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-I- INTRODUCTION '

Goal of numerical homogenization: compute the behavior of an heterogeneous

medium (with lengthscale €) using a mesh of size h >> e.

[1 A homogenized model is not enough: we want some details about

microscopic fluctuations.
There may be many scales e: beware of resonances h = €.

A model problem or a paradigm of homogenization must be chosen in order
to guide the conception of a multiscale numerical method.

Many works on this topic: Arbogast, Hou, Efendiev, Babuska, Matache,
Schwab, E, Engquist, Capdeboscq, Vogelius...

Although the real problems are not periodic, we shall use periodic

homogenization as a guideline.
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Model problem: diffusion in a periodic medium characterized by the tensor
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(DEFINITION OF HOMOGENIZATION)

Rigorous version of averaging

Process of asymptotic analysis

Extract effective or homogenized parameters for heterogeneous media
Derive simpler macroscopic models from complicated microscopic models

Different methods :
e two-scale asymptotic expansions for periodic media
e H- or G-convergence for general media

e stochastic, or variational methods
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TWO-SCALE ASYMPTOTIC EXPANSIONS

Stationary diffusion equation

—div (A (f) Vue) —f inQ

€

u. =0 on OS2

with a coefficient tensor A(y) which is Y-periodic, uniformly coercive and
bounded

N
alé? < Y A(&g < BIEP, VEERN,VyeY (B>a>0).

i,J=1
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(HOMOGENIZATION AND ASYMPTOTIC ANALYSIS)

Direct solution too costly if € is small
Averaging: replace A(y) by effective homogeneous coefficients

Asymptotic analysis: limit as € — 0

yields a rigorous definition of the homogenized parameters
Error estimates: compare exact and homogenized solutions
Similar to Representative Volume Element method

Huge literature
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[Representative Volume Element methodJ

Mesoscale € << h << 1. A Representative Volume Element is a cube of size h.

We average all quantities in this cube:
u is the average of the field wu.
¢ is the average of the gradient Vu,
o is the average of the flux A (%) Vu,
e is the average of the energy density A (%) Ve - Ve

Definition of the homogenized tensor A*:

o=A", e=A%¢-£ & =Vu.

Questions: is it possible to find such a tensor A* ? Does it depend on €, h, f, u,

the boundary conditions 7 How to compute it 7
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[Asymptotic analysisj

Rather than considering a single heterogeneous medium with a fixed lengthscale
€g, the problem is embedded in a sequence of similar problems parametrized by a

lengthscale e.

Homogenization amounts to perform an asymptotic analysis when € — 0

lim u, = w.
e—0

The limit u is the solution of an homogenized problem, the conductivity tensor of

which is called the effective or homogenized conductivity.

This yields a coherent definition of homogenized properties which can be

rigorously justified by quantifying the resulting error estimate.
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‘TWO—SCALE ASYMPTOTIC EXPANSIONSI

Ansatz for the solution
—+ o0

ue(r) = Zeiui (a:, %) ,

1=0

with wu;(x,y) function of both variables x and y, periodic in y

Derivation rule

) + Z €' (Vyuirr + Vau,) (ac, f)

) €
1=0
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| CASCADE OF EQUATIONSI

—e 2 [div,, AV, uo] (x, %)

—e 1 [div, A(Vauo + Vyur) + dive AV, uo] (:p f)

€

€ v AV + Vo) + divy AV + )] (%)

e'i [leg; A(vxuz + Vyu'é—l—l) — ley A(VCUU'H—l -+ Vyui+2)] <CU7 %)
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(ei equation}

—divy (A(y)Vyuir2(z,y) = f (ui; wiv1) (2,y) in Y

[1 This is a partial differential equation in y.
[1 We supplement it with periodic boundary conditions.

[1 The macroscopic variable x is just a parameter.
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( Technical lemma on cell problems]

Definition.

L2#(Y) — {gb(y) Y -periodic, such that / o(y)*dy < —|—oo}
Y

Hy(Y) = {¢ € L3 (Y) such that V¢ € L (Y)"}

Lemma. Let f(y) € L% (Y) be a periodic function. There exists a solution in
H(Y) (unique up to an additive constant) of

—div (A(y)Vw(y)) =f inY
y — w(y) Y -periodic,

if and only if [, f(y)dy = 0 (this is called the Fredholm alternative).
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€2 equation
[ J

—div, (A(y)Vyue(z,9)) =0 in Y
where x is just a parameter.

Its unique solution does not depend on y

UO(ZCa y) = U(CC)
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[e_l equation]

—div, A(y)Vyui(z,y) =div, A(y)Vzu(x) in Y

which is an equation for u;. Introducing the cell problem

—div, A(y) (e; + Vyw;(y)) =0 inY
y — w;(y) Y -periodic,

by linearity we compute

w(e) = Y o (@)
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e equation
( J

—div, A(y)Vyuz(x,y) = divy, A(y)Vzur +divy A(y) (Vyur + Veu) + f(z)

which is an equation for us. Its compatibility condition (Fredholm alternative) is

/Y (divy Aly)Vour + dive Aly) (Vyus + Vau) + f(2)) dy = 0.

Replacing uq by its value yields the homogenized equation

—div, A*V, u(z) = f(z) in Q
u=20 on 0f2,

with the constant homogenized tensor

A = /Y (A(y)Vyw;) - e + Ay (y)] dy
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(COMMENTS

Explicit formula for the effective parameters (no longer true for non-periodic

problems).

A* does not depend on €, f, u or the boundary conditions (still true in the

non-periodic case).
A* is positive definite (not necessarily isotropic even if A(y) was so).

One can check that

X

limu, =u, limVu.=Vu, limA (

e—0 e—0 e—0

) Vu, = A*Vu,

€

lim A (f

e—0

) Vu, - Vu, = A*Vau - Va.

€

Same results for evolution problems.

Very general method, but heuristic and not rigorous.
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CONVERGENCE

_>—|-r6(a:) with ||re]| g1 < CvVe

In particular, it implies

Ve (2) fj (Vyws) (=) <Cye

L2 (Q)N

Correctors are important for the gradient.

We could have expected [|re| g1y < Ce and ||re]|p2(q) < Ce?, but this is not

true in general.
”Bad estimates” are due to boundary layers effects.

Generalization to the non-periodic case.
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(HARMONIC VARIABLES (S. Kozlov) |

This ansatz looks like a Taylor expansion.

Corollary. Assume u € W#>°(Q). Define w = (w1, ..., wy). Then

ue(x):u(x+ew(§))+se(x) with  [|se|| () < Ce.

€

(There is a generalization to the non-periodic case.)

Remark. In 2-d, z — (z + ew (£)) is a change of variables (cf. Nesi).
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-II- CLASSICAL FINITE ELEMENT METHODS '

Stationary diffusion equation

—div (A(x)Vu) = f in
u=20 on 0f

Sobolev space

H3(Q) = {gb such that / (¢° +|V¢|?) dz < 400 and ¢ = 0 on GQ}
Q

Variational formulation: find u € Hj () such that

/A(x)Vu-ngda::/fgbdx Vo e Hy(Q)
Q Q
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Galerkin method for a finite dimensional subspace V;, C H}(Q): find an
approximate solution u; € V}, such that

/ A(x)Vuy, - Vo dx = / fordx Yo eV
Q Q

ndi
Let (¢;)1<j<ny be a basis of V}, and write up, = Z U;p; to get
j=1

ZUJ'/

j= ¢

(2)V; - Vi du = /Q Fbid

Introducing

K = (/ A(z)Vo; - Vo, d:c) , and b= (/ fo; d:c)
Q 1<7,7<na 0 1<i<ng;

we have to solve a linear system in R"%

KnU =0
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Typically V3, is associated to a mesh.

Example: P1 Lagrange finite elements.

Basis function: ¢; affine on each (triangular) cell, equal to 1 on the node z; and 0

on all others nodes.

= U, = up(x;)
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(Convergence]

Theorem. For a sequence of ”uniformly regular” meshes in 2-d or 3-d, there

exists a constant C, independent of h and u such that
Ju —un|lg1Q) < Chllull g2 )
(roughly, HU’HH2(Q) ~ ||VVU||L2(Q))

Remark. In the case of oscillating coefficients A (f), we have

) = Hu€||H2(Q) ~ 6_1

so the P1 Finite Element method can converge only if h << €.
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(Ingredients of the convergence proof]

Céa’s lemma. Let u be the exact solution and u; the approximate one in V},.
Then
U— U < C inf ||lu— v|.
| nllzrey < € nf flu— o

Interpolation lemma (P1 FEM in 2-d or 3-d). For any function v € H*(Q)
define its interpolate in V},

nai

o) = 3 () 6i()

1=1

There exists a constant C', independent of h and v such that

|V —rpv|| 1) < Chl|v]| g2(0).

Remark. For a multiscale finite element methods we must improve the

interpolation lemma by changing the basis functions.
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‘-IV- MULTISCALE FINITE ELEMENT METHODS .

Model problem

—div (A°(x)Vu.) = f in Q
u. =0 on OS2

Macro/micro approach: use a coarse mesh for defining the nodal values of u.

and a fine mesh for computing the basis functions ¢5.
[J We pre-compute locally oscillating basis functions ¢; that depend on A€.
[ The problem dimension is that of the coarse mesh.

[0 Multiscale FEM are defined for non-periodic problems but their quantitative
convergence analysis is made in the periodic case.

[1 There are other problems and other methods...

[1 Main references for this example: Hou, Efendiev, Wu, Babuska, Matache,
Schwab, Brizzi...
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Multiscale Finite Element Method of T. Hou

For each coarse triangle K, there is a fine mesh on which we compute ¢; solution

of

i

—div (A°Ve¢5) =0 in K
¢S (x5) = 04 at the nodes of K
L #5(z) affine on 0K
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(Multiscale Finite Element Method of T. Hou (continued)]

By definition, the function ¢ is continuous across cell boundaries OK.
This yields a conformal F.E.M.
The F.E. basis functions ¢$ encodes the oscillations of A*€.

Idea similar to the famous oscillating test function method of Tartar in

homogenization theory.
The computation of all ¢ can be done in parallel (once and for all).

The previous definition is similar to the cell problem: if e - x is the affine

boundary condition, then w; = ¢ — e - x satisfies

A(e+Vuws§)) =0 in K
on 0K
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[Convergence of the method (in the periodic case)]

Theorem. Let u. be the exact solution and u” the computed solution by the
multiscale FEM. Then

€
lue = w1 < C (e + h + \/%>

The classical finite element method does not converge if h >> e.
Resonance effect when h = € for the multiscale FEM.

Although we analyze the convergence of the FEM in the periodic case, it is

well defined for non-periodic problems.
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[Sketch of the proofj

Denoting by V,¢ the finite dimensional space spanned by the (¢5), Céa’s lemma
implies

H’LL6 — U?HHl(Q) S C hinf . H’LL6 — ’U?HHl(Q).

(o EVh

We choose v =TI u where u is the homogenized solution and II§ is the

interpolation operator defined by

(o) () = ) w(zi)¢5(«)

1

On the other hand, using the homogenization ansatz
lue = wt |l @) < C (llue —u — eusl| ) + lu+ euf — Miull g (o)

< C (Ve [|u+ eu§ — hull o)
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Then using the homogenization ansatz for the basis function ¢ on each coarse
cell K

|¢ qbz—eZwk( )gf; <cfm

H'(K)
where C' is independent of h (the size of K).

This implies

€ X
Ju+-eus —IT5ul| ) < C (\/% + [ = Tyl s o)+ ellw (=) V(u - Hw)HHl(m)

where II;, is the usual interpolation operator on the coarse mesh. Recall that
Ju — Mpul| ) < Chllul| g2

which yields the result.
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(Another multiscale method (Allaire-Brizzi)]

Based on the harmonic variables of Kozlov

ue(T) ~ u <ZC + ew <§>)

€

with w = (w1, ..., wy) solutions of the cell problems.

New idea: to compute an approximation of u. we use a standard finite element

method for © composed with the map ©* — (ac + ew (f))
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INGREDIENTS

As many other methods we use a coarse mesh for v and a fine mesh for w.

On the coarse mesh: standard P, F.E.M. with basis functions (¢;) (of any
order k > 1).

On the fine mesh: for each coarse triangle K we compute a locally oscillating
function y* solution of

—div (A(%)VxF) =0 inK
X (x) == on 0K

[0 Typically x¢(z) =~ x + ew (%)

Definition of the multiscale FEM: basis functions ¢$(z) = ¢; o x°(x).
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(CONVERGENCE (in the periodic case)]

Theorem. If u” is the approximated solution in the subspace spanned by
(gbg — ¢Z O Xe)a then

€

h

If the oscillating functions x¢ are computed with a P, FEM on the fine mesh of

" 5 € W\ F
e — u || g1y < C [ A" + E—F (?) :

size h’, then
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[Idea of the proofj

By Céa’s lemma

H’LL6 — U?HHl(Q) S C hinf H’LL6 — ’U?HHl(Q).

(o EV}f

We choose v = (II,u) o x¢ where II;, is the usual interpolation operator on the

coarse mesh. Then

lue = ugllg @) < C ([[ue —wo x|y + 1(u = Tpu) o X[ a1(ey) -
(But this estimate has to be done on each coarse cell K.)

A standard computation yields the result.
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REMARKS

Each oscillating function x€ is computed independently of the others (natural

parallelism).

The complexity of the macroscopic computation is linked to the coarse mesh.
No periodicity is required.

When k = 1, we recover exactly the previous method of Hou et al.

We perform numerical experiments for k = 2.

One can choose a larger support for x¢ (over-sampling in order to avoid

boundary layer effects) and still have a conforming F.E.M.

Our method works in any dimension and for any type of mesh.
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SOME IMPROVEMENTS

[1 The error estimate in y/€/h indicates a resonance effect.

[l It is due to boundary layers.
[0 It cannot be removed completely but some ideas are helpful.

First idea: Replace the affine boundary conditions on 0K for ¢; by oscillating

boundary conditions: for example, in 2-d

—div (A¢(2)V¢S) 0 in K,
o5 = b5(x) on 0K,

where on each side of 0K, parametrized by a curvilinear coordinate s € [0, 1],
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[Second idea: Oversampling method (T. Hou)J

K

Oversampling method: compute ¢S on a larger fine mesh K’ such that K CC K’

(overlap).

Non-conforming F.E. method with a better convergence rate

€
lue — U?HHl(Q) <C <h+ €+ E)
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NUMERICAL EXPERIMENTS '

Test proposed by T. Hou in the 2-D periodic case

1
Aly) = (2 + 1.8sin(27y1))(2 + 1.8sin(27ys))

Method of Allaire-Brizzi with P2 F.E.

A* =1/(24/4 — (1.8)2)

constant source term f = —1

Q0 = (0,1)? with Dirichlet boundary conditions
e =0.01
coarse triangular mesh with h = 1/5

fine triangular mesh with A’ = 4.10~*
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T I T T T T T L
— P2-MSFEM / I — P2-MSFEM
P1-FEM reference | I P1-FEM reference

~_ 7

0.5
X

Cross section (left) and close-up (right) at y = 0.5 of the reference and multiscale
solutions: e = 1072, h =1/5, A’ = 4.107*
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DUeps/Dx(x,y=0.5)
DUeps/Dx(x,y=0.5)

X

Cross-section (left) and close-up (right) of the partial derivative du®/0x at
y = 0.5 of the reference and multiscale solutions: € = 1072, h = 1/5, b/ = 4.107*.

Here, H stands for the homogenized solution.
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Predicted error estimate when k£ =2, k' =1

h/
“(h) = W2+ /- + =
9'(h) +\/;+e

If we assume that A’ is very small compare to €, the optimal mesh size is

h ~ /5,
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L B L ' L L
—— EPS=0.01 f - +—+ EPS=0.08
EPS=0.02 | ] i ~ EPS=0.04
+---+ EPS=0.02
o-—-—o EPS=0.01

EPS=0.08

o
=

[lUeps,h - Uref||H1

Error estimate (in the H' norm) predicted by the previous formula (left) and

computed (right) as a function of h for different values of € with A’ = 4. 1074,
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h

[ uy, — uf{[z2(q)

luf — v o)

[ uj, — uf L)

0.0666

0.372 E-02

0.721 E-01

0.673 E-02

0.0769

0.327 E-02

0.685 E-01

0.792 E-01

0.0833

0.287 E-02

0.654 E-01

0.522 E-02

0.1000

0.105 E-03

0.583 E-01

0.196 E-02

0.1250

0.146 E-02

0.557 E-01

0.273 E-02

0.1666

0.116 E-02

0.517 E-01

0.313 E-02

0.2000

0.412 E-03

0.491 E-01

0.243 E-02

0.2500

0.702 E-03

0.509 E-01

0.405 E-02

0.3333

0.195 E-02

0.600 E-01

0.604 E-02

0.5000

0.536 E-02

0.926 E-01

0.107 E-01

Error estimates (in various norms) as a function of h for € = 1072 and

h =4. 104,
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h CPU1 (s) | CPU2 (s) | CPU1/N (s)

0.0666 81918 1.05 182
0.0769 65508 0.46 193
0.1000 47520 0.11 237
0.1250 25640 0.04 200
0.2000 | 50 9897 0.01 197
0.2500 | 32 6367 0.01 198
0.3333 | 18 3619 0.01 201
0.5000 8 1849 0.01 231

CPU times (in seconds). N is the total number of elements in the coarse mesh.

CPUL1 is the total sequential time for computing the oscillating functions w®"

(thus CPU1/N is the corresponding parallel time ). CPU2 is the inherently

sequential time for the coarse mesh computation (assembling and solving).
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P1 multiscale FEM

P2 multiscale FEM

h

Juf, — ul|L2(q)

luf, — ufl| 1 ()

[uf, — ul|L2(q)

luf, — ul| 1)

0.0666

0.442E-02

0.828E-01

0.346E-02

0.714E-01

0.1000

0.289E-02

0.840E-01

0.955E-03

0.581E-01

0.1250

0.415E-02

0.921E-01

0.131E-02

0.547E-01

0.2000

0.676E-02

0.117E+00

0.412E-03

0.491E-01

0.2500

0.929E-02

0.134E+00

0.702E-03

0.509E-01

0.3333

0.133E-01

0.154E+00

0.195E-02

0.600E-01

0.5000

0.155E-01

0.168E4-00

0.536E-02

0.926E-01

Comparison P1 (left) and P2 (right): error estimates (in various norms) as a
function of h for e = 1072 and A’ = h/500.
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(2-d non-periodic problem]

Discontinuous coefficients:

1 in the matrix
A(x) =

100 in the inclusions

10% monodisperse spherical inclusions in a matrix.
Domain Q = (0, 1)?, without source term.

Boundary conditions: Neumann on the vertical sides, Dirichlet 0 (bottom) and 1
(top).
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U006 5 ©000
00 o o O

Coarse mesh. Close-up on the inclusions.
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Flux density |A°Vu€| in a coarse mesh cell and close-up.
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=0.5)y)

Z
>
o)
?
Q
2
)

Close-up of the vertical cross-sections of the partial derivative 0u®/dy(x = 0.5, y).




0.5y)

e
=
o)
D
9
2
O

0.495 : 0.505 : 0.515

y

Close-up of the vertical cross-sections of the partial derivative du®/dz(x = 0.5,y).
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-V- ANOTHER HOMOGENIZATION PARADIGM .

Different model problem and diferent scaling.
A diferent homogenization paradigm yields a different multiscale method.

Previously the solution was behaving like

ue(x) ~ u(x) + euy (az, %) :

Now we want to have large oscillations in the leading term

x T
ue () & ug (CIZ, —) + euq (a:, —) :

€ €

Such a model can be found in neutronic diffusion, radiative transport,

semiconductors...
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(Example: neutronic diffusion model]

o(5) 2 - aw (a

ue =0

ue(0) = ug

ue(t, x) ~ e Muw (

:1:) (7 <e2t, :c)

€

—Ae(y)w —div (A(y)w) =o(y)w inY
y — w(y) Y — periodic
( ~

c*% — A*u) =0 in

u=20 on 0f)

U(O) = Ug

\
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our e groupe rapide nour e groupe thermigue

Two groups neutronic diffusion computation (Allaire and Siess)
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(HYDRODYNAMIC LIMIT OF KINETIC EQUATION)

Transport or kinetic equation: particle density ¢(x,v) in Q x V

X X

80%56 bev Vo, — /Va (E,vl,fv) b (z, 0 )dv' — % (E’U> Pe(,0)

pe =0 on'_ ={(z,v) € 02 x V]|v -n(x) <0},

Singular perturbations: mean free path of the order of ¢, characteristic time

of observation of the order of 1/¢€.
Hydrodynamic or fluid limit: change of type of the equations.

Origin of the scaling: change of variables y = x/e = cells of size 1, domain

of size 1/€, no more € in the equations.
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( CONVERGENCE RESULT)

Pt z,0) ~ e Mo (Z,0) u ()

Spectral cell problem:

—AY v Vyih = /V o (y,v",v)Y(y,v")dv" = E(y,v)Y(y,v) inY

y — Y(y,v) Y — periodic

First eigenvalue A and first eigenfunction ¢ (y,v) > 0 (local equilibrium between

transport and scattering).
¢6 (tv L, U) e)\t

Change of unknown: u.(e’t,z,v) =
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Homogenized problem for w.:

)
c*% —div (A*Vu) =0 in Q
oT

u=>0 on Of)

U(O) — ﬂo

Conclusion: microscopic transport equation, homogenized diffusion equation.
At the basis of many numerical methods.

Complicated but explicit formula for ¢* and A*.

Boundary layers are very important.

Many contributions: Keller, Larsen, Bensoussan-Lions-Papanicolaou, Sentis,
Allaire-Bal...
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T

'Reconstructed Flux’

'Reference Flux’ -----
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