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PREFACE

This volume has evolved from lectures that I have given at the University of Oregon
and at Kansas State University during the past twenty years. The subject is classical
analysis. It is ‘‘real analysis’’ in the sense that none of the Cauchy theory of analytic
functions is discussed. Complex numbers, however, do appear throughout. Infinite
series and products are discussed in the setting of complex numbers. The elementary
functions are defined as functions of a complex variable. I do depart from the
classical theme in Chapter 3, where limits and continuity are presented in the con-
texts of abstract topological and metric spaces.

The approach here is to begin with the axioms for a complete ordered field
as the definition of the real number system. Based only upon that, an uncompro-
misingly rigorous Definition-Theorem-Proof style is followed to completely justify
all else that is said. For better or for worse, I have scrupulously avoided any
presumption at all that the reader has any knowledge of mathematical concepts until
they are formally presented here. Thus, for example, the number n is not men-
tioned until it has been precisely defined in Chapter 5.

I hope that this book will be found useful as a text for the sort of courses in
analysis that are normally given nowadays in most American universities to ad-
vanced undergraduate and beginning graduate students. I have included every topic
that I deem necessary as a preparation for learning complex and abstract analysis. I
have also included a selection of optional topics. The table of contents is a brief
guide to the topics included and to which ones may be safely omitted without dis-
turbing the logical continuity of the presentation. I also hope that this book will be
found useful as a reference tool for mature mathematicians and other scientific
workers.

One significant way in which this book differs from other texts at this level
is that the integral which we first mention is the Lebesgue integral on the real line.
There are at least three good reasons for doing this. First, the F. Riesz approach
(after which mine is modelled) is no more difficult to understand than is the tradi-
tional theory of the Riemann integral as it currently appears in nearly every calculus
book. Second, I feel that students profit from acquiring a thorough understanding

xi



xii PREFACE

of Lebesgue integration on Euclidean spaces before they enter into a study of
abstract measure theory. Third, this is the integral that is most useful to current ap-
plied mathematicians and theoretical scientists whether or not they ever study
abstract mathematics. Of course, it is clearly shown in Chapter 6 how the Riemann
integral is a special case of the Lebesgue integral. Stieltjes integration is presented in
a graded sequence of exercises. The proofs of these exercises are easy, but any in-
structor who wishes to include them in his lectures is obviously free to do so.

I sincerely hope that the exercise sets will prove to be a particularly attrac-
tive feature of this book. I spent at least three times as much effort in preparing
them as I did on the main text itself. Most of the exercises take the form of simple
assertions. The exercise is to prove the assertion. A great many of the exercises are
projects of many parts which, when completed in the order given, lead the student
by easy stages to important and interesting results. Many of the exercises are sup-
plied with copious hints. I feel that the only way to truly learn mathematics is by just
plain hard work. It does not suffice to simply read through a book and agree with
the author. I do encourage all serious students to work diligently through the exer-
cises provided here. Thomas Edison’s dictum that genius is ten percent inspiration
and ninety percent perspiration has never been truer than it is here.

I have found that for a two semester (or three quarter) course, it is easy to
cover all the sections in Chapters 1 through 7 that are not marked with asterisks in
the Table of Contents. I also find time to include some of the optional sections or
part of Chapter 8. In doing this, I make it a practice of assigning a lot of the easier
textual material as reading for the students, while I work through many of the
harder exercises in class. I see no point in copying the text onto the blackboard.

If it is only possible to spend one semester (about fifteen weeks) on classical
real analysis, then one can proceed as follows. Assign all of Chapter 0 and much of
Chapter 1 as reading. Omit all sections which bear asterisks in the Table of Con-
tents. Spend only one week on each of Chapters 1, 5, and 7 and only three weeks on
each of Chapters 2, 3, 4, and 6 by making the following additional omissions. In
Chapter 3, proceed only through ‘‘Uniform Convergence,”” omitting ‘‘Baire
Category.”’ In Chapter 4 omit ‘‘Differentiability Almost Everywhere.’’ In Chapter 6
stop with ‘“The Riemann Integral,’’ but be sure to work through many of the exer-
cises at the end of that section. In Chapter 7, stop with ‘“‘Some Theorems of Abel.”’

I take great pleasure in offering my warmest thanks to my good friends Bob
Burckel and Louis Pigno who gave me such valuable assistance in preparing this
book through their constant encouragement, their proofreading and their many
stimulating conversations. I also thank the four women who valiantly typed the
technically complicated manuscript. They are Twila Peck, Judy Bernhart, Marie
Davis, and Marlyn Logan. Finally, it is a pleasure to thank my publishers and
editors John Martindale, Arthur Weber, Paul Prindle, John Kimmel, and David
Foss for their excellent help and for their patience and understanding through this
seemingly interminable project.

Karl Stromberg
Manhattan, Kansas
July, 1980
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Intervals, 28, 103, 346
Inverse Function Theorem,
374
Inverse image of a set, §
Inverse relation (or
function), 3
Inverse sine, 441
Inverse tangent, 243
Inversion of Fourier
transforms, 360
Irrational numbers, 21
Isolated point, 96
Iterated integrals, 350

Jacobian, 366

Jensen’s Inequality, 201

Jordan’s Decomposition
Theorem, 160

Jordan’s Test, 335, 546

Katznelson, 217
Kolmogorov’s divergent
Fourier series, 530
Kronecker’s Approxima-
tion Theorem, 363
Kummer’s Test, 406

L, 344

L norm, 341

L -space, 341

A-null set, 79

Lagrange multipliers, 382

Lambert series, 456

Laplacian in polar
coordinates, 380

Laws of exponents, 16, 137

Lebesgue constants, 551,
562

Lebesgue covering theo-
rem, 113

Lebesgue integrable func-
tion, 264, 290

Lebesgue integral, 258,
263, 264, 288, 290,
315-316

Lebesgue measurable
function, 285, 290

Lebesgue measurable set,
293

Lebesgue measure, 77, 294,
346

Lebesgue point, 539

Lebesgue singular function,
130

Lebesgue summable. See
Lebesgue integrable

Lebesgue’s Decomposition
Theorem, 331

Lebesgue’s Differentiation
Theorem, 207

Lebesgue’s divergent
Fourier series, 557

Lebesgue’s Dominated
Convergence Theo-
rem, 268, 291

Lebesgue-Gergen Test, 547

Lebesgue-Stieltjes Integral,
283

Legendre’s Duplication
Formula, 470

Leibnitz’s Formula, 189,
378

Leibnitz’s Rule, 380

Leibnitz’s Test, 58

Length of an arc, 329

Length of an interval, 77

L’Hospital’s Rule, 180, 188,
225

Limacon, 428

Limit comparison tests for
integrals, 278

for series, 402
Limit inferior, 47
one-sided, 170

Limit of a function at a
point, 114

Limit of a sequence. See



Convergence of
sequences

Limit point, 96

Limit superior, 47

one-sided, 170

Lindemann, 241

Linear mapping, 364

Liouville numbers, 187

Lipschitz condition, 160,
337,531

Littlewood’s Tauberian
Theorem, 498

Local extrema, 177, 193,
379

Locally compact space, 153

log, 135

Log, 236

Log series, 242

log tests, 405

Logarithm, complex, 236

Logarithm of the Gamma
Function, 467

Logarithm, real, 135

Lower bound, 12

Lower envelope, 132

Lower function, 271

Lower semicontinuous
function, 132

Luzin’s Theorem, 303

Maclaurin series, 190. See
Power series
Marcinkiewicz’s theorem
on derivates, 316
Maximum, local, 177, 379
Mean of order p, 184, 344
Mean value theorems, 178,
197, 373
for integrals, 281, 328,
334
Measurable function, 285,
290
Measurable set, 293
Measure
dense set, 307
Lebesgue, 77, 294, 346
Member of a set, 1
Menshov’s set of
multiplicity, 565
Mertens’ Theorem, 75

INDEX

Mesh of a subdivision, 270
Metric, 91
Metric space, 91
Midpoint convex function,
204, 307
Minimum, local, 177, 379
Minkowski’s Inequality,
25, 340
Modulus
of continuity, 520
of a number, 23
Monotone Convergence
Theorem, 266, 288
Monotone function, 128
Monotone sequence, 43
Multiindex, 378
Multiplication of series, 72,
449
Multiplicity, set of, 565

N, 14

N-Functions, 333

Natural numbers, 13

Neighborhood, 49, 96

Nested Interval Principle,
30

Nonmeasurable sets, 298

Nontangential limit, 428

Norlund summability, 491

Norm

L, 341
uniform, 92

Nowhere dense set, 109

Nowhere differentiable
continuous functions,
174, 562

Nowhere monotone func-
tions, differentiable
but, 217, 337

Null set, 79

One-to-one, 5
Onto, 4

Open cover, 102
Open interval, 28
Open set, 93, 95
Ordered field, 11
Ordered pair, 3
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Oscillation function, 120
Osgood’s Theorem, 120
Outer regularity, 296

n, 228
is irrational, 240
rational approximations
to, 245
Pairwise disjoint family, 2
Parseval’s Identities, 517
Partial derivatives, 366
Partial sums, 54
of Fourier series, 506,
543
of trigonometric series,
503
Perfect set, 96
Pi, 228
Pigeon-hole Principle, 239
Plancherel transform, 361
Plancherel’s Theorem, 362
Point of a set, 1
Pointwise convergence, 140
Pointwise limit, 140
Poisson kernel, 535
onR", 361
Poisson Summation
Formula, 559
Polar Coordinates, 369,
392
Power series, 71
(1 + h)°, 197
(1 + 2)°, 438
Arcsin z, 442
Arctan z, 244
exp(z), 76
log (1 + h), 197
Log (1 + 2), 242
sec z, 453
sin z, cos z, 227
zcot z, tan z, Z csc z, 432
Powers, 16, 136, 238
Pringsheim’s Theorem, 223
Product of two series, 72,
449
Product symbol, 18
Proper subset, 1
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Q.21

Quadratic mean, 184

R, 8-12

R#, 27

Raabe’s Test, 407

Radial functions, 393

Radius of a ball, 93

Radius of convergence, 71

Range, 3

Ratio test, 70

Rational numbers, 21

Real analytic function, 223

Real number system, 8-12
extended, 27

Real part, 23

Rearrangement of a series, 64,

444, 445, 448
Regular summation matrix,
481
Regularity of Lebesgue
measure, 296
Relation, 3
equivalence, 3
Relative topology, 101
Relatively open, 101
Remainder forms, 195
Residual set, 109
Restriction of a function, 5
Riemann integrable, 270
Riemann integral, 270
Riemann-Lebesgue Lemma,
313, 510

Riemann Localization Princi-

ple, 544
Riemann-Stieltjes Integral,
281
Riemann’s Theorem on rear-
ranging series, 444
Riesz-Fischer Theorem; 513
Rolle’s Theorem, 178
Roots, nth, 20, 238
Root test, 70

o-algebra, 308
Salem’s Theorem, 523
Schwarz’s Inequality, 340

INDEX

Schwarz’s theorem on con-
vexity, 206
Second category, 109

Second countable space, 112

Self-adjoint, 152
Semicontinuity, 132, 310
Separable space, 167
Separating, point, 148
Sequence, 39
" decreasing, 43

finite, 17

increasing, 43

monotone, 43

Sequential Hilbert space, 93

Series
of complex terms, 53
double, 61, 446, 450
geometric, 55
of nonnegative extended
real terms, 59
power, 71
rearrangement of, 64,
444, 445, 448
Set, 1
Sigma algebra, 308
Signum function (sgn), 128
Simple discontinuity, 128
Simple function, 300, 310
Sine function, 227
infinite product for the,
249, 519
Smooth functions that wig-
gle everywhere, 217,
337
Space-filling curve, 145
Spherical coordinates in
R", 369
Star-shaped sets, 220
Steinhaus’ Theorem, 297
Step functions, 257, 349
Stieltjes Integral, 281
Stirling’s Formula, 253, 468
Stolz Limit Theorem, 428
Stone-Weierstrass Theo-
rems, 146-154
compact-complex, 152
compact-real, 148
lattice version, 157
locally-compact case, 154

Subalgebra, 146
Subbase, 96
Subcover, 102
Subdivision, 159
Subsequence, 52
Subset, 1
Subspace (topological), 10
Sum of a series, 54, 60
Summability methods

Abel, 474

Borel, 493

Cl,(Ceséro), 474

C,, 486

Euler-Knopp, 483

H,, (Holder), 489

logarithmic means, 482

N,, (Norlund), 491
Summable function. See

Integrable function

Summation by parts, 421
Summation symbol, 17
Superset, 1
Support of a function, 156
Supremum (sup), 12, 28
Supremum Principle, 12
Supremum, essential, 306

Tauberian hypothesis, 495
Tauberian theorems, 495
Fejér’s, 498
Hardy’s, 498, 500
Hardy-Littlewood, 495
Littlewood’s, 498
Tauber’s, 500
Taylor polynomials, 193
Taylor’s Theorem, 194,
281, 378
Taylor series, 189. See
Power series
Telescoping sum, 56
Term
of an infinite product,
413
of a sequence, 17, 39
of a series, 54
Term-by-term differentia-
tion, 209, 214, 221,
519



Term-by-term integration,
267, 269, 276, 278,
282, 288, 289, 291, 511

Ternary expansion, 66

Ternary set, Cantor’s, 81

Tietze’s Extension
Theorem, 134, 154,
311

Toeplitz matrix, 481

Tonelli’s Theorem, 353

Topological space, 95

Topology, 95

Total variation, 159

Totally bounded metric
space, 112

Totally disconnected set,

113
Tower of powers, 185

Transcendental number, 37
187, 241

Triangle inequalities, 24, 91

Trigonometric functions, 227

Trigonometric polynomial,
503

Trigonometric series, 503

Unconditional convergence
of series, 448

Uncountable set, 29

Uniform Cauchy sequence,
141

Uniform closure, 146

Uniform continuity, 123

INDEX

Uniform convergence, 140,
164

Uniform limit, 140

Uniform metric, 92

Uniform norm, 92

Uniformly distributed, 363

Union of sets, 2

Uniqueness theorem for
differential equations,
224

Uniqueness theorem for
Fourier coefficients,
508

Upper bound, 12

Upper envelope, 132

Upper function, 271

Upper semicontinuous
function, 132

Usual metric on R, 92

Usual topology, 95, 96

Value of an infinite
product, 411
Van der Waerden, 174
Vanish at infinity, 153
Vanishes nowhere, 148
Variation
bounded, 159
finite, 159
total, 159
Variation norm, 163
Vieta’s product, 419
Vitali-Carathéodory
Theorem, 310

577

Vitali’s Covering Theorem,
335
Void set, 1
Volterra’s example, 312
Volume
of an n-ball, 394
of an n-cone, 397
n-dimensional, 346
of an n-simplex, 393
of revolution, 396

Wallis Formulas, 250, 280
Weierstrass Approximation
Theorem, 149, 156,
157
Weierstrass Criterion, 434
Weierstrass Double Series
Theorem, 450
Weierstrass M-test, 141
Weierstrass’ nowhere dif-
ferentiable continuous
functions, 562
Well-ordering, 15
Weyl’s Theorem on uni-
form distribution, 362
Wiener-Levy Theorem, 525
Wiener’s Theorem on
reciprocals, 526

Zygmund’s Theorem on
absolute convergence,
521
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