
An Introduction to Computer Programming

(with MATLAB) for Scientific Computing

Weizhang Huang1

January 15, 2020

1Department of Mathematics, The University of Kansas, Lawrence, KS 66045 USA.

ii

Preface

These notes are prepared for students with basic knowledge on calculus and matrix theory.

Students are not required to have prior knowledge on the numerical methods discussed in

these notes. Students who are interested in numerical analysis and scientific computing

are encouraged to take courses and/or read textbooks in the area. An example is Burden,

Faires, and Burden [1].

iii

iv

Contents

Preface iii

1 Programming Basics 3

1.1 Decimal and binary number systems and conversion 3

1.2 Common components among computer languages 7

1.2.1 Data types . 8

1.2.2 Basic operators . 8

1.2.3 Selection and loop statements . 9

1.2.4 Functions . 10

1.3 Flowchart . 10

2 An Introduction to MATLAB 11

2.1 Data representations and types . 11

2.2 Arithmetic operations . 13

2.3 Relational and logical operators . 16

2.4 Selection and loop statements . 18

2.5 Functions . 20

2.6 How to plot data in MATLAB . 22

2.7 A few functions useful to know . 23

3 Lab 1: Convert Decimal Numbers into Binary Form 27

3.1 Problem description . 27

3.2 Planning . 27

3.3 Coding . 28

3.4 Testing . 30

3.5 Reporting . 31

4 Lab 2: Piecewise Linear Interpolation for a Given Data Set 33

4.1 Problem description . 33

4.2 Planning . 34

4.3 Coding . 34

4.4 Testing . 35

v

CONTENTS 1

5 Lab 3: The Method of Least Squares 37

5.1 Problem description . 37

5.2 Planning . 39

5.3 Coding . 39

5.4 Testing . 40

6 Lab 4: The Composite Gauss-Legendre Quadrature 41

6.1 Problem description . 41

6.2 Planning . 44

6.3 Coding . 44

6.4 Testing . 45

6.5 The composite Simpson’s rule . 46

7 Lab 5: Euler’s Scheme for Solving Ordinary Differential Equations 49

7.1 Problem description . 49

7.2 Planning . 50

7.3 Coding . 51

7.4 Testing . 51

7.5 Heun’s and RK4 schemes . 51

Bibliography 52

2 CONTENTS

Chapter 1

Programming Basics

In this chapter we study programming basics, including decimal and binary number systems

and their conversion, floating-point number representations in a computer, and common

components among computer languages.

1.1 Decimal and binary number systems and conversion

Numbers we use in daily life are called decimal numbers. Examples include 0, 12, 3.1415926

and 1234.56. Take 1234.56 as an example. We know that 1 is the digit for thousands,

2 for hundreds, 3 for tens, 4 for ones, 5 for tenths, and 6 for hundredths. Indeed, the

number is read as one thousand two hundred thirty four point five six. Translating this into

mathematics, we can express the number into a series of powers of 10, i.e.,

1234.56 = 1× 103 + 2× 102 + 3× 101 + 4× 100 + 5× 1

101
+ 6× 1

102
.

For this reason, decimal numbers are also called base-10 numbers. The digits we use are 0,

1, ..., and 9.

On the other hand, most modern computers use the so-called binary number system,

which uses base 2 and the digits 0 and 1. An example is 11011.01. To distinguish num-

bers in binary and decimal systems, we denote 11011.01 in the binary number system by

(11011.01)2. It can be expressed into a series of powers of 2 as

(11011.01)2 = 1× 24 + 1× 23 + 0× 22 + 1× 21 + 1× 20 + 0× 1

21
+ 1× 1

22
.

This explains the meanings of the digits. Moreover, it can be used to convert a binary

number into a decimal number. Indeed, carrying out the calculations of the right-hand side

terms, we have

(11011.01)2 = 16 + 8 + 0 + 2 + 1 + 0 + 0.25 = 27.25

Exercise 1.1.1. Convert the following binary numbers into decimal numbers: (1010101)2,

(111)2, and (0)2.

3

4 CHAPTER 1. PROGRAMMING BASICS

In the following example we explain how to convert decimal numbers into binary form.

Example 1.1.1. Convert x = 11 into binary form.

Since 23 < x < 24, we know that x can be expressed as

x = a× 23 + b× 22 + c× 21 + d× 20,

where a = 1 and b, c, and d are to be determined. From the above expression, we have

x− 1× 23 = b× 22 + c× 21 + d× 20.

On the other hand, x−1×23 = 11−1×23 = 3. Recall that b can take 0 or 1. If b = 1, then

the right-hand side of the above equation is at least 4, which is greater than the left-hand

side whose value is 3. Thus, b must be zero. With this, we have

x− 1× 23 − 0× 22 = c× 21 + d× 20

and

x− 1× 23 − 0× 22 = 11− 1× 23 − 0× 22 = 3.

Comparing these equations, we get c = 1. Inserting this into the above two equations yields

x− 1× 23 − 0× 22 − 1× 21 = d× 20,

x− 1× 23 − 0× 22 − 1× 21 = 11− 1× 23 − 0× 22 − 1× 21 = 1,

which lead to d = 1. Thus, we obtain

11 = (1011)2.

Now we use a slightly different procedure. First, we find the integer m such that

2m−1 ≤ x = 11 < 2m.

It is not difficult to see m = 4. Then, x can be expressed as

x =

(
a× 1

21
+ b× 1

22
+ c× 1

23
+ d× 1

24

)
× 24 = (0.abcd)2 × 24.

The values of a, b, c, and d are to be determined.

Define x0 = x× 2−4. Then, x0 = 11× 2−4 = 11/16 and 2x0 = 22/16 = 11/8. Moreover,

2x0 has the expression

2x0 = a+ b× 1

21
+ c× 1

22
+ d× 1

23
.

Since 2x0 ≥ 1, we know that a = 1.

Next, we define x1 = 2x0− 1. We can find that x1 = 11/8− 1 = 3/8 and the expression

of 2x1 is

2x1 = b+ c× 1

21
+ d× 1

22
.

1.1. DECIMAL AND BINARY NUMBER SYSTEMS AND CONVERSION 5

Since 2x1 = 6/8 < 1, we have b = 0.

Repeating this process, we can find c = 1 and d = 1. Thus, we obtain the binary form

of 11 is

11 = (0.1011)2 × 24,

which is the same as what we obtained before.

The second procedure is summarized in Table 1.1.

Table 1.1: The summary of the second procedure to convert x = 11 into binary form.

xn test binary digits

x0 = x× 2−4 = 11/16 2x0 = 22/16 ≥ 1 a = 1

x1 = 2x0 − a = 3/8 2x1 = 6/8 < 1 b = 0

x2 = 2x1 − b = 3/4 2x2 = 6/4 ≥ 1 c = 1

x3 = 2x2 − c = 1/2 2x3 = 1 ≥ 1 d = 1

x4 = 2x3 − d = 0 2x4 = 0 computation stops

Exercise 1.1.2. Convert the following decimal numbers into binary form using the pro-

cedure shown in Table 1.1: 15, 3.25, 8 and 4.

When x is nonzero, there exists an integer m such that 2m−1 ≤ x < 2m. Then, x can

be expressed as

x = ±
(
a1 ×

1

21
+ a2 ×

1

22
+ · · ·+ an ×

1

2n
+ · · ·

)
× 2m (1.1)

= ±(0.a1a2 · · · an · · ·)2 × 2m, (1.2)

where a1 = 1 and an = 0 or 1 for n = 2, 3, Moreover, the procedure in Table 1.1 can be

translated into Algorithm 1.1.1 to convert any nonzero decimal number into binary form

(1.2).

Exercise 1.1.3. Explain why the zero cannot be expressed into the form (1.2).

Exercise 1.1.4. Explain why a1 = 1 in the binary form (1.2) for any nonzero decimal

number.

Exercise 1.1.5. Show that Step 2(a) of Algorithm 1.1.1 is correct for n = 1.

Interestingly, (1.2) can be used to show how (real) numbers are represented in a com-

puter. We first notice that a computer has a finite amount of storage units so a (real)

number on a computer can only have a finite number of fractional digits (called the man-

tissa) and its exponent m is in a bounded range. Thus, a number in a computer looks

like

x = ±(0.a1a2 · · · an)2 × 2m, (1.3)

6 CHAPTER 1. PROGRAMMING BASICS

Algorithm 1.1.1 Convert nonzero decimal numbers into the binary form (1.2).

1. Initialization: Determine the sign of x and the integer m such that 2m−1 ≤ |x| < 2m.

Set x0 = |x| × 2−m.

2. For n = 1, 2, · · · do

(a). If 2xn−1 ≥ 1, set an = 1; otherwise, an = 0.

(b). Compute xn = 2xn−1 − an.

(c). If xn = 0, stop the computation.

where n is a positive integer, a1 = 1, and m (which is also saved in binary form) is an

integer in a bounded range. Each of the digits is stored in a bit, with 8 bits being grouped

into a byte. As an example, we now consider two most common number representations in a

computer. According to the 754-2008 standard of the Institute of Electrical and Electronics

Engineers (IEEE), the 32-bit floating-point format (single precision) uses

• 1 bit for sign,

• 23 bits for the mantissa (and n = 24),

• 8 bits for the exponent.

This is shown in Fig. 1.1. One may notice that a1 is not saved since it is known to be 1

for any nonzero number. Moreover, the largest integer that can be stored for the exponent

is (11111111)2 = 255. In order to represent negative exponents, the actual exponent is

obtained by subtracting 127 from what is stored in the exponent part. Thus, the bits are

converted into a numeric value as

< sign > ×(0.1 < mantissa >)2 × 2<exponent>−127.

Note that zero cannot be expressed in the above form. Special specifications are defined for

zero and several other special values including NaN (Not a Number).

± 8 bits

for exponent
1

23 bits

for mantissa

Figure 1.1: IEEE 754-2008 format for 32-bit floating-point numbers.

The IEEE 754-2008 specification of 64-bit floating-point (double precision) numbers is

shown in Fig. 1.2. The bits are converted into a numeric value as

< sign > ×(0.1 < mantissa >)2 × 2<exponent>−1023.

1.2. COMMON COMPONENTS AMONG COMPUTER LANGUAGES 7

± 11 bits

for exponent
1

52 bits

for mantissa

Figure 1.2: IEEE 754-2008 format for 64-bit floating-point numbers.

To conclude this section, we take a look at basic hardware of a computer; see Fig. 1.3.

The central processing unit (CPU) is the brain of a computer, which carries out all of basic

operations on data. Data are transferred between CPU and the main memory and between

the main memory and the hard disk. It is pointed out that numbers are stored and operated

in CPU using more bits than they are stored in the main memory or the hard disk. Roundoff

error can occur when they are transferred between CPU and the main memory. Roundoff

error can also occur when numbers have longer fractional digits than those in the mantissa.

Although it is very small (∼ 10−16 for double precision), roundoff error can accumulate and

be amplified greatly when algorithms are not carefully designed (in this case the algorithms

are unstable) or the problem at hand is ill-conditioned. While stability of algorithms and

conditioning of problems are two important topics considered in scientific computing, we

will not go into detail due to the scope of this course.

Main Memory

CPU

Hard Disk

Input

Devices

Output

Devices

Figure 1.3: Basic hardware for a computer.

1.2 Common components among computer languages

Computer CPUs only understand instructions written in binary (machine code). It is ex-

tremely difficult for humans to write programs in machine code. Computer languages have

been developed over the years so people can write programs more easily. Those languages

serve more or less as translators that translate what people write into something computers

8 CHAPTER 1. PROGRAMMING BASICS

understand. Commonly used computer languages include C, C++, Fortran, Visual Basic,

Python, and JavaScript. In this course, we will focus on MATLAB1, which “combines a

desktop environment tuned for iterative analysis and design processes with a programming

language that expresses matrix and array mathematics directly” (as quoted from the MAT-

LAB website). Another very useful language is R, which is also a combined language and

environment but is used more for statistical computing and graphics.

High-level computer languages share many common features. In this section we overview

some of those features, including data types, basic operators, selection and loop statements,

and functions. These features will be discussed in detail in the next chapter for MATLAB.

1.2.1 Data types

Data types are classifications that specify what variables or objects can hold in program-

ming, and must be referenced and used correctly. Common examples of data types are

• Float (for single precision real numbers; recall from the previous section that single

precision numbers usually occupy 32 bits in computer memory)

• Double (for double precision real numbers; recall from the previous section that single

precision numbers usually occupy 64 bits in computer memory)

• Integer (for integer numbers)

• Character (for single characters such as a, 4)

• String (for groups of characters such as abcd, a3c4#)

• Boolean (true or false)

1.2.2 Basic operators

Each computer language provides a number of operators. Common examples of basic op-

erators are

• Assignment Operators are used to assign the result of an expression to a variable.

For example,

variable = expression

means that the computer evaluates the expression on the right-hand side and then

stores the result in the memory unit assigned to the left-hand side variable. Languages

may provide various shorthand assignment operators.

• Arithmetic Operators: + (addition), - (subtraction), * (multiplication), and /

(division). Many languages also provide modulo division.

1MATLABR© is a trademark of The MathWorks, Inc., Natick, MA 01760.

1.2. COMMON COMPONENTS AMONG COMPUTER LANGUAGES 9

• Relational Operators are used to make comparison: < (less than), <= (less than or

equal to), > (greater than), >= (greater than or equal to), == (equal to), and != or ~=

(not equal to).

• Logical Operators are used when more than one conditions are to be tested: &&

(logical AND), || (logical OR), ! or ~ (logical NOT). The result of any logical

expression is either TRUE or FALSE.

1.2.3 Selection and loop statements

In addition to assignment statements, most commonly used statements include selection and

loop statements. Brief information and basic formats of these statements are given here.

Detailed explanation and examples for the selection and loop statements in MATLAB will

be given in §2.4.

A selection statement selects among a set of statements depending on the value of a

controlling expression. Selection statements typically include if and switch statements.

Their syntaxes look like

if (conditional-expression)

{
statements

}
elseif (conditional-expression) (optional)

{
statements

}
else (optional)

{
statements

}

switch (expression)

case (constant-expression)

{
statements

}
...

default: (optional)

{
statements

}

10 CHAPTER 1. PROGRAMMING BASICS

Common examples of loops include for and while loops. Their syntaxes looks like

for (initialization Statement; test Expression; increment Statement)

{
statements

}

initialization statement

while (condition)

{
statements

increment/decrement statement

}

The break statement is often used with loop statements to break the loop.

1.2.4 Functions

Each computer language provides a large set of functions including elementary functions in

mathematics. At the same time, it also allows us to define our own functions. Generally

speaking, this can be done inline (embedded in the code) or in file (programs in file). In

addition to the rules for defining these functions, we need to pay special attention to the

scope of the functions in file, for instance, where functions are visible, in the same file or

in the same folder, public or private. See §2.5 for MATLAB functions.

1.3 Flowchart

Flowchart is a graphical representation of an algorithm. It is a very useful tool to plan a

program because it indicates the flow and steps of information and processing. Flowcharts

are used in analyzing, designing, documenting or managing a process or program in various

fields.

Here we do not attempt to learn how to draw flowcharts using common symbols. Instead,

we want to emphasize the importance of planning (steps and flow) for an algorithm

before we begin to write the code. We will address this issue in every lab.

Chapter 2

An Introduction to MATLAB

MATLAB, standing for MATrix LABoratory, combines an interactive desktop environment

with a matrix-based computer language and provides an abundance of built-in commands,

math functions, and tool boxes for numerical computation, visualization, and programming.

This chapter presents an introduction to MATLAB. We study its basics such as data types,

arithmetic operations, relational operations, selection and loop statements, functions, and

graphics. Our goal is to get ourself ready in a reasonably short time for further studies

of programming principles for scientific computing in later chapters. It is worth reminding

that the best way to learn a computer language is with our hands. So try as many examples

as possible on the computer.

2.1 Data representations and types

MATLAB needs to be installed on the computer you will be using. After it is installed, you

can start MATLAB by double clicking its icon.

Once MATLAB is started, you can find the command window with the prompt sign >>.

Then try commands pwd and help. (In the following block, the left column are MATLAB

commands while the right columns are explanations.)

>> pwd This shows the path of the current directory/folder

>> help help This gets help for help

>> help plot This gets help for plot

Note that MATLAB is case-sensitive. For example, plot is different from Plot.

A distinct feature of MATLAB (from many other languages such as C or C++) is that

there is no need to declare data types for variables before their use. A variable’s data type

is determined from its first assignment. Nevertheless, it is often more efficient (in terms

of memory use and CPU time) to preallocate arrays (including vectors and matrices) be-

fore their first use. This can be done by assignment statements. For example, the command

11

12 CHAPTER 2. AN INTRODUCTION TO MATLAB

>> A = zeros(100, 200);

preallocates a 100-by-200 block of memory for variable A and initializes it to be zero.

MATLAB’s data representations are all interpretations of one basic structure, the ma-

trix. This is a rectangular array of numbers, stored and manipulated internally using the

computer’s floating point format and operations. The basic matrix data structure can have

special interpretations in a number of situations.

>> x = 3.14; x is a real number (a 1-by-1 matrix)

(double precision by default)

>> x = 3.14 what is the difference?

>> v = [1, 2, 3, 4]; v is a row vector

(or a 1-by-4 matrix)

>> v = [1 2 3 4]; what is the difference?

>> u = [1; 2; 3; 4]; u is a column vector

(or a 4-by-1 matrix)

>> A = [1, 2; 3, 4]; A is a 2-by-2 matrix

>> b = 0.3 + 0.4*i; b is a complex number

>> C = [0.1 0.2; 0.3 0.4] ... what ... is used for?

>> + [0.5 0.6; 0.7 0.8]*i; C is a complex matrix

>> ch = ’a’; This creates a character ’a’ and

assigns it to variable ch

>> st = ’Hello World’; st is a string or a character array

>> sm = [’Hello’; ’World’]; sm is a string matrix

>> aa = {’a’, 2; ’b’, 3}; aa is a cell that uses { }

It is important to point out that while being displayed according to their defined sizes

and shapes, arrays are actually stored in memory as a single column of elements. Consider

the matrix

A =

1 2 3

4 5 6

7 8 9

 .
Matrix A can be accessed via matrix indexing as A(3, 2) = 8. On the other hand, matrices

are actually stored column by column; in other words, A is stored in memory as a vector

containing the sequence of elements 1, 4, 7, 2, 5, 8, 3, 6, 9. As a result, A can also be accessed

via the so-called linear indexing (denoted as A(:)); for example, we have A(2) = 4 and

A(6) = 8. Understanding how matrices are stored in memory is often useful in making the

code more efficient in implementation.

The MATLAB data types commonly used in scientific computing are listed as follows.

• Numeric Types include integers, floating-point data (single precision, double preci-

2.2. ARITHMETIC OPERATIONS 13

sion (default), and complex).

• Logical Data Type represents true or false states using the numbers 1 and 0,

respectively.

• Characters and Strings include character arrays such as c = ’Hello World’ and

string arrays, such as str = "Greetings friend".

• Cell Arrays are arrays that can contain data of varying types and sizes, such as

myCell = {1, 2, 3; ’text’, rand(5,10,2), {11; 22; 33}}.

• Structures are arrays with named fields that can contain data of varying types and

sizes, such as s.a = 1; s.b = {’A’,’B’,’C’};

• Function Handles: A function handle is a data type that stores an association to

a function. To create a handle for a function, precede the function name with an @

sign. For example, if we have a function called myfunction, we can create a handle

named f as: f = @myfunction;

Exercise 2.1.1. Give two examples of variables in each of numeric, logical, character,

and cell types.

2.2 Arithmetic operations

MATLAB has two different types of arithmetic operations: matrix operations and array

operations. They are used to perform numeric computations, for example, adding two

numbers, raising the elements of an array to a given power, or multiplying two matrices.

Matrix operations follow the rules of linear algebra.

• + (matrix addition) and - (matrix subtraction). Although they are named matrix

addition and subtraction, they should be more precisely called array addition and

subtraction (see discussion on array operations below). On the one hand, they act

like ordinary matrix addition and subtraction when the operands have the same size.

For example,

2 + 3 = 5

[1, 2; 3, 4] - [5, 6; 7, 8] = [-4, -4; -4, -4]

On the other hand, when operands have compatible sizes but not necessarily the

same size each input is implicitly expanded as needed to match the size of the other

during execution of the computation. We give several examples in the following. The

reader can find more information on compatible sizes by searching Compatible Array

Sizes for Basic Operations.

14 CHAPTER 2. AN INTRODUCTION TO MATLAB

(1) 10 + [1, 2; 3, 4] In this example, the first operand is expanded into [10,

10; 10, 10] to match the size of the second operand during execution of the

calculation. Thus, we have

10 +

[
1 2

3 4

]
=⇒

[
10 10

10 10

]
+

[
1 2

3 4

]
=

[
11 12

13 14

]
(2) [1, 2; 3, 4] + 10 The second operand is expanded into [10, 10; 10, 10]

to match the size of the first operand during execution of the calculation, i.e.,[
1 2

3 4

]
+ 10 =⇒

[
1 2

3 4

]
+

[
10 10

10 10

]
=

[
11 12

13 14

]
(3) [1, 2; 3, 4] + [5, 6] The second operand is expanded into [5, 6; 5, 6]

to match the size of the first operand during execution of the calculation. This

gives [
1 2

3 4

]
+
[
5 6

]
=⇒

[
1 2

3 4

]
+

[
5 6

5 6

]
=

[
6 8

8 10

]
(4) [1, 2; 3, 4] + [5; 7] The second operand is expanded into [5, 5; 7, 7]

to match the size of the first operand during execution of the calculation, which

yields [
1 2

3 4

]
+

[
5

7

]
=⇒

[
1 2

3 4

]
+

[
5 5

7 7

]
=

[
6 7

10 11

]
(5) [1;2;3] + [1, 2; 3, 4] The operands do not have compatible sizes.

• *: multiplication. It works for matrices under the rules of linear algebra, with scalars

and vectors being considered as special forms of matrices. For example, A*B makes

sense when the number of columns of A is equal to the number of rows of B. For

any scalar alpha, alpha*A or A*alpha is a standard multiplication of matrices and

scalars. For examples,

[1, 2; 3, 4]*5 = [5, 10; 15, 20]

[1, 2; 3, 4]*[5, 6] (error using *)

[1, 2; 3, 4]*[5; 6] = [17; 39]

[1, 2; 3, 4]*[5, 6; 7, 8] = [19, 22; 43, 50]

• /: right division. This is used mostly for scalars, i.e., a scalar divided by another

scalar, for example,

3/4 = 0.75

(2*10)/5 = 4

It can also be used for matrices (although rare), for example, A/B is calculated via

(A’\B’)’, where ’ is the matrix transpose and \ is the left division that is to be

explained below.

2.2. ARITHMETIC OPERATIONS 15

• ^: power. For example, 3.1^2.5 represents the 2.5th power of 3.1. Note that the

3rd power of -2 should be expressed as (-2)^3. Moreover, A^2.1 stands for the 2.1th

power of matrix A. For example,

[1, 3; 2, 1]^2 = [7, 6; 4, 7]

• \: Backslash or left matrix divide. A\B is the matrix division of A into B, which is

roughly the same as INV(A)*B, except it is computed in a different way. If A is an

m-by-n matrix with m < n or m > n and B is a column vector with m components,

or a matrix with several such columns, then A\B is the solution in the least squares

sense to the under- or overdetermined system of linear system Ax = B. For example,[
1 2

1 −1

][
x1
x2

]
=

[
3

0

]
.

The solution for this system is given by

x = [1, 2; 1, -1]\[3; 0] = [1; 1]

On the other hand, array operations execute element by element operations on

corresponding elements of vectors, matrices, and multidimensional arrays. More specifically,

if the operands have the same size, then each element in the first operand gets matched

up with the element in the same location in the second operand. If the operands have

compatible sizes, then each input is implicitly expanded as needed to match the size of the

other. The period character “.” distinguishes array operations from matrix operations.

Moreover, MATLAB does not provide .+ and .- because, as mentioned above, + and -

already serve as array addition and subtraction.

• .*: array multiplication.

[1, 2; 3, 4].*[5, 6; 7, 8] = [5, 12; 21, 32]

[1, 2; 3, 4].*[5, 6] = [5, 12; 15, 24]

In this example, the second operand is expanded into [5, 6; 5, 6] to match the size

of the first operand during execution of multiplication.

[1, 2; 3, 4].*[5; 7] = [5, 10; 21, 28]

In this example, the second operand is expanded into [5, 5; 7, 7] to match the size

of the first operand during execution of the calculation.

• ./: right-array division. This operation is similar to the array multiplication. For

example,

[1, 2; 3, 4]./[5; 7] = [1/5, 2/5; 3/7, 4/7]

where the second operand is expanded into [5, 5; 7, 7] to match the size of the

first operand.

• .^: array power. This operation is similar to the array multiplication. For example,

[1, 2; 3, 4].^[5; 7] = [1^5, 2^5; 3^7, 4^7]

where the second operand is expanded into [5, 5; 7, 7] to match the size of the first

16 CHAPTER 2. AN INTRODUCTION TO MATLAB

operand. [1, 2; 3, 4].^3 = [1^3, 2^3; 3^3, 4^3] where the second operand is

expanded into [3, 3; 3, 3] to match the size of the first operand.

Exercise 2.2.1. Do the calculations by hand and check your answers with MATLAB.

(1) [1, 2; 3, 4] - 20 and [1, 2; 3, 4] - [1;2]

(2) [1;2]*[1, 2; 3, 4] and [1;2].*[1, 2; 3, 4]

(3) [1, 2; 3, 4]^2 and [1, 2; 3, 4].^2

(4) [1;2;3].*[1, 2; 3, 4]

Exercise 2.2.2. (1) Solve the following linear system by hand,{
x+ y = 15

x− y = 5
or Au = b where A =

[
1 1

1 −1

]
, b =

[
15

5

]
.

(2) Input A and b in MATLAB and then find the solution u using the \ operator. Verify

your answer with the one obtained by hand.

(3) Try inv(A), det(A), [V,D] = eig(A), and A’*A. What are they?

2.3 Relational and logical operators

The relational and logical operators perform element-wise comparisons between two

arrays. The arrays must have compatible sizes to facilitate the operation. Arrays with com-

patible sizes are implicitly expanded to be the same size during execution of the calculation.

The entries of the resulting array are either 1 (true) or 0 (false).

Relational operators in MATLAB include

• < (less than)

• <= (less than or equal to)

• > (greater than)

• >= (greater than or equal to)

• == (equal to)

• ~= (not equal to)

For example,

2.3. RELATIONAL AND LOGICAL OPERATORS 17

• [6, 6; 6, 6] > [5, 6; 7, 8] = [1, 0; 0, 0]

• [6, 6; 6, 6] > [5, 6] = [1, 0; 1, 0] (the second operand is expanded)

• [6, 6; 6, 6] > [5; 6] = [1, 1; 0, 0] (the second operand is expanded)

• [1, 2; 3, 4] > 2.5 = [0, 0; 1, 1] (the second operand is expanded)

The following are commonly used logical operators.

• & (and): A & B performs a logical AND of arrays A and B and returns an array containing

elements set to either logical 1 (true) or logical 0 (false). An element of the output

array is set to logical 1 if both A and B contain a nonzero element at that same array

location. Otherwise, the array element is set to 0. For example,

4 & 0 = 0

0 & 0 = 0

4 & 3 = 1

[1, 2; 1, 0] & [0, -1; 2, 3] = [0, 1; 1, 0]

[1, 2; 1, 0] & [0, -1] = [0, 1; 0, 0] (the second operand is expanded)

true & false = 0

• | (or): A | B performs a logical OR of arrays A and B and returns an array containing

elements set to either logical 1 (true) or logical 0 (false). An element of the output

array is set to logical 1 if either A and B contain a nonzero element at that same array

location. Otherwise, the array element is set to 0. For example,

4 | 0 = 1

0 | 0 = 0

4 | 3 = 1

[1, 2; 1, 0] | [0, -1; 2, 3] = [1, 1; 1, 1]

[1, 2; 1, 0] | [0, -1] = [1, 1; 1, 1] (the second operand is expanded)

true | false = 1

• ~ (not): ~A returns a logical array of the same size as A. The array contains logical 1

values where A is zero and logical 0 where A is nonzero. For example,

~[1, 2; 1, 0] = [0, 0; 0, 1]

Exercise 2.3.1. Compute the following expressions and check your answer with MAT-

LAB.

(1) [1, 2; 3, 4] == 3

(2) [1, 2; 3, 4] >= [1, 2]

(3) [1, 2; 3, 4] ~= [1; 3]

(4) [1, 2; 3, 4] & [0, 5]

18 CHAPTER 2. AN INTRODUCTION TO MATLAB

(5) [1, 2; 3, 4] | [0; 5]

(6) (3 > 2) & (1 >= 2)

(7) (3 > 2) | (1 >= 2)

2.4 Selection and loop statements

Selection statements in MATLAB include if and switch statements. The syntax of if

statement is

if conditional-expression

statements

elseif conditional-expression (optional)

statements

else (optional)

statements

end

Consider the step function

y =

{
0, for x < 0

1, for x ≥ 0.
(2.1)

The if statement for this function is

x = input(’Enter a number: ’);

if x<0

y = 0;

else

y = 1;

end

disp(y)

Here, we have used input and disp. Check out their usage using help.

The syntax of switch statement is

switch switch expression

case case expression

statements

case case expression

statements

...

2.4. SELECTION AND LOOP STATEMENTS 19

otherwise (optional)

statements

end

Here is an example for switch.

grade = input(’Enter a letter grade: ’);

switch (grade)

case {’A’, ’a’}
disp(’Excellent’);

case {’B’,’b’}
disp(’Very Good’);

case {’C’,’c’}
disp(’You Passed’);

case {’D’,’d’}
disp(’Close. Try It Again’);

case {’F’,’f’}
disp(’Better to Try It Again’);

otherwise

disp(’Invalid Grade Entered’);

end

fprintf(’ Your grade is %s\n’, grade)

Notice that the input should be a character or a string, such as ’a’ and ’abcd’. Check

out the usage of fprintf. Here, %s is the format specification for character arrays (%d for

integers, %e and %f for real numbers) and \n means moving to a new line.

The MATLAB loop statements include the for and while statements. The syntax of

the for statement is

for index = values

statements

end

As an example, we want to compute the sum
N∑
n=1

n for a given N = 100. The for

statement is

N = 100;

sum = 0;

for n = 1:N

sum = sum + n;

end

fprintf(’sum = %d\n’, sum);

20 CHAPTER 2. AN INTRODUCTION TO MATLAB

Notice that n = 1:N is the short notation for n = 1:1:N with the middle ‘1’ standing for

increment 1. If we want to compute the sum of positive even integers less than or equal to

N = 100, the code becomes

N = 100;

sum = 0;

for n = 2:2:N

sum = sum + n;

end

fprintf(’sum = %d\n’, sum);

Notice that 2:2:N is a vector of the form [2, 4, ..., N] for even N or [2, 4, ..., N − 1] for odd

N , and 2 at the middle represents the increment.

The syntax of the while statement is

initialization statement

while conditional expression

statements

increment/decrement statement

end

The example of computing the sum
N∑
n=1

n can be written into the while loop as

N = 100;

sum = 0;

n = 1;

while (n <= N)

sum = sum + n;

n = n + 1;

end

fprintf(’sum = %d\n’, sum);

Exercise 2.4.1. Write a short script for computing the factorial N ! for a given non-

negative integer N using the for and while statements. Compare your results with those

obtained with the MATLAB function factorial. Notice that you may need the if state-

ment to test the situations N = 0 and N > 0.

2.5 Functions

MATLAB provides numerous built-in functions including elementary functions in mathe-

matics. In the meantime, it also allows the user to create several types of functions, including

anonymous functions, local functions, nested functions, and private functions. We focus on

2.5. FUNCTIONS 21

the first two that are more commonly used.

• Anonymous Functions: An anonymous function is a function that is not stored in

a program file, but is associated with a variable whose data type is function handle.

Anonymous functions can accept inputs and return outputs, just as standard functions

do. However, they can contain only a single executable statement. These functions

are similar to inline functions in C or C++. For instance,

f = @(x) sin(2*pi*x); (try f(1))

f = @(x, y) x^2 + y^4; (try f(1,0))

f = @(x) x.^2; (try f(1) or f([1,2]))

f = @(x) [x(1)+x(2); x(1)*x(2)]; (try f([1,2]))

• Local Functions: MATLAB program files can contain code for more than one func-

tion. In a function file, the first function in the file is called the main function. This

function is visible to functions in other files, or can be called from the command line.

Additional functions within the file are called local functions or subfunctions, and

they can occur in any order after the main function. Local functions are only visible

to other functions in the same file.

We now discuss how to create functions in files. First of all, files can be created and

edited with the MATLAB Editor using the command >> edit filename or by clicking the

New Script, New, or Open tab. Files can also be created and edited using other text editors

installed on the computer. The syntax of functions is

function OutputVariables = FunctionName(InputVariables)

statements

end

If this is the main function in the file, the name of the file should match the name of the

function. The extension of the file should be .m, i.e., the name of the file should look like

FunctionName.m. Moreover, it is not always required to have the end statement in the file.

Nevertheless, it is good programming practice to have it in the file so it is clearer where the

function ends.

As a first example, we consider the step function example in §2.4. Create a file called

step fun.m in the current folder and enter the following statements,

function y = step fun(x)

if x<0

y = 0;

else

y = 1;

end

end

On the command line, type y = step fun(10) and see what you get.

22 CHAPTER 2. AN INTRODUCTION TO MATLAB

The second example is sign fun.m which does not have output variables.

function sign fun(x)

if x<0

disp(’x is negative’);

else

disp(’x is non-negative’);

end

end

The third example, prod sum.m, has two input variables and two output variables.

function [prod, sum] = prod sum(x, y)

prod = x*y;

sum = x + y;

end

To conclude this section, we remark that a file can have multiple functions. The input

variables can be any type of data, including functions.

Exercise 2.5.1. Write a function for computing the sum
N∑
n=1

n. Create a file sum fun.m

with the first line as function sum = sum fun(N).

2.6 How to plot data in MATLAB

Please try all these commands and see what you get on your computer.

>> t = 0:4*pi/125:4*pi This creates a vector named t with entries

[0,4*pi/125,8*pi/125,...,4*pi]

Another way is to use linspace(0,4*pi,126)

Notice that this entire list of numbers was displayed on the screen, which is not generally

what you want. To suppress the display, end the line with a semi-colon “;”.

>> x = sin(t); This creates a vector named x with entries

[sin(0),sin(4*pi/125),...,sin(4*pi)]

>> plot(x) Notice the units in horizontal axis

>> plot(t,x) What is the difference?

>> y = sin(t+.25); Phase shift

>> z = sin(t+.5);

>> hold on The next graph drawn will not erase

the present one.

>> plot(t,y,’--r’) r for color red

>> plot(t,z,’.b’) b for blue

2.7. A FEW FUNCTIONS USEFUL TO KNOW 23

>> title(’sine function with phase shift’)

>> xlabel(’t’)

>> ylabel(’sin(t+)’)

>> hold off

>> plot(x,z) What is this?

>> subplot(3,1,1), plot(t,x)

>> subplot(3,1,2), plot(t,y)

>> subplot(3,1,3), plot(t,z) subplot(m,n,p) creates an m-by-n array

of plots on a single screen, and refers

to the pth one, counting from upper left

To save a figure, you can go to the figure window and choose file and save as. You can

also use line commands.

>> print(’a.eps’, ’-depsc’) Command to save the current image as a

color eps file with the name a.eps.

>> print(’b.pdf’, ’-dpdf’) Command to save the current image as a

pdf file with the name b.pdf.

You can go to a specific figure (say figure (2)):

>> figure (2)

>> clf clear all figures in figure (2)

2.7 A few functions useful to know

In the previous sections, we have used help, disp, and fprintf several times. Once again,

check out their usage. In this section, we study two more functions, find and accumarray,

in detail.

The function find finds indices and values of nonzero elements.

• find(X) returns a vector containing the linear indices of nonzero elements in array X.

For example, find([1, 2; 0, 3]) returns [1; 3; 4].

• [row, col] = find(X) returns vectors row and col containing the row and column

indices of nonzero elements in X, respectively. For the previous example, [r, c] =

find([1, 2; 0, 3]) returns r = [1; 1; 2] and c = [1; 2; 2].

• Another use of find is to find indices of elements satisfying certain conditions. For

example, find([1, 2; 0, 3] >= 2) returns [3; 4].

• Logical indexing: Let A = [1, 2; 0, 3]. Then, B = A(A>=2) returns B = [2;

3]. The condition A>=2 in the index is called logical indexing. It functions the same

as find(A>=2). Therefore, A(A>=2) is equal to combined I = find(A>=2) and B =

A(I). Try C = A(A(:,1)>=1,:). The answer is C = [1, 2].

24 CHAPTER 2. AN INTRODUCTION TO MATLAB

The second function is accumarray which is used to construct array with accumulation.

This function is particularly useful for assembling matrices in finite element computation.

The simplest use of this function is

A = accumarray(subs, val)

where val is a column vector of values, subs is a column vector consisting of (possibly

repeated) indices of val, and both subs and val have the same length. The outcome A is

a vector of length max(subs), with its elements defined as A(i)=sum(val(subs(:)==i))

for i = 1, ..., max(subs). (The logical indexing subs(:)==i in subscripts is equivalent

to find(subs(:)==i), i.e., the indices of the elements of subs with their values equal to

i.) Elements of A whose subscripts do not appear in subs (i.e., find(subs(:)==i) is an

empty set) are equal to 0.

We now consider an example.

>> val = [0.1; 0.2; 0.3; 0.4; 0.5];

>> subs = [1; 4; 1; 3; 4];

>> A = accumarray(subs, val);

This function can be understood in two different ways. For the first, notice that the assign-

ment without accumulation is: A(subs(i)) = val(i), i = 1, ..., 5, i.e.,

A(

1

4

1

3

4

) =

0.1

0.2

0.3

0.4

0.5

 ,

or

A(1) = 0.1, A(4) = 0.2, A(1) = 0.3, A(3) = 0.4, A(4) = 0.5.

Then the repeated entries are accumulated. This gives

A(1) = 0.1 + 0.3 = 0.4, A(3) = 0.4, A(4) = 0.2 + 0.5 = 0.7.

The next step is to set A(2) = 0. Thus, the outcome is A = [0.4; 0; 0.4; 0.7].

The second way is based on A(i)=sum(val(subs(:)==i)). First, the length of A

is max(subs) = 4. For A(1), find(subs(:)==1) = [1; 3]. Thus, A(1) = val(1) +

val(3) = 0.4. For A(2), find(subs(:)==2) = empty and thus A(2) = 0. Repeating

this, we can find that A(3) = 0.4 and A(4) = 0.7.

Often it is desired that A has the same length as subs and val. This can be done by

augmenting subs and val:

2.7. A FEW FUNCTIONS USEFUL TO KNOW 25

>> val = [0.1; 0.2; 0.3; 0.4; 0.5];

>> subs = [1; 4; 1; 3; 4];

>> A = accumarray([subs; length(val)], [val; 0]);

Then we have A = [0.4; 0; 0.4; 0.7; 0].

To conclude this chapter, we emphasize that you can get help with help command

within MATLAB or by searching online with words like “MATLAB plot”. It is also useful

to check See also typically at the end of help menu. Furthermore, the taps Analyze Code

and Run and Time on the command bar of MATLAB are very useful and worth trying at

some point.

26 CHAPTER 2. AN INTRODUCTION TO MATLAB

Chapter 3

Lab 1: Convert Decimal Numbers

into Binary Form

In this lab, we consider to write a function (in file) to convert decimal numbers into binary

form using Algorithm 1.1.1. We shall go through the steps of problem describing, planning,

coding, testing, and reporting.

3.1 Problem description

It is important to have a good understanding of the underlying problem and the goals. It

is important to gather all mathematical formulas before we code.

The goal of this lab is to write a function (in file) to convert any decimal number x into

binary form using Algorithm 1.1.1. When x is not zero, it can be written in the binary form

as

x = ±(0.a1a2 · · · an · · ·)2 × 2m, (3.1)

where the sign (denoted by s), m, and a1 (= 1), a2, are to be determined. Since zero

cannot be cast in the above form, we will need a special treatment for zero. Otherwise, m

satisfies

2m−1 ≤ |x| < 2m. (3.2)

Taking natural logarithm on all terms, we get

m− 1 ≤ ln |x|
ln 2

< m,

which implies that m− 1 is the integer part of ln |x|/ln 2.

For convenience, we copy Algorithm 1.1.1 into Algorithm 3.1.1.

3.2 Planning

Having had a good understanding of the underlying problem and gathered all of the math-

ematical formulas, we can now do the planning.

27

28 CHAPTER 3. LAB 1: CONVERT DECIMAL NUMBERS INTO BINARY FORM

Algorithm 3.1.1 Convert decimal numbers into binary form.

1. Compute m and let x0 = |x| × 2−m.

2. For n = 1, 2, · · · do

(a). If 2xn−1 ≥ 1, set an = 1; otherwise, an = 0.

(b). Compute xn = 2xn−1 − an.

(c). If xn = 0, stop the computation.

The first thing is to determine the input and output variables. An obvious input

variable is x. For output variables, basically we want to know the right-hand side of (3.1).

Then we need to decide if we want a printout of the form or just the values of s, m, and

a1, a2, At this point, we may realize that numbers can have long or a infinite number

of digits. We may ask the user to provide a maximum (denoted by N) on the number of

the output digits. Thus, we modify the input variables to be x and N . Going back to the

output variables, we consider here to output both the form and the values of s, m, and a1,

..., an (with n <= N). To summarize, we have

Input variables: x and N

Output variables: printout of form (3.1)

s, m, and a1, ..., an, with n <= N

The next step in the planning is to decide the name and the first line of the function.

We call it Decimal2Binary and define the first line of the function as

function [s, m, a] = Decimal2Binary(x, N)

We now add the first line to Algorithm 3.1.1 and make a “flowchart” (a more detailed

algorithm) into Algorithm 3.2.1. One can see that several changes were made here:

• Added the first line of the function with the input and output variables,

• Changed the for loop with an upper limit,

• Added Step 3 (for printout),

• Changed “stop the computation” to “break the loop”.

3.3 Coding

At this step we begin to fill in technical detail. To start with, it is a good idea to keep in

mind that a well written code should allow other people to use it. To this end, we should

3.3. CODING 29

Algorithm 3.2.1 Convert decimal numbers into binary form (with more detail).

function [s, m, a] = Decimal2Binary(x, N)

1. Compute m, s, and let x0 = |x| × 2−m.

2. For n = 1 : N do

(a). If 2xn−1 ≥ 1, set an = 1; otherwise, an = 0.

(b). Compute xn = 2xn−1 − an.

(c). If xn = 0, break the loop.

3. Print out the form of (3.1).

try to make the code (i) easy to read, (ii) easy to use, (iii) easy to modify, and (iv) efficient

(in terms of memory use and CPU time). Tips for good programming include

• Try to use the same names for variables and constants as in the mathematical formulas,

• Give brief and necessary comments,

• Use proper indents,

• Avoid unnecessary storage.

Following these tips, we find that there is no need to define x0, x1, ..., xn as a vector in

Algorithm 3.2.1 since xn−1 is not needed after xn is calculated. Thus, all of x0, x1, ..., xn
can be replaced by a single variable, say, x0. On the other hand, we do need to use a vector

to save a1, ..., an. With this change, we rewrite Algorithm 3.2.1 into Algorithm 3.3.1,

where we have used := for computer assignments to avoid confusion with mathematical

assignments.

Algorithm 3.3.1 Convert decimal numbers into binary form (with more detail).

function [s, m, a] = Decimal2Binary(x, N)

1. Compute m, s, and let x0 := |x| × 2−m.

2. For n = 1 : N do

(a). If 2x0 ≥ 1, set an = 1; otherwise, an = 0.

(b). Compute x0 := 2x0 − an.

(c). If x0 == 0, break the loop.

3. Print out the form of (3.1).

30 CHAPTER 3. LAB 1: CONVERT DECIMAL NUMBERS INTO BINARY FORM

At this point, we are ready to code. We strongly suggest that the reader try to code

according to Algorithm 3.3.1 and then compare your program with the one listed in Al-

gorithm 3.3.2. Recall that the file should be named as Decimal2Binary.m. You may use

functions sign, floor, and fprintf. The code is explained line by line in the following.

• Line 2: MATLAB treats all the information after % on a line as a comment.

• Line 4: The MATLAB built-in function sign is used to compute the sign of x (+1 for

positive x, -1 for negative x, and 0 for x = 0).

• Line 5-10: For the case x = 0, we simply set m = 0 and a = [] (empty), display

the message x = 0 on the screen using fprintf, skip the rest of the statements, and

return to where this function is called.

• Line 11: Function floor(A) rounds each element of A to the nearest integer less than

or equal to that element.

• Line 13: This preallocates a 1-by-N block of memory for vector a and initializes it to

be zero. There is no need to repeatedly reallocate memory when its size grows but

stays no larger than N. The code runs much faster in this way.

• Line 14-25: This is the main loop.

• Line 23: This terminates the execution of the for loop. Notice that the index n keeps

the current value.

• Line 26: Whether the loop is terminated when n reaches the limit N or through break

when x0 == 0, n records the actual number of digits in vector a. Since n can be

smaller than N, we need to remove the possible extra digits in a.

• Line 29-37: Print the result in the binary form (3.1). %e and %d specify the format for

real numbers (in scientific form) and integers, respectively. %1d specifies the integer

format with one-digit width. Notice that the displays from Lines 30/32, 35, and 37

are on the same line on screen.

3.4 Testing

We would like to test the code to see if it is correct. MATLAB provides the code analyzer

(under the tap Analyze Code on the command bar) and the profiler (under the tap Run

and Time) which are very useful. A simpler way is to try several test problems for which

we know the solutions. Here are a few examples.

• [s, m, a] = Decimal2Binary(0, 20) leads to x = 0, s = 0, m = 0, and a = [].

Obviously, that is what we wanted.

3.5. REPORTING 31

• [s, m, a] = Decimal2Binary(11, 20) leads to x = 1.100000e+01 = + (0.1011) 2

x 2^ 4, s = 1, m = 4, and a = 1011.

• [s, m, a] = Decimal2Binary(-1/3, 20) leads to

x = -3.333333e-01 = - (0.10101010101010101010) 2 x 2^ -1

and s = -1, m = -1, and a = 10101010101010101010.

3.5 Reporting

There is no unique way how to write or what to include in a report. Generally speaking, a

reasonable report should involve the problem description, the numerical method, discussion

and analysis of obtained numerical results, conclusions, and a copy of the code or a brief

description of the code. It is a good idea to present numerical results in tables and/or

figures. One may wonder what results should be included. If there are given requirements,

we should present required numerics. If there are no such requirements or we want to

provide more results than required, we can consider to provide results that support a point

we would like to make or demonstrate an interesting phenomenon we observe.

It is common that we do not know what to say or do not have much to say on the tables

and figures we provide. Well, maybe we should ask why we provide those tables and figures

in the first place. We may want to tell people what the tables/figures are, what they show,

and what is new in them. Do not think everything is trivial. Maybe it is trivial to you, but

it is not necessarily trivial for other people.

32 CHAPTER 3. LAB 1: CONVERT DECIMAL NUMBERS INTO BINARY FORM

Algorithm 3.3.2 Convert decimal numbers into binary form: the code. The numbering

in the first column is for easy reference; it is not part of the code.

1: function [s, m, a] = Decimal2Binary(x, N)

2: % this function converts decimal number x into binary form.

3:

4: s = sign(x);

5: if (s == 0)

6: m = 0;

7: a = [];

8: fprintf(’x = 0\n’);
9: return;

10: end

11: m = 1 + floor(log(abs(x))/log(2));

12: x0 = abs(x)*2^(-m);

13: a = zeros(1,N);

14: for n = 1:N

15: x0 = 2*x0;

16: if (x0 >= 1)

17: a(n) = 1;

18: else

19: a(n) = 0;

20: end

21: x0 = x0 - a(n);

22: if (x0 == 0)

23: break;

24: end

25: end

26: a = a(1:n);

27:

28: % for printfout of binary form

29: if (s > 0)

30: fprintf(’x = %e = + (0.’, x);

31: else

32: fprintf(’x = %e = - (0.’, x);

33: end

34: for i=1:n

35: fprintf(’%1d’, a(i));

36: end

37: fprintf(’) 2 x 2^%d\n’, m);

38:

39: end % end of Decimal2Binary()

Chapter 4

Lab 2: Piecewise Linear

Interpolation for a Given Data Set

Interpolation for given data sets is a very important subject in scientific computing. MAT-

LAB built-in functions in this subject include interp1, interp2, interp3, interpn,

griddedInterpolant, and scatteredInterpolant.

4.1 Problem description

In this lab we consider a simple scenario – the problem of using piecewise linear polynomials

to interpolate a given data set. Denote the data set by

x1 x2 · · · xn

y1 y2 · · · yn

For simplicity, we assume that the points x1, ..., xn are distinct and has been sorted in the

ascending order, i.e.,

x1 < x2 < · · · < xn.

We also image that the set defines a function y = f(x) with yi = f(xi), i = 1, ..., n. We do

not need to know what f is. It is easier to refer to the data set when we have a function

name associated with it.

The task of this lab is to write a function (in file) to perform linear interpolation for the

given data set. The piecewise linear polynomial is defined as

p(x) =
xi+1 − x
xi+1 − xi

yi +
x− xi
xi+1 − xi

yi+1, x ∈ [xi, xi+1], i = 1, ..., n− 1. (4.1)

We want to write a function to take the data set and a number x, check if x is in [x1, xn],

and if so, compute the value p(x).

33

34CHAPTER 4. LAB 2: PIECEWISE LINEAR INTERPOLATION FORAGIVEN DATA SET

4.2 Planning

At this step we would like to figure out the input/output variables and the flowchart/algorithm.

First of all, one may realize that we have an issue with symbols. We may want to use x

for the vector (x1, ..., xn) but we may also want to use x for the point we want to find the

interpolation value. To avoid this, we decide to use X and Y for (x1, ..., xn) and (y1, ..., yn),

respectively. Then the input/output variables are

Input variables: X, Y, x

Output variables: p (= p(x))

Next, we call this function LinearInterpolation1D. Thus, the first line of the code is

function p = LinearInterpolation1D(x, X, Y)

The algorithm (or flowchart) is given in the following algorithm.

Algorithm 4.2.1 Perform piecewise linear interpolation for a given data set.

function p = LinearInterpolation1D(x, X, Y)

1. Check if x is in [X1, Xn]. If not, display the error message and return.

2. Find the index i such that x ∈ [Xi, Xi+1].

3. Compute

p(x) =
Xi+1 − x
Xi+1 −Xi

Yi +
x−Xi

Xi+1 −Xi
Yi+1

4.3 Coding

The coding for Algorithm 4.2.1 is relatively straightforward. Give a try to write the code

before you look at the code in Algorithm 4.3.1. You may need to use MATLAB built-in

function find.

Here are the comments for the code.

• Line 4: We use function find to execute Steps 1 and 2 in Algorithm 4.2.1. It returns

an empty set when the condition is not met.

• Line 6: Function error displays the message and stops the running of the code.

• Line 8: Function find may return more than one indices. We choose the smallest

one.

4.4. TESTING 35

Algorithm 4.3.1 Perform piecewise linear interpolation for a given data set: the code.

1: function p = LinearInterpolation1D(x, X, Y)

2: % this function performs piecewise linear interpolation for (X,Y).

3:

4: I = find((X(1:end-1) <= x) & (x <= X(2:end)));

5: if isempty(I)

6: error(’x is outside the domain [X(1), X(end)]’);

7: end

8: i = min(I);

9: p = ((X(i+1)-x)*Y(i)+(x-X(i))*Y(i+1))/(X(i+1)-X(i));

10:

11: end % end of LinearInterpolation1D()

4.4 Testing

To test the code, we recall that piecewise linear interpolation is exact for linear polynomials.

This means that if we choose f(x) = x and generate values Y = f(X), then we can expect

that the error, defined as |p(x) − f(x)|, is zero for any x inside the domain. Thus, we can

use this fact to test the code. An example of the script is

>> f = @(x) x;

>> X = linspace(0,1,10);

>> Y = f(X);

>> p = LinearInterpolation1D(0.5,X,Y);

>> err = abs(p-f(0.5));

The result is err = 0, which is consistent with our expectation.

Next, it is known in scientific computing that linear interpolation has second-order con-

vergence for smooth functions. This means that the error decreases like 1/n2 as n (the

number of data points) increases. To see this, we consider f(x) = sin(πx) and define X as

linspace(0,1,n) with n = 10, 20, 40, 80 (and thus 0.5 is not a data point). An example

of the script is

>> f = @(x) sin(pi*x);

>> X = linspace(0,1,10);

>> Y = f(X);

>> p = LinearInterpolation1D(0.5,X,Y);

>> err = abs(p-f(0.5));

The results are listed in the following table.

36CHAPTER 4. LAB 2: PIECEWISE LINEAR INTERPOLATION FORAGIVEN DATA SET

n 10 20 40 80

|p(0.5)− f(0.5)| 1.52e-2 3.40e-3 8.11e-4 1.98e-4

ratio 4.5 4.2 4.1

From the table, one can see that as n is doubled, the error decreases by a factor of about

4, confirming that the convergence order is second.

The above testing suggests that the code is correct.

Chapter 5

Lab 3: The Method of Least

Squares

The method of least squares is one of the most important methods in scientific computing. It

is a standard approach in regression analysis to approximate the solution of overdetermined

systems and has important applications in data sciences. For example, MATLAB’s Curve

Fitting Toolbox uses the method of least squares when fitting data. After a parametric

model that relates the response data to the predictor data has been chosen, the method of

least squares minimizes the summed square of residuals to obtain the coefficient (parameter)

estimates.

5.1 Problem description

In this lab we consider the simplest least squares fitting – the linear least squares fitting.

We assume that we are given a set of observation data

x1 x2 · · · xn

ŷ1 ŷ2 · · · ŷn

We want to fit a linear model to the data; see Fig. 5.1. A linear model is a linear function

of x, i.e.,

y = p1 + p2x, (5.1)

where p1 and p2 are the parameters to be determined. The residues are defined as the

difference between the observation data and the predictor data (by the model), that is,

ri = ŷi − yi = ŷi − (p1 + p2xi) , i = 1, ..., n.

37

38 CHAPTER 5. LAB 3: THE METHOD OF LEAST SQUARES

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

Figure 5.1: Linear least squares fitting for a given data.

The method of least squares is to minimize the summed square of residues,

n∑
i=1

r2i =
n∑
i=1

[
ŷi − (p1 + p2xi)

]2
≡ g(p1, p2),

to find the estimates of p1 and p2. By setting the partial derivatives of the sum with respect

to p1 and p2 to be zero, we obtain

∂g

∂p1
= 2

n∑
i=1

[
ŷi − (p1 + p2xi)

]
· 1 = 0,

∂g

∂p2
= 2

n∑
i=1

[
ŷi − (p1 + p2xi)

]
· (−xi) = 0.

After some algebraic manipulation, we get(
n∑
i=1

1 · 1

)
p1 +

(
n∑
i=1

xi · 1

)
p2 =

(
n∑
i=1

ŷi · 1

)
,

(
n∑
i=1

1 · xi

)
p1 +

(
n∑
i=1

xi · xi

)
p2 =

(
n∑
i=1

ŷi · xi

)
.

If we define

A =

1 x1
...

1 xn

 , Y =

ŷ1...
ŷn

 , p =

[
p1
p2

]
,

we can rewrite the above system into

ATAp = AT b, (5.2)

where AT is the transpose of A. The estimates to the parameters can be obtained by solving

this system.

5.2. PLANNING 39

5.2 Planning

Once again, we need to consider the input/output variables, the first line of the function,

and the chart of the algorithm. We put these together in Algorithm 5.2.1.

Algorithm 5.2.1 The linear least squares fitting.

function p = LinearLeastSquaresFitting(X, Y)

1. Determine the length of X and preallocate A

2. Check if X is a row/column vector and form A, B := ATA.

3. Check if Y is a row/column vector and form b := ATY .

4. Solver Bp = b.

5.3 Coding

The reader is strongly encouraged to code according to Algorithm 5.2.1. An example of the

code is listed in Algorithm 5.3.1.

Algorithm 5.3.1 The linear least squares fitting: the code.

1: function p = LinearLeastSquaresFitting(X, Y)

2: % this computes the linear least squares fitting to data (X, Y).

3:

4: A = ones(length(X),2);

5: if isrow(X)

6: A(:,2) = X’;

7: else

8: A(:,2) = X;

9: end

10: B = A’*A;

11: if isrow(Y)

12: b = A’*Y’;

13: else

14: b = A’*Y;

15: end

16: p = B\b;
17:

18: end % end of LinearLeastSquaresFitting()

40 CHAPTER 5. LAB 3: THE METHOD OF LEAST SQUARES

5.4 Testing

The following script gives a test for the code,

X = linspace(0,pi/2,21)’;

Y = sin(X);

Y = Y + randn(size(Y))*0.2; (adding the noise)

p = LinearLeastSquaresFitting(X,Y); (calling the function)

y = p(1) + p(2)*X;

plot(X,Y,’or’,X,y,’-b’)

A plot is shown in Fig. 5.1.

Chapter 6

Lab 4: The Composite

Gauss-Legendre Quadrature

MATLAB built-in functions for numerical integration include integral, integral2,

integral3, and trapz.

6.1 Problem description

In this lab we consider to write a function (in file) for numerically integrating integrals in

the form
∫ b
a f(x)dx using the composite two-point Gauss-Legendre quadrature rule. The

two-point Gauss-Legendre quadrature rule reads as∫ 1

−1
g(s)ds ≈ g(− 1√

3
) + g(

1√
3

), (6.1)

where −1/
√

3 and 1/
√

3 are the roots of the Legendre polynomial of degree two. It is known

that the rule is exact for polynomials of degree 3 or less. This can be readily verified by

comparing the values of both sides with g(s) = 1, s, s2, s3, and s4.

To develop a composite rule for the integral
∫ b
a f(x)dx, we divide the interval (a, b) into

n− 1 subintervals of same length, i.e.,

x1 = a < x2 < · · · < xn = b with xi = a+ (i− 1)h, i = 1, ..., n, h =
b− a
n− 1

.

The integral can be broken up into∫ b

a
f(x)dx =

∫ x2

x1

f(x)dx+

∫ x3

x2

f(x)dx+ · · ·+
∫ xn

xn−1

f(x)dx =
n−1∑
i=1

∫ xi+1

xi

f(x)dx.

To apply the Gauss-Legendre quadrature rule to each of the integrals in the above equation,

we use the coordinate transformation (x = xi + (s+ 1)h/2) and get∫ xi+1

xi

f(x)dx =
h

2

∫ 1

−1
f

(
xi +

1

2
(s+ 1)h

)
ds.

41

42 CHAPTER 6. LAB 4: THE COMPOSITE GAUSS-LEGENDRE QUADRATURE

Applying (6.1) to this integral with

g(s) = f

(
xi +

1

2
(s+ 1)h

)
and combining this with the previous equation, we have∫ b

a
f(x)dx ≈ h

2

n−1∑
i=1

[
f

(
xi +

1

2
(1− 1√

3
)h

)
+ f

(
xi +

1

2
(1 +

1√
3

)h

)]
. (6.2)

For easy reference, we denote

I(f) =

∫ b

a
f(x)dx,

Ih(f) =
h

2

n−1∑
i=1

[
f

(
xi +

1

2
(1− 1√

3
)h

)
+ f

(
xi +

1

2
(1 +

1√
3

)h

)]
.

We define the error as

Eh(f) = I(f)− Ih(f). (6.3)

We now use a “guessing” method to find the expression for Eh(f). We start with the

error term for the two-point Gauss-Legendre quadrature rule (6.1). Define

EG(g) =

∫ 1

−1
g(s)ds−

[
g(− 1√

3
) + g(

1√
3

)

]
. (6.4)

Recall that the rule is exact for polynomials of degree 3 and less, i.e.,

EG(1) = 0, EG(s) = 0, EG(s2) = 0, EG(s3) = 0. (6.5)

Suggested from the remainder term in Taylor’s theorem, we guess that EG(g) has a form

EG(g) = C
d4g

ds4
(ŝ), (6.6)

where C is a constant independent of g and ŝ is a point in (−1, 1). Here we have assumed

that the fourth-order derivative of g is continuous on (−1, 1). Notice that EG(g) in the form

(6.6) satisfies (6.5). Moreover, we can find C by taking g = s4. Indeed, from (6.6) we have

EG(s4) = C 4!.

On the other hand, from (6.4) we get

EG(s4) =

∫ 1

−1
s4ds−

[
(− 1√

3
)4 + (

1√
3

)4
]

=
2

5
− 2

9
=

8

45
.

Combining the above results, we obtain C = 1/135 and thus,

EG(g) =
1

135

d4g

ds4
(ŝ).

6.1. PROBLEM DESCRIPTION 43

Substituting this into (6.4) yields∫ 1

−1
g(s)ds =

[
g(− 1√

3
) + g(

1√
3

)

]
+

1

135

d4g

ds4
(ŝ). (6.7)

We now are ready to find Eh(f). Recall that in the derivation of the composite rule, we

applied the two-point Gauss-Legendre quadrature rule to∫ xi+1

xi

f(x)dx =
h

2

∫ 1

−1
f

(
xi +

1

2
(s+ 1)h

)
ds

with

g(s) = f

(
xi +

1

2
(s+ 1)h

)
.

If we use (6.7) instead and notice that

d4g

ds4
(ŝ) =

h4

16

d4f

dx4
(x̂i), x̂i = xi +

1

2
(ŝ+ 1)h,

we have∫ b

a
f(x)dx =

h

2

n−1∑
i=1

[
f

(
xi +

1

2
(1− 1√

3
)h

)
+ f

(
xi +

1

2
(1 +

1√
3

)h

)]
+

h5

4320

n−1∑
i=1

d4f

dx4
(x̂i),

which gives

Eh(f) =
h5

4320

n−1∑
i=1

d4f

dx4
(x̂i).

If we assume that the fourth-order derivative of f is continuous on (a, b), then there exists

a number x̂ ∈ (a, b) such that

n−1∑
i=1

d4f

dx4
(x̂i) = (n− 1)

d4f

dx4
(x̂).

Using this, we can simplify Eh(f) into

Eh(f) =
h5(n− 1)

4320

d4f

dx4
(x̂).

From h = (b− a)/(n− 1), we finally get

Eh(f) =
(b− a)5

4320(n− 1)4
d4f

dx4
(x̂). (6.8)

This indicates that the error is reduced roughly by a factor of 24 = 16 when n is doubled,

i.e., the method has fourth-order convergence.

44 CHAPTER 6. LAB 4: THE COMPOSITE GAUSS-LEGENDRE QUADRATURE

6.2 Planning

We start with the input/output variables. We will need to input the problem parameters:

f (the function), a, and b. We also need n for the quadrature rule. For the output, we want

the approximation: Ih. Thus,

Input variables: a, b, f , n

Output variables: Ih

Next, we decide the function name and the first line:

function Ih = GaussLegendre2P(f, a, b, n)

Finally, we decide the algorithm/flowchart. After several rounds of modification on

scratch paper, we have the final version of the algorithm in Algorithm 6.2.1.

Algorithm 6.2.1 The composite two-point Gauss-Legendre quadrature.

function Ih = GaussLegendre2P(f, a, b, n)

1. Set h = (b− a)/(n− 1), s1 = (1− 1/
√

3)/2, s2 = (1 + 1/
√

3)/2

2. Initialization: Set x := a and Ih := 0

3. for i = 1 : (n− 1)

(a). Ih := Ih+ f(x+ s1 ∗ h) + f(x+ s2 ∗ h)

(b). x := x+ h

4. Ih := Ih ∗ h/2

6.3 Coding

The coding of Algorithm 6.2.1 is relatively straightforward. Once again, we recommend

that the reader give it a try first. An example is given in Algorithm 6.3.1, where tic and

toc are used to show the CPU time used in the computation and the function f is used an

argument for the function GaussLegendre2P.

We note that the code in Algorithm 6.3.1 is loop-based and scalar-oriented. MATLAB is

optimized for operations involving matrices and vectors and this runs much faster for vector-

ized code. To show this, we give a vectorized version of Algorithm 6.3.1 in Algorithm 6.3.2.

One may see that there is no loop in the code. Line 13 computes all of the points x1, ...xn
and saves it in the vector x. Line 14 executes several tasks. For example, it computes the

function values at the points (x1 + s1 ∗h, ..., xn−1 + s1 ∗h) and (x1 + s2 ∗h, ..., xn−1 + s2 ∗h)

in vectorization and sums the values. This requires the function be defined in vectorization

6.4. TESTING 45

Algorithm 6.3.1 The composite two-point Gauss-Legendre quadrature rule: the code.

1: function Ih = GaussLegendre2P(f, a, b, n)

2: % this function performs the composite 2-point Gauss-Lagendre rule.

3: % note that the function should be defined in the form y = f(x)

4:

5: tic

6: h = (b-a)/(n-1);

7: s1 = 0.5*(1-1/sqrt(3));

8: s2 = 0.5*(1+1/sqrt(3));

9: x = a;

10: Ih = 0;

11: for i = 1:(n-1)

12: Ih = Ih + f(x+s1*h) + f(x+s2*h);

13: x = x + h;

14: end

15: Ih = Ih*h*0.5;

16: toc

17:

18: end % end of GaussLegendre2P()

form (using array operations). For example,

Ih = GaussLegendre2Pvec(@(x) x.^3, 0, 1, 100)

for integral
∫ 1
0 x

3dx.

6.4 Testing

We use two examples to test the code. The first is
∫ 1
0 x

3dx = 1/4 for which the quadrature

rule should give the exam value. The call for this example is:

Ih = GaussLegendre2P(@(x) x^3, 0, 1, 10)

which does give 0.25.

The another example is show the convergence order. We choose
∫ π
0 sin(x)dx = 2. An

example call is

Ih = GaussLegendre2P(@(x) sin(x), 0, pi, 10)

The results are given in the following table. We can see that the error reduction ratio

46 CHAPTER 6. LAB 4: THE COMPOSITE GAUSS-LEGENDRE QUADRATURE

Algorithm 6.3.2 The composite two-point Gauss-Legendre quadrature rule: the vectorized

code.

1: function Ih = GaussLegendre2Pvec(f, a, b, n)

2: %

3: % this is the vector version of GaussLegendre2P().

4: %

5: % this function performs the composite 2-point Gauss-Lagendre rule.

6: % note that the function should be defined in the form y = f(x)

7: % and using array operations.

8:

9: tic

10: h = (b-a)/(n-1);

11: s1 = 0.5*(1-1/sqrt(3));

12: s2 = 0.5*(1+1/sqrt(3));

13: x = linspace(a,b,n)’;

14: Ih = sum(f(x(1:end-1) + s1*h)) + sum(f(x(1:end-1) + s2*h));

15: Ih = Ih*h*0.5;

16: toc

17:

18: end % end of GaussLegendre2Pvec()

is close to 16, which is consistent with the method’s fourth-order convergence.

n 10 20 40 80 160

|Eh| 6.90e-6 3.46e-7 1.95e-8 1.15e-9 7.06e-11

ratio 19.9 17.7 17.0 16.3

6.5 The composite Simpson’s rule

In this section we record the composite Simpson’s rule. The interested reader can use it as

a practice problem for programming with loops or in vectorization.

The rule reads as∫ b

a
f(x)dx ≈ h

3
[f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + 2f(x5) + · · ·+ 4f(xn−1) + f(xn)]

=
2h

3
[f(x1) + 2f(x2) + f(x3) + 2f(x4) + f(x5) + · · ·+ 2f(xn−1) + f(xn)]

− h

3
[f(x1) + f(xn)] , (6.9)

where n ≥ 5 is an odd integer, h = (b− a)/(n− 1), and xi = a+ (i− 1)h (i = 1, ..., n). The

6.5. THE COMPOSITE SIMPSON’S RULE 47

error is given by

Eh(f) = − (b− a)5

180(n− 1)4
d4f

dx4
(x̂),

where x̂ is a number in (a, b). From the above error we can see that the method has

fourth-order convergence and is exact for all polynomials of degree 3 and less.

48 CHAPTER 6. LAB 4: THE COMPOSITE GAUSS-LEGENDRE QUADRATURE

Chapter 7

Lab 5: Euler’s Scheme for Solving

Ordinary Differential Equations

A large number of schemes have been developed for numerical solution of ODEs. Key

words in characterizing those schemes include explicit, implicit, fully implicit, semi-explicit,

simply implicit, high-order, variable step, adaptive stepping, and Runge-Kutta. There are

also numerous books in this subject, for example, Hairer et al. [2, 3] and Shampine et al.

[4].

MATLAB provides a suite of ODE solvers, including ode15s and ode45. The reader is

referred to Shampine and Reichelt [5] or the corresponding MATLAB documents.

7.1 Problem description

In this lab we study to write a code for Euler’s scheme for numerically solving the initial

value problem (IVP) of ordinary differential equations (ODEs) in the form{
dy
dt = f(t, y), for t0 < t ≤ tfinal
y(t0) = y0,

(7.1)

where f(t, y) (a function), t0, y0, and tfinal are given, and

y =

 y1...
ym

 , f(t, y) =

 f1(t, y1, ..., ym)
...

fm(t, y1, ..., ym)

 .
For a given time step, ∆t, Euler’s scheme for (7.1) is given by

yn+1 = yn + ∆t f(tn, y
n), n = 0, 1, ... (7.2)

where tn = t0 + n∆t, yn is an approximation of y(tn), i.e., yn ≈ y(tn). Euler’s scheme

is explicit (in the sense that there is no need to solve a system of algebraic equations

49

50CHAPTER 7. LAB 5: EULER’S SCHEME FOR SOLVINGORDINARYDIFFERENTIAL EQUATIONS

when computing the new approximation yn+1) and is known to have first-order convergence

(meaning that the error en = yn − y(tn) = O(∆t)). Euler’s scheme is one of the simplest

schemes for numerically solving (7.1). Its advantages lie in its simplicity and relative ease

to program. Its disadvantages include its low-order convergence and restrictive stability

condition which may force to use a very small ∆t (problem dependent) to ensure the stability

of the computation.

7.2 Planning

We start with figuring out the input/output variables. We need the variables from the

problem, f (the right-hand side function), t0, tfinal, and y0. For the numerical scheme, we

need the value of ∆t. For output, the code should return the approximations yn, n = 0, 1, ...

and the corresponding time instants. Thus,

Input variables: f , t0, tfinal, y0, ∆t

Output variables: (T, Y) = {(tn, yn), n = 0, 1, ...}

Next, we decide the first line of the function as

function [T, Y] = ExplicitEuler(f, t0, tfinal, y0, dt)

We can now decide the flowchart/algorithm. The reader is encouraged to give a try and

then compare yours to the one given in Algorithm 7.2.1.

Algorithm 7.2.1 Euler’s scheme for ODEs.

function [T, Y] = ExplicitEuler(f, t0, tfinal, y0, dt)

1. Set N = integral part((tfinal − t0)/∆t). If N∆ < tfinal, let N := N + 1.

2. Initialization: y = y0, t = t0.

3. Preallocate T and Y : m = length(y0), T = zeros(N, 1) and Y = zeros(N,m). Set

T (1) = t and Y (1, :) = yT .

4. for i = 2 : N

(a). y := y + ∆t ∗ f(t, y)

(b). t := t+ ∆t

(c). T (n) = t

(d). Y (n, :) = yT

7.3. CODING 51

7.3 Coding

An example of the code for Algorithm 7.2.1 is given in Algorithm 7.3.1. Note how the

function f(t,y) should be defined. This is especially important when dealing with ODE

systems (versus scalar ODEs). One may notice that both T and Y are preallocated on Lines

23-24. Finally, pay special attention to the form how the approximations of y are saved in

Y. To help the user, comments are given on Lines 4-14 for the output variables.

7.4 Testing

It is known that Euler’s method is exact for linear polynomials (such as y = t). Thus, we

consider f(t, y) = 1, t0 = 0, tfinal = 1, and y0 = 0, and take ∆t = 0.01. We expect that the

approximation is the same as the exact solution y = t. A call to the function is

[T, Y] = ExplicitEuler(@(t,y) 1, 0, 1, 0, 0.01);

A plot of (T, Y) shows a diagonal line connecting (0,0) and (1,1), which indicates the

approximation is Y = T.

The next example is the Lorentz system that was first developed by Edward Lorenz in

1963 as a simplified mathematical model for atmospheric convection. It reads as
dx
dt = σ(y − x),
dy
dt = x(ρ− z)− y,
dz
dt = xy − βz.

(7.3)

Here, we take the values used by Lorentz, σ = 10, β = 8/3, and ρ = 28, for which the

system exhibits chaotic behavior. A file, named fun Lorentz.m, is created to define the

right-hand side function; see Algorithm 7.4.1. A call to ExplicitEuler for this system is

given in the following, where t0 = 0, tfinal = 500, y0 = (1, 1, 1)T , and ∆ = 0.01.

[T, Y] = ExplicitEuler(@fun Lorentz, 0, 500, [1;1;1], 0.001);

The resulting trajectory obtained with plot3(Y(:,1),Y(:,2),Y(:,3),’-’) is shown in

Fig. 7.1.

7.5 Heun’s and RK4 schemes

We record here two schemes so the interested reader can use them to practice programming.

The first one is Heun’s scheme which reads as

k1 = ∆tf
(
tn, y

n
)
,

52CHAPTER 7. LAB 5: EULER’S SCHEME FOR SOLVINGORDINARYDIFFERENTIAL EQUATIONS

Figure 7.1: A trajectory of the Lorentz system.

k2 = ∆tf
(
tn + ∆t, yn + k1

)
,

yn+1 = yn +
1

2
(k1 + k2) .

This method is known to have second-order convergence.

The second scheme is the Runge-Kutta method of order 4 (RK4). It is given by

k1 = ∆tf
(
tn, y

n
)
,

k2 = ∆tf

(
tn +

1

2
∆t, yn +

1

2
k1

)
,

k3 = ∆tf

(
tn +

1

2
∆t, yn +

1

2
k2

)
,

k4 = ∆tf
(
tn + ∆t, yn + k3

)
,

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) .

This method is known to have fourth-order convergence.

7.5. HEUN’S AND RK4 SCHEMES 53

Algorithm 7.3.1 Euler’s scheme for ODEs: the code.

1: function [T, Y] = ExplicitEuler(f, t0, tfinal, y0, dt)

2: % this function implements Euler’s scheme for ODEs.

3: %

4: % Input:

5: % f: the right-hand side function handle. it should be defined

6: % in the form y = f(t,y) and returned with a column vector

7: % of values.

8: % y0: the initial solution in column vector.

9: %

10: % output:

11: % T: size of N-by-1, for time instants, t n is saved in T(n)

12: % Y: size of N-by-m, for approximations, jth column, Y(:,j)

13: % saves the approximations of the jth component of y

14: % at the time instants, i.e., Y(n,j) approximates y j(t n).

15:

16: N = floor((tfinal-t0)/dt);

17: if N*dt < tfinal

18: N = N + 1;

19: end

20: t = t0;

21: y = y0;

22: m = length(y0);

23: T = zeros(N,1);

24: Y = zeros(N,m);

25: T(1) = t;

26: Y(1,:) = y’;

27: for n = 2:N

28: y = y + dt*f(t, y);

29: t = t + dt;

30: T(n) = t;

31: Y(n,:) = y’;

32: end

33:

34: end % end of ExplicitEuler()

54CHAPTER 7. LAB 5: EULER’S SCHEME FOR SOLVINGORDINARYDIFFERENTIAL EQUATIONS

Algorithm 7.4.1 The right-hand side function for the Lorentz system: the code

1: function f = fun Lorentz(t, y)

2: % this defines the right-hand side function for Lorentz system.

3:

4: sigma = 10;

5: beta = 8/3;

6: rho = 28;

7: f = zeros(3,1);

8: f(1) = sigma*(y(2)-y(1));

9: f(2) = y(1)*(rho-y(3))-y(2);

10: f(3) = y(1)*y(2)-beta*y(3);

11:

12: end % end of fun Lorentz()

Bibliography

[1] R. L. Burden, J. D. Faires, and A. M. Burden. Numerical Analysis. Brooks Cole, 10th

edition, 2015.

[2] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations. I,

volume 8 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin,

second edition, 1993. Nonstiff problems.

[3] E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II, volume 14 of

Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition,

1996. Stiff and differential-algebraic problems.

[4] L. F. Shampine, I. Gladwell, and S. Thomson. Solving ODEs with MATLAB. Cambridge

University Press, 2003.

[5] L. F. Shampine and M. W. Reichelt. The MATLAB ODE Suite. SIAM J. Sci. Comput.,

18:1–22, 1997.

55

	Preface
	Programming Basics
	Decimal and binary number systems and conversion
	Common components among computer languages
	Data types
	Basic operators
	Selection and loop statements
	Functions

	Flowchart

	An Introduction to MATLAB
	Data representations and types
	Arithmetic operations
	Relational and logical operators
	Selection and loop statements
	Functions
	How to plot data in MATLAB
	A few functions useful to know

	Lab 1: Convert Decimal Numbers into Binary Form
	Problem description
	Planning
	Coding
	Testing
	Reporting

	Lab 2: Piecewise Linear Interpolation for a Given Data Set
	Problem description
	Planning
	Coding
	Testing

	Lab 3: The Method of Least Squares
	Problem description
	Planning
	Coding
	Testing

	Lab 4: The Composite Gauss-Legendre Quadrature
	Problem description
	Planning
	Coding
	Testing
	The composite Simpson's rule

	Lab 5: Euler's Scheme for Solving Ordinary Differential Equations
	Problem description
	Planning
	Coding
	Testing
	Heun's and RK4 schemes

	Bibliography

