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Preface 

The roots of this book lie in a series of lectures that I presented 
at the University of Ioannina, in the summer of 1997. The central 
theme is the geometry of Lie groups and homogeneous spaces. These 
are notions which are widely used in differential geometry, algebraic 
topology, harmonic analysis and mathematical physics. There is no 
doubt that there are several books on Lie groups and Lie algebras, 
which exhaust these topics thoroughly. Also, homogeneous spaces 
are occasionally tackled in more advanced textbooks of differential 
geometry. 

The present book is designed to provide an introduction to sev­
eral aspects of the geometry of Lie groups and homogeneous spaces, 
without becoming too detailed. The aim was to deliver an exposition 
at a relatively quick pace, where the fundamental ideas are empha­
sized. Several proofs are provided, when it is necessary to shed light 
on the various techniques involved. However, I did not hesitate to 
mention more difficult but relevant theorems without proof, in ap­
propriate places. There are several references cited, that the reader 
can consult for more details. 

The audience I have in mind is advanced undergraduate or grad­
uate students. A first course in differential geometry would be desir­
able, but is not essential since several concepts are presented. Also, 
researchers from neighboring fields will have the chance to discover a 

IX 
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pleasant introduction on a variety of topics about Lie groups, homo­
geneous spaces and related applications. 

I would like to express my sincere thanks to the editors for their 
thorough suggestions on the manuscript, as well as my gratitude to 
Professors Jurgen Berndt, Martin A. Guest, Lieven Vanhecke, and 
McKenzie Y. Wang for their kindness in making comments on it. 

Andreas Arvanitoyeorgos 

Athens, August 2003 



Introduction 

There are several terms which are included in the title of this book, 
such as "Lie groups", "geometry", and "homogeneous spaces", so it 
maybe worthwhile to provide an explanation about their relation­
ships. We will start with the term "geometry", which most readers 
are familiar with. 

Geometry comes from the Greek word "^eoojieTpeLv", which means 
to measure land. Various techniques for this purpose, including other 
practical calculations, were developed by the Babylonians, Egyptians, 
and Indians. Beginning around 500 BC, an amazing development was 
accomplished, whereby Greek thinkers abstracted a set of definitions, 
postulates, and axioms from the existing geometric knowledge, and 
showed that the rest of the entire body of geometry could be de­
duced from these. This process led to the creation of the book by 
Euclid entitled The Elements. This is what we refer to as Euclidean 
geometry. 

However, the fifth postulate of Euclid (the parallel postulate) 
attracted the attention of several mathematicians, basically because 
there was a feeling that it would be possible to prove it by using 
the first four postulates. As a result of this, new geometries ap­
peared (elliptic, hyperbolic), in the sense that they are consistent 
without using Euclid's fifth postulate. These geometries are known 
as Non-Euclidean Geometries, and some of the mathematicians that 

xi 
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contributed to their development were N. I. Lobachevsky, J. Bolyai, 
C. F. Gauss, and E. Beltrami. 

A detailed theory of surfaces in three-dimensional space was de­
veloped by C. F. Gauss. His main result was the Theorema Egregium, 
which states that the curvature of a surface is an "intrinsic" property 
of the surface. This means it can be measured and "felt" by someone 
who is on the surface, rather than only by observing the surface from 
outside. 

However, the fundamental question "What is geometry?" still 
remained. There are two directions of development after Gauss. The 
first, is related to the work of B. Riemann, who conceived a framework 
of generalizing the theory of surfaces of Gauss, from two to several 
dimensions. The new objects are called Riemannian manifolds, where 
a notion of curvature is defined, and is allowed to vary from point to 
point, as in the case of a surface. Riemann brought the power of 
calculus into geometry in an emphatic way as he introduced metrics 
on the spaces of tangent vectors. The result is today called differential 
geometry. 

The other direction is the one developed by F. Klein, who used 
the notion of a transformation group to define geometry. According to 
Klein, the objects of study in geometry are the invariant properties 
of geometrical figures under the actions of specific transformation 
groups. Hence, the consideration of different transformation groups 
leads to different kinds of geometry, such as Euclidean geometry, affine 
geometry, or projective geometry. For example, Euclidean geometry 
is the study of those properties of the plane that remain invariant 
under the group of rigid motions of the plane (the Euclidean group). 
The groups that were available at that time, and which Klein used 
to determine various geometries, were developed by the Norwegian 
mathematician Sophus Lie, and are now called Lie groups. 

This brings us to the other terms of the title of this book, namely 
"Lie groups" and "homogeneous spaces". The theory of Lie has its 
roots in the study of symmetries of systems of differential equations, 
and the integration techniques for them. At that time, Lie had called 
these symmetries "continuous groups". In fact, his main goal was 
to develop an analogue of Galois theory for differential equations. 
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The equations that Lie studied are now known as equations of Lie 
type, and an example of these is the well-known Riccati equation. 
Lie developed a method of solving these equations that is related to 
the process of "solution by quadrature" (cf. [Fr-Uh, pp. 14, 55], 
[Ku]). In Galois' terms, for a solution of a polynomial equation with 
radicals, there is a corresponding finite group. Correspondingly, to a 
solution of a differential equation of Lie type by quadrature, there is 
a corresponding continuous group. 

The term "Lie group" is generally attributed to E. Cartan (1930). 
It is defined as a manifold G endowed with a group structure, such 
that the maps G x G —> G (x,y) i—> xy and G —* G x i—> x~l are 
smooth (i.e. differentiable). The simplest examples of Lie groups are 
the groups of isometries of Rn, Cn or H n (H is the set of quaternions). 
Hence, we obtain the orthogonal group 0(n), the unitary group J7(ra), 
and the symplectic group Sp(n). 

An algebra g can be associated with each Lie group G in a natural 
way; this is called the Lie algebra of G. In the early development of 
the theory, g was referred to as an "infinitesimal group". The modern 
term is attributed by most people to H. Weyl (1934). A fundamental 
theorem of Lie states that every Lie group G (in general, a compli­
cated non-linear object) is "almost" determined by its Lie algbera g 
(a simpler, linear object). Thus, various calculations concering G are 
reduced to algebraic (but often non-trivial) computations on g. 

A homogeneous space is a manifold M on which a Lie group acts 
transitively. As a consequense of this, M is diffeomorphic to the coset 
space G/K, where K is a (closed Lie) subgroup of G. In fact, if we 
fix a base point m £ M, then K is the subgroup of G that consists of 
the points in G that fix m (it is called the isotropy subgroup ofm). 
As mentioned above, these are the geometries according to Klein, in 
the sense that they are obtained from a manifold M and a transitive 
action of a Lie group G on M. The advantage is that instead of 
studying a geometry with base point m as the pair (M, m) with the 
group G acting on M, we could equally study the pair (G, K). 

One of the fundamental properties of a homogeneous space is 
that, if we know the value of a geometrical quantity (e.g. curvature) 
at a given point, then we can calculate the value of this quantity at 
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any other point of G/K by using certain maps (translations). Hence, 
all calculations reduce to a single point which, for simplicity, can be 
chosen to be the identity coset o = eK £ G/K. Furthermore, in 
an important special case where the homogeneous space is reductive, 
then the tangent space of G/K at o can be identified in a natural way 
with a subspace of g. 

As a consequence of this, many hard problems in homogeneous 
geometry can be formulated in terms of the group G and the subgroup 
K, and then in terms of their corresponding infinitesimal objects g 
and £. Such an infinitesimal approach enables us to use linear alge­
bra to tackle non-linear problems (from geometry, analysis, or theory 
of differential equations). For example, the equations satisfied by 
an Einstein metric (these, according to general relativity, describe 
the evolution of the universe) are a complicated non-linear system 
of partial differential equations. However, for G-invariant metrics on 
a homogeneous space, this system reduces to a system of algebraic 
equations, which can be solved in many cases. 

There is a large variety of applications of Lie groups in mathe­
matics. They appear in various ways beyond differential geometry, 
such as algebraic topology, harmonic analysis, and differential equa­
tions, to name a few. They also possess important applications in 
physics, since they become involved in field theories in many ways. 
In fact, certain classical Lie groups appear as the building blocks in 
various physical theories of matter. Homogeneous spaces, in turn, 
have been employed in the physics of elementary particles as mod­
els called supersymmetric sigma models. Also, what physicists call 
coherent states, are in one-to-one correspondence with elements in a 
homogeneous space. 

Before we proceed to the description of the chapters of this book, 
we would like to mention that the two generalizations of Euclidean 
geometry that we mentioned, namely that of Riemann and that of 
Klein, were unified by E. Cartan in his theory of espaces generalizes. 
In Cartan's geometry, at each point m of M, there is a Klein-style 
geometry in the tangent space. That is to say, Cartan took Klein's 
geometry and made it local to each tangent space. 
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Chapter 1 starts with a simple example of a Lie group that ex­
hibits the manifold and group structure. Then we give a brief review 
of manifolds, and then we proceed with the definition of a Lie group. 
We define the Lie algebra of a Lie group as the tangent space at 
the identity element of the group, and alternatively as the set of its 
one-parameter subgroups. We also list a simplified version of Lie's 
theorems. 

In Chapter 2, after discussing a few elementary concepts about 
representations, we develop the appropriate tools that are needed for 
the classification of the compact and connected Lie groups. These are 
the adjoint representation, and the maximal torus of a Lie group. We 
also introduce a very useful tool, the Killing form, and we provide a 
brief insight through the complex semisimple Lie algebras. 

Chapter 3 starts with a brief review of Riemannian manifolds, 
and then discusses a way to make a Lie group into a Riemannian 
manifold. The metrics which are important here are the bi-invariant 
metrics, and with respect to such metrics we give formulas for the 
connection and the various types of curvatures. 

In Chapter 4 we define the notion of a homogeneous space and 
provide several examples. We discuss the reductive homogeneous 
spaces, and the isotropy representation of such a space. 

The geometry of a homogeneous space is discussed in Chapter 5, 
where we show how a homogeneous space G/K can become a Rie­
mannian manifold (so we obtain a Riemannian homogeneous space). 
The important metrics here are the G-invariant metrics. Formulas 
are presented for the connection and the various types of curvatures. 

In Chapters 6 and 7 we discuss two important, and generally non-
overlapping, classes of homogeneous spaces, which are the symmetric 
spaces and the generalized flag manifolds. One of the most significant 
advances of the twentieth century mathematics is Cartan's classifica­
tion of semisimple Lie groups. This leads to the classification of these 
two classes of homogeneous spaces. These spaces have many appli­
cations in real and complex analysis, topology, geometry, dynamical 
systems, and physics. 
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In Chapter 8 we give three applications of homogeneous spaces. 
The first is about homogeneous Einstein metrics. These are Riemann-
ian metrics whose Ricci tensor is proportional to the metric. The 
second refers to symplectic geometry, which is rooted in Hamilton's 
laws of optics. Here we present a Hamiltonian system on generalized 
flag manifolds. A Hamiltonian system is a special case of an inte-
grable system, which is a subject that has attracted much attention 
recently. The third application deals with homogeneous geodesies in 
homogeneous spaces. Geodesies are important not only in geometry, 
being length minimizing curves, but also have important applications 
in mechanics since, for example, the equation of motion of many sys­
tems reduces to the geodesic equation in an appropriate Riemannian 
manifold. Here, we present some results about homogeneous spaces, 
all of whose geodesies are homogeneous, that is, they are orbits of 
one-parameter subgroups. These are usually known in the literature 
as g.o. spaces. 
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