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Chapter 1

Introduction

The classical computer was originally a largely theoretical concept usually at-
tributed to Alan Turing, called the Turing Machine. The first computers to
realise this theory used valves as the core component for processing. This even-
tually progressed to transistors, which are the building block of current proces-
sors. In 1965 GordoSn Moore made an empirical observation and prediction
that the density of transistors on a chip doubles roughly every 18 months. As
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Figure 1.1: Moore’s Law. Source: Intel.

can be seen in Figure 1.1, this law has roughly held for about 40 years. However,
this trend cannot continue indefinitely. There are differing estimates as to when
the trend will reach its limit, one even within 6 years [13], but it is generally
agreed that a limit will be reached.

As the transistor size becomes close to the atomic scale, quantum effects,
i.e. the physical laws of the very small, will begin to dominate how the tran-
sistors act. However, if some, at the moment rather major, technical hurdles
can be overcome, a computer that exploits these effects, a quantum computer,
could be built that have some powerful properties. It is our aim to give a brief
introduction to some of these properties.

In order to do this we will describe quantum states, and how they are repre-
sented mathematically in Chapter 2. In Chapter 3 possible operations on these
states are discussed. Chapter 4 describes how a quantum computer could do
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CHAPTER 1. INTRODUCTION 5

anything a classical computer could do. The remaining chapters focus on al-
gorithms that a classical computer cannot do, or at the very least, cannot do
efficiently.



Chapter 2

Quantum States

In this chapter we introduce the concepts of how information is stored in a
quantum computer, how to describe this formally, and make comparisons to the
classical case. We will also briefly, and rather informally, describe the quantum
physics that make our descriptions reasonable. Recall a Hilbert space is a com-
plete inner product space over the complex numbers. For vectors in a Hilbert
space will use the Dirac notation |ψ〉.

Definition 2.0.1 (Qubit). A quantum bit, or qubit for short, is a 2-dimensional
Hilbert space H2. We label an orthonormal basis of H2 by {|0〉 , |1〉}. The
state of the qubit is an associated unit length vector in H2. If a state is equal
to a basis vector then we say it is a pure state. If a state is any other linear
combination of the basis vectors we say it is a mixed state, or that the state is
a superposition of |0〉 and |1〉.1

If the associated state of some qubit, that we label A say, is state |φ〉 at some
moment in time, then we often say that A has state |φ〉, or A is in state |φ〉.
Example. An example of a mixed state of a qubit is

|ψ〉 = 1√
2
(|0〉+ |1〉).

Clearly this is a unit length vector in H2.

Two states are seen as equivalent up to a scale factor of some complex
number α such that |α| = 1. This leads to the fact a qubit can be seen as a
sphere in 3D space, and the state of the qubit as a point on the sphere. In this
case the sphere is known as the Bloch sphere [16].

A classical bit is traditionally defined as F2, and the state of the classical bit
as a member of F2, i.e. either 0 or 1. Thus there are only two possible states a
classical bit can be in. However, a qubit can be in any state a |0〉+ b |1〉 where
a, b ∈ C and |a|2 + |b|2 = 1.

There are only two possible pure states for a qubit, |0〉 and |1〉. Thus there
is a similarity between a qubit in a pure state and a classical bit. A further
similarity is related to observation, which will be mentioned later. We can, and
will, often think about classical bits as qubits in pure states.

1There is a more general definition of quantum states as operators on Hilbert spaces. For
our purposes this definition is unnecessary.

6



CHAPTER 2. QUANTUM STATES 7

Remark. Note that what we are actually doing is trying to model a physical
system. For the classical case we say that the state of a bit is 0 or 1. This is
just trying to represent some physical state that can be in one of two possible
states. If we are modelling a compact disc, 0 would represent a ‘hole’ (albeit
very small) and 1 would represent ’no hole’. If we are modelling a CPU, 1 would
represent current going round part of a circuit, and 0 would represent no current
going round that part of a circuit. We could even just be modelling the state
of a light, either on or off. We do not want to try to model every tiny physical
part of each of these systems. If we are just interested in seeing what can be
done with some physical system that has the property that can be in one of two
states, we just model that very property. Thus whatever we discover could, in
theory, be applied to any physical system that has that property.

We are doing a similar thing here. We are making the assumption that some
physical system has a property that can be in a superposition of states (along
with some other assumtions relating to observation and operations, which will
be discussed later), and seeing if that could lead to anything useful.

Remark 2.0.1. The Nuclear Magnetic Resonance, or NMR, quantum comput-
ers, such as the one that successfully factored 15 in 2001 [23], use millions of
identical molecules as the quantum computer. Roughly speaking the computer
had the same number of qubits as atoms in the molecule, its just that there
were millions of copies of the molecule. The spin of each of the atoms in the
molecule represented the state of a qubit. We present a simplification of spin,
but one could say that the spin in state up could represent |0〉, and down could
represent |1〉. We could label an orthonormal basis of H2 by |↑〉 and |↓〉 to make
this clearer. Due to the laws of quantum mechanics, the spin of the atom can be
in a superposition of up and down at the same time, i.e. a linear combination
of |↑〉 and |↓〉.
Remark 2.0.2. There is an important technical problem that must be solved
if quantum computers are ever to be practical. A superposition of states |0〉
and |1〉 is known as a coherent state. A coherent state is extremely ‘unstable’.
That is to say that it tends to interact with its environment, and collapse into a
pure state. This process is known as decoherence, and is seen to be inevitable.
Algorithms that exploit quantum effects such as superposition, that we will
describe later, are known as quantum algorithms. To apply these quantum
algorithms in the real world, decoherence time must be longer than the time to
run the algorithm. Thus ways of making decoherence time longer are trying to
be found.

Remark 2.0.3. When describing quantum algorithms we will make the assump-
tion that we can always initialize the state of qubits, usually to state |0〉. It
would be very difficult to construct any sort of algorithm where the initial state
was not controllable.

Obviously we would like to think about systems larger than those of just one
qubit. We now generalise the notion of a qubit as a two-dimensional Hilbert
space H2, to an n-dimensional Hilbert space Hn.

Definition 2.0.2 (Quantum System). A quantum system is an n-dimensional
Hilbert Space Hn. We label an orthonormal basis on Hn by {|x1〉 , |x2〉 . . . , |xn〉}
such that xi ∈ X for some finite X. The associated state of the system is a unit
length vector in Hn.
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Just as for the qubit, if the associated state of some quantum system, that
we label S say, is state |φ〉 at some moment in time, then we often say that S
has state |φ〉, or S is in state, |φ〉. We see that a general form for the state of a
quantum system is

n∑

i=1

αi |xi〉 where αi ∈ C and
n∑

i=1

|αi|2 = 1.

For clarity for pure states we will usually use English letters, such as |x〉, and for
states that may be mixed we will usually use Greek letters, such as |ψ〉. We will
also only ever use quantum systems that are some compound of some collection
of qubits. What is meant by compound is explained in the next section.

2.1 Compound States

Often we are interested in describing two quantum systems Hn and Hm at the
same time. For example we may, and in fact will, wish to describe the state of
two qubits. Let us label an orthonormal basis of Hn by {|x1〉 , |x2〉 . . . , |xn〉} and
label an orthonormal basis of Hm by {|y1〉 , |y2〉 . . . , |ym〉}. For basis states |xi〉
and |yj〉 we write |xi〉 |yj〉 or just |xiyj〉 for the cartesian product (|xi〉 , |yj〉).

Definition 2.1.1 (Tensor Product of Spaces). Let Hn and Hm be quantum
systems with orthonormal bases labelled as above. The tensor product Hn⊗Hm

is defined to be the Hilbert space with basis {|xi〉 |yj〉 : i = 1 . . . n, j = 1 . . .m}.

We call Hn⊗Hm the compound system of Hn and Hm. Clearly Hn⊗Hm
∼=

Hnm, and we will usually write Hn ⊗ Hm = Hnm. Thus a quantum state in
Hnm must be of the form

n∑

i=1

m∑

j=1

αij |xi〉 |yj〉 where αij ∈ C and
n∑

i=1

m∑

j=1

|αij |2 = 1.

Example 2.1.1. Recall that we label an orthonormal basis of H2 by {|0〉 , |1〉}.
Thus an example of a quantum state in H2 ⊗H2 (two qubits) is

1

2
(|00〉+ |01〉+ |10〉+ |11〉).

Example 2.1.2. Another example of a quantum state in H2 ⊗H2 is

1√
2
(|00〉+ |11〉).

Two qubits in this state are called an EPR pair. This is a state that has caused
controversy, and will be mentioned again later.

Consider quantum systems A and B, with A in state |ψ〉 and B in state
|φ〉. We would like some way of describing the state in the compound system
A ⊗ B. Fortunately there is an easy way in which to achieve this, using the
tensor product ⊗.
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Definition 2.1.2 (Tensor Product of Vectors).

( n∑

i=1

αi |xi〉
)
⊗
( m∑

j=1

βj |yj〉
)

=
n∑

i=1

m∑

j=1

αiβj |xiyj〉 .

Using this we can say that A ⊗ B is in state |ψ〉 ⊗ |φ〉. Tensor product
sends unit length vectors to unit length vectors, so it does send quantum states
to quantum states. Since the basis representations for any states |φ〉 and |ψ〉
are unique, it should be clear that A ⊗ B is in state |ψ〉 ⊗ |φ〉 if and only if A
is in state |ψ〉 and B is in state |φ〉. We call the state |ψ〉 ⊗ |φ〉 in A ⊗ B the
compound state of |ψ〉 and |φ〉. Another important notational point is that often
the symbol ⊗ is omitted. Because for basis states the tensor product |x〉 ⊗ |y〉
is equal to the cartesian product, there is no conflict of notation when we write
|x〉 |y〉.

We can easily apply the definitions of tensor products of spaces recursively
to describe the compound of more than just two quantum systems, which we
now do for the specific case where each system is a qubit.

Definition 2.1.3 (Quantum Register). We will call H2m = H2 ⊗H2 . . . ⊗H2

(m times) a quantum register of length m. Put another way, it is the compound
system of m qubits.

We see a quantum register of length m has dimension 2m. Recall that
{|0〉 , |1〉} is a basis of H2. Thus noting the earlier definition of tensor product,
a basis of a quantum register of length m is

{|x0〉 |x1〉 . . . |xm−1〉 : xi ∈ {0, 1}}. (2.1)

Example 2.1.3. A quantum register H2 ⊗ H2 has basis {|00〉 , |01〉 , |10〉 , |11〉}.
Given two states each in H2

|φ〉 =
1√
2
(|0〉+ |1〉) ∈ H2 |ψ〉 = 1√

2
(|0〉+ |1〉) ∈ H2,

we can see that their tensor product in H4 = H2 ⊗H2 is

|φ〉 ⊗ |ψ〉 = 1

2
(|00〉+ |01〉+ |10〉+ |11〉). (2.2)

Remark 2.1.1. The spin of two atoms could be considered as a quantum register
of length two. As discussed in Remark 2.0.1 , the state of each can be a linear
combination of the states |↑〉 and |↓〉. Therefore the state of the compound sys-
tem can be linear combination of the states |↑↑〉, |↑↓〉, |↓↑〉 and |↓↓〉 (remember
it must be a unit length linear combination).

2.2 Observation

We will now discuss what happens when we observe a quantum system. We will
use the words measure and observe interchangeably to mean the same thing.
We say that an observation of the state in Hn,

n∑

j=1

αj |xj〉 ,
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results in xk for some k with probability P (xk) = |αk|2. This is essentially why
the vector must be unit length: the probabilities |αi|2 must sum to 1.

The act of observation itself causes the state to collapse to the pure state
|xk〉. This is a very important point! Another very important point is that the
result of measurement is probabilistic. We do not know what the result will be,
only the probabilities of possible results.

If a quantum system in some pure state |x〉 is observed, there is only one
possible result, x, and the act of observation does not cause the state to change.
This is another reason why we can view classical bits as quantum bits in pure
states. We can observe classical bits repeatedly and they will not change - just
as with quantum bits in pure states.

Remark 2.2.1. Consider the NMR quantum computer as discussed in Remarks
2.0.1 and 2.1.1. Let us assume that the spin of an atom is in some super-
positioned state, i.e. a superposition of both up and down. Describing this
state formally we say that the state is a |↑〉 + b |↓〉 for some a, b ∈ C such that
|a|2 + |b|2 = 1.

An observation of the system, using the NMR scanner, which is similar to
the MRI scanners used in hospitals, would result in our knowledge that the spin
of the atom is either up or down. That is, would result in ↑ with probability
|a|2, or with ↓ with probability |b|2.

The post-observation spin of the atom would then correspond exactly to the
result of the observation. Thus the post-observation state would be |↑〉 if the
observation resulted in ↑, or |↓〉 if the observation resulted in ↓.

We can also see that given and k0, k1, . . . , ks−1 ∈ 0 . . . n−1 distinct, and using
rudimentary probability, the probability of observing any of xk1

, xk2
, . . . , xks

∈
0 . . . n− 1 is equal to

s∑

l=1

P (xkl
) =

s∑

l=1

|αkl
|2.

We will now consider a partial measurement of a compound system. That is
to say, observing one system out of a compound system. Let us have a compound
state in Hn ⊗Hm

n∑

j=1

m∑

i=1

αij |xj〉 |yi〉 .

If we observe the first system, i.e. the one on the left, we will observe some xk.
We will observe this with probability

P (xk) =
m∑

i=1

P (xkyi) =
m∑

i=1

|αik|2.

The state will then change to the state that corresponds to our observation.
Specifically it will be projected onto the subspace spanned by |xk〉 and nor-
malised to the unit norm. Thus our post-observation state is

1√
P (xk)

m∑

i=1

αik |xk〉 |yi〉 .

This change of state due to observation is known as the projection postulate. No
reason for this change has been found.
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2.3 Entanglement

Definition 2.3.1. Let Hn ⊗Hm = Hnm. A state |ψ〉 ∈ Hnm is decomposable
(into Hn and Hm) if there are |µ〉 ∈ Hn, |ν〉 ∈ Hm such that |ψ〉 = |µ〉 ⊗ |ν〉. A
state |ψ〉 ∈ Hnm is entangled if such a decomposition does not exist.

Example 2.3.1. From Example 2.1.3 we see that by construction the state (2.2)
is decomposable.

Example 2.3.2. Consider the pair 1√
2
(|00〉 + |11〉. This state is entangled. To

prove this we argue by contradiction, and assume it is decomposable. Thus for
some a0, a1, b0, b1 ∈ C

1√
2
(|00〉+ |11〉 = (a0 |0〉+ a1 |1〉)(b0 |0〉+ b1 |1〉)

= a0b0 |00〉+ a0b1 |01〉+ a1b0 |10〉+ a1b1 |11〉 .
Note that we omit the tensor product symbol ⊗. Comparing coefficients on the
left and rights sides we arrive at a contradiction.

This state shows that entanglement can lead to rather bizarre results. Ob-
servation of one qubit results in 0 or 1 with equal probability. However, once
this observation is made, the post-observation state of the compound system is
|00〉 if we observed 0, or |11〉 if we observed 1. If we now measure the other
qubit we thus find it is in exactly the same state as the first qubit was found
in. The act of observation on one qubit has determined the state of the other
qubit.

Remark 2.3.1. Two qubits in state as in Example 2.3.2 is known as an EPR pair,
after the scientists Einstein, Podolsky and Rosen. These qubits appear to share
a link - measuring one determines the other. This appears to be independent
of how far apart the qubits are physically. In 1935 EPR postulated [8] that
this link between the particles must be due to some property of that both of
the particles have, but is unknown, i.e. some hidden variable. However in 1964
J. S. Bell [2] showed that if there is such a hidden variable, then experimental
results should adhere to a particular inequality. However, repeatedly results
have been found that violate this inequality, thus strongly suggesting that EPR
were wrong.

Remark 2.3.2. Entanglement has been observed in particles when have been
separated by distances of over 50km [15] when sent through optical cable, and
7.8km when transmitted through the atmosphere over Vienna, Austria [19]!

2.4 Representing Groups

One of the main reasons of using a computer is to work out results that actually
represent something. Very often we wish states to represent members of Zn. If
n = 2m for some m there is a very simple representation for each number. We
can see that for x ∈ Z2m

x = 2m−1xm−1 + 2m−2xm−2 + . . .+ 2x1 + x0. (2.3)

where each xi ∈ {0, 1}. The xi form the binary representation of the number.
So we then say that the basis vector in H2m that represents x is

|xm−1〉 |xm−2〉 . . . |x1〉 |x0〉 ,
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and we often just write |x〉 for this basis vector. Using this notation, we see
that the set of all basis vectors (2.1) is equal to {|x〉 : x ∈ Z2m}.

Remember that H2m is actually the compound system of m qubits, and so
observation of this system means we are actually observing m individual qubits.
Each qubit will be observed in state |0〉 or |1〉, so by equation (2.3) we can
deduce which member of Z2m the compound system of the qubits, i.e. the
register, represents.

We sometimes do not care about what integer the register may represent if
taken to be a binary representation of a number. For a register of length m
we can say that a basis vector represents a member of F2

m. For example let
x = (0, 1, 1, 1, 0) ∈ F2

5 The basis vector in H25 that represents this is |01110〉.
We normally write |x〉 for this vector. Using this notation we see that the set
of all basis vectors (2.1) is equal to {|x〉 : x ∈ F2

m}.



Chapter 3

Operations on Quantum
States

In this chapter we describe how the state of a quantum system changes in time.
It may go without saying, but in order for a quantum computer to produce
meaningful results, it needs to operate on quantum states and somehow change
them.

We will also show how this time evolution can be represented using matrices,
we will give some examples of time evolution, and show how multiple operations
on a quantum system can be represented by diagrams.

3.1 Time Evolution

We will make the assumption that there is some function that depends on time
that describes the time evolution of the system. This assumption is called the
causality principle. More formally this means that for all t ≥ 0 there are func-
tions Ut : Hn → Hn such that if the state of the system at time t is |ψ(t)〉, then
|ψ(t)〉 = Ut |ψ(0)〉. We will also assume that any such time evolution must be
norm preserving, i.e. ‖Ut(|ψ(t)〉)‖ = ‖|ψ(t)〉‖, so each Ut sends quantum states
to quantum states. We will also make the hopefully reasonable assumption that
for all t1, t2 ≥ 0 we have Ut1+t2 = Ut2Ut1 . We will also make the very important
assumption that each Ut is linear. To justify this assumption we would have
to go more into physics than is necessary for our purposes. We ask the reader
to just accept it. We say a set of maps Ut that satisfies these assumptions is
called a quantum time evolution. Quantum time evolution satisfies an important
property.

Definition 3.1.1 (Unitary). A map U : Hn → Hn is unitary if for all |ψ〉 , |φ〉 ∈
Hn we have 〈ψ|Uφ〉 = 〈U−1ψ|φ〉, where 〈 . , . 〉 : Hn × Hn → C is the inner
product of Hn.

Theorem 3.1.1. Any quantum time evolution Ut on Hn is unitary for all t ≥ 0.

Proof. Immediate from the fact that any norm preserving linear map on a finite
dimensional Hilbert space must be unitary.

13
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Informally we will take time to be discrete, as ‘between operations’ we will
assume the system does not change. For this reason we will not refer to the time
explicitly. It should be clear that, to give an example, U2U1 |x〉 means to apply
U1 to |x〉 at some time, and then apply U2 at some time after to the resulting
state.

Remark 3.1.1. As already mentioned in Remark 2.0.2, decoherence time must
be longer than the time taken to run quantum algorithms. At the moment, de-
coherence time is still far too short to run anything but very short algorithms.
When we later present quantum algorithms, we will not take into account de-
coherence time. This is because our aim is to show what may be possible with
quantum computers, if the technical problems of actually constructing them are
solved.

Remark 3.1.2. Given any unitary map we will also make the assumption that
there is some way it can be implemented, even if it has not yet actually been
done physically. In an NMR computer as mentioned in Remarks 2.0.1, 2.1.1
and 2.2.1, the spins of the atoms can be controlled with radio waves, and thus
have some operations performed on them.

We would like to be able to check if certain maps can be part of a quantum
time evolution. Fortunately, this is not difficult. We present the following
theorem without proof.

Theorem 3.1.2. A map U : Hn → Hn is unitary if and only if the matrix that
represent is in some coordinate representation, A say, satisfies A∗A = AA∗ =
In, where ∗ is the complex conjugate transpose. This property is independent of
the chosen coordinate representation.

In order to use the above theorem, we need to pick a coordinate representa-
tion of Hn. We will do this in the following sections for H2, i.e. a qubit, and for
H2⊗H2 = H4, i.e. a compound system of two qubits. As we will always use the
same coordinate representation for Hn, we will use the same symbol for both a
linear map and its matrix (and for a vector and its coordinate representation).

3.2 Unary Quantum Gates

Recall that a qubit is H2 with orthonormal basis labelled {|0〉 , |1〉}. We will
assign these the natural coordinate representation

|0〉 =
(

1
0

)
|1〉 =

(
0
1

)
.

Given a coordinate representation we can describe a linear map on a qubit by
a matrix.

Definition 3.2.1 (Unary Quantum Gate). A unary quantum gate is a unitary
linear map on one qubit, i.e. a unitary map H2 → H2.

We now define some important unary gates

Definition 3.2.2.

M¬ =

(
0 1
1 0

)
Fθ =

(
1 0
0 eiθ

)
H =

(
1√
2

1√
2

1√
2
− 1√

2

)
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We call M¬ the not gate, Fθ phase flip gates, and H the Hadamard gate. We
also define F = Fπ as the phase flip gate.

The not gate maps |0〉 7→ |1〉 and |1〉 7→ |0〉. The phase flip gate maps
|0〉 + |1〉 7→ |0〉 − |1〉. The Hadamard gate maps |0〉 7→ 1√

2
(|0〉 + |1〉) and

|1〉 7→ 1√
2
(|0〉−|1〉). Note that in both of these mixed states, the probabilities of

observing 0 or 1 are equal. What happens when we apply the Hadamard gate
again is quite interesting:

1√
2
(|0〉+ |1〉) H7−→ 1√

2

(
1√
2
(|0〉+ |1〉) +

1√
2
(|0〉 − |1〉)

)

=
1

2
(|0〉+ |0〉 − |1〉 − |1〉)

= |0〉 .

We see that the coefficients of |1〉 have cancelled each other out. This is known
as destructive interference. The coefficients of |0〉 have summed together to
make 1. This is known as constructive interference.

3.3 Binary Quantum Gates

Definition 3.3.1. A binary quantum gate is a unitary operation on two qubits,
i.e. a unitary map H2 ⊗H2 → H2 ⊗H2.

To describe unitary maps in the compound system H2 ⊗ H2 we need give
the basis, {|00〉 , |01〉 , |10〉 , |11〉}, a coordinate representation. We will assign

|00〉 =




1
0
0
0


 |01〉 =




0
1
0
0


 |10〉 =




0
0
1
0


 |11〉 =




0
0
0
1


 .

Example 3.3.1. Consider the binary gate

M =




1√
2

0 0 1√
2

0 1 0 0
0 0 1 0
1√
2

0 0 − 1√
2


 .

We can see that M |00〉 = 1√
2
(|00〉 + |11〉), and thus M can generate an EPR

pair from two qubits in state |00〉.
Two unary gates, MA acting on A, and MB acting on another qubit B, can

be seen as each acting on the compound system A⊗B, and so each can in fact
be seen as a binary gate. Thus the combined action of MA followed by MB is a
binary gate, and has an associated unitary matrix. Using the matrices for MA

and MB we can calculate this matrix explicitly using the tensor product.
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Definition 3.3.2 (Tensor Product of Matrices). Let A be an r× s matrix, and
let B be a t× u matrix, so

A =




a11 a12 . . . a1s

a21 a22 . . . a2s

...
...

. . .
...

ar1 ar2 . . . ars


 B =




b11 b12 . . . b1u

b21 b22 . . . b2u

...
...

. . .
...

bt1 bt2 . . . btu


 .

We define their tensor product to be the rt× st matrix

A⊗B =




a11B a12B . . . a1sB
a21B a22B . . . a2sB

...
...

. . .
...

ar1B ar2B . . . arsB


 .

It can be verified that the action of MA ⊗MB acting on A⊗B is the same
as MA acting on A followed by MB acting on B. To do this all that is required
is to verify that for x1, x2 ∈ {0, 1}

MA ⊗MB |x1x2〉 = MA |x1〉 ⊗MB |x2〉 .

Note that we have defined two tensor products for vectors: Definition 2.1.2,
and the above Definition 3.3.2 for the coordinate representation of a vector (since
a coordinate representation of a vector is just single column matrix). However,
we have chosen coordinate representations so that they are equivalent. A specific
example of this is

(
1
0

)
⊗
(

0
1

)
= |01〉 =




0
1
0
0


 = |0〉 ⊗ |1〉 .

It can also be shown that MA and MB unitary implies that MA ⊗MB is
unitary. These ideas can be easily extended to general unitary maps acting on
general quantum systems Hn. Thus we can say that a unitary map can act
on some specific qubits of a larger quantum system Hn. The map that this
actually defines on Hn is still unitary and has the same affect as just applying
the map to the required qubits, apply the identity map to all the others, and
then considering the final compound system. This is how we will usually think
about gates acting on parts of a larger quantum system.

Using this idea of tensor product we can introduce the idea of controlled
gates. These are gates where an actions on the basis states are defined such
that the action on a qubit (the target qubit) is applied if and only some other
qubit (the control qubit) is in state |1〉. We formalise this in the following
definition.

Definition 3.3.3. Let A and B be qubits. Let M be a unary quantum gate
acting on B. The controlled-M gate is the binary gate on A⊗B defined by

(
1 0
0 0

)
⊗ I2 +

(
0 0
0 1

)
⊗M.
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Example 3.3.2. We can find the matrix for the controlled-not gate. The not
gate is

M¬ =

(
0 1
1 0

)
,

so the controlled-not gate is

MCNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Thus MCNOT maps |00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉 and |11〉 7→ |10〉.
Remark 3.3.1. Controlled-not, or CNOT gates have been developed. In 1999 re-
searchers constructed a device that acted on electrons in a solid state device [26].
In this case a qubit represents the charge of an electron. In 2003 a CNOT gate
was developed that acted on photons [17]. In this case a qubit represents the
polarization of a photon.

3.4 Quantum Circuits

To begin with we will give a general definition of a quantum gate.

Definition 3.4.1. A quantum gate is a unitary mapping acting on a quantum
register of length m that acts on a fixed number of qubits, that is independent
of m.

For example, a Hadamard gate acts on one qubit, and is thus a quantum
gate. No matter what size register the qubit may be part of, a Hadamard gate
always acts on one qubit. A controlled-not gate acts on two qubits (although
it always leaves one unchanged), thus a controlled-not gate is a quantum gate.
However a map defined to be “apply the not gate to every qubit in the register,”
is not a quantum gate, as it acts on a number of qubits that is not independent
of the size of the register.

For our purposes we will just roughly define a quantum circuit as some
concatenation of quantum gates that act on a quantum register of some length
m, i.e. acting on H2 ⊗H2 . . .H2 (m times).

Remark 3.4.1. It is generally thought that it is easier to build quantum circuits
up from smaller building blocks, i.e. gates, than to design each circuit from
scratch. Thus given some unitary map Hn → Hn that would help us solve some
problem, we are interested in how to decompose that map into a finite number
of gates. We will do this in Chapter 7 for both quantum Fourier transforms in
Zn and F2

m.

|0〉 H
1√
2
(|0〉+ |1〉)

Figure 3.1: Example of Hadamard gate acting on one qubit.

We can visually represent a quantum circuit with a quantum circuit diagram.
A line represents a qubit. A rectangle with any given letter, M say, on on any
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number of lines, represents the action of the gate M on the qubits represented
by the lines. Inputs are on the left, and outputs on the right. Figure 3.1
represents a circuit of just one gate, the Hadamard gate H, acting on a qubit
with initial state |0〉. However for the not gate we use a slightly different visual
representation, as can be seen in Figure 3.2. As in Figure 3.3, a controlled

|0〉 �������� |1〉

Figure 3.2: Example of a not gate acting on one qubit.

gate is shown with a filled black circle on the control qubit, and the ordinary
symbol for the gate on the target qubit, with a line connecting the two. For a

|1〉 • |1〉

|0〉 �������� |1〉

Figure 3.3: Example of a controlled-not gate.

measurement we will use a ‘tab’ symbol containing an M , and for qubits that
are definitely in pure states, (or equivalently classical bits) we use a ‘double

1√
2

(|0〉+ |1〉) "%#$M ?

Figure 3.4: Example of a measurement. Note that for the input mixed state
1

√

2
(|0〉 + |1〉), it is unknown what the result of the measurement will be. All that

is known is that the result has equal probability of being |0〉 or |1〉.

line’ as in Figure 3.4. We also have two important theorems relating to the
construction of quantum circuits, which we leave unproved.

Theorem 3.4.1 ([1]). All quantum circuits can be constructed using only con-
trolled not and unary gates.

Theorem 3.4.2 ([20]). All quantum circuits can be constructed (in some ap-
proximated sense) using only Hadamard gates and Toffoli gates.

A Toffoli gate is a three qubit gate that we will define in the next chapter.



Chapter 4

Boolean Circuits

We may wish to implement some classical operation using quantum gates that
does not seem correspond to any unitary map. The map that the circuit in

Cx ∈ F2
n f(x) ∈ F2

m









Figure 4.1: Boolean circuit performing function f : F2

n
→ F2

m
.

Figure 4.1 performs cannot be a unitary operation (if we take the input and
output to be some quantum registers in a pure state). The number of inputs
do not equal the number of outputs, so the map is not invertible. This chapter
shows how given any classical boolean circuit, it is in fact possible to construct
a quantum circuit that performs the same function.

4.1 Boolean Circuits

For our purposes we say that a classical bit is essentially the same as a quantum
bit, but that the state of a classical bit must always be a pure state, i.e. either
|0〉 or |1〉. There are three boolean gates, i.e. 3 gates that act on the pure states
|0〉 and |1〉, and output one of the pure states |0〉 or |1〉. They are the and (∧),
or (∨) and the not (¬) gates.

A boolean circuit is some combination of these gates, and the fanout oper-
ation, where the output of one gate is essentially copied and used as the input
to several other gates.

19
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|x〉 |y〉 |x ∧ y〉 (and) |x ∨ y〉 (or) |¬x〉 (not)
|0〉 |0〉 |0〉 |0〉 |1〉
|0〉 |1〉 |0〉 |1〉 |1〉
|1〉 |0〉 |0〉 |1〉 |0〉
|1〉 |1〉 |1〉 |1〉 |0〉

Figure 4.2: Truth table for boolean gates and, or and not.

We consider |0〉 and |1〉 as representing members of a group, specifically |0〉
represents 0 ∈ F2 and |1〉 represents 1 ∈ F2 (cf Section 2.4). We also say that
a basis vector |x0〉 |x1〉 . . . |xm−1〉 in the compound system H2 ⊗ . . . ⊗ H2 (m
times) represents the element (x0, x1, . . . , xm−1) ∈ Fm

2 . Thus we can say that a
boolean circuit actually performs a function Fn

2 → Fm
2 .

Let us consider functions Fn
2 → Fm

2 . In 1941 Emil Post [18]1 proved that any
such function can be constructed using only the three boolean gates and, or and
not (and fanout), and thus a boolean circuit can be constructed to perform this
function. Thus if we can find unitary gates that perform these functions, we can
show that given any function Fn

2 → Fm
2 , a quantum circuit can be constructed

that performs it.
The important gate that we will use is the Toffoli gate. It acts on three

qubits and maps |x〉 |y〉 |z〉 → |x〉 |y〉 |x⊕ (y ∧ z〉 where ∧ is and and ⊕ exclusive
or (or in other words addition modulo two). It can itself be constructed using
Hadamard gates, controlled phase flip gates and controlled-not gates as shown
in Figure 4.4. The symbol for Toffoli gate is shown in Figure 4.3. We will

|x〉 • |x〉

|y〉 • |y〉

|z〉 �������� |x⊕ (y ∧ z〉)

Figure 4.3: Toffoli gate.

|x〉 • • • |x〉

|y〉 • �������� • �������� |y〉

|z〉 H Fπ/2 F3π/2 Fπ/2 H |x⊕ (y ∧ z〉)

Figure 4.4: Decomposition of a Toffoli gate.

now describe how quantum gates can be used to perform the same function as
boolean gates.

1According to [11]. Unfortunately a copy of [18] was not found.
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1. And An and gate can be constructed using a Toffoli gate as in Figure 4.5.
Note that an additional qubit is required in pure state |0〉, which we will
call an ancilla qubit.

|x〉 • |x〉
|y〉 • |y〉

|0〉 �������� |x ∧ y〉

Figure 4.5: Toffoli gate as an and gate.

2. Not As shown in the previous chapter, a not gate is already unitary.

3. Or An or gate can be constructed using an and gate and three not gates.
Thus it can be constructed with a Toffoli gate, three not gates and requires
an ancilla qubit in pure state |0〉 as in Figure 4.6.

|x〉 �������� • |¬x〉

|y〉 �������� • |¬y〉

|0〉 �������� �������� |x ∨ y〉

Figure 4.6: A Toffoli gate as an or gate.

4. Fanout A fanout can be constructed using a Toffoli gate and one not
gate. Note we need two ancilla qubits to achieve this, both in pure state
|0〉. As can be seen in Figure 4.7, technically we could omit the not gate
and have one of the ancilla qubits initially in state |1〉, but it is easier to
treat all ancilla qubits as having to be in state |0〉. We can see that this
map actually copies basis states. We cannot have a unitary map that will
copy all mixed states, as we will see in Chapter 6.

|x〉 • |x〉

|0〉 �������� • |1〉

|0〉 �������� |x〉

Figure 4.7: Toffoli gate as fanout.
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Thus given any boolean circuit that computes a function f : F2
n → F2

m with k
gates we can construct a quantum circuit, R, that performs the same function.
The quantum circuit uses O(k) gates2 and requires q = O(k) ancilla qubits, all
initially in pure state |0〉. Such a circuit would also output m+ n− q ‘garbage
qubits’, and is shown in Figure 4.8.

R

|f(x)〉

|x〉

garbage bits

|0〉 (ancilla qubits)

















Figure 4.8: Quantum circuit emulating boolean circuit that performs function
f : F2

n
→ F2

m
.

However the garbage qubits may be undesirable. Since R is a quantum
circuit it has an inverse R−1. In fact, the Toffoli and not gates are self inverse,
so we can just take the ‘mirror image’ of the circuit R for R−1. Using this and a
collection of controlled-not gates we can construct the following quantum circuit
that requires the presence of ancilla bits, all initially in state |0〉, but outputs
them all in state |0〉 (perhaps to be used again). One feature of this circuit is
that the input is preserved, perhaps to be used in some other circuit. Such a
circuit is shown in Figure 4.9.

2For functions f, g : N → N we say f = O(g) if there are constants c > 0 and n0 ∈ N such
that n > n0 implies f(n) ≤ cg(n).
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R

•

R−1

•
•
•
•
•
•|x〉 • |x〉

|0〉 |0〉

��������
��������
��������
��������|0〉 �������� |f(x)〉

��������
��������
��������

























Figure 4.9: Quantum circuit emulating boolean circuit that performs function
f : F2

n
→ F2

m
. Note that this circuit preserves input and ancilla qubits.



Chapter 5

Superdense Coding

In this chapter we will describe a simple algorithm by which two classical bits
of information can be encoded into one qubit, the qubit transmitted, and the
original two classical bits recovered [4]. As is traditional, the sender is called
Alice, and the receiver is called Bob.

For this, we assume that Alice and Bob have a quantum channel: some
means of Alice to transmit a qubit to Bob. We also assume that Alice and Bob
share an entangled pair of qubits in state

1√
2
(|00〉+ |11〉).

Alice’s qubit is on the left in the above expression, which we will label A, and
Bob’s qubit is on the right, which we will label B. One could say that for Alice
and Bob to share this EPR pair, they needed to have previously transmitted
a qubit. However no transmission of the classical bits occurs at this point, as
Alice may not have even decided what classical bits she will send to Bob when
this initial transmission occurs.

We will label Alice’s classical bits as a and b. Note that these are the same
as quantum bits in pure states |a〉 and |b〉 respectively. The protocol follows.

1. If a = 1 Alice performs the phase flip F on her qubit A.

a State after Alice’s first operation
0 1√

2
(|00〉+ |11〉)

1 1√
2
(|00〉 − |11〉)

2. If b Alice also performs the not operation on her qubit A.

a b State after Alice’s second operation
0 0 1√

2
(|00〉+ |11〉)

0 1 1√
2
(|10〉+ |01〉)

1 0 1√
2
(|00〉 − |11〉)

1 1 1√
2
(|10〉 − |01〉)

3. Alice transmits her qubit to Bob.

24
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4. Bob performs the controlled-not on his qubit B using the qubit A as the
control qubit.

a b State after Bob’s first operation
0 0 1√

2
(|00〉+ |10〉)

0 1 1√
2
(|11〉+ |01〉)

1 0 1√
2
(|00〉 − |10〉)

1 1 1√
2
(|11〉 − |01〉)

5. Bob performs the Hadamard Transform H on A. At this point the qubits
are guaranteed to be in state |ab〉.

6. Bob observes the two qubits A and B. He is certain of observing a and b.

Note that this process has copied the classical bits a and b. Both Alice and
Bob each have a copy of a and b at the end of this protocol. Since we can view
classical bits as quantum bits in pure states, this process has essentially copied
two pure quantum states. It is impossible to copy a general mixed state using
unitary maps, as will be proved in the next chapter.

Alice

a • a

b • b

A F ��������

Bob

• H "%#$M a

B �������� "%#$M b

Figure 5.1: Superdense coding.



Chapter 6

Quantum Teleportation

In this chapter we will describe the converse to superdense coding: how the state
of a qubit can somehow be ‘encoded’ into two classical bits, the bits transmitted,
and the original state recovered. As in the previous chapter the sender with the
original state to send is called Alice, and the receiver Bob. This protocol was
introduced in [3].

For this we will assume that Alice and Bob have a classical channel: some
means for Alice to send classical bits to Bob.

Remark. A classical channel is any traditional means of sending information:
fax, e-mail - even carrier pigeon!

Remark. Quantum teleportation has been successfully carried out a number
of times, teleporting states of atoms or photons. Most notably was a 600m
teleportation of photons across the River Danube, Vienna Austria in 2004 [22].
We will not discuss the issue in any depth, but quantum teleportation is crucial
in quantum communication schemes.

Also as before we will start with Alice and Bob sharing an EPR pair

1√
2
(|00〉+ |11〉). (6.1)

One could say that to get to this point that Alice and Bob had to share a
quantum channel. However, this could have happened a long time before Alice
had the qubit to teleport to Bob.

One very important point to make is that this process teleports the quantum
state. The encoding process actually destroys the original quantum state. There
is actually no way to copy a general quantum state using unitary mappings as
we will see later in this chapter.

In the EPR pair (6.1), Alice has the qubit on the left which we will label A,
and Bob has the qubit on the right which we will call B. Alice’s qubit to be
teleported we will label T . It is in (possibly) a mixed state which we will refer
to as |ψ〉 = a |0〉+ b |1〉 for some unknown a, b ∈ C where |a|2 + |b|2 = 1. Thus
the compound state of the system T ⊗A⊗B is

(a |0〉+ b |1〉) 1√
2
(|00〉+ |11〉)

=
a√
2
|000〉+ a√

2
|011〉+ b√

2
|100〉+ b√

2
|111〉 .
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The quantum teleportation protocol follows. It is also shown as a quantum
circuit diagram in Figure 6.1.

1. Alice performs the controlled-not operation on her qubit A, using the
qubit to be teleported T as the control qubit. Thus the compound state
becomes

a√
2
|000〉+ a√

2
|011〉+ b√

2
|110〉+ a√

2
|101〉

2. Alice performs the Hadamard transform H on the qubit to be teleported
T . Thus the state becomes

1

2
|00〉 (a |0〉+ b |1〉) +

1

2
|01〉 (a |1〉+ b |0〉)

+
1

2
|10〉 (a |0〉 − b |1〉) +

1

2
|00〉 (a |1〉 − b |0〉).

3. Alice measures both qubits A to get bA, T to get bT , where bA and bT are
classical bits. There are 4 possible outcomes, each with equal probability
of 1

4 .

bA bT State after Alice’s observation
0 0 |00〉 (a |0〉+ b |1〉)
0 1 |01〉 (a |1〉+ b |0〉)
1 0 |10〉 (a |0〉 − b |1〉)
1 1 |11〉 (a |1〉 − b |0〉)

4. Alice transmits the classical bits to Bob

5. If bA = 1, Bob performs the not operation on his qubit B.

bT bA State after Bob’s first operation
0 0 |00〉 (a |0〉+ b |1〉)
0 1 |01〉 (a |0〉+ b |1〉)
1 0 |10〉 (a |0〉 − b |1〉)
1 1 |11〉 (a |0〉 − b |1〉)

6. If bT = 1, Bob performs the phase flip operation F on his qubit B. Now
Bob’s qubit B is in state a |0〉+ b |1〉 = |ψ〉.

At the end of the above protocol we only have one qubit in state |ψ〉. The
original qubit in state |ψ〉 was measured and so its state collapsed to a pure
state. As we will see there is no way we can have an algorithm to copy any
general state |ψ〉. We will now formalise the idea of copying, and show that it
is impossible.

Let us consider the space Hn with orthonormal basis {|x0〉 , |x1〉 . . . |xn−1〉}.

Definition 6.0.1 (Quantum Copy Machine). A unitary map U in Hn ⊗Hn is
called a quantum copy machine if for all |ψ〉 ∈ Hn

U(|ψ〉 |x0〉) = |ψ〉 |ψ〉 .
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Alice

|ψ〉 • H "%#$M

A �������� "%#$M

Bob

•
•

B �������� F |ψ〉

Figure 6.1: Quantum teleportation.

Using this definition we now give the following result [25].

Theorem 6.0.1 (No-Cloning Theorem). For n > 1 there does not exist a
quantum copy machine.

Proof. Let us assume that n > 1 and that a quantum copy machine, U , exists.
Since n > 1 there must be two orthonormal basis vectors |x0〉 and |x1〉. Let
|ψ〉 = 1√

2
(|x0〉+ |x1〉). Thus by definition of quantum copy machine

U (|ψ〉 |x0〉) = |ψ〉 |ψ〉

=
1

2
(|x0〉 |x0〉+ |x0〉 |x1〉+ |x1〉 |x0〉+ |x1〉 |x1〉) .

However U is linear so

U(|ψ〉 |x0〉) = U

(
1√
2

(|x0〉+ |x1〉) |x0〉
)

=
1√
2
U(|x0〉 |x0〉) +

1√
2
U(|x1〉 |x0〉)

=
1√
2
|x0〉 |x0〉+

1√
2
|x1〉 |x1〉

This is a contradiction.

Thus by the No-Cloning Theorem there does not exist any combination of
unitary maps so that an arbitrary quantum state can be copied. Note however
that the No-Cloning Theorem does not forbid a combination of unitary maps
in Hn ⊗Hn to copy basis states. In fact we have already seen two examples of
this: superdense coding and the use of the Toffoli gate for fanout of classical
bits (remember that a classical bit is essentially the same as quantum bit in a
pure state).



Chapter 7

Quantum Fourier
Transform

In this chapter we investigate an important map of quantum systems, the quan-
tum Fourier transform. As we will see this map is a unitary linear map, and
we shall find how to decompose it into a finite number of quantum gates. This
map is used in all of the following chapters describing quantum algorithms.

7.1 Discrete Fourier Transform

We will in this section extremely briefly, and largely without proof, describe
what we mean by characters and discrete Fourier transform. Throughout this
chapter G will be a finite abelian group, and n = |G|. We will also say G =
{g1, g2, . . . , gn}. The group operation in G will be written additively.

7.1.1 Characters of Finite Abelian Groups

Definition 7.1.1. A character of G is a homomorphism χ : G→ C\{0}.

Note that for all g ∈ G and characters χ of G, χ(g) is an nth root of unity.
Since χ is a homomorphism and ng = 1G, we have χ(g)n = χ(ng) = χ(1G) = 1.

We can see that the characters themselves form an abelian group, with the
product (we will use multiplicative notation) of two characters χα and χβ is
defined by requiring it to satisfy χαχβ(g) = χα(g)χβ(g) for all g in G. We call

this group either the character group or the dual group of G, and write it as Ĝ.
We then have the following result, which we state without proof.

Lemma 7.1.1. Let G be a finite abelian group. Then G ∼= Ĝ.

One thing the above lemma implies is that there are exactly the same number
of characters as elements of the group, i.e. there is a one to one correspondence
between the two. Let us consider the cyclic group Zn. For each fixed y ∈ Zn

define χy by

χy(x) = e
2πixy

n .

29
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There is a one to one correspondence between Zn and all the characters of Zn.
Therefore each character of Zn is equal to χy for some unique y ∈ Zn.

We can also find the characters of Fm
2 . We know that

Fm
2 = F2 ⊕ F2 ⊕ · · · ⊕ F2 (m times). (7.1)

Lemma 7.1.1 shows that the character group of Fm
2 must be isomorphic to Fm

2

itself. Thus by equation (7.1) each character of Fm
2 must be equal to the product

of m characters of F2, and given m characters of F2 their product must be equal
to a character of Fm

2 . Now note that F2
∼= Z2. Each character of Z2 is given by,

for some y ∈ Z2,

χy(x) = e
2πixy

n = (−1)xy.

The decomposition (7.1) means that for each x ∈ Fm
2 there are xi ∈ F2 such

that x = (x1, x2, . . . , xm). Therefore each character of Fm
2 is determined by

y ∈ Fm
2 so that

χy(x) = (−1)x.y,

where . is the standard inner product.

7.1.2 Discrete Fourier Transform

Let us consider the vector space V of functions f : G→ C. We assign to V an
inner product defined by

〈f1|f2〉 =
n∑

k=1

f∗1 (gk)f2(gk).

It can be shown that the set
{

1√
n
χ1,

1√
n
χ2, . . . ,

1√
n
χn

}
,

is a basis of this space, which we will call the character basis. Therefore for
each function f : G → C there exist (unique) coefficients f̂i ∈ C, the fourier
coefficients, such that

f = f̂1
1√
n
χ1 + f̂2

1√
n
χ2 + . . .+ f̂n

1√
n
χn.

Definition 7.1.2. Given a function f : G→ C, the discrete Fourier transform
of f is the function f̂ : G→ C defined by

f̂(gi) = f̂i,

where f̂i is defined above.

Given the values of f(gi) and the character of the group χi there is an easy
way to find the Fourier transform (which can be easily derived using the fact
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that the characters form a basis of the space, and so must be orthogonal with
respect to the inner product). We have

f̂(gi) =
1√
n

n∑

k=1

χ∗
i (gk)f(gk).

Because we have found all of the characters of Fm
2 and Zn, we can simply

substitute them into the above equation to find the Fourier transform for any
functions Fm

2 → C and Zn → C. Let f : Zn → C. Then the Fourier transform
of f is

f̂(x) =
1√
n

∑

y∈Zn

e−
2πixy

n f(y).

Let f : Fm
2 → C. Then the Fourier transform of f is

f̂(x) =
1√
2m

∑

y∈F2
n

(−1)x.yf(y).

There is also an inverse to the Fourier transform, which we now define.

Definition 7.1.3. Given a function f : G→ C, the inverse Fourier transform
of f is defined to be the function f̃ : G→ C

f̃(gi) =
1√
n

n∑

k=1

χk(gi)f(gk).

If we consider both the forward and inverse transforms for all gi and write
them out as matrix vector equations, we can see that

̂̃
f =

˜̂
f.

We can see that the inverse Fourier transform in Zn looks very similar to the
forward transform

f̂(x) =
1√
n

∑

y∈Zn

e
2πixy

n f(y).

The inverse transform in Fm
2 is exactly equal to the forward transform, i.e. it is

self inverse.
We also have an identity that is very important. This will be used to show

the quantum Fourier transform, that we will define later, is a unitary map.
We define the norm on V by ‖f‖ =

√
〈f |f〉. We leave the following theorem

unproved.

Theorem 7.1.1 (Pareseval’s Identity).

‖f‖ = ‖f̂‖

It should be noted that Fourier transforms are known to be able to ‘extract’
the periods of functions. We use this fact in Chapter 9 to factor integers.
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7.2 Quantum Fourier Transform

Let G = {g1, g2, . . . , gn} be a finite abelian group, and let {χ1, χ2, . . . , χn} be
the set of characters of G. We will also let Hn be an n-dimensional quantum
system. We label an orthogonal basis of Hn by {|g1〉 , |g2〉 , . . . , |gn〉}. Thus we
say that Hn represents G (see section 2.4).

We also note that any quantum state

n∑

i=1

αi |gi〉 where
n∑

i=1

|αi|2 = 1 (7.2)

defines a map

f : G→ C with f(gi) = αi and ‖f‖ = 1. (7.3)

We can see that given map of the form of (7.3) defines a quantum state of the
form of (7.2). Thus a general quantum state can be written as

n∑

i=1

f(gi) |gi〉 where f : G→ C and ‖f‖ = 1. (7.4)

Definition 7.2.1. The quantum Fourier transform (QFT ) in G is the map on
Hn defined by

n∑

i=1

f(gi) |gi〉
QFTG7−−−−→

n∑

i=1

f̂(gi) |gi〉 , (7.5)

where f̂ is the ordinary discrete Fourier transform of f .

Lemma 7.2.1. The quantum Fourier transform is a unitary map on Hn.

Proof. It is clear by the definition that the quantum Fourier transform is linear.
By Parseval’s identity 7.1.1 we have that ‖f̂‖ = ‖f‖. Thus Fourier transform
is a norm preserving linear map on a finite dimensional Hilbert space, and so
must be unitary.

Recall that the Fourier transform of f is

f̂ =
1√
n

n∑

i=1

χ∗
i (gi)f(gi),

so for basis vectors |gi〉 the QFT is

|gi〉
QFTG7−−−−→ 1√

n

n∑

i=1

χ∗
i (gi) |gi〉 . (7.6)

Since QFT is linear if we find a linear map that performs the above operation
on basis states |gi〉, then it would perform the general QFT (7.5) on general
mixed states.

It should be noted that the QFT depends on the group G. If we took that
Hn represents some other group, then the Fourier transform of that group would
be different, and so the quantum Fourier transform on Hn would be different.
We use QFT when we take Hm to represent either Fm

2 or Z2m .
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7.2.1 Quantum Fourier Transform in Fm
2

From Section 7.1.1 we see that the characters of Fm
2 are χy(x) = (−1)x.y. Thus

if we label an orthonormal basis of H2m as {|x〉 : x ∈ Fm
2 } the QFT in Fm

2 on
H2m on a basis vector is

|x〉
QFTF

m
27−−−−−→ 1√

2m

∑

y∈Fm
2

(−1)x.y |y〉 . (7.7)

We recall that H2m is a quantum register of length m. That is, the compound
system of m qubits. We can show this in general circuit diagram Figure 7.1.
Note that technically the diagram does not show describe a quantum circuit.
A quantum circuit is defined to be some collection of quantum gates, and a
quantum gate is defined to act on some finite number of qubits that is indepen-
dent of the size of the register. However, we can, and will now, decompose this

QFTFm
2

|x〉 1√
2m

∑

y∈Fm
2

(−1)x.y |y〉

...
...









Figure 7.1: Quantum Fourier transform in Fm

2 .

transform into some finite number of quantum gates.
Let us first consider a more general case. Let G be a finite abelian group

such that G = U⊕V . Let U = {u1, u2, . . . , us} and V = {v1, v2, . . . , vs}. Let Hr

represent U and Hs represent V . By this we mean that we label an orthonormal
basis of Hr by {|u1〉 , |u2〉 , . . . , |ur〉} and we label an orthonormal basis of Hs

by {|v1〉 , |v2〉 , . . . , |vs〉}. Since G = U ⊕ V all members of G can be uniquely
expressed as gij = ui + vj . Thus the vector |ui〉 |vj〉 ∈ Hr ⊗Hs = Hrs can be
thought of as representing the unique gij such that gij = ui + vj , so we define
|gij〉 = |ui〉 |vj〉 . Thus Hrs represents G.

By Lemma 7.1.1 we can know that Ĝ = Û ⊗ V̂ . Thus any character of G
can be uniquely written as χkl(gij) = χU

k (ui)χ
V
l (vj), for characters χU

k and χV
l

of U and V respectively. -

Lemma 7.2.2. Using the above notation, the map

|gij〉 7−→
( 1√

r

r∑

k=1

(χU
k (ui))

∗ |uk〉
)( 1√

s

s∑

l=1

(χV
l (vj))

∗ |vl〉
)

is the QFT in G on Hrs.
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Proof. If we expand out the RHS using the definition of tensor product, we get

RHS =
( 1√

rs

r∑

k=1

s∑

l=1

(χU
k (ui))

∗(χV
l (vi))

∗ |uk〉 |vl〉
)

=
( 1√

rs

r∑

k=1

s∑

l=1

χ∗
kl(ui + uj) |uk + vl〉

)

=
( 1√

rs

r∑

k=1

s∑

l=1

χ∗
kl(gij) |gij〉

)
,

Which is exactly the quantum Fourier transform of in G of |gij〉.

We can use this lemma to decompose the QFT in Fm
2 . Recall that for

|x〉 ∈ H2m there are (unique) |x1〉 , |x2〉 , . . . , |xm〉 ∈ H2 such that

|x〉 = |x1〉 |x2〉 . . . |xm〉 .

We see that the decomposition is in fact very simple.

Definition 7.2.2. The Hadamard transform is defined as Hm = H⊗H⊗ . . .H
(m times).

Thus using the above notation Hm |x〉 = (H |x1〉)(H |x2〉) . . . (H |xm〉) (m
times).

Remark. We have now defined Hm to be both the Hadamard transform on a
Hilbert space of dimension m, or the Hilbert space of dimension m itself. In
any particular case it should hopefully be clear from context whether we mean
the Hilbert space or the map.

Theorem 7.2.1. The QFT in Fm
2 on H2m is the map

|x〉 7−→ Hm |x〉 .

Proof. We have that Fm
2 = F2⊕F2⊕ . . .⊕F2 (m times). Thus by Lemma 7.2.2

if we can show that for map

|xi〉 7−→ H |xi〉

is the QFT in F2 on H2 we are done. However, this is immediate by taking
m = 1 in (7.7).

Note that have shown that for |x〉 ∈ H2m , we have

Hm |x〉 =
1√
2m

∑

y∈Fm
2

(−1)x.y |y〉 .

Thus if we take |x〉 = |0〉,

Hm |0〉 =
1√
2m

∑

y∈Fm
2

|y〉 ,

which is an equal superposition of all the basis states ofH2m . This is a frequently
used map. We will use it in the chapters on random numbers, factoring and
searching.
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H

H

|x〉
H

1√
2m

∑

y∈Fm
2

(−1)x.y |y〉

...
...

H









Figure 7.2: Decomposition of QFT in Fm

2 .

7.2.2 Quantum Fourier Transform in Zn

From Section 7.1.1 we know that the characters of Zn are of the form χy(x) =

e
2πxy

n . Recall also from section 2.4 that if n = 2m then Zn can be very naturally
represented by H2m (i.e. m qubits). That is, given x ∈ Z2m , we see that there
are xi ∈ {0, 1} such that

x = 2m−1xm−1 + 2m−2xm−2 + . . .+ 2x1 + x0.

Thus we define |x〉 to be |xm−1〉 |xm−2〉 . . . |x0〉 and say that |x〉 represents x.
We will actually be working with the inverse quantum Fourier transform. We
do this for two reasons. Firstly in the next chapter, Shor’s algorithm uses the
inverse quantum Fourier transform. Secondly it is ever so slightly less confusing
working with the inverse transform (as there are less ‘−’s in our expressions).
However, the expressions are all very similar for the forward transform - it should
not be too difficult to do though all the stages of the decomposition, putting
in ‘−’s where appropriate to get the decomposition for the forward quantum
Fourier transform.

By Section 7.1.2 we know that the inverse quantum Fourier transform in
Z2m on H2m is the map

|x〉
QFT−1

Zn7−−−−−→ 1√
2m

2m−1∑

y=0

e
2πxy
2m |y〉

We know that this is linear, and unitary, but we would like to be able to de-
compose it to some finite number of quantum gates. We will use the following
two lemmata

Lemma 7.2.3.

2m−1∑

y=0

e
2πxy
2n |y〉 = (|0〉+ e

πix

20 |1〉)(|0〉+ e
πix

21 |1〉) . . . eπix

21 |m− 1〉) (7.8)

Proof. Note for each y ∈ Z2m there are yi ∈ {0, 1} such that

y = 2m−1ym−1 + 2m−2ym−2 + . . .+ 2y1 + y0.

For each y ∈ Z2m let y′ ∈ Z2m−1 such that

y′ = 2m−2ym−1 + 2m−3ym−2 + . . .+ 1y1,
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so y = 2y′ + y0. Thus we can split up the sum

2m−1∑

y=0

e
2πxy
2n |y〉 =

2m−1−1∑

y′=0

e
2πix(2y′+0)

2m |2y′ + 0〉+
2m−1−1∑

y′=0

e
2πix(2y′+1)

2m |2y′ + 1〉

=
2m−1−1∑

y′=0

e
2πix2y′

2m |y′〉 |0〉+
2m−1−1∑

y′=0

e
2πix2y′

2m e
2πix
2m |y′〉 |1〉

=
2m−1−1∑

y′=0

e
2πixy′)

2m−1 |y′〉 (|0〉+ e
πix

2m−1 |1〉)

We can continue applying the same method to the sum on the RHS.

Lemma 7.2.4. Let x ∈ Z2m , with xi ∈ {0, 1} such that

x = 2m−1xm−1 + 2m−2xm−2 + . . .+ 2x1 + x0.

Then

exp(
πix

2l−1
) = (−1)xl−1 exp(

πixl−2

21
) . . . exp(

πix1

2l−2
) exp(

πix0

2l−1
)

Proof.

exp(
πix

2l−1
) = exp(

πi(2m−1xm−1 + 2m−2xm−2 + . . .+ 2x1 + x0)

2l−1
)

= exp(
πi(2l−1xl−1 + 2l−2xl−2 + . . .+ 2x1 + x0)

2l−1
)

(since exp is 2π-periodic)

= (−1)xl−1 exp(
πixl−2

21
) . . . exp(

πix1

2l−2
) exp(

πix0

2l−1
)

Using these two lemmata we can show how to compute the quantum Fourier
transform in Z2m on H2m . Firstly we swap the order of the qubits, so

|xm−1〉 |xm−2〉 . . . |x1〉 |x0〉 7−→ |x0〉 |x1〉 |xm−2〉 |xm−1〉

A swap of the state of two qubits can be achieved by three controlled-not gates,
as in Figure 7.3. Now what we want to do is to apply unitary maps on the

|ψ〉 • �������� • |φ〉
|φ〉 �������� • �������� |ψ〉

Figure 7.3: Swap of two qubits.

qubits so that the expression has the form given by equation (7.8), multiplied
by a factor 1/

√
2m. This means that for the lth qubit from the left we want

the coefficient of |0〉 to be 1/
√

2m and the coefficient of |1〉 to be (1/
√

2m)e
πix

2l−1 .
Let us label the qubits from left to right as A0, A1, . . . , Am−1. We perform the
following steps for l = m− 1 . . . 1 (in this order)

1. Notice qubit Al is in state |xl〉.
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2. We apply the Hadamard Walsh gate to Al, so

|xl〉 7−→
1√
2
(|0〉+ ((−1)xl |1〉)

3. For each k = l . . . 0 apply to Al the phase flip φlk defined as

φlk = F π

2l−k
=

(
1 0

0 e
πi

2l−k

)

but controlled with the control qubit Ak.

4. By Lemma (7.2.4) qubit Al is now in state.

1√
2
(|0〉+ e

πix

2l−1 |1〉)

Once all these steps are completed, by Lemma (7.8) the QFT in Z2m has been
performed. A circuit diagram for these steps is shown in Figure 7.4 (the swap-
ping of the bits has been omitted, as have the subscripts for φ).

|xm−1〉 H φ φ φ |y0〉

|xm−2〉 • H φ φ |y1〉

|xm−3〉 • • H φ |y2〉
...

. . .
. . .

. . .
...

|x0〉 • • • H |ym−1〉

Figure 7.4: Decomposition of QFT in Z2m .



Chapter 8

Random Numbers

Random numbers are quite useful in various computer calculations. For exam-
ple they can assist is finding large multidimensional integrals, or in optimization
processes using Monte Carlo methods. Random numbers produced on a stan-
dard computer are not really random, they are pseudorandom. They are deter-
ministic - you put in the same input, i.e. the seed, and the generator will return
the same output every time. This means that there is an underlying pattern to
the numbers produced. This pattern may be subtle, but it still adversely affects
the algorithms that require random numbers.

There are commercially available devices to generate random numbers that
exploit quantum effects, such as the chance that a photon will go through a
semi-silvered mirror, or the decay time for some radioactive isotope. However
it is interesting to see how a quantum circuit could be constructed to generate
random numbers. We will see that we already have already discussed all the
required tools to do so.

Let us take Hm to represent Z2m . We start with m qubits in state

|0〉

and then apply the Hadamard transform Hm to get

1√
2m

2m−1∑

i=0

|i〉 .

We then measure the system. Each integer in the range 0 . . . 2m−1 is measured
with equal probability. Specifically, each is measured with probability 1/

√
2m.

Hm M

=<

:;

|0〉 |y〉
...

...










Figure 8.1: Circuit that generates random numbers.
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Chapter 9

Factoring

In this chapter we show that quantum circuits offer us a way to factor large
integers, a problem that was previously thought to be more or less unfeasible.

9.1 One Way Functions

Although not proved, multiplication is believed to be a one way function.
Roughly speaking, a one way function is one that easy to compute but hard
to compute the inverse.

By easy we generally mean that there is an algorithm that perform a number
of operations that is equal to (or less than) some polynomial function of the
input size. If n is the input size, then we say the number of operations is equal
to O(nk) for some fixed k. We also will call such functions efficient. By hard
we can mean that an efficient (classical) algorithm doesn’t exist. That any one
way functions actually exist is an open problem.

x f(x)

HARD

easy

Figure 9.1: A one-way function

It is generally believed that multiplication is a one way function, i.e. there
does not exist an efficient (classical) algorithm that factors integers. The fastest
algorithms known scale in complexity (i.e. the number of operations required)
with respect to some exponential function of the input size. Current popular
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encryption algorithms such as RSA are seen as secure as it is assumed that
multiplication is a one way function. Roughly speaking authorized viewers data
can decrypt data because they know the correct factors of some number to
multiply together to obtain the decryption key. Unauthorized eavesdroppers
do not know all the factors, and so would have to calculate them themselves.
For large numbers this would take a very long time on current computers. For
example current classical computers would take several million years to factor
a 256 digit number.

Shor’s algorithm [21] gives us a way to factor these integers using quantum
circuits. This algorithm is not deterministic, and will not output a factor every
time, but it will output a factor with high enough probability so that if it is
run enough times, it would find a factor on average with fewer operations than
a current classical computer.

Remark 9.1.1. Shor’s algorithm has been implemented in an NMR quantum
computer, but the most only to factor 15 into 3 and 5 using a 7 qubit [23].

Remark. This chapter contains several purely number theoretical results. The
proofs to these are often omitted. Unless otherwise stated, the proofs can be
found in [11].

9.2 Factors from Order

In this section will show that factoring a number n can be reduced to finding the
order of an element in a ∈ Z∗

n. Recall that Z∗
n is the group of integers modulo

n with the group operation multiplication (and so must have a multiplicative
inverse).

Lemma 9.2.1. Z∗
n contains exactly all those a in a ∈ Zn such that gcd(a, n) =

1.

For the sake of brevity throughout this chapter a will be a member of Z∗
n

and r will be the order of a in Z∗
n. Thus r is the smallest integer such that

ar ≡ 1 mod n. (9.1)

Note for any finite group G, and for any g ∈ G we have g|G| = 1G. Thus r ≤ n.
Also note that if n is a power of a single prime, there do exist efficient classical
algorithms that can determine whether this is the case and to find the prime
Thus we will focus on the case when n has at least two distinct prime factors.

Theorem 9.2.1. Let n be odd with at least two distinct prime factors. Assume

i. a 6= 1

ii. r is even

iii. a
r
2 6≡ −1 mod n.

Then both gcd(a
r
2 + 1, n) and gcd(a

r
2 − 1, n) are non-trivial factors of n.

Proof. We assume r is even and a 6= 1. Thus we can factor ar − 1 into the
product

ar − 1 = (a
r
2 − 1)(a

r
2 + 1). (9.2)
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By definition of order ar ≡ 1 mod n, which implies ar − 1 ≡ 0 mod n. This in
turn implies that n must divide ar − 1. Thus by (9.2) n must share some factor
( 6= 1) with either (a

r
2 − 1) or with (a

r
2 + 1), or with both.

Assume that n divides (a
r
2 − 1). Then a

r
2 ≡ 1 mod n, which contradicts

the fact that r is the smallest integer such that ar ≡ 1 mod n. Assume that n
divides (a

r
2 + 1). Then a

r
2 ≡ −1 mod n, which is false by assumption.

We have found the n shares some factor with (a
r
2 − 1)(a

r
2 + 1), but divides

neither of (a
r
2 − 1) or (a

r
2 + 1). Therefore gcd(a

r
2 + 1, n) and gcd(a

r
2 − 1, n)

must be non-trivial factors of n.

Say we are given a such that the assumptions in the above theorem are
satisfied. Say also that for this a we can find it’s order r in Z∗

n (this is not an
easy task, but for the time being assume that we can). Then the above theorem
says we can use Euclid’s algorithm to calculate gcd(a

r
2 +1, n) and gcd(a

r
2 −1, n),

and thus find non trivial factors of n. Euclid’s algorithm is known to be efficient.

Example 9.2.1. Let n = 15, d+ = gcd(a
r
2 + 1, 15) and d− = gcd(a

r
2 − 1, 15).

Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}

a r r even? a 6= 1 a
r
2 6≡ −1 d+ d−

1 0 X × X 1 15
2 4 X X X 5 3
4 2 X X X 5 3
7 4 X X X 5 3
8 4 X X X 5 3
11 2 X X X 3 5
13 4 X X X 5 3
14 2 X X × 15 1

We see that for each case where a ∈ Z∗
15, a 6= 1, r is even and a

r
2 6≡ −1 mod 15

we have that gcd(a
r
2 + 1, 15) and gcd(a

r
2 − 1, 15) are non-trivial factors of 15.

We also see that for the only a ∈ Z∗
15 such that a

r
2 ≡ −1 mod 15, i.e. a = 14,

gcd(a
r
2 + 1, 15) and gcd(a

r
2 − 1, 15) are trivial factors of 15.

Lemma 9.2.2. Let n be odd with at least two distinct prime factors. Choose
a ∈ Z∗

n\{1} randomly with uniform distribution. The probability that the order
r of a in Z∗

n is even and a
r
2 6≡ −1 mod n is at least 1

2 .

Example 9.2.2. Let us choose a from Z∗
15\{1} at random using a uniform dis-

tribution (cf. Example 9.2.1). Then gcd(a
r
2 + 1, 15) and gcd(a

r
2 − 1, 15) would

be non-trivial factors with a probability of 6
7 >

1
2 .

Therefore if we can find an algorithm to find the order of an element chosen
from Z∗

n\{1} with uniform distribution, then we can find a non trivial factor of
n with a probability of at least 1

2 .
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9.3 Shor’s Algorithm

For a given a ∈ Z∗
n, its order r is the period of the function f : Z→ Zn

f(k) = ak mod n.

We will describe in this section an algorithm that uses the inverse QFT in Zn

to find the period of this function (with some probability), and then uses the
method from the previous section to find non trivial factors . We will give the
algorithm first, which if unfamiliar may seem to come out of the blue somewhat.
We will then discuss the probability of it succeeding. Firstly we present a small
discussion about continued fractions.

Consider α ∈ Q>0. It should be clear that α has a finite continued fraction
expansion, i.e. there are α0, α1, . . . , αn ∈ N such that

α = α0 +
1

α1 +
1

α2 +
1

.. . +
1

αn

.

In such a case we write α = [α0, α1, . . . , αn]. The ith convergent of the continued
fraction expansion for α is defined to be

pi

qi
= [α0, α1, . . . , αi].

Note that all the convergents can be found efficiently using Euclid’s algorithm
(i.e. all the pi and qi). We will use the fact that the qi can be found efficiently
in the following algorithm, due to Shor [21].

The algorithm to find the order non trivial factors of n is as follows.

1. Pick a ∈ Zn\{1} randomly using a uniform distribution. A quantum
circuit as discussed in Chapter 8 could be used.

2. Calculate gcd(a, n) using Euclid’s algorithm. If gcd(a, n) > 0, this is a
non-trivial factor of n and stop. Otherwise we know that a ∈ Z∗

n\{1}.
3. Check if r < 19, simply by multiplying a together 19 times. If r < 19 then

skip to Step 11. This rather bizarre step is related to the probabilities of
the algorithm succeeding and is explained more later.

4. Pick m such that m = 2i for some integer i and n2 ≤ m2 < 2n2.

5. Prepare two quantum registers in compound state |0〉 |0〉. Let one be large
enough to represent Zm Thus it must be of length (at least) i. Let the
other be large enough to represent Zn - thus it must be of length at least j
where 2j ≥ n. The register that represents Zm is written on the left, and
the register that represents Zn is written on the right. Thus for x ∈ Zm

and y ∈ Zn a typical pure state is written as |x〉 |y〉.
6. Apply the Hadamard transform Hm. The resulting state is

1√
m

m−1∑

k=0

|k〉 |0〉 .
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7. Apply a map defined by |k〉 |0〉 7→ |k〉 |ak mod n〉. This results in state

1√
m

m−1∑

k=0

|k〉 |ak〉 .

Note that the function k 7→ ak mod n had period r (which is unknown).
Thus we can write the above superposition as

1√
m

r−1∑

l=0

sl∑

q=0

|qr + l〉 |al〉 ,

where sl is the largest integer such that slr + l < m. We note that each
al < r. Thus roughly speaking in the above superposition, in the register
on the right, only the members of Zn that are less than the order r are
present.

We also note that the left multiplier of each |al〉 is

sl∑

q=0

|qr + l〉 .

We can see that this superposition also contains information about r. It
is a superposition of basis states such that an |x〉 is in the superposition
if and only if x = qr + l for some q. This is essentially a sequence with
period r. We use the inverse QFT to ‘extract’ this period.

8. Apply the inverse QFT in Zm to the register on the left. Thus the state
is

1√
m

r−1∑

l=0

sl∑

q=0

1√
m

m−1∑

p=0

e
2πip(qr+l)

m |p〉 |al〉 . (9.3)

Don’t worry if this looks a bit unwieldy - the proof that shows this state
when measured returns a ‘good’ result with high enough probability is
omitted. We won’t directly use this state again.

9. Observe the register on the left. This results is some p ∈ Zm.

10. Apply Euclid’s algorithm to find the convergents pi

qi
of p

m , and (try to)
find the smallest qi such that aqi = 1 mod n. If such a qi is found then
qi is the order of a.

11. Use Euclid’s algorithm to calculate gcd(a
r
2 + 1, n) and gcd(a

r
2 − 1, n). As

we will show, the probability that these are non trivial factors of n is at
least 1/20 log logn.

Remark 9.3.1. As already mentioned in Remark 9.1.1, Shor’s algorithm has
been implemented to factor 15 using a 7 qubit quantum computer. Using the
notation from the algorithm above, n = 15. We need to have a register capable
of representing Zn, so we must have a register of length ⌈log2(15)⌉ = 4, i.e. 4
qubits. We also need to have a register capable of representing Zm, where m is
chosen such that n2 <= m < 2n2, and so the smallest such a register could be
is ⌈log2(152)⌉ = 8 qubits. Thus we need at least 12 qubits. The method used
in [23] was some ‘cut down’ version of the algorithm.
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We will now discuss the probability of this algorithm succeeding. The final
step has already been discussed in the previous section. If we have managed to
find the order of the uniformly chosen element a, then the probability that the
final step outputs non trivial factor(s) of n is at least 1

2 .
However the previous steps do not guarantee that we can find this order.

We will now discuss how likely it is that we do. We need the following theorem,
which we will not prove.

Theorem 9.3.1. If for a ∈ Q>0 and p, q ∈ N, gcd p, q = 1 and

0 <
∣∣∣a− p

q

∣∣∣ ≤ 1

2q2

then p
q is a convergent of the continued fraction expansion of a.

This theorem is easily applied to our situation.

Lemma 9.3.1. If for p, r, d,m, n ∈ N we have gcd(d, r) = 1, n2 ≤ m < 2n2,
r < n and

∣∣∣p− dm
r

∣∣∣ ≤ 1

2
, (9.4)

then d
r is a convergent of p

m .

Proof. Clearly we have

∣∣∣
p

m
− d

r

∣∣∣ =
1

m

∣∣∣p− dm
r

∣∣∣ ≤ 1

2m
≤ 1

2n2

<
1

2r2
.

Therefore by Theorem 9.3.1 we have that d
r is a convergent of p

m .

The above lemma shows that if we have measured (9.3) to find a p, such that
it is at most 1

2 away from some integer multiple, d, of m
r , such that d satisfies

gcd(d, r) = 1, then step 10 will result in the correct order of a. A specific case is
shown in Figure 9.2 that appears to show that it is likely that these requirements
are satisfied. We present the following lemmata for more general cases.

Lemma 9.3.2. For n > 100, observing (9.3) will result in p such that
∣∣∣p−dm

r

∣∣∣ ≤
1
2 for some integer d with a probability of at least 2

5 .

There is a one to one correspondence between p that satisfy (9.4), and d ∈
{0, 1, . . . , r − 1}. Therefore observing p that satisfies equation (9.4) for some d
essentially means that some d ∈ {0, 1, . . . , r − 1} is chosen (although we may
not know what it is). We would like to know, given a p that satisfies (9.4) for
some d, what the probability of that for this d satisfies gcd(d, r) = 1, which is
the additional requirement to invoke Lemma 9.3.1.

Lemma 9.3.3. For r > 19 and r < n the probability that a d chosen as above
satisfies gcd(d, r) = 1 is as least 1/4 log logn

This previous lemma explains why the algorithm checks if the order of a is
less than 19.
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Figure 9.2: Example of the probability distribution of state (9.3) with respect
to p for the case r = 13 and m = 256. We see that p is likely to be observed close
to some integer multiple d of m

r
. We also see that d ∈ {0, 1, . . . , 12}. The only

value of d such that gcd(d, r) 6= 1 is 0.

Theorem 9.3.2. The overall probability that the factoring algorithm finds non
trivial factors of n > 100 is at least

1

20 log logn
.

Proof. Notice that to find the factors, all of the following must be true of the
uniformly chosen a:

1. The order r of a must be even and a
r
2 6≡ −1 mod n.

2. p must be observed such that
∣∣∣p− dm

r

∣∣∣ ≤ 1
2 for some integer d.

3. For this integer gcd(d, r) = 1.

The probabilities of each these are at least 1
2 , 2

5 and 1
4 log log n respectively.

It can be shown that the entire algorithm requires O(l(n)3) operations, where
l(n) is the number of digits required to represent n.

Because the probability of success of a single iteration of the algorithm is
1/20 log log(n), we can see that on average we would have to run it 20 log logn
times to find a factor. In total this would take an average of O(l(n)3 log log(n))
operations. This is much better than any classical algorithm that scales in
complexity exponentially with respect to the input size l(n).



Chapter 10

Searching

In this chapter we discuss a formalization of searching, show a few ways in
which a quantum computer could (and couldn’t) search unsorted lists faster
than conventional computer.

10.1 Blackbox Functions

Let us define a blackbox function as a function

f : Fm
2 −→ F2

that returns its value instantly in one computational step, where the inner work-
ings of f are unknown to us. We say our problem of searching some unsorted
list is equivalent to trying to find some x ∈ Fm

2 such that f(x) = 1. We call
such x solutions to the searching problem.

We also define for some unknown y ∈ Fm
2 , a blackbox function fy such that

fy(x) =

{
1 if x = y

0 if x 6= y.

We say that searching in this case is trying to find y, when all we can do is
query f for some x. In this case there is only one solution, y.

Remark. Sometime a blackbox function is called an oracle, as it just ‘magically’
outputs the result.

Example. We can order the elements of Fm
2 . Notice that for x ∈ Fm

2 there are
xi ∈ F2 such that x = (x0, x1, . . . , xm−1). This is a binary representation of
some number in Z2m . Thus we have a natural order on Fm

2 , and we have a
list. We can say that each place on the list, i.e. each element of Fm

2 , actually
represents an entry of a phone book. A phone book is unsorted with respect to
the telephone numbers - if we are trying to find an entry with a given telephone
number, we have no idea where in the phone book the listing may be. The only
way is for us to check each line, see if the number given is equal to the one we
want. Our current place in the phone book which we are checking is x, the place
in the phone book with the number we want is the unknown y, the phone book
itself is fy and the checking of each line is calling fy(x), which results in 1 if
the line has the right number, and 0 if it hasn’t.

46
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Remark. One may think that the idea of a blackbox function is a bit artificial if
we are trying to relate this to some real world scenario - real world operations
are not instant. However it is a reasonable concept for working out probability
of algorithms succeeding, and giving lower bounds on the number of operations
used.

If y is unknown, picking x1, x2, . . . , xk disjoint with uniform probability, and
calling f(xi) for each one would result in finding y with probability of k

2m .

Example. Consider again the phone book example, with the phone book con-
taining n entries. Picking k entries in the phone book at random with uniform
distribution would find a solution with probability of k

n .

We can extend the idea of blackbox function to a quantum blackbox function.
Given a traditional blackbox function f as above, define the quantum black box
function, or query operator, Qf to be the linear map such that

Qf |x〉 |b〉 = Qf |x〉 |b⊕ f(x)〉 ,

where x ∈ Fm
2 , b ∈ F2, and ⊕ is addition modulo 2 (the group operation in

F2 = Z2). Thus |x〉 is the state of an m-length quantum register, known as the
known as the source register, and |b〉 is the state of a single qubit, the target
qubit. The map Qf is a permutation on an m + 1 dimensional Hilbert space,
and so it is indeed unitary.

10.2 How Not To Search

We will describe in this section a perhaps naive way of using the query operator
Qfy

that does not do any better than just guessing y. The steps are

1. Start with a source register of length m in state |0〉, and a single qubit,
the target qubit in state |0〉. Thus the compound state is |0〉 |0〉.

2. Apply the Hadamard transform Hm to the source register. This results in
state

1√
2m

∑

x∈Fm
2

|x〉 |0〉 .

3. Apply the query operator Qfy
to result in state

1√
2m

∑

x∈Fm
2

|x〉 |fy(x)〉 .

4. Measure the register of length m.

Since the state of the register before measurement was just an equal weighting
of all possible states |x〉, they probability that we find y using this method is
the same as if we just picked x at random with uniform distribution.
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10.3 Single Query Without (Grover’s) Amplifi-
cation

We improve the earlier method using Hadamard transforms. Firstly let us define
the modified query operator. Notice that the query operator Qf acting on state

|x〉 1√
2
(|0〉+ |1〉)

results in state

(−1)f(x) |x〉 1√
2
(|0〉+ |1〉).

Notice that in this case the application of the query operator has flipped the
amplitude of |x〉 if and only if it is a solution to the searching problem, and has
left the state of the target qubit as it was. We will no longer refer to the target
qubit, and treat it just as an ancilla qubit. The modified query operator is thus
defined to be the map

Vf |x〉 = (−1)f(x) |x〉 .

We will also require another map. Let f0 : Fm
2 → F2 be defined to be

f0(x) =

{
1 x = 0

0 otherwise.

By Chapter 4, this is can be constructed using a boolean circuit, and so it can be
constructed using some quantum circuit, using some ancilla qubits. The circuit
would perform the function

F0 |x〉 |0〉 = |x〉 |f0(x)〉 ,

where we omit writing the ancilla qubits. Note f0 is not a blackbox function
since 0 is known.

We will also use the fact that the fourier transform in Fm
2 is self inverse. This

means that the QFT in Fm
2 is self inverse, i.e. the Hadamard transform Hm is

self inverse. Thus we can apply the map Hm to either side of the following
expression to result in the other side

|y〉 Hm←−→ 1√
2m

∑

x∈Fm
2

(−1)x.y |x〉 , (10.1)

or to take the specific case of y = 0 we get

|0〉 Hm←−→ 1√
2m

∑

x∈Fm
2

|x〉 . (10.2)

Using these we are ready to describe a better algorithm for searching.

1. Start, as before, with a source register of length m in state |0〉.
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2. Apply the Hadamard transform Hm to the source register. This results in
state

1√
2m

∑

x∈Fm
2

|x〉 .

3. Apply the modified query operator Vfy
to result in state

1√
2m

∑

x∈Fm
2

(−1)fy(x) |x〉 .

Remember that we are using an ancilla qubit that we are not writing.
Notice also that this is an equal superposition of all states |x〉 where
x ∈ Fm

2 , but with the sign of state |y〉 inverted. If we were to measure
the system at this point, we would only find the solution y with the same
probability as if we chose x at random using a uniform distribution.

4. Apply the Hadamard transform Hm to result in the map

1√
2m

∑

x∈Fm
2

(−1)fy(x) |x〉 =
1√
2m

(
(
∑

x∈Fm
2

|x〉)− 2 |y〉
)

Hm7−−→ |0〉 − 2√
2m

∑

x∈Fn
2

(−1)x.y |x〉

=(1− 2√
2m

) |0〉 − 2√
2m

∑

x6=0

(−1)x.y |x〉

We use (10.1) and (10.2) to calculate the above.

5. We then apply F0 to the compound system of the register and an extra
qubit (in state |0〉) to get

(1− 2√
2m

) |0〉 |0〉 − 2√
2m

∑

x6=0

(−1)x.y |x〉 |0〉

F07−−→(1− 2√
2m

) |0〉 |1〉 − 2√
2m

∑

x6=0

(−1)x.y |x〉 |0〉

Note that the resulting state is entangled.

6. Measure the extra qubit (the one on the right). From now on we ignore
this qubit (the state was entangled so the act of measurement has affected
the source register).

State after measurement Probability
|0〉 (1− 2

2m )2
1√

2m−1

∑
x6=0(−1)x.y |x〉 1− (1− 2

2m )2

7. Apply the Hadamard transform Hm to the source register. Note that

∑

x6=0

(−1)x.y |x〉 =
(∑

x∈Fn
2

(−1)x.y |x〉
)
− |0〉 .
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State after Hadamard transform Hm Probability
1√
2m

∑
x∈Fm

2
|x〉 (1− 2

2m )2

1√
(2m−1)(2m)

(
(2m − 1) |y〉 −

∑
x6=y |x〉

)
1− (1− 2

2m )2

8. Measure the source register. If the state was that of the top row in the
above table, the probability that this measurement results in y is 1

2m . If
the state was that of the bottom row in the above table, the probability of
that the measurement results in y is 2m−1

2m . Thus taking the probabilities
of being in those states to start with into account, the overall probability
the this final measurement results in y is

1

2m
(1− 2

2m
)2 + (

2m − 1

2m
)(1− (1− 2

2m
)2)

=
5

2m
+

12

22m
− 8

23m

≈ 5

2m
for large m.

This method makes a single query to the modified query operator. It returns
y with a probability of about 5

2m for large m. This is about 5 times better
than making a single query by picking a single x randomly using a uniform
distribution.

10.4 Amplitude Amplification

In this section we describe a method of using unitary operators that, given a
superposition of uniform amplitudes

1√
2

∑

x∈Fn
2

|x〉 ,

will amplify the amplitude of those |x〉 such that f(x) = 1. Recall that a
quantum state must be of unit length, so this amplification is only relative.
Once the operator has amplified these amplitudes, observation is more likely to
lead to a solution.

As earlier we will make use of the modified query operator Vf . We will also
need another map Rm such that

Rm |x〉 =
{
− |x〉 x = 0

|x〉 otherwise.

If we index 2m×2m matrices by Fm
2 (taking the natural order defined by taking

the elements of Fm
2 as binary representations of integers), we get that

Rm =




−1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



.

We will omit how to decompose this map into a finite number of quantum gates
for the sake of brevity.
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Definition 10.4.1. Using the notation above, define Gm to be the unitary map
such that

Gm = −HmRmHmVf .

We say the map −HmRmHm is the inversion about average operator, for reasons
that will become clear.

To get an idea of what HmRmHm does, we try to find what its matrix looks
like. We order the basis elements of Fm

2 by taking the elements of Fm
2 to be a

binary representation of some integer. Firstly recall that

Hm =
∑

x∈Fm
2

(−1)x.y |x〉 .

Therefore (Hm)xy = 1√
2m

(−1)x.y. Thus (we omit the working again for brevity)

(HmRmHm)xy = . . .

=

{
− 2

2m x 6= y

1− 2
2m x = y

.

Therefore

HmRmHm =




1− 2
2m − 2

2m − 2
2m . . . − 2

2m

− 2
2m 1− 2

2m − 2
2m . . . − 2

2m

− 2
2m − 2

2m 1− 2
2m . . . − 2

2m

...
...

...
. . .

...
− 2

2m − 2
2m − 2

2m . . . 1− 2
2m




= I − 2P,

where P is the projection onto the subspace spanned by

|ψ〉 = 1√
2

∑

x∈Fn
2

|x〉 .

We would like to know the effect −HmRmHm has on a general state

∑

x∈Fn
2

αx |x〉 .

We define the average of the amplitudes as

A =
1√
2

∑

x∈Fn
2

αx,

and so we can see that
∑

x∈Fn
2

αx |x〉 = A
∑

x∈Fn
2

|x〉+
∑

x∈Fn
2

(αx −A) |x〉 .

The first term in the equation above is clearly part of the subspace spanned by
|ψ〉. The second term is part of the orthogonal complement of that subspace,
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as can be easily checked (by checking that the inner product of the two terms
is equal to 0). Thus

−HmRmHm

∑

x∈Fn
2

αx |x〉 = (2P − I)
∑

x∈Fn
2

αx |x〉

=
∑

x∈Fn
2

(2A− αx) |x〉 .

If some given |x〉 has amplitude αx ≈ A, then the map −HmRmHm would
not change the amplitude of |x〉 by very much. Conversely if some |x′〉 has
amplitude of αx′ ≈ −A, then the map −HmRmHm would approximately invert
this amplitude and multiply it by 3. This is why −HmRmHm is called inversion
about average.

10.4.1 Single Query, Single Solution

We can now describe Grover’s search algorithm [10] for the case when there is
a single solution y.

1. Start with a quantum register of length m in state |0〉.

2. Apply the Hadamard transform Hm to get

1√
2m

∑

x∈Fn
2

|x〉 .

3. Apply the modified query operator Vfy
. This results in state

1√
2m

∑

x∈Fm
2

(−1)fy(x) |x〉 .

Note that Vfy
has flipped the amplitude of |y〉 (although y is still un-

known).

4. Apply the map −HmRmHm. The average of the amplitudes (before ap-
plying the map) was

A =
1

2m

(
(2m − 1)

1√
2m

+ (1)(
−1√
2m

)
=

1√
2m

(
1− 2

2m

)
.

Thus −HmRmHm performs the map

1√
2m

∑

x∈Fm
2

(−1)fy(x) |x〉 =
1√
2m

∑

x6=y

|x〉+ (− 1√
2m

) |y〉

−HmRmHm7−−−−−−−−→(2A− 1√
2m

)
∑

x6=y

|x〉+ (2A+
1√
2m

) |y〉

=
1√
2m

(
1− 4

2m

)∑

x6=y

|x〉+ 1√
2m

(
3− 4

2m

)
|y〉 .
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5. Measure the system. This results in y with probability 1
2m (3− 4

2m )2 ≈ 9
2m

for large m. This is approximately 9 times better than choosing any x at
random using a uniform distribution.

Remark 10.4.1. Grover’s search algorithm has been carried out on a two qubit
NMR computer [12].

10.4.2 Known Number of Solutions

Let us now assume that a blackbox function f : F2
m → F2 has k solutions. Let T

be the set of solutions and F be the rest of F2
m. Thus |T | = k. From the previous

section we can see that given a uniform superposition of all the representatives
of F2

m,

1√
2m

∑

x∈Fm
2

|x〉 , (10.3)

the operator Gm keeps the amplitudes of |x〉 such that x ∈ T all the same,
and it keeps all the amplitudes of |x〉 such that x ∈ F the same. Thus after r
applications of Gm to (10.3) we know that the state of the system is

tr
∑

x∈T

|x〉+ fr

∑

x∈F

|x〉 , (10.4)

for some tr, fr ∈ C dependant on r. Our aim is to try to find r such that tr
is maximised. To do this we can, and will, find tr and fr explicitly in terms of
k and m. To achieve that, we will create a recurrence relation, i.e. find tr+1

and fr+1 in terms of tr and fr, and then solve it using the initial conditions
t0 = f0 = 1√

2m
.

Lemma 10.4.1. Let all notation be as above.
(
tr+1

fr+1

)
=

(
1− 2k

2m 2− 2k
2m

− 2k
2m 1− 2k

2m

)(
tr
fr

)
(10.5)

Proof. Apply the modified query operator Vf to (10.4) to result in

−tr
∑

x∈T

|x〉+ fr

∑

x∈F

|x〉 .

The average of the amplitudes in the above expression is

A =
1

2m

(
−trk + fr(2

m − k)
)
.

Application of the operator −HmRmHm results in

(2A+ tr)
∑

x∈T

|x〉+ (2A− fr)
∑

x∈F

|x〉 .

We have now applied Gm r + 1 times, so in fact tr+1 = 2A + tr, and fr+1 =
2A− tr. Expanding out these expressions gives us the result.
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Lemma 10.4.2. Let all notation be as above. Then the solution to (10.5) with
the initial conditions t0 = f0 = 1√

2m
is

tr =
1√
k

sin
(
(2r + 1)θ0

)

fr =
1√

2m − k
cos
(
(2r + 1)θ0

)
,

where θ0 ∈ [0, π
2 ] is chosen such that sin2 θ0 = k

2m .

Proof. This is an exercise in recurrence relations and so will be omitted. See [11]
for a proof.

Lemma 10.4.3. The probability of seeing a solution after r applications of Gm

is sin2((2r + 1)θ0).

Proof. After r iterations the state of the system is

tr
∑

x∈T

|x〉+ fr

∑

x∈F

|x〉 . (10.6)

Thus the probability of observing any solution, i.e. any x ∈ T , is equal to |T |t2r =
kt2r. By Lemma 10.4.2 we have that this must be equal to sin2((2r + 1)θ0)

This leads to a surprising, albeit not always that useful, result.

Lemma 10.4.4. Let k = 1
4 .2

m. Applying Gm once and then measuring the
system would result in a solution with certainty.

Proof. If k = 1
4 .2

m then sin2 θ0 = 1
4 which implies θ0 = π

6 . Then by 10.4.3 the

probability of finding a solution after one application of Gm is sin2(π
2 ) = 1.

However there are clearly cases when k 6= 1
4 .2

m.

Theorem 10.4.1. Let f : F2
m → F2 be a blackbox function with k unknown

solutions in F2
m. Assume that 0 < k ≤ 3

4 .2
m. Let θ0 ∈ [0, π

3 ) be such that

sin2 θ0 = k
2m . Then applying Gm exactly ⌊ π

4θ0
⌋ times to (10.3) and then mea-

suring the system would result in a solution with a probability of at least 1
4 .

Proof. By Lemma 10.4.3 the probability of seeing a solution after ⌊ π
4θ0
⌋ it-

erations is sin2((2⌊ π
4θ0
⌋ + 1)θ0). Thus we try to give a lower bound for this

probability. For some |δ| ≤ 1
2

⌊
π

4θ0

⌋
= −1

2
+

π

4θ0
+ δ,

so
(

2

⌊
π

4θ0

⌋
+ 1

)
θ0 =

π

2
+ 2δθ0.

Therefore
∣∣∣∣
(

2

⌊
π

4θ0

⌋
+ 1

)
θ0 −

π

2

∣∣∣∣ = |2δθ0| ≤
π

3
.
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Since the (absolute value of the) derivative of sin2 is always less than or equal
to 1, we must have that

sin2((2

⌊
π

4θ0

⌋
+ 1)θ0) ≥ sin2(

π

2
− π

3
) =

1

4
.

Now it should be more or less clear what the algorithm is. Remember k, the
number of solutions, is known.

1. If k > 3
4 .2

m, pick x at random with uniform probability (perhaps using
the random number generator from Chapter 8), and stop. In this case the
probability of x being a solution is clearly at least 3

4 .

2. Otherwise start with a quantum register of length m in state |0〉.

3. Apply the Hadamard transform Hm to get a uniform superposition of all
the basis states

1√
2m

∑

x∈Fm
2

|x〉 .

4. Apply the operator Gm exactly ⌊ π
4θ0
⌋ times.

5. Measure the system. By Theorem 10.4.1 the probability of finding a so-
lution is at least 1

4 .

We can easily compare to the classical case when k = 1 and n is large.
Roughly speaking, for small θ, sin θ ≈ θ. Thus for large n, 1

2m is small, so

θ0 ≈ 1√
2m

, which in turn implies ⌊ π
4θ0
⌋ ≈ π

4

√
2m. Thus the above algorithm

performs O(
√

2m) queries to find a solution with a probability of 1
4 . A search

picking x at random with uniform probability would have to make 1
42m = O(2m)

queries to find a solution with probability of 1
4 .

10.4.3 Unknown Number of Solutions

Often we may not know how many solutions there are previous to a search,
i.e. k is unknown. The algorithm in the previous section chose the number of
the of times to apply Gm using k. The following theorem, which we will not
prove, gives us a way to pick a number of times to apply Gm without previous
knowledge of k.

Theorem 10.4.2. Let f : F2
m → F2 be a blackbox function with k solutions in

F2
m. Assume that 0 < k ≤ 3

4 .2
m. Let d be an integer such that d ≥

√
2m. Let r

be a uniformly chosen r ∈ {0, 1, . . . , d− 1}. Then applying Gm exactly r times
to (10.3) would result in a solution with probability of at least 1

4 .

Thus we present the following modified version of Grover’s algorithm, which
is in fact a simplified version of [6]. Remember that the number of solutions k
is unknown.

1. Pick an x ∈ Fm
2 randomly with uniform distribution. If f(x) = 1, then

stop.
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2. Let d =
⌊√

2m
⌋

+ 1.

3. Choose an integer r ∈ {0, 1, . . . , d−1} randomly with uniform distribution,
perhaps using the quantum circuit describe in Chapter 8.

4. Apply the Hadamard transform Hm on a quantum register of length at m
in state |0〉 to get a uniform superposition of all the basis states

1√
2m

∑

x∈Fm
2

|x〉 .

5. Apply the operator Gm exactly r times.

6. Measure the system.

We know that there must be k solutions to the searching problem, it’s just that
we don’t know the value of k. If k > 3

4 .2
m, then step 1 has output a solution

with a probability of at least 3
4 . If k ≤ 3

4 .2
m, then Theorem 10.4.2 tells us that

the probability of getting a solution from step 6 is at least 1
4 . In either case,

the probability of getting a solution is at least 1
4 , performing (at most) O(

√
2m)

queries. Thus finding a solution would, on average, require the algorithm to be
run 4 times, which would still take O(

√
2m) queries. A classical algorithm that

would on average require O(2m) queries.



Chapter 11

Conclusion

We have merely skimmed the surface of what is theoretically possible using
the effects of superposition of states as described in Chapter 2. By the results
in Chapter 4 we have shown the unitary operations, which are the allowable
operations on states, can be put together to make a circuit that will perform
the same task as any classical boolean circuit. There would only be little point
if a quantum computer could only perform those operations.

Note we say little point and not no point. We haven’t yet mentioned it, but
the speed of current classical processors, essentially very complicated boolean
circuits, is limited largely by the fact that each operation produces heat, which
is difficult to disperse. If current processors get too hot they essentially melt
and become useless. As discussed in Chapter 3, operations in a quantum circuit
are unitary maps, and are thus invertible. We will not get into the physics to
explain why, but this means that quantum operations would produce no heat,
and so the speed of a quantum circuit should not be limited by heat production.

Also we have shown that there is a way to send two classical bits using one
quantum bit in Chapter 5. We have shown that it is possible to teleport the state
of a quantum bit, but not to copy a general state in Chapter 6. Both of these
protocols use entangled particles, as described in Chapter 2, these are particles
that are somehow linked together, where the measurement of one affects the
other.

Chapter 10 showed methods by which quantum circuits could be used to
search large unsorted databases taking fewer queries than a classical computer,
and said that a very simple case had been carried out (cf. Remark 10.4.1).

In Chapter 9 we have described Shor’s algorithm, part of which can be run
on a classical computer, and part of which must be run on a quantum com-
puter, that factors integers in polynomial time. As explained in Remarks 9.1.1
and 9.3.1, this has only been carried out using a 7 qubit NMR quantum com-
puter. However, it is difficult to scale up NMR computers to have enough qubits
to factor large numbers. We quote Shor himself,

“If you’re going to factor a 200-digit number, you’re going to need
thousands of qubits. The road from 7 to thousands is a long one.”

Factoring large integers could theoretically crack current encryption schemes
such as RSA. This leads to the rather obvious question of whether, if quantum
computers will be able to factor large integers, is it possible to have some sort of

57
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encryption schemes that are not crackable by quantum computers? The answer
to this question is yes. There are encryption schemes, some of which are already
available commercially, that use quantum properties to encrypt and send data.
These use similar methods to the quantum teleportation protocol in Chapter 6.
Schemes that detect if someone is eavesdropping on a transmission are also
known.

Another field of quantum algorithms, that has not been mentioned, is the
field of quantum error correction algorithms. These are schemes that cor-
rect some errors introduced during computation due to decoherence (cf. Re-
mark 2.0.2). However, if the level of error is too high, which at the moment it
is, these schemes offer little help.

In summary quantum computers have theoretically great potential, however
decoherence is a problem that is still a long way from being solved.
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