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Chapter 1

Differential Geometry of
Real Surafces

1.1 Fundamental of (2-dimensional) Riemannian
Geometry

Let M be a smooth differential manifold of dimension m and let p € M. The
tangent space T, M is a collection of tangent vectors v, to M at the point p,
here a tangent vector v, is a map v, : C*°(M) — R such that (i) vy(af +
bg) = avp(f) + bup(g), (i) vp(fg) = F(P)n(g) + 9(p)up(f). Let (U, @) a local
coordinate for M at p with coordinate functions 2* = 7% 0 ¢ : U — R (so,
for each p € U, ¢(p) = (z(p),...,2™(p))) (Note, sometime, we just write the
local coordinate (U, ¢) as  : U — R™). Then we have special tangent vectors

{W lp, 1 < k < m} (called the partial derivatives)
x
9 o0
defined by
0 -
e b () = Di(f 067 (0(0)),

where Dy (fop~1)(¢(p)) means the ordinary x*-partial derivative of the function
0

fo¢! at the point ¢(p). It is clear that {@ lp, 1 < k < m} forms a basis for

T,X, ie. for every v, € T, X,

- 0
Up = va(xk)w lp -
k=1

Let M be a 2-dimensional real smooth manifold (surface). A vector field X
assigns, at each point p € M, a vector X (p) € T, M. Its dual is the differential

2



CHAPTER 1. DIFFERENTIAL GEOMETRY OF REAL SURAFCES 3

1-form w. Locally, we can write w = adu' + bdu?, with the following change of
variables rule: let u! = u!(v!,v?),u? = u?(vl,v?), then, for 1 < j <2,

2 9w
i J
du' = jE:1 D07 dv’.

1.2 Fundamental of Riemannian Geometry

Let M be a Riemannian manifold of dimension n. Let g be the Riemannian
metric of M. The following theorem is called the fundamental theorem of Rie-
mannian geometry:

Theorem. There exists a unique connection D (Levi-Civita connection) of M
satisfies
1. (compatible with the metric) Z < X, Y >=< Dz X, Y >+ < X, DY >
2. (torsion free) DxY — Dy X = [X,Y]

Let {X;} be a local orthonormal frame on M (local frame for TU). Let {6}
be the dual co-frame. Write

DzXi =) wl(2)X;
j=1

J
i .
w = (w]) is the connection matrix.

Equivalently, if we use Christoffel sybmol, i.e. write

w] are called connection forms of D with respect to the local frame {X;}.

Dx,X; =Y T§Xy
k

and write [X;, X;] =3, C’ijk. Then
k _ 17 k k k _
Ui =T, T —T5 -0 =0.
Let w} be 1-forms such that

wh(X;) =T7};.

Then
DX; =Y Xyw}
k

or
DX = Xw.

The first structure equation

i J_
w;+w; =0
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o' == Wi NG
j=1
or
b = w0 =0.

The second structre equation is: define the curvature matrix
Q=dv+wAw.

Write
R L )
0= 23 Rl A,
k=1

where R(Xj, X;)X; = nglXj which is called the curvature tensor.
In the change of coordinates

X=X"-A,
then ~
0= A0,
O=A"twA+ ANdA
Q=ATQA.
In the case when dim M = 2: Since w;'v —l—wf =0,wi =w3 =0, w} =—wl.

Hence the connection matrix is

w— 0 w%
T\ —wi 0
and the curvature matrix is

_ 0 dw}
o= (g %)

Note that Q% = dwi is an exact form. According to the above ”change of frame
formula”, Q = A7'QA, hence Q} = (det A)QL. So Ol is a globally defined
2-form. Define the Gauss curvature

K =< R(X1, X2)X1, Xo >= Q3(X1, X3),

then
Q) = Kdo' A\ 6% = Kdo.
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1.3 Curves in the Surface, its (Geodesic Curva-
ture
Let C be a curve given by a : I — M be a curve. Write o/ = Z?Zl Eley

with Zle(gi)Q = 1. Let T(s) = &/(s) be the tangent vector to the curve,

N = —£%e; + £%ey. Recall that for a vector field X = Z 1£lel along the
curve (u(t),v(t)), its covariant derivative along the curve is

2

DX dg
W:; dt Z Jg e

The geodesic curvature of C' is given by

e (N,
) =2 (6

1=

Note that

d i
: ++>§ &£ =0.
We have that
DT
ds
Write ¢! = cos 6, £2 = sinf. Then

DT Lo wl o W2 b wl
@, 9 A REN
ds (5d8+d§)e1+<g as T ast )T\ T ds

Thus
g wi
Kg = — — —=.
ds ds
So on the curve C,

wy = df — Kyds.
1.4 Gauss-Bonnet theorem
Theorem (Local Gauss-Bonnet). Suppose that R is a simply connected

region with piecewise smooth boundary in a parametrized surface. If C = OR
has exterior angles €;,j =1,...,q, then

/ ngds+//KdA+Zejf27r
OR

J=1
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Proof: Take C' as a smooth piece of M and the exterior angle €; at P; gives
the jump of theta as we cross P;). Then, by Stokes’ theorem, we have

[ [ xis = [ [ tonm[ oum[ @)

—/BMHgdS—f— 27— )

When R = T is a geodesic triangle on M (i.e. a region whose boundary
consists of three geodesic segments), then it implies that (with ¢; = 7 — a;)):

Theorem( Gauss Formula for embedded triangle) Let M be a surface
in R3 and let T be an embedded geodesic triangle on M (i.e. a Tegion whose
boundary consists of three geodesic segments) with interior angels aq, s, as.

Then
//KdA:a1+a2+a3—7T.
T

Remark: The amount / / KdA is call the total Gaussian curvature of T.
T

and kgds is called the total geodesic curvature of the boundary 07T
oT

If the embedded triangle T" is a geodesic triangle on M, i.e. it is formed
by by the arcs of three geodesics on a surface M, and if A, B,C are interior
angles, then the Gauss-Bonnet Formula reduces to what is known as the Gauss

formula:
// KdA=A+B+C —m.
T

If K > 0 on T, then the total sum of its interior angles exceeds m. K < 0 the
total sum of its interior angles is less than 7. If K =0, then A+ B+ C =,
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E=0 E=1 E=-1

GLOBAL VERSION OF THE GAUSS-BONNET THEOREM.

We now consider an oriented surface with piecewise-smooth boundary. T.
Rado proved in 1925 that any such surface M can be triangulated. That is, we
may write M = UY_; Ay where

(i) Ay is the image of a triangle under an (oriented-preserving) orthgonal
parametrization;

(ii) Ay N A, is either empty, or single vertex, or a single edge;

(iii) when Ay N A, consists of a single edge, the orientations of the edge are
opposite in Ay and A,; and

(iv) at most one edge of Ay is contained in the boundary of M.

‘We now make a standard

Definition Given a triangulation T of a surface M with V vertices, E edges,
and F faces, we define the Euler characteristic x(M,T) =V — E+ F.

We can triangulate a disk as

—E+F=538+4=1 V-E+F=9-18+10=1
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When M is compact (i.e. without the boundary), then we have the following
neat formula:

Theorem ( Gauss-Bonnet Formula for compact surface) Let M be a
surface compact surface in R® without boundary. Then

/ /M KdA = 2mx(M)

where K is the Gauss curvature, dA is the area measure, and x(M) is the Euler
characteristic of M.

The above theorem shows that the Euler characteristic x(M,T) is indeed
independent of the choice of the triangulation 7. It is the property of M
itself. It is therefore legitimate to denote the Euler characteristic by x(M).

Here is the proof of Gauss-Bonnet in the case that M is compact: Let
M = UA) be a traingulation. Then

//MKdAZZ/ A KdA.

Using the local Gauss-Bonnet for triangles Ay, we get

3
/ KdA+/ Kods =Y 0 —m,
Ax oA =1

where £;,1 < j < 3 are the three interior angles of the triangle Ay. By summing
up, notice that the integrals [, EY kgds cancel in Paris due to the opposite
orientation, we have

//MKdAZiéj —7F,

A j=1



CHAPTER 1. DIFFERENTIAL GEOMETRY OF REAL SURAFCES 9

where F' is the number of triangles Ay (i.e. the number of faces). Notice that
at each vertice, the sum of all interior angles is 27, so

// KdA =27V — 7 F,
M

where V' = # of vertices. Use the fact that M does not have boundary, every
triangle has three edges, and each edge share with two triangles, hence 3F = 2F,
SO

/ KdA = 27V —7aF =27V —n(2F — 2E)
M
2n(E+V — F) =2mx(M).

This proves our theorem.
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The Theory of Compact
Riemann Surfaces
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Chapter 2

Basics about Riemann
Surfaces

2.1 Riemann surfaces (and complex manifolds)

An n-dimensional complex manifold M is a Hausdorff paracompact topological
space with a local coordinate covering {U;, ®;} such such
(1) Each U; is an open subset of M and UU; = M,
(2) ®; : U; — U? is a homeomorphism from U; onto an open subset U C C",
(3) If U;NU; # 0, then ®;08; " : ®;(U;NU;) — ®;(U;NU;) are holomorphic.

A Riemann surface M is a (connected) complex manifold of dimension one.
® : U — C is called a (coordinate) chart. ®~!: ®(U) C C — M is called a
(local) parametrization.

Examples: The complex plane C is the first example of a Riemann surface. Its
only chart is U = C with the identity map to C. The Riemann sphere C is the
first example of a compact RS. Its atlas can be built from two charts (coordinate
system): Uy = C — oo = C and ® is the 1dent1ty map, U; = C — {0} and
®1(2) = 1/zif 2 # 0o and ®;(c0) = 0. Then Pgod ' : C* — C* : Byod; () =

1/z. The sphere ¥ = {(z,y,2) € R® | 22 + ¢y* + 22 = 1} is also a compact
RS where Uy = ¥ — {north pole}, U1 = ¥ — {south pole}, ®1(p1,p2,p3) =

B2 B (pr,pa,ps) = B2, Do @t CF 5 C @0yl (2) = 1/z.

More examples:

(1) Complex projective space: P1(C) := C? — {0}/ ~ where (z1,22) is
equivalent to (wq,ws) if and only if (wy,ws) = A(z1,22). Let Up = [1, 22,
(Z)l U — C by [1,2’2] — z9 and Uy = [2’1,1], ¢2 :Us; — C by [2’1,1] = 21,

(2) Complex Torus: X = C/A. Let wy,ws € C be R-linear independent.
Consider the lattice A := Zw; + Zws. We say that 21, 20 € C are equivalent if

11
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z1 — 22 € A, so the quotient space X := C/A is well-defined (its elements are
equivalent classes [z],z € C). Let m : C — X be the natural projection (i.e.
for 7 : 2z — [z]). We define U C X to be open if 771(U) C C is open. This
defines the topology on X. To find the chart of X, consider the parallelogramme
D = {swy + tws,0 < s < 1,0 < t < 1}. Then D has the following properties:
(i) w|p is 1-1; (ii) m|p is onto. In other words, every two points z1,22 € D
are not equivalent, and for every point [z] € X we can find its representation
z € D. D is called the fundamental region of X. It is also easy to see that
m: C — X is locally one to one, i.e. there exists a 6 > 0 such that for every
w € C, the map m, when being restricted to the J-neighborhood of w, i.e.
Vw ={2z € C| |z —w| < 4}, is one-to-one. Let Uy, = 7(Vy), o = (7 w)’l.
Then {U,, ¢,y } forms a coordinate system for X. Thus X is a Riemann surface.

2.2 Mappings between Riemann Surfaces

Let X and Y be two complex manifolds. A continuous map f : X — Y is
called a holomorphic map if for each pair of charts ¢ : U — C,v¢ : U — C, the
composition 1o fo¢~! is holomorphic. A holomorphic map f : M — C is called
a holomorphic function. Note that the notions of harmonic and sub-harmonic
functions can also be extended to the RS.

Properties of holomorphic functions extend to manifolds:

(1) If M and N are Riemann surfaces (or complex manifolds) with M con-
nected and f,g : M — N are holomorphic and coincide on a set with a limit
point, then f = g on M. Consider the set of points in which f, g coincide in
a neighborhood. It is open (automatic). It is closed (given a sequence {zj} its
tail lies in one chart). It is not empty, for it contains the limit point; so f,g
must coincide everywhere on M.

(2) Suppose M is connected and f is holomorphic on M if | f| has a relative
maximum, it is constant. If |f| has a relative maximum, in a neighborhood, it
coincides with the constant function, use part (1).

From the maximal principle, every holomorphic map on a compact RS must
be constant. As a result, meromorphic functions on a compact RS is more
interesting.

Let W C M be an open subset. We say a function f on W is meromorphic
at p € W if f is is holomorphic on a punctured neighborhood of a point p and
has either a pole or a removable singularity at p. The function f : M — C is
said to be a meromorphic function if there exists a discrete set {p;} C M
such that f : M\{p;}72; — C is holomorphic and f is meromorphic at each p;.
For example, consider the torus X = C/A. We define a meromorphic function
P : C — C as follows:

1 1
P(z '_7+ Z (z+w w2>

0#£weL
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Ignoring issues of convergence, observe that P(z+w) = P(z) for all w € L, thus
P determined a unique meromorphic function on X, which (both) is called the
Weierstrass P-function. We also have the well-defined notion of order, which
is denoted by ord,(f) (note: ord,(f) = k if p is a zero of f order k, and
ordy(f) = —k if p is a pole of f order k).

2.3 Differential Forms

A 0-form on M is a function on M. A 1-form w is an (ordered) assignment, for
every local coordinate (U, zp), w = fudzy + gudZy, where fy and gy are two
(local) functions, and is invariant under coordinate change, i.e. and for every
(U, zy) and (W, zw ), on UNW, we have w = fydzy+gudzy = fwdzw+gwdzw.

A 2-form Q is an assignment, for every local coordinate (U, zi7), Q = fudzy A
dzy, where fy is a (local) function, and is invariant under coordinate change.
Here we used the ”exterior” multiplication of forms. This (wedge) multiplication
satisfies the following: dz Adz =0,dz ANdZ = —dzZ Adz,dz NdzZ = 0.

If fis a C! function on M, then df := %dz + %di =0f +0f is a 1-form.
d is called the exterior operator. The dw for any 1-form w is defined in a similar
manner.

Lemma (Partition of Unit). The existence of partitions of unity assumes
two distinct forms: Given any open cover {U,;}icr of M.

1. There exists a partition {p; }icr indexed over the same set I such that supp
pi C U;. Such a partition is said to be subordinate to the open cover {U;}icr.

2. There ezists a partition {p; }icr indexed over a possibly distinct index set
J such that each supp p; has compact support and for each j € J, supp p; C U;
for some i € I.

Thus one chooses either to have the supports indexed by the open cover, or
the supports compact. If M is compact, then there exist partitions satisfying
both requirements.

2.4 Integration of Differential Forms

Integration of 1-form: Let v be piecewise smooth curve in M, and w be a
smooth 1-form on M. Let {(Uy, ¢ataca be a collection of local coordinates
(with Uge AUy = M).

Case 1: Assume either v lies in U, or Supp w C U, for some o € A where
Suppw = {p € M | w(p) # 0}. We define, write w = fodzo + gadZs on Uy,

b dpe 0y dda 07)
= « Qsa o + 9a ¢o¢ © dt’
/Ww /a (f (ba0v)— Jalda o) —

where 7 : [a,b] = U, is a parameterization of the curve .
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Case 2 (general case): In general, take a partition of unit {p4 }aca, sub-
ordinate to the open cover {Us}aca, using ) c 4 po = 1, we define

[e=% [

Note that the key fact is that Supp (paw) C Uy, so f,y(,oaw) is defined in Case
1.

The integration of a two form Q over a region D C M is defined in a similar
manner as above by using the partition of unit.

Stokes Theorem. Let w be a 1-form, D C M 1is a closed domain with smooth

boundary, then
/ w = / dw.
aD D

2.5 Residues

Let w = fdz be a meromorphic 1-form, and p € M be a pole of w. Define
res,w = resy(f), it is easy to check that the definition is independent of the
choice of the coordinate. Alternatively, for a small disc D centered at p,

1
resy(w) = 57 aDw

Theorem (Residue Theorem). Let M be a RS and w be a meromorphic
1-form on M. Let D C M be an open subset whose closure is compact, 0D is
piecewise smooth, and 0D does not contain the poles of w. For any meromorphic

1-form w,
| w= 3 rese
oD

peED

Proof. Note that since D is compact, the above sum is only a finite sum. Assume
D1, .-,k are poles of w in D. Let B; be the small discs containing p; only and
mutually disjoint. Let £ = D — U;?:lBj, then w is holomorphic on E, so dw =0
on E. From the Stoke’s theorem,

k
Oz/dw:/ w:/ w— / w
E OE aD ; dB;

which proves the theorem.
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Corollary. If M is compact, then for any meromorphic 1-form w,

Corollary. Let M be RS and D C M be an open subset whose closure is
compact and whose boundary is piecewise smooth. If f is meromorphic on M
with no zeros or poles on 0D, then

1 ﬁ: Zordm(f).

2m oD xzeD

Proof. By applying the above theorem with w = df/f.

Corollary. Let M be a compact RS and f be meromorphic on M, then

Z ord.(f) =0.

zeEM

2.6 Holomorphic mappings between Riemann Sur-
faces

A meromorphic function f on M can be viewed as a holomorphic mapping f :
M — P'. Thus, it is important to study the properties for general holomorphic
mappings between RS.

Let X any Y be two RS. A continuous map f : X — Y is called a holo-
morphic map (and we usually will not consider other maps between RS) if for
each pair of charts ¢ : U — C,v : U — C, the composition 1 o f o ¢! is
holomorphic.

Theorem (Normal Form Theorem). Let F': X — Y be a holomorphic
map between two RSs, and x € X. Then there exist two coordinate charts
¢1: UL = Vi,¢2 : U = Va at ¢ and F(x) respectively and a unique integer
m = mg (which is called the multiplicity) such that ¢1(x) = ¢o(F(z)) =0 and

pao Fopyt(z) =2

Proof. Choose any pair of coordinate charts. After translation, we assume that
$1(x) = ¢2(F(x)) = 0. Then ¢y 0 F o gy (¢) = (™MD, Let () := (em©)
which is locally 1-1. Let ¢1 := 1 o ¢1. This will serve our purpose.
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Definition. (1) We call m := Mult,(F) the multiplicity of F' at x € X.

(2) If Mult,(F) > 2, we say that F' is ramified at x and that x is a ramifi-
cation point for F.

(8) If p € X is a ramification point for F, we call F(p) a branch point of
F.

Degree of a holomorphic map.

Theorem. Let ' : X — Y be a holomorphic map between two connected
compact RSs. Then

1s independent of y.
Riemann-Hurwitz Formula:

Definition. Let M be a compact RS (regarded as a manifold of real-dimension
2) with smooth boundary (possibly empty),

(1) A 0-simplex, or vertez, is a point. A I-simplex, or edge, is a set home-
omorphic to a closed interval. A 2-simplex, or face, is a set homeomorphic to
the triangle {(x,y) € [0,1] x [0,1];z +y < 1}.

(2) A triangulation of M is a decomposition of M into faces, edges and
vertices, such that the intersection of any two faces is a union of edges and the
intersection of any two edges is a union of vertices.

(8) Let M have a triangulation with total number of faces equal to F, total
number of edges equal to E, and total number of vertices equal to V. The number
X(M) :=F — E+V is independent of the choices of the triangulation, which is
called the Euler characteristic of M. x(M) := 2—2g where g is called the genus
of M.

Theorem (Riemann-Hurwitz formula). F: X — Y be a holomorphic map
between two connected compact RSs. Then

29(X) — 2 = deg(F)(29(Y) = 2) + Y _ (Mult,(f) - 1).
reX

Proof. Let d = deg(f). Take a triangulation of ¥ such that every branch point
is a vertex. (There may, of course, be other vertices). Suppose this triangulation
has F' faces, E edges, V,, unbranched verticies, and V;, branched vertices.

Since the preimage of every unbranched point has d points, we obtain a
triangulation of X with dF faces, dF edges and W vertices. To express W in
terms of V and f, we observe that if z € X is a ramification point for f, then
Mult,(f)-many points are collapsed into one point, so that we have

W=dV—>" > Mult,(f)—1=dV — Y (Mult,(f) —1).

yeVy zef~1(y) zeX
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The last equality follows because Mult,(f) = 1 for all unramified points 2. This
proves the theorem.

2.7 Automorphism groups of Complex Tori

Let M = C/A, where A := Zwy +Zws, and w1, w2 € C are R-linear independent.

Theorem. f: C/A1 — C/As is a biholomorphic map if and only if there exists
F(z) = az + b with a # 0 such that F maps the equivalent classes w.r.t A1 to
equivalent classes w.r.t. As.

The proof uses the lifting property (for universal coverings) from f : C/A; —
C/As to get F': C — C and use the following result proved in last semester: If
F € Aut(C) then F = az + b.

Corollary. C/A; is biholomorphic to C/As iff there exists a # 0 such that
F(z) = az sends an equivalent class with respect to Ay to the equivalent class
with respect to As.

Hence,
w1 —F w1 _ air a2 wy
w2 w2 az1 a2 wy )’
and ,
(5 )-2(2)
2 w2
Thus

/ !
(2)-rr(i) () o () ()
w2 (0% Wy Wo )

Since w; and wq are real-linearly independent, AB = I. Hence det(A) det(B) =
1. Since entries of A and B are integers, det(4) = £1. Let 7 = wy/wa, 7/ =
w} /wh. Then we have

Theorem. Let A = Spanz{l,7},A" = Spanz{1,7'}, with Im7,Im7" > 0.
Then C/A is biholomorphic to C/A’ if and only if

o a11T + a1z (+)

b
21T + G22

where ai1,a12, 021, 022 € Z and ay1a29 — ajoa2; = 1.

We now introduce an equivalent relation as follows: C/A; ~ C/Ay iff C/A4
is biholomorphic to C/As, and denote by A; the set of equivalent classes. So,
from the theorem, A; = {1,7},Ay = {1,7'}, then they below to the same
equivalent class if and only if (*) is satisfied. To describe clearly about A4;. W
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consider H = {7 € C | Im(z) > 0} the upper-half plane on C. Then (*) defines

a map
;0T +aiz
TH—T = ——, 1114022 — 012021 = 1.
a21T + 22
The set of such transformation becomes a group, and is denoted by SL(2,Z)
(called the modular group). We now define the fundamental domain D C H
of the modular group as the subset such that (i) every 7 € H is congruent to
7/ € D mod SL(2,Z), (ii) Any two distinct points in D are not congruent mod
SL(2,7Z).

A modular function is a holomorphic function or a meromorphic function
defined on H which is invariant under the action of the group SL(2,Z).



Chapter 3

The Theory of Differential
Forms

3.1 The DeRham Cohomology Hj,,(M) and Its
Pairing with H,(M,Z).

Differential Forms on a Riemann surface M: Recall that a O-form on M
is a function on M. A 1l-form w is an (ordered) assignment, for every local
coordinate (U, zy), w = fudzy + gudZy, where fy and gy are two (local)
functions, and is invariant under coordinate change, i.e. and for every (U, zy)
and (W, zw ), on UNW, we have w = fydzy + gudzy = fwdzw + gwdzw. A
2-form (2 is an assignment, for every local coordinate (U, zy), Q = fudzy ANdzy,
where fy is a (local) function, and is invariant under coordinate change. Here
we used the ”exterior” multiplication of forms. This (wedge) multiplication
satisfies the following: dz Adz = 0,dz Adz = —dzZ Adz,dzAdz =0. If f isa C!
function on M, then df := %dz + %dé = 0f + 0f is a 1-form. d is called the
exterior operator. The dw for any 1-form w is defined in a similar manner.

A 1-form w is said to be d-closed (or just closed) if dw = 0. It is said to be
d-exact if w = df for some (global) smooth function f on M. Let A;(M) be the
set of smooth closed 1-form on M. Two elements wi,ws € A1 (M) are said to
be equivalent if wi — wq is d—exact, i.e. w1 —we = df for some smooth function
f on M. Denote by [w] the equivalent class of w. The (free abelian) group (or
a vector space) of the collection of all such equivalent classes is called the de
Rahm cohomology, and is denoted by H} (M), i.e.

_ {smooth closed 1-forms}

Hpr(M) = :
pr(M) {smooth exact 1-forms}

19
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Pairing of Hi(M,Z) and H},,(M): Define
(b} € M) x Hhp(d) -+ [wec,
Y

where 71 (M) is the fundamental group of M. It is clear from the properties

of integrals that the map is a homomorphism, and thus, since C is an abelian
group, the kernel of this map must contain the commutation subgroup of 71 (M).
Define the quotient group

Hy(M,Z) = m (M)/[m (M), 71 (M)].

H,(M,Z) is called the first homology group of the surface (it is a free-
abelian group).

The pairing is non-degenerate, i.e. it satisfies that if (y,w) = 0 for all d-
closed w, then [y] =0, and if (y,w) = 0= 0 for all [y] € H1(M,Z), then w = 0.
Thus dime H},»(M) =rank of Hy(M,Z) = 2g, where g is the genus of M.

More information about H;(M,Z) (topology of the RS): Here is an al-
ternative definition of Hy(M,Z): Recall

Definition. Let M be a compact RS (regarded as a manifold of real-dimension

(1) A 0-simplex, or vertez, is a point. A I-simplex, or edge, is a set home-
omorphic to a closed interval. A 2-simplex, or face, is a set homeomorphic to
the triangle {(x,y) € [0,1] x [0,1];z +y < 1}.

(2) A triangulation of M is a decomposition of M into faces, edges and
vertices, such that the intersection of any two faces is a union of edges and the
intersection of any two edges is a union of vertices.

(3) Let M have a triangulation with total number of faces equal to F, total
number of edges equal to E, and total number of vertices equal to V.. The number
X(M) :=F — E+YV is independent of the choices of the triangulation, which is
called the Euler characteristic of M. x(M) := 2—2g where g is called the genus
of M.

A n-chain is a finite combination of differential maps of a n-th dimensional
simplex into M. A simplex carries an orientation: using this, we can define a
boundary map 0 on chains: if e.g. (p1,p2,ps) is the oriented triangle bounded
by the oriented edges (p1,p2), (p2, ps) and (ps, p1), then

0 < p1,p2,p3 >=<p2,p3 > — < p1,p3 > + < p1,p2 > .

here the minus sign denotes the reversal of orientations, thus —(p1, p3) = (ps,p1)-
Similarly,

0 < pi1,p2 >=p2 —p1.
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Thus 0 defined on simplices can be extended by linearity to a boundary operator
on chains of M, and satisfies
9*=0.

A chain C' is called a cycle if 9C = 0, and is called a boundary if ¢/ = dC. The
j—th homology group of M with coefficients in Z is defined as

{j-dimensional cycles}

H;(M,Z) := .
/M Z) {j-dimensional boundaries}

Observe that freely homotopic closed curves are homologous. Indeed, let vy :

St — M and v; : St — M be two closed curves in M (S being interval [0, 1]

with its end-points identified), and

H:S'"x[0,1] = M

is a homotopy between them (so that H(t,0) = ~o,H(t,1) = ). Then
Yo —v1 = OH(A), so that 79,1 are homologous as asserted. The converse is
however false in general: since homology groups are always abelian, any curves
v whose homotopy class of the form aba=1b=! (a,b, € 71 (M, po)) is always null-
homologous, but not necessarily null-homotopic, since 71 (M, pg) is not abelian
if g > 2. By the theorem of van Hampen,

H{(M,Z) :=m(M)/[m (M), m (M)].

3.2 The Canonical Basis for H(M,Z) and Hrp(M)

According to the uniformization theorem, every compact orientable 2-real di-
mensional manifold is hemeomorphic to g-torus (g is called the genus of M)
with g > 0. We wish now to use the standard presentation of a compact R.S.
of genus g. For g = 0, it is holomeomorphic to a sphere which is simply con-
nected. For g > 0, there are 2¢g closed curves which have a common starting
and end point, which is denoted by po, say ai,b1,az2,bo,...,a4,bg, and M can
be obtained from a 4g-gon by identification of the edges defined by the word

arbia; oyt agbgag_lbg_l.

With the common vertex of the sides as a base point pg, one shows that (M)
is generated by the simple loops a1,...,aq and by, ..., b, corresponding to the
edges z; and y;, subject to one relation

g
Haibiai_lbi_l =1.
i=1

Hence the holomogy group H;(M,Z) is free abelian group on the generators
[a;],[b5],7 =1,...,g. In particular, we get

H(M,Z) =7%.
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Let a,b € H1(M,Z) represented by closed curves 71,2 respectively. Then the
intersection number of a, b is defined as

a'b::/n’m(:/n’h/\n"&:_/ 7771)7
Y1 M Y2

where 7, is the the one-form defined by a closed curve 7 which can be
constructed as follows: Since 7y is compact, we can find an annular region 2
containing + in its interior. Since 7 is two sided (M is called orientable if all
closed curves on M is two-sided), 2 will be separated by ~ into a left side 2~
(after an orientation of v is given) and a right side Q*. We choose another
smaller region )y containing v which is contained in the interior of 2. Let
Q, denote the region to the left of v in {y5. We now choose a real-valued C*°
function on M\ such that

] 1 2z€Qy and z €y
f(z)_{ 0 zeM\Q~

and define
(2) = df(z) =z €Q\y
iz 0 z€vyorze M\Q.

The form 7, is obviously closed, smooth and with compact support, although
the function f itself has a jump of height 1 across . Although 7, is closed, it is
not in general exact (it turns out that 7, is exact is  is homologous to a point).
The form 7, has the following important property:

Claim: If w € L*(M) N C* is closed, then

/w:—/ WA Ny
0% M

Proof of the claim. We compute, note that 7, is real,

—/Mw/\n7 = —/fu/\df: Q7df/\o.)
= [ e [ faw= [ ) = inton-fu = [ w

Y

It is clear that a-b€Z,a-b=—-b-aand (a+b)-c=a-c+b-c

Proposition. The intersection pairing satisfies the following properties.
1. The intersection a - b depends only on the homology classes of a and b.
2. One hasa-b= —b-a.
3. a-b € Z. In case the intersection points of the curves a and b are
transversal, a - b is the (signed) number of intersection points.



CHAPTER 3. THE THEORY OF DIFFERENTIAL FORMS 23

Proof. The first property has already been explained: integrals of a closed form
along homotopic paths are the same. The second property results from the
anticommutativity of the multiplication of one-forms.

The third property can be checked for simple closed curves since any piece-
wise smooth closed curve is a finite union of simple closed curves. In this case
a-b= fa 7, and we have to check that each intersection point of awith b con-
tributes 1 or —1, depending on the orientation of the curves at the intersection
point. Recall that 7, is defined as differential of a function f, having a discon-
tinuity along b. The function f; is zero far away from b. Thus, the integral
over a can be presented as a sum of the integrals over small segments of a; of
a containing the intersection points x; of a with b. The integral fai mp has been
already calculated once. The result was 1 or —1. This finishes the proof.

From above, we know that the pairing so defined counts the number of
times a intersects b. A basis {a1,...,a4,b1,...,by} of Hi(M,Z) is siad to be a
canonical basis if its intersection matrix looks like

J=<_OI é) (%)

Let wj =mp;, wgrj = —Ma;»7 =1,...,9. Then

/ W = 6jk-
P

J

U([w;]) =(0,...,0,1,0,...,0), where 1is at the j-th place. {¥(jw1]),..., ¥(jwzg))}
is called the canonical basis basis for H} (M) (with respect to the {a, ..., a,,
bi,...,bg}).

3.3 The Hodge (theory) Decomposition

Though above pairing gives us a practical way of computing H},,(M) (i.e.
dime H}z(M) = 2g), it would be more convenient for computational purpose
if a cohomology class is represented by a unique differential form rather than
an equivalence class of differential forms. The Hodge theorem states that such
is case: every equivalence class of differential forms is uniquely represented by
the harmonic differential form (which is unique).

A 1-from w € C' is called a harmonic form if locally we can write w = df
where f is harmonic. A 1-from w € C! is called a harmonic form if locally we
can write w = df where f is harmonic. To further study harmonic forms, we
introduce the star-operator: for ant 1-form w = fdz + gdz, »w := —ifdz + igdz
(note that if w = fdz 4+ gdy, then xw = —gdz + fdy). Remark: We only defined
the star-operator here for 1 — forms since the star operator is independent of
the metric only for 1-forms on Riemann Surface. In general,,we need a metric
A?dzdz on M (it always exists) and define, for any O-form f, xf := f\2dz Adz
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(here £A%dz A dZ is called the Kahler (metric) form associated to the metric),

and define, for any two form 1 = h(z)4dz A dz, *n(z) = 35h(z).. So in general,

the star operator depends on the metric. The Laplace operator is A := 2i90.
It is easy to check that A = d«d.

A 1-form w is harmonic if and only if w is closed and is co-closed, i.e. dw =0
and d(xw) = 0. To see its proof. Obviously, dw = 0 is obvious since locally
w = df. Moreover, since A = dxd and f is harmonic, we see that w is also
co-closed.

Hilbert Space Theory:

Weyl’s Lemma. Let D(0,R) = {z € C | |z| < R}. Then ¢ € L*(D) is a
harmonic function if and only if

/¢An:0, v € C5(D).
D

Proof of the Weyl Lemma. For any given € > 0, choose a real-valued C*
function p(r),r € [0,+00) such that p.(r) = 1 for r € [0,€¢/2), pc(r) = 0 for
r € (6,00), and 0 < pc(r) < 1 on [¢/2,€]. Let

1
Qe(r) = EPG(T) log r.

For any function p € C§°(D), consider the function

ne(§) = /C Qc(|z — ¢p(2)dz A dz.

When € is small enough, 7. has compact support. On the other hand, we can
write it as

ne(§) = /C Qc(|z)p(z + €)dz A dz.
Hence 7, is smooth, and

02 0
aff—ﬂe(ﬁ)Z/CQE(|Z—§|)£u(z)dz/\d2

0 )
875/’76(5) = /c Q|2 — §\)£/¢(z)dz Adz.
We claim that

32

0? _
55O = ~n(O) + [ ez~ Ehu)dz n



CHAPTER 3. THE THEORY OF DIFFERENTIAL FORMS 25

To prove the claim, fix £, € D, and write

ne(§) = f(&) +9(8),
where ¢ satisfies |£€ — &y| < €/4 and

1 —
f(€) = m./z £O‘<€/4M(Z)1H\Z—§|dz/\dz

1
= — Qc(|lz — dz NdZz.
0@ = [ 0=z nds

It is easy to check that
92f
TE = —u(§).

When [§—&p| < /4 and |z—&y| < €/4, | —z| < €/2. Hence Qc(|z—(|) = In|z—¢|

(z # &), and is harmonic in &. Therefore,

0? 0?
-2 = —Q(|z — dz Ndz
o /l R (Iz = Chu(z)dz A dz

829 dz Ndz
= | 5g%(lz — Chuleydz nd=

This proves the claim. Assuming the claim holds, then, using n = 7. the as-
sumption gets

1
20, (1: - €])
= - e)de paf | 228D
/D(£)¢(£)d§Ad€+/¢ N 5/ 8555 .

—/ [ /¢ 8293‘2_ Ddz/\dz} de A dE.

Since p is arbitrary, we get

0

(2)dz Ndz

329 (= =€) _
/ ¢z 9205 ——————=dz NdZ.
When [€ — z| < €¢/2,
Poz-e)
020% ’

hence
9?Q (]2

_ € _gl) =
?(&) —/D\Ae/2 ) —p,5; d#Ndz

Thus ¢(£) is smooth. We have proved, in the remark, that if ¢ is C?, then it is
harmonic. This finishes the proof.
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We use the Hilbert space theory to decompose the space of square integrable
1-forms (which is a Hilbert space) into closed subspaces. The basic tool is the
above Weyl’s lemma. A measurable 1-form is called square-integrable if

Ik ;:/ W A %@ < +oo.
M

Let L2(M) be the Hilbert space of all square-integrable 1-forms. On L?(M), we
introduce an inner product

(wl,wg) 2:/ w1 N\ *Wa.
M

L?(M) becomes an Hilbert space under this inner product. Let E be the closure
in L2(M) of the set {df | f € C§°(M)}, and E* be the closure in L?*(M) of the
set {xdf | f € C°(M)}. We have

L*(M)=E@PE*, L*M)=EPE.
It is not hard to verify that
Et ={we L*(M) | (w,df) =0, feC5(M)},
B ={we L}(M) | (w,*df) =0, fe€CF(M)},
Theorem.Let w € L2(M)NC*(M). Then

(i) w € E** if and only if w is closed.
(ii) w € E*+ if and only if w is co-closed.

Proof. Assume that w is closed. Let f be a smooth function on M with support
inside D (D is compact). Then, using dw = 0,

(wosdf) = = [ wndf == [ fawh) - fa) == [ dwi)== [ @h)=o

D

where the last equality holds because f has compact support. Thus w € E*L

Conversely, we start from the third equality, and using — [ pdwf) =0, we get

for all smooth f on M with compact support it suffices to conclude that dw = 0.
So w is closed. This proves (i). The proof of (ii) is similar.

Corollary. If w is C, then w is harmonic if and only if w € E+ N E**.
The Weyl lemma allows to remove the condition of "smoothness” in above,
i.e. we have the following most important result about L?(M).
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Theorem. EL N E*+ = H, where H is the set of harmonic forms (note, the
definition of harmonic form requires C*).

Proof. If w € H, then w is smooth, closed, and co-closed, so from the theorem
above, w € B+ N E*+.

For the converse, let w € ELX N E**. Choose a coordinate chart (U, ¢) on
M and write locally w = u(z)dz 4+ v(z)dz. Consider a (any) smooth function on
M with compact support in U with local expression n = n(z). Let f = 07j/0z.
Then from 0 = (w, df) = (w, *df), we get (w,*df +idf) =0, i.e.

—/ (u(z)dz +v(z)dz) A nyzdz = / vn.zdz ANdz = 0.
o(U) o(U)

By Weyl’s theorem, v is harmonic on ¢(U) hence is smooth. Applying this
result to xw we see that w is also smooth. Hence w is smooth. This finishes the
proof.

From the definition, £ C E*t and E* C E+, Thus elements in E and
E* are always orthogonal to each other. It then follows that the direct sum
(E+ @ E*)* is a closed, and therefore Thus

’(M)=E@RE-PEPE)"
It is easy to check that (F @) E*)* = E* N E**. This proves
Theorem (Orthogonal Decomposition).

’(M)=E@QEEPH

where H is the set of all harmonic 1-forms.
The decomposition theorem for smooth differential forms: From above,
forw e L?>(M) = EQQE*@H, soevery w € L>(M), w=a+ B+h, ac¢c
E, 3 € E*,h € H. However, we need more information about o and S.
Lemma. If w € ENCY, then w is exact. If w € E* N CY, then w is co-eract.
Proof. To prove w is exact, it suffices to show that f,yw = 0. Let n, br the

1-form constructed earlier. We now prove
Claim (this is similar to the Riesz’s representation theorem!): If w € L*(M)NC*

is closed, then
/w = (w, *1)).
~
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Proof of the claim. We compute, note that 7, is real,
(w,*ny) = —/ w/\n.y:—/ wAdf = df Nw
M - Q-

= [ at) = [ rdo= [ atre) - agf“’/f“"

We now prove the lemma: From the assumption that w € ENCY, so w €
E**. Notice that 1 has compact support, we can prove that (w,*n,) = 0 From
the claim above, we have that fvw = 0. Hence w is exact. This finishes the
proof of the lemma.

Theorem (Hodge Decomposition theorem for smooth forms). Let w €
L3(M) N CY(M), then there exists C? functions f and g such that

w=df +*dg+h, df € E,*xdg € E*,h € H.

Proof. Write
w=a+8+h

with o € E,p € E*,h € H. According to the result above, we only need to
prove that o, 8 are C1.

For any point pg € M, take a coordinate chart (U, ¢) with po € U. WLOG,
assume that ¢(U) is the unit disk D(0,1) and ¢(pg) = 0. Write locally w =
pdx + qdy (with z = z + iy). Let

G = - [ (peta)nlC—zldEndn (C=¢+in).
27 D(0,1)

Then it is easy to see that G(z) is the solution of the equation

*u n
9207 oW
on the unit disk D(0,1). Hence
0*°G
dxdG =14 dz ANdy = 4(ps + qy)dz ANdy = d*w.

020z

Thus d * (w — dG) = 0, i.e. w — dG is co-closed. Hence, from the theorem
above, (w — dG) L E(U), where E(U)=closure of {df, f € C5°}. From the
decomposition theorem of L?(M) above,

w—dG =5 +H,

with 8 € E*(U), where E*(U)=closure of {xdf, f € C§°}, and h’ is harmonic
on U (hence smooth). From the smoothness of w,dG and k', we conclude that
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B’ is smooth. Then, from w = a+ B+ h, we get 8 — 8 = dG —a+ h' — h.
Notice that o L E*(U) and dG L E*(U), we know that 3 — 3 L E*(U). On
the other hand, 8 — 8’ L E(U). Hence  — ' € H. Thus it is smooth. This
implies that 3 is smooth. The similar argument also implies that « is smooth.
This finishes the proof.

Hodge Theory: From the decomposition theorem, H})R(M) = H, where H is
the set of harmonic 1-forms on M. To see it, for every smooth closed 1-form w,
from the theorem we proved, w € E**. Hence, from the Hodge decomposition
theorem, w = df + h. Thus w are h belong to the same class. The map w +— h
gives the isomorphism.

3.4 The Space of Holomorphic (meromorphic)
1-Forms

The principal question above the manifold is the existence of global objects. On
the smooth category, one can always piece the local objects together by using
the cut-off function to get a global one. However, it is hard to do it in the
holomorphic category (since the cut-off functions are only smooth). From the
maximal principle, every holomorphic map on a compact RS must be constant,
As a result, meromorphic functions on a compact RS, or holomorphic (mero-
morphic) 1-forms are more interesting. The study of holomorphic form (resp.
meromorphic) is THROUGH the study of harmonic 1-forms (with the Hodge
Theory).

A 1-form w is called a holomorphic form (resp. meromorphic) if locally
w = fdz where f is holomorphic (resp. meromorphic). A meromorphic 1-form
is also called a abel form. Note that two meromorphic 1-forms wy,ws produces
a global meromorphic function w;/ws on M. Denote by H®(M, Q') the space
of holomorphic 1-forms on M.

The operator a — %(a + ¢ % «) transforms any harmonic form into a holo-
morphic form and acts identically on holomorphic forms. Its kernel consists of
antiholomorphic forms since if a4+ i* a = 0, one has & — i x @ = 0 which means
that @& is holomorphic. This proves the following
Theorem. One has a canonical decomposition

H=H(M,Q") P HO(M, QD).
In particular dim H°(M, Q') = g.

Canonical basis for H°(M,Q'): Let aj,b1,...,a,4,b, be a canonical homology
basis for M (i.e. for Hi(M,Z)). Let w € H°(M,Q'), the numbers A; :=
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w, e, Ag = fa( w (respectively By := fbl w, o, By = fbg w) are called the

ai

a-periods (resp. b-periods) of w. Then

g
w—Y (Aja; + Bjp;)

j=1

has zero a—periods and b-periods. Thus w = >>7_, (A;a; + B;S;) +df for some
fec

Proposition (Bilinear relation). Letw and & be two smooth closed one-forms
on M. Then
g
/W:Z(/ ofa-] /)
M le aj bj agj bj

Proof. From the above discuss, we have

i
M-

(Ajoy + B;B;) +df,

J

Il
_

(Ajo; + B;B;) + df

M=

(:):

<.
Il
-

where A;,..., A, (resp. Al,...,fig) are the a—periods of w (resp. @), and
By,...,By (resp. Bi,...,By) are the b—periods of w (resp. @). Using the fact
that M is compact, from Stoke’s theorem,

/Mw/\a) = /M(w—df)/\(@—df)
- /M(Ajaj +B;B) A (Ajay + BjB;).

/MOéj/\BkZ/bjﬁkZ/akaj
/ajak:/b]ﬂk: jk

it is easy to get the conclusion.

Using the fact that

and

Corollary. If w is a holomorphic 1-form, and its a—periods are zero, then
w=0.
Proof. From above, we have ||w||? = 0. Hence w = 0.
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Lemma. Let ¢1,...,¢, be a basis of H*(M,Q"). Then its a-period of matriz

(@ij) gy = (/a <i>j)

Proof. Assume that Z§:1 Ajag; = 0for k =1,...,9 Let ¢ = ?:1 Ajd;.
Then the a-periods of ¢ is zero, thus, from the corollary above, ¢ = 0. Hence,
from the assumption that ¢, ..., ¢4 be a basis of HO(M,Q'), we conclude that
A1 = -+ = Ay = 0. Thus the row vectors of the matrix are lienar independent.
This proves the lemma.

gxg

18 of mazimal rank.

From the above the lemma, the matrix A := (a;;),,, is invertible, so there
exists a matrix C such that AC = I. Thus there is a (new) basis of H(M, Q1),

say ¥1,...,1%y whose a-period matrix in I, the identical matrix, we call such
basis a canonincal basis for H°(M,Q1).

3.5 Bilinear Relation for Meromorphic 1-Forms

From the bilinear relation above, we have, for any two holomorphic 1-forms w

and @, we have
g
(/w/@_/@/w>:/wzo.
i=1 aj bj aj bj M

J

Now we want to extend this relation to meromorphic differential forms.

Theorem. Let w be a holomorphic 1-form and & be a meremorphic 1-form
which has only one pole at p € M with residue zero. Assume that locally

w=(ag+arz+---)dz

~ Cm C_9
w:(—m+---+—2 +co+clz+-~-)dz.
z z
Then
g m
j=1 \7a5 /b by Jay n— 7

Note: The theorem is a key to the proof of Riemann-Roch theorem.

Proof. Note that My := M\{a1,...,a4,b1...,bs} is simply connected, so there
exist smooth function f (defined as f(p) = f;; w for p € Myp) such that w = df.
Note that f can be extended to the boundary, but f may not have the same
values on the boundary.
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We first claim that

o (Lo [ )

To prove the claim, notice that for any z € a;, let 2’ € a;l be the point which
is equivalent to z, then

f(Z’)—f(Z)=/:/w=/zp0w+/biw+/p:/w=/biw,

since 2’ is equivalent to z and w has the same value at the equivalent points.
Hence

£ - 1) = [ w

b;

Therefore, since w has the same value at the equivalent points,

[gas [ o= [u@-sepa=-[o ] o

where 2’ € a; 1is the point which is equivalent to z € a;. Similarly,

/b‘fof)—l- bilfd):/aiw/bid).

0

fuo= (Lo [ 2)

which proves the claim. On the other hand, we have the residue formula,

/aMO f@ =27y Res(f - ).

Now locally at p, w = (ap + a1z + - -+ )dz, so f(z) = foz
and

Thus,

1
w:aoz+§a122+~--,

&J:(@+...+2;22+CO+012+...>CZZ,

Hence we have ”
- C_nln-2
S Res(f o2y = 3 a2

n=2

This proves the theroem.



Chapter 4

Riemann-Roch Theorem
and its Consequences

4.1 Divisors

A divisor D on a Riemann surface M is a locally finite subset {p1,p2,...,...}
of distinct points of M (it is useful to note that locally finite is not the same as
isolated), together with a collection of integers my, ma, ... with m; associated to

p;. The notation is
D= Z mjpj.
J

The set of points {p1,pa2,...,...} is called the support of D. When the support
of D is finite, the number

deg(D) := Z m;
J
is called the degree of D. For example, Let f be a meromorphic function on M.

Then we have a divisor
(f) =D ordy(f)p,
peM

where ord,(f) = k is p is a zero of f with order k, and ord,(f) = —k is p is a
pole of f of order k. From the theorem proved earlier, if M is compact, then

deg(f) = 0.

Example: Let M = S? = P! Let f([1 : 2]) = 2, f([0 : 1] = co. Then
(f)=[1:0]—[0:1].

We say that D is effective if m; > 0 for all j. Given two divisors Dy, D>,
we say that Dy > D if D1 — D5 is effective. The collection of divisors on M is
denoted by Div(M). It forms a group, so it is called the divisor group of M.

The purpose of introducing the concept of divisors is to study the meromor-
phic functions and meromorphic 1-forms. Given a divisor D, if D = (f) for

33
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some meromorphic function f on M. We call such divisor a principal divisor.
Two divisors Dy, Dy are called linearly equivalent (denoted by D; = Ds) if
Dy — Dy = (f) for some meromorphic function f on M. The quotient group
D := Div(M)/ ~ is called the divisor class group.

Similarly, for a meromorphic 1-form w, we can define

(w) := Z ordy(w)p.

peEM

Such divisors are called canonical divisors. Denote by K a canonical divisor.
For any two meromorphic 1-forms wy, wa, the ration w;/wy is a meromorphic
function on M. So (w;1) and (w2) are always linearly equivalent (they belong to
the same equivalent class).

Let D be a divisor, we define the space of meromorphic functions with poles
bounded by D by

L(D) :={f | f is a meromorphic function on M, either f =0 or (f)+ D > 0}.

For example, if D = 5p — ¢, then f € L(D) means that f is meromorphic which
has exactly one pole p with |ord,(f)] < 5 and has exactly one zero at ¢ with
ordy(f) > 1. The reason for the terminology is that following: For D = > n,p,
then f € L(D) meanas that ord,(f) > —n,. If n, > 0, it means that f may
have a pole of order n,, but no worse. Similarly, if n, < 0, then it means that
f has a zero of order at least (—n,) at p. So either poles are being allowed (to
specified order and no worse) or zeros being required (to at least some specified
order), at the support of D. Another way to say the above definition is to
use Laurent series. For any point p, choose a local coordinate z centered at p.
Then f € L(D) is equivalent to saying that at all point p € Supp(D), the local
Laurent series of f has no terms lower than z~"».
Let
hY(D) := dim L(D).

We define
QD) := {w | w is a meromorphic 1-form on M, (w) — D > 0}.
Write ¢(D) = dimg Q(D). Note that if Dy = Dy, then h(D;) = h(D3) and
i(D1) = (D). It is also easy to see that i(D) = hY(K — D) by, for fixed w, the
map 7+ L.

Lemma. Let D be a divisor with deg D < 0. Then h°(D) = 0.

Proof. For an f # 0 in L(D), we would have (f) > —(D). Then 0 = deg(f) >
—deg D > 0 which is impossible. This proves the lemma.
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4.2 The Riemann-Roch Theorem

Theorem (Riemann-Roch).Let M be a compact Riemann surface of genus
g. Let D be a divisor on M. Then

h%(D) =degD — g +1+h°(K — D) =degD — g+ 1+i(D).

Corollary 1. deg(K) =2g — 2

Corollary 2. Let M be a compact Riemann surface. Then M(M), the set of
meromorphic functions on M, has infinite dimension as a complex vector space.

Proof. Let I > 0 be any positive integer and fix p € M. From RR,
K(l(p) =1—g+1+i(D)>1—g.

Taking | — 400, we get that the set of meromorphic functions on M, has
infinite.

Corollary 3. Let M be a compact Riemann surface with genus(M) > 0. Then,
for every point p € M, there exists a holomorphic 1-form w with w(p) # 0.

Proof. Assume the statement is false, then there is some p € M such that every
w € HO(M, Q) satisfies w(p) = 0. Thus H°(M, Q') C Q((p)), i.e. i((p)) =
hY(K — (p)) > dim H°(M, Q') = g. Thus, from RR, h°(p) > 1 —g+1+g=2.
This means that there is a meromorphic function on M which has only p as its
pole. This function would give a biholomorphic map M into C, contradiction
with the assumption that g > 0.

4.3 The Proof of Riemann-Roch Theorem:

The proof of the Riemann-Roch Theorem depends decisively on the following
existence theorem.

Theorem (Existence). Let M be a compact Riemann surface. Let zy,...,z, €
M. Suppose a local chart has been choosen around zeach z;. Then for any
t1,...,t, € C, there exists a unique meromorphic 1— forms 1, on M (t =

(t1,...,tn)) with the following properties:
(i) T is holomorphic on M\ U"_, {z,}.
(ii) For each v,

T1(2) = (tl,zf2 + terms of order > 0)dz



CHAPTER 4. RIEMANN-ROCH THEOREM AND ITS CONSEQUENCES36

near z,, where z is a local coordinate at z, with z(z,) = 0;

(iii)
/TtZO, Z:ng
a;

where a1,...,aq,b1,...,by being usual a canonical homology basis for M.

Proof. Consider z, € Uy C Uy C M. Take p € C*°(M) with p =1 on Uy and
p=0on M\U;. Let z be a local coordinate in U; with z(z,) = 0. Let

and v := df. Notice that
tl/ z Z -
pimd(-2) =0, (-2 4 ) ds- 0,20
z z oz z

The (0,1)—part of v is smooth on M (so ¢ — i * ¢ is smooth on M), thus
¥ — i % = df + +xdg + h with h harmonic. Consider «, := ¢ — df = dw — df =
*xdg + i * dw + h. This means that it is closed and c-closed on M\{z,}. Hence
it is harmonic on M\{z,}. Thus

n

Z (ay +ixa,)

nu=1

satisfy the first two conditions of the lemma. Clearly two such forms differ only
by a holomorphic form, and it follows that periods along ay, ..., a, can be made
to vanish by using the canonical basis for H°(M, Q). Conversely the form is
uniquely determined (the uniqueness comes from the fact that any holomorphic
1-form whose a-periods vanish must be indentically zero). This finishes the
proof of the existence theorem.

We now prove the Riemann-Roch theorem.

We first prove that case that D is effective (if D is trivial then there is
nothing to prove), i.e. D = 2?21 a;p; with a; > 0. For simplicity of notation,
we assume that D = Y z,. Consider V, the subspace of meromorphic 1-
forms on M, which is given by

V ={w| (w) + 2D > 0,w has zero periods and residues}

and the map
d:L(D)— V,by f+—df.

Note that if w € V, then

f(z) = /Zw (20 € M is fixed)

20
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is well-defined, and f € L(D), so this map is onto. Clearly df = df’ if and only
if f and f’ differ by an additive constant, hence the kernel of the map is C.

Therefore we have
h%(D) = dimg V + 1.

To compute dime V, by identifying

weV +——t=(t1,...,t,) € C"

w = (tjz*2 + terms of order > 0)dz,1 <j<mn

and for every such t = (¢y,...,t,) by using the 1-form 7 constructed above, we
consider the linear map
[:C"—=CY

- (// )

9

Then clearly, by noticing that fa, 7+ = 0,1 < i < n by the construction,
V = kerl.

If now o, ..., qq is the canonincal basis of H°(M,Q), so that fa_ a; = 0;5, we
have, by the bilinear relation (note that fa, 7t = 0)

/b,- T = 277\/—71212, (3—;) (z)-

Thus [ is defined by the matrix

A= (a;5) =2mv -1
() () - (32) (20)
Notice that if w € Q(D) (i.e. w is holomorphic 1-form which vanish at al the

zy, 1 < v < n with order one) and write w = Adjaq + - - - + Agay, then i, ..., w,
is the solution of the system of linear equations

g
ZM%;‘ZQ 1<j<n
k=1

and conversely, if A, ..., w, is a solution of the system of above linear equations,
then w = A\ai + -+ + Mgy € Q(D). Hence, if we denote by C(A) the column
space and N(A) the row space, then this means that dim N(A?) = dim Q(D) =
i(D) = h%(K — D). So dimC(A') = g — dim N(A?) = g — h°(K — D). Thus,
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dimV = dim(kerl) = dim N(A) = n — dim C(A) = n — dim C(A") = n — (g —
h°(K — D)) =n — g+ h°(K — D). Hence

h%(D) = dim(kerl) + 1 =n— g+ h°(K — D) + 1
which proves the theorem in the case that D is effective.
We now prove the general case for D.

Claim: When g > 1, deg(w) = 2g — 2 where w is a holomorphic form on M.
Indeed, since (w) is effective, use the the Riemann-Roch proved earlier with
the assumption that D = (w) is effective, we get

hO((w)) = deg(w) — g + 1+ h°(0) = deg(w) — g + 2.

Use the fact that h°(K — D) = i(D), we know immediately that h°(w)) = i(0) =
g, Thus deg(w) = 2g — 2, which proves the claim.

We know that (D), i(D) and deg(D) depend only on the equivalent class
of D, and we have proved the Riemann-Roch earlier in the case when D is
equivalent to an effective divisor. We now prove that if D is a divisor with
K — D is effective, then Riemann-Roch still holds. Indeed, if D’ = K — D is
equivalent to an effective divisor, then apply the Riemann-Roch to D’ yields

h(K — D) = deg(K — D) — g+ 1+ h°(D).
But deg(K) = 2g — 2, so
h(D) = deg(D) — g+ 1 + h°(K — D).
The above is in fact the Riemann-Roch to D.

It remains to the last case that both D and K — D are not equivalent
to effective divisors. In this, we’ll have h(D) = 0 and A(K — D) = 0. In
fact, if h°(D) # 0, then there is a meromorphic function f with (f) + D > 0,
contradicts with the assumption that D is not equivalent to an effective divisor.
If h°(K — D) # 0, then it contradicts with the assumption that K — D is not
equivalent to an effective divisor. Thus for such D, the Riemann-Roch result
becomes

0=deg(D)—g+1.

To prove above, write D = Dy — Dy with Dy, Do both effective, then deg(D) =
deg(D;) — deg(D3). Applying the Riemann’s inequality to D; yields
hY(D1) > deg(D;) — g + 1 = deg(Dy) + deg(D) — g + 1.

If deg(D) > g, then h®(D) > (D3) + 1, thus there are at least m = deg(Ds) + 1
meromorphic functions fi, ..., f, € L(D;) which are linearly independent. We
consider its linear combination f = c¢1f1 + -+ 4+ ¢ fin. Since m > deg Dy, we
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can choose siutable ¢y, ..., ¢, such that f # 0, and every point in Dy is a zero
of f. Thus
[ € L(=D2) = L(D)

which contradicts with the fact that h°(D) = 0. Hence deg(D) < g. Also,
from h°(K — D) = 0, similar to above and using deg(K) = 2g — 2, we know
deg(K — D) < g, i.e. deg(D) > g — 2. Hence we proved g — 2 < deg(D) < g,
i.e. deg(D) = g — 1. This finishes the proof of Riemann-Roch.

4.4 Projective Embeddings

Let M be a compact RS. A map ¢ : M — P¥ is said to be an embedding if it
is injective and its differential d¢|,i is injective at every point p of M)

Complete Linear System. A divisor D defineds a complete linear system
|D|:={D' > 0| |D' ~ D}.

Note that if deg D < 0, then |D| is empty. A point p € M is called a base point
if p € NprepisuppD’. |D| is said to be base point free if it does not have any
base points. To each divisor D, we associate it with the map

¢p: M — P

P (fo(P):---: fia(P)]

where | = dim L(D) = dim|D| and fo,..., fi—1 is a basis of L(D). If |D] is
base pont free, then ¢p is a well-defined holomorphic map. We are going to
investigate for what kind of D the map ¢p is an embedding. D is called very
ample if |D| is base point free and the map ¢p : M — P!~1 is an embedding.

To do so, we need the following results above base points and embeddings:

Lemma(base point free criteria). p € M is a base point of |D| if and only
L(D —p) = L(D).

Proof. p € M is a base point of |D| < p € D’ for VD' € |D| & f(p) = 0 for
Vf € L(D), since D' = D + (f). Hence L(D) C L(D — p). This proves the
lemma.

Lemma(Injectivity). ¢p is 1-1 if and only if for every pair of distinct points
p,q, h(D —p—q) < h°(D —p) < h%(D)

Proof. We only prove the only if part. From h(D —p —¢q) < h%(D —p) <
hO(D), there is f € L(D) with f(p) = 0, f(q) # 0. Since f = Y'_ja;f;, we

have Y4 a; fi(p) = 0,y a; fi(q) # 0, which implies ¢(p) = [fo(p) : -+ -
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Jfi—1(®)] # [fo(q) : -+ : fi—1(q)] since otherwise we would have f;(p) = Afi(q).
This proves the lemma.

Lemma(Local isomorphism). ¢p is a local isomorphism at p € M if and only
if if and only if h°(D — 2p) < h%(D — p) < h°(D).

Proof. We only prove the only if part. From h{D — 2p) < h®(D — p) < h°(D),
there is f € L(D) with f(p) = 0,df(p) # 0. Since f = Zé‘:o a;fj, we have

>m0aifi(p) = 0,570 azdf;(p) # 0, which implies do(p) = [dfo(p) : - :
dfi—1(p)] # 0 which means that d¢ is a local isomorphism.

Therefore, to prove ¢p is an embedded, we only need to check that, for any
points 21, 2o € M (need NOT to be distinct), the following (*) holds

0<h®D — 2 —2) <h®(D—2) <h%(D) ().

Theorem( Projective embedding theorem) If D is a divisor on a compact
Riemann surface of genus g. If deg(D) > 2g, then |D| is base point free. If
deg(D) > 2g + 1, then |D| is very ample.

The proof is based on the followings:

1. The simple ”vanishing thoerem”: If deg(D) < 0, then L(D) = {0}. It
then implies the following

2. Vanishing Theorem: If deg(D) > 2g — 1, then h°(K — D) = 0.

This implies that

Proposition. (a) If deg(D) > 2g — 1, then h°(D) = deg(D) + 1 — g.
(b) If n > 0, and deg(D) = g + n, the h°(D) > n + 1.

Proof. deg(D) > 29 — 1 = deg(K — D) = 29 — 2 — deg(D) < 0. Hence
h%(K — D) = 0. Thus (a) follows from the RR.

(b) By RR,
R(D) > deg(D)+ (1—g)>g+n+(1—g)=n+1.
This proves the proposition.

We now prove the theorem. To check |D| if base point free when deg(D) >
2g, we notice that h°(D) # h°(D —p) since from the above proposition, h°(D) =
deg(D) +1 — g and h%(D — p) = deg(D) — 1 + 1 — g. So by the lemma above,
|D is base point free. To see ¢p is an embedding, we only need to check, as
mentioned above,

0<h®(D—2 —2) <h®(D—2z) (x).
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By above proposition, since deg(D) = 2g+1, h%(D—2; —29) = deg(D)—2+1—g
and h°(D — z;) = deg(D) — 1+ 1 — g, so (*) holds. This means that D is very
ample.

By taking D = (2g + 1)p, from above D is very ample, and h°(D) = 2g +
1+1—g=g+2, sowe can can always imbed a compact RS M of genus g into
P+l

If we concern about D = (p), the we have

Lemma. Let M be a compact Riemann surface. Suppose that for some point
p € M, h%(p) > 1, Then M is isomorphic to the Riemann sphere (using ¢p
with D = (p).

Proof. h®(p) > 1 implies that there is a non-constant meromorphic function f
which has a simple pole at p and no other poles. Thus f: M — CU {oco} has
degree one, therefore is an isomorphism.

Theorem. Let M be a compact Riemann surface of genus 0. Then M is iso-
morphic to the Riemann sphere, or equivalent, D = (p) is very ample.

Proof. Let zg € M. From the above lemma, we only need to show that By RR
using D =zp € M

h(D) — 2(f) = deg”(D) + (1 ﬂ g) .
— dim{w | |?w) > (20)} 1 1
0

Thus, h°(z9) = 2. The theorem thus follows from the above lemma.

Canonical embedding: Take D = K, the canonical divisor, then ¢ is called
the canonical map. We have the following result concerning about the canonical
embedding: If g > 2 and M is not hyperelliptic, then K is very ample. More
precisely,

Theorem. Every compact Riemann surface admits a (holomorphic) embedding
into a complex projective space. In fact, a compact Riemann surface of genus
zero is biholomorphic to P, a compact Riemann surface of genus one can be
embedded into P2, and a compact Riemann surface of genus g > 2 can embedded
by the tri-canonical map isx in P97, If M is not hyperelliptic, then the
canonical map i embeds M into P9~1.

Proof. The case of g = 0 has been proved in above. Now suppose that g > 0
and let oy, ..., o, be a basis for H°(M,Q'). By Riemann-Roch, the ; do not
all vanish at any point of M. Hence, we get a well-defined map

ik: M —PI!
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by writing «; = f;dz and setting
ik (2) = (f1(2),..., fy(2)).

We now wish to investigate the conditions under which ix will be an embedding
(i.e. it is injective and its differential digx (P) is injective at every point P of
M). Tt is not hard to see that ix is injective precisely when, for any two distinct
points 21,29 € M, there is « € HO(M, Q') with a(z;) = 0, a(z2) # 0. Similarly,
i will have maximal rank at z € M precisely when there is o € HO(M, Q')
for which z is a simple zero. Hence, ik is an embedding precisely when, for any
two not necessarily distinct points 21,29 € M,

0<h¥(K —2 —2) <h®(K —z). (%)

By Riemann-Roch, h%(z1) =1 — g+ 1 + deg h°(K — z1), and from the Lemma
above, h?(z1) = 1 (note that otherwise we would have that M is isomorphic to

the Riemann sphere, which contradicts with the assumption that g > 0). Thus
h9(K — z1) = g — 1. On the other hand, by Riemann-Roch,

RO(z1 4+ 22) =2 — g+ 1+ hP(K — 21 — 22).
Hence the condition (*) is equivalent to
RO(z1 + 22) =1 (Recall that h°(D) > 1 for D effective).
And (*) fails, i.e. (K — 21 — 29) = h9(K — z1) = g — 1, precisely when
RO(21 + 22) = 2

which means that there exists a non-constant meromorphic function g with
(9)+21+22 >0, ie. g hasat most two simple poles or a double pole (according
whether z1 # 25 or not). In any case, such g exhibits M as a branched holomor-
phic two-sheeted covering of S? via the map g : M — S2. Such map is called
the hyperelliptic. Indeed, in above, we have proved the following statement: If
g > 2, then ik is an embedding or M is hyperelliptic.

It remains to deal with the hyperelliptic case. In the hyperelliptic case, we
can show that it can embedded by the tri-canonical map i35 in P?976 for g > 2.
To do so, we consider the divisor mk with m > 2. We claim that ho(mK) =0
if g=0, °(mK)=1if g=1and h°(mK) = (2m —1)(g—1) if g > 2,m > 2.
Indeed, since deg(mK) = —2m < 0 if g = 0, we have that h®(mK) = 0. If
g = 1, the deg(K) = deg(mK) = 0, also since 1 = g = dim H°(M, Q'), there is
a holomorphic 1-form fdz # 0 on M. Since deg(fdz) = deg K = 0, fdz can not
have any zeros. Hence f™dz™ is nowhere zero. Hence if for any ¢ which is a
m-canonical form, ¢/f™dz™ is a holomorphic function, hence is constant. This
shows that h®(mK) = 1 if g = 1. Finally, if g > 2, then deg(—K) = 2 —2g < 0.
Hence h°(—K) = 0. By Riemann-Roch,

RO(mK) =2mg —2m —g+ 1= (2m —1)(g — 1).
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This proves the claim.

From the theorem we proved earlier, if ¢ > 1, then there exists for each
2 € M an o € H'(M, Q') with a(z) # 0. And then, o™, defined locally by
f™(2)dz™ if @ = f(2)dz, is so-called m-canonical form with

(@™) =mK.

Thus for each z € M there is an m-canonical form which does not vanish at z.
Now let S1,...,8k (k= (2m —1)(g — 1)) be a basis for L(mK). Then by what
has been said above,

imi M — PF1

imk (2) = (B1(2), - .., Br(2))
gives a well-defined map. The condition that 4., is an embedding is as before,
for any two not necessarily distinct points z1, 20 € M,

0 < h'(mK — 2, — 29) < hO(mK — ). (xx)
We know already that
RO (mK — z) = h®(mK) — 1,
since not all m-canonical forms vanishes at z;. Also
deg(mK — z1 — z2) =m(2g9 — 2) — 2.
Hence By Riemann-Roch,
RO(mK — 2 — 2) =m(29 —2) =2 — g+ 1+ h°(—=(m — 1)K + 21 + 20).
Thus if (**) fails, i.e.
RO(mK — 21 — 25) = h°(mK — z) = h(mK) — 1.

Then

RO(—=(m — 1)K 4 2z + 2) = 1.
Hence,

deg(—(m — 1)K + 21 +22) >0
ie.

deg((m —1)— 21 — 22) <0

which is equivalent to
(m—1)(2g—2)—2<0
or
(m—1)(g—1) < 1.

Since we are assuming that m > 2,g > 2, this happens if m = 2,g = 2. Thus
we see that, if g > 2,
isx 1 M — P5976

is always an embedding.
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Line bundles

Let M be a Riemann surface (or a general complex manifold). A holomorphic
line bundle over M is a complex manifold L together with a surjective holomor-
phic map 7 : L — M having the following properties.

(i) (Locally triviality) For Vp € M there is a neighborhood U of p and a map
¢v : 7 1(U) — C such that the map

oy 7 HU) 2 v (7(v), fu(v)) = U x C

is a diffeomorphism.
(ii) (Global linear structure) For each pair of such neighborhoods U, and
Ugs there is a map
gaganﬂUﬂ%C*

such that ¢y, o ¢E; (z,A) = (z, gap)-

The map ¢y is also called the locally trivialization of the line bundle. The
maps gos are called transition functions. The set L, := 7~ 1(z),z € M is called
the fiber of the line bundle at x.

If one can choose ¢y : 7~ 1(U) — C to be holomorphic, then L is called a
holomorphic line bundle.

The transition functions {gag} satisty gaa = Id, gapgsa = Id on U, N Up,
9aa9sygva = Id Uy NUg N U,. Conversely, if holomorphic functions {gas}
satisfy the above properties. Then let

L:=U{U,xC)/~
where ~ is an equivalent relation defined by

(x, Aa) ~ (2, 28) <> Ag = gapra, Vo €U, NUs.

44
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We denote by [z, A,] the equivalent calss of (z, Ay). Then L is a manifold whose
coordinate charts are {W,, ¥, } where

Wy = {[z,Aa] | (z,Aa) € Uy x C}

and
b, : Wy —U, xC

[, Aa] = (2, A0).

Then L is a holomorphic line bundle over M with the trivializations
U, 1 YUy = U, xC
[, Aa] = (2, A0)-

Hence
L +— {Uq, gap}-

A (holomorphic) section of L is a holomorphic map s : M — L such that
pos =1id. Write s = speq on Uy, where e4(p) = ¢~ *(p, 1) Then s, = gapss. S0
a (holomorphic) section s assigns, on every U,, a holomorphic function s, with
the property that sq = gagsg on U, NUg. Let L < {U;, g;;} be a line bundle.
A meromorphic section of L is a collection s = {s; € |calM(U;)} satisfying
s; = gij5;. So the divisor (s) is well-defined by letting ord,(s) := ordy(s;).

Consider L = Opn(—1), tautological line bundle on P"(C) (which some
books called it the universal line bundle). The fiber of Opn(—1) over a point
p = |20 : -+ 2p] consists of the complex line spanned by (zo,...,z2,) (passign
through the origin). To find its trivilization and transition functions, take the
standard covering P" = U U; with U; = {[z0 : --- : zn] | zi # 0}. The
points in the fiber of L over [zg : --+: z;_1 : 1 : 241 : -+ : 2] has the form
([z0 - i zic1 L zign oo 2], M205 o5 2im1, 1, 2ige 1y -0 05 20)) © P x CPFL
We define the trivialization of Opn(—1) over U; is given by

'(/)i : 7T_1(Ui) — Ul X (j7

([zo: -t zim1 s Lozigr vt zn), AM20y ooy Zic1, Ly Zig 1y e v oy 20)
= (Jzo:  rzicr o L ziqpn toe 2n], A)
Since on U; NU; # 0, for any p = [z0 : -+ : 2p),
7 1) = ([0 szl (20/2)0 -0 2125 Lz [ 24020 7%5)
([ZO o Zn],(Zi/Zj)(ZO,...,Zi71,1,2i+1,.--,Zn)

Hence ; o w;l(p, 1) = (p, 2zi/%;). So the transition functions are g;; = ;—;

The line bundle of hyperplane of P™ : The dual of Opr(—1), denoted by Opn (1)
is called the hyperplane line bundle. Its transition functions are g,g = j—i. On
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o a+1

. 1 -1 n
Uy, consider sq = a1%5 + -+ a—155 + @a + Gay155 + - + anZz. Then

So = %Sﬁ. So s, defined a holomorphic section s = agzg + - - Gn2n. It zero
n
is the hyperplane H = {[20,---,2"] € P" | Y an2® = 0} in P". This is

o=
where the name of hyperplane line bundle of P" comes from. We sometimes
also denoted it by [H].

Holomorphic tangent bundle 7 : TS M — M. Let {W,} be a local coordinate
covering of M with coordinate functions {2, : W, — W2 C C}. Then, for any
p€ Wy, ml(p) = {a%b | a € C}. We define

Vo : T 1 Wy = Wy x C—= W2 xC
O ra) = (alp)ra)
aazap p,a Zap,a.

TMO) M becomns a complex manifold of dimension 2 with coordinate covering
771 (W,)} and coordinate map{t, }. On W, N Wj # 0,

_ _ 0z
Vot (@,y0) =7 @, ys) ==y = Yoy, 2
Za
Hence the transition functions are g.g = gz;.

Holomorphic tangent bundle 7 : TOO M — M Canonical line bundle on M:
Let M be a Riemann surface. Let {U, }aer be a holomorphic coordinate covering
of M, (z(4)) be alocal coordinate system of Uy. Then, for any p € W, 7~ (p) =
{adza|p | @ € C}. We define

Vo : T H(Wo) = Wy x C— W2 x C

adza\p — (p, a) = (Za(p)v (L).

TM9 M becomns a complex manifold of dimension 2 with coordinate covering
71 (W,)} and coordinate map{t,}. On W, N Wg # 0,

_ _ dz
wal(xvy\alpha) = 1/) 1(xayﬁ) <~ yadza = yadzﬂ or Yysg = yaé'

Hence the transition functions are gog = g%z. Sections of Kjs are (1,0)-forms
w = adzy.

Operators on line bundles: Let L <> {Ua, gas}, L' <> {Ua; go5}- We define
L+L"or L& L' to be the line bundle given by {Us, gagg,s} and its dual bunlde

L~ (or —L) by {Uq, -+

> Gapl”
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We call a bioholomorphic map h : Ly — Lo a bundle isomorphism if the
following diagram commutes:

h,

L1 — L2
m 4 w2
M = M

and (1) h preserves the fibers, (2) h;-1(.) is a vector space isomorphism.

Lemma. Holomorphic line bundles L and L' are isomorphic <= there is a
common open refinement {Wy} such that L and L' are given by {Wy, gap} and
{Wa,g’aﬁ} respectively, and holomorphic functions ¢; € O*(Uy) such that, on
U,NUg # 0,

Gop = ﬂag 3

Divisors and Line bundles: Let s : M — L be a meromorphic section, then
(s) is a divisor. On the other hand, let D = 3, D(p)p be a divisor on M
and fix an atlas {U,, 2} for M such that U, CC M for all a. For each «, fix
a function f, € M(U,) such that

ord(fo) = Dlu, :== Y D(p)p.

pEUa

(For example, one could take fo = [[ ¢y, (2 — p)P®).). Then we obtain a
collection of functions F

GJap - E € O*(Uy NUg).

It gives a holomorphic line bundle [D] by {Wy,gas = fo/fs}. Note that
{fataca is a meromorphic section over M. Moreover, if D is effective, then
there is a holomorphic section a s € H°(M,[D]) such that D = D,. Note
that s = {fi}ier if DN U; = (f;). This section is called the canonical section
and is denoted by sp. If D = H is a hyperplane, then [H] = Opn(1). The
mapping D — [D] is a homomorphism from the group of divisors on M to the
group of line bundles. Denote by £ the abelian group of line bundles, up to
an isomorphism and D be the abelian group of divisors on M, uo to a linear
equivalence.

Theorem. D = L.

Proof. We send D € D) to [D] € L, by let D be a divisor of M given by
{Wa, fo € M(W,)} then it gives a holomorphic line bundle [D] by {W,, gupg :=
fo/fs}. It is well-defined, since if D is given by another {W,, fi, € M(W,}
then it gives a holomorphic line bundle [D] by {Wa, g/, := f5/f5}. Then

q. :i:!],@@
Oy T g
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with ¢o = ;—& € O*(U,). Therefore we get a line bundle isomorphism. The
map is obvioﬁsly a group homomorphism. We now prove this map is onto. Let
L € £ be a line bundle with transition functions g;; € O*(U; NU;). Then there
exists some (not identically vanishing) f1 € M(Uq) with fi|v,nu, = g12. Having
defined f; we find fi11 € M(Ujs1) with fip1|v,nv,,, = OL Since g;; satisfies
the co-cycle rules, the collection {U;, f;)} defined some divisor D with [D] = L,
and D is determined up to linear equivalence. This ptoves the theorem.

To summarize, here is the correspondence between divisors and line bundles:

Theorem. If D € D, then there is a meromorphis section s of [D] such that
(s) = D (such section is called the canonical section. Conversely, if L € L, and
s is any meromorphic section s of L (always exists from above), then L = [(s)].

Proof. Indeed, for any divisicr D = {U,, f.}, we can associate a line bundle [D],
with sp = {fo} being a meromorphis section (called the canonical section) of
[D]. Conversely, for any line bunlde L, let s be any meromorphic section s of
L (always exists from above). Write s = {s,}, then s, = go355, where go5 are
transition functions of L. On the other hand, from the discussion abiove, the
transition functions of [(s)] are also so/sg. Hence L = [(s)].

Lemma. For VD € D, H°(M,[D]) = L(D).
Proof. Let [D] = {Uy, fo}. We define
i: H°(M,[D]) — L(D)

s={sa} > Sa/fa,

and
j: L(D) — H°(M, D))

fr=A{ffa}-

This proves the lemma.
Similarly, we can prove

Lemma. For any L € L, and D € D,

H°(M, L — [D]) = {s = meromorphic section of L | (s) — D > 0}.

Corollary. Assume that L € L, and there is some D € D such that dim H°(M, L—
[D]) > 0. Then there is Do € D such that L = [Dyg)].

Proof. Since dim H°(M, L — [D]) > 0, from above there is a not identically
vanishing meromorphic section s on L, and this implies that L = [(s)].
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The above corollary will be used later to give another proof of D = L.

The preceding concepts allow the reformulation of Riemann-Roch theorem
as

Corollary Let L be a line bundle over a compact Riemann surface M of genus
g. Then

dim H*(M,L) =degL — g+ 1 + dim H*(M, K ® L"),

where deg L := deg(s), where s is any meromorphic section of L (independent
of the choice if s), H°(M, L) is the space of all holomorphic sections of L and
K is the canonical bundle over M.



Chapter 6

Sheaves and cohomology

6.1 Sheaves

A Sheaf F over a complex manifold X consists of, for each open set U C X, an
abelian group (or vector spaces, rings, or any desired object) F(U) (also denoted
I'(F,U) and called the set of sections over U), and a collection of restriction
maps such that for each U C V C X, pypy : F(V) — F(U), and satisfy:

(1) Identity: pu,u = id|r@,

(2) Compatibility: f U CV C W C X, then py,u o pw,v = pw,u;

(3) Sheaf aziom (gluing): Let U = Up,Us and o4|u,nus = 0plu.nu, for all
a, 3, then there exists a (unique) o € F(U) such that o, = o, for all a.

If only (1) and (2) are satisfied, then F is call a presheaf. Elements in F(U)
is called a local section on U, and Elements in F(X) is called a global section.

Examples:

1. Ox (the sheaf of holomorphic functions on X): O(U) = {holomorphic
functions on U}.

2. O(L): O(L)(U) = {holomorphic sections of L on U}, where L is a
holomorphic line bundle over X.

3. O%: O%(U) = {holomorphic nowhere zero functions on U}.

4. Mx: Mx(U) = {meromorphic functions on U}.

5. Ox(D): Ox(D)(U) ={f | f is a meromorphic function on U, ord,(f) >
—D(p) for p € U}. Note: as a vector space, Ox (D) = L(D).

6. Ex: EX(U) = { smooth 1-forms on U}.

7. Q%: QY(U) = { holomorphic 1-forms on U}.

8. Q4 [~ D](the sheaf of holomorphic 1-forms vanishing along D): Q4 [-D](U) =
{ holomorphic 1-forms w with ord,(w) > D(p) for p € U}.

9. The skyscraper sheaf C,: C,(U) =Cifpe U, and C,(U) =0if p ¢ U
along with the natural restriction maps.

10. Locally constant Sheaves. Note that the peroperty of being constant
is not a local property for a function. Specially, if an open set is disjoint of

50
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the subsets, then a functiion may be constant on each of the subsets, but with
different values, it is not constant on the whole set. So C (or in general, an
abelian group G) is not a sheaf, only a presheaf. We now modify it by considering
functions which are locally constant: f: U C M — G is locally constant, if for
every point p € U, there is p € V C U such that f is constant on V. The locally
constant functiuons into a group G forms a sheaf, and is denoted by G. For
example, we have sheaves Z,R,C, etc.. (without confusion, we just denote it
by G).

6.2 Cech Cohomology

Origins: The Mittage-Leffler Problem: Let M be a Riemann surface, not nec-
essarily compact, p € M with local coordinate z centered at p. A principal part
at p is the polar part 22:1 arz~* of Laurent series. If O, is the local ring of
holomorphic functions around p, M,, the field of meromorphic functions arounf
p, a principal is just an element of the quotient group M,/O,. The Mittage-
Leffler question is, given a discrete set {p,} of points in M and a principal part
at p, for each n, does there exist a meromorphic function f on .S, holomorphic
outside {p, }, whose principal part at each p,, is the one specified? The question
is clearly trivial locally, and so the problem is one of passage from local to global
data. Here are two approaches, both lead to cohomology theories.

Cech: Take a covering U = {U,} of M by open sets such that each U, contains
at most one point p,, and let f, be a meromorphic function on U, solving the
problem in U,. Set

faﬁ = fo — f5 € O(Ua N UB)'

In U, NUg NU,, we have
faﬁ +f[3'y + f’ya =0.

Solving the problem globally is equivalent to finding {g, € O(U,)} such that
fap = 98— 9ga in UoNUg: given that g, f = fo + ga is globally defined function
satisfying the conditions, and conversely. In the Cech theory,

Z'({Ua}, 0) = {{fap} : fap + for + fra = 0}
500({Ua}»0) = {{fap} : fap = 95 — ga, some {ga}}
and the first Cech cohomology group
H'({Ua},0) = Z'({Ua}, 0) /6C°({Ua}, O)

is the obstruction to solving the problem. The direct limit of H!({U,}, ) is
denoted by Héech(M ,O) defines a cohomology group, which only depends on
M, which is called the first Cech cohomology group of M with coefficient O.
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Dolbault. As before, take f, be a meromorphic function on U, solving the prob-
lem in Uy, and let p, be a bump function (partition of unit), 1 in a neighborhood
of p, € U, and having compact support in U,. Then

o= Zg(pafa)

is a 0-closed ¢>*-(0,1)-form on M (¢ = 0 in a neighborhood of p,). If ¢ = In
for n € C>°(M), then the function

f:Zpaf(x_n

satisfies the conditions of the problem: thus the obstruction to solving the
problem is in H%il(M), the Dolbault-cohomology.

Note that these two different approaches exactly give what the Dolbault
theorem is.

Cech cohomology: Let F be an abelian group sheaf over a complex manifold
X. Let U = {U,}icr be an open covering of topological space X. We denote by

Uio,ih.. = Uio Nn---NU;

ln n*

The deletion of one of the indices is indicated with the use of a ”iA;C”.

An p-cochain for the sheaf F over U is a collection of sections of F, one over
each Us i,...i, Uy N---NU;, =0, we take f;,...;, =0). We use CP(U, F) to
denote the set of all p-cochains of U with coefficients in the sheaf F. Thus

C’p(u,f) - H ‘F(Ui07i17---7ip)'
(30501 5-+yip)

For V{fi,..i, }, {9io-i, } € CP(U,F), defining the addition operation

{Uioint +{Gioein } = {figip + Gigip

then CP(U,F) becomes an abelian group, we called C?(U,F) p-dimensional
cochains group of U with coefficients in sheaf F.
Now we define the operator

6y CPU,F) — CPTYU,F) : f = 6,f

where
p+1

(1) (5pf)io~~-ip+1 = Z(_]‘)kfigmi;---ip_,.l‘
k=0

In the right hand side of (1), each f,

10k ipt1

proceeds the addition operation in T'(U;, N --- N U;

restricts to U;, N---NU; and

p+1

F). Tt is easy to verify

p+1?
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dp is a homeomorphism of group, and dp4q1 09, = 0; p > 1. ZP(U,F) =
Ker §, C CP(U,F), p > 0, is called the p-dimensional cocycles group of U
with coefficients in sheaf F, and BP?(U,F) = Im §,_1, p > 1, is called the
p-dimensional coboundaries group of i with coefficients in sheaf F, and
B°(U,F) =0. From 6,41 00, =0, B?(U,F) C ZP(U,F). Define

HP(U,F) = Z°(U, F)/B* (U, F), forp>1

and
HO(M7‘F):ZO(U7]:) p:O

HP(U, F) is called the p-dimensional cohomology gy group of ¢« with coefficients
in the sheaf F. Define

HP(X, F) = limy H? (U, F).

6.3 Sheaf Maps

Let F and G be sheaves over M. Suppose there is {¢|v}, ov : F(U) — G(U)
such that, for any open set U C V, the following diagram commutes:

FU) % gw
v Py
FV) % gw)

We call such map a sheaf map.

Examples:
1. Inclusion maps: C € Ox C Mx.
2. Differentiation maps:
d:C¥ — Ex.

d(=0): 0x — QL.
3. Restriction or Evaluation Maps:
div : M% — Divx.
eval, : Ox[D] — C,
f= Z cn 2" = C_p(p)-

n>—D(p)

4. The exponenial maps. exp(2mi—): Ox — O%.

The Kernel of the sheaf map: Suppose that ¢ : F — G is a sheaf map
Define Let

K(U) := kery(U) = ker{¢y : F(U) = G(U)} c F(U),
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then it is a well-defined sheave.

One-to-one and onto: We say that ¢ is one-to-one, or injective, if every point
p and open set U with p € M, there is an open set V C U containing p such
that By such that ¢y is 1-1. We say that ¢ is onto, or surjective, if for every p
and open set U with p € M, and every f € G(U), there is an open set V C U
containing p such that ¢y hits the restriction of f to V. Note that we don’t
require that all ¢y to be 1-1 or onto, but only ”eventually” 1-1 or onto, in the
sense above, although we have the following lemma regarding the 1-1:

Lemma. The following are equivalent for sheaf map ¢ : F — G (i) ¢ is 1-1,
(ii) oy is 1-1 for every open subset U C M, (iii) the kernel sheaf K is identically
zero sheaf.

The analogous lemma is not true for onto maps of sheaves. For example,
take M = C*, and consider exp(2mi—) : Ox — O%. ¢(z) = 1/z € O%, there
is no f € Ox with exp(2mif) = g. But, from the definition above, this map is
onto.

Short Exact seqeuence: We say that a sequence of sheaf maps

0Kk F5G650

is a short exact sequence if ¢ is onto, and the sheaf K is the kernel sheaf of
phi. Or equivalently, we can use the the quotient sheaf G/Im¢ to define it: the
quotient sheaf G/Im¢ defined as follows: a section s € (G/Im¢)(U) if and only
if there is an open covering of U: U = U,U, and s, € G(U,) such that for all
U NUg #,

Salvanus — 8luanu,s € duLnu, (F(Ua NUg)).

A sequence of sheaf maps
0>FR AR AR -0
is a short exact sequence if Im(a) = ker(B) and F3 = Fo/Im(a).
Remark: For a short exact sequence
I R A )
by the definition of the quotient sheaf, it does not imply that
0= F(U) Y F(U) B F(U) — 0.

It only implies the following: if for every section o € F3(U), and every p € U,
there is an open set V,, C U containing p such that oy is the image of Sy .

Examples of short exact sequences:
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1.
05C—0Sak -0
2. 4
0o 2—-0PE ) o g
3.

050 c® %0t g
4. For any divisor D,

Eval,

0—-O0[D—-p—-0O[D] =-"C,—0
5. For any divisor D,

Res,,

0—Q'p-D]—=Q-D] ="C,—0

Definition. Let
A3 RDLE

be a sequence. This sequence is exact at Fy if, firstly, the composition of the
map is zero, and secondly, for every open set U and every point p € U and
every section g € Fo(U) which is in the kernel of Sy, there is an open set
V C U containing p such that ay such that p¥(g) is in the image of ay .

Proposition. Let
0—F 56051 —0 (%

be an exact sequence of sheaves. Then for VU C X,
0— T(U,F) 2% T(U,G) LS T(UH)  (+%)
is an exact sequence of section groups.

Proof Ker(Ay) = 0, since Vf € D(U, F), Au(f) =0, i.e., for Vo € U, A\(f(z)) =
0, since A is injective, f(z) = 0. Vo € U, f = 0, therefore the sequence (**)
is exact at T'(U, F). Since po XA =0, uy o Ay = 0 by the definition of uy and
Ay, therefore Im(A\y) C Ker(uy). For Vg € T'(U,G), if py(g) = 0, that is
1(g(z)) = 0, for Vo € U. By the exactness of (*) , g(z) € Im(\), Vz € U,
i.e., Im g C I'm(\), hence there exists f € I'(U, F) such that Ay (f) = ¢g. This
finishes the proof.

In general, the py is not necessarily surjective. We provide an example to
elucidate the fact.

Example: X = A* = {z € C!0 < |z| < 1} is the punctured unit disc
in C!, O is the sheaf of germs of holom orphic functions, |calO" is the sheaf
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of germs of holomorphic functions without the zero, Z is the sheaf of germs of
integral numbers, then we have following exact sequence of sheaves

02750500

where ¢ is inclusion homomorphism, e(f;) = (exp 27if),, where £, is the germ
of f at x and f is a holomorphic on a neighborhood of x, (exp 27mif), in the
germ of exp 2mif at x. It is easy to verify (4) is an exact sequence of sheaves.
Now we consider the following sequence of group homomorphisms,

0 — T(A*, Z) 25 T(A*,0) 25 T(A*,0%) — 0.

For the holomorphic function z € T'(A*, O*), there is no g € I'(A*, O) such that
exp(2mig) = z. In fact, the only solution is g = 5-log z, but 5--log z is not the

21 27i
unique valued holomorphic functions on A*.

The Connecting Homomorphism. Suppose ¢ : F — G is an onto map of
sheaves. Let IC be the kernel sheaf for ¢. We define a map, called the Connecting
Homomorphism

§: H°(X,6)(= G(X)) —» HY(X,K)

as follows: Take g € G(X). Since ¢ is onto, for every point p € X, there is
an open neighborhood U, of p such that g = phi(f,) on U,. Note that the
collection U = {U,} is an open cover of X: let hyq := fq — fp € F(U,NUy). It
is clear that (hy,) is a 1-cocycle for the sheaf ; moreover, ¢(h,,) = 0 since the
difference is essentially g — g. Therefore (h,,) is a 1-cocycle for the kernel sheaf
K, and represent a cohomology class in H!(U, K). Its image in H'(X, K) will be
denoted by d(g). It can be proved that the construction of §(g) is independent
of the choice of covering ¢ and the choice of preimage f,.

The purpose of the Connecting Homomorphism § is to give a criterion for
when a given global section g € G(X) is hit by a global section of F.

Lemma. Suppose that g € G(X) is a global section. Then there is a global
section of f € F such that ¢(f) = g if and only if 6(g) = 0.

Proof. ”=". Suppose that ¢(s) = g for some s € F. Then in the definition
of the connecting homomorphism, we may choose U, = X for every p € X and
fp = s. Using the notation above, hy,, = 0 for every p, ¢ so this the identically
zero 1-cocycle, which if course induces the zero element in cohomology.

”4«=". Suppose that §(g) = 0 in H'(X,K). Using the definition above, this
means that h,, = 0 is a boundary, and we may write h,, = k;, — k, for some
O-cohain k) for K. Set s, := f, — fy, where f, is the preimage of g under ¢
locally on the set U,. On U, NU,, we have

sp—8q=(fp—kp) = (fg — kq) = (kg — kp) — (fg — fo) = kg —kp — hpg =0

and son, by the sheaf axiom the section {s,} patch together to give a global
section s € F(X). This finishes the proof.
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Corollary. Let ¢ : F — G be an onto map of sheaves with kernel sheaf K.
Then the map ¢(X) : F(X) — G(X) is onto if H(X,K) = 0.

The Long Exact Sequence of Cohomology.

TheoremLet ¢ : F — G be an onto map of sheaves with kernel sheaf IC. Then
the sequence

0 K(X) ™ F(X) S g(x) > HY(M,K) "™ H'(X,F % H'(X,G)
18 exact at every step.

Proof. The exactness at K(X) and F(X) is just the defiiton of the kernel sheaf.
The exactness at G(X) is, as mentioend above, exactly the content of the above
Lemma.

To see the image (§) C Ker(inc.), suppose that g € G(X). The first step in
defining §(g) is to choose an open covering {U;} and find elements f; € F(U;)
with ¢y_;(fi) = glu,, then §(g) is defined by the 1-cocycle f; — f; for the sheaf
KC. But this cocycle is obviously a coboundary in the sheaf F.

To finish the exactness at H'(M,K), we must check that Ker(inc,) C
image(d). Suppose that (k;;) is a 1-cocycle for the sheaf K ehich represents
a class in the kernel of inc,. Then (k;;) is a coboundary, considered as a 1-
cocycle for the sheaf F, and so there is a 0-cochain (f;) such that k;; = f; — f;
on U; NUj for every 4,j. Consider the 0-cochain (g;) for G, where g; = ¢(f).
Note that

gi — 95 = ¢(fi — f;) = (ki)
on U; NUj, so by the sheaf axiom for G there is a global section g € G(X) such
that g|y, = ¢; for every i. It is clear from the definition of § that §(g) is the
class of (k;j).

Finally we must check the exactness at H'(M, F). It is clear that inc,o¢, =
0, so we only need to check that ker(¢.) C image(incy). Let ¢ be a class in
ker(¢.), and represent ¢ by a 1-cocycle (f;;) with respect to some open covering
U of X. Since ¢.(c) = 0, we have that the 1-cocycle (¢(f;;)) represents A0 in
HY(M,G). Therefore it is a coboundary; there is a 0-cocycle (g;) with respect
to the open covering U such that ¢(fi;) = ¢; — g; for every 4, j. After refining U
further we may assume, since ¢ is an onto map of sheaves, that each g; is equal
to @(f;) for some element f; € F(U;). Let hi; = fi; — fi — f; € F(U; NUj), this
is clearly a 1-cocycle since (f;;) is. Appying ¢, we see that

d(hij) = ¢(fi;) — 9i — g5 = 0,

so that ¢(h;;) is actually a 1-cocycle for the kernel sheaf IC. Since it differs
from the cocycle (f;;) by the coboundary of the O-cocycle (f;), it also gives the
original class ¢ in cohomology. Thus c is in the image of inc,. This finishes the
proof.
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The above theorem is usually expressed as saying ”a short exact sequences
of heaves gives a long exact sequences in cohomology”. Paracompactness is the
property which ensures it is true. In general we can prove, in a similar way:

Theorem(from short to long exact sequence)Assume that
0S5 Fhg0

is exact. Then there are connecting homomorphisms § : H"(X,G) — H" (X, F)
for every n > 0 such that the sequence of cohomology groups

0— HO(M,K) S HO(M, F) 25 HO (M, G) >

s

— H'(M,K) S HY(M, F) 5 HY (M, 0) &

- *

- HX(M,K) 5 H2(M, F) 25 H2 (M, G) & -

is exact.

6.4 Sheaves and Line bundles

An invertible sheaf is a coherent sheaf £ on M such that each point z € M
has an open neighborhood U C M such that £(U) = Oy as Op-modules.

Recall that a holomorphic line bundle L defines a coherent analytic sheaf (of
sections) £ over X by L(U) = { (local) holomorphic sections of L on U}. It is
an invertible sheaf since

L(U,) = Oy,

Conversely, let £ be an invertible sheaf, and let ¢, : L(U,) = Oy, be the
local trivializations. Then g, 3 = ¢q © qﬁ;l gives the line bundle L. Hence,
we also call invertible sheaf as line bundle (or an invertible sheaf on M
(any irreducible algebraic variety) is simply the sheaf of holomorphic sections
of some holomorphic line bundle, the structure sheaf of holomorphic functions
O corresponds to the trivial line bundle).

Given a line bundle L over M, and given an open covering U = {Uy}acr
of M with U, being the trivialization neighborhood of L. Then its transi-
tion function ¢ag € O3 (Ua N Ug), where O};(Us) is the sheaf of nonwhere
vanishing holomorphic functions on M. So {¢ns} € C'(U,03%,;). Further,
the compatible conditions imply that {¢.s} € Z'(U,O%,). We we get a map
L [{¢ap}] € H' (U, O},;). In this way, we can prove the following important
statement: There is one-to-one correspondence between the equivalent classes
of holomorphic line bundles on M and the elements of the cohomology group
HY(M,0%)).
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The concept of line bundle is intimitely related to the concept of divisors,
which originated from the Riemann surfaces. On a Riemann surface, poles
and zeros of meromorphic functions are isolated points. We use pq,---p, to
denote these isolate points. Then the formal sum, > n(p;)p;, is called a divisor,
where n(p;) € Z. Those n(p;) € Z* denote the multiplicities of the zeros
pi, and those n(p;) € Z~ denote the multiplicities of the poles p;. So, in
fact, > n(p;)p; reflects a meromorphic function with the given poles and zeros,

3
counting multiplicities.

For a complex manifold M, the divisor is a complex submanifold with codi-
mention 1, which is locally defined by the set of zeros of a holomorphic function.
Alternatively (Weil’s divisor)

Definition A divisor D on M is a formal linear combination

D = ZaZ[YZ]

where Y; C M irreducible hypersurfaces and a; are integers. The divisor group
Div(X) is the set of all divisors endowed with the natural group structure. A
divisor D is called effective if a; > 0 for all i.

Let D be a divisor on M, and {U;};cs be an open covering of M such that
on each U; i € I, DNU; = {f; = 0}, where f; is a holomorphic function on Us;.
When U; NU; # ¢

bij = L U;nU;j,
fi
then ¢ij 75 0 on UiﬂUj and (i)lj(bﬂ =1;on UmUj, ¢ij¢jk¢ki =1lon UiﬂUijk,
SO {¢ij}ie 7 is a transitive function, which defines a line bundle L. We call L
the line bundle associated to the divisor D, and denote it by L = [D]. If D
is defined by D NU; = {f; = 0}, where {U,};cs is an open covering of M and
fi is holomorphic function, then {f;};cr is a holomorphic section over M, i.e.
feT(M,[D])
f1Ui = fi

Obviously the zeros of f is just the divisor D. This section is called the canonical
section and is denoted by sp.

We need to point that the [D] is unique in the isomorphic sense of line
bundles. If there is another system of holomorphic functions defining D, then
§— # 0 on Uy; Vi € I, then

uizii:uiﬂc*:C\{O}
so that s r
i Us i Us
bij =L =—- :*:Qﬁ,]’-

fiw fi oy
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Hence the line bundles defined by {¢;;} and {¢;} are equivalent.

Let’s take H : apzo+- - - +anzn, = 0 be a hyperplane in P". let P" = U ,U;
be the standard open covering. Then on U;, we have f; = ag2® + -+ + a, 22,
hence ¢;; := % = % U;NU;j.

A Cartier divisor on X is a family (U;, g;),7 € I, where {U, };cr is an open
covering of X, and g; are meromorphic functions such that g;/g; is holomorphic
on each intersections U; N U;. The functions g; are called local equations of
the divisor. More precisely, a Cartier divisor is an equivalence class of such
data. Two collections (U;,g;) and (U/,g.) are equivalent if their union is still
a divisor. Cartier divisors can be added by multiplying their local equations.
Thus they form a group, denoted by Div(X). The divisor (U;,g;),i € I, is
called effective if every g; is holomorphic. Let M x be the sheaf of meromorphic
functions on M. M(U) = C(U). To every Cartier divisor (U;, g;),i € I, we
can attach a subsheaf Ox (D) C Mx. Namely, on Uj, it is defined as g; 'O,.
On the intersections U; N Uj, the sheaves g;l(’)Ui and g;lOUj coincide since
gi/g; is invertible. Therefore, the sheaves can be pasted together into a sheaf
Ox(D) C Mx. Tt is an invertible sheaf since multiplication by g; gives an
isomorphism Oy, (D) and Oy,. A nonzero section of Ox (D) is a meromorphic
function on X such that fg; are holomorphic on U;, in other words, (f) + D is
effective. If D itself is effective, then the sheaf Ox (D) has a canonical section sp,
which corresponds to the constant function 1. By contrast, the sheaf Ox (—D),
for an effective D, is an ideal sheaf in Ox. The sections of invertible sheaf define
some divisors. Let s € H°(X, L) be a non-trivial section, then after choosing
some trivilizations ¢; : Ly, ~ Oy,, we obtain an effective divisor (U;, ¢;(s;)),
which we denoted by div(s, £). For instance, the canonical section of sp defines
D.

Suppose now X is a projective variety in P”, then any sheaf O(d) can be
restricted on X, thus we get a sheaf Ox(d) for any d. In particular, we have
a restriction homomorphism of global sections H°(P™, O(1)) — H°(X,0x(1)).
This map is not injective if and only if X is degenerate (i.e. X is contained in
some hyperplane). Its image is a vector subspace W C H°(X,Ox) with the
following obvious property: for any x € X, there is s € W with s(z) # 0.
Clearly, the divisors of the form div(s, Ox(1)),s € W are just the hyperplanes
sections of H.

In general, if X is a variety with an invertible sheaf £, then any family of
divisors |W| of the form div(s, L), s € W is called a linear systems of divisors.

The Divisor Group and the Picard Group:
Recall that when n = 1, a divsor is D = Zp npp. When n > 1, a divi-

soris D = >, nyV, where V are irreducible analytic hypersurfaces. Denote
Div(M) = H°(M, M*/O*), also called the group of divisors. In fact, locally D
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is given by f, € M(U,), then f := {T‘; € HY(M, M*/O*) is a global meromor-
phic section of the sheaf M*/O*.

For Vf € M(M), (f) = >_,ordy(f)p € D. Denote by P = {(f), f €
M(M)}. When n > 1, Vf € M(M), (f) = > ordy(f)V, where V are irre-
ducible analytic hypersurfaces. P = {(f), f € M(M)}. Then P = HO(M, M*).

A line bundle L < {U,, gos} can be regarded as an element in H'(M,O*)
(since gop € O*(Uy N Up) and satisfies gapgsygya =1 on U, NUg NU,)). The
groups of the line bundles up to isomorphisms is called the Picard group, and
is denoted by Pic(M).

when n > 1, from the exact sequence

0— 0" > M = M*/O* =0,
one has the exact sequence

H' (M, M*) - HY(M,M*/O*) — HYM,O*) — HY (M, M*)

I I I I :
P Div(M) Pic(M) it may not be empty

In the case that H'(M, M*) # 0, Div(M)/P may not be isomorphic to Pic(M)
(not in the case n = 1, we have Div(M)/P = Pic(M)).

When n = 1 and for any divisor D = ) n,p, we have the formula deg(D) =
a([D))(M) = 5= [, © where ¢;([D]) is the first Chern class of the line bundle
[D] (see below) and © is the curvature form. When n > 1, for any divisor D, the
first Chern class ¢1([D]) € H*(M,Z). This come from the short exact sequence

0=-Z—-0—-0"=0

and hence H*(M,0) — HY(M,0*) — H?*(M,Z). When n = 1, we have
deg(f) = 0 for any f € M(M) by the residue theorem. When n > 1, we also
have ¢1((f)) = [, © = 0 because (f) € P means that [(f)] = 0 in Div(M)/P
and 0 : HY (M, O0*) — H*(M,Z) is a group homomorphism.

6.5 Cohomology Computations

There are at least three basic ways to use vanishing of cohomology groups to
make the conclusion about the other cohomology groups, using the long exact
sequence. The most trivial one is that if

0=A—-B—-C=0

then B = 0.
A second is if
0=A—-B—-C—-D=0
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then one concludes that B = C.
A third is that if one knows that in a short exact sequence

05K—=F36-50
the , in the middle sheaf is zero. One then conclude that
he H' (X, F) in th iddle sheaf i (0] h lude th

1 ~ 9X)
HY(X,K) = SECOT

The vanishing of H!:

1. The vanishing of H* for C°° sheaves: We have, for any n > 1,
H"(X,C*)=0
H"(X,&Y) =

2. The vanishing of H' for C* skycraper sheaves: Let C, be the skyscraper
sheaf. Then (i) H°(M,C,) = C, (ii) H*(M,C,) = 0. The assertion of (i)
is trivial. As for (i), consider a cohomology class £ € H'(M,C,), which is
represented by a cocycle in Z (U, C,,). The covering U has a refinement B = {V,,}
such that the point p is contained in only one V,. But then Z(i,C,) = 0 and
hence £ = 0. This finishes the proof.

3. Cohomology of locally constant sheaves. Let X be a compact Riemann
surface of genus g. Let G be an abelian group. Then

a) H(X,G) =G,
b) HY(X.G) = G,
¢) H3(X,G) = G and

(
E
(d) H”(X G) =0 for n > 3.

4. The vanishing of H?(X,Ox[D]). Let M be a compact Riemann surfae

and D be a divisor. Then H" (X, Ox[D]) = 0 for any n > 2.

6.6 The DeRham and Dobeault Theorem

De Rham cohomology. Recall that the De Rham Cohomology groups are
defined using the smooth forming and noticing that d o d = 0.

{smooth closed k-forms}

Hpyp(M) = .
pr(M) {smooth exact k-forms}

Note that HY (M) = C the space of constant functions on M.
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Theorem(DeRham Theorem). Let X be a compact complex manifold. Then,
for anyn >0,
Hpp(M) = H*(M,C).

Proof. The result is clear for n = 0, as well as for n > 3 (both are zero). To
udnerstand H}, (M), recall the exact sequence

05 CoC® S K=ker(d:E' = E2) =0

see that, from the long-exact sequence of Cohomology and by noticing that
H'(X,C%) = 0 (using partition of unit) that

H' (M) = K(M)/d(C*(M)).

Note also that
H"(X,K) = H"" (M, C)

for every n > 1, again, , from the long-exact sequence of Cohomology and by
noticing that H™(X,C>) = 0 (using partition of unit), for all n > 1.

The analysis of the H7, (M) is similar. By Poincare’s lemma, the sheaf map
d: &' — &2 is onto with the kernal K. We then have the long-exact sequence
of Cohomology; this gives that

H"(X,K)=0 forn>2

and
0— K(M) = ENM) S 2(M) — HY(M,K) = 0

sinc eH™(X,C>) = 0 (using partition of unit), for all n > 1. Thus we have that
Hpp(M) = H'(M,K) = H*(M,C).

This proves the theorem.

The Dolbeault Theorem. Recall the definition of the Dolbeault cohomology

ker 0 : EPI(X) — EP9T(X)
image 0 : EP4—1(X) — EP9(X)’

HP(M) =

Define the sheaf of holomorphic p-forms QI]’W by
Q8 (U) =T(U,08)) = {w € A”°(U), 0w = 0},
the set of holomorphic p-forms on U.

The ordinary Poincare lemma that every closed form on R” is exact ensures
the de Rham groups are locally trivial. Analogously, a fundamental fact about
the Dolbeault cohomology groups is the
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Theorem (0-Poincare lemma). For A a polycyliner in C",

HED(8) =0, ¢>1.

Similar to the deRahm theorem above, we have

Theorem( Dolbeault Theorem). Let X be a compact complex manifold.
Then

HZ (M) = H (M, ),
where QO is the sheaf of holomorphic p-forms.
Remark: Note that £77 = 0 if p 4+ ¢ > 2, so have have only 4 possible cases:

HY(M) = O(M),

Hy" (M) = (M),
1

E%N(X)
Hg’l M = —
5 (M) image 0 : C°(X) — £01(X)’
2

image 0 : E1.0(X) — £2(X)’

Its proof is similar to above, using d = d+ 0, and spliting the usual deRham
sequence above in 9), i.e we consider

05 0c™ 20 4

which gives the long exact sequence

0 — O(M) — C®(M) 5 €9(M) — H'(M,0) — 0.
We see immediately that

HY'Y (M) = H' (M, 0).

Similarly, consider the short exact sequence

0 Q! 5 gl0 8 g2

which gives the long exact sequence

0 — QM) — 200 2 €2(M) — HY(M,QY) — 0.
Therefore we have

1,1 ~ 1 1
HY'(M) = H' (M, Q).
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6.7 Serre’s Duality

Theorem (Serr’s Duality). Consider the Dolbeault exact seqeunce

00— %02 g01 g

or more general the L-valued forms (where L is a holomporphic line bundle over
M) (it is called the L-twisting)

0= O(L) = £2°L) % €241y 0
we get (using the long exact sequence, similar to above)
HY (M, O(L)) = £%1(L)(M) /3(€"°(L)(M)).
Let L be a holomorphic line bundle on a compact Riemann surface M. Then

H(M, QP (L)) 2= (H'~*(M,Q'""(=L)))".

Proof. We only prove the case when p =0 and ¢ = 1, i.e.
H'(M,0(L)) = (H°(M,Q'(~L)))".

Let ¢ € HO(M,EYL (L)), € HO(M,QY(—L)), then ¢ Ay € HO(M,ELY) (in-

deed, on Uy, NUg, ¢ = gapdp and 1, = ggﬂlwﬁ, this implies that ¢, A Y, =

¢s N p3.) Now since M is compact, so fM o AN € C. We get a bilinear map
H(M,£%Y(L)) x H*(M,Q*(~L)) — C.

If ¢ € O(HO(M,E%0(L))) C HO(M,E% (L)), so that ¢ = df, and v» € HO(M,Q*(—L))C
HO(M,E9(—L)), then, by Stoke’s theorem,

<¢>,w>=/M<éf>Aw=/Md<fw)=/8Mfw=o.

So we get the pairing

HO(M,E%H(L))/0(HO(M,E70(L))) = H°(M,Q'(-L)) —C

|
HY(M,O(L)) x  HO(M,Q'(~L)) — C.

This pairing yields the duality H(M,O(L)) = (H°(M,Q'(—L)))*. This prove
the theorem.

We can re-formualate the RR as follows RR Let L be a line bundle over a
compact Riemann surface M of genus g. Then

X(L) := dim H°(M, L) — dim H*(M, L) = deg L — g + 1,
where deg L := [, ¢1(L).
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6.8 A new (Sheaf Method) Proof of Riemann-
Roch Theorem

Some fact about exact sequence of vector spaces. A sequence of finite dimen-
sional spaces

A B A, B4

is exact if Image(a;) =Kernel(a;11) for all j. We have the following result: Let

O%A()gAlg"'ANJrlm\ﬁ;lO

be exact. Then
N

> (~1)7 dim(4;) = 0.

j=0
Here is the proof: Let Iy := Image(ay) and Ky, = Ker(ag). Then Ay = I + Ky,
by dimension theorem, and Ky, = I;. Hence

N N-1
> (1Y dim(4;) = dimIy+ Y (dimI; +dim K;) + (—1)~ dim Ky
J=0 j=1

N-1

= dimIp+ Y (dimI; +dim7;_;) + (=) dim Iy_, = 0.

<.
Il
—

The new (sheaf-method) proof of the Riemann-Roch: Let D = Y D(p)p be a
divisor on the compact RS M and p € M be a point. Then there is a natrual
inclusion map O(D) — O(D+p). Define the sheaf homomorphisn g8 : (D+p) —
C, as follows: for f € (D + p)(U) locally write f = fo:i(D(p)H) ¢ 2™, and
define By (f) := c_(pp)+1) € C. We get the short exact sequence

O—>C’)(D)—>(’)(D+p)ﬁ>Cp—>0.

We now prove the Riemann-Roch Theorem. The case when D = 0 is obtained
by the fact that dim H°(M, Q') = g. Now let D be a divisor on the compact
RS M and p € M be a point. Let D’ = D + p. Then the above short exact
sequence leads to a long exact seqeuence

0— H°(M,0(D)) — H°(M,0(D")) - H°(M,C,) = C

— HY(M,0(D)) - H'(M,0(D") — H*(M, C),, = 0.

Hence
dim H°(M,0(D)) — H°(M,0(D")) + dim C

—dim H*(M,O(D)) 4 dim H'(M,O(D")) = 0.
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Thus
dim H*(M,O(D")) — H'(M,O(D')) — deg D’

= dim H°(M,O(D)) — dim H'(M,O(D)) — deg D.

This proves the case D > 0. In general, we can write D = Py +- -+ P, — Pppy1—
.-+ — Py, and this case also can be proved by repeating the above argument.

6.9 A New Proof of the Embedding Theorem

We now use the exact sequence (with directly using the RR) plus the vanishing
theorem to reprove the embedding theorem (this gives an insight of the proof
of its geberalization to higher-dimensional case by Kodaria).

Theorem(Vanishing theorem). Let L be a holomorphic line bundle. Then
(a) If d(L) > 0, then H*(M,Q'(L)) =0,
(b) If d(L) > 2g — 2, then H'(M,O(L)) = 0..
Proof. (a) From Serre’s duality,
dim H' (M, Q" (L)) = dim H°(M, O(-L)).

Since deg(—L) = —deg(L) < 0, we have dim H°(M,O(—L)) = 0. This proves
(a). The proof of (b) is similar.

We now re-prove the embedding theorem: If D is a divisor on a compact
Riemann surface of genus g. Let D = (29 + 1)p. Then ¢p : M — PV is an
embedding.

Proof. Consdier L(D). As we discussed above, we only need to check (i) For
any ¢ € M, there is f € L(D) such that f(q) # 0 (base point free), (ii) For
any distinct p,q € M, there is f € L(D) with f(p) =0, f(q) # 0, (iii) For any
q € M, there is f € L(D) with df (p) # 0.

(i): Conisder the short exact sequence
0—-0O(L-q)—O(L)—C,;—0.
It then induces a long exact sequence
0 — H'(M,O(L — q)) - H*(M,O(L)) — H°(M,C,) — H'(M,O(L — q)).

Since deg(L — K —¢q) = (2g+1) — (29 —2) — 1 = 2 > 0, we have, from the
vanishing theroem above, dim H'(M, K + L — K — q) = 0. Hence we have

0— H°(M,0(L —q)) = H°(M,0O(L)) — H°(M,C,) — 0.
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In other words, there is f € H°(M,O(L)) with f(q) # 0. This proves (i).

(ii) and (iii) Take ¢, ¢’ € M (may be the same points) and conisder L; = L—
q, Ly = L—q—q'. Then similar as above, H'(M,O(Ly)) = 0, H' (M, O(Lz)) = 0.
Conisder the short exact sequence

0—0(L)—>0L)—-C;,—0
and
0— O(Lg) - O(L1) - Cy — 0.
We obtain that

0— H°(M,L;) — H°(M, L) —»™ H(M,C,) — 0,

0 — H°(M, Ly) — H°(M, Ly) — H°(M, C,) — 0.

By indentifying H°(M, L1) with ker (), we see that H°(M, L) is a proper sub-
space of HO(M, L) and from the second exact sequence, we have that H°(M, L)
is a proper subspace of H°(M, L1). This shows that ¢p is one-to-one and local
diffeomorphism, which finishes the proof.



Chapter 7

Complex (Geometry of
Riemann Surfaces

7.1 Hermitian metric on complex manifolds

Let M be a complex manifold. For p € M, let (z1,...,2,) be alocal coordinates.
Define
0 1/ 0 — 0 0 1/ 0 ~— 0
9zt 2 (0:17’ 8yl) M 95 T2 (8:17’ * 8y1) ’
0="> i@dz" 0= 0 ®dz, and d=0+0
0zt ’ 0zt ’ '

The complezified tangent space is

. i 8 S i 8 i i
TC,p(M) :C@TP(M):{ZaaXJP‘i‘Zbapra,b EC}
i=1 i=1

0 0
‘C{aay}

The holomorphic tangent space TZ}’O(M) and the antiholomorphic tangent space
T (M), for p € M, are given by

o " o 1"
el fa. -l

=1 i=1

so that
Tc,(M) = Tpl’O(M) @ Tl?’l(M).

TO(M) = UpenTy0(M) is called the holomorphic tangent bundle.

69



CHAPTER 7. COMPLEX GEOMETRY OF RIEMANN SURFACES 70

(M, T(M0) (M) is the set of smooth sections of T (M), which is also
called the smooth vector fields. When M is a Riemann surface, 710 (M) is a
holomorphic line bundle.

A Hermitian metric on M, denoted by ds?, is a set of Hermitian inner-
product {(-,)p}perr on ngl’o)(M) such that If £, n are C°° section of T+9(M)
over an open set U, then (£, () is the C° function on U. If z1,--- 2" is a local
coordinate system of M, we write

ds? = Zglﬁdzi ®dZ.

In the case of RS, a conformal Riemannian metric (Hermitian) on a Riemann
surface M is given by in local coordinates by

N (2)dzdz, Mz) >0

(we assume that A is C°°). If w — z(w) is a transformation of local coordinates,
then the metric should transform to

The length of a curve « : [0,1] — M is given by

I(y) == / A=)z,

and the area of a measuarable subset B of M by

Area(B);:/ )\Q(Z)Edz/\i.
B 2

Note that length and area no not depend on the local coordinate.

7.2 Hermitian Line bundles

Instead of T(19) (M), we can put a Hermitian metric on (any) line bundle L.
An Hermitian metric for a line bnudle L — M is a smooth section h of the line
bundle I* ® L* — C such that the function h : L ® L — C defined by

h(v,w) : h(v @ @)
satisfies h(v, w) = h(w,v), h(v,v) > 0 and h(v,v) =0 iff v = 0.

Let L be a line bundle over M with transition functions g;;. Write h; =
h(ei,€;). Then h; = |g;j|*h;. Hence, a Hermtian metric h on L is a collection
of positive smooth real vlaued functions h; such that h; = |gij|2hi. Let s €
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HO(M, L) and write s = s;e;, then ||s||? = |s;|?h; = |s;]|?h; is well-defined on
M. Tt is called the norm of the holomorphic section s.

For example, on the hyperplane line bundle of hyperplane line bundle of P™.
We endow with a Hermitian metric & on line bundle [H], h = (hq)o<a<n, Where
he is the local expression of A on U,.

B |ZOL‘2 _ 1

Tz2 T L ’
|2| §6%|2+1
«

ha

Connection: A connection is a map D : T'(M, L) — T'(M,E* ® L) (note that
EF is the sheaf of smooth k-forms on M), so o € T'(M,E ® L) is called the
smooth E-valued k-form) such that D(s + s’) = D(s) + D(s') and D(fs) =
df ® s+ fDs. Let £ be a local frame of L over an open subset U, i.e. a section
of L over U which such that £(z) # 0 for all z € U. Since D¢ is an L-valued
form, we can write D{ = w ® £ for some differential form w that depends on &.
We call w is the connection form of D with respect to the local frame £. Any
section s of L is s = f€, we we have

D(s) = D(f§) = df © { +w & (fE).
Remark: In the literature one often finds the expression D = d + w or
Ds = ds + ws.

These expressions depend on the choice of frame, but often the frame is not
explictly mentioned.

If we change the frame £ to another frame £, i.e. ¢’ = f¢. Then
W@ =D(E)=D(f§) =df @& + fw @i = (i{ +w) ®¢,

therefore,
df
W=mwt =
f
Hence w is not globally defined. Notice that, however, dw is a globally defined
2-form on M (independent of the choice of the local frame). The form dw is

called the curvature form of the connection D.
Example. Let M be a Riemann surface.

(1) The exterior derivative d is a connection for the trivial bundle O — M.
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(2) (Non-example). It is mistakenly asserted in a number of sources that the
operator 0 : f— Of = %di is a connection of trivial bundle O — M. In fact,
it is not the case, since

A(fg) # df © g+ [y,
so that the Lebniz Rule is not satisfied.

Let L1, Ly be two complex line bundles with connections Dy, Dy. Then
Dy ® Dy) (&1 ® wiz) = (D1 @ D2)&1) ® wiz) + & © Da(&2)

defines a connection on L; ® Lo. In particular, given L with the connection D,
let £ be a local fram and £* be its dual, notice that £ ® £* is the identity map
of the section of the line bundle L ® L*, it induced the connection D* with

D) = - @ D) ®¢.

~ Let L be a complex line bundles with connections D. Its complex conjugate
D gives a connection on L given by

D(§) = D(&)-

The Hermitian Connection (or Chern connection) for holomorphic
Hermitian line bundles: Since &' = £1:0) g (0D we can decompose D into
D = D'+ D" where D' : T(M,L) — I'(M, "9 @ L) and D" : T'(M, L) —
I'(M, £ @ L). For a general complex line bundle, this splitting is not partic-
ularly helpful. However, when the underlying line bundle is holomorphic, this
splitting plays a crucial role. The main difference in the setting of holomorphic
vector bundles is the ability to define the O-operator for sections of holomorphic
line bnudles.

Definition. Let L — M be a holomorphic line bundle. We define 0 : I'(M, L) —
(M, 0D @ L) as follows: choose a holomorphic local frame (section)

a(fe) ==0f ®¢.

It is easy to see that it is well-defined (independent of the choice of &.

Given an Hermitian metric on L, there is a canonical connection (called
Hermitian connection) D : T'(M, L) — T'(M, &' ® L) = EY(L) which is

(i) compatible with the complex structure, i.e. in some holomorphic local
frame e, D is type (1, 0), namely De,, = 0,e, with 8, being a (1,0) form), or
equivalently D" = 0.

(ii) compatible with the Hermitian metric on L (i.e. d < eq,eq >=<
Dey,eq > + < Degy,eq >). Such connection is called the Chern connection
(or canonical connection).
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From d < ey, eq >=< Degy,eq > + < ey, Dey > we get
dhe, = Oaho + 0o he.

Hence
0 = Ohe - ho ' = dlog ha,

which is called the connection form. The curvature form is
© =df, = 90loghy = 00log hg, onU,NUs.
So © is a global (1.1)-form on M.

Remark: We have chosen an ad hoc definition for the curvature of the Chern
connection, but to give thiis definition some additional meaning, we present the
following discussion. The Chen connection for a holomorphic Hermitian line
bunlde (L, k), being a (1,0)-form, can be written as

D=D"+9,

where D's = 9s — (0log h)s. If we think of ”D” as a ”twisted” version of the
exterior derivative, designed to map the sections of the line bundle L to L-valued
1-forms, we can consider extending this twisted exterior derivative to differential
forms with values in L. Since we are on a Riemann surface, we only need to to
L-valuied 1-forms. We define

D(a®s):=da®s—aA Ds,

note that the minus sigen in the second term is the usual one obtained by
extending the Lebniz Rule to forms of higher degree. The similarity with exterior
derivative ends when we compute two consective derivatives; we find DDs # 0.
In fact, use the local formula D = d + 6,

DDs=D(ds+0®s)=d0®s)+0AN(ds+0®s)=(dF) ®@s

here we have used 8 A § = 0. The failure of the second covariant derivative to
vanish means that the order of the covrariant partial derivative matters, and
therefore suggets that the sections see the space on which they are defined as
somewhat ”curved”. The curvature operator, which measures this failure of the
commutativity of mixed partials, is a 0*"-order differential opearator (also called
the "multipliier”) with valued in £,

Define the first Chern form of the Hermitian line bundle (L, h) as ¢1(L, h) =
2£7r1@ = %58 log hg. If {h,} is another metric, then ©’ = ddlog hj;. Hence

O_—0 = 58(10g hg — log h/a = 5810g(hﬁ/hla)'

It is easy to check (since h,, h., satisfy the same transition rule), (ho/hl) =
(hg/hj), so v := (ha/hy,) is a globally defined smooth function. Hence

© -0 =9(dlogy) = d(dlogn).
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Thus, from the definition of De-Rham cohomology and the DeRham theorem,
c1(L) € H*(M, C) and called the first Chern class of L.

A (1,1)-form w is real <= locally, w = f@dz A dz with f being a real
valued function. w is said be be positive(denoted by w > 0 if f > 0. Since for
an Hermitian line bunlde L with metric {h,},

v—1 10%loghg (V-1
L h)y=—0=————"—|("——dzq Ndz,
oL, ) 2p@ T 0200Z4 5 ¥ N az
which is a real (1,1)-form. If M is compact, then ¢1(L,h)(M) := [,, c1(L,h) €
R which is called the Cehrn number.

Theorem. [Let M be a compact Riemann surface, and let h be a Hermitian
metric for a holomorphic line bundle L. Then the number

c(L) := / c1(L, h)
M
s independent of the choice of the metric h.

Proof. If h and h' are two metrics on L, then h/h’ is a metric for the trivial
bundle and is thus a smooth function on M with no zeros. Denote it by e~ 7,
then

O — O = V—190f = d(v/—10f).
Thus by Stokes’ theorem, we see that ¢(L) is independent of the choice of the
metric h. This finishes the proof.

Below we shall prove that ¢; (L, h) € Z. L is said to be positive (or ample),
denoted by L > 0 if there is an hermitian metric h on M such that ¢, (L, h) > 0.

For example, on the hyperplane line bundle of hyperplane line bundle of P™.
We endow with a Hermitian metric A on line bundle [H], h = (ha)o<a<n, where
he is the local expression of h on U,.

B |Z(X‘2 - 1

Tz2 T s ’
|2| §5|§7|2+1
«

ha

=1 - v =1 -

so [H] is positive line bundle. It is easy to see that [H] is, in fact, independent
of the choice of H, so we denote it by Op»(1).

Theorem. Let M be a compact Riemann surface and let (L, h) be a holomorphic
Hermitian line bundle over M. Let s be a meromorphic section of L. Then

/ c1(L, h) = #(ls = 0]) — #([s = o0])
M
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where #([s = 0]) is the number of zeros, counting multiplicities, and #([s = 00)]
1s the number of poles, counting multiplicities.

Proof. Write M, := {x € M,ord,(s) = 0} (so on which s has no zeros or poles).

Let M; . be the subset of M obtained by removing the coordinate discs |z;| < €
about the points of M — M, from M. By stokes theorem,

J,

A simple calculation shows that (recall that d° = @(3 —0))

/ d®log |z|* = 2r.
|z|=€

On the other hand, on M, we have

k
ddelog [l = -3 /| _ @ logls P ny)
j_l ZJ' =€

s,€

ddlog||s||* = c1(L, h).

Hence, by letting ¢ — 0, we get

[ el = #r = o) = #(lo = )
which proves the theorem.

The above theorem shows that the Chern number f M €1 (L, h) is independent
of the choice of the metric on L. Also it means that

Corollary Let D be a divisor on M. Then the first Chern class c1([D]) is
Poincare dual to D in the sense that

/ c1([D]) = deg D.
M

As we see from above, the reason for introducing the line bundles is that it
affords us a good technique for localizing and utilizing metric methods in the
study of divisors.

We laso have deg L = [, ¢1(L).

Corollary If L is a line bundle with deg(L) < 0. Then L has no non-trivial
holomorphic sections.

Example: The holomorphic line bundle TJS’O).
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Let M be a real oriented surface with a Riemannian metric g. Since an
isothermal coordinates on M always exist, we can choose a complex atlas to
make M a Riemann surface, such that in local coordinate z = x + v/—1y,

1
== g(d:c ®dx + dy @ dy) = ridz ® dz.

Noice that this Riemannian metric for M is noe a Hermitian metric for the
holomorphic line bundle TE’O). Recall that the function r depends on z, if 2’ is
another coordinates, then

1 _ 0z _
g:ridz@)dz:r 3 dZ ®dz.
Hence the differential (1,1)-form
v—1
Wy = rdz \Ndz

is globally defined. This form is called the metric form, or the area formm
associated to g.

It turns out the Chern connection of T](V}’O) with the Hermitian metric ¢
agrees with the Levi-Civita connection of the Riemannian metric g on M, after
we indentify TIE/}’O) with TM by sending a (1,0)-vector to its tewice of its real
part.

A Hermitian manifold X of arbitrary dimension whose Chern connection of

TI(L}’O) with the Hermitian metric g agrees with the Levi-Civita connection of

the Riemannian metric g on M, after we indentify TJS’O) with TM by sending
a (1,0)-vector to its tewice of its real part, is called a Kahler manifold. It turns
out that being Kahler is equivalent to the property that dw, = 0, which holds
trivially on Riemann surafce.

The fact that a Hermtian metric on a Riemann surafce is automatically
Kahler is one of relative feww low-dimensional accidents that account for the
extraodinary rich structure of Riemann surfaces.

7.3 The Gauss-Bonnet Theorem

Let M be a Riemann surafce, and L = T(10(M). Write the metric as o :=
rodzq ® dZ, where

o o

* T\ 0z, 024/

Then Q = r, —V;ldza AdZ, on U, is the well-defined volume form on M. Let ©
be the curvature form of the metric o, then we can write

et

K =
Q
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is called the Gauss curvature of M with metric 0. Note that K is a globally
defined function on M. By direct computation,

K =—-Alogry,
where he Laplace-Beltrami operator with respect to the metric ¢ is defined by
4 9 0 1 /02 02
A= - — (24 7 .
r20z0z N2 \0x2 0Oy?
For example, on the unit disc {|z| < 1}, the Poicare metric is given by

4

Then K = —1.

Theorem (Gauss-Bonnet). Let M be a compact Riemann surface of genus
g, with a metric \?>(z)dzdz. Then

/ K/\Q(z)idz AdzZ = 2m(2 — 2g).
M 2

The Gauss-Bonnet theorem is the special case of RR when taking L = K, the
canonical bundle of M.

7.4 The Negative Curvature Method

Theorem (Ahlfors-Schwarz Lemma). Let M be a Riemann surfac with a metric
A\2(2)dzdz whose curvature K satisfies K < —x < 0. Then for any holomorphic
map [ : D(0,1) = M we have

N (FT <~ p(e),

where

0%(2))dzdz == 5)dzdz

4
(1—12?)
is the Poincare metric on the unit-disc.

Proof. Let D, be the disc of radius » < 1 with the Poincaré metric ds? of
curvature —1 given by

2r2

ds* = 2a,(z)dzdz where a,(z) = (CIEBER

We compare this metric with do? = 2b(z)dzdz. Put
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Since pu(z) = —oo0 as z — 9D, there is a point zg € D, such that
w(zo) = sup{u(z);z € D,.} > —o0.
Then b(zg) > 0. Since zg is a maximal point of p(z),
2

0“u
0= 0207 (z0)-

On the other hand, since the Gausssian curvature of the Poincaré metric is —1
and the curvature of do? is bounded above by —1,

0%log a, 0%logb
0 = ar(z) and 9205 (z) > b(z2).

So
0

S 827;1( ) = 0%logb ) 0%log a,
= 9202 " T 920z VT T z0z
Hence a,(z0) > b(z0) and so p(z9) < 0. By the choice of zy, we have u(z) <0
on D,, that is

(20) > b(20) — ar(20)-

ar(z) > b(2).

The Theorem is proven by letting r — 1.
let M = PY(C) — {a;}_; and let ||z,a| denote the spherical distance of
P!(C). Define a hermitian metric do? on M by

1 4
do? = . dzdz
1z aql2(log cllz, ai|?)? (1 +2[2)2

where ¢ > 0 is a constant. Taking small ¢ > 0, one finds that the Gaussian
curvature K,z < —k < 0 with a constant & > 0 So the Schwarz lemma im-
plies that The Riemann sphere P*(C) minus at least three points is Kobayashi
hyperbolic.

Note that in the proof of Theorem above, we see that the theorem holds if do?
is only continuous at zero points of do? and is twice differentiable at the points
where it is positive(and hence the curvature is defined). This allows Ahlfors
to extend Theorem 5.1.2 to non-smooth metrics. Let do? be an upper semi-
continuous Hermitian pseudo-metric on the unit disc D. A pseudo-Hermitian
metric do? is called a supporting pseudo metric for do? at 2y € D if it is
defined and of class C? in a neighborhood U of zy and satisfies the following
condition:

do*>do? onU and do?=do: at z.

We define
Kao2(20) = inf K452 (20),

where the infimum is taken over all supporting pseudo metric dog for do? at 2.
Theorem 5.1.2 is generalized to the following theorem.
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Theorem Let ds? denote the Poincaré metric on the unit disc D. Let do? be
an upper semi-continuous Hermitian pseudo-metric on D whose curvature s
bounded above by —1. Then

do? < ds?.

Corollary Let X be a Riemann surface with a Hermitian pseudo-metric ds%
whose curvature (wherever defined) is bounded above by —1. Then every holo-
morphic map f: D — X is distance-decreasing, i.e.,

f*ds‘%( < ds?,
where ds? is the Poincaré metric on the unit disc D.

Proof. Set do? = f*ds%. Then do? is a Hermitian pseudo-metric on D. If
we denote the curvature of ds% by K, then the curvature of do? is given by
f*Kx. Now the Corollary follows from Theorem above. O

The classical Schwarz-Pick Lemma immediately follows from Corollary.

Schwarz-Pick Lemma Let D be the unit disc with the Poicaré metric ds2.
Then every holomorphic map f: D — D is distance-decreasing, i.e.,

f*ds? < ds?, or equivalently

[f'(2)

< , for zeD.
L=[f(z)? = 1|22

7.5 Holomorphic 1-forms and Metrics on com-
pact Riemann surfaces

Theorem. M be a compact Riemann surface of genus g, and let aq, ..., a4 ne
a basis for HO(M,Q'). Then

defined a metric on M with nonpositive curavture, the so-called the Bergman
metric. If g > 2, then the curvature vanishes at most in a finite number of
points.

Corollary. FEvery compact Riemann surface of genus g > 2 admits a metric
with negative curvature, hence it is hyperbolic.



Chapter 8

Hodge Theorem revisited

8.1 The Laplacian Operator

Let M be a Riemann surface and let G = r,dzqdZo = 74 (d26 @dx o+ dys @dye,)
be the Riemannian metric on M, i.e.

G(0/024,0/0z0) = Tq.
1,0)* (

The metric G on T(M9 induces a metric on 7T hence on the space of

smooth (p, q)-forms) as follows: {ﬁ%} is an orthonormal basis of 7% M.

By declaring {,/rqdz,} being an orthonormal basis of T(l’o)*M, it induces a
metric on 79" M, and we have

1
G(dza, dza) = - C(d7ad2a) = —,

Ta T

1
G(dzo NdZy,dzo N dZy) = —-
ra

Let Q, = @radza A dZ, be the volume form. It is easy to check that, on
UaNUg # 0, Q4 = Qg, so it is a blobally defined 2-form on M, which is called the
volume form, denoted by Q. Then G(€2, ) = 1. Denote by A? = EP(M) = {C'™
p-forms on M} and AP9(M) = EP1(M) = {C(p, q)-forms on M}. The metric

G = rodz,dz, induces a metric in AP? as mentioned above.

The Star Operator: Define the operator x : A4 — A'=%1=P (and hence
x 1 AP — AZF) by ¢ Axp = G(¢,1)Q for any ¢ € AL"CI7P o) € APY or
equivalently, in the local coordinate, x1 = Q,x) = 1 and on the Riemann
surface, xdz, = —idzq, *dZy = idZ,. It can be easily checked that

(1)

*x : AP9 AP:Q,** — (71)174’11’

*x 1 AP — AP ok = (—1)P,

80
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(2)
Gk, x) = G(6, 1),

(3) x is real , x¢ = x¢.

The (global) Inner Product: For a given Hermitian line bundle L and for
o € AP4(L), write locally 0 = w(®) @ s(®). We define o = (xw®) ® s*. For
01,09 € AP9(L), we define an inner product as follows: Write locally o; = wjs;
on Wy, j=1,2, we define

(0’1,02):/ < 81, 82 > w1 N\ *wa.
M

Then (, ) induces an inner product on A(L) := @AP1(L).
The adjoint of 0:

Definition. Let T1,T> : A(L) — A(L) be two linear operators such that
(Tho,n) = (0,Tan), Yo,n with compact support. We call Th,T> are adjoint
to each other. We write Ty =17 or Th =15

For example, » and «~! are adjoint to each other.

We need to find the adjoint of 9. First define
D« AP9(L) — APTL(L)

0 = Waea + (Owa + (—1)P w4 A By)eq,

where 6, is the connection form (with respect to the given metric on L), i.e.
De, = 0,e,. Note that 8, = dlogh,. In the case when L is trivial, then
D' =0.

Remark: Let L = {U,,dop} be a Hermitian line bundle over a compact
Kahler manifold, and h be its Hermitian metric. As a well-known fact, if
w € T(M,eP9(L)), then dw € T'(M,eP9T1(L)). Indeed, if w € T'(M,eP9(L))
ie., wy € T'(M,eP%(L)), o € I, {Uy}acr is an open covering of M consists of
the trivialization neighborhoods of L, then

Wa = Papwg; on Uy, NUg.
Since ¢ is holomorphic,
Owa = aplws; on U, NUs.

Thus dw € I'(M,eP?*1(L)). However for the operator 9, dw is no longer
a L-valued differential form, since if w, = ¢ogwg on U, N Ug, then

Owe = Opapwg + Paplwg; on Uy NUg,
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and, in general d¢,3 # 0, so Ow is no longer a L-valued differential form. For
this reason, we introduce D} : I'(M,eP9(L)) — T'(M,eP*19(L)), which is a
differential operator of degree (1,0) on L-valued forms, by letting
/LWoz = Owq + (8 log hoz)wa = h;Ia(haWoz)'
Then
D} wa = 0wy + dlog howe,

= 8(dapws) + dlog (hs|dpal?)bapws

= 0¢apwp + daplws + (Olog hs + (Olog ¢pa))bapws
= 00apPsaPapwp + Paplws + (0log hpwa)das + 0log PpaPasws
= 0logdapdapws + paplws + (Olog hpwg)das + 0log Gaadasws
= ¢ap(0wg + Olog hgws) = PapDiws

Theorem B
0" =—xDp x.

Proof. Yo, = wie, € AP97Y(L), Yoy = wae, € APY(L),

(501,0’2) :/ (ea,ea)wl N\ *Wo :/ hawl N\ *Wa.
M M

Notice that, since wy A *wah,, is a (1,0)-form,

d(wl AN *(I)Qha) = 5(0.)1 A *CDQha)
= O(w1) A*@ohg + (=1)PTI 01 A O * @ahg — wi A %o A Ohyg.

By Stoke’s theroem, since M is compact,
/ d(w1 /\*a)gha) =0
M
hence,

/ haO(w1) A xie = —/ [(=1)PT7 Wy A D % wahg — wi Ao A Dby -
M M
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Thus
(50’1,0’2) = / haéwl N\ *Wo
M

( 71)p+q71w1 A\ g*ajgha — W1 A *ngéha)

ha

- (
— (71)p+q71hawl A\ (5*@2ha + (71)p+q * wo A aha)
| (1Pl A (5*w2ha F(—1)PH x g A 9a)

f
f
f

—/ hawi A x (5*w2ha + (=1)Pte xwy A 90)
M

—/ hawi A %% (5*wzha + (—1)PHa % wo A Qa)
M
= (o1,—* D} % 03)

here in above, we used the following fact: *x = (=1)P*¢~!. This shows that
0* = —x D} . which proves the theorem.

The Laplace operator O.

Now we have

0 : APYU(L) — APITI(L), 9* : APITY(L) — APY(L)
with 82 = 0,0*2 = 0. Let
O:=—0"0+ 90" = (0 + 9%)?
which is called the Laplacian operator with respect to (L, h) and (M, G).

We remark that if L = O is the trivial line bundle with the trivial metric,
then )
-2 g —.

0207

This is why we call O Laplacian operator. We have

O =

(Ooy,02) = (01, 003).

Lemma. ~ B
O¢p=0<= 0¢p =0 and 9*¢ = 0.

Proof. Notice o o
(D¢, ¢) = (06,00) + (0"$,0"¢).
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The lemma can thus be easily verified.
The expression of the Laplace operator O.
Next, we compute the local expression of O, i.e. Of for any f € AP9(L).

On W,, e, is local frame for L, hy =< eq,€q > and on T M| the metric
G = rodz,dZz,. Write the linear differential operator

P ( 52 dlog ha a)
Oy = + — ).

Cra \ 02007, 02 0Z4

Let f = fadaea with f, € C®(W,), and ¢, := 1 if (p,q) = (0,0); := dz, if
(p,q) = (1,0); := dz, if (p,q) = (0,1); := Q if (p,q) = (1,1). Here ¢e, is a
basis of A(L) over W,. Denote by K the Gauss curvature of the metric {h,}
on L, i.e. ® = KQ. By direct computation, we have the following formulas:
For f € A%O(L),

Df = (Dofa)¢a€a-

For f € AMO(L),

2 dlogr, O
Of = O — —_— .
f <( o+ o 0zo 074 )foz)> Pala
For f € A%Y(L),
2 dlogr, O 2 Ologr, Ologhy,
Of = ((0p+ = — = _
/ <( ot re 0za O0Z4 K+ re 0Za 0zq Dfe ) @aca

For f € AMY(L),
Df = {(DO + K)fa}¢aea

The above computations are starightfoward, but the above(last) formula is very
important in the proof of the vanishing theorems, so we derive this formula here:
Let f = foQe,. From the definition

Of = (90 +0°0)f = 00" f = —0% D, (faca)
—0% (0fa + faba)ea

= V—1(00fa + Ofa NOq + f2004)eq

_ azfoz _ alogha 8fa _

= V-1 <8zaaza dZo Ndze + o2 a—zadza ANdzy + fae)) €
= (Ogp + K) fuQeq.

In summary, for any f = fodaca,

Df = fa¢aea
where

~ 2 H? 0 0
fo = —E (8%62@ + kl@ + kza +/€3> fa
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In above, the principal part is

Y
To 0260Z0 re \Oz2 = 0Oy )’

Since —Tl < 0, O is an elliptic operator. This is why the Hodge theory works.

8.2 The Hodge Theorem

Harmonic forms: Write
HPUL) ={f e APY(L) | Of =0}.
HP1(L) is called the space of harmonic (p, ¢)-forms. Denote
H(L) = &HPI(L).
Theorem (Hodge theorem). Let (L,H) be a Hermitian line bundle over a
Hermitian compact Riemann surface (M, G). Then

(1) H(L) is a finite dimensional space.

(2) There is an operator G, called the Green operator of O, G : A(L) — A(L)
such that ker(G) = H(L), G(AP?) C AP? (i.e. G keeps the type, G commutes
with 0,0, 0G(w) = GO(w) for Vw € HL.

(3) A(L) =H(L) ® OGA(L) = H(L) ® GOA(L).

Remark: The above decomposition means that for any o € A(L), (o —
GOo) € H(L). If we define Ho := 0 —GOo, then it is the orthogonal projection
A(L) — H(L). Hence we can write

o =Ho+ GUo.
Such expression is unique. Since G = GO and 9*G = GJ*, we have
o =Ho+ GO0 = Ho + 0(0*Go) + 0*(0G0).
Hence we have the following decomposition

APA(L) = HPU(L) @ DAPT V(L) @ 8" APITY(L).

Corollary
HIY(M,QP(L)) = HPI(L).

Proof. By Dolbeauly theorem,

0 closed L valued smooth (p,q) — forms

HI(M, QP (L)) =2 —= .
(M, $¥(L)) 0 exact L valued smooth (p, q) — forms
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When ¢ = 0, by above, H*(M,QP(L)) = {f € AP4(L) | 8f = 0}. In this
case, f € AP~Y(L) = {0} so that 0*f = 0. Hence f € HP°(L). Thus
HO(M,QP(L)) 2 HP°(L). When ¢ = 1, By Dolbeauly theorem,

HY(M,QF(L)) = APY(L)/0APO(L).

Notice any f € AP'(L) must be O-closed by consideration of degree. By Hodge
theorem,

APH L) = HPYL)® G(9*0 + d0*) AP (L)
= HPYL) ® GOd* AP (L)
HPY (L) @ 00*GAPY (L) € HPY (L) @ DAPO(L)

because 0*GAPY(L) C 0*APY(L) c APO(L). Since HP'(L) @ AP°(L) C
APL(L), we have B
APY(L) = HP' @ OAPO(L).

Therefore ~
HY(M,QP(L)) = H"' @ 0AP°(L),

which finishes the proof.

Recall for any divisor D on M,
h°(D) = dim H°(M,O([D))),
i(D) = dim H*(M, Q' (—[D)).
We have, from the Hodge theorem, that

hY(D),i(D) < oo.

8.3 The Proof of the Hodge Theorem

To prove the theorem, basically we need to show two things: (1): H(L) is a
finite dimensional vector space, (2): Write (L) = H(L) ® H+(L), where
H+(L) is the orthogonal complement of H with respect to ( , ), we need to
show that O : Ht — H' and O is one-to-one and onto. (note that: for
every ¢ € A(L),v € H, (O¢,v¥) = (¢,0¢) =0, so Op € H'. Hence O : H+ —
H+). Once (1) and (2) are proved, then we take G|y = 0, and G|y = O~ L.
This will prove the Hodge theorem. To do so, we first note that the operator
O, as shown above, is positive (i.e. its eigenvalues are all positive). So O is
an elliptic self-adjoint operator. We therefore use the “theory of elliptic (self-
adjoint) differential operator” (the Hodge theorem holds for general elliptic (self-
adjoint) differential operators, not only to O, this is part of the PDE theory).
To do so, we need first introduce the concept of “Sobolov space”.
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Let 2 C R" be an open subset. Let L?(G) be the space of complex valued

functions with
/ I1f|2dz < oo.
G

It is a Hilbert space. For f € L?(G), if there is g € L?(G) such that for any
h € C§°(G) (test function) such that

(f. D) = (—1)l*I(g, h)

where (f,g) = [, fgdr, a = (aq,...,a,) and D*h = %, lof = >0 i,
then we say g is the a-th order weak (or general) derivative, and is still denoted
by D®f. Let s be a nonnegative integer. Because C5°(G) is dense in L*(G), we
can define a norm on C§°(G), || ||s by

712 =D 1D 1%

lo<s

The complete extension of C§°(G) with respect to the norm || ||s in L?(G) is
denoted by H,(€) is called the Sobolev space. The definition extends trivially
on on A(L).

We use the following three facts(proofs are omitted):

e Garding’s inequality: There exist constant c1,co > 0, such that for
every f € A(L), we have

(OF, f) 2 allfI} = e2ll £13-

Remark: This is a variant of so-called Bocher technique.

To state the second fact, we introduce the concept of weak derivative:
Write P = 0 4+ 0* and O = P2 For ¢ € Hy(M) and o € Hy(M), we
say P¢ = 1(weak), if for every test form f € A(L) (i.e. smooth with
compact support), we have (¢, Pf) = (¢, f). It ¢ € Hi(M), ¢ € He(M),
and P¢ = ¢(weak), we denote it by P¢ € Hy(M).

¢ Regularity of the operator 0+ 0% If f € Hy(L), g € A(L), and
(04 0")f =g, then f € A(L).

e Rellich Lemma: If {¢;} C A(L) is bounded in the || |1, then it has a
Cauchy subsequence with respect to the norm || ||o.

The above theorem about the regularity of the operator 0+ 9* implies the
following lemma,

e The weak form of the Wyle lemma: If ¢ € H;(M), and g € A(L)
with Of = g(weak) with f € A(L).
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Proof of the Hodge Theorem: We first prove that H(L) is a finite dimensional
vector space. If not, there exists an infinite orthonormal set {w1,...,wp, - }.
By Garding’s inequality, there exist constants cj, ¢ such that for all i, we have

1 Co
will} < —{(Ows,w;i) + e2llwillg} = =.
C1 C1

Thus {w;} is bounded set with respect to | |;. By Rellich Lemma, {w;} must
have a Cauchy subsequence with respect to the norm || ||p, which is impossible,
since ||w; — wj||3 = 2 for i # j. This proves that H is a finite dimensional
vector space.

Next, write
A(L)=HaH,
where H1 is the orthogonal complement of H with respect to ( , ). We now
prove a simpler version of Garding’s inequality.

Garding’s Lemma Let H* (L) is the orthogonal complement of H(L) in A(L)
with respect to the inner product. Then there exists a constant Cy such that

‘fﬁ < CO(Df7 f)a vf € HJ_(L)

Proof. If not, there exists a sequence f; € H+ with || f;||; = 1 and (Of;, f;) — 0.
From Rellich lemma, we assume, WLOG, that f; is convergent with respect
to || |lo, i-e. there exists F' € Hyo(M) such that lim; , o [|[F — fillo = 0. We
claim that F' = 0. In fact, from above, (Of;, f;) = || Pf:]|2 — 0, hence for every
¢ € A(L),

(F.P¢)= lim (f,,P)= lm (Pf;~ ) =0.

—+o0 i—+00

Hence PF = 0 (weak). From the regularity of P, we have F' € A(L). Hence
OF = P(PF) =0,
so F' € H. Also, since f; € H, we have, for every ¢ € H,

(Fa ¢) = _hIn (f27¢) = 07
11— 400
so F € Ht. Thus F € H N H*. This implies that F = 0. This means
that lim; 4 || fillo = 0. Now, by the Garding inequality, There exist constant
c1,co > 0, such that

(Ofi, f) = allfillt = eall £ill3.

Because, from above, both (O f;, f;) and || f; |2 converge to zero, so lim; 1 o || fi[l1
0, which contradicts the assumption that ||f;||i = 1. This proves Garding’s
lemma.

We now prove that O : H+ — HL and O is one-to-one and onto.
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First we show that O : H+ C H* . In fact, for every ¢ € A(L),¢ € H,
(06, ¢) = (¢,0¢) =0,

so O¢p € H*. To show O is one-to-one, let ¢1,¢po € HL, and assume that
O¢, = O¢y. Then, from one hand, ¢; — ¢po € H*. On the other hand, since
O(¢1 — ¢p2) = 0, ¢1 — o € H. Hence ¢1 = ¢o2. It remains to show that O is
onto. i.e. for every f € Ht, there exists ¢ € H* such that O¢ = f. This gets
down to solve the differential equation O¢ = f (with unknown ¢). Let B be the
closure of H* in H;(M). From Wyle’s theorem, we only need to solve O¢ = f
in the weak sense, i.e. there exists ¢ € B such that, for every g € A(L) with
compact support,

(¢,09) = (f,9)

Since A(L) = H ®H*, we can write g = g1 + g2 where g; € H, g2 € H*. So the
above identity is equivalent to every g, € H*,

(d)v DQQ) = (fv 92)

So the proof is reduced to the following statement: for every f € H*, there
exists ¢ € B such that, for every g € H,

(¢’ Dg) = (fa g)'

We now use the Riesz representation theorem to prove this statement. In
fact, for every ¢,v € H>L, define [¢,9] = (¢,0v), and consider the linear
transformation L : B — R defined by I(g) = (f, g) for every g € B. Our goal
is to show that we can extend [, ] to B such that [ is continuous with respect
to [, ] (or bounded). Then by Riesz representation theorem, there exists
¢ € B such that, for every g € B (in particular for g € H'),

I(g) = [¢, 9]

This will prove our statement. To extend [, |, we compare [, | with (, );.
From definition, [, ] is bilinar. From Garding’s inequality, for every ¢ € H*,

6,61 = (6.06) > o]}
0

On the other hand,

By direct verification, we have, for every ¢ € A(L),
1Pl < cllollF.

Hence

[0, 0] < cllll3-
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So [, ]and (, ); are equivalent on H*. So there exists an unique continuation
on B, and for every g € B, we have

1
l9,9] > —|glI%.

co

To show that [ is continuous with respect to [, ](or bounded), we notice that
L)l = 19 < [ flollgllo < [1fllollglls < veoll Fllov/1g, 9l-
So the claim is proved. This finishes the proof that O is onto.
To prove Hodge’s theorem, since, from above, O : Ht — Ht is one-to-

one and onto, we let G : A(L) — A(L) be defined as follows: G|y = 0, and

G|y = 071 Then we see that kerG = H and I = H + 0o G. The rest of
properties are also easy to verify. This finishes the proof.



Chapter 9

Some Further Results

9.1 The computation of H?(M,C)

Recall that, for an Hermitian line bundle (L, h), we have ¢;(L,h) = %@
and for any metric h,h’ on L, ® — ©’ is d-exact, hence ¢(L) := [c1(L,h)] €
H? (M) = H*(M,C). We now define a ”evaluation” homomorphism

[M]: H*(M,C) — C

an[M]=/ 1.

M
It is well-defined since if [n] =[], then n — 1’ = dw, hence

/(n—n’)=0

Theorem Let M be a compact Riemann surface, then H?(M,C) = C.

by stokes theorem.

To prove the above theroem, it is easy to see the map [M] is onto, since if
is the volume form of an Hermitian metric on M, then Q > 0 so fM Q=v>0.
So for any t € C,

To prove it is one-to-one, we need the following J9-lemma.

To state and prove the dd-lemma, we first recall the Hodge theory: Fix a
Hermitian metric G on M and H = {h,} on L, and let Q be the volume form
of G. we claim that, for any L-valued (1, 1)-form w,

Ow = QO % w) + V—-160(xw), (1)

91
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where © is the curvature form of {h,}. Here is the proof: Write w = w,Qe,,
then from what we have proved earlier, Ow = (Ogw, )Q2eq + KwaQey. But xw =
Wala, K = /=10, and in the third formula proved earlier, Dxw = (Oowa )eq-
Hence the claim holds.

We now consider the special case of the Hodge theorem when L = O, the
trivial line bundle. In this case, we have

A=HodOGA

where A is the set of all smooth forms. Since L is trivial, © = 0, and D' =9,
s0 0F = — % Ox, so if w is a smooth (1,1)-form and write w = fQ where f is a
smooth function on M, then (1) implies that

Ow = (Of)Q.
Hence Ow =0« 0Of =0 < f is constant since M is compact. Hence
H={SQ:S5e€C}
where H is the set of all harmonic 1-forms.

Lemma(d0-lemma). Let M be a compact Riemann surface, ¢ is a real (1,1)-
Jorm_and fM ¢ = 0. Then there is a real valued function h on M such that
¢ = 00(ih).

Proof. We first prove that ¢ L H. To do so, we only need to check, by above
discussion, (¢, Q) = 0. From the definition,

<¢’Q):/M¢A*Q:/M¢A*Q:/M¢:O'

So ¢ € OGA, i.e. there is a smooth (1,1)-form ¢¢ such that ¢ = OG¢q. Since
G preserves the type, ¢1 := G¢y is still a (1,1)-form, and ¢ = O¢p;. Because
0¢ = 0 (there is no (1,2)-forms on M),

¢ =0¢; = 00" 1 = —0x I 1.

Let k := ¢y, then k is a function, and since 0k is (1,0)-form, xk = —idk
by definition. Thus ¢ = 00(ik). Now we use the fact that ¢ is real, so write
k = h+ ik, then, since 90 = —90, we have

¢ = 00(ih) — OOh’

¢ = 00(ih) + OOn'.

By adding the above two together and using ¢ = ¢, we get ¢ = d9(ih). This
proves the theorem.
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Corollary. If ¢ is a (1,1)-form and [,, ¢ = 0. Then ¢ is ezact.

We now ready to finish the proof that

[M]: H*(M,C) = C

ne=nMl= [ n
M

is an isomorphism. It remains to prove that [M] is 1-1. Let ¢ with [M](¢) = 0,
then from above Corollary, ¢ is exact, so [¢] = 0, This proves that [M] is 1-1.
So the proof is finished.

9.2 Existence of Positivity of Hermitian line bun-
dles

A (1,1)-form w is real <= locally, w = f@dz A dz with f being a real valued
function. w is said be be positive(denoted by w > 0 if f > 0.

Recall that for an Hermitian line bunlde L with metric {hy}, its curvature
from is © = 9d1log hy, hence the first Chern form is

\/—1@ B _l82logha (x/—l

C1 (L, h) =

= dze N\ dZa
2p T 0200Z4 2 § “ )

which is a real (1,1)-form. L is said to be positive, denoted by L > 0 if there
is an hermitian metric h on M such that ¢i(L,h) > 0. The following discuss
various equivalent notions of positivity.

Lemma. Let M be a compact RS, and L be a line bundle. Let ¢ € C(L) be a
real (1,1) form, then there is a (smooth) Hermitian metric h on L such that its

. V=1
curvature form W satisfies 5=V = 1.

Proof. Let h = {h,} be an Hermitian metric on L and © is its curvature form.
Then v and g@ belongs to the same class in C(L). Hence ¢ — g@ is an
exact real (1.1)-form. By the dd-lemma, there is real-valued function f on M

such that

P = W@ + 00(if).
Let f:= exp(27rf), then
Y= \/2;@ + \/;831 g f = \/Qgéalog(fha).

Since f > 0, fhy is also a metric on L. This proves the lemma.
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Using the above lemma, let Q) be the volume form of the an Hermitian
metric G on M, then, for a compact Riemm surface M, we have the following
alternative definition about the positivity of L:

Theorem; Let L be a line bundle on M. Then the following are equivalent:
(a) L >0,
(b) C(L) (the Chern class) has a positive (1,1)-form.

(c)There is S > 0 such that SQ € C(L) where Q is the volume form of an
Hermitian metric G on M.

(d) C(L)(M) > 0.

Proof. We shall prove that (a) < (d) & (d) & (¢) & (b) & (a). (a) & (d)
is true directly from the definition. To show (d) < (¢), Let C(L)[M] = ¢ > 0,
and let v = [,,, S = t/v. Then [SQ|[M] = t, from the fact that [M] is an
isomorphism, [SQ] = C(L). (¢) < (b) is trivial. (b) < (a) can be derive from
above lemma. This finished the proof.

9.3 The vanishing theorem

Theorem (Vanishing theorem). Let L be a holomorphic line bundle. Then
(a) If L >0, then H*(M,Q'(L)) =0,
(b) If L— K >0, then H'(M,O(L)) = 0..

Proof. Assume G is an Hermitian metric on M, and €2 is its volume form. Since
L > 0, from Lemma above, there is S € R, S > 0 such that SQ € C(L). So,
from lemma, there is a metric {g, } on L such that its curvature form © satisfies

—“1@ = 50.
2

From the Hodge theorem, we only need to show that any L-values harmonic
(1,1)-form w vanishes. In deed, from

0=0w=Q(0xw)+ 27r50Gw) = Q{ (0 *xw) + 275 (*w)}.
Hence O x w + 215 xw = 0. Thus
0=((O%w+27S *xw,*w) = (Oxw) + 275 (*w, *w)

= (0%w,0*w) + (0" *w, 0" xw) + 278 (3w, %w).
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Thus 275 (*w,*w) = 0. Since S > 0, this implies that xw = 0. So w = 0. This
proves (a).

(b) Notice that O(L) = O(K — K + L) = Q'(L — K), hence H*(M,O(L)) =
HY(M, QYL — K)) = 0.. This finishes the proof.

We using this vanishing theorem, as we discussed before, we can prove the
imbedding theorem (by using the exact-seqeunce): If L > 0, then there is an
integer m > 0 such that ¢, gives M an embedding. The higher dimensional
result is due to Kodaira and his method is similar to what we have discussed
here.



Part 111

The Theory of Complex
Geometry
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Chapter 10

Differential Geometry of
Complex Manifolds

10.1 Hermitian Metrics; Kahler Structure

Definition 10.1. A Hermitian metric, denoted by ds?, is a set of inner-
product {(-,Yp}perm such that

(1). For ¥p € M, (-,-), is a Hermitian inner product on Tél’o)(M), i.e.
vn7< € Tpl’O(M)avclaCQ € C} <§a€> > O: as g # 07. <01€ + 02€7<> = Cl<57§> +
c2(n,C) and (&, m) = (n,&).

(2). If £,m are C™ section of T (M) over an open set U, then (£,() is the
C* function on U.

If z1,.--, 2" is a local coordinate system of M, then %, 1 <i<n,are
holomorphic sections on this local coordinates neighborhood U, and

o 0 o
9ij = <w7@>5 1<4,j<n

is the C'*° function on U with g, ; = g;;. We can write this Hermitian metric as

n . .
ds®> = Y g;3dz'®dz?. Since (£, &) > 0for & # 0, the matrix g = (g; 7)1<ij<n >
Q=1
0,1i.e., g=(9;7)1<ij<n is a positive definite Hermitian matrix.

A complex manifold with a given Hermitian metric is said to be a Hermitian
manifold.

We can prove that given any complex manifold M, we can introduce an
Hertimitian metric on M.

97
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Definition 10.2. The linear operator D : T(M,T10) — T'(M, AY(M) ®
TW) is a connection if D satisfies

D(fs)=df ® S+ fDs,

for Vs € (M, T10) and f is a smooth function on M, where A" (M) is the
set of smooth 1-forms on M.

In terms of local coordinate (2, ..., 2"), we write
0 "0
D - = (JJJ )
0z ; v 0zI

where w = (w!) is a nxn matrix whose entries are all 1-forms. w is called the con-
nection matriz. For € € (M, T(9), in terms of local coordinate (z',...,2"),
n

write £ = Y ¢ azi' Then
i=1

K3

D¢ = Z;dfi aazi + _Z giwg%.

ij=1

We can make the requirements that dictate a canonical choice of the con-
nection: (1). If we split A*(M) = A0 & A%! and write D = D’ + D", where
D' :T(M, Ty — AMOQT (M, T10). We say a connection D is compatible

with the complex structure if D" = 0.
(2). D is said to be compatible with the Hermitian metric if

d<&n>=<D&En>+<E Dy >

where &,1 € T(M, T19). Write D’ = dz' ® v7;, then vy, is called the covariant
derivative.

This connection D is called a Hermitian connection on M (with respect to the

metric g). We can show that such connection exists and is unique. Furthermore,

we claim that curvature matrix w under the natural frame (8%17 Sy %) is

w=40ag- g %

Proof. Since

o 0 0 0
dgi7 = <Daa>+<a%>

0 0N Jo 0
“kpLk 52 92k gk

i ~J
WrYk; + WiGik-
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D is the Hermitian connection implies that w is the matrix of forms of (1,0)-
type, so the above yields g = wg, or w = d¢g - g~ '. This finishes the proof.

In terms of local coordinate (2, ..., 2"), we write

i _ i gk
w; =Idz

where the functions F?l- are called the Christoffel symbols. From above, sz =
%ggj. For ¢ € T'(M,TM9), in terms of local coordinate (z',...,2"), write

n .
€= ¢5%. Then
=1

n

n ) .0
/ _ 7 1, J_ 7
e = Zagﬁzi—’_,, gwiazj
i=1 3,j=1
Nk 0N it gk O
= 2 &dez ®8zj +i§1§ I, dz ®8zj
n 85] .
- (3 Ghrerien)e ok
or
“0¢ )
Vkﬁ:(;(@Jrﬁ ) @ 55
If we write '
oEI LI
Vié = 87;4'21%51
i=1
then

Note that, for covariant tensor field {£7}, the resulting {</x£7} (when i is fiexed)
is still a covariant tensor field.

The connection also extends naturally to all kind of tensors (using the musi-
cal isomorphisms). In particular, if, for w = Z?:1 f;dz? (contra-variant tensor

ﬁeld), then
Viw = ( i_k 1Iijf7€ de,

or simply

af; " )
Vi.fj = azj erjflk.

T~
k=1
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We extend the connection operator D : T'(M, A*(M)@T™9) — I'(M, At ®
T(LO)), 1 < k < 2n, using the Lebnitz’s rule

D($p®¢&) = dp @&+ (~1)"4 A DE
where 1) € A*¥(M) is a smooth k-form and ¢ € T'(M, T™19).

In particular, we discuss D? : T(M,TMH9) — T(M,T"0 @ TZ). Let
feC®(M)and o € T(M,TH), then

D*(fo) = D(df ® 0 + fDo)
= —df ® Do + df Do + D% = fD%0,

which indicated an important property that D? is linear over C°°(M).

In terms of local coordinate (z!,...,2"), we write

0 "0
2 _ i _7
p 0zt _Zgjazj’

where € is called the connection matriz.
Write € = (8/92,...,0/0z™)t, then D = w ® € and
D*=Dw®¢) =dw®&—wA DE

=dw®{—(WAw)®E.

Hence ~ -
Q=dwu—-wAw=00g-9g ") =0(w),

where g = (g;;) is the Hermitian metric matrix on M.

Under the local coordinate (z',...,2"), Q@ = (€}) where Q is (1,1)-form.
So
O = Rl dz" Ad2' = R pdz' A dZ",
where RY; = —R'; and
ng = gng; = Rgﬂcldik Adzt.

R; ;5 is call the curvature tensors, and Ry : Ry g% is called the Ricci tensor,

where gzj is the entries of the inverse matix of g.
From = 9(w),

Q=00 Thdz') =" lidz* nd2.
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Hence 4 o
R‘Zﬂ_d - 6/61—‘;'[’

where )
- 3F§‘z

From above, T'}; = 9'19,9,7. Hence

Rl =0Ty = g"0k0igji + Y Ong" Oigse.
t

t

Then, .
ZQ@R;‘I}Z = Zgigakg“algjf + Ok01955-
i tyi
Since B -
Z giggm = 6%7
i
> gis0kd" == 910y
i i
Thus

Ryji = Oh0igs; — Zgﬁékgigalgja

it

We also have the so-called Bianchi Equality:
dA=wANAQ—-QAw.

Proposition 10.3. Let E be a Hermitian vector bundle on a complexr manifold
M. For¥p € M there exists a holomorphic local frame e such that

(1) h(z) = I+ O(|2]*),

(2) Q(0) = 00h(0).

Proof. We first choose a local coordinates z', - - - , 2™ such that z(p) = (2'(p),- - -,
2"(p)) = 0. There is a non-singular matrix B, such that h(0) = BB*. Take the
new frame f = B~ le, then h(0) = I with the respect to frame f, and

h(z) =1+ 5(2) + 0(l2/%),

where S(z) is a r X r matrix, whose entries are linear functions of z%,--- 2",
_ _ ~ = JE—

and z!,---, 2" Since h = h*, S(z) = S(z) . Decomposing S(z) = S1(2)+52(2),

the entries of S1(z) and S2(Z) are linear functions of 2!, 2™ and 21,--- 2"

respectively. Since

S(2) = 51(2) +82(2) = S1(2) + Sa(3),

—t

Si(2) = S5(2) and Sa(2) = S1(2) .
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We now take the new frame e’ = (I — S1(z))f. We use A’ to denote the
metric matrix with respect to the frame e’, then

W= (I-S1(2))(I+S1(2) + Si(2) +O(=))(I - Si(2))

=1+0(|2*),
and it is easy to verify (h/)~! = I + O(]z|?) in an open neighborhood of p. So

Q(z) = (O - W1 = 80h + O(|z|)

especially

Q(0) = 90h(0).
O

Definition 10.4. Let M be a Hermitian manifold with the metric ds? = gijdzi@)
dz?. If the Kihler form
V=1

b= gijdz" N dZ

is closed, i.e., d® = 0, then we call M is a K&hler manifold.

Proposition 10.5. For a Hermitian manifold M, the following condition is
equivalent

(1) M is Kahler;

(2) If w; = F;kdzk is local expression of connection forms, then F;k = FZJ;

(8) For Np € M, there is a C*® function ¢ on an open neighborhood of p,
such that ® = \/—100¢;

(4) ForNp € M, there exists a local holomorphic coordinate system z1,--- , 2",
such that g;;(p) = d;, dgi;(p) = 0. Such a coordinate is said to be normal at p

Proof. (1) < (2). Since d® = Qag” dz¥ ndzindz? + g”dzﬁdz AdZ, dP =0
is equivalent to
9gi5 _ Ogy; 99i5 _ 99;%

2.1.1 = : d =— V1<ij<n.
(2.1.1) oz~ 0z Y 9k T 9w =hJ=n

Since wi 89” gtidzF, I‘j = ag“g“ = %‘L’?g” = I‘J V1<, <r.

(2) — (1).
j 09it 3 09is j Ogri 7 Ogks
95T, = 3w 9" 955 = 5 = 95Tk = 955597 = 55
so we have 5 5
gis _ UGhs 1<ijs<n

dzk 9zt
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the conjugate of above equality is

dggq  0gsp .

ozh oz’

so (2.1.1) is valid , i.e. d® = 0.

(1) & (3) since ® is a real closed (1,1) form, by Porincaré theorem, there is
a 1-form H defined in a neighborhood of p such that ® = dH, H = H°!' + H!0
is its decomposition of (0,1) form and (1, 0) form. Since ® is real,

1<i,j,s<n

HO‘l _ HI.O

®=dH = (0+09)(H"" + H"")
=0H"' + 0H"' + 9H'" + OH".

However, ® is (1.1) form, so 0H"? = 0H%®! = 0. Hence, according to the
Dolbeault-Grodendick Lemma, there exists a C*° function F' defined in a neigh-
borhood of p, such that

H"'=9F and H'° =0F.
Then
®=0H"" + 0H"! = GOF + 00F = 90(F — F) = \/—1009¢,

where ¢ = 2ImF is a real C'*° function.

(3) = (1) is trivial.

(1) & (4) By a constant linear change of coordinate if necessary, we may
assume that the 2'(p) = 0; 1 < i < n and g;;(p) = di;, 1 < i,j < n. Now we
define a new holomorphic coordinate (z1,- - , z,) by

We use g to denote the metric matrix under (Z1,--- , 2,). Setting

037 1 < 994 .
(2.1.2) bij = 97 = 6ji + = Z J (p)(ésizk + 012" )

1 09i; 1 09s;j
:6‘1' - vy k - 5? s
j+2<§6z’“2+28 (’9le>

dgs;
=i+ ai,f (p)2*
k

and B = (b;;) is the n x n matrix, then § = B_lgB—lt. Since B(p) = B~1(p) =
9(p) =1, t
dg(p) = (dB~")(p) + dg(p) + (dB~1)(p)
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= —dB(p) + dg(p) — dB' (p)
= —9B(p) + 9g(p) + dg' — OB (p)
=0,

the last equality holds because, by (2.1.2), dg(p) = B(p).

On the other hand, for Vp € M, there exists a local holomorphic coordinate
coordinates Z1,-- -, Z, such that dg(p) = 0. Then d®(p) = @dﬁﬁ (p)dzt A
dzl = 0.

O

From proposition 2.5, we know that, at any point of a Kdhler manifold,
the local difference between the Kdhler metric and Euclidean metric of C™ is
the 2 orders infinitsimal, so under the suitable local holomorphic coordinates
2o 2" Vpe M, 24 (p) =0,1<i<nand

glp) =1, dg(p)=0
ie. dg(p) = dg(p) = 09~ (p) = g~ *(p) = 0, and
Q(p) = (099)(0).

By (3) in proposition 2.5, there is a real C* function ¢ on the local neighborhood
of p, such that

d = i00¢p
so that 5
ik = 0zk02V’ shksn
Therefore
04
2.1. - =2—-——(0).
(2.1.3) it = 2 gzigziozan )

So for a Kahler manifold, we always have

Proposition 10.6.
Rijw = Ry = Ry = R
Rijl'cl = Rjil'k-

Proposition 2.6 can be proved by using (2.1.3) and the equality of tensors is
independent on the choice of the frame

(2.1.4) Rij = Rijug™ = Rygig™ = 8:((9;95)9™)-

ij

Proposition 10.7. R;; = 0;0;(logdet g)
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Proof Let g = (g;7)- We use A;; to denote the cofactor of g;;, then detg =

Z gz; ij° Hence
i,j=1

Odetg -
=A-:=detg- ¢’".
aglj 1) € g g
50 _ 9detg 9 9
etg 0Ok ki 99ik
0;detg = det .
¢ dg 0z I L
Therefore,
S ik i
Ojlogdet g = ﬁgk
ik=1
R;; = g o, (0;0; detlog g).
1k=1

O

Definition 10.8. For V¢, n € Tpl'o(M), the holomorphic bisectional sec-
tional curvature is

(2'1'5) R(fM?) = z]kl£ Ejnknl/<€ §> < >

where & = £-2; 75 77 =2 7.7 and R;;p; is the curvature tensors under the natural

frame %, ceey Bz" The holomorphic sectional curvature is
(2.1.6) R(€) = —Rym ()& ' /(6. €)5.

The Ricci curvature is

(2.1.7) Ric(€) = —Ry;(p)E'€? /(£,€),,,

and the scalar curvature at p € M is
R=—Rjq”.

For Kahler manifold, we also have, for any (p, ¢)-form w on M, dw = D'w.

10.2 Hermitian Line and vector bundles

The above concepts can be extended from the tangent bundle 7% (M) to a
general vector bundle.

Recall that a holomorphic vector bundle E over M is a topological space to-
gether with a continuous mapping 7 : E — M such that (i) E, = 7~ !(p); Vpe
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M, is a linear space with rank r; (ii) There exists an open covering {U, }oer of
M and biholomorphic maps ¢, with

bo T Us) =5 Uy xC", Vo€l

and such that
bo: Ep — {p} xC" = C", VpeU,

is a C linear isomorphism between complex vector space. On U, NUgz # 0,
let ¢op := ¢o 0 (bgl. Then, for p € Uy, NUg, ¢up(p) : {p} x C" — {p} x
C" is a linear map, with its matrix representation g,s such that ¢ug(p,w) =
(P, gap(p)w). The map gog : Uy NUsg —> GL(r,C) is holomorphic, which
is called the transitive function of F; (iii) The g, satisfies the compatible
conditions: gas(p)gs~(P) = gary(p) and gap(p) = gsa(p)™"; p € Ua N Us.

The holomorphic tangent bundle 730 (M) is a vector bundle of rank n =
dim M with the trivialization

n

ba p,Zaj<p>;;|p — (0, (@ (D), . an(p)) € U x C™.

Jj=1

A (holomorphic) section s of E is a (holomorphic map) s : M — E such
that m o s = id. When r = 1 (line bundle), let {U,}aer be trivialization
neighborhoods of L, and take a local frame of L|y, (for example, take e, (p) =
¢51(p, 1)), we can write s = s,e,, Where s, is holomorphic function on U,. We
have

Sa = JapsSs;

where g, are transition functions. We sometimes just write s = {s,}.

A vector bundle F is called a Hermitian vector bundle if there is an Hermitian
inner product on each fiber E, for p € M. Similar to above, with the given
Hermitian metric, there is a canonical connection (called Hermitian connection)
D : T'(M,E) — T(M,A'(M) ® E) which is compatible with the complex
structure and with the Hermitian metric on E. Let {e,...,e,} be a local
holomorphic frame, and h;; =< e;,e; >, h = (h;j) = h.. Write De; = Zj wiej,
or write De = we. As the calculation above, we have the following expression
of the connection matrix w = 0h - h™1, so it is of type (1,0). Write D? = Qe.
Then, as above,

Q=0w=-00h-h™ ' +0h-h""ANOh-h~!
so Q2 is of type (1,1).

For simplicity, we only focus on the line bundle £ = L, i.e. r = 1. Let
{Uq}aer be trivialization neighborhoods of L. Let h be a Hermitian metric on
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L. Let eq(p) = ¢, (p, 1) be a local frame of L|y, . Write hy = h(eq, €s). Then
the Hermitian metric {hq }acr is a set of positive functions with hy = [gga|*hs
on U, NUg. where gg, are transition functions. Its connection form is

0 = Ohg - ho ' = dlog ha,
and the curvature form is
O = ddlog hy = ddloghg, on U, NUs.

So © is a global (1.1)-form on M. Define the first Chern form of the Hermitian

line bundle (L, h) as c1(L, h) = ‘/2—;719 = %56 log hq.

(L, h) is said to be positive (or ample) if ¢1(L, h) is positive.

Example The line bundle of hyperplane of P™ : Let H = {[2°,---,2"] €
P" | 3 aqz® = 0} be a hyperplane in P". On the coordinate neighborhood
a=0

1 a—1 a+1 n
Ua = {Z e P” | 2% 7é 0}, Sq = ale"F' . -+aa,1z7+aa+aa+1z7+- . '+an§7

is a defining function of H, where j—l e Z:—;l ZZII j—z is a local coordinate
system of P" in U,. Then gog = z—z = j—i : Uy NUg — C* are the transitive

functions of [H]|, the hyperplane line bundle of P". We now endow with a
Hermitian metric h on line bundle [H], h = (ha)o<a<n, Where hy is the local
expression of h on Ul,.

Pl ! .
ST
a#p
=1 - v—1 =

so [H] is positive line bundle. It is easy to see that [H] is, in fact, independent
of the choice of H, so we denote it by Op»(1).

The above construction can be extended to any divisors. A divisor D on M
is a formal linear combination

where Y; C M irreducible hypersurfaces and n; are integers. A divisor D is
called effective if n; > 0 for all i. Any divisor D induces O(D), the line bundle
associated to D, in a canonical way: If D is a hypersurface locally defined by
fa = 0 on U,, then ¢op = fo/fs are the transition functions for O(D). The
section {s, := fo} is called the canonical section, and is denoted by sp.
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Let L — M be a holomorphic line bundle with the transition functions
{gap}. Let m be a positive integer and s?,.. ., s be sections of mL. Write
$ = Sa€q, and define

1

ho = :
S (AP [N )

Then it satisfies ho = |ggal?hs. This defined a (possible) singular metric on L
which blows up exactly on the common zeros of the sections s',...,s™. If L is
ample, then this defines a metric on L.

Example. Canonical line bundle on M: Let {Uy}aer be a holomorphic co-
ordinate covering of M, (z(la), e ,z?a)) be a local coordinate system of U,.
The canonical line bundle K, is the line bundle with the transitive functions

_ et 2Ga) 2 0s) ; _ 1
dap = det Al e Sections of Ky are (n, 0)-forms w = a®dz(, A+ A2,

With Hermitian metric ds? = gl(;l)dzéa) ® dzfa) on M, det g(® = det (gl(]a))
is an Hermitian metric of det(7M9 (M), thus det 9@~ is the Hermitian
metric of K. The connection form of Ky is thus 6,) = 0 det g(_al) -det g =
—0log det g4, and the curvature form is Q) = —00log det 9la) = R;idzi A
dzi.



Chapter 11

Bochner-Kodaira Formula

The proof of Bochner-Kodaira Formula relies on the calculation of Ow, where
w is a F-valued differential form. We first deal with the case when FE is trivial.

11.1 The Hilbert Spaces

Let M be a n-dimensional complex manifold with the Hermitian metric
ds? = gz-jdzi ® dz’. The associated Kihler form is ® = @gijdzi AdZ’, a real
(1.1)-form. The volume form is

1 " n(n—1) n— n
E@ = (71) 2 d:Cl/\dlEz/\"'/\dy lAdy .
Let ¢ be a smooth (p, ¢)-form, If we choose local coordinate z, then we can write
¢ =>¢;,7,dz1, Ndz,. It follows that the quantity
1

. T .
p,q,qszwmg“ Lo gitirgitit... glada

(,9) =

is independent of the choice of local coordinates, where gjs are the entries of
the g~!, the inverse matrix of metric g.

Remark: It is sometimes convenient to employ the notation

q/)‘]i = le—/gklgl . gkp;pgjlil .. .gjqjq_
We also use, for simplicity, (¢); s, (as C*° covariant tensor field) to denote

the coefficient ¢; 7 and (¢)7a (as C°° contra-variant tensor field) to denote

gipSPgTquqbsqu. Then we can write (¢, ¢) = qujﬁ. We define the (global)
inner product as

(6,0) = /A (G.jav.

where dV is the volume form of Hermitian manifold.

Let 0* be the adjoint of 0. Let O = 9*0 + 00*.

109
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11.2 Covaraint Derivatives

1. For the vector field V = a’ 32“

i 0 ip 0
DV—da@‘i‘QQI@

Hence, for any 8%,“

_oai (2N e (22
Dacsz = da <8zk> 8zi+a0i <82’f) 077

da 0, 0
- 8zk82i+ar““$

da’ i ) O
(azk a Flk) P

where 67 = I, dzF, ypa’ := 9% + a'Tj, is called the covariant derivative of a’

with respect to %, and is also denoted by ai; & 1.€.

® da®,

DV = “i%kaay

in a’ . We use a semicolon to separate indices resulting from diffferentiation from
the preceding indices. We note that {ai;k}1§i7k§n is a tensor. Note that

j o 09,1 Ij
ik 8zkg

When M is Kahler, T7, =T,

Definition. For a smooth vector field V = a 821' , we define

: da’ .
Vkaz = 92k F;ka )
where
Fj agif lj
ik ok

2. For w = Z?:l f;dz7 (contra-variant tensor field), then

of; - ,
Dogw= <32’J€ - ZFZJP) dz?,
p=1

or simply

af; z
Vil = Tﬁ =3 Ti; i
t=1
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Definition. For a smooth (1,0)-form w = Z;L:l [;dz?, we define

8 .
Vefi = 87,5’]“ — T}, fe.

3. Forp=2,¢g=0,ie ¢=¢;i,dz"" Ndz®,

014,
0zk

Da¢>=<

azk

- (¢t7;2r7]:ci1 + (bilt:[w];i?)) dZil AN dZiQ.
3. For general p,q, and ¢ = qulqudzlp Adza,

azF 0zk

. . T p . . —
D'y ¢= (MZ - Z¢i1---(t)s---ipF§cis> dz" p..ndz" ndz7e,
s=1
where (t)s means that the index ¢ is at the s-th place.
Definition. For a smooth (anti) vector field n = ni%, we define

i on
VRIS G

Definition. For a smooth (0,1) form ¢ = ¢;dz*, we define

O

Vk(ybz = Ozk .
Similarly, for the definition of /7, we summerize as follows: for V = a’ B‘Zi,
Vial = 9% for a smooth (1,0)-form w :.2?21 [id27, 7R fi = % a smooth

(anti) vector field n = n'22, Vin' = 2717; + It ,n', For a smooth (0,1) form
¢ = ¢idz', Vi = 5% —Tfor.

We sometimes also write v/ as V.

3. The reason we convert 9 to 57; is that we need to deal with the metric (the
connection is compatibel with the metric). In particular, we have

Theorem. For the metric tensor g;; and its inverse gﬁ, we have /rg;; = 0
and 71g’" = 0.
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Proof.
891'3 1 agz} agzs 5l
Vk9i; = X - gzjrz'k = — 915 D2k g” =0.
Also 5 5 5
ji _ 995 o 99 55995l T
Veg'' = o + a5l = - JS@Q Y

SO vkgﬁ = 0. This finishes the proof.

Note that the above theorem is actually due to the fact that the connection
is compatibel with the metric. The theorem can be proved directly by using the
fact that the connection is compatibel with the metric. It shows that you don’t
have to worry about \/xg;; (it is zero) when you use the connection (covariant
derivative) to differentiate the forms, rather than using the exterior derivative
d. The following propostion shows that in the case that M is Kahler, there is
indeed no difference.

Proposition 1 Assume that M is Kahler. for any

¢ = ¢ 5,dz"r Ndze

we have _
06 = Vigy j,dz' Ndz'v N dz's

Proof. To get the idea why the Propsition works, let us first consider the case
when ¢ = 0,p = 1 and dimension M = 2, i.e. w = 25:1 f;dz7. Then from the
above,

2 2 of.
Zkaidzk/\dzj = Z( . ZF )dz A dz?

j,k=1 k,j—l

- Z afjdz Adz — thr Ddzt A dz?

711

= Z 8fj dZ AN dZJ

k,j=1

= Ow,

where we used the fact I'}, = I'; since M is Kahler.

In the general case, by definition,

. . . . Do T, P ; ; ; 7
Vid)il---ip.fqdzl/\dzu/\~~~/\dzlp/\dZJQ = (“azlqu — Zrﬁsiqﬁil“.(t)s_..iqu dz'Adz" p. ad2iP adza
.
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0%i,...q
= qudz /\dZ A-- /\de/\dZ 4 = 8¢

where, in the last equality, we used the fact that I'} ; = I'}; on the Kahler
manifold and dz’Adz" n...Adz" are anti-symmetric when interchage the orders.

Similarly, by taking the conjugate,

Proposition 2. Let
o= ¢ @dz'r NdzTs
be a smooth (p,q)-form. Then

a 99,
1\ _1\k Ipjoi-- Jk Ja P 7 =J
1) E 0( 1) — T dz'v NdZO N - A dFe

q
= (=P (-1)"V;,¢ 5 A2t A A AN

Ipjoji I

11.3 The formula for O0*

We now derive the formula for 9*.
Proposition 3. In the compact Kahler case, Let
¢=> o5 ®dz'"r Ndz
be a smooth (p,q)-form. Then
@)1 5,5, = (DPT G Vi 550 5.

Proof. One has
@b, 0) = (6,00)

q
— k+1 NRvE i edp e T
- pq,/ b1y 3V VG o
k=1

= ZTq' 1)Ptt Zgﬂuk ( i ( 1)k+1¢1p31“5q> vk dals d A

m/ ((—1)P+1g Jvi¢1p5§1...5q71> YirdalpdA.
M

where the second-to-last inequality follows form the metric compatibility of the
connection. This finishes the proof.

Note that we can also use the x-operator to express 0*, similar to the Rie-
mann surface case, we can prove that 9* = — x 0.



CHAPTER 11. BOCHNER-KODAIRA FORMULA 114

11.4 The Bochner-Kadaira formula
We first deal with the case that the line bundle is trivial.

Theorem (Weitzenbook identity) Let M be a compact Kahler manifold,

1

= gl a2 o \dZ7t p pdZT € PU(M).

Then
(Ow)p, 7, Zgj ViVay,,

P q
k1 - . B
+ E : E :Ri,,js ail"'is—lkis+1"‘ipj1"'jtflljt#»l"‘jq

¢ q
l oL -
_ZZstalpjl"'js—lljs«l»l"'jq’
L _ p. bk pkl _ Tkl -
where R = Rjpg'", RS = g™ 9" Ry,

Remarks:
1. We sometime write it into the crude form

(Ow)g,7, = — Zgﬁvivjalqu + AN (w),

where Al(w) only involves first order differentiation. In other words, modulo
lower-order terms, the global Laplacian on forms looks like the Euclidean Lapla-

cian — Y, 02/021,0%,.

2. For the application of proving the vanishing theorem, we only use the
formula when p = 0. In this case, the term

p
§ :E :Ruj Ay ooig g kisyy- dpdtede—10dt41dq

t=1 s=1

will disappear, so for

w= aajl.,_;qdzjm S NdF
Then
a
(Ow) Jq Zgj ViV 31,7, ZZR G CI 51 Fs1list1 g
s=11=1
When write

q

Ric(w) = — Z ng (w)jl"'(f)k“'jq t in k-th spot,
kot=1
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Then
(Ow) 7, Zg VVaIJ + Ric(w).

Proof. By proposition 2

t=0
and by proposition 3
(5*5(“))11751"'54.1 = (_1)p+1gjivi(gw)lp351 """ jq
=. — q
= _gjlvivjajpjl"'iq_z;( ) JZV VJSaI pJj1- Js—13535+1“'3q'
5=
Similarly B
(6*0‘})11)31”'5(1 = ( ]‘)p+1 ‘”V alpjjl J‘I

q
(aa*w)lpilqu = (=P Z(_l)s—%lvjs (a*w)jp,jl.4.3S_13538+14..5q

s=1
q

_ _1)sHIT . (it
= Z( 1) VJ ( Via Ip]jl Fam1dss41 Jq)

s=1

— _ 7t s+1v v
Zg js Vi@ 131 Fs—17sFet1Ja

so that

(Ow); G1de = (38*@1)[17314.,5(1 + (5*3w)1p;1...3q

i JZ — V..V, R
=9 V Vi 3551 Zg (V ng vjsvz)a[:lljjl"'55—15555+1"'341.
s=1
Note that up to here, the I, part is unchanged since we are performing
0 and 0* only, so you may letting p = 0 in the above computations for

simplicity. It remains to compute [V;, V5] a o I S 3 . For simplicity

we only need to compute [V;, V;] for (1, 0)-forms ajdz* and brdzF. Slnce the

result [V;, V;] acting on a, , for each index among i; - - - iy,
“ApJirds— 1]<]s+1 Ja

is similar to those for each mdex among j, ji, -+ Js—1Js+1 - Jq-

(13.3.1) [V, Vjlar = ViVja, — V;Viay = Vidjar — V;(0iar — Tar)
= 00jar, — 0;a,T"y; — 00ay, + 0;(T'h;ar)
= —0ja T + 9ja Ly + ;L) a

.17t t
= (%-F,ﬂ-at = Rkﬁat



CHAPTER 11. BOCHNER-KODAIRA FORMULA 116
and
(133.2) Vi, Vylbgp = ViVibp — V;Viby, = V(9505 — T bp) — V;(iby)

= 0;0;by, — O,T} by — T, 0ibr — 0,0,y + Dbl 'y ;

= —OiT} by = —OiT} by = — R} by = —Ri'5:bz.

Applying (13.3.1) and (13.3.2) to [Vi, Vjs]a;,..i 55, 5. 17us1.5,0 W€ have
[vi,vjs]ail...ipjjl...js_ljs+l...jq
p —
o L -
z : ik @iyl (i) - ipjdrefs—1s+1 Rj jsiajpljl“'jsfljsi»l“'iq
k=1
g i R E R- - i Sy =
Jk J* L 550TGR) s Gk 3ei P57 G UG-
k<s k>s
Jji — jip- L Sl
Since g Rj i = 1, I and g’ Rjk G = 15,57,
g
Je _1)[V., V. — - = -
(3) g § ( 1) [V“Vj]alpjjl"'Js—l]s+1Jq
s=1
q P
= E : § : wb iy 1l 19pJ 71 Js— 17541 g
q
s l _
_: :(_1) RJs Iplji-js—1Js+1Jq
s=1
q —
— — R L 2 o -
Z( 1) Z T IpJJl"'Jk—ll(Jk)Jk+1'--js~~'Jq
s=1 k<s
q —
— —ISER** = A o oo -
Z( ) Ik Js Ip]]l"']s"']kfll(]k)]kJrl"'Jq7
s=1 k>s

where symbol I(jx) (I(jx)) denote the I instead of ji, and because of Rj, _35] =
Rjkj jsl, so the last two terms in (3) are vanishing. Therefore we obtained the

expression formula of complex Laplacian.

11.5 The general case

Let L be a Hermitian line bundle over a compact Kdhler manifold, and h be
its Hermitian metric. We want to derive a similar formula for O; acting on



CHAPTER 11. BOCHNER-KODAIRA FORMULA 117

I'(M,eP9(L)). A form w € I'(M,eP9(L)) corresponds to a family of (p,q)-
forms w, on {U,}, where {U,} is an open covering consists of the trivialization
neighborhoods of L. Let {¢,3} be the transitive functions of L, then

Wa = Papwg; on Uy NUg.
Let w,n € T'(M,eP(L)), then

(w,n):/ha < WgyMa > -
M

As a well-known fact, if w € T'(M,eP4(L)), then dw € T'(M,eP4t(L)). If
w € T(M,eP1(L)) ie., wy € T(M,eP1(L)), a € I, {Uy}aer is an open covering
of M consists of the trivialization neighborhoods of L, then

Wa = Papwg; on Uy NUg.
Since ¢ is holomorphic,
Owa = daplws; on U, NUs.

But for the operator 0, dw is no longer a L-valued differential form, since if
Wao = ¢apwg on U, NUg, then

Owy = 8¢a5w5 + ¢a/38wﬁ; on U, NUsg,

and, in general O¢qs # 0, so Jw is no longer a L-valued differential form. Let
h = (hq) be the Hermitian metric of L. We introduce Dy, : T'(M,eP9(L)) —
['(M,eP*14(L)), which is a differential operator of degree (1,0) on L-valued
forms, by letting

Diwa = 0wy + 010g howa = h; ' 0(hawa)-
Then
Diws = 0wy + 0log hawa
= 3(papws) + dlog (hslppal?) basws
= Opapwp + ¢apdws + (0log hs + (Olog ¢pa))Papws
= 09apPpadapwp + Gaplws + (Olog hpws)das + Olog Ppadapwp

= 8log¢a5q§a5w5 + ¢a58w[3 + (8109 h5W5)¢a5 + 8log qbgaqﬁagwg
= q&aﬁ(é)wg + dlog thﬁ) = ¢Q5DL(AJ§

new: global calculation. It is easy to check that the operator Dy satisfies

A(n AER) = On N Eh+ (1) A D&,
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so it also proves that the Dj is well defined.
The Bochner-Kodaira Formula:

Similar to what we have proved, we can prove that (see the book by Morrow
and Kodaria: Complex Manifolds)

Theorem (The Bochner-Kadaira formula). Let L be an Hermitian line
bundle over M. Then for any L-valued (0, q)-form

1 . _
¢ = 7|¢31~~3 dz?t N\ dzle
q !

q
jig (L) t t
(OL0)j-g, = 0"V Vidgg, + D Y (B, — B30, @i,
k=1 ¢t
where ng) = 0; + 0;log ho, and Qf =-V; g;kaklog ho = gzkvj(?klag ha

We can also formulate the The Bochner-Kadaira formula as follows
0 = —Trace(V V) + T,(Q — Ric(R))

where o i
Trace(VHV) := g”VEL)VE

and
a a
T,(Q — Ric(R)) = Zgitﬁijk Pjro(Dna — ZgitRng jy (DT
k=1 k=1
iz =D gigﬁg = fﬁjai logh, = —0;0;1og h, is the curvature of the metric
{ha}, R;; = 9;0;(logdet(g)) and ¢1(Kar) = %2 Ry;dz* A d2d.

Theorem Let M be a compact kahler and let L be an Hermitian line bundle
over M. Then for any L-valued (0, q)-form w,

(Ow,w) = [[Vwl® + ((Ty(2 - Ric(R)))w, w).

Proof. Write locally w = wqe, where e, is a local frame for L. We introduce
the following (0, 1)-form on M

Uy, = hoVjw,y, ¢20dz

It is indeed global define, since

Uy, = ha(Vjwes, Jwa'dz = [dpal?hsVi(wsy, )| bas?wydz’

@
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=Wy,, on Us,NUg
We use the fact that if ¥ is a 1-form on M, then

/5*\I/dVM =0,
M

this is because 0*V is a global function, and

/5*\IdeM = (0", 1) = (¥,01) = 0.
M

On the other hand, 9*V¥ can be calculated as follows

5*\11 = fgﬁv,;(ha?jwajqwigﬂ)

= —gﬁ(Vi(hahgl)ha?jwajqwi“ + gﬁhavi?jwajqwi“
fgﬁha?jwaquiwiq

- L= . - e
= —g""ha Vi Vjwsj wa' — ¢ haVjwe g, Viwa'

= —gﬁhaViL?jwajqwiq - gﬁhaﬁjwajq Viwdt.
Thus, from the above Bochner-Kodaira Formula, we get

(Ow,w) = [V|* + (T4 (2 — Ric(R)))w,w).
This finishes the proof.

Recall that, from Proposition 2.7,
Ry; = 0;0;(log det(g)).

So
e y )
a(Ku) = o R;;dz' Ndz .
Also Qp is the curvature form of L. Therefore, if L ® K}, is positive, then

—Ricw + Q. is positive, so H1(M,O(L)) must vanish. Here is the proof:

Theorem (Kodaira’s vanishing theorem). Let M be a n-dimensional com-
pact Kahler manifold, and L be a line bundle with the Hermitian metric h. If
L ® Ky, is positive, then

HY(M,O0(L)=0 for ¢>1.
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Proof. The condistion that L ® K7}, is positive means the matrix (X;; — R;;)
is positive definition, so ((T,(Q — Ric(R)))w,w) > 0 for all w # 0. Hence
(Ow,w) > 0 for all w # 0. This implies that H(®9 (M, L) = 0 beause for any
we HOD(M, L), 0= (0w,w) > 0if w#0. Thus HI(M, L) = 0 by Hodge’s

theorem. This finishes the proof.

Note that we can actually prove Kodaira’s vanishing theorem by bypass the
Hodge theory. By using Dolbeault theorem, HI(M,L ® Kj;) = 0 for ¢ > 1 if
we can solve -

Ow = 1
for any O-closed (n, q)-form . It can be achieved by using the fact that
19¢]1” + 110" ¢|1* = (D¢, ¢)

and the Lax-Milgram Lemma that If ||g||*> < c(||T*g||?>+]|S9||?), then Tu = f
has a solution to f € Ker S. This solution u satisfies the estimate

llull < ¢ Ifll, we (Ker T)*
where we consider Hilbert spaces:
H, —)T H> —)S Hj;

where Hy, Hy, Hjs are all Hilbert spaces, T, .S are linear, closed, densely defined
operators with ST = 0.

This leads the materials on solving 0-equations for domains Q C C” with
flat metric, but with boundaries (the theory is discussed in the next chapter ).



Chapter 12

L? ESTIMATES

We will present the method of L? estimates in this section. The method is to
use the Hilbert space to prove the existence of the solution to the & problem
on a pseudoconvex domain, based on a priori estimate. The tool is is to use
so-called Laz-Milgram lemma. The trick to deal with the boundary is called
Morrey trick. Using the L? estimates, we can solve the Levi’s problem: The
pseudoconvex domain is the domain of holomorphy.

12.1 Problem and the Formulation

Let © C C™ be a bounded domain, f = )~ f,dz" be a form of type (0, 1) defined
on 2 and satisfy 9f = 0. The question is whether

(3.1) ou = f
has a solution. If we use the theory of Hilbert space, considering

(3.2) L?o,o)(Q) - L(2o,1)(Q) - L?o,z)(Q)v

then the above problem is equivalent to: Whether the kernel of the second 0 is
equal to the image of the first 0.
We summerize the above discussion in terms of the model of Hilbert spaces:

(3.3) H, 5 Hy % Hy

where Hy, Hy, Hj are all Hilbert spaces, and T, S are linear, closed, densely
defined operators. Assume ST = 0, the problem is whether, for Vf € Ker S,
the solution to

(3.4) Tu=f

exists.

121
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12.2 Basic Facts from the Theory of Hilbert Spaces

As we mentioned above, we now consider
(3.3) m 5 e, 5 H,

where Hy, H,, Hj are all Hilbert spaces, and T, S are linear, closed, densely
defined operators. Assume ST = 0, the problem is whether, for Vf € Ker S,
the solution to

(3.4) Tu=f
exists.

First, note a simple fact: Tu = f is equivalent to
(3.5). (Tu, g) = (f, g9), Yg € some dense subset

This is because because (3.5) <= (Tu—f, g) =0, Vg € some dense subset <=
(Tu—f, H)) =0 < Tu=f.

Let T* be an adjoint operator of T. By the theory of functional analysis
that T* is a closed operator, and (T*)* = T if and only if T is closed. Here we
recall the definition of T™: Let y € Ha. If there exists a y* € H; such that for
Ve € Dom T, we have

(3.6) Tz, y) = (=, y"),
then y € Dom T*, and we define T*y = y*. By (3.6),
(3.7) (Tz, y) = (z, T"y).

Next we will write out the expression of 7% on C'°(2), where C*°(€Q) is the
set of infinitely differentiable functions on some neighborhood of Q, so Dom T*
is dense in Hs. In other words, T is also a linear closed densely defined operator.

From (3.5), (Tw, g) = (f, g), Vg € some dense subset. If this dense subset
C Dom T*, then, noticing (T'u, g) = (u, T*g),

Tu=f <= (Tu, g) =(f, 9) <=

(3.8) : . .
(u, T*g) = (f, g),Yg € some dense subset in Dom T™*.

The existence of u thus could be possibly found by applying the Rietz Rep-
resentation theorem as follows: let T*g — (f, g) be a linear functional defined
on a subset of Hy(i.e. {T™g| g € some dense subset in Dom T*}). If we can
extend the above functional to a bounded linear functional on entire H;, then
an application of Rietz Representation theorem to (3.8) will thus show that the
problem Tu = f is solved. Recall that the Rietz Representation theorem states
that if A : H — C is a bounded linear functional on a Hilbert space H, then
there exists w € H such that A\(z) = (z, u) for Vo € H. Hence the main step is
whether we can extend T*g — (f, g) to a bounded linear functional on entire
H,.
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Lemma 12.1. If there exists a constant cy depending only on f such that

(3.9) (g, NI < el T gl

then T*g — (g, f) can be extended to a bounded linear functional on Hj.

Proof. First note that, under (3.9), the definition 7*g — (g, f) is well-defined,
since if T"g; =T g2, then ‘(gl — 92, f)| < cfHT*(gl - QQ)H =0, ie, (917 f) =
(gQa f)

Next we extend T*g — (g, f) to {T*g} the closed envelope of {T*g|g €
Dom(T*)}. If x € {T*glg € Dom(T*)}, then there exists g, such that z =
lim T*g,, by (3.9),

‘(gv — Gu> f)| S CfHT*gv _T*g’U«H —>0(’U,U—> OO)

Hence lim(g,, f) exists and it is the value of this functional at z.

Finally, for a general x € H;, if we denote P by the projective operator
Hy — {T*glg € Dom(T*)} ( this is a closed subspace ), then we can define
the value of this functional at x by that at Pz, and the latter is signficative
above. O

In the above discussion, we however only used the front half of
H 5 Hy S Ha.

However, since we only need to solve the equation Tu = f or (T*g, u) = (g, f)
for f € Ker S, it is unnecessary to prove (3.9) for all f € Ha, rather we just
need to prove (3.9) for f € Ker S. In this case, we hope that ¢ in (3.9) belongs
to some dense subset in Dom T™ due to the proceeding proof.

The method of proving |(g, f)| < ¢f||T*g|| is through proving a more general
equality:

llgll* < e(IT*gl* +[|Sgl]*) Vg € Dom T* 1 Dom S.

First we note, in our problem, Dom T* and Dom S contain C§°(€2)—- the set of
infinitely differentiable functions whose supports in €2, hence Dom T* N Dom S
is dense on both Dom T™* and H,. Now we need

Lemma 12.2. [f

(3810)  llglP < c(IT*gll? +11Sql?) Vg € Dom T* A Dom

then

(3.11) (g, f)] < c%||f|| | T*gl|, YfeKerS, g€ Dom TN Dom S.

Proof. For every g € Dom T* N Dom S, g can be decomposed orthogonally
along the closed subspace Ker S and its orthogonal complement (Ker S)*,
that is,

g=g1+¢g. g€KerS, g;e (KerS)> .
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Since ST = 0, (Ker S)* C (ImT)*, and if x € (ImT)* then (z, Ty) =
0, Vy € Dom T. By the definition of T*, 0 = (z, Ty) = (T*z, y), Yy €
Dom T, then T*z = 0, so we have (Ker S)* C (ImT)t C Ker T*. Thus
g1=9g—gs € Dom T*, go =g—g1 € Dom SN Dom T*, hence g1, g2 are both
in Dom T* N Dom S. Hence

(g, )l = (g1, )l (f e Ker S,gy € (Ker S)%)
<1 lgrll (Schwartz inequality)
< I all* +11Sa:l)?  ((3.10), 91 € Dom T* N Dom S)
<c[If]] 1T gl (g1 € Ker 8)
< c|f]|-IT*gll (g2 € Ker T*, T*gy = 0)

O

Applying Lemma 3.2, we have that if [|g||> < c(||T*g||* + ||Sg||?) for all
g € Dom T* N Dom S, then |(g, f)| < cz||f|| - ||T*g|| for Vf € Ker S, g €
Dom T* N Dom S. Hence, by Lemma 3.1, T*g — (g, f) can be extended
to be a bounded linear functional on H;, whose bound is c%||f|| By Rietz’s
representation theorem, there exists u € Hy such that (T*g, u) = (g, f) for
Vg € Dom T* N Dom S. Since Dom T* N Dom S is dense in Hy, we have
(g, Tu) = (g, f), for Vg € Ha. By (3.8), the equation Tu = f has a solution In
addition, from the Rietz Representation theorem, we have

lull < EIf|l, and  we (Ker T) .

In fact, ||u|| < ¢2||f|| is the direct conseqeunce of Rietz’s representation the-
orem; to see u € (Ker T)*, note that, according to the way t hat T*g —
(g, f) is extended to a bounded linear functional on entire Hy, this func-
tional vanishes on the orthogonal complement of {T*g|lg € Dom(T*)}, thus
u € {T*glg € Dom(T*)}. If u = UZLTTOLOT*QU, then for every x € Ker T, we

have
(z, w) = lim (z, T"g,) = lim (Tz, g,) =0,

vV—00 vV—00

hence, u € (Ker T)*.
In general, the solution to Tu = f is not unique, since Yu; € Ker T, then
(T7g, utw) = (T"g, uw) + (T"g, w1)
= (T"g, u) + (9, Tw1) = (T"g, u)

and u, u + up are both the solution to Tu = f. However, u € (Ker T)* is the
condition to assure that the above solution to Tu = f is unique.

From the above discussion, we have proved the follolwing important
result:
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Lemma 12.3. (Laz-Milgram Lemma) If ||g||*> < c(||T*g||* + ||Sg||?), then
Tu = f has a solution to f € Ker S. This solution u satisies the estimate

(3.12) lull < e|Ifll, we (Ker T)*"
Note: If T = 0, then (3.12) implies u is orthogonal to all analytic functions.

12.3 Solving J-equations.

Now we return to practise problem that we discussed above. Assume H; =

L%o,o)(Q v), Hy = L%(M)(Q7 v), Hy = L%O’Q)(Q, ), where ¢ € C*°(€2) and the

norm of L? space is denoted by || - ||. We define

112 = /ﬂlf\Qe‘“’dx-

To the forms of types (0,1), (0,2), there are integrations of square sums of
their components (relative to the factor e~%). For example f =" f;dz*, then

112 = /QDfiPe*‘pdx

It will manifest gradually the importance of weight function e~ in the
following deduction. In fact, it is relative to the metric of ordinararily line
bundle Q x C on Q. We will explain it in detail on the section of Kodaira
vanishing theorem in the latter part of this book. On the other hand, T" and S

are closed extensions of 9 ( on C*°(£2) and C&;’l)(i) ) on Hy LoHy S Hy. By

lemma 4.3, the solution to d—problem depends on the proof of the inequality
(3.12).
To prove this basic inequlity, we require the following steps:

1. The formally adjoint operator of 7' = .
First, for all f € CF 0)( ) C Dom T, we have

(Tf, g9)=(f, T"g).
Ifg= Zglcf IS C(o 1 (€2), the above equality becomes

S [@hae = @1 o= (. 70) = [ 1T

is valid to all f € C(o 0)( Q), especially to f with compact support. If Supp f C
Q, then due to integration by parts

o[ @igie ==Y | [0:(ge*)
—Ja —Ja
-y / FePBi(gie—)e ¢
—Ja
== [ e b= o)
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(3.13) T*g=—-> 6igi.

This equality is the form of T"g (when g € C7 ) (€2)), we call it the formally
adjoint operator of T'.

2. Determing Dom T*.

Does C( ;) (92) belong to Dom T*? From above, when g € C&il)(ﬁ) and in

Dom T*, then T*g = — > 0;g;. Does this T*g satisfy (T'f, g) = (f, T*g) to all
fe C ( )? Not at all, we shall add some conditions to g.

Boforc continuing discuss, we prove a fomula which is badically the diver-
gence theorem.

Proposition 12.4. If the boundary 022 = {r = 0} of a bounded domain 2 =
{r < 0} is differentiable, |dr| =1, and L = Zai% is a differentiable operator
of 1-order with constant coefficients, then '

/Q Lf= /8 (s

Proof. By usual Stokes fomula,

/—d:cl/\ /\dxn:/ fdxo N+ Ndzy,
Oy a0
)

where F.; can be replaced by every 8%”. Let p € 09, r be one of local ordinates
near p because |dr| = 1. We assume local ordinates of 92 be 0y,--- ,6,_1, and
dfy A ---Ndf,_1 the volumn element of 92, and dr Adf; A --- Adb,_1 the unit
volumn element near p, that is,

dry N - Ndxy, =dr NdOy N --- Ndb,_1,
here we can do it because |dr| = 1. Hence,
dro N+ Ndxy, =dr ANw+adfy A--- Ndb,_1
where w is some (n — 2)—degree form. Then

dr Ndxog A~ Ndxy =adr ANdOy A --- ANdBy,_1,

aa—ld:cl AN+ ANdxy, =adr NdOy N -+ Ndb,_1
_Or
o= P
So
fdml/\ “Ndx, = fdxa A -+ Ndxy,
o 011 09

= [ fldrAw+addA---Adb,_1)
o0

fadoy A---Adb,_1 = f
o0 0 3301
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| =] ans
le]

where L = Zaza It is still true when a; € C, % is replaced by %, 52 -
This completes the proof.

Likewise we have

Now we compute (T'f, g) for f € CF (), g € Dom T* N C’E’&l)(ﬁ). First,

0i(fg;e™%) = (0;f)g;e”? + fOi(gie=#).

Integrating on 2,

/Qéi(fﬁie*@) :/Q@f)@'ew*/gfm~

By proposition 3.4,

/ B fgic?) = / @) 7.6,
Q oN

| e == [(@nme+ [ @z

Summing up the above for i, the first term of the right—hand side becomes
(=1)(T'f, g), while the left-hand side is

> | e = ¥ [ e e e = (<00 7).

But (T'f, g) = (f, T*g), so, for g € Dom T* ﬂCOl)( ), we have

(3.14) Z f (Bir)g;e”% = 0.
Since f € C>°(Q) is arbitrary, the above equation is equivalent to

(3.15) > (9ir)giloa = 0.

i

Thus we get the sufficient and necessarry condition (3.15) of g € Dom T* N
Cé’gl)(ﬂ). So if ¢ is infinitely differentiable with compact support C €2, then
g € Dom T*.

3. Computing ||T*g||* + [|Sg||?, as g € Dom T* N Dom SN Cw. 1)( ).
We can reduce the deduced fomula above,

Z/f@gle*’ Z/afeuz:/ (Di7) fg.e~?
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to a fomula: If f,g € C°°(£2), then
(3.16) (f, ig) = —(9if, 9) + ((9ir) [, 9)oc

where the signification of §; is as same as (3.13), and (-, -) s indicates the integral
on 0f) relative to weight factor e~ %.
Now computing

Il = [ 1S ble s =3 [ (o) @ae .
Q 5 i /9
||Sg\|2:/2|azgr BglPe

1<]

_Z/ ‘azgﬂ 7819] 8]9178391’ 193 + ‘ajgl‘ ) e

1<J
=3 [ (Bl - @)@z
i 79
So
T gl +1ISgl? = 3 / Big; 2+ /Q«(Sjgj)«csfgn — (Bigy)- (B;3:))e .
i, ]
By (3.16),

/Q((%gj)(éigi)e_“” = —(0:0;95, 9i) + ((9ir)d;9;. gi)on

/Q(&-gj)(éjgi)e—%" = —(g5, 0:9;9:) + ((8ir)g;, 0j9:)o0

Noting Zi,j fl 95059, = Zm‘ f aigjjgieﬂp = Zw‘ L 9;0;g,e7% = — Zi,j (6ijgi7 gj)7L
>2:;(0irg;,059;)0q, and substituting it to the formulas of [|T*g[|*+|[Sg]|*, then

1T gl 2 + [|Sg||? = Z/ BigsPe® + S2(0:3; - 3,009, 9,)

4,J

- Z/ (6595)g:¢ % — Z(@ir)gj(ﬁjgi)e_w.

0.J
The following equality obtained by direct computation,
(6;0; — 0j6;)w = €0, ((9jw)e™?) — D;(e?d;(we™?))
= (9;0ip)w.
At the same time, g € Dom T™ N Cy 1)( ), thus > °.(9i7)giloa = 0, hence

2/89(5#)5]‘9]' "gire V= Z/m 8ig; - Y _(Dir)gie = 0.
1,7 7 %
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Therefore, we have

1T gl 2 + [|Sg]|? = Z / Bigs[2e

+Z/331<pgzgje” Z/ (0ir)g; - 059 %.

(3.17)

4. The domination of the boundary term — Morrey’s trick.
In the history development of d—operator in L? method, it was difficult to
dominate the last term in (3.17), i.e., the boundary term

_Z/{)Q(air)yj(gjgi)e_w

for a long time, untill 1958, when Morrey successfully overcame this difficulty(
See C. B. Morrey, Ann. of Math. 68(1958) ). The method he presented is called
Morrey’s trick now. The method is: Let g € Dom T* 0055’71)(5), r = 0 define
the boundary of €2, and the defining function r be differentiable. Thus

Z(aﬂ’)gvz

are local functions, differentiable at every point. By (3.15), these functions
vanish at r = 0, i.e., on 92. By Taylor expansion, it can be written as

D (ir)gi=A-r

where ) is some differentiable function. Taking 0, to both sides to yield

> @0ir)gi + > _(0:)(D59:) = (D;\)r + Ay
Multiplying g; and summing up for j,
Z(aargzgﬁzar 3;9:)7 Zrﬁz\g]—k/\z:@r
.3 J
Integrating on 052, noting r = 0 on 9, > (9;r)g; = 0, to get

72/ (0i7)(0,9:)7 Z (9;0ir)gig e~

[219]

By (3.17), we get
1T gl 2 + [|Sg]|? = Z / Big; P+ / (3,0:0)9:;¢~
+ Z/ (0;0:m) )gig;e”

(3.18)
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Note that we have not made any special restrictions to €2 and to the choice
of ¢ so far. Now we assume
(1) Q is a pseudoconvex domain, i.e.

(3.19) Z@jaﬂ")figﬂ- >0, VZ(&-T)& =0;

2%

(#4) o satisfies that complex Hessian is strictly positive definite, that is, there
exists ¢ > 0 so that

(3.20) Z(aigj@)figj > CZ &l

.3

Under the above two assumptions, the first term in the right - hand side of
(3.18) is nonnegative, the third term is also nonnegative because the boundary
condition Y (9;7)gilan = 0 and (3.19), and the second term satisfies

3 / @,010)9:3,6~° > ¢S / lgif%e=% = cllgl|?.
ij 79 i V9

Hence we proved the following theorem:

Theorem 12.5. Let Q be a pseudoconver domain. Given a real valued function
@ € C(Q) satisfies Y (0;0;0)6:&; > ¢ |&]?, ¢ >0, then for g € Dom T* N
Dom SN C'(O(j”l)(ﬂ), we have

(3:21) cllgll* < 1T*gl1* + ||Sgl .

Recall that in the previous discussion, if for all g € Dom T* N Dom S, we
have c||g||? < [|T*g||? + ||Sg||?, then the O - problem of a pseudoconvex domain
has a solution. However, (3.21) implies that c||g||> < ||T*g||® + ||Sg||*> holds
for all infinitely differentiable functions in Dom T* N Dom S. To prove
this estimate holds for all g in Dom T* N Dom S, it sufficies to show that, for

Vg € Dom T* N Dom S there exists a sequence g, € CE)(?J)(Q) such that
Go — G, T*gv — T*g, ng — Sg-

Note that it is important to prove that these convergence holds at the same
time. It is easy to prove the first and the third holds ( because S is a closed
operator, by the definition of a closed operator, if g € Dom S, then it implies
there exists g, € C&”&,l)(ﬁ) such that g, — g, Sg, — Sg ). The question
becomes to show that the second holds at the same time. The method is called
the regularization method of K. Friedrichs, first due to K. Friedrichs in 1944 (
Trans, Amer. Math. Soc. 55(1944)), P. 132 - 151 ), later Hérmander further
developped it (basically, by convolution with mollifiers, i.e. smooth functions
with compact support and total integral 1, one can approximate L?-functions
by smooth, compactly supported functions).
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So we have proved that, for a pseudoconvex domain €, if p € C*° () satisfies
Y(0:059)Ei€; > ¢ 3 |€i]?, then we have

cllgl? < (IT*gl* + 11Sgll*)

for all g € Dom T N Dom S. Combining the former part of this section, we
solved the 0 — problem of pseudoconvex domains in the sense of distributions:
for all f e L?OJ)(Q, ©), Of =0, there exists u € L*(Q, ) such that

(3.41) &mﬁ(Wm@M,nw<¢mm

and wu is orthogonal to all holomorphic functions in L?(€2, ¢).

The next problem is the regularity properties of the solution v, i.e., when f
have enough differentiability, the solution u to du = f must also have appropri-
ate differentiability. In this respect the weaker result is:

Theorem 12.6 (Inner regularity property theorem). For a pseudoconver do-
main Q with differentiable boundary, Ou = f. If f € C° © 1)( ), thenu € C=(£2).

And stronger result is:

Theorem 12.7 (Kohn theorem). For a strictly pseudoconvex domain €2, Ou =
f. Iff€C(01)( ), then u € C=(Q).

We only discuss inner regularity property theorem in this study material.
Setting

(3.42) L*(Q,loc) = {g| for all K CcC Q, then g € L*(K)},
we call it Local L? space.
Lemma 12.8. IfOu = f € L?(Q,loc), then 1-order differential of u € L*(Q, loc).

Proof. Obviously we only need to prove d;u (i = 1,---,n) € L?(,loc). First
we may assume u has a compact support in . We know, from Friedrichs
regularization, that there exist u. € C'°°, which still have the compact support
in € such that

Ue —> U, 5iu6 — glu

J10 = [@uo@us = - [@ oy
/ﬁﬁue T /|8u5|2

Since 0;u. — O;u, there exists a constant ¢ such that f \8iu€|2 < cindependent
on €. But bounded sets in a Hilbert space are sequence compact, that is, the

So
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subsequence weakly converges. So we can assume that d;ue — g ( weak ).
Then, for every function ¢ € C§°(2), we have

(Dives @) — (9, ¥)

So
(9, ») = —(u, diyp).

Hence g = 0;u exists, and d;u is local L2. Later we can choose a cut-off function
p > 0 with compact support in £ such that p = 1 in a more smaller compact
set, thus

d(pu) = (9p)u + pdu = (Ip)u + pf.

Obviously it is still in L2, and pu has compact support, then 9;(pu) € L2. Hence
we have proved, to every compact support K C €, we shall choose p so that
K C {z|p =1}, then d;u € L*(K), i.e., d;u is local L?. O

Now we’ll prove inner regularity property theorem.

Proof. Let Ou = f. If f is differentiable up to order s (in the distribution sense
) and local L?, then o
D f = D*0u = 9(Du).

From above lemma, we have d(D%u) € L?(f,loc), which indicates u is dif-
ferentiable up to order < s+ 1 in the distribution sense and local L?. Then
derivatives of all orders of f are local L?, so u have derivatives of all orders
which is local L2. From famous Sobolev lemma, any function with derivative of
order > s + 7 in the distribution sense, and local L?, is contained in C*(f2) so
that v € C* (). O

Note: in this section, we only proved du = f, and f is the form of type
(0,1), by using L? method of solving the d problem in a pseudoconvex domain.
In fact, when f is the form of type (0, p) (p < n), du = f; u is the form of type
(0, p— 1), one can still sovle it, using a similar proof.

12.4 Levi Problem

In this seciton, we will discuss Levi problem by applying 0 probl em. In history,
the solution of Levi problem was first obtained by the method of coherent sheaf,
then the method of L? estimate appeared. The advantage of L? estimate is that
its solution posses naturally L? estimate, but it can not be applied to the spaces
with singularity. The third method is using integral representation, its solution
also has L*° estimate. It will be discussed in §5.

Problem 12.9 (Levi problem). If Q@ C C" is a bounded domain, 0 is differ-
entiable, pseudoconvex, then  is a domain of holomorphy.
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Before prove Theorem 3.11, we recall the assumption of 0 problem on a
pseudoconvex domain: If Q C C”, bounded, pseudoconvex and ¢ € C*(Q),

(3.43) > (0:0;0)6&; = ¢ &% ¢

the n the 0 problem has solutions and if f € C>(£2), so u € C*°(£). Now we
first explain that the condition (3.43) can be reduced to that ¢ is plurisubhar-
monic(p.s.h.).

Lemma 12.10. Let Q be a pseudoconver domain, and ¢ be p.s.h. in some
neighborhood of Q. If f is a O closed form of type (0,1) satisfying

(3.44) /Q|f\2e-¢—'z'2 <+oo (|22 =" z7)

then there exists u such that Ou = f and

(3.45) / uPeele < / |f2eme e,
Q Q

Proof. If ¢ € C™ and ¢ is p.s.h., then (9;0,¢) > 0, so
(3.46) > 0d(p+12M6E; = Y L6l

In the solution to d-pro blem, we replace ¢+ |z|2 by ¢. Next we note that (3.46)
is equivalent to ¢ =1 in (3.43), it completes (3.45).

If we only assume ¢ is p.s.h. in some neighborhood of €2, we can use the
convolution p. = ¢ * x. so that v \, ¢. Let x be a C* function of |z| and
its support in 2| <1, x >0, [x = 1. Set xc = ==x(%). We only prove the
theorem in the case n = 1, since it is similiar in the case n > 1. Let t = re

and do; is the volume element of C’,

(0% xe)(2) = / (2 — ) Xe(t)dor = / (= — re®)x (r)rdrdo

= /6 /Qﬂ o(z — ) dory.(r)dr
( rdr) o(z)
/ /QWXE Yrdrdf = o(z).

Since @ is upper semicontinuous, it is locally bounded. Let Sup p =
a neighborhood of Q

Y

M, then

pe(2) = (0% xe)(2) = / oz — txe(t) < M / Xelt) = M.
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We have p. — ¢ (e = 0), so ¢(z) < p(2) < M, and ¢, are p.s.h., since
27 1

27
0z + rew)dd = Py / /ap(z + rew — t)x (t)do,df
T Jo

2
:/(1/ <p(z—t—|—teww)x€(t)d9) doy
2 0

> [ ol - Onltdon = 2.(2).

2 Jo

We choose a sequence ¢, in ¢, so that ¢, — ¢ (¢ — 00). Applying O-problem
to ¢, ( since they are C° ), there exist u, such that du, = f and

[ufremertof < [ |ppemetet < [ pemetol < o
Q Q Q

Since @, < M,

/ \uU\Qe_M_IZIZ S/ |uv|2e_“’”_|z|2 < 400.
Q Q

Hence {u,} is uniformly bounded in L? . But
O(uy —up) = 0.

This means that {u, — u1} is a family of analytic functions on Q. Also [ |u, —
ui|*> < [|uyl® + |u1|*> < 4o00. To each compact set K in Q, {u, — uy} is
uniformly bounded on K, so {u, — w1} is a normal family.Hence there exists
a subsequence ( without loss of generality, we still assume {u, — u1} ) which
converges uniformly to an analytic function u —u; on any compact set of 2, i.e.,

Uy — UL —> U — U7,

SO

Ou = 0(u—uy) + Ouy = f.
By Fatou lemma (the lemma is: [ lim|f,| < lim [ |fa] ),

/|u|26,¢,‘z‘2 :/lim|uv|2e*%*‘z|g
Q v

gliim/|uv|2e’*0“’|z|2

< [1rpetir,

The lemma below indicates that the condition of ¢ can be reduced to that
 is only a p.s.h function on 2.

O
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Lemma 12.11. The assumptions and results are as the same as lemma 3.12,
except that ¢ is p.s.h. on a neighborhood of Q1 replaced by 2.

Proof. The difference with the proof of lemma 3.12 is that we can not use the
method of ¢ * y.. because ¢ is only defined on 2 and the definition domain of
© * X is outside €.
By a result in §2, if Q is a pseudoconvex domain, then —log d € C*°(£2) and
p-s.h.. Let
Q. ={-log d < c}.

By Sard theorem (f : Q — R™ is differentiable, the measure of the point set
{f(x)|z € Q, df(x) = 0} is zero), for almost all ¢, the differential of (—log d —
¢) # 0 on 99, since —log d is p.s.h., and (&gj(fl)log d) > 0. So for these
¢, Q. are pseudoconvex domains.

Now if f is a one-form of type (0,1), satisfying 0f = 0, [ |f|2e_9”_‘z‘2 < 400,
then by lemma 3.12, there exist u. on €2, such that

5'U/c:f |QC7

/ ‘uc|2e—so—|2|2 S/ ‘f|2e—w—|z|2 S/ |f‘2e—¢—|2|2.
Q Q0 Q

c

and

Obviously, if d > ¢, then Q. C Qq, O(uc—uq) g = 0, that is, uc —uy is analytic
on ..

Because ¢ is upper semicontinuous, it has superior limit on every compact
subsets in €2, so e=#~12I” has inferior limit on every compact subset. Same as in
the proof of lemma 3.12, for every compact subset K C Q. N Qy, {u. — uq} is
uniformly bounded on K. So, for every fixed ¢, {ug— tc}dsc is a normal family
of holomorphic functions on €.

Now choose ¢; arbitrarily. In {ug — e, }a>c,, We choose a subsequence
{ug, — tey,Udy — Uey, -+ } converges on .. Let cy be sufficiently large in
{di,d2,--+}. In {ug,, — tUc,}d,,>cys We choose a subsequence {ue, — Uy, Ue, —
Uey, -+ -} converges on Qg,. Note {e;} is a subsequence of {d;}. Still let c3
sufficiently large in {e1, eq, - - - }, with the similar methods , we can get ¢; — oo
and for every fixed 4, {uc; —uc,} (j — 00) converges to an analytic function on
Qc,. Then, u = li]mucj exists and (u — u,,) is holomorphic on ., for each i. So

on Q,, Ou=0(u—u., +u.) = f, hence du = f for entire Q.
By Fatou lemma,

/ |u|2e—e 12 SM/ |ucj‘2e—s&—|2|2 S/ |f|2e—e I,
Qe J JQe Q

Let ¢ — oo, then
/ |u|26*¥’*\z|2 < / |f|2€f¢f|2|2.
Q Q



CHAPTER 12. L? ESTIMATES 136

Now we can prove the Levi problem.

Theorem 12.12 (Levi conjecture). If Q@ C C™ is a bounded domain, O is
differentiable and pseudoconvez, then € is a domain of holomorphy.

Proof. We need prove that, for each point a* in 02, there exists an analytic
function on 2 which can not be analytically extension over a*. Fix a* € 00
arbitrarily. Let points a; in ) satisfy a; — a*. We shall construct an analytic
function F satisfying F'(a;) =4 (i = 1,2,---). Then the proof is completed.

For each a;, we choose a neighborhood U;, a; € U;, and the intersection of
every two of U; is void. Let functions p; € C*°, p; > 0, Supp p; C U;, and be
equal to 1 in a more smaller neighborhood of a;. Let f = 9(> ip;) € C&il)(ﬁ)
to solve Ju = f. By the solvability of J-problem on a pseudoconvex domain
and inner regularity theorem, the solution u exists and u € C*°(Q). Let F =
> ip; — u, then OF = 3(>_ip;) — Ou = f — Ou = 0. Hence F is analytic on Q.
If we can prove u(a;) = 0, then

F(a;) = (Z ip; —u)(a;) =i.

To prove u(a;) = 0, we must use the estimate of d-solution. By lemma 3.13, if
a p.s.h. function ¢ on € satisfies

/ ‘f|2€7<‘97|2|2 < +o0,
Q

then the solution u to Ju = f has the estimate

/ fu?eme 71" S/ |f2e# 71 < 40,
Q Q

If we can choose this p.s.h. function ¢ such that ¢ descends fast enough in a
neighborhood of a;, ¢(a;) = —oo ( note p.s.h. function can have value —oo
), then by e=#~12*(a;) = +oo (fast enough), if u(a;) # 0 ( note u is C> ),
it contradicts to [ lul2e=#=1#1" < 400, Hence the choice of ¢ must satisfy
S/ |f|2e**""z‘2 < +00 at the same time. By f = 93 ip:), Y. ip; is equal to i
near a;, so f vanishes near a;, it is possible to choose this ¢. How do we choose
©? First welet ¢ = 3" pmloglz —aml|, ¥ € C> except z = a,, (m=1,2,---),
its support C |J,,, Supp pm. Usually ¢ is not p.s.h.. Consider x = —log d+|z|*.
Since  is pseudoconvex, —log d is C* and p.s.h., then —log d + |z|? is strictly
p.s.h., obviously, as z — 9Q, x(z) — oo. Choose a function 0 : R — R
with ¢/ > 0, ¢” > 0. We will show that ¢ = o o x + 9 satisfying the conditions
mentioned above:

19 ¢ is p.s.h.

In fact,

9;0;(c 0 x) = (0" 0 x)0;0;x + (6" 0 X)0;x o rlined; x;
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2

D 00500 )& =Y (0 0 X)(0id;x)&E; + (0" o x) ‘Z(&X)f
> (o' ox) Y16,

where, in above, we used the property that o’ > 0, and (0;9,x) = (8;0;(—log d + |2|*)) >
I. Therefore, when z ¢ Supp ¢ C U,,, Supp pm.,

D (0:0;0)6:85 =Y 0:0(0 0 x + V)&
= 0:0(0 0 x)&E; > 0.
But z is in a sufficiently small neighborhood near a.,, and p,, = 1,
(Si]‘ 1
|z —am|?> |z —am|*
Z@-gﬂlogp — am &€ = Tz —aml? Z &% — 7|4 ’Z(Zl —ap,)é
-lj

= \z am Z|§1|2 (Z|§1 ) am‘z

> 0.

(0;0,2log|z — ap|) = ((z — a3,z — @) 5

At other points in Supp pm, (aﬁjw) may be negative definite, but they are
bounded. If ¢’ increase fast enough ( ¢” larger ), then

(o' 0 X)(Z &1%) + Z(aigﬂb)figj > 0.

Thus ¢ = 0 0o x + ¥ is p.s.h..

20
/IfIQe‘*”“Z‘Q < +o0.

In fact, because f = 0 in the sufficientlly small neighborhoods of every
am, |f |26_1/’_‘Z‘2 are locally bounded except for these small neig hborhoods.
If we choose o satisfying o(z) — +oo fast enough as x — +oo, then, as
z = 09, x(2) — 00. So (7 0x)(2) — 400, 77X} — 0, and

/|f|26_w_|z|2 e = / If2e 717" < 4o,

The concrete constrution is choosing o’ first, then defining o by o = [o”.
The proof of the theorem is completed. O
12.5 Homander’s Theorem

The above method of using Lax-Milgram Lemma and the Morrey Tirck can be
extended to any “psudoconvex” domain in a Kahler manifold to solve 0-equation
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for L-value forms where L is a Hermitian line bundle, using the notions diesucced
in the previous chapter.

We first discuss the notion of pesudoconvexity. Let X be a complex manifold
and Y CC X an open subset whose boundary dY is smooth and of real codi-
mension 1. For each z € 9Y thre is a neightborhood U on z € and a smooth

function p : U — R such that U NJY = {p = 0} and dp|unsy is nowhere
zero. The complex tangent space to Y at x € Y is the collection of all vectors
v € Tx; such that v € Tyy,, and Jv € Tyy,,, where J is the almost complex
structure on X associated to the complex structure. We write

v E Talig,x'
Note that if v € Talig,x then dplynay (x)v = 0 and Jdp|ynsy (z)Jv = 0, and thus
dp(x)v = 0.
Conversely, if dp(x)v =0, then dp(z)Jv = JOp(x)v = 0, and thus we see that
Tali?,m = Kernel dp(x).

Next we pursue a notion of curvature of the boundarythat is a ppropriate in
complex geoemtry. With this pursit in mind, consider the (1, 1)-form ddp(x)
on the boundary 0Y. We say that the point = € 9Y is pseudoconvezr boundary
point if for all v € Téi’?,w’

90p(z)(v,v) > 0.

Observe that if p is replaced by hp for some smooth positive function A, then
00(hp) = hddp + Op A Oh + Oh A Dp.

It follows that for v, w € Talggx,
90(hp(x)) (v,5) = h()0Bp(x) (v, D).

Thus the notion of pseudoconvexity does not depend on the choice of the func-
tion p. The form

is called the Levi form.

Recall that from Bochner-Kodaira’s formula (see previous section) for any
smooth E-valued (0, g)-form ¢,

where

Vol = | 979565 ik
M
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5 « jl"'jq
(Ric, ) / RS 6% o B0,

Jl Jq
(©,6) Z / e, P

where (Q is the curvature form of E. Notice that

(09, ¢) = 9] + [ ¢]I*,

so the Lax-Milgram Lemma can be applied. Using the same Morrey’s trick, we
can get

Theorem (Hormander) Let (X,g) be a Kahler manifold and let L — X be
a holomorphic line bundle with Hemitian metric h having the curvature  such
that

(Rico, o) n + (b, 0)r > || @]

for some positive constant c. Let'Y be a pesudoconvex domain in X. Then, for
each L-valued (p,q) form w such that

/ |w\fl,ng <+oo and Ow=0
Y
in the sese of distribution, there exists a L-valued (p,q — 1) form u such that

_ 1
ou=w and / |ul? AV < */ w7 gaV.
Yy ' cJy 7

As a consequence of Hormander’s theormre, we re-proves the Kodaria’s van-
ishing theorem.



Chapter 13

Positive Closed Currents
Theory

13.1 Plurisubharmonic functions

When n = 1, for a C?-function u defined on an open subset Q C C, we recall
that w is harmonic on Q <= Au = 0 <= locally u = Re(f) for f € O <
dd°u = 0 <= Ya € Q,Au,[¢]) C Q such that u(a) = & [7"u(a + Ce)do.
And wu is subharmonic on Q if and only if u; 2 — [—o00, +00) is semicontinuous

such that )
u(a) < i/ u(a + Ce')dh.
0

27
As an example, for any local holomorphic function f, log|f| is subharmonic.
When n > 1, for any C?-function v defined on an open subset Q C C”, we

define
w is harmonic on ) <= u € H(Q) <= Au = 0.

u is subharmonic on ) <= v € SH(Q}) <= Au > 0.
w pluriharmonic on Q <= u € PH(Q) <= dd°u = 0.
u is plurisubharmonic on Q <= u € PSH(Q)) <= ddu > 0.

We have

PH(Q) c H(Q)

2
PSH(Q) < SH(Q) C L},.(Q)
PH(Q) < PH(Q), H(Q) S SH(S).

The condition of C?-smooth is in general not required to define harmonic
functions.

140
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Definition Let u : Q@ C R™ — R be continuous. u is said to be harmonic if
u Z£ —o0 on each connected component of Q, and VB(a,r) C €,

1
u(@) = Alw,ar) = Sepo gy /B L u)

where A is the Lebesgue mesaure on R™.

Definition Let u :  C R™ — [—00,00) be upper semicontinuous. u is said to
be subharmonic if u Z —oo on each connected component of 2, and VB(a,r) C

Q,
1

(B0, 1)) /Bm,r) ue)dN(@)

where X is the Lebesgue mesaure on R™.

u(a) < A(u,ar) :=

Definition Let u : Q@ C R™ — R be upper semicontinuous. u is said to be
plurisubharmonic on  if u £ —oco on each connected component of 2, and for
every complex line 1, ulon; s subharmonic or u|on = —oo.

Remarks:

e log|f|> € PSH(Q), for any f € O(Q). Notice that log(|f1]? + -+ | fm|?)
may not be in PH(Q) for m > 1. But we always have

10g(|f1‘2 +oeeet ‘fm|2) € PSH(Q) C SH(Q) C Llloc(Q)'
o If u e C?(Q), then
82

0z Oz

u€ PSH(Q) < ( ) is semipositive definite matrix.

o If uy € PSH(Q),ur \ u, then u = limy ux, € PSH(Q).

e Let u € PSH(Q?). Then u*p. € C*NPSH() and Q. = {z €
Q | dist(x,0Q) > €}.

13.2 Currents

Recall that if f, g € C°[0,1], then f = g if and only if [ f(z)o(z) = [, g(z)b(z)
for every ¢ € C§°[0,1]. Also for closed intervals A, B C R, A = B if and only if
J4é(x) = [5¢(x). Here "functions” and ”subsets” can be regarded as linear
functional forms on C§°[0, 1]. These concepts are unified by a general concept
of currents: Let M be a real differentiable manifold with dim M = m. A current
of degree ¢ = m — p (or dimension p) is a real linear map T : D?(M) — R, such
that for any compact subset K of M, there exists constant C'x with

T(9)| < Ck sup |¢ln, Vo € DP(M) supp(¢) C K



CHAPTER 13. POSITIVE CLOSED CURRENTS THEORY 142

where [¢[n = 7<n |D!¢|, and where DP(M) is the set of smooth p-forms on
M with compact support. The set of currents of degree ¢ = m — p is denoted
by D/Q(M) = DIP(M). Typical examples are smooth or L}, . g-forms 3 with
T =[] is defined by T(¢) = [,, 8 A ¢ for ¢ € DP(M) with ¢ = m — p, as
well as p-dimensional oriented submanifold S € M with T = [S] defined as
T(¢) = |, s ¢

For any T € D'9(M), define dT" € D'9t1 (M) by
dT(¢) = (~=1)"'T(d¢),¥$ € Dyn—g—q(M).
We say that T is closed if dT = 0.

Notice that Stoke’s theorem implies that

d[S] = (—1)™7*1[39].

Now consider a complex manifold X with n = dim X. We define

meaning that

DP4(X) = the set of smooth (p,q) — forms with compact support,

and ) )
DPI(X)=D

n—pn—q(X) = the set of all (p,q) — currents.

’

TeD X) is called (weekly) positive if ¥(1,0)-form a4, ..., o, on X,

n—pm—q(
T/\iOél/\(jél/\"'/\Oép/\O_ép

is a positive measure, i.e. (T Adas Ad1 A---Aap Aadp)(¢) > 0,Ve € Ci°(X)
with ¢ > 0. We denote T > 0.

Example If u € C?(2) N PSH () where Q C C", then the matrix

Ou >0, i.e. semipisitive definite, <= i O Y(¢(¢ Cn) €C"
_ , ie. Vi , —, N
020z ) — P ol 020z !

so that T' = —gjaéu > 0 is semipositive definite, and hence is a positive current.
Example If u € L}, (Q), then

loc

we PSH(Q) «= T = —”2;1851; >0

as positive current.

Theorem (1) If u € PSH(Y), then T = %85u is a positive current.
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(2) (90-Poincare lemma) Let T be a closed positive (1,1)-curent. Then locally

T = iaéu
2

for some u € PSH(Q)).

Theorem (Poincare-Lelong) formula: Let X be a complex manifold and
f € O(X) be a holomorphic function. Then

YL oBlog 12 = [f = 0] e DM (X)

holds as currents.
Proof. We only prove n = 1. It is then a local problem so that we can consider
f(z) = 2™g(z), where g is defined on a neighborhood U of 0 and g(z) # 0 on

U. Then ~ -
d0log |f|* = 0d1og |z|*™

So we only need to show that

V-1

5 09log |z = [zero(=™)] € D(C).
™
In fact, Vo,
¥ 00tog (o) = Yy [ (@910 o
s 2 Jeo
_ _L*l/ 90log |2|*™)¢ using 9D + 5D = 0
27T C
_ 7;71 d(alog |z|2m)¢ using 82 =0
2 C
- _ \/?m / (Dlog|z|*) A D¢ using the fact that supp(¢) C A C C
T Jc
V=1Im [z 0¢ V—=Im [ 0pdzNdz
2 Joz 0z 2 Jc 0z z—0

=m¢(0). by Cauchy’s integral formula
On the other hand,

[zero(2"™))(¢) = m[{0}](¢) = me(0).

This proves the theorem for the case n = 1. The case when n > 1 is similar.
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13.3 Simgular metric

Kodaria’s vanishing theorem has been extended by Nadel to line bundles with
singular metric (i.e. h = {h,}, where h, may be singular). We write h, =

e e

, here we usually write k := K, if no risk of confusion, then the curvature

Oy, := 90k is not a smooth differential form anymore if the metrics singular(it
is in fact is called current). We say that e has non-negative (reps. positive)
curvature current if ©y, is a non-negative (reps. (1,1)- current, or equivalently,
the local representatives « are plurisubharmonic.

Currents: Recall that if f, g € C°[0,1], then f = g if and only if fol f(@)o(x)
fol g(x)p(z) for every ¢ € C§°[0,1]. Also for closed intervals A, B C R,
A = Bif and only if [, ¢(x) = [, ¢(x). Here ”functions” and ”subsets”
can be regarded as linear functional forms on C§°[0, 1]. These concepts
are unified by a general concept of currents: Let M be a real differentiable
manifold with dim M = m. A current of degree ¢ = m — p (or dimension
p) is a real linear map T : DP(M) — R, where DP(M) is the set of smooth
p-forms on M with compact support. Typical examples are smooth or
L}, g-forms B with T = [f] is defined by T'(¢) = [,, BN ¢ for ¢ € DP(M)
with ¢ = m — p, as well as p-dimensional oriented submanifold S C M
with T' = [S] defined as T'(¢) = [4 .

Poincare-Lelong formula: Let f € O(M) be a holomorphic function. Then

L odlog 12 = If =0

s

holds as currents.

Example of singular metric: Let L — M be a holomorphic line bundle. Let
m be a positive integer and s!, ..., s be sections of mL. Write s = sneq,
and define

1
Ko = —log(Jsh[? + -+ [sY )

This singular metric blows up exactly on the common zeros of the sections

1
S, ..,SN.

Let U C M be an open subset, and let ¢ be a locally integrable function
on U. We define

I(U) = {f € Om(U) : [fI?e™% € Lioo(U)}.

The corresponding sheaf of germs Zy is called the multiplier ideal sheave
associated to ¢.

Nadel proved that if ¢ is a plurisubharmonic, then the multiplier ideal
sheave 7, is a coherent sheaf of ideals.
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e Nadel’s Vanishing Theorem: Let X be a compact Kahler manifold with
Kahler form w, and let F be a line bundle with singular Hermitian metric
h = e~? such that /—100¢ > ew for some continuous function € > 0 (in
the sense of distribution). Then, for ¢ > 1, HY(X,Ox(Kx +F) ®Z,) =0
where Kx s the canonical line bundle of X.

The point of the proof is that any plurisubharmonic function is the limit of
a decreasing sequence of smooth plurisubharmonic functions, so eventually
it can be reduced to the smooth case.

e Lelong numbers of plurisubharmonic functions: The zero of the ideal sheaf
1Ly is then the set of points where e~? is not locally integrable. Such points
only occur where ¢ has poles, but the poles need to have a sufficiently high
order. If ¢ = Llog(|s}|?+ - +|sX|?) as in the example earlier, then one
has a notion of (log)-pole order. In general, the pole orders are defined
using the so-called Lelong numbers: Let X be a complex manifold and
¢ a plurisubharmonic function in a neighborhood U of z € X. Fix a
coordinate chart U near x, and let zbe a local coordinates vanishing on z.
The Lelong number of ¢ is defined to be the number

o o
v(o, ) == h?i)lgrclf log|x(z)z|2'
We also set
E.(¢) :={z € X;v(¢,z) > c}.

e A famous paper of Siu showed that E.(¢) is a complex analytic set.

e The Lelong number information v(¢,z) gives the information about the
vanishing order of f at x for f € 7y, which is stated as the lemma of
Skoda: Let ¢ a plurisubharmonic function on an open set U of X con-
taining x. Then (1). If v(é,z) < 1, then e~? is integrable in a neighbor-
hood of x. In particular, Ly, = Ouy; ( 2). If v(p,x) > n+ s for some
positive integer, then the estimate e=® > C|z — x| ~2("+%) holds in a neigh-
borhood of x, In particular, one obtains that Ly, C mff"xl, where My
is the mazimal ideal of Oy q; 3. The zero variety V(Zy) of Iy satisfies

Ean(¢) C V(Zy) C Ea(d).

e Nadel’s vanishing theorem plus Skoda’s lemma gives a new proof (without
using blow-ups) of Kodaira’s embedding theorem: Let X be a compact
Kahler manifold. Assume there exists a positive line bundle L over X,
then X can be embedded in projective space P .

e To prove the embedding theorem, it gets down to construct holomorphic
sections. Consider the long exact sequence of cohomology associated to
the short exact sequence

O*)I,ﬁ*)@x%@x/chﬁo
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twisted by O(K, ® L), and apply Nadel’s vanishing theorem of the first
H' group, we'll have: Let X be a weakly pseudo-convex Kahler manifold
with Kahler form w, and let F be a line bundle with singular Hermitian
metric h = e~ such that /—100¢ > ew for some continuous function
€>0. Let x1,...,xn be isolated points in the zero variety V(Zy,). Then
there is a surjective map

H(X,Kx ® L) — @ O(Kx ® L)y, ® (Ox/Tg)a;-
1<j<N

e Exercise: Assume that X is compact and L is a positive line bundle.
Let {x1,...,xn} be a finite set. Show that there are constants a,b > 0
depending only on L and N such that H°(X, L®™) generates jets of any
order s at all points x; for m > as + b,

Hint. Apply the above Corollary to L' = K)_(l ® L®™ with a singular
metric on L of the form h = hge ¥, where hg is smooth of positive
curvature, ¢ > 0 small and

P(z) =Y xi(z)(n+s—1)log )y |[w(z)?
with respect to coordinate systems (w,ij)(z))lgkgn centered at xz;. The
cut-off functions y; can be taken of a fixed radius (bounded away from 0)
with respect to a finite collection of coordinate patches covering X. It is
easy to see such h serves our purposes.

e Taking s = 2 and m with m > 2a + b as in the Exercise, then the sections
of H%(X, L®™) generates any pair of L, & L, for distinct points  # y in
X, as well as 1-jets of L at any point € X. The existence of the section
of H°(X, L®™) which generates any pair of L, & L, for distinct points
x # y in X implies that F' is injective. Now, we use the fact that there is
a section s of H(X, L®™) which generates 1-jets of L at any point z € X,
ie. the section s vanishes to the second order. Choosing sections s, - -, s"
such that the function s'/s,--- ,s"/s have independent differential at z,
then the holomorphic map

defined in a neighborhood of z is an immersion near x. This complete the
proof of Kodaira’s imbedding theorem.
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