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1. Historical context and motivation

Poincaré’s topological reinterpretation of Euclid’s initial concept of dimension:

“When we say that space has the dimensions three, what do we mean? If
to divide a continuum C it suffices to consider as cuts a certain number of
distinguishable points, we say that this continuum is of dimension one. If,
on the contrary, to divide a continuum it suffices to use cuts which form one
or several continua of dimension one, then we say that C is a continuum
of dimension two. If cuts which form one or several continua of at most
dimension two suffice, we say that C is a continuum of dimension three; and
so on.”

This idea of dimension can be rephrased (à la Brouwer) inductively in more modern
language:

(1) We take a single point to have dimension 0.
(2) If a set A contains points for which the boundaries of arbitrarily small neigh-

bourhoods all have dimension n, then A is said to have dimension n + 1.

These basically justify thinking of dimension as the number of parameters required
to identify a point in a given space. This idea was turned on its head by Peano at
the beginning of this century, when he constructed a continuous function of the unit
interval with the unit square. This construction of a space-filling curve showed how
the dimension of an object could be changed by a continuous transformation and thus
contradicted the idea of dimension as “minimum number of parameters”. [PJS]

At about the same time, Cantor showed the cardinality of the line and plane
to be equal, prompting the construction of a bijection between them. This lead
naturally to the question of whether a continuous bijection could be found between
sets of dimension one and sets of dimension two. If so, the conclusion would be that
dimension (at least in this sense) has no real topological meaning or value.

In 1911, Brouwer (building on the foundations of Lüroth) demonstrated a non-
constructive proof that Rn ∼= Rm ⇔ n = m. “Nonconstructive” in the sense that it
did not identify any characteristic of n-space that would allow it to be distinguished
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from m-space. However, two years later he did construct a topologically invariant
integer-valued function. At about the same time, Henri Lebesgue’s approach to this
problem (via covering sets) elicited a way to distinguish between Euclidean spaces of
different topological dimension. This idea was developed by Hausdorff, and led to the
formulation of dimension as the proper “mode” in which to measure a set. By this I
mean that the intuitive idea is as follows: before you can accurately measure the size
of the set, you need to ascertain the appropriate manner of measurement. Consider
the example of a line segment (a, b) ⊂ R:

(1) In terms of cardinality, (a, b) has measure ∞. (Measuring w/r dim0)
(2) In terms of length, (a, b) has measure b − a. (Measuring w/r dim1)
(3) In terms of area, (a, b) has measure 0. (Measuring w/r dim2)

Hausdorff’s idea was to find the value at which the measurement changes from infinite
to zero. It was also part of his challenge to articulate the measure in such a way that
this value is unique.

Why is the study of dimension important or useful? Dimension is at the heart of
all fractal geometry, and provides a reasonable basis for an invariant between different
fractal objects. There are also experimental techniques capable of calculating the
dimension of a given object, and these methods have proven useful in several applied
areas: rate of heat flow through the boundary of a domain, calculating metabolic
rates where exchange functions are based on surface area, etc. (See [PJS, p.210] for
a discussion of kidney, blood, and urinary systems.

2. Requirements for a Good Definition of Dimension

Before we begin defining Hausdorff and other dimensions, it is a good idea to
clearly state our objectives. What should be the features of a good definition of
dimension? Based on intuition, we would expect that the dimension of an object
would be related to its measurement at a certain scale. For example, when an object
is scaled by a factor of 2,

• for a line segment, its measure will increase by 21 = 2
• for a rectangle, its measure will increase by 22 = 4
• for a parallelipiped, its measure will increase by 23 = 8

In each case, we extract the exponent and consider this to be the dimension. More
precisely, dim F = log ∆µ(F )/ log 1/p where p is the precision (1/p is the scaling factor)
and ∆µ(F ) is the change in the ‘measure’ of F when scaled by 1/p .
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Falconer suggests that most of following criteria also be met [Falc2], by anything
called a dimension:

(1) Smooth manifolds. If F is any smooth, n-dimensional manifold, dim F = n.
(2) Open sets. For an open subset F ⊂ Rn, dim F = n.
(3) Countable sets. dim F = 0 if F is finite or countable.
(4) Monotonicity. E ⊂ F ⇒ dim E 6 dim F .
(5) Stability. dim (E ∪ F ) = max (dim E, dim F ).
(6) Countable stability. dim (

⋃∞
i=1 Fi) = supi {dim Fi}.

(7) Lipschitz Mappings. If f : E → Rm is Lipschitz, then dim f (E) 6 dim (E).
(8) Bi-Lipschitz Mappings. If f : E → Rm is bi-Lipschitz, then dim f (E) =

dim (E).
(9) Geometric invariance. dim f(F ) = dim F , if f is a similarity, or affine

transformation.

Recall that f : E → Rm is Lipschitz iff ∃c such that

|f (x) − f (y)| 6 c |x − y| ∀x, y ∈ E;

and that f is bi-Lipschitz iff ∃c1, c2 such that

c1 |x − y| 6 |f (x) − f (y)| 6 c2 |x − y| ∀x, y ∈ E;

and f is a similarity iff ∃c such that

|f (x) − f (y)| = c |x − y| ∀x, y ∈ E;

Thus (9) is a special case of (8), which is a special case of (7).

The first three properties on our list of “requirements” are formalizations of the
historical ideas discussed previously and ensure that the classical definition is pre-
served. We pay particular attention to bi-Lipschitz functions, as they seem to be the
prime candidate for what kind of functions preserve the dimension of a set.

Dimensionally concordant vs. dimensionally discordant. It is the hope
that many of these properties hold true under different definitions of dimension. For
such sets as this is true, we use the term dimensionally concordant. [Mand]

Relation to a measure. Although the discussion has mentioned “measure” a
few times already, this is somewhat sloppy language. It is not necessarily the case that
a definition of dimension will be based on a measure. Clearly there are advantages
to using a measure-based definition, as this allows the analyst to exploit a large body
of thoroughly-developed theory. However, it will be shown that some very useful
ideas are decidedly not measure-based. To emphasize this distinction, content may
occasionally be used as a more generic synonym for the volume/mass/measure of a
set.
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3. Compass Dimension

Motivated by a famous paper entitled, “How Long is the Coastline of Britain?”,
a new concept of dimension was developed via power law. The crux of the problem
was that the length of a coastline seems to expand exponentially as the measurement
is refined. For example [PJS]:

p=Compass Setting l=Coastline Length
500 km 2600 km
100 km 3800 km
54 km 5770 km
17 km 8640 km

One would hope (and naively expect) that the measured length would “calm
down” at some point, and submit to reasonable approximation for precise enough
measurement. This sample data indicate, however, that precisely the opposite occurs:
the more detailed the measurements become, the faster the total length diverges.
This is in sharp contrast the measurement of a smooth curve in the same fashion, for
example, a circle of diameter 1000 km:

p=Compass Setting # sides l=Coastline Length
500.00 km 6 3000 km
259.82 km 12 3106 km
131.53 km 24 3133 km
65.40 km 48 3139 km
32.72 km 96 3141 km
16.36 km 192 3141 km

Due to the very large distance between compass settings at higher scales, and
the small distance between compass settings at lower scales, it is more convenient to
graph this data as a log/log plot. Also, this tack was suggested by our intuition in
the discussion on requirements for a good definition. (See Figure: 1).

Doing a best fit for the data points of the coastline, we see a line with slope
D ≈ 0.3 emerge. If the equation of this line is y = mx + b, we can rewrite the
relationship between l and p as [PJS]:

log l = D log 1/p + b

or

l = eD log 1/p+b

= elog(1/p)
D

eb

= p−Deb

(1)
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Figure 1. Log/log plot of the circle vs. the coastline.

Choosing this for our function and plugging in the original data, we obtain D ≈
0.36 . Thus, our conclusion (stated as a power law) is:

(2) l ∼ p−0.36

The number D ≈ 0.36 is our candidate for dimension as noted in (2).

Now we apply our results to a well-known fractal: the von Koch curve. (See
Figure: 2). Due to the manner in which the Koch curve is constructed, it is relatively

Figure 2. Measuring the Koch curve with different compass settings.

easy to “measure with compass” if we restrict our settings to those of the form 3−n:
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p=Compass Setting l=Curve Length
1/3 4/3
1/9 16/9
...

...
1
3

n (

4
3

)n

Graphing these results, we see that the log-log plot (with log base 3 for conve-
nience) is exactly linear. See Figure: 3.
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Figure 3. Log/log plot for the Koch curve.

So for compass setting p =
(

1
3

)n
and corresponding length l =

(

4
3

)n
, we obtain

log3
1/p = n and log3 l = n log3

4/3 . Solving for n and combining, we get log3 l =
(log3

4/3) (log3
1/p) , or rewritten as a power law: l ∼ p−D for D = log3

4
3
≈ 0.2619.

This number is lower than the D we found for the coastline, indicating that the coast
is more convoluted (or detailed).

4. Self-Similarity Dimension

After compass-measuring the Koch curve, it is evident that the scaling properties
of some objects can be measured in a slightly different, and more direct way. The
Koch curve, like many fractals, is self-similar : the entire curve can be seen as a union
of scaled copies of itself. In the case of the Koch curve K, K is the union of 4 copies
of K, each scaled by a factor of 1/3. See Figure 4.

Given a self-similar object, we can generalize this relationship as n = p−s where
p is the reduction factor, and n is the number of pieces. The basis for this relation
is easily drawn from a comparison with more familiar, non-fractal self-similar objects
like line, square, and cube. Extending this relation to other self-similar sets allows us
to calculate the self-similarity dimension by the formula:

(3) dimsim (F ) =
log n

log 1/p
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Figure 4. Self-similarity of the Koch curve K. K =
⋃4

j=1 fj(K),
where each of the four maps fj is a contraction similitude. That is, fj

is the composition of a contraction (by a factor of 1/3) and an isometry.

For the Koch curve, this formula yields dimsim (K) = log 4
log 3

= log3 4 ≈ 1.2619 , a

number which is strikingly similar to the compass dimension of K, dimcom (K) ≈
0.2619.

From compass dimension we have

(4) log l = dimcom (F ) · log 1/p

and from self-similarity we have

(5) log n = dimsim (F ) log 1/p

The connection between length and number of pieces is given by

l = n · p
from which we get

log l = log n + log p

Substituting (4) and (5) into this expression, we get

dimcom (F ) · log 1/p = dimsim (F ) log 1/p − log 1/p

Which simplifies to

dimcom (F ) = · dimsim (F ) − 1

So dimsim = 1 + dimcom, just as suggested by our results for the von Koch curve.

We can make two conclusions from this result, at least one of which is surprising:

(1) Compass dimension and self-similarity dimension are essentially the same.
(2) We can compute the self-similarity dimension of irregular shapes (e.g., coast-

lines) by means of compass measurements.

Result #2 justifies the description of highly irregular objects as being self-similar; it
even offers a mathematical basis for rigor in such a notion.
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5. Box-Counting Dimension

Now we return to the idea of measurement at scale δ: if Mδ (F ) ∼ cδ−s, then
we think of F as having dimension s and having s-dimensional content c. From
Mδ (F ) ∼ cδ−s, we can take logarithms to get

log Mδ (F ) ' log c − s log δ

and isolate s as

(6) s = lim
δ→0

log Mδ (F )

− log δ
.

This is the idea behind the box-counting or box dimension. Now the trick is
to come up with a good definition of Mδ (F ) that can be used on unwieldy sets F .
Box-counting dimension derives its name from the following measurement technique:

(1) Consider a mesh of boxes in Rn, of side length δ.
(2) Define Mδ (F ) to be the number of boxes in the mesh that intersect F , or

(equivalently) define Mδ (F ) as the number of boxes in the mesh required to
cover F .

The interpretation of this measure is an indication of how irregular or spread out the
set is when examined at scale δ. [Falc1] However, it should be pointed out that s, as
defined by a limit in (6), may not exist! Since lim and lim do always exist, we define
the upper and lower box-counting dimensions as

(7) dimBF = limδ→0

log Mδ (F )

− log δ

(8) dimBF = limδ→0
log Mδ (F )

− log δ

so that s is well-defined when the two are equal.

An equivalent definition is formulated as follows: let Nδ (F ) be defined as the
least number of sets of diameter at most δ that are required to cover F . Here we

define the diameter of a set U ⊂ Rn as |U | = sup

{

|x − y| ... x, y ∈ U

}

.

Nδ (F ) can be seen as equivalent to Mδ (F ) as follows:

The cubes [m1δ, (m1 + 1) δ] × · · · × [mnδ, (mn + 1) δ] which intersect F form a
cover of Mδ (F ) sets of diameter δ

√
n. Thus, it is intuitively clear that

lim
δ
√

n→0

log Nδ
√

n (F )

− log δ
√

n
= lim

δ→0

log Mδ (F )

− log δ
.
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More formally, we note that

Nδ
√

n (F ) 6 Mδ (F ) .

But then since we can take δ
√

n < 1 for δ → 0, we get

log Nδ
√

n (F )

− log (δ
√

n)
6

log Mδ (F )

− log
√

n − log δ

and then

(9) limδ→0

log Nδ (F )

− log δ
6 dimBF

and

(10) limδ→0
log Nδ (F )

− log δ
6 dimBF.

Then, since any set of diameter at most δ is contained in 3n cubes of a δ-mesh, we
get

Mδ (F ) 6 3nNδ (F ) ,

from which the opposite inequalities follow in a similar manner.

This approach leads to more equivalent definitions. We can take Mδ (F ) to be the
smallest number of arbitrary cubes needed to cover F (i.e., they need not be aligned
in a mesh). Similarly, since any set of diameter at most δ is contained in a ball of
radius δ, we can take Mδ (F ) to be the smallest number of balls of radius δ needed to
cover F . We can even take Mδ (F ) to be the largest number of disjoint balls of radius
δ with centers in F . See Figure 5.

Now that we have some tools to work with, let’s examine some of the implications
of this definition.

Proposition 1. If we let F denote the closure of F in Rn, then

dimBF = dimBF

and
dimBF = dimBF.

Proof. [Falc1] Let B1, B2, . . . , Bk be a finite collection of closed balls, each with radius

δ. If the closed set
⋃k

i=1 Bi contains F , it also contains F . Hence, Nδ (F ) = Nδ

(

F
)

,
where Nδ (F ) is interpreted as the least number of closed balls of radius δ that cover
F . Hence,

lim
δ→0

log Nδ (F )

− log δ
= lim

δ→0

log Nδ

(

F
)

− log δ

and the result follows immediately. �
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= 1δ

δ
M (F) = 10

= 1/2δ

δ
M (F) = 21

= 1/4δ

δ
M (F) = 64

F

Figure 5. Equivalent definitions of Mδ (F ).
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Example 2. F =
{

0, 1, 1
2
, 1

3
, . . .

}

has dimB F = 1
2
.

Proof. [Falc1] For |U | = δ < 1
2
, let k be the integer such that 1

k(k+1)
6 δ < 1

(k−1)k
. On

one hand, U can cover at most one of the points
{

1, 1
2
, . . . , 1

k

}

, so at least k sets of
diameter δ are required to cover F , indicating that

log Nδ (F )

− log δ
>

log k

log k (k + 1)
.

Then letting δ → 0, we get dimBF > 1
2
.

On the other hand, (k + 1) intervals of length δ cover
[

0, 1
k

]

, leaving k − 1 points
of F which can be covered by another k − 1 intervals. Thus,

log Nδ (F )

− log δ
6

log (2k)

log k (k − 1)
,

which gives dimBF 6 1
2
. Then the result follows from

1

2
6 dimBF 6 dimBF 6

1

2
.

�

This Proposition both serves to illustrate a serious shortcoming of box dimension.
While intuition (or maybe experience) might make dimBF = dimBF seem like an
attractive and straightforward result, it has the unattractive consequence of neatly
illustrating that box dimension is not countably stable. For example, the rationals
in [0, 1] are a countable union of singletons, each with dimB ({x}) = 0. However, as
shown by the proposition,

Q ∩ [0, 1] = [0, 1] ⇒ dimB (Q ∩ [0, 1]) = dimB ([0, 1]) = 1,

indicating in general that countable dense subsets don’t behave well under this defi-
nition.

Similarly, the Example indicates another instance where box dimension is shown
to be not countably stable. It is included here because it somehow indicates a more
severe failing of box dimension: the Example only has one non-isolated point, and
still fails to have dimension 0!

Box Dimension Summary

Advantages of working with box dimension:

Computationally robust.: This technique lends itself readily to experimental
work and analysis.

Flexible.: A variety of equivalent approaches may be used, allowing the analyst
to choose whichever formulation is easiest to work with on a given application.
(For Mδ (F ) and δ → 0.)
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Widely applicable.: Box-counting may be applied to non-self-similar sets, and
sets that are not easily “compass-able”.

Disadvantages of working with box dimension:

May not always exist.: If the upper and lower box-counting dimensions are
not equal, dimBF is not well defined.

Instability.: On our list of requirements for a definition of dimension, upper
box-counting dimension may not be countably stable (req#6) and lower box-
counting dimension may not even be finitely stable (req#5)!

6. Minkowski Dimension

The Minkowski dimension of a set F ⊂ Rn is defined via the δ-neighbourhood of
F :

(11) Fδ =

{

x ∈ Rn ... |x − y| < δ for some y ∈ F

}

i.e., the set of points within δ of F . Note that Fδ is always an open set of Rn and
hence has dimension n. Now consider the rate at which the n-dimensional volume of
Fδ decreases, as δ decreases. Some familiar examples in R3:

F dim F Fδ vol13 (Fδ)
single point 0 ball 4

3
πδ3

line segment 1 “sausage” ∼ πδ2l
rectangle of area A 2 “mouse pad” ∼ 2δA

In each case, vol13 (Fδ) ∼ cδ3−s where s is the dimension of F . The coefficient c
of δn−s is known as the s-dimensional Minkowski content of F , and is defined when
the values of

(12) ∗M s (F ) = lim
δ→0

vol1n (Fδ)

δn−s

and

(13) ∗M
s (F ) = lim

δ→0

vol1n (Fδ)

δn−s

are equal. (12) and (13) are known as upper and lower s-dimensional Minkowski con-
tent, respectively. Now for F embeddable in Rn, we define the Minkowski dimension
of F as:

(14) dimM(F ) = inf

{

s
... ∗M s (F ) < ∞

}

= sup

{

s
... ∗M s (F ) = ∞

}
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Returning to the relation vol1n (Fδ) ∼ cδn−s, we derive

log voln (Fδ) ∼ (n − s) log cδ

s ∼ n − log vol1n (Fδ)

log cδ

(15)

and relate this to the box dimension of F as follows:

Proposition 3. For F ⊂ Rn,

dimBF = n − lim
δ→0

log vol1n (Fδ)

log δ

and

dimBF = n − lim
δ→0

log vol1n (Fδ)

log δ

Proof. [Falc1] If F can be covered by Nδ(F ) balls of radius δ, then Fδ can be covered
by the concentric balls of radius 2δ. If we denote the volume of the unit ball in Rn

by cn, this gives

vol1n(Fδ) 6 Nδ(F )cn(2δ)
n

log voln (Fδ)

− log δ
6

log 2ncn + n log δ + log Nδ (F )

− log δ

lim
δ→0

log voln (Fδ)

− log δ
6 −n + dimBF

(16)

Now we use an alternate but equivalent (as shown previously) formulation of box
dimension to show the opposite inequality. If there are Nδ (F ) disjoint balls of radius
δ with centres in F , then

Nδ(F )cnδn 6 vol1n(Fδ).

Taking logs as above clearly leads to the opposite of (16), and together they yield
the first equality of the proposition. The equality for upper box dimension follows by
nearly identical inequalities. �

Thus, we have shown that the Minkowski dimension is essentially just another
formulation of box dimension.
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7. Hausdorff Measure

Now we develop a concept of dimension due to Hausdorff. As it is based on a
measure, it provides a more sophisticated concept of dimension. We define Hausdorff
measure for subsets of R, and then extend this to arbitrary subsets F ⊂ Rn.

For a nonnegative real s, δ > 0, and F ⊂ R, we define

(17) Hs
δ (F ) = inf

{

∑∞

i=1
|Ui|s

... 0 < |Ui| < δ, ∀i

}

,

where the infimum is taken over all sequences of Borel sets {Ui}∞i=1 such that F ⊂
⋃∞

i=1 Ui. In other words, the infimum is taken over all δ-covers of F .

This allows us to define the s-dimensional Hausdorff outer measure by

(18) Hs (F ) = lim
δ→0+

Hs
δ (F ) = sup

δ>0
Hs

δ (F ) ∈ [0,∞] .

Finally, s-dimensional Hausdorff measure is the restriction of this outer measure
to the σ-algebra of Hs-measurable sets.

Justifications.

Hs (F ) is well-defined:

If we allow δ to vary, note that for δ1 < δ2, any δ1-cover is also a δ2-
cover. Thus, decreasing δ restricts the range of permissible covers. Conversely,
increasing δ allows more covers to be considered, possibly allowing the infimum
to drop. Hence, Hs

δ1
(F ) > Hs

δ2
(F ), so Hs

δ (F ) is a nonincreasing function of δ
on (0,∞).

Further, for any monotonic sequence {δi}∞i=1 tending to 0,
{

Hs
δi

(F )
}∞

i=1
is

a nondecreasing sequence bounded above by ∞ and below by 0. Since every
bounded monotonic sequence converges,

{

Hs
δi

(F )
}

converges (possibly to ∞).

Hs is an outer measure:

We begin by showing that for each fixed δ > 0, Hs
δ (F ) is an outer measure.

Hs
δ (∅) = 0 and monotonicity follow immediately from the properties of covers.

To show σ-subadditivity, pick an ε > 0 and find an open cover {Bni
}∞i=1 for

each component Fn such that

(19)
∑∞

i=1
|Bni

|s 6 Hs
δ (Fn) +

ε

2n
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Now Fn ⊂ ⋃

i Bni
⇒ ⋃

n Fn ⊂ ⋃

n

⋃

i Bni
, so

Hs
δ

(

⋃

Fn

)

6 Hs
δ

(

⋃

n

⋃

i
Bni

)

by monotonicity

6
∑

n

∑

i
|Bni

|s Hs
δ is an inf over such sums

6
∑

n

(

Hs
δ (Fn) +

ε

2n

)

by (19)

=
∑

n
Hs

δ (Fn) +
∑

n

ε

2n

=
∑

n
Hs

δ (Fn) + ε

Since this is true for arbitrary ε, we let ε → 0 and get Hs
δ (

⋃

Fn) 6
∑

n Hs
δ (Fn).

Now that we’ve established Hs
δ as an outer measure, Hs can easily be shown

to be an outer measure: note that the supremum definition of Hs in (18) gives
us

(20) Hs (Fn) = sup
δ>0

Hs
δ (Fn) ⇒ Hs (Fn) > Hs

δ (Fn) .

Then as shown previously for any fixed δ,

Hs
δ

(

⋃

Fn

)

6
∑∞

n=1
Hs

δ (Fn)

6
∑∞

n=1
Hs (Fn)

where the second inequality follows by (20). Letting δ → 0, we obtain

Hs
(

⋃

Fn

)

6
∑∞

n=1
Hs (Fn).

Extension of Hs to F ⊂ Rn.

The definition of s-dimensional Hausdorff measure remains essentially the same
for subsets of higher dimensions; the difference is just that the covering sets Ui are
now taken to be subsets of Rn. The only real work involved in the extension is in the
proofs of the various properties. For example, the volume estimates of the covers will
need to be refined in the justification for Hs being an outer measure.

Properties of Hs.

1. Scaling. For λ > 0, Hs (λF ) = λsHs (F )
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If {Ui} is a δ-cover of F , then {λUi} is a λδ-cover of λF . Hence

Hs
λδ (λF ) 6

∑

|λUi|s

= λs
∑

|Ui|s (factoring)

6 λsHs
δ (F ) (since this is true for any δ-cover)

⇒ Hs (λF ) 6 λsH (F ) (letting δ → 0)

The reverse inequality is obtained by replacing λ with 1
λ

and F with λF . �

2. Hölder Transforms. For F ⊂ Rn, let f : F → Rm be such that |f (x) − f (y)| 6

c |x − y|α. Then Hs/α (f (F )) 6 cs/αHs (F ) ∀s.
This follows by an argument similar to the above.
Note that for α = 1, this shows that Hausdorff measure satisfies the Lip-

schitz criterion (7). Further, in the case when c = 1 (i.e., f is an isometry),
then this shows that Hs (f (F )) = Hs (F ).

3. Lebesgue agreement. Using the previous property, it may be shown that
for any integer n, Hn = cnµn, where µn is Lebesgue measure in Rn and
cn = 2n (n/2)!/π

n/2 is a renormalization constant. H0 is counting measure, H1

is length, H2 is area, etc.

8. Hausdorff Dimension

Now that we have an idea of what s-dimensional Hausdorff measure is and how it
works, let’s consider what happens when s is allowed to vary. Since we will eventually
consider δ → 0, suppose δ < 1 and consider the definition

Hs
δ (F ) = inf

{

∑∞

i=1
|Ui|s

... 0 < |Ui| < δ, ∀i

}

.

|Ui| < δ < 1 implies that Hs
δ (F ) is nonincreasing as a function of s, and therefore

that Hs (F ) is also. Suppose that s < t, so that s − t < 0, and that {Ui} is a δ-cover
of F . Then we get

∑

|Ui|t 6 δt−s
∑

|Ui|s

H t
δ (F ) 6 δt−sHs

δ (F ) (taking infima)

Now if we let δ → 0, then Hs (F ) < ∞ ⇒ H t (F ) = 0. What is the interpretation
of this result? There is a critical value of s at which Hs (F ) changes from ∞ to 0.
For F ⊂ Rn, we define this unique number to be the Hausdorff dimension of F and
denote it dimH F . See Figure 6.
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0

∞

D s

Hs(F)

HD(F)

Figure 6. The graph of Hs (F ) as a function of s.

(21) dimH F = inf

{

s
... Hs (F ) = 0

}

= sup

{

s
... Hs (F ) = ∞

}

Note that dimH F ∈ [0,∞] and that if dimH (F ) = s0, then Hs0 (F ) ∈ [0,∞]. In
other words, when measured in its appropriate dimension, the Hausdorff measure of
an object may take any nonnegative value, including 0 and ∞.

Properties of dimH . Hausdorff dimension satisfies all the definition requirements
suggested by Falconer. These relations can be seen readily from the definition of
Hausdorff measure, and the results from the previous section.

An extension of the Hölder Transform property 2 from the previous section is as
follows:

Proposition 4. Let F ⊂ Rn. Then for f : F → Rn s.t.

|f (x) − f (y)| 6 c |x − y|α ∀x, y ∈ F,

we have dimH f (F ) 6
(

1
α

)

dimH F .

Proof. [Falc1] If s > dimH F , then from 2, we get Hs/α (f (F )) 6 cs/αHs (F ) = 0.
But then dimH f (F ) 6 s

α
for all s > dimH F . �

Equivalent definitions of dimH . Just as there are different but equivalent for-
mulations of box dimension, there are alternate formulations of Hausdorff dimension.
Instead of using sets of diameter at most δ, we can take coverings by n-dimensional
spheres. We also get the save values for Hs (F ) and dimH F if we use just open sets
or just closed sets to cover F .

17
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In the case when F is compact, we can restrict coverings to those which consist
of only open sets, and then take a finite subcover. Hence, we get the same values for
Hs (F ) and dimH F if we only use finite covers.

We can also use a δ-mesh similar to the one discussed previously (in Box-Counting
Dimension) to provide a more computationally convenient version of Hausdorff mea-
sure (and dimension). Instead of the cubes [m1δ, (m1 + 1) δ]×· · ·× [mnδ, (mn + 1) δ],
we now use the half-open cubes [m1δ, (m1 + 1) δ)× · · · × [mnδ, (mn + 1) δ). Consider

N s
δ (F ) = inf

{

∑

|Ui|s
... {Ui} is a cover of F by δ-boxes

}

,

and let

N s (F ) = lim
δ→0

N s
δ (F ) .

Note that for any two δ-boxes in the mesh, they are either disjoint, or one is contained
in the other. Thus, any cover by δ-boxes can be reduced to a cover by disjoint δ-boxes.

These equivalences follow by similar arguments to those used to show the equiv-
alent formulations of box dimension, earlier.

Proposition 5.

dimH F 6 dimB F.

Proof. [Falc1] Since we always have dimBF 6 dimBF , it suffices to show dimH F 6

dimBF . Let F be covered by Mδ (F ) sets of diameter δ. Then, by the definition 17,
we get Hs

δ (F ) 6 Mδ (F ) δs (compare the quantities at the bottom of this page), and
hence that Hs (F ) 6 lim Mδ (F ) δs (letting δ → 0).

Consider those s for which 1 < Hs (F ) = limδ→0 Hs
δ (F ). Then

1 < Hs (F ) 6 lim Mδ (F ) δs

1 < Mδ (F ) δs for sufficiently small δ

0 < log Mδ (F ) δs taking logs

0 < log Mδ (F ) + s log δ

s <
log Mδ (F )

− log δ

s 6 lim
δ→0

log Mδ (F )

− log δ

so that dimH F 6 dimBF ∀F ⊂ Rn. �

This proposition is very useful because it allows us to use the readily computable
dimB F for an upper estimate on dimH F . Essentially, box dimension is easier to
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calculate because the covering sets are all taken to be of equal size, while Hausdorff
incorporates the “weight” of each covering set. To see this, we can write

Mδ (F ) δs = inf

{

∑

δs ... {Ui} is a δ − cover of F

}

Hs
δ (F ) = inf

{

∑

|Ui|s
... {Ui} is a δ − cover of F

}

9. Applications

The purpose of this section is to provide a couple of examples of how to calculate
the dimension of a set.

Let C be the familiar middle-thirds Cantor set.

dimsim C = log 2
log 3

: .

C is clearly seen to be n = 2 copies of itself, each scaled by a factor of p = 1
3
.

Thus

dimsim C =
log n

log 1/p
=

log 2

log 3
= D.

dimB C = log 2
log 3

: .

[Falc1] Cover C by 2k intervals of length 3−k. Then 3−k < δ 6 3−k+1 implies
that Nδ (F ) 6 2k. Now the definition (8) gives

dimBC = lim
δ→0

log Nδ (C)

− log δ
6 lim

δ→0

log 2k

log 3k−1
=

log 2

log 3

For the other inequality, note that for 3−k < δ 6 3−k+1, any interval of
length δ can intersect at most one of the basic intervals of length 3−k used in
the construction of C. Since there are 2k such intervals, it must be that 2k

intervals of length δ are required to cover C, whence Nδ (C) > 2k implies

dimBC = lim
δ→0

log Nδ (C)

− log δ
> lim

δ→0

log 2k

log 3k−1
=

log 2

log 3

dimH C = log 2
log 3

: .
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C may be split into two disjoint compact subsets C0 = C ∩
[

0, 1
3

]

and

C2 = C ∩
[

2
3
, 1

]

. From this, we can derive

Hs (C) = Hs (C0) + Hs (C2) by the additivity of Hs

= Hs

(

1

3
C

)

+ Hs

(

1

3
C

)

C0
∼= C2

∼= pC for p =
1

3

= 2 ·
(

1

3

)s

Hs (C) by scaling property (??)

1 =
2

3s
divide by Hs (C)

2 = 3s

s = log3 2 =
log 2

log3

For D = log 2
log 3

, HD (C) = 1: .

Part 1. For any δ > 0, pick the smallest n such that 1
3n 6 δ. Choose

ε 6 δ− 1
3n and cover C by 2n intervals of the form

(

a − ε
2
, a +

(

1
3n + ε

2

))

. The
length of any such interval U is

(22) |U | =

∣

∣

∣

∣

(

a − ε

2
, a +

(

1

3n
+

ε

2

))
∣

∣

∣

∣

=
1

3n
+ ε 6 δ.

But HD
δ (C) is the infimum over all covers, and this is just one such, so

HD
δ (C) 6

∑2n

i=1

∣

∣

∣

∣

(

a − ε

2
, a +

(

1

3n
+

ε

2

))
∣

∣

∣

∣

D

Now

HD
δ (C) 6 inf

ε>0

{

∑2n

i=1

∣

∣

∣

∣

(

a − ε

2
, a +

(

1

3n
+

ε

2

))
∣

∣

∣

∣

D
}

=
∑2n

i=1

(

1

3n

)D

by (22)

=
∑2n

i=1

(

1

3D

)n

=
∑2n

i=1

1

2n
3

log 2

log 3 = 2

= 1

Thus, HD
δ (C) 6 1 ∀δ implies that HD (C) 6 1.

Part 2. The opposite inequality is obtained as follows: for any δ > 0, let
B = {Bi}∞i=1 be a δ-cover of C.
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C is compact, so we can find a Lebesgue number η > 0 such that every
V ⊂ C with |V | < η is contained entirely within one of the Bi’s.

Pick the smallest m such that 1
3m < η, and choose ε < η − 1

3m .

Then we can find another cover of C by 2m intervals Ek =
(

ak − ε
2
, ak + 1

3m + ε
2

)

.
C is compact, so we can find a finite subcover {Ej}n

j=1.
Now each Ej is entirely contained in a Bi, so let Bj be the set containing

Ej, for each j.
Thus {Bj}n

j=1 is a finite subcover of the original arbitrary cover, so we get

1 6
∑2m

j=1
|Ej|D 6

∑2m

j=1
|Bj|D

by monotonicity. This indicates that 1 is a lower bound on the sum, for any
cover B.

HD
δ (C) is the greatest lower bound, so HD

δ (C) > 1.
As previously noted, HD

δ (C) is a nonincreasing function of ε, so HD
δ (C)

can only increase or remain the same as ε → 0. Thus, 1 6 HD
δ (C) 6 HD (C).

Proposition 6. A set F ⊂ Rn with dimH F < 1 is totally disconnected.

Proof. [Falc1] Let x and y be distinct points of F . Define a mapping f : Rn → [0,∞)]
by f (z) = |z − x|. Since f does not increase distances, i.e., |f (z) − f (w)| 6 |z − w|,
we can use the Hölder scaling Proposition (4). With α = c = 1, this gives us

dimH f (F ) 6 dimH F < 1.

Thus f (F ) is a subset of R with H1 (f (F )) = 0 (i.e., f (F ) has length 0), and hence
has a dense complement. Choosing r with r /∈ f (F ) and 0 < r < f (y), it follows
that

F =

{

z ∈ F
... |z − x| < r

}

∪
{

z ∈ F
... |z − x| > r

}

.

Thus, F is contained in two disjoint open sets with x in one set and y in the other,
so that x and y lie in different connected components of F. �

10. Further Dimensions

Modified Box Dimension. For F ⊂ Rn, we decompose F into a countable
number of pieces F1, F2, ... in such a way that the largest piece has as small a dimension
as possible. This leads to the modified box-counting dimension:

dimMBF = inf

{

sup
i

dimBFi
... F ⊂

⋃∞

i=1
F

}

dimMBF = inf

{

sup
i

dimBFi
... F ⊂

⋃∞

i=1
F

}

(23)
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It is clear that dimMBF 6 dimBF and dimMBF 6 dimBF , and for compact sets, the
relation is even tighter.

Proposition 7. [Falc1] Let F ⊂ Rn be compact, and suppose that dimB (F ∩ V ) =
dimBF for all open sets V that intersect F . Then dimBF = dimMBF . (And similarly
for lower box dimensions)

Packing Measure and Packing Dimension. As mentioned previously, the
essential difference between Hausdorff measure and box-counting is that Hausdorff
considers the size of each covering set, whereas box-counting only considers the num-
ber of them. Returning to the notion of Mδ (F ) as the largest number of disjoint balls
of radius δ with centers in F , we follow the footsteps of Hausdorff and define

(24) P s
δ (F ) = sup

{

∑

|Bi|s
}

where the supremum is taken over all collections {Bi} of disjoint balls of radii at most
δ with centers in F . Then we define

P s
0 (F ) = lim

δ→0
P s

δ (F ) .

However, P s
0 is not a measure, as is seen by considering countable dense sets, and

hence encounters the same difficulties as box dimension. To avoid this problem, we
add an extra step to the definition of packing measure, and take

(25) P s (F ) = inf

{

∑

P s
0 (Fi)

... F ⊂
⋃

Fi

}

.

Now the packing dimension can be defined in the usual way as

(26) dimP F = sup

{

s
...P s (F ) = ∞

}

= inf

{

s
...P s (F ) = 0

}

.

Proposition 8. dimP F = dimMBF . [Falc1]

In light of the previous two propositions, we have established the following rela-
tions:

dimH F 6 dimMBF 6 dimP F = dimMBF 6 dimBF
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