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These notes and exercises accompany a 3-part minicourse on FI–modules and their generalizations. More
advanced exercises are marked with an asterisk. These notes assume the following prerequisites:

• basic theory of modules over a ring, including Noetherian rings, and tensor products and multilin-
ear algebra,

• basic category theory, including the definition of categories, functors, natural transformations, and
adjoint functors,

• basic representation theory of finite groups and character theory, including the structure of induced
representations

• basic representation theory of the symmetric groups, including the classification of irreducible rep-
resentations,

• basic homological algebra, including the definition of projective modules, basic properties of ho-
mology groups of spaces and groups, and the structure of a spectral sequence.

Contents

1 Some goals of representation stability 2

2 The category FI and FI–modules 3
2.1 The definition of an FI–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Examples and non-examples of FI–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 FI–submodules and maps of FI–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Sums and tensor products of FI–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Generation degree of FI–modules 9
3.1 Generation of FI–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Representable FI–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 The Noetherian property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Induced FI–modules, FI]–modules, and projective FI–modules 13
4.1 Induced FI–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 FI]–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Projective FI–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 ]–filtered FI–modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Multiplicity stability and character polynomials 17
5.1 Multiplicity stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 An application to classical representation theory: Murnaghan’s theorem . . . . . . . . . . . 21
5.3 Character polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



1 Some goals of representation stability Jenny Wilson

6 Presentation degree, polynomial degree, and central stability degree 23
6.1 Projective resolutions and finite presentation degree . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Shifts, derivatives, and polynomial functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Central stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 A warm-up case: The pure braid group 29
7.1 The cohomology of the pure braid group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 H∗(Fn(C)) = H∗(PBn) is a finitely generated FI–module . . . . . . . . . . . . . . . . . . . . 31
7.3 A model proof of central stability, following Quillen . . . . . . . . . . . . . . . . . . . . . . . 32

8 FI–modules in geometry and topology 34
8.1 Hyperplane complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Configuration spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3 Mapping class groups and moduli spaces of surfaces with marked points . . . . . . . . . . 37
8.4 Congruence subgroups of GLn(K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.5 Flag varieties and coinvariant algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Representation stability and linear groups 41
9.1 The categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10 Applications to geometry and topology 43
10.1 Torelli groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.2 IAn and Aut(Fn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.3 Congruence subgroups of GLn(K), revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Lecture 1: The category FI and FI–modules

1 Some goals of representation stability

A major goal of the field of representation stability is to develop tools to understand the algebraic struc-
tures that govern certain naturally-arising sequences of group representations. For example, the sym-
metric groups Sn act on the (co)homology groups of the following families of groups and spaces, and
each sequence of (co)homology groups has a common underlying structure: it is an FI–module.

• Hyperplane complements associated to certain reflection groups containing Sn,

• Configuration spaces of n ordered points in a manifold M or graph G,

• Congruence subgroups GLn(Z, p) of GLn(Z),

• Complete flag varieties associated to GLn(Z),

• The pure mapping class groups of a surface with n marked points.

In general, the theory of FI–modules is designed to address the following framework. Consider a se-
quence of Sn–representations

V0 −→ V1 −→ V2 −→ V3 −→ · · · ,

usually over Q or Z, such that the maps Vn → Vn+1 are Sn–equivariant. The objectives of the program
typically involve the following.
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Goal (a). Characterize the algebraic structure of the sequence of representations {Vn}, often by realizing
the sequence as an FI–module or an object in a suitably defined functor category;

Goal (b). Prove finiteness results for the module {Vn}, such as bounds on the degree of generators and
relations, or vanishing of associated functor homology groups;

Goal (c). Deduce structural results on {Vn} from these finiteness properties. This may mean

• (For semi-simple representations) establish constraints on the irreducible constituents of Vn or on
the characters {χVn

} for n large, such as multiplicity stability or polynomial characters.

• Compute an explicit formula for Vn as an Sn–representation in terms of the earlier terms V0 →
V1 → . . .→ Vn−1 for all n sufficiently large.

• Bound the growth rate in n of rank(Vn). For example, it may be polynomial of bounded degree.

Results of this form are called representation stability for the sequence {Vn}.

The literature on these results involves the work of more authors than can practically be listed here; see
for example the survey [Wi3] for an extensive list of references. The program as it is presented in these
notes builds largely on the foundational work of Church, Ellenberg, Farb, and Nagpal [CF, CEF1, CEFN,
CEF2, CE], Sam and Snowden [Sn, SS2, SS1], Putman [Pu], and Putman and Sam [PS].

2 The category FI and FI–modules

In this lecture we will develop the algebraic foundations of the theory of FI–modules. This lecture draws
heavily on Church–Ellenberg–Farb [CEF1].

2.1 The definition of an FI–modules

Definition I. (The category FI.) Let FI denote the category whose objects are finite sets (including ∅) and
whose morphisms are all injective maps.

Church–Ellenberg–Farb [CEF1] used the notation FI for this category as an acronym for Finite sets and
Injective maps. The category has appeared in other contexts in algebraic topology, algebraic geometry,
and computer science under various names, such as I, Π, Finj , Setfm, Inj, etc.

Notation II. For a positive integer n, we write

[n] := {1, 2, . . . , n},

and we write [0] to denote the empty set. We let ιm,n denote the canonical inclusion

ιm,n : [m] ↪→ [n].

Exercise 1. (An equivalence of categories). A functor F : C → D is an equivalence of categories
if it satisfies the following:

• F is full. This means that for any pair of objects c1, c2 ∈ C, the map

HomC(c1, c2) −→ HomD(F (c1), F (c2))

induced by F is surjective.
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• F is faithful. This means that for any pair of objects c1, c2 ∈ C, the map

HomC(c1, c2) −→ HomD(F (c1), F (c2))

induced by F is injective.

• F is essentially surjective. This means every object d ∈ D is isomorphic to an object of the
form F (c), for c ∈ C.

(a) Consider the full subcategory of FI of finite sets of the form [n], n ∈ Z≥0. Show that the
inclusion of this subcategory into FI is an equivalence of categories.

(b) A skeleton of a category D is an equivalent category C in which no two distinct objects
are isomorphic. Conclude that the full subcategory of FI of finite sets [n] is a skeleton of
FI. By abuse of terminology some authors also refer to this skeleton category as FI.

Exercise 2. Consider the skeleton subcategory of FI of sets [n].

(a) Verify that for n ∈ Z≥0, the endomorphisms of the finite set [n] are the symmetric groups

EndFI([n]) ∼= Sn.

Here we use the convention that S0 = S1 is the trivial group.

(b) Show that the morphisms in this category are generated by the endomorphisms Sn and
the inclusions ιn,n+1.

Ø

Figure 1: A skeleton of FI

Exercise 3.

(a) Show that the endomorphisms EndFI([n]) ∼= Sn act on the set of morphisms HomFI([m], [n])
on the left by postcomposition, that is,

σ : HomFI([m], [n]) 7−→ HomFI([m], [n])

α 7−→ σ ◦ α for all σ : [n]→ [n]

(b) Show that this action is transitive.

(c) Show that the stabilizer of the inclusions ιm,n

{ σ ∈ Sn | σ ◦ ιm,n = ιm,n }

is isomorphic to Sn−m.

(d) Conclude that, as an Sn–set,

HomFI([m], [n]) ∼= Sn/Sn−m.
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Exercise 4.

(a) Show that the endomorphisms EndFI([m]) ∼= Sm act on the set of morphisms HomFI([m], [n])
on the right by precomposition, that is,

σ : HomFI([m], [n]) 7−→ HomFI([m], [n])

α 7−→ α ◦ σ for all σ : [m]→ [m]

(b) Determine whether this action is transitive.

Definition III. (FI–modules.) Let R be a commutative ring. Define an FI–module V over R to be a
(covariant) functor from FI to the category of R–modules.

All rings are assumed to have unit. Frequently the ring R will be Z or Q.

Notation IV. Let R be a commutative ring, and V an FI–module over R. For a finite set S, we write VS
to denote the R–module V (S), and for n ∈ Z≥0 we sometimes write Vn in the case S = [n]. For an FI
morphism α we often write α∗ or (if there is no confusion) simply α to denote the R–module map V (α).

Exercise 5. Let V be an FI–module over a ring R.

(a) Show that for each n ∈ Z≥0 the action of EndFI([n]) ∼= Sn on the R–module Vn gives Vn
the structure of an Sn–representation. Equivalently, Vn is an R[Sn]–module.

(b) The inclusion ιm,n : [m] → [n] defines an embedding Sm ↪→ Sn. Show that the map
(ιm,n)∗ : Vm → Vn must be Sm–equivariant with respect to the action of Sm on Vm, and
the action of the subgroup Sm ⊆ Sn on Vn.

For many purposes, it is expedient to simply consider the restriction of an FI–module V to the skeleton
of FI of sets [n] (Exercise 1). Every object in the image of V is determined up to isomorphism. Under this
restriction, we may view V as a sequence of R[Sn]–modules Vn along with equivariant maps Vm → Vn.
By abuse of terminology, these restricted functors are sometimes also called FI–modules in the literature.

Exercise 6. Let V be a functor from the category of finite sets [n] and injective maps to the
category of R–modules. Show that the structure of V is completely determined by the se-
quence of Sn–representations Vn and the maps (ιn,n+1)∗ : Vn → Vn+1, as in Figure 2. See
Exercise 2(b).

In these notes we will generally be agnostic as to whether an FI–module is a functor from FI or only from
the full subcategory of finite sets [n]. In practice the question of which convention to adopt is often a
matter of notation convenience. It may be simpler to view FI–modules just as sequences {Vn} of Sn–
representations with additional maps. On the other hand, this formulation can be more notationally
cumbersome if we wish, for example, to use operations induced by disjoint unions of sets, as we then
need to make choices of identifications [m] t [n] ∼= [m+ n].

2.2 Examples and non-examples of FI–modules

Exercise 7. (Examples of FI–module.) Show that each of the following sequences has the
structure of an FI–module over Z.

(a) Vn = Z the trivial Sn–representations, all maps are isomorphisms
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0

Ø

Figure 2: The structure of an FI–module

(b) Vn = Zn the canonical permutation representations, maps Vn → Vn+1 the natural inclu-
sions

(c) Vn =
∧k

(Zn), maps Vn → Vn+1 the natural inclusions

(d) Vn any sequence of Sn–representations, all maps Vm → Vn with n > m are zero

(e) Vn = Z[x1, . . . , xn] the polynomial algebra, maps Vn → Vn+1 the natural inclusions

(f) Vn = Z[x1, . . . , xn](k) the homogeneous polynomials in x1, . . . , xn of fixed degree k,
maps Vn → Vn+1 the natural inclusions

(g) Vn = Z[Sn] with action of Sn by conjugation, maps Vn → Vn+1 the natural inclusions

Exercise 8. Let V be any FI–module. Show that the following constructions yield new FI–
modules.

(a) (torsion FI–modules) For N ∈ N, define V ≤N such that

V ≤Nn =

{
Vn, n ≤ N
0, n > N.

Morphisms with codomain ≤ N agree with those of V , and morphisms with codomain
> N are zero.

(b) (truncated FI–modules) For N ∈ N, define V ≥N such that

V ≥Nn =

{
0, n < N
Vn, n ≥ N.

Morphisms with domain ≥ N agree with those of V , and morphisms with domain < N
are zero.

(c) Postcomposing V with any functorR–Mod→ R–Mod, such as
∧k,

∧∗, Symk, Sym∗,⊗k,
or ⊗∗ (for k ∈ Z≥0).

We have seen that an FI–module V is defined by a sequence of Sn–representations Vn along with Sn–
equivariant maps Vn → Vn+1. The converse, however, is not quite true. The following exercise deter-
mines when such a sequence arises from an FI–module.
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Exercise 9. (The FI–module criterion.) Suppose that {Wn} is a sequence of Sn–representations
with Sn–equivariant maps φn : Wn → Wn+1. Let G ∼= Sn−m denote the stabilizer of ιm,n un-
der the action of Sn by postcomposition (Exercise 3). Show that {Wn} can be promoted to an
FI–module with (ιn,n+1)∗ = φn if and only if

for all m < n, σ · v = v for all σ ∈ G and v ∈ im((ιm,n)∗).

The FI–module criterion of Exercise 9 implies that the following naturally-arising equivariant sequences
of Sn–representations do not in fact have FI–module structures.

Exercise 10. (Non-examples of FI–module.) Show that the following sequences do not have
the structure of an FI–module.

(a) Vn = Z the alternating representations, all maps are isomorphisms

(b) Vn = Z[Sn] the left regular representations (that is, with action of Sn by left multiplica-
tion), maps Vn → Vn+1 the natural inclusions.

2.3 FI–submodules and maps of FI–modules

Definition V. Given an FI–module V , a submoduleU of V is a sequence of Sn–subrepresentationsUn ⊆ Vn
that is closed under the action of the FI–morphism.

Definition VI. (Maps of FI–modules.) Fix a commutative ring R. A map of FI–modules V →W over R is
a natural transformation of functors. Concretely, a map F : V →W of FI–modules is a sequence of maps

Fn : Vn →Wn for all n ∈ N

making the following diagrams commute for every n and every FI morphism α : [m]→ [n].

Vm Wm

Vn Wn

Fm

α∗
Fn

α∗

Exercise 11. Let F : V → W be a map of FI–modules. Show that, for each n, the map
Fn : Vn →Wn must be Sn–equivariant.

Exercise 12. (The map of FI–modules criterion.) Let V and W be FI–modules over a ring R.
Let Fn : Vn →Wn be a sequence of Sn–equivariant maps. Show that, to verify that F is a map
of FI–modules, it suffices to check that the diagrams

Vn Wn

Vn+1 Wn+1

Fn

ιn,n+1

Fn+1

ιn,n+1

commute for each n. See Exercise 2(b).
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Just as with modules over a ring, FI–modules have natural notions of images, kernels, cokernels, quo-
tients, etc . . . , all defined pointwise.

Exercise 13. (Images of FI–module maps.) Fix a commutative ring R, and let F : V → W be
a map of FI–modules over R. Show that the sequence of R[Sn]–submodules

Fn(Vn) ⊆Wn

forms an FI–submodule of W . This submodule is called the image of F and written F (V ) or
im(F ).

Exercise 14. (Kernels of FI–module maps.) Fix a commutative ring R, and let F : V →W be
a map of FI–modules over R. Show that the sequence of R[Sn]–submodules

ker(Fn) ⊆ Vn

forms an FI–submodule of V . This submodule is called the kernel of F and written ker(F ).

Exercise 15. (FI–module quotients and cokernels.) Let V be an FI–module over a ringR, and
let U ⊆ V be a submodule.

(a) Show that the sequence of Sn–representations Vn/Un has the structure of FI–module. We
call this FI–module the quotient of V by U , and denote it by V/U .

(b) Show that the sequence of maps

Qn : Vn � Vn/Un

define a map of FI–modules. This is called the quotient map of V by U .

(c) Let F : V → W be a map of FI–modules over R. As a special case, conclude that
cokernels

coker(Fn) := Wn/Fn(Vn)

form an FI–module. We call this FI–module the cokernel of the map F and write coker(F ).

Consider the following examples and non-examples of maps of FI–modules.

Exercise 16. (Examples and non-examples of maps of FI–modules).)

(a) Let Qn denote the canonical permutation representation of the symmetric group Sn, and
let Q denote the 1–dimensional trivial Sn–representation.

(i) Show that, for fixed n, the trivial representation Q is both a subrepresentation and
quotient of the Sn–representation Qn.

(ii) Let U denote the FI–module with the trivial Sn–representation Un = Q in each de-
gree n ≥ 1, and all maps isomorphisms. Let V denote the FI–module with the
permutation representation Vn = Qn in each degree n ≥ 1 and all maps the nat-
ural injections. Show that U is a quotient FI–module of V , but that U is not an
FI–submodule of V .

(b) Again let U be the FI–module with Un = Q in each degree n ≥ 1, and all maps isomor-
phisms. Recall the definition of truncated and torsion FI–modules from Exercise 7.

(i) Show that U≥11 is a submodule of U , but not a quotient of U .
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(ii) Show that U≤10 is a quotient of U , but not a submodule of U .
(iii) What is the kernel of the quotient map U → U≤10?

Exercise 17. (The category of FI–modules over R.) Fix a commutative ring R. Show that
FI–modules over R and maps of these FI–modules form a category. We call this the category of
FI–modules over R.

Exercise 18. Show that the category of FI–modules is not semisimple.

2.4 Sums and tensor products of FI–modules

Exercise 19. (Direct sums of FI–modules.) Let V and W be FI–modules over a ring R. Recall
that the direct sums Vn ⊕Wn are Sn–representations with the diagonal action

σ : Vn ⊕Wn −→ Vn ⊕Wn (σ ∈ Sn)

(v, w) 7−→ (σ · v, σ · w).

Show that the sequence of representations Vn ⊕Wn has the structure of an FI–module with a
diagonal action of the FI–morphisms. This FI–module is called the direct sum of V and W and
written V ⊕W .

Exercise 20. (Pointwise tensor products of FI–modules.) Let V and W be FI–modules over
a ring R. Recall that the tensor products Vn ⊗RWn are Sn–representations with the diagonal
action

σ : Vn ⊗RWn −→ Vn ⊗RWn (σ ∈ Sn)

v ⊗ w 7−→ (σ · v)⊗ (σ · w).

Show that the sequence of representations Vn ⊗Wn has the structure of an FI–module with a
diagonal action of the FI–morphisms. This FI–module is called the (pointwise) tensor product
of V and W and written V ⊗RW .

3 Generation degree of FI–modules

3.1 Generation of FI–modules

Definition VII. (Generation of FI–modules). An FI–module V = {Vn} is generated by a set S ⊆
∐
n≥0 Vn

if V is the smallest FI–submodule containing S.

Equivalently, V is generated by the set S if for each n ∈ Z≥0 the R–module Vn is generated by the images
of S under the action of the FI morphisms.

Notation VIII. For V an FI–modules and v ∈ Vd, we write |v| = d and call |v| the FI–degree of v.

Definition IX. (Finite generation and generation degree of FI–modules). An FI–module V = {Vn} is
generated in degree ≤ d if V is generated by the set

∐
0≤n≤d Vn. If V is generated in degree d for some

d < ∞, then we say that V has finite generation degree. If V is generated by some finite set, we say that V
is finitely generated.

Note that finitely generated FI–modules necessarily have finite generation degree, though the converse
need not hold if we allow the R–modules Vn to be infinitely generated.
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Example X. (An example of FI–module finitely generated in degree 2.) For example, let V be the FI–
module over R with Vn the R–module of homogeneous degree–2 polynomials in the variables x1, . . . , xn
with the diagonal action of Sn permuting the indices, and maps (ιn,n+1)∗ : Vn ↪→ Vn+1 the inclusions.
Then V is finitely generated in degree ≤ 2 by the monomials x21 ∈ V1 and x1x2 ∈ V2, as in Figure 3.
Observe that the Sn–orbits of x21 and x1x2 form an R–basis for Vn for each n ≥ 1.

Figure 3: Generators for the FI–module of homogeneous degree 2 polynomials over R

Exercise 21. Determine whether each of the FI–modules of Exercise 7 is generated in finite
degree, and which is finitely generated. For those that are generated in finite degree, find
a bound on their degree of generation. For those that are finitely generated, find a finite
generating set.

Exercise 22. Give an example of each of the following.

(a) An FI–module that does not have finite generation degree

(b) An FI–module that has finite generation degree, but is not finitely generated

Exercise 23. Let F : V → W be a map of FI–modules, and suppose that V is generated by a
set S.

(a) Show that the map F is completely determined by the images F (S).

(b) Show that the FI–module F (V ) is generated by F (S).

Exercise 24. (Finiteness properties of the direct sum.)

(a) Suppose that V and W are FI–modules generated in degree ≤ d. Show that the FI–
modules V ⊕W is generated in degree ≤ d.

(b) Suppose that V and W are finitely generated FI–modules. Show that the FI–modules
V ⊕W is finitely generated.

3.2 Representable FI–modules

We know that any R–module is the quotient of a free R–module. We will see that the following special
class of FI–modules M(d) play the role of “free” FI–modules.

10
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Definition XI. (Representable FI–modules). Fix a nonnegative integer d. Define the FI–moduleM(d) by

M(d)n := R ·HomFI(d, n) (the free R–module on the set HomFI(d, n))

and the action of FI–morphisms by postcomposition. An FI–module of this form is called a representable
FI–module.

Recall from Exercise 3 that the Sn–representationM(d)n is isomorphic to the coset representationR[Sn/Sn−d].

Exercise 25.

(a) Show that M(d) is generated by the identity morphism idd ∈M(d)d.

(b) Conclude that if F : M(d) → V is any map of FI–modules, then F is determined by
F (idd).

Exercise 26. Show that, as Sn–representations,

M(d)n ∼= IndSn

Sn−d
R.

Exercise 27. Explicitly describe and compute the decompositions for the rational Sn–representations
M(0)n, M(1)n, and M(2)n.

Consider an R–module M generated by a set S ⊆M . Then we know we can realize M as the quotient of
the free R–module R · S with basis S,

R · S −→M

1 · s 7−→ s

r · s 7−→ rs

In the following exercise we will see the analogous property for FI–modules.

Exercise 28. (FI–modules as quotients of representable functors.)

(a) Suppose that an FI–module V is generated by an element v ∈ Vd for some d. We call such
an FI–module cyclic. Show that V admits a surjection

M(d) −→ V

idd 7−→ v

α 7−→ α∗(v) for any α ∈ HomFI([d], [n]).

(b) More generally, suppose that an FI–module V is generated by a set S. Show that V
admits a surjection ⊕

d≥0

⊕
s ∈ S
|s| = d

M(d) −→ V

where the element idd in the summand M(d) indexed by s ∈ S maps to s ∈ Vd.

11
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(c) Show that an FI–module V is generated in degree≤ d if and only if it admits a surjection⊕
0≤m≤d

M(m)⊕cm −→ V, cm ∈ Z>0 ∪ {∞}.

(d) Show moreover that V is finitely generated if and only if it admits such a surjection for
some d <∞ and with all multiplicities cm finite.

We will see that we can deduce a lot of combinatorial and representation-theoretic information about
finitely generated FI–modules from the structure of the representable functors M(d).

Exercise 29. (Finiteness properties of the pointwise tensor product.)

(a) Show that the tensor product M(d)⊗M(k) is finitely generated in degree ≤ (d+ k).
(b) Suppose that V and W are finitely generated FI–modules. Show that the FI–module

V ⊗W is finitely generated.
(c) Suppose that V and W are FI–modules generated in degrees ≤ dV and ≤ dW , respec-

tively. Show that the FI–modules V ⊗W is generated in degree ≤ (dV + dW ).

3.3 The Noetherian property

The following result is crucial to the study of FI–modules. It is due to Church–Ellenberg–Farb [CEF1,
Theorem 1.3] and Snowden [Sn, Theorem 2.3] when R is a Noetherian ring containing Q, and due to
Church–Ellenberg–Farb–Nagpal [CEFN, Theorem A] when R is an arbitrary Noetherian ring.

Theorem XII. (FI–modules over Noetherian rings are locally Noetherian.)(Church–Ellenberg–Farb [CEF1,
Theorem 1.3], Snowden [Sn, Theorem 2.3], Church–Ellenberg–Farb–Nagpal [CEFN, Theorem A].)
Let R be a commutative Noetherian ring. Then any submodule of a finitely generated FI–module over R is itself
finitely generated.

We say that the category of FI–modules over R is (locally) Noetherian. Notably, this result means that if
F : V →W is a map of finitely generated FI–modules, then the kernel ker(F ) is finitely generated.

Exercise 30. Let R be a non–Noetherian ring. Show by example that the category of FI–
modules over R is not locally Noetherian.

Much of the significance of Theorem XII stems from the following result.

Exercise 31. (Finitely generated FI–modules are finitely presentable and type FP∞.) Let V
be a finitely generated FI–module over a Noetherian ring.

(a) Show that V is finitely presentable, in the sense that there exists a short exact sequence of
finitely generated FI–modules of the form

0 −→ K −→
⊕
d

M(d)cd −→ V −→ 0

(b) Show that V admits a resolution by finitely generated sums of representable functors. In
other words, construct an exact sequence of FI–modules of the form

· · · −→
⊕
d

M(d)c
1
d −→

⊕
d

M(d)c
0
d −→ V −→ 0

where each term
⊕

dM(d)c
i
d is finitely generated.

12



4 Induced FI–modules, FI]–modules, and projective FI–modules Jenny Wilson

Exercise* 32. Show that the category of FI–modules over Q is locally Noetherian.
Hint: See Church–Ellenberg–Farb [CEF1, Theorem 1.3].

Exercise* 33. Show that the category of FI–modules over Z is locally Noetherian.
Hint: See Church–Ellenberg–Farb–Nagpal [CEFN, Theorem A].

4 Induced FI–modules, FI]–modules, and projective FI–modules

4.1 Induced FI–modules

Recall that the construction of the free R–module on a set S can be viewed as the left adjoint of the
forgetful functor from the category of R–modules to the category of sets. Analogously, there are several
forgetful functors from the category of FI–modules, whose left adjoint functors can be viewed as “free”
constructions, and which play an important role in the theory.

Definition XIII. (The category FB and FB–modules.) Let FB denote the category of finite sets and
bijective maps. An FB–module over a commutative ring R is a functor from FB to the category of R–
modules. A map of FB–modules is a natural transformation.

Exercise 34. (A skeleton of FB.) Show that the full subcategory of finite sets [n], n ∈ Z≥0, is a
skeleton of FB.

Exercise 35. (a) Explain the sense in which an FB–moduleX is a sequence of Sn–representations
Xn, with no additional maps.

(b) Show that a map of FB–modules F : V → W is a sequence of Sn–equivariant maps
Fn : Vn →Wn. What conditions must these maps satisfy?

Exercise 36. (The category of FB–modules.) Fix a commutative ring R. Show that there is a
category whose objects are the FB–modules overR and whose morphisms are the FB–module
maps.

Definition XIV. (Induced FI–modules.) Fix a commutative ring R. For fixed d ∈ Z≥0, let Wd be a R[Sd]–
module. Recall from Exercise 4 that for each n the group Sd also acts on M(d)n on the right. Define an
FI–module M(Wd) by

M(Wd)n = M(d)n ⊗R[Sd] Wd

with an action of the FI morphisms on M(d)n on the left. More generally, if W is an FB–module (that is,
a sequence of Sn–representations), define the FI–module M(W ) by

M(W ) =
⊕
d≥0

M(Wd).

We call FI–modules of this form induced FI–module, and M(W ) the induced FI–module generated by W .

Notation XV. (External tensor product of representations.) Let G × H be a product of groups. Recall
that, if U is an G–representation over R and W an H–representation over R, we define the (G × H)–
representation U � W as follows. As an R–module, U � W ∼= U ⊗R W , and the group (G × H) acts
by

(g, h) : U �W −→ U �W

u⊗ w 7−→ (g · u)⊗ (h · w).

13



4 Induced FI–modules, FI]–modules, and projective FI–modules Jenny Wilson

Exercise 37. Fix d and let Wd be an R[Sd]–module. Show that, as an Sn–representation,

M(Wd)n ∼= IndSn

Sd×Sn−d
Wd �R with R the trivial Sn−d–representation.

Exercise 38. Show that the FI morphisms act onM(W ) by injective mapsM(W )m →M(W )n.

Exercise 39. Fix d, and let R[Sd] denote the left regular Sd–representation. Show that there is
an isomorphism of FI–modules

M(d) ∼= M(R[Sd]).

Exercise 40. For a FB–module W and a finite set T , show that

M(W )T =
⊕
S⊂T

WS .

Then there is a forgetful functor
F : FI–Mod −→ FB–Mod

defined by restriction to the subcategory FB ⊆ FI. This forgetful functor takes an FI–module V and
remembers only the sequence of R[Sn]–modules {Vn} and no additional maps. The following exercises
show that we may view the assignment W 7→M(W ) as a functor

M(−) : FB–Mod −→ FI–Mod,

and that this functor is a left adjoint to the forgetful functor F .

Exercise 41. (M(−) as a left adjoint.)

(a) Show that the map

M(−) : FB–Mod −→ FI–Mod
W 7−→M(W )

is a covariant functor.
(b) Show that M(−) left adjoint to the forgetful functor F . Concretely, show that for each

object V ∈ FI–Mod and W ∈ FB–Mod, there is a natural bijection of sets

HomFB–Mod(W,F(V )) = HomFI–Mod(M(W ), V ).

(c) Show that the functor M(−) is exact.

Given this adjunction, we may think of M(W ) as the FI–module “freely generated” by the sequence of
representations {Wn}.

Exercise 42. (FN–modules.) Let FN be the category whose objects are the sets [n], n ∈ Z≥0,
and whose only morphisms are the identity morphisms idn. An FN–set is a functor from FN
to the category of sets, that is, it is a sequence of sets An. Then there is a forgetful functor

FI–Mod −→ FN–Set

defined by taking an FI–module V to the underlying sequence of sets. Show that this forgetful
functor is the right adjoint to the functor

FN–Set −→ FI–Mod

{An} 7−→
⊕
d≥0

M(d)⊕Ad

14



4 Induced FI–modules, FI]–modules, and projective FI–modules Jenny Wilson

Remark XVI. Some authors refer to FI–modules of the form
⊕

dM(Wd) as free FI–modules, and some
reserve the term free for the more restricted class of FI–modules of the form

⊕
dM(d)⊕cd . In these notes

we will not enter into this debate, but refer to these FI–modules as induced or sums of representables, re-
spectively.

4.2 FI]–modules

Definition XVII. (Based sets and maps of based sets.) A based set S0 is a set with a distinguished element
0 ∈ S0, called the basepoint. A map of based sets F : S0 → T0 is a map of sets that takes the basepoint in
S0 to the basepoint in T0.

Definition XVIII. (The category FI]) Let FI] (read “FI–sharp”) be the category defined as follows. The
objects are finite based sets. The morphisms are maps of based sets that are injective away from the
basepoints, in the following sense. If f : S0 → T0 is map of based sets, then f is an FI]morphism if f−1(t)
has cardinality |f−1(t)| ≤ 1 for all t ∈ T0 not equal to the basepoint.

Notation XIX. For n ∈ Z≥0, let [n]0 denote the based set

[n]0 := {0, 1, 2, . . . , n} with basepoint 0.

Exercise 43.

(a) Show that FI] is isomorphic to its opposite category FI]op.

(b) Show that Sn ( EndFI]([n]0), but that Sn is exactly the group of invertible endomor-
phisms of the object [n]0.

(c) Describe an embedding FI ⊆ FI].

(d) Show that the image of every FI morphism in FI] has a one-sided inverse.

Exercise 44. (An alternate description of FI].) Show that FI] is isomorphic to the following
category, which was the original description given by Church–Ellenberg–Farb [CEF1, Defini-
tion 4.1.1]. The objects are finite sets. The morphisms Hom(S, T ) are triples (A,B, α) with
A ⊆ S, B ⊆ T , and α : A → B a bijection. The composition of morphisms (A,B, α) : S → T
and (D,E, δ) : T → U is the morphism

(α−1(B ∩D), δ(B ∩D), δ ◦ α) : S → U.

Definition XX. (FI]–modules.) An FI]–module over a commutative ring R is a functor from FI] to the
category of R–modules.

An FIop–module over a ring R is a functor from the opposite category FIop of FI to the category of R–
modules. Equivalently, it is a contravariant functor from FI to R–modules. In the following exercise we
will see that an FI]–module simultaneously carries an FI– and an FIop–module structure in a compatible
way.

Exercise 45. Show that any FI]–module is both an FI–module and an FIop–module. Describe
what relations must be satisfied by the actions of the FI morphisms and FIop morphisms.

Exercise 46. Let Wd be an R[Sd]–module. Show that the FI–module structure on M(Wd) can
be promoted to an FI]–module structure.

15



4 Induced FI–modules, FI]–modules, and projective FI–modules Jenny Wilson

The following exercise gives a complete characterization of FI]–modules. It is a result of Church–Ellenberg–
Farb [CEF1, Theorem 4.1.5], and it mirrors an earlier result of Pirashvili [Pi, Theorem 3.1].

Exercise* 47. (The structure of the category of FI]–modules.)
Hint: See Church–Ellenberg–Farb [CEF1, Theorem 4.1.5].

(a) Show that every FI]–module has the form M(W ) for some FB–module W .

(b) Show that the functor
M(−) : FB–Mod −→ FI]–Mod

is an equivalence of categories.

Exercise 48. LetR be a field of characteristic zero. Conclude from Exercise 47 that the category
of FI]–modules over R is semisimple.

Exercise 49. (Polynomial and exterior algebras as FI]–modules.)

(a) Let V be the FI–module with Vn = Z[x1, . . . , xn] and inclusions Vn ↪→ Vn+1. Show that
V is an FI]–module.

(b) Consider the FI]–submodules of V consisting of homogeneous degree k polynomials for
k = 0, 1, 2, 3. Explicity write each of these FI]–modules in the form

⊕
d≥0M(Wd) for

appropriate Sd–representations Wd.

(c) Repeat these exercises for the case that V is the sequence of exterior algebras Vn =∧
Z〈x1, . . . , xn〉.

4.3 Projective FI–modules

Definition XXI. (Projective FI–modules.) An FI–module P is projective if it is a projective object in the
abelian category of FI–modules. Recall that this means that for any surjective map of FI–modules G :
V → W and map of FI–modules F : P → W , there is a lift F : P → V making the following diagram
commute.

V

P W

G

F

F

Exercise 50. (Projective FI–modules.)

(a) Suppose that Wd is a projective R[Sd]–module. Show that M(Wd) is a projective FI–
module. Hint: By Weibel [We, Proposition 2.3.10], it suffices to show that M(−) is the
left adjoint to an exact functor. See Exercise 41.

(b) Show that the projective FI–modules are precisely the FI–modules of the form
⊕

dM(Wd)
for projective R[Sd]–modules Wd.

(c) Conclude that if R is a field of characteristic zero, an FI–module is projective if and only
if it is an FI]–module.
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5 Multiplicity stability and character polynomials Jenny Wilson

4.4 ]–filtered FI–modules

Nagpal [Na1] intrroduced the following definition.

Definition XXII. (]–filtered FI–modules.) (Nagpal [Na1, Definition 1.10].) A ]–filtered FI–module V is a
surjection

Π :

d⊕
i=1

M(di) −→ V

of FI–modules such that the filtration

V 1 ⊆ V 2 ⊆ · · · ⊆ V d = V V r := Π

(
r⊕
i=1

M(di)

)

has graded pieces of the form Vr/Vr−1 ∼= M(Wr) for some R[Sdr ]–modules Wr.

Exercise 51. Show that if R = Q, then ]–filtered FI–modules are precisely the FI]–modules.

Exercise 52. Find an example of an FI–module that is not ]–filtered.

5 Multiplicity stability and character polynomials

The following Theorem XXIII and Theorem XXIV summarize the stability results for finitely generated
FI–modules proved by Church–Ellenberg–Farb [CEF1, CEF2]. In this section, we will define the terms in
these theorems and investigate the combinatorics of the irreducible constituents and characters of finitely
generated FI–modules.

Theorem XXIII (Church–Ellenberg–Farb [CEF1, CEF2]). Let V be an FI–module over Q that is finitely gen-
erated in degree ≤ d. Then the following hold.

• (Multiplicity stability). The decomposition of Vn into irreducible representations is independent of n for
all n sufficiently large.

• (Polynomial dimension growth). The dimensions dimQ(Vn) are, for n sufficiently large, equal to the
integer points p(n) of a polynomial p of degree ≤ d.

• (Polynomial characters). For all n sufficiently large, the sequence of characters χVn are equal to a character
polynomial P that is independent of n;

χn(σ) = P (σ) for all σ ∈ Sn and all n sufficiently large.

• (Stable inner products). If Q is any character polynomial, then 〈χVn , Q〉Sn is independent of n for all n
sufficiently large.

• (Finite presentability). V is finitely presentable as an FI–module.

In the case that V is has an FI]–module structure, Church–Ellenberg–Farb obtained the following strength-
ened results.

Theorem XXIV (Church–Ellenberg–Farb [CEF1, CEF2]). Let V be an FI]–module over Z that is finitely gen-
erated as an FI–module in degree ≤ d. Then the following hold.

17



5 Multiplicity stability and character polynomials Jenny Wilson

• (Multiplicity stability). The decomposition of Q ⊗Z Vn into irreducible representations is independent of
n for all n ≥ 2d.

• (Polynomial dimension growth). For all n the ranks rankZ(Vn) are equal to the integer points p(n) of a
polynomial p of degree ≤ d that is independent of n.

• (Polynomial characters). The sequence of characters χQ⊗ZVn
are equal to a character polynomial P that is

independent of n.

• (Stable inner products). If Q is any character polynomial, then 〈χQ⊗ZVn
, Q〉Sn

is independent of n for all
n ≥ (d+ deg(Q)).

• (Structure theorem). For m = 0, . . . , d there are Sm–representations Um such that

Vn ∼=
d⊕

m=0

IndSn

Sm×Sn−m
Um � Z Z the trivial Sn−m–representation

and morphisms act by the natural injective maps Vn → Vn′ .

The structure theorem is a restatement of Exercise 47.

A main ingredient in the proof of these results is an analysis of the representations occurring in the rep-
resentable functors M(d). The proof also uses the Noetherian property of FI–modules, and in particular
the finite presentability result Exercise 31(a).

5.1 Multiplicity stability

Recall that every rational representation of the symmetric groups Sn can be decomposed as a direct sum
of irreducible representations, and the irreducible rational Sn–representations are in canonical bijection
with the set of partitions λ of n.

Notation XXV. Given a partition λ of n, we write Vλ for the associated irreducible Sn–representation.

Church–Ellenberg–Farb proved that for any finitely generated FI–module V over Q, the decomposition
of the Sn–representations Vn into their irreducible constituents in a sense stabilizes as n tends to infinity.
To make sense of this result, we use the following ‘stable’ notation for irreducible Sn–representations,
which implicitly assembles irreducible Sn–representations into families as n varies.

Notation XXVI. Let λ = (λ1, λ2, · · · , λk) be a partition with λ1 ≥ λ2 ≥ · · · ≥ λk > 0. Let

|λ| := λ1 + · · ·+ λk.

Then for n ≥ |λ|+ λ1, we write λ[n] for the partition of n

λ[n] := (n− |λ|, λ1, λ2, · · · , λk).

Note that every partition of n can be written uniquely in this form. We write V (λ)n for the Sn–representation

V (λ)n :=

{
0, n < |λ|+ λ1
Vλ[n], n ≥ |λ|+ λ1

18
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Definition XXVII. (Multiplicity stability.)(Church–Farb [CF, Definition 1.1(III)].) Let Vn be a sequence
of rational Sn–representations, with decomposition into irreducible constituents

Vn =
⊕
λ

cnλV (λ)n.

Then Vn is called (uniformly) multiplicity stable if there exists some N ≥ 0 such that, for all λ and for all
n ≥ N , the multiplicities cnλ = cNλ are independent of n.

A sequence Vn of Sn–representations is multiplicity stable if, for n sufficiently large, we can determine
the decomposition of Vn+1 from that of Vn by simply adding a single box to the top row of the Young
diagrams corresponding to each irreducible constituent of Vn.

Exercise 53. Stable and unstable sequences of Sn–representations

(a) Confirm that the following sequences of Sn–representations are multiplicity stable.

(i) Vn = Q the trivial Sn–representations. Show that Vn = V (0)n for all n ≥ 0.
(ii) Vn = Qn the canonical permutation representation. Show that Vn = V (0)n ⊕ V (1)n

for all n ≥ 0.
(iii) Vn =

∧k
V (1)n, with V (1)n the standard representation. Show that Vn = V (1k)n for

all n ≥ 0.
(iv) Vn = Q[x1, . . . , xn](k) with Sn permuting the indices. Decompose Vn for k = 2, 3.

(b) Show that the following sequences are not multiplicity stable.

(i) Vn = Q the alternating Sn–representations.
(ii) Vn = Q[Sn] the left regular representation.

Definition XXVIII. (Weight.) The weight of an irreducible representation V (λ)n is the quantity |λ|. The
weight of a general Sn–representation Vn is the maximum weight of its irreducible constituents.

Church–Ellenberg–Farb proved the following.

Theorem XXIX. (Multiplicity stability and weight of finitely generated FI–modules.)
(Church–Ellenberg–Farb [CEF1, Theorem 1.13 and Proposition 3.2.5].)
An FI–module V over a field of characteristic 0 is finitely generated if and only if the sequence {Vn} of Sn–
representations is uniformly representation stable and each Vn is finite-dimensional. If V is generated in degree
≤ d, then Vn has weight ≤ d for all n.

We can use the branching rules for the symmetric group to verify these stability patterns for induced
FI–modules. Below we state a special case, Pieri’s rule.

Theorem XXX. (Pieri’s rule.)

(I) Let µ be a partition of k. Let Q denote the trivial Sn−k–representation. Then, as rational Sn–representations,
there is a decomposition

IndSn

Sk×Sn−k
Vµ �Q =

⊕
λ

Vλ

where the sum is taken over all those partitions λ that can be obtained by adding (n− k) boxes to the Young
diagram for µ, each in a distinct column. Each component Vλ occurs with multiplicity 1.
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(II) Let λ be a partition of n. Then the Sn−k–coinvariants
(

ResSn

Sk×Sn−k
Vλ

)
Sn−k

of the restricted representation(
ResSn

Sk×Sn−k
Vλ

)
are a representation of Sk, with the following decomposition(

ResSn

Sk×Sn−k
Vλ

)
Sn−k

=
⊕
µ

Vµ.

The sum is over those partitions µ that can be obtained from λ by removing (n−k) boxes, each from a distinct
column. The component Vµ occurs with multiplicity 1.

Example XXXI. (Decomposing M
(
V

)
.) Consider, for example, the FI–module M

(
V

)
. By Exer-

cise 37,

M

(
V

)
n

∼= IndSn

S3×Sn−3
V �Q

and this decomposition can be described by Pieri’s rule in Theorem XXX. We find

M

(
V

)
0

= 0

M

(
V

)
1

= 0

M

(
V

)
2

= 0

M

(
V

)
3

= V

M

(
V

)
4

= V ⊕ V ⊕ V

M

(
V

)
5

= V ⊕ V ⊕ V ⊕ V

M

(
V

)
6

= V ⊕ V ⊕ V ⊕ V

M

(
V

)
7

= V ⊕ V ⊕ V ⊕ V

...

Observe that the sequence M
(
V

)
n

is (uniformly) representation stable, stabilizing for n ≥ 5.

Exercise 54. (The decomposition of M(W ).) . Let Wd be a rational Sd–representation. Recall
from Exercise 37 that

M(Wd)n ∼= IndSn

Sd×Sn−d
Wd �Q with Q the trivial Sn−d–representation.

Use Pieri’s rule (Theorem XXX) to do the following.

(a) Show that M(Wd)n has weight ≤ d for all n.

(b) Show that an irreducible representation occurs in M(d)n if and only if it has weight ≤ d.
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(c) Show that {M(Wd)n} is (uniformly) multiplicity stable, stabilizing for all n ≥ 2d.
(d) Give a sharp stable range for {M(Vλ)n} in terms of the shape of λ.
(e) Suppose V is a rational FI–module generated in degree ≤ d. Show that Vn has weight
≤ d for all n.

Nagpal proved the following result [Na1, Theorem A].

Theorem XXXII. (A resolution in a range.) Let V be a finitely generated FI–module over a Noetherian ring R.
Then there is a sequence of FI–modules

0 −→ V −→ J0 −→ J1 −→ · · · −→ JN −→ 0

that is exact for all n sufficiently large, and such that the FI–modules J i are ]–filtered in the sense of Definition
XXII.

Exercise 55. Suppose that V is a finitely generated FI–module over a field of characteristic
zero. Use Nagpal’s Theorem XXXII to show that {Vn} is multiplicity stable.

5.2 An application to classical representation theory: Murnaghan’s theorem

Church–Ellenberg–Farb [CEF1, Theorem 3.4.2] observed that these stability results for FI–modules give
an efficient proof of Murnaghan’s classical result on Kronecker coefficients. Given any partitions µ and
λ, the structure constants gνµ,λ(n) in the tensor product

V (µ)n ⊗Q V (λ)n =
⊕
ν

gνµ,λ(n)V (ν)n

are called Kronecker coefficients. Values of these coefficients are unknown in general, but Littlewood [L]
proved that the multiplicity gνµ,λ(n) is independent of n for all n sufficiently large. In the context of FI–
modules we can interpret this result as the statement of finite generation for the tensor product of finitely
generated FI–modules.

Exercise 56. Murnaghan’s Theorem for Kronecker coefficients

(a) Fix a partition λ. Show that the sequence of Sn–representations V (λ)n has the structure
of a finitely generated FI–module.
Hint: Use the branching rules to realize V (λ) as an FI–submodule of M(Vλ). See [CEF1,
Proposition 3.4.1].

(b) Given partitions µ and λ, use Exercise 29 to conclude that V (µ) ⊗Q V (λ) is a finitely
generated FI–module, and therefore multiplicity stable.

5.3 Character polynomials

One of the main results of Church–Ellenberg–Farb [CEF1] is the statement that the characters of a finitely
generated FI–module agree, for n sufficiently large, with an object called a character polynomial.

Definition XXXIII. (Character polynomials.) Let Xr :
∐
n≥0 Sn → Z denote the class function

Xr(σ) = #r–cycles in the cycle type of σ.

A polynomial P ∈ Q[X1, X2, . . . , Xr, . . .] is called a character polynomial. Such a polynomial P defines a
sequence of class functions on Sn for all n ≥ 0. We define the degree of a character polynomial by setting
deg(Xr) = r.
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Character polynomials and their role in algebraic combinatorics have been studied since Murnaghan
[Mu] and Specht [Sp]. See Macdonald [Ma, Section I.7].

Example XXXIV. (The characters of Q[x1, x2, . . . xn](2).) Consider again the FI–module V of homoge-
neous degree–2 polynomials in the variables x1, . . . , xn over Q, with inclusions. The Sn–representation
Vn has a Q–basis

{ x2i | i ∈ [n] } t { xixj | i < j, i, j ∈ [n] }.
Since Sn acts by permuting this basis, the character χVn

is equal to the number of basis elements fixed by
this action. Observe that a permutation σ will fix x2i exactly when its cycle decomposition contains the
1–cycle (i), and σ will fix xixj if it contains (i j) or (i)(j). Hence,

χVn
(σ) = (#1–cycles of σ) + (#2–cycles of σ) +

(
#1–cycles of σ

2

)
Thus the sequence of characters {χVn} is exactly described by the character polynomial

χVn
= X1 +X2 +

(
X1

2

)
= X1 +X2 +

X1(X1 − 1)

2
for all n ≥ 0.

Observe that this character polynomial is independent of n.

Exercise 57. Examples of character polynomials

(a) Compute the character polynomials associated with the following FI–modules, and de-
termine their degrees. All FI–morphisms act by the natural injective maps.
(i) Vn is the space Q[x1, . . . , xn](k) of homogeneous degree-k polynomials, for k =

0, 1, 2, 3, 4.
(ii) Vn is the kth exterior power

∧k
Q(x1, . . . , xn), for k = 0, 1, 2, 3, 4.

(iii) Vn is the standard representations V ( )n.
(iv) V is the induced FI–module M(V ).

(b) Show that the FI–module M(d) has characters given by the degree-d character polyno-
mial

χM(d) = d!

(
X1

d

)
for all n ≥ 0

Theorem XXXV. (Finitely generated FI–modules have eventually polynomial characters.) (Church–
Ellenberg–Farb [CEF1, Theorem 3.3.4].) Let V be an FI–module over a field of characteristic 0 finitely generated in
degree ≤ d. Then there an integer N and a unique character polynomial P (X1, . . . , Xd) of degree ≤ d such that

χVn
(σ) = P (X1, . . . , Xd)(σ) for all n ≥ N and all σ ∈ Sn.

The following exercise will establish that an FI]–module generated in degree ≤ d has a character polyno-
mial of degree ≤ d.

Exercise 58. (Character polynomials of rational FI]–modules.) Given a partition ρ, let nr(ρ)
denote the number of parts of ρ of length r. We use generalized binomial coefficients to define
the character polynomials(

X

ρ

)
:=
∏
r

(
Xr

nr(ρ)

)
=
∏
r

Xr(Xr − 1) · · · (Xr − nr(ρ) + 1)

nr(ρ)!

For a representation U of Sd, let χU denote its character. For a partition α of d let χUα denote
the value of χU on a permutation of cycle type α.
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(a) Show that the induced representation IndSn

Sd×Sn−d
U � U ′ has character

χ(σ) =
∑

partitions α of n

χUαχ
U ′

β

(
X

α

)
(σ).

Here, β is chosen so that the partition βtα is the cycle type of σ. If no such decomposition
of its cycle type exists, the term

(
X
α

)
(σ) will be zero.

(b) Let Wd be an Sd–representation. Deduce that the characters of M(Wd) are equal to a
character polynomial of degree ≤ d.

Exercise 59. (Polynomial growth of dimension.)

(a) Let Vn be an Sn–representation over Q. Show that

dimQ(Vn) = χn(idn).

(b) Show that Xr(idn) =

{
n, r = 1
0, r 6= 1.

(c) Let V be an FI–module over Q finitely generated in degree≤ d. By Theorem XXXV, for n
sufficiently large, the characters of Vn coincide with a character polynomial PV of degree
≤ d. Prove that the dimensions dimQ(Vn) are, for n large, equal to the integer values of
a polynomial p(n) of degree ≤ d.

Nagpal’s Theorem XXXII implies the polynomiality result for FI–modules over general Noetherian com-
mutative rings.

Exercise 60. (Polynomial growth of dimension.) Suppose that V is a finitely generated FI–
module over a Noetherian ring R. Use Theorem XXXII to show that the ranks rankR(Vn) are,
for n large, equal to the integer values of a polynomial p(n).

6 Presentation degree, polynomial degree, and central stability de-
gree

In this section, we survey some different notions of stability for FI–modules, including the finite presen-
tation degree, finite polynomial degree, and central stability. These concepts turn out to be equivalent
for FI–modules, although this is not always in the case for other functor categories that generalize FI–
modules.

6.1 Projective resolutions and finite presentation degree

Definition XXXVI. (Relation degree and presentation degree.) Let V be an FI–module. Suppose that V
admits a partial resolution by projective FI–modules

P 1 −→ P 0 −→ V −→ 0.

We have previously seen that if P 0 is generated in degree≤ d, then d is a bound on the generation degree
of V . If P 1 is generated in degree≤ r when we say that V is related in degree≤ r. We say that V is presented
in degree ≤ max(r, d). If P 1 and P 0 are both finitely generated FI–modules, then we say that V is finitely
presented.
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6 Presentation degree, polynomial degree, and central stability degree Jenny Wilson

Note that being ‘finitely presented’ is a stronger condition than being presented in finite degree. Recall
that the Noetherian property Theorem XII for FI–modules implies that an FI–module is finitely generated
if and only if it is finitely presented, though this equivalence does not hold for other important classes of
functor categories.

Exercise 61. Projective dimension

(a) Let V be an FI–module over Q, and suppose that V admits a finite projective resolution.
Explain why the characters of V must be equal a character polynomial identically for all
n ≥ 0.

(b) Show by example that there are finitely generated FI–modules that do not admit finite
projective resolutions.

Exercise 62. An example of a projective resolution Let V be the torsion FI–module with

Vn =

{
Q, n = 0
0, n ≥ 0

Compute a resolution of Vn by induced FI–modules.

Exercise* 63. (FI–modules with finite presentation degree in their stable range.) Suppose
that V is an FI–module presented in degree ≤ d. Show that, for all n > d,

Vn = colimS⊆[n]
|S|≤d

VS .

Hint: See subsection 6.3 and Church–Ellenberg–Farb–Nagpal [CEFN, Theorem C].

6.2 Shifts, derivatives, and polynomial functors

Our next notion of stability for an FI–module is a polynomiality condition. The version of this definition
used here was called a degree-r coefficient system by Randal-Williams–Wahl [RWW]; this is a closely related
and slightly stronger condition than that of strong polynomial degree of Djament and Vespa [DV, Dj2].

Definition XXXVII. (The shift functor.) The category FI has a proper self-embedding defined by

?

q : FI −→ FI

S 7−→ S t {?}

A morphism f : S → T extends to a morphism f? : S t{?} → T t{?}with f?(?) = ?. We can then define

the shift functor
?

Σ on FI–modules by

?

Σ : FI–Mod −→ FI–Mod

[V : FI→ R–Mod] 7−→ [V ◦
?

q : FI→ R–Mod]

Concretely,

(
?

ΣV )n ∼= ResSn+1

Sn
Vn+1.

We write
?

Σb for the bth iterate of
?

Σ.
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6 Presentation degree, polynomial degree, and central stability degree Jenny Wilson

We analogously define a functor
?

Σ on the category of FB–modules.

Exercise 64. (Shifts and finite generation.) Let V be an FI–module.

(a) Show that, if V is generated in degree ≤ d, then
?

ΣbV is generated in degree ≤ d.

(b) Show that, if
?

ΣbV is generated in degree ≤ d, then V is generated in degree ≤ (b+ d).

Definition XXXVIII. (The derivative functor.) There is a natural transformation

idFI −→
?

q
ιS : S ↪→ S t {?}

which induces a natural transformation

idFI–Mod −→
?

Σ

V −→
?

ΣV

(ιS)∗ : VS −→ VSt{?}

The derivative functor D is a functor from FI–Mod to FI–Mod that takes an FI–module to its cokernel

DV := coker(V −→
?

ΣV ).

Exercise 65. (The derivative of a representable functor.) Compute the FI–modul
?

ΣM(d).
Show in particular that

?

ΣM(d) ∼= M(d)⊕W,

where W is a sum of representable functors generated in degree < d. What can you deduce
about DM(d)?

Exercise 66. (The derivative of an induced module.) Show that there is a natural isomor-
phism of functors

D ◦M(−) = M(
?

Σ−) : FB–Mod→ FI–Mod.

Definition XXXIX. (Polynomial degree.) Let V be an FI–module. We say that V has polynomial degree
−1 in FI–degree > N if Vn = 0 for all n > N . For k ≥ 0 , we say that V has polynomial degree ≤ k in
FI–degree > N if

• Vn →
?

ΣVn is injective for all n > N , and

• DV has polynomial degree ≤ (k − 1) in FI–degree > N .

We say V has polynomial degree ≤ k if it has polynomial degree ≤ k in all FI–degree > −1.

Exercise 67. Show that the analogous inductive statement does indeed characterize polyno-
mials. Let f : Z≥0 → Z≥0 be a function. We say that f has degree −1 if f(n) = 0 for all n, and
we say that f is polynomial of degree ≤ k if the function (f(n) − f(n − 1)) is polynomial of
degree ≤ (k − 1).
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Exercise 68. (Polynomial degree of induced modules.)

(a) Show that M(d) has polynomial degree d.

(b) Let Wd be an Sd–representation. Show that M(Wd) has poylnomial degree ≤ d. Must it
have polynomial degree exactly d?

For an FI–module, finite polynomial degree is equivalent to finite presentation degree. This is
not always the case, however, for the different functor categories that generalize FI–modules.

Exercise* 69. Hint: See Djament [Dj2, Proposition 4.4].

(a) (Finite polynomial degree is equivalent to finite generation degree.)

(i) Suppose that V is an FI–module finitely generated in degree ≤ d. Show that, in
sufficiently large FI–degree, V has polynomial degree ≤ d.

(ii) Suppose that V is an FI–module of polynomial degree ≤ r in FI–degree > N . Then
V is generated in degree ≤ r +N + 1.

(b) (Polynomial degree is equivalent to finite presentation degree.)

(i) Suppose that V is an FI–module generated in degree ≤ d and presented in degree
≤ k. Then V has polynomial degree ≤ d in FI–degree > k + min(k, d)− 1.

(ii) Suppose that V is an FI–module of polynomial degree ≤ r in FI–degree > N . Then
V is presented in degree ≤ r +N + 2.

6.3 Central stability

A fruitful approach to proving representation stability results in geometry and topology has been through
an analysis of certain functor homology groups associated to FI–modules. In this section we will describe
one such construction, the homology of chain complexes that are sometimes called the central stability
chain complexes in the literature. Note that its homology differs slightly from the FI homology groups
that are used, for example, by [Pu, CEFN, CE]. The name “central stability chain complex” is a tribute
to Putman [Pu], though the chain groups he calls by this name are in fact quotients of the one defined
below. Central stability degree in the sense stated below is equivalent to the corresponding definition in
terms of Putman’s chain complex (see for example [Pa, Proposition 6.2]).

Definition XL. (The central stability chain complex.) Given an FI–module V , define an associated
augmented chain complex of FI–modules by

C̃−1(V )n = Vn

C̃p(V )n =
⊕

injections f :[p+1]↪→[n]

V[n]\im(f)

∼= IndSn

Sn−(p+1)
Vn−(p+1)

with differential

d : C̃p(V )→ C̃p−1(V )n

d =

p+1∑
i=1

(−1)i+1di
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6 Presentation degree, polynomial degree, and central stability degree Jenny Wilson

where
di :

⊕
f :[p+1]↪→[n]

V[n]\im(f) −→
⊕

f=f |[p+1]\{i}

V[n]\im(f)

is defined by forgetting the element i from the domain of the injective map f , and using the maps

V[n]\im(f) −→ V[n]\im(f)

induced by the inclusion of sets(
[n]\im(f)

)
↪→
(

[n]\im(f)
)

=
(

[n]\im(f)
)
∪ {f(i)}.

This chain complex is significant in that its homology groups in degrees −1 and 0 govern the generation
and relation degree of the FI–module V . We will see that

H̃−1(V )n = H̃0(V )n = 0 for n >> 0 ⇐⇒ V has small presentation degree.

Remark XLI. The homology groups H̃−1(V ) is denoted by H0(V ) by Church–Ellenberg–Farb [CEF1],
and viewed as a functor FI–Mod → FB–Mod. The indexing convention used here is natural if we view
our chain complex as arising from a semi-simplicial object. Church–Ellenberg [CE] and others study the
derived functors of the functor H0(−), which are closely related but nonisomorphic in general to the
homology groups H̃p(−) defined above.

Exercise 70. (Properties of H̃−1(−).)

(a) Show that the tail of the central stability chain complex is as follows.

· · · −→ C̃0(V )n −→ C̃−1(V )n −→ 0.

|| ||
IndSn

Sn−1
Vn−1 Vn

(b) Show that
H̃−1(V )n = 0 for n > d

if and only if V is generated in degree ≤ d.

(c) Viewing H̃−1(−) as a functor FI–Mod to FB–Mod, show that

H̃−1(M(W )) = W,

and that H̃−1(−) and M(−) are inverse functors FI]–Mod ∼= FB–Mod.

(d) Explain the sense in which the groups H̃−1(V )n are encoding (a quotient of) a minimal
set of R[Sn]–modules that generate V .

(e) Viewing H̃−1(−) as a functor FI–Mod to FB–Mod, show that H̃−1(−) is right-exact. We
can therefore define its left derived functors.

Exercise 71. (The central stability homology of M(0).) In the case V = M(0), the central
stability complex is a chain complex of independent interest in algebraic topology. It is the
chain complex on the complex of injective words.
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6 Presentation degree, polynomial degree, and central stability degree Jenny Wilson

(a) Give an explicit combinatorial description of the chain complex C̃∗(M(0)).

(b)∗ Show that the homology groups H̃p(M(0))n are nonzero only when p = n − 1. In other
words, for n fixed the reduced chain complex C̃∗(M(0))n has the homology of a wedge
of spheres of dimension (n− 1). This result was originally due to Farmer [Fa].

Exercise 72. (The central stability homology of M(Wd).) Let Wd be an Sd–representation.
Use the result of Exercise 71 to show that

H̃p(M(Wd))n = 0 for all p 6= n− d− 1.

We now define central stability, one notion of ‘representation stability’ for FI–modules, and document
some of its consequences.

Definition XLII. (Central stability degree.) An FI–module V has central stability degree ≤ d if, for all
n > d,

H̃−1(V )n = H̃0(V )n = 0.

An FI–module with finite central stability degree is called centrally stable.

One immediate consequence of central stability is that the tail of the central stability chain complex is
exact in the stable range, and therefore gives a presentation for Vn in terms of Vn−1 and Vn−2 in this range.
This and some additional consequences of central stability are collected in the following proposition. See
(for example) Patzt [Pa] and the references therein for proofs.

Theorem XLIII. (Consequences of central stability.) Suppose that an FI–module V has central stability degree
≤ d. Then the following hold.

• For all n > d, Vn admits the following partial resolution (where the maps are described in Definition XL):

IndSn

Sn−2
Vn−2 −→ IndSn

Sn−1
Vn−1 −→ Vn −→ 0

• V is presented in degree ≤ d (compare to Church–Ellenberg [CE, Propositoin 4.2]).

• For n > d, Vn = colimS⊆[n]
|S|≤d

VS .

• V has polynomial degree ≤ d in FI–degree > 2d− 1.

• The central stability homology groups vanish in a range:

H̃p(V )n = 0 for all n > 3d+ p+ 1.

• There exists a resolution of V by FI]–modules P i

· · · −→ P i −→ P i−1 −→ · · · −→ P 1 −→ P 0 −→ V −→ 0

where P i is generated in degree ≤ 3d+ i+ 1.

Moreover, if V has presentation degree ≤ d, then V is centrally stable in degree ≤ d+ 1.

Possible additional topics: Kan extensions, local cohomology, local degree and stable
degree, periodicity, connections to tca’s
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7 A warm-up case: The pure braid group

Recall that a braid on n strands can be visualized as an equivalence class of braid diagrams, as in Figure 4.
A diagram represents n strands in Euclidean 3–space that are anchored at their startpoints at n distin-
guished points in a plane, and at the their endpoints at the same n points in a parallel plane. The strands
may move in space but may not double back or pass through each other. These diagrams form a group
under concatenation called the braid group Bn.

Figure 4: The braid group Bn

Each braid defines a permutation on the endspoints of the n strands. The pure braid group PBn is the
kernel of the induced surjection

1 −→ PBn −→ Bn −→ Sn −→ 1.

These are the braids where each strand begins and ends at the same point.

B

Figure 5: The pure braid group PBn
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7 A warm-up case: The pure braid group Jenny Wilson

The pure braid group PBn has a (2n)–real dimensional K(π, 1) space,

Fn(C) := {(z1, . . . , zn) ∈ Cn | zi 6= zj for all i 6= j}.

We take π1(Fn(C)) as the definition of the pure braid group PBn. We may interpret Fn(C) as the ordered
configuration space of C, and view a point in Fn(C) as an embedding of n labelled points in C.

Figure 6: A point in Fn(C)

Alternatively, we may interpret Fn(C) as the complement of the arrangement of hyperplanes zi = zj
in Cn; these are the hyperplanes fixed by the reflections of the symmetric group Sn under its canonical
action on Cn. These different perspectives on Fn(C) suggest different families of generalizations, which
we will discuss below.

The symmetric group Sn acts on Fn(C) freely by permuting the coordinates. The quotient space

Cn(C) := Fn(C)/Sn

is aK(π, 1) space for the braid group Bn, and we take its fundamental group as the definition of the braid
group.

7.1 The cohomology of the pure braid group

The following exercise implies that the (co)homology of the pure braid group on n strands is a represen-
tation of Sn.

Exercise 73. Let
1 −→ K −→ G −→ Q −→ 1

be a short exact sequence of groups. The group G acts on K by conjugation, and this action
induces an action of G on the (co)homology groups H∗(K;R) and H∗(K;R). Explain why
the action of G on (co)homology factors through an action of the quotient Q ∼= G/K.
Hint: See Brown [Bro, Proposition 6.2 and Corollary 6.3].

The abelianization of the pure braid group is the free abelian group on the
(
n

2

)
generators Ti,j .

H1(PBn) = Z · {Ti,j} ∼= Z(n
2), H1(PBn) = Hom(PBn,Z) = Z · {T ∗i,j} ∼= Z(n

2)

We may interpret the class T ∗i,j as measuring “winding number”; T ∗i,j takes a pure braid and counts the
number of times (with sign) that strand wraps around strand j. Viewing Fn(C) ⊆ Cn as a complex
manifold, we can identify the class T ∗i,j with the meromorphic form

ωi,j :=
1

2πI

(
dzi − dzj
zi − zj

)
, I a square root of −1,
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and again interpret ωi,j as measuring the “winding number” of a loop around the deleted hyperplane
zi = zj . It is not difficult to check by hand that these forms satisfy the identity

ωi,j ∧ ωj,k + ωj,k ∧ ωk,i + ωk,i ∧ ωi,j = 0 for distinct i, j, k ∈ [n]. (1)

The action of Sn on Fn(C) induces an action on these forms by

σ · ωi,j = ωσ(i),σ(j) for σ ∈ Sn.

Arnold [A] proved that the integer cohomology ring H∗(PBn) = H∗(Fn(C)) is generated as a ring by the
degree-1 elements ωi,j . It is in fact exactly the Z–subalgebra generated by these forms, and defined by
the relation in Equation 1. Two exterior polynomials in these forms are cohomologous if and only if they
are equal.

Theorem XLIV. (The cohomology of Fn(C).)(Arnold [A, Theorem 1 & Corollary 3].)
The cohomology algebra H∗(Fn(C)) is the exterior graded algebra generated by the

(
n
2

)
forms ωi,j , which are

subject to the
(
n
3

)
relations in Equation 1:

H∗(Fn(C)) ∼=
∧∗

Z ωi,j
〈ωq,r ∧ ωr,s + ωr,s ∧ ωs,q + ωs,q ∧ ωq,r〉

i, j, q, r, s ∈ [n],
i, j distinct, q, r, s distinct.

In degree p, the cohomology group Hp(Fn(C)) is free abelian and has a basis of exterior monomials of the form

ωi1,j1 ∧ ωi2,j2 ∧ · · · ∧ ωip,jp , where is < js, and j1 < j2 < · · · < jp.

7.2 H∗(Fn(C)) = H∗(PBn) is a finitely generated FI–module

Exercise 74. (Hp(PBn) as an FI–module.)

(a) Show that there are group homomorphisms PBn → PBn+1 and PBn+1 → PBn defined
by adding or deleting a strand.

(b) Describe the corresponding maps on the spaces Fn(C).

(c) Show that, for each fixed p, the sequence of Sn–representations {Hp(PBn;Z)}n has the
structure of an FI–module over Z.

(d) Show that moreover {Hp(PBn;Z)}n has the structure of an FI]–module.

(e) Fix p. Show that as an FI–module {Hp(PBn;Z)}n is finitely generated in degree ≤ 2p.

By the structure theorem for FI]–modules (Exercise 47), for each p we can express {Hp(PBn;Q)}n in the
form

⊕
0≤d≤2p

M(Wd) for some representations Wd.

Exercise 75. (The FI]–module structure on Hp(PBn).)

(a) Verify that {H1(PBn;Q)}n is the FI]–module M(V ).

(b) Find the Sd–representationsWd such that {H2(PBn;Q)}n is the FI]–module
⊕

0≤d≤4

M(Wd).

By Exercise 54, it follows that the sequence {Hp(PBn;Q)}n is uniformly multiplicity stable with stable
range n ≥ 4p.
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Exercise 76. (Multiplicity stability for {Hp(PBn;Q)}n for small p)

(a) Prove that, as an Sn–representation, the decomposition of H1(PBn;Q) into irreducible
representations is

H1(PBn;Q) = V (0)n ⊕ V (1)n ⊕ V (2)n

= V n︷ ︸︸ ︷
· · ·

⊕ V n−1︷ ︸︸ ︷
· · ·

⊕ V n−2︷ ︸︸ ︷
· · ·

for all n ≥ 4.
(b) Explicitly identify the subrepresentations

V (0)n ∼= Q and V (0)n ⊕ V (1)n ∼= Qn

as vector subspaces of H1(PBn;Q) = spanQ(ωi,j).
(c) Compute the decomposition of H2(PBn;Q) into irreducible representations. Verify that

it is multiplicity stable for all n ≥ 8, as predicted by Exercise 54.

Another consequence of Exercise 74 is that, by Exercise 58, the sequence Hp(PBn;Q) has a character
polynomial of degree ≤ 2p.

Exercise 77. (Character polynomials for Hp(PBn).) Let χpn denote the character for Hp(PBn).

(a) Verify that χ1
n = X2 +

(
X1

2

)
for all n ≥ 0.

(b) Compute the characters χ2
n and verify that that they coincide with a character polyno-

mial of degree ≤ 4.

7.3 A model proof of central stability, following Quillen

Since Hq(PBn) is an FI]–module generated in degree ≤ 2q, it follows that it has presentation degree ≤ 2q
and central stability degree ≤ 2q + 1. However, in the interest of using this warm-up case to illustrate a
technique for proving central stability, we will forget the FI]–module structure and these known bounds.
Variations on this proof have been used in the literature, for example, to prove representation stability
results for congruence subgroups of GLn(R), for the Torelli subgroup of the mapping class group, and
for the Torelli subgroup of Aut(Fn).

From the short exact sequences
1 −→ PBn −→ Bn −→ Sn −→ 1

we can construct a double complex for each n, and obtain two spectral sequences; see Putman–Sam [PS]
for details. The E1 page of the first spectral sequence comes from a certain simplicial complex associated
to the braid group. Hatcher–Wahl [HW] determined that this simplicial complex is highly connected, as
a special case of a homological stability proof for mapping class groups. It follows from their result that
the limit E∞p,q vanishes for n ≥ p+ q + 2. The second spectral sequence converges to the same limit.

The second spectral sequence has E2 page

E2
p,q(n) = H̃p

(
Hq(PB•;Z)

)
n

The qth row of this E2 page are the central stability homology groups of the FI–module Hq(PBn;Z).
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3 H̃−1(H3(PB•))n H̃0(H3(PB•))n H̃1(H3(PB•))n H̃3(Hq(PB•))n

2 H̃−1(H2(PB•))n H̃0(H2(PB•))n H̃1(H2(PB•))n H̃2(H2(PB•))n

1 H̃−1(H1(PB•))n H̃0(H1(PB•))n H̃1(H1(PB•))n H̃2(H1(PB•))n

0 H̃−1(H0(PB•))n H̃0(H0(PB•))n H̃1(H0(PB•))n H̃2(H0(PB•))n

−1 0 1 2

Exercise 78.

(a) Use the observation that H0(PBn) = Z and Exercise 71 to find a range in n in which
terms on the bottom row H̃p(H0(PBn)) vanishes.

(b) Since the first four terms on the bottom q = 0 row vanish in a stable range, in this range
there are no possible nonzero differentials to or from the groups

E2
−1,1 = H̃−1

(
H1(PB•)

)
n

or E2
0,1 = H̃0

(
H1(PB•)

)
n
.

3 H̃−1(H3(PB•))n H̃0(H3(PB•))n H̃1(H3(PB•))n H̃3(Hq(PB•))n

2 H̃−1(H2(PB•))n H̃0(H2(PB•))n H̃1(H2(PB•))n H̃2(H2(PB•))n

1 H̃−1(H1(PB•))n H̃0(H1(PB•))n H̃1(H1(PB•))n H̃2(H1(PB•))n

0 0 0 0 0

−1 0 1 2

Since the spectral sequence converges to zero in a range, these terms must eventually be
zero. Find a range in which these terms vanish. This bounds the central stability degree
of the FI–module H1(PBn).

(c) To propagate the argument for q = 2, we can use the fact that

H̃−1(V )n = H̃0(V )n = 0 for n� 0 =⇒ H̃p(V )n = 0 for n� p.

Use Theorem XLIII to find a range where the terms H̃p(H1(PB•))n vanish, and use this
computation to bound the central stability degree of the FI–module H2(PBn).

(d) Use induction to find a bound on the central stability degree of the FI–module Hq(PBn).
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8 FI–modules in geometry and topology

In this section we will outline a number of applications of FI–module theory to objects in geometry and
topology.

8.1 Hyperplane complements

Definition XLV. (The hyperplane arrangement of a reflection group.) Let G be a group of linear maps
acting on Rd, generated by a finite set of reflections. Let {si} denote the set of all reflections in G, and
let Hi denote the hyperplane fixed by si. The set of hyperplanes {Hi} is called the reflection arrangement
associated to G, and we define its complex hyperplane complement

MG := Cd\{union of complexified hyperplanes Hi ⊗R C }

If G ∼= Sn is the group of n × n permutation matrices, thenMSn = Fn(C) and its fundamental group is
PBn. More generally, the fundamental group of the quotientMG/G is called the generalized braid group,
and the fundamental group ofMG is the pure generalized braid group associated to G.

Since G stabilizes the set of complex hyperplanes {Hi ⊗R C}, it has a well-defined action on the comple-
mentMG. In particular, when Sn ⊆ G, the cohomology groups H∗(MG) have an action of Sn. Many
of the properties of the cohomology ofMSn

hold for general reflection arrangements, as we see with the
following results of Brieskorn.

Theorem XLVI (Brieskorn [Bri, Théorème 6(i).]). (The cohomology of a hyperplane complement MG).
Let G be a finite reflection group. Then the cohomology groups Hp(MG) of the complex hyperplane complement
MG are free abelian, with rank

rank Hp(MG) = #{ g ∈ G | length(g) = p }

where the length is taken with respect to the generating set of all reflections in G.

Theorem XLVII (Brieskorn [Bri, Lemme 5]). (Generating the cohomology ofM). LetM be the complement
of a finite arrangement of hyperplanes in a complex vector space V . Suppose each hyperplane Hi is determined by
a linear form `i. Then the cohomology algebra of the complex hyperplane complement M is generated by the
differential forms

ωi :=
1

2πI

(
d`i
`i

)
.

Moreover, the cohomology algebra is isomorphic to the Z–subsalgebra of meromorphic forms on V generated by the
forms ωi.

Remark XLVIII. Orlik and Solomon [OS] proved that if M is the complement of a finite arrangement
of complex hyperplanes, then the cohomology of M is completely determined by the combinatorial
data of the poset of the hyperplanes’ intersections (under inclusion). They give a presentation for the
cohomology H∗(M) as an algebra.

Exercise 79. (Representation stability for the cohomology of a hyperplane complement.)
For each n, letMn be the complement of a finite arrangement of hyperplanes in Cn defined
by linear functionals {`ni }.

(a) Show that the natural action of FI] on the spaces {Cn} induces an action of FI]op = FI]
on the space of linear functionals on Cn.
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(b) Suppose that the set of functionals tn≥1{`ni } are stable under the FI] action. Show that
the cohomology groups Hp(Mn;Z) form an FI]–module for each p.

(c) Suppose that set of functionals tn≥1{`ni } is finitely generated under the action of FI. Use
Brieskorn’s result Theorem XLVII to show that this FI–module is finitely generated.

The structure of the cohomology of hyperplane complements – and their generalizations – have been
studied in a representation stability context (for example) by Church, Ellenberg, and Farb [CF, CEF1,
CEF2], Jiménez Rolland and Wilson [Wi2, JW2], Bibby [Bi], and Gadish [Ga].

8.2 Configuration spaces

Definition XLIX. (Ordered and unordered configuration spaces.) For a topological space M , define the
ordered configuration space of M on n points to be the space

Fn(M) = {(m1, . . . ,mn) ∈Mn | mi 6= mj for all i 6= j},

topologized as a subspace of Mn. Equivalently, Fn(M) is the space of embeddings

[n] ↪→M,

and we can visualize elements of F3(M) as in Figure 7.

1

3 2

1

3 2

1

3 2

1

3 2

Figure 7: A point in F3(M).

The symmetric group Sn acts on Fn(M) by permuting the coordinates. The quotient space Cn(M) under
this action is called the unordered configuration space of M on n points. This is the space

Cn(M) =
{
{m1, . . . ,mn} ⊆M

}
of n–point subsets of M .

The fundamental groups π1(Cn(M)) and π1(Fn(M)) are called the braid group ofM and pure braid group of
M , respectively, however, in contrast to the case M = C, these configuration spaces need not be K(π, 1)
spaces in general.

8.2.1 The cohomology of configuration space as an FI–module

Fix a topological space M . Given a finite set S, write FS(M) to denote the space of embeddings S ↪→M ,
so Fn(M) = F[n](M). Then the spaces FS(M) have the structure of a contravariant functor from FI: for
each injective map α : S ↪→ T there is a map α∗ : FT (M) → FS(M) obtained by precomposing an
embedding T ↪→M with α. This operation is shown in Figure 8.
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1
2
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b
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2
1

Figure 8: The contravariant action of an FI morphism on configuration space

It follows that the homology groups {H∗(FS(M)) | S finite} form an FIop–module, and the cohomology
groups {H∗(FS(M)) | S finite} form an FI–module.

If M is an open manifold, then it is also possible to define maps Fn(M) → Fn+1(M) by rescaling a
configuration and introducing a new point labelled (n+1) “at infinity”. For open manifolds of dimension
at least 2, then, there is an action of FI (well-defined up to homotopy) on the configuration spaces FS(M),
as illustrated in Figure 9. Thus when M is open, the homology and cohomology groups of the spaces
FS(M) have FI]–module structures.

1
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Figure 9: The action of an FI morphism on the configuration space of an open manifold

There is an extensive literature on the cohomology of the configuration spaces of manifolds, though the
cohomology groups are known explicitly in very few instances. In a representation stability context,
there are results on these cohomology groups due to Church [Ch, Theorem 1], Church–Ellenberg–Farb
[CEF1, Section 6], Church–Ellenberg–Farb–Nagpal [CEFN, Application 2], Hersh–Reiner [HR], Church–
Miller–Nagpal–Reinhold [CMNR, Section 4], Bahran [Ba, Theorem 1] and others.

Theorem L. (Representation stability for the cohomology of configuration spaces of a manifold.)
(Church–Miller–Nagpal–Reinhold [CMNR, Application A].)
Suppose that M is a connected manifold of dimension at least 2. Then for fixed q, the FI–module {Hq(Fn(M))}n
has generation degree ≤ max(0, 10q − 1) and presentation degree ≤ max(0, 18q − 2).

Other representation stability results on configuration spaces include the following. Kupers–Miller [KM]
proved stability results for the homotopy groups of configuration spaces of manifolds. Ellenberg–Wiltshire-
Gordon [EW] exhibited additional algebraic structure on the cohomology of configuration spaces for
manifolds with nowhere vanishing vector fields. Miller–Wilson established patterns called secondary
representation stability in the ccohomology of configuration spaces of open manifolds. Tosteson [To1], Pe-
tersen [Pe], Ramos [Ra1, Ra2], and Lütgehetmann [Lü] have studied the configuration spaces of spaces
such as graphs or finite CW–complexes.
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8.3 Mapping class groups and moduli spaces of surfaces with marked points

Definition LI. (The mapping class group Mod(Σ).) Let Σ be an orientable smooth surface. Recall that
the mapping class group Mod(Σ) of Σ is the group of orientation-preserving diffeomorphisms that fix the
boundary ∂Σ pointwise, up to smooth isotopy fixing the boundary pointwise,

Mod(Σ) := Diffeo+(Σ, ∂Σ) / (isotopy fixing ∂Σ).

Equivalently, Mod(Σ) is the group of path components of the topological group Diffeo+(Σ, ∂Σ).

Example LII. (Dehn twists.) An important class of mapping classes are the Dehn twists. Given an
embedded loop γ ∈ Σ, there is a neighbourhood of γ that is homeomorphic to an annulus. The Dehn twist
Tγ is executed by twisting this annulus as in Figure 10, and extending by the identity to the complement
of the annulus in Σ.

Figure 10: Performing the Dehn twist Tγ in an annular neighbourhood of γ

It follows from work of Dehn, Mumford, Lickorish, Humphries, and others that the mapping class group
of a compact genus g surface with 0 or 1 boundary components is finitely generated by (2g + 1) Dehn
twists.

Definition LIII. (The pure mapping class group Mod(Σ).) Given a set of n labelled marked points in
a surface Σ, denote by Diffeon,+(Σ, ∂Σ) the group of orientation preserving diffeomorphism that fix ∂Σ
and the marked points pointwise. The pure mapping class group is the group

PMod(Σ) := Diffeon,+(Σ, ∂Σ) / (isotopy fixing ∂Σ and the n labelled points).

We use the shorthand PModng,b for when Σ = Σng,b is a compact genus-g surface with b boundary compo-
nents.

Assume that Σng,b is a surface not homeomorphic to S2, R2, the closed disk, the torus, the closed annulus,
the once-punctured disk, or the once-punctured plane. The (generalized) Birman exact sequence relates the
pure mapping class group of Σng,b to its surface braid group and the mapping class group of the surface
Σg,b = Σ0

g,b without marked points.

1 −→ π1(Fn(Σg,b)) −→ PModng,b −→Mod(Σg,b) −→ 1.

Definition LIV. (The moduli space of Riemann surfaces.) We writeMg,n to denote the moduli space of
Riemann surfaces of genus g with n marked points. An element (X, p) ∈ Mg,n is an equivalence class, up
to biholomorphism, of a Riemann surface X of genus g and a set of labelled marked points p ∈ Fn(X).
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For g ≥ 2, the moduli spaceMg,n is a rational model for the classifying space BPModng,0, hence

H∗(Mg,n;Q) = H∗(PModng,0;Q).

These cohomology groups are a topic of significant interest in low-dimensional topology and algebraic
geometry. Jiménez Rolland proved the following.

Theorem LV. (Representation stability for the mapping class groups and moduli spaces of surfaces with
marked points.) (Jiménez Rolland [JR, Theorems 1.1, 6.1, 6.3].)
Let R be a field. For any q ≥ 0 and 2g + b > 2 the FI–module Hq(PMod•g,r;R) is finitely generated over R. If
R = Q then the characters are given by a character polynomial of degree ≤ 2q, its terms have weight ≤ 2q, and the
sequence is multiplicity stable with stable range n ≥ 6q. For r > 0 it is multiplicity stable for n ≥ 4q.

Jiménez Rolland and Maya Duque [JD, Theorems 1.1 and 1.2] later proved a representation stability re-
sult for the rational cohomology of the real locus M0,n(R) of the Deligne–Mumford compactification
M0,n of the moduli space of rational curves with n marked points. For fixed genus g > 0, however, the
cohomology groups Hi(Mg,n;Q) can grow exponentially in n and therefore these sequence may be in-
finitely generated as an FI–modules. Tosteson [To2, Theorem 1.2] proved, however, that the sequences of
rational homology groups {Hi(Mg,n;Q)}n are subquotients of finitely generated FSop–modules, where
FSop is the opposite category of the category of finite sets and surjective maps. Tosteson [To2, Theorem
1.1] deduces a polynomial growth condition and constraints on the irreducible Sn–subrepresentations
that occur.

8.4 Congruence subgroups of GLn(K)

The congruence subgroups of GLn(Z) are certain families of finite index subgroups that play a role in
topology and number theory.

Definition LVI. (Level I principal congruence subgroups.) Let K be a commutative ring and I ⊆ K a
proper ideal. Then the level I congruence subgroups GLn(K, I) of GLn(K) are defined to be the kernel of
the “reduction modulo I” maps

1 −→ GLn(K, I) −→ GLn(K) −→ GLn(K/I).

Of particular interest are the level ` congruence subgroups GLn(Z, `Z) of GLn(Z).

Exercise 80. Show that the permutation matrices Sn are contained in the image of GLn(K)
in GLn(K/I). Conclude from Exercise 73 that the homology groups Hp(GLn(K, I)) are Sn–
representations.

Exercise 81. Use the inclusions

GLn(K) −→ GLn+1(K)

[A] 7−→
[
A 0
0 1

]
to define an FI–module structure on the sequence of homology groups {Hp(GLn(K, I))}n.

The following result is due to Gan–Li [GL], and is the culmination of a literature on representation sta-
bility results for congruence subgroups due to Putman [Pu], Church–Ellenberg–Farb–Nagpal [CEFN],
Church–Ellenberg [CE], Church–Miller–Nagpal–Reinhold [CMNR], and others.
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Theorem LVII. (Representation stability for congruence subgroups.) (Gan–Li [GL, Theorems 1 and 11].)
Suppose that K is a ring satisfying Bass’s stable range condition SRd+2 for some d > 0 and that I is a proper two-
sided ideal of K. Then the FI–module Hq(GLn(K, I);Z) has generation degree ≤ 4q + 2d + 1 and presentation
degree ≤ 4q + 2d+ 6. Moreover, for each q > 0 and n > 0 there is a canonical isomorphism:

colimS⊆[n],S≤ω(q)Hq(GLS(K, I);Z)
∼=−→ Hq(GLn(K, I);Z) where ω(q) = 4q + 2d+ 6.

8.5 Flag varieties and coinvariant algebras

8.5.1 The cohomology of the complete flag variety

Definition LVIII. (The complete flag varietry.) Let Bn ⊆ GLn(C) be the subgroup of upper triangular
matrices. The space GLn(C)/Bn is the complete flag variety

GLn(C)/Bn ∼= {0 ( V1 ( V2 ( · · · ( Vn−1 ( Cn}, Vi subspaces.

Borel proved that the cohomology algebra H2∗(GLn(C)/Bn;C) is isomorphic to an algebra called the
complex coinvariant algebra.

Definition LIX. (The complex coinvariant algebra.) The complex coinvariant algebra C∗(n) is a graded
algebra defined as the quotient

C∗(n) = C[x1, . . . , xn]/In

where In is the homogeneous ideal generated by the Sn–invariant polynomials in C[x1, . . . , xn] with
constant term equal to zero.

Theorem LX. (The cohomology algebra H2∗(GLn(C)/Bn;C).) (Borel [Bo]). There is an isomorphism of
graded algebras

H2∗(GLn(C)/Bn;C) ∼= C∗(n).

Exercise 82. ({C∗(n)} as an FIop–module.) Show that the homogeneous graded pieces of
the coinvariant algebras C∗(n) are stable under the action of FIop induced by its action on
C[x1, . . . , xn], but that the action of FI does not induce a well-defined FI–module structure on
C∗(n).

Exercise 83. (Representation stability for the graded pieces of {C∗(n)} in low degree.) Ex-
plicitly compute as Sn–representations the homogeneous degree-k graded pieces Ck(n) in
degree k = 0, 1, 2. Verify that, for each k, the sequence is multiplicity stable and that the
characters agree with a character polynomial for all n sufficiently large.

The following result is originally due Church–Farb [CF, Theorem 7.4] and Church–Ellenberg–Farb [CEF1,
Proposition 5.1. and Theorem 1.11].

Exercise 84. (Representation stability for the graded pieces {Ck(n)}.) Fix k, and consider
the homogeneous degree-k graded pieces {Ck(n)} of the coinvariant algebras. Show that
this sequence of Sn–representations is uniformly multiplicity stable, and that its characters
eventually agree with a character polynomial. Hint: You can obtain an FI–module from an
FIop–module by dualizing. See [CEF1, Sections 4.2 and 5.1].
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8.5.2 Diagonal coinvariant algebras

The following generalizations of the coinvariant algebras play a role in algebraic combinatorics.

Definition LXI. (The r–diagonal coinvariant algebra.) Consider the polynomial algebra

P rn = C[x
(1)
1 , . . . , x(1)n , x

(2)
1 , . . . , x(2)n , . . . , x

(r)
1 , . . . , x(r)n ]

in r sets of variables, with a diagonal action of the symmetric groups Sn. The r–diagonal coinvariant
algebra C(r, n) is defined as the quotient

C(r, n) = P rn/I
r
n

where Irn is the homogeneous ideal generated by the constant-term-zero Sn–invariant polynomials.

The following result is due to Church–Ellenberg–Farb [CEF1, Proposition 5.1. and Theorem 1.11].

Exercise 85. (Representation stability for the multigraded pieces of {C(r, n)}.) Fix r, and
fix a multigrading (k1, k2, . . . , kr). Consider the homogeneous degree-(k1, k2, . . . , kr) graded
pieces of the diagonal coinvariant algebras {C(r, n)}n. Show that this sequence of Sn–representations
is uniformly multiplicity stable, and that its characters eventually agree with a character poly-
nomial.

8.5.3 Generalized flag varieties

Let GWn be a semisimple complex Lie group in type An−1, Bn, Cn, or Dn, with Weyl group Wn and
BWn a Borel subgroup. Then the space GWn /BWn is called a generalized flag variety. Borel [Bo] showed
that its cohomology algebra is isomorphic to the associated coinvariant algebra, defined as the quotient
of C[x1, x2, . . . xn] by the constant-term-zero Wn–invariant polynomials. In each case Sn ⊆ Wn, and
the cohomology algebras form a FIop–module. These FIop–module structures have been studied by, for
example, Church, Ellenberg, and Farb [CF, CEF1, CEF2], and Wilson, Jiménez Rolland, and Fulman
[Wi1, JW1, FJW].
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Lecture 3: Representation stability and linear categories

9 Representation stability and linear groups

There is a growing literature on generalizations of FI–modules designed to address sequences of Sn–
representations with additional structure, and to address sequences of representations of other families
of groups. In this section we will focus on the work of Putman–Sam [PS] and others on representations
of classical linear groups. Some applications of their work, including representation stability results for
Torelli groups and congruence subgroups, are outlined in section 10.

9.1 The categories

To develop an analogue of FI–modules that encodes sequences of Gn–representations for a family of
linear groups {Gn}, we seek a category whose endomorphisms are isomorphic to the groups Gn. For
each category C, we call a functors C → R–Mod C–modules and study the category C–Mod of C–modules
and natural transformations. The concepts of presentation degree (Definition XXXVI), polynomial degree
(Definition XXXIX) may all be adapted to the categories, and central stability degree (Definition XLII)
makes sense for modules over VIC(A), VICH(A), and SI(A).

Definition LXII. (The category VI(A).) Let A be a commutative ring. Let VI(A) be the category whose
objects are free A–modules of finite rank and whose morphisms are injective linear maps with left in-
verses.

Exercise 86. Show that the full subcategory on objects An, n ≥ 0, is a skeleton for VI(A).

Exercise 87.

(a) Show that the assignments V 7→
∧k

V, V 7→ Symk(V ), and V 7→ ⊗kV all define VI(A)–
modules.

(b) Show that these VI(A)–modules are polynomial of degree k.

The following variation on VI was introduced by Djament [Dj1].

Definition LXIII. (The category VIC(A).) Let A be a commutative ring. Let VIC(A) be the category
whose objects are free A–modules of finite rank and whose morphisms are given by an injective linear
map together with a choice of direct complement of the image. Concretely,

HomVIC(A)(V,W ) =

{
(f, C)

∣∣∣∣ f : V ↪→W an injective A–linear map,
C ⊆W a free submodule with imf ⊕ C = W

}
.

The composition law is defined by

(f, C) ◦ (g,D) = (f ◦ g, C ⊕ f(D)).
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Exercise 88. Show that the full subcategory on objects An, n ≥ 0, is a skeleton for VIC(A).

Exercise 89. Show that there is a surjection VIC(A)→ VI(A), but that this surjection does not
split.

Exercise 90.

(a) Does the sequence of groups {GLn(A)} and their embeddings have the structure of a
functor from VI(A) to the category of groups?

(b) Is it a functor from VIC(A) to the category of groups?

Exercise 91. Complete the following computations in when C is VI(A) and when it is VIC(A).

(a) Show that EndC(An) ∼= GLn(A) acts transitively on HomC(Am, An) by postcomposition.
(b) What is the stabilizer of the inclusion Am ↪→ An?
(c) Fix d. Describe the representable functor R ·HomC(Ad,−).
(d) Suppose that A = Fq is a finite field. Now how does the rank of the R–modules in the

sequence
n 7−→ R ·HomC(Ad, An)

grow with n?
(e) Let A = Fq . Deduce that the representable functor R ·HomC(Ad,−) does not have finite

polynomial degree. Contrast this result with Exercise 69.

Nagpal [Na2] proved that finitely generated VI(Fq)–modules do satisfy a polynomial growth condition.
This result was proved by Gan–Watterlond [GW1, Theorem 1.7] over Q.

Theorem LXIV. (q-polynomiality of dimension of VI(Fq)–modules.) (Nagpal [Na2, Theorem 1.1].) Assume
that R is a field in which q is invertible. Let M be a finitely generated VI(Fq)–module. Then there exists a
polynomial P such that dimRM(Fnq ) = P (qn) for all n sufficiently large.

The following variation on VIC(A) allows for actions of general linear groups with restricted determinant.

Definition LXV. (The category VICH(A).) Let R be a commutative ring and H a subgroup of the group
of units A×. Let GLHn (A) denote the subgroup of GLn(A) given by

GLHn (R) = {B ∈ GLn(A) | det(B) ∈ H}.

For a nonzero finite-rank free A–module V , define an H–orientation on V to be a generator of

rank(V )∧
V ∼= A

considered up to multiplication by H . We now define the category VICH(A) as follows. Its objects are
finite-rank free A–modules V such that nonzero objects are assigned an H–orientation. If rank(V ) =
rank(W ), then the morphisms HomVICH(A)(V,W ) are linear isomorphisms that respect the chosen H–
orientations. In particular, the endomorphisms satsify

HomVICH(A)(V, V ) = GLH(V ).

For rank(V ) 6= rank(W ), the endomorphisms

HomVICH(A)(V,W ) ∼= HomVIC(A)(V,W )

are again injective complemented linear maps (f, C), and we assign to C the (unique) H–orientation that
makes the H–orientations on (imf ⊕ C) and W agree. See Putman–Sam [PS, Section 1.2].
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Definition LXVI. (The category SI(R).) Let A be a commutative ring and let SI(A) be the category of
free finite-rank symplectic A–modules and isometric embeddings. Details are given in Putman–Sam [PS,
Section 1.2].

One of the main results of Putman–Sam [PS] is the local Noetherian property for these categories in the
case when A is a finite ring. Their proof uses a category theoretic notion of Gröbner bases, a variant on
the theory developed by Sam–Snowden [SS3].

Theorem LXVII. (The local Noetherian property.) (Putman–Sam [PS, Theorems A, B, C, D, E].) Let A be
a finite commutative ring. Let R be a Noetherian commutative ring. Then the categories of VI(A)–, VIC(A)–,
VICH(A)–, and SI(A)–modules over R are locally Noetherian.

Exercise 92. (Failure of Noetherianity for A infinite.) (Putman–Sam [PS, Theorem N].)

(a) Suppose that A contains Z. Show that SL2(A) contains a free group of rank 2.
(b) Suppose that A is an infinite ring of finite characteristic. Show that A is not finitely ad-

ditively generated. Then, find an injective map from the additive group of A to SL2(A).
(c) Suppose that A is an infinite ring. Show that VI(A) and VIC(A) are not locally Noethe-

rian.

Analogues of multiplicity stability (Definition XXVII) are known for finitely generated modules over
these categories in several cases. See Gan–Watterlond [GW1, Theorem 1.6] for VI(Fq)–modules, Gan–
Watterlond [GW2, Theorem 4] for VIC(Fq)–modules, and Patzt [Pa, Theorem A and B] for rational
VIC(Q)– and rational SI(Q)–modules.

Although we no longer have all the equivalences of finite presentation degree that hold for FI–modules
(see Theorem XLIII), finite presentation degree does imply the following.

Theorem LXVIII. (Consequences of finite presentation degree.)

• (Djament [Dj2, Proposition 2.14]; see also Patzt [Pa, Proposition 6.1] and Putman–Sam [PS, Theorem F].)
Let C be one of the above categories, and let M be a C–module presented in degree ≤ d. For an object V ∈ C
let |V | = 1

2 rank(V ) if C = SI(A) and |V | = rank(V ) otherwise. Then

MU = colimV ∈C,|V |≤dMV for all |V | ≥ d.

• (Patzt [Pa, Corollary 6.4(b)].) Let A be a ring with stable rank s. Let M be a VIC(A)–module generated
in degree ≤ d. Then M is presented in degree ≤ (d + s + 1) if and only if it is centrally stable in degree
≤ (d+ s+ 1).

• (Patzt [Pa, Corollary 6.4(c)].) Let A be a ring with unitary stable rank s. Let M be an SI(A)–module
generated in degree ≤ d. Then M is presented in degree ≤ (d+ s+ 2) if and only if it is centrally stable in
degree ≤ (d+ s+ 2).

10 Applications to geometry and topology

10.1 Torelli groups

Let Σg,b denote a compact orientable smooth genus g surface with b boundary components. For b = 0, 1,
recall that the first homology of Σg,b is the free abelian group

H1(Σg,b) ∼= Z2g
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with basis shown in Figure 11, and recall that the intersection pairing on these curves endows H1(Σg,b)
with a symplectic structure.

Figure 11: A Z–basis for H1(Σg,1)

Recall the definition of the mapping class group of Σg,b from subsection 8.3. The induced action of
the mapping class group on H1(Σg,b) respects the intersection pairing, and hence for b = 0, 1 defines a
representation Mod(Σg,b)→ Sp2g(Z). It is well-known that this representation is surjective.

Exercise 93. (Mod(T 2) = Sp2(Z).) Let α and β denote the curves on the closed torus T 2 =
Σ1,0 shown in Figure 12. The mapping class group Mod(T 2) is generated by the Dehn twists
Tα and Tβ (Theorem LII). Show that their action on H1(T 2) is represented by the following
matrices:

Mod(T 2) −→ Sp2(Z) ∼= SL2(Z)

Tα 7−→
[
1 1
0 1

]
Tβ 7−→

[
1 0
−1 1

]

This representation defines an isomorphism Mod(T 2) ∼= Sp2(Z).

α
β

β

Tα
Tα(β) = α+ β

Figure 12: The action of the Dehn twist Tα on the homology class of β

Unlike in genus g = 1, in general this symplectic representation has a large kernel.

Definition LXIX. The Torelli groups For b = 0, 1, the Torelli subgroup Ig,b of the mapping class group of
Σg,b is the kernel of the symplectic representation

1 −→ Ig,b −→Mod(Σg,b) −→ Sp2g(Z) −→ 1.

The subgroups Ig,1 are generated by the elements shown in Figure 13.

Johnson computed the abelianization of Ig,b in a series of papers in the 1980s. For p > 1, the groups
Hp(Ig,b) remain largely mysterious. It is unknown for most p and g, for example, whether these groups
are finitely generated. There is some hope, however, that we may be able to understand these homology
groups in the framework of representation stability.
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 homologous curves separating curve

γ
Tγ ∈ Ig,1

α

β

TαT
−1
β ∈ Ig,1

Figure 13: Some elements in the Torelli group Ig,1

10.1.1 The homology of the Torelli groups as SI(Z)–modules

We now specialize to the case of surfaces with b = 1 boundary component. By Exercise 73, there is an
action of Sp2g(Z) on Hp(Ig,1). Moreover, the embeddings Σg,1 ↪→ Σg+1,1 allow us to promote diffeomor-
phisms of Σg,1 to Σg+1,1 by extending by the identity. The resultant maps Mod(Σg,1) → Mod(Σg+1,1)
respect the Torelli subgroup, and we therefore obtain Sp2g(Z)–equivariant maps

Hp(Ig,1) −→ Hp(Ig+1,1).

Exercise 94. Show for each p ≥ 0 that the sequence of homology groups {Hp(Ig,1)}g has the
structure of an SI(Z)–module.

Open Problem 95. Show that, for each p ≥ 0, the SI(Z)–module {Hp(Ig,1)}g is presented in
finite degree. Find bounds on the degrees of the generators and relators.

The result of Problem 95 is trivial when p = 0, and it follows from Johnson’s description of the groups
H1(Ig,1) when p = 1. For p = 2, the problem was solved by Miller–Patzt–Wilson [MPW, Theorem B].

Theorem LXX. (Miller–Patzt–Wilson [MPW, Theorem B and 3.9].) The SI(Z)–module H2(Ig) has central
stability degree ≤ 45. It is generated in degree ≤ 21 and presented in degree ≤ 45.

More recently, Kassabov–Putman [KP, Theorem A] proved that {H2(Ig,1)}g is finitely generated as an
SI(Z)–module. Problem 95 is open for g ≥ 3.

10.2 IAn and Aut(Fn)

Definition LXXI. (The Torelli subgroup of Aut(Fn).) Let Fn denote the free group on n letters. Given
an automorphism Fn → Fn, there is an induced automorphism on the abelianization Zn of Fn. This
construction defines a homomorphism Aut(Fn) → GLn(Z). It is not difficult to verify that this homo-
morphism is surjective, and its kernel IAn is a group of interest in geometric group theory.

Exercise 96. (The homology of IAn as VIC(Z)–modules.)

(a) Use the short exact sequence

1 −→ IAn −→ Aut(Fn) −→ GLn(Z) −→ 1

to show that H∗(IAn) is a GLn(Z)–representation.
(b) Show that, for each q, the sequence {Hq(IAn)}n has a VIC(Z)–module structure.

A result of Day and Putman [DP, Theorem B] implies that H2(IAn) is finitely generated as a VIC(Z)–
module in degree ≤ 6. Miller–Patzt–Wilson [MPW] proved a central stability result for these degree-2
homology groups.
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Theorem LXXII. (Miller–Patzt–Wilson [MPW, Theorem A and 3.9], Day and Putman [DP, Theorem B].) The
VIC(Z)–module H2(IAn) has central stability degree ≤ 38. It is generated in degree ≤ 6 and presented in degree
≤ 38.

Open Problem 97. Show that, for each q ≥ 3, the VIC(Z)–module {Hq(IAn)}n is presented in
finite degree. Find bounds on the degrees of the generators and relators.

10.3 Congruence subgroups of GLn(K), revisited

Recall Definition LVI, the definition of the level I congruence subgroup GLn(K, I) of GLn(K).

Exercise 98. (A VICH(K/I)–module structure on Hq(GLn(K; I)).) Let K be a commutative
ring and I a proper ideal.

(a) Recall the defining exact sequence

1 −→ GLn(K, I) −→ GLn(K) −→ GLn(K/I).

Define the group H to be the image of K× in K/I , and recall that GLHn (K/I) is the
subgroup of GLn(K/I) of matrices with determinant in H . Show that GLHn (K/I) is the
image of GLn(K) in GLn(K/I).

(b) Deduce that the sequence of homology groups {Hq(GLn(K; I))}n has the structure of a
VICH(K/I)–module.

Theorem LVII showed that the sequence {Hq(GLn(K; I))}n is finitely presented as an FI–module. Ex-
ercise 98 raises the question of whether this sequence stabilizes as a VICH(K/I)–module. Miller–Patzt–
Wilson [MPW, Theorem C], buliding on Putman–Sam [PS, Section 1.5], proved the following.

Theorem LXXIII. (Central stability for Hq(GLn(K; I)) as a VICH(K/I)–module.)
(Miller–Patzt–Wilson [MPW, Theorem C]. See also Putman–Sam [PS, Theorem G]).
Let I be a proper ideal of a commutative ring K. Let t be the minimal stable rank of all rings containing the ideal
I , and assume that K/I is a PID of stable rank s. Then the sequence Hq(GLn(K, I)) has central stability degree

≤ s+ 1 for q = 0

≤ max(5 + t, 5 + s) for q = 1

≤ (2q − 1)(6t+ 21)− 10 + s for q ≥ 2

as GLHn (K/I)–representations.
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