

An Introduction to Bioinformatics Algori	thms www.bioalgorithms.info
Prokaryotes and E	ukaryotes,
continued	
Prokaryotes	Eukaryotes
Single cell	Single or multi cell
No nucleus	Nucleus
No organelles	Organelles
One piece of circular DNA	Chromosomes
No mRNA post transcriptional modification	Exons/Introns splicing
8.9.2006 Introduction to Bioinfo	rmatis (Autumn 2001) 25

Calle Information and Machinemy

www.bioalgorithms.info

Cells Information and Machinery Cells store all information to replicate itself

- Human genome is around 3 billions base pair long
- Almost every cell in human body contains same set of genes
- But not all genes are used or expressed by those cells
- Machinery:

8.9.200

8.9.20.06

- · Collect and manufacture components
- Carry out replication
- Kick-start its new offspring

An Introduction to Bioinformatics Algorithms

(A cell is like a car factory)

Introduction to Bioinformatis (Autumn 2006)

Overview of organizations of life

www.bioalgorithms.info

Nucleus = library

An Introduction to Bioinformatics Algorithms

- Chromosomes = bookshelves
- Genes = books

8.9.2000

- Almost every cell in an organism contains the same libraries and the same sets of books.
- Books represent all the information (DNA) that every cell in the body needs so it can grow and carry out its various functions.

Introduction to Bioinformatics (Autumn 2006)

large, complex molecules made up of smaller subunits called amino acids.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

All Life depends on 3 critical molecules

- DNAs (Deoxyribonucleic acid)
- Hold information on how cell works
- RNAs (Ribonucleic acid)
- Act to transfer short pieces of information to different parts
 of cell
- Provide templates to synthesize into protein
- Proteins

8.9.2006

Form enzymes that send signals to other cells and regulate gene activity

Introduction to Binin formatics (Automa 2006)

· Form body's major components (e.g. hair, skin, etc.)

Tetrodution to Bisinformatic (Autumn 2004) 20

5

30

An Introduction to Bioinformatics Algor	ithms		w	ww.bi	oalgoi	rithms	.info
Human chromos	om	es					
 Somatic cells in humans have 2 pairs of 22 chromosomes + XX 	Ķ	Ŗ	Ķ		ξ	{ }	ι
(female) or XY (male) = total of 46 chromosomes	Ķ	ALC: NOT	(C	6	10	2)	X
 Germline cells have 22 chromosomes + either X or X = total of 23 	JL ۳	ji.	15		H	Ŋ	<u>}</u>
chromosomes		11	8 K 20		21	11 22	51
	Kary (http:	ogram o //en.wił	of huma kipedia.o	n male org/wiki	using G /Karyot	iemsa s (pe)	staining
8.9.2006 Introduction to Bioin f	io una ati es (Av	atumn 20	86)				34

An Introduction to Bioinformatics	Algorithms	www.bioalgorithms.info
Length of DNA and num	ber of chron	nosomes
Organism	#base pairs	#chromosomes (germline)
Prokayotic		
Escherichia coli (bacterium)	4x10 ⁶	1
Eukaryotic		
Saccharomyces cerevisia (yeast)	1.35x10 ⁷	17
Drosophila melanogaster (insect)	1.65x10 ⁸	4
Homo sapiens (human)	2.9x10 ⁹	23
Zea mays (corn)	5.0x10 ⁹	10
8,9.20 M Introduction	to Bioinformatis (Autumn	2 00() 35

uman Geno	me Co	ompos	sition
TABLE 10-1 Major Classes of Eukary	otic DNA and Their Repres	entation in the Human G	enome
Class	Length	Copy Number in Human Genome	Fraction of Human Genome, %
Protein-coding genes			
Solitary genes	Variable	1	$=1.5^{+}(0.8)^{\dagger}$
Daplicated or diverged genes in gene families	Variable	21000	$\sim 1.5^{+} (0.8)^{\dagger}$
Tandemly repeated genes encoding rRNAs, tRNAs, stRNAs, and histories	Variable	20-300	0.3
Repetitions DNA			
Simple-sequence DNA	1-500 bp	VariaNe	3
Interspersed repeats			
DNA transposors	2-3 kb	300,000	3
LTR retrotransposons	6-11 kb	440,000	8
Non-LTR retrotransposons			
LINES	6-8 kb	860,000	21
SINEs	100-300 bp	1,600,000	13
Processed pseudogenes	Variable	1	-0.4
Unclassified spacer DNA	Variable	n.a.4	~25
*Complete transcription units, including introns Protein coding exons. The total number of hum is based on current methods for identifying gene Port applicable.	an protein coding genes is estimate s in the human genome sequence an	too be 30,000-35,000, but this n d may be an underestimate.	aniber

