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Abstract: In recent years, main cities in China have been suffering from hazy weather, which is
gaining great attention among the public, government managers and researchers in different areas.
Many studies have been conducted on the topic of urban air quality to reveal different aspects of
the air quality problem in China. This paper focuses on the visualization problem of the big air
quality monitoring data of all main cities on a nationwide scale. To achieve the intuitive visualization
of this dataset, this study develops two novel visualization tools for multi-granularity time series
visualization (timezoom.js) and a dynamic symbol declutter map mashup layer for thematic mapping
(symadpative.js). With the two invented tools, we develops an interactive web map visualization
application of urban air quality data of all main cities in China. This application shows us significant
air pollution findings at the nationwide scale. These results give us clues for further studies on air
pollutant characteristics, forecasting and control in China. As the tools are invented for general
visualization purposes of geo-referenced time series data, they can be applied to other environmental
monitoring data (temperature, precipitation, etc.) through some configurations.

Keywords: air quality; environmental data visualization; spatial-temporal visualization; visual
analytics

1. Introduction

Recent years, in China, frequent occurrences of hazy weather in big cities have aroused
great attention on urban air quality issues among the public, government managers and academic
researchers. Discussions about air quality of big cities (like Beijing, Wuhan, etc.) frequently appear
in social media. Since 2012, the government has adopted two new air quality monitoring technical
standards [1,2], then has built a real-time air quality reporting platform and an air quality forecasting
system. Because air pollution has detrimental effects on human health, vegetation, crops, etc., it has
great political, societal and economic impacts [3–5]. Therefore, with the increasing availability of
urban air quality data and the great environmental challenges we are facing, many studies have been
conducted to explore new approaches for understanding this big environmental monitoring dataset.

Environmental monitoring data can be described by multivariate time series observations
generated from geo-located monitoring stations. For our research topic, urban air quality monitoring
data consist of many air pollutant concentration values (such as fine particles, carbon monoxide, sulfur
dioxide, nitrogen oxides zone, etc.), which are reported hourly from monitoring stations fixed at
specific positions in a city. These geo-referenced time series data are an important study subject in the
areas of geovisualization and environmental science.

Multi-dimensional data visualization considering spatial distributions, temporal granularities and
multivariate thematic attributes has been an interesting question in geovisualization, as well as in the
environmental science area. In geovisualization, many studies have focused on systematic theories of
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multivariate spatio-temporal data visualization [6]. Multiple static maps series, animation maps,
space-time cubes and self-organizing maps (SOM) are used to deal with spatio-temporal data
mapping [7,8]. In parallel, basic graph charts, such as parallel coordinate plots (PCL), are used to show
multivariate thematic attributes. To achieve effective visualization of multivariate spatio-temporal
data, combinations of these methods are used; such as the visualization system for space-time and
multivariate patterns (VIS-STAMP) [8], which proposed a systematic way of joining those visualization
strategies in multiple visual views interactively. However, expertise is needed to use these visualization
systems, which are limited to domain experts. Thus, it requires some easy-to-use visualization
applications to face a wider range of users.

Visualization of environmental data is important in the area of environmental science [9].
Conventional technologies in the Geographic Information System (GIS) and statistical map making
skills are widely used to manage, analyze and visualize environmental data [10]. With the development
of web technologies, open source GIS standards and web mapping tools are adopted in the analysis
and presentation of environmental data-related studies not only for experts and managers, but also for
the public in general [11–13]. These studies mainly focus on the architecture of environmental data
visualization system building, and the visualization techniques are limited to conventional methods.
Therefore, more effective visualization tools need to be developed for visualization of the increasing
accumulated multi-dimensional environmental monitoring data. Currently, as urban air quality is an
urgent societal problem for many policy-makers and a study topic for scholars, air quality data are
gaining more attention.

Many studies have been conducted on mapping urban air pollutions mainly from two directions.
Firstly, for the distribution of monitoring stations is rarely homogeneous, and spatial interpolations
are used for pollution exposure maps [14], concentration maps of air pollution [15] and mapping
spatio-temporal trends of air pollution [16]. Secondly, conventional charts and modern visualization
tools are also being used for air quality data exploration [17] and visual analytics [18,19]. Our research
follows the second direction and aims at providing a web mapping application for visualizing a
whole year of air quality monitoring data of all cities in China with one dynamic and interactive
map. This visualization application provides freedom of configuration for users to explore this
multi-dimensional dataset from different angles. The major contributions of this paper are in three
aspects: (1) we develop two novel web client tools for interactive visualization of spatio-temporal
data; (2) we propose a mashup strategy for web mapping by combining and extending the function
of different visualization tools, which can be generalized to visualize other kinds of spatio-temporal
data, such as temperature, precipitation, etc.; (3) we implement an on-line interactive urban air quality
data visualization application that helps to explore and analyze a big air quality dataset and that puts
forward clues for further studies on air pollution.

2. Method and Data

Mapping spatio-temporal datasets is mapping changes of geographical features over time and
space [7]. Because the information load is huge, the interaction and dynamics [20] of spatio-temporal
visualization should be well designed. Multiple levels of spatial and temporal details are important
considerations in spatio-temporal visualization. Mostly, the methods that are proposed in the
literature for visualizing spatio-temporal data in a multi-scale perspective have focused on either the
spatial or temporal aspect, rather than integrating both views over multiple scales. Qiang [21] and
Van de Weghe [22] presented a continuous spatio-temporal model for space-time analysis. However,
in the real visualization domain, space and time are recognized or recorded by discrete intervals,
such as the tiled map service and the periodic timekeeping system. The tiled map uses a quad tree
to represent multi-scale feature of space, while the timekeeping system uses the year, season, month,
day and hour structure to record time-based events. In this section, we propose a space and time
zooming method conforming to the tiled map service and timekeeping system. This method also
conforms to the “overview first, zoom and filter, then details on demand” process [23].
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Mapping the time component onto an axis on 2D space or 3D space is conventional method for
time series visualization. The space-time cube [24] maps time to a 3D axis vertically, resulting in a 3D
trajectory for time series datasets. As the storygraph [25], it maps x and y coordinates of space to two
vertical axes and time to the horizontal axis, which can show trends in time series datasets. This paper
provides a cartographic method to encode the time component of spatio-temporal data. The method
separates the time component from the map space and uses the glyph map symbol to encode and
interact with time, which gives more freedom for time representation and interaction. Furthermore, all
symbols on the map are controlled by the dynamic map layer for displaying appropriate symbols at
different map zoom levels and view extents.

Environmental monitoring data, i.e., the air quality monitoring data have multidimensional
features, which can be structured as data cubes with a hierarchical structure [26]. Figures 1 and 2
illustrate the hierarchies of time and geographical information respectively. In this paper, the time
structure in the dashed polygon part is used for the visualization, as the instance on the right side of
Figure 1. For the geographical part, this paper focuses on the air quality of city points, each of which
has a semantic importance illustrated in the table on the right side of Figure 2. The importance level of
the city points influences their weight in dynamic map symbol selection when zooming and panning
the map.

Figure 1. Hierarchical structure of the time dimension. The dashed polygon part is handled in this
paper. An instance of this structure is on the right side.

Figure 2. Hierarchical structure of the geographical dimension. In this paper, we focus on the city
level, and the importance weight is in the table on the right side.
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In the following subsections, the technologies and framework of the mapping application and
the design and development of two JavaScript visualization tools, timezoom.js and symadaptive.js,
are discussed. The two visualization components are mainly based on the general purpose web
mapping library leaflet.js and the data visualization library D3.js. Then, the data and their processing
for this study are presented.

2.1. Air Quality Mapping Technologies and Framework

As mentioned above, environmental monitoring data, i.e., urban air quality data are
geo-referenced, and a map is very suitable for visualizing this dataset. To achieve the purpose
of mapping such a big dataset on one dynamic web map application, we resort to some popular
visualization tools in the GIS and information visualization area. With the booming web mapping
tools, cartographers have more and more choices for their mapping works. Nevertheless, it is also a
challenge for cartographers to know the characteristics of all of these tools and to maintain their own
mapping frameworks. Roth [27] mentions this problem and provides a comprehensive analysis of
current web mapping technologies, which gives us some advice to cope with the continued evolution
of these technologies. To be more practical, cartographers need only three categories of tools for a web
mapping work: application frameworks, mapping libraries and visualization libraries. Application
frameworks work as the engine to drive the whole mapping application; mapping libraries as the
map engine to glue all kinds of map services and geospatial data services; visualization libraries as
the symbolization engine to visualize the non-spatial information within geographic entities. This is
a kind of software mashup framework, with which the application engine, the map engine and
the symbol engine can be selected by the map makers according to their visualization topics and
development habits.

Among all of these mapping technologies, this study adopts web.py [28], leaflet.js [29] and
D3.js [30] as the tool framework for the air mapping application. web.py works as the web application
framework to drive the whole mapping application; leaflet.js works as the map engine to glue map
services and data services; D3.js acts as a map symbolization engine to render the time series air quality
data of the multivariate index. These three technologies work together for the air quality mapping
application (Figure 3). This is a kind of technology mashup [31] working with the mapping mashup
application. Though this study focuses on air quality monitoring data visualization, the framework and
invented visualization tools can be applied to the visualization work of other similar spatio-temporal
environmental monitoring data, such as meteorological monitoring data (temperature, precipitation,
humidity, etc.).

Figure 3. The air quality monitoring application framework. This paper proposes a mashup strategy
to make use of multiple visualization and mapping technologies for web mapping applications.
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2.2. Time Series Map Symbol Encoding: timezoom.js

Time series data visualization mostly has two kind of routines: the linear one and the cyclic
one [32–34]. Linear ones take the perspective that time is a continuous concept represented by
a time line. Cyclic ones [35] regard time as a periodic concept, such as a time keeping system.
The timekeeping model is cyclic for the year, season, month and day, which originates from the
astronomical observations of our ancestors. This paper constructs the time series air quality data with
the hierarchical timekeeping system, and multiple temporal granularities are manipulated by map
symbol interactions. In each node of this leveled structure, the values of each index of air quality are
calculated as the mean value of lower level nodes. This hierarchic time structure is formulated in
Formula (1). Figure 4 shows the timezoom.js symbol structure.

TimeH = G(TimeV , TimeS, Operation) (1)

In Formula (1):

TimeH is the time hierarchy structure that will be calculated;
TimeV is the time series values’ array, such as the 365 days of one year data value array,
{t1 : v1, t2 : v2, ..., t365 : v365};
TimeS is the time system for hierarchy construction, such as {Year, Season, Month, Day}. This can
be decided by users and can be extended to hours, minutes and seconds levels, as shown in
Figure 2;
Operation is the operation for the value aggregation from the lower time level to the higher time
level. This can be any statistical method for aggregation, such as average, median, quantile, etc.

The timezoom.js symbol is a radial tree map visualization tool based on D3.js. The root node of
the hierarchy structure is at the center with leave nodes on the circumference. The values of all nodes
are encoded with a defined color scheme. The initial state of this symbol shows the whole hierarchy.
When clicking on any sector, the symbol will zoom to that sector and fold up other sectors; for example,
when you click on the Q2 sector of the symbol, other sectors will be folded up, and the outside circle of
the symbol will zoom to the days only in Q2 (Figure 4).

Figure 4. Multi-granularity time zooming interaction (timezoom.js): The inner circle shows the
data value of the year, and Sectors Q1, Q2, Q3 and Q4 respectively indicate the four seasonal values
and sectors January–December for the monthly data of a year; each month sector is surrounded by
daily sectors. Clicking on each sector, the timezoom.js symbol will zoom to that time sector for detailed
views of its value distributions.
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2.3. Adaptive Map Symbol Control: symadaptive.js

Zooming control means adaptively selecting appropriate symbols at different zoom scales
and view extents. Yang [36] proposes a strategy for multi-scale visualization of massive point
data, which selects points with a heavy algorithm on server-side and makes light-weight symbol
displacement on the client-side. Jari Korpi [37] evaluated point symbol clutter reduction methods for
map mashups. According to these works, in this paper, the map symbol clutter reduction is achieved
by symbol conflict detection with Rbush.js [38], which is a tool library based on the spatial index
algorithm, Rtree [39]. At each map zoom level, symbols of points in the current map view extent are
being tested for conflicts. When the symbol has conflicts with other symbols, the point that has a lower
semantic weight will be dropped (Figure 5). The semantic level of each city is decided by the level of
its administration division; see Figure 2.

Figure 5. Multi-scale space zooming control (symadaptive.js): When the symbol C is add to the map,
C will conflict with A and B. If C has a higher importance level than A and B, then C will be kept on
the map, and A and B will be removed. For the other situation, if A or B has a higher importance level
than C, C will be ignored.

In this paper, the mechanism of semantic importance-driven map symbol selection is proposed.
In practice, one can have their own semantic level fields in their data, and this symadaptive.js layer
tool can help to dynamically select appropriate symbols according to the assigned level weight field.

2.4. Data Sources and Processing

The Air Quality Index (AQI) is a number without any unit used to indicate how polluted the air is.
It is adopted by the newly-published national environment protection standard Technical Regulation
on Ambient Air Quality Index (on trial) in China. With this standard, different air pollutants have
their own concentration level ranges, and the index value of each pollutant can be calculated by
Formulas (2) and (3). The AQI is assigned the maximum value of the individual index value of all of
the reported pollutants (Table 1). There are six ranges of the AQI values, and each range is assigned a
descriptor and a visual color code, as shown in Table 2.

IAQIP =
IAQIHi − IAQILo

BPHi − BPLo
(CP − BPLo) + IAQILo (2)

AQI = max{IAQI1, IAQI2, IAQI3, ..., IAQIn} (3)

where:

IAQlP is the individual Air Quality Index of pollutant P,
CP is the concentration of pollutant P,
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BPHi is the the concentration division point of pollution P that is ≥ CP,
BPLo is the concentration breakpoint of pollution P that is ≤ CP,
IAQIHi is the index division point (Table 3) corresponding to BPHi,
IAQILo is the index division point (Table 3) corresponding to BPLo.

Table 1. Reported air index and pollutants and their descriptions.

Name Description and Unit

AQI Air Quality Index, value without unit, range 0–500
SO2 Sulfur Dioxide, µg/m3

NO2 Nitrogen Dioxide, µg/m3

CO Carbon Monoxide, mg/m3

O3 Ozone, µg/m3

O3_8H 8-h average concentration of Ozone, µg/m3

PM2.5 Particulate Matter, diameter less than 2.5 µm, µg/m3

PM10 Particulate Matter, diameter less than 10 µm, µg/m3

Table 2. Air Quality Index level divisions, descriptors and colors.

Divisions Health Influences Color Coding

0–50 Good: Satisfactory Green (0,228,0)
51–100 Moderate: Acceptable, but influential for very sensitive groups. Yellow (255,255,0)
101–150 Slightly Unhealthy: Influential for sensitive groups. Orange (255,126,0)
151–200 Unhealthy Red (255,0,0)
200–300 Very Unhealthy Purple (153,76,0)
>300 Hazardous Maroon (126,0,35)

We collect the hourly reported air quality data from the national real-time air quality reporting
system. By 2017, there were 367 cities with 1497 monitoring sites in China reporting their Air Quality
Index hourly, as shown in Figure 6. Daily air quality of cities is the object of this study. Therefore,
the hourly reported data are aggregated into the daily reported data according to the standard [2]. First,
the average hourly data of a city are calculated as the mean pollutant concentration of all monitoring
stations. Then, the daily value is calculated as the mean concentration values of 24 h if it has 16 h of
validated values in a day; otherwise, the daily value is invalidated. The final data are daily records
of all cities with 24-h average concentrations of 5 pollutants (SO2, NO2, CO, PM10, PM2.5) and 24-h
maximum concentrations of 2 pollutants (O3, O3-8H). All of the concentration values are converted to
an Individual Air Quality Index(IAQI) value ranging from 0–500 according to Table 3 and Formulas (2)
and (3). Thus, we can get the Air Quality Index (AQI) value and the primary pollutants of each city
each day.

Table 3. Individual Air Quality Index and corresponding pollutants’ concentration limits.

IAQI
Ranges

SO2
µg/m3

NO2
µg/m3

PM10
µg/m3

PM2_5
µg/m3

CO
mg/m3

O3
µg /m3

O3_8H
µg /m3

0 0 0 0 0 0 0 0
50 50 40 50 35 2 160 100
100 150 80 150 75 4 200 160
150 475 180 250 115 14 300 215
200 800 280 350 150 24 400 265
300 1600 565 420 250 36 800 800
400 2100 750 500 350 48 1000 -
500 2620 940 600 500 60 1200 -
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Figure 6. Air Quality Monitoring Network in China. This image shows a snapshot air quality map of
monitoring stations in China, at 8:00, 12 December 2016. (refer to: http://mapviz.xyz:8080/).

3. Results and Discussion

Based on the discourse above, this study designs the air mapping application in terms of the
navigation of space, time and theme [40]. The whole application is built on the framework illustrated
in Figure 3, with the two invented JavaScript visualization tools: timezoom.js and symadaptive.js.

3.1. Air Quality Data Map Visualization Design

3.1.1. Spatial Navigation

Air quality data of all cities are loaded by symadaptive.js, and the time series data are used
to build the timezoom.js symbol for each city point. These geo-located glyph symbols are overlaid
on an OpenStreetMap tiled map background. The display of all symbols is under the control of
symadaptive.js. Meanwhile, all of the symbols can be hovered over and clicked to invoke the display
of detailed air quality information about the city point interacted with. The weight of each city is
decided by its administrative level: central city of region, province capitol, district capitol and county
capitol (see Figure 2). Figure 7 shows the interaction effects of zooming the map to different scales.

(a) (b)

Figure 7. Cont.

http://mapviz.xyz:8080/
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(c)

(d)

Figure 7. Spatial navigation. When zooming the map, the symbols are selected dynamically at each
zoom level with the function provided by symadaptive.js. (a)–(d) illustrate map symbols at Zoom
Levels 3–6 on the OpenStreetMap tiled map background. (a) Map Zoom Level 3; (b) Map Zoom Level 4;
(c) Map Zoom Level 5; and (d) Map Zoom Level 6.

3.1.2. Temporal Navigation

The temporal component of air quality data is presented by the timezoom.js component.
The timezoom.js symbol is driven by the date hierarchy structure of air quality data. All symbols are
event connected. Therefore, when clicking on one map symbol at a specific time section, all symbols on
the map will zoom and change their appearance simultaneously to show air quality data according to
the chosen time section. For a better and efficient query, a bigger time wheel is designed for temporal
navigation on the map side panel. Figure 8 shows the interactions with the time series data by the
timezoom.js symbol.
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(a) (b)

(c) (d)

Figure 8. Temporal navigation. The left circle symbol shows the structure of the time symbol, and the
right is the map symbol that will be displayed on the map. The toggle buttons below are for the time
filter to focus on the time granularities of interest. (a) shows the full year data in a time symbol, and (b)
shows the zoomed symbol to Quarter 4 (October, November and December). (c,d) show the symbols
that are filtered by the month and day value.

3.1.3. Thematic Navigation

Air quality has a total description as AQI, which contains several important air quality sub-indexes,
PM10, PM2.5, SO2, NO2, O3_8h, O3, CO. We design a side panel on the map for thematic attribution
selection. When the thematic attribute changes, the map symbol of all points will change accordingly.
Thus, it is easy to switch the map view among the whole air quality map and individual pollutant
concentration maps.

To sum up, this study presents an urban air quality mapping application based on invented tools:
symadaptive.js and timezoom.js. The map of air quality starts with visualizing the data of central cities
in six major parts of China (see (Figure 9)).
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Figure 9. Initial view of the online air quality mapping application.

3.2. Results and Analysis

In the air quality application, the concentrations of all of the pollutants are illustrated with graded
color hues under equal interval classification of all values of the year. The AQI map is rendered
with the commonly-used standard color scheme (Table 2). With the thematic navigation radio button,
we can render all air maps of different pollutants. In Figure 10 is presented a series of maps of the AQI
value and seven important pollutants’ concentrations at a nationwide scale, and the dataset can be
switched between two years, 2014 and 2015 (Figure 9). From this series of maps, several significant
findings are shown clearly. These findings provide some clues for in-depth research on the air pollutant
causality and relationships among air pollutants from a spatio-temporal view.

(a) (b)

Figure 10. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 10. Air quality maps 2015 at OpenStreetMap Zoom Level 5. (a) is the AQI map of 2015; (b)–(g)
are the air pollutants’ concentration map in 2015 for PM10, PM2.5, SO2, NO2, O3 and CO respectively.
(a) AQI map of 2015; (b) PM10 concentration map of 2015; (c) PM2.5 concentration map of 2015; (d) SO2

concentration map of 2015; (e) NO2 concentration map of 2015; (f) O3 concentration map of 2015;
(g) O3 8H concentration map of 2015; (h) CO concentration map of 2015.

3.3. Nationwide Air Quality Condition of China

The interactive mapping application gives us an overview of the air quality condition of China at
a nationwide scale throughout a whole year’s time (Figure 10a). First, for most of the cities in China,
it is more likely to have a good air condition during summer days than winter days. Some special
places are in the northwest part of China, where several cities have a terrible air condition throughout
the year. This situation should be given more attention in further research. Second, air quality maps of
a different time granularities show a clear ribbon pattern along the coastline and southwest part of
China where cities have better air conditions than other part of China; meanwhile, the cities in the
north part of China have the worst air condition. The possible reasons for such patterns reside in two
aspects. On the one hand, the coastline cities have better air circulation conditions for air purification
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than hinterland areas of China. On the other hand, the cities in the southwest are less developed than
the hinterland; thus, the pollutant emission is lower. Nevertheless, these are hypotheses that need
further study. Furthermore, the patterns can provide auxiliary information for policy-makers to adopt
different measures in different cities.

3.4. Spatio-Temporal Pattern of Air Pollutants

With the thematic navigation radio button, one can have air maps of different pollutants.
In Figure 10, from this series of maps, several significant patterns are shown clearly. First, we can easily
indicate that PM10 and PM2.5 more likely contribute to the AQI value due to their similar pattern
in terms of space and time (see Figure 10b,c, PM10, PM2.5 concentration maps). Actually, the public
cares more about the PM10 and PM2.5 index in China, and they are the critical impacts of smog air
conditions. Second, NO2 is mainly caused by automobile exhaust, which is more likely to be worse in
big cities, as shown in the NO2 concentration maps (Figure 10e). Third, from the map of SO2, one can
find that the concentration of SO2 is more likely to be serious in winter months in the north of China
(see SO2 concentration maps in Figure 10d). This situation can be connected to the burning of coal for
heating in winter of cities in the north of China, which emits a great amount of SO2. Fourth, there is an
obvious situation that the value of CO is hardly serious enough to impact public health, as CO is a
deadly poisonous gas that has critical control in China (see the CO concentration maps in Figure 10h).

Unlike other pollutants, which are emitted directly into the air by some specific sources, ozone
(O3) is created by sunlight acting on NOx and VOC in the air. Thus, the index value of O3 is higher on
sunny days throughout the year or in areas that have a longer sunlight duration and stronger sunlight
intensity. In the concentration map of O3 (Figure 10f,g), we can find that most cities in China will have
higher O3 values in Seasons 2 and 3, when sunshine is greater and the hours longer during the daytime.
In Lhasa City, Tibet, the O3 value is high across the year because of its high elevation and thin air,
which causes the high intensity of sunlight. Some cities in the south of China and along the coastline
will show different O3 value patterns (see the O3 concentration maps in Figure 10f,g). This kind of
situation may be caused by unstable weather conditions in the south of China; for example, in summer
there are many rainy days in which sunlight intensity is mild.

All of the findings mentioned above are hypotheses. Through these clues, we can design further
studies on these topics and make more reliable conclusions. Moreover, these illustrations can help
environmental regulation governors and the general public to have intuitive images of the air condition
of China.

4. Conclusions

The research presented here describes a novel combination of modern mapping technologies,
with which this study develops an online mapping application of air quality of China. In this study,
an open web platform is fully used to collect the time series air quality data consistently. Then,
data visualization tools (D3.js) and web mapping tools (leaflet.js, rbush.js) are well combined to
produce a fine interactive mapping application of spatio-temporal data. From the application, we can
get a whole view of the air quality condition of China at a nationwide scale and a year time span
at multiple spatio-temporal granularities. This interactive map application clearly presents several
significant findings of air quality in China, which provide good assistance for visual air quality analysis
and clues for in-depth studies on air pollution.

The lessons we learned from this study reside in three aspects. First, there are more and more
open data about our living environment, into which we can delve and find important results for
making our living environment better. Second, as cartographers, we should make full use of new
technologies for data visualization and web mapping. A good combination of these excellent tools
can give us greater power for environmental data visualization. Third, the visual form of data is more
expressive than the raw data table, and it would give deeper insights into the data analysis. In other
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words, nowadays, with more and more open data, fine and flexible visualization tools and the crowd
wisdom of the public, we can have a clear vision of the environment around us.

The future work is to enhance the efficiency of the timezoom.js symbol and to extend it to hour
granularities for a more detailed time level. What is more, as time goes on and the air quality data
are accumulated, a year selection mechanism should be added to the timezoom.js symbol, and the
comparison function should be enhanced. At the same time, some air quality study problems can be
defined from the previous discussions of the findings with the visualization, then our future work will
collect evidence to test our hypotheses.
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Appendix A. Mapping and Visualization Technologies Used

leaflet.js: leaflet.js is a lightweight, extensible, open-source JavaScript library for interactive maps,
which was developed by Vladimir Agafonkin with a group of dedicated contributors. Its simplicity and
extensibility provide the freedom to customize desirable plugins for specific use. For the map symbol,
the Icon class component of leaflet.js can be extended as the HTML(Hypertext Markup Language)
<div> element ,which provides the freedom of combination with other data visualization library.

D3.js: D3.js is short for Data-Driven Document, which is a JavaScript library for manipulate
DOM(Document Object Model) elements based on data. It also provides many powerful visualization
components based on HTML, SVG(Scalable Vector Graphics) and CSS(Cascading Stylesheets). Thus,
we can utilize these visualization facilities to represent data as SVG elements, which can be embedded
in a <div> element. Therefore, we can freely extend the Icon component of leaflet.js by using D3’s
visualization components.

rbush.js: rbush.js is a high-performance JavaScript R-Tree-based 2D spatial index library for points
and rectangles by Vladimir Agafonkin. It can be used for conflict detection for map symbols when
zooming. We can extend the LayerGroup class of leaflet.jsusing the collision detection function of
RBush to realize a self-declutter map layer.

web.py: web.py is a light-weight web application framework in the Python language. It is simple
and powerful, and it is an open sources software tool that can be used for whatever purpose with
absolutely no restrictions.
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