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1. Some examples and questions of interest

Longitudinal studies: Studies where a response is observed on each

subject/unit repeatedly over time are commonplace, e.g.,

• Clinical trials, observational studies in humans, animals

• Studies of growth and decay in agriculture, chemistry

Key messages in this talk:

• The questions of interest may be different, depending on the setting

• Longitudinal data have special features that must be taken into

account to make valid inferences on questions of interest

• Statistical models that acknowledge these features and the

questions of interest are needed, which lead to appropriate methods

• Understanding the models is critical to using the software
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1. Some examples and questions of interest

First, an “ideal” situation. . .

“World-famous” dental study: Pothoff and Roy (1964)

• Sample of 27 children, 16 boys, 11 girls

• On each child, distance (mm) from the center of the pituitary to

the pterygomaxillary fissure measured on each child at ages 8, 10,

12, and 14 years of age

• A continuous measure of growth (the response )

Questions of interest: Informally stated

• Does distance change over time?

• What is the pattern of change?

• Is the pattern different for boys and girls? How?
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1. Some examples and questions of interest

From web pages by Professor John B. Ludlow, UNC-Chapel Hill School of Dentistry
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1. Some examples and questions of interest

All data (“spaghetti plot ”): 0 = girl, 1 = boy
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1. Some examples and questions of interest

Sample mean dental distances: Sample averages across all boys and

all girls at each age
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1. Some examples and questions of interest

Observations:

• All children have all 4 measurements at the same time points (ages)

(“balanced ”)

• Boys seem to be “higher ” than girls overall

• Children who “start high ” or “low ” tend to “stay high ” or “low ”

• The individual pattern for most children follows a rough straight line

increase (with some “jitter ”)

• And mean of distance (across boys and across girls) follows an

approximate straight line pattern (with some “jitter ”)
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1. Some examples and questions of interest

Response need not be a continuous measurement. . .

Another “famous” data set: Six Cities Study

• 300 children from six different cities examined annually at ages 9–12

• On each child, respiratory status (1=infection, 0=no infection) and

maternal smoking in past year (1=yes, 0=no)

• Data for three children: city, age, smoking, respiratory status

Portage 9 1 1 10 1 0 11 1 0 12 1 0

Kingston 9 0 0 10 0 0 11 0 0 12 0 0

Portage 9 0 0 10 . . 11 . . 12 . .

• Discrete (binary) response

• Missing data at some ages for some mother-child pairs (balance ?)
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1. Some examples and questions of interest

Questions of interest: Informally stated

• Is there an association between risk of respiratory infection and

mother’s smoking behavior?

• Does the risk of respiratory infection change with age ? Does the

association change with age ?

Observations:

• Graphical depiction not really informative (binary response)

• Crude summary for Portage at each age

Age Prop. Mom Smoke Prop. with RS=1

9 0.62 0.38

10 0.64 0.37

11 0.69 0.23

12 0.75 0.08
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1. Some examples and questions of interest

Pharmacokinetics of theophylline:

• 12 subjects each given oral dose at time 0

• Blood samples at 10 time points over next 25 hours, assayed for

theophylline concentration

Questions of interest: Informally stated

• Understand processes of absorption, elimination, distribution in the

population of subjects like these

⇒ Dosing recommendations

• What is the “typical ” behavior of these processes?

• To what extent does it vary across subjects?

• Is some of this variation associated with subject characteristics ?
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1. Some examples and questions of interest

Data for 12 subjects: Concentration vs. time
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1. Some examples and questions of interest

Standard practice: A “theoretical model ” for each subject

• Represent the body of ith subject by a mathematical compartment

model

• One compartment model with first-order absorption and elimination

following oral dose Di

Di Xi(t) --

keikai

• Xi(t) = amount of drug in blood at time t

Vi = hypothetical “volume ” of the blood compartment
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1. Some examples and questions of interest

Concentration at time t: Solve the corresponding differential

equations for Xi(t), divide by volume

Ci(t) =
kaiDi

Vi(kai − kei)
{exp(−keit) − exp(−kait)}, kei = Cli/Vi

• Fractional absorption rate kai characterizes the absorption process

for subject i

• Clearance rate Cli characterizes the elimination process for subject i

• Volume of distribution Vi characterizes the process of distribution in

the body for subject i

• For subject i, we observe Ci(t) at several time points subject to

some variation (more later. . . )
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1. Some examples and questions of interest

Observations:

• Not balanced (different times for different subjects)

• Concentration-time patterns have same general shape but differ for

different subjects

• Theory: This is because kai, Cli, Vi differ across subjects

⇒ Learn about “typical ” (average) values and extent of variation of

kai, Cli, Vi in the population of subjects

• Furthermore , part of this variation in kai, Cli, Vi across subjects

might be systematically associated with weight , renal function , etc,

and we’d like to know about this!

Note: The questions of interest need to refer to the pharmacokinetic

one-compartment model
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1. Some examples and questions of interest

Summary: Different questions in different settings

• Characterize and compare patterns of change in response over time

• Assess associations between response and other factors that evolve

over time

• Learn about meaningful features underlying observed patterns and

how they vary in the population of subjects

Summary: Features of data

• Different types of response (continuous, discrete )

• Subjects observed only intermittently. . .

• . . . at possibly different time points with responses we intended to

collect missing for some subjects (so at the very least not balanced)
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2. First steps

Dental study: 16 boys, 11 girls, distance measured at 8, 10, 12, 14

years of age, no missing observations

• Focus: Is the pattern of dental distance over time different for boys

and girls?

Favorite ad hoc analysis of my clinician friends:

• Cross-sectional analysis comparing means (boys vs. girls) at each

age 8, 10, 12, 14 (two-sample t-tests)

• P-values: 0.08, 0.06, 0.01, 0.001

• Conclusion ? Multiple comparisons ?

• How to “put this together ” to say something about the differences

in patterns and how they differ? What are the patterns, anyway?
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2. First steps

Problem: We’re trying to force a familiar analysis to address questions

it’s not designed to answer!

• In fact, what if the data weren’t balanced?

• Need to start with a formal statistical model for the situation that

acknowledges the data structure. . .

Statistical model:

• Informally – a description of the mechanisms by which data are

thought to arise

• More formally – a probability distribution that describes how

observations we see take on their values

• In order to talk about analysis , we need to first identify an

appropriate statistical model. . .
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2. First steps

One traditional, popular statistical model: (Univariate) repeated

measures analysis of variance model (continuous response)

• Yi`j = response for subject i in group ` at jth time

• The model says

Yi`j = µ + τ` + γj + (τγ)`j+bi`+ei`j , bi`
iid∼ N (0, σ2

b ), ei`j
iid∼ N (0, σ2

e)

• Population mean for group `, time j is µ + τ` + γj + (τγ)`j

• bi` allows responses for subject i in group ` to be “high ” or low ”

relative to the mean for the group (by same amount at all times)

• ei`j allows responses for subject i in group ` furthermore to vary

because of things like measurement error

• Is the pattern of mean change different for girls and boys?

⇒ (τγ)`j = 0 for all `, j ⇔ mean profiles are parallel across groups
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2. First steps

Some drawbacks: So what’s wrong with this model?

• Requires data to be balanced (same j for all subjects)

• Allows the population mean for each group at each time to be

anything – no relationship of means over each time

• So doesn’t explicitly acknowledge apparent smooth, meaningful

patterns over time

• Doesn’t explicitly acknowledge time itself

• May be too simple to capture the true pattern of variation in

longitudinal data

• What if the response is discrete ?

For the dental data: Individual child and gender-averaged trajectories

look like straight lines. . .
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2. First steps

Gender-averaged trajectories: Sample means across boys, girls at

each time straight lines superimposed
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Impression: Population mean distances lie approximately on a straight

line over time for each gender
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2. First steps

Question of interest, more formally: Assuming that population

means follow a straight line pattern over time for each gender

• Is the pattern of mean change different for girls and boys?

⇒ Are the slopes of the population mean profiles different for boys

and girls?

Perspective: This is a question about the population means and how

they are related over time

• Need a statistical model that incorporates our belief that they lie on

a straight line for each gender
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2. First steps

Suggests: A first shot at a statistical model

• Yij = distance for child i = 1, . . . , 27 at time tij = 8, 10, 12, 14

• Gi = gender indicator = 0 if i is a girl, = 1 if i is a boy

• Observed data for each child : (Yi1, . . . , Yi4, Gi) (j = 1, 2, 3, 4)

• Assume the population means lie on a straight line for each gender

• For subject i at age tij

Yij = β0G +β1Gtij + εij if i is girl, Yij = β0B +β1Btij + εij if i is boy

Yij = β0G(1 − Gi) + β0BGi + β1G(1 − Gi) + β1BGi + εij

• εij is a mean-zero “deviation ” that accounts for fact that the

distance we observe at tij for i is not exactly equal to

Population mean for girls at tij = β0G + β1Gtij
Population mean for boys at tij = β0B + β1Btij
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2. First steps

This looks great! So how to we do an analysis based on this model to

answer the question?

• Fit by usual OLS, test if β1G = β1B?

• But are Yij (εij) all uncorrelated or independent (required for usual

OLS analysis)?

• More coming shortly. . .

We can take another perspective. . .
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2. First steps

Individual trajectories: Girls

8 9 10 11 12 13 14

20
25

30

age (years)

di
st

an
ce

 (
m

m
)

8 9 10 11 12 13 14

20
25

30

age (years)

di
st

an
ce

 (
m

m
)

Impression: Each girl’s distance measurements follow an approximate

straight line trajectory with possibly different slopes across girls

(similarly for boys)
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2. First steps

Question of interest, more formally: Assuming that each child has

his/her own underlying straight-line trajectory

• Is pattern different for girls and boys?

⇒ Is the “typical ” (average) slope among girls different from that

for boys?

Perspective: These are questions about individual profiles over time

Suggests: Another statistical model

• For child i at age tij ,

Yij = β0i + β1itij + eij

• β0i, β1i are the child-specific intercept and slope for i’s assumed

straight line

• eij is a mean-zero “deviation ” accounting for the “jitter ” in i’s

distances about his/her child-specific line
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2. First steps

Statistical model, continued: Yij = β0i + β1itij + eij

• Each child has his/her own (β0i, β1i)

• These vary across children in each gender group

⇒ the (β0i, β1i) come from a probability distribution that

describes this variation (more coming up. . . )

Analysis regarding different patterns of change?

• The question becomes : Is the mean of β1i values in the population

of girls equal to that for the population of boys ?

• Ad hoc approach : Fit to each child by OLS and do two-sample

t-test using the estimated individual slopes as the “data ”

• But the estimated slopes are not the true slopes!!
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2. First steps

Need to think more carefully and adopt a more formal approach. . .
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3. How do longitudinal data happen?

Idea: Conceptualize how longitudinal data come about and use as a

basis for developing formal statistical models that lead to appropriate

methods for analysis

Consider continuous response. . .
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3. How do longitudinal data happen?

Three hypothetical subjects: (a) What we see and (b) a

conceptualization of what’s underlying it
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3. How do longitudinal data happen?

Features of the conceptual model: Think about the dental data

• Each subject has an “inherent trend ” or “trajectory ” describing the

overall “track ” s/he follows over the longer term

• Actual values of the response might “fluctuate ” about the trend

• Errors in measurement in ascertaining values might occur

(continuous response)

• Averaging over all trajectories, fluctuations, measurement errors for

all possible subjects in the population at each time yields the bold

population mean profile
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3. How do longitudinal data happen?

In the picture: Yij = β0i + β1itij + eij

• The individual-specific (β0i, β1i) determine the “inherent

trajectory ” over the long haul. . .

• . . . and determine at any time where i’s trajectory sits relative to

the population mean profile

• The combined effects of shorter term “fluctuations ” and

measurement error produce the responses we actually observe
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3. How do longitudinal data happen?

Remarks:

• Individual trajectories and population mean profile need not be

straight lines (think of theophylline)
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3. How do longitudinal data happen?

Remarks:

• Can think similarly for discrete data (Six Cities)

• Usual assumption : There is no measurement error associated with

binary or count responses
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3. How do longitudinal data happen?

A key feature: Correlation

• Reasonable to suppose that responses from different subjects are

unrelated ⇒ independent, however. . .

• Responses from the same subject tend to be “alike ” because they

follow the same underlying trajectory (e.g., may be “high ” or “low ”

together as in the dental data)

⇒ Responses from the same subject are correlated due to

among-individual variation (heterogeneity)

• Values close together in time might tend to “fluctuate ” similarly, so

that responses from a given subject are “more alike ” the closer

together they are in time

⇒ Measurements on the same subject are correlated due to

within-individual covariationPSfrag replacements

C(t)
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3. How do longitudinal data happen?

Conceptualization:
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3. How do longitudinal data happen?

Result: A statistical model must acknowledge that

• While observations on different subjects may be reasonably thought

of as independent. . .

• . . . observations on the same subject are correlated due to at least

one of these phenomena

Critical point: If we ignore correlation and pretend all Yij are

uncorrelated or independent, we misrepresent the amount of information

we actually have, and analyses will be flawed

• Can be shown formally by statistical theory

• Statistical models (and methods ) must this acknowledge

correlation !
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4. Statistical models for longitudinal data

Two popular types: Corresponding to the two perspectives on the

dental data

• Population-averaged models

• Subject-specific models

• Depending on the questions in a particular situation, one may be

more suitable then the other

Here: In terms of dental data (continuous response, straight-line

population mean and individual patterns) and then generalize

Take the second perspective first. . .

PSfrag replacements

C(t)

t Introduction to Longitudinal Data 38

PSfrag replacements

C(t)

t

4. Statistical models for longitudinal data

Subject-specific model:

• Model individual behavior

• Questions of interest are about “typical ” (average or mean ) such

behavior
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4. Statistical models for longitudinal data

Conceptualization:
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4. Statistical models for longitudinal data

Conceptualization: For randomly chosen subject i, i has an associated

stochastic process: For any time t

Yi(t) = β0i + β1it + ef,i(t) + eme,i(t)︸ ︷︷ ︸
ei(t)

• “Inherent trajectory ” β0i + β1it throughout time dictated by i’s

subject-specific intercept β0i and slope β1i

• ef,i(t) is a mean-zero deviation due to the fluctuation at t

• So β0i + β1it + ef,i(t) is the actual response value that could be

seen at t if there were no measurement error

• eme,i(t) is a mean-zero deviation due to measurement error in

ascertaining this value

• ei(t) is the resulting overall deviation (mean-zero )
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4. Statistical models for longitudinal data

What we observe: A random sample of subjects i = 1, . . . , n, each at

intermittent times tij , j = 1, . . . , mi, say (need not be the same for all i)

Thus: We observe Yij = Yi(tij), j = 1, . . . , mi, where

Yij = β0i + β1itij + ef,ij + eme,ij︸ ︷︷ ︸
eij

• ef,ij = ef,i(tij), eme,ij = eme,i(tij)

• With some assumptions about β0i, β1i, ef,i(t), and eme,i(t), we

have a popular statistical model !
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4. Statistical models for longitudinal data

Within subjects: Yij = β0i + β1itij + ef,ij + eme,ij︸ ︷︷ ︸
eij

for subject i

• ef,i(t) and ef,i(t
′) for times t and t′ close together might tend to

be in the same direction relative to the “inherent trend ”

⇒ within-subject (auto)correlation

• We would expect ef,ij close together in time to be positively

correlated

• Measuring devices tend to commit haphazard errors

⇒ eme,i(t) and eme,i(t
′) might be unrelated for any times t and t′

• We would expect eme,ij to all be mutually independent across j
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4. Statistical models for longitudinal data

Among subjects: (β0i, β1i) are from a population of intercepts, slopes

• For unrelated subjects drawn at random, (β0i, β1i) pairs are

independent across i

• β0i = γ0G + b0i, β1i = γ1G + b1i if i is a girl

β0i = γ0B + b0i, β1i = γ1B + b1i if i is a boy

• b0i, b1i are mean-zero random effects independent across i

describing how i deviates from the “typical ” (mean)

intercept (γ0G or γ0B) and slope (γ1G or γ1B)

• More succinctly

β0i = γ0G(1 − Gi) + γ0BGi + b0i, β1i = γ1G(1 − Gi) + γ1BGi + b1i

• Yi1, . . . , Yimi
all depend on b0i, b1i ⇒ correlation due to

among-subject heterogeneityPSfrag replacements
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4. Statistical models for longitudinal data

Summarizing:

Yij = β0i + β1itij + ef,ij + eme,ij︸ ︷︷ ︸
eij

β0i = γ0G(1 − Gi) + γ0BGi + b0i, β1i = γ1G(1 − Gi) + γ1BGi + b1i

Remaining: Assumptions on ef,ij , eme,ij , b0i, b1i that operationalize

what we’ve said. . .
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4. Statistical models for longitudinal data

Formally: Normality is standard assumption

• Within-subject autocorrelation: (ef,i1, . . . , ef,imi
)T is multivariate

normal with mean 0 and covariance matrix σ2

fHi

• Measurement error: (eme,i1, . . . , eme,imi
)T is multivariate normal

with mean 0 and diagonal covariance matrix σ2

eIi

• So ei = (ei1, . . . , eimi
)T ∼ N (0, σ2

fHi + σ2

eIi)

• “Steep/shallow” slopes associated with “high/low” intercepts

⇒ (b0i, b1i)
T are correlated with mean 0 and covariance matrix D;

i.e., (b0i, b1i)
T ∼ N (0, D)

Combining:

Yij = γ0G(1−Gi)+γ0BGi+γ1G(1−Gi)tij +γ1BGitij +b0i+b1itij +eij

Can summarize in matrix form. . . Y i = (Yi1, . . . , Yimi
)T
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4. Statistical models for longitudinal data

Linear mixed effects model: Y i = Xiγ + Zibi + ei, i = 1, . . . , n,

γ =




γ0G

γ1G

γ0B

γ1B




, bi =


 b0i

b1i


 , Zi =




1 ti1
...

...

1 timi




Xi =




(1 − Gi) (1 − Gi)ti1 Gi Gitij
...

...
...

...

(1 − Gi) (1 − Gi)timi
Gi Gitij




This model is “subject-specific ” because it acknowledges the individual

subject profiles through the random effects biPSfrag replacements

C(t)

t Introduction to Longitudinal Data 47

PSfrag replacements

C(t)

t

4. Statistical models for longitudinal data

Averaging across the population: If we average over subjects (and

fluctuations and measurement errors) for each group (value of Gi)

E(Y i|Gi) = Xiγ, var(Y i|Gi) = ZiDZT
i + σ2

fHi + σ2

eIi = V i

so that

Y i|Gi ∼ N (Xiγ, V i)

• E(Y i|Gi = 0) is the population average (population mean) for girls

• E(Y i|Gi = 1) is the population average (population mean) for boys

• Which implies

E(Yij |Gi = 0) = γ0G + γ1Gtij girls

E(Yij |Gi = 1) = γ0B + γ1Btij boys
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4. Statistical models for longitudinal data

Features:

• Questions about “typical ” individual behavior are questions about γ

• The covariance matrix V i has a particular form with separate

components for each type of correlation, which the analyst can

specify

• Thus, correlation is automatically taken into account by the model

• No requirement for balance
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4. Statistical models for longitudinal data

How to specify H i? Common models are borrowed from time series

• Autoregressive structure of order 1 , AR(1), e.g., for dental data

Hi =




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1




• Depends on ρ

• Can be generalized to unequally-spaced times
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4. Statistical models for longitudinal data

A standard version: Times tij may be far apart

• Assume autocorrelation among ef,ij is negligible

⇒ Hi = Ii, an identity matrix

• Then V i = ZiDZT
i + (σ2

f + σ2

e︸ ︷︷ ︸
σ2

)Ii

• σ2 measures variation due to both fluctuation and measurement

error

Another standard version: No measurement error involved

• ⇒ σ2

e = 0 so V i = ZiDZT
i + σ2

fHi = ZiDZT
i + σ2Hi

• If also times are far apart V i = ZiDZT
i + σ2Ii

• σ2 measures variation due to fluctuation
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4. Statistical models for longitudinal data

Back to the dental data: mi = 4

• Measurement error? Probably (so σ2

e > 0)

• “Fluctuations ” in distance? Maybe (σ2

f > 0)

• Measurement error may dominate ⇒ σ2

e >> σ2

f

• Autocorrelation ? 2 years is a long time

• A reasonable model

V i = ZiDZT
i + σ2Ii

σ2 measures primarily measurement error

• Is “typical ” (mean) slope for girls different from that for boys?

⇒ Test γ1G = γ1B
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4. Statistical models for longitudinal data

Notice: V i = ZiDZT
i + σ2Ii

• V i is not diagonal in general even if autocorrelation is negligible !

• Yi1, . . . , Yimi
are always correlated because they all share the same

inherent trajectory (i.e., b0i, b1i)!

• Correlation due to among-subject heterogeneity

• So any model for longitudinal data must acknowledge this!

Analysis: Estimate parameters (e.g., γ) and test hypotheses (e.g.,

γ0G = γ0B) by fitting this model to the data (coming up. . . )
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4. Statistical models for longitudinal data

Population-averaged model:

• Model population behavior by modeling the population average

profiles E(Y i|Gi) directly

• Questions are about how population means are related over time

• Instead of worrying about separate components of var(Y i|Gi)

(within- and among-individual sources of correlation), just model

their combined effect directly

• From the previous slide, this means pick a “working model ” that

will account for among-subject heterogeneity at the least!

PSfrag replacements

C(t)

t Introduction to Longitudinal Data 54

PSfrag replacements

C(t)

t



4. Statistical models for longitudinal data

Conceptualization:

time

re
sp

on
se

(a)

time

re
sp

on
se

(b)
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4. Statistical models for longitudinal data

Population-averaged model : For randomly chosen subject i measure

Yij at several times tij (need not be the same for all i)

Yij = β0G(1 − Gi) + β0BGi + β1G(1 − Gi)tij + β1BGitij + εij

• E.g., β0G + β1Gtij is the bold population mean profile for girls

• εij is a mean-zero deviation from the population mean due to the

sum total of among-subject variation, within-subject fluctuation,

and measurement error at tij

Thus, εij are correlated ⇒ specify a covariance matrix

• Question of whether the patterns are different for boys and girls:

Are the slopes of the population mean profiles the same?

⇒ Test β1G = β1B
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4. Statistical models for longitudinal data

In matrix form: Y i = Xiβ + εi, i = 1, . . . , n

β =




β0G

β1G

β0B

β1B




, Xi =




(1 − Gi) (1 − Gi)ti1 Gi Gitij
...

...
...

...

(1 − Gi) (1 − Gi)timi
Gi Gitij




• E(Y i|Gi) = Xiβ (population average for each group)

• Choose a “working model ” for the covariance matrix var(εi) = Σi

that (hopefully) captures the overall combined correlation

• Thus, model is E(Y i|Gi) = Xiβ, var(Y i|Gi) = Σi

• Can assume normality Y i|Gi ∼ N (Xiβ,Σi)
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4. Statistical models for longitudinal data

How to choose a “working model” Σi?

• Which source of correlation dominates?

• Within-subject autocorrelation ⇒ popular models from time

series

• Among-subject heterogeneity ⇒ compound symmetry models,

e.g., mi = 4

Σi = σ2




1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1



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4. Statistical models for longitudinal data

Contrasting the models:

Subject-specific: We saw this model implies the population average is

E(Y i|Gi) = Xiγ (slide 48)

Population-averaged: We model the population average directly as

E(Y i|Gi) = Xiβ

Result: The models for the population average are of the same form!

• Thus γ and β describe the same thing, so are really the same . . .

• . . . and we can interpret them either way, e.g., “typical slope ” or

slope of the population average profile !

• The distinction between subject-specific and population-averaged

ends up not mattering, so choose the interpretation you like best!

Difference: How var(Y i|Gi) is representedPSfrag replacements
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4. Statistical models for longitudinal data

Warning: This changes when the model is nonlinear. . .
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4. Statistical models for longitudinal data

What about discrete data? Six Cities data

• We observe pairs (Yij , Xij), j = 1, . . . , mi = 4 for each child

• Yij = 1 if respiratory infection, = 0 if not

Xij = 1 if mother smoking, = 0 if not

• xi = (Xi1, . . . , Ximi
)T is the overall smoking behavior observed

• Natural models (e.g. logistic , probit) for binary response are

nonlinear

Subject-specific and population averaged models now have

different interpretations. . .
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4. Statistical models for longitudinal data

Subject-specific model: Model individual propensity for respiratory

infection at age j (Yij = 1) when exposed to maternal smoking xi

• Simplest, popular model

log

(
P (Yij = 1|xi, bi)

1 − P (Yij = 1|xi, bi)

)
= β0i + β1iXij = γ0 + bi + γ1Xij

β0i = γ0 + bi, β1i = γ1, bi ∼ N (0, D)

• P (Yij = 1|xi, bi) = E(Yij |xi, bi) is the probability of infection for

child i in particular under mother’s smoking overall behavior xi

• Common assumption is that this depends only on the mother’s

current smoking at j (Xij)

• Even in absence of smoking, children are heterogeneous in their

propensity to have respiratory infections, represented by the

probability distribution of the bi
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4. Statistical models for longitudinal data

Subject-specific model: Example of a generalized linear mixed model

log

(
P (Yij = 1|xi, bi)

1 − P (Yij = 1|xi, bi)

)
= β0i + β1iXij , = γ0 + bi + γ1Xij

• β0i is the log odds of respiratory infection for child i when mother

does not smoke

⇒ γ0 is the “typical ” (mean) value of the log odds for children in

the population

• β1i = γ1 is the change in log odds of respiratory infection when

child i is exposed to smoking relative to not

• So γ1 measures change in log odds for individuals

• All of Yi1, . . . , Yimi
depend on bi ⇒ correlation due to

among-subject heterogeneity taken into account

Analysis: Need to estimate γ = (γ0, γ1)
T in this model
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4. Statistical models for longitudinal data

Population-averaged model: Model “average propensity ” for

respiratory infection in the population directly

log

(
P (Yij = 1|xi)

1 − P (Yij = 1|xi)

)
= β0 + β1Xij

• P (Yij = 1|xi) = E(Yij |xi) is the probability of respiratory infection

at age j in the population of children with mother’s overall smoking

xi

• Think of this as the proportion of children exposed to xi who would

have a respiratory infection at age j

• Again, that this depends only on Xij is an assumption

• This model says nothing about individual children (we’ve averaged

over them)
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4. Statistical models for longitudinal data

Population-averaged model: Thus, with

log

(
P (Yij = 1|xi)

1 − P (Yij = 1|xi)

)
= β0 + β1Xij

• β0 is the log odds of respiratory infection for the population of

children whose mothers don’t smoke

• β1 is the change in log odds of respiratory infection if the

population were exposed to smoking relative to not

• Thus, β0 and β1 describe what happens “on average ” in the

population (as opposed to what happens for individuals )

• Correlation ? As with continuous data, specify a working covariance

matrix for var(Y i|xi)

Analysis: Need to estimate β = (β0, β1)
T in this modelPSfrag replacements
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4. Statistical models for longitudinal data

Population-averaged: P (Yij = 1|xi) = E(Yij |xi) =
exp(β0 + β1Xij)

1 + exp(β0 + β1Xij)

• A direct model for the average over all children in the population

Subject-specific: P (Yij =1|xi, bi)=E(Yij|xi, bi)=
exp(γ0+ bi + γ1Xij)

1 + exp(γ0+ bi + γ1Xij)

• A model specifically for the ith child

• We could average this over the population by averaging over the bi to

get the implied population-averaged model:
∫

exp(γ0+ bi + γ1Xij)

1 + exp(γ0+ bi + γ1Xij)

1√
2πD

exp

(
− b2

i

2D

)
dbi

• This integral (over the N (0, D) density) is a mess that does not have

the same form as the population-averaged model above!

Result: In contrast to linear models, for nonlinear models like this, β and

γ have different interpretations
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4. Statistical models for longitudinal data

Which perspective/model makes more sense?

• Depends on the subject matter science and the objective

• A clinician deciding between two treatments for a patient would be

interested in the difference in response for an individual

⇒ subject-specific model

• For making public policy recommendations, what happens on

average in the population is usually more relevant then what

happens to individuals

⇒ population-averaged model

• If the model is linear (as for the dental data), can go either way !

(Either interpretation valid!)

• If an appropriate model is nonlinear have to think carefully
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4. Statistical models for longitudinal data

Sometimes, the choice is clear: Recall the theophylline PK data :

• Interested in “typical values ” and variation of kai, kei, Vi

• Nonlinear mixed effects model

Yij =
kaiD

Vi(kai − kei)
{e−keit − e−kait} + eij , kei = Cli/Vi

log kai = γ1 + bka,i, log Cli = γ2 + bCl,i, log Vi = γ3 + bV,ie

bi =




bka,i

bCl,i

bV,i


 , bi ∼ N (0, D)

• Fancier: if i has weight wi, e.g., log Cli = γ20 + γ21wi + bCl,i (is

weight important ? ⇔ γ21 = 0?)

• Clearly this is a subject-specific model ⇒ estimate γ, D

• A population-averaged model could not address the questions!
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5. Implementation

Linear models: Covariance matrix plays key role!

Subject-specific models: Maximum likelihood estimation of γ,

parameters in V i, based on Y i|Gi ∼ N (Xiγ, V i)

• Given estimates of the parameters in V i, solve

n∑

i=1

XT V̂
−1

i (Y i−Xiγ) = 0 ⇒ γ̂ =

(
n∑

i=1

XT
i V̂

−1

i Xi

)
−1 n∑

i=1

XT
i V̂

−1

i Y i

• Given γ̂, solve another equation for parameters in V i (“ML ” or

“REML ”)

• Requires iterative numerical algorithm

• SAS proc mixed, R lme()
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5. Implementation

Linear models: Covariance matrix plays key role!

Population-averaged models: The same

• Given estimates of the parameters in Σi, solve

n∑

i=1

XT
Σ̂

−1

i (Y i−Xiβ) = 0 ⇒ β̂ =

(
n∑

i=1

XT
i Σ̂

−1

i Xi

)
−1 n∑

i=1

XT
i Σ̂

−1

i Y i

• Given β̂, solve another equation for parameters in Σi

• Not surprising, as interpretation is the same

• SAS proc mixed
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5. Implementation

Nonlinear models: Covariance matrix plays key role, but SS and PA

implementation no longer the same

Population-averaged models: Solve similar generalized estimating

equations (GEEs ) for β and parameters in Σi

n∑

i=1

DT
i (xi, β)Σ̂

−1

i {Y i − µ(xi, β)} = 0

• E.g., for Six Cities (binary response , µ(xi, β) has jth element

µij =
exp(β0 + β1Xij)

1 + exp(β0 + β1Xij)

• Σi is chosen to have a relevant correlation pattern and diagonal

elements (variances ) relevant to type of response, e.g., for binary

µij(1 − µij)

• SAS proc genmod, R gee( )
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5. Implementation

Subject-specific models: Maximum likelihood (messy !)

• Maximize in γ, D

n∏

i=1

p(yi|xi) =

n∏

i=1

∫
p(yi|xi, bi) n(bi;0, D) dbi, n(b;0, D) is N (0, D) density

• p(yi|xi, bi) is the assumed density of Y i given (xi, bi)

• E.g., for our earlier model for binary responses with no

within-subject autocorrelation

p(yi|xi, bi) =

mi∏

j=1

(µb
ij)

yij (1 − µb
ij)

1−yij , µb
ij =

exp(γ0+ bi + γ1Xij)

1 + exp(γ0+ bi + γ1Xij)

• Intractable integration – integral must be done numerically or

approximated somehow

• SAS proc nlmixed, %glimmix, %nlinmix, R nlme( )
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5. Implementation

In all cases: Standard errors, confidence intervals, hypothesis tests all

take into account the assumptions on correlation

• If this were ignored, these inferences would be flawed !

Why do I need to know all of this? All I want to do is do the

analysis!

• In all cases the syntax of the software is directly tied to the

statistical model !

• Thus, the user must be clear about exactly which model s/he

wishes to fit

For example. . .
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5. Implementation

SAS proc mixed: Linear mixed effects model Y i = Xiγ + Zibi + ei

Basic syntax:

proc mixed data=dataset method= (ML,REML);

class classification variables;

model response = columns of X / solution;

random columns of Z / type= subject= ;

repeated / type= subject= ;

run;

• model statement specifies rows of X iγ

• random statement specifies random effects and matrix D

• repeated statement specifies beliefs about eij (within-subject

variation ) – not needed if autocorrelation is negligible

• type options allow choice of matrix, e.g., un (unstructured), ar(1),

cs (compound symmetric), simple/vc (σ2I), . . .
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5. Implementation

Example: Dental data under the assumptions on fluctuations ,

measurement error discussed previously

Yij = γ0G(1−Gi)+γ0BGi+γ1G(1−Gi)tij +γ1BGitij +b0i+b1itij +eij

V i = ZiDZT
i + σ2Ii

• Because the “within-subject” part of V i is σ2Ii, a repeated

statement is not required, but we show what it would be if we chose

to include it
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5. Implementation

data dental; input child age dist gen @@; oppgen=1-gen;

datalines;

1 8 21 0 1 10 20 0 1 12 21.5 0 1 14 23 0 ...

27 8 22 1 27 10 21.5 1 27 12 23.5 1 27 14 25 1

;

proc mixed method=reml; * reml is the default;

class child;

model dist = oppgen gen oppgen*age gen*age / noint solution;

random intercept age / type=un subject=child;

repeated / type=simple subject=child; * could be left out;

run;
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6. Discussion

Take-away message: Specialized statistical models are required for

longitudinal data analysis

• Before one can analyze longitudinal data, one must understand the

models and their interpretation

• Understanding the models is critical to understanding on how to use

software !

• Hence the focus here on models rather than methods
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6. Discussion

What we didn’t talk about: Lots!

• More advanced modeling considerations

• How to choose appropriate covariance models and what happens if

we’re wrong

• How to select the best model and diagnose how well a model fits

• Details of implementation

• What happens if assumptions are incorrect

• How to handle missing data and dropout

• Other types of models (e.g., transition models)

• And much more!
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6. Discussion

Where to learn more: Some references (there are many others!)

Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for

Longitudinal Data, Springer.

Fitzmaurice, G.M., Laird, N.M., and Ware, J.H. (2004) Applied Longitudinal

Analysis, Wiley.

Weiss, R.E. (2005) Modeling Longitudinal Data, Springer.

Diggle, P.J., Heagerty, P., Liang, K.-Y., and Zeger, S.L. (2002) Analysis of

Longitudinal Data, 2nd Edition, Oxford University Press.

Molenberghs, G. and Verbeke, G. (2005) Models for Discrete Longitudinal

Data, Springer.

Davidian, M. and Giltinan, D.M. (1995) Nonlinear Models for Repeated

Measurement Data, Chapman and Hall/CRC Press.

Vonesh, E.F. and Chinchilli, V.M. (1997) Linear and Nonlinear Models for

the Analysis of Repeated Measurements, Marcel Dekker.
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6. Discussion

Where to get a copy of these slides (and more):

http://www.stat.ncsu.edu/∼davidian

(including lots of examples of using SAS and R under the ST 732 and

ST 762 course web pages!)
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