
An Introduction to Discrete-Time
Signal Processing

John A. Gubner
January 3, 2011

−0.5 −0.3 −0.1 0.1 0.3 0.5
0

1

2

3

4

5

Contents

1 From Continuous Time to Discrete Time and Back 1
1.1 Does Sampling Always Lose Information? 1
1.2 Review of Fourier Analysis 2

1.2.1 Continuous-Time Periodic Signals 2
1.2.2 Discrete-Time Aperiodic Signals 4
1.2.3 Continuous-Time Aperiodic Signals 5

1.3 Relating the Continuous-Time and the Discrete-Time Fourier Trans-
forms 8
1.3.1 The Bandlimited Case 9
1.3.2 The General Case 9
1.3.3 Approximating the Continuous-Time Fourier Transform in

MATLAB 10
1.4 The Sampling Theorem 11

1.4.1 The Sinc Reconstruction Formula 12
1.4.2 Aliasing 12
1.4.3 The Zero-Order Hold 13

1.5 The Continuous-Time Domain and the Discrete-Time Domain 14
1.6 Bandlimited Waveforms and Systems 16
1.7 The Gap Between Theory and Practice 17
Problems 18

2 Discrete-Time Convolution 25
2.1 Convolution of Two Finite-Duration Signals 25
2.2 Convolution of a Finite-Duration Signal and an Infinite-Duration Signal 26

2.2.1 Limited Observation Window 26
2.2.2 Unlimited Observation Window (The Overlap-Add Method) 27

Problems 28
3 The DFT and the FFT 29

3.1 The Discrete Fourier Transform (DFT) 29
3.1.1 Zero Padding 30
3.1.2 The Fast Fourier Transform (FFT) 31
3.1.3 Using the FFT to Approximate the DTFT 32
3.1.4 Using the FFT to Approximate the Continuous-Time Fourier

Transform 33
3.1.5 Summing a Periodic Sequence over a Period 33
3.1.6 Evaluation of Fourier-Series Coefficients 33
3.1.7 The Geometric Series 35

i

ii Contents

3.1.8 Derivation of the IDFT 35
3.2 Circular Convolution 35

3.2.1 The Operation Count 36
3.3 Fast (Ordinary) Convolution 37

3.3.1 The Operation Count 38
3.3.2 How Does Circular Convolution with FFTs compare with

conv? 39
3.4 Conclusion 39
Problems 39

4 Window Techniques 41
4.1 The Basics of Windows 41

4.1.1 The Rectangular Window 41
4.1.2 The Bartlett Window 42
4.1.3 The Hann (Hanning) Window 43
4.1.4 The Hamming Window 44
4.1.5 The Blackman Window 44

4.2 More Advanced Analysis of Windows 44
4.3 The Kaiser Window 46
Problems 47

5 The z Transform 48
5.1 Basic Definitions 48

5.1.1 Importance of the ROC 49
5.1.2 The Inverse z Transform 50

5.2 Properties 50
5.3 DTFTs from z Transforms 51
5.4 Transform Inversion by Partial Fractions 51
Problems 53

6 Discrete-Time Systems 55
6.1 Linearity 55
6.2 Time Invariance 56
6.3 Characterization of Linear Time-Invariant Systems 57
6.4 Stability 57
6.5 Causality 58
6.6 Transfer Functions 59

6.6.1 Stability 59
6.6.2 Causality 60

6.7 Difference Equations 61
6.7.1 Nonuniqueness 61
6.7.2 The Causal Case 62
6.7.3 Solving Difference Equations with MATLAB 63

January 3, 2011

Contents iii

6.7.4 z Transforms of Difference Equations 64
6.7.5 Stable Inverses and Minimum Phase 65
6.7.6 All-Pass Systems 67

6.8 Summary 68
Problems 69

7 IIR Filter Design 71
7.1 The Bilinear Transformation 71
7.2 Analog Transfer Functions 73
7.3 Butterworth Filters 74
7.4 Chebyshev Filters of the First Kind 78

7.4.1 The Chebyshev Polynomials 78
7.4.2 Chebyshev-I Filters 80

7.5 Chebyshev Filters of the Second Kind 82
Problems 84

8 FIR Filters 87
8.1 Motivation 87
8.2 Linear-Phase Filters 88

8.2.1 GLP Implies 2τ Must Be an Integer 89
8.2.2 GLP Is Equivalent to Generalized Symmetry 89
8.2.3 GLP and Causality Imply FIR 90
8.2.4 GLP and Real Impulse Response Imply ϕ0 Is 0 or π/2 91
8.2.5 Symmetry Conditions for GLP and Real Impulse Response 91

8.3 Windowing of Impulse Responses of GLP Filters 93
8.3.1 Filter Specifications 96
8.3.2 The Kaiser Window 97

8.4 Equiripple Filters and the Parks–McClellan Algorithm 98
8.4.1 Alternation and Exchange 99

Problems 101
9 Filter Implementation 105

9.1 Quantization of Difference-Equation Coefficients 105
9.2 Block Diagrams 106
9.3 An Alternative Realization 108
9.4 Realization of IIR Filters 109
9.5 Direct-Form Realizations 110
9.6 Transposed Direct Forms 111
9.7 Direct-Form Realizations of Real GLP FIR Filters 112
Problems 112

January 3, 2011

iv Contents

10 Sampling Rate Conversion 118
10.1 Upsampling and Interpolation 118
10.2 Downsampling and Decimation 120
10.3 Sampling Rate Conversion 122
10.4 Application to Sampling Continuous-Time Waveforms 123
Problems 124
Bibliography 127
Index 128

January 3, 2011

CHAPTER 1

From Continuous Time to Discrete Time
and Back

1.1. Does Sampling Always Lose Information?

Given a continuous-time waveform x(t), suppose we extract samples x(tn) at dis-
tinct points in time tn. Is it possible to reconstruct x(t) for all t using only the distinct
values x(tn)? Your initial reaction is probably, “No way!” However, if we assume
that x(t) belongs to a restricted class of waveforms, your initial answer may change.

Example 1.1.1. If we know that x(t) is a straight line, then

x(t) = x(t1)+
t− t1
t2− t1

[
x(t2)− x(t1)

]
.

For this class of waveforms, just two samples, taken at distinct times, allow recon-
struction of the complete waveform for all time.

The foregoing example easily generalizes to the class of polynomials of degree
at most n. In this case, just n+ 1 samples, taken at distinct times, determine the
polynomial.

As we shall see, given any waveform x(t) in the class of waveforms bandlimited
to fc, its Fourier transform satisfies

X(f) =
1
fs

∞

∑
m=−∞

x(m/ fs)e− j2π f m/ fs , | f | ≤ fs/2, (1.1)

provided fs > 2 fc. Hence, by taking the inverse Fourier transform, we see that x(t)
itself can be reconstructed from its samples {x(n/ fs)}∞

n=−∞. Here fc is called the
cutoff frequency, fs is called the sampling frequency, and 2 fc is called the Nyquist
rate. The statement that a bandlimited waveform can be recovered from its samples
if the sampling frequency is greater than the Nyquist rate is called the Sampling
Theorem.

Now consider a linear time-invariant system with impulse response h(t). The
response of this system to an input x(t) is given by the convolution integral

y(t) =
∫ ∞

−∞
h(t− τ)x(τ)dτ.

1

2 1 From Continuous Time to Discrete Time and Back

If the impulse response is bandlimited to fc, then the output y(t) is also bandlimited
to fc. Hence, y(t) can be recovered from its samples y(n/ fs) if fs > 2 fc. In fact,
we will show that if the input is bandlimited too, then the required samples can be
obtained from the discrete-time convolution,

y(n/ fs) =
1
fs

∞

∑
m=−∞

h([n−m]/ fs)x(m/ fs). (1.2)

Loosely speaking, this explains how computers and compact disc (CD) players
handle audio information. Since humans can only hear sounds up to about fc =
20 kHz, it suffices to sample music and speech at about fs = 2 fc = 40 kHz. As
a practical matter, to allow for non-ideal electronics, CDs contain samples taken at
fs = 44.1 kHz.

Of course, there are a few details that we have glossed over. Computers cannot
evaluate the infinite sums in (1.1) and (1.2). Therefore these infinite sums have to
be approximated by finite sums. In the case of (1.1), approximation by a finite sum
results in a “blurred” or “smeared” version of X(f). The digital signal processing
community has devoted a considerable literature to the development of “windows”
to compensate for the distortion introduced in the approximation of Fourier trans-
forms. In the case of (1.1) in which a finite impulse response (FIR) filter is used
to approximate a filter with ideal cutoff, the Gibbs phenomenon necessarily results.
This distortion has been addressed by developing suitable “windows” as well as other
techniques.

1.2. Review of Fourier Analysis

In Section 1.2.1, we recall Fourier series for continuous-time, periodic signals. In
Section 1.2.2, we recall the discrete-time Fourier transform for discrete-time, aperi-
odic signals. The duality between these two situations is then readily apparent.

In Section 1.2.3, we motivate the continuous-time Fourier transform by examin-
ing the limiting form of the Fourier-series representation of truncations of the time
signal.

1.2.1. Continuous-Time Periodic Signals

Suppose x(t) is a periodic signal with period T and Fourier series expansion

x(t) =
∞

∑
n=−∞

xne j2πnt/T . (1.3)

January 3, 2011

1.2 Review of Fourier Analysis 3

Then it is easy to show that the Fourier coefficients are given by

xn =
1
T

∫ T/2

−T/2
x(t)e− j2πnt/T dt.

This can be demonstrated by considering the integral

∫ T/2

−T/2
x(t)e− j2πmt/T dt =

∫ T/2

−T/2

[∞

∑
n=−∞

xne j2πnt/T
]

e− j2πmt/T dt

=
∞

∑
n=−∞

xn

∫ T/2

−T/2
e j2πt(n−m)/T dt

︸ ︷︷ ︸
=T δnm

,

where δnm is the Kronecker delta, which is one for n=m and zero otherwise. Hence,
this last sum reduces to xm ·T .

If x(t) and y(t) both have period T , then we have Parseval’s equation for Fourier
series,

1
T

∫ T/2

−T/2
x(t)y(t)dt =

∞

∑
n=−∞

xnyn, (1.4)

where the overbar denotes the complex conjugate. This is easy to derive by substitut-
ing (1.3) on the left-hand side of (1.4).

Arbitrary Signals Restricted to Finite Intervals

It is important to observe that nonperiodic signals can be represented on a finite
interval [a,b] by using Fourier series if we restrict attention to [a,b]. The trick is to
consider the periodic repetition of the piece of the waveform on [a,b] [PICTURE].
It follows that we can write

x(t) =
∞

∑
n=−∞

xne j2πnt/(b−a), t ∈ [a,b], (1.5)

with

xn =
1

b−a

∫ b

a
x(t)e− j2πnt/(b−a) dt.

We emphasize that in general, the left-hand side of (1.5) is not periodic, while the
right-hand side is periodic; hence, equality in (1.5) usually holds only for t ∈ [a,b].

January 3, 2011

4 1 From Continuous Time to Discrete Time and Back

1.2.2. Discrete-Time Aperiodic Signals

Given a sequence yn, its discrete-time Fourier transform (DTFT) is

Y (f) :=
∞

∑
n=−∞

yne− j2π f n,

which is a periodic function of f with period one. Since

Y (− f) =
∞

∑
n=−∞

yne j2π f n,

it is immediate from the preceding subsection that

yn =
∫ 1/2

−1/2
Y (f)e j2π f n d f .

Example 1.2.1. Fix a frequency f0 ∈ [−1/2,1/2], and suppose1 Y (f) = δ (f −
f0) for | f | ≤ 1/2. For other f , Y (f) is defined by the periodic repetition of what we
have on [−1/2,1/2]. Then

yn =
∫ 1/2

−1/2
δ (f − f0)e j2π f n d f = e j2π f0n.

In other words, the DTFT of discrete-time complex exponential e j2π f0n is the periodic
repetition of δ (f − f0).

Example 1.2.2. Let 0 < a < 1 and put yn := an for n ≥ 0 and yn = 0 for n < 0.
Then

Y (f) =
∞

∑
n=0

ane− j2π f n =
∞

∑
n=0

(ae− j2π f)n =
1

1−ae− j2π f ,

where we have used the geometric series formula (Problem 1.6).

If xn and yn are sequences with corresponding DTFTs X(f) and Y (f), then we
have the corresponding version of Parseval’s equation for the DTFT,

∞

∑
n=−∞

xnyn =
∫ 1/2

−1/2
X(f)Y (f)d f .

1 Here the symbol δ denotes the Dirac delta function of a continuous variable; i.e., δ (f) = 0 for f 6= 0
and

∫ ∞
−∞ δ (f)d f = 1.

January 3, 2011

1.2 Review of Fourier Analysis 5

If we approximate the DTFT X(f) by

X(f)≈
n2

∑
n=n1

xne− j2π f n, (1.6)

then the right-hand side can be plotted in MATLAB as follows. Assuming x =
[xn1 , . . . ,xn2],

f = linspace(-1/2,1/2,201);
nvec = [n1:n2];
X = dtft(f,x,nvec);
plot(f,X)

where

function y = dtft(f,x,nvec)
fvec = reshape(f,1,prod(size(f))); % convert f to row vector
y = x*exp(-j*2*pi*nvec.’*fvec);
y = reshape(y,size(f)); % make output have shape of f.

will plot an approximation of X(f). Of course, if xn is a finite-duration signal on
n1 ≤ n ≤ n2, then dtft computes X(f) exactly. Warning: If the lengths of f
and nvec are both large, then dtft will be quite slow. In this case, the fast
Fourier transform can be used, as shown in the function dtftfft given later
in Section 3.1.3.

Application to Continuous-Time Fourier Series

On the right-hand side of (1.6), if we replace f with −t/T , we get

n2

∑
n=n1

xne j2πnt/T .

Thus, if a continuous-time periodic signal x(t) has Fourier series coefficients xn, then
we can approximate x(t) with the MATLAB command dtft(-t/T,x,nvec).

1.2.3. Continuous-Time Aperiodic Signals

If x(t) is an aperiodic signal, consider the truncated signal [PICTURE]

xT (t) :=

{
x(t), |t| ≤ T/2,

0, |t|> T/2.

January 3, 2011

6 1 From Continuous Time to Discrete Time and Back

Then, for |t| ≤ T/2, we can use the formulas in Section 1.2.1 to write

xT (t) =
∞

∑
n=−∞

xT
n e j2πnt/T , |t| ≤ T/2, (1.7)

where

xT
n =

1
T

∫ T/2

−T/2
xT (t)e− j2πnt/T dt

=
1
T

∫ T/2

−T/2
x(t)e− j2πnt/T dt.

Observe that if we put ∆ f := 1/T , and change t to τ , then

xT
n = ∆ f

∫ T/2

−T/2
x(τ)e− j2π(n∆ f)τ dτ.

Making these substitutions into (1.7), and noting that for |t| ≤ T/2, xT (t) = x(t), we
can write

x(t) =
∞

∑
n=−∞

∆ f
[∫ T/2

−T/2
x(τ)e− j2π(n∆ f)τ dτ

]
e j2π(n∆ f)t

≈
∫ ∞

−∞

[∫ T/2

−T/2
x(τ)e− j2π f τ dτ

]
e j2π f t d f .

Letting T → ∞, we have

x(t) =
∫ ∞

−∞

[∫ ∞

−∞
x(τ)e− j2π f τ dτ

]
e j2π f t d f . (1.8)

This inner integral is called the Fourier transform. If we put

X(f) :=
∫ ∞

−∞
x(τ)e− j2π f τ dτ,

then (1.8) says that

x(t) =
∫ ∞

−∞
X(f)e j2π f t d f . (1.9)

Equation (1.9) is called the Fourier inversion formula or inverse Fourier trans-
form.

January 3, 2011

1.2 Review of Fourier Analysis 7

Example 1.2.3. Although we introduced the Fourier transform as applying to
aperiodic signals, we can apply it to periodic signals as follows. If x(t) is periodic,
then we can substitute its Fourier series expansion

x(t) =
∞

∑
n=−∞

xne j2πnt/T

Taking the Fourier transform term by term, and recalling that e j2π f0t and δ (f − f0)
are Fourier transform pairs, we see that

X(f) =
∞

∑
n=−∞

xnδ (f −n/T).

In other words, the nth Fourier series coefficient xn is associated with the frequency
f = n/T .

Some Important Facts about Fourier Transforms

If x(t) and y(t) are continuous-time aperiodic signals with respective Fourier
transforms X(f) and Y (f), then we have Parseval’s equation for Fourier trans-
forms, ∫ ∞

−∞
x(t)y(t)dt =

∫ ∞

−∞
X(f)Y (f)d f . (1.10)

The convolution of x and y is

(x∗ y)(t) :=
∫ ∞

−∞
x(t− τ)y(τ)dτ =

∫ ∞

−∞
x(θ)y(t−θ)dθ .

[Do graphical example for two rectangular pulses of different widths.
“Smearing effect.” Specialize to same width. Review unit impulse.]

The Fourier transform of (x ∗ y)(t) is X(f)Y (f). [EXAMPLE: Apply to cen-
tered pulse with itself and get sinc2.]

The convolution of X and Y is

(X ∗Y)(f) =
∫ ∞

−∞
X(f −ν)Y (ν)dν =

∫ ∞

−∞
X(θ)Y (f −θ)dθ .

The inverse transform of (X ∗Y)(f) is x(t)y(t). [Example: Rectangular win-
dowing in time becomes convolution with sinc in frequency.]

January 3, 2011

8 1 From Continuous Time to Discrete Time and Back

Transforms of Real Signals

If x(t) is real valued, then its transform X(f) has the property X(f) = X(− f) (see
Problem 1.19). It then follows that

|X(f)|2 = X(f)X(f) = X(f)X(− f),

which implies that |X(f)|2 is an even function of f . Because |X(f)|2 (and |X(f)|
as well) are even, we often plot them only for positive values of f . For this reason,
we define the bandwidth of a signal to be the length of the frequency band of pos-
itive frequencies over which the transform is nonzero. [Draw typical two-sided
spectra of LPF, BPF.]

1.3. Relating the Continuous-Time and the Discrete-Time
Fourier Transforms

Consider a continuous-time waveform x(t) with Fourier transform X(f). Suppose
we sample x(t) at the sampling rate fs; i.e., we sample x(t) at multiples of the
sampling interval Ts := 1/ fs. Denote the DTFT of the samples x(nTs) = x(n/ fs) by

XDTFT(f) =
∞

∑
n=−∞

x(n/ fs)e− j2π f n.

We begin our analysis by applying the the inverse DTFT to write

x(n/ fs) =
∫ 1/2

−1/2
XDTFT(f)e j2π f n d f

=
1
fs

∫ fs/2

− fs/2
XDTFT(ν/ fs)e j2πνn/ fs dν , (1.11)

where for convenience we have made the change of variable ν = fs · f , dν = fs d f .
On the other hand, by the continuous-time inverse Fourier transform,

x(t) =
∫ ∞

−∞
X(f)e j2π f t d f .

Specializing to the case t = n/ fs, we obtain

x(n/ fs) =
∫ ∞

−∞
X(f)e j2π f (n/ fs) d f . (1.12)

January 3, 2011

1.3 Relating the Continuous-Time and the Discrete-Time Fourier Transforms9

1.3.1. The Bandlimited Case

We say that x(t) is bandlimited if for some positive, finite frequency fc, called
the cutoff frequency, X(f) = 0 for | f |> fc. In this case, (1.12) can be rewritten as

x(n/ fs) =
∫ fs/2

− fs/2
X(f)e j2π f n/ fs d f , if fs/2≥ fc. (1.13)

Since this integral and the one in (1.11) are both equal to x(n/ fs) for all n, we must
have2

X(f) =
1
fs

XDTFT(f/ fs), | f | ≤ fs/2. (1.14)

We write this more explicitly as

X(f) =
1
fs

∞

∑
m=−∞

x(m/ fs)e− j2π f m/ fs , | f | ≤ fs/2. (1.15)

This shows that for a bandlimited signal, its Fourier transform can be computed with-
out numerical integration. We only need to compute the DTFT of equally spaced
samples!

1.3.2. The General Case

When the waveform is bandlimited and fs/2≥ fc, we passed directly from (1.12)
to (1.13). If the waveform is bandlimited but fs/2 < fc or if the waveform is not
bandlimited, we proceed as follows. We break up the range of integration in (1.12)
into intervals of length fs with one of the intervals centered at f = 0. This allows us
to rewrite (1.12) as

x(n/ fs) =
∞

∑
k=−∞

∫ (2k+1) fs/2

−(2k−1) fs/2
X(f)e j2π f n/ fs d f

=
∞

∑
k=−∞

∫ fs/2

− fs/2
X(ν + k fs)e j2π(ν+k fs)n/ fs dν , ν = f − k fs,

=
∞

∑
k=−∞

∫ fs/2

− fs/2
X(ν + k fs)e j2πνn/ fs dν , since e j2πkn = 1,

2 The integrals in (1.13) and (1.11) are Fourier-coefficient integrals. If these integrals are equal for all
n, then the functions X(f) and (1/ fs)XDTFT(f/ fs) are the same (assuming these are ordinary functions not
containing any impulses at f = ± fs/2). To see that we must exclude impulses at the end points, observe
that ∫ 1/2

−1/2
δ (f −1/2)e j2π f n d f and

∫ 1/2

−1/2
δ (f +1/2)e j2π f n d f

are both equal to (−1)n.

January 3, 2011

10 1 From Continuous Time to Discrete Time and Back

=
∫ fs/2

− fs/2

[∞

∑
k=−∞

X(ν + k fs)

]
e j2πνn/ fs dν .

Comparing this with (1.11), we conclude that

1
fs

XDTFT(ν/ fs) =
∞

∑
k=−∞

X(ν + k fs).

Letting ν = f and making the change of variable n = −k in the sum, we obtain the
Poisson summation formula,

1
fs

XDTFT(f/ fs) =
∞

∑
n=−∞

X(f −n fs), (1.16)

which we write more explicitly as

X̃(f) :=
∞

∑
n=−∞

X(f −n fs) =
1
fs

∞

∑
m=−∞

x(m/ fs)e− j2π f m/ fs . (1.17)

An example of shifted transforms and their sum is shown in Figure 1.1.

−10 −5 0 5 10
0

0.5

1

−10 −5 0 5 10
0

0.5

1

Figure 1.1. Shifts X(f −n fs) (top), and X̃(f) (bottom) for X(f) = e− f 2/2 and fs = 5.

1.3.3. Approximating the Continuous-Time Fourier Transform in MAT-
LAB

For a bandlimited waveform x(t), it is easy to use (1.14) and our MATLAB func-
tion dtft to approximate the Fourier transform X(f). The following MATLAB script

January 3, 2011

1.4 The Sampling Theorem 11

does this for x(t) = cos(2π f0t) with f0 = 10. In this case, the cutoff frequency is 10
and so we must choose fs > 20. Since we plan to plot the transform for−15≤ f ≤ 15,
must take fs/2≥ 15. For this reason, we use fs = 30.

subplot(2,1,1) % Plot waveform x(t)
t = linspace(0,1,200);
plot(t,cos(2*pi*10*t))
title(’\itx\rm(\itt\rm)=cos(2*pi*10*\itt\rm)’)
grid on

fs = 30; % Select sampling rate.
t1 = 0; % Sample x(t) for t1<=t<=t2 ...
t2 = 1;

n1 = ceil(fs*t1); % ... using time values of the form n/fs
n2 = floor(fs*t2);
nvec = [n1:n2];

x = cos(2*pi*10*nvec/fs); % Compute function values

f = linspace(-15,15,401); % Approx. Fourier transform on any
y = dtft(f/fs,x,nvec)/fs; % subinterval of [-fs/2,fs/2].

subplot(2,1,2)
plot(f,abs(y))
title(’Approximate Fourier Transform’)
grid on

If we apply this script to a waveform that is not bandlimited, then aliasing will oc-
cur as implied by (1.16). However, if fs is taken large enough good results can be
obtained. You can try this by modifying the script to use x(t) = e−|t|. To check the
result, you can also plot its exact transform, which is X(f) = 2/(1+(2π f)2).

Warning: As mentioned in Section 1.2.2, if the lengths of f and nvec are both
large, then dtft may be quite slow. In this case, the fast Fourier transform can
be used as shown in Section 3.1.4.

1.4. The Sampling Theorem

For bandlimited waveforms, (1.15) shows that X(f), where it is nonzero, is com-
pletely determined by the waveform samples. However, if we know X(f), we know
x(t) for all t by the inverse Fourier transform! We thus have the Sampling Theorem:
For a bandlimited waveform, its Fourier transform, and therefore the waveform itself,
can be recovered from the waveform samples if the sampling rate fs is greater than
or equal to 2 fc (called the Nyquist rate).

January 3, 2011

12 1 From Continuous Time to Discrete Time and Back

1.4.1. The Sinc Reconstruction Formula

When x(t) is bandlimited to fc and fs ≥ 2 fc, we showed that (1.15) holds. Keep-
ing this in mind, write

x(t) =
∫ ∞

−∞
X(f)e j2π f t d f

=
∫ fs/2

− fs/2
X(f)e j2π f t d f , since X(f) = 0 for | f |> fs/2,

=
∫ fs/2

− fs/2

[
1
fs

∞

∑
m=−∞

x(m/ fs)e− j2π f m/ fs

]
e j2π f t d f , by (1.15), (1.18)

=
1
fs

∞

∑
m=−∞

x(m/ fs)
∫ fs/2

− fs/2
e j2π f (t−m/ fs) d f

=
1
fs

∞

∑
m=−∞

x(m/ fs) · fs sinc(fs[t−m/ fs]), by Problem 1.25,

=
∞

∑
m=−∞

x(m/ fs)sinc(fs[t−m/ fs]), (1.19)

which is known as the sinc reconstruction formula or the sinc interpolation for-
mula.

A Signal Cannot Be Both Time Limited and Bandlimited

If x(t) is bandlimited, then (1.19) holds. But if x(t) is also time limited, then the
sum in (1.19) has only a finite number of nonzero terms. Intuitively, there is no way
this finite sum of sinc functions can achieve complete cancellation for all |t| bigger
than some time limit.

As a practical matter, all signals are time limited. They started as some time in
the finite past, and they can be measured only up to the present time. Similarly, all
signals are bandlimited. For example, electrical signals at light frequencies cannot
propagate in a copper wire. An interesting discussion relating these practicalities to
the mathematics of Fourier transform theory can be found in Slepian’s paper [9].

1.4.2. Aliasing

When the conditions of the sampling theorem are violated, the waveform that
results from applying the sinc reconstruction formula is not equal to x(t). In this case
the sinc reconstruction result is a distorted version of x(t). This distortion is called
aliasing.

January 3, 2011

1.4 The Sampling Theorem 13

To gain further insight into what the sinc reconstruction formula does, first note
that the steps starting with (1.18) and ending with (1.19) still hold. Combining this
with the Poisson summation formula (1.17), where X̃(f) is defined, we see that

∞

∑
m=−∞

x(m/ fs)sinc(fs[t−m/ fs]) =
∫ fs/2

− fs/2
X̃(f)e j2π f t d f . (1.20)

If we let x̃(t) denote the inverse Fourier transform of X̃(f), then (1.20) says that the
sinc reconstruction operation is equivalent to passing x̃(t) through an ideal lowpass
filter of bandwidth fs/2. It is important to point out here that if x(t) is bandlimited
to fc and fs > 2 fc, then the shifted copies of X(f) that make up X̃(f) do not overlap
[Draw pictures], implying that X̃(f) = X(f) for | f | ≤ fs/2. This allows the right-
hand side of (1.20) to be rewritten as

∫ fs/2

− fs/2
X(f)e j2π f t d f =

∫ ∞

−∞
X(f)e j2π f t d f , since x(t) is bandlimited,

= x(t).

We thus recover the fact that under the conditions of the sampling theorem, the sinc
formula recovers x(t). We also see that the sinc formula gives a distorted version of
x(t) precisely when the shifts of X(f) that make up X̃(f) overlap; i.e., aliasing is
simply the overlap of the shifts of X(f). [Illustrate with ramp X(f) = (1+ f)/2
on [−1,1]. Let fs go from a little above 2 fc to a little below 2 fc.]

1.4.3. The Zero-Order Hold

As above, we continue to let x̃(t) denote the inverse Fourier transform of X̃(f).
We now derive a simple formula for x̃(t). Using the Fourier transform pair

δ (t− t0)↔ e− j2π f t0

and the right-hand side of the Poisson summation formula (1.17), we have

x̃(t) =
1
fs

∞

∑
m=−∞

x(m/ fs)δ (t−m/ fs).

The preceding formula is called impulse sampling of x(t). The point here is that
one way to reconstruct the waveform x(t) is to apply x̃(t) to an ideal lowpass filter.
One problem is that impulse sampling is an idealization that is not exactly realizable.
However, what happens if we replace δ (t) with a realizable pulse p(t)? Let

xp(t) :=
∞

∑
m=−∞

x(m/ fs)p(t−m/ fs). (1.21)

January 3, 2011

14 1 From Continuous Time to Discrete Time and Back

Taking Fourier transforms yields

Xp(f) =
∞

∑
m=−∞

x(m/ fs)P(f)e− j2π f m/ fs

=

(∞

∑
m=−∞

x(m/ fs)e− j2π f m/ fs

)
P(f)

= fsX̃(f)P(f),

where P(f) denotes the Fourier transform of the pulse p(t). Hence, if we apply xp(t)
to a filter H(f) with

H(f) =
{

1/[fsP(f)], | f | ≤ fc
0, | f |> fc,

(1.22)

then the output will be
∫ ∞

−∞
H(f)Xp(f)e j2π f t d f =

∫ fc

− fc
H(f)Xp(f)e j2π f t d f

=
∫ fc

− fc

Xp(f)
fsP(f)

e j2π f t d f

=
∫ fc

− fc

fsP(f)X̃(f)
fsP(f)

e j2π f t d f

=
∫ fc

− fc
X̃(f)e j2π f t d f

=
∫ fs/2

− fs/2

X̃(f)e j2π f t d f ,

if x(t) is bandlimited to fc and fs ≥ 2 fc. In this case, the last integral is equal to
x(t). A common choice for the pulse p(t) is p(t) = 1 for 0 ≤ t ≤ T and p(t) = 0
otherwise. This can be realized with a zero-order hold circuit. In the case of the
zero-order hold, P(f) = T sinc(T f)e− jπT f is nonzero for T | f | < 1. Typically, we
would take T = 1/ fs < 1/(2 fc), in which case, P(f) is nonzero for | f | < 2 fc. [For
ZOH, show |P(f)| is nearly flat for | f |< fc if fs� fc. This means that H(f)
can be any LPF that is flat over the passband. Draw approx. system with
D/A followed by LPF. Run Matlab demo zohscript.]

1.5. The Continuous-Time Domain and the Discrete-Time
Domain

In an introductory course on signals and systems, one of the most important skills
to learn is how to think about a signal in the time domain and in the frequency domain.

January 3, 2011

1.5 The Continuous-Time Domain and the Discrete-Time Domain 15

For example, convolution in one domain corresponds to multiplication in the other
domain; a finite-duration pulse in one domain corresponds to a sinc function in the
other domain.

In the study of the discrete-time processing of continuous-time signals, it is im-
portant to be able to think about signals in the continuous-time domain and in the
discrete-time domain. More precisely, we need to keep in mind the relationship
between X(f) and XDTFT(f). In the general case, recall that we defined X̃(f) :=
∑n X(f −n fs) and that from (1.16) and (1.17), we have

X̃(f) =
1
fs

XDTFT(f/ fs). (1.23)

By multiplying this equation by fs, and replacing f with fs · f , we obtain

XDTFT(f) = fsX̃(fs f). (1.24)

In the special case that the continuous-time signal is bandlimited and we sample fast
enough; i.e., fs > 2 fc, we find that

X(f) =
1
fs

XDTFT(f/ fs), | f | ≤ fs/2, (1.25)

and
XDTFT(f) = fsX(fs f), | f | ≤ 1/2. (1.26)

The relationship (1.26) is illustrated graphically in Figure 1.2. To transform the graph
at the left into the one on the right, first mark off the points ± fs/2 so as to contain
all the nonzero parts of X(f). Then multiply all the heights by fs and divide all the
frequencies by fs. The reverse transformation is given by (1.25). In this case, we
start with a graph of XDTFT(f) for | f | ≤ 1/2. We divide all the heights by fs and we
multiply all the frequencies by fs.

f

X(f)

fs
2− fs

2
0 f2f1

A

f

XDTFT(f)

1
2− 1

2
0f1

fs
f2
fs

fs ·A

Figure 1.2. For a bandlimited signal that is sampled at faster than the Nyquist rate, it is easy to pass back
and forth between the continuous-time Fourier transform of the signal and the DTFT of its samples.

As a simple application of the foregoing observations, consider the continuous-
time system described by Y (f) = H(f)X(f). Now assume that the input signal and

January 3, 2011

16 1 From Continuous Time to Discrete Time and Back

the system are bandlimited to fc. Then the output is also bandlimited to fc. By
the sampling theorem, if we sample y(t) at fs > 2 fc, then sinc reconstruction of the
samples y(n/ fs) will recover y(t). Now observe that

YDTFT(f) = fsY (fs f) = fsH(fs f)X(fs f) = H(fs f)XDTFT(f), | f | ≤ 1/2.

This says that if we pass the discrete-time signal x(m/ fs) through the discrete-time
filter with transfer function (DTFT) equal to H(fs f) for | f | ≤ 1/2, then the discrete-
time signal we get has DTFT YDTFT(f). In other words, a bandlimited, continuous-
time system operating on bandlimited signals can be implemented with discrete-time
signal processing as shown in Figure 1.3.

x(n/ fs)
x(t) y(t)

y(n/ fs)

H(fs f)

f
fc
fs

− fc
fs

1
2− 1

2
0

@ fs

sinc
reconstr.

@ fs

sample

Figure 1.3. Implementation of a continuous-time system with discrete-time signal processing.

1.6. Bandlimited Waveforms and Systems

Suppose that x(t) and y(t) are both bandlimited to fc. Then in addition to (1.15),
there is an analogous formula for Y (f). In other words, both X(f) and Y (f) have
Fourier series expansions with Fourier coefficients being the waveform samples di-
vided by fs. Hence, by Parseval’s equation for Fourier series,

1
fs

∫ fs/2

− fs/2
X(f)Y (f)d f =

∞

∑
m=−∞

[x(m/ fs)/ fs] · [y(m/ fs)/ fs].

Keeping this in mind, and starting from Parseval’s equation for continuous-time
Fourier transforms (1.10), we can write

∫ ∞

−∞
x(τ)y(τ)dτ =

∫ ∞

−∞
X(f)Y (f)d f

=
∫ fs/2

− fs/2
X(f)Y (f)d f

=
1
fs

∞

∑
m=−∞

x(m/ fs)y(m/ fs). (1.27)

January 3, 2011

1.7 The Gap Between Theory and Practice 17

In particular, if h(t) is the impulse response of a linear time-invariant system that is
bandlimited to fc, then taking y(τ) = h(t− τ), we have

∫ ∞

−∞
h(t− τ)x(τ)dτ =

1
fs

∞

∑
m=−∞

h(t−m/ fs)x(m/ fs). (1.28)

Since the output of a bandlimited system is bandlimited, there is no loss of informa-
tion if we restrict attention to the output at the sample times t = n/ fs. In other words,
if we compute the samples

∫ ∞

−∞
h(n/ fs− τ)x(τ)dτ =

1
fs

∞

∑
m=−∞

h([n−m]/ fs)x(m/ fs), (1.29)

which is a discrete-time convolution, then we can recover the continuous-time con-
volution by applying the sinc reconstruction formula to the discrete-time convolution
outputs. In summary, the convolution (1.29) is exactly what the discrete-time sys-
tem in the middle of Figure 1.3 is doing; i.e., h(n/ fs)/ fs is the discrete-time impulse
response corresponding to the DTFT transfer function H(fs f) for | f | ≤ 1/2 (see
Problem 1.36).

1.7. The Gap Between Theory and Practice

Theoretically, discrete-time signal processing says that for bandlimited signals,
the continuous-time Fourier transform is completely determined by the DTFT of the
signal samples via (1.14). Furthermore, for a bandlimited input to a bandlimited
system, the output is completely determined by the discrete-time convolution (1.29).

Unfortunately, there are some practical constraints that tarnish the theory: (i)
Computers cannot do the infinite sums in (1.15) and (1.29). (ii) If we truncate these
sums to N terms and compute them for N values of f or n respectively, then we must
do on the order of N2 operations. For large N, this is not practical. Note that the
sums in (1.15) and (1.29) are never finite — recall that bandlimited waveforms never
have finite duration (except the zero waveform). (iii) Computers do not work with
infinite-precision numbers.

To remove some of the tarnish due to truncation, we will study windowing tech-
niques. We will apply them to spectral analysis and to filter design. To remove some
of the tarnish due to the order N2 computational complexity, we will invoke the fast
Fourier transform both for spectral analysis and for convolution. To remove some
of the tarnish due to finite-precision computation, we will briefly consider alternative
filter realizations.

January 3, 2011

18 1 From Continuous Time to Discrete Time and Back

Problems

1.1. Given samples of a waveform x(t) at distinct times t1, . . . , tn+1, show that there
is a unique polynomial p(t) of degree at most n such that p(tk) = x(tk) for
k = 1, . . . ,n+1.

1.2. Let x(t) be a continuous-time, periodic signal with period one and Fourier se-
ries coefficients xn. Let y(t) := x(t/T). Find the period of y(t). How are the
Fourier series coefficients of y(t) related to the xn?

1.3. Carry out the details to verify the formula

∫ T/2

−T/2
e j2πt(n−m)/T dt = T δnm.

1.4. If x(t) has period T and is real valued, show that its Fourier series coefficients
xn satisfy x−n = xn. Then show that

x(t) = x0 +2Re
{ ∞

∑
n=1

xne j2πnt/T
}
.

1.5. The foregoing problem suggests using MATLAB to compute the approximation,
for real waveforms,

xN(t) = x0 +2Re
{ N

∑
n=1

xne j2πnt/T
}
.

If x = [x1, . . . ,xN], then the above series can be computed with the command
dtft(-t/T,x,[1:N]), as noted in Section 1.2.2. Compute the N = 5 ap-
proximation of the square wave of period one whose values on [−1/2,1/2] are
given by

x(t) =
{

1, |t| ≤ 1/4,
0, 1/4 < |t| ≤ 1/2.

Show your work to compute the coefficients xn. Plot the square wave for |t| ≤ 1.
1.6. (a) Derive the geometric series formula

N−1

∑
n=0

zn =
1− zN

1− z
, z 6= 1.

Hint: Put SN := 1+ z+ · · ·+ zN−1 and consider the difference SN− zSN .
(b) Show that

∞

∑
n=0

zn =
1

1− z
, |z|< 1.

January 3, 2011

Problems 19

1.7. Modulation Property. Let xn have DTFT X(f). Express the DTFTs of yn :=
xne j2π f0n and zn := xn cos(2π f0n) in terms of X(f).

1.8. Time Translation. Let xn have DTFT X(f), and let yn := xn−M . Show that
Y (f) = e− j2π f MX(f). Note in particular that this implies |Y (f)|= |X(f)|.

1.9. Let 0 < a < 1 and | f0| ≤ 1/2.

(a) Show that the DTFT Y (f) = 1/(1− ae j2π f), which appears in Exam-
ple 1.2.2, satisfies

|Y (f)|2 = 1
1−2acos(2π f)+a2 .

Observe that the denominator satisfies

(1−a)2 ≤ 1−2acos(2π f)+a2 ≤ (1+a)2

and that (1−a)2 < 1 and (1+a)2 > 1. The denominator has a maximum
at f =±1/2 and a minimum at f = 0. For a typical value of a, sketch the
denominator and then sketch |Y (f)|2. What happens as a→ 1?

(b) Show that the DTFT of yn = a|n| is

Y (f) =
1−a2

1−2acos(2π f)+a2

Sketch Y (f).
(c) Find the DTFT of yn = ane j2π f0n for n≥ 0 and yn = 0 for n < 0.
(d) Find the DTFT of yn = a|n|e j2π f0n.

1.10. In this problem, you explore how Example 1.2.1 changes if f0 /∈ [−1/2,1/2].
To begin, we use the fact that every f0 can be expressed in the form f0 = f̂0+k0
for some some f̂0 ∈ [−1/2,1/2] and some integer k0.

(a) Show that e j2π f̂0n = e j2π f0n.
(b) Recall that in Example 1.2.1, Y (f) is defined by periodic repetition; i.e.,

when f0 ∈ [−1/2,1/2],

Y (f) =
∞

∑
k=−∞

δ ([f − k]− f0).

Show that
∞

∑
k=−∞

δ ([f − k]− f̂0) =
∞

∑
k=−∞

δ ([f − k]− f0).

In other words, the formula for Y (f) holds even when f0 /∈ [−1/2,1/2].

January 3, 2011

20 1 From Continuous Time to Discrete Time and Back

1.11. Sketch the DTFT of xn := e j2π(4/3)n for −1/2≤ f ≤ 1/2.
1.12. Let xn be a finite-duration signal of length N with xn = 0 for n < 0 and n≥ N.

Denote its DTFT by X(f). Let M be a positive integer, and define the new
signal

yn :=
∞

∑
i=−∞

xn−iM.

(a) Show that yn has period M.
(b) Let

Yk :=
M−1

∑
n=0

yne− j2πkn/M

denote the DFT of y0, . . . ,yM−1. Express Yk in terms of X(f).

1.13. Derive Parseval’s formula (1.4). Hint: Start with the left-hand side of (1.4) and
replace x(t) with its Fourier-series expansion (do not substitute for y(t)). Then
rearrange and simplify.

1.14. Show that Y (f) defined in Section 1.2.2 has period one.
1.15. Carry out the details to verify the integral formula for yn in Section 1.2.2.
1.16. MATLAB. Let a = 0.75. On one graph, plot abs(Y(f)) from Example 1.2.2

and the absolute value of its approximation using the function dtft given in
Section 1.2.2. In order to use dtft, it is convenient to put nvec=[0:N-1]
and x=[a.ˆnvec]. Make one graph with N = 10 and make another graph
with N = 20. Repeat for a=0.75*exp(j*2*pi*f0) where f0=0.25.

1.17. Derive Parseval’s formula (1.10). Hint: Start with the left-hand side of (1.10)
and replace x(t) with its representation as the inverse Fourier transform of X(f)
(do not substitute for y(t)). Then rearrange and simplify.

1.18. Let t be fixed. If y(τ) = h(t− τ), show that Y (f) = H(f)e− j2π f t .
1.19. Show that a waveform x(t) is real value if and only if its transform X(f) satis-

fies X(f) = X(− f).
1.20. Let x(t) be a periodic waveform of period T and Fourier series coefficients

xn. Suppose that x(t) is applied to a linear time-invariant system with impulse
response h(t). Let y(t) denote the system output.

(a) Show that y(t) is periodic.
(b) Let yn denote the nth Fourier series coefficient of y(t). Show that yn =

H(n/T)xn, where H(f) is the Fourier transform of h(t).

1.21. MATLAB. Modify the script in Section 1.3.3 to plot the Fourier transform of
x(t) = sinc2 t for | f | ≤ 3. Use values of sinc2 t for |t| ≤ 3. Make one plot with
fs = 6 and another with fs = 3.

1.22. MATLAB. Modify the script in Section 1.3.3 to plot the Fourier transform of
x(t) = 1/(1+ t2) for | f | ≤ 1. Use values of t for |t| ≤ 5. Although this signal

January 3, 2011

Problems 21

is not bandlimited, its spectrum, X(f) = πe−2π| f |, decays rapidly. Try using
fs = 10. Also plot the exact transform on top of the approximation.

1.23. Show that X̃(f) defined in (1.17) has period fs.
1.24. Let x(t) have continuous-time Fourier transform

X(f) =





1, | f | ≤ 10,
1/10, 10 < | f | ≤ 11,

0, otherwise.

Sketch, and carefully label, the DTFT of the samples x(n/ fs) if fs = 20.
1.25. Show that ∫ fc

− fc
e j2π f [t−m/ fs] d f = 2 fc sinc(2 fc[t−m/ fs]),

where

sinc(t) :=





sin(πt)
πt

, t 6= 0,

1, t = 0.

1.26. The preceding problem implies that the Fourier transform of 2 fc sinc(2 fc[t−
m/ fs]) is e− j2π f m/ fs I[− fc, fc](f), where I denotes the indicator function: If B⊂
IR,

IB(f) :=
{

1, f ∈ B,
0, f /∈ B.

Use this fact to show that
∫ ∞

−∞
2 fc sinc(2 fc[t−m/ fs])dt = 1.

1.27. Consider a periodic, continuous-time signal x(t) with period T0. Given any
sampling period Ts, we could obtain samples x(mTs). Now consider a longer
sampling period T ′s = Ts +∆, where ∆ > 0. Find ∆ such that x(mT ′s) = x(mTs)
for all m.

1.28. Let x(t) be bandlimited to fc. If y(t) = x(t)cos(2π f0t), determine the Nyquist
rate of y(t).

1.29. Let x(t) have Fourier transform X(f) = (1+ f)/2 for | f | ≤ 1.
(a) By hand, sketch X(f) for | f | ≤ 4.
(b) What is the Nyquist rate?
(c) By hand, on one graph, sketch X(f + fs), X(f), and X(f − fs) when fs is

equal to the Nyquist rate.
(d) Repeat part (c) if fs is just a little bit less than the Nyquist rate.

1.30. Let x(t) = e j2πt .
(a) By hand, sketch X(f).

January 3, 2011

22 1 From Continuous Time to Discrete Time and Back

(b) By hand, sketch X̃(f) for | f | ≤ fs/2 if fs = 1.5.
(c) If the sinc reconstruction formula is applied to the samples x(m/ fs) with

fs = 1.5, what signal will be reconstructed?
1.31. A signal x(t) with continuous-time Fourier transform

X(f)

f
0 1 2 3−3 −2 −1

1 1

is sampled at fs = 2. Sketch X̃(f) for | f | ≤ fs/2 and XDTFT(f) for | f | ≤ 1/2.
1.32. The continuous-time signal x(t) = e j2π(5)t + e j2π(10)t is to be sampled and ap-

plied to the discrete-time ideal lowpass filter with DTFT H(f) = I[−1/4,1/4](f)
so as to remove the high-frequency term e j2π(10)t . Determine the highest pos-
sible sampling rate fs for which this is possible.

1.33. Suppose that y(t) = x(t) + w(t), where x(t) is a lowpass signal and w(t) is
bandpass noise with Fourier transforms

W (f)

f
0 1 2 3−3 −2 −1

1
X(f)

f
0 1 2 3−3 −2 −1

1 1

(a) Sketch Y (f).
(b) Instead of passing y(t) through a continuous-time lowpass filter to remove

w(t) and leave only x(t), you are to design a system

y(t) y(n/ fs)

G(f)

DTFT

@ fs ?
sample ? x(t)

Your signal processing system

@ fs

sinc
reconstr.x(t) +

w(t)

that samples y(t) and passes the samples y(n/ fs) through a discrete-time
ideal lowpass filter of impulse response gn and corresponding DTFT G(f)
(of period one) such that the output of the discrete-time filter is y(n/ fs),
which can then be passed through a D/A to supply x(t). (i) What sam-
pling rate fs will you use? (ii) Sketch your choice of G(f).

1.34. A signal x(t), bandlimited to fc = 3, is measured using a sensor with transfer
function H(f) = 1+ f 2 for | f | ≤ 3 and H(f) = 0 for | f |> 3.

January 3, 2011

Problems 23

x(t)
y(t) y(n/ fs)

H(f)
G(f)

CTFT
DTFT

@ fs ?
sample ?

3−3

x(t)

Sensor Your signal processing system

@ fs

sinc
reconstr.

Specify a sampling rate fs for y(t) and a discrete-time transfer function G(f)
(give a formula) such that the output of the D/A is x(t). In other words, your
discrete-time filter G(f) should “undo” the distortion H(f) of the sensor.

1.35. Use the following hints to give an alternative derivation of the Poisson sum-
mation formula (1.17). Hints: (i) Observe that x(t0)δ (t− t0) = x(t)δ (t− t0).
(Consider the two cases t = t0 and t 6= t0.)
(ii) Apply the previous hint to the impulse sampling

∞

∑
m=−∞

x(m/ fs)δ (t−m/ fs). (∗)

(iii) Recall that the Fourier transform of a product is the convolution of the
transforms; i.e., the Fourier transform of x(t)y(t) is

∫ ∞

−∞
X(f −ν)Y (ν)dν .

(iv) Recall that if y(t) is periodic with period T and its Fourier series expansion
is ∑m yme j2πtm/T , then its Fourier transform is ∑m ymδ (f −m/T). Use this to
find the Fourier transform of the periodic impulse train y(t) = ∑m δ (t−m/ fs).
(v) You should now be able to show that the Fourier transform of (∗) is equal
to fs ∑m X(f −m fs).

1.36. Given a continuous-time transfer function H(f) with corresponding impulse
response h(t), consider the discrete-time system whose transfer function (or
DTFT) is equal to H(fs f) for | f | ≤ 1/2, where fs > 2 fc. Find the discrete-
time impulse response by writing down the inverse DTFT, doing a change of
variable, and using the fact that H(f) = 0 for | f |> fc.

1.37. Use the Poisson summation formula (1.17) to derive the Fourier transform pair
∞

∑
m=−∞

δ (t−m/ fs)↔ fs

∞

∑
n=−∞

δ (f −n fs);

i.e., the Fourier transform of an impulse train is an impulse train. Hints: In
(1.17), let X(f) = δ (f) so that x(t) ≡ 1. Then use the fact that the inverse
Fourier transform of e− j2π f t0 is δ (t− t0).

January 3, 2011

24 1 From Continuous Time to Discrete Time and Back

1.38. Formula (1.27) provides a numerical integration procedure for products of
bandlimited time functions. What about the integral of a single such function,
say

∫ ∞
−∞ x(τ)dτ? Recall that the Fourier transform of y(τ) ≡ 1 is the unit im-

pulse, or Dirac delta function, Y (f) = δ (f), which is certainly bandlimited.
In this case, (1.27) reduces to

∫ ∞

−∞
x(τ)dτ =

1
fs

∞

∑
m=−∞

x(m/ fs).

Now derive this formula in a different way by integrating (1.19) with respect
to t and using the result of Problem 1.26.

1.39. MATLAB. Use the result of the preceding problem with fs = 0.32 and MATLAB
to approximate

∫ ∞
−∞ sin(τ)/τ dτ . Explain why it is permissible to use fs = 0.32.

1.40. If x(t) is bandlimited, show that the x(t)2 is also bandlimited, but has twice the
cutoff frequency of x(t). Hint: Think about setting up the convolution of X(f)
with itself graphically.

1.41. MATLAB. Suppose we approximate the right-hand side of (1.28) by replacing
the infinite sum with a finite sum going from m = −M to m = M. Then we
can implement the approximation in MATLAB as follows. Assume that h(t)
and x(t) are computed by MATLAB functions stored in the M-files h.m and
x.m. The command y=blconv(t,’h’,’x’,fs,M) computes the desired
approximation, assuming that t, fs, and M have been defined and that the
function blconv, which stands for “bandlimited convolution,” is stored in
blconv.m and defined as follows
function y = blconv(t,hfun,xfun,fs,M)
tauvec = [-M:M]/fs;
[tmat,taumat] = meshgrid(t,tauvec);
y = feval(xfun,tauvec)*feval(hfun,tmat-taumat)/fs;

Plot the convolution of h(t) = 2 fc sinc(2 fct) and sinc2(t) for fc = 2 and for
fc = 1/2. To plot your results for t in the interval [−10,10], the command
t=linspace(-10,10,200) may be helpful. What sampling frequency fs
did you use? What is the smallest value of M that you were able to use?

1.42. MATLAB. In this problem you will apply an ideal lowpass filter to the N = 5
square wave approximation of Problem 1.5. Use the variable lpfcf to denote
the lowpass filter cutoff frequency. Plot the input signal when N=5 and the
output signal for lpfcf equal to 6, 4, and 2. Plot the output signal values for
t ∈ [−1,1]. What can you plot to check that your output is correct in each case?
Do it. The function blconv of the preceding problem may be helpful.

January 3, 2011

CHAPTER 2

Discrete-Time Convolution

At the end of Chapter 1, we showed that signals and linear time-invariant systems
that are bandlimited are equivalent to discrete-time signals and systems. In particu-
lar, (1.29) shows that continuous-time convolution corresponds to the discrete-time
convolution of the sampled impulse response and signal, divided by fs.

In this chapter, we make a few basic observations about discrete-time convolution
that will be very helpful in the study of digital signal processing.

The discrete-time convolution of two sequences x and y is defined by

(x∗ y)n :=
∞

∑
m=−∞

xmyn−m.

There are three situations that we need to consider.

1. Both x and y are finite-duration signals.

2. The signal x is finite duration, but y is not.

(a) We only care about a finite, predetermined range of n that is not too large.
We show how to reduce this to a type-1 problem.

(b) The range of n is very large or is indeterminate. The latter would be
the case in real-time signal processing. We show how to reduce this to
a collection of type-1 problems whose results can be added together in
what is known as the overlap-add method.

3. Neither x nor y is finite duration, but we use the approximation

(x∗ y)n ≈
M2

∑
m=M1

xmyn−m,

which falls into the type 2(a) or 2(b) category.

2.1. Convolution of Two Finite-Duration Signals

Suppose that xm is a finite-duration signal on Mx
1 ≤ m ≤ Mx

2 and ym is a finite-
duration signal on My

1 ≤m≤My
2. It is easy to see that the convolution (x∗y)n can be

nonzero only for [set this up graphically]

Mx
1 +My

1 ≤ n≤Mx
2 +My

2,

25

26 2 Discrete-Time Convolution

in other words, for

sum of lower limits≤ n≤ sum of upper limits.

Notice that the duration of xm is Mx
2 −Mx

1 + 1 (difference of limits plus one), the
duration of ym is My

2−My
1 +1, and the duration of (x∗ y)n is at most

(Mx
2 +My

2)− (Mx
1 +My

1)+1 = (Mx
2−Mx

1 +1)+(My
2−My

1 +1)−1
= duration(x)+duration(y)−1.

In other words, the duration of the convolution is the sum of durations minus one.
If x and y are vectors in MATLAB, their convolution is easily found with the

command z=conv(x,y). Warning: Later we will see that if x and y are large,
then conv is not very efficient, and other methods are faster (see Section 3.3).
Notice that x and y have no time index information. However, if we know Mx

1 and
My

1, then the appropriate vector of time indexes corresponding to the convolution are
easy to find, as shown in the following script.

x = ones(1,5); M1x = -2;
y = ones(1,9); M1y = -4;
z = conv(x,y);
M2x = M1x+length(x)-1;
M2y = M1y+length(y)-1;
n = [M1x+M1y:M2x+M2y];
stem(n,z,’filled’)

2.2. Convolution of a Finite-Duration Signal and an Infinite-
Duration Signal

If xm is a finite-duration signal on Mx
1 ≤ m≤Mx

2 , then

(x∗ y)n =
Mx

2

∑
m=Mx

1

xmyn−m.

2.2.1. Limited Observation Window

If n is restricted to N1 ≤ n≤N2, then the subscript on y varies from a minimum of
N1−Mx

2 to a maximum of N2−Mx
1 . This suggests that if we define the finite-duration

signal

ŷm :=
{

ym, N1−Mx
2 ≤ m≤ N2−Mx

1,
0, otherwise,

January 3, 2011

2.2 Convolution of a Finite-Duration Signal and an Infinite-Duration Signal27

then (x∗ ŷ)n = (x∗y)n for N1 ≤ n≤ N2. A [graphical argument] with yn−m, ŷn−m,
and xm shows that this is indeed the case. Some caution is needed, however. Observe
that (x∗ ŷ)n is nonzero for

Mx
1 +(N1−Mx

2)≤ n≤Mx
2 +(N2−Mx

1)

or equivalently,
N1− (Mx

2−Mx
1)≤ n≤ N2 +(Mx

2−Mx
1),

which is a larger range than the N1 ≤ n≤ N2 that we are interested in. The point here
is that if we use z=conv(x,yhat), then z contains many entries that we do not
need. Specifically, there are Mx

2−Mx
1 entries at the beginning and end of z that we

do not need. Our desired data is.

z((M2x-M1x)+1:end-(M2x-M1x)).

2.2.2. Unlimited Observation Window (The Overlap-Add Method)

In this case, we break up the infinite sequence y into infinitely many nonoverlap-
ping pieces, each of finite length M. More specifically, if we put

y(k)m :=
{

ym, kM ≤ m < (k+1)M,
0, otherwise,

then

ym =
∞

∑
k=−∞

y(k)m .

Since convolution is linear, we can write

x∗ y = x∗
(∞

∑
k=−∞

y(k)
)
=

∞

∑
k=−∞

x∗ y(k).

Notice that term x ∗ y(k) is computable because it is the convolution of two finite-
length sequences. Also, (x∗ y(k))n is nonzero only for

Mx
1 + kM ≤ n≤Mx

2 +(k+1)M−1.

Since we can always incorporate a delay into x, there is no loss of generality if we
assume x is causal, which implies Mx

1 = 0. Then x∗ y(k) is nonzero only for

kM ≤ n≤ [(k+1)M−1]+Mx
2.

January 3, 2011

28 2 Discrete-Time Convolution

Thus, even though y(k)m is nonzero only for kM ≤ n ≤ (k+1)M−1, the convolution
x∗ y(k) extends Mx

2 samples beyond; i.e., it overlaps with the next term x∗ y(k+1). To
prevent x∗ y(k) from overlapping with x∗ y(k+2), we require

[(k+1)M−1]+Mx
2 < (k+2)M,

which simplifies to M > Mx
2−1 or M ≥Mx

2 . Since the length of x is Mx
2 +1, this says

that the length of the blocks into which we partition y should be at least the length of
x minus one. We always assume this to be the case.

Up to this point we have assumed that y is doubly infinite. However, in practice,
we do not start measuring y until some finite time, which we take here to be zero. So
the first step is to collect the data y0, . . . ,yM−1. This allows us to compute (x∗ y(0))n
for n = 0, . . . ,M+Mx

2−1. However, we only output (x∗ y(0))n for n = 0, . . . ,M−1.
We then collect yM, . . . ,y2M−1 and compute (x∗y(1))n for n = M, . . . ,2M+Mx

2−1. It
is convenient to display the results in more detail as

(x∗ y(0))n for n = 0, . . . ,M−1,M,M+1, . . . ,M+Mx
2−1

(x∗ y(1))n for n = M,M+1, . . . ,M+Mx
2−1, . . . ,2M, . . . ,2M+Mx

2−1.

Since (x∗ y(2))n does not start until time 2M, we can provide the next M outputs

(x∗ y)n = (x∗ y(0))n +(x∗ y(1))n, n = M, . . . ,2M−1.

In general, after computing (x∗ y(k))n for n = kM, . . . ,(k+1)M−1+Mx
2 , we output

(x∗ y)n = (x∗ y(k−1))n +(x∗ y(k))n, n = kM, . . . ,(k+1)M−1.

To express this in MATLAB, suppose that oldz contains x∗y(k−1) and newz contains
x∗ y(k), both of length M+Mx

2 . Then we output the vector of length M given by

[oldz(M+1:end)+newz(1:M2x) newz(M2x+1:M)];

Problems

2.1. If x, y, and z are sequences with lengths Nx, Ny, and Nz, find the length of
x∗ y∗ z.

January 3, 2011

CHAPTER 3

The DFT and the FFT

In Chapter 1, we saw that signal processing for continuous-time, bandlimited
waveforms and systems can be accomplished by discrete-time signal processing.
However, computers can only evaluate finite sums.

Recall that for an infinite sequence xn, its DTFT is

X(f) :=
∞

∑
m=−∞

xme− j2π f m ≈
M2

∑
m=M1

xme− j2π f m

for large M2 and large (negative) M1. The sum on the right contains M2−M1 + 1
terms. In order to write the finite sum as a sum starting from zero, we can make the
change of variable n = m−M1 to get

X(f)≈
M2−M1

∑
n=0

xn+M1e− j2π f (n+M1).

Although the foregoing approximation involves only a finite sum, a computer cannot
evaluate it for all values of f in one period, say | f | ≤ 1/2. Instead, the computer can
only evaluate the sum for finitely many values of f . Let N := M2−M1 + 1, and let
f = k/N to get

X(k/N) ≈
N−1

∑
n=0

xn+M1e− j2πk(n+M1)/N

= e− j2πkM1/N
N−1

∑
n=0

xn+M1e− j2πkn/N . (3.1)

Regarding this last sum as a function of k, observe that it has period N; i.e., replacing
k with k+N does not change the value of the sum. So we only need to evaluate the
sum for k = 0, . . . ,N−1.

3.1. The Discrete Fourier Transform (DFT)

Given a finite sequence y0, . . . ,yN−1, its discrete Fourier transform (DFT) is

Yk :=
N−1

∑
n=0

yne− j2πkn/N . (3.2)

29

30 3 The DFT and the FFT

It is easy to show that Yk is a periodic function of k with period N. We show be-
low in Section 3.1.8 that the sequence yn can be recovered from the DFT sequence
Y0, . . . ,YN−1 by the inverse DFT (IDFT)

yn =
1
N

N−1

∑
k=0

Yke j2πkn/N . (3.3)

Of course the right-hand side is a periodic function of n with period N. Hence,
although yn is only defined for n = 0, . . . ,N − 1, we often think of it as being an
infinite-duration periodic signal with period N.

3.1.1. Zero Padding

Given a sequence y0, . . . ,yM−1, its DTFT is

Y (f) =
M−1

∑
n=0

yne− j2π f n.

Now consider the zero-padded vector

z = [y0, . . . ,yM−1,0, . . . ,0].

If the length of z is N, then the DFT of z is

N−1

∑
n=0

zne− j2πkn/N =
M−1

∑
n=0

yne− j2πkn/N

= Y (k/N).

In other words, given M data samples y0, . . . ,yM−1, computing a zero-padded DFT
gives you samples of Y (f) that are more closely spaced in frequency.

Now suppose that xn is a causal sequence (i.e., xn = 0 for n < 0) of infinite
duration with DTFT

X(f) =
∞

∑
n=0

xne− j2π f n.

Put

XM(f) :=
M−1

∑
n=0

xne− j2π f n.

Then as M→∞, XM(f)→ X(f). For fixed M, the DFT of [x0, . . . ,xM−1,0, . . . ,0] zero
padded to length N is

XM(k/N) =
M−1

∑
n=0

xne− j2πkn/N , k = 0, . . . ,N−1.

January 3, 2011

3.1 The Discrete Fourier Transform (DFT) 31

In other words, for fixed M, if we compute the DFT of [x0, . . . ,xM−1,0, . . . ,0] with
more and more zeros padded, we do not get closer to X(f), we get more closely
spaced frequency samples of XM(f). This is illustrated in Figure 3.1.

−0.5 −0.3 −0.1 0.1 0.3 0.5
0

1

2

3

4

5

Figure 3.1. The DTFT of an infinite sequence (dashed line), the DTFT of the first M elements (solid line),
and the DFT of M elements with zero padding (circles).

3.1.2. The Fast Fourier Transform (FFT)

If y = [y0, . . . ,yN−1], then the DFT of y, Y = [Y0, . . . ,YN−1], can be computed
in MATLAB with the command Y = fft(y). Here FFT stands for fast Fourier
transform. The FFT is a special algorithm that computes the DFT very quickly.

Since the DFT is periodic,1

Y−1 = Y−1+N = YN−1
Y−2 = Y−2+N = YN−2

...
Y−N/2 = Y−N/2+N = YN/2.

So, to plot Yk for k =−N/2 to k = N/2−1, we need to take

Y= [Y0, . . . ,YN/2−1,YN/2, . . . ,YN−1]

and convert it to
[YN/2, . . . ,YN−1,Y0,Y1, . . . ,YN/2−1].

1 If N is not even, then N/2 should be replaced the greatest integer that is less than or equal to N/2,
which is denoted by bN/2c and is given by floor in MATLAB.

January 3, 2011

32 3 The DFT and the FFT

This is done with the MATLAB command fftshift. The corresponding vector of
k values can be given by k=[0:N-1]-N/2, and we could then use the command
plot(k, fftshift(Y)).

3.1.3. Using the FFT to Approximate the DTFT

If we are approximating the sum in (3.1), then we would use k/N to have the hor-
izontal axis run from −1/2 to 1/2. The MATLAB function dtftfft given below
computes the right-hand side of (3.1) using fft and also takes care of the bookkeep-
ing to return to you the corresponding frequencies f in [−1/2,1/2]. The command
for this is [y,f]=dtftfft(x,M1), where the elements of x are [xM1 , . . . ,xM2].
If M1 is zero, it can be omitted and you can write [y,f]=dtftfft(x) instead.
There is also an optional third argument if you want to force fft to zero-pad x. Re-
member, the spacing between frequencies in the DFT and the FFT is 1/length(x).
The required command is [y,f]=dtftfft(x,M1,N) to force dtftfft to add
enough zeros to x to make its length N. If the length of x is greater than N, x will be
truncated to N elements. Using N = 0 causes dtftfft to zero-pad x so its length
is a power of 2. Using a negative value of N causes dtftfft to zero pad x so that
its length is a power of 2 that is not only greater than or equal to the length of x but
also greater than or equal to −N. Note that fft operates most efficiently on vectors
whose length is a power of 2. Here is the function.

function [y,f] = dtftfft(x,varargin)
N = length(x);
if nargin==3

N = varargin{2};
if N==0 % If N=0, zero pad x to a power of 2.

N = 2ˆceil(log2(length(x)));
elseif N<0 % If N<0, zero pad x to a power of 2 >= -N

N = 2ˆceil(log2(max(length(x),-N))); % and >= length(x)
end

end
y = fft(x,N);
k = [0:N-1];
if nargin>=2

M1 = varargin{1};
if M1˜=0

y = exp(-j*2*pi*M1/N*k).*y;
end

end
y = fftshift(y);
% For N=2m even, change 0,...,m,...,2m-1
% to -m,...,0,...,m-1. For N=2m+1 odd, change
% 0,...,m-1,m,m+1,...,2m to -m,...,-1,0,1,...,m.

January 3, 2011

3.1 The Discrete Fourier Transform (DFT) 33

% Then divide by N to get frequencies in [-1/2,1/2].
f = (k-floor(N/2))/N;

3.1.4. Using the FFT to Approximate the Continuous-Time Fourier Trans-
form

It is very easy to modify the MATLAB script in Section 1.3.3 to use dtftfft
instead of dtft. In the script, replace the two lines f=... and y=... with the
three lines

[y,f] = dtftfft(x,n1,0); % Compute DTFT on [-1/2,1/2]
f = f*fs; % Convert freq. to [-fs/2,fs/2]
y = y/fs; % Scale DTFT

If your curve does not have enough points on it, you can change the third argument of
dtftfft to increase the number of points in f as discussed above in Section 3.1.3.

3.1.5. Summing a Periodic Sequence over a Period

Let zn have period N. Then for any m,

m+(N−1)

∑
n=m

zn =
N−1

∑
n=0

zn.

This is most easily seen pictorially. For example, if zn has period N = 5, we see from
the diagram

n : 0 1 2 3 4 5 6 7 8 9
zn : a0 a1 a2 a3 a4 a0 a1 a2 a3 a4

that z0 + · · ·+ z4 and z3 + · · ·+ z7 are both equal to a0 + · · ·+a4.
A simple application of the foregoing is to the IDFT formula (3.3) when N =

2M+1. Then

yn =
1
N

M

∑
k=−M

Yke j2πkn/N ,

where we have used the fact that since Yk and e j2πkn/N have period N, so does their
product.

3.1.6. Evaluation of Fourier-Series Coefficients

We say that a continuous-time, periodic function is bandlimited if its Fourier-
series expansion has only finitely many terms, say

x(t) =
M

∑
n=−M

xne j2πnt/T .

January 3, 2011

34 3 The DFT and the FFT

Let N = 2M + 1, and define {x̃n}∞
n=−∞ to be the N-periodic extension of {xn}M

n=−M .
Then we can write

x(kT/N) =
M

∑
n=−M

xne j2πkn/N

=
M

∑
n=−M

x̃ne j2πkn/N

=
N−1

∑
n=0

x̃ne j2πkn/N

︸ ︷︷ ︸
N IDFT of x̃n

,

since the terms, as a function of n, have period N. It follows that x̃n is 1/N times the
DFT of x(kT/N); i.e.,

x̃n =
1
N

N−1

∑
k=0

x(kT/N)e− j2πkn/N , for all n, (3.4)

= xn, |n| ≤M. (3.5)

We can now write

x(t) =
M

∑
n=−M

xne j2πnt/T

=
M

∑
n=−M

x̃ne j2πnt/T

=
M

∑
n=−M

[
1
N

N−1

∑
k=0

x(kT/N)e− j2πkn/N
]

e j2πnt/T , by (3.4),

=
1
N

N−1

∑
k=0

x(kT/N) ·N sinc(N[t/T − k/N])

sinc(t/T − k/N)
, by Problem 3.3,

=
N−1

∑
k=0

x(kT/N)
sinc(N[t/T − k/N])

sinc(t/T − k/N)
.

We thus have a sampling theorem and sinc reconstruction formula for periodic
signals that are bandlimited. Notice that here we get exact reconstruction with a
finite number of terms! Furthermore, from (3.4)–(3.5) we can recover the xn exactly
without computing the integral that is normally required for finding Fourier-series
coefficients!

January 3, 2011

3.2 Circular Convolution 35

3.1.7. The Geometric Series

In order to derive the inverse DFT, we need the geometric series formula (Prob-
lem 1.6 in Chapter 1),

N−1

∑
k=0

zk =





N, z = 1,

1− zN

1− z
, z 6= 1.

We will need this identity when z has the form z = e j2π(m−n)/N . When z has this form,
z = 1 if and only if (m−n)/N is an integer. Now, if 0≤m,n≤N−1, then (m−n)/N
is an integer if and only if m = n. Furthermore,

zN =
[
e j2π(m−n)/N]N = e j2π(m−n) = 1,

and then (1− zN)/(1− z) = 0.

3.1.8. Derivation of the IDFT

We can now establish the IDFT formula (3.3). Fix 0≤ m≤ N−1. Then

1
N

N−1

∑
k=0

Yke j2πkm/N =
1
N

N−1

∑
k=0

(N−1

∑
n=0

yne− j2πkn/N
)

e j2πkm/N

=
1
N

N−1

∑
n=0

yn

N−1

∑
k=0

e j2πk(m−n)/N

=
1
N

N−1

∑
n=0

yn

N−1

∑
k=0

[
e j2π(m−n)/N]k

︸ ︷︷ ︸
Nδmn

=
1
N

N−1

∑
n=0

yn ·Nδmn = ym.

3.2. Circular Convolution

If xn and yn are periodic with period N, their circular convolution is defined by

(x ∗©y)n :=
N−1

∑
m=0

xmyn−m.

We first show that this formula is equal to

N−1

∑
k=0

xn−kyk.

January 3, 2011

36 3 The DFT and the FFT

In the defining sum, make the change of variable k = n−m. Then

(x ∗©y)n =
n−(N−1)

∑
k=n

xn−kyk.

=
n

∑
k=n−(N−1)

xn−kyk

=
N−1

∑
k=0

xn−kyk.

Now, the second line follows because the order in which we add up the N terms does
not matter. To understand the last line, note that as a function of k, the product xn−kyk
is periodic with period N. If we add up N consecutive products, it does not matter
where we start the sum since we will sum over one period.

We next show that the DFT of the circular convolution is the product of the indi-
vidual DFTs. Write

N−1

∑
n=0

(x ∗©y)ne− j2πkn/N =
N−1

∑
n=0

[N−1

∑
m=0

xmyn−m

]
e− j2πkn/N

=
N−1

∑
m=0

xm

[N−1

∑
n=0

yn−me− j2πkn/N
]

=
N−1

∑
m=0

xm

[−m+N−1

∑
l=−m

yle− j2πk(l+m)/N
]

=
N−1

∑
m=0

xme− j2πkm/N
[−m+N−1

∑
l=−m

yle− j2πkl/N
]

=
N−1

∑
m=0

xme− j2πkm/N
[N−1

∑
l=0

yle− j2πkl/N
]

= XkYk.

3.2.1. The Operation Count

To evaluate the formula for (x ∗©y)n for one value of n requires N multiplications
along with N−1 additions. To do this for N times; i.e., for n = 0, . . . ,N−1, requires
N(2N−1) operations. In other words, it requires O(N2) operations.

As an alternative to this approach, suppose we use the FFT to compute the DFTs
Xk and Yk, compute the N products XkYk, and then use the inverse FFT (IFFT) to
compute the IDFT to obtain (x ∗©y)n for n = 0, . . . ,N− 1. Since each FFT requires
O(N logN) operations, the total operation count for this alternative is still O(N logN).

January 3, 2011

3.3 Fast (Ordinary) Convolution 37

m

ỹm

0 N−N

m

ỹn−m

n n+Nn−N N∗
n

N1 −1
m

x̃m

0 N −1

xn

N1 −10

yn

0 N2 −1

Figure 3.2. Computation of linear convolution via zero padding and circular convolution. Note that
N∗n = n+N− (N2−1) = n+N1 +N2−1−N2 +1 = n+N1 ≥ N1 for n≥ 0.

3.3. Fast (Ordinary) Convolution

Recall that the ordinary convolution of two sequences xn and yn is defined by

(x∗ y)n :=
∞

∑
m=−∞

xmyn−m.

If both sequences are causal, then

(x∗ y)n =
n

∑
m=0

xmyn−m, n≥ 0, (3.6)

and (x∗y)n = 0 for n < 0. We now further assume that xn and yn have finite durations
N1 and N2, respectively. More specifically, assume xn and yn are causal and satisfy
xn = 0 for n≥ N1 and yn = 0 for n≥ N2 as shown at the top in Figure 3.2. Sketching
xm and yn−m as functions of m, it is easy to see that (x∗y)n = 0 for n−(N2−1)≥N1,
or equivalently, for n≥ N1 +N2−1. Thus, x∗ y has duration N := N1 +N2−1.

January 3, 2011

38 3 The DFT and the FFT

Let x̃n and ỹn denote the N-periodic extensions of x0, . . . ,xN−1 and y0, . . . ,yN−1,
respectively. For example, ỹm is shown in Figure 3.2. Then, for n = 0, . . . ,N−1,

(x ∗©y)n =
N−1

∑
m=0

x̃mỹn−m

=
n

∑
m=0

x̃mỹn−m +
N−1

∑
m=n+1

x̃mỹn−m

=
n

∑
m=0

xmyn−m +
N−1

∑
m=n+1

xmỹn−m.

Observe that this last sum is zero if n+1≥ N1. On the other hand, if n+1≤ N1−1,
the last sum is

N1−1

∑
m=n+1

xmỹn−m+N .

Now, in this sum, m≤ N1−1 or −m≥−N1 +1. Then

n−m+N ≥ n−N1 +1+N = n−N1 +1+N1 +N2−1
= n+N2

≥ N2.

Also, m > n implies n−m < 0, which implies n−m+N < N. So,

ỹn−m+N = yn−m+N = 0.

Hence, (x̃ ∗© ỹ)n = (x∗ y)n for 0≤ n≤ N−1.

3.3.1. The Operation Count

For causal signals of finite-duration, to compute (x ∗ y)n using (3.6) requires n
multiplications and n−1 additions, and we must do this for n = 0, . . . ,N−1. Using
the formula

N

∑
n=1

n =
N(N +1)

2
,

it is easy to see that evaluating (3.6) for n= 0, . . . ,N−1 requires N(N+1)/2 multipli-
cations along with (N−1)N/2 additions. Hence, the number of operations is O(N2).
However, using the FFT method on the periodic extensions x̃n and ỹn requires only
O(N logN) operations.

January 3, 2011

3.4 Conclusion 39

3.3.2. How Does Circular Convolution with FFTs compare with conv?

From our theoretical discussion, there is no question that the circular convolution
of zero-padded sequences is faster than the direct convolution in Section 2.1. To see
the difference in action, run the following MATLAB script, which computes the linear
convolution of two causal, finite-duration sequences by both methods and reports the
time taken by each.

x=ones(1,2000);
y=ones(1,5000);
tic
N = length(x)+length(y)-1;
N = 2ˆceil(log2(N)); % round up to a power of 2
v = ifft(fft(x,N).*fft(y,N));
ffttime = toc;
tic
w = conv(x,y);
convtime = toc;
plot([0:length(v)-1],real(v)); grid on
fprintf(’conv takes %g times longer.\n’,convtime/ffttime)

3.4. Conclusion

In Section 3.1.3 we corralled the beast of order N2 operations for computing the
DTFT, and in Section 3.3 we did the same for computing the convolution of two
finite-length sequences.

Problems

3.1. Show that the DFT Yk in (3.2) is a periodic function of k with period N.
3.2. Show that the DTFT of

wn :=
{

e j2πn f0 , 0≤ n < N,
0, otherwise,

is e− jπ(f− f0)(N−1) sin
(
πN(f − f0)

)
/sin

(
π(f − f0)

)
.

3.3. Show that

M

∑
n=−M

e jπθn = N
sinc(Nθ/2)
sinc(θ/2)

, where N := 2M+1.

3.4. MATLAB. Write a MATLAB function convfft(x,y) that computes the lin-
ear convolution by computing the inverse FFT of the product of the FFTs of

January 3, 2011

40 3 The DFT and the FFT

zero-padded versions x and y. Using your function plot the convolution of

x= ones(1,100) and y= ones(1,50)

January 3, 2011

CHAPTER 4

Window Techniques

4.1. The Basics of Windows

Consider a discrete-time signal xn. Even if it is of finite duration, the duration may
be so long that it is not feasible to compute its DTFT. Also, its frequency content may
change over time. For example, if xn is obtained by sampling a piece of music, the
pitch and tempo may vary. For this reason, we are interested in the DTFT of the
windowed signal

yn =

{
xn, n = 0, . . . ,N−1,
0, otherwise.

More generally, we consider yn = wnxn, where wn = 0 for n < 0 and n ≥ N. The
key observation here is that since multiplication in the time domain corresponds to
periodic convolution in the frequency domain, when we compute

N−1

∑
n=0

wnxne− j2π f n, (4.1)

we do not get X(f), we get
∫ 1/2

−1/2
W (ν)X(f −ν)dν . (4.2)

If we put f = k/N, then (4.1) reduces to the DFT, which can be evaluated efficiently
with any FFT algorithm, e.g., the MATLAB command fft. Of course we would like
(4.2) to equal X(f), but this happens if and only if W (ν) = δ (ν) on [−1/2,1/2],
and this requires wn = 1 for all n, which violates the window requirement wn = 0
for n < 0 and n ≥ N. So we want to use a window sequence such that W (ν) looks
as much like δ (ν) as possible; i.e., a narrow pulse. Let’s consider the following
well-known windows.

4.1.1. The Rectangular Window

The rectangular window uses wn = 1 for 0≤ n < N. As shown in the problems,
the DTFT of the rectangular window is

Wrect(f) =
sin(πN f)

sinπ f
e− jπ f (N−1). (4.3)

41

42 4 Window Techniques

[Sketch sin(πN f) and sinπ f .] It is easily verified that the maximum magnitude
of the DTFT occurs at f = 0 and the zeros occur at integer multiples of 1/N. The
main lobe is the part of the magnitude curve between the zeros on each side of the
origin. Hence, the main-lobe width is 2/N. The parts of the curve between other ad-
jacent zeros are called side lobes. The maxima of the side lobes occur approximately
halfway between the zeros; i.e., at odd multiples of 1/(2N). [Draw picture; mark
zeros, extreme points.] A key characteristic of a window is the side-lobe level,
which is the ratio of the maximum side lobe to the maximum of the main lobe. This
is usually expressed in terms of decibels (dB). For the rectangular window it is

20log10
|Wrect(3/(2N))|
|Wrect(0)|

= 20log10 |Wrect(3/(2N))|−20log10 |Wrect(0)|,

which is easily found by subtracting levels when the frequency response is plotted on
a dB scale. To evaluate Wrect(0), observe that

sin(πN f)
sinπ f

=
sinc(N f)
sinc(f)

· πN f
π f

.

Thus, Wrect(0) = N. Next, it is easy to see that |Wrect(3/(2N))|= 1/|sin(3π/(2N))|.
For large N the argument of the sine is small, and we can use the approximation
sinx≈ x. This leads to |Wrect(3/(2N))| ≈ 2N/(3π), and

20log10
2N/(3π)

N
= 20log10

2
3π
≈−13.46 dB.

4.1.2. The Bartlett Window

For odd N, the Bartlett window is defined to be the convolution of the rectangular
window of length (N +1)/2 with itself and then multiplied by 2/(N +1). A simple
graphical convolution argument shows that the resulting triangular window [sketch]
is given by

wn = 1− |2n−N +1|
N +1

, 0≤ n < N (odd).

Since convolution in the time domain corresponds to multiplication in the frequency
domain, the frequency response of the Bartlett window is

WBartlett(f) =
2

N +1
e− jπ f (N−1)

(
sin(π[N +1] f/2)

sinπ f

)2

.

[Sketch numerator. Mark zero crossings, approx extreme pts.] The zero
crossings occur at multiples of 2/(N + 1), and the side-lobe extrema occur approx-
imately halfway between the adjacent zeros; i.e., at odd multiples of 1/(N + 1).

January 3, 2011

4.1 The Basics of Windows 43

Hence, the main-lobe width is 4/(N + 1), and for large N the side-lobe level is ap-
proximately

20log10
|WBartlett(3/(N +1))|
|WBartlett(0)|

= 20log10

2
N+1

(
1

sin(3π/(N+1))

)2

2
N+1

(
N+1

2

)2

≈ 20log10(2/3π)2 ≈−26.93 dB.

We see that in moving from the rectangular window to the Bartlett window, the main-
lobe width has nearly doubled from 2/N to 4/(N+1), and the side-lobe level has also
doubled (by squaring on a log scale).

4.1.3. The Hann (Hanning) Window

The Hann window (sometimes called the Hanning window)1 is the raised cosine
window [sketch] given by

wn = 0.5−0.5cos
(

2πn
N−1

)
, 0≤ n < N.

A simple calculation shows that

WHann(f) = 0.5
[
Wrect(f)−0.5Wrect

(
f − 1

N−1

)
−0.5Wrect

(
f +

1
N−1

)]
.

The Hann window is designed in the frequency domain with the idea being to par-
tially cancel the side lobes by subtracting suitable terms.

The Modified Hann Window

Since the Hann window has the property that w0 = wN−1 = 0, the first and last
values of wnxn are multiplied by zero and deleted. For this reason, the modified Hann
window

wn = 0.5−0.5cos
(

2π(n+1)
N +1

)
, 0≤ n < N.

is sometimes used instead. In this formula, note that w−1 =WN = 0.

1 The Hann window is named after J. von Hann. According to [5, p. 468], the term “Hanning” or
“hanning” was introduced by Blackman and Tukey [1].

January 3, 2011

44 4 Window Techniques

4.1.4. The Hamming Window

The Hamming window is given by2

wn = 0.54−0.46cos
(2πn

N−1

)
, 0≤ n < N

and is similar in appearance to the Hann window, except the first and last values are
not zero. The DTFT of the Hamming window is

WHamming(f) = 0.54Wrect(f)−0.23
[
Wrect

(
f − 1

N−1

)
+Wrect

(
f +

1
N−1

)]
.

4.1.5. The Blackman Window

The Blackman window is given by34

wn = 0.42−0.5cos
(2πn

N−1

)
+0.08cos

(4πn
N−1

)
, 0≤ n < N.

Its DTFT is

WBlackman(f) = 0.42Wrect(f)−0.25
[
Wrect

(
f − 1

N−1

)
+Wrect

(
f +

1
N−1

)]

+0.04
[
Wrect

(
f − 2

N−1

)
+Wrect

(
f +

2
N−1

)]
.

4.2. More Advanced Analysis of Windows

The DTFTs of the five preceding windows are shown in Figure 4.1. To analyze the
last three, when N is large, we use the approximation 1/(N−1)≈ 1/N in the DTFT
formulas. This makes the zero crossings of the different terms fall on multiples of
1/N. [Draw pics of shifted Wrect.]

For example, in the Hann and Hamming windows, all three terms will be (approx-
imately) zero for f = k/N except for k = 0 and k = ±1. In the Blackman window,
we also exclude k = ±2. It follows immediately that the main-lobe widths of the
Hann and Hamming windows are both 4/N. The main-lobe width of the Blackman
window is 6/N.

2 Blackman and Tukey [1, pp. 98–99] point out that 0.54 is a good approximation to 25/46, and 0.46
is good approximation to 42/92.

3 Blackman and Tukey [1, pp. 98–99] use the approximations 3969/9304≈ 0.42 (even though 0.43 is
closer), 2310/4652≈ 0.5, and 1430/18608≈ 0.08.

4 The Blackman window, like the Hann window, satisfies w0 =wN−1 = 0 and can be similarly modified.

January 3, 2011

4.2 More Advanced Analysis of Windows 45

−60

0

−60

0

−60

0

−60

0

0 0.5

−60

0

Figure 4.1. DTFTs (in dB) of windows with N = 25 (top to bottom): rectangular, Bartlett, Hann, Ham-
ming, and Blackman.

To evaluate the side-lobe level of the Hann window, we begin by evaluating the
DTFT halfway between the first two zeros. We have

WHann(2.5/N)

= 0.5
[
Wrect

(
2.5
N

)
−0.5Wrect

(
2.5
N
− 1

N−1

)
−0.5Wrect

(
2.5
N

+
1

N−1

)]

≈ 0.5
[
Wrect

(
2.5
N

)
−0.5Wrect

(
2.5
N
− 1

N

)
−0.5Wrect

(
2.5
N

+
1
N

)]

= 0.5
[
Wrect

(
2.5
N

)
−0.5Wrect

(
1.5
N

)
−0.5Wrect

(
3.5
N

)]
.

Now in (4.3), we also make the approximation N− 1 ≈ N in the exponential factor
and use sinx≈ x as before. We find that

WHann(2.5/N)≈−(jN/π)[1/5−0.5/3−0.5/7] = (jN/π)(4/105).

Similarly,

WHann(0)≈ 0.5[Wrect(0)−0.5Wrect(−1/N)−0.5Wrect(1/N)] = 0.5N.

It follows that the Hann side-lobe level is 20log10(8/(105π)) =−32.3 dB.
In the case of the Hamming window, the side lobe between 3/N and 4/N is the

biggest, and so we evaluate WHamming at 3.5/N. Write

WHamming(3.5/N)≈−(j2N/π)[0.54/7−0.23/5−0.23/9].

January 3, 2011

46 4 Window Techniques

Since WHamming(0)≈ 0.54N, we find that the Hamming side-lobe level is −43.6 dB.
In the case of the Blackman window, we find empirically maximum of the first

sidelobe occurs at about 3.21/N. We have

WBlackman(3.5/N) ≈ 0.42Wrect(3.5/N)−0.25
[
Wrect(2.5/N)+Wrect(4.5/N)

]

+0.04
[
Wrect(1.5/N)+Wrect(5.5/N)

]

≈ − j(2N/π)[0.42/7−0.25/5−0.25/9+0.04/3+0.04/11]

and

WBlackman(0) ≈ 0.42Wrect(0)−0.25
[
Wrect(−1/N)+Wrect(1/N)

]

+0.04
[
Wrect(−2/N)+Wrect(2/N)

]

= 0.42N.

We find that the Blackman side-lobe level is −58.2 dB.

Name Main-Lobe Width Side-Lobe Level (dB)
Rectangular 2/N −13.46
Bartlett (N odd) 4/(N +1) −26.93
Hann 4/N −32.3
Hamming 4/N −43.6
Blackman 6/N −58.2

Table 4.1. Some common window widths and side-lobe levels. The parameter N is the window length.

4.3. The Kaiser Window

We conclude our discussion of windows by introducing the Kaiser window. The
Kaiser window is defined by

wn =

I0

(
β
√

1−
(
|2n−N+1|

N−1

)2
)

I0(β)
, 0≤ n < N,

where β is a shape parameter and I0 denotes the modified Bessel function of the first
kind order zero,

I0(t) :=
∞

∑
n=0

(
(t/2)n

n!

)2

.

January 3, 2011

Problems 47

Since the terms are squared, we see that I0(t) is an even function. To compute I0(t)
in MATLAB, use the command besseli(0,t). The following script computes the
DTFT of the Kaiser window WKaiser(f).

function W = WKaiser(f,N,beta)
% Compute Kaiser window seq. wn.
n = [0:N-1];
arg = abs(2*n-N+1)/(N-1);
argi = beta*sqrt(1-arg.ˆ2);
wn = besseli(0,argi)/besseli(0,beta);
W = wn*exp(-j*2*pi*n’*f); % Compute DTFT of wn

[Run wXscript to illustrate windowing and spectral analysis.]

Problems

4.1. Write down the formula for the length (N + 1)/2 rectangular window. Use
this result to derive the formula given for DTFT of the length N Bartlett win-
dow, WBartlett(f).

4.2. Use Euler’s formula cosθ = [e jθ +e− jθ]/2 to compute the DTFT of the Hann
window to verify the formula given for WHann(f).

4.3. Use the method of the preceding problem to compute the DTFT of the Black-
man window to verify the formula given for WBlackman(f).

4.4. Let v be the rectangular window of length M, and put wn := (v∗ v∗ v)n. Let N
denote the length of w.

(a) Express M as a function of N.
(b) Find the main-lobe width.
(c) Find the (approximate) side-lobe level in dB.

4.5. Let un be the Hann window of length M, and let vn be the Hann window of
length M + 1. Let wn denote the convolution of un and vn. Assuming M is
large, find the approximate side-lobe level of the window wn.

January 3, 2011

CHAPTER 5

The z Transform

Because linear time-invariant systems are characterized by convolution, and be-
cause of the convolution property of the z transform, the z transform is a powerful
tool for the analysis and design of such systems.

5.1. Basic Definitions

Given a sequence {xn}∞
n=−∞, its bilateral or two-sided z transform is defined as

X(z) :=
∞

∑
n=−∞

xnz−n,

for all complex z such that the series converges absolutely; i.e., all

z ∈ ROC(x) :=
{

z :
∞

∑
n=−∞

∣∣xnz−n∣∣< ∞
}
.

Here ROC stands for region of convergence.

Example 5.1.1. If

xn =

{
an, n≥ 0,
0, n < 0,

then

X(z) =
∞

∑
n=0

anz−n =
∞

∑
n=0

(az−1)n =
1

1−az−1 ,

for |az−1|< 1 or |z|> |a|. [DRAW ROC].

Example 5.1.2. If

xn =

{
0, n > 0,
an, n≤ 0,

then

X(z) =
0

∑
n=−∞

anz−n =
∞

∑
m=0

a−mzm =
∞

∑
m=0

(a−1z)m =
1

1−a−1z
,

for |a−1z|< 1 or |z|< |a|. [DRAW ROC].

48

5.1 Basic Definitions 49

Example 5.1.3. For |a|< 1, if xn = a|n|, then

X(z) =
∞

∑
n=−∞

a|n|z−n =
∞

∑
n=0

(az−1)n +
−1

∑
n=−∞

a−nz−n.

If |z| > |a|, then the first sum on the right converges to 1/(1− az−1). The second
term on the right is equal to

∞

∑
m=−1

(a−1z−1)m =
∞

∑
m=1

(az)n =−1+
∞

∑
m=0

(az)n,

which converges to

1
1−az

−1 =
1− (1−az)

1−az
=

az
1−az

,

if |az|< 1 or |z|< 1/|a|. Hence,

X(z) =
1

1−az−1 +
az

1−az
, |a|< |z|< 1/|a|.

[DRAW ROC].

This last example illustrates the general case. If

R1 := inf
{

r ≥ 0 :
∞

∑
n=−∞

|xn|r−n < ∞
}

and R2 := sup
{

r ≥ 0 :
∞

∑
n=−∞

|xn|r−n < ∞
}
,

then
{z : R1 < |z|< R2} ⊆ ROC(x).

An important observation is that the ROC contains all circles of the form {z : |z|= r}
for R1 < r < R2. The ROC may or may not contain some z with |z|= R1 or |z|= R2.
In Example 5.1.2, R1 = 0, R2 = |a|, and z = 0 is in the ROC. In Example 5.1.1,
R1 = |a|, R2 = ∞, and limz→∞ X(z) = x0; i.e., z = ∞ is in the ROC.

5.1.1. Importance of the ROC

Let x+n := an for n ≥ 0 and x+n = 0 for n < 0. Let x−n := −an for n < 0 and
x−n = 0 for n ≥ 0. Then by Example 5.1.1, the z transform of x+n is 1/(1− az−1).
By the calculations in Example 5.1.3 (or Problem 5.1), the z transform of x−n is also
1/(1−az−1). What’s going on?

January 3, 2011

50 5 The z Transform

The “catch” is that we have ignored the region of convergence. In the case of x+n ,
the ROC is |z| > |a|, while in the case of x−n , the ROC is |z| < |a|. The ROC is part
of the z transform of a signal. It is not enough just to give the formula; you must also
say for what values of z the formula holds — you must also give the ROC.

To say that two z transforms are the same means that they have the same ROC and
that their formulas are equal to each other for all z in the ROC. So, two transforms
are different if they have different ROCs, even if their formulas are the same. Two
transforms are different if their ROCs are the same but their formulas are not equal
for some z in their common ROC.

5.1.2. The Inverse z Transform

As mentioned above, the ROC always contains circles of the form {z : |z|= r} for
R1 < r < R2. For such r, consider evaluating the z transform at points z of the form
z = re j2π f , where | f | ≤ 1/2. We get

X(z)
∣∣
z=re j2π f =

∞

∑
n=−∞

xn
(
re j2π f)−n

=
∞

∑
n=−∞

xnr−ne− j2π f n.

We recognize this as the DTFT of the sequence xnr−n. It follows by the inverse DTFT
that

xnr−n =
∫ 1/2

−1/2
X
(
re j2π f)e j2π f n d f ,

or

xn = rn
∫ 1/2

−1/2
X
(
re j2π f)e j2π f n d f . (5.1)

This implies that if two sequences have z transforms that are equal on a common
circle of radius 0 < r < ∞, then the two sequences must be the same. For example, if
un and vn have transforms U(z) and V (z), put xn := un− vn. It suffices to show that
xn = 0. Now, since xn = un− vn, by linearity of the z transform, X(z) =U(z)−V (z).
If U(z) = V (z) on a circle of radius r, then X(z) = 0 on that circle, and then (5.1)
implies xn = 0.

5.2. Properties

Linearity. The z transform is linear. This means that if yn = axn +bwn, where a
and b are real or complex numbers, then Y (z) = aX(z)+bW (z). [Derive.]

Delay/Advance. For fixed m, if yn = xn−m, then Y (z) = z−mX(z). [Derive.]
Convolution. If yn = (w∗ x)n, then Y (z) =W (z)X(z). [Derive.]

January 3, 2011

5.3 DTFTs from z Transforms 51

5.3. DTFTs from z Transforms

If xn is a sequence whose z transform X(z) has a ROC that contains the unit circle,
then we can evaluate X(z) for z = e j2π f to get

X(e j2π f) =
∞

∑
n=−∞

xn
(
e j2π f)−n

=
∞

∑
n=−∞

xne− j2π f n,

which is the DTFT of xn.

Example 5.3.1. Plot the absolute value of the DTFT of xn = (1/2)n for n≥ 0.

Solution. From Example 5.1.1, we know that the z transform of this signal is
X(z) = 1/(1− (1/2)z−1) = 2/(2− z−1). The MATLAB code

f = linspace(-1/2,1/2,200);
zinv = exp(-j*2*pi*f);
plot(f,abs(2./(2-zinv)))

generates the desired plot.

5.4. Transform Inversion by Partial Fractions

Suppose that

H(z) =
B(z)
A(z)

=
b0 +b1z−1 + · · ·+bqz−q

1+a1z−1 + · · ·+apz−p , q < p.

We first point out that the denominator has exactly p roots. Consider the polynomial

Ξ(z) := 1+a1z+ · · ·+apzp.

Since Ξ(1/z) = A(z), we see that A(z) = 0 if and only if Ξ(1/z) = 0. Since Ξ is a
polynomial of degree p, it has exactly p roots, say ξ1, . . . ,ξp. Furthermore, since
Ξ(0) = 1, none of the ξk is zero. Hence, the p roots of A(z) are α1 := 1/ξ1, . . . ,αp :=
1/ξp.

We now show that if the denominator roots αk are distinct, then we can write1

H(z) =
p

∑
k=1

Ck

1−αkz−1 (5.2)

1 In order for (5.2) to hold, it is necessary that q < p. To see why this is so, observe that if we put
the right-hand side of (5.2) over a common denominator, the resulting numerator polynomial in z−1 has
degree at most p−1.

January 3, 2011

52 5 The z Transform

for some constants Ck. Suppose that such a formula for H(z) exists. Write it as

B(z)
∏p

k=1(1−αkz−1)
=

p

∑
k=1

Ck

1−αkz−1 .

Multiply both sides by 1−αiz−1 to get

B(z)
∏p

k 6=i(1−αkz−1)
=Ci +∑

k 6=i

Ck(1−αiz−1)

1−αkz−1 .

In this expression, now set z = αi to get

B(αi)

∏p
k 6=i(1−αk/αi)

=Ci. (5.3)

Example 5.4.1. Find the partial fraction expansion of

H(z) =
1

1−7z−1 +12z−2 .

Solution. Writing

1−7z−1 +12z−2 = z−2(z2−7z+12) = z−2(z−3)(z−4),

we see that the poles (roots of the denominator) are z = 3 and z = 4. Write

1
(1−3z−1)(1−4z−1)

=
?

1−3z−1 +
?

1−4z−1 .

The first missing numerator is

1
1−4z−1

∣∣∣∣
z=3

=
1

1−4/3
=−3

and the second missing numerator is

1
1−3z−1

∣∣∣∣
z=4

=
1

1−3/4
= 4.

Hence,
1

(1−3z−1)(1−4z−1)
=

−3
1−3z−1 +

4
1−4z−1 .

January 3, 2011

Problems 53

In many cases, the degrees of A(z) and B(z) are the same. In this case, observe
that

B(z)
A(z)

=

[
B(z)− bp

ap
A(z)

]
+

bp
ap

A(z)

A(z)

=

[
{bpz−p + · · ·}− bp

ap
{apz−p + · · ·}

]
+

bp
ap

A(z)

A(z)

=
B̃(z)
A(z)

+
bp

ap
, (5.4)

where B̃(z) = B(z)− bp
ap

A(z) is a polynomial of degree q < p. One can then find the

partial fraction expansion of B̃(z)/A(z). It is a useful savings of work to note that
in applying (5.3) to B̃(z)/A(z), we do not need B̃(z) for all z, but only for z = αi.
Observe that from (5.4),

B̃(αi) = B(αi)−
bp

ap
A(αi)

= B(αi),

since A(αi) = 0.

Example 5.4.2. Find the partial fraction expansion of

2z−1− z−2

1−5z−1 +6z−2 .

Solution. We first note that b2/a2 = −1/6. Second, writing 1− 5z−1 + 6z−2 =
z−2(z2−5z+6), we see that the poles are α1 = 2 and α2 = 3. Thus,

2z−1− z−2

1−5z−1 +6z−2 =
2z−1− z−2

(1−2z−1)(1−3z−1)

=
?

1−2z−1 +
?

1−3z−1 −
1
6

=
−3/2

1−2z−1 +
5/3

1−3z−1 −
1
6
.

Problems

5.1. If xn =−an for n < 0 and xn = 0 for n≥ 0, show that its z transform is

X(z) =
1

1−az−1 , |z|< |a|.

January 3, 2011

54 5 The z Transform

5.2. Find the partial fraction expansion of

6z−1

1−6z−1 +11z−2−6z−3 .

Answer (numerators): 3, −12, 9.
5.3. Find the partial fraction expansion of

2+ z−1

1−12z−1 +35z−2 .

Answer (numerators): 15/2, −11/2.
5.4. Find the partial fraction expansion of

(17/6)z−1− (1/6)
1−5z−1 +6z−2 .

Answer (numerators): −5/2, 7/3.
5.5. Find the partial fraction expansion of

4−23z−1 +70z−2

1−12z−1 +35z−2 .

Answer (numerators): −11/2, 15/2.
5.6. Find the partial fraction expansion of

z−2(1+ z−1)

1−6z−1 +11z−2−6z−3 .

Answer (numerators): 1, −3/2, 2/3.
5.7. MATLAB. Write a MATLAB function that takes as input a = [1,a1, . . . ,ap] and

b= [b0, . . . ,bq] for q≤ p and returns the coefficients Ci (and the corresponding
poles αi) in (5.3). Write a script to test your function on each of the pre-
ceding partial-fraction problems. For each problem, print out a, b, and the
corresponding coefficients Ci and poles αi. Hints: To find the poles, use the
MATLAB function roots. To evaluate polynomials from knowledge of their
coefficients, use the MATLAB function polyval. To this end, the MATLAB
function fliplr will also be helpful. To evaluate products, the MATLAB
function prod can be used. We also mention that the MATLAB functions rat
and rats or the command format rat may be useful to express answers
as fractions.

January 3, 2011

CHAPTER 6

Discrete-Time Systems

A discrete-time system can be viewed as an operator A that associates an input
sequence x = {xn}∞

n=−∞ with an output sequence Ax = {(Ax)n}∞
n=−∞. In this chapter,

we show that every system A that is both linear and time-invariant has the representa-
tion Ax= h∗x for some impulse response sequence h. On account of the convolution
property of the z transform, it is not surprising that the z transform is a powerful tool
in the design and analysis of linear, time-invariant discrete-time systems.

6.1. Linearity

The system A is said to be linear if for any two input sequences x and w and
any two constants a and b, the output sequence A(ax+ bw) satisfies A(ax+ bw) =
a(Ax)+b(Aw). In more detail, A satisfies

[A(ax+bw)]n = a(Ax)n +b(Aw)n.

Example 6.1.1. Consider the system that associates to an input sequence x the
output sequence defined by the convolution of x with another sequence h; i.e., Ax :=
h ∗ x. Since convolution is linear; i.e., h ∗ (ax+ bw) = a(h ∗ x)+ b(h ∗w), we have
immediately that A is linear.

Example 6.1.2. Show that

(Ax)n :=
n

∑
k=n−3

xk

defines a linear system.

Solution. Write

[A(ax+bw)]n =
n

∑
k=n−3

(ax+bw)k

=
n

∑
k=n−3

axk +bwk

= a
n

∑
k=n−3

xk +b
n

∑
k=n−3

wk

= a(Ax)n +b(Aw)n.

55

56 6 Discrete-Time Systems

To say that this holds for all n is to say that A(ax+bw) = a(Ax)+b(Aw).

Another way to do the preceding example is to observe that

n

∑
k=n−3

xk =
3

∑
m=0

xn−m (let m = n− k)

is the convolution of x with the sequence hm = 1 for m = 0,1,2,3 and hm = 0 other-
wise. Since Ax = h∗ x, we already know A is linear.

6.2. Time Invariance

For the definition of time invariance, we need the following definition. For any
sequence x and delay m, we define the delayed sequence x(m) := {xn−m}∞

n=−∞. A
negative delay can be called an advance. A system A is said to be time invariant if
for every delay m, (Ax(m)) = (Ax)(m), or in more detail (Ax(m))n = (Ax)n−m for all n.
Time invariance means that the response to the delayed input is equal to the delay of
the response to the original input.

Example 6.2.1. Show that the system of Example 6.1.2 is time invariant.

Solution. We first compute

(Ax(m))n =
n

∑
k=n−3

(x(m))k =
n

∑
k=n−3

xk−m.

Now make the change of variable r = k−m to get

(Ax(m))n =
n−m

∑
r=(n−3)−m

xr =
n−m

∑
r=(n−m)−3

xr = (Ax)n−m.

Thus, A is time invariant.

This example is a particular case of the general result that a system of the form
Ax = h∗ x is time invariant. To see this, first write

(h∗ x(m))n =
∞

∑
k=−∞

hn−k(x(m))k =
∞

∑
k=−∞

hn−kxk−m.

Then make the change of variable r = k−m to get

(h∗ x(m))n =
∞

∑
r=−∞

hn−(r+m)xr =
∞

∑
r=−∞

h(n−m)−rxr = (h∗ x)n−m.

January 3, 2011

6.3 Characterization of Linear Time-Invariant Systems 57

6.3. Characterization of Linear Time-Invariant Systems

We now show that every linear time-invariant system A is of the form Ax = h∗ x
for some impulse response sequence h.

To begin, define the discrete-time unit impulse sequence by δn = 1 for n = 0 and
δn = 0 for n 6= 0. Define the system impulse response hn := (Aδ)n. Observe that

xn =
∞

∑
k=−∞

xkδn−k =
∞

∑
k=−∞

xk(δ (k))n.

Since this holds for all n, we can write this more compactly as

x =
∞

∑
k=−∞

xkδ (k).

By linearity of A,

Ax =
∞

∑
k=−∞

A(xkδ (k)) =
∞

∑
k=−∞

xkA(δ (k)).

By the time-invariance of A,

Ax =
∞

∑
k=−∞

xk(Aδ)(k).

This implies that for all n,

(Ax)n =
∞

∑
k=−∞

xk[(Aδ)(k)]n =
∞

∑
k=−∞

xk(Aδ)n−k =
∞

∑
k=−∞

xkhn−k = (h∗ x)n.

6.4. Stability

To define stability, we first need the notion of a bounded sequence. A sequence
x is said to be bounded if there is a nonnegative, finite constant B such that |xn| ≤ B
for all n.

A system A is said to be bounded-input bounded-output stable (BIBO stable)
if for every bounded input sequence x, the corresponding output sequence Ax is also
bounded. If an unstable system is implemented on a computer, overflow could occur
and the system would behave in an unpredictable manner. For this reason, we only
want to design stable systems.

Our main result here is that a linear time-invariant system is stable if and only if
its impulse response h satisfies

∞

∑
k=−∞

|hk|< ∞.

January 3, 2011

58 6 Discrete-Time Systems

To establish this result, we have to prove two things. First, we assume the sum is
finite, and we show that this implies the system must be stable. Second, we assume
the sum is not finite, and we show that the system is not stable; i.e., we construct a
bounded input for which the output is not bounded.

Suppose C := ∑∞
k=−∞ |hk|< ∞, and suppose that x is a bounded input with |xk| ≤

B. Then

|(Ax)n|=
∣∣∣∣

∞

∑
k=−∞

hn−kxk

∣∣∣∣≤
∞

∑
k=−∞

|hn−kxk|=
∞

∑
k=−∞

|hn−k| |xk| ≤ B
∞

∑
k=−∞

|hn−k|.

In this last sum, make the change of variable r = n− k to get

|(Ax)n| ≤ B
∞

∑
r=−∞

|hr|= BC < ∞.

Now suppose that ∑∞
k=−∞ |hk|= ∞. Consider the bounded input

xk :=





h−k

|h−k|
, if h−k 6= 0,

0, otherwise.

Then

(Ax)0 =
∞

∑
k=−∞

h−kxk = ∑
k:h−k 6=0

|h−k|2
|h−k|

= ∑
k:h−k 6=0

|h−k|=
∞

∑
k=−∞

|h−k|=
∞

∑
r=−∞

|hr|= ∞.

Thus, a bounded input yields infinite output at time n = 0.

6.5. Causality

A system A is said to be a causal system if for all input sequences x, and for
all times n, (Ax)n depends on x only through {xk}n

k=−∞. In other words, the system
cannot see into the future. All real-time systems must be causal. We now show that
a linear time-invariant system is causal if and only if its impulse response satisfies
hn = 0 for n < 0. To see that this is indeed the case, write

(Ax)n =
∞

∑
k=−∞

hn−kxk =
n

∑
k=−∞

hn−kxk +
∞

∑
k=n+1

hn−kxk. (6.1)

If hm = 0 for m < 0, then the last sum is zero, and we see that (Ax)n depends on x
only through xk for k ≤ n. Conversely, suppose A is causal. Then in (6.1), no matter

January 3, 2011

6.6 Transfer Functions 59

how we change the values of xk for k > n, the value of (Ax)n cannot change. For
example, if xk = 0 for k > n, then (6.1) tells us that

(Ax)n =
n

∑
k=−∞

hn−kxk.

On the other hand if xk = hn−k for k > n, then (6.1) tells us that

(Ax)n =
n

∑
k=−∞

hn−kxk +
∞

∑
k=n+1

|hn−k|2.

Comparing these two expressions for (Ax)n shows that

∞

∑
k=n+1

|hn−k|2 = 0.

Making the change of variable m = k−n shows that

∞

∑
m=1
|h−m|2 = 0,

which implies hn = 0 for n < 0.
For a linear, time-invariant system that is causal, we can write

(Ax)n =
n

∑
k=−∞

hn−kxk.

In particular, if n < 0, this sum involves xk only for k < 0. Hence, if xk = 0 for k < 0,
then the output (Ax)n must be zero for n < 0.

A sequence x with xk = 0 for k < 0 is called a causal sequence. What we have
shown above is that the impulse response of a linear, time-invariant, causal system is
a causal sequence.

6.6. Transfer Functions

The z transform of the impulse response of a linear time-invariant system is called
the transfer function.

6.6.1. Stability

Consider a linear, time-invariant system with impulse response hn and corre-
sponding transfer function (z transform) H(z). A point z belongs to the region of

January 3, 2011

60 6 Discrete-Time Systems

convergence if and only if
∞

∑
n=−∞

|hnz−n|< ∞.

For points z on the unit circle; i.e., for z = e j2π f ,

∞

∑
n=−∞

|hnz−n|=
∞

∑
n=−∞

|hne− j2π f |=
∞

∑
n=−∞

|hn|.

Hence, points on the unit circle belong to the ROC if and only if the system is BIBO
stable.

Example 6.6.1. Consider a linear, time-invariant system with impulse response
hn = 1/n for n ≥ 1 and hn = 0 for n < 0. Since ∑∞

n=1 1/n = ∞ (use an integral
comparison test), this system is not stable.

In contrast, if hn = 1/n2 for n ≥ 1, then since ∑∞
n=1 1/n2 < ∞ (use an integral

comparison test), the system would have been stable.

6.6.2. Causality

If a linear time-invariant system is causal, its transfer function must be of the form

H(z) =
∞

∑
n=0

hnz−n,

and so its ROC cannot contain the origin z = 0 (unless H(z) = h0). Now suppose that
for some z0 6= 0,

∞

∑
n=0
|hnz−n

0 |< ∞.

Then for any z with |z|> |z0|
∞

∑
n=0
|hnz−n| =

∞

∑
n=0

∣∣∣∣hn
z−n

z−n
0

z−n
0

∣∣∣∣

=
∞

∑
n=0
|hnz−n

0 |
(|z0|
|z|

)n

≤
∞

∑
n=0
|hnz−n

0 |< ∞.

Thus, for a causal system, if z0 ∈ROC(h), then {z : |z|> |z0|} ⊂ROC(h). This means
that the ROC must contain {z : |z|> R1} for some R1 ≥ 0. It may happen that R1 =∞;
i.e., there is no z for which the series is summable.

January 3, 2011

6.7 Difference Equations 61

Example 6.6.2. Consider the sequence hn = en2
for n≥ 0. For real r > 0,

H(r) =
∞

∑
n=0

en2
r−n =

∞

∑
n=0

en2−n lnr.

The terms of this sum do not go to zero, and so the sum does not converge.

We conclude that if a system is causal and stable, then its ROC must contain
{z : |z| ≥ 1}.

6.7. Difference Equations

Consider a pair of sequences x and y that satisfy

yn =−
p

∑
k=1

akyn−k +
q

∑
k=0

bkxn−k. (6.2)

If all the ak are zero, we have the special case

yn =
q

∑
k=0

bkxn−k,

which is the convolution of the finite-duration sequence b with the input x. Such a
system is called a finite impulse response filter or FIR filter for short. An FIR filter
is sometimes called a moving average filter. This terminology is suggested by the
special case b0 = · · ·= bq = 1/(q+1), which makes yn the numerical average of the
q+ 1 numbers xn, . . . ,xn−q. For an FIR filter, the largest value of k with bk 6= 0 is
called the order of the filter.

If one of the ak is nonzero, then the system is said to be an infinite impulse
response filter. For an IIR filter, the largest value of k with ak 6= 0 is called the order
of the filter.

6.7.1. Nonuniqueness

In the IIR case, it is important to note that for a given x, (6.2) does not uniquely
determine y unless we make further assumptions. This is most easily seen in the
special case

yn = αyn−1 +δn. (6.3)

January 3, 2011

62 6 Discrete-Time Systems

First suppose that yn = 0 for n < 0. Then

y0 = αy−1 +δ0 = α ·0+1 = 1,
y1 = αy0 +0 = α,

y2 = αy1 +0 = α2,

and we see that yn = αnu(n) when xn = δn. However, suppose that instead of assum-
ing yn = 0 for n < 0, we assume that yn = 0 for n≥ 0. Rewriting (6.3) as

yn−1 = (yn−δn)/α,

we find that

y−1 = (y0−1)/α =−1/α,

y−2 = (y−1−0)/α = 1/α2,

and we see that yn =−αnu(−n−1), even though we have again assumed that xn = δn.

6.7.2. The Causal Case

From now on, when we talk about a system whose input and output satisfy a
difference equation of the form (6.2), we also assume that the system is causal. In
particular, this means that if the input is a causal signal, then the output yn = 0 for
n < 0 and1

y0 = b0x0,
y1 = −a1y0 +b0x1 +b1x0,
y2 = −a1y1−a2y0 +b0x2 +b1x1 +b2x0,

...

(6.4)

We thus see that when a causal system satisfying a difference equation of the form
(6.2) is restricted to causal inputs, the difference equation can be directly used to
compute the corresponding output. This is true even of the larger class of right-
sided inputs; i.e., inputs x such that xk = 0 for all k < k0 for some finite k0. It
should also be clear that because the ak and bk do not depend on n, the system must
be time invariant on the class of right-sided inputs. Finally, it can be proved using
the difference equation and induction that the system must be linear on the class of
right-sided inputs.

The simplest causal signal, and the most important one for characterizing a linear,
time-invariant system, is the unit impulse xn = δn. Since the corresponding output is

1 In other words, to apply a causal signal to a causal system satisfying (6.2) means to solve (6.2) with
zero initial conditions.

January 3, 2011

6.7 Difference Equations 63

denoted by hn, we have hn = 0 for n < 0 and

h0 = b0δ0 = b0,

h1 = −a1h0 +b0δ1 +b1δ0 =−a1h0 +b1,

h2 = −a1h1−a2h0 +b0δ2 +b1δ1 +b2δ0 =−a1h1−a2h0 +b2,

...

We now show that if hn is computed as we have just done, then for any input x,
causal or not,

ŷn :=
n

∑
m=−∞

hn−mxm

satisfies the difference equation (6.2). To see this, first write hn more compactly as

hn :=





0, n < 0,

−
p

∑
k=1

akhn−k +
q

∑
k=0

bkδn−k, n≥ 0.

Then

ŷn :=
n

∑
m=−∞

hn−mxm

=
n

∑
m=−∞

[
−

p

∑
k=1

akhn−m−k +
q

∑
k=0

bkδn−m−k

]
xm

= −
p

∑
k=1

ak

[n

∑
m=−∞

hn−m−kxm

]
+

q

∑
k=0

bk

[n

∑
m=−∞

δn−m−kxm

]

= −
p

∑
k=1

ak

[n

∑
m=−∞

h(n−k)−mxm

]
+

q

∑
k=0

bk

[n

∑
m=−∞

δ(n−k)−mxm

]

= −
p

∑
k=1

akŷn−k +
q

∑
k=0

bkxn−k.

6.7.3. Solving Difference Equations with MATLAB

Consider a causal system described by the difference equation (6.2). In the case
of a causal input, to compute the response yk for k = 0, . . . ,n, use the MATLAB
function y=filter(b,a,x), where a = [1,a1, . . . ,ap], b = [b0,b1, . . . ,bq], and
x = [x0,x1, . . . ,xn].

January 3, 2011

64 6 Discrete-Time Systems

6.7.4. z Transforms of Difference Equations

Let us rewrite the difference equation (6.2) as

p

∑
k=0

akyn−k =
q

∑
k=0

bkxn−k, (6.5)

where a0 := 1. We recognize the left-hand side as the convolution of the output y
with the finite-duration sequence a, where it is understood that ak := 0 for k < 0 and
k > p. Similarly, the left-hand side is the convolution of the input x with the finite-
duration signal b, where it is understood that bk := 0 for k < 0 and k > q. Using the
convolution property of the z transform, it follows that

A(z)Y (z) = B(z)X(z),

where

A(z) := 1+a1z−1 + · · ·+apz−p and B(z) := b0 +b1z−1 + · · ·+bqz−q. (6.6)

What we would like to do next is divide A(z)Y (z) = B(z)X(z) by A(z) to obtain
Y (z) = H(z)X(z), where H(z) := B(z)/A(z), and declare the inverse z transform of
H(z) to be the impulse response of the system. However, there are some potential
stumbling blocks, which we now consider.

The Regions of Convergence

As usual, we assume that our system is causal. We also assume that the input x
is a causal sequence. Hence, so is the output y. Thus, all four transforms A(z), B(z),
X(z), and Y (z) are defined for |z|> R1 for some sufficiently large R1.

We Cannot Divide by Zero

To study the zeros of A(z), it is convenient to introduce the polynomial

Ξ(z) := 1+a1z+ · · ·+apzp.

Since A(z)=Ξ(1/z), A(z)= 0 if and only if 1/z is a root of Ξ. Since Ξ is a polynomial
of degree p, it has exactly p complex roots, say ξ1, . . . ,ξp. Furthermore, since Ξ(0) =
1, ξk 6= 0. Hence, A(z) has exactly k zeros, 1/ξ1, . . . ,1/ξp.

Let R := min{|ξ1|, . . . , |ξp|}. Since Ξ(z) is nonzero for |z| < R, A(z) is nonzero
for |z|> 1/R. Thus,

Y (z) =
B(z)
A(z)

X(z), |z|> max{1/R,R1}.

January 3, 2011

6.7 Difference Equations 65

We showed in Section 6.7.2 that if a causal system satisfies (6.2) and a causal input
is applied, then the output is uniquely determined by the difference equation. In
particular, we showed that the impulse response can be determined in this way. We
then showed that y = h ∗ x also satisfies the difference equation. Since we have just
shown that Y (z) = [B(z)/A(z)]X(z), it follows that H(z) = B(z)/A(z).

Frequency Response

When we study the design of discrete-time filters, it often necessary to plot the
frequency response; i.e., the DTFT of the system impulse response sequence. When
the system is described by a difference equation and we know the transfer function
H(z), we simply plot H(e j2π f). This assumes that all points z = e j2π f , which lie on
the unit circle, belong to the ROC of H(z); i.e., we assume the system is stable. If
H(z) = B(z)/A(z), where A(z) and B(z) are polynomials in z−1 as in (6.6), we can
use the MATLAB command polyval2 for evaluating polynomials. Suppose that
a= [1,a1, . . . ,ap] and b= [b0, . . . ,bq]. Then

f = linspace(-1/2,1/2,200);
zinv = exp(-j*2*pi*f);
y = polyval(fliplr(b),zinv)./polyval(fliplr(a),zinv);

computes y = H(e j2π f) for | f | ≤ 1/2.
When we do filter design, A(z) and B(z) are sometimes specified in terms of their

roots, say

H(z) =

b0

q

∏
k=1

(1−βkz−1)

p

∏
k=1

(1−αkz−1)

=
b0 +b1z−1 + · · ·+bqz−q

1+a1z−1 + · · ·+apz−p .

The vector a= [1,a1, . . . ,ap] is returned by the MATLAB command a=poly(alpha)
if alpha = [α1, . . . ,αp]. Similarly, b=b0*poly(beta) returns the vector b =
[b0, . . . ,bq]. Using the coefficient vectors a and b, we can evaluate the DTFT H(e j2π f)
as above using polyval and fliplr.

6.7.5. Stable Inverses and Minimum Phase

Recall that a system H(z) = B(z)/A(z) is stable if and only if all the poles of H(z)
(roots of A(z)) lie strictly inside the unit circle. The inverse system, whose transfer
function is A(z)/B(z), is stable if and only if all the zeros of H(z) (roots of B(z)) lie
strictly inside the unit circle.

2 To evaluate c0xn + c1xn−1 + · · ·+ cn−1x + cn, call polyval(c,x) with c = [c0,c1, . . . ,cn]. To
evaluate c0 +c1x+ · · ·+cnxn, use polyval(fliplr(c),x), where the fliplr reverses the order of
the elements from left to right; i.e., applying fliplr to [c0, . . . ,cn] returns [cn, . . . ,c0].

January 3, 2011

66 6 Discrete-Time Systems

A system H(z) = B(z)/A(z) is called minimum phase if all the zeros of H(z) are
strictly inside the unit circle.

A system H(z) is stable and minimum phase if and only if its inverse is also stable
and minimum phase.

We now give some insight into the terminology “minimum phase.”

Example 6.7.1. If H(z) = 1− az−1 for 0 < a < 1, plot H(e j2π f). Repeat for
a > 1.

Solution. Since H(e j2π f) = 1− ae− j2π f , we begin by plotting the path of the
complex number ae− j2π f in the complex plane as f goes from 0 to 1/2 and from 0
to −1/2. See the drawing at the left in Figure 6.1. The number ae− j2π f lies on the

0
f = 1/2

f =−1/2

a−a
f = 0

0

f = 1/2

f =−1/2

a−a
f = 0

Figure 6.1. Paths of ae− j2π f (left) and −ae− j2π f (right).

circle of radius a centered at the origin. When f = 0, the point is at a on the real
axis. As f becomes positive, the point drops below the real axis and continues on the
lower half circle, ending at ae− j2π(1/2) = ae− jπ = −a on the real axis. As f starts
at zero and becomes negative, the point leaves a and travels along the top half circle,
again ending at ae− j2π(−1/2) = ae jπ = −a. A little thought shows that the path of
−ae− j2π f is given by the drawing at the right in Figure 6.1. For 0 < a < 1, we see
that path of 1−ae− j2π f is given by the drawing at the left in Figure 6.2. The drawing
for a > 1 is at the right in Figure 6.2.

f = 1/2

f =−1/2
1+a

1−a
0

f = 1/2

f =−1/2
1+a

1−a
01 1

Figure 6.2. Path of 1−ae− j2π f for 0 < a < 1 (left) and a > 1 (right).

January 3, 2011

6.7 Difference Equations 67

Since the points on the circle at the left in Figure 6.2 are all in the right half plane,
the points on the circle all have phase strictly between ±π/2. A plot of the phase of
1−ae− j2π f for | f | ≤ 1/2 is shown at the top in Figure 6.3. In contrast, for the circle

−0.5 −0.25 0 0.25 0.5

−0.5 −0.25 0 0.25 0.5

π/2

0

−π

π

−π/2

π/2

−π/2

π

−π

0

Figure 6.3. The phase of 1−ae− j2π f for 0 < a < 1 (top) and a > 1 (bottom)
.

at the right in Figure 6.2, some points are in the left half plane and some are in the
right. There are two points on the imaginary axis, and their phases are±π/2. In fact,
there are points of all phases between ±π as well as a jump discontinuity of 2π at
f = 0.

We now generalize the example to complex a, say a = αe j2π f0 , where α > 0.
Then H(e j2π f) = 1−αe j2π f0e− j2π f = 1−αe− j2π(f− f0). Hence, the curves in Fig-
ure 6.3, which are periodic with period one, shift by f0. The point of all this is that
the phase variation of 1−az−1 for z = e j2π f has minimum variation when |a|< 1.

6.7.6. All-Pass Systems

An all-pass system is one for which |H(e j2π f)| is a positive constant for all f .
The simplest example is

H(z) =C
1− (1/λ)z−1

1−λ z−1 ,

where λ 6= 0 and C is an arbitrary constant. This transfer function has one pole, λ ,
and one zero, 1/λ , which is the conjugate reciprocal of the pole. To see that H(z) is

January 3, 2011

68 6 Discrete-Time Systems

indeed all pass, first rewrite it as

H(z) =C
−z−1

λ
· 1−λ z

1−λ z−1 .

In this form, it is easy to see that

H(e j2π f) =C
−e− j2π f

λ
· 1−λe j2π f

1−λe− j2π f .

Since the factor on the right is the quotient of complex conjugates, it has magnitude
one. Hence, |H(e j2π f)|=C/|λ | for all f .

We can now show that every stable transfer function can be written as the product
of a stable all-pass system and a minimum-phase stable system as follows. If H(z)
is not minimum phase, it has a zero, say µ , with |µ| > 1. Then we can write H(z)
in the form H(z) = (1−µz−1)H0(z) for some other stable transfer function with one
less zero. Now write

H(z) = (1−µz−1)H0(z)

=
1−µz−1

1− (1/µ)z−1
︸ ︷︷ ︸

stable all-pass

· (1− (1/µ)z−1)H0(z)︸ ︷︷ ︸
one less zero outside unit circle

,

where we have used the fact that |µ|> 1 implies |1/µ|< 1. Continuing in this way,
we can write H(z) = Hap(z)Hmp(z), where Hmp(z) is stable and minimum phase and
Hap is stable and all pass and of order equal to the number of zeros of H(z) outside
the unit circle.

6.8. Summary

We have shown that every linear, time-invariant system can be represented as a
convolution. Furthermore, the system is stable if and only if the impulse response is
absolutely summable, and the system is causal if and only if the impulse response is
zero for negative time.

In the z transform domain, stability is equivalent to having the ROC of the transfer
function contain the unit circle. Causality corresponds to a transfer-function ROC
that is the exterior of a circle.

For causal systems that are described by difference equations of the form (6.2),
stability corresponds to A(z) having all its roots strictly inside the unit circle.

As we have mentioned several times, the general discrete-time linear time-invar-
iant system corresponds to a convolution involving an infinite sum of the form

∞

∑
m=−∞

hkxn−k.

January 3, 2011

Problems 69

In the case of a causal input and a causal system, this reduces to

n

∑
m=0

hkxn−k.

Although this involves only a finite amount of computation for each n≥ 0, the amount
of computation grows with n and will eventually become intractable. However, in the
case of an FIR filter, e.g., hk = bk for k = 0, . . . ,q and hk = 0 otherwise, the upper
limit on the sum can be replaced by q. In the case of an IIR filter described by the
difference equation 6.2, the output can again be computed with a finite, nongrowing
amount of computation by recursively evaluating the difference equation.

Problems

6.1. Find the impulse response of the system defined by

(Ax)n := a−n
n

∑
k=−∞

akxk.

6.2. Consider the system with transfer function H(z) = z+3+7z−1 +5z−2. Is the
system causal?

6.3. Can an FIR filter be unstable? Why or why not?
6.4. Consider the nonlinear system defined by

(Ax)n :=
n

∑
k=n−3

x2
k .

(a) Is the system causal? (Yes/No)
(b) Determine whether or not the system is time invariant.
(c) Determine whether or not the system is stable.

6.5. A linear, time-invariant system has impulse response hn = 1/(1+ n2). Deter-
mine whether or not the system is stable.

6.6. A linear, time-invariant system has impulse response hn = 1/(1+ |n|). Deter-
mine whether or not the system is stable.

6.7. A causal system satisfies the difference equation

yn =
7
12 yn−1− 1

12 yn−2 + xn.

Determine whether or not the system is stable.
6.8. MATLAB. For the difference equation of the preceding problem, plot yn for

n = 0, . . . ,10 when xn = δn.

January 3, 2011

70 6 Discrete-Time Systems

6.9. A causal system satisfies the difference equation

yn = 6yn−1−9yn−2 + xn.

Determine whether or not the system is stable.
6.10. MATLAB. For the difference equation of the preceding problem, plot yn for

n = 0, . . . ,10 when xn = δn.
6.11. Consider the causal discrete-time system with transfer function

H(z) =
7− z−2

1−5z−1 +6z−2 .

Write out the difference equation for this system, and determine whether or not
the system is stable.

6.12. Consider the FIR filter with transfer function

H(z) = 1− e j2π f0z−1.

(a) Write out the difference equation for this system.
(b) Use the difference equation to compute the output yn corresponding to

xn = e j2π f0n.
(c) Write out formulas for the DTFTs X(f), H(e j2π f), and their product,

Y (f) := H(e j2π f)X(f). Be sure to simplify your formula for Y (f) as
much as possible.

(d) Now use the difference equation to compute yn corresponding to the
causal input xn = e j2π f0nu(n), where u is the unit-step function.

6.13. Consider the IIR filter with transfer function

H(z) =
1− e j2π f0z−1

1− (1/9)z−2 .

(a) Is the system stable?
(b) If xn = e j2π f0n is the input to this system, determine the output yn.
(c) If xn = e j2π f0nu(n) is input to this system, determine the output yn.

6.14. The signal xn = e jnπ/2 is applied to the filter

H(z) =
1− jz−1

1− (1/4)z−2 .

Determine the output signal.

January 3, 2011

CHAPTER 7

IIR Filter Design

7.1. The Bilinear Transformation

Our goal is to design discrete-time systems described by a difference equations,
since these systems are readily implemented on a computer. One approach is to first
design a Laplace transform H (s) that is a quotient of polynomials is s and then
convert it to a z transform that is a quotient of polynomials in z−1, and therefore
corresponds to a difference equation. The conversion method we use here is called
the bilinear transformation. Suppose H (s) is a quotient of polynomials and that
the polynomials have been factored so that

H (s) = H0

m

∏
k=1

(s−µk)

n

∏
k=1

(s−λk)

. (7.1)

The degree of the denominator polynomial is called the order of the filter. We convert
H (s) into H(z) by means of the bilinear transformation1

s =
2(z−1)
T (z+1)

. (7.2)

Example 7.1.1. If H (s) = (s−1)/(s2+7s+12), use the bilinear transformation
with T = 2 to find H(z).

Solution. First note that the poles of H (s) are s=−3 and s=−4. Thus, H (s)=
(s−1)/[(s+3)(s+4)], and we have

H(z) =
(z−1)/(z+1)−1

((z−1)/(z+1)+3)((z−1)/(z+1)+4)

1 A simple calculation shows that the bilinear transformation is invertible with

z =
1+ sT/2
1− sT/2

.

In particular, if s is pure imaginary, then the numerator and denominator are complex conjugates, which
implies |z|= 1; i.e., the inverse transformation maps the imaginary axis of the s-plane to the unit circle in
the z-plane.

71

72 7 IIR Filter Design

=
−z−1

10z2 +11z+3

=
−z−1

10(z+3/5)(z+1/2)

=
−z−1(1+ z−1)

10(1+(3/5)z−1)(1+(1/2)z−1)
.

To see what happens in general, write

H(z) := H

(
2(z−1)
T (z+1)

)

= H0

(T/2)n−m
m

∏
k=1

(1−µkT/2)

n

∏
k=1

(1−λkT/2)
·
(1+ z−1)n−m

m

∏
k=1

(1− µ̂kz−1)

n

∏
k=1

(1− λ̂kz−1)

, (7.3)

where

µ̂k :=
1+µkT/2
1−µkT/2

and λ̂k :=
1+λkT/2
1−λkT/2

. (7.4)

Notice that the numerator and denominator always have the same number of roots.
The key to deriving (7.3) is to write

s−µk =
2(z−1)
T (z+1)

−µk =
2(1− z−1)

T (1+ z−1)
−µk

=
2

T (1+ z−1)
[(1− z−1)− (1+ z−1)µkT/2]

=
2[(1−µkT/2)− (1+µkT/2)z−1]

T (1+ z−1)
=

2(1−µkT/2)
T (1+ z−1)

(1− µ̂z−1)

and a similar expression for s−λk. There are several important relationships between
(7.1) and (7.3).

1. The formulas for µ̂k and λ̂k show how to convert the poles and zeros of (7.1)
into those of (7.3).

2. Since
∣∣ λ̂k
∣∣2 = (1+λ real

k T/2)2 +(λ imag
k)2

(1−λ real
k T/2)2 +(λ imag

k)2
,

January 3, 2011

7.2 Analog Transfer Functions 73

we see that λ̂k is strictly inside the unit circle if and only if λk is in the strict left
half plane; i.e., the continuous-time system is stable if and only if the discrete-
time system is stable.

3. For n≥ m, which is the typical case, the number of poles is preserved, and the
number of zeros is increased by n−m.

4. If we put z = e j2π f in the bilinear transformation (7.2), we find that

s =
2(e j2π f −1)
T (e j2π f +1)

=
2
T
· (e

j2π f −1)(e− j2π f +1)
(e j2π f +1)(e− j2π f +1)

= j
2
T
· 2sin(2π f)

2[1+ cos(2π f)]

= j
2
T
· 2sin(π f)cos(π f)

2cos2(π f)

= j
2
T

tan(π f).

Hence,
H(z)

∣∣
z=e j2π f = H (jω),

where
ω =

2
T

tan(π f). (7.5)

In other words, DTFT frequencies in [−1/2,1/2] correspond to radian frequen-
cies ω = (2/T) tan(π f).

7.2. Analog Transfer Functions

Given a circuit with input voltage or current x(t) and output voltage or current
y(t), the output is related to the input via the convolution integral y(t) =

∫ ∞
−∞ h(t−

τ)x(τ)dτ . Furthermore, since a circuit is a causal system, the impulse response h(t)
must be causal; i.e., h(t) = 0 for t < 0. Recall that the transfer function is the
one-sided Laplace transform,

H (s) :=
∫ ∞

0
h(t)e−st dt,

where s is a complex variable, and the frequency response is

H (jω) = H (s)
∣∣
s= jω =

∫ ∞

0
h(t)e− jωt dt,

where ω is a real variable. Since voltages and currents in physical systems are real,
the impulse response must be real. Hence, H (− jω) = H (jω), and we have

|H (jω)|2 = H (jω)H (jω) = H (jω)H (− jω). (7.6)

January 3, 2011

74 7 IIR Filter Design

When the circuit is composed of resistors, capacitors, inductors, and operational
amplifiers, the transfer function H (s) will have the form H (s) = p(s)/q(s), where
p(s) and q(s) are polynomials in s. Hence,

H (s)H (−s) =
p(s)
q(s)
· p(−s)

q(−s)
.

Let e(s) denote the terms of p(s) with even powers of s and let o(s) denote the terms
of p(s) with odd powers of s. Then e(s) is even and o(s) is odd; i.e., e(−s) = e(s)
and o(−s) =−o(s). It follows that

p(s)p(−s) = [e(s)+o(s)][e(s)−o(s)] = e(s)2−o(s)2,

which involves only even powers of s. Similarly, q(s)q(−s) involves only even pow-
ers of s. Hence, H (s)H (−s) also involves only even powers of s. In particular,
|H (jω)|2 involves only even powers of jω , which means that |H (jω)|2 is a real-
valued function of ω2.

7.3. Butterworth Filters

Continuous-time Butterworth filters are designed to have a frequency response
satisfying

|H (jω)|2 = H2
0

1+(ω/ωc)2n . (7.7)

The maximum possible value of |H (jω)|2 is H2
0 (and occurs at ω = 0). For |ω|<ωc,

|H (jω)|2 > H2
0/2 and for |ω|> ωc, |H (jω)|2 < H2

0/2. Thus, ωc is the frequency
at which the ratio of |H (jω)|2 to its maximum possible value is equal to one half.
On the dB scale,

10 log10
1
2 ≈−3.01 dB.

Hence, ωc is called the 3-dB cutoff frequency. The parameter n is the order of the
filter. As ω → ∞, |H (jω)|2→ 0. In Figure 7.1, it is easily seen that the maximum
attenuation in the passband occurs at ω = ωp and is equal to

10log10 |H (j0)|2−10log10 |H (jωp)|2 = 10log10(1+(ωp/ωc)
2n).

The minimum attenuation in the stopband occurs at ω = ωs and is equal to

10log10 |H (j0)|2−10log10 |H (jωs)|2 = 10log10(1+(ωs/ωc)
2n).

Now suppose that the passband attenuation is required to be at most Ap (in dB) and
the stopband attenuation is required to be at least As (in dB). Mathematically, we
want to have

10log10(1+(ωp/ωc)
2n)≤ Ap and 10log10(1+(ωs/ωc)

2n)≥ As,

January 3, 2011

7.3 Butterworth Filters 75

10log10 |H (jω)|2

}
Ap

As





ωs0
ω

stopbandpassband transition
band

ωp

Figure 7.1. Frequency response (in dB) of a Butterworth filter with passband 0 ≤ ω ≤ ωp and stopband
ω > ωs.

which we rearrange as

(ωp/ωc)
n ≤

√
10Ap/10−1 and (ωs/ωc)

n ≥
√

10As/10−1. (7.8)

It follows that

ln
(ωs/ωc)

n

(ωp/ωc)n ≥ ln
√(

10As/10−1
)/(

10Ap/10−1
)
,

or

n≥
ln
√(

10As/10−1
)/(

10Ap/10−1
)

ln(ωs/ωp)
. (7.9)

Hence, given the passband and stopband frequencies and attenuations, the above for-
mula tells us how to choose the order of the Butterworth filter. It still remains to
choose ωc. Now that n has been fixed as an integer satisfying the above inequality,
we can use (7.8) to bound the selection of ωc. We find that ωc can be any frequency
satisfying

ωp
[
10Ap/10−1

]−1/(2n) ≤ ωc ≤ ωs
[
10As/10−1

]−1/(2n)
. (7.10)

To design a specific circuit with the frequency response in (7.7), we need to know
more than |H (jω)|2, we need to know H (s). Comparing (7.6) and (7.7), make the
substitution s = jω; i.e., ω = s/ j =− js. Then we need to find H (s) such that

H (s)H (−s) =
H2

0
1+(− js/ωc)2n .

January 3, 2011

76 7 IIR Filter Design

The problem is to factor the right-hand side so that we can identify H (s). The poles
are the solutions of (− js/ωc)

2n = −1. Thus, − js/ωc is the 2nth root of −1, which
implies that

− jsk/ωc = e jπ(2k−1)/(2n), k = 1, . . . ,2n,

or
sk = ωce jπ(n+2k−1)/(2n), k = 1, . . . ,2n. (7.11)

First note that we cannot have sk = ± jωc = ωce± jπ/2 because we cannot have (n+
2k−1)/n equal to an odd integer. Second, the only way to have sk =±ωc = ωce jπm

is to have (n+ 2k− 1)/(2n) equal to an integer, which requires n to be odd. Third,
since Resk < 0 if and only if k = 1, . . . ,n, we take

H (s) =
H0

Bn(s− s1) · · ·(s− sn)
,

where Bn is chosen so that H (0) = H0; i.e., Bn = 1
/

∏n
k=1(−sk). Note that Bn is

real because all roots (except sk =±ωc) occur in conjugate pairs (Problem 7.4). An-
other consequence of fact that the roots occur in conjugate pairs is that the coefficients
of

(s− s1) · · ·(s− sn) = sn +β1sn−1 + · · ·+βn−1s+βn

must be real (Problem 7.6). These coefficients can be found from the roots us-
ing the MATLAB function poly. If svec = [s1, . . . ,sn,sn+1, . . . ,s2n], and beta =
[1,β1, . . . ,βn], then beta=poly(svec(1:n)). Although theory says that the
βk are real, due to roundoff error poly may return some elements of beta with
nonzero imaginary parts. For this reason, it is better to use the longer expression
beta=real(poly(svec(1:n))).

If our goal is a discrete-time lowpass filter, we really do not need to know the βk.
Here is what we need to do.

1. Define parameters of the desired discrete-time lowpass filter, fp, Ap, fs, and
As.

2. Use (7.5) to prewarp fp and fs to get ωp and ωs.

3. Compute the filter order n to be an integer satisfying (7.9).

4. Choose a value of ωc satisfying (7.10).

5. Compute the poles sk of H(s) using (7.11) for k = 1, . . . ,n.

6. Use (7.4) to convert λk = sk into poles of the discrete-time filter λ̂k.

7. Use the MATLAB command poly to convert the λ̂k into the difference-equation
coefficients ak.

January 3, 2011

7.3 Butterworth Filters 77

8. Since a Butterworth filter has no zeros, the corresponding discrete-time filter
has n repeated zeros at at z =−1 according to (7.3). Use poly to convert the
n zeros at z =−1 into the difference-equation coefficients bk.

The foregoing recipe is carried out by the following script, which also plots the
Butterworth poles sk and the frequency response 10log10 |H(e j2π f |2 of the designed
discrete-time filter.

fp = .1; Ap = .25; % User’s parameters for
fs = .15; As = 40; % discrete-time lowpass filter

wp = 2*tan(pi*fp); % Prewarp DTFT frequencies
ws = 2*tan(pi*fs);

dp = 10ˆ(Ap/10)-1; % Compute order n
ds = 10ˆ(As/10)-1;
n = ceil(log(ds/dp)/log(ws/wp)/2);

twon = 2*n; xx = 1/twon; % For omega_c, use the average
wc = (wp/dpˆxx+ws/dsˆxx)/2; % of its upper and lower bounds

k = [1:twon];
svec = wc*exp(j*pi*(n+2*k-1)/twon); % poles of H(s)H(-s)
lambda = svec(1:n); % poles of H(s)

t = linspace(0,2*pi,200); % plot circle
x = wc*cos(t); y = wc*sin(t);
figure(1); plot(x,y,’m’); grid on;
hold on
plot(svec,’x’) % plot all 2n roots
plot(lambda,’o’); % circle LHP roots
hold off

lambdahat = (1+lambda/2)./(1-lambda/2); % poles of z transform
a = real(poly(lambdahat)); % difference eq. coefficients
b = poly(-ones(1,n));
b = (sum(a)/sum(b))*b; % normalize to make H(z)=1 for z=1

f = linspace(0,1/2,2000); % Plot H(exp(j*2*pi*f)) on dB scale
zinv = exp(-j*2*pi*f);
Hf = polyval(fliplr(b),zinv)./polyval(fliplr(a),zinv);
ff = [fp fs]; Hff = -[Ap As]; % Put o’s on graph at design pnts
figure(2)
plot(f,10*log10(Hf.*conj(Hf)),ff,Hff,’ro’); grid on

January 3, 2011

78 7 IIR Filter Design

7.4. Chebyshev Filters of the First Kind

Continuous-time Chebyshev filters of the first kind, or Chebyshev-I filters for
short, are designed to have a frequency response satisfying

|H (jω)|2 = H2
0

1+ ε2Tn(ω/ωp)2 , (7.12)

where Tn(ω) is the nth-degree Chebyshev polynomial, and 0 < ε < 1. The order of
the filter is n.

7.4.1. The Chebyshev Polynomials

The Chebyshev polynomials are defined by

T0(x) := 1,
T1(x) := x,

Tn+1(x) := 2xTn(x)−Tn−1(x), n≥ 1.

It is easy to check that

T2(x) = 2x2−1,
T3(x) = 4x3−3x,

T4(x) = 8x4−8x2 +1,

which are sketched in Figure 7.2. For n = 0, . . . ,4, we see that Tn(x) has n real roots
in (−1,1) and that for −1≤ x≤ 1, we have |Tn(x)| ≤ 1. We also note that as x→ ∞,
Tn(x)→ ∞. To show that these results hold for arbitrary positive integers n, we need
the fact, derived later, that

Tn(x) = cos(ncos−1 x), for −1≤ x≤ 1. (7.13)

(In MATLAB use acos for cos−1.) This formula implies that if |x| ≤ 1, then Tn(x)= 0
if and only if ncos−1 x is an odd multiple of π/2. Solving for x, we find that for n≥ 1,
the n distinct roots of Tn(x) are

xk = cos
(
[2k−1]

π
2n

)
, k = 1,2, . . . ,n. (7.14)

Hence, Tn(x) has n real roots satisfying

−1 < xn < · · ·< x1 < 1.

January 3, 2011

7.4 Chebyshev Filters of the First Kind 79

−1 −0.5 0 0.5 1

−1

0

1

n=2

n=3 n=4

Figure 7.2. Chebyshev polynomials Tn(x) for n = 2,3,4.

Now write

Tn(x) = cn

n

∏
k=1

(x− xk).

Since all the factors of the product are positive when x ≥ 1, and since Tn(1) =
cos(ncos−1 1) = cos(0) = 1, cn > 0. It follows that for n ≥ 1, Tn(x) is strictly in-
creasing for x≥ 1 and that Tn(x)≥ cn(x− x1)

n→ ∞ as x→ ∞.

Derivation of (7.13)

For |x| ≤ 1, put T̃n(x) := cos(ncos−1 x). Then T̃0(x) = 1 = T0(x) and T̃1(x) = x =
T1(x). Next we use the trigonometric identity

cos(A±B) = cosAcosB∓ sinAsinB

to write, for n≥ 1 and θ := cos−1 x,

T̃n±1(x) = cos([n±1]θ)
= cos(nθ)cos(θ)∓ sin(nθ)sin(θ)
= T̃n(x)x∓ sin(nθ)sin(θ).

It follows that
T̃n+1(x)+ T̃n−1(x) = 2xT̃n(x),

or
T̃n+1(x) = 2xT̃n(x)− T̃n−1(x).

January 3, 2011

80 7 IIR Filter Design

Since T̃0(x) = T0(x) and T̃1(x) = T1(x), and since T̃n and Tn obey the same recursion,
we must have T̃n(x) = Tn(x) for |x| ≤ 1.

7.4.2. Chebyshev-I Filters

Several Chebyshev-I frequency responses are shown in Figure 7.3. Using the

0

n=4

n=2

n=3

10log
10
|H(jω)|

2

ω
p

Figure 7.3. Frequency response (in dB) of Chebyshev-I filters for n = 2,3,4. The distance between the
two dotted horizontal lines is the ripple (in dB). The level of the top dotted line is 10log10 H2

0 , and the
level of the bottom dotted line is 10log10[H

2
0 /(1+ ε2)].

foregoing analysis of the Chebyshev polynomials Tn, we can infer some simple prop-
erties of |H (jω)|2. The maximum attenuation in the passband 0 ≤ ω ≤ ωp occurs
several times and is equal to

10log10 H2
0 −10log10

H2
0

1+ ε2 = 10log10(1+ ε2).

To make this at most Ap requires

ε ≤
√

10Ap/10−1.

The stopband will begin at some ωs > ωp, and the minimum attenuation occurs at ωs
and is equal to

10log10 H2
0 −10log10

H2
0

1+ ε2Tn(ωs/ωp)2 = 10log10(1+ ε2Tn(ωs/ωp)
2).

January 3, 2011

7.4 Chebyshev Filters of the First Kind 81

To make this greater than or equal to As, we need

Tn(ωs/ωp)≥
√

10As/10−1
ε

≥
√

10As/10−1
10Ap/10−1

.

Since ωs > ωp, we can use the fact that Tn(ωs/ωp) = cosh(ncosh−1(ωs/ωp)) (see
Problem 7.8) to write

n≥
cosh−1

(√(
10As/10−1

)/(
10Ap/10−1

))

cosh−1(ωs/ωp)
. (7.15)

(In MATLAB use acosh for cosh−1.)
To find H (s), we proceed as we did for Butterworth filters by writing

|H (jω)|2 = H (jω)H (− jω) =
H2

0

1+ ε2Tn(ω/ωp)
2

and substituting ω = s/ j. We must then find the roots of the resulting denominator
polynomial on the right. Now 1+ ε2Tn(− js/ωp)

2 = 0 if and only if

Tn(− js/ωp) =± j/ε,

or
cos(ncos−1(− js/ωp)) =± j/ε.

Following [2, p. 45], let u and v denote the real and imaginary parts of cos−1(− js/ωp).
Then using the identity in Problem 7.9,

± j/ε = cos(n[u+ jv])

= cosnucoshnv− j sinnusinhnv.

Since the left-hand side is pure imaginary, and since the hyperbolic cosine of a real
number is positive, we must have cosnu = 0; i.e., nu must be an odd multiple of π/2.
We therefore have

u =
(2k−1)π/2

n
=

2k−1
4n

2π, k = 1, . . . ,2n. (7.16)

For such u, sinnu =±1, and we have

± j/ε =− j(±1)sinhnv.

January 3, 2011

82 7 IIR Filter Design

We therefore take v = sinh−1(1/ε)
/

n. (In MATLAB use asinh for sinh−1.) Recall-
ing that u+ jv = cos−1(− js/ωp), we have cos(u+ jv) =− js/ωp, or

s = jωp cos(u+ jv)

= jωp[cosucoshv− j sinusinhv]

= ωp[sinusinhv+ j cosucoshv].

The roots with negative real part occur for u< 0; i.e., when k = n+1, . . . ,2n in (7.16).
We therefore take

H (s) =
H0

cn(s− sn+1) · · ·(s− s2n)
, (7.17)

where cn is chosen so that H (0) =H0 when n is odd and H (0) =H0/
√

1+ ε2 when
n is even.

7.5. Chebyshev Filters of the Second Kind

Continuous-time Chebyshev filters of the second kind, or Chebyshev-II filters
for short, are designed to have a frequency response satisfying

|H (jω)|2 = H2
0 −

H2
0

1+ ε2Tn(ωs/ω)2

=
H2

0 ε2Tn(ωs/ω)2

1+ ε2Tn(ωs/ω)2 . (7.18)

By multiplying the numerator and denominator by ω2n, we can see that this frequency
response is the quotient of polynomials of degree 2n in ω . Hence, the order of the
filter is again n. Several Chebyshev-II frequency responses are shown in Figure 7.4.
Notice that in the passband, the response decreases monotonically, while there is
ripple in the stopband. In addition, for even n, the response does not decay to zero
but levels off at a positive value. For odd n, the response does decay to zero. Finally,
notice that the responses all have zeros in the stopband.

To make the attenuation in the stopband at least As, we need

ε ≤ 1√
10As/10−1

. (7.19)

To make the attenuation at ωp < ωs at most Ap, we need

n≥
cosh−1

(√(
10As/10−1

)/(
10Ap/10−1

))

cosh−1(ωs/ωp)
, (7.20)

January 3, 2011

7.5 Chebyshev Filters of the Second Kind 83

n=2 n=3
n=4

10log
10
|H(jω)|

2

n=4

ω
s

0

Figure 7.4. Frequency response (in dB) of Chebyshev-II filters for n = 2,3,4. The level of the dotted line
is 10log10[H

2
0 ε2/(1+ ε2)].

which is the same condition as for the Chebyshev-I filters.
We now put ω = s/ j in (7.18) and find the zeros and poles. Recall that Tn has n

distinct roots given by (7.14). When n is even none of these roots is zero. If n is odd,
the root with k = (n+1)/2 is zero. For a nonzero root, there is always a unique value
of s such that ωs/(− js) is equal to the root. Otherwise, there is no such s. Hence, the
distinct zeros are

zk =
jωs

cos
(
[2k−1]

π
2n

) , k = 1, . . . ,n and k 6= n+1
2

. (7.21)

Finding the poles is easy if we use our results for Chebyshev-I filters. Letting sI
k

denote the poles found in the analysis of the Chebyshev-I filters, we find that for the
Chebyshev-II filters, the poles of H (s)H (−s) are given by

sII
k =
−ωpωs

sI
k

, k = 1, . . . ,2n.

Observe that the minus sign interchanges the left and right half plane poles. Since
sI

n+1, . . . , sI
2n were the right half plane poles of the Chebyshev-I filter, the Chebyshev-

II transfer function is

H (s) =

H0

n

∏
k=1

k 6=(n+1)/2

(s− zk)

cII
n (s− sII

1) · · ·(s− sII
n)

, (7.22)

January 3, 2011

84 7 IIR Filter Design

where cII
n is chosen so that H (0) = H0. For n even, the number of zeros and the

number of poles is the same, which implies that the bilinear transformation does not
add any zeros at z =−1. For n odd, the number of zeros is one less than the number
of poles, and so the bilinear transformation adds a single zero at z =−1.

Problems

7.1. If h(t) is a real-valued waveform, show that H (jω) = H (− jω).
7.2. Let H (s) be a continuous-time transfer function. Show that if µk = jωk is an

imaginary zero of H (s), then after the bilinear transformation, µ̂k in (7.4) lies
on the unit circle.

7.3. In the study of analog filters, the parameter

d :=
√(

10Ap/10−1
)/(

10As/10−1
)

is called the discrimination factor. For an ideal filter As = ∞, and so3.2em
d = 0. For practical filters, As < ∞, and so d > 0. The parameter k := ωp/ωs is
called the selectivity factor. For an ideal filter, the transition band would have
zero width, meaning ωp = ωs, which corresponds to a selectivity factor of one.
For practical filters, k < 1. Show that (7.9) is equivalent to

n≥ ln(1/d)
ln(1/k)

=
lnd
lnk

.

7.4. Show that the Butterworth filter poles sk in (7.11) occur in conjugate pairs;
specifically, show that

sn−k+1 = sk, for k = 1, . . . ,n.

Hint: It may be helpful to use the fact that 3n = 4n−n.
7.5. For the Butterworth poles sk in (7.11), show that Bn := ∏n

k=1(−sk) = (−ωc)
n.

7.6. Consider the polynomial

(s− r)(s− r) = s2 +β1s+β2.

Show that β1 and β2 are real numbers.
7.7. With d and k being the discrimination and selectivity factors defined in Prob-

lem 7.3, show that for Chebyshev filters, (7.15) and (7.20) are equivalent to

n≥ cosh−1(1/d)
cosh−1(1/k)

.

January 3, 2011

Problems 85

7.8. Use the following procedure to show that for x≥ 1, T̂n(x) := cosh(ncosh−1 x)=
Tn(x).

(a) Recall that coshx := (ex + e−x)/2 and sinhx := (ex− e−x)/2. Verify that

coshxcoshy± sinhxsinhy = cosh(x± y).

(b) It is obvious that T̂0(x) = 1, and T̂1(x) = x. Show that

T̂n+1(x) = 2xT̂n(x)− T̂n−1(x).

7.9. Recall that for any complex number z, cosz := (e jz+e− jz)/2 and sinz := (e jz−
e− jz)/(2 j). Verify that for real numbers α and β ,

cosα coshβ ∓ j sinα sinhβ = cos(α± jβ).

7.10. Show that for complex z, sin−1 z =− j log(
√

1− z2+ jz). Hints: If θ = sin−1 z,
then θ solves the equation sinθ = z. Into this equation, substitute sinθ =
(e jθ − e− jθ)/(2 j). Multiply the result by e jθ to get a quadratic in e jθ . Apply
the quadratic formula to solve for e jθ . Then take logarithms to solve for θ .

7.11. Use the approach of the preceding problem to derive the formula cos−1 z =
− j log(j

√
1− z2 + z). Then use this formula to show that if z is a real number

with |z| ≥ 1, then

cos(ncos−1 z) =
[(√

z2−1+ z
)n

+
(√

z2−1+ z
)−n]

/2.

7.12. Use the identity cos(π/2− θ) = sinθ to derive the formula cos−1 z = π/2−
sin−1 z. Then use the result of Problem 7.10 to show that cos−1 z = π/2+
j log(

√
1− z2 + jz).

7.13. Show that the roots of 1+ ε2Tn(− js/ωp)
2 lie on an ellipse with foci at ± j.

Hints: For 0 ≤ u ≤ 2π , let z := ωp(sinusinhv+ j cosucoshv) and show that
|z− j|+ |z− (− j)| = constant. Identify the constant. Use the following facts:
cosh2 v− sinh2 v = 1; v > 0; and coshv≥ 1.

7.14. Show that the poles of the Chebyshev-I filter in (7.17) occur in conjugate pairs.
7.15. Show that the zeros of the Chebyshev-II filter in (7.21) satisfy zn+1−k =−zk.
7.16. MATLAB. Adapt the MATLAB script from Section 7.3 for Chebyshev-I filters.
7.17. Derive conditions (7.19) and (7.20) for Chebyshev-II filters.
7.18. Derive formulas (7.21) and (7.22) for Chebyshev-II filters.
7.19. MATLAB. Adapt the MATLAB script from Section 7.3 for Chebyshev-II filters.
7.20. Consider the problem of designing a discrete-time filter with passband edge

fp = 0.2 and stopband edge fs = 0.3. The maximum passband attenuation
is Ap = 2 dB and the minimum stopband attenuation is As = 40 dB. If you
design your filter by applying the bilinear transformation to a Butterworth or
Chebyshev filter, what is the minimum order n possible in each case?

January 3, 2011

86 7 IIR Filter Design

7.21. You are to implement a continuous-time lowpass filter using discrete-time sig-
nal processing. The design constraints on the continuous-time filter are as fol-
lows. The passband attenuation should be no more than 1.5 dB and the pass-
band edge should be 3 kHz. The stopband attenuation should be at least 40 dB
and the stopband edge should be 4 kHz. You may assume that all incoming
signals are bandlimited to 6 kHz.

(a) If the passband cannot have any ripple, which kind of IIR filter(s) (But-
terworth, Chebyshev-I, Chebyshev-II) could you use?

(b) If the filter order cannot exceed 8, which kind of IIR filter(s) (Butterworth,
Chebyshev-I, Chebyshev-II) could you use?

January 3, 2011

CHAPTER 8

FIR Filters

8.1. Motivation

Consider the signal

xn := c1e j2π f1n + c2e j2π f2n + c3e j2π f3n,

where 0 < f1 < f2 < f3 < 1/2. Its DTFT is [DRAW PICTURE]

X(f) = c1δ (f − f1)+ c2δ (f − f2)+ c3δ (f − f3), | f | ≤ 1/2.

Suppose we want to extract the third term of xn, c3e j2π f3n, by using a lowpass fil-
ter with cutoff frequency fc somewhere between f2 and f3, say H(f) = I[− fc, fc](f)
[DRAW PICTURE]. If xn is applied to this filter, then the output in the frequency
domain is

X1,2(f) := H(f)X(f) = c1δ (f − f1)+ c2δ (f − f2),

which corresponds to the time-domain signal

x1,2
n = c1e j2π f1n + c2e j2π f2n.

In this case, the difference xn− x1,2
n = c3e j2π f3n is the desired signal.

Suppose instead we use a different filter as follows. As before, let fc lie between
f2 and f3, but now let fc′ lie between f1 and f2. Let us apply xn to the filter [DRAW
PICTURE]

G(f) = I[− fc′ , fc′](f)+ I(fc′ , fc](| f |)e
− j2π f n0 .

Like the first filter, this one also has the property |G(f)|= I[− fc, fc](f). However, now
the filter output in the frequency domain is

Y (f) := G(f)X(f) = c1δ (f − f1)+ c2δ (f − f2)e− j2π f2n0 ,

which corresponds to the time-domain signal

yn = c1e j2π f1n + c2e j2π f2ne− j2π f2n0

= c1e j2π f1n + c2e j2π f2(n−n0).

Hence, the difference

xn− yn = c2e j2π f2n + c3e j2π f3n− c2e j2π f2(n−n0)

= c2e j2π f2n(1− e− j2π f2n0)+ c3e j2π f3n.

87

88 8 FIR Filters

We see that the second term is not canceled by this procedure.
To conclude the motivation, consider using the filter

L(f) = I[− fc′ , fc′](f)e− j2π f n0 + I(fc′ , fc](| f |)e
− j2π f n0

=
{

I[− fc′ , fc′](f)+ I(fc′ , fc](| f |)
}

e− j2π f n0 ,

which again has the property |L(f)| = I[− fc, fc](f). If we apply xn to this filter, the
output in the frequency domain is

V (f) := L(f)X(f) = c1δ (f − f1)e− j2π f1n0 + c2δ (f − f2)e− j2π f2n0 ,

and the corresponding time-domain signal is

vn = c1e j2π f1(n−n0)+ c2e j2π f2(n−n0).

We see that the difference xn−n0 − vn = c3e j2π f3(n−n0), which is a delayed version of
the desired third term of xn.

The filter L(f) is an example of a filter property called linear phase. Linear-
phase filters delay all frequency components by the same amount of time. As we
shall see, all linear-phase filters that are causal must be FIR.

8.2. Linear-Phase Filters

Recall that every nonzero complex number z can be written in the form z = re jθ ,
where r is the magnitude of z and θ is the angle or phase of z. In MATLAB, the angle
of a complex number z is returned by the command angle(z). This command
always returns the principal angle, which is defined to lie in the range −π < θ ≤ π .

A filter H(f) of the form

H(f) = |H(f)|e− j2πτ f

for some real constant τ is said to have linear phase because its phase is a linear
function of f .1 The constant τ is called the group delay. For example, the DTFT
of the rectangular window, Wrect(f) and the DTFT of the Bartlett window WBartlett(f)
defined in Chapter 4 are obviously linear phase with group delay τ = (N−1)/2. The
DTFTs of the other windows are also linear phase, but this is harder to see.

A filter is said to have to have generalized linear phase (GLP) if it has the form

H(f) = A(f)e− j(2πτ f−ϕ0), (8.1)

1 If we use the MATLAB function angle to plot the phase of H(f) as a function of f , then the plot
will be linear only for small f . As | f | increases, the quantity 2πτ f will eventually exceed ±π and the plot
will exhibit jump discontinuities.

January 3, 2011

8.2 Linear-Phase Filters 89

where A is a real-valued function (not necessarily nonnegative), τ is a real constant,
and ϕ0 is a real constant in the range (−π,π). (Allowing ϕ0 =±π would be the same
as replacing A(f) with −A(f) and ϕ0 with zero.) If we know τ and ϕ0, it is easy to
plot A(f) = H(f)e j(2πτ f−ϕ0). In MATLAB, the formula on the right may not be pure
real due to round off, and so it is best to take the real part. When A(f) is positive, the
phase of H(f) and the phase of e− j(2πτ f−ϕ0) are the same; otherwise, they differ by
±π . In particular, we shall see cases in which A(f) is odd, which means that A(f)
will undergo a sign change as f passes through zero. In such cases there will be a
jump discontinuity in the phase at f = 0.

8.2.1. GLP Implies 2τ Must Be an Integer

Recall that DTFTs are periodic with period one. If a filter is GLP, then H(f +1)=
H(f) says that

A(f +1)e− j(2πτ[f+1]−ϕ0) = A(f)e− j(2πτ f−ϕ0).

Canceling common factors, we see that

A(f) = A(f +1)e− j2πτ . (8.2)

Since A is real valued, 2τ must be an integer. If 2τ is an even integer, then (8.2) says
that A(f) = A(f + 1); i.e., A has period one. If 2τ is an odd integer, then (8.2) says
that A(f) = −A(f + 1). Since this is true for all f , replacing f with f + 1 yields
A(f +1) =−A(f +2), and we see that A(f) =−[−A(f +2)] = A(f +2); i.e., A has
period two.

8.2.2. GLP Is Equivalent to Generalized Symmetry

For a GLP filter, the impulse response is

hn =
∫ 1/2

−1/2
A(f)e− j(2πτ f−ϕ0)e j2π f n d f

=
∫ 1/2

−1/2
e jϕ0A(f)e j2π f (n−τ) d f .

Hence,

h2τ−n =
∫ 1/2

−1/2
e jϕ0A(f)e j2π f ([2τ−n]−τ) d f

=
∫ 1/2

−1/2
e jϕ0A(f)e j2π f (τ−n) d f .

January 3, 2011

90 8 FIR Filters

Since A(f) is real,

h2τ−n = e j2ϕ0

∫ 1/2

−1/2
e jϕ0 A(f)e j2π f (n−τ) d f

= e j2ϕ0hn.

We can rewrite this as the generalized symmetry condition

hn = e j2ϕ0h2τ−n. (8.3)

If τ is an integer, we can replace n with τ +n to get

hτ+n = e j2ϕ0hτ−n,

or
hτ+ne− jϕ0 = hτ−ne− jϕ0 . (8.4)

In other words gn := hτ+ne− jϕ0 is conjugate symmetric about n = 0 (satisfies gn =
g−n). If τ is a half integer, we can replace n with τ +1/2+n in (8.3) to get

hτ+1/2+n = e j2ϕ0hτ−1/2−n,

or
hτ+1/2+ne− jϕ0 = hτ−1/2−ne− jϕ0 , (8.5)

which says that gn := hτ+1/2+ne− jϕ0 satisfies gn = g−n−1.
We have shown that GLP (8.1) implies the generalized symmetry condition (8.3).

The converse is also true. If hn satisfies (8.4) or (8.5), then the DTFT H(f) is GLP
(satisfies (8.1)). This is left to the problems. The importance of this equivalence
is that it gives us two ways of checking for linear phase. If we know the DTFT,
we can see if it has the form (8.1). But if we do not have a formula for the DTFT,
we can check if the impulse response satisfies the generalized symmetry condition.
For example, the DTFT of the Kaiser window has no closed-form expression, but it is
easy to see that the window function wn satisfies the generalized symmetry condition.

8.2.3. GLP and Causality Imply FIR

If hn is a causal sequence and n > 2τ , then h2τ−n = 0. If H(f) is GLP, it follows
immediately from the generalized symmetry condition (8.3) that hn is FIR with hn = 0
for n < 0 and n > 2τ . Hence, causal GLP filters have order of at most 2τ .2 In this

2 Recall that the order of an FIR filter is one less than its length.

January 3, 2011

8.2 Linear-Phase Filters 91

case, it is convenient to list the times n at which hn may be nonzero as follows. When
2τ is even,

n =

τ values︷ ︸︸ ︷
0,1, . . . ,τ−1,τ,

τ values︷ ︸︸ ︷
τ +1, . . . ,2τ︸ ︷︷ ︸

2τ +1 values

and when 2τ is odd,

n =

(τ +1/2) values︷ ︸︸ ︷
0,1, . . . ,τ−1/2,

(τ +1/2) values︷ ︸︸ ︷
τ +1/2, . . . ,2τ︸ ︷︷ ︸

2τ +1 values

Since bτc is equal to τ when 2τ is even and τ − 1/2 when 2τ is odd, once arbi-
trary values of hn have been specified for n = 0, . . . ,bτc, then for n = bτc+1, . . . ,2τ ,
the values of hn must be hn = e j2ϕ0h2τ−n. The only “catch” is that when 2τ is even
hτ e− jϕ0 must be real. If this is not already true, hτ can be replaced by e jϕ0 Re(hτ e− jϕ0).
[Run filtertypes.m demo]

8.2.4. GLP and Real Impulse Response Imply ϕ0 Is 0 or π/2

If hn is real, then H(− f) = H(f). For a GLP filter, this implies, since A is real,

A(− f)e− j(2πτ(− f)−ϕ0) = A(f)e j(2πτ f−ϕ0),

from which we see that

e j2ϕ0 =
A(f)

A(− f)
= real. (8.6)

Hence, 2ϕ0 must be a multiple of π . Since ϕ0 ∈ (−π,π), ϕ0 must be either zero or
π/2. We further point out that when ϕ0 = 0 in (8.6), it follows that A(f) = A(− f);
i.e., A is an even function. When ϕ0 = π/2, it follows that A(f) =−A(− f); i.e., A is
an odd function.

8.2.5. Symmetry Conditions for GLP and Real Impulse Response

If hn is real, and H(f) is GLP, then (8.3) implies the following symmetry con-
ditions. First, since hn is real, we can drop the complex conjugate. Second, also
because hn is real, we can restrict 2ϕ0 to be zero or π . Hence, (8.3) becomes

hn =±h2τ−n, (8.7)

where the plus sign (symmetry) corresponds to ϕ0 = 0 and the minus sign (antisym-
metry) corresponds to ϕ0 = π/2. Recalling that A(f) is even (symmetric about f = 0)

January 3, 2011

92 8 FIR Filters

for ϕ0 = 0 and odd (antisymmetric about f = 0) for ϕ0 = π/2, we see that hn and
A(f) are both symmetric or both antisymmetric.

Because 2τ can be an even or an odd integer and ϕ0 can be zero or π/2, there are
four possible kinds of GLP filters with real impulse response.

ϕ0 = 0 ϕ0 = π/2
symmetric antisymmetric

2τ even, A(f +1) = A(f) I III
2τ odd, A(f +1) =−A(f) II IV

Table 8.1. Types of GLP filters with real impulse response.

Symmetry Implications

First consider an antisymmetric filter, either type-III or type-IV. Then since A(f)
is odd, A(0) = 0, which implies H(0) = 0. Hence, antisymmetric filters cannot be
lowpass filters.

Next consider a type-II filter. Since A(f + 1) = −A(f), taking f = 1/2 yields
A(1/2) =−A(−1/2). However, since A(f) is also even, A(−1/2) = A(1/2). Putting
these two equations together implies A(1/2) =−A(1/2), which implies A(1/2) = 0.
Again using the fact that A is even, we have A(−1/2) = 0 as well. Thus, H(±1/2) =
0. This means that a type-II filter cannot be highpass.

A similar argument shows that a type-III filter cannot be highpass.

Example 8.2.1 (Differentiator of Type IV). Recall that the transfer function of
an analog differentiator is H(f) = j2π f . Suppose, however, that we agree to ap-
ply it only to waveforms bandlimited to fc. Then we can use the system H(f) =
j2π f I[− fc, fc](f) instead. To implement this system using discrete-time signal pro-
cessing with sampling rate fs = 2 fc, we require a discrete-time filter with DTFT
equal to H(fs f) for | f | ≤ 1/2. In other words, H(fs f) = j2π fs f for | f | ≤ 1/2. Since
j = e jϕ0 with ϕ0 = π/2, our filter is GLP of type III or IV. If we also impose a group
delay of τ , our discrete-time frequency response is j2π fs f e− j2πτ f for | f | ≤ 1/2.
Noting that the absolute value of this function is proportional to | f |, we see that a dif-
ferentiator is a kind of HPF. Hence, a type-III filter is not appropriate. We therefore
consider only a type-IV filter with 2τ being odd. A careful calculation shows that the
impulse response sequence is

hn = fs(−1)n−τ+1/2/[π(n− τ)2].

Using only hn for n = 0, . . . ,2τ , we obtain an GLP, causal, FIR filter.

[Run diffscript.m]

January 3, 2011

8.3 Windowing of Impulse Responses of GLP Filters 93

8.3. Windowing of Impulse Responses of GLP Filters

Suppose we have a GLP filter with group delay τ and phase ϕ0 whose impulse
response hn is not FIR. Then as we have seen, it cannot be causal. However, suppose
we multiply it by one of our windows from Chapter 4 of length 2τ + 1. Using the
formulas for wn (which are real), it is easy to check that they satisfy the symmetry
property (8.7) and are therefore GLP with zero phase and group delay τ . Since these
windows are causal and FIR, the product wnhn is causal and FIR. Furthermore, by
Problem 8.6 the GLP property is preserved with the same group delay and the same
phase as H(f).

Example 8.3.1 (LPFs of Types I and II). Let 0 < fc < 1/2. The filter defined by
H(f) = e− j2πτ f I[− fc, fc](f) for | f | ≤ 1/2 is an ideal lowpass filter that is linear phase
if 2τ is an integer. The impulse response hn = 2 fc sinc(2 fc[n−τ]). If we multiply hn
by a window of length 2τ +1, we get an FIR filter of order 2τ .

Example 8.3.2 (BPFs of Types I and II). Let 0 < f1 < f2 ≤ 1/2. Then the filter
H(f) = e− j2πτ f I[f1, f2](| f |) for | f | ≤ 1/2 is an ideal bandpass filter (BPF) with linear
phase if 2τ is an integer. The impulse response is

hn = 2 f2 sinc(2 f2[n− τ])−2 f1 sinc(2 f1[n− τ]).

If we multiply hn by a window of length 2τ + 1, we get an FIR filter of order 2τ .
Since f2 = 1/2 is a highpass filter (HPF), we cannot use a type-II filter (2τ odd); i.e.,
we cannot use a window of even length in this case.

[Run modscriptAM.m demo]

The Hilbert Transform

The Hilbert transform of a waveform x(t) is denoted by x̂(t). We show below
that the signals

x(t)cos(2π f0t)± x̂(t)sin(2π f0t)

are single sideband. Such signals are very important in communication systems. Our
interest here is in approximating x̂(t) using a discrete-time signal processing system
with an FIR filter.

The signal x̂(t) is defined to be the output of the linear time-invariant system with
transfer function H(f) := − j sgn(f), where sgn(f) is the signum function or sign
function defined by

sgn(f) :=





1, f > 0,
0, f = 0,
−1, f < 0.

January 3, 2011

94 8 FIR Filters

If we let X̂(f) denote the Fourier transform of x̂(t), then we have X̂(f)=H(f)X(f)=
− j sgn(f)X(f).

To see what the Hilbert transform does, it is convenient to write X(f) in the form
L(f) +R(f), where L(f) is the left half of X(f) and R(f) is the right half; more
precisely, L(f) := X(f) for f < 0 and R(f) := X(f) for f ≥ 0, and L(f) and R(f)
are zero otherwise. See Figure 8.1.

0

1

f

X(f)
1

f

L(f)

0 0

1

f

R(f)

Figure 8.1. A continuous-time Fourier transform X(f) and its left and right halves L(f) and R(f).

Since

X(f) = L(f)+R(f) =
{

R(f), f ≥ 0,
L(f), f < 0,

we see that the Hilbert transform of x(t) is, in the frequency domain,

X̂(f) :=− j sgn(f)X(f) =
{
− jR(f), f ≥ 0,

jL(f), f < 0,

which is shown in Figure 8.2. Note that since L(f) = 0 for f ≥ 0 and R(f) = 0 for
f < 0, we can also write X̂(f) =− j[R(f)−L(f)].

f

X̂(f)

j

− j

Figure 8.2. The Fourier transform of x̂(t).

Now recall that for any signal y(t), the Fourier transform of y(t)sin(2π f0t) is

1
2 j [Y (f − f0)−Y (f + f0)].

Replacing y(t) with x̂(t) and using the fact that X̂(f) =− j[R(f)−L(f)], we find that
the Fourier transform of x̂(t)sin(2π f0t) is

1
2 j

[
{− j[R(f − f0)−L(f − f0)]}−{− j[R(f + f0)−L(f + f0)]}

]
,

January 3, 2011

8.3 Windowing of Impulse Responses of GLP Filters 95

which simplifies to

1
2 [L(f − f0)−R(f − f0)+R(f + f0)−L(f + f0)] (8.8)

and is shown in Figure 8.3.

f

1/2

−1/2
f0− f0

Figure 8.3. The Fourier transform of x̂(t)sin(2π f0t).

It is interesting to compare this with the Fourier transform of x(t)cos(2π f0t),
which is 1

2 [X(f − f0)+X(f + f0)], or in more detail,

1
2

[
{L(f − f0)+R(f − f0)}+{L(f + f0)+R(f + f0)}

]
, (8.9)

and is shown in Figure 8.4. We see from (8.8) and (8.9) that the Fourier transform of

f

1
2 [X(f − f0)+X(f + f0)]

1/2

−1/2
f0− f0

Figure 8.4. The Fourier transform of x(t)cos(2π f0t).

x(t)cos(2π f0t)− x̂(t)sin(2π f0t)

is L(f + f0)+R(f − f0), which is shown in Figure 8.5. Similarly, the Hilbert trans-
form of

x(t)cos(2π f0t)+ x̂(t)sin(2π f0t)

is R(f + f0)+L(f − f0).

Example 8.3.3 (Hilbert Transform of Type IV). The analog Hilbert transform has
transfer function− j sgn(f). However, suppose that we agree to apply it only to wave-
forms bandlimited to fc. Then we can use the system H(f) = − j sgn(f)I[− fc, fc](f)
instead. To implement this system using discrete-time signal processing with sam-
pling rate fs = 2 fc, we require a discrete-time filter with DTFT equal to H(fs f) for

January 3, 2011

96 8 FIR Filters

f

L(f + f0)+R(f − f0)

1

−1
f0− f0

Figure 8.5. The Fourier transform of x(t)cos(2π f0t)− x̂(t)sin(2π f0t).

| f | ≤ 1/2. In other words, H(fs f) = − j sgn(f) for | f | ≤ 1/2. Since j = e jϕ0 for
ϕ0 = π/2, our filter is GLP of type III or IV. If we also impose a group delay of
τ , our discrete-time frequency response is − j sgn(f)e− j2πτ f for | f | ≤ 1/2. Noting
that the absolute value of this function is 1 for f 6= 0, we see that a Hilbert transform
is a kind of HPF. Hence, a type-III filter is not appropriate. We therefore consider
only a type-IV filter with 2τ being odd. A careful calculation shows that the impulse
response sequence is

hn =
1− cos(π[n− τ])

π(n− τ)
.

Since our DTFT has a jump discontinuity at f = 0, we will have the Gibbs phe-
nomenon. We therefore multiply hn by a window of length 2τ + 1 such as a Kaiser
window.

[Run hilbertscript.m demo]

8.3.1. Filter Specifications

Consider a lowpass DTFT with |H(f)| like the one shown in Figure 8.6. The
parameters in Figure 8.6 are related to the parameters in Figure 7.1 via

Ap = 20log10
1+δ+

1−δ−
and As = 20log10

1+δ+

δs
.

When specifying IIR filters, we typically take δ+ = 0. When specifying FIR filters,
we typically take δ+ = δ− and denote this common value by δp.

January 3, 2011

8.3 Windowing of Impulse Responses of GLP Filters 97

|H(f)|

0
f

1/2

δsH0

(1+δ+)H0

(1−δ−)H0

fsfp

Figure 8.6. Parameters for specifying discrete-time filters.

8.3.2. The Kaiser Window

The preferred window to use is the Kaiser window. In terms of the notation of
this chapter, the Kaiser window is given by

wn =

I0

(
β
√

1−
(n− τ

τ

)2
)

I0(β)
, n = 0, . . . ,2τ,

where the shape parameter β and the order 2τ are initially selected as follows. Let

A :=−20log10
(
min{δp,δs}

)
.

Then we try setting the integer order

2τ ≥ A−7.95
2.285(2π| fs− fp|)

,

and the shape parameter as

β =





0.1102(A−8.7), A > 50,
0.5842(A−21)0.4 +0.07886(A−21), 21 < A≤ 50,
0, A≤ 21.

Note that β = 0 reduces the the rectangular window. Kaiser developed these formulas
empirically, and they serve as a starting point. The DTFT of the windowed ideal
impulse response must be plotted to check if it meets the specifications. If not, it may
be necessary to increase N or β or both.

January 3, 2011

98 8 FIR Filters

The formula for the filter order depends on the width of the transition band, | fs−
fp| of the DTFT. This works generally for multiband filters; just use the smallest
transition band.

Once you have chosen 2τ and β , the window w = [w0, . . . ,w2τ]
′ can be obtained

with the MATLAB Signal Processing Toolbox command w=kaiser(twotau+1,
beta).
[Run modscriptAM.m]

8.4. Equiripple Filters and the Parks–McClellan Algorithm

For ease of exposition, consider a type-I filter with H(f) = A(f)e− j2πτ f , where
2τ is even. For a causal filter,

H(f) =
2τ

∑
n=0

hne− j2π f n,

or

A(f) =
2τ

∑
n=0

hne− j2π f (n−τ)

=
τ

∑
m=−τ

hm+τ︸︷︷︸
=:am

e− j2π f m.

Since A(f) is real and even, the am are real and even, and we can write

A(f) =
τ

∑
m=0

gm cos(2π f m), (8.10)

where g0 = a0 and gm = 2am for m = 1, . . . ,τ .
Suppose we want to design a lowpass filter with passband edge fp and stopband

edge fs. Then we want to find g0, . . . ,gm that achieve

min
g0,...,gτ

max
0≤ f≤ fp, fs≤ f≤1/2

|A(f)−Ad(f)|,

where Ad(f) is the ideal amplitude response, Ad(f) := 1 for | f | ≤ fp and Ad(f) := 0
for fs ≤ | f | ≤ 1/2. Note that Ad(f) is not specified outside of the passband and
stopband. Also, because A(f) and Ad(f) are even, it suffices to maximize over non-
negative f .

January 3, 2011

8.4 Equiripple Filters and the Parks–McClellan Algorithm 99

The first step in solving this problem is to make the substitution 2π f = cos−1(x)
in (8.10). This is equivalent to x = cos(2π f). Thus, our optimization problem be-
comes

min
g0,...,gm

max
x∈X

∣∣∣∣
τ

∑
m=0

gm cos(mcos−1(x))︸ ︷︷ ︸
=Tm(x)

−Ãd(x)
∣∣∣∣,

where Ãd(x) := Ad(cos−1(x)/(2π)) and X = cos(2π{[0, fp]∪ [fs,1/2]}), and Tm is
the mth Chebyshev polynomial. Since ∑τ

m=0 gmTm(x) is just a polynomial of degree
τ , we see that the optimal filter-design problem is really a polynomial approximation
problem in disguise! The classical method for the polynomial approximation prob-
lem is due to Remez (or Remes) and is called the Remez Exchange Algorithm. It
was adapted to FIR filter design by Parks and McClellan [6] and is known as the
Parks–McClellan algorithm. A retrospective discussion of the development of the
Parks–McClellan algorithm recently appeared in [4].

With more work it can be shown that optimization of GLP filters of types II–IV
can be put into the same framework [7]. The key MATLAB functions are firpmord
for computing 2τ and firpm for generating the filter coefficients hn.

8.4.1. Alternation and Exchange

We sketch some of the basic ideas behind polynomial approximation.
Alternation Theorem. A polynomial of degree n is the best approximation (in the

sense of uniform error) of a function on a bounded subset of the real line if and only
if there exist n+ 2 points in the subset such that the worst-case error on the subset
occurs at each of these points and the error at adjacent points alternates in sign.
[Draw a picture of the error f (x)− p(x).]

The proof of necessity is beyond our scope here, but can be found, for example,
in [8, pp. 26–27]. However, it is not too hard to prove sufficiency, which we do a bit
later below.

Application to a Set of n+2 Points

Suppose we have any function f defined on the finite set X containing exactly
n+ 2 points, say x1 < · · · < xn+2, and we want to approximate f on this set by a
polynomial p of degree at most n. We do this by taking p to be the difference of
two polynomials of degree n+1 such that their powers of xn+1 cancel and so that the
error f (x)− p(x) satisfies the conditions of the Alternation Theorem. We will then
know that maxx∈X | f (x)− p(x)| is the minimum possible among all polynomials of
degree at most n.

Let g denote the unique polynomial of degree at most n+ 1 such that g(xk) =
f (xk) for k = 1, . . . ,n+ 2. [Draw a generic picture.] Similarly, let s denote the

January 3, 2011

100 8 FIR Filters

unique polynomial of degree at most n such that s(xk) = (−1)k for k = 1, . . . ,n+ 2.
[Draw a picture.] Since s changes sign n+ 1 times, it has n+ 1 roots, say r1 <
· · ·< rn+1, and

s(x) = c(x− r1) · · ·(x− rn+1)

for some nonzero constant c. Hence, the degree of s is exactly n+ 1. If g(x) =
gn+1xn+1 + · · ·, we put

p(x) := g(x)− gn+1

c
s(x)

= {gn+1xn+1 + · · ·}− gn+1

c
{cxn+1 + · · ·},

which is a polynomial of degree at most n. Then for k = 1, . . . ,n+2,

f (xk)− p(xk) = f (xk)−
[
g(xk)−

gn+1

c
s(xk)

]

= f (xk)− f (xk)+(−1)k gn+1

c

= (−1)k gn+1

c
.

This shows that the error has the same magnitude, |gn+1/c|, at every point in X and
alternates in sign. By the Alternation Theorem, p is optimal.

Application to a Finite Set of More Than n+2 Points

Now suppose that X is a finite set, but with more than n+ 2 points. Let Y be
a subset of X with exactly n + 2 points, say y1 < · · · < yn+2. Let pY denote the
best approximation on Y of degree at most n as constructed above. If pY is the best
approximation on all of X , we are finished. Otherwise, we proceed as follows. Since
pY was constructed to have the alternation property, we can write

f (yk+1)− pY (yk+1) =−[f (yk)− pY (yk)], k = 1, . . . ,n+1. (8.11)

Since pY is not optimal on all of X there must be some x0 ∈ X but x0 /∈ Y with

| f (x0)− pY (x0)|> | f (yk)− pY (yk)|, k = 1, . . . ,n+2.

We now replace a y0 ∈ Y with x0, where y0 is chosen as follows. Suppose yk < x0 <
yk+1. Recall that according to (8.11), [Draw a picture of the error f (x)− p(x)
noting the points x = yk.]

f (yk+1)− pY (yk+1) and f (yk)− pY (yk)

January 3, 2011

Problems 101

have opposite signs. We take y0 to be yk or yk+1 so that f (y0)− pY (y0) and f (x0)−
pY (x0) have the same sign. Now suppose x0 < y1. If the sign of f (x0)− pY (x0) is the
same as the sign of f (y1)− pY (y1), we take y0 = y1; otherwise we take y0 = yn+2.
Finally, suppose x0 > yn+2. If the sign of f (x0)− pY (x0) is the same as the sign of
f (yn+2)− pY (yn+2), we take y0 = yn+2; otherwise we take y0 = y1. As a result of
this exchange, the errors on our modified Y alternate in sign and the error at x0 has a
greater magnitude than all the others (whose errors all have the same magnitude).

On the modified Y , we can construct a new best approximation of degree at most
n. It can be shown that the worst-case error of this new approximation of the modified
Y is strictly greater that before. Continuing in this way, we obtain a subset of X
having n+2 points and a polynomial of degree at most n that satisfies the sufficiency
conditions of the Alternation Theorem.

Proof of Sufficiency of the Alternation Theorem

Let f be a function defined on a bounded subset of the real line, and let p be a
polynomial of degree at most n. Suppose that the worst-case error between f (x) and
p(x) is achieved at n+2 points x1 < · · ·< xn+2 and that these errors alternate in sign;
i.e.,

f (xk+1)− p(xk+1) =−[f (xk)− p(xk)], k = 1, . . . ,n+1. (8.12)

We must show that p is a best approximation of f on X . Our proof is by contradiction.
Suppose there is a polynomial q that is better than p. In other words, the worst-case
error between f and q is strictly less than the worst-case error between f and p. In
particular, this implies that for k = 1, . . . ,n+2,

| f (xk)−q(xk)|< | f (xk)− p(xk)|= constant = worst-case error between f and p.

Now this inequality implies that the sign of the difference

[f (xk)− p(xk)]− [f (xk)−q(xk)] = q(xk)− p(xk)

is equal to the sign of the leftmost term in brackets (separately consider the two
possibilities for the sign of the second term in brackets). Hence, on account of (8.12),
the polynomial q(x)− p(x) changes sign n + 1 times. By the intermediate-value
theorem, this polynomial has n+ 1 roots. But since the degree of q− p is at most
n, we conclude that q− p is the zero polynomial.

Problems

8.1. Determine whether or not the discrete-time filter

H(z) =
1− z−1

1+(1/2)z−1− (1/2)z−2

January 3, 2011

102 8 FIR Filters

is a lowpass filter. Also determine whether or not the filter is stable.
8.2. Consider a GLP filter with negative group delay τ . Suppose further that the

impulse response is anticausal; i.e., hn = 0 for n > 0. Identify all n such that
hn must be zero.

8.3. Let H(f) be the frequency response of a discrete-time system that is GLP and
whose impulse response is real. Consider the cascade system G(f) in Fig-
ure 8.7. Determine whether or not G(f) is GLP, and if it is GLP, determine its

xn H(f) H(f) yn

G(f)

Figure 8.7. Cascade system for Problem 8.3.

type (I, II, III, or IV).
8.4. If H(f) is GLP, show that for any integer k, H(f + k/(2τ)) is also GLP with

the same group delay τ and the same phase ϕ0. It is now easy to see that the
Hann, Hamming, and Blackman windows are linear phase with group delay
τ = (N−1)/2 and zero phase.

8.5. Show that the Bartlett, Hann, and Kaiser window functions wn defined in Chap-
ter 4 satisfy the symmetry condition (8.7) with group delay τ = (N−1)/2.

8.6. Let H(f) be a GLP filter with group delay τ and phase ϕ0. Let hn denote the
corresponding impulse response. Let wn be an arbitrary window function that
is also GLP with the same phase delay τ but with a possibly different phase θ .
Show that the new impulse response gn := wnhn is GLP and identify its group
delay and phase. Hint: It suffices to show that gn satisfies the generalized
symmetry condition (8.3).

8.7. Let gn be conjugate symmetric about n = 0; i.e., gn = g−n. Show that its DTFT
G(f) is real valued. More specifically, show that G(f)= g0+2ReG1(f) where
G1(f) := ∑∞

n=1 gne− j2π f n. In particular, you must show that g0 is real.
8.8. Let H(f) denote the DTFT of hn. Assuming hn satisfies (8.4) for some integer

group delay τ and some phase ϕ0 ∈ (−π,π), show that H(f) is GLP. Hints:
Write out the definition of H(f) and make the change of variable m = n− τ .
Use the fact that gn defined below (8.4) is conjugate symmetric about n = 0.

8.9. Let gn = g−n−1. Show that its DTFT G(f) has the form

G(f) = G0(f)+G0(f)e j2π f ,

where G0(f) := ∑∞
n=0 gne− j2π f n.

8.10. Let H(f) denote the DTFT of hn. Assuming hn satisfies (8.5) for some half
integer group delay τ and some phase ϕ0 ∈ (−π,π), show that H(f) is GLP.

January 3, 2011

Problems 103

Hints: Write out the definition of H(f) and make the change of variable n =
τ +1/2+m. Use the fact that gn defined below (8.5) satisfies gn = g−n−1.

8.11. Show that a type-III filter cannot be highpass.
8.12. Derive the impulse-response sequence for the LPF in Example 8.3.1.
8.13. Derive the impulse-response sequence for the BPF in Example 8.3.2. In the

case of a type-I HPF (f2 = 1/2), show that

hn = δn−τ −2 f1 sinc(2 f1[n− τ]).

8.14. Consider an ideal bandstop filter with stopband f1 ≤ | f | ≤ f2. For an ideal
type-I filter, show that the impulse-response sequence is

hn = δn−τ −2 f2 sinc(2 f2[n− τ])+2 f1 sinc(2 f1[n− τ]).

8.15. Derive the impulse-response sequence for the differentiator in Example 8.2.1.
8.16. Consider the DTFT H(f) = j2π f e− j2πτ f for | f | ≤ 1/2. If τ is an integer, say

τ = k, show that H(−1/2) =−H(1/2). If τ is a half integer, say τ = k+1/2,
show that H(−1/2) = H(1/2).

8.17. Let x̂(t) denote the Hilbert transform of x(t). Show that the Hilbert transform
of x̂(t) is −x(t). Hint: This is easy in the frequency domain.

8.18. If x(t) is real valued, show that x̂(t) is real valued. Hint: The result of Prob-
lem 1.19 in Chapter 1 may be helpful.

8.19. Let x(t) have Fourier transform X(f) = L(f)+R(f) as in the text. Let x̂(t) de-
note the Hilbert transform of x(t). The waveform x+(t) := x(t)+ jx̂(t) is called
the pre-envelope or analytic signal of x(t). Show that the Fourier transform of
x+(t) is 2R(f). The point here is that the Fourier transform of x+(t) is nonzero
only for f ≥ 0. Hint: Use the fact that X̂(f) =− j[R(f)−L(f)].

8.20. Introduction. If we put ψ(t) := x+(t)e− j2π f0t , then ψ(t)e j2π f0t = x+(t) =
x(t)+ jx̂(t). If x(t) is real, then we know from Problem 8.18 that x̂(t) is also
real. This means that x(t) and x̂(t) are the real and imaginary parts of x+(t),
respectively. It then follows that Reψ(t)e j2π f0t = x(t). The point here is that
if x(t) is a real bandpass signal centered at f0, then ψ(t), whose transform is
X+(f + f0), is a complex lowpass signal. In this case, we call ψ(t) the equiv-
alent lowpass signal of x(t). In general, ψ(t) is called the complex envelope
of x(t).
Problem. If we let xI(t) and xQ(t) denote the real and imaginary parts of ψ(t),
then

Reψ(t)e j2π f0t = xI(t)cos(2π f0t)− xQ(t)sin(2π f0t).

We call xI(t) and xQ(t) the in-phase and quadrature components of x(t). As-
suming x(t) is real, show that

xI(t) = x(t)cos(2π f0t)+ x̂(t)sin(2π f0t)

January 3, 2011

104 8 FIR Filters

and
xQ(t) = x̂(t)cos(2π f0t)− x(t)sin(2π f0t).

Also show that if x(t) is bandpass, then xI(t) and xQ(t) are lowpass. Hint:
Formulas such as (8.8) and (8.9) may be helpful.

8.21. Show that the Fourier transform of y(t)sin(2π f0t) is

1
2 j [Y (f − f0)−Y (f + f0)].

8.22. Show that the inverse DTFT of − j sgn(f)e− j2πτ f for | f | ≤ 1/2 is equal to

hn =
1− cos(π[n− τ])

π(n− τ)
, n 6= τ.

8.23. Show that the inverse Fourier transform of − j sgn(f) is 1/(πt). Hint: Sketch

Sn(f) :=





e− f/n, f > 0,
−e f/n, f < 0,
0, f = 0,

and observe that as n→ ∞, Sn(f)→ sgn(f). This suggests that if you first
compute the inverse Fourier transform of − jSn(f) for finite n and then let
n→ ∞, you will obtain the inverse Fourier transform of − j sgn(f).

8.24. Show that the Fourier transform of the unit-step function u(t) is (1/2)δ (f)+
1/(j2π f). Hint: Use the result of the preceding problem and a duality argu-
ment to show that the Fourier transform of sgn(t) is 1/(jπ f). Then use the fact
that u(t) = (1/2)[1+ sgn(t)].

8.25. Let gn be symmetric or antisymmetric about n = 0; i.e., gn = g−n for all n or
gn = −g−n for all n. Show that if z is a zero of the z transform of gn, then so
are z, 1/z, and 1/z. Hint: Show that G(z) = G(z) and that G(1/z) = G(z).

8.26. If gn = g−n−1 for all n or if gn =−g−n−1 for all n, show that the z transform of
gn has the property that if z is a zero, then so are z, 1/z, and 1/z.

January 3, 2011

CHAPTER 9

Filter Implementation

9.1. Quantization of Difference-Equation Coefficients

Consider a second-order difference equation of the form

yn =−a1yn−1−a2yn−2 + xn.

In any realization of this system, either in MATLAB or in special-purpose DSP hard-
ware, the coefficients a1 and a2 will be represented using only a finite number of bits.
Our goal here is to understand how this quantization affects the poles of the resulting
system.

The transfer function of the above system is 1/(1+a1z−1 +a2z−2). Writing the
denominator as

1+a1z−1 +a2z−2 = z−2(z2 +a1z+a2) = z−2(z− r1)(z− r2)

= z−2[z2− (r1 + r2)z+ r1r2],

we see that if a1 is real, then the imaginary parts of r1 and r2 must be equal and
opposite. If a2 is also real, and if the imaginary parts of r1 and r2 are not zero,
then Rer1 = Rer2. Hence, if r1 and r2 are not pure real, then r1 and r2 are complex
conjugates and can be written in the form r1 = re jθ and r2 = re− jθ . Thus, if a1 and
a2 are real and the poles are not pure real, a2 = r2 > 0. If 0 < θ < π , then r1 is in the
upper half plane and r2 is in the lower half plane.

In the case of poles of the form re± jθ , we have

a1 =−2r cosθ and a2 = r2.

Note that for a stable system (r < 1), |a1|< 2 and |a2|< 1. The formulas for a1 and
a2 can be solved for r and θ whenever a2 > 0 and |a1| ≤ 2

√
a2. We have1

r =
√

a2 and θ = cos−1
(−a1

2
√

a2

)
.

Now suppose that the coefficients a1 and a2 restricted to be represented by m-bit
words. Then a1 and a2 can take only finitely many values, and so the same is true of

1 The case |a1|= 2
√

a2 results in θ = 0 or θ = π . In this case, there is a repeated pole at r (θ = 0) or
a repeated pole at −r (θ = π).

105

106 9 Filter Implementation

r and θ via the foregoing formulas. To be more precise about this, let a1 and a2 be
of the form a1 = 2k/2m−1 and a2 = l/2m−1, where k and l are integers in the range
−2m−1, . . . ,−1,0,1, . . . ,2m−1−1, with l > 0. (The forms of a1 and a2 imply |a1|< 2
and |a2| < 1, which is required for stability.) Then the possible pole locations (first
quadrant only) are shown in Figure 9.1. [Run rootscript.m]

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 9.1. Possible locations (first quadrant only) of stable poles of a second-order difference equation if
the coefficients are quantized to m = 5 bits.

Before developing a way to overcome this problem, we need to learn a little bit
about block diagrams.

9.2. Block Diagrams

Consider the system shown in Figure 9.2 In this diagram, the block labeled z−1

ynz−1xn

Figure 9.2. A simple block diagram of the unit-delay system.

is the unit-delay system. That is, its transfer function is H(z) = z−1 and its impulse
response is hn = δn−1. Hence, the output is

yn =
∞

∑
k=−∞

hkxn−k =
∞

∑
k=−∞

δk−1xn−k = xn−1.

Of course, saying yn = xn−1 is the same as saying xn = yn+1. So the diagram could
just as well be drawn as shown in Figure 9.3

January 3, 2011

9.2 Block Diagrams 107

ynz−1yn+1

Figure 9.3. An equivalent labeling of the unit-delay system.

Now consider the more complicated situation in Figure 9.4. Since the signal

yn

α

z−1xn +

Figure 9.4. A more complicated system with feedback.

entering the unit delay is yn+1, the block diagram says that

yn+1 = αyn + xn.

Next consider a pair of such systems interconnected as shown in Figure 9.5. In

wn

α

z−1un +

vn

α

z−1xn +

β

−β

Figure 9.5. An interconnection of systems with feedback.

the time domain, this diagram says that

vn+1 = αvn +βwn + xn

wn+1 = αwn−βvn +un.

To work in the transform domain, we could take the z transform of these coupled
equations. However, we can write the z transform equations directly from the di-
agram by imagining each time function as being replaced by its z transform. This
substitution, which we normally just do in our heads, is shown explicitly here in
Figure 9.6. We can now write

January 3, 2011

108 9 Filter Implementation

V (z) = z−1[αV (z)+βW (z)+X(z)]

W (z) = z−1[αW (z)−βV (z)+U(z)].

To see what is going on, we write this in matrix-vector form as

[
V (z)
W (z)

]
=

[
αz−1 β z−1

−β z−1 αz−1

][
V (z)
W (z)

]
+ z−1

[
X(z)
U(z)

]
,

or

z
[

1−αz−1 −β z−1

β z−1 1−αz−1

][
V (z)
W (z)

]
=

[
X(z)
U(z)

]
.

It follows that
[

V (z)
W (z)

]
=

z−1

1−2αz−1 +(α2 +β 2)z−2

[
1−αz−1 β z−1

−β z−1 1−αz−1

][
X(z)
U(z)

]
. (9.1)

9.3. An Alternative Realization

To address the pole-location problem introduced at the beginning of the chapter,
consider the modifications of Figure 9.6 shown in Figure 9.7. We see that

yn =Cvn +Kwn + xn,

or in the transform domain,

Y (z) =CV (z)+KW (z)+X(z).

W (z)

α

z−1U(z) +

V (z)

α

z−1X(z) +

β

−β

Figure 9.6. The z transform of Figure 9.5.

January 3, 2011

9.4 Realization of IIR Filters 109

We can now apply (9.1), noting that from Figure 9.7, U(z) = 0. Thus,

Y (z) =
[

Cz−1(1−αz−1)−Kβ z−2

1−2αz−1 +(α2 +β 2)z−2 +1
]

X(z)

=
1+(C−2α)z−1(α2 +β 2−Cα−Kβ)z−2

1−2αz−1 +(α2 +β 2)z−2 X(z).

Given any constants real b1 and b2, if we take

C := b1 +2α, K :=
α2 +β 2−Cα−b2

β
, and r := α + jβ ,

then

Y (z) =
1+b1z−1 +b2z−2

(1− rz−1)(1− rz−1)
X(z). (9.2)

In other words, we can realize any second-order filter directly in terms of its poles
by using the structure in Figure 9.7, assuming that the poles are complex conjugates
with nonzero imaginary parts. If we now plot such poles when α and β have the form
k/2m−1 for k = −(2m−1− 1), . . . ,2m−1− 1 and lie inside the unit circle, we get the
plot shown in Figure 9.8 (first quadrant only). [Run roots2script.m Then Run
butterworthscript.m and rootscript.m and roots2script.m]

9.4. Realization of IIR Filters

Recall that IIR filters designed by applying the bilinear transformation to analog
Butterworth or Chebyshev filters result in a z-domain transfer function in which the
numerator and denominator have the same degree, which we denote here by N and
write

H(z) =

b0

N

∏
k=1

(1−βkz−1)

N

∏
k=1

(1−αkz−1)

.

Furthermore, when N is odd, there is one real pole and the rest occur in complex-
conjugate pairs. When N is even, all the poles occur in complex-conjugate pairs, and
there are no real poles. Hence, for even N, we can write

H(z) = b0

N/2

∏
k=1

1+b(k)1 z−1 +b(k)2 z−2

1+a(k)1 z−1 +a(k)2 z−2
,

January 3, 2011

110 9 Filter Implementation

where the coefficients are real. This transfer function can be realized by the cascade
shown in Figure 9.9, where Hk(z) = (1+b(k)1 z−1 +b(k)2 z−2)/(1+a(k)1 z−1 +a(k)2 z−2).
For odd N we can write

H(z) =

[
b0

(N−1)/2

∏
k=1

1+b(k)1 z−1 +b(k)2 z−2

1+a(k)1 z−1 +a(k)2 z−2

]
1−b(0)z−1

1−a(0)z−1
,

which can be realized by the cascade shown in Figure 9.10. Here H0(z) = (1−
b(0)z−1)/(1−a(0)z−1), and for k ≥ 1, the Hk(z) are as before.

An alternative to the cascade realization is the parallel realization. To design a
parallel realization, we first expand H(z) using partial fractions to write

H(z) =C0 +
N

∑
k=1

Ck

1−αkz−1 .

When N is even, we can group terms containing complex-conjugate pairs and write

H(z) =C0 +
N/2

∑
k=1

γ(k)0 + γ(k)1 z−1

1+a(k)1 z−1 +a(k)2 z−2
,

which can be realized by the parallel form shown in Figure 9.11, where H̃k(z) =
(γ(k)0 + γ(k)1 z−1)/(1+a(k)1 z−1 +a(k)2 z−2).
Similarly, for odd N,

H(z) =C0 +
γ(0)

1−αz−1 +
(N−1)/2

∑
k=1

γ(k)0 + γ(k)1 z−1

1+a(k)1 z−1 +a(k)2 z−2
,

which can be realized by the parallel form shown in Figure 9.12, where H̃0(z) =
γ(0)/(1−αz−1), and for k ≥ 1, the H̃k(z) are as before.

Although there are many ways to realize the second-order subsystems Hk(z) for
k ≥ 1, when the hardware has short word length, the structure of Figure 9.7 should
be considered.

9.5. Direct-Form Realizations

The difference equation

yn =−
N

∑
k=1

akyn−k + xn (9.3)

January 3, 2011

9.6 Transposed Direct Forms 111

is easily seen to be realized by the architecture shown in Figure 9.13. This is equiva-
lent to Figure 9.14.

With an eye toward realizing the more general difference equation

yn =−
N

∑
k=1

akyn−k +
N

∑
k=0

bkxn−k, (9.4)

observe that ∑N
k=0 bkxn−k is easily realized by the architecture in Figure 9.15. If we

take the output of Figure 9.15 and use it as the input to Figure 9.14, we can realize
the general difference equation (9.4). This is shown in Figure 9.16. The architecture
in Figure 9.4 is called direct form I.

Although the direct form I architecture is easy to understand, it is wasteful of
hardware. The direct form I architecture requires 2N delays. We next introduce
the direct form II architecture, which uses only N delays. The idea is to look at the
problem in the z transform domain and write B(z)/A(z) as the cascade B(z) ·(1/A(z)).
Put V (z) := (1/A(z))X(z) so that Y (z) = B(z)V (z) = (B(z)/A(z))X(z). The system
V (z) = (1/A(z))X(z) can be realized by changing yn in Figure 9.13 to vn as shown in
Figure 9.17, where we have also indicated that the signals vn−k can be directly tapped
off the delays. Now observe that the system Y (z) = B(z)V (z), which corresponds to
∑N

k=0 bkvn−k, can be obtained by attaching some adders to Figure 9.17 as shown in
Figure 9.18.

9.6. Transposed Direct Forms

Suppose we take the delay elements of Figure 9.14 and move them into the
branches above as shown in Figure 9.19. This modified architecture still realizes
the difference equation (9.3). This can be seen be observing that although the input
to the left-most delay element is −a3yn, by the time the signal reaches the right-hand
end, it is now −a3yn−3.

We can apply the same changes to Figure 9.15 if we also reverse the order of the
coefficients as shown in Figure 9.20.

To obtain the transposed direct form II, write B(z)/A(z) as the cascade form
(1/A(z))B(z). In more detail, put W (z) := B(z)X(z) so that Y (z) = (1/A(z))W (z) =
(1/A(z))B(z)X(z) = (B(z)/A(z))X(x). If we use Figure 9.20 to compute B(z)X(z),
we then see that the adders and delays of Figure 9.20 can do double duty to realize
(1/A(z))W (z) as shown in Figure 9.21. The architecture in Figure 9.21 is known as
the transposed direct form II.

Observe that Figure 9.21 can be obtained from Figure 9.18 by the following steps:
(i) reverse the directions of all arrows; (ii) replacing all adders by connections and
replacing all connections by adders; and (iii) interchanging the input and the output.

January 3, 2011

112 9 Filter Implementation

This algorithm is called transposition, and it leaves the overall transfer function un-
changed [7, p. 395]. Applying the algorithm to Figure 9.21 returns us to Figure 9.18.

9.7. Direct-Form Realizations of Real GLP FIR Filters

Recall that if the impulse response hn of a GLP filter is real, it must satisfy hn =
±hN−n, where N/2 is the group delay (which must be an integer or a half integer). If
the filter is causal, it must be FIR, and its length is N +1; i.e., its order is N. Hence,
for an even-order filter,

N

∑
k=0

hkxn−k =
N/2−1

∑
k=0

hkxn−k +hN/2xn−N/2 +
N

∑
k=N/2+1

hkxn−k

=
N/2−1

∑
k=0

hkxn−k +hN/2xn−N/2±
N

∑
k=N/2+1

hN−kxn−k

=
N/2−1

∑
k=0

hkxn−k +hN/2xn−N/2±
N/2−1

∑
m=0

hmxn−(N−m)

= hN/2xn−N/2 +
N/2−1

∑
k=0

hk(xn−k± xn−N+k),

and for an odd-order filter,

N

∑
k=0

hkxn−k =
(N−1)/2

∑
k=0

hk(xn−k± xn−N+k),

By writing the convolutions in this way, we can reduce the number of coefficients we
have to store. A direct form II realization of even order 6 is shown in Figure 9.22.

Problems

9.1. Find the transfer function of system in Figure 9.23. Then show that if K = 0,
the system is unstable.

9.2. Draw a direct form II realization of a real, 5th-order GLP FIR filter.
9.3. Draw the transpose of the implementation in Figure 9.22.
9.4. A causal filter has transfer function H(z) = 10+5z−1 +5z−3 +10z−4.

(a) What is the minimum number of delays with which the system can be
realized?

(b) What is the order of the filter?

January 3, 2011

Problems 113

(c) Determine whether or not the filter has generalized linear phase (GLP).

9.5. Draw a parallel realization of the system

H(z) =
1

(1− 1
2 z−1)(1− 1

3 z−1)
.

using two first-order sections. Draw details of the first-order sections.

January 3, 2011

114 9 Filter Implementation

wn

α

+

vn

α

xn +

β

−β

+

1

yn
C

K

z−1

z−1

Figure 9.7. Modification of Figure 9.6 that realizes the transfer function in (9.2).

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 9.8. Possible locations (first quadrant only) of stable poles r = α± jβ of transfer function in (9.2)
when α and β are quantized to m = 5 bits.

· · ·H1(z) HN/2(z) ynxn
b0

Figure 9.9. Cascade realization of a transfer function composed of an even number of factors.

· · ·H0(z) H1(z)xn H(N−1)/2(z) yn
b0

Figure 9.10. Cascade realization of a transfer function composed of an odd number of factors.

January 3, 2011

Problems 115

xn

C0 H̃1(z) · · ·
yn

· · ·

+ +· · ·

H̃N/2(z)

Figure 9.11. Parallel realization of a transfer function of even order.

· · ·

xn

yn

C0

· · ·

+ + +· · ·

H̃0(z) H̃1(z) H̃(N−1)/2(z)

Figure 9.12. Parallel realization of a transfer function of odd order.

xn

z−1

+

z−1

+

z−1

+

−a3 −a2 −a1

yn

Figure 9.13. An architecture for realizing the difference equation (9.3) with N = 3.

xn

z−1

+

z−1

+

z−1

+

−a3 −a2 −a1

yn

Figure 9.14. An equivalent architecture for realizing the difference equation (9.3) with N = 3.

xn

3

∑
k=0

bkxn−k

z−1

b1

z−1

+

b2

z−1

+

b3b0

+

Figure 9.15. An architecture for realizing ∑N
k=0 bkxn−k with N = 3.

January 3, 2011

116 9 Filter Implementation

xn z−1

b1

z−1

+

b2

z−1

+

b3b0

+

z−1

+

z−1

+

z−1

+

−a3 −a2 −a1

yn

Figure 9.16. The direct form I architecture for realizing (9.4) with N = 3.

xn

z−1

+

z−1

+

z−1

+

−a3 −a2 −a1

vnvn−1vn−2vn−3

Figure 9.17. Architecture for realizing V (z) = (1/A(z))X(z) with N = 3.

xn

z−1z−1 z−1

+ ++ +

b0b1b2b3

−a3 −a2 −a1

yn

+ + +

Figure 9.18. The direct form II architecture for realizing the general difference equation (9.4) with N = 3.

+ +

−a3 −a2 −a1

xn

+ ynz−1 z−1 z−1

Figure 9.19. Modification of Figure 9.14.

January 3, 2011

Problems 117

+ +

xn

+
3

∑
k=0

bkxn−kz−1 z−1 z−1

b3 b2 b1 b0

Figure 9.20. Modification of Figure 9.15.

+ +

xn

+ ynz−1 z−1 z−1+

−a3 −a2 −a1

b3 b2 b1 b0

Figure 9.21. Transposed direct form II architecture.

xn z−1

z−1

z−1

z−1z−1

z−1

+
h0

+

+
h1

+

+
h2

+ yn+

h3

±1 ±1±1

Figure 9.22. Direct form II realization of a real, 6th-order GLP FIR filter.

+ ynz−1

−K

xn

+z−1

−1 3

Figure 9.23. Block diagram for Problem 9.1.

January 3, 2011

CHAPTER 10

Sampling Rate Conversion

We saw in Chapter 1 that a continuous-time waveform x(t) can be recovered
from its samples if the waveform is bandlimited and if the samples are close enough
together. It follows that if we take such samples, say x(n/ fs), we can always compute
new samples taken at a different rate, say x(n/ f ′s). More explicitly, we can use the
sinc reconstruction formula to write

x(n/ f ′s) =
∞

∑
m=−∞

x(m/ fs)sinc(fs[n/ f ′s−m/ fs]).

What we are doing is going from discrete time to continuous time and back to discrete
time. Can we do this completely in discrete time? Under certain conditions, the
answer is “yes.”

10.1. Upsampling and Interpolation

Let xn be a discrete-time signal with DTFT X(f). The sequence xn need not be
obtained by sampling a continuous-time waveform. The process of taking a sequence
xn and creating the sequence

yn :=
{

xn/I , if n = 0,±I,±2I, . . . ,
0, otherwise,

where I is a positive integer, is called upsampling. For example, upsampling

. . . x−1 x0 x1 x2 . . .

by I = 3 yields

. . . x−1 0 0 x0 0 0 x1 0 0 x2 0 0 . . .

. . . y−3 y−2 y−1 y0 y1 y2 y3 y4 y5 y6 y7 y8 . . .

In other words, to upsample by I is to insert I − 1 zeros between elements of xn.
MATLAB does this to finite sequences with the command upsample(x,I).

We can generalize the concept of upsampling by inserting nonzero values be-
tween the elements of xn. But what values should we use? Even though xn may not
have come to us by sampling a bandlimited waveform, we can always construct a

118

10.1 Upsampling and Interpolation 119

virtual waveform v(t) so that xn is equal to its samples. Without loss of generality, let
v(t) be obtained by applying sinc reconstruction to xn with fs = 1; i.e.,

v(t) :=
∞

∑
n=−∞

xn sinc(t−n). (10.1)

Since the Fourier transform of sinc(t − n) is I[−1/2,1/2](f)e− j2π f n, the continuous-
time Fourier transform of v(t) is

V (f) = I[−1/2,1/2](f)
∞

∑
n=−∞

xne− j2π f n = I[−1/2,1/2](f)X(f).

Thus, the CTFT of v(t) is equal to the DTFT of xn for | f | ≤ 1/2; i.e., V (f) = X(f)
for | f | ≤ 1/2. However, keep in mind that the CTFT V (f) is zero for | f | > 1/2.
[Sketch V (f) and X(f).] Hence, the DTFT of the samples v(n/I) is equal to
IX(I f) for | f | ≤ 1/(2I) and is zero for 1/(2I) < | f | ≤ 1/2. This is illustrated in
Figure 10.1.

f

Original DTFT

1
2− 1

2
0

A

f

DTFT of Interpolated Signal

1
2− 1

2
0

IA

1
2I− 1

2I

Figure 10.1. The DTFT of xn and v(n/I).

We now show that because I is an integer, is not necessary to construct the virtual
waveform v(t) to obtain the sequence v(n/I). To see why, observe that the DTFT of
yn is

Y (f) =
∞

∑
n=−∞

yne− j2π f n =
∞

∑
m=−∞

ymIe− j2π f nmI =
∞

∑
m=−∞

xme− j2π(I f)m = X(I f).

[Run interpolationplot.m DEMO.] If we apply yn to a discrete-time ideal lowpass
filter of gain I and bandwidth 1/(2I), then the resulting filter output sequence will be

∫ 1/(2I)

−1/(2I)
IX(I f)e j2π f n d f

=
∫ 1/2

−1/2
X(θ)e j2π(θ/I)n dθ

=
∫ 1/2

−1/2
V (θ)e j2π(θ/I)n dθ , since X(f) =V (f) for | f | ≤ 1/2,

January 3, 2011

120 10 Sampling Rate Conversion

=
∫ ∞

−∞
V (θ)e j2πθ(n/I) dθ , since V (f) = 0 for | f |> 1/2,

= v(n/I),

Of course, when n = kI, v(n/I) = v(k) = xk. This combination of inserting zeros
followed by lowpass filtering is called interpolation. Such a system is shown in Fig-
ure 10.2.

DT ideal LPF
I

1
2I− 1

2I
1
2− 1

2

Ideal Interpolator

v(n/I)↑ Ixn
yn

Figure 10.2. Block diagram of an ideal interpolator, consisting of an upsampler followed by an ideal
lowpass filter.

MATLAB implements upsampling and lowpass filtering of a finite sequence with the
command interp(x,I); of course MATLAB cannot use an ideal lowpass filter.

Terminology. We warn the reader that many texts use both the terms upsampling
and interpolation to mean insertion of zeros followed by lowpass filtering.

10.2. Downsampling and Decimation

The process of taking a sequence xn and creating the sequence

yn := xnD,

is called downsampling. For example, downsampling

. . . x−3 x−2 x−1 x0 x1 x2 x3 . . .

by D = 3 yields
. . . x−6 x−3 x0 x3 x6 . . .
. . . y−2 y−1 y0 y1 y2 . . .

In other words, the values of xk when k is not a multiple of D are discarded. The
downsampling of a finite sequence is implemented in MATLAB with the command
downsample(x,D).

As we shall see, it is often a good idea to apply a discrete-time lowpass filter to
xn before subsampling. The process of lowpass filtering followed by subsampling

January 3, 2011

10.2 Downsampling and Decimation 121

is called decimation. To see the advantage of prefiltering, we need to compute the
DTFT of yn. However, it is convenient to first introduce the sequence

x̂n :=
{

xn, if n = 0,±D,±2D, . . . ,
0, otherwise.

Thus, x̂n is obtained from xn by setting xk = 0 if k is not a multiple of D. We can
also write x̂n as the product of xn with a discrete-time periodic impulse train. [Draw
picture of impulse train.] If we put

δ D
n :=

∞

∑
m=−∞

δn−mD,

then x̂n = xnδ D
n . With this notation, we can write x̂nD = xnDδ D

nD = xnD. We can now
compute the DTFT of yn. Write

Y (f) =
∞

∑
n=−∞

yne− j2π f n

=
∞

∑
n=−∞

xnDe− j2π f n

=
∞

∑
n=−∞

x̂nDe− j2π f n

=
∞

∑
m=−∞

x̂me− j2π f m/D,

where we have used the fact that x̂m = 0 when m is not a multiple of D. We next use
the geometric series to write

δ D
m =

1
D

D−1

∑
k=0

e j2πmk/D.

Then

Y (f) =
∞

∑
m=−∞

xmδ D
m e− j2π f m/D

=
∞

∑
m=−∞

xm

[
1
D

D−1

∑
k=0

e j2πmk/D
]

e− j2π f m/D

=
1
D

D−1

∑
k=0

∞

∑
m=−∞

xme− j2πm(f−k)/D

=
1
D

D−1

∑
k=0

X([f − k]/D),

January 3, 2011

122 10 Sampling Rate Conversion

where X(f) is the DTFT of xn. [Run decimationplot.m DEMO.] Thus, down-
sampling causes aliasing of the original discrete-time signal, unless it is bandlim-
ited to 1/(2D). For this reason, the ideal decimator has the structure shown in Fig-
ure 10.3. Simlarly, the MATLAB function decimate(x,D) includes a lowpass

Ideal Decimator

xn

DT ideal LPF
1

1
2D− 1

2D
1
2− 1

2

↓ D

Figure 10.3. Block diagram of an ideal decimator, consisting of an ideal lowpass filter followed by a
downsampler.

filter; of course MATLAB cannot use an ideal lowpass filter.
The general situation is shown in Figure 10.4.

f

Lowpass Signal after Downsampling

− 1
2

A/D

f

DTFT after LPF

1
2− 1

2 0

A

D fc−D fcfc− fc
1
20

Assuming D fc ≤ 1/2

Figure 10.4. If a discrete-time signal is bandlimited to fc < 1/2 and if we downsample by D such that
D fc ≤ 1/2, we avoid aliasing. If fc is given, we must have D≤ 1/(2 fc). If D is given, we must make sure
that the signal is bandlimited to 1/(2D).

Terminology. We warn the reader that many texts use both the terms downsam-
pling and decimation to mean prefiltering followed by subsampling.

10.3. Sampling Rate Conversion

Suppose we have samples xn arriving at fs samples per second. If we upsample
by I, we then have I fs samples per second. If we then downsample by D, we end
up with (I fs/D) = (I/D) fs samples per second. In practice, we would usually in-
clude a lowpass filter after upsampling (i.e., interpolation), and then another lowpass
filter before downsampling (i.e., decimation). Typically the two lowpass filters are
combined into a single filter as shown in Figure 10.5, where the cutoff frequency
fc = min{1/(2I),1/(2D)}. For finite sequences, MATLAB does all this (using a

January 3, 2011

10.4 Application to Sampling Continuous-Time Waveforms 123

↓ D↑ I

Ideal Sampling Rate Converter

fc = min{1/(2I),1/(2D)}

fc− fc
1
2− 1

2

I

DT ideal LPF

Figure 10.5. An ideal sampling rate converter. There is no loss of information if D≤ I.

nonideal filter) with the command resample(x,I,D). The resample function
makes the decimate and interp functions obsolete.

10.4. Application to Sampling Continuous-Time Waveforms

In the preceding sections, our starting point has been a discrete-time signal xn
with DTFT X(f). In this section, we start with a continuous-time signal x(t) with
CTFT X(f) that is bandlimited to fc and initially sampled at rate fs ≥ 2 fc to produce
the discrete-time signal x(n/ fs). Thus, the DTFT of the samples, XDTFT, fs(f) is
bandlimited to fc/ fs ≤ 1/2. If we upsample by I, and then apply an ideal discrete-
time lowpass filter of gain I and bandwidth 1/(2I), the resulting output sequence
will have DTFT XDTFT,I fs(f) and will be bandlimited to (fc/ fs)/I. Such a system is
shown in Figure 10.6.

↑ I
x(n/(I fs))

DT ideal LPF
I

1
2I− 1

2I
1
2− 1

2

x(t)
x(n/ fs)

Ideal Interpolator

@ fs

sample

Figure 10.6. A discrete-time interpolation system applied to samples of a bandlimited, continuous-time
waveform.

Since XDTFT,I fs(f) is bandlimited to (fc/ fs)/I, we can downsample by D without
aliasing for any D such that D(fc/ fs)/I ≤ 1/2, or D ≤ I fs/(2 fc). This is illustrated
in Figure 10.7.

Example 10.4.1 (Fractional Delay). Given samples x(n/ fs), it is easy to produce
the fractionally delayed samples x([n− k/I]/ fs) by inserting k delays between inter-
polation by I and decimation by I as shown in Figure 10.8.

January 3, 2011

124 10 Sampling Rate Conversion

↓ D x
(

nD
I fs

)
= x

(
n

(I/D) fs

)
x
(

n
I fs

)

Figure 10.7. A discrete-time decimation system applied to samples of a bandlimited, continuous-time
waveform.

x(n/ fs)

x
(

n
I fs

)

↑ I Ideal
Interpolator z−k

x
(

n− k
I fs

)

x
(

nI − k
I fs

)
= x

(
n− k/I

fs

)
↓ I

Figure 10.8. A discrete-time system for realizing a fractional delay.

Problems

10.1. The system shown in Figure 10.2 transforms the input sequence xn into the
output sequence v(n/I), where v(t) is defined in (10.1).

(a) Determine whether or not this system is linear.
(b) Determine whether or not this system is time invariant.
(c) Find the response to the unit impulse xn = δn.
(d) Determine whether or not this system is causal.

10.2. Consider the discrete-time system that downsamples by D; i.e., (Ax)n := xnD,
where D≥ 2 is an integer.

(a) Determine whether or not this system is linear.
(b) Determine whether or not this system is time invariant.
(c) Determine whether or not this system is causal.
(d) Determine whether or not this system is stable.

10.3. Let xn have DTFT X(f). Show that

D−1

∑
k=0

X([f − k]/D)

as a function of f has period 1. Hint: Recall Section 3.1.5.
10.4. Consider the signal x(t) with CTFT X(f).

January 3, 2011

Problems 125

X(f)

f
0 fc− fc

1

Suppose x(t) is applied to the system

x(t)
vn wn

I, D

ideal sampling
rate converter

@ fr

sinc
reconstr. y(t)@ fs ≥ 2 fc

sample

(a) Sketch the DTFT V (f).
(b) Sketch the DTFT W (f), assuming D≤ I fs/(2 fc).
(c) Show that Y (f) = X(f) if D/I = fs/ fr.
(d) If the inequality in (b) holds, and if the equality in (c) holds, show that

fr ≥ 2 fc.
(e) If fc = 7, fs = 20, and fr = 15, find suitable values of I and D so that

y(t) = x(t). Do your choices satisfy D≤ I fs/(2 fc)?

10.5. Consider the system

x(t) +

w(t)

H1(f)

CT filter

@ fs

sample
DT filter

H(f)
I, D

ideal sampling
rate converter y(t)

@ fr

sinc
reconstr.

q(t) sn bn

where

January 3, 2011

126 10 Sampling Rate Conversion

X(f)

f
0 1 2 3−3 −2 −1

1

−4 4

f
0 1 2 3−3 −2 −1

1

−4 4

H1(f)

f
0 1 2 3−3 −2 −1

1

−4 4

W (f)

Your goal is to make y(t) = x(t). If fr = 4 and fs = 6, specify an ideal DT filter
H(f) (gains, passbands, and stopbands), I, and D so that y(t) = x(t).

10.6. Repeat Problem 10.5 for fs = 8, fs = 5, and fs = 4.

January 3, 2011

Bibliography

[1] R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra. New York: Dover,
1958.

[2] L. P. Huelsman, Active and Passive Analog Filter Design. New York: McGraw-Hill, 1993.
[3] J. F. Kaiser, “Nonrecursive digital filter design using the I0-Sinh window function,” Proc.

1974 IEEE Int. Symp. Circuits and Systems, San Francisco, CA, pp. 20–23, April 1974.
[4] J. H. McClellan and T. W. Parks, “A personal history of the Parks–McClellan algorithm,”

IEEE Signal Processing Mag., vol. 22, no. 2, pp. 82–86, Mar. 2005.
[5] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd

ed. Upper Saddle River, NJ: Prentice Hall, 1999.
[6] T. W. Parks and J. H. McClellan, “Chebyshev approximation for nonrecursive digital

filters with linear phase,” IEEE Trans. Circuit Theory, vol. CT-19, no. 2, pp. 189–194,
Mar. 1972.

[7] B. Porat, A Course in Digital Signal Processing. New York: Wiley, 1997.
[8] T. J. Rivlin, An Introduction to the Approximation of Functions. New York: Dover, 1981.
[9] D. Slepian, “On bandwidth,” Proc. IEEE, vol. 64, no. 3, pp. 292–300, Mar. 1976.

127

Index

aliasing
of continuous-time signals, 12
of discrete-time signals, 122

all-pass system, 67
alternation theorem, 99
analytic signal, 103
angle, 88

principal, 88
anticausal, 102

bandlimited, 9
bandwidth, 8
Bartlett window, 42, 47
Bessel function, 46
BIBO stability, see bounded-input bounded-output

stability
bilinear transformation, 71
Blackman window, 44, 47
bounded sequence, 57
bounded-input bounded-output stability, 57
Butterworth filters, 74

cascade, 110
causal

sequence, 30, 59
system, 58

Chebyshev filters
first kind, 78
second kind, 82

Chebyshev-I filters, 78
Chebyshev-II filters, 82
circular convolution, 35
complex envelope, 103
convolution, 7

circular, 35
continuous-time, 7
discrete-time, 25
fast, 37
overlap-add, 27
periodic, 41

cutoff frequency, 1, 9
3-dB, 74

dB, see decibel
decibel, 42

3-dB, 74
decimation, 121

delta function
Dirac, 4, 24
Kronecker, 3

DFT, see discrete Fourier transform
differentiator, 92
Dirac delta function, 4, 24
direct form I, 111
direct form II, 111

transposed, 111
discrete Fourier transform, 29
discrete-time Fourier transform

modulation property, 19
time translation property, 19

discrete-time Fourier transform (DTFT), 4
discrimination factor, 84
downsampling, 120
DTFT, see discrete-time Fourier transform

equivalent lowpass signal, 103
exchange algorithm, see Remez exchange algorithm

fast Fourier transform, 5, 11, 17, 31
FFT, see fast Fourier transform
filter

finite impulse response (FIR), 61
infinite impulse response (IIR), 61
moving average, 61
order

analog, 71
FIR, 61
IIR, 61

finite impulse response filter, 61
FIR filter, see finite impulse response filter
Fourier coefficients, 3
Fourier inversion formula, 6
Fourier series, 2
Fourier transform, 6

inverse, 6
frequency response, 73

generalized linear phase (GLP), 88
generalized symmetry, 90
geometric series, 4, 35
GLP, see generalized linear phase
group delay, 88

Hamming window, 44

128

Index 129

Hann window, 43, 47
modified, 43

Hanning window, see Hann window
Hilbert transform, 93

IDFT, see inverse DFT
IFFT, see inverse FFT
IIR filter, see infinite impulse response filter
impulse response, 55, 57
impulse sampling, 13
impulse train, 23

Fourier transform, 23
in-phase, 103
indicator function, 21
infinite impulse response filter, 61
interpolation, 120
inverse DFT, 30
inverse FFT, 36
inverse Fourier transform, 6

Kaiser window, 46
for FIR filter design, 97

Kronecker delta function, 3

Laplace transform
one sided, 73

linear phase, 88
generalized, 88

linear system, 55

main lobe, 42
width, 42

Matlab commands
.’, 5
:, 5
acos, 78
acosh, 81
angle, 88
asinh, 82
besseli, 47
ceil, 11
conj, 77
conv, 26
decimate, 122
downsample, 120
end, 27
exp, 5
feval, 24
fftshift, 32
figure, 77
filter, 63

firpm, 99
firpmord, 99
fliplr, 65
floor, 11, 31
format rat, 54
fprintf, 39
grid on, 11
hold off, 77
hold on, 77
interp, 120
kaiser, 98
length, 26
linspace, 5
log10, 77
meshgrid, 24
ones, 26, 39
pi, 5
plot, 5
poly, 65
polyval, 65
prod, 5
rat, 54
rats, 54
real, 76
resample, 123
reshape, 5
roots, 54
size, 5
stem, 26
sum, 77
tic, 39
title, 11
toc, 39
upsample, 118

Matlab M-files
blconv, 24
dtft, 5
dtftfft, 32

minimum phase, 66
modulation property

of the DTFT, 19
moving average filter, 61

Nyquist rate, 1, 11

order of a filter
analog, 71
FIR, 61
IIR, 61

overlap-add, 25
overlap-add convolution, 27

January 3, 2011

130 Index

parallel realization, 110
Parks–McClellan algorithm, 99
Parseval’s equation

for Fourier series, 3
for Fourier transforms, 7
for the DTFT, 4

partial fractions, 51
passband, 74
periodic convolution, 41
phase, 88
Poisson summation formual

for continuous-time signals, 10
Poisson summation formula, 23

and impulse train, 23
poles, 52
pre-envelope, 103
prewarp, 76
principal angle, 88

quadrature, 103

rectangular window, 41, 47
region of convergence, 48

importance of, 50
Remez exchange algoritm, 99
right-sided inputs, 62
ROC, see region of convergence

sampling frequency, 1
sampling interval, 8
sampling rate, 8
sampling theorem, 1, 11

for periodic signals, 34
selectivity factor, 84
sgn, see signum function
side lobes, 42
side-lobe level, 42
sign function, see signum function
signum function, 93
sinc function, 21
sinc interpolation formula, 12
sinc reconstruction formula

for aperiodic signals, 12
for periodic signals, 34

stabilty
and minimum phase, 66

stopband, 74
symmetry

generalized, 90
symmetry conditions

for generalized linear phase, 91

3-dB cutoff frequency, 74
time invariance, 56
time translation property

of the DTFT, 19
transfer function, 73

of a discrete-time system, 59
transposed direct form II, 111
transposition, 112
trigonometric identity, 79
truncated signal, 5

unit impulse, 24
unit-delay system, 106
upsampling, 118

window
Bartlett, 42, 47
Blackman, 44, 47
Hamming, 44
Hann, 43, 47

modified, 43
Hanning, see Hann
Kaiser, 46
rectangular, 41, 47

z transform
bilateral, 48
partial fraction expansion, 51
two-sided, 48

z transform properties
convolution, 50
delay/advance, 50
linearity, 50

zero-order hold, 14

January 3, 2011

Continuous-Time Fourier Transform (CTFT)

X(f) =
∫ ∞

−∞
x(t)e− j2π f t dt

Inversion Formula
x(t) =

∫ ∞

−∞
X(f)e j2π f t d f

x(t) X(f)

I[−T,T](t) 2T sinc(2T f)

2 fc sinc(2 fct) I[− fc, fc](f)

(1−|t|/T)I[−T,T](t) T sinc2(T f)

fc sinc2(fct) (1−| f |/ fc)I[− fc, fc](f)

e−λ tu(t)
1

λ + j2π f

e−λ |t| 2λ
λ 2 +(2π f)2

λ
λ 2 + t2 π e−2πλ | f |

e−(t/σ)2/2
√

2π σ e−σ2(2π f)2/2

1/(πt) − j sgn(f)

u(t) (1/2)δ (f)+1/(j2π f)

Note. The indicator function I[a,b](t) := 1 for a ≤ t ≤ b and I[a,b](t) := 0 otherwise.
In particular, u(t) := I[0,∞)(t) is the unit step function. Also, sinc(t) := [sin(πt)]/(πt)
for t 6= 0 and sinc(0) := 1.

Discrete-Time Fourier Transform (DTFT)

X(f) =
∞

∑
n=−∞

xne− j2π f n

Inversion Formula

xn =
∫ 1/2

−1/2
X(f)e j2π f n d f

xn X(f)

e j2π f0nI[0,N−1](n) N
sinc

(
N(f − f0)

)

sinc(f − f0)
e− jπ(f− f0)(N−1)

2 fc sinc(2 fcn) I[− fc, fc](f), | f | ≤ 1/2, 0 < fc ≤ 1/2

2 f2 sinc(2 f2n)−2 f1 sinc(2 f1n) I[f1, f2](| f |), | f | ≤ 1/2, 0≤ f1 < f2 ≤ 1/2

e j2π f0n
∞

∑
k=−∞

δ (f − f0− k), (Dirac delta)

anI[0,N−1](n)
1− (ae− j2π f)N

1−ae− j2π f , |a| 6= 1

anu(n)
1

1−ae− j2π f , |a|< 1

a|n|
1−a2

1−2acos(2π f)+a2 , |a|< 1

Series Formulas
N−1

∑
k=0

zk =
1− zN

1− z
, z 6= 1 ez :=

∞

∑
k=0

zk

k!
(a+b)n =

n

∑
k=0

(
n
k

)
akbn−k

∞

∑
k=0

zk =
1

1− z
, |z|< 1 lim

n→∞

(
1+

z
n

)n
= ez

n

∑
k=1

k =
n(n+1)

2

Relationship Between the CTFT and the DTFT

1
fs

XDTFT(f/ fs) =
∞

∑
n=−∞

X(f −n fs) =: X̃(f) XDTFT(f) = fsX̃(fs f).

If x(t) is bandlimited to fc < fs/2, then X̃(f) = X(f) for | f | ≤ fs/2,

x(t) =
∞

∑
m=−∞

x(m/ fs)sinc(fs[t−m/ fs]),

and we have the graphical relationship

f

X(f)

fs
2− fs

2
0 f2f1

A

f

XDTFT(f)

1
2− 1

2
0f1

fs
f2
fs

fs ·A

The z Transform

X(z) =
∞

∑
n=−∞

xnz−n, for z such that
∞

∑
n=−∞

∣∣xnz−n∣∣< ∞.

xn X(z) ROC

anI[0,N−1](n)
1− (az−1)N

1−az−1 , z 6= a

anu(n)
1

1−az−1 , |z|> |a|

anu(−n)
1

1−a−1z
, |z|< |a|

anu(−n−1)
−1

1−az−1 , |z|< |a|

a|n|
1

1−az−1 +
az

1−az
, |a|< |z|< 1/|a|

	From Continuous Time to Discrete Time and Back
	Does Sampling Always Lose Information?
	Review of Fourier Analysis
	Continuous-Time Periodic Signals
	Discrete-Time Aperiodic Signals
	Continuous-Time Aperiodic Signals

	Relating the Continuous-Time and the Discrete-Time Fourier Transforms
	The Bandlimited Case
	The General Case
	Approximating the Continuous-Time Fourier Transform in Matlab

	The Sampling Theorem
	The Sinc Reconstruction Formula
	Aliasing
	The Zero-Order Hold

	The Continuous-Time Domain and the Discrete-Time Domain
	Bandlimited Waveforms and Systems
	The Gap Between Theory and Practice
	Problems

	Discrete-Time Convolution
	Convolution of Two Finite-Duration Signals
	Convolution of a Finite-Duration Signal and an Infinite-Duration Signal
	Limited Observation Window
	Unlimited Observation Window (The Overlap-Add Method)

	Problems

	The DFT and the FFT
	The Discrete Fourier Transform (DFT)
	Zero Padding
	The Fast Fourier Transform (FFT)
	Using the FFT to Approximate the DTFT
	Using the FFT to Approximate the Continuous-Time Fourier Transform
	Summing a Periodic Sequence over a Period
	Evaluation of Fourier-Series Coefficients
	The Geometric Series
	Derivation of the IDFT

	Circular Convolution
	The Operation Count

	Fast (Ordinary) Convolution
	The Operation Count
	How Does Circular Convolution with FFTs compare with conv?

	Conclusion
	Problems

	Window Techniques
	The Basics of Windows
	The Rectangular Window
	The Bartlett Window
	The Hann (Hanning) Window
	The Hamming Window
	The Blackman Window

	More Advanced Analysis of Windows
	The Kaiser Window
	Problems

	The z Transform
	Basic Definitions
	Importance of the ROC
	The Inverse z Transform

	Properties
	DTFTs from z Transforms
	Transform Inversion by Partial Fractions
	Problems

	Discrete-Time Systems
	Linearity
	Time Invariance
	Characterization of Linear Time-Invariant Systems
	Stability
	Causality
	Transfer Functions
	Stability
	Causality

	Difference Equations
	Nonuniqueness
	The Causal Case
	Solving Difference Equations with Matlab
	z Transforms of Difference Equations
	Stable Inverses and Minimum Phase
	All-Pass Systems

	Summary
	Problems

	IIR Filter Design
	The Bilinear Transformation
	Analog Transfer Functions
	Butterworth Filters
	Chebyshev Filters of the First Kind
	The Chebyshev Polynomials
	Chebyshev-I Filters

	Chebyshev Filters of the Second Kind
	Problems

	FIR Filters
	Motivation
	Linear-Phase Filters
	GLP Implies 2 Must Be an Integer
	GLP Is Equivalent to Generalized Symmetry
	GLP and Causality Imply FIR
	GLP and Real Impulse Response Imply 0 Is 0 or /2
	Symmetry Conditions for GLP and Real Impulse Response

	Windowing of Impulse Responses of GLP Filters
	Filter Specifications
	The Kaiser Window

	Equiripple Filters and the Parks–McClellan Algorithm
	Alternation and Exchange

	Problems

	Filter Implementation
	Quantization of Difference-Equation Coefficients
	Block Diagrams
	An Alternative Realization
	Realization of IIR Filters
	Direct-Form Realizations
	Transposed Direct Forms
	Direct-Form Realizations of Real GLP FIR Filters
	Problems

	Sampling Rate Conversion
	Upsampling and Interpolation
	Downsampling and Decimation
	Sampling Rate Conversion
	Application to Sampling Continuous-Time Waveforms
	Problems

	Bibliography
	Index

