

An Introduction to Neuroendocrinology

Second Edition

How does the brain regulate sexual behavior, or control our body weight? How do we cope with stress? Addressing these questions and many more besides, this thoroughly revised new edition reflects the significant advances that have been made in the study of neuroendocrinology over the last 20 years.

The text examines the importance of the hypothalamus in regulating hormone secretion from the endocrine glands, describing novel sites of hormone release, including bone, heart, skeletal muscle, and liver. The role of steroid hormone, neurotransmitter and peptide receptors, and the molecular responses of target tissues, is integrated into the discussion of the neuroendocrine brain, especially through changes in gene expression. Particular attention is attached to neuropeptides, including their profound influence on behavior.

Complete with new full-color figures throughout, along with review and essay questions for each chapter, this is an ideal resource for undergraduate and graduate students of neuroscience, psychology, biology, and physiology.

Michael Wilkinson has 40 years of experience in teaching neuroscience and neuroendocrinology to undergraduate and graduate students as a Professor in the Department of Obstetrics and Gynaecology and IWK Health Centre, Dalhousie University, Halifax, Canada. His research laboratory has focused on neurodevelopmental aspects of female reproduction with a specific interest in the neuroendocrine regulation of hypothalamic function, including the impact of sex hormones on sleep.

Richard E. Brown is a University Research Professor in the Department of Psychology and Neuroscience at Dalhousie University. He has taught courses on hormones and behavior, measuring behavior, and the neurobiology of learning and memory for more than 35 years. His research is on mouse models of Alzheimer's Disease, Fragile X Syndrome, ADHD, and other neurological disorders. He is currently examining the age-related hormonal changes in transgenic Alzheimer's mice.

An Introduction to

Neuroendocrinology

Second Edition

Michael Wilkinson

Professor of Obstetrics & Gynaecology Professor of Physiology & Biophysics Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada

Richard E. Brown

Professor of Psychology Dalhousie University, Halifax, Nova Scotia, Canada

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521806473

First edition @ Cambridge University Press 1994 Second edition @ M. Wilkinson and R. E. Brown 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1994 Second edition 2015

Printed in the United Kingdom by Bell and Bain Ltd

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Wilkinson, Michael, 1943-, author.

An introduction to neuroendocrinology / Michael Wilkinson, Richard E. Brown. - Second edition.

p. ; cm.

Richard E. Brown's name appears first in the previous edition.

Includes bibliographical references and index.

ISBN 978-0-521-80647-3 (hardback) - ISBN 978-0-521-01476-2 (paperback)

I. Brown, Richard E., author. II. Title.

[DNLM: 1. Neuroendocrinology - methods. 2. Endocrine

Glands. 3. Neuropeptides. 4. Neurosecretory Systems. 5. Peptide Hormones.

6. Receptors, Neurotransmitter. WL 105]

QP356.4

612.8-dc23

2014041712

ISBN 978-0-521-80647-3 Hardback ISBN 978-0-521-01476-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This book is dedicated, first, to the more than 2,000 Dalhousie University students who were enrolled in the "Hormones and Behavior" undergraduate course and who were the original inspiration for writing the book. Many of them provided critical comments on early drafts of the first edition.

Second, one of us (M. W.) acknowledges the mentorship of the late Professor Kurt B. Ruf, a neuroendocrinologist and friend.

CONTENTS

	Preface to the second edition xiii Acknowledgements xv List of abbreviations xvi
1	Classification of chemical messengers 1 1.1 Hormones, the brain and behavior 1 1.2 The body's three communication systems 2 1.3 Methods of communication between cells 5 1.4 Types of chemical messenger 7 1.5 Neuropeptides and neuromodulators 14 1.6 Summary 16
2	The endocrine glands and their hormones 19 2.1 The endocrine glands 19 2.2 The hormones of the endocrine glands 19 2.3 Summary 40
3	The pituitary gland and its hormones 45 3.1 The pituitary gland 45 3.2 The hormones of the pituitary gland 49 3.3 Pituitary hormones in the brain 54 3.4 Summary 54
4	The hypothalamic hormones 57 4.1 Functions of the hypothalamus 57 4.2 Hypothalamic neurosecretory cells 58 4.3 Hypothalamic hypophysiotropic hormones 62 4.4 Complexities of hypothalamic-pituitary interactions 73 4.5 Summary 73
5	Neurotransmitters 78 5.1 The neuron and the synapse 78 5.2 Categories of neurotransmitters 80 5.3 Neurotransmitter biosynthesis and storage 88 5.4 Release of neurotransmitters 92 5.5 Receptors for neurotransmitters 94

viii

CONTENTS

	5.6	Inactivation of neurotransmitters 97			
	5.7	Neurotransmitter pathways 97			
	5.8	Drugs influencing neurotransmitters, and their receptors, in the nervous system 102			
	5.9	Can nutrients modify neurotransmitter levels and behavior? 107			
	5.10	Divisions of the nervous system 109			
	5.11	Summary 114			
6	Neurotransmitter and neuropeptide control of hypothalamic,				
	pitu	itary and other hormones 120			
	6.1	The cascade of chemical messengers 120			
	6.2	Neural control of hypothalamic neurosecretory cells 120			
	6.3	Neurotransmitter regulation of anterior pituitary hormone secretion 124			
	6.4	Neurotransmitter regulation of neurohypophyseal hormone			
		secretion 133			
	6.5	Electrophysiology of neurosecretory cells 135			
	6.6	Neurotransmitter regulation of other endocrine glands 135			
	6.7	Complications in the study of neurotransmitter control of			
		hypothalamic hormone release 138			
	6.8	Neuroendocrine correlates of psychiatric disorders and			
		psychotropic drug treatment of these disorders 141			
	6.9	Glial cells and the regulation of hormone release 142			
	6.10	Summary 150			
7		ulation of hormone synthesis, storage, release, transport			
	and	deactivation 157			
	7.1	The chemical structure of hormones 157			
	7.2	Hormone synthesis 159			
	7.3	Storage and intracellular transport of hormones 162			
	7.4	Hormone release 163			
	7.5	Hormone transport 164			
	7.6	Deactivation of hormones 166			
	7.7	Methodology for neuroendocrine research 166			
	7.8	Summary 168			
8	Reg	ulation of hormone levels in the bloodstream 170			
	8.1	Analysis of hormone levels 170			
	8.2	Mechanisms regulating hormone levels 174			
	8.3	Hormonal modulation of neurotransmitter release 183			
	8.4	The cascade of chemical messengers revisited 184			

CONTENTS

іx

	8.5	When hormone regulatory mechanisms fail 186		
	8.6	Summary 187		
9		oid and thyroid hormone receptors 192		
	9.1	The intracellular receptor superfamily 193		
	9.2	How are steroid hormone target cells identified? 196		
	9.3	How are steroid hormone target cells differentiated from		
		non-target cells? 198		
	9.4	Genomic and non-genomic actions of steroid hormones 198		
	9.5	Measurement and regulation of hormone receptor numbers 205		
	9.6	Gonadal steroid hormone target cells in the brain 206		
	9.7	Adrenal steroid target cells in the brain 210		
	9.8	Steroid hormone-induced changes in neurotransmitter release 214		
	9.9	Functions of steroid hormone modulation of nerve cells 215		
	9.10	Thyroid hormone receptors in the brain 223		
	9.11	Summary 225		
10	Reco	eptors for peptide hormones, neuropeptides		
10		neurotransmitters 236		
		Membrane receptors 236		
		Signal transduction by G proteins 240		
		Second messenger systems 242		
		Interactions in second messenger systems 248		
		Signal amplification 249		
		Second messengers in the brain and neuroendocrine system 249		
		Comparison of neurotransmitter/neuropeptide and steroid hormone		
	10.7	actions at their target cells 252		
	10.8	Summary 253		
	1010			
11	Neu	ropeptides I: classification, synthesis and co-localization		
	with	n classical neurotransmitters 257		
	11.1	Classification of neuropeptides 257		
	11.2	Synthesis, storage, release and deactivation of neuropeptides 259		
	11.3	Exploring the relationships among neuropeptides, neurotransmitters		
		and hormones 261		
	11.4	Coexistence (co-localization) of neurotransmitters		
		and neuropeptides 266		
	11.5	Localization of neuropeptide cell bodies and pathways in the		
		brain 269		
	11.6	Neuropeptide receptors and second messenger systems 272		
		Neuropeptides and the blood-brain barrier 275		
		Summary 278		

x

CONTENTS

12	Neuropeptides II: function 286
	12.1 Neurotransmitter and neuromodulator actions of neuropeptides: a
	dichotomy or a continuum? 286
	12.2 Neurotransmitter actions of neuropeptides 287
	12.3 Neuromodulator actions of neuropeptides 293
	12.4 Regulatory effects of neuropeptides on the neuroendocrine
	system 299
	12.5 Kisspeptin and GnRH as hypothalamic regulators of fertility 300
	12.6 Neuropeptides and the regulation of food intake and body
	weight 302
	12.7 Visceral, cognitive and behavioral effects of neuropeptides 313
	12.8 Summary 332
13	Cytokines and the interaction between the neuroendocrine
	and immune systems 351
	13.1 The cells of the immune system 351
	13.2 The thymus gland and its hormones 354
	13.3 Cytokines: the messengers of the immune system 356
	13.4 The functions of cytokines in the immune and hematopoietic
	systems 360
	13.5 Effects of cytokines and other immunomodulators on the brain and
	neuroendocrine system 364
	13.6 Neural and endocrine regulation of the immune system 374
	13.7 Hypothalamic integration of the neuroendocrine and immune
	systems 384
	13.8 Summary 387
14	
	14.1 Behavioral bioassays 400
	14.2 Correlational studies of hormonal and behavioral changes 403
	14.3 Experimental studies I: behavioral responses to neuroendocrine
	manipulation 407
	14.4 Experimental studies II: neuroendocrine responses to
	environmental, behavioral and cognitive stimuli 416
	14.5 Neural and genomic mechanisms mediating neuroendocrine-
	behavior interactions 424
	14.6 Confounding variables in behavioral neuroendocrinology
	research 434
	14.7 Summary 444

CONTENTS

X

15	An overview of behavioral neuroendocrinology: present, past and future 458
	15.1 The aim of this book 458
	15.2 The history of endocrinology and behavioral
	neuroendocrinology 460
	15.3 The future of behavioral neuroendocrinology 460
	Index 469

PREFACE TO THE SECOND EDITION

In this second edition of An Introduction to Neuroendocrinology, we have rewritten and greatly extended the original content. The revised text includes entirely new reference lists and a complete new set of illustrations. The book reflects the many advances that have occurred in the study of neuroendocrinology during the past 20 years. Nevertheless, and although the text is based largely on modern references, our primary aim is to provide an introductory description of mammalian neuroendocrine control systems. Several books are available that cover this topical and clinically relevant field, but, although valuable, these tend to be advanced texts of the edited, multi-author type. Our book is designed to provide the basic principles necessary to understand how the brain controls, and responds to, the endocrine hormones. It will be suitable for a variety of different students and especially those who might not have been previously exposed to a focused course in neuroendocrinology. Thus, students in psychology, biology and science should be able to master much of the basic material. However, the book is also highly appropriate for honors students and first-year graduate students in physiology, anatomy, neuroscience and medicine. This book is therefore designed for students in two levels of classes: introductory classes, in which all of the material will be new to the student, and more advanced classes, in which the students will be familiar with many of the terms and concepts through courses in biology, physiology, psychology or neuroscience, but who have not studied neuroendocrinology as an integrated discipline.

This book offers an overall outline of the neuroendocrine system and will provide the vocabulary necessary to understand the interaction between hormones and the brain. In addition, we provide a concise description of those topics that must underpin any attempt to learn, and to teach, neuroendocrinology. For example, there are chapters on basic neuroscience (neurotransmitters and neuropeptides), the physiology of the endocrine glands (hormones), receptors and receptor signaling mechanisms (e.g. G proteins; nuclear receptors), hormone assay and gene expression techniques (e.g. ELISA; in situ hybridization) and a description of the immune system, with particular emphasis on the integration of immune and neuroendocrine pathways. This basic information is also essential to understand the profound effects of hormones on behavior, described in Chapter 14. Once this material is mastered, the study of how hormones influence developmental neural processes and behavior will be easier. Moreover, we have included throughout the book references to the clinical relevance of many topics; for example, the influence of neuropeptides in the control of body weight and obesity. However, this book focuses primarily on the neural actions of hormones, and many of the peripheral physiological actions of hormones, such as regulation of metabolism, water balance, growth, and the regulation of calcium, sodium and potassium levels, which are the focus of traditional endocrinology texts, are referred to only in reference to their importance in the neuroendocrine system.

The introductory (second- or third-year undergraduate) student can be expected to follow the material in this book at the level presented. To help in this, review/study

xiv

PREFACE TO THE SECOND EDITION

questions are given at the end of each chapter. These should be treated as practice examination questions and answered after each chapter is completed. For further detailed information on the topics covered in each chapter, all students can consult selected references provided in the text. Additional references under "Further reading" are also included at the end of each chapter and these will be particularly useful to the more advanced student. The book will be especially relevant for more advanced (honors and graduate) students who can use this book as an introductory account of the subject matter covered in each chapter. These students may then take advantage of the many references cited in each chapter to provide current and relevant information on each topic. The essay questions at the end of each chapter also serve to provide topics for discussion, analysis and directed research papers for the advanced student.

ACKNOWLEDGEMENTS

The authors are indebted to friends and colleagues who offered generous and invaluable assistance in the writing of this book. Paul Wilkinson, Ms. Alex Pincock and Ms. Diane Wilkinson created several figures; Alex Pincock and Dr. Jim Pincock carefully read, and made useful suggestions for improvement of, several early chapters. Special thanks are due to Diane Wilkinson, who typed all the tables and assisted in compiling the extensive reference lists. The following scientists unselfishly provided illustrations from their published material: Dr. O. Almeida, Dr. A. Armario, Dr. R. Bridges, Dr. R. Goyal, Dr. L. De Groot, Dr. L. Hale, Dr. J. Herman, Drs. T. Horvath and M. Dietrich, Ms. A. Rain, Dr. T. Smith, Dr. J. Ström, Dr. J. Wakerley, Dr. A. Winokur and Dr. S. Winters. As far as we are aware, all sources of the illustrations used have been acknowledged. Permission to use previously published figures was obtained either from the original authors or via *RightsLink* (Copyright Clearance Centre).

Finally, thanks are due to Megan Waddington of Cambridge University Press for her patience in awaiting the delivery of this manuscript.

ABBREVIATIONS

IIIv	third ventricle	CART	cocaine- and amphetamine-regulated
2-AG	2-arachidinoyl glycerol		transcript
5-HIAA	5-hydroxyindoleacetic acid	cGMP	cyclic guanosine monophosphate
5-HT	5-hydroxytryptamine (serotonin)	CB1	cannabinoid receptor 1
5-HTP	5-hydroxytryptophan	CBG	corticosteroid binding globulin
6-OHDA	6-hydroxy-dopamine		(transcortin)
AC	adenyl cyclase	CCK	cholecystokinin
ACh	acetylcholine	CCK-KO	CCK knockouts
ACTH	adrenocorticotropic hormone	CGRP	calcitonin gene related peptide
ADH	antidiuretic hormone (vasopressin)	ChAT	choline acetyltransferase
ADHD	attention deficit hyperactivity disorder	CL	centrolateral thalamus
AEA	anandamide	Cl-	chloride ion
AgRP	agouti-related protein	CLIP	corticotropin-like intermediate lobe
AH	anterior hypothalamus		peptide
AHA	anterior hypothalamic area	CM	centromedial thalamus
AMPA	α-amino-3-hydroxy-5-methyl-4-	CNS	central nervous system
	isoxazole propionic acid	COMT	catechol o-methyl transferase
AMYG	amygdala	CP	caudate/putamen
ANP	atrial natriuretic peptide	CREB	cAMP responsive element binding
ANS	autonomic nervous system		protein
AP	area postrema	CRF	corticotropin-releasing factor (also
APC	antigen presenting cell		called CRH)
APUD	amine precursor uptake and	CRH	corticotropin-releasing hormone (also
	decarboxylation		called CRF)
AR	androgen receptor	CSF	cerebrospinal fluid
ARC	arcuate nucleus	CV0	circumventricular organs
AT	angiotensin	D	diestrus
ATP	adenosine triphosphate	D2R	dopamine 2 receptor
AVP	arginine vasopressin	D3	diestrus 3
AVPV	anteroventral periventricular nucleus	DA	dopamine
β2-AR	β2-adrenergic receptor	DAG	diacylglycerol
β-END	β -endorphin	DBD	DNA binding domain
β-Gal-ir	β-Galactosidase immunoreactivity	DBH	dopamine beta-hydroxylase
BBB	blood-brain barrier	DG	dentate gyrus
BDNF	brain-derived neurotrophic factor	DHEA	dehydroepiandrosterone
BLA	basolateral amygdala	DHT	dihydrotestosterone
BNP	B-type natriuretic peptide	dISON	dorsolateral supraoptic nucleus
Ca ²⁺	calcium ion	DMN	dorsomedial hypothalamic nucleus
CAH	congenital adrenal hyperplasia	DMT	dimethyltryptamine
cAMP	cyclic adenosine monophosphate	DNA	deoxyribonucleic acid

LIST OF ABBREVIATIONS

xvii

DNES	Diffuse Neuroendocrine System	GnIH	gonadotropin inhibitory hormone
DYN	dynorphin	GnRH	gonadotropin-releasing hormone
E	estradiol	GPR54	G-protein-coupled receptor 54
EDC	endocrine disrupting chemicals	GR	glucocorticoid receptor
EGF	epidermal growth factor	GRE	glucocorticoid response element
EGL	external granule cell layer	G_S	stimulatory G protein
EL	ejaculation latency	GTF	general transcription factor
ELISA	enzyme-linked immunosorbent	GTP	guanosine triphosphate
	assay	HBD	hormone binding domain
ENK	enkephalin	HCG	human chorionic gonadotropin
ENS	enteric nervous system	HCS	human chorionic
EOP	endogenous opioid peptide		somatomammotropin
EPO	erythropoietin	HDC	histidine decarboxylase
ER	endoplasmic reticulum	HFD	high fat diet
ER	estrogen receptor	HGP	hepatic glucose production
ERE	estrogen response element	H-P-A	hypothalamic-pituitary-adrenal
FGF	fibroblast growth factor	HPL	human placental lactogen
fMRI	functional magnetic resonance	HPLC	high performance liquid
	imaging		chromatography
FS	folliculostellate	HRE	hormone response element
FSH	follicle-stimulating hormone	HRT	hormone replacement therapy
FSH-RH	follicle-stimulating hormone-	HSP	heat shock protein
	releasing hormone	HVA	homovanillic acid
FX	fornix	ICo	nucleus intercollicularis
G	granule cells	IF	intromission frequency
G-CSF	granulocyte colony stimulating	IFNγ	interferon γ
	factor	I_g	immunoglobulin
GABA	gamma-aminobutyric acid	IGF	insulin-like growth factor;
GABA-T	GABA transaminase		somatomedin
GAD	glutamic acid decarboxylase	IGFBP	insulin-like growth factor binding
GDNF	glial-derived neurotrophic factor		protein
GDP	guanosine diphosphate	IGL	internal granule cell layer
GFP	green fluorescent protein	III	inter-intromission interval
GH	growth hormone	IL	interleukin
GHRH	growth hormone releasing hormone	IL	intromission latency
GH-RIH	growth hormone release inhibiting	lMAN	lateral magnocellular nucleus of the
	hormone (see SOM)		anterior nidopallium
GI	gastrointestinal	IP3	inositol triphosphate
G_{i}	inhibitory G protein	iR	ion channel
GIP	gastrin inhibitory peptide	IRS-1	insulin receptor substrate 1
GLP-1	glucagon-like peptide-1	JAK	janus kinase
GLP-2	glucagon-like peptide-2	K^+	potassium ion
Glu	glutamate	K_{P}	kisspeptin
GM-CSF	granulocyte-macrophage colony	LH	luteinizing hormone (also lateral
	stimulating factor		hypothalamus)

xviii

LIST OF ABBREVIATIONS

LHRH	luteinizing hormone releasing hormone	NMDA	N-methyl-D-aspartate
LPH	lipotropic hormone (also β-lipotropin)	NO	nitric oxide
LSD	lysergic acid diethylamide	NOS	nitric oxide synthase
M	muscarinic	NP	neurophysin
MAO	monoamine oxidase	NPY	neuropeptide Y
MBH	mediobasal hypothalamus	NSF	N-ethylmaleimide sensitive factor
MC	melanocortin	NT	neurotransmitter
M-CSF	macrophage colony stimulating factor	NTD	amino terminal domain
MD	dorsomedial thalamus	NTS	nucleus tractus solitarius
ME	median eminence	nXIIts	tracheosyringeal portion of the nucleus
MET	metestrus		hypoglossus
mf	mossy fibers	OB	olfactory bulb
MF	mount frequency	OT	oxytocin
mGluR	metabotropic glutamate receptor	ORL1	opioid receptor-like receptor
MHC	major histocompatibility complex	OTR	oxytocin receptor
MHPG	3-methoxy-4-hydroxyphenylglycol	OVLT	organum vasculosum of the lamina(e)
mIU	milli international units		terminalis
ML	mount latency	OXM	oxyntomodulin
ML	molecular layer	OXY	oxytocin
MMGB	medial geniculate body	P	progesterone (also Purkinje cells)
MOE	main olfactory epithelium	PACAP	pituitary adenylate cyclase-activating
MPOA	medial preoptic area		polypeptide
mR	metabotropic membrane receptor	PC	proprotein convertase
MR	mineralocorticoid receptor	PCP	phencyclidine
MRF	midbrain reticular formation	PCR	polymerase chain reaction
MRI	magnetic resonance imaging	pCREB	phosphorylated CREB
mRNA	messenger ribonucleic acid	PEI	post-ejaculatory interval
α-MSH	α-melanocyte-stimulating hormone	PeN	anterior periventricular nucleus
MSH-RF	melanocyte-stimulating hormone -	PENK	preproenkephalin
	releasing factor	PET	positron emission tomography
MSH-RH	melanocyte-stimulating hormone -	pf	parallel fibers
	releasing hormone	PFA	perifornical area
MSH-RIF	melanocyte-stimulating hormone -	PGE2	prostaglandin E2
	release-inhibiting factor	PH	posterior hypothalamus
MSH-RIH	melanocyte-stimulating hormone -	PI3K	phosphoinositide 3 kinase
	release-inhibiting hormone	PIF	prolactin releasing inhibiting factor
MT	melatonin	PIP2	phosphatidylinositol diphosphate
MUA	multiple unit activity	PIR	piriform cortex
NA	noradrenaline (also norepinephrine, NE)	PKA	protein kinase A
Na ⁺	sodium ion	PL	placental lactogen
NE	norepinephrine (also noradrenaline,	PLC	phospholipase C
	NA)	PNS	parasympathetic nervous system
NGF	nerve growth factor	POA	preoptic area
NK	natural killer cell	POL	RNA polymerase
NKT	natural killer T cell	POMC	pro-opiomelanocortin

LIST OF ABBREVIATIONS

xix

PP	nongraptia nalymentida	TIDA	tuberoinfundibular DA
	pancreatic polypeptide	TNFα	tumor necrosis factor α
PR	progesterone receptor		
PRF	prolactin releasing factor	TR	thyroid hormone receptors
PRH	prolactin-releasing hormone	TRF	thyrotropin (TSH) releasing factor
PRL	prolactin		(also TRH)
PRO	proestrus	TRH	thyroid hormone releasing hormone
PrRP	prolactin-releasing peptide	trk	tyrosine receptor kinase
PTH	parathyroid hormone	T_S	suppressor T cell
PTSD	post-traumatic stress disorder	TSH	thyroid-stimulating hormone
PV	periventricular nucleus	TSHR	TSH receptor
PVN	paraventricular nucleus	TSH-RH	thyroid-stimulating hormone-
PYY	peptide YY		releasing hormone (TRH)
RA	robust nucleus of the arcopallium	VEGF	vascular endothelial growth factor
RER	rough endoplasmic reticulum	VIP	vasoactive intestinal polypeptide
RSP	retrosplenial cortex	vmSON	ventromedial supraoptic nucleus
SC	subcutaneous	VMH	ventromedial hypothalamic nucleus
SCN	suprachiasmatic nucleus	VMN	ventromedial nucleus of
SDN	sexually dimorphic nucleus		hypothalamus
SEM	standard error of the mean	VNO	vomeronasal organ
SHBG	sex hormone binding globulin	VP	vasopressin
SNAP	soluble SNF attachment proteins	WAT	white adipose tissue (fat)
SNARE	SNAP receptor protein		1
SNB	spinal nucleus of the		
	bulbocavernosus		
SNS	sympathetic nervous system		
SOCS	suppressor of cytokine signaling		
SOM	somatostatin		
SON	supraoptic nucleus		
SP	Substance P		
SS	somatosensory cortex		
SST	somatostatin receptor		
STAT	signal transducer and activator of		
	transcription / signal transduction		
	and transcription		
T	testosterone		
T3	triiodothyronine		
T4	thyroxine		
TBG	thyroid hormone binding globulin		
T_{C}	cytotoxic T cell		
TF5	thymosin fraction 5		
TGFα	transforming growth factor α		
TGFβ1	transforming growth factor β1		
TH	tyrosine hydroxylase		
T_{H}	helper T cell		
	*		

THC

tetrahydrocannabinol