣∣

n∑
j=N

bj

∣∣∣∣∣ ≤ K

for every integer n ≥ N . Then for all n ≥ N we have

∣∣∣∣∣
n∑

j=N

ajbj

∣∣∣∣∣ ≤ KaN ,

and, in the event that the series
∑

anbn converges we have

∣∣∣∣∣
∞∑

j=N

ajbj

∣∣∣∣∣ ≤ KaN .

Proof. For eachn ≥ N we define

Bn =
n∑

j=N

bj.

(Note that this definition ofBn is not quite the same as the one we used in the
preceding theorem.) For everyn ≥ N we have

n∑
j=N

ajbj = aNBN + aN+1 (BN+1 −BN) + · · ·+ an (Bn −Bn−1)

= BN (aN − aN+1) +BN+1 (aN+1 − aN+2) + · · ·
+Bn−1 (an−1 − an) + anBn,
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and therefore∣∣∣∣∣
n∑

j=N

ajbj

∣∣∣∣∣ ≤
n−1∑
j=N

|Bj (aj − aj+1)|+ |anBn|

≤
n−1∑
j=N

K (aj − aj+1) +Kan = KaN . �

12.7.7 Abel’s Theorem
The theorem of Abel that we present in this subsection is concerned with series
of the form ∑

anx
n.

Series of this type are known aspower series. If you look back to the beginning
of this chapter, you will see that we have already encountered several power
series.

Suppose that (an) is a sequence of real numbers and that the series
∑

an
converges. Then the following assertions are true:

1. Whenever 0 ≤ x < 1, the series
∑

anx
n converges absolutely.

2. We have

lim
x→1−

∞∑
n=1

anx
n =

∞∑
n=1

an.

Proof. From the convergence of the series
∑

an we know thatan → 0 as
n → ∞, and so the sequence(an) is bounded. Therefore, if0 ≤ x < 1, the
absolute convergence of the series

∑
anx

n follows from the comparison test.

Now, to prove part 2 of the theorem, suppose thatε > 0 and, using the fact
that
∑

an converges, choose a positive integerN such that whenevern ≥ N we
have ∣∣∣∣∣

∞∑
j=n

aj

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
j=1

aj −
n−1∑
j=1

aj

∣∣∣∣∣ < ε

6
.

Givenn ≥ N we see that∣∣∣∣∣
n∑

j=N

aj

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
j=N

aj −
∞∑

j=n+1

aj

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
j=N

aj

∣∣∣∣∣+
∣∣∣∣∣

∞∑
j=n+1

aj

∣∣∣∣∣ < ε

3
,
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and we deduce from Theorem 12.7.6 that for allx ∈ [0, 1] we have∣∣∣∣∣
∞∑

j=N

ajx
j

∣∣∣∣∣ ≤ εxN

3
≤ ε

3
.

We now use the fact that ifp is the polynomial defined by the equation

p(x) =
N−1∑
j=1

ajx
j

for all numbersx, thenp is continuous at the number1. Using this fact we choose
a numberδ > 0 such that whenever1− δ < x ≤ 1 we have∣∣∣∣∣

N−1∑
j=1

ajx
j −

N−1∑
j=1

aj

∣∣∣∣∣ < ε

3
.

Then whenever1− δ < x ≤ 1 we have∣∣∣∣∣
∞∑
j=1

ajx
j −

∞∑
j=1

aj

∣∣∣∣∣ ≤
∣∣∣∣∣
N−1∑
j=1

ajx
j −

N−1∑
j=1

aj

∣∣∣∣∣+
∣∣∣∣∣

∞∑
j=N

ajx
j

∣∣∣∣∣+
∣∣∣∣∣

∞∑
j=N

aj

∣∣∣∣∣
<

ε

3
+

ε

3
+

ε

3
= ε. �

12.7.8 Abelian and Tauberian Theorems
A discussion of this interesting topic can be reached by clicking on the icon.

12.7.9 Some Examples of Conditionally Convergent Series

1. In this example we investigate the convergence of the series

∑ (2n)!xn

(n!)2
.

Using d’Alembert’s test we can see that this series converges absolutely
when|x| < 1/4. In the event that|x| > 1/4, thenth term of the series fails
to converge to zero and so the series diverges. Whenx = 1/4 the series
diverges, as we saw in Subsection 12.6.8. The main purpose of this example
is to discuss the behavior of this series whenx = −1/4 and the series
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becomes
∑

(−1)n an, where, for eachn,

an =
(2n)!

4n (n!)2
.

By looking at the ratiosan+1/an we can see that the sequence(an) is
decreasing. Furthermore, if

bn = 1− an+1

an
=

1

2 (n+ 1)

for eachn, then, since
∑

bn is divergent, it follows from Theorem 12.6.11
thatan → 0 asn → ∞. Thus the given series is conditionally convergent
whenx = −1/4.

2. In this example we investigate the convergence of the series∑ sinnx

n
, (12.5)

wherex is any real number. We begin with the observation that if
sinx/2 = 0, thenx is an integer multiple of2π and every term of the
given series is zero. From now on we suppose thatsinx/2 	= 0. From the
trigonometric identity

cos (α− β)− cos (α+ β) = 2 sinα sinβ,

we see that ifn is any positive integer, then∣∣∣∣∣
n∑

j=1

sin jx

∣∣∣∣∣ =

∣∣∣∣∣
n∑

j=1

2 sin x
2
sin jx

2 sin x
2

∣∣∣∣∣
=

∣∣∣∣∣ 1

2 sin x
2

n∑
j=1

(
cos (2j − 1)

x

2
− cos (2j + 1)

x

2

)∣∣∣∣∣
=

∣∣∣∣cos x
2
− cos (2n+ 1) x

2

2 sin x
2

∣∣∣∣ ≤ 1∣∣sin x
2

∣∣ ,
and we can therefore deduce from Dirichlet’s test that the series (12.5)
converges for every real numberx. By a similar argument we can observe
that the series ∑ cosnx

n
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converges ifx is not an integer multiple of2π and diverges ifx is an integer
multiple of2π. We shall now show that these series converge conditionally.
Given any positive integern we see from the identity

1

n
=

cos 2nx

n
+

2 sin2 nx

n

that, unlessx is an integer multiple ofπ, the convergence of
∑

[cos 2nx] /n
and the divergence of

∑
1/n guarantee that the series

∑ sin2 nx

n

is divergent. In view of the inequality

0 ≤ sin2 nx ≤ |sinnx| ,
we can deduce from the comparison test that the series

∑ |sinnx| /n
diverges wheneverx is not an integer multiple ofπ. Therefore the series
(12.5) is conditionally convergent wheneverx is not an integer multiple ofπ.

3. Given any real numberα and a positive integern, thebinomial coefficient(
α
n

)
is defined by the equation(

α

n

)
=

α (α− 1) (α− 2) · · · (α− n+ 1)

n!
.

We also define
(
α
0

)
= 1. We saw in Subsection 12.6.8 that the series

∑(α
n

)
is

absolutely convergent wheneverα > 0 and fails to be absolutely convergent
whenα < 0. In the event thatα ≤ −1, it is easy to see that

∣∣(α
n

)∣∣ ≥ 1 for
eachn, and so in this case the series

∑(α
n

)
diverges. Suppose finally that

−1 < α < 0. For eachn we have(
α

n

)
= (−1)n

∣∣∣∣
(
α

n

)∣∣∣∣ .
Now, since ∣∣( α

n+1

)∣∣∣∣(α
n

)∣∣ =
n− α

n+ 1
< 1,

we see that the sequence of numbers
∣∣(α

n

)∣∣ is decreasing. Furthermore, if

bn = 1−
∣∣( α

n+1

)∣∣∣∣(α
n

)∣∣ =
α+ 1

n+ 1



12.7 Convergence of Series Whose Terms May Change Sign 373

for eachn, then since
∑

bn is divergent, it follows from Theorem 12.6.11
that
∣∣(α

n

)∣∣ → 0 asn → ∞. We deduce from Dirichlet’s test that the series∑(α
n

)
is conditionally convergent when−1 < α < 0.

12.7.10 Exercises on Conditionally Convergent Series

1. A common test for convergence that one encounters in an elementary
calculus course is thealternating series test, sometimes known as the
Leibniz test, which says that if(an) is a decreasing sequence of positive
numbers and ifan → 0 asn → ∞, then the series

∑
(−1)n an is

convergent. Prove that the alternating series test follows at once from
Dirichlet’s test.

2. Given that(an) is a decreasing sequence of positive numbers and that for
eachn we have

bn = 1− an+1

an
,

prove that the series
∑

(−1)n an is convergent if and only if the series
∑

bn
is divergent.

3. Test the following series for convergence and for absolute convergence:

(a)
∑ (−1)n logn

n
.

(b)
∑ sin (nπ/4)

n
.

(c)
∑(

1

2
− 1

)(
1

3
− 1

)
· · ·
(
1

n
− 1

)
.

(d)
∑(

1

2δ
− 1

)(
1

3δ
− 1

)
· · ·
(

1

nδ
− 1

)
, whereδ > 0.

(e)
∑ (2 log 2− 1) (3 log 3− 1) · · · (n logn− 1)

(n!) (log 2) (log 3) · · · (log n) .

4. Determine for what values ofx the following series converge and for what
values ofx the series converge absolutely.

(a)
∑ (3x− 2)n

n
.

(b)
∑ (log x)n

n
.

(c)
∑ (−1)n xn

(logn)x
.
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(d)
∑ ((3n)!)xn

((2n)!) (n!)
.

(e)
∑ nnxn

n!
.

5. Find the values ofx for which the following series converge and when they
converge absolutely:

(a)
∑ sinnx cosnx

n
.

(b)
∑ (−1)n cosnx

n
.

(c)
∑ cos2 nx

n
.

(d)
∑ |cosnx|

n
.

(e)
∑ cos3 nx

n
.

(f)
∑ cos4 nx

n
.

6. With an eye on Exercise 5, give an example of a convergent series
∑

an
such that the series

∑
a3n is divergent.

7. Find the values ofx andα for which thebinomial series∑(
α

n

)
xn

is convergent.
8. Prove that ifx is not an integer multiple of2π, then∣∣∣∣∣

∞∑
j=1

sin jx

j

∣∣∣∣∣ ≤ 1∣∣sin x
2

∣∣ .
9. ProveAbel’s test for convergence of a series which states that if(an) is a

decreasing sequence of positive numbers and if
∑

bn is a convergent series,
then the series

∑
anbn is convergent. This theorem may be proved by the

method of proof of Dirichlet’s test, but it also follows very simply from the
statement of Dirichlet’s test. Which proof do you prefer?

10. Give an example of a sequence(an) of positive numbers and a sequence
(bn) of real numbers such that each of the following conditions holds:
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(a) We havean → 0 asn → ∞.
(b) The sequence of number

∑n
j=1 bj is bounded.

(c) The series
∑

anbn is divergent.
11. Give an example of sequences(an) and(bn) such that the following

conditions hold:

(a) The sequence(an) is a decreasing sequence of positive numbers.
(b) The sequence of number

∑n
j=1 bj is bounded.

(c) The series
∑

anbn is divergent.

12.8 Rearrangements of Series

The material of this section is optional and can be reached in the on-screen ver-
sion of the text by clicking on the icon .

12.9 Iterated Series

12.9.1 Introduction and Definition of Iterated Series
Suppose thatf is a function fromZ+ × Z

+ into R. If, for each positive integer
n, the series ∑

m

f (m,n)

converges, and if we define

φ (n) =
∞∑

m=1

f (m,n)

for eachn, then theiterated series∑
n

∑
m

f (m,n)

is defined to be the series
∑

φ (n). In the event that this iterated series converges,
its sum, which we write as

∞∑
n=1

∞∑
m=1

f (m,n) ,
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is defined by the equation

∞∑
n=1

∞∑
m=1

f (m,n) =
∞∑
n=1

φ (n) =
∞∑
n=1

( ∞∑
m=1

f (m,n)

)
.

A natural question to ask about iterated series is whether the convergence of one
of the iterated series

∑
n

∑
m f (m,n) and

∑
m

∑
n f (m,n) implies that the

other is also convergent. In the event that these two series are convergent, a
natural question to ask is whether

∞∑
n=1

∞∑
m=1

f (m,n) =
∞∑

m=1

∞∑
n=1

f (m,n) .

The answer to both of these questions isno, as we saw in Examples 4 and 5 of
Subsection 12.1.1.

12.9.2 Iterated Series with Nonnegative Terms
In this subsection we shall observe that iff (m,n) ≥ 0 for all m andn, then the
order of summation can be interchanged.

Suppose that f is a nonnegative function defined on the set Z+ × Z+. Then

∞∑
n=1

∞∑
m=1

f (m,n) =
∞∑

m=1

∞∑
n=1

f (m,n) .

Proof. We begin with the observation that ifM is any positive integer, then, by
the algebraic rules for limits we saw in Section 7.5, we have

∞∑
n=1

M∑
m=1

f (m,n) = lim
N→∞

N∑
n=1

M∑
m=1

f (m,n)

= lim
N→∞

M∑
m=1

N∑
n=1

f (m,n) =
M∑

m=1

∞∑
n=1

f (m,n) .

Now, given any positive integerM , since the inequality

M∑
m=1

f (m,n) ≤
∞∑

m=1

f (m,n)
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holds for everyn, we have

M∑
m=1

∞∑
n=1

f (m,n) =
∞∑
n=1

M∑
m=1

f (m,n) ≤
∞∑
n=1

∞∑
m=1

f (m,n) .

Thus
∞∑

m=1

∞∑
n=1

f (m,n) = lim
M→∞

M∑
m=1

∞∑
n=1

f (m,n) ≤
∞∑
n=1

∞∑
m=1

f (m,n) .

Thus the left side of the desired equation cannot exceed the right side, and, in the
same way, one may show that the right side cannot exceed the left side.�

12.9.3 Absolutely Convergent Iterated Series
Suppose thatf is a function defined on the setZ+ × Z

+ and that the iter-
ated series

∑
m

∑
n f (m,n) is absolutely convergent. Then so is the series∑

n

∑
m f (m,n) and we have

∞∑
n=1

∞∑
m=1

f (m,n) =
∞∑

m=1

∞∑
n=1

f (m,n) .

Proof. We can prove this theorem very easily by applying the nonnegative case
to each of the functions|f |+f and|f | and then subtracting. We leave the details

as an exercise.�

12.10 Multiplication of Series

12.10.1 Introduction to the Idea of a Cauchy Product
For convenience we shall start our series atn = 0 in this section. The question
we have to consider is how a product( ∞∑

n=0

an

)( ∞∑
n=0

bn

)

can be expanded if
∑

an and
∑

bn are two given convergent series. There are
a number of different approaches to this problem, leading to concepts known as
theCauchy product, theLaurent product, theFourier product, and theDirichlet
product; and, if you wish, you can read about these approaches in Hardy [12].36

36 Hardy’s book contains difficult and advanced material, but you may enjoy skimming through
it.
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We shall be concerned only with the first of these approaches, the Cauchy prod-
uct, which we shall motivate by considering two series of the form

∑
anx

n and∑
bnx

n. Such series are known as power series and will be studied in Chapter
14. Under reasonable circumstances, we might expect the expansion of(

a0 + a1x+ a2x
2 + a3x

3 + · · · ) (b0 + b1x+ b2x
2 + b3x

3 + · · · )
to be

a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x
2

+(a3b0 + a2b1 + a1b2 + a0b3) x
3 + · · ·

+(anb0 + an−1b1 + · · ·+ a1bn−1 + a0bn)x
n + · · · .

Puttingx = 1 in this identity, we arrive at the idea of a Cauchy product:

We define theCauchy product of two given series
∑

an and
∑

bn to be the
series

∑
cn where, for eachn, we have defined

cn = anb0 + an−1b1 + · · ·+ a1bn−1 + a0bn =
n∑

j=0

an−jbj.

Ideally we would like to be able to say that if
∑

cn is the Cauchy product of two
given convergent series

∑
an and

∑
bn, then

∑
cn is also convergent and

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

However, the series
∑

cn can diverge, as we see in the following two examples:

12.10.2 Some Examples of Divergent Cauchy Products

1. For each integern ≥ 0 we define

an = bn =
(−1)n

log (n+ 2)
.

The convergence of each of the series
∑

an and
∑

bn follows from
Dirichlet’s test. We now define

∑
cn to be the Cauchy product of

∑
an and
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∑
bn, and we observe that

|cn| =

∣∣∣∣ (−1)n

log (n+ 2) log 2
+

(−1)n

log (n+ 1) log 3
+ · · ·+ (−1)n

log 2 log (n+ 2)

∣∣∣∣
≥ n

(log (n+ 2))2
.

Since|cn| → ∞ asn → ∞, we conclude that the series
∑

cn is (very)
divergent.

2. For each integern ≥ 0 we define

an = bn =
(−1)n√
n+ 1

.

Once again, each of the series
∑

an and
∑

bn converges, but, if
∑

cn is
the Cauchy product of

∑
an and

∑
bn, then it is not hard to show that

|cn| ≥ 1 for eachn. So, once again,
∑

cn diverges. We leave the details as

an exercise.

12.10.3 The Theorems on Cauchy Products
Although the Cauchy product of two convergent series can be divergent, this is
the only pathology that can occur. We shall see soon in the theorem of Abel that
if
∑

cn is the Cauchy product of two convergent series
∑

an and
∑

bn, and if∑
cn happens to converge, then the identity

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)

is assured. We shall also prove Cauchy’s theorem that says that if the two series∑
an and

∑
bn happen to be absolutely convergent, then so is their Cauchy

product.

In the on-screen version of this text you can find some further interesting
theorems about Cauchy products.

12.10.4 Cauchy’s Theorem for Products of Series
Suppose that

∑
an and

∑
bn are absolutely convergent series and that

∑
cn

is their Cauchy product. Then the series
∑

cn is absolutely convergent and we



380 Chapter 12 Infinite Series

have
∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Proof. Given nonnegative integersj andn, we define

f (n, j) =

{
an−jbj if j ≤ n

0 if j > n.

Since
∞∑
j=0

∞∑
n=0

|f (n, j)| =
∞∑
j=0

∞∑
n=j

|an−jbj| =
∞∑
j=0

|bj|
( ∞∑

n=j

|an−j|
)

=

( ∞∑
j=0

|bj|
)( ∞∑

n=0

|an|
)

< ∞,

and, similarly,

∞∑
j=0

∞∑
n=0

f (n, j) =
∞∑
j=0

∞∑
n=j

an−jbj

=
∞∑
j=0

bj

( ∞∑
n=j

an−j

)
=

( ∞∑
j=0

bj

)( ∞∑
n=0

an

)
,

we deduce from Theorem 12.9.3 that( ∞∑
n=0

bn

)( ∞∑
n=0

an

)
=

∞∑
j=0

∞∑
n=0

f (n, j)

=
∞∑
n=0

∞∑
j=0

f (n, j) =
∞∑
n=0

n∑
j=0

an−jbj. �

12.10.5 Abel’s Theorem on Products of Series
If
∑

cn is the Cauchy product of two convergent series
∑

an and
∑

bn, and if
the series

∑
cn happens to converge, then

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.
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Proof. Whenever0 ≤ x < 1, it follows from Abel’s theorem (Theorem 12.7.7)
that the series

∑
anx

n and
∑

bnx
n are absolutely convergent. Furthermore, it is

easy to see that
∑

cnx
n is the Cauchy product of

∑
anx

n and
∑

bnx
n, and so

we can deduce from Cauchy’s theorem that whenever0 ≤ x < 1 we have

∞∑
n=0

cnx
n =

( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
.

We now obtain the desired result by lettingx → 1 from the left and using Abel’s
theorem again.�

12.10.6 Some Exercises on Products of Series

1. Calculate the Cauchy product of the series
∑

(−1)n xn and
∑

xn. By
looking at the sums of these three series, verify that Cauchy’s theorem
(Theorem 12.10.4) is true for these series when|x| < 1.

2. This exercises requires a knowledge of the binomial theorem (see Exercise
4 of Subsection 9.5.4). Show that the Cauchy product of the two series∑

xn/n! and
∑

yn/n! is
∑

(x+ y)n /n!. As you may know, the sums of
these series areex andey andex+y, respectively, and you will see this fact
officially in Subsection 14.5.2. What does Cauchy’s theorem say for these
three series?

12.10.7 The More Powerful Theorems on Cauchy Products
As we promised in Subsection 12.10.3, the on-screen version of this text contains
some more powerful theorems on Cauchy products than we have seen here. It
contains the theorem of Franz Mertens, which says that if at least one of two
convergent series

∑
an and

∑
bn happens to be absolutely convergent, then their

Cauchy product converges. You will also find an interesting theorem of Sheila
Edmonds, which says that if

∑
an and

∑
bn are given convergent series, and

if the terms of these series are small enough to make the sequences(nan) and
(nbn) bounded, then the Cauchy product of the two series will converge. The
latter theorem is deduced with the help of an interesting theorem about Cauchy
products that was discovered by Ludwig Neder. To reach these more powerful
theorems, click on the icon .
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12.11 The Cantor Set

The Cantor set is defined to be the set of all those real numbers that can be
expressed in the form

∞∑
n=1

an
3n

,

where each of the numbersan is either0 or 2. You can find a discussion of the
Cantor set and an associated function called theCantor function by clicking on
the icon .



Chapter 13
Improper Integrals

13.1 Introduction to Improper Integrals

Some of the integrals that play a major role in elementary calculus do not fit into
Chapter 11 because they run into difficulty at one or the other of the two endpoints
of the interval of integration. To remind ourselves how this can happen, we shall
look at some examples.

13.1.1 Some Examples to Motivate Improper Integrals

1. We would naturally expect that∫ 1

0

1√
x
dx = 2

√
x
∣∣1
0
= 2,

but the trouble with this integral is that the integrand (the function that we
are integrating) is not defined at0, and, even worse, this integrand is not
bounded. Since the theory of Riemann integration as presented in Chapter 11
was confined to bounded functions, we have to ask what the latter integral
really means.

In elementary calculus this question is answered with the observation that
whenever0 < w ≤ 1 we have∫ 1

w

1√
x
dx = 2− 2

√
w,

and consequently that

lim
w→0+

∫ 1

w

1√
x
dx = lim

w→0+

(
2− 2

√
w
)
= 2.

This is the sense in which we could say that∫ 1

0

1√
x
dx = 2.

2. The integral ∫ 1

0

1√
1− x2

dx

383
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fails to exist in the sense of Chapter 11 because its integrand is unbounded,
but the fact that

lim
w→1−

∫ w

0

1√
1− x2

dx = lim
w→1−

(arcsinw − arcsin 0) =
π

2

provides us with a way of saying that∫ 1

0

1√
1− x2

dx =
π

2
.

3. The integral ∫ ∞

1

1

x2
dx

fails to exist in the sense of Chapter 11 because the interval of integration is
unbounded, but the fact that

lim
w→∞

∫ w

1

1

x2
dx = lim

w→∞

(
1− 1

w

)
= 1

provides us with a way of saying that∫ ∞

1

1

x2
dx = 1.

These examples suggest the definitionof an improper integral that follows:

13.1.2 Definition of an Improper Integral
We define animproper integral of the type∫ →b

a

f(x)dx

as follows: Suppose that−∞ < a < b ≤ ∞. Suppose thatf is a function
defined on the interval[a, b) and that, whenevera < w < b, the functionf is
Riemann integrable on the interval[a,w]. If the limit

lim
w→b−

∫ w

a

f(x)dx

exists, then we define∫ →b

a

f(x)dx = lim
w→b−

∫ w

a

f(x)dx.
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In the event that the improper integral
∫→b

a
f(x)dx exists and is finite, we say

that f is improper Riemann integrable on the interval[a, b). Somewhat less
precisely, we also say that the integral

∫→b

a
f(x)dx is convergent.

An improper integral of the type

∫ b

a←
f(x)dx

is defined similarly: Suppose that−∞ ≤ a < b < ∞, that f is a function
defined on the interval(a, b], and thatf is Riemann integrable on the interval
[w, b] whenevera < w < b. If the limit

lim
w→a+

∫ b

w

f(x)dx

exists, then we define∫ b

a←
f(x)dx = lim

w→a+

∫ b

w

f(x)dx.

An improper integral that fails to converge is said todiverge. This means that
there are two ways in which a given improper integral

∫ b

a← f(x)dx or
∫→b

a
f(x)dx

may diverge. Either the appropriate limit

lim
w→a+

∫ b

w

f(x)dx or lim
w→b−

∫ w

a

f(x)dx

is infinite or the limit does not exist at all. Our use of the wordsconvergent and
divergent here is therefore analogous to the way in which we used these words
for infinite series in Chapter 12.

13.1.3 Some Examples of Improper Integrals

1. In our first example we observe that if an integral
∫ b

a
f exists in the ordinary

Riemann sense, then each of the improper integrals
∫→b

a
f and

∫ b

a← f exists
and ∫ →b

a

f =

∫ b

a←
f =

∫ b

a

f .

This assertion follows at once from Theorem 11.12.1.
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2. Returning to the examples that appear in Subsection 13.1, we see that∫ 1

0←

1√
x
dx = 2 and

∫ →1

0

1√
1− x2

dx =
π

2
and

∫ →∞

1

1

x2
dx = 1.

3. Since

lim
w→∞

∫ w

1

1√
x
dx = lim

w→∞
(
2
√
w − 2

)
= ∞,

we have ∫ ∞

1

1√
x
dx = ∞,

and so this integral is divergent.
4. Wheneverw ≥ 0 we have∫ w

0

cosxdx = sinw,

and sincesinw does not approach a limit asw → ∞, we see that the integral∫→∞
0

cosxdx diverges.

13.1.4 An Extension of our Notation
We shall often write improper integrals of the form

∫→b

a
f or

∫ b

a← f more simply

as
∫ b

a
f and an improper integral of the form

∫→∞
a

f will be written more simply
as
∫∞
a

f . In adopting this convention, however, we need to bear in mind that it is
not really precise because it leaves us with the task of determining that an ordi-
nary looking Riemann integral is actually improper. If there are several numbers
in an interval[a, b] near which a given functionf is unbounded, we interpret the
improper integral

∫ b

a
f to mean the sum of several improper integrals of the type

discussed above. Thus, for example, the integral∫ ∞

0

1
3
√
x (x− 5)

dx

means the sum ∫ 1

0←

1
3
√
x (x− 5)

dx+

∫ →5

1

1
3
√
x (x− 5)

dx

+

∫ 6

5←

1
3
√
x (x− 5)

dx+

∫ →∞

6

1
3
√
x (x− 5)

dx.
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The choice of the intermediate numbers1 and 6 in this interpretation of the
integral is unimportant.

13.2 Elementary Properties of Improper Integrals

13.2.1 Linearity of Improper Integrals
Suppose that f and g are improper Riemann integrable functions on an interval
[a, b) and that α is a given real number.

1. The function f + g is improper Riemann integrable on [a, b) and we have∫ →b

a

(f + g) =

∫ →b

a

f +

∫ →b

a

g.

2. The function αf is improper Riemann integrable on [a, b) and we have∫ →b

a

αf = α

∫ →b

a

f .

Proof. To prove the first part we observe that

lim
w→b−

∫ w

a

(f + g) = lim
w→b−

(∫ w

a

f +

∫ w

a

g

)
=

∫ →b

a

f +

∫ →b

a

g,

and the proof of the second part is similar.�

13.2.2 Additivity of Improper Riemann Integrals
Suppose that f is an improper Riemann integrable function on an interval [a, b)
and that a ≤ c < b. Then we have∫ →b

a

f =

∫ c

a

f +

∫ →b

c

f .

We leave the proof of this assertion as an exercise.

13.2.3 Some Exercises on Improper Integrals

1. Evaluate each of the following improper integrals, when possible, and
specify those that diverge. If you can’t see how to evaluate the integral
exactly yourself, askScientific Notebook to evaluate it for you. (Before
askingScientific Notebook to evaluate one of these integrals, remove the
arrow sign from the limits of integration.)

(a)
∫→∞
0

1

(1+x2)3/2
dx.
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(b)
∫→∞
2

1
x
√
x2−1

dx.

(c)
∫ 2

1←
1

x
√
x2−1

dx.

(d)
∫→∞
1←

1
x
√
x2−1

dx.

(e)
∫→π/2

0
tanxdx.

(f)
∫→π/2

0

√
tanx sinxdx.

(g)
∫ π/2

0←
x cosx−sinx

x2 dx.

(h)
∫→∞
1

e−x sinxdx.

2. (a) Prove that the integral ∫ 1

0←

1

xp
dx

converges whenp < 1 and diverges whenp ≥ 1.
(b) Prove that the integral ∫ →∞

1

1

xp
dx

converges whenp > 1 and diverges whenp ≤ 1.
3. Prove that the integral ∫ →∞

2

1

x (log x)p
dx

is convergent whenp > 1 and divergent whenp ≤ 1.
4. Interpret the integral ∫ 2

0

1

(x− 1)1/3
dx

as the sum of two improper integrals and evaluate it.
5. Prove that iff is bounded on an interval[a, b] and is improper Riemann

integrable on[a, b), thenf is Riemann integrable on[a, b] and∫ →b

a

f =

∫ b

a

f .

6. In the discussion of improper integrals that appears in Subsection 13.1.2 we
used the words:
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... Somewhat less precisely, we also say that the integral
∫→b

a
f(x)dx is

convergent. ...
Why is the statement that the integral

∫→b

a
f(x)dx is convergent less precise

than the statement thatf is improper Riemann integrable on[a, b)? Hint:
In our study of infinite series we made a careful distinction between the
symbols

∑
an and

∑∞
n=1 an.

13.3 Convergence of Integrals of Nonnegative Functions

This section contains the analog for integrals of the theory of convergence of
series with nonnegative terms that we presented In Section 12.4. We shall present
the main theorems for integrals of the type

∫→b

a
. The analogous results for other

kinds of improper integral can be obtained in the same way.

13.3.1 The Comparison Principle for Integrals
Suppose that−∞ < a < b ≤ ∞, suppose thatf is a nonnegative function
defined on the interval[a, b), and suppose that whenevera < w < b, the function
f is Riemann integrable on the interval[a, w]. For each numberw in the interval
[a, b) suppose that

F (w) =

∫ w

a

f(x)dx.

The functionF is increasing because ifw1 andw2 belong to the interval[a, b)
andw1 ≤ w2, then we have

F (w2)− F (w1) =

∫ w2

w1

f(x)dx ≥ 0.

Therefore, eitherF (w) → ∞ asw → b− or F (w) approaches a finite limit as
w → b−.

13.3.2 The Comparison Test for Integrals
By analogy with the comparison test for series that we saw in Subsection 12.4.6,
we have a comparison test for improper integrals that tells us that iff andg are
nonnegative functions defined on an interval[a, b), and if the integrals

∫ w

a
f and∫ w

a
g exist whenevera ≤ w < b, then, under certain conditions, if one of the

integrals
∫→b

a
f and

∫→b

a
g converges, then so does the other. The value of this

sort of theorem is that it allows us to test a given integral by comparing it with
another whose behavior is already known to us.
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Statement of the Comparison Test
Suppose that f and g are nonnegative functions defined on an interval [a, b)

and that the integrals
∫ w

a
f and

∫ w

a
g exist whenever a ≤ w < b.

1. If it is possible to find a positive number k such that f(x) ≤ kg(x) for all

x ∈ [a, b), and if
∫→b

a
g converges, then

∫→b

a
f must converge.

2. If the function f/g is bounded and if
∫→b

a
g converges, then

∫→b

a
f must

converge.

3. If f(x)/g(x) approaches a finite limit as x → b (from the left), and if
∫→b

a
g

converges, then
∫→b

a
f must converge.

4. If it is possible to find a positive number δ such that f(x)/g(x) ≥ δ for all

x ∈ [a, b), and if
∫→b

a
f converges, then

∫→b

a
g must converge.

5. If f(x)/g(x) approaches a positive limit (possibly ∞) as x → b, and if∫→b

a
f converges, then

∫→b

a
g must converge.

Proof. Assertion 1 follows at once from the comparison principle discussed in
Subsection 13.3.1 and the inequality∫ w

a

f ≤ k

∫ w

a

g

that holds for eachn.

Assertion 2 follows at once from assertion 1.

To prove assertion 3, suppose thatf(x)/g(x) approaches a finite limitq as
x → b− and choose a numberc in the interval(a, b) such thatf(x)/g(x) < q+1
wheneverc < x < b. Wheneverc < w < b we have∫ w

a

f(x)dx =

∫ c

a

f(x)dx+

∫ w

c

f(x)dx ≤
∫ c

a

f(x)dx+(q + 1)

∫ w

c

g(x)dx,

and therefore
∫ w

a
f(x)dx cannot approach∞ asw → b−.

Assertion 4 follows at once from assertion 2 and the fact that ifδ > 0 and
if f(x)/g(x) ≥ δ for everyx ∈ [a, b), then the functiong/f is bounded and
assertion 5 follows at once from assertion 3.�

13.3.3 Some Exercises on the Comparison Test for Integrals

1. Determine the convergence or divergence of the following integrals:

(a)

∫ →∞

1

√
x

x2 − x+ 1
dx.
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(b)

∫ 1

0←

1

x+ x2
dx.

(c)

∫ →∞

1

sin2 x

x2
dx.

(d)

∫ →∞

0←

sin2 x

x2
√
x
dx.

(e)

∫ →π/2

0

√
tanxdx.

(f)

∫ 2

1←

1

log x
dx.

(g)

∫ π/2

0←
log (sinx) dx.

(h)

∫ →∞

2

1

(log x)log x
dx.

(i)

∫ →∞

3

1

(log log x)log x
dx.

(j)

∫ →∞

30

1

(log log log x)log x
dx.

(k)

∫ →∞

3

1

(log x)log log x
dx.

(l)

∫ →∞

1

1

exp
(√

log x
)dx.

2. (a) Prove that the integral∫ →∞

1

xα−1e−xdx

converges for every numberα.
(b) Prove that the integral ∫ 1

0←
xα−1e−xdx
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converges if and only ifα > 0 and deduce that the integral∫ →∞

0←
xα−1e−xdx

converges if and only ifα > 0. The latter integral defines the value at
α of thegamma function and is denoted asΓ (α). You will see more
about this important function in Subsection 16.6.7.

3. Prove that the integral∫ →1

0←
(1− t)α−1 tβ−1dt

converges if and only if bothα andβ are positive. This integral defines the
value at the point(α, β) of thebeta function and is denoted asB (α, β).

13.4 Absolute and Conditional Convergence

In this section we make a more careful study of the convergence of improper
integrals of a functionf that is no longer required to be nonnegative. Without the
assumption thatf is nonnegative, we have no analog of the comparison tests that
we studied in the preceding section. Just as we did for series in Section 12.7, we
shall discuss the notions of absolute and conditional convergence of an improper
integral, and we shall show that every absolutely convergent improper integral
is convergent. Then we shall focus our attention on conditionally convergent
integrals, and we shall obtain an integral analog of Dirichlet’s test, Theorem
12.7.5.

13.4.1 Definition of Absolute Convergence
Suppose that−∞ < a < b ≤ ∞ and thatf is a function defined on the interval
[a, b). Suppose thatf is Riemann integrable on the interval[a,w] whenever
a < w < b. Note that for each suchw the function|f | must also be Riemann
integrable on[a,w]. If the improper integral

∫→b

a
|f | converges, then we say that

the integral
∫→b

a
f converges absolutely.

13.4.2 Convergence of Absolutely Convergent Integrals
Every absolutely convergent improper integral is convergent. Furthermore, if∫→b

a
f is absolutely convergent, then∣∣∣∣

∫ →b

a

f

∣∣∣∣ ≤
∫ →b

a

|f | .
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Proof. Suppose that
∫→b

a
f is absolutely convergent. From the inequality

0 ≤ (f + |f |) ≤ 2 |f |
and the comparison test (Theorem 13.3.2) it follows that the integral∫ →b

a

(f + |f |)

is convergent. The convergence of the integral
∫→b

a
f therefore follows from the

linearity property (Theorem 13.2.1) and the identity

f = (f + |f |)− |f | .
The final assertion of the theorem now follows from the fact that whenevera <
w < b we have ∣∣∣∣

∫ w

a

f

∣∣∣∣ ≤
∫ w

a

|f | . �

13.4.3 Definition of Conditional Convergence

If an improper integral
∫→b

a
f is convergent but is not absolutely convergent, then

we say that the integral isconditionally convergent.

13.4.4 Example of a Conditionally Convergent Integral
We define a functionf on the interval[1,∞) by defining

f(x) =
(−1)n−1

n

whenevern is a positive integer andn ≤ x < n+ 1. The graph of this function
is illustrated in Figure 13.1.

Since

lim
w→∞

∫ w

1

f = lim
n→∞

n∑
j=1

(−1)j−1

j
=

∞∑
j=1

(−1)j−1

j
,

which converges by Dirichlet’s test for series (Theorem 12.7.5), and since

lim
w→∞

∫ w

1

|f | = lim
n→∞

n∑
j=1

1

j
= ∞,

the integral
∫→∞
1

f is conditionally convergent.
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1 2 3 4 5 6 7

Figure 13.1

13.4.5 Dirichlet’s Test for Improper Integrals
Suppose that−∞ < a < b ≤ ∞ and thatf is a positive decreasing differen-
tiable function defined on the interval[a, b). Suppose that the derivative off is
continuous and thatf(x) → 0 asx → b (from the left).

Suppose thatg is a continuous function on the interval[a, b), thatK ≥ 0,
and that the inequality ∣∣∣∣

∫ x

a

g

∣∣∣∣ ≤ K

holds whenevera < x < b. Then the integral
∫→b

a
fg converges and∣∣∣∣

∫ →b

a

fg

∣∣∣∣ ≤ Kf(a).

Proof. For each numberx in the interval[a, b) we define

G(x) =

∫ x

a

g(t)dt.

We observe thatG(a) = 0 and that for everyx ∈ [a, b) we haveG′(x) = g(x).
Integrating by parts, we obtain∫ x

a

fg =

∫ x

a

fG′ = f(x)G(x)−f(a)G(a)−
∫ x

a

f ′G = f(x)G(x)−
∫ x

a

f ′G.

Since|f(x)G(x)| ≤ Kf(x) for eachx and sincef(x) → 0 asx → b, we have

lim
x→b−

f(x)G(x) = 0.
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Therefore, to prove that the integral
∫→b

a
fg is convergent we need only show that

the integral
∫→b

a
f ′G is convergent. For this purpose we observe that whenever

a ≤ x < b we have

0 ≤ |f ′(x)G(x)| ≤ K (−f ′(x)) .

Now, since

lim
x→b−

∫ x

a

K (−f ′(t)) dt = lim
x→b

(Kf(a)−Kf(x)) = Kf(a)

we know that the integral
∫→b

a
K (−f ′) is convergent, and so it follows from the

comparison test that the integral
∫→b

a
f ′G converges absolutely.

Finally, since ∫ x

a

fg = f(x)G(x) +

∫ x

a

(−f ′)G

for eachx ∈ [a, b), we see that for each suchx∣∣∣∣
∫ x

a

fg

∣∣∣∣ ≤ |f(x)G(x)|+
∫ x

a

(−f ′)G ≤ Kf(x) +K

∫ x

a

(−f ′)

≤ Kf(x)−Kf(x) +Kf(a) = Kf(a)

and therefore ∣∣∣∣
∫ →b

a

fg

∣∣∣∣ ≤ Kf(a). �

13.4.6 Abel’s Theorem for Integrals
Abel’s theorem for integrals is an analog of Abel’s theorem for series seen in
Theorem 12.7.7.

Suppose thatg is continuous and improper Riemann integrable on an interval
[a,∞). Then we have

lim
p→0+

∫ →∞

a

e−pxg(x)dx =

∫ →∞

a

g(x)dx.

Proof. We begin with the observation that the integral∫ →∞

a

e−pxg(x)dx



396 Chapter 13 Improper Integrals

converges by Dirichlet’s test wheneverp > 0. Suppose thatε > 0 and choose a
numberw such that wheneverx ≥ w we have∣∣∣∣

∫ →∞

x

g

∣∣∣∣ =
∣∣∣∣
∫ →∞

a

g −
∫ x

a

g

∣∣∣∣ < ε

8
.

Thus wheneverx ≥ w we have∣∣∣∣
∫ x

w

g

∣∣∣∣ =
∣∣∣∣
∫ →∞

w

g −
∫ →∞

x

g

∣∣∣∣ ≤
∣∣∣∣
∫ →∞

w

g

∣∣∣∣+
∣∣∣∣
∫ →∞

x

g

∣∣∣∣ < ε

4
.

Therefore wheneverp > 0 we can apply Theorem 13.4.5 on the interval[w,∞)
to obtain ∣∣∣∣

∫ →∞

w

e−pxg(x)dx

∣∣∣∣ ≤ e−pw ε

4
<

ε

4
.

Therefore wheneverp > 0 we have∣∣∣∣
∫ →∞

a

e−pxg(x)dx−
∫ →∞

a

g(x)dx

∣∣∣∣
≤
∣∣∣∣
∫ w

a

e−pxg(x)dx−
∫ w

a

g(x)dx

∣∣∣∣+
∣∣∣∣
∫ →∞

w

e−pxg(x)dx

∣∣∣∣
+

∣∣∣∣
∫ →∞

w

g(x)dx

∣∣∣∣
<
∣∣e−pa − 1

∣∣ ∫ w

a

|g|+ ε

4
+

ε

4
,

and we can make the latter expression less thanε by makingp small enough.�

13.4.7 Another Conditionally Convergent Integral
Suppose thatw is any positive number. Using the inequality∣∣∣∣

∫ x

w

sin tdt

∣∣∣∣ = |cosw − cosx| ≤ 2

that holds wheneverx ≥ w and Dirichlet’s test, we deduce that the integral∫ →∞

w

sinx

x
dx
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is convergent and that ∣∣∣∣
∫ →∞

w

sinx

x
dx

∣∣∣∣ ≤ 2

w
,

and we see similarly that ifc is any nonzero number, then the integral∫ →∞

w

cos cx

x
dx

converges. It therefore follows from the identity

sin2 x

x
=

1

2x
− cos 2x

2x

that the integral ∫ →∞

w

sin2 x

x
dx

diverges. Since

0 ≤ sin2 x

x
≤
∣∣∣∣sinxx

∣∣∣∣
for everyx ≥ w, we deduce from the comparison test that the integral∫ →∞

w

∣∣∣∣sinxx
∣∣∣∣ dx

diverges and so the integral ∫ →∞

w

sinx

x
dx

is conditionally convergent. We mention finally that, since

lim
x→0

sinx

x
= 1

the integral ∫ 1

0

sinx

x
dx

is not improper and so the integral∫ →∞

0

sinx

x
dx
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is convergent. We shall show in Section 16.5 that the value of the latter integral
is π/2.

13.4.8 Some Further Exercises on Improper Integrals

1. Determine the convergence or divergence of the following integrals:

(a)

∫ →∞

0

sinx√
x
dx.

(b)

∫ →∞

2

sin3 x

x
dx.

(c)

∫ →∞

1

ex sin (ex)

x
dx.

2. Integrate by parts to obtain the identity∫ w

0

sin2 x

x2
dx = −sin2w

w
+

∫ w

0

2 sinx cosx

x
dx

and deduce that each of the following four improper integrals equals

→∞∫
0

sinx

x
dx:

(a)

∫ →∞

0

2 sinx cosx

x
dx.

(b)

∫ →∞

0

sin2 x

x2
dx.

(c)

∫ →∞

0

2 sin2 x cos2 x

x2
dx.

(d)

∫ →∞

0

2 sin4 x

x2
dx.



Chapter 14
Sequences and Series of Functions

In addition to the theory of limits of numerical sequences that we studied in
Chapter 7, there is also a very important theory of limits of sequences of the form
(fn) where, for eachn, the symbolfn stands for a function. In this chapter, we
shall introduce three important ways in which the convergence of such sequences
can be described. These types of convergence of a sequence of functions are
known aspointwise convergence, bounded convergence, anduniform conver-
gence, and, for each of these three types, we shall ask ourselves questions like
the following:

1. If the sequence(fn) converges to a functionf and each of the functionsfn
is continuous, to what extent is it true thatf must also be continuous?

2. If the sequence(fn) converges to a functionf and each of the functionsfn
is integrable on a given interval[a, b], to what extent is it true thatf must
also be integrable on[a, b]? In the event thatf is also integrable, to what
extent is it true that

lim
n→∞

∫ b

a

fn =

∫ b

a

f?

3. If the sequence(fn) converges to a functionf and each of the functionsfn
is differentiable, to what extent is it true thatf must also be differentiable?
In the event thatf is also differentiable, to what extent is it true that the
sequence(f ′

n) must converge to the functionf ′?
4. If (fn) is a sequence of integrable functions on an interval[a, b], when do

we have ∫ b

a

∞∑
n=1

fn =
∞∑
n=1

∫ b

a

fn?

5. If (fn) is a sequence of differentiable functions, when do we have( ∞∑
n=1

fn

)′

=
∞∑
n=1

f ′
n?

The theorems that assert positive answers to questions of this type are among
some of the most useful theorems in mathematical analysis.

399
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14.1 The Three Types of Convergence

14.1.1 Pointwise Convergence
Pointwise convergence is the simplest type of convergence of a sequence of func-
tions, but, as we shall see, it is not related simply to other types of limit concepts
such as continuity, derivatives, and integrals.

Suppose that(fn) is a sequence of real valued functions defined on a setS
and thatf : S → R. We say that the sequence(fn) converges pointwise to the
functionf if we have

lim
n→∞

fn(x) = f(x)

for every numberx in the setS.

14.1.2 Bounded Convergence
A sequence(fn) of real valued functions defined on a setS is said to converge
boundedly on S to a given functionf if the following two conditions are satis-
fied:

1. The sequence(fn) converges pointwise tof on the setS.
2. There exists a numberα such thatsup |fn| ≤ α for everyn.

14.1.3 Uniform Convergence
A sequence(fn) of real valued functions defined on a setS is said to converge
uniformly on S to a given functionf if we have

lim
n→∞

sup |fn − f | = 0.

In other words, the sequence(fn) converges uniformly tof if

sup {|fn(x)− f(x)|x ∈ S} → 0

asn → ∞.

14.1.4 Some Examples of Sequences of Functions

1. We begin by defining

fn(x) = xn

for each positive integern and each numberx in the interval[0, 1]. For each
n, the functionfn is a continuous function from the interval[0, 1] onto[0, 1].
Figure 14.1 illustrates the graphs of the functionsfn for the first few values
of n. Since
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lim
n→∞

xn =

{
0 if 0 ≤ x < 1

1 if x = 1,

the sequence(fn) converges pointwise to the functionf defined by the
equation

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1.

Sincesup |fn| = 1 for eachn, we see that the sequence(fn) converges
boundedly to the functionf . However, since

sup |fn − f | = sup {xn − 0 | 0 ≤ x < 1} = 1

for eachn, the sequence(fn) does not converge uniformly to the function
f . Since the limit functionf fails to be continuous at the number1, we
conclude that a sequence of continuous functions can converge boundedly
to a function that is not continuous. To view this sequence of functions
interactively in the on-screen version of the text, click on the icon .

2. In this example we provide another sequence of continuous functions
with a discontinuous limit. We define

fn(x) =
x2n

1 + x2n

for each positive integern and each numberx in the interval[−2, 2]. Figure
14.2 illustrates the graphs of the functionsfn for the first three values ofn.
This sequence of continuous functionsconverges boundedly to the function
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f defined by the equation

f(x) =




0 if |x| < 1
1
2

if |x| = 1
1 if |x| > 1.

However, since

sup |fn − f | ≥ sup

{
x2n

1 + x2n
| −1 < x < 1

}
=

1

2

for eachn, the sequence(fn) does not converge uniformly to the functionf .
Observe thatf is discontinuous at each of the numbers−1 and1. To view
this sequence of functions interactively in the on-screen version of the text,
click on the icon .

3. In this example we define

fn(x) =
sinnx

1 + nx

for each positive integern and each numberx in the interval[0, π]. Figure
14.3 illustrates the graphs of the functionsfn for n = 1, n = 5, andn = 20.
It is easy to see that this sequence(fn) converges boundedly to the constant
function zero. Since

sup |fn| = sup {|fn(x)| | 0 ≤ x ≤ π} ≥ fn

(
1

n

)
=

sin 1

2

for eachn, the sequence(fn) does not converge uniformly to the function0.
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To view this sequence of functions interactively in the on-screen version of
the text, click on the icon .

4. In this example we exhibit a sequence(fn) of functions that are integrable
on the interval[0, 1] such that(fn) converges boundedly to a functionf that
is not integrable. We begin by defining a setEn for each positive integern.
For eachn we defineEn to be the set of all those rational numbers in the
interval [0, 1] that can be expressed as ratiosp/q of positive integersp andq
in which q ≤ n. For eachn we see at once that the setEn is finite, and so
the functionχEn

is Riemann integrable on[0, 1] and

∫ 1

0

χEn
= 0.

The sequence
(
χEn

)
converges boundedly to the functionf defined by the

equation

f(x) =

{
0 if x is irrational

1 if x is rational,

and, as we know from Example 11.6.4, this functionf is not integrable.
Sincesup |fn − f | = 1 for eachn, the sequence(fn) does not converge
uniformly tof .

5. If (fn) is a sequence of integrable functions on an interval[a, b] and
(fn) converges pointwise to an integrable functionf , then it may seem
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natural to expect that

lim
n→∞

∫ b

a

fn =

∫ b

a

f .

However, this apparently “obvious fact” is false. In this example we exhibit a
sequence(fn) of functions that are integrable on the interval[0, 1] such that
(fn) converges pointwise to the constant function zero even though

lim
n→∞

∫ 1

0

fn = 1.

For each positive integern and each numberx in the interval[0, 1] we define

fn(x) =
2n2x

(1 + n2x2)2
.

We see easily that the sequence(fn) converges pointwise to the constant
function zero and that

lim
n→∞

∫ 1

0

fn = lim
n→∞

∫ 1

0

2n2x

(1 + n2x2)2
dx = lim

n→∞

(
1− 1

1 + n2

)
= 1.

By looking at the graphs of these functions we can gain some idea of what
prevented the integral

∫ 1

0
fn from approaching zero. For small values ofn,

the graph offn hovers quite low above thex-axis, but then, asn increases,
the graph begins to grow a peak that becomes ever higher and narrower as it
moves toward the left. Any individual positive numberx will lie to the right
of these peaks as long asn is sufficiently large but the area under thenth
peak is approximately1. Figure 14.4 illustrates the graphs of the functions
fn for the first few values ofn. To see how high the peaks are, we observe
that each functionfn takes its maximum value whenf ′

n(x) = 0, in other
words, when

2n2 (1− 3n2x2)

(1 + n2x2)3
= 0.

Thus the maximum value of each functionfn is the number

fn

(
1√
3n

)
=

2n2
(

1√
3n

)
(
1 + n2

(
1√
3n

)2)2 =
3
√
3n

8
.
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Thus, although(fn) converges pointwise to the function0, it does not
converge boundedly and it does not converge uniformly. To view this
sequence of functions interactively in the on-screen version of the text, click
on the icon .

6. In this example we consider a variation of the preceding example. We define

fn(x) =
2nx

(1 + n2x2)2

for all x ∈ [0, 1] and each positive integern. Once again, the sequence
converges pointwise to the constant function0. And once again, the graph of
the functionfn has a peak that becomes narrower and moves toward the left
asn increases. This time, however, the height of each peak is3

√
3/8, and so

the sequence(fn) converges boundedly, but not uniformly, to the function0.
Figure 14.5 illustrates the graphs of the functionsfn for the first few values
of n. As you would expect, since the peaks become narrower asn increases
without rising any higher, the area under the graph must approach zero. In
fact

lim
n→∞

∫ 1

0

fn = lim
n→∞

∫ 1

0

2nx

(1 + n2x2)2
dx = lim

n→∞

(
1

n
− 1

n (1 + n2)

)
= 0.

7. In this example we take a second look at the phenomenon that occurred in
Example 5, but this time we make each functionfn a step function. For each
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positive integern we define

fn(x) =

{
n if 0 < x ≤ 1

n

0 if 1
n
< x ≤ 1 or x = 0.

Although this example isn’t as satisfying as Example 5, it is worth looking
at because it is so simple. For eachn, the integral

∫ 1

0
fn is the area of the

shaded region in Figure 14.6, and so
∫ 1

0
fn = 1.

y n=

0 11
n

Figure 14.6

8. In this example we exhibit a sequence(fn) of differentiable functions
that converges uniformly to zero even though the sequence(f ′

n(x)) is
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divergent at every numberx. We define

fn(x) =
sinnx√

n

for each positive integern and each real numberx. Since

0 ≤ sup |fn| ≤ 1√
n

for eachn, it follows from the sandwich theorem that(fn) converges
uniformly to the function0. The graphs of the functionsf1, f4, f16, and
f64 are illustrated in Figure 14.7. As we see in this figure, the graph offn

-1

-0.5

0

0.5

1

-4 -2 2 4

Figure 14.7

oscillates with greater and greater frequency asn increases and the derivative
of fn becomes more and more chaotic. In fact, for alln andx we have

f ′
n(x) =

√
n cosnx.

In the event thatx is an integer multiple of2π, it is clear that

lim
n→∞

f ′
n(x) = ∞.

If x is not an integer multiple of2π, then the behavior of
√
n cosnx as

n → ∞ needs to be considered more carefully. From the examples on
conditional convergence that appearedin Subsection 12.7.9, we know that if
x is not an integer multiple of2π, then the series

∑
cosnx

n
is conditionally
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convergent. From the fact that∣∣∣cosnx
n

∣∣∣ = ∣∣∣∣ 1

n3/2

∣∣∣∣ ∣∣√n cosnx
∣∣

and the fact that the series
∑∣∣ cosnx

n

∣∣ is divergent, we deduce from
the comparison test that the sequence(

√
n cosnx) cannot be bounded.

Furthermore, since the series
∑

cosnx
n

is conditionally convergent, the
numberscosnx must frequently change sign. Therefore the sequence
(
√
n cosnx) cannot have any limit, finite or infinite.

This example shows that even if a sequence(fn) of differentiable functions
converges uniformly to a differentiable functionf , there is no guarantee that
f ′
n → f ′ asn → ∞.
To view this sequence of functions interactively in the on-screen version of

the text, click on the icon .

14.1.5 The Comparison Tests for Series of Functions
Suppose that (fn) and (gn) are sequences of functions defined on a set S and
that |fn| ≤ gn for every n.

1. If the series
∑

gn converges pointwise, then so does the series
∑

fn.
2. If the series

∑
gn converges boundedly, then so does the series

∑
fn.

3. If the series
∑

gn converges uniformly, then so does the series
∑

fn.

Proof. If
∑

gn converges pointwise, then, given any numberx ∈ S we deduce
from the comparison test (Theorem 12.4.6) and the fact that|fn(x)| ≤ gn(x) for
everyn that the series

∑
fn(x) converges (absolutely). This completes the proof

of part 1.

Now suppose that
∑

gn converges boundedly and choose a numberK such
that

n∑
j=1

gj(x) ≤ K

for everyx ∈ S and every positive integern. Given given any suchx andn we
have ∣∣∣∣∣

n∑
j=1

fj(x)

∣∣∣∣∣ ≤
n∑

j=1

|fj(x)| ≤
n∑

j=1

gj(x) ≤ K.

This completes the proof of part 2.

Finally, suppose that
∑

gn converges uniformly. To prove that
∑

fn con-
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verges uniformly to its sum, suppose thatε > 0. ChooseN such that the
inequality

sup

( ∞∑
j=1

gj −
n∑

j=1

gj

)
< ε

holds whenevern ≥ N . Then, given any numberx ∈ S and anyn ≥ N , we
have∣∣∣∣∣

∞∑
j=1

fj(x)−
n∑

j=1

fj(x)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
j=n+1

fj(x)

∣∣∣∣∣ ≤
∞∑

j=n+1

|fj(x)| ≤
∞∑

j=n+1

gj(x) < ε.

This completes the proof of part 3.�

14.1.6 Exercises on Convergence of Sequences of Functions

1. For each of the following definitions of the functionfn on the interval
[0, 1] prove that the sequence(fn) converges pointwise to the function0 on
[0, 1] and determine whether the sequence converges boundedly and whether
it converges uniformly. In each case, determine whether or not we have

lim
n→∞

∫ 1

0

fn = 0.

In each case, useScientific Notebook to sketch some graphs of the given
function and ask yourself whether yourconclusion is compatible with what
you see in the graphs.

(a) fn(x) = nx exp (−nx) for eachx ∈ [0, 1] and each positive integer
n.

(b) fn(x) = n2x exp (−nx) for eachx ∈ [0, 1] and each positive integern.
(c) fn(x) = nx exp (−n2x2) for eachx ∈ [0, 1] and each positive integern.
(d) fn(x) = nx exp (−nx2) for eachx ∈ [0, 1] and each positive integern.
(e) fn(x) = nx exp (−n2x) for eachx ∈ [0, 1] and each positive integern.

2. Given thatfn(x) = xn for all x andn, prove that the series
∑

fn converges
pointwise, but not uniformly, on the interval[0, 1) and that

∑
fn converges

uniformly on the interval[0, δ] whenever0 ≤ δ < 1.

3. Given thatfn(x) = (sinnx) /n2 for all n andx, prove that the series∑
fn converges uniformly onR. UseScientific Notebook to sketch some of

the graphs of these functions to motivate your conclusions.
4. Prove that the series

∑
xn/n! converges uniformly inx on every

bounded interval but does not converge uniformly inx on the entire lineR.
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5. Prove that the series

∑ (2n)!

4n (n!)2
xn

does not converge uniformly inx on the interval(−1, 1) but that it does
converge uniformly on the interval[−δ, δ] whenever0 ≤ δ < 1.

6. Prove that the series
∑

(x log x)n converges uniformly inx on the interval
(0, 1].

7. Given that(fn) and(gn) are sequences of real valued functions defined on a
setS, thatf andg are functions defined onS, and thatfn → f andgn → g
pointwise asn → ∞, prove that

(a) fn + gn → f + g pointwise asn → ∞.
(b) fn − gn → f − g pointwise asn → ∞.
(c) fngn → fg pointwise asn → ∞.
(d) In the event thatg(x) 	= 0 for every numberx in the setS, we have

fn/gn → f/g pointwise asn → ∞.
8. Given that(fn) and(gn) are sequences of real valued functions defined on a

setS, thatf andg are functions defined onS, and thatfn → f andgn → g
boundedly asn → ∞, prove that

(a) fn + gn → f + g boundedly asn → ∞.
(b) fn − gn → f − g boundedly asn → ∞.
(c) fngn → fg boundedly asn → ∞.
(d) In the event that there exists a numberδ > 0 such that|gn(x)| ≥ δ

for eachn and every numberx in the setS, we havefn/gn → f/g
boundedly asn → ∞.

9. Suppose that(fn) is a sequence of real valued functions defined on a set
S and thatf is a given function defined onS. Prove that the following
conditions are equivalent:

(a) The sequence(fn) converges uniformly to the functionf on the setS.
(b) For every numberε > 0 there exists an integerN such that the inequality

sup |fn − f | < ε

holds for alln ≥ N .
(c) For every numberε > 0 there exists an integerN such that the inequality

|fn(x)− f(x)| < ε

holds for alln ≥ N and allx ∈ S.
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10. Suppose that(fn) is a sequence of real valued functions defined on a set
S and thatf is a given function defined onS. Examine the following two
conditions:

(a) For every numberε > 0 there exists an integerN such that the inequality

|fn(x)− f(x)| < ε

holds for alln ≥ N and allx ∈ S.
(b) For every numberε > 0 and every numberx ∈ S there exists an integer

N such that the inequality

|fn(x)− f(x)| < ε

holds for alln ≥ N .
The first of these conditions asserts that the sequence(fn) converges
uniformly to the functionf , while the second one asserts that(fn) converges
pointwise tof . Make sure that you can distinguish between the two
conditions and see that they are not saying the same thing.

11. Given that a sequence(fn) converges uniformly to a functionf on a setS
and that the functionf is bounded, prove that (if we start the sequence at a
sufficiently large value ofn) the sequence(fn) converges boundedly tof .

12. Prove that if the sequences(fn) and(gn) converge uniformly on a setS to
functionsf andg, respectively, thenfn + gn → f + g uniformly onS.

13. Give an example of sequences(fn) and(gn) that converge uniformly
on a setS to functionsf andg, respectively, such that the sequence(fngn)
fails to converge uniformly to the functionfg.

14. Prove that if the sequences(fn) and(gn) converge uniformly and boundedly
on a setS to functionsf andg, respectively, thenfngn → fg uniformly on
S.

15. Given that(fn) is a decreasing sequence of nonnegative continuous
functions on a closed bounded setS and that(fn) converges pointwise to the
function0, prove that(fn) converges uniformly to the function0.

14.1.7 Some Special Tests for Uniform Convergence
This optional material presents a more detailed study of uniform convergence and
includes the Cauchy criterion for uniform convergence, Abel’s test for uniform
convergence, and Dirichlet’s test for uniform convergence. To reach this material
from the on-screen version of the book, click on the icon .
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14.2 The Important Properties of Uniform Convergence

Looking back at the examples that appear in Subsection 14.1.4, we see that
some of the pathology that they reveal disappears when the sequence converges
uniformly. In this section we shall focus our attention on this phenomenon by
presenting a few theorems that guarantee good behavior whenever a sequence
converges uniformly.

14.2.1 Uniform Convergence and Continuity at a Number
Suppose that a sequence (fn) converges uniformly to a function f on a set S,
suppose that x ∈ S, and suppose that each function fn is continuous at the
number x. Then the function f must also be continuous at the number x.

Proof. Suppose thatε > 0. Using the fact thatfn → f uniformly onS, we
choose an integerN such that the inequality

sup |fn − f | < ε

3

holds whenevern ≥ N . Now, using the fact that the functionfN is continuous at
the numberx, we choose a neighborhoodU of x such that whenevert ∈ S ∩ U
we have

|fN(t)− fN(x)| < ε

3
.

For every numbert in the setU ∩ S we have

|f(t)− f(x)| = |f(t)− fN(t) + fN(t)− fN(x) + fN(x)− f(x)|
≤ |f(t)− fN(t)|+ |fN(t)− fN(x)|+ |fN(x)− f(x)|
<

ε

3
+

ε

3
+

ε

3
= ε. �

14.2.2 Uniform Convergence and Continuity on a Set
Suppose that a sequence (fn) converges uniformly to a function f on a set S and
suppose that each function fn is continuous an the set S. Then the function f
must also be continuous on the set S

This theorem follows at once from the corresponding result for continuity at
a number.

14.2.3 Some Special Facts About the Continuity of a Limit Function
As we saw in the examples of Subsection 14.1.4, the pointwise limit of a se-
quence of continuous functions does not have to be continuous. However, the
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news is not totally bad. If(fn) is a sequence of continuous functions on an inter-
val [a, b], wherea < b, and if(fn) converges pointwise on[a, b] to a functionf ,
then, even thoughf does not have to be continuous at every numberx ∈ [a, b], it
will be continuous at many of those numbers. The on-screen version of this book
contains some special exercises that will enable you to explore this remarkable
fact. To access those exercises, click on the icon .

14.2.4 Uniform Convergence and Riemann Integrability
Suppose that a sequence (fn) converges uniformly to a function f on an interval
[a, b] and that each function fn is Riemann integrable on [a, b]. Then the function
f is also Riemann integrable on [a, b].

Proof. To prove that the functionf is Riemann integrable on[a, b], we shall
show thatf satisfies the criterion for integrability that appears in Theorem 11.8.4.
Suppose thatε > 0 and, using the fact that thefn → f uniformly on [a, b],
choose an integerN such that

sup |fN − f | < ε

4
.

Now, using the fact that the functionfN is Riemann integrable on[a, b], we
choose a partitionP of [a, b] such that if

E =
{
x ∈ [a, b] | w (P, fN) (x) ≥ ε

4

}
,

thenm (E) < ε/4. Now, given any two successive pointsxj−1 andxj of P,
unless the interval(xj−1, xj) is included inE, we know that for all numberss
andt in this interval

|f(t)− f(s)| ≤ |f(t)− fN(t)|+ |fN(t)− fN(s)|+ |fN(s)− f(s)| < ε.

We deduce that

w (P, f) (x) ≤ 3ε

4

wheneverx ∈ [a, b] \ E, and sof satisfies the criterion for integrability in
Theorem 11.8.4.�

14.2.5 Uniform Convergence and Riemann Integration
Suppose that a sequence (fn) converges uniformly to a function f on an interval
[a, b] and that each function fn is Riemann integrable on [a, b]. Then

lim
n→∞

∫ b

a

fn =

∫ b

a

f .
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Proof. As we know, the functionf is integrable. Now for eachn we have

0 ≤
∣∣∣∣
∫ b

a

fn −
∫ b

a

f

∣∣∣∣ ≤
∫ b

a

|fn − f | ≤ (b− a) sup |fn − f | ,

and so the result follows at once from the sandwich theorem.�

14.2.6 Some Exercises on the Properties of Uniform Convergence

1. Determine whether the following statement is true or false:
If fn is uniformly continuous on a set S for every positive integer n, and if
the sequence (fn) converges uniformly on S to a function f , then f must be
uniformly continuous on S.

2. Determine whether the following statement is true or false:
If fn is uniformly continuous on a set S for infinitely many positive integers
n, and if the sequence (fn) converges uniformly on S to a function f , then f
must be uniformly continuous on S.

3. A family F of functions is said to beequicontinuous on a setS if for every
ε > 0 and every numberx ∈ S there exists a numberδ > 0 such that
wheneverf ∈ F and whenevert lies in the setS ∩ (x− δ, x+ δ) we have

|f(t)− f(x)| < ε.

Prove that if a sequence(fn) converges uniformly onS and if each
functionfn is continuous onS, then the family{fn | n = 1, 2, 3, · · · } is
equicontinuous onS.

4. Invent a meaning forequi-uniform continuity of a familyF on a setS and
decide whether or not your definition provides an analog of Exercise 3.

14.3 The Important Property of Bounded Convergence

14.3.1 Introduction to the Bounded Convergence Theorem
The purpose of this section is to present a very useful theorem known as the
Arzela bounded convergence theorem that is a dramatic improvement of The-
orem 14.2.5. We know from Example 4 of Subsection 14.1.4, that, in the absence
of uniform convergence, a sequence of Riemann integrable functions can con-
verge to a function that is not integrable. Furthermore, even if a sequence(fn) of
integrable functions on an interval[a, b] converges pointwise to a functionf that
happens to be integrable on[a, b], we have seen that the condition

lim
n→∞

∫ b

a

fn =

∫ b

a

f
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can fail to hold. We saw this failure in Example 5 of Subsection 14.1.4, which
we illustrate again in Figure 14.8. In this example, the graphs of the functions

0

1

2

3

4

0.2 0.4 0.6 0.8 1x

Figure 14.8

fn have peaks that become narrower and higher asn increases and the area under
these peaks does not approach zero. On the other hand, in Example 6, which
we illustrate in Figure 14.9, and in which we restrict the height of the peaks, the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1

Figure 14.9

condition

lim
n→∞

∫ 1

0

fn =

∫ 1

0

0

does hold true. It holds true in spite of the fact that(fn) fails to converge
uniformly. The important feature of Example 6 is that(fn) converges to0
boundedly.



416 Chapter 14 Sequences and Series of Functions

With these examples in mind we might guess that if a sequence(fn) of
functions integrable on an interval[a, b] converges boundedly to an integrable
functionf , then the condition

lim
n→∞

∫ b

a

fn =

∫ b

a

f

should always hold. This, in a nutshell, is the statement of the bounded con-
vergence theorem. As simple and intuitive as this statement may appear, it is
actually very powerful. The proof of the bounded convergence theorem, while
not actually difficult, is a far cry from thealmost trivial proof of Theorem 14.2.5.
But it is well worth studying. The bounded convergence theorem opens the door
to several immensely important topics that are easy to study with it but are almost
impossible to study without it.

The heart of the bounded convergence theorem lies in the following important
theorem that we shall prove first.

14.3.2 The Contracting Sequences Theorem
Suppose that (Sn) is a contracting sequence of bounded sets and that

∞⋂
n=1

Sn = ∅.

For each n, suppose that

αn = sup {m (E) | E is an elementary subset ofSn} .

Then αn → 0 as n → ∞.

Proof. The sequence(αn) is clearly decreasing. To obtain a contradic-
tion, assume that this sequence does not converge to0, and choose a number
δ > 0 such thatαn > δ for everyn. For eachn we now choose an elementary
subsetEn of the setSn such that

m (En) > αn − δ

2n
.

Now for eachn we use Theorem 11.4.8 to choose a closed elementary subsetFn

of the setEn such that

m (Fn) > αn − δ

2n
,
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and then we define

Hn =
n⋂

j=1

Fj.

Observe that the sequence(Hn) is a contracting sequence of closed bounded
elementary sets. The plan of the proof is to show that every one of the setsHn

is nonempty. It will then follow from the Cantor intersection theorem (Theorem
7.8) that the intersection of all of the setsHn is nonempty, in spite of the fact that
the larger setsSn have an empty intersection. This will be the desired contradic-
tion. In order to show thatHn 	= ∅ for eachn, we make two observations.

First Observation: Suppose thatn is any positive integer. Given any elementary
subsetE of the setSn \ Fn, we have

m (E) +m (Fn) = m (E ∪ Fn) ≤ αn,

and it therefore follows from the inequalitym (Fn) > αn − δ/2n thatm (E) <
δ/2n. This observation can be thought of as saying that, becauseFn nearly fills
the setSn, it leaves very little room for an elementary setE that is included in
Sn \ Fn. This notion is illustrated in Figure 14.10.

E

Sn

Fn

Figure 14.10

Second Observation: Suppose thatn is any positive integer. Given any elemen-
tary subsetE of the setSn \Hn, since

E = (E \ F1) ∪ (E \ F2) ∪ · · · ∪ (E \ Fn)
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and since each setE \ Fj is a subset of the corresponding setSj \ Fj, we have

m (E) ≤
n∑

j=1

m (E \ Fj) <
n∑

j=1

δ

2j
= δ

(
1− 1

2n

)
< δ.

Look now at the two setsSn andSn\Hn. The setSn must have an elementary
subset whose measure is greater thanδ while theSn \Hn cannot. Thus for each
n we have

Sn 	= Sn \Hn,

and it follows that the setHn must be nonempty.�

14.3.3 The Bounded Convergence Theorem
Suppose that (fn) is a sequence of functions that are integrable on a given inter-
val [a, b] and that (fn) converges boundedly to a function f that is integrable on
[a, b]. Then

lim
n→∞

∫ b

a

fn =

∫ b

a

f .

Proof. From the inequality∣∣∣∣
∫ b

a

fn −
∫ b

a

f

∣∣∣∣ =
∣∣∣∣
∫ b

a

(fn − f)

∣∣∣∣ ≤
∫ b

a

|fn − f |

we observe that the theorem will be proved when we have shown that

lim
n→∞

∫ b

a

|fn − f | = 0.

Using the fact that the sequence(fn) converges tof boundedly, we choose a
numberK such that|fn(x)| ≤ K for everyx ∈ [a, b] and everyn. Given any
x ∈ [a, b], it follows from the fact that

lim
n→∞

fn(x) = f(x)

that|f(x)| ≤ K. Therefore, for everyx ∈ [a, b] and everyn we have

0 ≤ |fn(x)− f(x)| ≤ |fn(x)|+ |f(x)| ≤ 2K.

Now, to prove that
∫ b

a
|fn − f | → 0 asn → ∞, suppose thatε > 0. For eachn

we defineSn to be the set of all those numbersx in the interval[a, b] for which
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the inequality

|fj(x)− f(x)| ≥ ε

2 (b− a)

holds for at least one integerj ≥ n. We see at once that the sequence(Sn) is
contracting. Furthermore, ifx is any number in the interval[a, b], then it follows
from the fact thatfj(x) → f(x) asj → ∞ that if n is sufficiently large, then
we have

|fj(x)− f(x)| < ε

2 (b− a)

for all j ≥ n. In other words, ifn is sufficiently large, we havex /∈ Sn. Therefore

∞⋂
n=1

Sn = ∅.

We now use the contracting sequences theorem to choose an integerN such that
whenevern ≥ N and wheneverE is an elementary subset ofSn we have

m (E) <
ε

4K
.

We shall complete the proof by showing that whenevern ≥ N we have∫ b

a

|fn − f | ≤ ε.

From the definition of the integral thatwe saw in Subsection 11.5.2, we need
only show that ifn ≥ N andg is a step function satisfying the inequality

0 ≤ g ≤ |fn − f | ,

we have
∫ b

a
g ≤ ε. Suppose then thatn ≥ N , thatg is a step function, and that

0 ≤ g ≤ |fn − f | .
We define

E =

{
x ∈ [a, b] | g(x) ≥ ε

2 (b− a)

}

andF = [a, b] \E. The setsE andF are elementary subsets of[a, b] and, since
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E ⊆ Sn, we havem (E) < ε/4K. Therefore∫ b

a

g =

∫
E

g +

∫
F

g ≤
∫
E

2K +

∫
F

ε

2 (b− a)
= 2Km (E) +

ε

2 (b− a)
m (F )

< 2K
ε

4K
+

ε

2 (b− a)
(b− a) = ε. �

14.3.4 A Bounded Convergence Theorem for Stieltjes Integrals
If you chose to read the integration chapter in its optional Riemann-Stieltjes form,
you can reach the Stieltjes form of the bounded convergence theorem by clicking
on the icon .

14.3.5 A Bounded Convergence Theorem for Derivatives
Suppose that (fn) is a sequence of differentiable functions on an interval [a, b]
and that each function f ′

n is continuous on [a, b]. Suppose that the sequence (f ′
n)

converges boundedly on [a, b] and has a continuous limit, and suppose that the
sequence (fn(c)) converges for at least one number c in the interval [a, b].

Then the sequence (fn) converges pointwise on [a, b] to a differentiable func-
tion f and for each x we have

f ′(x) = lim
n→∞

f ′
n(x).

Proof. We write the limit function of the sequence(f ′
n) asg and we choose

a numberc ∈ [a, b] such that the sequence(fn(c)) is convergent. For every
x ∈ [a, b] and everyn it follows from the fundamental theorem of calculus
(Theorem 11.12.3) that

fn(x) = fn(c) +

∫ x

c

f ′
n(t)dt.

From the bounded convergence theorem we deduce that the right side of the latter
identity converges asn → ∞ and

lim
n→∞

fn(x) = lim
n→∞

fn(c) +

∫ x

c

g(t)dt.

We have therefore shown that the sequence(fn) converges pointwise on the
interval[a, b]. Furthermore, if we define

f(x) = lim
n→∞

fn(x)
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for eachx ∈ [a, b], then for each suchx we have

f(x) = lim
n→∞

fn(c) +

∫ x

c

g(t)dt.

Using the fundamental theorem (Theorem 11.12.2) once again we conclude that
f is differentiable and that ifx ∈ [a, b], then

f ′(x) = g(x) = lim
n→∞

f ′
n(x). �

14.3.6 Term-by-Term Integration of the Sum of a Series
Suppose that (fn) is a sequence of functions that are Riemann integrable on
an interval [a, b] and that the series

∑
fn converges boundedly on [a, b] to an

integrable function f . This means, of course, that the sequence of functions

n∑
j=1

fj

converges boundedly to f . Then we have∫ b

a

f(x)dx =
∞∑
n=1

∫ b

a

fn(x)dx.

Since the latter statement can also be written as∫ b

a

∞∑
n=1

fn(x)dx =
∞∑
n=1

∫ b

a

fn(x)dx,

it is often described asterm-by-term integration of the sum of the series
∑

fn.

Proof. The theorem follows at once from the bounded convergence theorem:∫ b

a

f =

∫ b

a

lim
n→∞

n∑
j=1

fj = lim
n→∞

∫ b

a

n∑
j=1

fj = lim
n→∞

n∑
j=1

∫ b

a

fj =
∞∑
j=1

∫ b

a

fj. �

14.3.7 Term-by-Term Differentiation of the Sum of a Series
Suppose that (fn) is a sequence of differentiable functions on an interval [a, b]
and that each function f ′

n is continuous on [a, b]. Suppose that the series
∑

f ′
n

converges boundedly on [a, b] and has a continuous sum, and suppose that the
series

∑
fn(c) converges for at least one number c in the interval [a, b].
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Then the series
∑

fn converges pointwise on [a, b] to a differentiable function
and we have ( ∞∑

n=1

fn

)′

=
∞∑
n=1

f ′
n.

We leave the proof of this theorem as an exercise.

14.3.8 A Convergence Theorem for Improper Integrals
In this subsection we obtain an analog of the bounded convergence theorem for
improper integrals. The theorem thatwe shall state here is a form of a result
known as thedominated convergence theorem.

Suppose that −∞ < a < b ≤ ∞ and that (fn) is a sequence of functions
that are improper Riemann integrable on the interval [a, b). Suppose that the
sequence (fn) converges pointwise to an improper Riemann integrable function
f and that there exists an improper Riemann integrable function g such that
|fn| ≤ g for each n. Then

lim
n→∞

∫ →b

a

fn =

∫ →b

a

f .

Proof. From the comparison test for improper integrals (Theorem 13.3.2) we see
that the integrals

∫→b

a
fn and

∫→b

a
f converge absolutely. The key to the proof

now lies in the fact that wheneverw ∈ [a, b) we have∣∣∣∣
∫ →b

a

fn −
∫ →b

a

f

∣∣∣∣ ≤
∫ →b

a

|fn − f | =
∫ w

a

|fn − f |+
∫ →b

w

|fn − f |

≤
∫ w

a

|fn − f |+
∫ →b

w

2g.

Suppose thatε > 0. Using the fact that the integral
∫→b

a
g is convergent, we

choose a numberw ∈ [a, b) such that∫ →b

a

g −
∫ w

a

g <
ε

4
,

in other words,
∫→b

w
g < ε/4. Sinceg is bounded on the interval[a, w], and

since|fn − f | ≤ 2g for everyn, and since|fn − f | → 0 pointwise asn → ∞,
we may apply the bounded convergence theorem to choose a positive integerN
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such that ∫ w

a

|fn − f | < ε

2

whenevern ≥ N . Whenevern ≥ N we have∣∣∣∣
∫ →b

a

fn −
∫ →b

a

f

∣∣∣∣ ≤
∫ w

a

|fn − f |+
∫ →b

w

2g <
ε

2
+

ε

2
= ε. �

14.3.9 A Convergence Theorem for Integrals of Nonnegative Functions
As you continue your studies, you will find that in many theories of integration
the theorems are stated once for absolutely convergent integrals and once again
for possibly infinite integrals of nonnegative functions. The present theorem is
an analog of the preceding one, but it requires the functions to be nonnegative
and the integrals are allowed to be infinite.

Suppose that (fn) is a sequence of nonnegative functions defined on an in-
terval [a, b) and that (fn) converges pointwise on [a, b) to a function f . Suppose

that fn ≤ f for every n and suppose that the improper integrals
∫→b

a
f and∫→b

a
fn are all defined. Then, even if the integrals are infinite, we have

lim
n→∞

∫ →b

a

fn =

∫ →b

a

f .

Proof. In the event that the integral
∫→b

a
f is finite, the theorem follows at once

from Theorem 14.3.8. Suppose now that
∫→b

a
f = ∞. To show that

lim
n→∞

∫ →b

a

fn = ∞,

we suppose thatK is any real number and we choose a numberw ∈ [a, b) such
that ∫ w

a

f > K.

From Theorem 14.3.8 we see that

lim
n→∞

∫ w

a

fn =

∫ w

a

f ,
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and therefore, ifn is sufficiently large, we have

∫ →b

a

fn ≥
∫ w

a

fn > K. �

14.3.10 Some Exercises on Bounded Convergence

1. Prove that the sequence(fn) in Theorem 14.3.5 actually converges
boundedly to the functionf .

2. Suppose that(an) is a strictly increasing sequence of positive integers and
that

fn(x) = (sin anx− sin an+1x)
2

for every positive integern and every numberx.

(a) Work out the integral

∫ 2π

0

fn(x)dx

and deduce that there must be at least one numberx ∈ [0, 2π] such that
the sequence(fn(x)) does not converge to zero.

(b) Prove that there must be at least one numberx ∈ [0, 2π] for which the
sequence(sin anx) diverges.

3. Suppose that for each positive integern we have

fn(x) =

{ ∑n
j=0 (−x)j if −1 < x < 1

1
2

if x = 1.

(a) Prove that if

f(x) =
1

1 + x

for −1 < x ≤ 1, then the sequence(fn) converges boundedly to the
functionf on the interval[0, 1].

(b) Explain why each functionfn is integrable on the interval[0, 1] and why

∫ 1

0

fn =
n∑

j=0

(−1)j

j + 1
,
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and deduce that
∞∑
j=0

(−1)j

j + 1
= log 2.

(c) Given any numberx satisfying−1 < x ≤ 1, prove that the sequence
(fn) converges boundedly tof on the closed interval running between0
andx and deduce that the equation

∞∑
j=0

(−1)j xj+1

j + 1
= log (1 + x)

holds whenever−1 < x ≤ 1.
4. Suppose that for each positive integern we have

fn(x) =

{ ∑n
j=0 (−x2)

j if 0 ≤ x < 1

1
2

if x = 1.

Repeat the steps of Exercise 3 for this sequence of functions and deduce that

∞∑
j=0

(−1)j

2j + 1
=

π

4
.

5. Prove that if

fn(x) =

{
1
n

if 0 ≤ x ≤ n
0 if x > n

whenevern is a positive integer, then the sequence(fn) converges uniformly
on the interval[0,∞) to the constant function0 even though

lim
n→∞

∫ →∞

0

fn 	=
∫ →∞

0

0.

6. Suppose thatα > 0 and that

fn(x) =



(
1− x

n

)n
xα−1 if 1

n
≤ x ≤ n

0 if x < 1
n

or x > n

whenevern is a positive integer.

(a) Prove that ifx is any positive number, then

lim
n→∞

fn(x) = e−xxα−1,
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and that for eachn we have

|fn(x)| ≤ e−xxα−1.

(b) Use Theorem 14.3.8 to show that

lim
n→∞

∫ n

1/n

(
1− x

n

)n
xα−1dx =

∫ →∞

0

e−xxα−1dx = Γ(α) .

For the definition of the gamma functionΓ, see Exercise 2b of Subsection
13.3.3.

14.3.11 Some Applications of the Bounded Convergence Theorem
From the on-screen version of this book you can reach some optional exercises
that will lead you to the sums of some interesting series. For example, you will
show that

∞∑
n=1

(−1)n−1 cosnθ

n
=

1

2
log (2 + 2 cos θ)

and
∞∑
n=1

cosnθ

n2
=

π2

6
− πθ

2
+

θ2

4

for certain appropriate values ofθ. To reach these exercises, click on the icon
.

14.4 Power Series

The concept of a power series that we discuss in this section first appeared when
we discussed Abel’s theorem (Theorem 12.7.7).

14.4.1 Definition of a Power Series
A power series is a series of the form

∑
anx

n or, more generally, of the form∑
an (x− c)n, wherec is a given real number and(an) is a sequence of num-

bers. By analogy with the way we described Taylor polynomials in Section 9.5,
we call a power series of the form

∑
an (x− c)n a power series inx, centered

at c and with(an) as its sequence of coefficients.

In this section we shall show that a power series of the form
∑

an (x− c)n

converges absolutely in an interval of the form(c− r, c+ r) for some nonnega-
tive numberr and that, within this interval, the series may be differentiated and
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integrated term by term. We shall use this information to determine the sums of
some important power series.

14.4.2 Some Examples of Power Series

1. The simplest power series is the geometric series
∑

xn, which, as you know,
converges whenever|x| < 1 and diverges otherwise. If|x| < 1, then

∞∑
n=0

xn =
1

1− x
.

2. By using d’Alembert’s test (Theorem 12.6.5) we can see that the series∑
xn/n! converges absolutely for every real numberx. We shall see soon

that if we start summing atn = 0, then the sum of this series isex.
3. By using d’Alembert’s test we can see that the series

∑
(−1)n−1 xn/n

converges absolutely for every numberx ∈ (−1, 1) and an easy application
of Dirichlet’s test (Theorem 12.7.5) shows that the series converges when
x = 1. For all other values ofx, the series diverges. In Exercise 3 of
Subsection 14.3.10 we saw that, at each numberx at which the series
converges, its sum islog (1 + x). We shall encounter this fact again in the
present section.

4. In Example 3 of Subsection 12.7.9 we defined the binomial coefficients(
α

n

)
=

α (α− 1) (α− 2) · · · (α− n+ 1)

n!
,

and we defined
(
α
0

)
= 1. The series

∑(α
n

)
xn is known as thebinomial

series, which we shall discuss in Section 14.6.

14.4.3 Convergence Behavior of Power Series
Given any sequence (an) of real numbers, there exists an extended real number
r ≥ 0 such that the power series

∑
anx

n converges absolutely whenever |x| < r
and diverges whenever |x| > r.

Proof. We define

r = sup {|t| | the sequence(ant
n) is bounded} .

Whenever|x| > r, it follows from the fact that the sequence(anxn) is un-
bounded that the series

∑
anx

n is divergent. Now suppose that|x| < r. Using
the fact that|x| is not an upper bound of the set

{|t| | the sequence(ant
n) is bounded} ,
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we choose a numberδ such that|x| < δ and such that the sequence(anδ
n) is

bounded. Choose a numberK such that|anδn| ≤ K for eachn. Now, given any
n, we see that

|anxn| = |anδn|
∣∣∣x
δ

∣∣∣n ≤ K
∣∣∣x
δ

∣∣∣n ,

and it follows from the convergence of the geometric series
∑ |x/δ|n and the

comparison test that the series
∑

anx
n converges absolutely.�

14.4.4 Radius of Convergence of a Power Series
Theradius of convergence of a given power series

∑
an (x− c)n is defined to

be the extended real numberr ≥ 0 for which the series converges absolutely
whenever|x− c| < r and diverges whenever|x− c| > r. Thus the set of
numbersx for which the series converges is one of the four intervals

(c− r, c+ r) [c− r, c+ r) (c− r, c+ r] [c− r, c+ r]

and is called theinterval of convergence of the series. By using the tests for con-
vergence that appear in Chapter 12, one may check that the radii of convergence
of the series∑

xn,
∑ xn

n!
,
∑ (−1)n−1 xn

n
,
∑ xn

2nn2
,
∑

(n!)xn,
∑ (n!)xn

nn

are1, ∞, 1, 2, 0, ande, respectively. The intervals of convergence of these series
are(−1, 1), R, (−1, 1], [−2, 2], {0}, and(−e, e).

14.4.5 Uniform Convergence of Power Series
Suppose that r is the radius of convergence of the series

∑
an (x− c)n. Then,

given any number δ satisfying 0 ≤ δ < r, the series will converge uniformly in
x in the closed interval [c− δ, c+ δ].

c r+c r− c − δ c + δc

Proof. Since

|an (x− c)n| ≤ |anδn|
for everyx ∈ [c− δ, c+ δ] and since the series

∑ |anδn| converges, the result
follows from the comparison test for uniform convergence (Theorem 14.1.5).�

14.4.6 Continuity of the Sum of a Power Series
Suppose that r is the radius of convergence of the series

∑
an (x− c)n and

suppose that we define a function f on the open interval (c− r, c+ r) by the
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equation

f(x) =
∞∑
n=0

an (x− c)n

for every x ∈ (c− r, c+ r). Then f is continuous on the interval (c− r, c+ r).

Proof. Suppose thatx ∈ (c− r, c+ r). Choose a numberδ such that

|x− c| < δ < r.

c r+c r− c − δ c + δc x

Since the series converges uniformly on the interval[c− δ, c+ δ], we deduce
from Theorem 14.2.2 thatf is continuous at the numberx. �

14.4.7 Term-by-Term Integration of a Power Series
Suppose thatr is the radius of convergence of the power series

∑
an (x− c)n.

1. Given any numberx ∈ (c− r, c+ r) we have

∫ x

c

∞∑
n=0

an (t− c)n dt =
∞∑
n=0

an

∫ x

c

(t− c)n dt =
∞∑
n=0

an
(x− c)n+1

n+ 1
.

2. Even if the series
∑

anr
n diverges, as long as the sequence of partial sums

of this series is bounded, we have∫ c+r

c

∞∑
n=0

an (t− c)n dt =
∞∑
n=0

an

∫ c+r

c

(t− c)n dt =
∞∑
n=0

an
rn+1

n+ 1
.

Proof. Part 1 of the theorem follows at once from the fact that the series con-
verges uniformly on the interval running between the numbersc and x, and
from the bounded convergence theorem. As a matter of fact, we don’t even need
the bounded convergence theorem. The simpler theorem, Theorem 14.2.5, that
appeared earlier is all we need.

To prove 2 we define

fn(x) =




n∑
j=0

aj (x− c)j if |x− c| < r

0 if x = c+ r
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whenevern is a positive integer, and we define

f(x) =




∞∑
j=0

aj (x− c)j if |x− c| < r

0 if x = c+ r.

From the fact that the sequence of partial sums of the series
∑

anr
n is bounded

and the fact that ifc ≤ x < c+ r we have

an (x− c)n = (anr
n)

(
x− c

r

)n

,

we can use Theorem 12.7.6 to deduce that the sequence(fn) converges bound-
edly to the functionf on the interval[c, c+ r]. Part 2 therefore follows from the
bounded convergence theorem.�

14.4.8 Term-by-Term Differentiation of a Power Series
Suppose thatr is the radius of convergence of the series

∑
an (x− c)n.

1. The numberr is also the radius of convergence of the “derived” series∑
nan (x− c)n−1.

2. If we define

f(x) =
∞∑
n=0

an (x− c)n

whenever|x− c| < r, then for every such numberx we have

f ′(x) =
∞∑
n=1

nan (x− c)n−1 .

Proof of Part 1. Whenever|x− c| > r we know from the reasoning given
in the proof of Theorem 14.4.3 that the sequence(an (x− c)n) is unbounded.
Therefore, since

nan (x− c)n−1 =

(
n

x− c

)
(an (x− c)n) ,

we deduce that the sequence of numbersnan (x− c)n−1 is also unbounded and
consequently that the series

∑
nan (x− c)n−1 diverges.

Now we want to show that whenever|x− c| < r, the series
∑

nan (x− c)n−1
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converges absolutely. Suppose that|x− c| < r. Choose a numberδ such that

|x− c| < δ < r.

c r+c r− c − δ c + δc x

Since ∣∣nan (x− c)n−1
∣∣ = |anδn|

(
n

|x− c|
)( |x− c|

δ

)n

,

and since the fact that|x− c| < δ guarantees that

lim
n→∞

(
n

|x− c|
)( |x− c|

δ

)n

= 0,

we deduce from the comparison test (Theorem 12.4.6) that the series∑
nan (x− c)n−1 converges absolutely.�

Proof of Part 2. For every numberx in the interval(c− r, c+ r) we define

g(x) =
∞∑
n=1

nan (x− c)n−1 .

From Theorem 14.4.7 we deduce that ifx ∈ (c− r, c+ r), we have∫ x

c

g(t)dt =

∫ x

c

∞∑
n=1

nan (t− c)n−1 dt =
∞∑
n=1

nan

∫ x

c

(t− c)n−1 dt =
∞∑
n=1

anx
n,

and so

f(x) = a0 +

∫ x

c

g(t)dt.

Since the functiong is continuous, we deduce from the fundamental theorem of
calculus (Theorem 11.12.2) that

f ′(x) = g(x) =
∞∑
n=1

nan (x− c)n−1

for eachx ∈ (c− r, c+ r). �

14.4.9 Calculating the Coefficients in a Power Series
The theorem on term-by-term differentiation of a power series has some far-
reaching consequences. Suppose thatr is the radius of convergence of a given
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power series
∑

an (x− c)n, and suppose that we have defined

f(x) =
∞∑
n=0

an (x− c)n

whenever|x− c| < r. As we know from the preceding theorem, ifx ∈ (c− r, c+ r),
then

f ′(x) =
∞∑
n=1

nan (x− c)n−1 .

Differentiating again we see that for each suchx we have

f ′′(x) =
∞∑
n=2

n (n− 1) an (x− c)n−2 ,

and, continuing this process, we see that ifk is any nonnegative integer, then

f (k)(x) =
∞∑
n=k

n (n− 1) · · · (n− k + 1) an(x− c)n−k.

Puttingx = c in the latter equation yields

f (k)(c) = (k!) ak,

and we conclude that

an =
f (n)(c)

n!

for every integern ≥ 0, and so

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n .

We can also look at this question in another way. Suppose thatf is a given
function that has derivatives of all orders in a neighborhood of a given number
c. There is no guarantee thatf can be represented as the sum of a power series
with centerc at every numberx in some neighborhood ofc, but, if there is such
a series, it can only be the series

∑ f (n)(c)

n!
(x− c)n .
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14.4.10 Taylor Series of a Function
Suppose thatf is a given function that has derivatives of all orders in a neighbor-
hood of a given numberc. The series

∑ f (n)(c)

n!
(x− c)n

is called theTaylor series with centerc of the functionf . Observe that for eachn
thenth partial sum of this series is just thenth Taylor polynomial of the function
f that we defined in Subsection 9.5.2. Whenc = 0 we usually refer to this
Taylor series as theMaclaurin series of the functionf . What we have seen is
that the only power series with centerc that can converge to a given functionf
in a neighborhood ofc is the Taylor series, centerc, of the functionf . In other
words, either the Taylor series centerc of a given functionf converges tof at
every numberx in a neighborhood ofc or there isno power series centerc that
converge tof at each numberx in a neighborhood ofc.

An interesting question now arises. Suppose that a given functionf has
derivatives of all orders in an interval(c− r, c+ r), wherec is a given real
number andr > 0. Can we conclude that the equation

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n

must hold for every numberx in the interval(c− r, c+ r)? The answer isno!
As a matter of fact, this question is oneof the important partings of the ways
betweenreal analysis – the analysis of functions defined on subsets ofR – and
complex analysis – the analysis of functions defined on subsets of the setC

of complex numbers. At the heart of complex analysis lies a theorem known
asTaylor’s theorem, which guarantees that every function that is differentiable
near a given complex numberc will be the sum of its Taylor series nearc. When
you study complex analysis you will state this theorem precisely and prove it.

One of the most striking features of Taylor’s theorem for functions of a com-
plex variable is that it requires only thatthe function be differentiable once. The
fact that the function will have derivatives of all orders follows automatically.
This is in sharp contrast to real analysis, in which a function can quite easily
be differentiable in an interval even though its second derivative doesn’t exist
everywhere.

14.4.11 Some Examples Illustrating the Behavior of Taylor Series

1. In this example we useScientific Notebook to explore the Maclaurin
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series of the functionf defined by the equation

f(x) = x sin
(
1 + x2

)
+ 2x cos

(
1 + x− x2

)
for every numberx, and we play a sound movie to illustrate how well the
partial sums of the series approximatef . You can reach the details by
clicking on a link in the on-screen book.

2. Suppose that

f(x) = x2 sin
1

x

for every numberx. The behavior of this function near0 is illustrated in

-0.04

-0.02

0

0.02

0.04

-0.3 -0.2 -0.1 0.1 0.2 0.3

Figure 14.11

Figure 14.11. Even though this function is differentiable at every number, it
fails to have a second derivative at0, and so it cannot have a Taylor series
center0.

3. Suppose that

f(x) =
1

1 + x2

for every numberx. The graph of this function is illustrated in Figure 14.12.
By differentiating this function repeatedly we see easily that it has derivatives
of all orders at every number. Furthermore, since the formula for summing
geometric series gives us

1

1 + x2
=

∞∑
n=0

(−1)n x2n



14.4 Power Series 435

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

Figure 14.12

whenever−1 < x < 1, we see that the Maclaurin series off is∑
(−1)n x2n. However, in spite of the fact thatf is well behaved

everywhere, this Maclaurin series converges only in the interval(−1, 1).
4. In view of the theorem on integration of power series term by term and the

preceding example we see that

arctanx =
∞∑
n=0

(−1)n x2n+1

2n+ 1

whenever−1 ≤ x ≤ 1. Thus the Maclaurin series of the functionarctan
is
∑

(−1)n x2n+1/ (2n+ 1), which converges only in the interval[−1, 1]
in spite of the good behavior ofarctan on the entire line. The graph of the
functionarctan is illustrated in Figure 14.13.

5. Suppose thatα is a given real number and thatsinα 	= 0. Suppose that

f(x) =
1

x2 − 2 (cosα)x+ 1

for every real numberx. Note that since|cosα| < 1, this definition is
possible at every real number. By expanding the expression

(
x2 − 2 (cosα)x+ 1

) ∞∑
n=0

(sin (n+ 1)α)xn

and collecting the terms, it is not hard to show that whenever|x| < 1 we
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Figure 14.13

have

(
x2 − 2 (cosα)x+ 1

) ∞∑
n=0

(sin (n+ 1)α)xn = sinα,

and we conclude that if|x| < 1, we have

f(x) =
∞∑
n=0

sin (n+ 1)α

sinα
xn.

Therefore the Maclaurin series of this functionf is∑ sin (n+ 1)α

sinα
xn,

and the series converges tof(x) whenever|x| < 1. To see that the radius of
convergence of this series is1 we shall observe that the series diverges when
x = 1 and, for this purpose, we shall show thatsinnα does not approach0
asn → ∞. To obtain a contradiction, assume that

lim
n→∞

sinnα = 0.

Then we have

lim
n→∞

2 sinα cosnα = lim
n→∞

(sin (n+ 1)α− sin (n− 1)α) = 0

and sincesinα 	= 0, we deduce thatcosnα → 0 asn → ∞. However, the
identity cos2 nα + sin2 nα = 1 makes it impossible for bothsinnα and
cosnα to approach0 asn → ∞. This is the desired contradiction.
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We conclude that, although the functionf has derivatives of all orders
at every real number, its Maclaurin series converges only in the interval
(−1, 1).

6. In this example we define

f(x) =

{
exp
(− 1

x2

)
if x 	= 0

0 if x = 0.

The graph of this function is illustrated in Figure 14.14.Our purpose in this

0

0.2

0.4

0.6

0.8

1

-10 -5 5 10

Figure 14.14

example is to demonstrate that this functionf has the interesting property
thatf (n) (0) = 0 for everyn, and so the Maclaurin series off is the series∑

0xn. Thus, althoughf has derivatives of all orders at every real number,
and although the Maclaurin series off converges at every real number, the
series

∑
0xn fails to converge to the valuef(x), except at the number0.

To help us find the derivatives off at0, we shall begin by showing that ifg
is any polynomial, then

lim
x→0

g

(
1

x

)
exp

(
− 1

x2

)
= 0.

If this limit is taken from the right, then, by substitutingu = 1/x, we obtain
it as

lim
u→∞

g(u)

exp (u2)
,

which can easily be shown to be zero using L’Hôpital’s rule. If the limit is
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taken from the left, then, by substitutingu = −1/x, we obtain it as

lim
u→∞

g(−u)

exp (u2)

which is also zero.
We now observe that ifx 	= 0, we have

f ′(x) =
2

x3
exp

(
− 1

x2

)
.

Therefore

f ′′(0) = lim
x→0

f ′(x)− 0

x
= lim

x→0

2

x4
exp

(
− 1

x2

)
= 0.

Furthermore, since

f ′′(x) =
(
− 6

x4
+

4

x6

)
exp

(
− 1

x2

)

wheneverx 	= 0, we have

f (3)(0) = lim
x→0

f ′′(x)− 0

x
= lim

x→0

(
− 6

x5
+

4

x7

)
exp

(
− 1

x2

)
= 0;

and, in general, ifn is any nonnegative integer, then the expressionf (n)(x)
has the form

hn

(
1

x

)
exp

(
− 1

x2

)
,

wherehn is a polynomial, and the fact thatf (n)(0) = 0 for everyn follows
from the fact that for eachn we have

lim
x→0

f (n)(x)− 0

x
= lim

x→0

hn

(
1
x

)
exp
(− 1

x2

)− 0

x

= lim
x→0

(
1

x
hn

(
1

x

))
exp

(
− 1

x2

)
= 0.

14.4.12 Some Exercises on Power Series

1. Find the radius of convergence and the interval of convergence of each of the
following series:
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(a)
∑ (n!)2 xn

(2n)!
.

(b)
∑ ((2n)!)xn

(n!)2
.

(c)
∑ (n!)xn

nn
.

(d)
∑ nnxn

n!
.

2. Given thatc 	= 1 and that

f(x) =
1

1− x

wheneverx 	= 1, expand the functionf in a power series with centerc and
find the interval of convergence of this series.

3. Does a power series have to have the same interval of convergence as its
derived series?

4. Suppose thatf andg are given functions, thatc is a given number, and that
r > 0. Suppose that both of the functionsf andg are the sums of their
Taylor series at every numberx in the interval(c− r, c+ r). Suppose finally
that there exists a numberδ > 0 such thatf(x) = g(x) wheneverx belongs
to the interval(c− δ, c+ δ).

c − r c + rc − δ c + δc
Prove thatf(x) = g(x) for every numberx in the interval(c− r, c+ r).

5. True or false? Iff andg have derivatives or all orders in a neighborhood of
a numberc, and iff (n)(c) = g(n)(c) for every nonnegative integern, then
we havef(x) = g(x) for every numberx sufficiently close toc.

6. UseScientific Notebook to calculate a variety ofnth partial sums of the
Maclaurin series of the functionf defined by the equation

f(x) =
ex sinx

1 + x6

for every real numberx. Then useScientific Notebook to plot some of these
nth partial sums with the graph off on the interval[−2, 2] and explore the
accuracy of these partial sums as approximations tof on the interval.
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14.5 Power Series Expansion of the Exponential Function

14.5.1 The Maclaurin Series of the Exponential Function
We recall that the exponential functionexp that was introduced in Chapter 10
is a strictly increasing function onR, that the range of the functionexp is the
interval(0,∞), and that for every real numberx we have

exp′(x) = exp(x).

Since

exp(n)(0) = exp(0) = 1

for every nonnegative integern, we see at once that the Maclaurin series of the
functionexp is ∑ 1

n!
xn,

and we see from d’Alembert’s test that this series converges at every real number.
In this section we shall show that the Maclaurin series of the functionexp actually
converges toexpx for every real numberx.

14.5.2 Summing the Maclaurin Series of the Function exp

We begin by giving a name to the sum of this Maclaurin Series. We define

f(x) =
∞∑
n=0

xn

n!

for every real numberx and our task is to show that the equationf (x) = expx
holds for every numberx. Since the radius of convergence of the series

∑
xn/n!

is ∞, we know from Theorem 14.4.8 thatf is differentiable onR and that for
every real numberx we have

f ′(x) =
∞∑
n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
= f(x).

We see also thatf(0) = 1. We now define

g(x) =
f(x)

exp(x)

for every real numberx. In order to show thatexpx = f(x) for every number
x, we need to show thatg is the constant function1. Now for every numberx it
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follows from the quotient rule that

g′(x) =
f ′(x) exp(x)− f(x) exp′(x)

(exp(x))2
=

f(x) exp(x)− f(x) exp(x)

(exp(x))2
= 0

and sog is certainly constant. Sinceg(0) = 1 we conclude thatg is the constant
function1, and we conclude that

expx =
∞∑
n=0

xn

n!

for every numberx.

14.5.3 Some Exercises on the Series Expansion of exp

1. Prove that ifc andx are any real numbers, then

exp(x) =
∞∑
n=0

ec

n!
(x− c)n .

2. Prove that ∫ 1

0

e−x2dx =
∞∑
n=0

(−1)n

(2n+ 1) (n!)
.

3. Show that even before we have showed that the functionf defined in the
proof of Theorem 14.5.2 is the exponential functionexp we could have
seen from the binomial theorem and Cauchy’s theorem on products of series
(Theorem 12.10.4) that for all numbersx andy we have

f(x)f(y) = f(x+ y).

4. (a) Prove that

e =
∞∑
n=0

1

n!
.

(b) Prove that ifm is any positive integer, then the number

(m!)
m∑
j=0

1

j!
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is an integer and prove that

0 < (m!)
∞∑

j=m+1

1

j!
< 1.

(c) Prove that ifm is any positive integer, then the number(m!) e is not
an integer and deduce that the numbere is irrational.

14.6 Binomial Series

14.6.1 Introduction to the Binomial Function
Given any real numberα, thebinomial function with exponentα is the function
Bα defined by the equation

Bα(x) = (1 + x)α

whenever the right side is defined. In the event thatα is a nonnegative integer, the
right side is a polynomial and is defined at every numberx. For other values of
α we may have to make restrictions. For example, ifα < 0, we need to avoid the
possibilityx = −1; and ifα is not an integer, we may need to requirex > −1
to ensure that1 + x is positive. We also deduce from the results of Section 10.6
that wheneverx > −1 we have

B′
α(x) = α (1 + x)α−1

and, more generally, ifn is any positive integer, then

B(n)
α (x) = α (α− 1) (α− 2) · · · (α− n+ 1) (1 + x)α−n .

From this observation we conclude that the Maclaurin series of the binomial
functionBα is ∑ α (α− 1) (α− 2) · · · (α− n+ 1)

n!
xn

and, following the notation that we introduced in Example 3 of Subsection 12.7.9,
we define thebinomial coefficient

(
α

n

)
=




α (α− 1) (α− 2) · · · (α− n+ 1)

n!
if n is a positive integer

1 if n = 0
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The Maclaurin series of the binomial functionBα is therefore∑(
α

n

)
xn,

which we call thebinomial series with exponentα, and the natural question to
ask is whether the equality

(1 + x)α =
∞∑
n=0

(
α

n

)
xn

holds for certain values ofx.

14.6.2 Binomials with Nonnegative Integer Exponents
Suppose thatα is a nonnegative integer. Since the functionBα is a polynomial
with degreeα, we can choose numbersa0, a1, · · · , aα such that the equation

Bα(x) =
α∑

j=0

ajx
j

holds for every numberx. For eachn we can differentiate both sidesn times to
obtain

α (α− 1) (α− 2) · · · (α− n+ 1) (1 + x)α−n

=
α∑

j=n

ajj (j − 1) · · · (j − n+ 1)xj−n

and, puttingx = 0, we obtain

an =
α (α− 1) (α− 2) · · · (α− n+ 1)

n!
=

(
α

n

)
.

Thus the equation

(1 + x)α =
α∑

n=0

(
α

n

)
xn

holds for every numberx. This equation is the standard algebraic form of the
binomial theorem. Note, however, that, becauseα is a nonnegative integer, the
binomial coefficient

(
α
n

)
must be zero whenevern > α, because one of the

factors in the product

α (α− 1) (α− 2) · · · (α− n+ 1)



444 Chapter 14 Sequences and Series of Functions

must beα−α. Therefore we have the option of writing the binomial theorem in
the form

(1 + x)α =
∞∑
n=0

(
α

n

)
xn

even though this summation is not really infinite.

14.6.3 Convergence of the Binomial Series
Suppose thatα is a real number but is not a nonnegative integer. Since

∣∣(α
n

)∣∣ is
positive for everyn, we can use d’Alembert’s test to find the radius of conver-
gence of the series

∑(α
n

)
xn. In fact, since

lim
n→∞

∣∣( α
n+1

)
xn+1

∣∣∣∣(α
n

)
xn
∣∣ = lim

n→∞

∣∣( α
n+1

)
xn+1

∣∣∣∣(α
n

)
xn
∣∣ = lim

n→∞
n− α

n+ 1
|x| = |x| ,

we deduce that the radius of convergence of this series is1. We also know from
Example 3 of Subsection 12.7.9 that the interval of convergence is as described
in the following table.

Location of the numberα α > 0 −1 < α < 0 α ≤ −1

Interval of convergence of
∑(α

n

)
xn [−1, 1] (−1, 1] (−1, 1)

14.6.4 A Technical Fact About Binomial Coefficients
Suppose that α is any real number and that n is a nonnegative integer. Then

(n+ 1)

(
α

n+ 1

)
+ n

(
α

n

)
= α

(
α

n

)
.

We leave the proof of this algebraic fact as a simple exercise.

14.6.5 The Behavior of the Sum of a Binomial Series
Suppose that α is any real number and that

f(x) =
∞∑
n=0

(
α

n

)
xn

whenever |x| < 1. Then whenever |x| < 1 we have

(1 + x) f ′(x) = αf(x).
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Proof. Whenever|x| < 1 we have

(1 + x) f ′(x) = (1 + x)
∞∑
n=1

(
α

n

)
nxn−1 =

∞∑
n=1

(
α

n

)
nxn−1 +

∞∑
n=1

(
α

n

)
nxn

=
∞∑
n=0

(
α

n+ 1

)
(n+ 1)xn +

∞∑
n=1

(
α

n

)
nxn

=

(
α

1

)
+

∞∑
n=1

(
(n+ 1)

(
α

n+ 1

)
+ n

(
α

n

))
xn

= α

(
α

0

)
+

∞∑
n=1

α

(
α

n

)
xn = α

∞∑
n=0

(
α

n

)
xn = αf(x). �

14.6.6 The Sum of a Binomial Series
Suppose that α is any real number. Then at any number x at which the binomial
series

∑(α
n

)
xn converges we have

(1 + x)α =
∞∑
n=0

(
α

n

)
xn.

Proof. We define

f(x) =
∞∑
n=0

(
α

n

)
xn

and we define

g(x) =
f(x)

(1 + x)α

whenever|x| < 1. We shall show thatg is the constant function1. Since

g′(x) =
f ′(x) (1 + x)α − f(x)α (1 + x)α−1

(1 + x)2α

=
f ′(x) (1 + x) (1 + x)α−1 − f(x)α (1 + x)α−1

(1 + x)2α

=
αf(x) (1 + x)α−1 − f(x)α (1 + x)α−1

(1 + x)2α
= 0
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for eachx, we know thatg is constant on(−1, 1), and, sinceg(0) = 1, this
constant must be1. We conclude that the equation

f(x) =
∞∑
n=0

(
α

n

)
xn

holds whenever|x| < 1, and the extension of this equation to any endpoint of
the interval(−1, 1) at which the series converges follows from Abel’s theorem
(Theorem 12.7.7).�

14.6.7 Some Exercises on Binomial Series

1. Given thatα > −1, prove that

2α =
∞∑
n=0

(
α

n

)
.

2. Given thatα > 0, prove that

∞∑
n=0

(−1)n
(
α

n

)
= 0.

3. Given thatα andβ are any real numbers and|x| < 1, apply Cauchy’s
theorem on products of series (Theorem 12.10.4) to the Maclaurin expansions
of (1 + x)α and(1 + x)β to deduce that the equation

n∑
j=0

(
α

n− j

)(
β

j

)
=

(
α+ β

n

)

holds for every positive integern.
4. In this exercise we define

Aα
n =

(α+ 1) (α+ 2) · · · (α+ n)

n!

wheneverα > −1 andn is a positive integer. We also defineAα
0 = 1.

(a) Prove that ifα > −1 andn is a nonnegative integer, we have(−α− 1

n

)
= (−1)nAα

n.

(b) Use Exercise 3 to prove that ifα andβ are greater than−1 andn is a
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nonnegative integer, then

n∑
j=0

Aα
n−jA

β
j = Aα+β+1

n .

(c) Prove that ifα andn are nonnegative integers, then

Aα
n =

(n+ 1) (n+ 2) · · · (n+ α)

α!
,

where the numerator of the right side is understood to be1 whenα = 0.
(d) Prove that ifα, β, andn are nonnegative integers, we have

n∑
j=0

(
(n− j + 1) · · · (n− j + α)

α!

)(
(j + 1) · · · (j + β)

β!

)

=
(n+ 1) · · · (n+ α+ β + 1)

(α+ β + 1)!
.

5. (a) Prove that if

f(x) =
√
1− x

whenever0 ≤ x ≤ 1, then there exists a sequence of polynomials that
converges uniformly tof on the interval[0, 1].

(b) Prove that iff is the function defined in part a and if

g(x) = f
(
1− x2

)
whenever−1 ≤ x ≤ 1, then there exists a sequence of polynomials that
converges uniformly tog on the interval[−1, 1].

(c) Prove that ifg(x) = |x| for all x ∈ [−1, 1], then there exists a sequence
of polynomials that converges uniformly tog on the interval[−1, 1].

(d) UseScientific Notebook to calculate somenth Maclaurin
polynomials of the functionf defined in part a. For each chosen value
of n, if fn is thenth Maclaurin polynomial, andhn(x) = fn (1− x2)
for eachx, askScientific Notebook to sketch the graph of the function
h together with the graph of the absolute value function and observe
graphically that the sequence(hn) is converging uniformly to the
absolute value function on the interval[−1, 1]. The casen = 35 is
illustrated in Figure 14.15.

This exercise is of considerable importance because it may be used as the
starting point for a major theorem known as theStone-Weierstrass theorem.
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Figure 14.15

You can find an elementary presentation of the Stone-Weierstrass theorem in
Rudin [26], starting with Corollary 7.27.

14.7 The Trigonometric Functions

14.7.1 The Precalculus Approach to the Trigonometric Functions
In an elementary mathematics course, the trigonometric functionscos andsin are
introduced as the coordinates of a point at the end of a “terminal line” of a given
“angle”. The typical approach is to say that, ifθ is any given real number and if
P (θ) is defined to be the point on the unit circle to which one would arrive by
starting at the point(1, 0) and traveling around the circle through a total distance
of θ, counterclockwise ifθ is positive and clockwise ifθ is negative, thencos θ
andsin θ are the coordinates of the pointP (θ). The approach is illustrated in
Figure 14.16.

Ideally, we would have liked to base the presentation of the trigonometric
functions in this book on the elementary approach. By doing so, we would
demonstrate that the elementary approach can be made precise. But, unfortu-
nately, the process of writing the elementary approach precisely presents us with
several technical hurdles. The problem lies in the definition of the pointP (θ),
because even after we have sorted out what we ought to mean by “counterclock-
wise”, we still have to describe the process of winding around the circle until the
arclength we have travelled isθ. And this process is complicated, even ifθ is
small and positive. From the perspective of elementary calculus, the arclength
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P( )  =  (cos   , sin  )

(1,0)

θ  θ θ

Figure 14.16

along the semicircle

x =
√
1− y2

in a counterclockwise direction from the point(1, 0) to a given point(x1, y1) in
the first quadrant, as depicted in Figure 14.17, is given by the integral

(1,0)

(x1,y1)

Figure 14.17

∫ y1

0

√
1 +

(
dx

dy

)2

dy =

∫ y1

0

√√√√1 +

(
−y√
1− y2

)2

dy =

∫ y1

0

1√
1− y2

dy,
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which, from the perspective of elementary calculus, comes out asarcsin y1.
Therefore, if we want to approach the trigonometric functions by giving a precise
description of the elementary definition,we must begin by defining the function
arcsin as an integral.

We see therefore that a precise description of the elementary approach to
trigonometry can be rather involved, and so we shall not try to give one. Instead,
we shall keep in mind the two following fundamental properties of the functions
sin andcos.

• For every numberx we havesin′ x = cosx andcos′ x = − sinx.
• sin 0 = 0 andcos 0 = 1.

We shall use an infinite series approach to provide us with two functions that
have these fundamental properties and we shall show that there can be only one
such pair of functions. We begin with a simple lemma that will help us to show
that these functions are unique.

14.7.2 Summing the Squares
Suppose that f and g are functions defined on the set R and that the equations
f ′ (x) = g(x) and g′(x) = −f(x) hold for every number x. Then the function
f2 + g2 is constant.

Proof. We define

h(x) = (f(x))2 + (g(x))2

for every numberx and we observe that ifx is any real number, then

h′(x) = 2f(x)f ′(x) + 2g(x)g′(x) = 2f(x)g(x)− 2f(x)g(x) = 0.

Therefore the functionh must be constant.�

14.7.3 Trigonometric Pairs of Functions
We shall say that a pair of functionss andc form a trigonometric pair if the
following conditions hold:

1. The functionss andc are differentiable on the entire number lineR and for
every real numberx we haves′(x) = c(x) andc′(x) = −s(x).

2. s(0) = 0 andc(0) = 1.

14.7.4 Uniqueness of the Trigonometric Pair
There cannot exist more than one trigonometric pair of functions.

Proof. Suppose thats1 andc1 form a trigonometric pair and thats2 andc2 also
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form a trigonometric pair. Since

(s1 − s2)
′ = c1 − c2 and (c1 − c2)

′ = − (s1 − s2) ,

we know that the function

(s1 − s2)
2 + (c1 − c2)

2

must be constant. Therefore, ifx is any real number, we have

(s1(x)− s2(x))
2+(c1(x)− c2(x))

2 = (s1(0)− s2(0))
2+(c1(0)− c2(0))

2 = 0,

and we deduce thats1 = s2 andc1 = c2. �

14.7.5 The Existence of a Trigonometric Pair
In this subsection we shall define two functionss andc that form a trigonometric
pair. In order to motivate the definition, suppose for the moment that we already
have two such functions.

We observe that

s(0) = 0 c(0) = 1
s′(0) = c(0) = 1 c′(0) = −s(0) = 0
s′′(0) = −s(0) = 0 c′′(0) = −c(0) = −1
s(3)(0) = −c(0) = −1 c(3)(0) = s(0) = 0
s(4)(0) = s(0) = 0 c(4)(0) = c(0) = 1

after which the cycle is repeated. Thus the Maclaurin series fors is

∑ s(n)(0)

n!
xn = x− x3

3!
+

x5

5!
− · · · =

∑ (−1)n x2n+1

(2n+ 1)!
,

and the Maclaurin series forc is∑ c(n)(0)

n!
xn = 1− x2

2!
+

x4

4!
− · · · =

∑ (−1)n x2n

(2n)!
.

Note that each of these series is convergent for every real numberx. With these
observations in mind we define

cosx =
∞∑
n=0

(−1)n x2n

(2n)!

and

sinx =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
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for every real numberx. From the theorem on differentiation power series term
by term we see easily that these functions form a trigonometric pair.

14.7.6 Some Facts About cos and sin

1. Given any numberx, we havecos (−x) = cosx andsin (−x) = − sinx.
2. Given any numberx, we havecos2 x+ sin2 x = 1.
3. Given any numbersa andb, we have

cos (a− b) = cos a cos b+ sin a sin b

sin (a− b) = sin a cos b− cos a sin b

cos (a+ b) = cos a cos b− sin a sin b

sin (a+ b) = sin a cos b+ cos a sin b.

Proof. Parts 1 and 2 follow at once from the preceding observations. To prove
the first two identities of part 3 we suppose thatb is a given real number and for
every numberx we define

f(x) = sin (x− b)− (sinx cos b− cosx sin b)

and

g(x) = cos (x− b)− (cosx cos b+ sinx sin b) .

Sincef ′ = g andg′ = −f , we know thatf2 + g2 is constant. Therefore, for
every numberx we have

(f(x))2 + (g(x))2 = (f(0))2 + (g(0))2 = 0,

and we conclude that each of the functionsf andg is the constant0. The other
two identities now follow from the usual methods.�

14.7.7 Zeros of the Cosine Function
In this subsection we shall show that there is a positive numberx such that
cosx = 0. Sincecos 0 = 1, the desired result will follow from Bolzano’s
intermediate value theorem (Theorem 8.10.2) if we can show thatcos 2 < 0. We
observe that

cos 2 = 1− 22

2!
+

∞∑
n=2

(−1)n 22n

(2n)!
= −1 +

∞∑
n=2

(−1)n 22n

(2n)!
,

and the fact that this number is negative follows from Theorem 12.7.6, which
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may be used to show that

∞∑
n=2

(−1)n 22n

(2n)!
≤ 2

3
.

14.7.8 The Number π
Since the set

{x > 0 | cosx = 0}
is nonempty, closed, and bounded below, it has a least member. We defineπ to
be twice the least member of this set. Thusπ/2 is the least positive number at
which the functioncos takes the value0.

14.7.9 The Periodic Behavior of the Functions sin and cos

We begin this discussion by looking at the behavior of the functionscos and
sin on the interval[0, π/2]. Sincecos 0 = 1 and cosx is never zero when
x ∈ [0, π/2), it follows from the continuity ofcos that cosx > 0 for every
x ∈ [0, π/2). From the fact thatsin′ = cos, we deduce thatsin is strictly
increasing on the interval[0, π/2] and thatsinx > 0 wheneverx ∈ (0, π/2].
From the fact that

sin2 π

2
= 1− cos2

π

2
= 1

we conclude thatsinπ/2 = 1. Finally, sincecos′ = − sin, the functioncos is
strictly decreasing on the interval[0, π/2]. Figure 14.18 illustrates the behavior
of cos andsin on the interval[0, π/2].

We now discuss the behavior ofcos andsin on the interval[π/2, π], and for
this purpose we shall use the identities

cos
(π
2
+ x
)
= − sinx and sin

(π
2
+ x
)
= cosx,

which follow directly from Theorem 14.7.6. From the first of these two identities
and the fact that sin increases from0 to 1 on the interval[0, π/2] we see that
cos decreases from0 to −1 on the interval[π/2, π]. In the same way, sincecos
decreases from1 to 0 on the interval[0, π/2], it follows from the second identity
that sin decreases from1 to 0 on the interval[π/2, π]. Figure 14.19 illustrates
the behavior ofcos andsin on the interval[π/2, π].

We can now turn our attention to the interval[π, 2π], using the identities

sin (π + x) = − sinx and cos (π + x) = − cosx,
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Figure 14.18

and, continuing in this way, one may verify all of the usual relationships between
the functionscos andsin and the numberπ. In particular, one may see thatcos
andsin are periodic functions with period2π. It would be a good exercise for
you to write a careful and complete argument showing how all of the familiar
properties ofcos andsin can be made to follow from their definitions.

14.7.10 Exercises on the Trigonometric Functions

1. Given any real numberx, prove thatsinx = 0 if and only if x is an
integer multiple ofπ. Prove thatcosx = 0 if and only if x is an odd multiple
of π/2. Prove that ifn is any integer, thencosnπ = (−1)n.

2. Prove that ifα is any real number, then the equation

sin (x+ α) = sinx

holds for every real numberx if and only ifα is an even multiple ofπ.
3. Prove that the restriction of the functionsin to the interval[−π/2, π/2]

is a strictly increasing function from[−π/2, π/2] onto the interval[−1, 1].
Prove that if the functionarcsin is now defined to be the inverse function of
this restriction ofsin, then for every numberu ∈ (−1, 1) we have

arcsinu =

∫ u

0

1√
1− t2

dt.
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Figure 14.19

4. By analogy with the preceding exercise, give a definition of the function
arctan and deduce that ifu is any real number, then

arctanu =

∫ u

0

1

1 + t2
dt.

5. Prove that the restriction of the functioncos to the interval[0, π] is a strictly
decreasing function from the interval[0, π] onto the interval[−1, 1]. Prove
that if the functionarccos is now defined to be the inverse function of this
restriction ofcos, then for every numberu ∈ (−1, 1) we have

arccosu =
π

2
−
∫ u

0

1√
1− t2

dt.

6. Prove that ifx andy are real numbers that are not both zero and if

α = arccos

(
x√

x2 + y2

)
,

then

sinα = ± y√
x2 + y2

.

Deduce that ifx andy are real numbers that are not both zero, then
there exists a positive numberr and a real numberθ ∈ [0, 2π) such that
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x = r cos θ andy = r sin θ.

14.8 Analytic Functions of a Real Variable
As we saw in Example 6 of Subsection 14.4.11, a function that has derivatives
of all orders in a neighborhood of a numberc cannot always be expressed as
the sum of a power series centered atc. We mentioned earlier that this sort of
pathological behavior is in sharp contrast to the way functions behave when we
are working in the complex number system. The functions that do not exhibit this
sort of pathological behavior are said to beanalytic. More precisely, a function
f is said to be analytic on an open setU if, for every numberc ∈ U , there exists
a numberδ > 0 and a sequence(an) of numbers such that the equation

f(x) =
∞∑
n=0

an (x− c)n

holds wheneverx ∈ (c− δ, c+ δ).
From the observations that we made inSubsection 14.4.9, we see that a func-

tion f is analytic in an open setU if and only if for every numberc ∈ U there
exists a numberδ > 0 such that the equation

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n

holds wheneverx ∈ (c− δ, c+ δ).
In this optional section we explore some of the main facts about analytic

functions, and we demonstrate that many of the standard functions that we have
encountered are analytic. If you would like to read this material, you can access
it from the on-screen version of this book by clicking on the icon .

14.9 The Inadequacy of Riemann Integration
We end this chapter with some optional reading that is designed to convey some
understanding of the inadequacy of Riemann integration as an integration concept
in modern analysis.

Every theory of integration begins with the integration of step functions and
is then extended to other types of functions by some sort of limit process. We saw
one such process in Chapter 11, where we encountered the notion of a Riemann
integral. As we saw there, a bounded functionf is Riemann integrable if it can
be approximated above and below by step functions whose integrals are close to
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each other. That approach was the mainstay of nineteenth-century mathematics,
but it did not extend into the twentieth century because the method of approximat-
ing functions by step functions in the Riemann theory is too restrictive. During
the twentieth century new and more powerful theories of integration arose, be-
ginning in 1901 with the theory developed by Henri Lebesgue. Such theories are
beyond our scope, but you can find a short discussion in the on-screen version of
the book that motivates the need for something better than the Riemann theory.
To reach that discussion, click on the icon .



Chapter 15
Calculus of a Complex Variable

(Optional)

This optional chapter will introduce youto some of the elementary properties of
sequences, limits, continuity, and derivatives in the systemC of complex
numbers. In order to read this chapter youshould be comfortable with the notion
of limits and continuity in the Euclidean planeR2, which is, after all, what the
systemC really is. You will certainly have the needed familiarity with limits in
R2 if you have read the chapter on metric spaces and the chapter on
sequences in metric spaces, although those chapters may supply more than you
need here. To access this chapter from theon-screen version of the book, click
on the icon .
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Chapter 16
Integration of Functions

of Two Variables

16.1 The Purpose of This Chapter

In this chapter we study integrals of the form∫ b

a

f(x, y)dx.

In an expression of this type, the functionf is defined on a set of points(x, y)
in the Euclidean planeR2 and we are integrating with respect tox with y held
constant. For example,∫ 2

1

yexydx = exy
∣∣∣x=2

x=1
= e2y − ey.

Since this expression involves only the variabley, we can differentiate or inte-
grate it with respect toy. For example,

d

dy

∫ 2

1

yexydx =
d

dy

(
e2y − ey

)
= 2e2y − ey

and ∫ 1

0

∫ 2

1

yexydxdy =

∫ 1

0

(
e2y − ey

)
dy =

1

2
e2 − e+

1

2
,

and so a natural question that we can ask is whether the operations with respect
to x andy can be interchanged. In other words, we could ask whether

d

dy

∫ 2

1

yexydx =

∫ 2

1

∂

∂y
yexydx

and ∫ 1

0

∫ 2

1

yexydxdy =

∫ 2

1

∫ 1

0

yexydydx,

and, if you care to evaluate these expressions, you will see that the latter two
equations are true. Notice that in each of the four expressions that appear in these

459
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equations, the inside operation takes place with respect to one of the variablesx
andy with the other held constant.

In this chapter we shall introduce thenotation precisely and we shall show
that identities of the type

d

dy

∫ b

a

f(x, y)dx =

∫ b

a

∂

∂y
f(x, y)dx

and ∫ d

c

∫ b

a

f(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)dydx

hold for a wide variety of functions. We shall see that such identities sometimes
hold even when the integrals are improper.

16.2 Functions of Two Variables

16.2.1 Vertical and Horizontal Sections of a Plane Set
As we said in Subsection 4.2.8, theEuclidean plane, which we write asR2, is
defined to be the set of all ordered pairs(x, y) of real numbers.

Now suppose thatS is a subset ofR2. Given any real numberx, thevertical
x-section of S is the set

Sx = {y ∈ R | (x, y) ∈ S} ,

and, given any real numbery, thehorizontal y-section of S is the set

Sy = {x ∈ R | (x, y) ∈ S} .

Vertical and horizontal sections are illustrated in Figure 16.1.

16.2.2 Some Examples of Sections of a Set

1. Suppose that

S = {(x, y) | 0 ≤ x ≤ 1 and0 ≤ y ≤ x} .

This set is illustrated in Figure 16.2. Given any numberx we have

Sx =

{
[0, x] if x ∈ [0, 1]

∅ if x ∈ R \ [0, 1] ,
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S

S
y

xS

Figure 16.1

x

y

Figure 16.2

and given any numbery we have

Sy =

{
[y, 1] if y ∈ [0, 1]

∅ if y ∈ R \ [0, 1] .

2. Suppose thatS is the circular sector illustrated in Figure 16.3. Given any
numberx we have

Sx =

{ [
3
4
x,
√
25− x2

]
if x ∈ [0, 4]

∅ if x ∈ R \ [0, 4] ,
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(4,3)

x

y

Figure 16.3

and given any numbery we have

Sy =



[
0, 4

3
y
]

if y ∈ [0, 3][
0,
√
25− y2

]
if y ∈ [3, 5]

∅ if y ∈ R \ [0, 5] .
3. Suppose thatA andB are any sets of numbers and thatS = A×B. We see

that

Sx =

{
B if x ∈ A

∅ if x ∈ R \A
and

Sy =

{
A if y ∈ B

∅ if y ∈ R \B.

16.2.3 Vertical and Horizontal Sections of a Function
Suppose thatf is a function defined on a subsetS of the Euclidean planeR2.
Given any numberx, thevertical x-section of f is the functionf(x, ·) that is
defined on the setSx by the equation

f(x, ·)(y) = f(x, y)

for every numbery ∈ Sx. This concept of a vertical section is a precise way
of saying that, if we holdx constant, then the expressionf(x, y) can be looked
upon as a “function ofy only”.
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Given any numbery, thehorizontal y-section is the functionf(·, y) that is
defined on the setSy by the equation

f(·, y)(x) = f(x, y)

for every numberx ∈ Sy.

16.2.4 Partial Derivatives
Suppose thatf is a function defined on a subsetS of the Euclidean planeR2.
Given any point(x, y) in the setS, the partial derivative D1f(x, y) of the
functionf at the point(x, y) is defined to be the limit

lim
u→x

f(u, y)− f(x, y)

u− x
,

as long as this limit exists. Another way of looking atD1f(x, y) is to say that
it is the derivative at the numberx of the functionf(·, y). The expressionD1f
stands for the function that has the valueD1f(x, y) at each point(x, y) at which
D1f(x, y) exists.

In the same way, the partial derivativeD2f(x, y) of the functionf at the
point (x, y) is defined to be the limit

lim
v→y

f(x, v)− f(x, y)

v − y

(as long as this limit exists), andD2f(x, y) is the derivative aty of the function
f(x, ·). The expressionD2f stands for the function that has the valueD2f(x, y)
at each point(x, y) at whichD2f(x, y) exists.

As you can see we have avoided the symbolism

∂f(x, y)

∂x
and

∂f(x, y)

∂y

because it is hard to make this sort of notation precise.

16.2.5 Partial and Iterated Riemann Integrals
Suppose thata, b, c, andd are given real numbers and thata < b andc < d.
Suppose thatf is a function defined on the rectangular set[a, b] × [c, d] that is
illustrated in Figure 16.1. Given any numbery ∈ [c, d], if the functionf(·, y) is
Riemann integrable on the interval[a, b], then we define thepartial integral∫ b

a

f(x, y)dx
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(a,c) (b,c)

(b,d)(a,d)

Figure 16.4

to be the integral on the interval[a, b] of the functionf(·, y). In the same way, if
x ∈ [a, b] and if the functionf(x, ·) is Riemann integrable on the interval[c, d],
then we define the partial integral∫ d

c

f(x, y)dy

to be the integral on the interval[c, d] of the functionf(x, ·).
In the event thatf(·, y) is integrable on[a, b] for every numbery ∈ [c, d], we

define theiterated integral (also called arepeated integral)∫ d

c

∫ b

a

f(x, y)dxdy =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy.

In the same way, iff(x, ·) is integrable on[c, d] for everyx ∈ [a, b], then we
define ∫ b

a

∫ d

c

f(x, y)dydx =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx.

All of these integrals have improper analogs that are defined in the obvious way.
For example, we define∫ →d

c

∫ →b

a

f(x, y)dxdy = lim
v→d−

∫ v

c

(
lim
u→b−

∫ u

a

f(x, y)dx

)
dy.

16.3 Continuity of a Partial Integral

In this section we show that if a functionf is defined on a set of the form[a, b]×
S, whereS is a set of real numbers, then, under certain conditions, the partial
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integral ∫ b

a

f(x, y)dx

will be as “continuous iny” as the functionf itself. In fact, we shall do a bit
better than this. We shall obtain our maintheorem for improper integrals of the
form

∫→b

a
.

16.3.1 The Continuity Theorem for Partial Riemann Integrals
Suppose that a and b are real numbers and a < b, that S is a set of real numbers,
and that f is a bounded function defined on the set [a, b] × S. Suppose that the
function f(·, y) is Riemann integrable on [a, b] for every y ∈ S and that

F (y) =

∫ b

a

f(x, y)dx

for every y ∈ S. Suppose that the function f(x, ·) is continuous on S for every
x ∈ [a, b]. Then F is continuous on S.

Instead of proving the theorem in this form, we shall prove the following
sharper version that applies to improper Riemann integrals.

16.3.2 The Continuity Theorem for Partial Improper Integrals
Suppose that −∞ < a < b ≤ ∞, that S is a set of real numbers, and that

f : [a, b)× S → R.

Suppose that the function f(·, y) is improper Riemann integrable on [a, b) for
every y ∈ S and that

F (y) =

∫ →b

a

f(x, y)dx

for every y ∈ S. Suppose that the function f(x, ·) is continuous on S for every
x ∈ [a, b) and suppose, finally, that there exists an improper Riemann integrable
function g on [a, b) such that

|f(x, y)| ≤ g(x)

for every point (x, y) ∈ [a, b)× S. Then F is continuous on S.

Proof. Suppose thaty ∈ S. To show that the functionF is continuous at the
numbery we shall use Theorem 8.7.6. Suppose that(yn) is a sequence in the
setS and thatyn → y asn → ∞. For every numberx ∈ [a, b) the continuity



466 Chapter 16 Integration of Functions of Two Variables

at the numbery of the functionf (x, ·) guarantees thatf(x, yn) → f(x, y) as
n → ∞. It therefore follows from Theorem 14.3.8 that

lim
n→∞

∫ →b

a

f(x, yn)dx =

∫ →b

a

f(x, y)dx. �

16.3.3 An Example Showing How Continuity Can Fail
We define

F (y) =

∫ 1

0←

x− y

(x+ y)3
dx.

We observe that

F (y) = − 1

(1 + y)2

whenevery > 0 but thatF (0) = ∞. Thus the functionF fails to be continuous
at0, in spite of the fact that the integrand is continuous iny for eachx ∈ (0, 1].

This example demonstrates the need in the continuity theorem, Theorem
16.3.2, for the existence of the functiong.

16.4 Differentiation of a Partial Integral
In this section we show that if a functionf is defined on a set of the form[a, b]×
S, whereS is a set of real numbers, then, under certain conditions we have the
identity that is often expressed in elementary calculus in the form

d

dy

∫ b

a

f(x, y)dx =

∫ b

a

∂

∂y
f(x, y)dx.

In fact we shall do a bit better than this. We shall obtain our main theorem for
improper integrals of the form

∫→b

a
, and then we shall derive another extension

of the theorem that is known as theLeibniz rule.

16.4.1 Differentiation of a Partial Riemann Integral
Suppose that a and b are real numbers and a < b, that S is an interval, and that
f is a function defined on the set [a, b] × S. Suppose that the partial derivative
D2f (x, y) exists for every point (x, y) ∈ [a, b] × S, that the function D2f is
bounded, and that both of the functions f(·, y) and D2f(·, y) are integrable on
[a, b] for every y ∈ S. Then, if we define

F (y) =

∫ b

a

f(x, y)dx
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for every y ∈ S, the function F is differentiable on S and for every y ∈ S we
have

F ′(y) =
∫ b

a

D2f(x, y)dx.

Instead of proving the theorem in this form we shall prove the following
sharper version that applies to improper Riemann integrals.

16.4.2 Differentiation of a Partial Improper Riemann Integral
Suppose that −∞ < a < b ≤ ∞, that S is an interval, and that f is a function
defined on the set [a, b)×S. Suppose that the partial derivative D2f (x, y) exists
for every point (x, y) ∈ [a, b) × S and that both of the functions f(·, y) and
D2f(·, y) are improper Riemann integrable on [a, b) for every y ∈ S. Suppose
finally that there exists an improper Riemann integrable function g on [a, b) such
that

|D2f(x, y)| ≤ g(x)

for every point (x, y) ∈ [a, b)× S.

Then, if we define

F (y) =

∫ →b

a

f(x, y)dx

for every y ∈ S, the function F is differentiable on S and for every y ∈ S we
have

F ′(y) =
∫ →b

a

D2f(x, y)dx.

Proof. Suppose thaty ∈ S. To obtainF ′(y) we shall make use of Theorem 9.3.6.
Suppose that(yn) is a sequence in the setS \ {y} and thatyn → y asn → ∞.
For every numberx ∈ [a, b) we know that

lim
n→∞

f(x, yn)− f(x, y)

yn − y
= D2f(x, y).

The idea of the proof is to use Theorem 14.3.8 to obtain

lim
n→∞

F (yn)− F (y)

yn − y
= lim

n→∞

∫ →b

a

f(x, yn)− f(x, y)

yn − y
dx =

∫ →b

a

D2f(x, y)dx,

and the validity of this method follows from the fact that ifx ∈ [a, b) andn is
a positive integer, then we can use the mean value theorem (Theorem 9.4.3) to
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choose a numbert betweeny andyn such that

f(x, yn)− f(x, y)

yn − y
= D2f (x, t)

from which we can deduce that∣∣∣∣f (x, yn)− f (x, y)

yn − y

∣∣∣∣ = |D2f (x, t)| ≤ g (x) .

16.4.3 The Leibniz Rule
Suppose that a and b are real numbers and a < b, that S is an interval, and
that f is a function defined on the set [a, b] × S. Suppose that the partial
derivative D2f(x, y) exists for every point (x, y) ∈ [a, b] × S, and that the
function D2f is bounded. Suppose that, for every number y ∈ S, the function
f(·, y) is continuous on [a, b] and the function D2f(·, y) is integrable on [a, b].
Suppose that u and v are differentiable functions on the interval S whose ranges
are included in the interval [a, b]. Then, if we define

F (y) =

∫ v(y)

u(y)

f(x, y)dx

for every y ∈ S, the function F is differentiable on S and for every y ∈ S we
have

F ′(y) =
∫ v(y)

u(y)

D2f(x, y)dx+ f(v(y), y)v′(y)− f(u(y), y)u′(y).

The proof of the Leibniz rule can be found in the on-screen version of the
text.

16.5 Some Applications of Partial Integrals

We suppose thatα is a given positive number and we define

F (y) =

∫ →∞

0

e−αx sinxy

x
dx

for every real numbery. As we mentioned in Subsection 13.4.7, this integral
is not improper at0. Although this integral is hard to evaluate directly, we can
evaluate it in the following way:
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Given anyx > 0 and any numbery we define

f(x, y) = e−αx sinxy

x
.

For all suchx andy we see that

D2f(x, y) = e−αx cosxy.

In view of the inequality

|D2f(x, y)| =
∣∣e−αx cosxy

∣∣ ≤ e−αx,

we can use Theorem 16.4.2 to obtain

F ′(y) =
∫ →∞

0

e−αx cosxydx.

The latter integral is easy to evaluate, and, by doing so, we obtain

F ′(y) =
α

α2 + y2
.

Therefore, for every numbery we have

F (y) = F (y)− F (0) =

∫ y

0

α

α2 + u2
du = arctan

( y
α

)
,

and, puttingy = 1, we obtain∫ →∞

0

e−αx sinx

x
dx = arctan

(
1

α

)
=

π

2
− arctanα.

It now seems reasonable to allowα to approach0 and obtain∫ →∞

0

sinx

x
dx = lim

α→0+

∫ →∞

0

e−αx sinx

x
dx =

π

2
− arctan 0.

To justify the latter step we recall from Subsection 13.4.7 that the integral∫ →∞

0

sinx

x
dx

is convergent and we apply Abel’s theorem for integrals (Theorem 13.4.6). We
have therefore shown that ∫ →∞

0

sinx

x
dx =

π

2
.
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16.6 Interchanging Iterated Riemann Integrals

In this section we present a very beautiful theorem of Fichtenholz that says,
essentially, that iterated Riemann integrals can always be interchanged. We shall
state the theorem in two forms:

16.6.1 First Form of Fichtenholz’s Theorem
Suppose that f is a bounded function on a rectangle [a, b] × [c, d]. Then the
identity ∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy

will hold as long as both sides exist as iterated Riemann integrals.

16.6.2 Second (Sharper) Form of Fichtenholz’s Theorem
Suppose that f is a bounded function on a rectangle [a, b]× [c, d]. Suppose that
the integral ∫ b

a

f(x, y)dx

exists for every number y ∈ [c, d] and that the integral∫ d

c

f(x, y)dy

exists for every number x ∈ [a, b]. Then we have∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy.

This second form of the theorem asserts that, as long as the inside integrals
exist on both sides of the preceding identity, the outside integrals will exist auto-
matically and, of course, the identity will hold.

16.6.3 A Note About Fichtenholz’s Theorem
One of the most interesting features of Fichtenholz’s theorem is that it is truly
a theorem about Riemann integrals. It has no analog for the more sophisticated
kinds of integral, such as the Lebesgue integral, that are used in modern math-
ematics. When one is working with the Lebesgue integral, it is easy to find
an example of a functionf defined on the rectangle[0, 1] × [0, 1] such that
0 ≤ f(x, y) ≤ 1 for each point(x, y) and such that, although the repeated
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Lebesgue integrals exist, we have

∫ 1

0

∫ 1

0

f(x, y)dxdy = 0 and

∫ 1

0

∫ 1

0

f(x, y)dydx = 1.

This is not to say that interchange ofiterated integrals is impossible in the
Lebesgue theory. In the Lebesguetheory there is a theorem known asFubini’s
theorem that tells us that if a function is integrable as a function of two variables
on a rectangle[a, b]× [c, d], then

∫∫
[a,b]×[c,d]

f =

∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy.

Fubini’s theorem asserts that the two iterated integrals are equal to one another
because each of them is equal to the 2-variable integral off on the rectangle. The
important difference between Fubini’s theorem and Fichtenholz’s theorem is that
Fichtenholz’s theorem makes no requirement about integrability of the function
as a function of two variables. As you know, we have not studied integrals of
functions of more than one variable. Youcan find such integrals in the optional
chapter on calculus of several variables that is available in the on-screen version
of this book.

Although the proof of Fichtenholz’s theorem is fairly easy, it relies on the
optional topic of Darboux’s theorem that was introduced in Section 11.9. Be-
cause Darboux’s theorem was optional, we shall make the proof of Fichtenholz’s
theorem optional as well. If you would like to read this proof, click on the icon

for a review of Darboux’s theorem and then click on the icon .

16.6.4 Failure of Fichtenholz’s Theorem for Improper Integrals
The examples contained in this subsection show that iterated improper integrals
cannot be interchanged as widely as ordinary Riemann integrals.

Observe that∫ 1

0←

∫ 1

0

x− y

(x+ y)2
dxdy = −1

2
and

∫ 1

0←

∫ 1

0

x− y

(x+ y)2
dydx = −1

2
.

You may also want to consider the integral∫ →∞

1

∫ →∞

1

x− y

(x+ y)2
dxdy
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and the integral ∫ →∞

1

∫ →∞

1

x2 − y2

(x2 + y2)2
dxdy.

Although the integrals in these examples are convergent, they do not converge
absolutely.

16.6.5 Fichtenholz’s Theorem for Nonnegative Functions
Suppose thatf is a nonnegative function on a rectangle[a, b)× [c, d). Then the
identity ∫ →b

a

∫ →d

c

f(x, y)dydx =

∫ →d

c

∫ →b

a

f(x, y)dxdy

will hold as long as both sides exist as iterated improper Riemann integrals.

16.6.6 Some Exercises on Iterated Riemann Integrals

1. Given that

f(x) =

∫ x

0

exp
(−t2

)
dt g (x) =

∫ 1

0

exp (−x2 (t2 + 1))

t2 + 1
dt

and given

h(x) = (f(x))2 + g(x)

for every real numberx, prove that the functionh must be constant. What is
the value of this constant? Deduce that∫ →∞

0

exp
(−x2

)
dx =

√
π

2
.

2. Given that

g(y) =

∫ →∞

0

exp
(−x2

)
cos 2xydx and f(y) = exp

(
y2
)
g(y)

for every real numbery, prove that the functionf must be constant. What is
the value of this constant?

3. Find an explicit formula for the integral∫ →∞

0

exp
(−x2

)
cos 2xydx.
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4. Evaluate the integral∫ →∞

0

∫ →∞

0

exp
(−x2

)
cos 2xydxdy.

What happens in this integral if we invert the order of integration?
5. Apply Fichtenholz’s theorem to the integral

∫→∞
0

∫→∞
0

f(x, y)dxdy, where

f(x, y) =

{
exp (−y3) if x < y2

0 if x ≥ y2.

Now evaluate the integral∫ →∞

0

∫ →∞

√
x

exp
(−y3

)
dydx.

6. (a) Express the integrand of the following integral in partial fractions and
show that ifx andy are positive numbers, then∫ →∞

0

1

(1 + t2x2) (1 + t2y2)
dt =

π

2 (x+ y)
.

(b) Apply Fichtenholz’s theorem (more than once) to the integral∫ 1

←0

∫ 1

0

π

2 (x+ y)
dxdy

and deduce that∫ →∞

0

(arctanx)2

x2
dx = π log 2.

(c) Evaluate the integrals∫ π/2

0

x2

sin2 x
dx and

∫ π/2

0

x cotxdx and

∫ π/2

←0

log sinxdx.

7. Prove that iff is a function defined on a rectangle[a, b) × [c, d), then the
identity ∫ →b

a

∫ →d

c

f(x, y)dydx =

∫ →d

c

∫ →b

a

f(x, y)dxdy

will hold as long as both sides exist as iterated improper Riemann
integrals and the left side converges absolutely. Hint: Use the fact that
f = (|f |+ f)− |f |.
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8. Given thatf is improper Riemann integrable on[0,∞), thata ≥ 0, and
thatg(u) = f(u − a) wheneveru > a, prove thatg is improper Riemann
integrable on the interval[a,∞) and that∫ →∞

←0

f(x)dx =

∫ →∞

←a

g(u)du.

9. In this exercise we suppose thatf andg are nonnegative improper Riemann
integrable functions on the interval(0,∞) and that the functionh is defined
on the set(0,∞)× (0,∞) by the equation

h(x, y) =

{
f(x− y)g(y) if y ≤ x

0 if y > x.

(a) Prove that∫ →∞

←0

∫ →∞

←0

h(x, y)dxdy =

∫ →∞

←0

∫ →∞

←y

f(x− y)g(y)dxdy

=

(∫ →∞

←0

f

)(∫ →∞

←0

g

)
.

(b) Apply Fichtenholz’s theorem for improper integrals to the first integral in
part a and deduce that the integral is equal to∫ →∞

←0

∫ →x

←0

f(x− y)g(y)dydx.

16.6.7 Some Exercises that Explore the Gamma Function
The exercises in this subsection can be used to develop most of the basic facts
about thegamma function and the relatedbeta function that were defined in
Exercise 2b of Subsection 13.3.3. In these exercises we assume thatα andβ
are given positive numbers. The expressionsΓ (α) andB (α, β) are defined as
follows:

Γ (α) =

∫ →∞

0←
xα−1e−xdx

B (α, β) =

∫ →1

0←
(1− t)α−1 tβ−1dt.

1. Apply Exercise 9 of Subsection 16.6.6 to the functionsf andg defined by
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the equations

f (x) = xα−1e−x and g (x) = xβ−1e−x

for all x > 0. Deduce that

Γ (α) Γ (β) =

∫ →∞

0←

∫ →x

0←
e−x (x− y)α−1 yβ−1dydx.

2. By making the substitutiony = ux in the inside integral in Exercise 1,
deduce that

Γ (α) Γ (β) = Γ (α+ β)B (α, β) .

3. Apply the method of integration by parts to the integral that definesΓ (α)
and deduce that

Γ (α+ 1) = αΓ (α) .

4. Make the substitutiont = sin2 y in the definition of the beta function and
deduce that

B (α, β) = 2

∫ →π/2

0←
sin2α−1 θ cos2β−1 θdθ.

5. Use Exercise 4 to evaluateB
(
1
2
, 1
2

)
and deduce that

Γ

(
1

2

)
=

√
π.

6. Make the substitutiont = u2 in the definition ofΓ (α) and deduce that

Γ (α) = 2

∫ →∞

0←
u2α−1 exp

(−u2
)
du,

and then use Exercise 5 to find another way of showing that∫ →∞

0←
exp
(−x2

)
dx =

√
π

2
.

Recall that we obtained this identity in Exercise 1 of Subsection 16.6.6.
7. With an eye on the exercises in Subsection 11.13.5, prove that ifp > −1,

then ∫ →π

0←
sinp θdθ = 2

∫ π/2

0←
sinp θdθ =

√
πΓ
(
p+1
2

)
Γ
(
p
2
+ 1
) .
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8. Prove that

B (α,α) = 21−2αB

(
α,

1

2

)

and deduce that

√
πΓ (2α) = 22α−1Γ (α) Γ

(
α+

1

2

)
.

9. Prove that ∫ →π/2

0

√
tanxdx =

π√
2

.

10. In this exercise we define

φ(p) =

∫ π

0

sinp θdθ

wheneverp > 0.

(a) Prove thatφ is a decreasing function on the interval(0,∞).
(b) Prove that

lim
p→∞

φ(2p+ 2)

φ(2p)
= 1.

(c) Combine the first two parts of this question and deduce that

lim
p→∞

φ(2p+ 1)

φ(2p)
= 1.

(d) Prove that

lim
p→∞

4pΓ2 (p+ 1)√
pΓ (2p+ 1)

=
√
π.

This assertion is known asWallis’s formula
(e) Assuming thatp is restricted to be a positive integer, rewrite Wallis’s

formula in terms of factorials.
11. The purpose of this exercise is to encourage you to read a proof of an

interesting theorem known asStirling’s formula, which states that

lim
x→∞

Γ (x+ 1)

xxe−x
√
x
=

√
2π.
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Note that ifn is a large positive integer, then Stirling’s formula suggests that
an approximate value forn! is

√
2πnnn

en
.

The proof of Stirling’s formula that is provided with a link at this point in
the on-screen version of the text is based on a proof that is provided on page
195 of Walter Rudin’s classic text [26]. The proof provided here is actually
a little simpler because it makes use of the improper integral form of the
bounded convergence theorem (Theorem 14.3.8).



Chapter 17
Sets of Measure Zero (Optional)

This optional chapter introduces the concept ofmeasure zero and uses this con-
cept to prove some deeper theorems on Riemann integration that cannot be proved
in Chapter 11. To reach this chapter from the on-screen version of the book, click
on the icon .
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Chapter 18
Calculus of Several Variables (Optional)

This optional chapter introduces differentiation and integration of functions of
several variables and goes on to presentthe inverse function and implicit function
theorems for several variables and the change of variable theorem for multiple
integrals. To reach this chapter from theon-screen version of the book, click on
the icon .
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Index of Symbols and General Index

On-Screen Index Entries
Both the printed version and the on-screen version of this book are supplied with
indices. Because the on-screen book is more extensive than the printed book, its
index is correspondingly larger. In addition, the on-screen index contains entries,
such as links to the World Wide Web for bigraphical information, that cannot be
provided in a printed index.

I have, however, included a variety of entries in the printed index that refer
to material that exists only in the on-screen book. Their purpose is to make it
possible to see, at a glance, what sortof material is covered in the on-screen
book. All entries in the printed index that target material in the on-screen book
point to page 482, which is the page you are reading now. To reach the targets
of these index entries, go to the on-screen version of the book and click on them
from there.
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Index for the Printed Book

A+B, sum of setsA andB, 88
A−B, arithmetical difference of

sets, 88
A ∩ B, intersection of two sets,

54
A ∪B, union of two sets, 54
A \B, difference of sets, 54
A ⊆ B, A included inB, 52
D2f (x, y) partial derivative,

466
P ∨Q, eitherP orQ is true, 20
P ∧ Q, bothP andQ are true,

19
⇒, implication sign, 22
Σ(P, f) sum off overP, 279
arccos function, 455
arcsin function, 454
arctan function, 455⋂n

j=1Aj, finite intersection of
sets, 101⋂∞

n=1An, intersection of a se-
quence of sets, 101⋃n

j=1, finite union of sets, 100⋃∞
n=1An, union of a sequence of

sets, 101(
α
n

)
, binomial coefficient, 372

χS, characteristic function ofS,
287

cos, cosine function, 451
∅, empty set, 52
∃, the existential quantifier, 13
exp the natural exponential

function, 267
∀, the universal quantifier, 13
inf A infimum of a setA, 86∫→b

a
f (x) dx, improper integral,
384

∫ b

a
f , Riemann integral off , 297∫ b

a
f , integral of a step function,

280∫ d

c

∫ b

a
f (x, y) dxdy, iterated in-

tegral, 464
[a, b], [a, b), (a, b), (a,∞), etc.

types of intervals, 55
{x | P (x)}, set notation , 53
limx→a f (x), limit of a func-

tion, 186
¬P , denial of the assertionP , 17
log andln, names of the natural

logarithm, 267
L (S) set of limit points, 122
R2 = R×R, the Euclidean

plane, 56
R orR, real number system , 71
Z+, system of natural numbers,

55
Z+, system of positive integers,

55
P∪Q, common refinement ofP

andQ, 275
sin, sine function, 451
supA supremum of a setA, 86
f : A → B function notation,

59
f (x, ·), section off , 462
f [E] function image, 60
f ∨ g, maximum off andg, 323
f ∧ g, minimum off andg, 323
f−1, inverse function off , 64
f−1 [E] preimage notation, 60
f (n), thenth derivative off , 223
f ′′, second derivative of a func-

tion f , 223
f ′, derivative of a functionf ,
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220
g ◦ f , composition of functions,

63
iS, identity function on a setS,

68
l (P, f), lower function, 308
m (E), measure ofE, 290
p (A), power set ofA, 53
u (P, f), upper function, 308
w (P, f), oscillation function,

308
x+∞, arithmetic with∞, 103
x ∈ A, x belongs toA, 52
closureS of S, 117
limit notationlimn→∞ xn, 138
rational number systemQ, 55
real number systemR orR, 55
series

∑
an, 339

system of integersZ, 55

Abel’s test for convergence, 374
Abel’s theorem, 369
Abel’s theorem for integrals, 395
Abel, Neils Henrik (1802–

1829), 369
Abelian theorem, 482
absolute convergence of a series,

366
absolute convergence of an inte-

gral, 392
absolute value of a number, 82
acceleration of a curve, 482
Achilles and the tortoise, 7
aleph 1 order typeℵ1, 482
algebraic number, 35, 77
algebraic rules for limits of func-

tions, 188
algebraic rules for limits of se-

quences, 143
almost every, Stieltjes version,

482
almost everywhere, Stieltjes ver-

sion, 482
alternating series test, 373
analytic function, 456
Archimedes (287-212 B.C.E.),

294
Archimedes (287–212B.C.E.),

271
area, notion of

notion of, 271
area of a plane set, 271
axiom of choice, 482
axiom of completeness, 80, 88
axioms for the real number sys-

tem, 79

backward reparametrization of a
curve, 482

B (c, r), ball centerc, radiusr,
482

Berkeley, George (1685–1753),
10

beta function, 392, 474
binary operation, 482
binomial coefficient, 244, 372
binomial function, 442
binomial series, 374, 443
binomial theorem, 244
black sky quotation, 77
Bolzano’s intermediate value

theorem, 201
Bolzano, Bernhard (1781–

1848), 5, 10
Bolzano-Weierstrass theorem in

Rk, 482
Bolzano-Weierstrass theorem,

163
bound

lower bound, 85
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upper bound, 84
bounded above, 86
bounded below, 86
bounded convergence theorem,

418
bounded convergence theorem

onk-cells, 482
bounded function, 97
bounded sequences, 99
bounded set of numbers, 86
bounded subset of a metric

space, 482
boundedly convergent sequence,

400
Brouwer fixed point theorem,

209
Brouwer, Luitzen Egbertgus Jan

(188–1966), 209
Burali-Forti, Cesare (1861–

1931), 10
Burali-Forti paradox, 10

Cantor function, 382
Cantor intersection theorem, 158
Cantor intersection theorem in

Rk, 482
Cantor set, 382
Cantor set in integration, 482
Cantor’s black sky quotation, 77
Cantor’s Inequality, 482
Cantor, Georg (1845–1918), 5,

10, 35, 50
cardinal order of a set, 482
cardinality of a finite set, 482
cartesian productA×B, 55
cartesian product of sets, 55
Cauchy mean value theorem,

236
Cauchy product of two series,

377

Cauchy sequence, 164
Cauchy’s root test, 365
Cauchy, Augustin-Louis (1789–

1857), 5, 10
Cauchy, Augustin-Louis (1789–

1857), 271
Cauchy-Schwarz inequality, 482
central force field, 482
chain in a partially ordered set,

482
chain rule, 229
chain rule for partial derivatives,

482
chain rule for total derivatives,

482
change of variable in multiple in-

tegrals, 482
change of variable theorem, 327
characteristic function, 287
choice function, 482
close: a number close to a set,

117
closed ball in a metric space, 482
closed curve, 482
closed set, 111
closed subset of a metric space,

482
closure in a metric space, 482
closure of a set, 117
Cohen, Paul Joseph (1934–), 482
common refinement of two par-

titions, 275
compact metric space, 482
comparison principle, 347
complete metric space, 482
completeness of the real number

system, 88
complex calculus, 482
complex contour integral, 482
complex number system, 482
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composition of functions, 63
composition theorem for integra-

bility, 322
composition theorem for limits,

188
composition theorem, Stieltjes,

482
conditional convergence of an

integral, 393
conditionally convergent series,

366
connected metric spaces, 482
continuity, uniformly continuous

function
uniformly continuous func-
tion, 211

continuous and discrete inte-
grals, 482

continuous function
at a number, 192
on a set, 193

continuum hypothesis, 482
contracting sequence of sets, 101
contracting sequences theorem,

416
contraction on a metric space,

482
contraction principle, 482
contrapositive of a mathematical

statement, 23
convergent sequence, 138

sequence converging to a
given number, 138

convergent series, 341
converse of a mathematical

statement, 23
convex function, 239
convexity inRk, 482
countable set, 482
cross product inR3, 482

cubic equation, 482
curl of a function, 482
curvature of a curve, 482
curve measurable set, 482
curve-integrable function, 482

d’Alembert’s test, 356
d’Alembert, Jean Le Rond

(1717–1783), 356
Darboux’s theorem, 316
Darboux, Gaston (1842–1917),

271
decimal, 353
decreasing function, 62
decreasing sequence, 100
Dedekind cuts, 72
Dedekind, Richard (1831–

1916), 5, 10
degree of a polynomial, 240
DeMorgan laws, 56
denial of an assertion, 17
dense subsets of a metric space,

482
dependent set, 482
derivative

from the left, 224
from the right, 223
two-sided, 223

derivative of a function, 223
diameter of a set, 92
diameter of a set in a metric

space, 482
difference of sets, 54
differentiable function, 223
differentiable function onRk,

482
digits of a decimal, 353
dimension of a vector space, 482
directional derivative of a func-

tion, 482



Index of Symbols and General Index 487

Dirichlet’s test, 366
Dirichlet’s test for integrals, 394
Dirichlet, Peter Gustav Lejeune

(1805–1859), 366
discrete function, 482
discrete metric, 482
discrete variation, 482
discriminant of a cubic, 482
distance function of a set, 482
divergence of a function, 482
divergent sequence, 138
divergent series, 341
domain of a function, 59
domain of a relation, 482
dot product inRk, 482

Edmonds, Sheila May (1916– ),
381

Edmonds-Hardy theorem for
products of series, 381

elementary set, 288
empty set, 52
equality of mixed partial deriva-

tives, 482
equicontinuous family of func-

tions, 414
equivalence class, 482
equivalence of sets, 482
equivalence relation, 482
equivalence theorem, 482
Euclidean norm, 482
Euclidean plane, 56, 460
Euclidean spaces, 482
Eudoxus, (400–350 B.C.E.),

271, 294
exact function, 482
expanding sequence of sets, 101
extended curve-integrable func-

tion, 482
extended integral on ak-cell,

482
extended real number system,

103
extended Riemann integral, 482

Fermat’s theorem, 233
Fermat, Pierre (1601–1665), 233
Fichtenholz’s theorem, 470
filter in a set, 482
finite limit of a sequence, 129
finite partial limit of a sequence,

129
finite set, 482
first criterion for integrability,

309
fixed point of a function, 482
forward reparametrization of a

curve, 482
Fourier, Joseph (1758–1830),

377
Fraenkel, Adolf Abraham

(1891–1965), 11
Frege, Gottlob (1848–1925), 11
frequently in a set, 127
Fubini’s theorem, 471
function, 59
function onto a set, 62
function, formal definition, 482
fundamental increment formula,

482
fundamental theorem for con-

tour integrals, 482
fundamental theorem for inte-

grals on curves, 482
fundamental theorem of calcu-

lus, 324

gamma function, 392, 474
Γ (α), value of gamma function,

392
geometric sequence, 151, 254
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geometric series, 342
Gödel, Kurt (1906–1978), 11
gradient of a function, 482

Hardy, Godfrey Harold (1877–
1947), 482

Hardy-Littlewood Tauberian
theorem, 482

Heine-Borel theorem inRk, 482
Hilbert, David (1862–1943), 5
Holder, Ludwig Otto (1859-

1937), 482
horizontal section of a function,

463, 482
horizontal section of a set, 460,

482

identity function on a set, 68
image of a set under a function,

60
implicit function theorem, 482
improper integral, 384
improper integral

∫→b

a
f (x) dx,

384
improper Riemann integrable

function, 385
inclusion of sets, 52
increasing function, 62
increasing sequence, 100
indeterminate form, 105, 246
inductive reasoning, 37
infimum of a set, 86
infinite limit of a sequence, 129
infinite partial limit of a se-

quence, 129
infinity norm, 482
initial segment in a well-ordered

set, 482
injective function, 61
inner product of two curves, 482
integrable function, 297

integral of a step function, 280
integral on a curve, 482
integral over an elementary set,

292
integral test, 347
integral test, sharper version,

482
integration by parts, 327
integration with respect to a dis-

crete function, 482
interior point of a set, 108
intersection of a family of sets,

482
intersection of a sequence of

sets, 101
intersection of two sets, 54
interval of convergence, 428
intervals in the number line, 55
inverse function theorem, multi-

variate, 482
inverse functions, 64
iterated integral, 464
iterated series, 375

Jensen, Johann Ludvig (1859–
1925), 482

join of two curves, 482
jump of an increasing function,

482
junior Lebesgue criterion, 318

k-cell, 482
k-tuple, 482
Keeble, Lady Constance, 482
König’s inequality, 482
König, Julius (1849-1913), 482

L’Hôpital’s rule, 246
Laurent, Pierre Alphonse (1813–

1854), 377
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Lebesgue criterion for Riemann
integrability, 318

Lebesgue measure of an elemen-
tary set, 290

left sum of a function over a par-
tition, 315

Leibniz rule, 466
Leibniz rule for derivative of an

integral, 482
Leibniz, Gottfried Wilhelm

(1646–1716), 9, 373
length of a curve, 482
lexicographic order, 482
limit at infinity, 177
limit from the left, 182
limit from the right, 182
limit in a metric space, 482
limit of a function, 166
limit of a sequence, 129
limit point of a set, 122
linear algebra, 482
linear approximation to a func-

tion, 482
linear combination, 482
lipschitzian function, 217
Littlewood, John Edensor

(1885–1977), 482
lower function over a partition,

308

Maclaurin polynomial, 241
Maclaurin series, 433
Maclaurin, Colin (1698–1746),

433
mathematical induction, 103,

482
mathematics mode, xxx
maximal member of a partially

ordered set, 482
maximum value of a function, 97

mean value theorem, 34, 233
mean value theorem for inte-

grals, 333
mean value theorem for partial

derivatives, 482
measure of an elementary set,

290
measure zero, 318
member of a set, 52
Mertens’ theorem for products

of series, 381
Mertens, Franz (1840–1927),

381
mesh of a partition, 276
metric space, 482
midpoint sum of a function over

a partition, 316
monotone function, 62
monotone sequence, 100
multiple integral, 482

natural exponential function,
267

Neder’s theorem on products of
series, 381

Neder, Ludwig, 381
negating a sentence, 17
negation of an assertion, 17
neighborhood of a number, 108
neighborhood of∞, 126
Newton, Sir Isaac (1643–1727),

9
norm of a matrix, 482

one sided limits, 181
one-one function, 61
one-one sequence, 99
onto, function onto a set, 62
open ball in a metric space, 482
open cover of a metric space,

482
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open set, 111
open subset of a metric space,

482
ordered pair, definition, 482
oscillation function over a parti-

tion, 308

p-series, 348
paradoxes of Zeno, 7
parametric curve, 482
partial derivative of a function,

463
partial integral of a function, 463
partial limit of a sequence, 129
partial order, 482
partial sum of a series, 340
partition of an interval, 275
partition subordinate to a func-

tion, 482
piecewise smooth curve, 482
point of a partition, 275
point of a set, 52
pointwise convergence, 400
polynomial, 239
potential of a function, 482
power series, 369, 426
predecessor in a well-ordered

set, 482
preimage of a set, 60
principal normal of a curve, 482
product of a family of sets, 482
product rule for differentiation,

227
proof by contradiction, 41
proper inclusion of sets, 53
Pythagoras, (5th century

B.C.E.), 5
Pythagorean crisis, 6

quantified symbols, 13
quantifier, 12

existential quantifier, 13
universal quantifier, 13

quotient rule for differentiation,
228

Rk, 482
Raabe’s test, 358
Raabe, Josef Ludwig (1801–

1859), 358
radius of convergence, 428
range of a function, 60
range of a relation, 482
ratio tests for convergence, 353
ratio tests of higher order, 482
rational number, 72
rearrangements of series, 375
rectifiable curve, 482
recursive definition, 482
recursively defined sequence,

103
refinement of a partition, 275
regular partition, 276
relation, 482
reparametrization of a curve, 482
repeated integral, 464
restriction of a function, 60
Riemann integrable function,

297
Riemann sum, 315
Riemann’s theorem on re-

arrangements, 375
Riemann, Georg Friedrich

Bernard (1826–1866), 271
Riemann-Stieltjes integrability,

482
Riemann-Stieltjes integral, 482
Riemann-Stieltjes sum, 482
right sum of a function over a

partition, 315
Rolle’s theorem, 233
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Rolle, Michel (1652–1719), 234
root test, 365
ruler function, 173
Russell’s paradox, 10
Russell, Bertrand Arthur

William (1872–1970), 10

Schwarz, Karl (1843-1921), 482
second criterion for integrability,

310
section of a function, 462
self possessed set, 51
separable metric space, 482
separated sets, 120
separated subsets of a metric

space, 482
sequence, 98
sequence eventually in a set, 127
sequence(xn) in a set, 98
series, 339
set builder notation, 53
set notation{x | P (x)}, 53
set theory crisis, 10
simply connected set, 482
Simpson sum of a function, 482
smooth curve, 482
span, 482
speed of a curve, 482
squeezing pair of sequences, 298
standard basis inRn, 482
standard simplex, 482
step function, 277
step function on an interval, 277
stepping within a partition, 277
Stirling’s formula, 476
Stirling, James (1692–1770),

476
Stone, Marshall H. (1903– ), 447
Stone-Weierstrass theorem, 448
strictly decreasing function, 62

strictly decreasing sequence, 100
strictly increasing function, 62
strictly increasing sequence, 100
strictly monotone function, 62
strictly monotone sequence, 100
subequivalence of sets, 482
subordinate partition, 482
subsequence, 482
subseries of a series, 375
A ⊆ B, A subset ofB, 52
subspace of a metric space, 482
sum of a function over a parti-

tion, 279
sum of a series, 340
sum

∑∞
j=1 aj of a series, 340

sum of two sets, 88
supremum of a function, 97
supremum of a sequence, 99
supremum of a set, 86
surd, 73
switch of a function, 203

Tauber’s theorem, 482
Tauber, Alfred (1866–1942),

482
Tauberian theorem, 482
Taylor polynomial of a function,

241
Taylor series, 433
Taylor’s theorem, 433
Taylor, Brook (1685–1731), 239
text mode, xxx
total derivative, 482
total order, 482
totally bounded set, 482
transcendental number, 35, 77
trapezoidal sum of a function

over a partition, 315
triangle inequality, 82
trigonometric pair of functions,
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450
tube plot with Scientific Note-

book, 482

ultrafilter in a set, 482
uncountable set, 482
uniform continuity of a function,

210
uniformly continuous function,

211
uniformly convergent sequence,

400
union of a sequence of sets, 101
union of a family of sets, 482
union of two sets, 54
unit tangent to a curve, 482
unknowns in a statement, 12
upper bound in a partially or-

dered set, 482
upper function over a partition,

308
Urysohn’s lemma, 482

value of a function, 59
variation of an increasing func-

tion, 482
velocity of a curve, 482
vertical section of a function,

462
vertical section of a set, 460

Voltaire, Francois-Marie Arouet
(1694–1778), 10

volume of a subset of a Euclid-
ean space, 482

Wallis’s formula, 476
Wallis, John (1616–1703), 476
Weierstrass M test, 408
Weierstrass, Karl (1815–1897),

5, 10
Weierstrass, Karl (1815-1897),

163
well order of a set, 482
well ordering principle, 482
winding number of a closed

curve, 482

Young, William Henry (1863-
1942), 482

Zeno crisis, 6, 7
Zeno of Elea (495–430B.C.E.),

7
Zermelo, Ernst Friedrich (1871–

1953), 11
Zermelo-Fraenkel axioms, 52,

72
Zermelo-Fraenkel set theory, 11
Zorn’s lemma, 482
Zorn, Max (1906–1993), 482
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