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Preface

The following text comprises the content of a course I have designed and have
been running at Johns Hopkins University since the Spring of 2007. It is a senior
(read: 400-level) analysis course in the basic tools, techniques, theory and devel-
opment of what is sometimes called the modern theory of dynamical systems. The
modern theory, as best as I can define it, is a focus on the study and structure of
dynamical systems as little more than the study of the properties of one-parameter
groups of transformations on a topological space, and what these transformations
say about the properties of either the space or the group that is acting. It is a
pure mathematical endeavor in that we study the material simply for the struc-
ture inherent in the constructions, and not for any particular application or outside
influence. It is understood that many of the topics comprising this theory have
natural, beautiful and important applications, some of which actually dictate the
need for the analysis. But the true motivation for the study is little more than the
fact that it is beautiful, rich in nuance and relevance in many tangential areas of
mathematics, and that it is there.

When I originally pitched this course to the faculty here at Hopkins, there was
no course like it in our department. We have a well-developed engineering school,
filled with exceptionally bright and ambitious students, which along with strong
natural and social science programs provide a ready audience for a course on the
pure mathematical study of the theory behind what makes a mathematical model
and why do we study them. We have a sister department here at Homewood,
the Applied Mathematics and Statistics Department, which also offers a course in
dynamical systems. However, their course seemed to focus on the nature and study
of particular models that arise often in other classes, and then to mine those models
for relevant information to better understand them. But as a student of the field,
I understood that a course on the very nature of using functions as models and
then studying their properties in terms of the dynamical information inherent in
them was currently missing from our collective curriculum. Hence the birth of this
course.

In my personal and humble opinion, it continues to be difficult to find a good
text that satisfies all of the properties I think would constitute the perfect text
for a course such as this one: (1) a focus on the pure mathematical theory of the
abstract dynamical system, (2) advanced enough that the course can utilize the
relevant topological, analytical and algebraic nature of the topic without requiring
so much prerequisite knowledge as to limit enrollment to just mathematicians, (3)
rich enough to develop a good strong story to tell which provides a solid foundation
for later individual study, and (4) basic enough so that students in the natural
sciences and engineering can access the entirety of the content given only the basic
foundational material of vector calculus, linear algebra and differential equations.
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iv PREFACE

It is a tall order, this is understood. However, it can be accomplished, I believe,
and this text is my attempt at accomplishment.

The original text I chose for the course is the text A First Course in Dynamics,
by Boris Hasselblatt and Anatole Katok (Cambridge University Press: 2003). A
wonderfully designed story-line from two transformational mathematicians in the
field, I saw the development line they took, from the notion of simple dynamics
to the more complicated, as proper and intuitive. I think their focus on using
the properties of functions and that of the spaces they are acting upon to develop
material is the correct one for this “modern” approach. And their reuse of particular
examples over and over again as the story progresses is a strong one. However, in
the years I have been teaching and revising the course, I have found myself, adding
material, redesigning the focus and the schedule, and building in a slightly different
storyline. All of this diverging from the text. Encouraged by my students and my
general thrill at the field, I decided to create my version of a text. This manuscript
is this version.

What the reader will find in this text is my view of the basic foundational
ideas that comprise a first (and one semester) course in the modern theory of
dynamical systems. It is geared toward the upper-level undergraduate student
studying either mathematics, or engineering or the natural and social sciences with
a strong emphasis in learning the theory the way a mathematician would want to
teach the theory. It is a proof-based course. However, when I teach the course, I do
understand that some of my students do not have experience in writing mathematics
in general and proofs in particular. Hence I use the content of the course as a way to
also introduce these students to the development of ideas instead of just calculation.
It is my hope that these students, upon finishing this course, will begin to look at
the models and analysis they see in their other applied classes with an eye to the
nature of the model and not just to its mechanics. They are studying to be scholars
in their chosen field. Their ability to really “see” the mathematical structure of
their tools will be necessary for them to contribute to their field.

This course (this text) is designed to be accessible to a student who has had a
good foundational course in the following:

● vector calculus, at least up to the topics of surface integration and the
“big three” theorems of Green, Stokes and Gauss;

● linear algebra, through linear transformations, kernels and images, eigenspaces,
orthonormal bases and symmetric matrices; and

● differential equations, with general first and second order equations, linear
systems theory, nonlinear analysis, existence and uniqueness of first order
solutions, and the like.

While I make it clear in my class that analysis and algebra are not necessary
prerequisites, this course cannot run without a solid knowledge of the convergence of
general sequences in a space, the properties of what makes a set a topological space,
and the workings of a group. Hence in the text we introduce these ideas as needed,
sometimes through development and sometimes simply through introduction and
use. I have found that most of these advanced topics are readily used and workable
for students even if they are not fully explored within the confines of a university
course. Certainly, having sat through courses in advanced algebra and analysis
will be beneficial, but I believe they are not necessary. The text to follow, like
all proper endeavors in mathematics, should be seen as a work in progress. The
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storyline, similar to that of Hasselblatt and Katok, is to begin with basic definitions
of just what is a dynamical system. Once the idea of the dynamical content of a
function or differential equation is established, we take the reader a number of
topics and examples, starting with the notion of simple dynamical systems to the
more complicated, all the while, developing the language and tools to allow the
study to continue. Where possible and illustrative, we bring in applications to base
our mathematical study in a more general context, and to provide the reader with
examples of the contributing influence the sciences has had on the general theory.
We pepper the sections with exercises to broaden the scope of the topic in current
discussion, and to extend the theory into areas thought to be of tangential interest
to the reader. And we end the text at a place where the course I teach ends, on
a notion of dynamical complexity, topological entropy, which is still a active area
of research. It is my hope that this last topic can serve as a landing on which to
begin a more individualized, higher-level study, allowing the reader to further their
scholarly endeavor now that the basics have been established.

I am thankful to the mathematical community for facilitating this work, both
here at Hopkins and beyond. And I hope that this text contributes to the learning
of high-level mathematics by both students of mathematics as well as students
whose study requires mathematical prowess.



CHAPTER 1

What is a Dynamical System?

1.1. Definitions

As a mathematical discipline, the study of dynamical systems most likely orig-
inated at the end of the 19th century through the work of Henri Poincare in his
study of celestial mechanics (footnote this: See Scholarpedia[History of DS]). Once
the equations describing the movement of the planets around the sun are formu-
lated (that is, once the mathematical model is constructed), looking for solutions as
a means to describe the planets’ motion and make predictions of positions in time
is the next step. But when finding solutions to sets of equations is seemingly too
complicated or impossible, one is left with studying the mathematical structure of
the model to somehow and creatively narrow down the possible solution functions.
This view of studying the nature and structure of the equations in a mathematical
model for clues as to the nature and structure of its solutions is the general idea
behind the techniques and theory of what we now call dynamical systems. Being
only a 100+ years old, the mathematical concept of a dynamical system is a rela-
tively new idea. And since it really is a focused study of the nature of functions of
a single (usually),real (usually) independent variable, it is a subdiscipline of what
mathematicians call real analysis. However, one can say that dynamical systems
draws its theory and techniques from many areas of mathematics, from analysis
to geometry and topology, and into algebra. One might call mathematical areas
like geometry, topology and dynamics second generation mathematics, since they
tend to bridge other more pure areas in their theories. But as the study of what is
actually means to model phenomena via functions and equations, dynamical sys-
tems is sometimes called the mathematical study of any mathematical concept that
evolves over time. So as a means to define this concept more precisely, we begin
with arguably a most general and yet least helpful statement:

Definition 1.1. A dynamical system is a mathematical formalization for any
fixed rule which describes the dependence of the position of a point in some ambient
space on a parameter.

● The parameter here is usually called “time”, and can be
(1) discrete (think the natural numbers N or the integers Z), or
(2) continuous (defined by some interval in R).

It can also be much more general, taking values as subsets of C, Rn, the
quaternions, or indeed any set with the structure of a group. However,
classically speaking, a dynamical system really involves a parameter that
takes values only in a subset of R. We will hold to this convention.

● The ambient space has a state to it in the sense that all of its points have a
marked position which can change as one varies the parameter. Roughly,
every point has a position relative to the other points and (generalized)

1



2 1. WHAT IS A DYNAMICAL SYSTEM?

coordinates often provide this notion of position. Fixing the coordinates
and allowing the parameter to vary, one can create a functional relation-
ship between the points at one value of the parameter and those at another
parameter value. In general, this notion of relative point positions in a
space and functional relationships on that space involves the notion of a
topology on a set. A topology gives a set the mathematical property of a
space; It endows the elements of a set with a notion of nearness to each
other and allows for functions on a set to have properties like continuity,
differentiability, and such. We will expound more on this later. We call
this ambient space the state space: it is the set of all possible states a
dynamical system can be in at any parameter value (at any moment of
time.)

● The fixed rule is usually a recipe for going from one state to the next in the
ordering specified by the parameter. For discrete dynamical systems, it is
often given as a function, defining the dynamical system recursively. In
continuous systems, where it is more involved to define what the successor
to a parameter value may be, the continuous movement of points in a space
may be defined by a differential equation, the solution of which would be
a function involving both the points and the parameter and taking values
back in the state space. Often, the latter function is called the evolution
of the system, providing a way of going from any particular state to any
other state reachable from that initial state via a value of the parameter.
As we will see, such a function can be shown to exist, and its properties
can often be studied, but in general, it will NOT be known a priori, or
even knowable a posteriori.

While this idea of a dynamical system is far too general to be very useful, it
is instructive. Before creating a more constructive definition, let’s look at some
classical examples:

1.1.1. Ordinary Differential Equations (ODEs). Given the first-order
(vector)-ODE in Rn,

ẋ = f(x, t),

a solution, if it exists, is a vector of functions x(t) = [x1(t) x2(t) ⋯ xn(t)]T param-
eterized by a real variable t ∈ R where the common domain of t is some subinterval
of R. Here:

● The ODE itself is the fixed rule, describing the infinitesimal way to go
from one state to the next by an infinitesimal change in the value of
the parameter t. Solving the ODE means finding the unknown function
x(t), at least up to a set of constants determined by some initial state
of the system. The inclusion of initial data provide this initial state of
the variables of the system, making the system an Initial Value Problem
(IVP). A solution to an IVP, x(t), for valid values of t, provides the various
“other” states that the system can reach (either forward or backward in
time) as compared to the initial state. Collecting up all the functions
x(t) for all valid sets of initial data (basically, finding the expression that
writes the constants of integration of the general solution to the ODE in
terms of the initial data vairables), into one big function IS the evolution.
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● This type of a dynamical system is called continuous, since the parameter
t will take values in some domain (an interval) in R. Dynamical systems
like this arising from ODEs are also called flows, since the various IVP
solutions in phase space look like the flow lines of a fluid in phase space
flowing along the slope field (vector field defined by the ODE).

● In this particular example, the state space is (a subset of) Rn, and the
solutions live as parameterized curves in the state space. The solution
curves are called trajectories. We also call this state space the phase
space.

Remark 1.2. One should be careful about not confusing a state space, the
space of all possible states of a system, with the configuration space of, say, a
physical system governed by Newton’s Second Law of Motion. For example, the
set of all positions of a pendulum at any moment of time is simply the circle. This
would be the configuration space, the space of all possible configurations. But
without knowing the velocity of the pendulum at any particular configuration, one
cannot predict future configurations of the system. The state space, in the case of
the pendulum, involves both the position of the pendulum and its velocity (we will
see why in a later chapter.) For a standard ODE system like the general one above,
the state space, phase space and configuration space all coincide. We will elaborate
more on this later.

Place a picture here of a pendulum at a configuration with a small velocity and one
with the same configuration with a large velocity. One second later, the pendulums
are in different positions. So ODEs are examples of continuous dynamical systems
(actually differentiable dynamical systems). Solving the ODE (finding the vector
of functions x(t)), means finding the rule which stipulates any state of a point in
some other parameter value given the state of the point at a starting state. But as
we will soon see, when thinking of ODEs as dynamical systems, we have a different
perspective on what we are looking for in solving the ODE.

1.1.2. Maps. Given any set X and a function f ∶ X → X from X to itself,
one can form a dynamical system by simply applying the function over and over
(iteratively) to X. When the set has a topology on it (a mathematically precise
notion of an “open subset”, allowing us to talk about the positions of points in
relation to each other), we can then discuss whether the function f is continuous
or not. When X has a topology, it is called a space, and a continuous function
f ∶X →X is called a map.

● We will always assume that the sets we specify in our examples are spaces,
but will detail the topology only as needed. Mostly they will exist as sub-
sets of real space Rn, where the notion of nearness comes from a precise
definition of a distance between points given by a metric. In this con-
text, there should be little confusion. Here the state space is X, with the
positions of its points given by coordinates on X (defined by the topology.

● the fixed rule is the map f , which is also sometimes called a cascade.
● In a purely formal way, f defines the evolution (recursively) by composing
f with itself. Indeed, x ∈X, define x0 = x, and x1 = f(x0). Then

x2 = f(x1) = f(f(x0) = f2(x0),
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and for all n ∈ N, (the natural numbers)

xn = f(xn−1) = f(f(xn−2)) =
n times

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
f(f(⋯f(f(x0))⋯)) = fn(x0).

● Maps are examples of discrete dynamical systems. Some examples of dis-
crete dynamical systems you may have heard of include discretized ODEs,
including difference equations and time-t maps, and fractal constructions
like Julia sets and the associated Mandelbrot arising from maps of the
complex plane to itself. Some objects that are not considered to be con-
structed by dynamical systems (at least not directly) include fractals like
Sierpinski’s carpet, Cantor sets, and Fibonacci’s Rabbits (given by a sec-
ond order recursion). Again, we will get to these.

Besides these classic ideas of a dynamical system, there are much more abstract
notions of a dynamical system:

1.1.3. Symbolic Dynamics. Given a set of symbols M = {A,B,C, . . .}, con-
sider the “space” of all bi-infinite sequences of these symbols (infinite on both sides)

ΩM = {(. . . , x−2, x−1, x0, x1, x2, . . .)∣ i ∈ Z, xi ∈M} .
One can consider ΩM as the space of all functions from Z to M . Now let f ∶ ΩM →
ΩM be the shift map: on each sequence, it simply takes i ↦ i + 1; each sequence
goes to another sequence which looks like a shift of the original one.

Note. We can always consider this (very large) set of infinite sequences as
a space once we give it a topology like I mentioned. This would involve defining
open subsets for this set, and we can do this through ε-balls by defining a notion of
distance between sequences (a metric). For those who know analysis, what would be
a good metric for this set to make it a space using the metric topology? For now,
simply think of this example as something to think about. Later and in context, we
will focus on this type of dynamical system and it will make more sense.

This discrete dynamical system is sometimes used as a new dynamical system
to study the properties of an old dynamical system whose properties were hard to
study. We will revisit this later.

Sometimes, in a time-dependent system, the actual dynamical system will need
to be constructed before it can be studied.

1.1.4. Billiards. Consider two point-beads moving at constant (possibly dif-
ferent) speeds along a finite length wire, with perfectly elastic collisions both with
each other and with the walls. A state of this system will be the positions of each
of the beads at a given moment of time.

Exercise 1. One way to view the state space is as a triangle in the plane.
Work this out. What are the vertices of this triangle? Does it accurately describe
ALL of the states of the system? Are the edges of the triabgle part of the state
space? And once you correctly describe the state space, what will motion look like
in it? How does the dynamical system evolve?

Now consider a point-ball moving at a constant velocity inside a closed, bounded
region of R2, where the boundary is smooth and collisions with the boundary are
perfectly elastic. Questions:
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(1) How does the shape of the region affect the types of paths the ball can
traverse?

(2) Are there closed paths (periodic ones)?
(3) can there be a dense path (one that eventually gets arbitrarily close to

any particular point in the region?

There is a method to study this type of dynamical system called a billiard
by creating a discrete dynamical system to record movement and collecting only
essential information. In this discrete dynamical system, regardless of the shape of
the region, the state space is a cylinder. Can you see it? If so, what would be the
evolution?

1.1.5. Other recursions. The Rab-
bits of Leonardo of Pisa is a beautiful ex-
ample of a type of growth that is not ex-
ponential, but something called asymptoti-
cally exponential. We will explore this more
later. For now, though, we give a brief de-
scription: Place a newborn pair of breeding
rabbits in a closed environment. Rabbits of
this species produce another pair of rabbits
each month after they become fertile (and
they never die nor do they experience menopause). Each new pair of rabbits (again,
neglect the incest, gender and DNA issues) becomes fertile after a month and starts
producing each month starting in the second month. How many rabbits are there
after 10 years?

Month an jn bn total pairs

1 0 0 1 1

2 0 1 0 1

3 1 0 1 2

4 1 1 1 3

5 2 1 2 5

6 3 2 3 8

7 5 3 5 13

Given the chart in months, we see a
way to fashion an expression governing
the number of pairs at the end of any
given month: Start with rn, the num-
ber of pairs of rabbits in the nth month.
Rabbits here will come in three types:
Adults an, juveniles jn, and newborns
bn, so that rn = an + jn + bn. Looking
at the chart, we can see that there are

constraints on these numbers:

(1) the number of newborns at the (n+1)st stage equals the number of adults
at the nth stage plus the number of juveniles at the nth stage, so that

bn+1 = an + jn.
(2) This is also precisely equal to the number of adults at the (n+ 1)st stage,

so that

an+1 = an + jn.
(3) and finally, the number of juveniles a the (n+1)st stage is just the number

of newborns at the nth stage, so that

jn+1 = bn.
Thus, we have

rn = an + jn + bn = (an−1 + jn−1) + bn−1 + (an−1 + jn−1).
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And since in the last set of parentheses, we have an−1 = an−2 + jn−2 and jn−1 = bn−2,
we can substitute these in to get

rn = an + jn + bn = (an−1 + jn−1) + bn−1 + (an−1 + jn−1)
= an−1 + jn−1 + bn−1 + an−2 + jn−2 + bn−2 = rn−1 + rn−2.

Hence the pattern is ruled by a second-order recursion rn = rn−1 + rn−2 with
initial data r0 = r1 = 1. Being a second order recursion, we cannot go to the next
state from a current state without also knowing the previous state. This is an
example of a model which is not a dynamical system. We can make it one, but we
will need a bit more structure, which we will introduce later.

Now, with this general idea of what a dynamical system actually is, along
with numerous examples, we give a much more accurate and useful definition of a
dynamical system:

Definition 1.3. A dynamical system is a triple (S,T ,Φ), where S is the state
space (or phase space), T is the parameter space, and

Φ ∶ (S × T )Ð→ S
is the evolution.

Some notes:

● In the previous discussion, the fixed rule was a map or an ODE which
would only define recursively what the evolution would be. In this defi-
nition, Φ defines the entire system, mapping where each point s ∈ S goes
for each parameter value τ ∈ T . It is the functional form of the fixed rule,
unraveling the recursion and allowing one to go from a starting point to
any point reachable by that point given a value of the parameter.

● In ODEs, Φ plays the role of the general solution, as a 1-parameter family
of solutions (literally a 1-parameter family of transformations of phase
space): In this general solution, one knows for ANY specified starting
value where it will be for ANY valid parameter value, all in one function
of two variables.

Example 1.4. In the Malthusian growth model, ẋ = kx, with k ∈ R,
and x(t) ≥ 0 a population, the general solution is given by x(t) = x0e

kt,
for x0 ∈ R+

0 = [0,∞), the unspecified initial value at t = 0. (The notation
R+

0 comes from the strictly positive real numbers R+ together with the
value 0.) Really, the model works for x0 ∈ R, but if the model represents
population growth, then initial populations can ONLY be nonnegative,
right? Here, S = R+

0 , T = R and Φ(s, t) = sekt.
Example 1.5. Let ẋ = −x2t, x(0) = x0 > 0. Using the technique

commonly referred to as separation of variables, we can integrate to find
an expression for the general solution as x(t) = 1

t2

2 +C
. And since x0 = 1

C

(you should definitely do these calculations explicitly!), we get

Φ(x0, t) =
1

t2

2
+ 1
x0

= 2x0

x0t2 + 2
.

Here, we are given S = R+, and we can choose T = R. Question: Do
you see any issues with allowing x0 < 0? Let x0 = −2, and describe the
particular solution on the interval t ∈ (0,2).
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Exercise 2. Integrate to find the general solution above for the Initial
Value Problem ẋ = −x2t, x(0) = x0 > 0.

● In discrete dynamics, for a map f ∶ X → X, we would need a single
expression to write Φ(x,n) = fn(x). This is not always easy or doable,
as it would involve finding a functional form for a recursive relation. Try
doing this with f a general polynomial of degree more than 1.

Example 1.6. Let f ∶ R → R be defined by f(x) = rx, for r ∈ R+.
Then Φ(x,n) = rnx.

Example 1.7. For Leonardo of Pisa’s (also known as Fibonacci, in
case you recognized the pattern of the sequence) rabbits, we will have to
use the recursion to calculate every month’s population to get to the 10-
year mark. However, if we could find a functional form for the recursion,
giving population in terms of month, we could than simply plug in 12 ⋅
10 = 120 months to calculate the population after 10 years. The latter
functional form is the evolution Φ in the definition of a dynamical system
above. How does one find this? We will see.

Exercise 3. Find a closed form expression for the evolution of f(x) = rx + a,
in the case where −1 < r < 1 and a are constants. Also determine the unique point
where f(x) = x in this case.

Exercise 4. For g(x) = x2+1, write out the first four iterates gi(x), i = 1,2,3,4.
Then look for a pattern with which to write out the nth iterate, gn(x). Do you see
the difficulty? Now overcome it and write an expression for the evolution.

In general, finding Φ (in essence, solving the dynamical system) is very difficult
if not impossible, and certainly often impractical and/or tedious. However, it is
often the case that the purpose of studying a dynamical system is not to actually
solve it. Rather, it is to gain insight as to the structure of its solutions. Really, we
are trying to make qualitative statements about the system rather than quantitative
ones. Think about what you did when studying nonlinear systems of first order
ODEs in any standard undergraduate course in differential equations. Think about
what you did when studying autonomous first order ODEs.

Before embarking on a more systematic exploration of dynamical systems, here
is another less rigorous definition of a dynamical system:

Definition 1.8. Dynamical Systems as a field of study attempts to understand
the structure of a changing mathematical system by identifying and analyzing the
things that do not change.

There are many ways to identify and classify this notion of an unchanging
quantity amidst a changing system. But the general idea is that if a quantity
within a system does not change while the system as a whole is evolving, then that
quantity holds a special status as a symmetry. Identifying symmetries can allow
one to create a new system, simpler than the previous, where the symmetry has
been factored out, either reducing the number of variables or the size of the system.

More specifically, here are some of the more common notions:

● Invariance: First integrals: Sometimes a quantity, defined as a function on
all or part of the phase space, is constant along the solution curves of the
system. If one could create a new coordinate system of phase space where
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one coordinate is the value of the first integral, then the solution curves
become simply the constant values of this coordinate. The coordinate
becomes useless to the system, and it can be discarded. Thus the new
system has less degrees of freedom than the original system. Phase space
volume: In a conservative vector field, as we will see, if we take a small
ball of points of a certain volume and then flow along the solution curves
to the vector field, the ball of points will typically bend and stretch in very
complicated ways. But it will remain an open set, and its total volume
will remain the same. This is phase volume preservation, and it says a lot
about the behavior and types of solution curves.

● Symmetry: Periodicity: Sometimes solution curves are closed, and solu-
tions retrace their steps over certain intervals of time. If the entire system
behaves like this, the direction of the flow contains limited information
about the solution curves of the system. One can in a sense factor out
the periodicity, revealing more about the remaining directions of the state
space. Or even near a singular periodic solution, one can discretize the
system at the period of the periodic orbit. This discretized system has a
lower order, or number of variables, then the original.

● Asymptotics: In certain systems where the time is not explicitly expressed
in the system, one can start at any moment in time and the evolution
depends only on the starting time. In systems like these, the long-term
behavior of solutions may be more important than where they are in any
particular moment in time. IN a sense, one studies the asymptotics of the
system, instead of attempting to solve. Special solutions like equilibria
and limit cycles are easy to find, and their properties become important
elements of the analysis.

Example 1.9. In an exact differential equation

M(x, y) dx +N(x, y) dy =M(x, y) +N(x, y)dy
dx

= 0,

we have My = ∂M
∂y

= ∂N
∂x

= Nx. We know then that there exists a function φ(x, y),
where ∂φ

∂x
= M and ∂φ

∂y
= N . Indeed, given a twice differentiable function φ(x, y)

defined on a domain in the plane, it’s level sets are equations φ(x, y) = C, for C a
real constant. Each level set defines y implicitly as a function of x. Thinking of y
as tied to x implicitly, differentiate φ(x, y) = C with respect to x and get

dφ

dx
= ∂φ
∂x

+ ∂φ
∂y

dy

dx
= 0.

This last equation will match the original ODE precisely if the two above properties
hold. The interpretation then is: The solutions to the ODE correspond to the level
sets of the function φ. We can say that that solutions to the ODE “are forced to
live” on the level sets of φ. Thus, we can write the general solution set (at least
implicitly) as φ(x, y) = C, again a 1-parameter family of solutions. Here φ is a first
integral of the flow given by the ODE.

Exercise 5. Solve the differential equation 12−3x2+(4−2y) dy
dx

= 0 and express
the general solution in terms of the initial condition y(x0) = y0. This is your function
φ(x, y).
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Example 1.10. Newton-Raphson: Finding a root of a (twice differentiable)
function f ∶ R→ R leads to a discrete dynamical system xn = g(xn−1), where

g(x) = x − f(x)
f ′(x) .

One here does not need to actually solve the dynamical system (find a form for
the function Φ). Instead, all that is needed is to satisfy some basic properties of
f to know that if you start sufficiently close to a root, the long-term (asymptotic)
behavior of any starting point IS a root.

Exercise 6. One can use the Intermediate Value Theorem in single variable
calculus to conclude that there is a root to the polynomial f(x) = x3 − 3x+ 1 in the
unit interval I = [0,1] (check this!). For starting values every tenth on I, iterate
g(x) to estimate this root to three decimal places (it converges quite quickly!). Now
try to explain what is happening when you get to both x0 = .9 and x0 = 1.

Example 1.11. Autonomous ODEs: One can integrate the autonomous first-
order ODE

y′ = f(y) = (y − 2)(y + 1), y(0) = y0,

since it is separable, and the integration will involve a bit of partial fraction decom-
posing. The solution is

(1.1.1) y(t) = Ce
3t + 2

1 −Ce3t
.

Exercise 7. Calculate Equation 1.1.1 for the ODE in Example 1.11.

Exercise 8. Now find the evolution for the ODE in Example 1.11 (this means
write the general solution in terms of y0 instead of the constant of integration C.)

But really, is the explicit solution necessary? One can simply draw the phase
line,

From this schematic view of the long-term tendencies of each solution, one can
glean a lot of information about the solutions of the equation. For instance, the
equilibrium solutions occur at y(t) ≡ −1 and y(t) ≡ 2, and that the equilibrium at
−1 is asymptotically stable (the one at 2 is unstable). Thus, if long-term behavior
is all that is necessary to understand the system, then we have:

lim
t→∞

y(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 if y0 < 2
2 if y0 = 2
∞ if y0 > 2.

In both these last two examples, actually solving the dynamical system isn’t
necessary to gain important and possibly sufficient information about the system.
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1.2. The viewpoint

Dynamical Systems, as a field of study, is a type of mathematical analysis; the
study of the formal properties of the real number system and the structures defined
on them (think sets, functions, spaces, etc.) Indeed, the properties of functions and
the spaces that serve as their domains (and codomains) are intimately intertwined
in sometimes obvious and often subtle ways. For example, in a celebrated theorem
by Luitzen E. J. Brouwer, any continuous function from a compact, convex space
to itself must contain at least one point where its image under the function is the
same as the point itself. This property has enormous implications for not simply
the function we apply to the space, but for the space itself. The consequences of
a theorem like this are evident even on the beginning stages of math, like calculus
and differential equations.

In general, studying how a map moves around the points of the space is to study
the dynamical content of the map. Where the points go, upon repeated iteration
of a map on a space, or how solutions of a differential equation behave once their
parameter domain is known is to study the system dynamically. If most or all
of the solutions tend to look alike, or if the diversity of the ways a collection of
iterates of a point under a map is small, then we say that the dynamics are simple.
In essence, they are easy to describe, or it does not take a lot of information to
describe them. In contrast, if different solutions to the ODE can do many different
things, or if it takes a lot of information to describe how many different ways a map
can move distinct points around in a space, we say that the dynamics are complex
or complicated. One may say that a dynamical system is more interesting if it is
more complicated to describe, although that is certainly a subjective term.

Solving a dynamical system, or finding an explicit expression for the evolution,
is typically not the general goal of an analysis of a dynamical system. Many non-
linear systems of ODEs are difficult if not impossible to solve. Rather, the goal of
an analysis of a dynamical system is the general description of the movement of
points under the map or the ODE.

In the following chapters, we will develop a language and methods of analysis to
study the dynamical content of various kinds of dynamical systems. We will survey
both discrete and continuous dynamical systems that exhibit a host of phenomena,
and mine these situations for ways to classify and characterize the behavior of the
iterates of a map (or solutions of the ODE). We will show how the properties of the
maps and the spaces they use as domains affect the dynamics of their interaction.
We will start with situations that display relatively simple dynamics, and progress
through situations and applications of increasing complexity (complicated behav-
ior). In all of these situations, we will keep the maps and spaces as easy to define
and work with as possible, to keep the focus directly on the dynamics.

Perhaps the best way to end this chapter is on a more philosophical note, and
allow a possible raison d’etre for why dynamical systems even exists as a field of
study enmeshed in the world of analysis, topology and geometry:

Definition 1.12. Dynamical systems is the study of the information contained
in and the effects of groups of transformations of a space.

For a discrete dynamical system defined by a map on a space, the properties of
the map as well as those of the space, will affect how points are moved around the
space. As we will see, maps with certain properties can only do certain things, and
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if the space has a particular property, like the compact, convex space above, then
certain things must be true (or may not), like a fixed-point free transformation.
Dynamics is the exploration of these ideas, and we will take this view throughout
this text.





CHAPTER 2

Simple Dynamics

2.1. Preliminaries

2.1.1. A simple system. To motivate our first discussion and set the playing
field for an exploration of some simple dynamical systems, recall some general
theory of first-order autonomous ODEs in one dimension: Let

ẋ = f(x), x(0) = x0

be an IVP (again, an ODE with an initial value) where the function f(x) is a dif-
ferentiable function on all of R. From any standard course in differential equations,
this means that solutions will exist and be uniquely defined for all values of t ∈ R
near t = 0 and for all values of x0 ∈ R. Recall that the general solution of this ODE
will be a 1-parameter family of functions x(t) parameterized by x0. In reality, one
would first use some sort of integration technique (as best as one can; remember
this ODE is always separable, although 1

f(x)
may not be easy to integrate. As

an example, consider f(x) = ex2

) to find x(t) parameterized by some constant of
integration C. Then one would solve for the value of C given a value of x0. Indeed,
one could solve generally for C as a function of x0, and then substitute this into
the general solution, to get

x(t, x0) ∶ R ×R→ R
as the evolution. Then, for each choice of x0, we would get a function xx0(t) ∶ R→ R
as the particular solution to the IVP. We will use the notation with a subscript for
x0 to accentuate that the role of x0 is that of a parameter. Specifying a value
means solving the IVP for that value of x0. Leaving x0 unspecified means that we
are looking for a particular solution at a fixed value of x0. The resulting graph of
xx0(t) would “live” in the tx-plane as a curve (the trajectory) passing through the
point (0, x0). Graphing a bunch of representative trajectories gives a good idea of
what the evolution looks like. You did this in your differential equations course
when you created phase portraits.

Example 2.1. Let ẋ = kx, with k ∈ R a constant. Here, a general solution
to the ODE is given by x(t) = Cekt. If, instead, we were given the IVP ẋ = kx,
x(0) = x0, the particular solution would be x(t) = x0e

kt. The trajectories would
look like graphs of standard exponential functions (as long as k /= 0) in the tx-plane.
Below in Figure 1 are the three cases which look substantially different from each
other: When k > 0, k = 0, and k > 0.

Recall in higher dimensions, ẋ = f(x), we typically do not graph solutions
explicitly as functions of t. Rather, we use the t-parameterization of solutions

x(t) = [x1(t) x2(t) ⋯ xn(t)]T to trace out a curve directly in the x-space. This
space, whose coordinates are the set of dependent variables x1, x2, . . . , xn, is called

13
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Figure 1. Sample solutions for xx0(t) = x0e
kt.

the phase-space (sometimes the tx-plane from above, or more generally the tx-space
is called the trajectory space to mark the distinction). The diagrams in the plane
that correspond to linear systems with a saddle at the origin, or a spiral sink are
examples of phase planes with representative trajectories. Often, particularly in
phase space, trajectories are also called orbits.

Example 2.2. The linear system IVP ẋ = −y, ẏ = x, x(0) = 1, y(0) = 0 has
the particular solution x(t) = cos t, y(t) = sin t. Graphing the trajectory, according
to the above, means graphing the curve in the txy-space, a copy of R3. While
informative, it may be a little tricky to fully “see” what is going on. But the orbit,
graphed in the xy-plane, which is the phase space, is the familiar unit circle (circle
of radius 1 centered at the origin). Here t ∈ R is the coordinate directly on the
circle, and even the fact that it overwrites itself infinitely often is not a serious
sacrifice to understanding. See Figure 2.

Figure 2. Solution curve x(t) = cos t, y(t) = sin(t) in trajectory
space and the phase plane.
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Even for autonomous ODEs in one-dependent variable, we designed a schematic
diagram called a phase-line to give a qualitative description of the “motion” of
solutions to ẋ = f(x).

Example 2.3. The phase lines for ẋ = kx for the three cases in Figure 1 are
below the graphs. The proper way to think of these lines is as simply a copy of
the vertical axis (the x-axis in this case of the tx-plane) in each of the graphs,
marking the equilibrium solutions as special points, and indicating the direction of
change of the x-variable as t increases. All relevant information about the long-
term behavior is encoded in these phase lines. In fact, these lines ARE the 1-
dimensional phase spaces of the ODE, and the arrows simply indicate the direction
of the parameterized x(t) inside the line. It is hard to actually see the parameterized
curves, since they all run over the top of each other. This is why we graph solutions
in 1-variable ODEs using t explicitly, while for ODEs in two or more dependent
variables, we graph using t implicitly, as the coordinate directly ON the curve in
the phase space.

2.1.2. The time-t map. Again, for ẋ = f(x), x(0) = x0, the general solution
x(t, x0) ∶ R ×R→ R is a 1-parameter family of solutions, written as xx0(t), param-
eterized by x0. However, we can also think of this family of curves in a much more
powerful way: As a 1-parameter family of transformations of the phase space! To
see this, rewrite the general solution as ϕ(t, x0) ∶ R ×R→ R instead of the possibly
confusing notation x(t, x0). Now instead of thinking of x0 as the parameter, fixing
the second argument and varying the first as the independent variable, do it the
other way: Fix a value of t, and allow the variable x0 = x (the starting point) to
vary. Then we get for t = t0:

ϕ(t0, x) ∶ R ×R→ R, ϕt0(x) ∶ R→ R, x(0)Ð→ x(t0).
As t varies, every point x ∈ R (thought of as the initial point x(0), gets “mapped” to
its new position at x(t0). Since all solutions are uniquely defined, this is a function
for each value of t0, and will have some very nice properties. But this alternate way
of looking at the solutions of an ODE, as a family of transformations of its phase
space, is the true dynamical view, and one we will explore frequently.

Place a picture of how points move around phase space at time t0. Viewing
this as solely a transformation of phase space is the dynamical view.

Let X denote any particular topological space. For now, though, just think of
X as some subset of the real space Rn, something you are familiar with.

Definition 2.4. For f ∶X →X a map, define the set

Ox = {y ∈X ∣ y = fn(x), n ∈ N}

as the (forward) orbit of x ∈X under f .

Some notes:

● If f is invertible, we can also then define the backward orbit for n ∈ −N,
or the full orbit for n ∈ Z.

● We can also write Ox = {x, f(x), f2(x), . . .}, or for xn+1 = f(xn), Ox =
{x0, x1, x2, . . .}.

● When it makes sense for clarity, we may use the notation O+

x for the
forward orbit, O−

x for the backward orbit, and then Ox for the full orbit.
This will usually be understood in context, though.
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Consider the discrete dynamical system f ∶ R → R, given by f(x) = rx, r > 0.
What do the orbits look like? Basically, for x ∈ R, we get

Ox = {x, rx, r2x, r3x, . . . , rnx, . . .} .

In fact, we can “solve” this dynamical system by constructing the evolution

Φ(x,n) = rnx.
Do the orbits change in nature as one varies the value of r? How about when r is
allowed to be negative? How does this relate to the ordinary differential equation
ẋ = kx?

Definition 2.5. For t ≥ 0, the time-t map of a continuous dynamical system
is the transformation of state space which takes x(0) to x(t).

Example 2.6. Let k < 0 in ẋ = kx, with x(0) = x0. Here, the state space is R
(the phase space, as opposed to the trajectory space R2), and the general solution
is Φ(x0, t) = x0e

kt (the evolution of the dynamical system is Φ(x, t) = xekt. Notice
that

Φ(x,0) = x, while Φ(x,1) = ekx.

Figure 3. The time-t map for some
positive time of ẋ = kx, k < 0.

Hence the time-1 map is
simply multiplication by
r = ek. The time-1 map
is the discrete dynamical
system on R given by the
function above f(x) = rx.
In this case, r = ek, where
k < 0, so that 0 < r = ek <
1. See Figure 2.1.2. Now
how do the orbits behave?

Exercise 9. Given
any dynamical system, de-
scribe the time-0 map.

Definition 2.7. For a
discrete dynamical system
f ∶X →X, a fixed point is a point x∗ ∈X, where f(x∗) = x∗, or where

Ox∗ = {x∗, x∗, x∗, . . .} .

The orbit of a fixed point is also called a trivial orbit. All other orbits are called
non-trivial.

In our example above, f ∶ R → R, f(x) = ekx, k < 0, we have x = 0 as the
ONLY fixed point. This corresponds nicely with the unique particular solution to
the ODE ẋ = kx corresponding to the equilibrium x(t) ≡ 0.

So what else can we say about the “structure” of the orbits? That is, what
else can we say about the “dynamics” of this dynamical system? For starters,
the forward orbit of a given x0 will look like the graph of the discrete function
fx0 ∶ N → R2, fx0(n) = x0e

kn. Notice how this orbit follows the trajectory of x0 of
the continuous dynamical system ẋ = kx. Here, f is the time-1 map of the ODE.
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Notice also that, as a transformation of phase space (the x-axis), f is not just a
continuous function but a differentiable one, with 0 < f ′(x) = ek < 1, ∀x ∈ R. The
orbit of the fixed point at x = 0, as a sequence, certainly converges to 0. But here
ALL orbits have this property, and we can say

∀x ∈ R, lim
n→∞

Ox = 0, or Ox Ð→ 0.

Figure 4. The forward orbit of f(x) =
xek lives on a solution to ẋ = kx, k < 0.

This gives a sense of
what we will mean by a
dynamical system exhibit-
ing simple dynamics: If
with very little effort or
additional structure, one
can completely describe
the nature of all of the or-
bits of the system. Here,
there is one fixed point,
and all orbits converge to
this fixed point.

Definition 2.8. For a
discrete dynamical system,
a smooth curve (or set of

curves) ` in state space is called an orbit line if ∀x ∈ `, Ox ⊂ `.
Example 2.9. The orbit lines for time-t maps of ODEs are the trajectories of

the ODE.

Exercise 10. Go back to Figure 1. Describe completely the orbit structure of
the discrete dynamical system f(x) = rx for other two cases, when r = 1 and r > 1
(corresponding to r = ek, for k = 0 and k > 0, respectively). That is, classify all
possible different types of orbits, in terms of whether they are fixed or not, where
they go as sequences, and such. You will find that even here, the dynamics are
simple, but at least for the k > 0 case, one has to be a little more careful about
accurately describing where orbits go.

Exercise 11. As in the previous exercise, describe the dynamics of the discrete
dynamical system f(x) = rx, when r < 0 (again, there are cases here). In particular,
what do the orbit lines look like in this case? You will find that this case does not,
in general, correspond to a time-t map of the ODE ẋ = kx for any value of k (why
not?)

Exercise 12. Show that there does not exist a first-order, autonomous ODE
where the map f(x) = rx corresponds to the time-1 map, when r < 0.

Exercise 13. Construct a second-order ODE whose time-1 map is f(x) = rx,
where r < 0 is any given constant.

Exercise 14. For the discrete dynamical system f ∶ R → R, f(x) = rx + b,
calculate the evolution in closed form. Then completely describe the orbit structure
when b /= 0, noting in particular the different cases for different values of r ∈ R.

Exercise 15. Given ẋ = f(x), f ∈ C1(R), recall that an equilibrium solution is
defined as a constant function x(t) ≡ c which solves the ODE. They can be found by
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solving f(x) = 0 (remember this?) Instead, define an equilibrium solution x(t) as
follows: A solution x(t) to ẋ = f(x) is called an equilibrium solution if there exists
t1 /= t2 in the domain of x(t) where x(t1) = x(t2). Show that this new definition is
equivalent to the old one.

Exercise 16. For the first-order autonomous ODE dp
dt

= p
2
− 450, do the fol-

lowing:

● Solve the ODE by separating variables. Justify explicitly why the absolute
value signs are not necessary when writing the general solution as a single
expression.

● Calculate the time-1 map for this ODE flow.
● Discuss the simple dynamics of this discrete dynamical system given by

the time-1 map.

2.1.3. Contractions. The above questions are all good to explore. For now,
the above example f(x) = ekx, where k < 0, is an excellent example of a particular
class of dynamical systems which we will discuss presently.

Definition 2.10. A metric on a subset of Euclidean space X ⊂ Rn is a function
d ∶X ×X → R where

(1) d(x, y) ≥ 0, ∀x, y ∈X and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x), ∀x, y ∈X.
(3) d(x, y) + d(y, z) ≥ d(x, z), ∀x, y, z ∈X.

One such choice of metric is the “standard Euclidean distance” metric

d(x,y) =
¿
ÁÁÀ

n

∑
i=1

(xi − yi)2,

where x = (x1, x2, . . . , xn) ∈ Rn. Note that for n = 1, this metric reduces to d(x, y) =√
(x − y)2 = ∣x − y∣.
Exercise 17. Explicitly show that the standard Euclidean distance metric is

indeed a metric by showing that it satisfies the three conditions.

Exercise 18. On Rn, define a notion of distance by d(x,y) = ∑ni=1 ∣xi − yi∣.
Show this notion of distance is a metric. (For n = 2, this is sometimes called the
taxicab or the Manhattan metric. Can you see why?)

Exercise 19. On R2, consider a notion of distance defined by the following:

d(x,y) = { ∣x1 − y1∣ if x1 /= y1

∣x2 − y2∣ if x1 = y1.

This is similar to a lexicographical ordering of points in the plane. Show that this
notion of distance is NOT a metric on R2.

Exercise 20. The original definition of a circle as a planar figure comes directly
from Euclid himself: A circle is the set of points in the plane equidistant from a
particular point. Naturally, using the Euclidean metric, a circle is what you know
well as a circle. Show that circles in the taxicab metric on R2 are squares whose
diagonals are parallel to the coordinate axes.

Exercise 21. Following on the previous exercise, construct a metric on R2

whose circles are squares whose sides are parallel to the coordinate axes. (Hint:
Rotate the taxicab metric.)
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Exercise 22. Let S be a circle of radius r > 0 centered at the origin of R2.
It’s circumference is 2πr. Euclidean distance in the plane does restrict to a metric
directly on the circle. Here instead, construct a metric on the circle using arc-length,
and verify that it is a metric. (Be careful about measuring distance correctly.)

Remark 2.11. When discussing points in Euclidean space, it is conventional
to denote scalars (elements of R) with a variable in italics, and vectors (elements
of Rn, n > 1) as a variable in boldface. Thus x = (x1, x2, . . . , xn). In the above
definition of a metric, we didn’t specify whether X was a subset of R or something
larger. In the absence of more information regarding a space X, we will always
use simple italics for its points, so that x ∈ X, even if it is possible that X = R5,
for example. We will only resort to the vector notation when it is assured that we
are specifically talking about vectors of a certain size. This is common in higher
mathematics like topology.

Definition 2.12. A map f ∶ X → X, where X ⊂ Rn is called Lipschitz contin-
uous (with constant λ), or λ-Lipschitz, if

(2.1.1) d (f(x), f(y)) ≤ λd(x, y), ∀x, y ∈X.

Some notes:

● The set X can always inherit the metric on Rn simply by declaring that
the distance between two points in X is defined by the their distance in
Rn (See Exercise 22). So subsets of Rn are always metric spaces. One
can always define a different metric on X if one wants (the gist of the
exercise above). But the fact that X is a metric space comes for free, as
they sometimes say.

● λ is a bound on the stretching ability (comparing the distances between
the images of points in relation to the distance between their original
positions) of f on X. This is actually a form of smoothness stronger
than continuity: Lipschitz functions are always continuous, but there are
continuous functions that are not Lipschitz.

Exercise 23. Show for f ∶ R → R that Lipschitz continuity implies
continuity.

Exercise 24. Let f(x) = 1
x

. Show f is Lipschitz continuous on any
domain (a, b), a > 0, a < b ≤ ∞, and for any particular choice of a and b,
produce the constant λ. Then show that f is not Lipschitz continuous on
(0,∞).

Exercise 25. For a given non-negative λ, construct a function whose
domain in all of R, that is precisely λ-Lipschitz continuous on I = (−∞,2)∪
(2,∞) but not Lipschitz continuous.

Exercise 26. Produce a function that is continuous on I = [−1,1]
but not Lipschitz continuous there.

● To get a sense for what Lipschitz continuity is saying, consider the fol-
lowing: On a bounded interval in R, polynomials are always Lipschitz
continuous. Rational functions, on the other hand, even though they are
continuous and differentiable on their domains, are not Lipschitz contin-
uous on any interval whose closure contains a vertical asymptote.
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● It should be obvious that λ > 0. Why?
● We can define

Lip(f) = sup
x/=y

d (f(x), f(y))
d(x, y) ,

which is the infimum of all λ’s that satisfy Equation 2.1.1. When we
speak of specific values of λ for a λ-Lipschitz function, we typically use
λ = Lip(f), if known.

Proposition 2.13. Let f ∶ I ⊂ R → R be differentiable on an open interval I,
where ∀x ∈ I, we have ∣f ′(x)∣ ≤ λ. Then f is λ-Lipschitz.

Proof. Really, this is simply an application of the Mean Value Theorem: For
a function f differentiable on a bounded, open interval (a, b) and continuous on its

closure, there is at least one point c ∈ (a, b) where f ′(c) = f(b)−f(a)
b−a

, the average
total change of the function over [a, b]. Here then, for any x, y ∈ I (thus ALL of
[x, y] ∈ I even when I is neither closed nor bounded), there will be at least one c ∈ I
where

d (f(x), f(y)) = ∣f(x) − f(y)∣ = ∣f ′(c)∣∣x − y∣ ≤ λ∣x − y∣ = λd(x, y).
�

Definition 2.14. A λ-Lipschitz function f ∶ X → X on a metric space X is
called a contraction if λ < 1.

Example 2.15. Back to the previous example f ∶ R → R, f(x) = ekx, the
time-1 map of the ODE ẋ = kx. Given that f ′(x) = ek everywhere, in the case that
k < 0, the map f is a contraction on ALL of R. Indeed, using the Euclidean metric
in R, we have

d(f(x), f(y) = ∣ekx − eky∣ = ∣ek(x − y)∣ = ∣ek∣∣x − y∣ = ek ∣x − y∣ = λ∣x − y∣
for all x, y ∈ R, where λ = ek < 1.

Exercise 27. Without using derivative information, show that f(x) = ax + b
is a-Lipschitz on R.

Exercise 28. Again without using derivative information, show that the mono-
mial xn, n ∈ N is nan−1-Lipschitz on the interval [0, a]

Exercise 29. Find a for the largest interval [0, a] where f(x) = 3x2 − 2 is a
contraction.

Before we continue, we need to clarify some of the properties of the intervals
we will be using in our dynamical systems. Here are a couple of definitions:

Definition 2.16. A subset U ∈ R is called bounded if there exists a number
M > 0 so that ∀x ∈ U , we have ∣x∣ <M .

Definition 2.17. An interval I is called closed in R if it contains all of its limit
points. If the interval is bounded (as a subset of R), then this means that I includes
its endpoints. But closed intervals need not be bounded. Hence closed intervals in
R take one of the forms [a, b], (−∞, b], [a,∞) or (−∞,∞), for −∞ < a ≤ b <∞.

Proposition 2.18. Let f ∶ I → I for I a closed, bounded interval, and f
continuously differentiable (we understand f to be one-sided differentiable at the
endpoints) with ∣f ′(x)∣ < 1 ∀x ∈ I. Then f is a contraction.


