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This volume is part of Elsevier’s Learning Trends series. Elsevier Science & 
Technology Books provides this series of free digital volumes to support and 
encourage learning and development across the sciences. Titles include content 
excerpts focused on a central theme to give the reader an introduction to new 
ideas and information on that topic. 

This volume in Chemistry Learning Trends introduces readers to a key chapter 
from the 4th edition of Camille Wermuth’s Practice of Medicinal Chemistry and 
highlights the interdisciplinary nature of medicinal chemistry. The succeeding 
articles, from the ScienceDirect Reference Module in Chemistry, Molecular 
Sciences and Chemical Engineering, will introduce readers to important themes 
and valuable methods raised in this chapter. 

Thank you for being a part of the Elsevier community! 
 

 

 

 

 

 

 

 

 

 



C H A P T E R

3

Drug Targets, Target Identification, Validation,
and Screening

Walter M.M. Van den Broeck
Janssen Infectious Diseases BVBA, Beerse, Belgium

O U T L I N E

I. Introduction 45

II. What is a Drug Target? 46

III. The Purpose of Target Identification 47
A. Target-Based Screening. 47
B. Phenotypic Screening 47
C. Fast Follower Strategy 50

IV. Target Options and Treatment Options 51

V. Target Deconvolution and Target Discovery 53

VI. Methods for Target Identification and
Validation 54
A. Affinity Chromatography 54
B. Genetic Methods 57

C. Haploinsufficiency Profiling in Yeast 58
D. Analysis of Resistant Mutants 59
E. siRNA for Target Validation 60
F. Yeast Three-Hybrid System 61
G. DNA Microarrays 63
H. Comparative Profiling 64
I. Analysis of the Pathophysiology 65
J. The Study of Existing Drugs 66
K. Systems Biology 66
L. In Silico Simulation of the Human Patient 67

VII. Target Validation 68

VIII. Conclusion 68

References 68

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are or what your name is, if it doesn’t agree
with experiment, it’s wrong. Richard P. Feynman (American theoretical physicist 1918–1988)

I. INTRODUCTION

For ages, humans have been using medicinal substances without tools like DNA microarrays to identify them.
Instead, they were guided by theories like the concept of the four humors in Greco-Roman medicine or by spiritual sys-
tems like animism. The chances are high that modern medicinal chemists would fully reject these rationales. Today we
believe that the essential first step in the discovery of a new cure for a disease is the identification of the protein that is
at the basis of that disease. The chances are high that medicinal chemists would fully agree with this rationale, but
maybe they shouldn’t. In this chapter, we will see why.
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First, we examine why the definition of a drug target is already a bit misleading. Then we explore whether the
mantra “first a target, then a drug” is a good guideline. We compare the three most used strategies for drug dis-
covery today and assess the role of target identification in these strategies. The next question is what kind of tar-
gets we should try to identify. Is the search for the cause of a disease a fruitful road to find new cures? Can we
find cures altogether? Finally, after having established the difference between the two meanings of target identifi-
cation, we describe briefly the current and most frequently used methods to identify and validate drug targets.

II. WHAT IS A DRUG TARGET?

In 1891, Paul Ehrlich was experimenting with dyes to stain bacteria. He had already made outstanding contribu-
tions in treating infected patients with antitoxins. Together with vaccines, these account for the successful immuno-
therapy. Ehrlich saw this immunotherapy as chemical reactions between very complex structures. At that time, the
concepts of cells and microorganisms were very new and nobody understood the composition of cells. Maybe a
cell was one big molecule, (i.e., a cell-molecule). Ehrlich believed that cell-molecules had side-chains to receive
nutrients from outside, and he called these side-chains receptors. He thought that bacteria also had receptors and
that the staining of bacteria was a chemical reaction between the dye molecule and the receptors. What if this reac-
tion could not only stain the bacteria but also kill them? What if this dye could do the same in an infected patient?
Ehrlich showed that methylene blue was taken up by the malaria parasite and had modest effects in two patients.
He was extremely excited by this and coined the term “chemotherapy.” The difference with immunotherapy was
that now the antitoxins—which were very complex and difficult to produce and standardize—could be replaced
by well-identified chemicals (small molecules) that were easier to produce and handle.

We owe the concept that a drug acts by binding to a target molecule to Paul Ehrlich. In his own
words:,“Corpora non agunt nisi fixata” or “substances don’t act unless they are bound.” Today this concept is
still valid. The Oxford Dictionary of Biochemistry defines a drug target as “a biological entity (usually a protein or
gene) that interacts with, and whose activity is modulated by, a particular compound.” Peter Imming [1] uses the
following working definition: a molecular structure (chemically definable by at least a molecular mass) that will
undergo a specific interaction with chemicals we call drugs because they are administered to treat or diagnose a
disease. The interaction has a connection with the clinical effect(s).

These definitions could give the misleading impression that a drug�target interaction is a one-to-one relation
[2], as if every drug acted by binding to one and only one single specific target. This impression is further
strengthened by the ambition of every medicinal chemist, starting with Paul Erhlich himself, to synthesize a
“magic bullet,” an ultra-specific compound that would bind only to the target and to nothing else. However, evi-
dence is growing that many drugs are successful just because they act on multiple different—not co-located—
targets, potentially even hitting several pathways together [3]. Of the 1366 drugs reported in DrugBank 2.0, about
960 have more than one therapeutic target [4], a phenomenon called polypharmacology. As a consequence,
searching for a super-selective drug may not always lead to the most active compound. In this perspective,
target-based drug screening is not well suited to discover these so called “dirty drugs.”

The one-to-one relation also doesn’t fit with drugs that act by binding to a complex of proteins or even a com-
plex between proteins and nucleic acids. Many proteins form dimers, trimers, or even more complex constella-
tions. In these cases, the drug binding pocket could contain parts of two or more proteins. But the target
discovery tools are less well suited to find such targets.

Yet another—very obvious—violation of the one-to-one relation is that the same pocket can accommodate
many different small molecules. A substantial part of all new drugs is based on this promiscuous behavior of
many pockets. The production of close analogues—or, more pejoratively, “me too drugs” —is often seen as a risk
averse and profit driven strategy. Nevertheless, these drugs often result in an important incremental progress in
activity, side effect profile, or administration facility [5].

A less obvious violation of the one-to-one relation is the fact that a protein can contain multiple pockets. Usually
these pockets are all different and could partially overlap, be indirectly connected by allosteric regulation, or be
completely separated. The binding to these different pockets could result in different effects. For example, the bind-
ing with nucleoside drugs to the active site of a viral polymerase makes it more difficult for the virus to build resis-
tance than with nonnucleoside drugs that have their binding site outside the active site of the enzyme.

These comments make the picture of a drug target more complex. We could define a drug target as the
minimal constellation of molecules that elicit a medically desired effect when bound by a drug.
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III. THE PURPOSE OF TARGET IDENTIFICATION

Before exploring the plethora of methods to identify drug targets, we should discuss the role and the value of
target identification in the drug discovery process. We will describe the role of target identification in the follow-
ing three drug discovery strategies for small molecules:

� Target-Based Screening Strategy
� Phenotypic Screening Strategy
� Fast Follower Strategy

A. Target-Based Screening

Target identification is the cornerstone of target-based screening. The concept underlying this strategy is that
at the most fundamental level, most drugs work by binding to a specific target. Therefore, if you want to make a
truly new drug, the first thing you have to do is to find a new target. The next step is to find small molecules
that bind to this target, preferably as specific as possible. This procedure looks so overwhelmingly self-evident,
innovative, and scientific that the complete pharmaceutical research community has been dreaming for decades
about realizing this strategy. With tremendous efforts, some even succeeded in making drugs this way (e.g.,
mercaptopurine and cimetidine), but in general the tools were inadequate.

Beginning in the 1980s with the breakthrough in gene technologies, along with the invention of the extremely
versatile polymerase chain reaction in 1983 and the publication of the human genome by HUGO and Craig
Venter in 2001, pharmaceutical scientists finally received the tools they needed to turn the blind old-fashioned
dull drug screening into a highly rational, hypothesis-driven, reductionistic and efficient drug discovery engine.
Target-based screening was now possible, and the entire industry embraced it, largely replacing the phenotypic
screens [6,7]. Even today, in many presentations on drug discovery for the general public and in many textbooks
[8] and publications [9,10], the mantra “first a target, then a drug” is still presented as the main road for drug dis-
covery. The technological advancements are indeed enormous. Today we can sequence the genome of entire
organisms in days and measure gene activity in single cells. We can trace individual molecules as they move
around in a cell. We can screen millions of compounds in miniaturized and robotized high-throughput assays.
Crystallographers can observe protein targets at atomic scale. Faster than ever before, chemists can synthesize
very complex molecules, and these can be quantified and identified in very small amounts. Bio-informatics can
mine big databases and simulate biological pathways and systems. These technological advancements are cer-
tainly as profound and extensive as those in the electronics industry. Many people in the field, particularly
molecular biologists and young managers, expected to see an explosion of new drugs against diseases formerly
untreatable. But today, most diseases are still here, and the only thing that really exploded was the cost to dis-
cover and develop new drugs. In a recent article [11], the authors plotted the number of drugs that could be
developed with 1 billion dollar over the years, beginning as early as 1950. The investments were corrected for
inflation. It’s remarkable that the exponential decrease in output is almost constant over the entire time-span.
There is no such thing as a dramatic revolution in increased output. This constant exponential decrease in itself
is not scientific proof that there is something wrong with the target-based screening strategy. There could be—
and there certainly are—other reasons that could explain the steady increase in R&D cost per drug. But the least
thing it proves is that target-based screening and all the new technologies have not brought the expected quan-
tum leap in R&D efficacy. A more specific investigation [12] tracked down the research strategies for all 259
drugs that were approved by the FDA between 1999 and 2008. For the so called first-in-class small molecules
(molecules with a new target, not the me-too ones) 38 percent came out of target-based screening. The other 62
percent came out of phenotypic screening. And 62 percent is even an underestimation of the success-rate of
phenotypic screening, because this strategy was used less by industry. (Figure 3.1).

Target-based screening is now more and more brought into question [6,12�17]. Although this strategy has certainly
led to many successes, it has failed more than expected. Often the targets thrown up by this reductionistic, bottom-up
approach were wonderful in vitro but disastrous in the clinic due to lack of efficacy or unexpected toxicity [18].

B. Phenotypic Screening

The under-performance of the above described target-based screening leads us to the question whether it’s pos-
sible to develop drugs without knowing the target in the first place. The answer is, of course, a big “yes.” Aspirin
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was synthesized in 1897, but its mechanism of action only discovered by Vane [19,20] in 1971 and its target in 1976.
Morphine was used for ages, but its main target, the μ-opioid receptor, was identified by Pert and Snyder [21] in
1973, while other targets are still under investigation. The targets of the general anesthetics are only gradually emerg-
ing within the last decade, with the GABAA receptor as the most prominent one [22]. We could tell similar stories for
the benzodiazepines, corticosteroids [9], cyclosporine and FK506 [12,23,24], sulfonylureas, antipsychotic drugs,
fibrates, vinca alkaloids, and many antidepressants [8]. And although the targets for most antidepressants have been
determined by now, their mechanism of action is still a mystery [25�27]. It may also be that the actual declared tar-
gets for some drugs are in fact only off-target effects and that the real targets will be discovered in the future. The
reader will appreciate that we can’t give an example of this last group today.

It is safe to say that most “first in class drugs” developed before the 1980s were discovered by phenotypic
screening. First, you discover an active compound, then you try to determine the target. This is exactly the opposite
of target-based screening. Today, phenotypic screening is often seen as cellular screening. But cells are only the
smallest living organisms that can build up a phenotype out of their genome. All the experiments in which we
examine the effect of at least one compound on the phenotypic level are phenotypic screens. A Neanderthal observ-
ing papaver somniferum reducing his tooth pain was performing a kind of phenotypic screen. There is an enor-
mous variety in types of cells, cell combinations, tissues, and animals that can be studied [17]. One could rank
these experiments on a scale going from the more reductionistic ones on the left to the more holistic ones on the
right. The most holistic and closest to real-life situations are experiments in humans, better known as clinical trials.
All other experiments more to the left—however sophisticated and ingenious they might be—are always only an
approximation of the real thing. Figuring out a mutation in a gene for leptin in a family with extreme obesity is

FIGURE 3.1 Target identification can be split into target deconvolution and target discovery. The former is used to identify the target of
an active compound, usually obtained by phenotypic screening (blue arrows). The latter is used to discover a new target whose modulation
would be of medical use. This target is the starting point for a target-based drug screening project (brown arrows) resulting in an active
compound. Target-based screening is a longer process because you first have to screen for a target before you can screen for a compound. In
phenotypic screening, the target identification can be done in parallel with the further lead optimisation or even be omitted, and therefore is
not on the critical path (dotted arrows).
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only an approximation of the possible genes causing obesity in the whole population. Indeed, the developed leptin
analog was extremely effective, but only in the very small group of people carrying the mutation [13].

Case studies and observations of side-effects in clinical trials (or via drug surveillance) represent an extremely
valuable source of information. They form an unplanned phenotypic screen of the highest level. Although a
clinical trial is a planned phenotypic experiment, the unexpected side-effect that could eventually result in a
drug repositioning exercise was not planned. Drug repositioning and obtaining lead compounds based on
unplanned observations are not extremely rare, but they can hardly be conceived as a planned research strategy.

Phenotypic screenings of limited but well-chosen sets of compounds in animals have been a very produc-
tive way to find new drugs in the period stretching from the end of World War II until the 1980s. Today,
animals are not used anymore to screen compounds for having interesting (unexpected) effects. They are
used to confirm expected effects (and to study the pharmacokinetic properties and safety profile of
compounds). But the zebrafish is changing this again. For those not familiar with this fish—which is never
served in restaurants—it is a very small (4 cm) fish with transparent embryos that for several reasons has
become a favorite vertebrate animal model in research. One can easily put 10 embryos in one well of a
96-well microtiter plate. The behavior of these embryos upon treatment with a compound can be monitored
automatically. For example, the team of Randall Peterson [28] measured the motor activity upon stimulation
with intensive light and could link the so called photomotor response profiles to different classes of neuroac-
tive drugs. In an automated platform, 5,000 embryos could be observed per microscope per day. In total they
screened 14,000 different compounds, and the behavioral information of more than a quarter million embryos
was collected. (Figure 3.2).

Most phenotypic screens today are still performed in cells. Again, we have to be aware that cells are only an
approximation of tissues and organs. And cells in laboratories—often immortalized cancer cell-lines, possibly
manipulated to mimic a disease state—could behave totally differently than normal cells. Nevertheless, these cel-
lular phenotypic screens have many advantages over biochemical screens with purified targets. A major advan-
tage is that in a cell, the target is in its normal biological context: it is present in the real compartment of the cell,
in the real constellation with other proteins and membranes, at the real concentration, in the real
phosphorylation-ubiquitination-glycosylation-acylation and whatever state, and embedded in its full metabolic
and regulatory pathways.

FIGURE 3.2 Eight to ten zebrafish
embryos are put in every single well of a
96-well plate. The aggregate motor activ-
ity per well is recorded over a 30-second
time span, during which two light sti-
muli are given at 10 and 20 seconds
(red arrows). The reactions to the light
flashes are translated to distinct behav-
ioral patterns that can be used to evalu-
ate potential neuroactive drugs. Using
an automated platform, 5,000 embryos
could be screened per microscope-day.
Source: Adapted from reference [28].
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A second advantage is that cells contain more than one target. Throw a potential bactericidal compound on a
culture of M. tuberculosis and you are testing its activity on 614 vital proteins, about 3,400 other proteins, and an
unknown set of nonprotein targets [29]. In contrast, in a biochemical screen you only test one known target at a
time and it can take years to set up an assay for a second protein. Then there is a good chance that this protein is
in an artificial, biologically irrelevant state. The only advantage is that the high-throughput capacity is usually
higher, but critics would say that this only helps to produce an even bigger pile of irrelevant hits.

A third advantage is that phenotypic screens do not fail to identify prodrugs, which need to be converted to
active drug by a host cell or a bacterial cell. Prodrugs are not active in biochemical assays.

For the fourth advantage of phenotypic screening, it is instructive to look at the search for antivirals against
the hepatitis C virus (HCV). Compared with a human or even with a single cell, a virus is a simple organism.
You sequence its little genome and try to figure out the function of the handful of viral proteins. You can bet that
all of them must be vital and hence must represent good drug targets, especially the enzymes. Target-based
screening makes much sense here. You synthesize the enzyme, make a biochemical screen, test thousands of
compounds, and—with some luck—you obtain active inhibitors. If, after further optimization, these inhibitors
have an acceptable oral bioavailability, if they have a good half-life, if they can penetrate the liver cells, and if
they have no safety issues, you have a drug. This turned out to be the case for compounds targeting the HCV
protease enzyme, while compounds targeting the HCV polymerase enzyme [30] are in late stage clinical develop-
ment. However, the class of replicase complex inhibitors—formerly known as NS5A inhibitors—could only be
found by phenotypic screening. These compounds have picomolar in vitro activities and about eight of them are
now in phase 2�3 studies [30]. The exact role of the nonstructural viral NS5A protein and the way the com-
pounds bind to it is still a matter of debate. This enigmatic and intractable protein would never have been
selected as a target in the target-based screening strategy. This example shows that phenotypic screening can be
used to access less obvious targets. Mark Fishman, president of the Novartis Institutes for BioMedical Research
(NIBR), who initiated a phenotypic screening effort when he moved to Novartis in 2002, puts it this way: “For
me it’s a discovery tool. The single biggest impediment to drug discovery is the small number of new, validated
targets that we have. Phenotypic screening is one way of moving beyond well-defined targets from the literature
to discover new therapeutic targets and new disease biology.” [6] Another example is the discovery of bedaqui-
line, the first anti-tuberculosis drug with a new mechanism of action in 40 years [31]. Bedaquiline [32], synthe-
sized by J. Guillemont, was discovered by a phenotypic screen and its target, the bacterial ATP synthase, was
identified afterwards. Again, this target would probably never have been chosen as starting point in a target-
based screening campaign and can actually not even be tested in isolation because of its complexity.

What’s the role of target identification in the phenotypic screening approach? There are two cases.

� In cases where you use phenotypic screening to find active compounds, it is still very useful to identify the
target. First, building a SAR based on activities measured with a biochemical assay gives you a higher
resolution because you exclude all the variations caused by cell penetration, off-target binding, cell
compartmentalization, and so on. But one has to keep the cellular activity under close surveillance. Working
years in the chemistry labs to build a compound that is super-active in the biochemical assay but doesn’t
penetrate the cell anymore is a waste of time. Second, when 3D-stuctures of the target are available, molecular
modeling could assist the SAR. Third, knowing the target could also help in exploring the toxicity and the
role of the pathways in human and animal models. Fourth, in general it is substantially more challenging to
get a compound without a target through the consecutive approval committees within and outside the
company. However, knowledge of the target is not always a regulatory requirement for drug approval.
Between 1999 and 2008 the FDA has approved nine compounds with unknown targets [12,19].

� In cases where you use phenotypic screening as a way to find new targets, the role of target identification is self-
evident. This approach to finding new targets becomes more and more a valid option for three reasons. First, there
is the increased capability to read out ever more complex phenotypes, there is the increased capacity to handle
more animals by using robots, and there is the renewed interest in phenotypic screening in general. Second, the
methods to determine a target—as will be described further in this chapter—are becoming increasingly efficient.
And third, targets found via phenotypic screening are more likely to become valid targets.

C. Fast Follower Strategy

The fast follower strategy consists in synthesizing analogs of an existing drug in the hope of obtaining a com-
pound with at better profile than the starting drug. This strategy is often regarded as not innovative, while there
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are many examples where the second or third so called me-too drug offered real clinical improvements [33]. This
strategy has many advantages. There is no need to invest in the discovery of a target, and the target is already
validated in the best possible way: in humans. Besides the known therapeutic efficacy and safety profile, even
the financial risks and benefits can be estimated with more certainty. The probability that at least some of the
new analogs will have similar or even better activities is usually high. The new compounds should, of course,
fall outside the patent of the original drug. Given the virtually infinite chemical space and the creativity of medic-
inal chemists, this requirement is an easily attainable goal. It becomes trickier to stay outside the competitor’s
patents applications on the same target during the 18 months before they are published. Given these advantages,
it should not come as a surprise that the number of fast follower drugs is rather high. Of the 259 drugs approved
by the FDA between 1999 and 2008, 164 (63 percent) were follower drugs. In the subset of small molecules, the
percentage was even higher at 74 percent [12].

The role of target identification in the fast follower strategy is mainly limited to the confirmation that the new
compounds still work on the same target. Target knowledge can, of course, be used to drive the SAR.

Chemists have to be aware that the fast follower approach is less attractive for biologists than for chemists.
Biologists can be very creative and use their full intellectual potential in proposing new hypotheses on working
mechanisms, in the endeavor to find new targets and in the design of new assays. But in the fast follower
approach, most of this early work is already done and described by the originators. Biologists merely have to
reproduce parts of this work. For the medicinal chemists, however, the fast follower approach stretches their
chemical knowledge and creativity to the limit. They don’t have to reproduce but instead come with something
better in a new way.

IV. TARGET OPTIONS AND TREATMENT OPTIONS

In this section, we deal with questions like “What are good targets?”; “Which targets should we try to dis-
cover?”; “What can we achieve with targets?”; and “What are the therapeutic targets and treatment options?”

Today, most drugs are discovered and developed by commercial organizations. Even if their shareholders
would not be interested in making money, companies at least have to make sufficient profit to cover the cost of
new research and development. Therefore, the selection of a target is driven by scientific as well as commercial
considerations [5]. In an ideal world, the commercial value of a drug should be in parallel. (Figure 3.3).

with its therapeutic value. The therapeutic value can be determined by calculating the DALYs (Disability
Adjusted Life Years) that a disease or condition causes. Severe but rare diseases result in fewer DALYs compared
to less severe but very common chronic diseases. In the real world, one should add the difference in purchasing
power of patients to the equation. Even then, predicting the return of a drug has proven to be very hard. For
example, several companies were not interested in licensing atorvastatin (Lipitor) [5]. Here we will focus on the
scientific considerations. Given a selected disease, what are the chances of finding a small molecule against it?
What is a good target if we want to cure the disease? Or is this already a wrong starting point?

In some languages, the word “drug” or “medicine”—not to mention the word “cure” —is translated by a
word that literally means “agent that cures.” That sounds fair and familiar, but most of us don’t realize how
wrong this really is. The majority of drugs synthesised and sold today don’t cure at all. A cure should result in
the permanent end to the specific instance of the disease, without further need for medication. A cure also
implies that a relapse should not be the consequence of an inadequate treatment. Proton pump inhibitors or H2
antagonists can cure a patient with a duodenal ulcer within several weeks. More precisely, the temporary sup-
pression of the normal gastric acid production permits the body to repair the gastric mucosa. But they do not
remove the major causative agent, the bacterium Helicobacter pylori, and within a year the patient can relapse.
Therefore, antibiotics are added to complete the treatment. Cases where a patient relapses after antibiotic
treatment could be due to inadequate cure (i.e., not all bacteria were killed) or to reinfection from outside.

A quick look at the top 200 pharmaceutical products by 2009 worldwide sales [34] gives us plenty of examples
of drugs that don’t cure: cholesterol lowering drugs, anticoagulants, anti-asthmatics, anti-psychotics, anti-rheumatics,
insulin, anti-diabetics, anti-Alzheimer products, blood pressure lowering drugs, painkillers, erythropoietin, anti-epilep-
tics, erectile dysfunction products, immunosuppressive agents, nasal vasoconstrictors, hypnotics, sedatives, vaccines,
urinary incontinence products, anti-Parkinson products, and narcotic analgesics. The pharmacological classes that do
cure—at least sometimes—form a much shorter list; anti-infective drugs and anti-cancer drugs are the most prominent
ones. Anti-ulcerants, as explained above, are a bit of a special case. The acute use of anticoagulants to dissolve a blood
clot in the coronary arteries just after a heart attack could also be regarded as curative.
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The observation that most drugs don’t cure is not mind-blowing, but surprisingly this observation is often
ignored by scientists looking for a new target. They persist in looking for the cause of a disease. They are looking
for the gene mutations that cause cystic fibrosis, schizophrenia, Alzheimer disease, diabetes, obesity, and others.
They are looking for the medical insults in early life that may cause epilepsy or autism or depression. But when
they finally determine the deletion of three nucleotides that result in the loss of amino acid phenylalanine in posi-
tion 508 of the CFTR protein, causing this protein to fold abnormally and finally being responsible for two-thirds
of the cystic fibrosis cases, what then? Can they undo the deletion with a small molecule? No. Can they replace
the CFTR gene with a small molecule? No. Can they replace the cystic fibrosis transmembrane conductance regu-
lator by a small molecule? No. What about when scientists finally discover that 5 percent of schizophrenia is

FIGURE 3.3 A simplified overview of the drug landscape. The areas in blue are covered by small molecules. The darker the blue, the
more predominant the small molecules are. Biologicals are in grey. In general, it’s very hard to cure a disease with small molecules, except for
infections and cancer. Therefore, the targets for small molecules can best be found in the pathways that could modify the disease. The proteins
that are on the causative path may be of indirect use but are rarely direct targets for small molecules, except again for infections and cancer.
Some remarks to the figure: a. By definition, only molecules that are introduced into the body can form part of the diagnostic drugs and they
are mainly used for imaging. b. Although there have been some curative gene therapy interventions in the past (like for SCID), at the moment
the only approved gene therapy is Glybera, but that works only transiently and is therefore grouped under treatment. c. Nutrient supplements
are grouped under the treatment of a shortage with preventive effects. d. Ivacaftor could also be seen as an allosteric agonist.
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caused by being born in winter or by hypoxia during fetal development? Can they change the birthday of
the patient with a small molecule? Can they influence fetal conditions decades after birth with a small molecule?
We could go on with other examples. The bottom line is that in general it is not possible to remove the cause of a
disease with small molecules. Only when the cause is a cancer cell or a pathogen, things that don’t have to be
repaired or replaced but simply have to be killed, only then can small molecules cure.

There are of course exceptions. The small molecule ivacaftor is the first approved molecule that repairs a
defective protein. The defective protein is the CFTR protein with the less frequent G551D mutation that accounts
for 4�5 percent cases of cystic fibrosis. The word “repair” is perhaps not the best term, because ivacaftor most
probably facilitates the impaired channel gating via an allosteric potentiating effect [35]—a kind of patch, so to
speak. Ivacaftor has to stay in place to keep the protein channel open. It works only for a small subset of the cys-
tic fibrosis patients. Again, ivacaftor is an exception, and although we can’t exclude that science will change this
tomorrow, the lesson today is that proteins or genes that cause disease could be very interesting but are rarely
good drug targets for small molecules.

What are then better targets? Beta2-adrenoceptor agonists are effective in the acute treatment of asthma,
although asthma is not caused by a defective sympathetic nervous system stimulation. The underlying cause of
essential hypertension is unknown but can be treated—not cured—with alfa1-adrenoreceptor antagonists (among
others). These examples show that it is not mandatory to explore the full pathogenesis of a disease to invent
drugs that relieve symptoms, that counteract potential lethal situations, and that prevent further damage or
future damage. It also points to where we should look for targets. In order to mitigate or counteract the effects of
a disease, we should look for powerful master switches: proteins that are specialized in modulating cell func-
tions. These proteins have a name: receptors. So it makes complete sense that 60 percent of all targets are located
on the cell surface [36] and that 44 percent of the human targets are receptors [37]. Of these receptors, 82 (42 per-
cent) are G protein-coupled receptors targeted by 357 unique drugs [37]. Of the 1,062 drugs that act on human
targets, 563 (53 percent) of them bind to receptors. In fact, except for the 88 cancer targets, almost all other human
targets are involved in disease modifying therapy. We should also not forget that more and more drugs have
nothing to do with disease. Examples include women who want to become temporally infertile and the elderly
who want to smooth out their wrinkles or extend their normal life-span.

In most articles [1,2,36�38] that estimate the number of actual and potential targets, the authors are rather pru-
dent and conservative. Despite our 20,000 genes, the number of targets is often estimated to be only a few thou-
sands. We are not going to refute this guesstimate but will make three remarks:

1. The famous visionary and science fiction writer Arthur C. Clarke once said that “If an elderly but
distinguished scientist says that something is possible, he is almost certainly right; but if he says that it is
impossible, he is very probably wrong.” [39]

2. In the years just before the Wright brothers took off with their motorized airplane, elderly distinguished
scientists declared that it was impossible to fly with machines heavier-than-air. These scientists apparently
never observed a bird.

3. In the years just after the first antisense drugs were approved by the FDA, imagine how many more drug targets
we would have if we were able to deliver easily [40] antisense and siRNA constructs into human cells. Imaging
we would be able to activate genes with saRNA or be able to repair genes with rather small molecules [41].

V. TARGET DECONVOLUTION AND TARGET DISCOVERY

Figure 3.1 illustrates the two different meanings and applications of target identification. To avoid confusion,
we will call the first target deconvolution and the second target discovery. In literature, target identification is
often used for both, although target deconvolution is used more and more.

1. Target deconvolution.
With target deconvolution, we mean that we have an active compound for which we want to find out,

elucidate, assess, determine, and identify the target on which it is working. Target deconvolution [42] is the
more recent appellation. Most often the active compound comes out of a phenotypic screening project.
Therefore, target deconvolution is seen as an important and almost indispensable component of the
phenotypic screening strategy. It is, however, not on the critical path in the sense that a project could advance
to lead optimisation and in principle even to clinical trials and market approval without target knowledge.
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The target identification can be executed in parralel with the further process. As stated before, the FDA
approved 9 drugs [12,19] without known targets between 1999 and 2008.

2. Target discovery.
With target discovery, we mean that we want to find a potential target that can be used in a target-based

screening project to obtain active compounds. The starting point is different, as we have no compound. We
have a disease for which we want to find, screen, and explore possible targets. Target discovery is an absolute
indispensable starting point for every target-based screening campaign. Target discovery can also be a part of
academic research into the pathogenesis of a disease. One valid way to discover new targets is to start a
phenotypic screening followed by target deconvolution of the lead compound. Most of the methods used for
target discovery can also be used for target deconvolution.

VI. METHODS FOR TARGET IDENTIFICATION AND VALIDATION

There are dozens of methods to identify drug targets and the field is heavily based on extremely
rapidly evolving technologies such as molecular biology, miniaturization, microscopy, automation, and informat-
ics. Although we selected the most frequently used methods, the list is certainly not complete and risks becoming
outdated very rapidly. No single method or guideline can be applied to every target, and the methods are com-
plementary. There is also no common way to classify the different methods [9,23,42�50]. Therefore, we have
gathered them in an overview (Table 3.1) so that the reader can classify them using multiple criteria.

A. Affinity Chromatography

Concept. An immobilized small molecule is used as a bait to fish the best binding protein(s) out of a mixture
[42,44�46,51].
Input. An active small molecule and a mixture of possible targets (proteins).
Output. A fraction of the mixture that is enriched in targets that have a high binding affinity to the small
molecule.
Group. Affinity based method. Direct method. Compound-centric chemical proteomics method. Target
deconvolution. Bottom-up. One of the most widely used methods, especially for targets that are only present
in mammalian cells or whole organisms [44].
Description. Affinity chromatography is a method to separate or purify mixtures based on different affinities
toward a solid phase. Here the mixture is a cell or tissue lysate that contains the target(s) for the small
molecule of interest. The small molecule is chemically attached to the solid phase. This solid phase (also
referred to as stationary phase, column packing, matrix, beads, or resin) often consists of agarose or sepharose.
The cell lysate acts as the mobile phase and is incubated with the solid phase. The components that have the
highest affinity for the small molecule will bind preferentially to the solid phase. The unbound components of
the cell lysate are then washed away or eluted from the column using an appropriate buffer. The next step is
the elution of the bound target. This can be done with a buffer that disrupts the interaction between the target
and the immobilized small molecule. Alternatively, the target can be eluted using an excess of free small
molecules. The purified target now remains to be identified using advanced mass spectrometry or
immunodetection on a SDS-PAGE gel.
Requirements. This method can only be applied when one has already obtained a (small) molecule by
phenotypic screening or other sources. The second requirement is that it must be possible to chemically attach
the small molecule to the solid phase in such a way (or under the assumption) that it doesn’t interfere with
the binding toward the target protein. It can be helpful to dispose of a SAR to identify parts of the molecule
that can be used to attach the linker.
Advantages. This method has been very successful, and a large number of modifications are available to
overcome several drawbacks. The most important advantage is that although the binding happens in vitro, the
targets in the cell lysate are still in a very natural state [42,51]. The cells can be primary cells, even from
human biopsies. These cells contain the entire proteome for that cell-type and disease-state. This is an
unbiased probe compared to individually recombinant synthesized proteins in artificial prokaryotic cells,
missing post-translational modifications. In the lysed cells, the proteins were embedded in their full metabolic
and regulatory pathways, possibly in some relevant activation and labeling state.
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Disadvantages. First, the immobilization of the small molecules is not a routine operation and can abrogate
the biological interaction with the protein. It will not be possible to find a good linker for every compound.
Second, the assumption that the protein with the highest affinity to the small molecule is likely to be the
biological target can be wrong. Also, when the small molecule has to bind to more than one protein in order
to exert its biological activity, only the most abundant or strongest binding protein will be recovered. Third,
the method works best for high-affinity bindings with dissociation constants ranging from 1027 to 10215M.
The lower the binding affinity, the more target proteins will be lost [42]. Fourth, this method is best suited to
soluble proteins. Membrane bound proteins or nonproteins will be hard to identify with the standard set up
[46]. Fifth, the conditions have to be adapted for every small molecule. This is not a high-throughput assay.
Further disadvantages are nonspecific protein binding, the use of complex instrumentation, and the trial and
error aspects in the fine-tuning [44].

TABLE 3.1 Some Methods for the Deconvolution, Discovery and Validation of Targets

Method Objective Group

Small

molecule
state

Binding
occurs in Target state

Target
production

Detection of
binding

Target

identifi-
cation

Affinity Chroma-
tography (A)

T.
Deconvolution

affinity
methods

linked to
solid phase

vitro in lysate normal1
lysate

affinity
separation

mass
spectrometry

Fractionation (A) T.
Deconvolution

affinity
methods

labeled but
free

vitro in lysate normal1
lysate

fraction is
labeled

mass
spectrometry

Phage Display (A) T.
Deconvolution

affinity
methods

linked to
solid phase

vitro linked to phage expression-
cloning

affinity
separation

sequencing

mRNA Display (A) T.
Deconvolution

affinity
methods

linked to
solid phase

vitro linked to mRNA
construct

expression-
cloning

affinity
separation

sequencing

Haploinsufficiency
Profiling (HIP) (C)

T.
Deconvolution

genetic
methods

totally free cells normal modulated
expression

change in
phenotype

sequencing

siRNA (C) T.
Deconvolution

genetic
methods

totally free cells normal modulated
expression

change in
phenotype

sequencing

Resistant mutants (D) T.
Deconvolution

genetic
methods

totally free cells normal vs
mutated

normal change in
phenotype

sequencing

siRNA (E) T. Discovery
T. Validation

genetic
methods

na na normal modulated
expression

na change in
phenotype

Yeast three-hybrid (F) T.
Deconvolution

genetic
methods

free but
with linker

cells linked to acti-
vating domain

expression-
cloning

change in
phenotype

sequencing

DNA microarrays (G) T. Discovery genetic
methods

na na normal normal vs
altered

na spot location
1 database

Protein
microarrays (G)

T.
Deconvolution

microarrays labeled but
free

vitro linked to solid
phase

not defined affinity
separation

spot location
1database

Gene expression
Profiling (H)

T.
Deconvolution

Profiling totally free cells normal normal change in
transcriptome

profile
comparison

Analysis of
patho-physiology (I)

T. Discovery top-down
approach

useful cells normal normal not defined not defined

Study of “old”
drugs (J)

T. Discovery top-down
approach

not defined not
defined

not defined not defined not defined not defined

Systems biology (K) T. Discovery in silico in silico in silico in silico in silico in silico in silico

Simulation of a
human patient (L)

complete
knowledge

in silico in silico in silico in silico in silico in silico in silico

The letters in brackets refer to the section in this chapter where the method is described. T.: Target. Na: not applicable. Normal means that the target is in its

normal physiological state and location. The grouping of methods is rather arbitrary. Some authors group phage display under genetic methods, while there

are reasons to group protein microarrays under affinity methods.
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Examples. Because affinity chromatography is one of the most used methods for target deconvolution, the
number of examples is huge. Some examples are: tubulexin A binding to CSE1L and tubulin, Methyl gerfelin
binding to glyoxalase 1, piperlongumine binding to GSTP1, Imatinib binding to kinases, and resveratrol
binding to eIF4A
Case study. A dramatic example is the identification of a primary target of thalidomide teratogenicity in 2010
by the group of Ito [52]. Thalidomide was marketed during the late 1950s as a safe sedative because no lethal
dose could be established in animals. Therefore, it was prescribed to thousands of pregnant women, especially
for morning sickness. Soon thereafter, an epidemic of typical birth defects broke out. Thalidomide could be
identified as the cause and was removed from the market, but for more than 10,000 children it was too late.
Thalidomide was the biggest disaster in pharmaceutical history and was the start of a much more stringent
FDA. But, amazingly, the drug is back. After the serendipitous discovery in 1965 by Dr. Sheskin of its
miraculous effect on erythema nodosum leprosum [53], a very painful leprosy complication, the drug is
now used under strict control for the treatment of leprosy and multiple myeloma. Because the effects of the
drug are that unique, several hundreds of clinical trials are now undertaken, mainly in the field of cancer.
Unfortunately, in South America children are again born with limb and other birth defects due to
noncompliant use of thalidomide. If the mechanism of action of thalidomide’s teratogenicity could be found,
safe analogs could perhaps be conceived. Many mechanisms were proposed, but the direct target was not
known. The group of Ito performed a classic affinity purification using magnetic FG beads. To bind the
compound to the beads, a carboxylic derivate (FR259625) was made [54] and bound covalently to the amino-
group of the Glycidyl methacrylate. The loaded beads were then incubated with HeLa cell extracts (a cancer
cell once taken without permission from the cervix of Henrietta Lacks). The beads were washed very
stringently and bound proteins finally eluted using free thalidomide [55]. The eluate was put on a SDS gel
electrophoresis and silver stained. Only two protein bands could be found and identified with mass
spectrometry: cereblon (CRBN) and DNA binding protein 1 (DDB1). The latter in fact did not bind directly to
thalidomide but was piggy-backing on cereblon. After identification of the target, several target validation
experiments were performed, as will be described at the end of this chapter. (Figure 3.4 and Figure 3.5)
Variations.
1. Reduction of sample complexity. When the drug binds many proteins in an unspecific way, one can try

first to eliminate the proteins that are not of interest [56].
2. Compound analogs. A way to validate the target is to synthesize compounds with weaker and stronger

affinities for the protein and then to examine the correlation between the phenotypic effect and the affinity
[44]. The extreme is to compare with a nonactive analog [42].

3. Biotinylation. When biotin can be attached as linker, the biotin can then be bound with high affinity to
streptavidin.

4. Fractionation. In this method, the small molecule is not immobilized but free. The molecule is radioactively
or fluorescently labeled and incubated with the cell lysate. This mixture is then fractionated and the
radioactivity or fluorescence is measured to determine which fraction contains the bound target protein.
Radioactive labeling can be a solution when it’s impossible to attach a linker to the molecule, but this is an
expensive approach. The fractionation or separation can be done using affinity chromatography, 2D gel
electrophoresis, or any other technique [44].

FIGURE 3.4 The FR529625 carboxy deriv-
ative (in blue ellipse) of thalidomide (in black)
is bound to the amino-groups of the linkers
(in green) of the FG beads (in red). The
ferrite-glycidyl methacrylate (FG) beads allow
for magnetic separation of target molecules
that bind to thalidomide from the cell extract.
The coating with GMA (Glycidyl mathecry-
late) has a very low nonspecific protein
adsorption. Redrawn based on reference [54].
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5. Magnetic beads. Ferrite-glycidyl methacrylate (FG) beads can be used to allow magnetic separation of the
solid phase from the cell extract [54].

6. Quantitative mass spectrometry. Different methods using isotopes (iTRAQ, ICAT, SILAC) [51] can help to
make mass spectrometry more quantitative.

7. Phage display. The different target proteins are displayed by phages on their surface. The phage population
is separated by affinity chromatography with the small molecule and the enriched elution is amplified in
bacteria. With this target enriched phage collection, another affinity round is then performed. This way, low
abundant binding proteins are amplified [42].

8. mRNA display. Similar to the principle above. The target proteins are linked to their encoding
mRNA’s instead of a phage. After affinity enrichment, the mRNA can be amplified with PCR and
translated in vitro to obtain more of the target protein. With this target enriched collection, a second
cycle is started [42].

B. Genetic Methods

Description. Today the molecular biology tools to play with genes are extremely versatile and powerful, yet at
the same time often easy to use at a gradually decreasing cost. As a consequence, more and more methods for
target identification and validation are directly or indirectly based on them.
A first approach is modulate gene expression for target deconvolution. The principle is simple. Imagine a
(small) drug molecule that changes the phenotype of a cell by blocking an unknown target protein. What
will happen when we change the concentration of this protein by modulating the expression of its gene?
Decreasing the target concentration will make it easier to block the target with the same amount of drug.
The cells become more sensitive to the drug. Decreasing the target concentration to zero by deleting the
gene or suppressing the expression completely will (in an ideal situation) mimic the phenotype induced by
the drug. An alternative to deleting the gene is to mutate the gene in such a way that the protein loses its
function, also resulting in mimicking the drug phenotype. Increasing the target protein concentration by
overexpressing its gene will make the cells less sensitive to the drug. How can we use all these modulations
to identify the drug target when we don’t know the gene to modulate? Well, we “simply” modulate all
possible genes one-by-one, and each time we look for a change in drug induced phenotype. When there is a
change, we have found the target gene and hence the target protein, or to put it more accurately, we found
at least one target.

Down-regulating expression can be done in many ways:

� deletion of the gene (knock down [57], used in the Haploinsufficiency profiling in yeast method);
� mutating the gene (randomly chemical induced mutations);
� binding to the DNA with so called zinc finger proteins [58];
� binding to the mRNA with antisense RNA; or
� silencing the gene with siRNA.

FIGURE 3.5 (a) The magnetic FG beads
are incubated with a cell extract. The protein
CRBN (cereblon) binds to thalidomide (blue
molecule) while other proteins (X, Y, Z. . .)
don’t. (b) Using the magnets, it’s easy to wash
the beads and remove the nonbinding pro-
teins. (c) In a last step the CRBN protein is
eluted using free thalidomide. Based on refer-
ence [55].
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Up-regulating expression can be done, for example, by transfecting the cells with cDNA or plasmids or viral
vectors. A new tool to activate expression is the use of saRNA, but this is still under debate [59,60].
A further extension to the above approach is not to modulate existing genes but to introduce new ones. For
example, transfect yeast with all human genes one-by-one, like in the yeast three hybrid method, or make
viruses that express human proteins on their surface like in the phage display method.
The modulation methods for target deconvolution are known under the name “chemical genomic methods.”
A second approach is to modulate gene expression for target discovery. Again we modulate the genes
one-by-one, and we look for changes in phenotype induced by this modulation, usually without giving any
drug. This way we can infer the function of a gene. We can also look for specific phenotypic changes. When,
for example, cancer cells don’t grow anymore after a certain gene is down-regulated, than the gene-product is
possibly an interesting drug target.
A third approach is to modulate a specific gene to validate that a given protein is indeed a good target.
Modulation, usually down-regulation, mimics the effect of a drug without yet having a drug for the target.
This down-regulation can even be done in animals to further add confidence to the target. When one has a
drug, an extra confirmation consists in mutating the target gene in such a way that the protein keeps its
function but can’t be blocked anymore by the drug, rendering the cell insensitive to the drug. This would
prove that the drug doesn’t work via other mechanisms.
A fourth approach is to identify existing modulations in gene expression (including mutations) associated
with diseases or drug resistance, using DNA micro-arrays or sequencing. (Figure 3.6).

C. Haploinsufficiency Profiling in Yeast

Concept. Lowering the expression of a target by deleting one of its two genes in the diploid yeast makes the
strain more sensitive to a drug that acts on that target and often results in decreased growth [33,44,46,58,61].
Input. At least one compound of interest and a collection of strains, each with a deleted gene.
Output. Genes that code for proteins that directly or indirectly interact with the compound.
Group. Direct Methods. Genetic deconvolution methods. Chemical genomics.
Description. Imagine the picture of a drug that inhibits the growth of yeast by inhibiting a certain enzyme.
Increasing the abundance of this enzyme will render the compound less effective. Decreasing the abundance of
this enzyme will make the yeast more sensitive to the drug. One way to decrease the abundance of the enzyme
is to shut down one copy of every two genes in the diploid yeast that codes for the enzyme. This method is
based on the natural phenomenon of haploinsufficiency: in diploid organisms, deletions or mutations in one
copy of the diploid set of a gene may result in an abnormal phenotype, especially when it is a vital gene. A
deletion of a gene that doesn’t code for the enzyme will not change the sensitivity to the drug, unless the gene

FIGURE 3.6 A collection of cells is made
in which all possible genes are modulated
one-by-one, and each time we look for a
difference in drug induced phenotype. When
a target is, for example, less expressed, then
the cell could become more sensitive to the
drug. Here crippled cell 4 indicates that gene
4 could code for a protein interacting with
the drug.
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has something to do with the pathway that comprises the enzyme or—more indirectly—results in the inhibition
of an efflux pump, thereby increasing the concentration of the small molecule. Hence, observing which
deletions affect the growth in the presence or absence of the compound can pinpoint possible targets of that
compound or at least components that are part of the working or not working of the drug or even its toxicity.
The Yeast KnockOut (YKO), a pooled collection of S. cerevisiae strains where each one of the more than 6,000
genes are completely deleted and replaced by a unique 20 base pair sequence—a “barcode” —is now available
[33]. When the pooled collection grows in contact with the small molecule, some strains will grow less. This can
be monitored by extracting the genomic DNA and quantifying the “barcodes” with PCR. This way the strain
that contains the known deletion that interacts with the small molecule is identified.
Requirements. This method can only be applied when one already has a (small) molecule obtained by
phenotypic screening or other sources.
Advantages.
1. The small molecule can interact with the proteins in their normal in vivo constitution (except for an

artificially decreased abundance in one specific protein) [46].
2. The small molecule does not have to be linked to a bead or a hybrid protein. This not only makes life easier

but also guarantees that the binding capacity is not hindered or influenced.
3. Only 0.1�1.0 mg compound per assay is required.
4. Because all genes are tested in the pooled collection, the identification of multi-target interactions is

possible. Also, proteins that do not bind at all with the compound but have an effect because they are part of the
pathway could be identified. Given the fact that good drugs are often “dirty drugs” that hit multiple targets, this
method is well placed to study not only the target but also the whole mechanism of action of a drug.

5. There is a good chance that the cellular localization of the yeast protein mimics that of the human homolog.
This further increases the real-life path that the drug has to follow to reach its targets.

Disadvantages.
1. In the yeast three hybrid, one can test (in principle) any human protein. But the protein is not in its normal

state and habitat. In the haploinsufficiency model, the proteins are in their normal state and habitat, but this
only approximates the human proteins and conditions. Human proteins that lack a yeast homolog will not
be picked up.

2. A second limitation is that only interactions between small molecules and target proteins that impair cell
growth (a specific phenotypic condition) will be picked up [33].

Examples.
Brefeldin A binding on Sec7p, doxorubicin binding on SIZ1, cisplatin binding on FCY2, NMD2, NOT3, SKY1,
methotrexate binding to DFR1, FOL1, FOL2., 5-fluorouracil binding to CDC21, RRP6, RRP41, RRP44, RRP46,
NOP4, MAK21, SSF1, YPR143W and tunicamycin binding to ALG7p, HAC1, GFA1.
Variations.
The key of the HIP method is that the target of interest is decreased in concentration. Deleting one copy
of the diploid set is one option to achieve this, but one could also use RNA interference to reduce the
target protein concentration. Other variations just do the opposite: increase the target concentration using plasmid
overexpression. A nice experiment is to combine the under- and overexpression. When a reduced protein makes
the cells more sensitive to the drug and at the same time makes the cell more resistant to the drug when
overexpressed, then the probability that this protein interacts with the small molecule is high [46].

D. Analysis of Resistant Mutants

Concept. When a bacterium is treated with an antibiotic, resistant mutants can be selected and their genome
sequenced. The mutated gene often reveals the target of the antibiotic [62].
Input. A drug and a resistant mutant.
Output. The mutated gene.
Group. Genetic methods. Target deconvolution.
Description. This method is very useful in determining the target of molecules obtained from a phenotypic
screen with bacteria or viruses. As viruses and bacteria replicate quickly with a high frequency of spontaneous
mutations, they easily acquire mutations resulting in resistance to a given drug. Selecting resistant mutants
and sequencing their complete genomes to identify the mutation resulting in resistance is nowadays a very
feasible exercise.
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Case study. Using a phenotypic screen, the diarylquinoline bedaquiline (R207910) was found to be active
against M. tuberculosis (TB) with a minimum inhibitory concentration (MIC) of 0.030 μg/mL. The activity was
specific for mycobacteria and resistant strains were still sensitive to several other TB drugs, suggesting a new
mechanism of action. The group of Koen Andries compared sequences of resistant and sensitive strains and
identified two point mutations in the atpE gene, coding for a protein of the mycobacterial ATP synthase
[31,63]. The ATP synthase enzyme is essential for the generation of energy in mycobacteria, and had
previously not been described as a target for a TB drug or in fact any antibiotic. In December 2012, the FDA
granted bedaquiline accelerated approval, based on phase II clinical trial data, as part of combination therapy
to treat adults with multi-drug resistant pulmonary tuberculosis when other alternatives are not available [39].
(Figure 3.7)

E. siRNA for Target Validation

Concept. Temporary suppression of a gene-product with siRNA mimics the effect of an antagonistic drug. The
value of the protein as a potential drug-target can be tested without having a drug. More recently discovered
saRNA seems to up-regulate genes and could perhaps mimic some agonists [64].
Input. A potential valuable drug target.
Output. The phenotypic effect of the decreased production of the target protein.
Group. Target validation. Genetic methods. This method can, however, also be used for target discovery and
target deconvolution.
Description. To add confidence that a protein would be a valuable drug target to treat a disease or at least to
confirm that the protein is implicated in the disease, one could remove the protein by simply deleting the gene
for it. But this is rather drastic and in reality far from simple, especially in animals. The gene could be vital
during embryonic development and the production of knock-out animals is time consuming and demanding.
It would be much more convenient if we could turn off the gene during a limited period (e.g., during the
experiment). By preference, this would be done just with an injection, almost like a drug.
This is possible with siRNA. siRNA stands for small interference RNA and consists of 21�25 nucleotides
long, double-stranded RNA molecules, complementary to a sequence in the gene one would like to
knockdown. The detailed mechanism of the knockdown is rather complicated, involving several enzymes, and
is still not fully understood. The bottom line, however, is that the mRNA is cleaved and hence the translation
is blocked. The nice thing is that in principle any mRNA can be deleted this way. One only needs to have a
unique sequence of 21 nucleotides belonging to the mRNA. In practice, not every sequence works equally
well, and other sequences turn out not to be selective enough. Delivery of the siRNAs into the cell is another
challenge. High pressure injection of naked siRNAs into the tail vein of mice resulted in effective uptake into
the liver, kidney, lung, and muscle. Delivery of siRNA via expression out of a viral vector is a useful option.
Even more sophisticated is the creation of a cell (or transgenic animal) that expresses the siRNA under control
of a promotor that can be activated with an existing small molecule.

FIGURE 3.7 Structure of bedaquiline rendered in MOETM based on crystallographic data in reference [32]. The target of bedaquiline, the
ATP synthase of M. tuberculosis, was identified by sequencing resistant mutants of the bacterium.
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Advantages.
1. The biggest advantage is that you can study the effect of inhibiting a target without having a drug that does

the job.
2. Down-regulating gene expression with siRNA can mimic drug effects in a much better way than knocking

out a gene by deletion or mutation. With siRNA, the cell or animal can develop and behave normally as
long as no siRNA is given. The siRNA also has only a temporary effect, almost like a drug.

3. In principle one only needs to have a unique “antisense” sequence of 21�25 nucleotides to block a protein.
No knowledge of the structure of the protein is required. In theory, all antagonistic drugs could be replaced
by siRNA molecules that could be designed in silico in—let’s exaggerate—a few hours. The fact that the last
ten years only two such drugs made it to the market is due to the famous delivery problem, and to some
other issues like off-target effects and lack of efficacy.

4. siRNA is a relatively fast and inexpensive method.
Disadvantages.
1. Down-regulating a gene is not the same as blocking a specific part of the gene-product. A drug

could, for example, completely block one function of a receptor, but the receptor is still present and
can have other functions that are not affected. Knockingdown the gene will decrease all functions of
that protein.

2. Down-regulating a gene can have more effect than just a decrease in concentration of the one gene-product.
3. The delivery of siRNA remains a challenge.
4. The activity and selectivity of the siRNA sequences are hard to predict.
5. The down-regulation is not 100 percent; there might still be some protein synthesis ongoing.
Variations.
Here we described the use of siRNA to block one specific gene in order to validate its gene-product as a drug
target. siRNA can, however, also be used for target discovery by blocking genes one-by-one in order to
correlate genes with phenotypic effects. And in combination with a (small) molecule, siRNA can be used like
HIP to determine the target of the drug
Additional comments.
A small disadvantage is that only antagonists and enzyme inhibitors can be mimicked with siRNA. But this
could change since the recent discovery [59] that short double stranded RNA complementary with the
promotors of a gene can strongly activate the transcription. These so called saRNA (for small activating RNA)
can mimic agonistic drug effects. Whether they do this via direct activation of the promotor or by silencing an
upstream repressor is still under debate [60].

F. Yeast Three-Hybrid System

Concept. A cell (often yeast) is genetically engineered to give a signal when a small molecule (the bait) binds
with protein X (the prey). Every cell is transfected to express another protein X. Transfecting plasmids are
made from a library of cDNA [42,44,65].
Input. A small molecule and a set of cells, each expressing one member out of a set of possible target proteins.
Output. A read-out that permits the identification and selection of the cell (or colony) in which the small
molecule binds to the expressed protein. This protein is localized in the cell nucleus.
Group. Expression cloning approaches.
Description. This system also is based on the affinity between the compound and the target protein, but it
is used to circumvent the problem of low protein abundance by expressing the protein in genetically
engineered cells. To understand this method, one has to dive into some molecular biology. Because that is
not the purpose of this book, we will not dive very deep. The method is derived from the well-known
yeast two-hybrid system. The yeast two-hybrid system or Y2H was developed by Stanley Fields and Ok-
Kyu Song [66] in 1989 in order to detect protein�protein interactions. The key underlying the Y2H assay is
that most eukaryotic transcription factors can be split into two parts and still activate transcription on
condition that the two parts are sufficiently close together. A direct physical contact between the two parts
is not necessary. The two parts are the DNA binding domain (DBD) and the activation domain (AD). To
study the interaction between known protein 1 and unknown protein X, Fields and Song made two
hybrids: they fused protein 1 with the DNA binding domain (hybrid 1, called the bait) and protein X with
the activation domain (hybrid 2, called the prey). These hybrids were expressed in the yeast cells by
transfecting them with vectors (plasmids) encoding the two hybrid proteins. In fact, for every protein X a
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different vector is made. When the bait (protein 1) “captures” the prey (protein X), they bring their
attached domains to each other, thereby bringing the activation domain close enough to the transcription
start site to activate the transcription of the reporter gene. In the original assay, the reporter gene was the
lacZ gene of E. coli. This gene encodes for β-galactosidase, an enzyme that cleaves lactose into glucose and
galactose. Lactose can now be replaced by artificial derivatives that produce a useful read-out when
cleaved. For example, cleaving the derivative 5-bromo-4-chloro-3-indolyl-β-D-galactoside turns the cells
blue. This indicates that protein 1 binds with protein X. In the yeast three-hybrid system, a third hybrid is
made: a fusion between a small molecule 1 of interest and a ligand molecule like methotrexate. The protein
1 is replaced by a ligand binding protein like dihydrofolate reductase that will bind strongly to
methotrexate. The net result is an assay in which the colonies will turn blue when the bait—now ending
with small molecule 1—captures the prey, protein X. The blue cells are then selected, and protein X is
identified based on its DNA (Figure 3.8).
Requirements. This method can only be applied when one already has a (small) molecule obtained by
phenotypic screening or other sources. The second requirement is that it must be possible to chemically attach
the small molecule to a ligand like methotrexate using a linker like polyethylene glycol and in such a way (or
under the assumption) that it doesn’t interfere with the binding toward the target protein. It can be helpful to
dispose of a SAR to identify parts of the molecule that can be used to attach the linker. A third requirement is
that one needs to make use of a cDNA library containing the proteins to study. The compilation of this library
(genomic DNA, normalized cDNA, full-length cDNA, etc.) can affect the protein expression. Finally, the cell
type should be appropriate for your proteins.
Advantages.
1. As the target proteins are expressed artificially, they can be in higher concentrations than in a cell lysate.
2. The whole mammalian proteome can be screened in intact cells.
3. Once you have the complete set of transfected yeast cells, the technology is rather easy and can be

automated.
Disadvantages.
1. Yeast is not a mammalian cell. However, mammalian versions (like MASPIT [42]) are now available
2. When molecules can activate the reporter gene via other ways, this will result in false positives.
3. Many false negatives due to steric hindrance of the protein in its fusion complex.
4. The small molecule has to be linked to methotrexate.
5. Proteins have to be fused with the activation domain and are possibly not in their natural state.
6. The binding takes place in the nucleus of the cell, hence membrane penetration is part of the equation.
Examples.
Atorvastatin binding to PDE6D, kinase inhibitors like purvalanol B to bind with known targets (like CDK1,
CDK5, CDK6) and unknown targets (CLK3, PCTK1, PCTK2, PAK4, RSK3, FYN, YES, EPHB2, and FLT4) [42],
Sulfosalazine binding to SPR.

FIGURE 3.8 A collection of yeast cells is
built in which all target proteins of interest
are introduced one-by-one. This is done by
introducing a gene construct that codes for
the protein linked to a reporter gene activat-
ing domain. When a drug binds to the target
protein, the reporter gene is activated. In case
the reporter gene codes for β-galactosidase the
yeast can be made to turn blue.
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Variations.
Since its creation in 1989 the Y2H technique has seen a bewildering number of variations and improvements,
very well described by Stynen et al. [65] We only mention the MASPIT variant. MASPIT stands for
mammalian small molecule protein interaction trap. The protein hybrids are replaced by a JAK-STAT hybrid
system inducing a reporter gene. The advantage, besides being in a mammalian cell, is that the binding occurs
in the cytoplasm rather than in the nucleus.

G. DNA Microarrays

Concept. A DNA microarray is a surface with an array of microscopic spots of DNA. Each spot contains short
single strand DNA molecules, all with the same unique sequence. Each gene expressed in a sample will
hybridize with its corresponding spot, which can be identified using fluorescence readout [67�70].
Input. cDNA converted from mRNA out of a cell lysate.
Output. A list of all of up- and down-regulated genes.
Group. Target discovery. No small molecule needed. Target validation. Target deconvolution: see comparative
profiling.
Description. Most disease phenotypes must be ultimately based on changes in gene expression in some cells.
Hence, a list of all genes whose expression is up- or down-regulated in a disease can lead to potential drug
targets. A gene that is mutated and causes a disease is probably less useful than a healthy gene whose altered
expression or gene products are involved in the disease phenotype.
Today, microarrays are the technology of choice to discover these genes. The principle is simple, but the
practice is a combination of art and science [69]. A DNA microarray is a surface of a few square centimeters
that contains thousands or even millions of spots of DNA. Every single spot contains a unique probe
consisting of single-strand DNA molecules with a unique sequence representing a specific gene. It is of the
utmost importance that one knows which spot belongs to which gene. With a spot size of 16 μm, one can put
40,000 spots on a square centimeter, sufficient to probe the whole human transcriptome. Every spot contains
10 million identic single strand DNA molecules with a length of 25 to over 100 nucleotides long. These
microarrays (or “gene chips”) are manufactured industrially using several different techniques like robotic
contact spotting, inkjet deposition, or on-chip synthesis using photolithography (Affymetrix) [69].
To identify which genes are expressed in a specific tissue (e.g., a liver cancer), one proceeds as follows. The
mRNA is extracted and converted to cDNA because RNA is less stable. The cDNA can be concentrated or
amplified when needed. The cDNA is labeled with a fluorochrome and incubated on the microarray chip for
hybridization during several hours. Nonbound material is washed away, the chip is laser-scanned by a robot,
and the data are processed, analyzed, and visualized [69�72]. To interpret the results, one should compare the
gene expression from the liver cancer cells with the corresponding expression in normal liver cells. The
method of choice to do this is to repeat the exercise with the normal cells on a second chip. Until very
recently, a convenient alternative was to process the normal cells in parallel with the cancer cells from the
beginning and use a different dye, usually green for control cells and red for the cells of interest. The red and
green labeled cDNAs are then put together in equal amounts onto the chip. After hybridization and washing,
the red spots indicate genes that are more expressed in the cancer cells than in the normal cells, and green
spots indicate genes that are less expressed in the cancer cells than in normal cells. Equally expressed spots
will be yellow. The problem with this pairwise analysis is that it is less suited for later comparisons due to
standardization issues. For this reason, the pairwise analysis is increasingly abandoned.
Advantages.
1. Microarrays allow us to test the whole human transcriptome in one experiment.
2. The technology is now a standard laboratory tool and many services are available.
3. The technology is very versatile and can be used in a broader way than just for comparing the

transcriptome. Other applications are chromosome aberrations studies, methylation analysis, single-
nucleotide polymorphism detection, toxicogenomics, and diagnostic use. Today 45 million sequences can be
probed with one chip.

4. The technology is becoming cheaper, comparable to PCR (Polymerase Chain Reaction).
5. With the “maskless” photolithographic production, probes can be made on-demand without having to

interrupt the production process.
6. Limited sample need. For the transcriptome analysis, you need about 20,000 cells. But with a preparation

step, one could start from a single cell [73].
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Disadvantages.
1. When millions and millions of molecules interact and hybridize with each other you may expect some

variation and unexpected things to happen, resulting in false positives and false negatives. For example, the
cDNA can form tertiary structures preventing some parts from hybridizing with the probes.

2. Not all mRNAs are equally well extracted, and some mRNA are very unstable.
3. Important pharmacological targets such as GPCRs, ion channels, and transporters have mRNA in low

concentrations and need enhanced sensitivity of the microarray to be picked up.
4. The transcriptome doesn’t equal the proteome. mRNA can be regulated before translation, and many post-

translational regulations and modifications to proteins can make them inactive and hence virtually absent.
5. Some closely related genes can easily hybridize with the probes of their close family members

(called cross-hybridization).
6. The need for skilled technical personnel.
Examples.
Potential targets were identified related to asthma, SARS, arthritis, and systemic lupus erythematosus. In the
cancer field, clinicians are using DNA microarrays to distinguish between cancers and to predict which
treatments will have the most effect [67]. Using protein microarrays, SMIR4, a small-molecule inhibitors of
rapamycin, has been found [74].
Variations.
1. The list of variations based on probes, array size, production methods, and applications is endless. Smaller

spots allow the production of microarrays with millions of spots to interrogate the single-nucleotide
polymorphisms (SNPs). Microarrays for yeast, viruses and bacteria, lab animals, and per chromosome are
all available or can be produced.

2. Microarrays loaded with proteins (directly or via antibodies) permit the study of protein�protein
interaction, protein�DNA/RNA interactions, and protein�small molecule interactions.

3. Microarrays with living cells attached to the surface by antibodies or proteins are used mainly in cancer
research.

H. Comparative Profiling

Concept. A compound is added to a cell. This alters the gene-expression profile, called the “signature.” This
signature is then compared with a database of signatures obtained from treating cells with known compounds.
The underlying idea is that compounds that produce about the same signature have about the same target(s)
[45]. Gene-expression is a convenient profile, but the concept of comparative profiling is also applicable to
protein expression, toxicity pattern, metabolome expression, morphological aspects, and other aspects.
Input. The gene-expression signature of an uncharacterized compound.
Output. Matching drug�target pairs based on profile similarity, to be further validated.
Group. Indirect. Deconvolution. Profiling. In silico. Genetic.
Description. As an example, we describe gene expression profiling using the Connectivity Map (also known
as cmap) developed at the Broad Institute [75�77]. The concept is based on the pioneering work of Hughes in
yeast [78]. The first step is to incubate relevant cells or tissues with the compound to be characterized. Cells
from treated patients or animals could also be used. Then the complete gene-expression pattern is obtained
using micro-arrays that cover the whole genome. The second step is to feed this gene-expression pattern into
the cmap website [79] and click query. A pattern-matching algorithm based on the Kolmogorov-Smirnov
statistic now compares the profile with all the profiles in the database. At the moment of writing, the so-called
build02 database contains over 7,000 transcriptional expression profiles from the treatment of a very limited
set of cultured human cell lines with 1,309 small molecules at a limited set of concentrations. As a comparison,
build01 contained only 164 compounds. Pattern-matching algorithms can be fine-tuned in myriads of ways,
but the cmap website keeps that very limited so that scientists at the bench don’t need to be experts in bio-
informatics or statistics. The main output of the algorithm is—to put it simply—a list of compounds ranked by
how well their induced up- and down-regulated gene-expression mimics that of the test compound. It is
important to note that the cells used to obtain the pattern to be searched (the “query signature”) should not be
from the same cell line and not even from the same species as the ones used to build the database. Of course,
only genes that are present and expressed in both cell types can be compared. This is less a shortcoming than
one would suspect, because many genes are up- or down-regulated in clusters, and missing one or two genes
still permits finding the overall matching patterns. On the other hand, a compound like estrogen will not
change the expression profile when the estrogen receptor is absent in the cell (Figure 3.9).
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Requirements. Comparative profiling is only possible when there is something with which to compare. One has
to use of a database that contains the signatures of many known compounds and a pattern-matching algorithm.
Advantages.
1. The availability of freely accessible profiling databases growing over time.
2. Web-based, easy-to-use interface.
3. The test compound is used in its normal state in a normal cell.
4. Multiple effects are measured, not just the binding with one single protein.
Disadvantages.
1. The output is not a guaranteed target but rather a proposal of possible targets or pathways. And when an

expression match is found with a compound with unknown targets, you still have no target clue.
2. The cells used to build the database are special human cell lines, living on plastic, instead of primary cells

living in the body.
3. Targets or pathways that were never hit before will not result in a match.
Examples.
Tools: the COMPARE NCI60 analysis [80], the JFCR39 database [81], the Connectivity Map database
developed at the Broad Institute [75,76]. Drug-targets identified [45]: gedunin-HSP90, droxinostat-HDAC,
bisebromoamide-actin, glucopiericidin A-glucotransporter, BNS22-topoisomearse II, Theonellamide F-3b-
Hydroxysterols.
Case study.
The group of Wei and Armstrong [82] was confronted with the resistance to glucocorticoid treatment of
childhood acute lymphoblastic leukemia (ALL), resulting in a poor prognosis. Comparing gene-expression
profiles obtained from sensitive and resistant patients was not really helpful, but querying the Connectivity Map
database pointed to the connection between glucocorticoid sensitivity and rapamycin. Rapamycin, a mTOR
inhibitor, is an FDA-approved immunosuppressant, and it would be very promising if this drug could restore the
sensitivity of the cancer to dexamethasone. Wei could prove this concept to work in cells. Another group showed
that mTOR inhibitors are synergistic with methotrexate in mice [83]. Promising in vitro results with temsirolimus,
another mTOR inhibitor, in prostate cancer didn’t translate into a positive clinical outcome [84].
Variations.
1. Other databases, other algorithms, limited gene sets, other techniques to measure the gene expression.

Example: the Luminex 1000 Profiling Approach [85].
2. Comparative profiling of protein-expression patterns.
3. Comparative profiling of side effects.
4. Comparative profiling of the metabolome.
5. Comparative profiling of the morphology of the cell.
6. Comparative profiling of the structure of the compound.

I. Analysis of the Pathophysiology

Concept. The detailed analysis of the pathophysiology could reveal new interesting targets.
Input. A disease of interest.
Output. Potential targets, pathways, or active compounds. Insight.

FIGURE 3.9 A method to infer the target of a com-
pound is to first get a profile of a compound. A profile
can be anything, such as the structure of the compound,
the behavioral impact in an animal experiment, or the
gene expression change in a cell. It is important that one
uses a database containing the profiles of many other
compounds together with their target(s). The profiles are
encoded in such a way that matching algorithms can find
the profiles in the database that most resembles the profile
of the drug. The underlying hypothesis is that compounds
with the same profile would also have the same target.
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Group. Target discovery. Conventional. Top down.
Description. It sounds logical and scientific that the way to find a drug-target is the detailed study of a disease,
unraveling and exploring the consecutive layers, starting from the macroscopic manifestations, drilling down to
changes in tissues and cells, and ending with characterizing the molecular culprits. However, most of the time
there is no need to travel down the entire way, nor to understand every element on the path to find a drug.
When George Hitching and Gertrude Elion first started to synthesize analogs of purine to block DNA synthesis,
the role of DNA was still uncertain. They knew that the purine metabolite was needed by bacteria to produce
DNA, and so false purines could perhaps block the enzymes and function as “antimetabolites.” In general,
studying the functions and interactions of endogenous small molecules—metabolites, hormones,
neurotransmitters, cytokines—is very rewarding. Formulating hypotheses, even when they turn out decades
later to be wrong, is another useful approach. Finding targets that could be used to modify or counteract the
consequences of a disease—instead of finding the cause of a disease—is often more fruitful, because removing
the cause remains even today an almost unattainable goal. Infectious diseases are the biggest exceptions to this
rule. Cancer is already less an exception. The reason is that in the case of bacteria, the complete organism can be
put in a test tube. When a compound is able to kill the bacterium in a test tube, there is some chance that it
will maintain that capacity in our body. Of course, the drug has to reach the bacterium in our body. For cancer,
the situation is more complex. A single cancer cell is not the same thing as a cancer tissue with all its different
cell types. Blood circulation is different in cancer tissues. Oxygen levels and acidity could be different.
Analysis of the pathophysiology is a top-down, classic strategy that still works well today and certainly has a
bright future with all the new molecular and imaging research tools available.
Advantages.
1. New targets and pathway can be found.
2. No need to start from an active molecule, although starting from endogenous molecules is often key.
3. Proven track record.
Disadvantages.

Takes a long time without guaranteed success. The war on cancer started decades ago.
Examples. Some targets identified by analysis of the pathophysiology are many viral enzymes like reverse
transcriptase, dihydrofolate reductase, 5HT transporter, COX-2, cysteinyl leukotriene receptor, angiotensin-
converting enzyme, estrogen receptor, and dopamine receptor.

J. The Study of Existing Drugs

Concept. The thorough study of “old” and even more recent drugs with the newest technologies and insights
can reveal new potential targets [44].
Input. An existing drug.
Output. The drug-target or additional knowledge on the mechanism of action and affected pathways,
including new subtypes of receptors or potential new targets.
Group. Target discovery. Target deconvolution. Conventional. Top down.
Description. Because in the past most drugs were discovered via phenotypic screening, a lot of drugs were on
the to-do list for target deconvolution. Consequently many new targets were discovered this way. Since the
decline in phenotypic screening in favor of target-based screening, the to-do list has shrunk. The recent revival
of phenotypic screening and the screening of exotic (natural) molecules will further sustain the need for target
deconvolution. The study of toxic effects of drugs can also lead to new targets or to deeper knowledge of
existing target effects. Recently [86] a group revealed that COX-2 inhibition in the cardiomyocytes in mice
resulted in enhanced susceptibility to induced arrhythmogenesis. The study of COX-2 also led to the discovery
of the COX-3 enzyme, a splice variant which was subsequently found to be nonactive in humans.
Examples. GABAA receptor, COX enzymes, tubulin, L-type calcium channels, KATP channels, dopamine D2
receptor, PPARa, monoamine transporters.

K. Systems Biology

Concept. The study of the dynamic interactions between all components of a biological system.
Input. All kinds of so-called -omics data sets [10]. Modelling software.
Output. A better understanding of the role and value of specific targets in their biological context.
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Group. In silico methods.
Description. To understand and predict the behavior of an organism, one should study not only all its individual
parts in a reductionistic way but also their dynamic interactions in an integrated holistic perspective. The concept of
systems biology is certainly not new. Simulating the dynamic interaction between two components of an axon (a
sodium and a potassium channel) to explain how a nerve signal emerged was published in 1952 [87]. Today the
number of components in the actual datasets is huge: 29,000 transcriptomic elements, 20�30 million epigenetic
elements, 22,000�39,000 proteins (each present in a multitude of different states, like phosphorylation states) and
around 40,000 small cellular biomolecules [10]. The next step is to collect the interactions between these components.
The BioGRID database contains over 139,000 nonredundant interactions between over 18,000 human proteins. Then
comes the software and the mathematical models to make predictions. As the models are fitted with the actual data,
they are usually good in predicting what we know already. Most of the targets proposed so far using systems biology
were not easily druggable and provoked a renewed interest in phenotypic screening. Systems biology is, however, an
ideal working instrument to increase our understanding of the mechanism of actions of drugs in the body.
Example. Pyrvinium [10].

L. In Silico Simulation of the Human Patient

Concept. The ultimate goal of systems biology is the understanding of functioning of a whole organism [10].
Understanding in this field is achieved by modeling or simulation. We are, however, so far from the complete
simulation of a patient that I think it is appropriate to address this topic with a sense of humor.
Input. A demand for a safe, effective, inexpensive oral drug against disease x.
Output. After pushing the button, the chemical formula of a perfect drug rolls out of the computer.
Group. Futuristic methods.
Requirements. An enormous dose of luck and a pile of quantumcomputers.
Additional comments. Trying to simulate a human patient in silico would redirect funding for drug research
to the informatics industry. But one should be realistic. A human body contains about 10 trillion interacting
cells and every cell contains about 23 trillion molecules (of which about 8 billion are proteins) that interact
with one another. Today it’s very hard to predict the behavior of one single small molecule in a very confined
part of a protein. We can’t predict consistently the structure of a protein out of the gene sequence. We can’t
consistently predict the function of a protein. Today we can’t even predict consistently the interaction between
one small molecule and a bunch of water molecules—called dissolution. One could say that we don’t have to
simulate all the billions of molecules to predict the overall behavior. Yet, a change in one molecule in one
single cell can lead to the death of a person within a year. (Figure 3.10).

FIGURE 3.10 The complete simulation of a human patient at work.
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VII. TARGET VALIDATION

It can’t be stressed enough that the only validation that really matters is the proof in the clinic. It adds, of
course, confidence that a target seems to work in dozens of different cell-types and in several animal models, but
at the end this is all ersatz compared to the ultimate test: does a compound that effectively acts on the target
really work in humans?

Further, target validation is not different from the usual scientific process. When an interesting target is
described in a publication, the first step is to reproduce the experiments. Although not well studied, this repro-
ducibility turns out to be a bit problematic. Florian Prinz examined 67 projects—mostly in oncology—and found
that in only 20�25 percent of them the in-house findings were completely in line with the relevant published
data [15,88].

The next step is to make variations in one of the three elements in the ligand�target�environment equation.
Modulating the affinity of the small molecule for the target protein should correlate with a modulated activity of
the molecule. Mutations in the binding domain of the protein should result in modulation or loss of activity of
the ligand. Changing the cell-type should or should not change the effect of the molecule. As already stated, the
use of siRNA is an invaluable tool for target validation. It can be used in cell experiments and animal models to
study the effect of inhibiting or blocking a target without the need to have a small molecule.

As an example we continue with the thalidomide story. In 2010, Ito [52] identified cereblon as a target protein
for thalidomide’s teratogenicity using affinity chromatography. How did he validate the target? One way was to
go in vivo. Thalidomide is not teratogenic in mice and rats. But what about in zebrafish? Thalidomide given to
zebrafish embryos resulted in disturbed pectoral fins. Zebrafish have a cereblon orthologous gene, zcrbn, and its
protein could also be affinity-extracted with thalidomide. Then Ito’s team blocked the gene with antisense con-
structs, resulting in the same teratogenic effects as thalidomide. Injection of correct mRNA for the gene rescued
the defects. They then made a mutant zCrbn protein that could not bind to thalidomide but was still functioning.
Overexpression of this mutant made the embryos insensitive to thalidomide.

VIII. CONCLUSION

In the last decades, many successful new small molecules and biologicals have enriched our therapeutic capa-
bilities. Yet despite all the new fantastic technologies, we have not seen an explosion in R&D efficacy. The small
molecules that came out of the target-based screening strategy often missed efficacy or showed unexpected toxic-
ity in clinical trials. Today, the follower strategy, based on targets validated in humans, is by far the most suc-
cessful strategy measured by the number of drugs it produces. The second most productive strategy is
phenotypic screening, which is probably even more successful than has been acknowledged. The renewed inter-
est in phenotypic screening and the increased capabilities to handle thousands of animals like zebrafish in an
automated way will result in an increased demand for target deconvolution. The methods for target deconvolu-
tion will remain a rapidly evolving and highly entangled landscape. The ultimate target validation method, how-
ever, will still be the human clinical trial. Chemists should think critically about targets that were identified
based solely on highly reductionistic methods. Otherwise, they might blindly chase for years the perfect com-
pound for the wrong target.
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The Pre-Medicinal Chemistry Era

As a scientific discipline medicinal chemistry could only emerge after it became generally accepted that the properties of the active

ingredients of medicinal products determine the pharmacological and consequently the therapeutic effects of the active principle.

Until synthetic organic chemistry developed, coincidently almost during the same period in which pharmacology became an

experimental science, medicinal products were mainly obtained from natural materials, from plants especially; to a certain extent

mineral products were also used. It was the shape, the colour of (parts of) plants which were considered to be indicative for the

biological activities.

Not long after the first paper3 on synthetic organic chemistry appeared (synthetic dyes, Perkin, 1856)9 it was a series of

milestone publications by Crum Brown and Fraser (1868)10 which initiated the development of synthetic medicinal agents. In the

years thereafter several scientists believed that from then on new medicines could be developed on basis of knowledge (!) of

relationships between chemical structure and biological activities. ‘Soon pharmacopeia will be composed on basis of structure–

activity relationships’ (Richardson, 1877),14 and ‘Soon doctors will have series of medicines in order of potency to influence

practically any physiological action’ (Brunton, 1889)11 were too optimistic opinions. They were followed by more realistic views.

Hopkins (1901)12 concluded that ‘things had developed in a very disappointing way.’ It was in 1937 that the famous pharmacol-

ogist Clark15 felt that structure–activity relationships had been ‘investigated so intensively that one had a fairly clear idea of the

extent of our ignorance.’

Indeed, notwithstanding the extreme enthusiasm about the possibilities to develop new medicines at the end of the 19th

century not much exiting things happened during the following half a century. The process meant to lead to new therapies

remained a matter of trial and error only. There have been several reasons for lack of real progress. The major one was the almost

complete absence of any reliable information on physiological and pathological mechanisms. An almost as important cause was

the limited insight in the real structure of the molecules synthesized. The central question was – and to some level this is still true –,

the mechanism of action involved when a compound exerts a certain effect.

At the very end of the 19th century Langley had suggested that there should be ‘receptive substances’ present in the body and

Ehrlich introduced the term receptor: ‘That combining group of the protoplasmic molecule to which a foreign group, when

introduced attaches itself.’ Neither Langley nor Ehrlich4 had an idea about the chemical nature of a receptor and to what kind of

primary effects the interaction of the introduced molecule and the receptor would lead. Medicinal Chemistry was not born yet;

drug development was based on two separated disciplines: synthetic chemistry and pharmacology. There were high and solid

walls between the disciplines and even in the years 2000 these walls are still existing, but have to be turned down for making drug

design a reality. Whitesides and Deutch1 phrased it very adequately: ‘Chemistry should cluster its teaching and research around

the exciting and uncertain future rather than the historical ossified past’; such is especially true for the field of medicinal

chemistry.

Notwithstanding the absence of understanding which mechanisms are involved in the biological activity of organic com-

pounds, many effective new medicines have been identified and introduced during the first sixty years of the 20th century. A major

drawback has been the slow development in pharmacological techniques though. Pharmacological investigations were almost

exclusively involving in vivo experiments. The outcome of in vivo experiments is obviously determined by more factors than the

ultimate interaction of the active principle with its target. Absorption, distribution, metabolism, excretion, interaction with other

sites contribute all to the activity as measured finally. The relationships between structure and activity remained therefore very

much unreliable. Especially Rudolf Magnus (1873–1927) saw the advantages of using isolated organs at an early stage. His work

with isolated organs, especially isolated intestine, has contributed much to make structure–activity relationship studies more

reliable.

The question on the nature of receptors remained, however, unanswered still. In the foreword to the famous book Molecular

Pharmacology by Ariëns.2 The receptor is compared with a attractive lady to whom you may send letters, who sometimes answers

the letter, but who never shows up. And Ariëns who by applying a wide variety of isolated organs, introducing simple mathematics

of compound-receptors interactions, admitted in 1967 at a symposium of the NY Academy of sciences: ‘Yes, I know when I am
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talking about receptors I am talking about, something I do know nothing about.’16 It has been Nauta,13 who has been most likely

the first who suggested that a receptor was a helix-shaped protein (1968), but any solid evidence was not available yet.
The Birth of the New Discipline

In 1909 the American Chemical Society founded its ‘Division of Pharmaceutical Chemistry’; the division was later renamed as

‘Division of Chemistry of Medicinal Products.’ In 1948 the term medicinal chemistry emerged, ‘Division of Medicinal Chemistry.’

A new discipline was born, but it took quite a time before it was accepted as such. Medicinal chemistry meanwhile found a place

within the pharmaceutical industry and at universities. Some universities gave the field a place in departments of chemistry, but

many thought it was a pharmaceutical field and should be part of their Faculty of Pharmacy. But almost always the two major

actors, synthetic chemistry and pharmacology, remained separated. The one group synthesized new compounds; the other tested

(‘screened’) them. Burger3 gave an excellent account on his matter.

In the following years societies of medicinal chemistry were started in many countries; some were independent societies, other

parts (division) of chemical and again other of pharmaceutical societies. In 1970 a Section Medicinal Chemistry was started by the

Organic Chemistry Division of the IUPAC, followed by the founding of the European Federation of Medicinal Chemistry in 1972.

These developments, the differences in the framework and the organizational structures have not helped to arrive at an interna-

tionally accepted definition of the new science. It proved even to be difficult to decide on the name of the field: medicinal chemistry

(English), Chimie therapeutique (French), Wikstofforschung (German), Chimia Farmaceutica (Italian), and Farmacochemie

(Dutch). The use of the term ‘Pharmaceutical Chemistry’ when medicinal chemistry is meant is especially confusing as pharma-

ceutical chemistry is the established term for chemistry related to finished medicinal products. In textbooks dating from the early

1970s several definitions could be found, reason why the IUPAC published in 1973 as a comprehensive definition: ‘Medicinal

chemistry concerns the discovery, the development, the identification and the interpretation of the mode of action of biologically active

compounds at the molecular level. Emphasis is put on the discovery and development of drug, as indicated by the adjective ‘medicinal.’ However,

as the definition indicates, the interests of Medicinal Chemistry are not restricted to drugs but also imply bio-active compounds in general.’ And

pharmaceutical chemistry was left as the established term for finished medicinal products.

‘Medicinal Chemistry is also concerned with the study, identification and synthesis of metabolic products of drugs and related compounds.’

The IUPAC recommended the sole use of the term ‘medicinal chemistry,’ but in several countries such was not followed up. More

importantly, it seems that the interdisciplinary working medicinal chemists of the first hours did not foresee the rapid develop-

ments taking place in the years to follow. Although the mile-stone papers of Hansch appeared during the sixties of last century,

terms as structure–activity relationships, or drug design are absent in the 1973 IUPAC definition!

In 1959 the American Chem. Soc. started to publish the interdisciplinary Journal of Medicinal Chem. originally published as

J. of Medicinal and Pharmaceutical Chem. in the United Kingdom. The current name was installed in 1963. In 1966 the publication

of Annual Reports in Medicinal Chemistry, started, also by the ACS. Both publications are leading in the field.
Medicinal Chemistry in the 20th Century; Some Dreams Come True

Until the 1960s medicinal chemistry, could be described as a field in which scientists from different disciplines cooperated, but

which was yet far from an integrated discipline. Through the activities of the several national societies, their – often international –

symposia, the publishing of interdisciplinary journals, but especially by the developments in neighbouring field’s things changed

rapidly. The introduction of the use of computers in science had a great impact. In the 1960s the multivariate, quantitative

structure–activity studies (QSAR) had become possible by the use of computers. Researchers became over-enthusiastic; within the

pharmaceutical industry management was even concerned about these, as it was thought that the possibility to predict properties of

not yet synthesized compounds would mean the end of the patentability of any potentially new medicine.

The transfer of pharmacology into a molecular science made a proper identification of receptors and subsequently of subtypes

of several receptors and thereafter the selection of – for those receptors – selective ligands feasible. The adrenergic a- and b-receptors
and ligands, muscarinic receptor subtypes, histamine H1 and H2, a variety of serotonin receptors. The introduction of ligand

displacement (radiolabeled ligands) techniques leading to the determination of reliable affinity parameters became very important.

This period has been called a golden age of the pharmaceutical industry. The fruit was relatively low hanging; whenmost of the fruit

had been picked, the expectations became less and less optimistic, however.

Breakthroughs in biological sciences opened new vistas though. Receptor machineries were unravelled. The structure of

receptors being proteins in a-helix shape was confirmed; ion-channels became chemically identified, together with their function;

intracellular receptors got their place. Receptors proteins were identified for which no physiological functions were available:

orphan receptors; Lefkowitz defined a ‘reversed pharmacology’: receptors without known functions. Later such receptors could be

deorphanized. The developments had great impact on the new possibilities of medicinal chemistry. Moreover, the one intriguing

result obtained by molecular was followed by the other. Spontaneously active receptors were found, leading to the discrimination

of receptor blocking agents as (neutral) antagonists and inverse agonists. Mutated receptors expressed in isolated cell systems

became important tools. Point mutations of receptors were found to be the cause of known diseases.8
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The impact of the successes of molecular biology has not been restricted to the design of new active compounds. The impact has

been as important for the design of less toxic compounds. And also for the so-called ADME fields: absorption, distribution,

metabolism excretion, i.e. the kinetic profile of medicinal agents. Where medicinal chemists profited much of the results of their

colleagues in biology research, the molecular biologists were much dependent on the enormous progress in analytical chemistry.

Chromatography and mass spectroscopy made the elucidation of the primary structure of receptor proteins possible; computa-

tional approaches followed to study the molecular mechanisms involved in receptor binding and receptor activation. The same

analytical technologies led to concept of ‘systems biology,’ with which the complexity of physiological systems became understood

and transparent: the old idea of multimarket medicines got a new meaning.6

Dreams became true when receptors – especially the G-protein coupled receptors, the GPCR’s – were isolated and crystallized

finally. Now medicinal chemists could really start to think of designing new molecules from scratch. The impact of the combined

developments remained not unnoticed: in 2012 the Nobel Award for Chemistry (not for ‘Physiology or Medicine’!) went to the

molecular pharmacologists Lefkowitz and Kobilka for their work on isolating and crystallizing GPCR proteins.
Current Medicinal Chemistry; An Integrated Interdisciplinary Branch of Chemistry

Besides its scientific relevance, the main objective of medicinal chemistry has always been and still is to identify new compounds

which can be used as the active principle of effective and safe medicines.5 In the early days a synthetic chemist synthesized

compounds and a pharmacologist ‘screened’ them, in the beginning in vivo only. Sometimes interesting compounds were found,

some reached clinical applications when not a mere idea about the mechanisms involved were available; the diazepams constituted

a matter in case.

Things have changed! The main objective of the field did not though, but the pattern of the process did very much. Currently the

process starts with a decision on the target which could be used to arrive at new interesting compounds. Biochemistry, molecular

biology, genetics, the study of systems biology all became very important contributors to medicinal chemistry as the sources for

new targets, pharmacology remaining irreplaceable, however. When a target has been identified and a pharmacological testing

system selected it should be decided to investigate which compounds have to be made.

At-random synthesis has proved to be not productive anymore. Some 15–20 years ago combinatorial chemistry had been

considered as a promising approach, but this typical example of modern, more or less random, synthesis did not live up to the high

hopes. Currently the fragment-based route of selecting new interesting structures seems to offer better chances; this approach is

followed by manymodern drug hunters. It is very promising that more andmore crystal structures of target molecules are obtained.

The search after new molecules from natural sources, especially from plants used in traditional medicines seems to remain an

attractive alternative, but the positive results remain limited though.

New chances are likely coming from detailed information on the structure of target molecules. Designing molecules from

scratch, based on the structure of the selected target will offer possibilities of which medicinal chemists could so far dream only.

Until recently the design of newmolecules was based especially on the structure of known ligands: ligand based design. With target-

based design rational drug design seems to become reality finally.

Rational drug design, however, seems to be a misnomer. Medicinal chemists are first of all the makers of compounds with a

wanted activity, compounds which interfere with a target. But an active molecules is not a drug, a medicine yet, in this sense the

term ‘medicinal chemistry’ is debatable. For being suitable as an active ingredient of a medicine, a compound should fulfil more

requirements. The active principle of a medicine should be able to reach the target for which it is meant and if possible be kept away

from any other site which it potentially could influence. The pharmacokinetic profile of the compound constitutes an important

aspect of the usefulness of the given compound. The pharmacokinetic behaviour of a compounds includes phenomena like

absorption from the site of application, distribution through the total organism, metabolism (especially by the liver after oral

application), and excretion (especially but not exclusively) via the urine or faeces.

But there is still more. The way by which a compound is presented to the body, as a tablet, by intra-muscular injection, via the

skin, by inhalation and so on, is at least as important for the final efficacy of the medication. The speed of dissolution of a tablet or

capsule determines e.g. to a large extent the speed of absorption; this part of the discipline concerns ‘pharmaceutical chemistry.’ It

should be clear that the distinction what is included in medicinal chemistry and what in pharmaceutical chemistry is not always

unambiguous; it may differ from country to country, being partly determined by local ‘tradition.’

When finally a compound with – at least – both an interesting pharmacological and pharmacokinetic profile has been obtained

a medicine becomes within reach, but for one matter, relative safety and as much as possible an absence of side effects are required

as well. During quite a long time, investigations into these issues only started after the profiling for activity had been completed;

toxicology was considered as a black box. Here too times have changed; currently studies in unwanted effects start early, molecular

toxicology was introduced as a new discipline. The aim of this discipline is to design structures of compounds without affinities for

targets which could lead to toxicity, often referred to as anti-targets. As toxicity is often caused by especially metabolites of the

primary agent, studying ‘drug metabolism’ constitutes an important aspect of the field of molecular toxicity.7

A special group of medicines is formed by chemotherapeutic agents, antibiotics included. For these medicaments toxicity is the

wanted property. The purpose of chemotherapy is to kill cells, microbes (including virus particles) and tumor cells. The main

property, cell toxicity is a relatively easy requirement, but the real issue is in this case is obviously selectivity, no harm for the host

cells or the non-cancer cells. By making use of differences in the biochemistry or the constitution between microbial and mammal
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cells, relatively safe antimicrobials have been not difficult to be identified (e.g. sulfonamides, penicillines), but it took long before

effective and relatively safe and viral compounds could be introduced. Currently viricidal derivatives not killing non-infected cells

are effective viral killing compounds. The intrinsic problem for anti-cancer medicines continuous to be problematic; cancel cells are

still showing properties of the healthy cells of the patient; toxicity of anti cancer agents continues to be a very serious problem.

An additional problem both for antimicrobials and anti cancer medicines is the occurrence of resistance; this matter is for great

concern for antimicrobials especially; microbes insensitive for any of the available chemotherapeutics are a real threat.
Comprehensive Medicinal Chemistry

In the Scheme 1 ‘Comprehensive Medicinal Chemistry’ the process of identifying new compounds as potentially interesting for use as

active principle of a medicinal product is summarized and separated from pharmaceutical chemistry.

This process is presented an interactive circular sequence of contributions from different disciplines a medicinal chemistry

programme can start at any of the mentioned parts of the total process. This scheme shows the very specific character of the

discipline as, as described by Burger3 as being interdependent and yet independent. It is not a special type of synthetic chemistry to

which a bit of pharmacology has been added etc. but a really interdisciplinary chemical discipline. Another eye-catching feature is

the continuous evolution of the discipline. New approaches, often from neighbouring fields (biology, medical sciences) are

offering new vistas for the medicinal chemists. In recent years the development of systems biology has opened new routes to

interesting targets. For these developments the enormous progress the field of analytical chemistry (chromatography, NMR, MS)

had and will have great impact for medicinal chemistry.

In the several Chapters Medicinal and Pharmaceutical Chemistry of the comprehensive work Chemistry, Molecular Sciences and

Engineering the field will be presented in details, according to Scheme 1, as an interdisciplinary circular process and related to

Pharmaceutical chemistry.

Subareas will be presented in separate sections; they involve e.g.

Classes of medicinal agents (such as cardiovasculars, antihistamines);

Characterizing of Compounds, both in a chemical and a biological sense;

In Silico Compound Design; ligand based and target based;
Medicinal chemistry (concerns molecules)

Pharmaceutical chemistry (concerns products)

1- Identification

2- Optimalisation

New synthetic approaches
Natural products
Systems biology

Structure chemistry

- Design
- Synthesis

- (mol.) pharmacology
- ADME
- Toxicity

- Molecular modelling

Affinity, activity
target types
target structure
ligand-target interactions
signal transfer

- QSAR

- Phys. chem. properties
- Conformation
- Stereochemistry

- Analysis
- Bioavailability
- Bioequivalence

Biological
characterization

New molecules

Chemical
characterization

Structure
property

relationships

Scheme 1 Comprehensive Medicinal Chemistry treated as an interactive circular process.
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Synthetic approaches;

Society and Politics; patents, prices, neglected areas; tropical diseases, drug resistant microbes and cells;

Personal Essays of; selected scientists;

Case Studies of medicines, discovery and impact;

Pharmaceutical Chemistry; finished medicines; analysis.
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Three case histories are cited to provide significant lessons to all medicinal chemists. The first case is a classical one of bioisosteres

and understanding a carcinogenicity: if the tumors are caused by a chemical toxicity of the drug substance, it is not registrable,

whereas if tumor incidence is a pharmacologic result from ultra high doses over the lifetime of rodents, it may be registrable. The

second case illustrates licensing a late stage drug candidate in order to market a first-of-type drug and then improve its profile for a

best-of-class drug before the competition does. The last case illustrates the need to investigate preliminary pharmacokinetics and

drug disposition early in lead optimization so that different structure–activity relationships for different properties can be

converged before clinical trials.
Introduction

The role of a medicinal chemist in drug discovery is the design, synthesis, and registration of the best compound for treating a

particular disease condition. The job is not finished when the most potent compound for a given target (receptor, ion channel,

enzyme) is identified. The best compound of the series for bioavailability to the target must also be found, the active compound

with least metabolism or most predictable pharmacokinetics, and certainly the compound with fewest other effects or greatest

selectivity for the desired effect must be identified. The convergence of these properties is the best compound for the disease until a

more relevant mechanism or target is found that provides a more effective compound.

My perspectives on drug discovery have developed over the 50þ years that I have worked in the field, but many of the views

were clear early in this time before combinatorial chemistry, high-throughput screening, and cloned and expressed receptor

subtypes. The case histories I describe here focus on whether to discontinue or redirect projects; only the time required to complete

these projects is shortened by new technologies, but the strategic lessons are still valid today.
Case 1

In the early 1960s, I joined a company effort to explore beta-adrenergic agents because of clinical use of epinephrine for cardiac

rescue and isoproterenol for bronchodilation in asthma. Pharmacologic identification of the first beta-blocker, sotalol, concurrent

with ICI’s pronethalol which soon yielded to the more potent propranolol, hit a development wall – what is the disease condition

and clinical measurement? The marketing director clearly asked, ‘What kind of patient needs their betas blocked?’ In 1964, the

British physician Brian Pritchard reported significant lowering of blood pressure in hypertensives by propranolol, opposite to what

was predicted because of its predominant effect on cardiac function rather than peripheral vasculature. By following rather than

leading with clinical trials, sotalol was registered first in Europe but its sales were dwarfed by propranolol. In later years, probing

clinical research established a greater b1-receptor selectivity and a significant role for sotalol as an antiarrhythmic, a use not

anticipated by early animal pharmacology.

More lessons emerged from the adrenergic studies. Our major thesis for structurally modifying the catecholamines was to replace

phenolic –OH groups with the methanesulfonamide group in hopes of achieving some organ or functional selectivity. With sotalol

(4-MeSO2NH–) we achieved good beta-blocking potency, some beta1/beta2-selectivity, and good oral bioavailability. The more

interesting experiment was replacing one phenolic –OH at a time with MeSO2NH in the catecholamines to retain beta agonist

potency (Figure 1). The 4-OH, 3-NHSO2Me analog was equipotent to isoproterenol with much longer t1/2 and more beta2-selective,

whereas the 3-OH, 4-NHSO2Me was over 10000 times less active. The more acidic proton of MeSO2NH had to be meta to the

phenethanolamine for beta-adrenergic potency, and the group is more ionized at blood pH than the catechol, whereas the ionized
☆Change History: August 2013. Onemajor change is the elimination of the first case on understanding clinical endpoints before screening biological targets; the

other three cases were retained and the last two were slightly modified. Case 2 now highlights a significant movement of drug discovery from large pharmas to

small biotech and even startup companies for innovative targets and molecules. The third case updates the information and issues from preclinical

development to highlight new requirements of chemistry before commencing clinical trials. Reference 3 was added to provide background for case 3. My

biographical sketch was changed to reflect forward chronology and add some recent activities.
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Figure 1 A¼HO, R¼ iPr, isoproterenol; A¼MeSO2NH, R¼ iPr soterenol; A¼HOCH2, R¼ tBu, albuterol.
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group para to the side chain does not function as an agonist. Furthermore, the meta MeSO2NH group is not a good substrate for

catechol-o-methyltransferase (COMT) methylation, which explains why these bioisosteres were not rapidly metabolized and have a

longer t1/2. Three compounds from this series (different amine substituents) were clinically evaluated and found to be very safe,

effective, and selective agonists.1,2 Further studies showed the 3-MeSO2NH group to be a useful bioisostere in phenylalanines, but just

as it was not a good substrate for COMT it did not permit decarboxylation with L-DOPA decarboxylase. This meant the methane-

sulfonamide bioisostere of L-DOPA would not provide an alternative Parkinson’s drug, nor did this methanesulfonamide bioisostere

provide an effective long-lasting alternative to estradiol, and its usefulness remained primarily in the catecholamines.

A major lesson came belatedly from the clinical trials and toxicological studies of the beta agonists. Soterenol, the bioisostere of

isoproterenol, had almost completed phase III clinical trials as a bronchodilator for asthmatics, and mesuprine was in phase III for

peripheral vascular disease and premature labor as a uterine relaxant when preliminary results from chronic toxicity and

carcinogenicity studies became available. At necropsy 20 of 50 rats in the high dose group had benign tumors, mesovarial

leiomyomas, which appeared like a third ovary. No tumors were found after 18 months, only after 24 months. With a heightened

concern for tumors and carcinogenicity at the Food and Drug Administration (FDA) in the 1960s, all clinical trials were stopped

and all patients who had received drug were to be followed for their lifetime. The FDA even assumed the MeSO2NH group was

responsible for the leiomyomas, although the rats were dosed with 10000 times the amount of compound that would have killed

them with epinephrine. The concern at that time was not benefit/risk ratio or separation between active and toxic dose, but an

absolute concern for tumors. All development projects with sulfonamido beta-adrenergic agonists were stopped and no products

were marketed.

About 7 years later, Glaxo developed a similar compound salbutamol/albuterol (see Figure 1), which differed from isoproter-

enol and soterenol only by having the meta OH or MeSO2NH isostere replaced by CH2OH and t-butylamine in place of

i-propylamine. The amine substituent was a trivial change because all three series of catecholamines had t-butyl> i-Pr>Me in

potency with no appreciable difference in pharmacologic or kinetic/disposition properties. The pKa of the catechol or ‘mixed

catechol’ group was MeSO2NH>OH>CH2OH, but all somewhat acidic due to the para OH, and only the OH was readily

metabolized by COMT to an inactive metabolite. At that time, the Mead Johnson (Bristol-Myers) management agreed to repeat the

carcinogenicity studies to see if the leiomyomas were truly drug related, even though it cost nearly 3 years and>$2 million at that

time. The new study included four arms with a small group necropsied at 18 months: (1) were the results reproducible? (2) were

they reproducible with a different strain of rats? (3) were they reproducible if drug was administered orally by gavage or in feed?

(4) were they reproducible if a similar dose of albuterol was used instead of soterenol? The answer to all questions was yes with

nearly identical results. Albuterol had been licensed to Schering Plough for the US market, and the carcinogenicity study was

conducted by Schering Plough, but no mesovarial leiomyomas were found. We called the head of R&D at Schering Plough who

asked their pathologist to re-examine the preserved rat ovaries from their study. Although surprised, they found a similar incidence

of leiomyomas when they knew what to look for. At that time, our tissue pharmacologists measured the effect of soterenol on

isolated mesovarial tissue and found the density of beta-adrenergic receptors to be much greater than the density in rat uterus, the

classical tissue for measuring beta-adrenergic potency. We were convinced that the unusual benign tumors were an extension of the

compounds’ pharmacology at very high doses and lifetime dosing rather than a specific chemical toxicity. Subsequent to these

findings, Glaxo repeated the carcinogenicity studies with albuterol and found a similar incidence of tumors at their laboratories,

but their convincing finding came from a parallel treatment arm with enough propranolol added to block the adrenergic effects of

albuterol – no tumors!

I believe this was one of the first examples clearly showing that animal tumors were the result of high dose pharmacology rather

than chemical toxicity. The FDA’s conclusion was to accept these findings as establishing the dose-limiting toxicity, and the likely

dosage or even overdose consumed by people did not indicate significant risk, so albuterol was approved and Bristol-Myers was

allowed to resume clinical trials with soterenol and mesuprine. After patients were followed for over 11 years, no major adverse

effects or toxicities were reported. Although the sulfonamide adrenergic drugs were first-of-type to be developed bymany years, they

would be second to the marketplace, and Bristol-Myers’ management did not see a marketing advantage at that time, so they were

never commercialized. By contrast, Glaxo marketed both oral and inhaled formulations of albuterol (Ventolin) as it quickly

became the leading drug for asthma and obstructive lung diseases. It has remained champion of its class without significant

competition for over 25 years.

Several perspectives or morals are to be learned from this example – primarily, do not accept an unusual effect or toxicity in a

nonhuman species as a basis for killing a clinical project – first, understand it, especially if it is an extension of the desired

pharmacology at very high doses. Design the toxicology protocols so you can understand what is responsible for unexpected effects.
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Another perspective I learned as a medicinal chemist from this work is that you cannot deviate very far from the structure of

neurotransmitters or hormones if you want to develop receptor agonists. whereas there can be considerable variation for

antagonists. This holds up well for adrenergics, serotonin, acetylcholine, glutamate, glycine, and estrogen. The MeSO2NH mimic

for OH was most effective as part of a catechol group for agonists. Even the –OCH2– linker for propranolol compared to

pronethalol retains a similar conformation for the side chain and improves affinity for antagonists but not agonists. Simple

replacement of functional groups with bioisosteric groups that do not change stereochemistry, pKa, hydrophilicity, or bioavail-

ability are about all that is permitted for a true transmitter or hormone mimetic.
Case 2

A major new perspective was learned in the 1970s and 1980s when therapeutic area teams of chemists, biologists, and clinicians

were assigned to intervene in major disease conditions. Our understanding of mechanism, relevant animal models, and preferred

points for disease intervention was very limited at that time. We made structural assumptions for prototypical compounds with

known activity, synthesized a few grams from multistep pathways, tested this compound in several in vitro assays for potency and

selectivity, and assumed their mechanism of action would translate to clinical activity. Research groups from other companies were

following the same process and would occasionally announce exciting new structural leads at scientific meetings. We often made

the mistake that we were competing within structural classes or mechanism (usually unknown) rather than disease class. Bristol-

Myers took an early lead at that time by licensing lead compounds from other companies or academic groups and probing disease

targets with clinical trials; the mechanism or target was learned only after clinical efficacy was established. Trazodone (Desyrel)

blazed the trail for other serotonergics in depression, and was replaced by the nonsedating nefazodone from internal discovery.

Treatment of cancer became an achievable goal and a significant business with cyclophosphamide, bleomycin, mitomycin,

cisplatin, and Taxol – structurally diverse, different mechanisms but clinically effective. Smart variations of a known active

compound were easier and faster if you owned the lead molecule. Each of these first-of-type products was licensed with minimal

clinical results, but spawned improved drugs from in-house research; the structural lead came from licensing and was still novel.

During the past decade most big pharmas have significantly reduced their drug discovery efforts and license first-of-type clinical

stage products from smaller biopharmas, so a greater understanding of SAR for ADME and pk and for system biology of the disease

target are now required by discovery chemists.
Case 3

The final perspective I would like to pass to younger medicinal chemists is the need to optimize structure for treating the disease,

not just the molecular target. The typical drug discovery process today is to screen more than 100000 compounds from small

molecule libraries against a cell-based or cell-free target in high-throughput manner. The iterative process between synthesis and

screening is so fast now because many analogs are prepared at the same time by parallel synthesis in tubes or 96-well plates, then

screened against molecular targets in high-throughput mode. There is a tendency in many organizations to assign enough chemists

to optimize the ‘hit’ structure for potency, then explore the most active compounds by in vivo assays. It is my opinion that optimal

compounds in a series for clinical development can be identified more quickly if most compounds synthesized are evaluated for

aqueous solubility and partition coefficient, cytotoxicity, induction of P450 liver enzymes, and a conscious animal model of the

disease being investigated.

Seldom does the structure–activity relationship (SAR) for the primary molecular target parallel the SAR for oral bioavailability

(indicated by in vivo potency and water solubility) or for safety (indicated by cytotoxicity and P450 enzyme induction).

Convergence of SAR for in vivo potency, safety, bioavailability, and drug disposition (t1/2) is essential to select an optimal

compound for clinical development. Obviously this perspective pertains to systemic diseases more than to invading microbes

(bacteria, viruses, fungi, etc.). With high-throughput synthesis capabilities, the assays are rate-limiting rather than the preparation

of compounds, so the convergence of different SAR can be achieved by getting multiple data points on each compound as it

is synthesized.

The disparity of SAR has never been greater in my experience than for the project in which I am currently involved, inhibiting

brain levels of Ab42 for Alzheimer’s disease. We use a demanding human-cell-based assay and look for nanomolar potency in the

primary screen, then we use mixed brain culture to confirm activity and potency for decreasing Ab42. Early in our efforts to optimize

structure, we learned that removing amethyl group from a heteroaromatic ring decreased potency slightly but increased brain levels

of drug and induced P450 enzyme activity. Then when we varied the substituent pattern on an aromatic ring, we found a most

potent series that lacked aqueous solubility and oral bioavailability. Even slight structural changes that improved potency worsened

several other properties which made the newer analogs less desirable. We recognized the need for convergence of SAR for all of

these properties before we pursued multiple dose pharmacology or other receptors/ion channels/enzymes in search of specificity.

To achieve optimal clinical efficacy for this series, we wanted a compound to have good oral bioavailability and brain levels (brain/

plasma ratio >1), no cytotoxicity or liver enzyme induction, significant plasma t1/2 and area under the curve (AUC), in order to

safely dose patients orally and once daily in clinical trials for several months.3 The simultaneous study of potency, bioavailability,

and preliminary pharmacokinetics shortened the time to select an optimal clinical candidate. This perspective is certainly aided by
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the high-throughput screening of many compounds against these drug properties. In preclinical development and clinical

candidate selection, we dropped the concept that water solubility is essential for oral absorption and focused on good brain/

plasma ratios. We found acceptable oral absorption and brain distribution with ultra fine particle size (nanoparticles) and dosing

with food, which reduced high blood levels and liver exposure. These concepts have revolutionized clinical formulations for orally

dosed compounds that are desired for brain distribution.

In concluding my perspectives on the foremost considerations for medicinal chemists, probably top of the list is patentability of

the lead compounds. In this day of court decisions on infringement and ‘first-to-file’ applications, issued patents on drug targets or

mechanism of action and diagnostic tools enable the patent holder to use them and possibly license them but not prevent

infringement if used by others for drug development. This makes the composition of matter patents, plus synthetic process and

formulation patents, king of intellectual property and sole protector of a product in the market place. For this reason, the medicinal

chemist needs to synthesize compounds beyond the optimal clinical candidate which might be anticipated as second generation

products, then secure broad patent coverage to prevent ‘me-too’ developments. Do not try to patent too broadly and include

inactive compounds because that will weaken the patent for unanticipated active analogs. Do not file too early because that will

shorten the patent life of products. Good patent strategy drives much of the synthetic effort for a first-of-type series.
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Introduction

Affinity chromatography can be defined as a liquid chromatographic method in which a biological agent or biomimetic ligand is

used for the selective retention of complementary compounds. This form of liquid chromatography was originally employed by

Starkenstein in 1910 for the purification of amylase through the use of starch as a solid support and stationary phase. This method

continued to slowly develop over the next 50 years. However, it was not until the 1960s that suitable supports like beaded agarose,

as developed by Hjerten, became available, as well as relatively simple immobilization techniques for these supports. An important

advancement in this latter area was a paper in 1967 by Axen, Porath, and Ernback, in which the cyanogen bromide method for

protein and peptide immobilization was first reported. This immobilization approach was then utilized in 1968 by Cuatrecasas,

Anfinsen, and Wilchek to purify enzymes through the use of immobilized enzyme inhibitors. It was also at this time that the term

‘affinity chromatography’ was proposed to describe this separation technique.

Affinity chromatography is relatively simple to perform and is a powerful tool for the separation of biological macromolecules.

The high selectively of this approach often allows single-step purification strategies to be developed, even when working with dilute

and highly complex mixtures. This simplicity and the variety of ligands that can be used with this approach have made affinity

chromatography an important tool in process-scale separations. However, modern affinity chromatography also plays an signif-

icant role in the analysis and study of biological systems. For instance, most forms of chiral liquid chromatography, such as those

using immobilized cyclodextrins or serum proteins, can be considered to belong to a subcategory of affinity chromatography.
Basic Principles of Affinity Chromatography

The Process

Affinity chromatography relies on the specific recognition that occurs between many biological molecules, such as the binding of

an antibody with an antibody or the interaction of a hormone with its receptor. These interactions are used in affinity chroma-

tography by permanently bonding (or ‘immobilizing’) onto a solid support an appropriate binding agent. This immobilized agent

is known as the affinity ligand and represents the stationary phase for this method. Once the affinity ligand and its support have

been placed within a column, this column can be used to retain any substance that will form a strong but reversible complex with

the ligand. The optimum association constant (Ka) for such a system in purification work is generally 104–108 l mol�1. However,

stronger and weaker interactions can be used in analytical applications of affinity columns.

The most common format employed in affinity chromatography is given in Figure 1. In this format, a solution containing the

target of interest is passed through a column containing an immobilized ligand capable of binding to the target. This step is

performed in the presence of an application buffer that allows such binding to occur. Because the resulting interaction is usually

selective in nature, the ligand will recognize and retain the target while allowing other compounds in the sample to pass through

the column in the nonretained peak. However, due to the strong binding that is often present between the target and ligand, the

target is held within the column until the mobile phase or chromatographic conditions are varied. This variation in conditions is

often accomplished by passing an elution buffer through the column. As the target elutes from the column, the target is captured for
☆Change History: March 2013. DS Hage updated the main body of the text and the suggested articles for further reading.
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Figure 1 Typical separation scheme for affinity chromatography, showing the steps for sample application, column washing, analyte/target elution,
and column regeneration.

Table 1 Affinity ligands and their target compounds

Type of affinity ligand Typical targets

Biological agents
Lectins Glycoproteins, cells
Carbohydrates Lectins and other carbohydrate-binding proteins
Nucleic acids Exonucleases, endonucleases, and polymerases
Cofactors, substrates, and inhibitors Enzymes
Protein A and protein G Antibodies
Hormones and drugs Receptors
Antibodies Antigens
Nonbiological ligands
Metal-ion chelates Proteins and peptides that bind metal ions
Synthetic dyes Enzymes and various nucleotide-binding proteins
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further use or monitored by an online detector. The column is then cleaned, allowed to regenerate in the application buffer, and

used for application of the next sample. As this scheme suggests, there are several factors to consider in the design of an affinity

separation. These factors include the ligand, support material, immobilization method, and application or elution conditions.
The Affinity Ligand

Examples of ligands that are used in affinity chromatography are given in Table 1. The ligand can be a naturally occurring

biomolecule, an engineered macromolecule, or a synthetic substance. Examples of naturally occurring ligands that are employed in

this technique include enzyme inhibitors, hormones, lectins, antibodies, and nucleic acids, which are used to bind enzymes,
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receptors, polysaccharides, antigens, and nucleic acid-binding proteins, respectively. Nonbiological ligands that have been used in

affinity columns include immobilized chelates of metal ions (e.g., Ni2þ), reactive dyes, and molecularly imprinted polymers.

As shown in Table 1, many ligands are biological macromolecules. These ligands can take part in several types of interactions as

they bind to their targets, including electrostatic forces, hydrogen bonding, dipole–dipole interactions, and van der Waals forces.

The specific recognition between the ligand and target is due to a combination of these interactions as well as the fit between these

species. This is the source of the high affinity that is seen for many biological ligands in affinity columns.

All affinity ligands can be grouped into one of two categories: group-specific ligands and high-specificity ligands. High-

specificity ligands are generally based on biological agents. A common example is the binding of an antibody with the foreign

substance (or antigen) to which the antibody was initially raised. These ligands tend to have relatively large association constants

and generally require a step gradient for elution in affinity chromatography. Group-specific (or general) ligands are agents that bind

to a class of related molecules. These ligands recognize a common structural feature on their targets and can be either biological or

nonbiological in origin. Examples include protein A, protein G, lectins, boronates, dyes, and immobilized metal-ion chelates.

Depending on their affinity, group-specific ligands may require step elution (e.g., as often used for lectins, protein A, and protein G)

or may allow the use of isocratic elution (e.g., as occurs in some applications of boronates and immobilized metal-ion chelates).

There are several terms used to classify affinity methods based on the ligands they employ. For instance, bioaffinity chroma-

tography (or biospecific adsorption) is a term used to describe any type of affinity chromatography that has a biological molecule as

the ligand. This category can be further subdivided into other techniques. As an example, the use of antibodies (or immunoglob-

ulins) as affinity ligands is often referred to as immunoaffinity chromatography, and the use of lectins as ligands is commonly

known as lectin affinity chromatography. Other classifications based on the type of ligand include (1) dye-ligand or biomimetic

affinity chromatography, which generally uses an immobilized synthetic dye; (2) immobilized metal-ion affinity chromatography,

in which the ligand is a metal ion complexed with an immobilized chelating agent; and (3) boronate affinity chromatography, in

which boronic acid or one of its derivatives is utilized as the ligand.
The Support

The support is the material or matrix that holds the ligand within the affinity column. Table 2 shows various materials that have

been employed for this purpose. Ideally, the support should have low nonspecific binding for sample components but should be

easy to modify for ligand attachment. This material should also be stable under the flow rate, pressure, and solvent conditions to be

employed in the analysis or purification of samples. In addition, the support should be readily available and simple to use in

method development.

Depending on what type of support material is being used, affinity chromatography can be characterized as either a low- or

high-performance technique. In low-performance (or column) affinity chromatography, the support is usually a large diameter,

nonrigid gel. Many of the carbohydrate-based supports and synthetic organic materials listed in Table 2 fall within this category.

The low back-pressures and reasonable costs of these supports make them useful for large-scale processing and small-scale

preparative work. However, these supports also tend to have slow mass transfer and limited stability at high flow rates and

pressures. These factors limit the usefulness of these supports in analytical applications, where both rapid and efficient separations

are often desired. In high-performance affinity chromatography (HPAC, also known as high-performance affinity liquid chroma-

tography), the supports generally consist of small, rigid particles capable of withstanding the flow rates and/or pressures

characteristic of high-performance liquid chromatography (HPLC). Examples of supports suitable for such work include modified

silica or glass, hydroxylated polystyrene media and some types of monolithic supports. The mechanical stability and efficiency of
Table 2 Materials used as supports in affinity chromatography

Support material Approximate
usable pH range

Carbohydrate-based supports
Agarose 2–14
Cellulose 1–14
Dextran 2–14
Synthetic organic polymers
N-Acryloyl-2-amino-2-hydroxymethyl-1,3-propane diol 1–11
Hydroxyethylmethacrylate polymer 2–12
Oxirane-acrylic polymer 0–12
Polyacrylamide 3–10
Polytetrafluoroethylene 0–14
Poly(vinyl alcohol) 1–14
Styrene–divinylbenzene polymer 1–13
Inorganic supports
Glass 2–8
Silica 2–8
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these supports allows them to be used with standard HPLC equipment. This results in a separation with good speed and precision,

making it useful in analytical applications.

One desirable characteristic for the support is that it should allow easy access of the target to the ligand. For a porous material,

this requires that the support have pores that are at least several-fold larger than the target. However, the use of a support with large

pores will also produce a low surface area per unit volume, which will limit the number of ligands that can be attached to the

surface. In process-scale work, another requirement for the support is that it should be possible to routinely sanitize this material

without causing damage. This requirement generally means that the support should be resistant to reagents such as concentrated

sodium hydroxide or 8 mol l�1 urea.
Immobilization Methods

The third item to consider in the development of an affinity technique is the way in which the ligand is attached to the solid support

(i.e., the immobilization method). There are many ways immobilization of the ligand can be accomplished. These approaches

include simple adsorption to a solid support, bioselective adsorption to a secondary ligand (e.g., the noncovalent binding of

antibodies to immobilized protein A), entrapment, imprinting, and covalent attachment.

There are several criteria that should ideally be met for the immobilization method. First, this approach must allow the affinity

ligand to be coupled to the support without significantly affecting the ligand’s binding properties. Second, this method must allow

the immobilized ligand to still be accessible to its target for binding to occur. In addition, the immobilization method should not

introduce any groups to the support that can give rise to nonspecific interactions. Fourth, the amount of ligand coupled to the

support should be optimal for binding to the target and the ligand should be immobilized in a manner that prevents the loss of

ligand over time.

Covalent attachment is the most common approach used for ligand immobilization. Some techniques available for this

approach are listed in Table 3. For a protein or peptide, this process generally involves coupling the ligand through amine,

carboxylic acid, or sulfhydryl residues that are present in its structure. Immobilization of a ligand through other functional sites

(e.g., aldehyde groups produced by carbohydrate oxidation) is also possible.
Application and Elution Conditions

The final set of items to consider in the use of affinity chromatography is the selection of application and elution conditions. Most

application buffers in affinity chromatography are solvents that mimic the pH, ionic strength, and polarity experienced by the target

and ligand in their natural environment. These conditions generally allow for optimum binding between the target and ligand. Any
Table 3 Examples of covalent immobilization methods

Techniques for ligands with amine groups

Cyanogen bromide (CNBr) method
Divinylsulfone method
Epoxy (bisoxirane) method
Ethyl dimethylaminopropyl carbodiimide (EDC) method
N-Hydroxysuccinimide ester (NHS) method
Schiff base (reductive amination) method
Tresyl chloride/tosyl chloride method
Techniques for ligands with free sulfhydryl groups
Divinylsulfone method
Epoxy (bisoxirane) method
Iodoacetyl/bromoacetyl methods
Maleimide method
Pyridyl disulfide method
TNB-thiol method
Tresyl chloride/tosyl chloride method
Techniques for ligands with carboxylate groups
Ethyldimethylaminopropyl carbodiimide (EDC) method
Techniques for ligands with hydroxyl groups
Cyanuric chloride method
Divinylsulfone method
Epoxy (bisoxirane) method
Techniques for ligands with aldehyde groups
Hydrazide method
Schiff base (reductive amination) method
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cofactors or metal ions required for solute–ligand binding should also be present in this solvent. In addition, surfactants and

blocking agents may be added to the buffer to prevent nonspecific retention on the support or affinity ligand.

The elution buffer can be either a solvent that produces weak binding or one that decreases the extent of this binding by using a

competing agent that displaces the target from the column. These two approaches are known as nonspecific elution and biospecific

elution, respectively. Biospecific elution is the gentler of these two methods because it is carried out under essentially the same

solvent conditions as used for sample application. This feature makes this approach attractive for purification work, where a high

recovery of active target is desired. In nonspecific elution, a change in column conditions is used to weaken the interactions

between retained compounds and the ligand. This result can be accomplished by changing the pH, ionic strength, or polarity of the

mobile phase. The addition of denaturing or chaotropic agents to the mobile phase can also be employed. These changes can alter

interactions of the target with the ligand, leading to lower retention. Nonspecific elution tends to be much faster than biospecific

elution in removing compounds from affinity columns, resulting in sharper peaks and lower limits of detection for use in analytical

applications of affinity chromatography. This method can also be used in purifying solutes, but there is a greater risk of target

denaturation with this approach than there is with biospecific elution. Furthermore, in nonspecific elution care must be taken to

avoid using conditions that may harm the support or result in an irreversible loss of ligand activity.
Applications of Affinity Chromatography

Preparative Applications

The most popular use of affinity chromatography is in the purification of proteins and other biological agents. The use of this

method in enzyme purification is particularly important, with hundreds to thousands of applications having been reported in this

field alone. Ligands used for this purpose include enzyme inhibitors, coenzymes, substrates, and cofactors. For instance, nucleotide

mono-, di-, and triphosphates can be used for the purification of various kinases, NAD has been used to isolate dehydrogenases,

and RNA or DNA has been used for the preparation of polymerases and nucleases.

Antibodies have also been popular ligands for the purification of biological compounds. There are now thousands of examples

of immunoaffinity methods that have been developed for the isolation of hormones, peptides, enzymes, recombinant proteins,

receptors, viruses, and subcellular components. In addition, immobilized antigens are frequently used to isolate specific types of

antibodies. A more general purification scheme for antibodies can be obtained by using antibody-binding proteins like protein A

and protein G. These latter ligands have the ability to bind to the constant region of many types of immunoglobulins. Both protein

A and protein G have their strongest binding to immunoglobulins at or near neutral pH but readily dissociate from these when

placed into a lower pH buffer.

Dye–ligand affinity chromatography is often used in large-scale protein and enzyme purification, with hundreds of such

compounds having been isolated by this technique. In this method, an immobilized synthetic dye is used that binds to the active

site of a target by mimicking the structure of its substrate or co-factor. The most common dye used for this purpose is Cibacron Blue

3G-A (see Figure 2). Other dyes that have been used in this approach include Procion Blue MX-3G or MX-R, Procion Red HE-3B,

Thymol Blue, and Phenol Red. Although these ligands were originally discovered on a trial and error basis, recent work in the area

of biomimetic affinity chromatography has used computer modeling and 3D protein structures to develop dyes that compliment

the binding pockets of specific target proteins.
Analytical Applications

Although affinity chromatography was originally created as a preparative method, the past few decades have seen this method also

become an important tool in analytical applications. Table 4 summarizes some strategies that can be employed in these

applications and gives some representative examples. The simplest format for using affinity chromatography in analysis involves

the traditional step gradient mode, as shown in Figure 1. The advantages of using this approach in analytical applications,

particularly when performed by HPLC, include its speed, relative simplicity, and good precision.
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Figure 2 Structure of Cibacron Blue 3G-A, a stationary phase often used in dye–ligand affinity chromatography.



Table 4 Analytical applications of affinity chromatographya

General application Examples of analytes

Direct detection Anti-idiotypic antibodies, antithrombin III, bovine growth hormone, fibrinogen, fungal carbohydrate antigens, glucose
tetrasaccharide, glutamine synthetase, granulocyte colony stimulating factor, group A-active oligosaccharides, human
serum albumin, immunoglobulin G, immunoglobulin E, interferon, interleukin-2, lymphocyte receptors, b2-
microglobulin, tissue-type plasminogen activator, transferrin

Offline affinity extraction Aflatoxin, albuterol, benzodiazepines, cytokinins, fumonisin, human chorionic gonadotropin, ivermectin and avermectin,
nortestosterone, ochratoxin A, oxytocin, phenylurea herbicides, sendai virus protein, trenbolone, triazine herbicides

Online affinity extraction Aflatoxin M1, b-agonists, a1-antitrypsin, atrazine, atrazine metabolites, benzylpenicilloyl-peptides, bovine serum albumin,
carbendazim, carbofuran, chloramphenicol, clenbuterol, cortisol, dexamethasone, diethylstilbestrol, digoxin, estrogens,
hemoglobin, human epidermal growth factor, human growth hormone variants interferon a-2, LSD, lysozyme variants

Chromatographic
immunoassays

Adrenocorticotropic hormone, a-amylase, atrazine/triazines, 2,4-dinitrophenyl lysine, human chorionic gonadotropin,
human serum albumin, immunoglobulin G, isoproturon, parathyroid hormone, phenytoin, testosterone, theophylline,
thyroid stimulating hormone, thyroxine, transferrin, transferrin, trinitrotoluene

aThe information in this table is based on data provided in Hage (1998).

Sample application
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Immunoextraction
elution buffer

Immunoextraction
column

RPLC
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RPLC analytical
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Figure 3 Scheme for interfacing an immunoextraction column with reversed-phase liquid chromatography (RPLC). The two circles represent six-port
switching valves, with the solid and dashed lines showing the two positions of these values and the flow of sample and solvents in each of the two
positions. The operation of this system is described in the text.
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Affinity extraction is another approach that can be used for solute detection. In this method, an affinity column is used for the

removal of a specific solute or group of solutes from a sample prior to their determination by a second method. This approach

employs the same operating scheme as shown in Figure 1 but now involves combining the affinity column either offline or online

with some other method for the actual quantitation of analytes. This scheme often involves the use of antibodies as ligands, but

other binding agents can also be employed.

Offline extraction is the easiest and most common way for combining affinity columns with other analytical techniques. This

method typically involves the use of antibodies that are immobilized and packed into a disposable syringe or solid-phase extraction

cartridge. After conditioning the affinity column with the necessary application buffer or conditioning solvents, the sample is

applied and undesired sample components are washed away. An elution buffer is then passed through the column and the target is

collected. If desired, the collected fraction can be analyzed directly or first dried down and reconstituted in a solvent that is more

compatible with the method to be used for quantitation.

Online affinity extraction can also be used. A typical scheme for performing online immunoextraction with reversed-phase

liquid chromatography (RPLC) is shown in Figure 3. This particular scheme involves injecting the sample onto an immunoextrac-

tion column, with this column later being switched online with a RPLC column. An elution buffer is then applied to dissociate any

retained analyte, which will be captured and reconcentrated at the head of the RPLC column. After all solutes have left the

immunoaffinity column, this column is switched back offline and regenerated by passing through the initial application buffer.

Meanwhile, the RPLC column is developed with either an isocratic or gradient elution scheme that uses a mobile phase with

increased organic modifier content. As the solutes elute through the RPLC column, they are monitored and quantitated through the

use of an online detector.

A third way affinity chromatography has been used in analytical applications is through a chromatographic, or flow-injection,

immunoassay. This method is used in determining trace analytes that do not directly produce a readily detectable signal. The

competitive binding assay is the most common format used in such an assay. This is generally accomplished by mixing the sample
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Figure 4 Detection of a parathyrin in human plasma by a chromatographic-based sandwich immunoassay. The results in (a) show the injection
spikes and nonretained fractions for four sequential injections of human plasma samples with increasing parathyrin levels. The results in (b) show the
response due to the retained parathyrin. This plot was obtained from Hage, D.S.; Kao, P.C., Anal. Chem. 1991, 63, 586–595.

0 5 10 15

Time (min)

R
es

p
on

se

[Phenytoin] L–Tryptophan 

40 µmol l−1

30 µmol l−1

20 µmol l−1

10 µmol l−1

0 µmol l−1

Figure 5 An example of a zonal elution experiment, in which small injections of L-tryptophan are made onto an immobilized human serum albumin
column in the presence of increasing amounts of phenytoin in the mobile phase.
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with a fixed amount of a labeled analyte analog (i.e., the ‘label’) and simultaneously or sequentially injecting these onto an

immunoaffinity column that contains a limiting amount of antibody. Immunometric assays have also been performed on

chromatographic systems. For instance, in a sandwich immunoassay (i.e., a two-site immunometric assay), two different types

of antibodies are used (see Figure 4). The first of these two antibodies is attached to a solid-phase support and used to extract the

analyte from samples. The second antibody contains an easily measured tag and serves to place a label on the analyte, thus allowing

it to be quantitated.
Biophysical Applications

Besides its use in separating and quantitating sample components, affinity chromatography can also be employed as a tool for

studying solute–ligand interactions. This approach is called analytical, or quantitative, affinity chromatography. Using this

technique, information can be obtained regarding the equilibrium and rate constants for biological interactions, as well as the

number and types of sites involved in these interactions.

Information on the equilibrium constants for a solute–ligand system can be acquired by using the methods of zonal elution or

frontal analysis. Zonal elution involves the injection of a small amount of solute onto an affinity column in the presence of a mobile

phase that contains a known concentration of competing agent. The equilibrium constants for the ligand with the solute (and

competing agent) can then be obtained by examining how the solute’s retention changes as the competing agent’s concentration is

varied (see Figure 5). This method has been used to examine a number of biological systems, such as enzyme-inhibitor binding,
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protein–protein interactions, and drug–protein binding. Frontal analysis is used in a similar manner but is performed by continu-

ously applying a known concentration of solute to the affinity column. The moles of analyte required to reach the mean point of the

resulting breakthrough curve is then measured and used to determine the equilibrium constants and number of binding sites for

solute–ligand binding.

Information on the kinetics of solute–ligand interactions can also be obtained using affinity chromatography. A number of

methods have been developed for this, including techniques based on band-broadening measurements, peak fitting, the split-peak

effect, and peak decay analysis. These methods are generally more difficult to perform than equilibrium constant measurements but

represent a powerful means for examining the rates of biological interactions. Systems studied by these techniques have included

the binding of lectins with sugars, protein A, or protein G with immunoglobulins, antibodies with antigens, and drugs with serum

proteins. The recent creation of commercial sensors for biointeraction studies is one result of such work.
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3.05.1 Introduction

For the pharmaceutical industry, undoubtedly the most enticing prospect stemming from the modern genomics

revolution is the promise it offers of improved drug target identification. A drug target is a molecule in the body, usually

a protein, that is intrinsically associated with a particular disease process and that could be addressed by a drug to

produce a desired therapeutic effect. Typical examples for such targets are receptors on the surface of a cell that can be

triggered to give a signal upon stimulation with a drug or enzymes whose activity of converting one substance to

another is modulated via a drug. The identification, characterization, and validation of a drug target is a long and

difficult exercise, demanding, as it does, a profound understanding of a disease’s etiology and the biological processes

associated with it, coupled with a fair amount of trial and error experimentation. In fact, up to now, drugs have been

developed to address only a few hundred known drug targets. On the other hand, the anticipation is that today’s

research in genomics and proteomics will yield several thousand new drug targets.

Furthermore, it is likely that these drug targets will lead to drugs that are therapeutically more precise and more

effective than those available today. Many of today’s drugs were identified by happenstance and show a multitude of side

effects. While some lack of specificity may be desirable in certain circumstances, it is still preferable to have substances

that are as specific toward their respective targets as possible to avoid undesirable adverse events. Using our ever-

increasing understanding of how proteins react and interact with each other, it is expected that, for a given disease, the

best possible molecular intervention point should be precisely identifiable. In order to get there, there is a need for

experimental procedures that will capture the behavior of all involved interaction partners simultaneously. Such

procedures are currently emerging in the genomics area with technologies such as deoxyribonucleic acid (DNA)

microarrays for gene activity (¼mRNA) profiling, and in related areas such as proteomics, metabolomics, and lipidomics.

The advent of DNA microarrays was heralded by the seminal paper of Schena et al.,1 who introduced the concept of

immobilizing microscopic amounts of DNA fragments on glass substrates, and the subsequent success story of Golub

et al.,2 who demonstrated that such microarrays could be used both to distinguish among clinically similar types of
87
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cancer, acute myeloid leukemia, and acute lymphoblastic leukemia, as well as to generate a list of genes associated with

the classification.

The power of DNA microarray technology is that it provides a high throughput instrument for simultaneously

screening thousands of genes for differential expression across a series of different conditions. Despite the fact that it

may not have sufficient sensitivity to detect subtle expression changes such as those of regulatory genes, a well-

designed and properly executed microarray experiment should be able to detect the downstream effects of such

changes, which generally tend to be more dramatic. Since these effects are the ones most likely to be associated with

druggable targets, DNA microarrays are an important tool for identifying drug targets.

The remainder of this chapter is organized as follows. Section 3.05.2 outlines DNA microarray technology and

experiments. Section 3.05.3 describes the various data analysis considerations that are necessary to make sense out of

the enormous datasets generated by these experiments. Section 3.05.4 presents a series of case studies from the

neuroscience area, although the concepts illustrated therein apply much more globally. Finally, Section 3.05.5 offers

some concluding remarks as well as a quick look to the future.
3.05.2 Deoxyribonucleic Acid Microarray Experiments

DNA microarray technology enables scientists to simultaneously assess the relative transcription levels of several (if not

all) of the genes within a cell across a series of different conditions: for example, across different pathological

conditions, such as healthy versus diseased, different disease states, across time during the progression of a disease or

infection, or during therapy and so on. Under the premise that some genes would be differentially expressed as a

consequence of a disease process, monitoring expression patterns in this way provides scientists with potentially

valuable clues and insights for scrutinizing and understanding the biological and cellular processes underlying that

disease.

DNA microarrays are small solid supports (such as glass microscope slides, silicon chips, beads, or nylon membranes)

onto which nucleic acid sequences (probes) have been robotically attached in a rectangular array format. Typically, the

number of probes arrayed is very large and would correspond to a significant representation of the genome under study,

which is in keeping with the concept that this technology is essentially a high throughput screen of the transcriptome.

The probes are usually made of small single-stranded DNA sequences (either oligonucleotides or denatured

polymerase chain reaction (PCR) products), which are expected to be exactly matching (complementary) to the single-

stranded fluorescently labeled target that is finally applied to the microarray. The selection of such short probes is

driven by the annotation of the genome of a given organism. The information at the start and the end of a gene plus the

untranslated regions of the corresponding mRNA is of high importance for the actual selection of the probe sequence.

Owing to the working mechanism of one key enzyme (the reverse transcriptase), the probe sequences tend to be

preferentially selected from the 30-end or the untranslated region of the mRNA.

The labeled target is prepared from mRNA extracted from a biological sample. The mRNA is reverse transcribed

using oligo dT as primer, linearly amplified, fluorescently labeled by incorporating Cy5- or Cy3-deoxynucleotides or

biotinylated deoxynucleotides to which fluorochromes can attach, solubilized in hybridization buffer, and then

dispersed over the surface of the microarray. The microarray slide is then inserted into a sealed hybridization chamber

to allow hybridizations between corresponding sequences on the microarray (i.e., the probes) and in the sample (i.e.,

the labeled target) to occur. Following incubation, the slide is washed using stringent and nonstringent buffers to

remove excess sample from the array and to reduce cross-hybridization. The occurrences of any true hybridization for

any of the probes are indicated by the remaining fluorescent intensities as measured by a confocal laser microscope or

similar instrument. Figure 1 shows schematically the key steps involved in a typical microarray experiment.

A standard microarray experiment would comprise several samples run through the above process. Comparing the

resulting fluorescent intensities across the different samples would indicate which genes are differentially expressed

across them.

3.05.2.1 Microarray Technologies

Several different microarray technologies are commercially available from a number of suppliers, such as Affymetrix and

GE Healthcare, or they may be produced by an in-house laboratory. A few of the more common microarray technologies

are described below.

In a cDNA microarray, the probes are long DNA fragments (a few hundred bases to several kilobases in length) with

sequences complementary to the sequences of the genes of interest or representative subsequences thereof.1 Regions

of low complexity are usually excluded as they could diminish hybridization specificity. cDNA probes can be obtained
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Figure 1 A schematic display of the key steps of a microarray experiment.
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from commercial cDNA libraries or, alternatively, PCR can be used to amplify specific genes from genomic DNA to

generate cDNA probes. Once obtained, the double-stranded DNA probes are denatured to generate single-stranded

probes, which are then robotically spotted onto a glass slide.

Experiments involving cDNA microarrays may be single- or multichannel. Two-channel experiments are the most

common. In a two-channel experiment, two samples (e.g., one from control tissue and one from diseased tissue) are

prepared for hybridization to the array with different samples labeled with different fluorescent dyes. They are then

combined and hybridized to the microarray together. The two samples will hybridize competitively to the probes on the

array with the sample containing more transcript for a particular probe prevailing. The two sets of fluorescent

intensities are recorded in two scans.

Another type of DNA microarray technology is the oligonucleotide microarray. Affymetrix manufactures a particular

type of oligonucleotide microarray3 in which a gene is represented by a set of 11–20 25-mer oligonucleotide probes

called perfect match (PM) probes. The PM probes are carefully selected to have little cross-reactivity with other genes

so that nonspecific hybridization is minimized. Nevertheless, some nonspecific hybridization will tend to occur. A

second probe called a mismatch (MM) probe, which is identical to the PM probe except for a mismatched base at its

center, is placed adjoining to the PM to combat this effect. The idea behind the mismatch probe is to subtract any

background hybridization as measured by the MM probe signal from the PM probe signal. Affymetrix synthesizes the

probes in situ onto silicon chips using a proprietary photolithographic process.4 A technological variant of this in situ

synthesis process is carried out by Affymetrix’ partner NimbleGen. They use a maskless approach based on almost a

million tiny mirrors for the photolithographic synthesis of the oligonucleotides. Advantages of this approach are

flexibility in the array design (custom chips) and much shorter time frames between the design of a chip and its actual

manufacturing as there is no need to generate masks.5

Other platforms also use oligonucleotides instead of cDNAs. There is a tendency in these platforms toward using

medium-length oligonucleotides as they are thought to provide more of a balance between sensitivity and specificity.

Longer oligonucleotides have higher sensitivity as they emit stronger signals and therefore have the ability to detect

less abundant transcripts. On the other hand, shorter oligonucleotides have higher specificity as the risk of cross

hybridization also increases with length. This makes it challenging to select a set of oligonucleotides to be arrayed such

that cross hybridization among known similar sequences is minimized as much as possible and yet sufficiently strong

and clear signals are obtained. The most suitable compromise is still an issue for debate. In these platforms, the

oligonucleotides are presynthesized as usual rather than synthesizing them in situ. In addition, a substrate other than

glass or silicon may be used for immobilizing them.

For instance, in GE Healthcare’s Codelink microarrays, presynthesized 30-mer oligonucleotides are inkjet spotted onto

a three-dimensional polyacrylamide gel matrix. The polyacrylamide gel can bind considerably more oligonucleotide

molecules than a conventional glass surface and the three-dimensional nature of the slide surface enhances the sensitivity

of the assay. Applied Biosystems’ expression array system uses chemiluminescence hybridization signaling chemistry of

60-mer oligonucleotide probes that are immobilized on a three-dimensional porous nylon substrate. Agilent manufactures

two-channel 60-mer oligonucleotide arrays using a proprietary dispensing process similar to the inkjet technology known

from current computer printers.

Owing to the diversity of microarray technologies, processes, experimental designs, and even data formats, the

Microarray Gene Expression Data (MGED) Society developed the MIAME (minimum information about a microarray
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experiment) guidelines as a standardized platform for storing and annotating microarray data with a view toward

encouraging the generation, storage, and exhange of microarray data in a controlled manner.3

Each microarray platform has its own advantages and disadvantages.6 The greater length of the probes arrayed on

cDNA microarrays ensures that they hybridize to sample sequences with higher stringency and are less likely to be

affected by minor mutations, but they exhibit lower hybridization sensitivity as longer sequences have higher likelihood

for nonspecific binding. They are less expensive to produce than commercial off-the-shelf arrays when produced in

quantity and thereby offer some flexibility along with the ability to be customized if manufactured in-house. Then

again, they tend to demand much more time and labor-intensive effort in manufacturing, clone maintenance, PCR

work, and quality control. On the other hand, commercial oligonucleotide microarrays tend to yield more reproducible

results that often also show higher specificity.7 The disadvantage of using such platforms is certainly the price, and

often there are organizational problems caused by having to rely on central facilities. Owing to the necessity of utilizing

comparably expensive specialized equipment, many research institutions have had to set up core teams dedicated to

performing the microarray work. Regrettably, this removes part of the control a researcher has over his whole

experiment.

Other applications of DNA microarrays in drug target research have recently gained more attention but will not be

addressed in this chapter further as they require their own experimental design and analysis techniques. Some of these

new applications are comparative genomic hybridization (CGH)8 for the detection of deletions and/or amplifications of

longer DNA stretches in the genome, resequencing of specific DNA sequences in a high throughput fashion, and single

nucleotide polymorphism (SNP) analysis9 for the study of inter-individual differences in single nucleotides within the

genome, to name a few.

3.05.2.2 Experimental Design Considerations

It is imperative to design a microarray experiment so that its objectives can be met. The objective of many microarray

experiments is to identify which genes are differentially expressed among several sets of samples. In such comparative

experiments, it is important to be able to generate statistics about what could be considered a differentially expressed

gene. This means that replicate samples must be run in order to generate enough data for a statistical analysis to have

adequate power to detect gene expression changes. As microarray experiments tend to be expensive, researchers are

sometimes reluctant to do too many replicates. However, both natural biological variability and the series of highly

technical steps that constitutes a microarray experiment cause the data to be subject to various sources of variation.

Minor differences in extraction, amplification, labeling, hybridization, and even the skill and experience of the

experimenter could result in substantial differences among what would otherwise be true replicates.

Only with sufficient replication can this variability be overcome and statistical significance assessed adequately.

There are two types of replication. One type is ‘biological replication,’ which involves extracting mRNA from several

biological samples and running each sample on a different microarray in order to compensate for intrinsic biological

variability in gene expression. The other type is ‘technical replication,’ which involves running the same sample on

multiple arrays in order to compensate for the technical variability of the experimental process.

Sometimes an experiment might turn out to be too large or too complex to be completed in a single session. In that

case, it is important to allocate, organize, and run the arrays in such a way that the effects of interest are not

confounded with extraneous effects, such as operator effects, manufacturing batch effects, and hybridization day

effects.

In general, it is crucial to pay careful attention to quality issues in order to ensure validity of the conclusions reached

from the study. The mRNA source and the preparation of the samples should be controlled and their quality assessed.

The most common techniques used nowadays are classical agarose gel electrophoresis to assess potential mRNA

degradation, spectrophotometrical analysis using a very small quantity of total RNA in a Nanodrop, and miniaturized

electrophoresis technologies such as the Agilent Bioanalyzer, which can produce data on mRNA degradation as well as

mRNA quantity. The whole issue of mRNA quality is largely dependent on the source from which the mRNA is

prepared. Cells cultivated in in vitro cultures tend to be much more homogeneous and generally yield much more

consistent mRNA quality and quantity as compared to mRNA from tissues. Furthermore, it is much easier to extract

mRNA from some tissues than others: While it is fairly easy to extract mRNA from liver, tissues such as heart or spleen

require much more experience to obtain the high-quality mRNA necessary for microarray analysis.

In addition, several control probes are often arrayed on the microarrays for various quality control purposes. The

most common are negative control probes, which are used to assess background and nonspecific hybridization, and

positive control probes, which are used to measure the abundance of nucleic acid sequences spiked in to the labeled

target as a way of assessing labeling and hybridization efficiencies.
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3.05.3 Data Analysis Considerations

Owing to the volume and complexity of the data generated by DNA microarray experiments, the data analysis aspect of

these studies acquires greater importance than other areas of biomedical research. In order to derive substantive

biological information from these studies, careful experimental design and proper statistical and bioinformatics analysis

are vital. Typically, a data analysis would consist of several stages. The first stage is always a data preprocessing step,

which will be described next. The subsequent stages depend on the objective of the experiment.

3.05.3.1 Data Preprocessing

Preprocessing the raw intensity data enhances the sensitivity of the downstream comparisons. Some preprocessing

steps, in the sequence in which they would normally be performed, are:

1. Array quality check: While a certain amount of variation in the intensity values across even identical arrays is

inevitable and not a cause for concern, it is not uncommon, given the technical complexity of the experimental

process, that a few arrays or a few samples in a study turn out to be defective. It is essential, however, to detect and

eliminate them so that they do not unduly affect the data analysis. Arrays or groups of arrays that are substantially

different from the rest can be identified by calculating Spearman correlation coefficients between all pairs of arrays.

The resulting correlation matrix can be displayed on a heatmap by coloring each correlation on the basis of its value.

This will highlight any unusual arrays, samples of poor quality, and bad hybridizations, which will generally tend to

have low correlations with most, if not all, of the other arrays and will therefore stand out in the plot.

2. Data re-expression: Microarray data are generally very heavily skewed. Furthermore, the distribution of the intensity

values could be quite different for different genes, most noticeably between low-expressing genes and high-

expressing genes. The within-gene distribution can be symmetrized and the heterogeneity of variances across the

genes greatly reduced by transforming the data. More often than not this can be achieved via a simple logarithmic

transformation (logarithms of base 2 are often used). However, sometimes, some other transformation, such as a

variance stabilizing transformation, a hybrid linear log transformation, or a started log transformation will do better.

3. Normalization: Spot intensity data will often need to be normalized to reduce monotonic nonlinear array effects.

Care must be taken when doing so to ensure that gene-specific effects are at most only slightly dampened,

otherwise detecting differential expressed genes will become impossible. Quantile normalization is a popular

normalization procedure. A reference array, to which all the arrays are normalized, is defined, usually as an average

microarray, such as by calculating gene-wise either the mean or the median across all the arrays. The distributions of

the transformed spot intensities are coerced to be as similar as possible to that of the transformed spot intensities of

the reference array. Quantile normalization is useful for normalizing a series of arrays where it is believed that a small

but indeterminate number of genes may be differentially expressed across the arrays, yet it can be assumed that the

distribution of spot intensities does not vary substantially from array to array. This assumption is often valid, and

when it is not, the normalization would have to be customized to the particular data being analyzed.

4. Final quality checks: Inevitably, the data will contain a few unusual spot intensity values (i.e., outliers). By

identifying and either removing or downweighting such aberrant values, the adverse impact that they would

otherwise have on subsequent analyses can be reduced. This can be done by comparing replicates, which can be

expected to be very similar to one another. In addition, a final array check can be done via a principal component

analysis (PCA) or spectral map analysis as described in (see Section 3.05.4.2).

Details of these preprocessing steps and others are described in 10.

3.05.3.2 Visual Inspection of the Data

Gene expression data is typically organized into a gene expression matrix in which the columns represent the samples

or experiments and the rows represent the expression vectors for the genes being interrogated by the microarray. The

matrix elements are either the spot intensities preprocessed as above or fold changes based on the spot intensities. In

trying to expose patterns in this data, it is helpful to somehow render this matrix visually.

A commonly used simple approach is to display the gene expression matrix as a heatmap by coloring each matrix

element on the basis of its value. It is likely that the heatmap will initially appear to be devoid of any apparent pattern

or order. However, by reordering the rows and/or columns on the basis of a clustering of the genes and/or samples,

potentially interpretable patterns of gene expression will often emerge, as groups of co-regulated genes should occupy

adjacent or nearby rows and similar samples should occupy adjacent or nearby columns in the display.
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PCA is another method for visually presenting the data with a view toward revealing structures in the gene

expression vectors. PCA is a technique for summarizing a multidimensional dataset in a few dimensions. Noting that

the gene expression matrix has as many dimensions as it has genes, some serious dimension reduction is necessary

without too much reduction in information in order for this to produce a meaningful representation. Methodologically,

PCA finds a new coordinate system such that the first coordinate, a linear combination of the columns of the data

matrix, has maximal variance, the second coordinate has maximal variance subject to being orthogonal to the first, and

so on. Plotting the first few coordinates often reveals interesting patterns. For instance, samples sharing similar profiles

will tend to lie close to each other. A rough visual estimation of the number of clusters represented in the data should

also be possible. In addition, PCA may reveal oddities in the data, such as unusual arrays, and it therefore provides a

useful supplementary array quality check as stated in (see Section 3.05.3.1).

A number of methods similar to PCA have been developed and project different views of the data. Factor analysis,

correspondence factor analysis, multidimensional scaling, and projection pursuit are some of the better known ones.

The biplot and spectral map analysis are extensions of these ideas. The PCA described above is PCA applied to the

samples (i.e., to the columns of the gene expression matrix). PCA can also be applied to the genes (i.e., to the rows of

the gene expression matrix). When a form of PCA, called the singular value decomposition, is applied to both samples

and genes, the simultaneous representation of both samples and genes in a single plot is called a biplot. Thus, a biplot

will consist of both sample-related points and gene-related points. As in a PCA plot, the distances between the sample-

related points are related to the dissimilarities between the samples; the closer a set of sample-related points, the more

similar the samples to which they correspond. Most gene-related points will clump together in the center of the biplot;

these would correspond to genes that are not differentially expressing across the samples. Any gene-related points that

lie substantially away from this central clump in the direction of a cluster of sample-related points would correspond to

genes whose expression profiles are associated with that cluster of samples. Thus, a biplot could be used to reveal not

only clusters of samples but also the genes associated with them. As a variation, prior to constructing a biplot, the rows

and columns of the gene expression matrix can be centered and weighted in specific ways to allow certain features of

the biplot to be highlighted. This is spectral map analysis.11

3.05.3.3 Identifying and Studying Differentially Expressing Genes

Identifying genes whose changes in expression are most associated with differences between the samples is one of the

fundamental questions addressed in the analysis of gene expression data. Thus, a comparative analysis of the gene

expression levels from a diseased cell versus those of a normal cell will help in the identification of the genes and

perhaps the biological processes and pathways affected by the disease process. Researchers can then use this

information to synthesize drugs that influence and intercede in this process. In order to address this question, both the

magnitude and the consistency of the expression changes must be assessed and a valid and reliable metric of

differential gene expression derived from the preprocessed spot intensity data.

When comparing two sets of samples, the significance of any gene expression change can be assessed by calculating a

t statistic for each gene. The t statistic is essentially a signal-to-noise ratio, in which the difference in mean log spot

intensities (essentially the mean fold change on a log scale) is the signal and the standard error is the noise. Note that

the fold change by itself, although used occasionally, is unreliable because it does not take into account the fact that not

all fold changes can be treated equally which itself is because different genes have different levels of variability. Of

course, the t test must be used carefully too. For instance, when the sample sizes are small, as is common in many

microarray experiments, the value of the t test statistic tends to be overly dependent on the estimate of noise, to

combat which modified versions of the t test (e.g., significance analysis of microarray data-t by 12 and Conditional t

by 10) have been proposed.

When comparing gene expression levels across multiple sets of samples, the t test statistic would be replaced by the

F test statistic. In the event that the experimental situation is more complex, such as a temporal or dose–response

study, appropriate F test statistics associated with linear ANOVA (analysis of variance) models could be used.

Genes that yield statistically significant t (or F) statistics should be examined for corroborating evidence of

biological relevance. Thus, a potentially useful supplementary exercise is to superimpose inter-gene functional

relationships onto the t test (or F test) results.13 Accordingly, a list of genes with statistically significant expression

changes can be examined for the repeated occurrence of various functional annotations, such as gene ontology

classifications, biochemical pathways, or protein–protein interactions. Via a simple statistical analysis, it can be

ascertained whether the set of significant genes contains an over-representation of genes in certain functional

categories. There is at present one obstacle to doing this well and that is the scarcity and the questionable quality of

the annotation data available for genes and their functional interactions. Nevertheless, as annotation databases improve
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in coverage, quality, and complexity, their integration into microarray results will be more viable and become an

increasingly valuable exercise.

Another potentially useful supplementary exercise is to cluster genes from multiple sets of samples into clusters

with similar expression patterns. Hierarchical and nonhierarchical algorithms such as agglomerative nesting, k-means,

and self-organizing maps have been implemented to cluster similar gene expression patterns. Presuming that genes

performing similar functions or belonging to the same biochemical pathway will exhibit a tendency to co-regulate,

inferences could be made regarding the unknown genes that share a cluster with genes whose functions or pathways are

known. Further inferences can be made by interrogating these clusters as above for over-representation in certain

functional categories.13

3.05.3.4 Sample Classification

When the samples are heterogeneous, they could be clustered using one of the methods listed above. A cluster analysis

will reveal groups of similar samples. If the sample types are known, this exercise can be used as validation that the

experiment was successful at separating the samples. In addition, clustering may indicate the existence of new

subclasses of existing classes of a phenotype or a disease, thereby leading to a better understanding of the situation at

the gene level.

When the samples are known to come from a number of different classes, another primary objective of many DNA

microarray experiments is the classification of the samples into the separate classes. This has two objectives. The first

is to identify the features (in this case, the genes or certain combinations of genes) that are most associated with the

classification. The second is to predict the classification of new samples. Accordingly, classification addresses the

question: given a set of samples, how can one assign each sample into the set of known classes with minimum errors? To

do this, a set of feature variables is defined and a decision rule (i.e., a classifier) based on these feature variables is

derived such that, given the measured values for any sample, the classifier would map it into one of the classes. A

number of methods can be used for classification, including linear discriminant analysis and variants, k nearest

neighbors, random forests, neural networks, and support vector machines. Readers should refer to the References for

examples of various microarray classification methods.10,14
3.05.4 Case Studies

In an ideal situation the identification of novel drug targets in a given disease is performed using diseased and control

tissue. However, biological samples derived from a precisely defined patient population and matched controls are

scarce. An exception to this rule is the field of oncology research, where profiling experiments can be performed on

tumor tissue and healthy control tissue derived from the same patient. In contrast, at the other end of the spectrum,

are the diseases of the central nervous system for which it is much more complicated to obtain affected tissue. As an

alternative, post-mortem samples are mostly used in diseases such as bipolar disorder, major depression, and

schizophrenia. This complication might be resolved in the future if reports on the possible correlation between

expression patterns observed in the brains and lymphoblastoid cells in patients with bipolar disorder, are confirmed.15

As an alternative to patient samples, scientists have turned to animal and cellular models of disease to study changes

in gene expression related to the etiology and progression of disease states. Both animal and cellular systems can also be

used for mode of action studies. In the following case studies, we will address experimental design, microarray

experiments, and data analysis in real-life examples.

3.05.4.1 Case Study 1

The aim of the first case study was to elucidate pathways downstream of the corticotropin-releasing factor (CRF)

receptor CRF1 in order to identify novel modulators of this receptor-signaling pathway.16 CRF is a 41-amino-acid

polypeptide that plays a central role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis, mediating

neuroendocrine, autonomic, and behavioral responses to various stressors.17 Hypothalamic neurons release CRF in

response to stress, stimulating the secretion of adrenocorticotropic hormone (ACTH) from the pituitary, which in turn

leads to increased release of glucocorticoids from the adrenal glands. Alterations in the CRF system activity have been

linked to a number of psychiatric disorders, including anxiety and depression. Since the pituitary is the main target organ

for CRF, the study was performed on a mouse pituitary-derived cell line called AtT-20 that expresses the CRF1 receptor.

Experimenting on freshly isolated pituitary cells probably would be closer to the in vivo situation compared to the

artificial AtT-20 cell line. However, the pituitary is a heterogeneous organ, comprising many different cell types, of which
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only a subset (the corticotrophs) respond to CRF. Therefore, changes in gene expression profile in this subset of cells

might be diluted when studying the whole organ. In that sense, not withstanding the fact that AtT-20 cells are derived

from a mouse pituitary cancer, they are considered a good cellular model of corticotrophs. The experimental setup of this

case was as follows: AtT-20 cells were exposed either to CRF, CRF in combination with the CRF1 antagonist R121919,37

antagonist alone, or vehicle (DMSO). The transcriptional response to these four treatments was followed over time

starting from 0 to 24 h after start of the treatment. Thus, in total 25 samples were processed: time 0 and 6 other time

points for each of the four treatments. A downside of this design is the lack of replicates of a specific treatment at each

time point. After processing the RNA samples on Affymetrix microarrays, data were preprocessed as described above. In

this case data were transformed using a logarithmic transformation with base 2. After transformation, data were

normalized using quantile normalization,18 taking into account the fact that Affymetrix arrays have a limited array-to-

array variation. After this preprocessing, data were visually inspected using spectral map analysis. As described above

(see Section 3.05.3.2), this summarizing technique allows similarities between samples to be identified in an unbiased

way based on overall gene expression patterns. In addition, relations between samples and genes can be identified on the

biplot. In this specific case the spectral map allowed the identification of both an effect of progressing time and CRF

exposure on gene expression. As shown in Figure 2, in the biplot of the first two principal components, samples are

clustered clock-wise according to time exposed to a certain treatment, irrespective of the nature of this treatment.

Interestingly, when plotting the first versus the third principal component differences between the treatments are

visualized. This biplot was further applied to identify genes that contribute to the differences between the samples.

Genes that do not contribute to this difference end up in the middle of the plot around the so-called centroid. Genes

that co-cluster with samples at the periphery of the biplot are genes that show a striking upregulation in that sample. In

this manner several genes were found to be strongly upregulated by CRF exposure. The alternative approach that was

followed consisted of analyzing expression measurements in the different treatments relative to those observed in the

corresponding time point in DMSO-treated control samples. Regulated genes were defined as those showing a greater

than two fold change in transcript levels at any one time point. Eighty-eight genes showed a difference in expression

after treatment with CRF compared to treatment with the antagonist. Based upon the time point where the response

was maximal, genes were classified into ‘early responders,’ ‘intermediate responders,’ and ‘late responders.’ Among the

responders were known players in the pathways downstream of the CRF1 such as the transcription factors Nurr1,

Nurr77, and Jun-B, indicating that the setup could confirm previous data obtained by other means. Of interest is the

observation that 50 of the 88 genes that were identified using this arbitrary fold change criterion were also identified in

the unsupervised spectral map analysis demonstrating the power of this graphical visualization tool.

Confirmation of array data is often done using quantitative PCR techniques such as Taqman technology. In this case

study 21 of the most regulated genes were confirmed using quantitative PCR on an ABIPrism 7700 cycler with

commercially available assays from Applied Biosystems. Data obtained in this way on all of the tested genes confirmed

expression profiles previously observed on the array. Overall, the magnitudes of changes observed with microarray

technology were lower than those obtained using quantitative PCR. Ultimately, confirmation needs to be done using a

non-RNA-dependent method. This could be based on the protein or on protein function. An example of this is the use

of RNA interference (RNAi) technology. By knocking down expression of specific genes identified in the array

experiments using RNAi, one could immediately test hypotheses generated by array data analysis.
Figure 2 Spectral map analysis of the microarray data of AtT-20 cells. (a) The first two principal components (PC) of the
weighted spectral map analysis applied to the normalized microarray data for all time points and all treatments. On the spectral
map, squares depict different samples whereas circles depict different genes (the size of the circle corresponds to intensity on
an Affymetrix array). The distances between squares are related to the dissimilarities between the samples; the closer a set of
squares, the more similar the samples to which they correspond. Most circles will clump together in the center of the biplot
around the centroid (depicted by a cross); these correspond to genes that are not differentially expressed across the samples.
Any circle that lies substantially away from this central clump in the direction of a cluster of squares corresponds to a gene
whose expression profile is associated with that cluster of samples. Those genes contributing significantly (measured by their
distance from the centroid) to difference between samples are annotated with their Affymetrix identifier.36 The first two PCs
identified time as the major discriminator between the samples, distributing the samples clockwise over the plot starting at the
T0 time point and ending at the T24 time point. Inserted heat-maps (insets) show representative genes (indicated in bold in biplot)
that are maximally induced either after 4 and 8 h or at 0.5, 1, and 24 h, corresponding to their position on the biplot. (b) Biplot of
first and third PCs. The third PC identifies the specific CRF effect on AtT-20 cells over time. (c) Summary views on the first three
dimensions of the spectral map, showing how this technique identified time and CRF effects in the microarray dataset. uvc,unit
column-variance scaling; RW, row weight; CW, column weight. Closure¼ none; center¼double; norm.¼global; scale¼uvc;
RW, mean; CW, constant. (Reproduced from Peeters, P. J.; Gohlmann, H. W.; Van, D. W. I.; Swagemakers, S. M.; Bijnens, L.;
Kass, S. U.; Steckler, T. Mol. Pharmacol. 2004, 66, 1083–1092.)
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3.05.4.2 Case Study 2

In a second case study profiling experiments were done on transgenic animals rather than cell cultures. The aim of this

study was to elucidate molecular signatures present in different brain regions of transgenic mice overexpressing CRF

(CRF-OE).19 These signatures are hypothesized to underlie homeostatic mechanisms induced by lifelong elevated

CRF levels in the brain. In line with a role of brain CRF in the mediation of endocrine, autonomic, and behavioral

responses to stress, transgenic mice overexpressing CRF (CRF-OE) have been reported to show increased anxiety-

related behavior, cognitive impairments, and an increased HPA axis activity in response to stress.20,21 These animals

therefore are considered to constitute a good animal model for chronic stress and as an extension thereof, depression.

At least part of the behavioral and cognitive changes observed in CRF-OE mice can be attenuated by central

administration of a CRF antagonist.

The experimental design of this study aimed at elucidating differences between CRF-OE animals and their wild-

type littermates in addition to the effects on gene expression profiles of administrating 10 mg kg� 1 of R121919, a CRF1

receptor antagonist. To this end six experimental groups were defined. Half of the groups consisted of CRF-OE

animals, the other half of wild-type littermates. Animals were either untreated, vehicle treated, or compound treated

twice a day for five consecutive days. In experiments using transgenic animals the number of animals is often the

limiting factor, which is certainly the case with CRF-OE mice, since these mice are notoriously difficult to breed. As a

result each experimental group only consisted of three to four age-matched male animals.

Rather than analyzing whole brain samples, dissection of brain was performed in order to get regional expression

data. In total, expression patterns in six regions were studied, including cerebellum, hippocampus, frontal cortex,

temporal area, nucleus accumbens, and pituitary. The importance of performing these dissections in a standardized way

is exemplified in Figure 3. As shown in the spectral map biplot each mouse brain region is characterized by a specific

gene expression pattern. Deviations in removing certain brain areas resulting in more or less contribution of

surrounding tissue will result in an overall increase of the noise. Therefore consistency is required in removing the

tissue (removal of tissue was performed by one operator).

RNA isolated from different animals was processed separately per individual animal and per brain region on

Affymetrix murine U74 arrays. As in the previous case study, genes that were called absent (nonreliable detection) in all

samples according to Affymetrix’s MAS 5.0 software were removed from further analysis. Raw fluorescence intensities

from each array were log2 transformed and data were quantile normalized. Following the group-wise quantile

normalization per treatment and genotype, a second quantile normalization was carried out across the data of all

samples of a given brain area.18

Visual inspection of overall changes in gene expression profile among different treatment groups was done using

spectral map analysis per brain region. This analysis revealed overt differences in gene expression pattern

predominantly at the level of the pituitary and less so at the level of the other brain areas. Prolonged elevated levels of

CRF as present in CRF-OE are expected to induce major changes in the expression profiles in this organ since it is the
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primary target of CRF. On the pituitary data spectral map the CRF-OE and wild-type samples (depicted by squares in

Figure 4) cluster at opposite sites in the biplot. Genes at the periphery of the biplot (contributing significantly to the

differences in expression profiles between samples) included kallikreins (Klk9, Klk13, Klk16, and Klk26), a family of

serine proteases involved in the processing of biologically active peptides. Upregulation of these enzymes might be an

indication for an overactive pituitary. Treatment with the CRF1 antagonist R121919 or treatment with vehicle did not

induce gross changes in expression profile and did not normalize expression patterns in CRF-OE relative to those

observed in wild-type animals, as illustrated by the spectral map. An underpowered study as a result of the limited

number of animals in each group might account for this negative result. Another more likely explanation is that whereas

changes in behavior of CRF-OE mice are the immediate consequence of CRF1 antagonism, the changes in gene

expression are the consequence of prolonged HPA axis activation that are not easily overcome by treatment for 5 days

with the CRF1 antagonist R121919 as in the above experimental setup. A prolonged treatment and/or a larger group of

animals might overcome these issues, once again stressing the importance of good experimental design.

Since spectral map analysis only revealed differences between transgenic animals and their wild-type littermates,

post hoc analysis was performed on untreated CRF-OE and their corresponding wild-type littermates. Given the low

number of animals per group the significance analysis of microarray data algorithm12 was chosen as an adapted t test for

multiple observations. Significance analysis of microarray data assigns a score to each gene on the basis of change in

gene expression relative to the standard deviation of repeated measurements. For genes with scores greater than an

adjustable threshold, significance analysis of microarray data uses permutations of the repeated measurements to

estimate the percentage of genes identified by chance, i.e., the false discovery rate (FDR).22 Thus, the FDR is the

expected proportion of false positives among the tests found to be significant. An extension of this FDR is the so-called

q-value.16 This q-value is similar to the well-known p-value. It gives each hypothesis test a measure of significance in

terms of a certain error rate. The p-value of a test measures the minimum false-positive rate that is incurred when

calling that test significant. Likewise, the q-value of a test measures the minimum false discovery rate that is incurred
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when calling that test significant. Whereas the p-value is commonly used for performing a single significance test, the

q-value is useful for assigning a measure of significance to each of many tests performed simultaneously, as in microarray

experiments. A 10% threshold is accepted practice for array data analysis (as applied for pituitary data). However,

deviation of this rule of thumb can be made when the number of significantly changed genes is limited. Therefore, a

q-value below 20% was used in all other datasets.

In agreement with the spectral map, only a limited number of genes were significantly altered in most brain areas

with only 10 genes being downregulated in the hippocampus. In the nucleus accumbens 50 genes were downregulated

whereas 11 genes were upregulated. Recurring changes in expression patterns in several brain areas could be clustered

into a few pathways such as the glucocorticoid signaling pathway (exemplified by downregulation of 11b-hydroxysteroid

dehydrogenase type 1 and upregulation of the immunophilin Fkbp5). Adaptations in the glucocorticoid pathway fit

nicely with the CRF changes in CRF signaling, since continued production of CRF in the CRF-OE animals will lead to

an excess of glucocorticoids. This excess of glucocorticoids is counteracted by changing the levels of important players

in that pathway such as 11b-hydroxysteroid dehydrogenase type 1 and Fkbp5. These changes in individual gene

expression profiles in different brain areas could be confirmed by quantitative PCR.

In agreement with results of the spectral map analysis, at the level of the pituitary many more genes (114 genes)

differed significantly in their expression between untreated wild-type and CRF-OE animals and were more than two

times up- or downregulated. When comparing wild-type to CRF-OE animals, 102 genes had a q-value below 10% and

were more than 1.5-fold downregulated in CRF-OE. Similarly, 180 genes had a q-value below 10% and were more than

1.5-fold upregulated in CRF-OE. In agreement with the spectral map, significance analysis of microarray data identified

kallikrein genes Klk9, Klk13, Klk16, and Klk26, but in addition also identified Klk5 and Klk8 to be significantly

upregulated in CRF-OE.
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A recurring theme revealed by microarray analysis was the downregulation of neurotensin receptor 2 (Ntsr2) mRNA

levels in several brain regions including the hippocampus (� 54%), the nucleus accumbens (� 38%), and the frontal

cortex (� 59%), but not in the pituitary. Although levels of Ntsr1 mRNA were below the detection limit in microarray

analysis, the observation of Ntsr2 mRNA downregulation prompted investigators to study the expression levels of all

members of the neurotensin (NT) receptor family by quantitative PCR. Ntsr3 mRNA did not show any change in

expression in any area tested. Ntsr1 mRNA was significantly downregulated in CRF-OE, with the most pronounced

effect in the hippocampus. Quantitative PCR also demonstrated a 67% downregulation of Ntsr2 mRNA in the

hippocampus, confirming the microarray data. In order to evaluate the changes in Ntsr1 and Ntsr2 mRNA at the

protein level, the presence of receptor (Ntsr1 to Ntsr3) was assessed by autoradiography of [125I]NT binding on brain

sections. In agreement with array and quantitative PCR results, autoradiography data demonstrated an overall (Ntsr1 to

Ntsr3), genetically determined downregulation of the [125I]NT binding capacity in CRF-OE versus wild-type animals.

Blocking of the Ntsr2 receptors by a saturating concentration of levocabastine, unmasked prominent differences in

expression of Ntsr1. A pronounced downregulation of the [125I]NT binding in the CRF-OE animals was observed in

specific brain regions such as the stratum radiatum (� 63.876.5%, p o0.001), the retroslenial granular cortex

(� 49.477.5%), and the temporal cortex (� 34.873.5%). Also, the autoradiography data demonstrated no effect of

subchronic administration of R121919 as seen in the gene expression profiling data. These data clearly demonstrate the

utility of non-RNA-based technologies such as radioligand binding studies to further validate and investigate microarray

data. In addition to the confirmation of quantitative information provided by microarray and PCR this radioligand

binding technique supplies further spatial information on where in the brain changes have occurred.

3.05.4.3 Case Study 3

This final case study deals with the complexity of an animal model for irritable bowel syndrome (IBS) in combination

with the fact that changes in gene expression are believed only to occur in a small subset of cells. The aim of this study

was to investigate long-term changes in gene expression in viscera-specific neurons of both nodose ganglia (NG) and

dorsal root ganglia (DRG) in a postinfectious mouse model of IBS.23 The pathogenesis of IBS is heterogeneous, but at

least in a subpopulation of patients emotional stress and enteric infection have been implicated.24 Therefore, the

mouse model of IBS that was chosen for this study consisted of a transient inflammation induced by the nematode

Nippostrongylus brasiliensis (Nb) combined with exposure to stress. Gene expression profiles were measured both in NG

and DRG visceral sensory neurons because the gastrointestinal tract receives dual extrinsic sensory innervation. Vagal

afferents have their cell bodies in the NG and project centrally to make synaptic connections in the brainstem, mainly

at the level of the nucleus tractus solitarius while spinal afferents arise from the DRG and project into the dorsal horn

of the spinal cord (Figure 5).25 Currently, there is a common view that vagal and spinal afferents have different

functional roles: spinal afferents play a major role in nociception, while vagal afferents mediate physiological responses

and behavioral regulation, particularly in relation to food intake, satiety, anorexia, and emesis. However, there is some

overlap, and vagal and spinal afferents share a number of features in common. Both NG and DRG neurons have been

shown to become sensitized following inflammatory insult, demonstrating plasticity in the mechanisms that regulate

neuronal excitability, which has implications for pain processing.

In this way, extrinsic afferent neurons supplying the gut are prime targets for new treatments of chronic visceral pain

disorders such as IBS. However, fiber-tracing experiments measuring the extent to which abdominal viscera-projecting

neurons23 contribute to the total pool of sensory neurons in the DRG and NG, showed that only 3% are visceral sensory

neurons. This gives an estimate of the extent to which changes in gene expression occurring in this subpopulation is

likely to be diluted when whole ganglia expression is assessed. To circumvent these issues, viscera-specific sensory

neurons were labeled using retrograde labeling with fluorescently tagged cholera toxin beta subunit. Labeled neurons

in DRG (T10 to T13) and NG were isolated using laser-capture microdissection. This laser-captured material was

linearly amplified using a three-round amplification and labeling protocol. To check for linearity of amplification, laser-

captured material was spiked with four poly-adenylated prokaryotic genes at a fixed ratio. For these genes probes are

present on Affymetrix’s microarrays, allowing the efficiency and linearity of the amplification procedure to be

monitored.

As mentioned above, the mouse model of IBS consisted of exposing animals to a combination of stress and infection

with the nematode N. brasiliensis, leading to a transient jejunitis.26 To assess inflammation at different time points after

Nb infection IgE serum levels and jejunal mast cell counts as well as histological analysis were determined. At 3 weeks

postinfection, the acute phase of inflammation was finished. Cortisol levels were significantly increased in stressed

animals, regardless of infection, at 21 days postinfection. Based on these results, the assessment of mRNA expression

levels in viscera-specific neurons was done at 21 days postinfection. At this time-point both NG and DRG visceral



Brainstem

Mucosal
mechano-
sensitive
neuron

Intrinsic primary
afferent neurons

Chemical and
stretch sensitive

neurons

Sympathetic
ganglion

Intestinofugal
neurons

DRG

Spinal primary
afferent neurons

Longitudinal muscle

Myenteric plexus

Circular muscle

Mucosa

Submucosa

Spinal cord

Vagal primary
afferent
neurons

Nodose
ganglion

Figure 5 Vagal and spinal afferents in the gastrointestinal system. This simplified diagram of the enteric nervous system
indicates that visceral sensory information is relayed from the gut wall to the brain via two main routes. Vagal afferents have their
cell bodies in the nodose ganglia and spinal afferents have their cell bodies in the dorsal root ganglia. (Reproduced from
Furness, J. B.; Kunze, W. A.; Clerc, N. Am. J. Physiol. 1999, 277, G922–G928, with permission from the American Physiological
Society.)

Microarrays 101
neurons derived from infected animals showed hyperexcitability in patch clamp electrophysiology experiments. Rather

than firing one action potential (as observed in neurons derived from noninfected animals), infected neurons fired a

train of action potentials when a current was injected.

In order to evaluate both the effects of infection and stress, four experimental groups were defined each containing

10–12 animals. The first group was exposed to a sham infection and was housed in no stress conditions (SH-NS). The

second group was exposed to Nb infection and housed in no stress conditions (INF-NS). A third group was housed in

stress conditions but was not exposed to infection (SH-ST). The last group was housed in the same stress conditions

but was also infected (INF-ST).

Spectral map analysis of the gene expression in viscera-specific spinal neurons (DRG) revealed no differences

among the four experimental groups. Significance analysis of microarray data analysis found no significant differentially

expressed genes between the extreme groups (SH-NS versus INF-ST). Upon spectral map analysis of viscera-specific

vagal neurons (NG), the animals of groups SH-NS and INF-ST were separated by the first two principal components

(Figure 6). Animals of groups SH-ST and INF-NS were plotted at the center in the middle, suggesting that their

contribution to the variation in the dataset is relatively small compared to the two extreme groups.

A gene-specific two-way ANOVA model was used to analyze the microarray data in more detail:

log2ðYijkÞ ¼ mþ ai þ bj þ ðabÞij þ eijk

where a is the infection effect (i ¼ 1; 2), b the stress effect (j ¼ 1; 2), and ab the interaction.

An overall F test was performed to identify significant genes with any effect resulting in a list of 284 genes. A

subsequent test was done to look for significant genes with interaction, infection, and stress effect at the same time.

False discovery rate was controlled at 10% at each stage using the algorithm of Benjamini and Hochberg.27 In this way

genes could be classified as affected by stress (59 genes) or infection (13 genes), affected by both (139 genes) and in

addition genes were identified that were affected by interaction between stress and infection (73 genes). Of interest in

this study is the identification of genes such as the serotonin receptor subtype 5HT3A, for which antagonists are already

on the market for treatment of IBS (Figure 7).28 It is this type of corroborating clinical evidence that further

strengthens the data obtained in an animal model. Furthermore, it allows the search for genes showing a similar
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expression pattern. It is clear that the identification of genes for which pharmacological tools are readily available allows

for a straightforward hypothesis testing in animal models. In this way the loop can be closed in the sense that the

animal model is first used for target identification followed by validation of that novel target in the same model. Further

on, when compounds modulating the target have been identified, the model can again be used for lead generation and

optimization.

3.05.4.4 Conclusions from the Case Studies

Although the above-mentioned examples relate mainly to neuroscience research it is clear that the setup of the different

studies is generally applicable. Over the past few years a plethora of studies have been performed in several disease areas

with the aim of finding novel drug targets.29–32 In addition to hypothesis generation, microarrays are increasingly used for

hypothesis testing. Moreover, with more data becoming available, comparisons between different animal models for the

same disease will provide a more powerful approach to the understanding of disease etiology and progression.
3.05.5 Discussion and a Look to the Future

The prevalence of DNA microarray technology testifies to how invaluable a tool it has become in the armamentarium of

the research molecular biologist, whether in an academic laboratory or in the pharmaceutical industry. With a well-

designed experiment and rigorous standard operating procedures, microarrays will provide valid assessments of the

relative transcription levels for thousands of genes simultaneously.

As microarray technology has matured over the past few years and microarray-specific data analysis techniques have

been developed, it has become increasingly apparent that microarrays are very comprehensive in characterizing a

complex biological sample. Even though the technology itself can surely be further optimized (e.g., with regards to

sensitivity and reproducibility), the data generated today is already of high quality. This is reflected in the articles on

microarray studies published most recently.6,33 Use of technical replicates has decreased while use of biological

replicates has increased. The main reason can be found in comparably higher variability due to biological variance

between individuals rather than technological sources of variance.

A logical consequence emerging from this finding is the need to emphasize a proper design of experiment. Owing to

the complex and thereby comprehensive characterization of the samples on the mRNA level, flaws in the experimental

design and/or the execution of the biological experiment can often be detected. Combined with the still substantial

costs surrounding this genomic technology it becomes apparent that successful microarray studies require not only the

input of a statistician determining the right tools for the data analysis but also some level of guidance from a scientist

experienced in conducting microarray and/or mRNA experiments. While the former will avoid wasting time after the

data is generated (the design of the experiment will define the analysis technique used in the end), the latter will avoid

wasting money on microarrays and wasting time on having to repeat experiments. Some of the common avoidable

problems include:

* The wealth of data generated by microarrays tends to persuade people to look at answers to biological questions that

were not incorporated in the experimental design. Especially when the primary question does not lead to conclusive

answers, a feeling of ‘but can we not get something out of the data’ creeps in. This rarely results in conclusive

answers to such secondary questions and tends to be quite time consuming as the data analyst has to apply analysis

techniques for which the experiment was not set up. In turn, this results in nonconclusive answers and can spark

even more attempts by the scientist interested in the biological interpretation of the results to look even further for

information in the data for which the experiment was not designed.
* Trying to incorporate too many different groups into one single experiment usually makes the analysis more difficult

and also tends to sacrifice sufficient number of biological replicates per treatment group. In the extreme scenario

people will have done a big experiment but might not be able to draw any conclusions because of lack of statistical

power. Then the experiment turns out to be a very expensive pilot study. This is even more of an issue if it turns out

that due to a large experimental setup that was supposed to cover many different aspects of a certain biological

question or phenomenon, the person conducting the biological experiment introduces more technical variance due

to time constraints in conducting the experiment.
* There is a lack of experience in working with RNA. Some people are tempted to base their experimental setup on

findings, e.g., from behavioral assays or protein work. They then ignore the difference in timing that takes place.

While a certain effect may take 4 h to become apparent in a Western blot or a behavioral assay, the effect on the

mRNA might have taken place after just 20 min.
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What is the future outlook for microarrays in molecular biology research? As the data analysis and the biological

interpretation of gene expression data is regarded as the most time-consuming part of a typical microarray, the prospect

of future DNA microarrays that would increase even further the amount of data retrieved per sample stresses the

importance to continue investing heavily in the development of suitable statistical algorithms and bioinformatics tools

to avoid drowning in data. Suppliers such as Affymetrix have already started shipping tiling arrays that cover whole

genomes with probes in equal distances rather than with probes for individual genes to discover transcriptional activity

outside the current definition of where genes are located. Another approach that is being evaluated and that will also

substantially increase the amount of data is the splice variants array, where probes are designed to cover all known gene

splice variants.

Recent advances in RNA research have unveiled the presence of so-called microRNAs (miRNAs), small noncoding

RNA molecules present in the genome of all metazoa, which function as regulators of gene expression.34 The few

hundred miRNAs that have been discovered so far have been suggested to play an important role in animal

development and physiology. Moreover, profiling of expression of some 200 miRNAs in cancer patients proved to be

more predictive for classification than mRNA profiling.35 As insight into the function of these miRNAs continues to

grow and, as is likely, their number increases, profiling of noncoding RNAs might become more important in the near

future.

Finally, we note that, besides drug target identification, DNA microarrays and associated technologies can be used to

identify biomarkers of various kinds to aid in drug development. Efficacy biomarkers would provide gene-level evidence

of the efficacy of a drug. Subgroup biomarkers would identify subgroups of patients who would benefit most from a

given therapy, giving rise to the optimism of ‘personalized medicine.’ Toxicity biomarkers would predict adverse events

and would be used for compound screening. And so on. Continuing innovations in genomics and analytical technologies

are, by the day, offering exciting new strategies for researchers as they search for safe and efficacious drugs.
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4.09.1 Introduction

4.09.1.1 Introduction to Systems Biology

The development of high-throughput DNA-sequencing technologies during the late 1980s facilitated enor-
mous boost in the emergence of novel methodologies aiming at unraveling the molecular complexity of
biological systems. The availability of rapidly increasing numbers of complete genome sequences, including
that of humans, created a demand for techniques and analysis methods that are as comprehensive as the
sequences themselves. The advances in high-throughput genome-wide (‘-omics’) technologies, such as tran-
scriptomics, proteomics, and metabolomics, enabled rapid and accurate quantification of most or all
components (i.e., genes, proteins, or metabolites) of the experimental system in a single experiment. This
opened new avenues in molecular biosciences, facilitating a shift of the paradigm from studying one molecule
or process at the time to the more comprehensive, holistic concept characterizing the systems biology
approaches.1–3

The scaling-up of fundamental experimentation in molecular biology to genomics proportions in the 1990s
resulted in the generation of large volumes of data. Consequently, novel computational approaches were
necessary to facilitate comprehension of the great amount of information produced, leading to a boost in the
bioinformatics field. The bioinformatics and computational biology methods, initially focused on object
classification approaches and statistical models, are continuously evolving to accommodate the need for
understanding the function of biological systems as a whole. The major challenge in such efforts resides in
integration of complex, abundant, and diverse data into a unique conceptual framework that is quantitative and
predictive.4 As a result of recent developments in this field, two distinct systems biology approaches have arisen:
the ‘top-down’ systems biology, aiming at identifying molecular interaction networks based on observations
derived from various ‘-omics’ experimental data sets, and the ‘bottom-up’ systems biology, which uses
computational modeling to predict system behavior based on the functional properties of a subsystem
characterized to a high level of mechanistic detail by ‘classical’ molecular methods.5

To achieve the ambitious task of unraveling the complexity of biological systems in a holistic manner
and to apply the discovered fundamental principles in areas of interest such as human health, systems
biology requires bridging the gap between various nonbiological disciplines such as information technology,
mathematics, physics, and chemometrics. The chemometrics methods include powerful multivariate statis-
tical tools that can handle large numbers of highly correlated variables – as is the case in ‘-omics’ data sets,
especially when they are combined. Therefore, the potential of chemometrics in extracting the relevant
systematic information from large-scale -omics data sets is high and it has been proven in a number of
applications.6 Nevertheless, this field is still in its infancy and significant effort is required before robust
statistical modeling systems are established for more comprehensive characterization of biological systems
and their interactions.

A typical workflow used for systems biology experiments is shown in Figure 1.

4.09.1.2 Systems Biology and Metabolomics in Nutrigenomics Research

The primary goal of nutrition research is to optimize health through dietary intervention so that the onset
of disease can be prevented or delayed. As our diets represent complex mixtures of many bioactive
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compounds that are administered over a long period of time and in various concentrations, they are
expected to have multifactorial molecular effects, which include subtle perturbations in gene and
protein expression as well as enzyme and metabolite concentrations. Therefore, the recent development
of various -omics and systems biology approaches greatly benefits the understanding of the mechanistics
of the effects of diet by monitoring the entire complexity of multiple molecular changes with
high sensitivity.7–9 Following this trend, a number of nutrigenomics approaches have emerged.10 By defini-
tion, nutrigenomics is the study of molecular relationships between nutrition and the complexity of
molecular processes measured with ‘-omics’ technologies, with the aim to extrapolate how such subtle
changes can affect human health.7,11–13 The focus of nutrigenomics is the discovery of genes, metabolites,
and proteins that have a (regulatory) role in the mechanisms that lead to the development of nutrition-related
disorders.

Within the field of nutrigenomics, a major emphasis of systems biology approach is the discovery of
biomarkers to monitor health–nutrition relationships as well as the discovery of bioactive component patterns
and possible synergetic effects.

Although the analytical platforms used to provide a profile of biological compound classes are similar, the
challenges in terms of diversity, matrix type, and concentration are quite different for systems biology
applications in nutritional sciences compared to, for example, pharmaceutical research.

Within nutrition research, the systems biology approach taken is often based on comparative analytics in which
a control group is compared to one or more groups subjected to different food regimes or divided in different
health states. The latter is an important aspect of biomarker discovery in food sciences as compared to
pharmaceutical research. In nutritional studies, the aim is to use food, functional food, or nutraceuticals either
to prevent the development of disease or to assist the biological system to regulate back into homeostasis from a
very preliminary state of perturbation (unbalance or trigger for disease development). In practice, it means that
subtle differences should be detected as compared to pharmaceutical applications where often comparison of
control versus disease is done at a clinically very well-defined and developed disease status. From the analytical
point of view, the effects are more pronounced and biomarkers of disease as well as biomarkers for drug
intervention monitoring are more readily detected than in the nutrition area. Another important finding that
has evolved over the last decade is the recognition that a single biomarker cannot describe a complex disease
because most diseases are not monogenetic but have multiple pathways/networks involved. The concept of
biomarker fingerprints is becoming widely accepted.14 In nutrition, the concept of multifactorial approaches is the
basis given the complexity of our food products, and from that perspective studies are of the most complex nature
in life sciences: perturbing complex biological organisms with complex mixtures.

In order to achieve its aim, analytical platforms underlying nutrigenomics research should be able to
provide a comprehensive profiling of all biological levels coupled with excellent quantification, as it is
mandatory for the nonlinear analysis. This is still a challenging task. At the transcriptomic level, the
coverage aspect is well achieved but quantification is relatively poor. At the protein level, the challenge
to cover the proteome, for instance in plasma, is open for many improvements and the challenge is clear
if one considers the 10 orders of magnitude in concentration range that need to be covered. In
nutritional studies, measurement at the metabolite level is very attractive, as metabolomics – which
involves the study of the repertoire of small molecules or metabolites present in a cell, tissue, organ, or
biological fluid – is capable of measuring both exogenous (such as drugs, xenobiotics, and food) and
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endogenous small molecules (metabolites involved in or resulting from primary and intermediary
metabolism) in one run. Therefore, metabolomics is the ultimate technique to understand the effect of
exogenous compounds (nutrition) on metabolic regulation in humans. It may identify those small
molecules that make the difference between the effects of different diets and it can deepen our knowl-
edge of human health and the interacting and regulatory roles of nutrition.15 However, the application of
metabolomics to nutritional research meets unique challenges. The chemical diversity of the metabolites
is enormous in addition to a large dynamic concentration range. A wide variety of methods have been
used to separate and quantify the components of the metabolome, and no single analytical platform can
capture all metabolites in one sample. For that reason, only a technology platform consisting of several
analytical approaches based on different techniques offers a solution today.

4.09.1.3 Chemometric Challenges in Metabolomics Data Analysis

Within metabolomics research, often rather expensive experiments are performed such as clinical studies with
animals or humans to determine the effects that are due to illness or treatment thereof. Samples taken from the
study subjects are analyzed analytically and after data preprocessing the analytical profile of these samples is
available for further statistical processing by means of univariate or multivariate statistics. Mostly, multivariate
statistics is the method of choice thanks to the strong correlation structure within the obtained data sets.
Processing metabolomics data by means of multivariate statistics is challenging because of the nature of
the data, and special caution needs to be taken before blindly applying the available techniques offered
within software tools. A summary and explanation of specific problems within statistics for metabolomics are
given here.

The data obtained within metabolomics studies are megavariate in nature, meaning that the number of
variables (p) largely exceeds the number of samples (n), which is also known as the ‘large p, small n’ or
‘n << p’ problem. Because of the megavariate nature of the data, it is futile to apply standard methods, for
example, power analysis or setup of an experimental design. Power analysis is normally used to estimate the
minimum number of experiments to be performed to optimize the possibility that an experiment will result
in models that can discriminate between, for example, healthy and diseased or treated and untreated. Given
a certain expected magnitude of difference between groups and known variations due to biological and
analytical sources, the experimental design used for the experiment, and the number of metabolites
measured within the samples, it should be possible to estimate the minimum number of subjects to be
included within the experiment. However, whereas power analysis is a common method in traditional
clinical studies where univariate statistics is commonly used, no standard methodology is available as of
today for estimating the number of experiments required for studies where multivariate statistics is used.
Power calculations are well developed for univariate analysis. The first approach to estimating sample size
in 2D gel electrophoresis was recently introduced but not for multivariate effects.16 For multivariate
measurements (e.g., in epidemiology), limited results are available that require nonsingular covariance
matrices.17 However, in the megavariate metabolomics data, covariance matrices are usually not nonsingular.
In the megavariate gene expression analysis, the usual approach is to use false discovery rate (FDR)18,19 or
other multiple testing approaches.20 Such methods disregard the highly colinear character of metabolomics
data. The use of the colinear structure within the metabolomics data should allow for a relatively small
number of experiments than would be the case when univariate statistics is applied, but so far only very
little work has been done on this subject.

A similar reasoning can be followed for the experimental design when the standard experimental design
theory cannot handle megavariate data and is suitable for only a limited number of variables. For
determining an optimal experimental design, the focus should be on the reduction of unwanted effects
such as analytical variation and biological variation, for example, subject-to-subject differences. The effects
measured are often small in comparison to the analytical and biological variation, which is especially the
case where nutritional effects are to be picked up by metabolomics. The differences in experimental results
are due to individual differences between study subjects (animals/humans) and due to the challenge given
to the subjects by means of treatment by food or food additives. The effects are small in comparison to the
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biological variation, which makes the chance of finding a metabolite that can serve as a marker for health
even more difficult.

Analytical data obtained within metabolomics studies are often not quantitative and at the most semiquanti-
tative, which means that measured intensities in different samples are more or less comparable to each other.
When hundreds of metabolites are measured per sample, it becomes impossible to set up calibration lines for
each metabolite even if the identities of all metabolites are known. Although quantification in the normal
definition of the word is impossible, the goal should be to standardize the measured intensities such that
multiple individual experiments can be combined later on and semiquantitative data can be transferred into
quantitative data once a calibration line is determined for a certain metabolite. Quantification is of utmost
importance to enable biological interpretation of assessed results by means of known reaction mechanisms.
A related challenge is the identification of all metabolites as measured with the numerous analytical methods
available for analytical scientists in the field of metabolomics. Unfortunately, the biological expert is more than
often confronted with markers of disease with the not so informative name of ‘unknown number’ x. A work-
around for quantification as well as identification is to report only those metabolites that have a known identity
and for which quantitative data can be obtained. This hampers however the possibility of finding new
hypotheses and a rather large amount of data is discarded from the measured analytical profiles.

From an analytical point of view, the data have become of a much higher quality than years ago thanks to the
effort put in by instrumental vendors to obtain more reproducible data with higher resolution both in retention
time and in spectral sense. The availability of mass spectral instruments with higher mass resolution however
also poses a new challenge when untargeted approaches are used. Normally, alignment of the retention time
axis is required; however, now alignment of mass spectral information is also needed. The development of
chemometrics tools for processing analytical data in metabolomics studies is lagging behind the developments
in analytical chemistry, and experimentalists are often forced to use targeted approaches thereby discarding
large numbers of metabolites. Some challenges in data extraction from raw analytical profiles are, among others,
drift correction and alignment; both are the subject of other chapters.

The challenges in obtaining predictive models from both analytical data and biological information are
multiple as well. Earlier it was mentioned that the effects due to nutrition or medicines can be subtle but it
becomes even more difficult when the effects are different between individuals because of their different
physiological status at the time of treatment. It is known that many medicines work only for a certain
percentage of patients and the individual differences largely hamper the possibility of obtaining a generic
model from the assessed data. Another subject of concern is that different measurements are performed on a
single sample to obtain a comprehensive chemical profile of the sample, which means that information is
obtained for as many chemical components as possible. In order to model the data obtained with different
analytical platforms, the data need to be concatenated or rather fused to a single data matrix, which can then
be treated with standard chemometrics tools and tricks. However, the different analytical platforms have
different characteristics and moreover there does not exist a single preprocessing tool that can be used to
process data from all analytical platforms. The differing characteristics of the platforms result in different
noise structures within the blocks of data obtained from each instrument. This is comparable to the problem
of heteroscedasticity, which is normally solved by means of log transformation depending on the relation
between noise and magnitude of the data. Besides the issue of differences between instrument characteristics,
partial overlap of the analytical profiles is an issue that has to be dealt with. Some chemical compounds are
simultaneously measured on different analytical platforms, and without correction this compound will end up
in the data matrix multiple times leading to more concentration toward this compound in the model thanks to
the high colinearity between these variables. If the identity of all variables is known, the problem would be
easy to solve but the comprehensive approach of metabolomics is far from having reached that stage of
maturity.

The main approach in modeling metabolomics data has been the classification between groups but now the
focus is more on generation of hypotheses for mechanisms. This should provide a clear indication of which
mechanisms are responsible for health and disease and also an understanding of biological mechanisms. In order
to allow the generation of hypotheses, new tools are required that (1) allow the inclusion of prior knowledge,
(2) make it possible to find cause and effect relationships, and (3) simplify the models by discarding unin-
formative parts of the data sets (variable selection). These challenges require collaboration between different
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fields of expertise because all three fields involved in metabolomics (analytics, biology, and statistics) are
equally important but none can solve the puzzle on its own.

A final challenge is the validation of results and this can be approached from different angles depending
on the aim of validation. For model validation, methods such as Jack-knifing, bootstrapping, leave-one-out
cross-validation, and double cross-validation have become common techniques, reducing the chances of
reporting artifacts as biomarkers. From an analytical point of view, the validation is found by tracing back
the interesting metabolites within the raw data to ensure that no mistakes were made in the complex
process of data handling or that internal standards (IS) are mistakenly reported as biomarkers, and with
having only a few metabolites as potential biomarkers the effort required to perform identification of
unknowns has become less. The proof of the pudding however is the biological validation because once a
modeled mechanism can be understood and is proven by an independent repeated experiment, the chances
that the model is valid are high.

A great help in model validation and model interpretation is the use of visualization tools. Whereas experts in
the field of chemometrics are used to interpret the models, the users of the tools are not used to that. A simple
representation of the models with easy access to raw data and other sources of information will greatly help in
the acceptance of chemometrics as a general tool for metabolomics research. Bioinformatics in combination
with data warehousing tools can bring together data and prior knowledge and make it available to the
metabolomics researcher.

4.09.1.4 Human Example Study

A typical metabolomics workflow integrated in a nutritional system biology study is depicted in Figure 2. Each
section of this chapter will follow step-by-step this working process and start with an overview of the state of
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Figure 2 Schematic representation of a metabolomics workflow.
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the art of the different steps involved in the nutritional metabolomics and systems biology workflow. This will
be focused on the application of chemometrics in this research field. Each section will end with the demonstra-
tion of how the different topics were applied in a human intervention study as published by Wopereis and
coworkers21 and Rubingh and coworkers.22 The main focus of the example study was to demonstrate and
quantify the consequence of an antiinflammatory intervention by the antiinflammatory compound diclofenac
on metabolism in mildly overweight subjects with low-grade state of inflammation. Different analytical
methods were used for the detection of high- and low-abundant plasma metabolites to obtain a comprehensive
picture of metabolic changes induced by this mild antiinflammatory drug intervention.

4.09.2 Study Setup

4.09.2.1 Study Design

Basically, two main types of design are being applied in clinical trials, namely a parallel design and a crossover
design (see Figure 3). In a parallel design, at least two groups of people are followed up in time, where each
group gets a treatment. The intervention effect is defined as the difference in the parameter of interest between
start and end of the intervention (treatment A in Figure 3). This difference occurring in the treatment period is
compared to the difference observed between start and end in the control treatment (treatment B in Figure 3).

In a crossover design, each person will undergo all treatments by switching treatment in each experimental
period including a control treatment period. The intervention effect is defined as the difference in the
parameter of interest at the end of the intervention (treatment A in Figure 3) as compared to the same
parameter at the end of the control period (treatment B in Figure 3).

Each of the two designs has its own advantages and disadvantages. The parallel design has the advantage that
many treatments can be included in the study and the subjects will be followed up during the same time period,
so that specific changes over time, such as seasonal variations, will affect all experimental groups similarly. The
disadvantage of this design is that the start condition of all experimental groups needs to be the same for those
parameters that are being evaluated; in other words, randomization of the individuals to the various treatments
needs to be well controlled. This may be difficult if not all randomization factors are known or if there are many
randomization factors to be considered. Other disadvantage is that interindividual variation is an important
source of variation, which means that the statistical power is lower and that more individuals are needed in this
type of study.

The advantage of the crossover trial is that randomization will not be essential as it is in the parallel design,
because all individuals will receive all treatments. Consequently, each individual will function as his or her own
control. Other advantage of this design is that the statistical power is higher in crossover trials as only
intraindividual variation is to be considered. Therefore, less people need to be included in crossover trials.

The disadvantage of crossover trials is their longer duration, which may limit their feasibility. Potentially
order effects (a previous treatment affecting the following one) may play a role in crossover studies. However,
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Cross-over design
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Treatment B, n = ½x
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Treatment B, n = x

Treatment A, n = ½x

Treatment B, n = ½x

Figure 3 Two main types of study designs in clinical trials.
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in case the treatment orders are randomized, for example, by using a Latin square, such problems are reduced to
a minimum.

Variations on these two main intervention types exist, but are not discussed in this chapter.
Choosing the right control may be difficult in a trial, specifically when the components have clear immediate

effects on behavior or when taste or other product characteristics are difficult to disguise. Furthermore, control
products may differ from the experimental condition only in the ingredients of interest.

Confounding of study outcomes may occur. Some of the potentially confounding factors include blinding,
bad compliance, unwanted side effects, and insufficient power.

Clinical studies are preferentially blinded, which means that not only the participants do not know which
treatment they receive (single blinded) but also those conducting the trial (double blinded).

Bad compliance may be a determining factor in observing no effect and therefore compliance marker may be
evaluated or other means of maximizing compliance (more control, motivation, extra return products) need to
be considered.

One of the unwanted side effects occurs in diet-controlled studies. In these studies, caloric intake may be
underestimated, because part of the daily intake is simply forgotten. Also, physical activity needs to be
estimated and needs to be compensated for. If not, applying a controlled diet may decrease caloric intake,
reduce body weight, and lead to false conclusions because the observed effects are not mediated by the
intervention but by weight loss.

Including too low numbers of volunteers may result in type 1 error (a positive effect of the intervention is
picked up) – the effect is due to chance – or type 2 error (no effect of the intervention is observed) – the
absence of an effect is due to limited statistical power. These errors can be quantified as their
probabilities and need to be used to estimate the number of participants needed in a study preventing
type 1 and 2 errors.

In conclusion, many aspects of trial design need to be taken into account before one gets the most out of it,
important among which are the type of design, power, and potentially confounding factors.

As stated earlier, nutritional metabolomics studies (and nutrigenomics studies in general) often have
to deal with large interindividual diversity (confounders). Furthermore, an organism under mild stress, for
example a nutritional intervention, attempts to maintain homeostasis and metabolic control, which makes
it difficult to identify alterations in biofluids such as plasma. Furthermore, plasma and urine are biofluids
that represent whole body metabolism, which means that the concentration of a metabolite is often the
sum of different organs and thus the representation of several biological processes. These complexity
issues might be addressed by designing an experiment that makes use of a ‘challenge test’. This experimental
design uses one or more stresses in such a way that an individual’s homeostasis is reversibly and safely
perturbated. This is based on the concept that the resilience of the system can be assessed after challenging or
perturbing a homeostatic situation. Application of a metabolic perturbation in concert with metabolomics
may identify a set of metabolites that are predictive of differences in response to the challenge. Although
this concept is new in nutrigenomics research, nutrient challenges are quite common in medical sciences.
The oral glucose tolerance test (OGTT) is an example of a challenge test used for the diagnosis of type 2
diabetes.23–25

4.09.2.2 Sampling/Sample Preparation

Both sampling and sample preparation can have a large influence on the variation within the final data used
for modeling. In metabolomics-driven studies, the aim is to obtain a quantitative view on the status of the
system at the time of sampling. The samples that are drawn from biological systems such as a microbiolo-
gical fermentation or from body fluids such as blood or urine are highly susceptible to changes owing to
biological reactions taking place especially when the environment of the sample changes. It is therefore
essential that changes in metabolites are minimized during sampling and sample preparation. In the
metabolomics society, it is recognized that there is a great need for standardization of sample collection
and preparation protocols for clinical studies. These standardized protocols should incorporate the optimal
conditions from a metabolomics point of view as well as from a clinical point of view. Although it is
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impossible to prevent any changes in the samples during sampling, it is of utmost importance that sampling
is carried out in a similar way for all samples in a study using standard protocols and that all steps are
recorded during the procedure.

Sampling can be both invasive (blood, cerebrospinal fluid (CSF), serum, tissues, intracellular metabolites in
plants and microorganisms) or noninvasive (urine). Although the strategies of sampling may vary, the general
idea of sampling is to minimize the formation or degradation of metabolites due to remaining enzymatic
activity or oxidation processes. The time and method of sampling can have great influence on the reproduci-
bility of the analytical sample. The storage of samples is also important as the continued freeze/thawing of
samples can have a great influence on the stability and composition of samples.26–28

The sampling procedure depends strongly on the type of sample collected. Collection of plasma usually
requires the addition of an anticlogging agent, such as heparin, followed by centrifugation and subsequent
storage at�80 �C. For urine, the general procedure is to store the samples at low temperature (�20/�80 �C) in
order to inhibit metabolic reactions. Preservatives are in general not used for urine samples. Tissue samples are
mostly freeze-dried and stored at �80 �C. Special precautions must be taken when reactive metabolites are
under study, like adding antioxidants to prevent oxidation of neurotransmitters.

Further sample preparation prior to analysis is mainly determined by the analytical method used. For global
profiling methods, such as nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography-mass
spectrometry (LC-MS), or gas chromatography-mass spectrometry (GC-MS), sample preparation is minimized
in order to retain as many metabolites as possible in the sample. In many applications, no further isolation of
metabolites from the sample matrix is performed and samples are diluted and analyzed directly or after
chemical derivatization. For example, the analysis of biofluids by NMR requires no or only very limited
sample preparation.26,29,30 The same is true for the analysis of urine by LC-MS.28,31–34 The analysis of plasma
or tissue by MS-based methods usually requires protein precipitation and/or extraction of (certain classes of)
metabolites. GC-MS analysis used in metabolomics includes chemical derivatization by oximation and silyla-
tion.35,36 In certain cases, especially for low-abundant metabolites, further isolation of metabolites is necessary
using solid-phase extraction (SPE) or liquid–liquid extraction (LLE). As said in the beginning of this section,
sample preparation can have a large influence on the variation within the final data. It is therefore necessary
that every step in the sample preparation is validated as much as possible using, for example, stable isotope–
labeled standards or quality control (QC) samples.

4.09.2.3 Analytical Measurements

The ultimate goal of metabolomics is the quantitative analysis of all metabolites in a sample. This is
dramatically more complex than analyzing the genome or the proteome. This is due to the number of
metabolites that constitute the metabolome as well as their structural and compositional diversity. Moreover,
the concentration range to be covered in metabolomics is also extremely large. Comprehensive analysis of the
metabolome thus requires analytical techniques and instruments that offer high resolving power, sensitivity,
and dynamic range. This is a major challenge and therefore a lot of research is done to improve analytical
measurements in metabolomics, which is reflected in the numerous reviews on this subject in the recent
literature.29,34,36–47

Numerous analytical platforms have been used for metabolomics studies, such as NMR, Fourier transform
infrared (FT-IR) spectroscopy, and MS using flow injection or coupled to separation techniques. The
advantages of NMR are the minimal requirement for sample preparation, the nondiscriminating and non-
destructive nature of the technique, and the potential for high-throughput analysis.

The major disadvantage is the fact that only medium- to high-abundant metabolites are detected. Moreover,
the identification of individual metabolites based on chemical shift signals is very difficult. MS-based metabo-
lomics offers high selective and sensitive analysis and the potential to identify metabolites. However, MS-based
techniques usually require sample extraction, which can cause metabolite losses and discrimination of meta-
bolite classes. Also, very low-abundant metabolites can not be analyzed by MS-based profiling methods.

The chemical diversity of metabolites exceeds the span of any analytical method. Application of a single
analytical method in metabolomics studies will therefore give only limited information. It is mandatory to
combine different analytical methods into an overall metabolomics platform to improve the metabolite
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coverage.48–52 GC-MS, LC-MS, and NMR-based metabolomics platforms are mostly used for the global
profiling and quantification of biochemical changes.53,54 At the broad level, metabolomics platforms that are
developed in the context of a specific compound class may be used. Mostly, LC-MS-based techniques are used
for this goal. Lipidomics platforms, for example, are specifically developed for the analysis of lipid biochemical
pathways.55 In addition, approaches have been described for the analysis of oxylipids,56 acylcarnitines,57 etc.
Finally, at the focus level, very specific analytical platforms that often detect signaling molecules available in
the lowest concentration ranges have been developed. The (trace)-element status for example can be monitored
using induced coupled plasma (ICP)-MS58 and neutral eicosanoid profiles can be generated via LC-MS/MS
analysis.59

Figure 4 illustrates an example of such a metabolomics platform including global profiling methods based on
NMR, GC-MS, and LC-MS for relatively medium- to high-abundant metabolites, a collection of class-
targeted profiling LC-MS methods for some specific classes of metabolites and metabolites with lower
abundance, and target LC-MS/MS methods for specific low-abundant metabolites. These methods cover a
wide range of different classes of metabolites, with the total number of distinct metabolites being in the order of
60–800.48 Often not all methods are used but a selection is made based on prior knowledge, sample volume,
time schedule, and budget constraints.

The analysis of the metabolome in body fluids has been approached via other techniques as well as GC in
combination with flame ionization detection (FID) for the profiling of the lipid domain, which is a very
quantitative detection strategy.60 Other examples are LC coupled to electrochemical detection (ECD), allow-
ing the detection of metabolites involved in neurotransmitter pathways and pathways involved in oxidative
stress, and LC using diode-array and fluorescence detection.61,62 Most or all of these technical platforms are
already familiar in the field of pharmacology and toxicology. The difference in metabolomics used in different
research fields lies not in the platforms, but rather in the specific way in which these analytical tools are applied,
the samples used, and the chemometric methods applied to the data.

Reports of the plasma metabolome composition are widely variable but range from 10 to 30 thousand small
molecules. The coverage today is still limited, with NMR typically covering the mg ml�1, mg ml�1, and at best
the high ng ml�1 range measuring in the order of 300 – maximum 500 – components for a 600 MHz to mass
spectrometric applications covering also the ng ml�1 and pg ml�1 range when applied on focused metabolite
classes. The strength of NMR is typically its power of quantification for several high-concentration compound
classes, but nonpolar metabolites such as lipids and low-abundant metabolites such as neurotransmitters, which
are very important in many diseases and in nutritional studies, are not measurable. Currently, MS-based
methods are mostly used in metabolomics studies, often in combination with separation methods, that is, LC-
MS and GC-MS. Resolution of these methods improves dramatically by using high-resolution mass spectro-
meters, for example, time-of-flight (ToF) and Fourier transform-ion cyclotron resonance (FT-ICR). The
coupling of separation and MS increases the resolving power, dynamic range, and sensitivity. Sensitivity is very
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important in metabolomics for including low-abundant metabolites and for working with limited sample
volumes. The major challenges for MS-based methods are quantification and identification, which will be
described later.

Besides good coverage and sensitivity, it is of utmost importance that the analytical methods used in
metabolomics studies show good analytical performance. The statistical analyses that are performed on the
final data are often complicated especially when longitudinal sampling and different subgroups are included. As
a result, the order in which samples are measured within an analytical series of measurements is critical, while
variations within the instrument and/or method can easily induce differences or trends that can be mistaken for
biological effects.

4.09.2.4 Quality Control

Variation in sample preparation and analysis can easily induce differences or trends that can be mistaken for
biological effects. The magnitude of this problem is proportional to the scale of the study. Small-scale studies,
which contain only a small number of samples in a single batch of experiments, may only suffer from
instrumental drift for example due to ion source contamination. Owing to the use of IS, much of the
instrumental drift and offset in between series can be corrected for but the IS are not available for each
individual metabolite, and hence the remaining drift has to be taken into account. Large-scale studies, such as
nutritional metabolomics studies, are even more challenging while these studies result in large time intervals
between the analyses of different batches of samples from the same study sample set.55 Sometimes, parallel
instruments of the same type are used in the same laboratory or even in different laboratories. All these aspects
will induce variation for which corrections should be made. Relevant biological information can be obtained
from these studies only if the reliability, repeatability, and reproducibility of the different steps in the workflow
are excellent.

The only way to achieve this is to develop validated protocols for sample preparation and analysis.32,48,63 All
samples should be treated in a similar way in order to be able to compare samples within a study. Validation of
the different steps in sample preparation can be carried out using standard addition experiments and stable
isotope–labeled standards, and corrections, for example recovery, can be made after analysis. Analytical
methods should be used only if they are extensively validated.31,33,35 Furthermore, standardized analysis
designs should be applied using QC samples26,31–33,63 or preferably biological calibration samples,48 calibration
standards for quantification of specific metabolites and randomized study samples. Which randomization is the
proper method depends on the study design and the way the data analysis is performed, which calls for an early
choice of the data analytical method to be used. QC samples are used to rigorously monitor the performance of
the method.32 These samples are preferably pooled study samples that are analyzed at the beginning, end, and
randomly through the run. In practice, these QC samples are used only qualitatively to determine for example
whether a batch of experiments failed based on preset acceptance criteria. Recently, Van Der Greef et al.48

described an alternative approach using biological calibration samples and this can be used to quantitatively
correct for intrabatch temporal trends and remove systematic batch-to-batch differences. Although with this
approach no real quantitative data are obtained, that is, absolute concentration, it is at least possible to compare
responses of metabolites between different samples analyzed in different batches. In this way, analytical
variation is removed almost completely and will thus not hamper statistical analysis of the final data.

Standardization at an international level is needed in order to be able to improve the universal significance of
data generated from different studies at different sites and this will improve the overall understanding of
complex biological systems.

4.09.2.5 Human Example Study: Design and Measurements

4.09.2.5.1 Design and samples

The study was designed as a double blind, randomized, parallel trial, in which subjects were treated with
diclofenac (n¼ 10) or placebo (n¼ 10). Randomization of subjects to treatment groups was restricted by the
levels of high-sensitivity C-reactive protein (hsCRP), body mass index (BMI), fasting glucose, and age. Subjects
consumed one capsule (placebo or 50 mg diclofenac) �1 h before breakfast, lunch, and dinner for 9 days.
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Subjects were instructed to keep their habitual diet during the study. Nineteen men completed the study. One
person dropped out on the first day of the study for reasons unrelated to the study. The metabolomics approach
was applied not only in fasting (homeostatic) conditions, but also on multiple time points during an oral glucose
challenge test (OGTT). This is based on the concept that the resilience of the system can be assessed after
challenging or perturbing a homeostatic situation. Application of a metabolic perturbation in concert with
metabolomics may identify a set of metabolites that are predictive of differences in response to the challenge,
which is measured as a change in time to return to baseline concentrations. Blood samples were taken after an
overnight fast on days 0, 2, 4, 7, and 9. Subjects underwent an OGTT on days 0 and 9. Blood samples were taken
just before (0 min) and 15, 30, 45, 60, 90, 120, and 180 min after the administration of the glucose solution (70 g).
Figure 5 shows the study design and time points at which metabolome measurements were made.

4.09.2.5.2 Metabolomics measurements

LC-MS and GC-MS techniques were applied on the plasma samples. LC-MS was used to measure the
compound classes lipids (LC-MS lipids), free fatty acids (LC-MS FFA), and polar compounds (LC-MS
polar).55,64 Plasma GC-MS was applied to screen for metabolites on the global level.35 In total, 19 plasma
samples per person were measured on all 4 metabolite platforms, which is a total of 361 plasma samples.
Furthermore, a QC sample was prepared by pooling plasma from all subjects. The pool was divided into 10 ml
aliquots and these were extracted the same way as the study samples. The QC samples were placed at regular
intervals in the analysis sequence (one QC after every 10 samples). The QC samples serve two purposes. The
first is a regular QC sample to monitor the LC-MS response in time. After the response has been characterized,
the QC samples are used as standards of unknown composition to calibrate the data.48 The LC-MS lipids
platform detected a total of 61 different lipids, the free fatty acid platform a total of 14 fatty acids, and the
LC-MS polar a total of 130 polar compounds. The GC-MS platform detected a total of 137 metabolites. Thus,
in total, about 340 different plasma metabolites were analyzed per subject.

4.09.3 Data Preprocessing

4.09.3.1 Signal Alignment

The information acquired with instrumental measurements such as GC-MS, LC-MS, and NMR is sometimes used
as is, without extraction of individual peaks based on the total ion current (TIC) of the GC-MS and LC-MS data
files or the individual spectra of the NMR measurements.65 Owing to variations within the measurements such as
pH differences or instrumental changes (shortening of the analytical column in GC measurements, variations in
eluent composition for LC instruments, etc.), the position of the individual peaks with the same identity within the
different data files will vary and correction is required even when the total signal (profile) is used for data analysis. In
that case, alignment methods such as correlation optimized warping (COW) are applied (see Chapter 2.06). For
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Figure 5 Overview of the study design of diclofenac study and time points at which the metabolome was measured.
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instance, in GC analysis, a small part of the GC column is removed after a certain number of measurements to
prevent unwanted effects on the analysis results owing to fouling of the column. Shortening of the column will result
in a distinct shorter retention for all the metabolites and a simple additive correction procedure will solve this
problem. For NMR, alignment is mostly performed after peak extraction where each peak can have a different shift
behavior owing to variations in the pH of the sample. It should be remembered that with NMR the whole sample is
measured at once without prior separation of the individual compounds. It would be possible to perform LC-NMR
measurements in which prior to the NMR measurements a separation by means of LC is performed, but this
methodology is not common practice yet in metabolomics research (For more information, please see Chapter 3.04).

4.09.3.2 Peak Extraction

Metabolomics measurements can be performed on different instruments (or platforms, in the metabolomics
jargon). Mainstream methods are NMR, GC-MS, and LC-MS. All three methods have their own characteristics
and require preprocessing to clean up the data. For NMR, this comes down to correcting for peak shifts. For
GC-MS and LC-MS, the characteristics of the clean data change depending on the type of preprocessing.
Essentially, there are three ways to preprocess GC-MS and LC-MS data: target analysis, peak-picking, and
deconvolution. In target analysis, a specific m/z channel is sought in the MS domain that is specific for a
metabolite. Then the associated chromatographic peak can be integrated and used as pseudo-concentration.
Each metabolite is represented by one variable in the final data table.

In peak-picking, first the m/z traces containing meaningful information are selected (e.g., with CODA66 or
Impress67) and then the peaks in the selected ion traces are integrated to obtain single-intensity measures for
complete peak profiles. This results in a data table in which one metabolite is represented by different variables
(peaks representing different ions as present in the mass spectrum).

In deconvolution, the coeluting peaks in the chromatograms are mathematically resolved where
analytical resolution of the peaks remained incomplete. Multiple overlapping peaks representing different
metabolites are deconvoluted. After that, the resulting pure chromatographic peaks are integrated. This
results in a table of areas per chromatographic peak (¼metabolite), representing pseudo-concentrations.
A second table is produced as well containing the mass spectral information, which can be used for
metabolite identification (For more information, please see Chapter 4.13).

From the above descriptions, it is clear that different data structures arise for GC-MS and LC-MS depending
on the type of preprocessing. In the target and deconvolution case, a single variable in the data table also
represents a single metabolite. For the peak-picked data (and also for the NMR data), multiple variables can
describe one metabolite. The latter means that there are two types of correlation in a data table: the ‘analytical’
correlation (more variables for the same metabolites) and ‘biological correlation’, the correlation between
metabolites induced by the underlying biology. Peak-picked data sets are usually megavariate, but do not
necessarily contain more metabolites than a smaller targeted or deconvoluted data set.

4.09.3.3 Peak Alignment

Given an optimal instrument and standardized samples (same pH for instance in the case of NMR measure-
ments), it should be possible to obtain intensities of the same chemical entities within different samples at the
same retention time (chromatography) or the same chemical shift (NMR). However, the situation is not optimal
and some differences between samples exist and as a result after peak extraction from the raw data, equal
chemical entities are reported at different retention times or chemical shifts. To correct this, multiple methods
have been developed. Chapter 2.06 of this book deals in great detail with the subject of alignment.

4.09.3.4 Quantification

Metabolomics comprises the quantitative analysis of metabolites. However, to obtain the actual concentrations
of metabolites in samples, analyses using stable isotope–labeled IS and calibration standards are necessary for
every metabolite. This is possible for target analysis, but quite a challenge for global profiling methods, if not
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impossible. For known metabolites, in global profiling methods it is possible to use stable isotope–labeled IS in
order to obtain quantitative data. However, generally, these methods are able to measure hundreds of
metabolites, many of them being unknowns. Practically, class-targeted and global profiling analysis is nothing
more than recording the response of substances in samples in which the response is only a measure of
concentration. In the ideal case, the peak areas for the same metabolite in different samples should be directly
comparable with each other on a relative scale. However, as mentioned earlier, the response is determined not
only by the actual concentration, but also by various other factors. These factors should be prevented or
corrected for in order to be able to compare metabolite responses. Peak extraction of metabolomics data
generally leads to raw peak areas of metabolites. These peak areas should then be corrected for the biological
(e.g., biomass, creatinine for urine) and analytical variation (intrabatch drifting and batch-to-batch differences)
using biological calibration samples48 to obtain relative peak areas that can be compared between samples in
different batches. Using calibration standards, known metabolites can then be at least semiquantified.
Quantitative aspects are even more challenging in large-scale human studies, such as nutritional metabolomics
studies, because these studies result in large time intervals between the analyses of different batches of samples
from the same study sample set. In metabolomics, it is often sufficient to know whether there are metabolites
that increase or decrease in concentration as a result of a specific treatment or illness and the identity of these
metabolites. However, if these metabolites are present and identified, the next question is often what the exact
concentration is in order to compare the results with other results from clinical studies.

4.09.3.5 Human Example Study

The raw analytical data with the diclofenac study were processed with homemade comprehensive peak-picking
software Impress.68,69 This software is able to extract peaks from multiple data files and perform alignment of
the peaks. Still, manual setting of parameters is required and to circumvent subjectivity of the preprocessing the
produced peak list was used only to extract all possible features from the total set of data files. From the
extracted features, all isotopes were removed, resulting in the removal of multiple entries of the same
metabolite and a data set was obtained containing only one entry per metabolite. These features were then
entered into the XCalibur software version 1.4 (Thermo Electron Corp., San Jose, CA, USA). Within this
software, retention time windows and mass windows are entered for each metabolite, and for each data file the
matching peak intensity is reported.

Data of each subject were corrected for the recovery of the IS for injection. Batch-to-batch differences in data
were removed by synchronizing the medians of QC samples per batch. QC samples are produced by pooling
true samples from the study forming a large quantity of one composite sample that contains all metabolites that
are also present in the individual sample. The theory is that repeated measurements should result in the same
analytical result and that deviations from that assumption are due to analytical effects. For each metabolite
within an individual sample, a matching metabolite is available within the pooled QC sample. After each 6th or
10th study sample, a QC measurement is performed, depending on the analytical method. The measured
intensities in the first batch are taken as reference batch and the QC measurements in each consecutive batch
are matched toward those QC measurements. Different ways of correction are possible depending on the type
of deviation within the measurements of which a simple offset is the simplest one.

For all platforms, duplicate measurements were combined into a single measurement. When both analytical
duplicates had a zero value or when both had a nonzero value, measurements were averaged, whereas the single
value was taken when only one of the duplicates was above zero.55 To avoid trivial results, data were
additionally cleaned up by removing glucose-related metabolites and IS isotopes in the LC-MS polar data
and glucose metabolites in the GC-MS global data set.

4.09.4 Data Analysis

Data from metabolomics studies have some specific characteristics that are different from other types of data.
Many of the metabolomics-specific issues have already been mentioned in Section 4.09.1.3. Additional issues to
consider are data fusion, scaling, and centering.
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Metabolomics measurements are often performed on the same samples using different platforms in order to
obtain an as comprehensive view on the sample composition as possible. Owing to the different characteristics of
the instruments and different data preprocessing strategies used, combination of data sets is not straightforward
and calls for data fusion strategies.70 Data sets obtained from different instruments have unequal noise character-
istics, which can be due to, for instance, chemical reactions within the ion spray in LC. Another aspect to take into
account when combining data sets from different instruments is whether the relation between measured intensity
and true concentration is comparable between instruments. This is especially of concern when combining data
sets from instruments with different working mechanisms such as NMR and MS. The final concern is the method
used to convert raw data into peak tables. One method will result in peak tables in which each metabolite is
represented by one variable (target analysis and deconvolution), whereas another method will result in a peak
table in which metabolites are represented by multiple variables (e.g., peak-picking). The process of combining or
fusing the data is completely context dependent and will not be discussed in detail here. Needless to say, fusing
data of different platforms only aggravates the problem of low sample-to-variable ratios.

Another special issue is scaling and centering within metabolomics data analysis especially where different
groups and dose and time effects are included within one study. In two-way analysis scaling and centering are
quite straightforward, whereas in multiway analysis they are more complicated, because centering across or
scaling within a certain mode might disturb prior centering and/or scaling steps.71–73

4.09.4.1 Metabolomics-Specific Modeling

Many if not all chemometrical modeling techniques have been used to process data obtained from metabolomics
experiments. While metabolomics studies often suffer from a large number of variables (p) in comparison to the
number of objects or samples (n), certain methods such as multiple linear regression (MLR) will not fulfill the
purpose of metabolomics modeling. Regularization methods such as ridge regression (RR), support vector
machine (SVM), and least absolute shrinkage and selection operator (LASSO) are suitable for solving the problem
of (near) colinearity, which results in unstable models with highly variable regression coefficients (For more
information, please see Chapters 4.08, 4.12, 3.01 and 3.05). However, the general method used for a first view of
metabolomics data sets is still the principal component analysis (PCA), enabling a general view of the structure of
the data at hand (For more information, please see Chapter 2.13). Gross errors, outliers, and a first idea of the
amount of clustering are quickly discovered looking at the PCA score plots. Likewise, partial least squares (PLS) is
used to correlate the sample composition to a kind of phenotype such as the yield of a fermentation process (For
more information, please see Chapter 3.01). PCA and PLS are well suited for two-way data sets, whereas
structured data need to be processed with methods such as variance (ANOVA)-simultaneous component analysis
(ASCA) and n-PLS, which can handle the underlying structure in the data sets. For example, when at the same
time healthy versus diseased and a development in time of the metabolic changes are to be traced, the structure of
the study design needs to be included to ensure that the different sources of variation are not mixed up. Inclusion
of the experimental design into model assessment also helps in obtaining results that can be interpreted more
easily (For more information, please see Chapters 4.05, 4.12, 1.02, 2.23, and 3.03).

In many metabolomics studies, the general question is to find metabolites that are able to discriminate between
healthy and diseased or between treated and untreated patients. Once the metabolites are found that are
discriminating between the groups, biological interpretation using genetic information or pathway information
can be performed. Examples of suitable methods for classification are PLS-discriminant analysis (PLS-DA) in the
case of a two-way data structure and n-PLS-DA for multiway data structures.

A new direction that is being developed within metabolomics research is to build models using prior
knowledge. Prior knowledge can be the nearness of metabolites within a metabolic pathway and thereby
their simultaneous reaction to disturbances within the pathway. Among others, methods that can be used to
incorporate prior knowledge are Grey component analysis (GCA)74 and Bayesian statistics (For more informa-
tion, please see Chapters 2.23, 3.23, and 2.03).75

4.09.4.2 Model Validation

Although it is impossible in many cases to expand the number of experiments of metabolomics studies owing to
costs or for ethical reasons in the case of animal or human studies, statistical resampling techniques need to be
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applied to perform model validation. In applications where the availability of samples is less problematic, data
sets can be subdivided into training sets and validation sets. This is not the case in metabolomics and techniques
such as double cross-validation (2CV) can be applied;76,77 it is currently the best method to mimic validation
with a true test set. Using 2CV, cross-validation can still be used to find a good estimate of the prediction error
without having to define a dedicated data set for model building, model validation, and estimation of prediction
errors. Determining the tunable parameter (e.g., number of latent variables (LVs) in PLS) with cross-validation
is part of the procedure to build a model. The entire modeling procedure has to be cross-validated in order to
obtain the prediction error. The double cross-validation consists of two nested cross-validation loops.
The modeling procedure, including the cross-validation that determines the tunable parameter, forms the
inner loop. The cross-validation for the error estimation takes place in the outer loop.

Biological and analytical validations of the model results are as important as the statistical validation.
Variables that appear to be of importance, as deduced from statistical analysis, should be traced back in the
analytical data to ensure that these variables are not just artifacts for instance due to extraction procedures. Also,
biological validation as far as information is available about the variables should reveal whether certain effects
as explained within the statistical model can be explained. Examination of the feasibility of the statistical models
can be based upon metabolic pathways or upon thermodynamic information.78

4.09.4.3 Human Example Study

PLS-DA79 was used to identify metabolites that differed in their change between days 0 and 9 in fasted
conditions between treatment groups (Figure 5, analysis a). As the interest was in intraindividual differences
between days 0 and 9, the X-block was defined for each metabolite platform by subtracting the day 0 values
from the day 9 values, which removed interindividual differences.80

For the identification of metabolites that differed in their change caused by the treatments between
days 0, 2, 4, 7, and 9 time course and days 0 and 9 OGTT time course, the multiway generalization of
PLS-DA was used (n-PLS-DA).81–83 In this way, metabolites can be identified that differ in changes over
time between the treatment groups, by creating a so-called three-way matrix of size 19� J�T, where
19 is the number of subjects, J is equal to the number of metabolites of a particular platform, and T is
equal to the number of time points, which were either days 0, 2, 4, 7, and 9 (Figure 5, analysis b) or the
time points after glucose administration on days 0 and 9 (Figure 5, analysis c). For the statistical analysis
of the OGTT time-course data, the day 0 data were subtracted from the day 9 data, removing
interindividual differences. The GC-MS global and LC-MS polar data sets were centered across subjects
and followed by scaling within the metabolite mode J, whereas the LC-MS lipids and fatty acids data
sets were centered only across subjects. The centering step was performed to remove constants between
the subjects, whereas scaling within the metabolite mode resulted in standardized metabolites. By
performing the scaling step after the centering step, the prior centering remained unaffected.72,73,83

In (n-)PLS-DA, a Y variable containing class membership information is correlated to the data block X. In
the present study, the metabolic response (X) is related to treatment groups; hence y is not a continuous
parameter as in regular regression, but a dichotomous vector containing the treatment group membership. The
subjects who received the placebo treatment were assigned to class ‘0’ and the subjects who received diclofenac
were assigned to class ‘1’.

The following model was used in the analysis of the 0, 2, 4, 7, and 9 days time course:

T ¼ XV

X ¼ TG WM �WK �WJ
� �9þEx

y ¼ TBþ ey

max cov tc ; y
c – 1ð Þ� �

; c ¼ 1; . . . ;C

wM
c ;w

K
c ;w

J
c

ð1Þ

where V is a matrix of weighing coefficients which can be written in terms of W, G is the core array, B is the
regression matrix for regressing y on T, and Ex and ey are the residuals of the model for X and y, respectively.71
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For the analysis of the OGTT time course, the multilevel variant of multiway PLS-DA was used. As the
interest is in intraindividual differences specifically, the interindividual variation can be removed by subtract-
ing the day 0 data from the day 9 data. The multilevel multiway model was created, which regresses parameter
y containing the treatment group membership to the changes in metabolic response between days 0 and 9,
X9�X0 (size I� J� K). The model used was adapted as follows:

T ¼ X9 –X0ð ÞV
X9 –X0ð Þ ¼ TG WM �WK �WJ

� �9þEx0–x9

y ¼ TBþ ey

max cov tc ; y
c – 1ð Þ� �

; c ¼ 1; . . . ;C

wM
c ;w

K
c ;w

J
c

ð2Þ

The creation of the X-block that was used for n-PLS-DA modeling is illustrated in Figure 6. First of all, a
three-way matrix X0 of size 19� J� 8 was created. This matrix contained the metabolic data of day 0,
determined at eight different time points for each subject. A matrix X9 of the same size was also created,
containing similar information for the day 9 measurements. Finally, the X0 matrix was subtracted from the X9

matrix and this X-block was used for data analysis.
Cross-validation was used to validate the (n-)PLS-DA models, using a ‘leave-one-out’ cross-validation

scheme.84 Data of one subject were left out in the first cross-validation step, a (n-)PLS-DA model was
built, and the treatment class membership of the subject who was left out was predicted. This was
repeated until all 19 subjects were left out once. The error rate of the model was determined by
comparing the original class membership and the predicted one. The optimal number of LVs was
determined based on the minimum value of the error rate. The final fit of the model was made using
the number of optimal LVs. (n-)PLS-DA models for which an error rate was found below 35% were
optimized by performing metabolite selection based on a jack-knife approach.84 Data of one subject were
left out and a (n-)PLS-DA model was made using the same number of LVs as those used for the final
model. This was repeated until all 19 subjects were left out once. This resulted in 19 sets of regression
coefficients, the standard deviation of which was used to determine the relative standard deviations
(RSDs) of each regression coefficient. Only those metabolites that had an RSD of less than 50% were
included in the new data set, which was used to build a second (n-)PLS-DA model. Metabolites
that contributed to treatment differences were identified based on absolute regression coefficients of
this second model.
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Figure 6 The creation of the X-block that was used for multilevel n-PLS-DA modeling.
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A permutation test was performed to test whether the treatment differences were indeed true
differences. One thousand dichotomous y vectors were randomly created using the same proportion of
zeros and ones as the vector that was used for modeling. For each random vector, a multilevel n-PLS-
DA model was made using the same ‘leave-one-subject-out’ cross-validation approach and the error rate
was calculated. A distribution was made of all thousand error rates and the error rate for the original
model was compared to this distribution, which resulted in a p-value for the significance of treatment
differences. All analyses were performed using Matlab Version 7.0.4 R14 (The Mathworks, Inc.) and the
n-way toolbox version 2.11.85

4.09.4.3.1 Results

Table 1 shows the results of these multivariate analyses of the different data sets derived from the four
metabolomics platforms.

Comparison of the fasting state metabolomes between subjects treated with placebo and diclofenac on day 9
compared to day 0 resulted in PLS-DA models (Figure 5, analysis a) with high error rates, indicating no
significant difference in fasted plasma samples.

Extension of the n-PLS-DA models with the metabolomics data of the plasma samples taken in fasted
conditions on several intermediate days (Figure 5, analysis b) during the intervention for the various
metabolomics platforms also resulted in high error rates. This confirms that no significant metabolomic
changes could be detected between subjects treated with placebo and diclofenac at the fasted (homeostatic)
condition.

Metabolic perturbation by the OGTT considerably improved the metabolomics-based differentiation
between the treatments. The n-PLS-DA models on plasma samples taken in an eight-point time course after
glucose administration of subjects on day 9 versus day 0 (Figure 5, analysis c) resulted in improved error rates
for all metabolomics platforms compared to PLS-DA and n-PLS-DA models based on plasma in fasted
conditions, between the control and antiinflammatory treatment. The n-PLS-DA models for metabolome
data from GC-MS global, LC-MS polar, and LC-MS lipids were optimized by using a jack-knife approach. If a
subject is left out and the regression coefficient changes a lot, this will result in a relatively high RSD for that
particular variable. A variable with a high RSD was considered to be unstable and hence unreliable for
explaining the differences in response between the placebo and the diclofenac group. The n-PLS-DA models
after jack-knifing for GC-MS global and LC-MS polar metabolome data resulted in models with error rates of
10.5 and 5.0% respectively, indicating that the GC-MS global model and the LC-MS polar model misclassified
respectively only 2 and 1 persons out of 19. The model of the LC-MS lipids data set resulted in a model with an
error rate of 16%, indicating that 3 out of 19 subjects were misclassified. For the LC-MS polar model, for
example, 10 of the variables that appeared in the top of the model based on the original 120 variables

Table 1 Results of multivariate data analysis, expressed as error rates, of various metabolomics data sets

Method GC-MS global (137 a) LC-MS polar (130 a) LC-MS lipids (61 a) LC-MS FFA (14 a)

PLS-DA

Day 9 vs. day 0

42.0% 53.0% 37.0% 37.0%

n-PLS-DA

Days 0, 2, 4, 7, and 9

57.0% 42.0% 52.5% 47.0%

n-PLS-DA

Day 9 vs. day 0; 0–15–30–45–60–90–120,

and 180 min

31.5% 31.5% 21.0% 31.5%

n-PLS-DA after metabolite selection

Day 9 vs. day 0; 0–15–30–45–60–90–120,

and 180 min

J¼ 77

10.5%

J¼ 31

5.0%

J¼ 25

16.0%

NA

a Number of metabolites.

Note: Metabolite selection was applied only if the error rate of the original model of the complete data set was below 35% and

the data set contained more than 50 metabolites. NA, not analyzed.
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overlapped with the model using 31 variables. So, essentially the same information could be described using
fewer variables, illustrating the fact that many variables were unimportant for the model. Overall, it was
concluded that significant metabolomic changes due to the treatment could be detected only in the metabo-
lomics data of the OGTT time course.

4.09.4.3.2 Statistical interpretation

The optimized LC-MS polar model will be used for the statistical interpretation of the results from the
multilevel multiway models. The multiway regression model resulted in a regression matrix of size J �� K, in
which J � is the number of variables after variable selection. To determine the variables that contributed most to
treatment differences, the regression coefficients were sorted by their absolute value in descending order per
time point K. For each time point, the first 10 variables were selected and used for interpretation. The selected
variables are presented in Table 2.

The contribution of each variable to the treatment effect can be followed over time by investigating its
appearance in the list of parameters that contribute most to the differences between treatments. Some
metabolites were important over the whole range of time, whereas others were contributing only for a
certain period of time. The variables that appeared in the top 10 for only one time point were considered
to be coincidently related to the treatment. Variables V01 and V02 will be used to illustrate further
interpretation.

V01 is an example of a metabolite that contributes to the response differences between treatments at each
measurement point, as illustrated by the light-gray shade in Table 2. This means that the response of this
metabolite between days 0 and 9 differed during the whole time course in subjects treated with diclofenac
compared to the placebo group. This effect is illustrated in Figure 7, in which the mean difference between
days 9 and 0 response for V01 is plotted per treatment group. The placebo group had at fasting state (t0) a mean
change of about zero between days 9 and 0, whereas at the same time point the diclofenac group had a mean
decrease of 2.5 units. The difference between treatment groups fluctuates between 1 and 2.5 units, depending
on the time point, but it remains quite stable over time. In Figure 8, the regression coefficient of this variable is
plotted against the time. The same conclusion can be drawn toward this metabolite from this figure.

Variable V02 was only seen in the top 10 of contributing variables at 90 min and later of the OGTT, as
illustrated by the dark-gray shade in Table 2. This metabolite was ranked 13 at t90 and therefore not included in
Table 2 for this time point. The ranking at t0, t15, t30, and t45 was 21, 18, 29, and 26, respectively. So, after 1 h, this
metabolite differed in response to the challenge test between days 9 and 0 in subjects treated with diclofenac
compared to the placebo group. This effect is illustrated in Figure 9: The differences in response are more or less
the same up to 45 min and around zero, whereas they deviate from t60 and later. In Figure 10, the regression
coefficient of this variable is plotted against the time. There is no significant contribution to treatment differences
over the first 60 min of the curve. Only after an hour, this variable becomes more important.

For the interpretation of the results of this type of modeling, it must be kept in mind that the regression
coefficients, which were used to rank the metabolites, are based on a model in which other metabolites
were also included. So, each coefficient reflects the relation between the treatment group and that

Table 2 Overview of variables selected and used for interpretation

Ranking

Time point (minutes) 1 2 3 4 5 6 7 8 9 10

0 V01 V12 V51 V13 V48 V42 V53 V17 V27 V86

15 V31 V51 V44 V17 V12 V01 V15 V54 V59 V38

30 V01 V12 V51 V13 V17 V48 V42 V53 V86 V08

45 V01 V12 V17 V51 V13 V31 V08 V42 V48 V44

60 V01 V12 V13 V51 V17 V16 V08 V77 V48 V02

90 V54 V17 V77 V88 V76 V59 V53 V86 V16 V19

120 V48 V01 V08 V02 V13 V17 V36 V12 V16 V27

180 V01 V12 V17 V51 V13 V16 V08 V48 V02 V31
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particular metabolite, given the presence of the other metabolites that were used in that particular model.
In Figures 8 and 10, the other metabolites are not taken into account, and hence these are univariate
illustrations of multivariate results.

In Figure 11, the results of the permutation test are shown. The asterisk represents the error rate of the n-PLS-
DA model that was made, whereas the histogram represents the distribution of error rates based on permuted
classes. In Figure 11(a), the results of the overall multilevel n-PLS-DA model are given, and in Figure 11(b), the
results of the optimized multilevel n-PLS-DA are given. The results for the overall model are very moderate
(p¼ 0.472 5), but the treatment differences become more clear after optimization of the model (p¼ 0.005 9).
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Figure 8 Regression coefficients over time of a multilevel n-PLS-DA model for variable V01 – identified as isoleucine – that
contributes to treatment differences at each time point of the time course.
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Figure 7 Mean change (�se) in metabolic response to the challenge test between days 9 and 0 for subjects on placebo and

diclofenac treatment, for variable V01 – identified as isoleucine – that contributes to treatment differences over the whole
time course.
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4.09.5 Metabolite Identification

4.09.5.1 Identification

The identity of statistically relevant metabolites in metabolomics studies is a prerequisite for biological
interpretation. The Human Metabolome Database (HMDB, www.hmdb.ca) is the most complete and compre-
hensive database of human metabolites, containing records of more than 2000 endogenous metabolites.86,87
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Figure 10 Regression coefficients over time of a multilevel n-PLS-DA model for variable V02 – identified as glycine – that

contributes to treatment differences only in the second part of the time course.
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Figure 9 Mean change (�se) in metabolic response to the challenge test between days 9 and 0 for subjects on placebo and

diclofenac treatment, for variable V02 – identified as glycine – that contributes to treatment differences in the second part of
the time course.
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Besides literature-derived data, the database also contains experimental metabolite concentration data com-
piled from mass spectra and NMR analyses performed on urine, blood, and CSF. Furthermore, thousands of
NMR and MS spectra of purified, reference metabolites are collected. Besides knowing what metabolites are
present in biofluids, it is important to know what metabolites can be analyzed with a specific analytical method.
As explained earlier, analytical methods with different comprehensiveness can be applied for metabolomics
studies. For target methods and target biomarker assays, it is exactly known which metabolites can be measured
and identification is not an issue. For class-targeted profiling methods, it is known which class of compounds
can be analyzed and databases for these methods can be made based on reference compounds and the HMDB. If
unknown metabolites are detected in these methods, one already knows what type of metabolite it is. In most
cases, further identification using high-resolution MS and MS/MS is necessary, as will be explained further on.
In global profiling methods, such as NMR and GC-MS, metabolites with different chemical structures can be
analyzed within a single method. An unknown peak in such a method is by all means a real unknown. For these
methods, it is essential that databases are built based on reference compounds. If methods are standardized and
widely accepted, it is possible to build open-access databases, such as the Golm Metabolome Database
(www.csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html) for GC-MS.88

Chromatograms of biofluids analyzed by global profiling methods will always contain unknown peaks. For
identification of unknown peaks detected by LC-MS, the ideal strategy would be the isolation of the peak by
fractionation of the LC eluent and subsequent structure elucidation using NMR and MS/MS, which can be
directly coupled.89 However, as metabolites to be identified are often only present in small amounts in very
complex mixtures, fractionation and subsequent NMR analysis are not straightforward. In this case, a combina-
tion of LC-MS/MS, MSn, and high-resolution MS detection can be applied. Valuable information can be
obtained by FT-ICR-MS because of its ultra-high resolution and mass accuracy, which allows the derivation of
the elemental composition. However, identification based on accurate mass and the resulting elemental
composition only is certainly not routine and further experiments, that is, high-resolution MS/MS, are
necessary in most cases.90,91 MS/MS data obtained from unknown peaks can be compared to spectra of authentic
compounds compiled in spectral libraries, for example, METLIN database (http://metlin.scripps.edu/),
MassBank (www.massbank.jp), HMDB, MoTo database (http://appliedbioinformatics.wur.nl/).

For the identification of unknown compounds detected by GC-MS, fractionation of peaks is not a straight-
forward option, although preparative GC is possible. Identification can be achieved using chemical ionization
to determine the molecular weight and high-resolution MS detection for the determination of the elemental
composition of the molecular ion and characteristic fragments. MS/MS experiments can then be used for
further structure elucidation. An important current development for identification of unknown peaks detected
by GC-MS is algorithm-based substructure recognition from electron impact spectra.36
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Figure 11 Permutation test results for the original multilevel n-PLS-DA model (a) and the optimized multilevel n-PLS-DA

model (b).
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It is important to mention that a metabolite is identified only when it is confirmed by analyzing authentic
standards or complete structure elucidation by NMR. One should make a clear distinction between identified
metabolites and tentatively assigned metabolites. In practice, the real identification of an unknown metabolite is
a time-consuming and expensive job with a low rate of success.

4.09.5.2 Human Example Study

Metabolites were annotated using an in-house metabolite database containing retention time information,
electron impact MS spectra (GC-MS data), ion trap MS/MS spectra (LC-MS), and accurate mass data (LC-
MS) of reference substances. The confidence of identification is 100% unless indicated otherwise. Accurate
mass MS and MS/MS data of reference substances and metabolites in the study samples were acquired using
LTQ-FT and LTQ-Orbitrap instruments.

4.09.5.2.1 Results

The metabolites with the 10 highest absolute regression coefficients per time point (see also Table 2)
were selected from the LC-MS polar and GC-MS global n-PLS-DA models as being most discriminative
between subjects treated with diclofenac and placebo. This resulted in a total of 15 metabolites from the GC-
MS global data set and a total of 24 metabolites from the LC-MS polar data set for metabolite identification.
Ultimately, 69% of the selected metabolites could be identified (14 out of 15 in the GC-MS global data set; 13
out of 24 in the LC-MS polar data set). Table 3 lists these most discriminating metabolites that could be
identified.

Table 3 Overview of most discriminating metabolites, ranked according to their

importance to the model, and their metabolite response in the OGTT time course

Metabolite Response type

GC-MS global Uric acid A

1,2-Diglyceride (C36:2) A

Proline A

Isoleucine A

1-Aminocyclopentanecarboxylic acid A

Threonine A

4-Hydroxyproline A

2,3,4-Trihydroxybutanoic acid A

Aminoadipic acid A

Arabitol, ribitol, or xylitol A

Ornithine A

Mannose or galactose A

Palmitoleic acid (C16:1) A

Palmitic acid (C16:0) A

LC-MS polar Isoleucine A

Glycine B

2-Amino-2-methyl butanoic acid A

5-Oxoproline B

1-Aminocyclopentanecarboxylic acid A

4-Hydroxyproline A

Isoleucine and leucine (not resolved) A

Hippuric acid A

5-Oxoproline (acetonitrile adduct) B

Aspartic acid B

Glutamic acid B

Citric acid A

A, contributed to treatment differences at each time point of the time course (Figure 7);

B, contributed to treatment differences in the second part of the time course (Figure 9).
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4.09.6 Interpretation and Visualization

The transformation from statistical results derived from metabolomics data into biological knowledge is still in
its infancy. Many bioinformatics strategies dealing with transcriptomics data have been reported in the
literature. However, tools for the biological interpretation of metabolomics data are scarce at the moment.
Pathway tools such as Pathvisio (open source, see www.pathvisio.org) and biological network tools such as
Metacore (GeneGo Inc., St. Joseph, MI, USA) and IPA (Ingenuity Systems, Redwood City, CA, USA) provide a
first attempt to connect these components but are not (yet) up to the task. Several challenges have to be faced
when translating metabolomics results into biology. First of all, metabolomics data in human nutritional studies
are often generated in plasma and urine matrices. The existing pathway and biological network tools deal with
intracellular pathways and processes, but this cannot be directly translated into biology of the biofluids that
represents whole body metabolism. The ‘intrinsic’ biological function of glucose, for example, is as an energy
source, whereas increased glucose concentrations in urine are an indicator for diabetes and increased concen-
trations in plasma might be related to the postprandial state and/or insulin (in)sensitivity. Many other
metabolites have less known or more complex functions. Intraorgan concentrations have different relevance,
and even intracellular compartmentalization plays a role. The HMDB database (http://www.hmdb.ca/)
provides a treasure of information on metabolite properties. NuGOwiki (http://www.nugowiki.org/) poten-
tially adds to this knowledge base.

Furthermore, it is not possible to simply compare metabolic organ changes with plasma changes. The body
strives to maintain homeostasis, and organs need to work hard to keep plasma concentrations between
acceptable boundaries, thereby showing much more fluctuation than for example in the liver. Inverse correla-
tions may even be observed: Oxidative stress produces a sharp drop of glutathione (GSH) in the liver but owing
to liver damage, leaking of GSH may increase its concentration in plasma. Urine functions as an accumulating
waste basket of exogenous compounds and their metabolites, whereas plasma levels of these compounds need to
be as low as possible. So, translation is not straightforward. Statistical relationships between various compart-
ments should therefore be treated with care.

Another important concern is the interactions between gut flora and host metabolism. The large-bowel
microflora produces metabolic signals that might overwhelm the true metabolic signals of nutrients in
human biofluids.92,93 Furthermore, food will be metabolized in macronutrients that are partly equal to
endogenous metabolites. Nutritional researchers like to understand the effects of nutrition on endogenous
metabolic regulation and their impact on health. How to separate the exogenous from endogenous
metabolomes? Metabolomics reveals both, which complicates the interpretation. It is already shown for
instance that consumption of different diets leads to different metabolic profiles in different populations;
increases of specific metabolites could be correlated to a high-meat, vegetarian, Atkins, or high-fish diet.94

It is also shown that the metabolic variability remains under the consumption of a standard diet.
A reduction in interindividual variation was observed only in urine after a short-time consumption of
standard diet and not in plasma or saliva.95 Moreover, it will not be simple to understand the separate
effects of age, gender, physical activity, stress, drugs, region, etc. Clearly, significant effort is required
before results from chemometrics can straightforwardly be translated into biological knowledge.
Nevertheless, to make nutritional metabolomics or systems biology a real success, biological understanding
of the changes detected is crucial.

4.09.6.1 Human Example Study

Only identified metabolites were used for further interpretation of the statistical analysis. Detailed
pathway and biological network analysis was performed in Metacore version 4.3 (GeneGo Inc., St.
Joseph, MI, USA). Only curated interactions were used for biological network analysis. The following
metabolites were not available in Metacore and therefore not used for pathway and network analysis:
1,2-diglyceride (C36:2), 2,3,4-trihydroxybutanoic acid, and 2-amino-2-methyl butanoic acid, 1-aminocy-
clopentanecarboxylic acid. Pathway maps were edited in Mapeditor (GeneGo Inc., St. Joseph, MI, USA)
version 2.1.0.
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4.09.6.1.1 General interpretation

Most of the selected metabolites (81%, Table 3) showed a difference in offset that is constant during the
OGTT time course (Figure 7, response type A). In other words, these metabolites are discriminating
between the treated and untreated subjects independent of time during the OGTT time course. This
indicates that only minor differences exist between the treatment groups, which can be identified only by
repeated measurements. Indeed, time-independent PLS-DA analysis yielded a similar error rate (11%).
Several amino acids (n¼ 6), organic acids (n¼ 7), carbohydrates (n¼ 2), and fatty acids and lipids (n¼ 3)
were categorized with a response type A. The majority of the response type A metabolites showed a
decreased concentration in plasma in response to diclofenac treatment compared to subjects treated with
placebo (results not shown).

Some of the selected metabolites (19%) showed contribution to treatment differences only in the second part
of the OGTT time course (Figure 9, response type B). This indicates that these four metabolites differed
between treatments only when challenging the metabolic situation, leading to alterations in dynamic response
to the perturbation. Indeed, time-independent PLS-DA analysis increased the error rate of the LC-MS polar
model (26%). The amino acids glycine, aspartic acid, and glutamic acid and the organic acid 5-oxoproline were
categorized with a response type B. All response type B metabolites showed higher concentrations in the
diclofenac-treated group.

Some metabolites were identified as being discriminating between the treatments in data from both
analytical platforms (isoleucine, 1-aminocyclopentanecarboxylic acid, and 4-hydroxyproline), validating
their contribution to the differences between the treatment groups.

4.09.6.1.2 Detailed pathway and biological network analysis

Detailed pathway and network analysis identified the modes of action of diclofenac (Figure 12(a)). Diclofenac is
known to inhibit and activate several enzymes and transporters.96–104 The inhibition of the enzyme aminopepti-
dase N (CD13) by diclofenac might explain the lower plasma concentrations of the neutral amino acids
L-isoleucine, L-threonine, and L-leucine. CD13 is a broad-specificity aminopeptidase that cleaves specifically
the N-terminal bound neutral amino acids from oligopeptides. Also most of the other neutral amino acids
measured showed a lower plasma concentration in diclofenac-treated subjects (L-valine, L-serine, L-cysteine,
L-phenylalanine, L-tyrosine, and L-tryptophan, but not L-alanine and L-methionine), whereas most of the basic or
acidic plasma amino acids (L-aspartic acid, L-glutamic acid, L-asparagine, and L-histidine) did not show this
concentration difference (exception is L-lysine). This further confirms that inhibition of CD13 might explain the
differences found in plasma amino-acid concentrations between the treatment groups. Besides its role in the
digestion of peptides, CD13 is also known to significantly suppress inflammatory immune responses.105,106

Furthermore, diclofenac is known to increase the concentration of kynurenic acid, an endogenous antagonist of
the N-methyl-D-aspartate receptor (NMDA receptor), having therefore analgesic properties.107,108 The NMDA
receptor is a glutamate receptor, which requires binding of glutamate, aspartate, and the coagonist glycine derived
from blood for its efficient opening.105 The NMDA receptor is activated by insulin.109 This might explain the
concentration differences of the amino acids L-glutamate, L-aspartate, and L-glycine that develop at 90–120 min
after glucose intake (metabolites with response type B). Insulin activates the NMDA receptor of placebo-treated
subjects in response to glucose intake, whereas the NMDA receptor of diclofenac-treated subjects will be
insensitive to insulin because of the increased levels of the antagonist kynurenic acid (Figure 12(b)).

Besides the identification of metabolite changes likely caused by the modes of action of diclofenac,
metabolite changes could be identified that were associated with metabolic effects caused by modulation of
the inflammatory status. Elevated serum uric acid levels are associated with metabolic syndrome, insulin
resistance, and type 2 diabetes.110,111 Figure 12(c) presents an overview of the modes of action of uric acid and
its relation to glucose metabolism and inflammation. Uric acid inhibits endothelial nitric oxide bioavailability,
which is required for insulin to stimulate glucose uptake in cells. Besides its role in the development of insulin
resistance, elevated levels of uric acid are associated with inflammation, as serum uric acid has been suggested
as a sensitive marker for vascular inflammation.110–112 The diclofenac treatment resulted in lower levels of uric
acid, suggesting that vascular inflammation might be lowered, contributing to increased insulin sensitivity in
these subjects.
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Finally, L-5-oxoproline (pyroglutamic acid) is an intermediate of GSH synthesis via the intracellular
�-glutamylcysteine cycle. Figure 12(d) presents an overview of the GSH synthesis pathway and its relation
to glucose and insulin. Higher clearance of plasma L-5-oxoproline represents a lower GSH synthesis.113 GSH
synthesis is predominantly regulated by the activity of �-glutamylcysteine synthetase (�-GCS). Interestingly,
insulin increases and glucose decreases the regulation of GSH synthesis by GCS.114–116 In the current study, the
control group showed a clear decrease of 5-oxoproline concentration at 120 min after glucose intake, whereas
5-oxoproline concentration in the diclofenac-treated group remained at similar levels compared to previous
time points (response type B metabolite). GSH, measured with the LC-MS polar platform, showed a similar
dynamic response to glucose as 5-oxoproline. This indicates that diclofenac treatment resulted in a higher GSH
synthesis response after the glucose bolus compared to placebo, suggesting improved insulin sensitivity in
diclofenac-treated subjects.
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(d)

Figure 12 (a) Modes of action of the nonsteroidal antiinflammatory compound diclofenac. (b) Diclofenac and the NMDA
receptor. Insulin activates the action of the NMDA receptor, which in turn needs glycine, glutamic acid, and/or aspartic acid for its

activation. Diclofenac increases concentrations of the endogenous metabolite kynurenic acid, which blocks the NMDA receptor.

(c) Uric acid and its connection to glucose metabolism and inflammation. High levels of uric acid result in lowering of

concentrations of nitric oxide (Nitric oxide is needed for the activation of insulin), are associated with insulin resistance, and result
in higher expression of the proteins TNFA, Il6, Il1B, and MCP-1 and the transcription factor NF-�B. (d) GSH synthesis pathway

and its connection to glucose and insulin. High levels of glucose inhibit and high levels of insulin activate GSH synthesis via the

enzyme �-GCS (�-glutamylcysteine synthetase). Connection arrows that are red represent inhibition and those that are green
represent activation through binding (B), covalent modifications (CM), competition (CN), influence on expression (IE), transcription

regulation (TR), unspecified (?), and cleavage (C). Purple hexagons represent metabolites that have been measured in the

metabolomics platforms (GC-MS global and LC-MS polar); purple hexagons with white star represent metabolites that are found

to be most discriminative between subjects treated with diclofenac and placebo; purple hexagons with white ‘no’ sign were not
measured in one of the metabolomics platforms. Blue arrows downwards indicate that lower plasma concentration levels were

found in the diclofenac-treated group and red arrows upwards indicate that higher plasma concentration levels were found in the

diclofenac-treated group. ACCN 3, amiloride-sensitive cation channel 3; CCL2/MCP-1, monocyte chemoattractant protein-1;

CD13, aminopeptidase N; COX, prostaglandin G/H synthase; Cyp3A4, cytochrome P450 3A4; DPP4, dipeptidyl peptidase 4;
GLUT4, glucose transporter member 4; Il1b, interleukin-1 beta; Il6, interleukin-6; potassium voltage-gated channel subfamily;

MCT1, monocarboxylate transporter; SUIS, sucrase-isomaltase, intestinal; TNFA, tumor necrosis factor alpha; UGT, UDP-

glucuronosyltransferases 1–7. These figures were created by using MapEditor version 2.1.0 (GeneGo Inc., St. Joseph, MI, USA).
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2 Comparative Modeling of Drug Target Proteins
Introduction

Structure-Based Drug Discovery

Structure-based or rational drug discovery has already resulted in a number of drugs on the market and many more in the

development pipeline.1–4 Structure-based methods are now routinely used in almost all stages of drug development, from target

identification to lead optimization.5–8 Central to all structure-based discovery approaches is the knowledge of the three-

dimensional (3D) structure of the target protein or complex because the structure and dynamics of the target determine which

ligands it binds. The 3D structures of the target proteins are best determined by experimental methods that yield solutions at atomic

resolution, such as X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.9 While developments in the

techniques of experimental structure determination have enhanced the applicability, accuracy, and speed of these structural

studies,10,11 structural characterization of sequences remains an expensive and time-consuming task.
The Sequence–Structure Gap

The publicly available Protein Data Bank (PDB)12 currently contains �92 000 structures and grows at a rate of approximately 40%

every 2 years. On the other hand, the various genome-sequencing projects have resulted in over 40million sequences, including the

complete genetic blueprints of humans and hundreds of other organisms.13,14 This achievement has resulted in a vast collection of

sequence information about possible target proteins with little or no structural information. Current statistics show that the

structures available in the PDB account for less than 1% of the sequences in the UniProt database.13 Moreover, the rate of growth of

the sequence information is more than twice that of the structures, and is expected to accelerate even more with the advent of

readily available next-generation sequencing technologies. Due to this wide sequence–structure gap, reliance on experimentally

determined structures limits the number of proteins that can be targeted by structure-based drug discovery.
Structure Prediction Addresses the Sequence–Structure Gap

Fortunately, domains in protein sequences are gradually evolving entities that can be clustered into a relatively small number of

families with similar sequences and structures.15,16 For instance, 75–80% of the sequences in the UniProt database have been

grouped into fewer than 15 000 domain families.17,18 Similarly, all the structures in the PDB have been classified into about 1000

distinct folds.19,20 Computational protein structure prediction methods, such as threading21 and comparative protein structure

modeling,22,23 strive to bridge the sequence–structure gap by utilizing these evolutionary relationships. The speed, low cost, and

relative accuracy of these computational methods have led to the use of predicted 3D structures in the drug discovery process.24,25

The other class of prediction methods, de novo or ab initiomethods, attempts to predict the structure from sequence alone, without

reliance on evolutionary relationships. However, despite progress in these methods,26–28 especially for small proteins with fewer

than 100 amino acid residues, comparative modeling remains the most reliable method of predicting the 3D structure of a protein,

with an accuracy that can be comparable to a low-resolution, experimentally determined structure.9
The Basis of Comparative Modeling

The primary requirement for reliable comparative modeling is a detectable similarity between the sequence of interest (target

sequence) and a known structure (template). As early as 1986, Chothia and Lesk29 showed that there is a strong correlation

between sequence and structural similarities. This correlation provides the basis of comparative modeling, allows a coarse

assessment of model errors, and also highlights one of its major challenges: modeling the structural differences between the

template and target structures30 (Figure 1).
Comparative Modeling Benefits from Structural Genomics

Comparative modeling stands to benefit greatly from the structural genomics initiative.31 Structural genomics aims to achieve

significant structural coverage of the sequence space with an efficient combination of experimental and prediction methods.32 This

goal is pursued by careful selection of target proteins for structure determination by X-ray crystallography and NMR spectroscopy,

such that most other sequences are within ‘modeling distance’ (e.g., >30% sequence identity) of a known structure.15,16,31,33 The

expectation is that the determination of these structures combined with comparative modeling will yield useful structural

information for the largest possible fraction of sequences in the shortest possible timeframe. The impact of structural genomics

is illustrated by comparative modeling based on the structures determined by the New York Structural Genomics Research

Consortium. For each new structure without a close homolog in the PDB, on average, 3500 protein sequences without any prior

structural characterization could be modeled at least at the level of the fold.34 Thus, the structures of most proteins will eventually

be predicted by computation, not determined by experiment.



Figure 1 Average model accuracy as a function of sequence identity.30 As the sequence identity between the target sequence and the template
structure decreases, the average structural similarity between the template and the target also decreases (dashed line, triangles).29 Structural
overlap is defined as the fraction of equivalent Ca atoms. For the comparison of the model with the actual structure (filled circles), two Ca atoms were
considered equivalent if they belonged to the same residue and were within 3.5 Å of each other after least-squares superposition. For comparisons
between the template structure and the actual target structure (triangles), two Ca atoms were considered equivalent if they were within 3.5 Å of each
other after alignment and rigid-body superposition. The difference between the model and the actual target structure is a combination of the
target–template differences (green area) and the alignment errors (red area). The figure was constructed by calculating 3993 comparative models based
on a single template of varying similarity to the targets. All targets had known (experimentally determined) structures.30
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Outline

In this review, we begin by describing the various steps involved in comparative modeling. Next, we emphasize two aspects of

model refinement, loop modeling and side-chain modeling, due to their relevance in ligand docking and rational drug discovery.

We then discuss the errors in comparative models. Finally, we describe the role of comparative modeling in drug discovery,

focusing on ligand docking against comparative models. We compare successes of docking against models and X-ray structures, and

illustrate the computational docking against models with a number of examples. We conclude with a summary of topics that will

impact on the future utility of comparative modeling in drug discovery, including an automation and integration of resources

required for comparative modeling and ligand docking.
Steps in Comparative Modeling

Comparative modeling consists of four main steps23 (Figure 2(a)): (1) fold assignment that identifies similarity between the target

sequence of interest and at least one known protein structure (the template); (2) alignment of the target sequence and the

template(s); (3) building a model based on the alignment with the chosen template(s); and (4) predicting model errors.
Fold Assignment and Sequence–Structure Alignment

Although fold assignment and sequence–structure alignment are logically two distinct steps in the process of comparative

modeling, in practice almost all fold assignment methods also provide sequence–structure alignments. In the past, fold assignment

methods were optimized for better sensitivity in detecting remotely related homologs, often at the cost of alignment accuracy.

However, recent methods simultaneously optimize both the sensitivity and alignment accuracy. Therefore, in the following

discussion, we will treat fold assignment and sequence–structure alignment as a single protocol, explaining the differences

as needed.

Fold assignment
As mentioned earlier, the primary requirement for comparative modeling is the identification of one or more known template

structures with detectable similarity to the target sequence. The identification of suitable templates is achieved by scanning structure

databases, such as PDB,12 SCOP,19 DALI,36 and CATH,20 with the target sequence as the query. The detected similarity is usually

quantified in terms of sequence identity or statistical measures, such as E-value or z-score, depending on the method used.

Three levels of similarity
Sequence–structure relationships are coarsely classified into three different regimes in the sequence similarity spectrum: (1) the

easily detected relationships characterized by >30% sequence identity; (2) the ‘twilight zone,’37 corresponding to relationships



Figure 2 Comparative protein structure modeling. (a) A flowchart illustrating the steps in the construction of a comparative model.23 (b) Description of
comparative modeling by extraction of spatial restraints as implemented in Modeller.35 By default, spatial restraints in Modeller include:
(1) homology-derived restraints from the aligned template structures; (2) statistical restraints derived from all known protein structures; and
(3) stereochemical restraints from the CHARMM-22 molecular mechanics force field. These restraints are combined into an objective function that
is then optimized to calculate the final 3D model of the target sequence.
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with statistically significant sequence similarity in the 10–30% range; and (3) the ‘midnight zone,’37 corresponding to statistically

insignificant sequence similarity.

Sequence–sequence methods
For closely related protein sequences with identities higher than 30–40%, the alignments produced by all methods are almost

always largely correct. The quickest way to search for suitable templates in this regime is to use simple pairwise sequence alignment

methods such as SSEARCH,38 BLAST,39 and FASTA.38 Brenner et al. showed that these methods detect only �18% of the

homologous pairs at less than 40% sequence identity, while they identify more than 90% of the relationships when sequence

identity is between 30% and 40%.40 Another benchmark, based on 200 reference structural alignments with 0–40% sequence

identity, indicated that BLAST is able to correctly align only 26% of the residue positions.41

Sequence–profile methods
The sensitivity of the search and accuracy of the alignment become progressively difficult as the relationships move into the twilight

zone.37,42 A significant improvement in this area was the introduction of profile methods by Gribskov and co-workers.43 The

profile of a sequence is derived from a multiple sequence alignment and specifies residue-type occurrences for each alignment

position. The information in a multiple sequence alignment is most often encoded as either a position-specific scoring matrix

(PSSM)39,44,45 or as a hidden Markov model (HMM).46,47 To identify suitable templates for comparative modeling, the profile of

the target sequence is used to search against a database of template sequences. The profile–sequence methods are more sensitive in

detecting related structures in the twilight zone than the pairwise sequence-based methods; they detect approximately twice the

number of homologs under 40% sequence identity.41,48,49 The resulting profile–sequence alignments correctly align approximately

43–48% of residues in the 0–40% sequence identity range;41,50 this number is almost twice as large as that of the pairwise sequence

methods. Frequently used programs for profile–sequence alignment are PSI-BLAST,39 SAM,51 HMMER,46 HHsearch,52 HHBlits,53

and BUILD_PROFILE.54

Profile–profile methods
As a natural extension, the profile–sequence alignment methods have led to profile–profile alignment methods that search for

suitable template structures by scanning the profile of the target sequence against a database of template profiles, as opposed to a

database of template sequences. These methods have proven to include the most sensitive and accurate fold assignment and
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alignment protocols to date.50,55–57 Profile–profile methods detect �28%more relationships at the superfamily level and improve

the alignment accuracy by 15–20% compared to profile–sequence methods.50,58 There are a number of variants of profile–profile

alignment methods that differ in the scoring functions they use.50,55,58–64 However, several analyses have shown that the overall

performances of these methods are comparable.50,55–57 Some of the programs that can be used to detect suitable templates are

FFAS,65 SP3,58 SALIGN,50 HHBlits,53 HHsearch,52 and PPSCAN.54
Sequence–structure threading methods
As the sequence identity drops below the threshold of the twilight zone, there is usually insufficient signal in the sequences or their

profiles for the sequence-based methods discussed above to detect true relationships.48 Sequence–structure threading methods are

most useful in this regime as they can sometimes recognize common folds, even in the absence of any statistically significant

sequence similarity.21 These methods achieve higher sensitivity by using structural information derived from the templates. The

accuracy of a sequence–structure match is assessed by the score of a corresponding coarse model and not by sequence similarity, as

in sequence comparison methods.21 The scoring scheme used to evaluate the accuracy is either based on residue substitution tables

dependent on structural features such as solvent exposure, secondary structure type, and hydrogen bonding properties,58,66–68 or

on statistical potentials for residue interactions implied by the alignment.69–73 The use of structural data does not have to be

restricted to the structure side of the aligned sequence–structure pair. For example, SAM-T08 makes use of the predicted local

structure for the target sequence to enhance homolog detection and alignment accuracy.74 Commonly used threading programs are

GenTHREADER,66,75 3D-PSSM,76 FUGUE,68 SP3,58 SAM-T08 multitrack HMM,67,74,77 and MUSTER.78
Iterative sequence–structure alignment
Yet another strategy is to optimize the alignment by iterating over the process of calculating alignments, building models, and

evaluating models. Such a protocol can sample alignments that are not statistically significant and identify the alignment that yields

the best model. Although this procedure can be time-consuming, it can significantly improve the accuracy of the resulting

comparative models in difficult cases.79
Most Alignment Errors are Unrecoverable

Regardless of the method used, searching in the twilight and midnight zones of the sequence–structure relationship often results in

false negatives, false positives, or alignments that contain an increasingly large number of gaps and alignment errors. Improving the

performance and accuracy of methods in this regime remains one of the main tasks of comparative modeling today.80 It is

imperative to calculate an accurate alignment between the target–template pair. Although some progress has been made recently,81

comparative modeling can rarely recover from an alignment error.82
Template Selection

After a list of all related protein structures and their alignments with the target sequence have been obtained, template structures are

prioritized depending on the purpose of the comparative model. Template structures may be chosen purely based on the target–

template sequence identity or a combination of several other criteria, such as experimental accuracy of the structures (resolution of

X-ray structures, number of restraints per residue for NMR structures), conservation of active-site residues, holo-structures that have

bound ligands of interest, and prior biological information that pertains to the solvent, pH, and quaternary contacts. It is not

necessary to select only one template. In fact, the use of several templates approximately equidistant from the target sequence

generally increases the model accuracy.83,84
Model Building

Three Approaches to Comparative Model Building

Once an initial target–template alignment is built, a variety of methods can be used to construct a 3D model for the target

protein.23,82,85–88 The original and still widely used method is modeling by rigid-body assembly.86,87,89 This method constructs the

model from a few core regions, and from loops and side chains that are obtained by dissecting related structures. Commonly used

programs that implement this method are COMPOSER,90–93 3D-JIGSAW,94 RosettaCM,81 and SWISS-MODEL.95 Another family of

methods, modeling by segment matching, relies on the approximate positions of conserved atoms from the templates to calculate

the coordinates of other atoms.96–100 An instance of this approach is implemented in SegMod.99 The third group of methods,

modeling by satisfaction of spatial restraints, uses either distance geometry or optimization techniques to satisfy spatial restraints

obtained from the alignment of the target sequences with the template structures.35,101–104 Specifically, Modeller,35,105,106 our own

program for comparative modeling, belongs to this group of methods.
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Modeller: Comparative Modeling by Satisfaction of Spatial Restraints

Modeller implements comparative protein structure modeling by the satisfaction of spatial restraints that include: (1) homology-

derived restraints on the distances and dihedral angles in the target sequence, extracted from its alignment with the template

structures;35 (2) stereochemical restraints such as bond length and bond angle preferences, obtained from the CHARMM-22

molecular mechanics force field;107 (3) statistical preferences for dihedral angles and nonbonded interatomic distances, obtained

from a representative set of known protein structures;108 and (4) optional manually curated restraints, such as those from NMR

spectroscopy, rules of secondary structure packing, cross-linking experiments, fluorescence spectroscopy, image reconstruction

from electron microscopy, site-directed mutagenesis, and intuition (Figure 2(b)). The spatial restraints, expressed as probability

density functions, are combined into an objective function that is optimized by a combination of conjugate gradients and

molecular dynamics with simulated annealing. This model-building procedure is similar to structure determination by NMR

spectroscopy.
Relative Accuracy, Flexibility, and Automation

Accuracies of the various model-building methods are relatively similar when used optimally.109,110 Other factors, such as template

selection and alignment accuracy, usually have a larger impact on the model accuracy, especially for models based on less than 30%

sequence identity to the templates. However, it is important that a modeling method allows a degree of flexibility and automation

to obtain better models more easily and rapidly. For example, a method should allow for an easy recalculation of a model when a

change is made in the alignment; it should be straightforward to calculate models based on several templates; and the method

should provide tools for incorporation of prior knowledge about the target (e.g., cross-linking restraints and predicted secondary

structure).
Refinement of Comparative Models

Protein sequences evolve through a series of amino acid residue substitutions, insertions, and deletions. While substitutions can

occur throughout the length of the sequence, insertions and deletions mostly occur on the surface of proteins in segments that

connect regular secondary structure segments (i.e., loops). While the template structures are helpful in the modeling of the aligned

target backbone segments, they are generally less valuable for the modeling of side chains and irrelevant for the modeling of

insertions such as loops. The loops and side chains of comparative models are especially important for ligand docking; thus, we

discuss them in the following two sections.
Loop Modeling

Definition of the problem
Loop modeling is an especially important aspect of comparative modeling in the range from 30% to 50% sequence identity. In this

range of overall similarity, loops among the homologs vary while the core regions are still relatively conserved and aligned

accurately. Loops often play an important role in defining the functional specificity of a given protein, forming the active and

binding sites. Loopmodeling can be seen as a mini protein folding problem because the correct conformation of a given segment of

a polypeptide chain has to be calculated mainly from the sequence of the segment itself. However, loops are generally too short to

provide sufficient information about their local fold. Even identical decapeptides in different proteins do not always have the same

conformation.111,112 Some additional restraints are provided by the core anchor regions that span the loop and by the structure of

the rest of the protein that cradles the loop. Although many loop-modeling methods have been described, it is still challenging to

correctly and confidently model loops longer than approximately 10–12 residues.105,113,114

Two classes of methods
There are two main classes of loop-modeling methods: (1) database search approaches that scan a database of all known protein

structures to find segments fitting the anchor core regions98,115; and (2) conformational search approaches that rely on optimizing

a scoring function.116–118 There are also methods that combine these two approaches.119,120

Database-based loop modeling

The database search approach to loop modeling is accurate and efficient when a database of specific loops is created to address

the modeling of the same class of loops, such as b-hairpins,121 or loops on a specific fold, such as the hypervariable regions

in the immunoglobulin fold.115,122 There are attempts to classify loop conformations into more general categories, thus extending

the applicability of the database search approach.123–125 However, the database methods are limited because the number of

possible conformations increases exponentially with the length of a loop, and until the late 1990s only loops up to 7 residues long

could be modeled using the database of known protein structures.126,127 However, the growth of the PDB in recent years has largely

eliminated this problem.128
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Optimization-based methods

There are many optimization-based methods, exploiting different protein representations, objective functions, and optimization or

enumeration algorithms. The search algorithms include the minimum perturbation method,129 dihedral angle search through a

rotamer library,114,130 molecular dynamics simulations,119,131 genetic algorithms,132 Monte Carlo and simulated annealing,133–135

multiple-copy simultaneous search,136 self-consistent field optimization,137 robotics-inspired kinematic closure138 and enumera-

tion based on graph theory.139 The accuracy of loop predictions can be further improved by clustering the sampled loop

conformations and partially accounting for the entropic contribution to the free energy.140 Another way of improving the accuracy

of loop predictions is to consider the solvent effects. Improvements in implicit solvation models, such as the Generalized Born

solvation model, motivated their use in loop modeling. The solvent contribution to the free energy can be added to the scoring

function for optimization, or it can be used to rank the sampled loop conformations after they are generated with a scoring function

that does not include the solvent terms.105,141–143
Side-Chain Modeling

Fixed backbone
Two simplifications are frequently applied in the modeling of side-chain conformations.144 First, amino acid residue replacements

often leave the backbone structure almost unchanged,145 allowing us to fix the backbone during the search for the best side-chain

conformations. Second, most side chains in high-resolution crystallographic structures can be represented by a limited number of

conformers that comply with stereochemical and energetic constraints.146 This observation motivated Ponder and Richards147 to

develop the first library of side-chain rotamers for the 17 types of residues with dihedral angle degrees of freedom in their side

chains, based on 10 high-resolution protein structures determined by X-ray crystallography. Subsequently, a number of additional

libraries have been derived.148–155

Rotamers
Rotamers on a fixed backbone are often used when all the side chains need to be modeled on a given backbone. This approach

reduces the combinatorial explosion associated with a full conformational search of all the side chains, and is applied by some

comparative modeling86 and protein design approaches.156 However,�15% of the side chains cannot be represented well by these

libraries.157 In addition, it has been shown that the accuracy of side-chain modeling on a fixed backbone decreases rapidly when

the backbone errors are larger than 0.5 Å.158

Methods
Earlier methods for side-chain modeling often put less emphasis on the energy or scoring function. The function was usually greatly

simplified, and consisted of the empirical rotamer preferences and simple repulsion terms for nonbonded contacts.151 Neverthe-

less, these approaches have been justified by their performance. For example, a method based on a rotamer library compared

favorably with that based on a molecular mechanics force field,159 and new methods continue to be based on the rotamer library

approach.160–162 The various optimization approaches include a Monte Carlo simulation,163 simulated annealing,164 a combina-

tion of Monte Carlo and simulated annealing,165 the dead-end elimination theorem,166,167 genetic algorithms,155 neural network

with simulated annealing,168 mean field optimization,169 and combinatorial searches.151,170,171 Several studies focused on the

testing of more sophisticated potential functions for conformational search171,172 and development of new scoring functions for

side-chain modeling,173 reporting higher accuracy than earlier studies.
Errors in Comparative Models

The major sources of error in comparative modeling are discussed in the relevant sections above. The following is a summary of

these errors, dividing them into five categories (Figure 3).
Selection of Incorrect Templates

This error is a potential problem when distantly related proteins are used as templates (i.e., less than 30% sequence identity).

Distinguishing between a model based on an incorrect template and a model based on an incorrect alignment with a correct

template is difficult. In both cases, the evaluation methods (below) will predict an unreliable model. The conservation of the key

functional or structural residues in the target sequence increases the confidence in a given fold assignment.
Errors due to Misalignments

The single source of errors with the largest impact on comparative modeling is misalignments, especially when the target–template

sequence identity decreases below 30%. Alignment errors can be minimized in two ways. Using the profile-based methods



Figure 3 Typical errors in comparative modeling.23 Shown are the typical sources of errors encountered in comparative models. Two of the major
sources of errors in comparative modeling are due to incorrect templates or incorrect alignments with the correct templates. The modeling
procedure can rarely recover from such errors. The next significant source of errors arises from regions in the target with no corresponding region in
the template, i.e., insertions or loops. Other sources of errors, which occur even with an accurate alignment, are due to rigid-body shifts,
distortions in the backbone, and errors in the packing of side chains.
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discussed above usually results in more accurate alignments than those from pairwise sequence alignment methods. Another way

of improving the alignment is to modify those regions in the alignment that correspond to predicted errors in the model.83
Errors in Regions without a Template

Segments of the target sequence that have no equivalent region in the template structure (i.e., insertions or loops) are one of the

most difficult regions to model. Again, when the target and template are distantly related, errors in the alignment can lead to

incorrect positions of the insertions. Using alignment methods that incorporate structural information can often correct such

errors. Once a reliable alignment is obtained, various modeling protocols can predict the loop conformation, for insertions of fewer

than 8–10 residues.105,113,119,174
Distortions and Shifts in Correctly Aligned Regions

As a consequence of sequence divergence, the main-chain conformation changes, even if the overall fold remains the same.

Therefore, it is possible that in some correctly aligned segments of a model, the template is locally different (<3 Å) from the target,

resulting in errors in that region. The structural differences are sometimes not due to differences in sequence, but are a consequence

of artifacts in structure determination or structure determination in different environments (e.g., packing of subunits in a crystal).

The simultaneous use of several templates can minimize this kind of error.83,84
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Errors in Side-Chain Packing

As the sequences diverge, the packing of the atoms in the protein core changes. Sometimes even the conformation of identical side

chains is not conserved – a pitfall for many comparative modeling methods. Side-chain errors are critical if they occur in regions

that are involved in protein function, such as active sites and ligand-binding sites.
Prediction of Model Errors

The accuracy of the predicted model determines the information that can be extracted from it. Thus, estimating the accuracy of a

model in the absence of the known structure is essential for interpreting it.
Initial Assessment of the Fold

As discussed earlier, a model calculated using a template structure that shares more than 30% sequence identity is indicative of an

overall accurate structure. However, when the sequence identity is lower, the first aspect of model evaluation is to confirm whether

or not a correct template was used for modeling. It is often the case, when operating in this regime, that the fold assignment step

produces only false positives. A further complication is that at such low similarities the alignment generally contains many errors,

making it difficult to distinguish between an incorrect template on one hand and an incorrect alignment with a correct template on

the other hand. There are several methods that use 3D profiles and statistical potentials,70,175,176 which assess the compatibility

between the sequence and modeled structure by evaluating the environment of each residue in a model with respect to the expected

environment, as found in native high-resolution experimental structures. These methods can be used to assess whether or not the

correct template was used for the modeling. They include VERIFY3D,175 Prosa2003,177,178 HARMONY,179 ANOLEA,180 DFIRE,181

DOPE,182 QMEAN local,183 ProQ2,184 and TSVMod.185

Even when the model is based on alignments that have >30% sequence identity, other factors, including the environment, can

strongly influence the accuracy of a model. For instance, some calcium-binding proteins undergo large conformational changes

when bound to calcium. If a calcium-free template is used to model the calcium-bound state of the target, it is likely that the model

will be incorrect, irrespective of the target–template similarity or accuracy of the template structure.186
Self-Consistency

The model should also be subjected to evaluations of self-consistency to ensure that it satisfies the restraints used to calculate

it. Additionally, the stereochemistry of the model (e.g., bond lengths, bond angles, backbone torsion angles, and nonbonded

contacts) may be evaluated using programs such as PROCHECK187 and WHATCHECK.188 Although errors in stereochemistry are

rare and less informative than errors detected by statistical potentials, a cluster of stereochemical errors may indicate that there are

larger errors (e.g., alignment errors) in that region.
Final Assessment of the Fold (Model)

When multiple models are calculated for the target based on a single template or when multiple loops are built for a single or

multiple models, it is practical to select a subset of models or loops that are judged to be most suitable for subsequent docking

calculations. If some known ligands or other information for the desired model is available, model selection should be guided by

this known information.189 If this extra information is not available, model selection should aim to select the most accurate model.

While models or loops can be selected by the energy function used for guiding the building of comparative models or the sampling

of loop configurations, using a separate statistical potential for selecting the most accurate models or loops is often more

successful.181,182,190,191
Evaluation of Comparative Modeling Methods

It is crucial for method developers and users alike to assess the accuracy of their methods. An attempt to address this problem has

been made by the Critical Assessment of Techniques for Proteins Structure Prediction (CASP)192 and in the past by the Critical

Assessment of Fully Automated Structure Prediction (CAFASP) experiments,193 which is now integrated into CASP. However, CASP

assesses methods only over a limited number of target protein sequences, and is conducted only every 2 years.109,194 To overcome

this limitation, the new CAMEOweb server continuously evaluates the accuracy and reliability of a number of comparative protein

structure prediction servers, in a fully automated manner.195 Every week, CAMEO provides each tested server with the prerelease

sequences of structures that are to be shortly released by the PDB. Each server then has 4 days to build and return a 3D model of

these sequences. When PDB releases the structures, CAMEO compares themodels against the experimentally determined structures,

and presents the results on its web site. This enables developers, non-expert users, and reviewers to determine the performance of
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the tested prediction servers. CAMEO is similar in concept to two prior such continuous testing servers, LiveBench194 and

EVA.196,197
Applications of Comparative Models

There is a wide range of applications of protein structure models (Figure 4).1,198–204 For example, high- and medium-accuracy

comparative models are frequently helpful in refining functional predictions that have been based on a sequence match alone

because ligand binding is more directly determined by the structure of the binding site than by its sequence. It is often possible to

predict correctly features of the target protein that do not occur in the template structure.205,206 For example, the size of a ligand

may be predicted from the volume of the binding site cleft and the location of a binding site for a charged ligand can be predicted

from a cluster of charged residues on the protein. Fortunately, errors in the functionally important regions in comparative models

are many times relatively low because the functional regions, such as active sites, tend to be more conserved in evolution than the

rest of the fold. Even low-accuracy comparative models may be useful, for example, for assigning the fold of a protein. Fold
Figure 4 Accuracy and applications of protein structure models.9 Shown are the different ranges of applicability of comparative protein structure
modeling, threading, and de novo structure prediction, their corresponding accuracies, and their sample applications.
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assignment can be very helpful in drug discovery, because it can shortcut the search for leads by pointing to compounds that have

been previously developed for other members of the same family.207,208
Comparative Models versus Experimental Structures in Virtual Screening

The remainder of this review focuses on the use of comparative models for ligand docking.209–211 Comparative protein structure

modeling extends the applicability of virtual screening beyond the atomic structures determined by X-ray crystallography or NMR

spectroscopy. In fact, comparative models have been used in virtual screening to detect novel ligands for many protein targets,201

including the G-protein coupled receptors (GPCR),210,212–223 protein kinases,224–227 nuclear hormone receptors, and many

different enzymes.228–241 Nevertheless, the relative utility of comparative models versus experimentally determined structures

has only been relatively sparsely assessed.212,224,225,242–244 The utility of comparative models for molecular docking screens in

ligand discovery has been documented245 with the aid of 38 protein targets selected from the ‘directory of useful decoys’ (DUD).246

For each target sequence, templates for comparative modeling were obtained from the PDB, including at least one holo (ligand

bound) and one apo (ligand free) template structure for each of the eight 10% sequence identity ranges from 20% to 100%.

In total, 222 models were generated based on 222 templates for the 38 test proteins using Modeller 9v2.35 DUD ligands and decoys

(98266 molecules) were screened against the holo X-ray structure, the apo X-ray structure, and the comparative models of each

target using DOCK 3.5.54.247 The accuracy of virtual screening was evaluated by the overall ligand enrichment that was calculated

by integrating the area under the enrichment plot (logAUC). A key result was that, for 63% and 79% of the targets, at least one

comparative model yielded ligand enrichment better or comparable to that of the corresponding holo and apo X-ray structure.245

This result indicates that comparative models can be useful docking targets when multiple templates are available. However, it was

not possible to predict which model, out of all those used, led to the highest enrichment. Therefore, a ‘consensus’ enrichment score

was computed by ranking each library compound by its best docking score against all comparative models and/or templates. For

47% and 70% of the targets, the consensus enrichment for multiple models was better or comparable to that of the holo and apo

X-ray structures, respectively, suggesting that multiple comparative models can be useful for virtual screening.
Use of Comparative Models to Obtain Novel Drug Leads

Despite problems with comparative modeling and ligand docking, comparative models have been successfully used in practice in

conjunction with virtual screening to identify novel inhibitors. We briefly review a few of these success stories to highlight the

potential of the combined comparative modeling and ligand-docking approach to drug discovery.

Comparative models have been employed to aid rational drug design against parasites for more than 20 years.132,231,232,240 As

early as 1993, Ring et al.132 used comparative models for computational docking studies that identified low micromolar

nonpeptidic inhibitors of proteases in malarial and schistosome parasite lifecycles. Li et al.231 subsequently used similar methods

to develop nanomolar inhibitors of falcipain that are active against chloroquine-resistant strains of malaria. In a study by Selzer

et al.232 comparative models were used to predict new nonpeptide inhibitors of cathepsin L-like cysteine proteases in Leishmania

major. Sixty-nine compounds were selected by DOCK 3.5 as strong binders to a comparative model of protein cpB, and of these,

21 had experimental IC50 values below 100 mmol l�1. Finally, in a study by Que et al.,240 comparative models were used to

rationalize ligand-binding affinities of cysteine proteases in Entamoeba histolytica. Specifically, this work provided an explanation

for why proteases ACP1 and ACP2 had substrate specificity similar to that of cathepsin B, although their overall structure is more

similar to that of cathepsin D.

Enyedy et al.248 discovered 15 new inhibitors of matriptase by docking against its comparative model. The comparative model

employed thrombin as the template, sharing only 34% sequence identity with the target sequence. Moreover, some residues in the

binding site are significantly different; a trio of charged Asp residues in matriptase correspond to 1 Tyr and 2 Trp residues in

thrombin. Thrombin was chosen as the template, in part because it prefers substrates with positively charged residues at the P1

position, as does matriptase. The National Cancer Institute database was used for virtual screening that targeted the S1 site with the

DOCK program. The 2000 best-scoring compounds were manually inspected to identify positively charged ligands (the S1 site is

negatively charged), and 69 compounds were experimentally screened for inhibition, identifying the 15 inhibitors. One of them,

hexamidine, was used as a lead to identify additional compounds selective for matriptase relative to thrombin. TheWang group has

also used similar methods to discover seven new, low-micromolar inhibitors of Bcl-2, using a comparative model based on the

NMR solution structure of Bcl-XL.
233

Schapira et al.249 discovered a novel inhibitor of a retinoic acid receptor by virtual screening using a comparative model. In this

case, the target (RAR-a) and template (RAR-g) are very closely related; only three residues in the binding site are not conserved. The

ICM program was used for virtual screening of ligands from the Available Chemicals Directory (ACD). The 5364 high-scoring

compounds identified in the first round were subsequently docked into a full atom representation of the receptor with flexible side

chains to obtain a final set of 300 good-scoring hits. These compounds were then manually inspected to choose the final 30 for

testing. Two novel agonists were identified, with 50-nanomolar activity.

Zuccotto et al.250 identified novel inhibitors of dihydrofolate reductase (DHFR) in Trypanosoma cruzi (the parasite that causes

Chagas disease) by docking into a comparative model based on �50% sequence identity to DHFR in L. major, a related parasite.

The virtual screening procedure used DOCK for rigid docking of over 50000 selected compounds from the Cambridge Structural
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Database (CSD). Visual inspection of the top 100 hits was used to select 36 compounds for experimental testing.

This work identified several novel scaffolds with micromolar IC50 values. The authors report attempting to use virtual

screening results to identify compounds with greater affinity for T. cruziDHFR than human DHFR, but it is not clear how successful

they were.

Following the outbreak of the severe acute respiratory syndrome (SARS) in 2003, Anand et al.251 used the experimentally

determined structures of the main protease from human coronavirus (MPRO) and an inhibitor complex of porcine coronavirus

(transmissible gastroenteritis virus, TGEV) MPRO to calculate a comparative model of the SARS coronavirus MPRO. This model then

provided a basis for the design of anti-SARS drugs. In particular, a comparison of the active site residues in these and other related

structures suggested that the AG7088 inhibitor of the human rhinovirus type 2 3C protease is a good starting point for design of

anticoronaviral drugs.252

Comparative models of protein kinases combined with virtual screening have also been intensely used for drug discov-

ery.224,225,253–255 The >500 kinases in the human genome, the relatively small number of experimental structures available, and

the high level of conservation around the important adenosine triphosphate-binding site make comparative modeling an attractive

approach toward structure-based drug discovery.

G protein-coupled receptors are another interesting class of proteins that in principle allow drug discovery through comparative

modeling.212,256–259 Approximately 40% of current drug targets belong to this class of proteins. However, these proteins have been

extremely difficult to crystallize and most comparative modeling has been based on the atomic resolution structure of the bovine

rhodopsin.260 Despite this limitation, a rather extensive test of docking methods with rhodopsin-based comparative models shows

encouraging results.

The applicability of structure-based modeling and virtual screening has recently been expanded to membrane proteins that

transport solutes, such as ions, metabolites, peptides, and drugs. In humans, these transporters contribute to the absorption,

distribution, metabolism, and excretion of drugs, and often, mediate drug-drug interactions. Additionally, several transporters can

be targeted directly by small molecules. For instance, methylphenidate (Ritalin) inhibiting the norepinephrine transporter (NET)

and, consequently, inhibiting the reuptake of norepinephrine, is used in the treatment of attention-deficit hyperactivity disorder

(ADHD).261 Schlessinger et al.262 predicted 18 putative ligands of human NET by docking 6436 drugs from the Kyoto Encyclopedia

of Genes (KEGG DRUG) into a comparative model based on �25% sequence identity to leucine transporter (LeuT) from Aquifex

aeolicus. Of these 18 predicted ligands, ten were validated by cis-inhibition experiments; five of them were chemically novel. Close

examination of the predicted primary binding site helped rationalize interactions of NET with its primary substrate, norepinepr-

hine, as well as positive and negative pharmacological effects of other NET ligands. Subsequently, Schlessinger et al.263 modeled

two different conformations of the human GABA transporter 2 (GAT-2), using the LeuT structures in occluded-outward-facing and

outward-facing conformations. Enrichment calculations were used to assess the quality of the models in molecular dynamics

simulations and side-chain refinements. The key residue, Glu48, interacting with the substrate was identified during the refinement

of the models and validated by site-directed mutagenesis. Docking against two conformations of the transporter enriches for

different physicochemical properties of ligands. For example, top-scoring ligands found by docking against the outward-facing

model were bulkier and more hydrophobic than those predicted using the occluded-outward-facing model. Among twelve ligands

validated in cis-inhibition assays, six were chemically novel (e.g., homotaurine). Based on the validation experiments, GAT-2 is

likely to be a high-selectivity/low-affinity transporter. Following these two studies, a combination of comparative modeling,

ligand docking, and experimental validation was used to rationalize toxicity of an anti-cancer agent, acivicin.264 The toxic side-

effects are thought to be facilitated by the active transport of acivicin through the blood–brain-barrier (BBB) via the large-neutral

amino acid Transporter 1 (LAT-1). In addition, four small-molecule ligands of LAT-1 were identified by docking against a

comparative model based on two templates, the structures of the outward-occluded arginine-bound arginine/agmatine transporter

AdiC from E. coli265 and the inward-apo conformation of the amino acid, polyamine, and organo-cation transporter ApcT from

Methanococcus jannaschii.266 Two of the four hits, acivicin and fenclonine, were confirmed as substrates by a trans-stimulation assay.

These studies clearly illustrate the applicability of combined comparative modeling and virtual screening to ligand discovery for

transporters.
Future Directions

Although reports of successful virtual screening against comparative models are encouraging, such efforts are not yet a routine part

of rational drug design. Even the successful efforts appear to rely strongly on visual inspection of the docking results. Much work

remains to be done to improve the accuracy, efficiency, and robustness of docking against comparative models. Despite assess-

ments of relative successes of docking against comparative models and native X-ray structures,225,244 relatively little has been done

to compare the accuracy achievable by different approaches to comparative modeling and to identify the specific structural reasons

why comparative models generally produce less accurate virtual screening results than the holo structures. Among the many issues

that deserve consideration are the following:

• The inclusion of cofactors and bound water molecules in protein receptors is often critical for success of virtual screening;

however, cofactors are not routinely included in comparative models
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• Most docking programs currently retain the protein receptor in a rigid conformation. While this approach is appropriate for

‘lock-and-key’ binding modes, it does not work when the ligand induces conformational changes in the receptor upon binding.

A flexible receptor approach is necessary to address such induced-fit cases267,268

• The accuracy of comparative models is frequently judged by the Ca root mean square error or other similar measures of

backbone accuracy. For virtual screening, however, the precise positioning of side chains in the binding site is likely to be

critical; measures of accuracy for binding sites are needed to help evaluate the suitability of comparative modeling algorithms

for constructing models for docking

• Knowledge of known inhibitors, either for the target protein or the template, should help to evaluate and improve virtual

screening against comparative models. For example, comparative models constructed from holo template structures implicitly

preserve some information about the ligand-bound receptor conformation

• Improvement in the accuracy of models produced by comparative modeling will require methods that finely sample protein

conformational space using a free energy or scoring function that has sufficient accuracy to distinguish the native structure from

the nonnative conformations. Despite many years of development of molecular simulation methods, attempts to refine models

that are already relatively close to the native structure have met with relatively little success. This failure is likely to be due in part

to inaccuracies in the scoring functions used in the simulations, particularly in the treatment of electrostatics and solvation

effects. A combination of physics-based energy function with the statistical information extracted from known protein structures

may provide a route to the development of improved scoring functions

• Improvements in sampling strategies are also likely to be necessary, for both comparative modeling and flexible docking
Automation and Availability of Resources for Comparative Modeling and Ligand Docking

Given the increasing number of target sequences for which no experimentally determined structures are available, drug discovery

stands to gain immensely from comparative modeling and other in silico methods. Despite unsolved problems in virtually every

step of comparative modeling and ligand docking, it is highly desirable to automate the whole process, starting with the target

sequence and ending with a ranked list of its putative ligands. Automation encourages development of better methods, improves

their testing, allows application on a large scale, and makes the technology more accessible to both experts and non-specialists

alike. Through large-scale application, new questions, such as those about ligand-binding specificity, can in principle be addressed.

Enabling a wider community to use the methods provides useful feedback and resources toward the development of the next

generation of methods.

There are a number of servers for automated comparative modeling (Table 1). However, in spite of automation, the process of

calculating a model for a given sequence, refining its structure, as well as visualizing and analyzing its family members in the

sequence and structure spaces can involve the use of scripts, local programs, and servers scattered across the internet and not

necessarily interconnected. In addition, manual intervention is generally still needed to maximize the accuracy of the models in the

difficult cases. The main repository for precomputed comparative models, the Protein Model Portal,195,198,279 begins to address

these deficiencies by serving models from several modeling groups, including the SWISS-MODEL95 and ModBase34 databases.

It provides access to web-based comparative modeling tools, cross-links to other sequence and structure databases, and annotations

of sequences and their models.

A number of databases containing comparative models and web servers for computing comparative models are publicly

available. The Protein Model Portal (PMP)195,198,279 centralizes access to these models created by different methodologies. The

PMP is being developed as a module of the Protein Structure Initiative Knowledgebase (PSI KB)316 and functions as a meta server

for comparative models from external databases, including SWISS-MODEL95 and ModBase,34 additionally to being a repository for

comparative models that are derived from structures determined by the PSI centers. It provides quality estimations of the deposited

models, access to web-based comparative modeling tools, cross-links to other sequence and structure databases, annotations of

sequences and their models, and detailed tutorials on comparative modeling and the use of their tools. The PMP currently contains

19.5 million comparative models for 4.4 million UniProt sequences (August 2013).

A schematic of our own attempt at integrating several useful tools for comparative modeling is shown in Figure 5.34,291

ModBase is a database that currently contains �29 million predicted models for domains in approximately 4.7 million unique

sequences from UniProt, Ensembl,269 GenBank,14 and private sequence datasets. The models were calculated using ModPipe30,291

and Modeller.35 The web interface to the database allows flexible querying for fold assignments, sequence–structure alignments,

models, and model assessments. An integrated sequence–structure viewer, Chimera,304 allows inspection and analysis of the query

results. Models can also be calculated using ModWeb,291,309 a web interface to ModPipe, and stored in ModBase, which also makes

them accessible through the PMP. Other resources associated with ModBase include a comprehensive database of multiple protein

structure alignments (DBALI),281 structurally defined ligand-binding sites,319 structurally defined binary domain interfaces

(PIBASE),320,321 predictions of ligand-binding sites, interactions between yeast proteins, and functional consequences of human

nsSNPs (LS-SNP).199,322,323 A number of associated web services handle modeling of loops in protein structures (ModLoop),324,325

evaluation of models (ModEval), fitting of models against Small Angle X-ray Scattering (SAXS) profiles (FoXS),326–328 modeling of

ligand-induced protein dynamics such as allostery (AllosMod),329,330 prediction of the ensemble of conformations that best fit a

given SAXS profile (AllosMod-FoXS),331 prediction of cryptic binding sites,332 scoring protein-ligand complexes based on a



Table 1 Programs, databases and web servers useful in comparative protein structure modeling

Name World Wide Web address

Databases
Protein Sequence Databases
Ensembl269 http://www.ensembl.org
GENBANK14 http://www.ncbi.nlm.nih.gov/Genbank/
Protein Information Resource270 http://pir.georgetown.edu/
UniprotKB13 http://www.uniprot.org
Domains and Superfamilies
CATH/Gene3D20 http://www.cathdb.info
InterPro271 http://www.ebi.ac.uk/interpro/
MEME272 http://meme.nbcr.net/meme/
PFAM17 http://pfam.sanger.ac.uk/
PRINTS273 http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/index.php
ProDom274 http://prodom.prabi.fr
ProSite275 http://prosite.expasy.org/
SCOP19 http://scop.mrc-lmb.cam.ac.uk/scop/
SFLD276 http://sfld.rbvi.ucsf.edu/
SMART277 http://smart.embl-heidelberg.de/
SUPERFAMILY278 http://supfam.cs.bris.ac.uk/SUPERFAMILY/
Protein Structures and Models
ModBase34 http://www.salilab.org/modbase/
PDB12 http://www.pdb.org/
Protein Model Portal195,279 http://www.proteinmodelportal.org/
SwissModel Repository280 http://swissmodel.expasy.org/repository/
Miscellaneous
DBALI281 http://www.salilab.org/dbali
GENECENSUS282 http://bioinfo.mbb.yale.edu/genome/
Alignment
Sequence and structure based sequence alignment
AlignMe283 http://www.bioinfo.mpg.de/AlignMe/
CLUSTALW284 http://www2.ebi.ac.uk/clustalw/
COMPASS62 ftp://iole.swmed.edu/pub/compass/
EXPRESSO285 http://igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi
FastA286 http://www.ebi.ac.uk/Tools/sss/fasta/
FFAS0365 http://ffas.burnham.org/
FUGUE68 http://www-cryst.bioc.cam.ac.uk/fugue
GENTHREADER66,75 http://bioinf.cs.ucl.ac.uk/psipred/
HHBlits/HHsearch53 http://toolkit.lmb.uni-muenchen.de/hhsuite
MAFFT287 http://mafft.cbrc.jp/alignment/software/
MUSCLE288 http://www.drive5.com/muscle
MUSTER78 http://zhanglab.ccmb.med.umich.edu/MUSTER
PROMALS3D289 http://prodata.swmed.edu/promals3d/promals3d.php
PSI-BLAST39 http://blast.ncbi.nlm.nih.gov/Blast.cgi
PSIPRED290 http://bioinf.cs.ucl.ac.uk/psipred/
SALIGN291 http://www.salilab.org/salign/
SAM-T0874,77 http://compbio.soe.ucsc.edu/HMM-apps/
Staccato292 http://bioinfo3d.cs.tau.ac.il/staccato/
T-Coffee293,294 http://www.tcoffee.org/
Structure
CE295 http://source.rcsb.org/jfatcatserver/ceHome.jsp
GANGSTA+296 http://agknapp.chemie.fu-berlin.de/gplus/index.php
HHsearch52 ftp://toolkit.lmb.uni-muenchen.de/hhsearch/
Mammoth297 http://ub.cbm.uam.es/software/mammoth.php
Mammoth-mult298 http://ub.cbm.uam.es/software/mammothm.php
MASS299 http://bioinfo3d.cs.tau.ac.il/MASS/
MultiProt300 http://bioinfo3d.cs.tau.ac.il/MultiProt
MUSTANG301 http://www.csse.monash.edu.au/�karun/Site/mustang.html
PDBeFold36 http://www.ebi.ac.uk/msd-srv/ssm/
SALIGN291 http://www.salilab.org/salign/
TM-align302 http://zhanglab.ccmb.med.umich.edu/TM-align/
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Table 1 (Continued)

Name World Wide Web address

Alignment modules in molecular graphics programs
Discovery Studio http://www.accelrys.com
PyMol http://www.pymol.org/
Swiss-PDB Viewer303 http://spdbv.vital-it.ch/
UCSF Chimera304 http://www.cgl.ucsf.edu/chimera
Comparative Modeling, Threading and Refinement
Web servers
3d-jigsaw94 http://www.bmm.icnet.uk/servers/3djigsaw/
HHPred305 http://toolkit.genzentrum.lmu.de/hhpred
IntFold306 http://www.reading.ac.uk/bioinf/IntFOLD/
i-TASSER307 http://zhanglab.ccmb.med.umich.edu/I-TASSER/
M4T308 http://manaslu.aecom.yu.edu/M4T/
ModWeb291,309 http://salilab.org/modweb/
Phyre2310 http://www.sbg.bio.ic.ac.uk/phyre2
RaptorX311 http://raptorx.uchicago.edu/
Robetta81 http://robetta.bakerlab.org/
SWISS-MODEL95 http://www.expasy.org/swissmod
Programs
HHsuite52 ftp://toolkit.genzentrum.lmu.de/pub/HH-suite/
Modeller35 http://www.salilab.org/modeller/
MolIDE312 http://dunbrack.fccc.edu/molide/
Rosetta@home http://boinc.bakerlab.org/rosetta/
RosettaCM81 https://www.rosettacommons.org/home
SCWRL160 http://dunbrack.fccc.edu/scwrl4/SCWRL4.php
Quality estimation
ANOLEA180 http://melolab.org/anolea/index.html
ERRAT313 http://nihserver.mbi.ucla.edu/ERRAT/
ModEval http://salilab.org/modeval/
ProQ2184 http://proq2.theophys.kth.se/
PROCHECK187 http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
Prosa2003177,178 http://www.came.sbg.ac.at
QMEAN local183 http://www.openstructure.org/download/
SwissModel Workspace314 http://swissmodel.expasy.org/workspace/index.php?func¼tools_structureassessment1
VERIFY3D175 http://www.doe-mbi.ucla.edu/Services/Verify_3D/
WHATCHECK188 http://www.cmbi.kun.nl/gv/whatcheck/
Methods evaluation
CAMEO195 http://cameo3d.org/
CASP315 http://predictioncenter.llnl.gov
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statistical potential (Pose & Rank),190 protein-protein docking filtered by a SAXS profile (FoXSDock),333,334 and merging SAXS

profiles (SAXS Merge).335,336

Compared to protein structure prediction, the attempts at automation and integration of resources in the field of docking for

virtual screening are still in their nascent stages. One of the successful efforts in this direction is ZINC,317,318 a publicly available

database of commercially available drug-like compounds, developed in the laboratory of Brian Shoichet. ZINC contains more than

21 million ‘ready-to-dock’ compounds organized in several subsets and allows the user to query the compounds by molecular

properties and constitution. The Shoichet group also provides a DOCKBLASTER service337 that enables end-users to dock the ZINC

compounds against their target structures using DOCK.247,338

In the future, we will no doubt see efforts to improve the accuracy of comparative modeling and ligand docking. But perhaps as

importantly, the two techniques will be integrated into a single protocol for more accurate and automated docking of ligands

against sequences without known structures. As a result, the number and variety of applications of both comparative modeling and

ligand docking will continue to increase.
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Figure 5 An integrated set of resources for comparative modeling.34 Various databases and programs required for comparative modeling and docking
are usually scattered over the internet, and require manual intervention or a good deal of expertise to be useful. Automation and integration
of these resources are efficient ways to put these resources in the hands of experts and non-specialists alike. We have outlined a comprehensive
interconnected set of resources for comparative modeling and hope to integrate it with a similar effort in the area of ligand docking made by the Shoichet
group.317,318
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